
S E C T I O N 1 & 3

w w w. n o v e l l . c o mNovell Research

Michael Risch,
Sean Kirkby,
Bob Good,
Steve Hughes

C O N T E N T S

Section 1: GroupWise Object API

4 Chapter 1-9

Section 2: GroupWise Tokens

(not available yet)

Section 3: GroupWise C3POs

169 Chapter 16-19

Section 4: Administrative Object

API

(not yet available)

GroupWise®

developer’s guide

Novell Research
Publishers of AppNotes®
Novell’s Technical Journal for
Implementing, Managing,
and Programming to one Net

Editor-in-Chief Gamal B. Herbon

Managing Editor Ken Neff

Senior Editor Edward Liebing

Senior Research Engineer Kevin Burnett

Editor Rebecca Rousseau

Graphics Wes Heaps

Online Production Robert Rodriguez

This eBook was produced using Adobe
FrameMaker 6, Illustrator, Photoshop, and
Streamline, QuarkXPress, WebWorks
Publisher Professional, Adobe Acrobat 5, and
HP LaserJet printers.

Editorial Comments

Direct any comments or suggestions about the
content of this eBook to:

Gamal B. Herbon
Novell Research
Novell, Inc. MS PRV A-231
1800 S. Novell Place
Provo, Utah 84606 USA
Voice (801) 861-6504
Fax (801) 861-4123
E-mail gherbon@novell.com

On the Web

The GroupWise Object API Developer’s Guide eBook is
accessible on the World Wide Web at http://www.novell.com/
research.

Permissions

You must obtain permission before reproducing any material
from the GroupWise Developer’s Guide in any form. To quote
from or reprint any portion, send a written request to Novell
Research Editor-in-Chief, 1800 S. Novell Place, Provo, UT,
84606, or fax to (801) 861-4123.

Copyright © 2002 by Novell, Inc., Provo, Utah. All rights
reserved.

Novell, Inc. makes no representations or warranties with respect
to the contents or use of these eBooks or of any of the third-
party products discussed in the eBook. Novell reserves the right
to revise these eBooks and to make changes in their content at
any time, without obligation to notify any person or entity of
such revisions or changes. These eBooks do not constitute an
endorsement of the third-party product or products that were
tested. Configuration(s) tested or described may or may not be
the only available solution. Any test is not a determination of
product quality or correctness, nor does it ensure compliance
with any federal, state or local requirements. Novell does not
warranty products except as stated in applicable Novell product
warranties or license agreements.

464-000063-013April 15, 2002

Introduction

1

Dear Readers:

Welcome to this second edition of the AppNotes/DeveloperNet University GroupWise Developer’s Guide.
Many of you have liked what we have provided so far, and we are continuing to bring you the material you
need. As we continue to release new sections as part of this eBook, please be patient and provide us with
feedback on the sections as they come out, and I think the end product will be one that will be quite useful
in your development efforts regarding GroupWise. Now, a little about the book.

The GroupWise APIs provide a rich set of application tools that can help developers access the power of
GroupWise. This book was written to help application developers harness this power. Through a
combination of numerous examples and detailed discussions not available elsewhere, its aim is to simplify
and take the mystery out of GroupWise development.

The book is divided into four main sections. Chapters 1-9 discuss the GroupWise Object API, which gives
developers access to the GroupWise data store. Chapters 10-15 present a discussion of GroupWise tokens.
These tokens allow developers to “throw” and “catch” many of the same actions that take place within the
GroupWise client itself. Chapters 16-19 discuss GroupWise C3POs, which give developers the ability to
modify the GroupWise client. C3POs also provide the capability to catch and handle GroupWise events
and commands. Finally, Chapters 20 and beyond present a quick survey of the Administrative Object API.
This API gives someone with administrative privileges the ability to make GroupWise system level
changes, such as adding and deleting GroupWise users. This book should be helpful to all GroupWise
developers who use any of these API sets.

Because Visual Basic, Delphi, and C++ are all languages used by GroupWise developers, this book will
include examples in all three languages. An emphasis is given to Visual Basic and Delphi, since these are
the language most often used by GroupWise developers.

This release presents the first and third sections, (consisting of Chapters 1-9 and 16-19). Other chapters
will be grouped together logically and will be released as we finish them. Check our web site for updated
versions.

I acknowledge the contributions of the authors, Michael Risch, Sean Kirkby, Bob Good, and Steve
Hughes. I also want to acknowledge and thank John Cox and Glade Monson of Novell’s Worldwide
Developer Support organization for their efforts.

Of course, I acknowledge the hard work of the AppNotes and DeveloperNet University team in editing,
and producing this book.

I look forward to your feedback on this book and the format. Let me know how you like and what we can
do better.

Gamal B. Herbon
Editor-in-Chief

July 2002

Contents July 15, 2002
G r o u p W i s e D e v e l o p e r ’ s G u i d e

by Michael Risch, Sean Kirkby, Bob Good, and Steve Hughes

Section 1: GroupWise Object API
Gives developers access to the GroupWise data store.

4 Chapter 1: Introducing the Object API

26 Chapter 2: Using the Account Object

36 Chapter 3: Understanding Folder and Trash Related Objects

60 Chapter 4: Message Collections

75 Chapter 5: Understanding Message and Message Related Objects

97 Chapter 6: Understanding Document and Document Related Objects

118 Chapter 7: Understanding Address and AddressBook Objects

127 Chapter 8: Understanding Field and Field Related Objects

157 Chapter 9: Understanding Filter and Query Related Objects

Section 2: GroupWise Tokens (not yet available)
Tokens allow developers to “throw” and “catch” many of the same actions that take place within the
GroupWise client itself.

Chapter 10: (not yet available)

Chapter 11: (not yet available)

Chapter 12: (not yet available)
w w w . n o v e l l . c o m / a p p n o t e s
2

Chapter 13: (not yet available)

Chapter 14: (not yet available)

Chapter 15: (not yet available)

Section 3: GroupWise C3POs (not yet available)
C3POs give developers the ability to modify the GroupWise client and also provide the capability to
catch and handle GroupWise events and commands.

169 Chapter 16: Overview

180 Chapter 17: Customizing Menus and Toolbars

211 Chapter 18: Capturing a Predefined Command

223 Chapter 19: Putting It All Together

Section 4: Administrative Object API (not yet available)
This API gives someone with administrative privileges the ability to make GroupWise system level
changes, such as adding and deleting GroupWise users.

Chapter 20: (not yet available)

Chapter 21: (not yet available)

Chapter 22: (not yet available)

Chapter 23: (not yet available)

Chapter 24: (not yet available)
J u l y 2 0 0 2 3

Chapter 1
Section 1: GroupWise Object API

Introducing the Object API

Sometime you may want to access and manipulate the data in a GroupWise
database without bringing up the GroupWise client interface. For example, as a
GroupWise user may have a need to automate the sending of a message, search
for a specific user in an address book, access a certain document, or do any
number of other GroupWise related tasks normally accomplished by using the
GroupWise client itself.

The GroupWise Object API was developed to fulfill this need. This API allows
application developers to see, use, and manipulate the GroupWise information
store from outside GroupWise 5.5 or 6.0. This powerful feature opens up the
GroupWise system to third party development. Documentation, sample code and
downloads for the Object API are available at http://developer.novell.com/
ndk/gwobjapi.htm.

You will find that the Object API is a carefully organized representation of the
GroupWise information store. It consists of many inter-related objects that will
sound familiar to GroupWise developers, such as an Account object, a Message
object, a Folder object, etc. Each object has methods and properties which
describe that object, and which the developer can access in an application.

The following topics are discussed in this chapter.

Contents:

• Getting Started with the Object API

• Your Application is a COM Client

• How to Access the GroupWise Object API

• Late Binding

• Getting an Application Object

• Logging in
w w w . n o v e l l . c o m / a p p n o t e s
4

http://developer.novell.com/ndk/gwobjapi.htm
http://developer.novell.com/ndk/gwobjapi.htm

Getting Started with the Object API

One of the most frequently asked questions in the Novell Developer forums is
“Where can I download the SDK for GroupWise?” The DLLs and EXEs the
programmer accesses are already installed as part of the GroupWise client. It
often takes several posts back and forth to get across the idea that the Novell
developer site contains only the GroupWise sample code and documentation on
how to use what is already installed as part of the GroupWise client, at least as far
as Object API is concerned.

Your Application is a COM Client

COM stands for “Component Object Model”, and is Microsoft’s answer to the
difficulties of more traditional methods of exposing APIs. Before we begin
talking about any individual elements of the Object API, we should discuss how
COM comes into play with the Object API, and what is required for the Object
API to communicate with the underlying GroupWise information store.

As a starting point, it is important to understand that the GroupWise databases are
in a proprietary, encrypted, format, and cannot be accessed directly. As a result,
the only way to access the GroupWise databases is through the GroupWise client.

A GroupWise client consists of different components. One of these components is
the User Interface (UI), which is what the user sees and interacts with when the
client is fully launched. The UI does not access the GroupWise databases directly.
Instead, the UI communicates with a component of the client called the
GroupWise Object Request Broker (GWORB). The GWORB deals with the code
that deals with the databases in “direct” mode, or deals with the code that deals
with the Post Office Agent in “client-server” mode.

In addition, GroupWise also uses a “COM server” known as the Object API to
access the GWORB. While the GroupWise client has its own UI, using the Object
API does not require any UI at all. Instead, it can deal directly with the GWORB.
As such, an application written to use the GWOAPI is one that is concerned with
accessing GroupWise databases, and not with altering or otherwise manipulating
the UI. In fact, the only UI in the entire Object API is the password request dialog
box that may be programmed to come up as part of the GroupWise login.

Figure 1 shows how the GroupWise UI, the GWORB, and an application work
together.
C h a p t e r 1 5

Figure 1: How the GroupWise UI, the GWORB, and an application work together.

What is COM?

COM stands for “Component Object Model”. It is basically a method whereby
one piece of software can communicate with and provide services to another piece
of software. As far as the Object API is concerned, COM allows GroupWise to
provide services to an outside third-party application. It is valuable because it
offers a single standard approach for accessing all different kinds of software
services (local function calls, system calls, network communications). It also is
independent of the programming language being used.

If you are not familiar with the term “COM”, you may know it by one of its other
names: OLE, .OCX, ActiveX, or Automation. OLE was one of Microsoft’s earlier
attempts to solve the dilemma of code control in distributing APIs. It is considered
a predecessor to COM. ActiveX is widely regarded simply as another name for
COM. For all intents and purposes, ActiveX objects are COM servers, and
applications that use them are COM clients.

COM has advantages over traditional APIs for several reasons. One important
reason is that traditional APIs are made available to developers as linkable library
files, or as well-documented functions kept in a DLL. But these methods of
providing APIs pose serious control issues. When a function must be updated for
any reason, every developer who has written an application that relies on that
function must either re-compile and re-link (if the API is distributed as a linkable
library), or they must re-distribute the new DLL (if the API is in a DLL). Even
redistributing a DLL may pose additional difficulties not mentioned here.

COM was originally developed to be a platform-independent solution. There were
no implementations of COM on anything but Win32 platforms. However, it is
now available on a wide range of operating systems from Windows and Windows
NT to IBM Mainframes. But by-and-large, it is associated with and used on
Win32 platforms.

GroupWise Databases

Low-level Access Components

GWORB

GW UI Object API

Application
w w w . n o v e l l . c o m / a p p n o t e s
6

COM can be a complicated subject to digest. Entire volumes have been dedicated
to the subject of how to create simple COM servers (applications that expose
some kind of functionality, like an API) and simple COM clients (applications
that use functionality or APIs exposed as COM servers). Even more volumes exist
to treat the more complex and advance intricacies of COM. Even so, it is a fairly
powerful way to expose functionality in an application to other developers. It is
well worth learning if you are serious about programming in the Win32
environment. The more you know about COM, the easier it will be to understand
the GroupWise Object API.

Where to Get More Information on COM

Wrox Press has published many books by experts in the black arts of COM. If you
are not familiar with COM, it is recommended that you read a COM book for
beginners. If you do not know C++, it is recommended that you find a book about
COM with examples in a language that you do know. For Visual Basic
developers, check out VB COM: Visual Basic 6 Programmer’s Introduction to
COM, written by Thomas Lewis and published by Wrox Press in January, 1999.
There are several Wrox Press books about COM for C++ developers. If you have
access to the World Wide Web, browse to http://www.wrox.com. You will see a
link to books on COM and COM+, many of which are for C++ developers.

In addition, there are many places on-line to get information about COM. The
Microsoft Developer Support Network is a good place to start. You can access
this network through Microsoft’s main web site at http://www.microsoft.com.

Although there are no titles by Wrox Press that treat COM programming
specifically for Delphi programmers, we did find one book by Macmillan
Technical Publishing entitled Delphi COM Programming by Eric Harmon and Al
Valvano, published in January, 2000.

Language Considerations

Languages like Visual Basic and Delphi abstract many of the complexities
required to write a COM application. In general, C/C++ development
environments don’t hide the details of COM. Writing COM applications in C/C++
typically requires the developer to know all of the ugly ins-and-outs of COM.
(One notable exception, and there may be others, is Borland’s C++ Builder. It’s
VCL framework borrows heavily from the same framework that Delphi uses,
making much of the simplifications of writing COM applications in Delphi
available to C++ programmers who use C++ Builder.)

If you program in Visual Basic or Delphi, you may be familiar with “Automation
Objects” or ActiveX. These are terms that apply to Visual Basic and Delphi
support of COM. It is through these mechanisms that your Visual Basic or Delphi
applications make use of the GroupWise Object API.
C h a p t e r 1 7

http://www.wrox.com
http://www.microsoft.com
http://www.microsoft.com

If you peruse the GroupWise API documentation, you may notice that many of
the examples in the documentation are in Visual Basic or Delphi. This is because
a single line of code in Visual Basic that supports an operation on an Automation
Object can sometimes translate into half a dozen lines of code in C++.

Writing COM applications in C++ can be so intricate that it is often difficult to
separate the code that specifically supports the use of the GroupWise Object API
from the code that is needed to support COM applications in general. This makes
it difficult to focus on exactly what the application needs in order to manipulate
GroupWise. Realistically, if you want to write COM applications in C++
(including applications that use the Object API, you should engage in a thorough
study of the topic of COM.

Languages Used in this Book. Because Visual Basic, Delphi, and C++ are all
languages used by GroupWise developers, this book will include examples in all
three languages. An emphasis is given to Visual Basic and Delphi, since these are
the language most often used by GroupWise developers.

How to Access the GroupWise Object API

COM is a very object-oriented specification. COM servers allow COM clients to
create objects in their own memory space that are defined by the COM server
itself. For example, the GroupWise client allows your application to create an
object known as the “Application Object”. In Object Oriented Programming,
(OOP), objects have attributes and methods (sometimes referred to as “properties
and methods”, or “data members and functions”). COM objects are no different.

When your application (the COM client) requests that the GroupWise Object API
(the COM server) create an Application Object for you, you get an object that has
certain properties and methods. The bulk of the GroupWise Object API
documentation is a description of these properties and methods.

While all COM servers (such as the GroupWise Object API) create objects in
pretty much the same manner, there are differences from one COM server to the
next. In addition, the method for getting an object from a COM server varies from
one programming language to another.

In the Win32 environment, COM servers are stored in DLLs or in EXEs. When a
COM server is stored in a DLL, it is known as an “In-process server” or “InProc
Server”. This means that the COM server is loaded by the COM client in the
client’s address space. In this manner, the COM client can easily access and
control the COM server. COM servers stored in EXEs can be InProc Servers, but
are more often known as “OutOfProc Servers” or “Local Servers” because when
they are loaded, they usually have their own address space. The client process
does not own the server process.
w w w . n o v e l l . c o m / a p p n o t e s
8

The GroupWise Object API is an InProc server, and is stored in a DLL. However,
COM does not require the client application to know which DLL it is stored in.
Nor does the client application have to worry about loading the DLL. The Win32
operating system does that for you. If some other COM client wanted to use the
services of the GroupWise Object API, the DLL that contains the GWOAPI COM
server will already be loaded. Again, this is a detail that the COM client, and you
as its developer, do not have to know or worry about.

When your COM client requests the services of a COM server, the request is
made by a special ID known as the ProgID (short for Program ID). Each COM
server has a unique ProgID. In the case of the GroupWise Object API, the ProgID
is “NovellGroupWareSession”. The Windows registry links this ProgID with the
actual DLL that contains the COM server’s code. In the case of the GWOAPI, the
COM server code is stored in the following DLL: GWCMA1.DLL. This file will
either be on your local hard drive or on the file server in the GW Client
Distribution Directory, depending on whether the client was installed using a
“Standard Installation” or a “Workstation Installation”.

But again, you don’t have to load this DLL. When you request the services of the
“NovellGroupWareSession” COM server, Windows will load the DLL for you (if
it isn’t already loaded). Likewise, you don’t have to worry about unloading it.
Windows keeps track of when it should be unloaded.

Late Binding

When you study the topic of COM, you learn that one of its strengths is that the
details of COM objects are hidden from the applications that use them. This
makes it possible for the designer of a COM object to modify the specification of
an object without “breaking” another developer’s application that uses the object.

While this is a very powerful mechanism for separating the details of the object
from the application that uses the object, it introduces a lot of necessary overhead
in the COM framework. Development languages such as C/C++ and Object
Pascal (Delphi) are “strongly typed” languages, which means that the compiler
checks assignments and references to make sure that the developer hasn’t made a
mistake like trying to assign a “real” (decimal point) value to a character variable.

But COM makes such “type checking” impossible to do at compile time, (at least
without a “type library”). Your program won’t know the types of the data
members of COM objects it is using until run-time, making it impossible for the
compiler to do the checking for you at compile-time. Instead, your program must
depend on a COM object to perform its own type-checking at run-time, which is
known as “late binding”.
C h a p t e r 1 9

For example, when you develop a COM application, the compiler knows that the
COM objects you access have attributes that it doesn’t know about. The compiler
will, therefore, allow you to perform operations in your program without the strict
type-checking it reserves for non-COM applications. It knows that the COM
objects will enforce their own type-checking at run-time.

Your application is bound by the type constraints of the object after the is
compilation is done. If your application violates the type checking rules of the
COM object, the COM object will gracefully inform your application through an
“exception” at run-time.

Early Binding Using Type Libraries

In contrast to the technique of “late binding” with early binding, made possible
when you import what is known as a “type library” into your application, your
application is bound by the type constraints of the object’s properties before the
compilation is done. The Type Library consists of the definitions of the COM
object’s data members and members, and is offered by most (not all) COM
servers.

Importing Type Libraries. Before a compiler can make use of the GroupWise
type library, you must import it. Each compiler has its own method for importing
type libraries. Compilers that can create COM applications typically can “import”
a type library at design-time. Armed with the information in the type library, the
compiler can perform compile-time type checking for your COM application.

The GroupWise Object API provides a type library that is used by a compiler to
do type-checking before compilation.

Type libraries are usually stored in the same DLL or EXE where the COM server
code is stored. In the case of the GWOAPI, the COM server code is in a DLL file
called GWCMA1.DLL. This is also where the GroupWise type library for the
GWOAPI is stored.

Type libraries are usually registered with Windows in the Windows registry. This
registration will include the name and location of the type library. A compiler that
allows you to import a type library will usually present you with a list of type
libraries that have been registered with Windows, so you don’t really need to
know what DLL the type library is stored in. You just need to know its name. In
the case of the GWOAPI, the type library is called “GroupWare type library
(v1.0)”. If you don’t see this in the list of available type libraries when you try to
import it, you may be able to specify the location of the GWCMA1.DLL file (it
will either be on your hard drive, or on a network drive). But be aware that if the
GroupWise type library is not in the list of available type libraries when you try to
import it, it has not been properly registered with Windows. This means that the
GroupWise client most likely has not been installed properly. In this case, it is
likely that your application will not be able to successfully use the GWOAPI. You
should re-install the GroupWise client.
w w w . n o v e l l . c o m / a p p n o t e s
10

Reasons For Using Type Libraries. So, why would you be concerned about
early-binding vs. late-binding? There are two main reasons for using
early-binding:

1. Reduction of run-time errors. If you rely on late-binding, and an error in your
program is trapped by the COM object you are using, the COM object
(hopefully) gracefully handles the error, and typically, no one gets hurt.
However, it is still a runtime error, and hurts the image of the application.

2. Performance. If you rely on late-binding, there is a lot of overhead
introduced in forcing the COM object to perform type checking. It slows
your application down quite a bit.

In addition to these two reasons, Visual Basic, through its Object Browser, adds
the ability to look at Object syntax as you are creating code. This is very helpful in
speeding up the coding process.

Setting up VB

The first thing to do when undertaking a Visual Basic or VBA project involving
GroupWise is to enable the GroupWare type library in the Project References
shown in Figure 2. In VB, follow the menu Project | References and check the
GroupWise type library box. In VBA it is Tools | Properties. (It gets moved
around a lot. Check the VB or VBA documentation for your specific version).

Figure 2: Enable the GroupWare type library in the Project References.
C h a p t e r 1 11

Note: If you can’t find GroupWare type library in the list, then GroupWise is not
properly installed. You can browse to GWCMA1.DLL to include it in the list to
write and compile a program, but it will not execute if not properly installed.

OK, we’ve said what to do, now here is why— speed. This applies not only
because of speed of execution, but speed of programming and speed of
debugging. Having a type library is the greatest boon to programming since sliced
bread. With the library installed, we can bring up the Object Browser, and have a
ready searchable reference of all objects, properties, methods, and enumerators of
the Object API. These issues are probably more important in VB than any other
language.

Figure 3: GroupWare type library.

Want to look up the syntax of the Application.Login method? Easy, note that it
returns an Account object.
w w w . n o v e l l . c o m / a p p n o t e s
12

Figure 4: Look up the syntax of the Application.Login method.

Using Early Binding. Once you enable the GroupWare type library, you now can
enjoy the benefits of early binding. Having an easy reference is only the
beginning.

To understand the benefits of early binding most clearly, first consider what
happens when you don’t invoke the GroupWare type library and you use late
binding instead. You dimension an object as type “Object” or “Variant” as shown
below:

Dim gwApplication As Object

In this case, VB (or VBA) doesn’t know how you plan to use gwApplication. It
doesn’t know when you are editing the code and it doesn’t know when it compiles
the code. It finally finds out when you assign some object to it at runtime.

This means that VB can’t help you select from the known properties and methods
while editing or detect type mismatches while compiling. It only detects these
problems when run. VB must also take extra time when running to make sure that
ogwApp does support the methods we plan to use (or crash with an error message
saying something like “Object or With clause does not support method”). Users
love this.
C h a p t e r 1 13

Now lets do it the right way:

Dim gwApplication As GroupwareTypeLibrary.Application

Now VB helps us fill in the details as we type, which makes for faster coding. VB
detects more errors while editing and at compile time (rather than at run time),
which makes for faster debugging. And VB doesn’t have to check while running
whether our object supports the method we just called. It knew at compile time,
and it runs much faster. That is what is meant by speed!

So why do we write it as GroupwareTypeLibrary.Application? Why not just
Application? The answer is that several different type libraries may include an
object with the same name. While you can set the sequence used by the compiler
to search the type libraries, this is not reliable in the long run. It is generally
accepted good VB programming practice to fully qualify the declaration of
objects. As Figure 5 shows, there are already two Application objects. One is from
GroupWareTypeLibrary, the other is from Word.

Figure 5: Two Application objects.

Setting up Delphi

If you want to use the GroupWise Type Library in Delphi, select Project | Import
Type Library, and then select “Groupware Type Library”. You can then add the
imported type library file to your uses clause and, once you have compiled, you
can use View | Browser to view the information. The browser in Delphi is not a
developed as the one in VB; consequently, you may not receive as much value
from it.
w w w . n o v e l l . c o m / a p p n o t e s
14

Setting up C++

In C++, the normal way to use information in a type library is through the use of
an interface called IDispatch. Examples later in this text will show how to use the
IDispatch interface to access the various objects in the Object API. These
examples will all use early binding, since this is the normal way to access these
objects. These examples make use of the “gwoapi.h” header file where object
information is stored.

In contrast to early binding, late binding requires more effort to code, a lot more.
You have to access an interface to the type library dynamically and use various
methods of the type library interface to search for objects or methods. You then
must use the “invoke” method of the IDispatch interface to get the desired object.
(The GroupWise early binding examples do not use the invoke method.)

Getting an Application Object

Now that we have talked a little about what the Object API is and how COM and
type libraries come into play, it is time to show how to actually gets started
writing an application using the GroupWise Object API.

The top level object in the GroupWise Object API, the object that all other
GroupWise objects derive from, is the Application object. So we must begin our
application by obtaining a reference to it.

Release 5.5 of GroupWise introduced a new and improved Application object
called Application2. (You can see this by examining the Groupware type library).
This object includes two new properties that the Application object doesn’t have,
(MainAccounts and ProxyHistory) and a new method (MultiLogin). If it is
available on the version you are using, use it. Its new functionality may be useful
to you now or in the future.

Visual Basic

Visual Basic gives us several options to get an initial Application object. We may
use either the New keyword or the CreateObject statement. Either method works.

Dim gwApplication As GroupwareTypeLibrary.Application2
Set gwApplication = New GroupwareTypeLibrary.Application2

Alternately:

Set gwApplication = CreateObject(“NovellGroupwareSession”)

That’s all there is to it.
C h a p t e r 1 15

Note: The “Set” statement should be used in Visual Basic whenever an object is being
referenced on the left side of an assignment statement. It is a reference
variable, and does not assign, but rather points gwApplication to the object that
the variable represents. It can’t “assign” it because a variable can’t hold an
outside application.

Delphi

Using the Object API in Delphi is also easy. All you need to do is instantiate the
object in a variant variable. This will create the Application2 object. Note the
slight difference in syntax between VB (CreateObject) and Delphi
(CreateOleObject).

var gwApplication:variant;
gwApplication:=CreateOleObject('NovellGroupWareSession');

This “application” object can now be used to log into GroupWise accounts, as
discussed below.

C++

As mentioned before, C++ is more difficult to use when accessing the GroupWise
Object API. Here is some sample code.

IGWSession* pIGWSession;

If (FAILED(CoCreateInstance(CLSID_GROUPWISE, NULL, CLSCTX_INPROC_SERVER |
CLSCTX_INPROC_HANDLER | CLSCTX_LOCAL_SERVER, IID_IGWSession,
(void**)&pIGWSession)))

ErrorMessage("Could not create session object");
return FALSE;

}

First, an interface pointer to a session (application) object is declared. The
interface is defined in gwoapi.h. Next, CoCreateInstance is called.
CoCreateInstance is a COM library function that takes a number of arguments.
The first argument is the class ID of the object to be created (the Session object).
This ID is used to look up an entry in the system registry that maps to a server
capable of creating a class object with this type of ID. The third argument
specifies what kind of server COM should start. In this example, we will take any
of three types. The fourth argument specifies which interface of the object you
want (objects can have multiple interfaces). An address to a Session pointer is
returned.

Again, this illustrates that if you want to use the Object API with C++, it is
extremely helpful to know the basics of COM before you begin.

Now that we have a reference to the Application object, let’s work with its most
commonly used methods: Login, Proxy, and MultiLogin.
w w w . n o v e l l . c o m / a p p n o t e s
16

Logging in

Once you have gotten a reference to the GroupWise “Application” object, the next
task is to get the GroupWise “Account” object, which represents the desired
GroupWise account that is to be accessed. There are three different methods of the
application object which return account objects – Login, MultiLogin, and Proxy.

If you are not already accustomed to logging into GroupWise using the Object
API, please pay attention to this section. In it you will find code explaining how to
provide command line prompts as you log in, including an undocumented
command line password switch, and how to avoid the login dialog box. Also this
section deals with a problem many programmers encounter – logging into the
wrong account.

Let’s begin with the syntax of the Application.Login() method. Note that
in the GroupWise Object API documentation, all “optional” parameters have
brackets around them “[]”. For the login method, all parameters are optional. If
successful, the Login method returns an “Account” object.

Login([UserID], [CommandLine], [Password], [WhenToPrompt], [Reserved])
As Account

You may leave the parameters out as well in order to simply logon to the default
or currently logged in account.

Parameter Data Type(s) Description

UserID (optional) String UserID of the account to login to. This is Email name for the
account (not the Display name). For many systems this will also
be the Netware UserID, depending on how administrators setup
GroupWise. This parameter is ignored if some application is
already running GroupWise, since GroupWise can have only one
RootAccount logged in on a single machine. See discussion
below.

CommandLine (optional) String Command line parameters used with Grpwise.exe. most com-
monly used to pass the “/pwd=” (password) switch, but may also
be used with other valid switches. See discussion below.

Password (optional) String Password for the account actually logged into. Since this may not
be the account specified by UserID, using this parameter is dis-
couraged. See discussion below.

WhenToPrompt (optional) Enum EgwPromptIfNeeded (default) displays a password prompt if
needed. This is the only user interface provided by the
ObjectAPI. egwNeverPrompt will return an error if the login
information can’t be found.

Reserved (do not use) Reserved
C h a p t e r 1 17

Example in VB (early binding using Type Library):

Dim gwApplication As GroupwareTypeLibrary.Application2
Dim gwAccount As GroupwareTypeLibrary.Account2

Private Sub AccountLogon()
Set gwApplication = CreateObject(“NovellGroupWareSession”)
Set gwAccount = gwApplication.Login

End Sub

Example in Delphi:

var gwApplication:variant;

procedure AccountLogon;
begin
try

if varisempty(GroupWise) then begin {allows for multiple procedure calls}
gwApplication:=CreateOleObject('NovellGroupWareSession');
gwAccount:= gwApplication.Login;

end;
except end;
end;

Example in C++:

IGWSession* pIGWSession;
VARIANT vUserId, vCmdLine, vPassword, vWhenToPrompt, vReserved;

If (FAILED(CoCreateInstance(CLSID_GROUPWISE, NULL, CLSCTX_INPROC_SERVER |
CLSCTX_INPROC_HANDLER | CLSCTX_LOCAL_SERVER, IID_IGWSession,
(void**)&pIGWSession)))

ErrorMessage("Could not create session object");
return FALSE;

}

VariantInit (&vUserId);
VariantInit (&vCmdLine);
VariantInit (&vPassword);
VariantInit (&vWhenToPrompt);
VariantInit (&vReserved);

V_VT(&vUserId) = VT_EMPTY;
V_VT(&vCmdLine) = VT_EMPTY;
V_VT(&vPassword) = VT_EMPTY;
V_VT(&vWhenToPrompt) = VT_I2;
V_VT(&vReserved) = VT_EMPTY;

V_I2(&vWhenToPrompt) = 0;

if(!SUCCEEDED(pIGWSession->Login(vUserId, vCmdLine, vPassword,
w w w . n o v e l l . c o m / a p p n o t e s
18

vWhenToPrompt, vReserved, &pDIGWAccount))) {
ErrorMessage("Couldn't login to session");
return FALSE;

}

Note: UserID is ignored if GroupWise, or an application that uses GroupWise (such as
Notify) is running. This can lead to unanticipated results for the unwary.

Let’s explore the ramifications of the above statement, and provide some work
arounds. Say we develop an application that uses the Personnel account. (An
account we set up in GroupWise to appear that the message is coming from the
Personnel department rather than from a specific user. The Personnel manager
happens to be named JoeUser (what a coincidence).

JoeUser is running Notify in the background in order to be notified when he gets
mail. Good for him, we don’t want him to miss any messages from JanePresident.

JoeUser runs our application, intended to send messages to new hires from the
Personnel department. Our code executes the following:

Example in VB:

Dim gwApplication As GroupwareTypeLibrary.Application2
Dim gwAccount As GroupwareTypeLibrary.Account2

Private Sub AccountLogon()
Set gwApplication = CreateObject(“NovellGroupwareSession”)
Set gwAccount = gwApplication.Login(“Personnel”, , “PersonnelPwd”,

egwNeverPrompt)
End Sub

Example in Delphi:

var gwApplication:variant;
procedure AccountLogon;
begin
try

if varisempty(GroupWise) then begin {allows for multiple procedure calls}
gwApplication:=CreateOleObject('NovellGroupWareSession');
gwAccount:= gwApplication.Login('Personnel', , 'PersonnelPwd',

egwNeverPrompt);
end;

except end;
end;

Example in C++:

IGWSession* pIGWSession;
BSTR bMyID, bMyPWD;
char *pMyID, *pMyPWD;
VARIANT vUserId, vCmdLine, vPassword, vWhenToPrompt, vReserved;
C h a p t e r 1 19

If (FAILED(CoCreateInstance(CLSID_GROUPWISE, NULL,
CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER CLSCTX_LOCAL_SERVER,
IID_IGWSession, (void**)&pIGWSession)))

ErrorMessage("Could not create session object");
return FALSE;

}
VariantInit (&vCmdLine);
VariantInit (&vReserved);

V_VT(&vCmdLine) = VT_EMPTY;
V_VT(&vReserved) = VT_EMPTY;

pMyID = "Personnel";
bMyID = SysAllocString(TO_OLE_STRING(pMyID));
VariantInit (&vUserId);
V_VT(&vUserId) = VT_EMPTY;
V_BSTR(&vUserId) = bMyID;

pMyPWD = "PersonnelPwd";
bMyPWD = SysAllocString(TO_OLE_STRING(pMyPWD));
VariantInit (&vPassword);
V_VT(&vPassword) = VT_EMPTY;
V_BSTR(&vPassword) = bMyPWD;

VariantInit (&vWhenToPrompt);
V_VT(&vWhenToPrompt) = VT_I2;
V_I2(&vWhenToPrompt) = 1; // means egwNeverPrompt

if(!SUCCEEDED(pIGWSession->Login(vUserId, vCmdLine, vPassword,
vWhenToPrompt, vReserved, &pDIGWAccount))) {

ErrorMessage("Couldn't login to session");
return FALSE;

}

So what do we have? Answer: gwAccount is still JoeUser’s account, and not the
Personnel account. Why? Notify was running with user JoeUser, so GroupWise
ignored the arguments that relate with Personnel, and logged into JoeUser’s
account instead.

In fact, it general it doesn’t matter what is substituted for any of the arguments.
The application can list a faulty UserID, use command line switches pointing to a
different PO, use a bad password, or use the egwPromptIfNeeded flag. There will
be no prompting needed and the account logged into will be JoeUser’s account.
Simply stated, all the arguments are ignored if JoeUser is already using
GroupWise.

We could require JoeUser to end Notify before using our application, but that
would be bad, since he may miss the timely message from JanePresident.

On the other hand, if GroupWise is not already up and running, we are in a
different ballgame. JoeUser can log into an account specified by the arguments he
provides to the login function, or if he specifies no arguments at all, the login
method will search for default login information in the operating system or
NetWare – such as the UserID and password.
w w w . n o v e l l . c o m / a p p n o t e s
20

If JoeUser has multiple accounts – say Account A and Account B – then he needs
to provide enough information in the Login command to distinguish between the
two accounts when he logs in. Which account does he want, and what default
login information exists in the system? He may need to provide the specific post
office in the second parameter.

Now JoeUser can log into the Personnel account. He must specify the Personnel
ID as the first parameter, and PersonnelPwd as the password in the third
parameter. If he makes a mistake (like entering a faulty ID, or mismatching the
password and ID), and specifies the egwPromptIfNeeded flag, then a popup box
will allow JoeUser to reenter the correct information. (This is the only login the
Object API provides). If he instead specifies the egwNeverPrompt parameter
while making a mistake with the UserID or password, then he will get a runtime
error.

JoeUser also has an opportunity to use any of several command line switches in
the second parameter. The list of these switches can be found in the GroupWise
Client help – under “command line switches”. For example, in Visual Basic, he
might try:

Set gwAccount = gwApplication.Login("Personnel", "/ipa-144.68.711.119
/ipp-1677", "PersonnelPwd", egwNeverPrompt)

Where the ipa and ipp switches determine the ip address and port.

There is also an undocumented password switch that may come in handy:

An undocumented command line switch for starting GrpWise.exe is:
/pwd=<PASSWORD>
which provides a password to start GroupWise.

Example in VB:

Dim gwApplication As GroupwareTypeLibrary.Application2
Dim gwAccount As GroupwareTypeLibrary.Account2

Private Sub AccountLogon()
Set gwApplication = CreateObject(“NovellGroupwareSession”)
Set gwAccount = gwApplication.Login(“Personnel”, “/pwd=PersonnelPwd”,

,egwNeverPrompt)
End Sub

Example in Delphi:

var gwApplication:variant;
procedure AccountLogon;
begin
try
C h a p t e r 1 21

if varisempty(GroupWise) then begin {allows for multiple procedure calls}
gwApplication:=CreateOleObject('NovellGroupWareSession');
gwAccount:=gwApplication.Login('Personnel', '/pwd=PersonnelPwd', ,

egwNeverPrompt);
end;

except end;
end;

The necessity of a password depends upon the default security level involved, and
the password options set by each user. “If” a password is required, it can be
supplied by the third parameter, or by the /pwd switch in the second parameter.

Finally, if you are not sure you have logged into the right account, you can always
check the Account.Owner.DisplayName property. If the account name is
correct, then all is well. If not, you can Proxy() or, if we are using GroupWise
5.5 or later, MultiLogin() to get another Account object.

Proxy

The Application.Proxy() method allows you to proxy to another account
with Object API.

Application.Proxy(User as {String or Address})

Let’s look at our personnel problem. If JoeUser logs into his own account, and the
other Personnel account has granted JoeUser proxy rights into the Personnel
account, then JoeUser can proxy into the Personnel account by using the Proxy
method of the Application object.

Example in VB:

Dim gwApplication As GroupwareTypeLibrary.Application2
Dim gwAccount As GroupwareTypeLibrary.Account2

Private Sub AccountLogon()
Set GroupWise = CreateObject(“NovellGroupwareSession”)
Set gwAccount = gwApplication.Login(“Personnel”, “/pwd=PersonnelPwd”,
,egwNeverPrompt)

If gwAccount.Owner.DisplayName <> “Personnel Dept” Then
Dim gwProxyAcct As GroupwareTypeLibrary.Account2
Set gwProxyAcct = gwAccount.Proxy(“Personnel”)

If gwProxyAcct is Nothing Then
MsgBox “Proxy failed, make sure “ & gwAccount.Owner.DisplayName & _”

“has proxy rights to Personnel Dept”
'<bail out code here, such as End ,Exit Sub, Err.Raise(), . . . >

Parameter Data Type(s) Description

User String or Address Either an EmailName string or Address object of
the account to proxy.
w w w . n o v e l l . c o m / a p p n o t e s
22

End If

Set gwAccount = Nothing
Set gwAccount = gwProxyAcct
Set gwProxyAcct = Nothing

End If
End Sub

Example in Delphi:

var gwApplication:variant; {make this global usually}
procedure AccountLogon;
begin
try

if varisempty(GroupWise) then begin {allows for multiple procedure calls}
gwApplication:=CreateOleObject('NovellGroupWareSession');
gwAccount:= gwApplication.Login('Personnel', '/pwd=PersonnelPwd', ,

egwNeverPrompt);
end;

except end;
end;

Multilogin

GroupWise 5.5 and later provides a better solution for our login problem: the
Application.MultiLogin() method. Using the previously discussed login
method, we can only log into one account at a time. On the other hand, the
MultiLogin method makes it possible to log into one account, like JoeUser’s, and
then successfully log into another account, such as Personnel.

MultiLogin(UserID, [CommandLine], [Password], [WhenToPrompt], [Reserved]) As
Account

Note: The MultiLogin method always returns the specified account or Nothing (if the
account can’t be returned).

Parameter Data Type(s) Description

UserID String UserID of the account to login to. This is Email name for the
account (not the Display name). For many systems this will also
be the Netware UserID, depending on how administrators setup
GroupWise.

CommandLine (optional) String Command line parameters (switches) used with Grpwise.exe.

Password (optional) String Password for the account specified by UserID.

WhenToPrompt (optional) Enum egwNeverPrompt (default), the login method returns Nothing if
the login is unsuccessful egwPromptIfNeeded displays a pass-
word prompt if needed. This is the only user interface provided
by the ObjectAPI.

Reserved (do not use) Reserved
C h a p t e r 1 23

This method makes life a lot easier. If we got the account UserID (and Password,
if needed) correct, then we get the account we specify without question. Note
these differences:

There are a couple of “gotchas” associated with using the MultiLogin command.

First, suppose you were to try and open five user accounts, with UserIDs
identified by UserName(1-5) and passwords identified by UserPassWord(1-5).
Suppose your Visual Basic code went something like this:

For i = 1 To 5
Set gwAccount = gwApplication.MultiLogin(UserName(i), , “UserPassWord(i))

Next

If you were to try this, you would find that the number of total accounts you have
opened is only 1 — not 5. This is because you are using the same gwAccount
object during every iteration. This account object is being overwritten, and during
loops 2-5 the previous gwAccount object is probably being released by Visual
Basic.

To correct this problem, make sure that you use a distinct name for each Account
you open.

A second “gotcha” is trying to use the GroupWise Personal Address Books
collection derived from one of the multiple accounts you may open. Normally,
after accessing a GroupWise account object, you can drill down and get the
address books used by that particular account.

Feature Login MultiLogin

Adds an account to
Application.MainAccounts collection

Yes Yes

Sets Application.RootAccount prop-
erty

Yes No

Preferred password passing parame-
ter

2nd (CommandLine) with “/pwd=” pre-
fix

3rd (Password)

Default WhenToPrompt parameter egwPromptIfNeeded egwNeverPrompt

The UserId parameter Is optional Is required

The Account returned (if it is possi-
ble to return the account)

The account specified by the UserID
parameter is overwritten if GroupWise is
already running by the account which is
logged in. GroupWise is running if any
application based on it (i.e.Notify,
InForms, WorkFlow) is running.

The account speci-
fied by UserID.

GroupWise version All versions with Object API GroupWise 5.5 and
later
w w w . n o v e l l . c o m / a p p n o t e s
24

The problem is that the GroupWise Object API uses MAPI to talk to any address
book. The MAPI system, however, logs into one user only – the same user that a
call to the gwApplication.Login would return. Thus, only the address book
collection used by the account returned by gwApplication.Login is correct. When
MultiLogin is used to log into any other person’s account, the address books and
their associated entries will be incorrect and will come from the
gwApplication.Login account instead.

Security and Maintenance Considerations for Login

When developing an application, one of the questions you may deal with is how to
store the password parameter(s) used. Storing them in the application is
convenient, but is usually in human readable form leading to a security risk. There
are alternative strategies to deal with this.

Application Object Properties

Besides the three login methods of the Application object that we have discussed,
there are also several Application object “properties”. They are all “read only”. A
description of each of these properties is listed in the GroupWise documentation
found at the GroupWise Object API developer site http://developer.novell.com/
ndk/gwobjapi.htm. Properties which are also objects will be discussed in the
following chapters.

Summary

In this chapter we learned that the Application object is the root object used by the
GroupWise object ABI. In the next chapter we will discuss using the Account
object.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.

Option Security Maintenance

Store password for the application
account locally

Security hole for one account Synchronize password changes
or set password to never change

Allow selected users to proxy the
account, Use Login() without param-
eters for user to login to their own
account (if not already running),
then always Proxy

Security is maintained Updating proxy rights as users
change
C h a p t e r 1 25

http://developer.novell.com/ndk/gwobjapi.htm
http://developer.novell.com/ndk/gwobjapi.htm

Chapter 2
Section 1: GroupWise Object API

Using the Account Object

In Chapter 1, we discussed the GroupWise Application object. We learned that the
Application object is the root object used by the GroupWise object API. All other
GroupWise objects derive from the Application object. We also learned that the
Application object has three different methods available, and that each of these
methods returns a GroupWise Account object. These methods are:

• Login – used to log into a user’s root account.

• Proxy – used to proxy into someone else’s account who has granted you
proxy rights.

• MultiLogin – used to log into multiple accounts simultaneously.

All of the above methods return an Account object. Because of the importance of
the Account object, this chapter will concentrate on describing some of its
methods and properties. This description includes several new properties and
methods that have been made available for GroupWise 6.0 SP1 and GroupWise
5.5 EP SP4. In terms of the number of methods and properties available, the
Account Object is one of the larger objects in the Object API.

The following topics are discussed in this chapter.

Contents:

• AccountRights Property

• ProxyAccounts and Proxied Properties

• DefaultAccountRights Property

• AddressBook, Folder, and Message Properties

• Archive Properties

• Other Properties

• Account Object Methods
w w w . n o v e l l . c o m / a p p n o t e s
26

AccountRights Property

One of the important properties of the Account object is the AccountRights
property, which is an object of type “AccountRightsCollection”. This property
represents proxy access rights that a given user grants to other users.

For example, suppose User1 grants proxy rights in his account to User2, User3,
and User4. If User1 then uses the object API to access the AccountsRights
property of his own Account object, this property will be an
AccountRightsCollection object consisting of 3 “AccountRights” objects in the
collection, corresponding to the proxy rights granted to User2, User3, and User4
respectively. (These AccountRights objects are not to be confused with the
AccountRights property of the Account object.) By accessing each object in this
collection, and using its properties and methods, User1 can get information about
the proxy rights he granted to each of the other 3 users.

In contrast, suppose User2 proxied into User1’s account and looked at this same
collection. What would User2 see?

This time User2 would only see 1 item in the collection – not 3. The only
AccountRights object he would see would be the rights that User1 granted to
User2. The GroupWise architects did it this way so that User2 would not see all
the users to whom User1 granted proxy rights. This should be User1’s private
information.

AccountRightsCollection

Properties. The AccountRightsCollection object consists of the usual properties
for a collection. The most often used property is the “Count” property, which
gives the number of AccountRights objects in the collection. It can be used to
iterate through the list of AccountRights objects.

Methods. There are two methods of the AccountRightsCollection object.

1. Use the Item() method to obtain a specific AccountsRights object in the
collection.

Item(Index)

Item() takes as single parameter called Index, which is of type “Long”.
You can make Index an integer between 1 and Messages.Count, and the
Message object corresponding to that position will be retrieved. This is
useful when iterating within a loop.

2. Use the Add() method to add a new AccountRights object to the collection.
This translates to giving some new user proxy rights into your account.
C h a p t e r 2 27

AccountRightsCollection.Add(Address, RightsBitMask)

For example, to give proxy rights to some person listed in the GroupWise address
book, (assuming you have found the particular AddressBookEntry object
associated with that entry - see Chapter 7: Understanding Address and
AddressBook Objects), you could do the following:

Set MyAccRights = MyAccount.AccountRights
MyAccRights.Add(UserEntry, 12)

By consulting the AccountRightsConstants in the GroupWise documentation, you
can determine that the value of egwReadMailAndPhone is 8, and the value of
egwReadAppointments is 4. Using the “OR” operator, a value of 12 would give
the user the rights to read mail messages, phone messages, and appointments.

AccountRights

Properties. Most of the properties of the AccountRights object are simply
read/write boolean values indicating whether or not a “particular” right has been
granted – such as AccountRights.ReadAppointments. If this value is true, the
particular user associated with the AccountRights object can read appointments. If
it is false, he cannot.

The user associated with the AccountRights object is given by the “Address”
property, which is read only.

There is also a BitMask property which gives the rights described in the last
section. This can be modified if desired using the AccountRightsConstants and
the bitwise inclusive OR operator.

Methods. The only method available is the Delete method. It will delete that
particular user from the AccountRightsCollection, causing the
AccountRightsCollection to be reduced by one.

Name Data Type Description

Address Object This parameter can be an Address Object, or a deriv-
ative of the Address object such as an Address-
BookEntry object (see Chapter 7: Understanding
Address and AddressBook Objects). It can even be a
AddressBookCollection object. It therefore is used to
tell what user or users should have proxy rights into
the account.

RightsBitMask Long Specifies what account rights are to be given. It is
derived by using a bitwise inclusive OR operator to
the AccountRightConstants given in the Object API
documentation
w w w . n o v e l l . c o m / a p p n o t e s
28

ProxyAccounts and Proxied Properties

ProxyAccounts. Closely related to the AccountRights property is the
ProxyAccounts property, but they should not be confused. As discussed earlier,
through the AccountRights property User1 can discover all the users to whom he
has granted proxy rights, and what rights each user has. It is a collection of
“AccountRights” objects. On the other hand, the ProxyAccounts collection lists
all the proxy accounts that the owner of the account is currently using himself –
and has nothing to do with the proxy rights he has granted to others. It is a
collection of “Accounts”.

Using the same example described earlier, if User1 grants proxy rights to User2,
User3, and User4; User1’s AccountRights collection will consist of 3 elements.
Each element will be an AccountRights object that will describe to whom User1
gave proxy rights and what those proxy rights are. If User2 is currently taking
advantage of this proxy right granted by User1 and is proxying into User1’s
account, then User2’s ProxyAccounts collection will have one element in it –
consisting of User1’s account. If User2 is proxying into someone else’s account as
well, then the ProxyAccounts collection would consist of two elements. If he is
not proxying into anyone’s account, the collection would be empty.

Proxied. The Proxied property is a read only boolean value which simply
indicates whether an active account has been proxied into or not. If User2 has
proxied into User1’s account and tests this value, it will be true. If he logs into his
own account, its value will be false.

DefaultAccountRights Property

The DefaultAccountRights property lists the access rights given to all users not
listed in the AccountRights property. These are common rights shared among all
users, to whom the account owner has not specifically granted rights. This
property is “read only”, and is set through the GroupWise client (see Tools |
Options | Security Icon | <All User Access>. It is only accessible from the root
account.

Note that this property is not a collection, but consists of one “AccountRights”
object that describes these common rights. The account owner should be careful
and make sure that he has not granted general access rights into his account
through the client. This has been done before by accident.
C h a p t e r 2 29

AddressBook, Folder, and Message Properties

The Account object includes properties that allow the user to access collections of
address books, folders, messages, document libraries, filters, and field definitions
as well as access to individual address books and folders. Since these object types
are discussed in other chapters, a thorough description of these types of objects is
best left to these other chapters. For purposes of this chapter, we will simply
mention what these properties are.

Collection Type Properties

The following are collection type properties.

AddressBooks. The AddressBooks property of the Account object is an object of
type “AddressBooks”. This property represents a collection of all the address
books associated with the root account. They may be both system address books
and personal address books. See Chapter 7: Understanding Address and
AddressBook Objects.

AllFolders. The AllFolders property is a “Folders” collection object, representing
all the folders owned by this account. It includes all shared folders, even if they
are owned by another user. See Chapter 3: Understanding Folder and Trash
Related Objects.

AllMessages. The AllMessages property is a “AllMessages” collection object,
representing all the messages in the account. It does not include messages from
other accounts even if they appear in this accounts query folders and shared
folders. See Chapter 4: Message Collections.

DocumentLibraries. The DocumentLibraries property is a “DocumentLibraries”
collection object that represents all the document libraries seen by the account.
See Chapter 6: Understanding Document and Document Related Objects.

Filters. The Filters property is a “Filters” collection object that represents all the
saved filters of the account. See Chapter 9: Understanding Filter and Query
Related Objects.

FieldDefinitions. The FieldDefinitions property is a “FieldDefinitions”
collection object. It represents all the field definitions that can be associated with
the account. See Chapter 8: Understanding Field and Field Related Objects.
w w w . n o v e l l . c o m / a p p n o t e s
30

Non-Collection Type Properties

The following are non-collection type properties.

Cabinet, Calendar, Mailbox, RootFolder, WorkFolder, DocumentsFolder. These
individual folders can each be accessed directly from the Account object. See
Chapter 3: Understanding Folder and Trash Related Objects.

DefaultAddressBook, SystemAddressBook, FrequentContacts. These individual
address books can each be accessed directly from the Account object. See
Chapter 7: Understanding Address and AddressBook Objects.

DefaultDocumentLibrary. The default document library can be accessed directly
from the Account object. See Chapter 6: Understanding Document and Document
Related Objects.

Archive Properties

There are several archive properties associated with the Account object. These
properties are listed below:

Archived. This read only boolean property describes whether a given account is
an archive account of not. It is available for GroupWise versions 5.5 and later.

DefaultPathToArchive. This string property describes the path to the current
“default” archive account. It is a read only property, so it cannot be set. It is also
not affected by using the SetArchiveTo method described later. It can be set in the
GroupWise client under the Tools | Options | Environment tab | File Location tab.

PathToArchive. This string property describes the path to the current archive
account. Like the DefaultPathToArchive object, it is also read only. However, it
can be set by using the SetArchiveTo method of the Account object.

Owner Property

The owner of an account can be found by using the owner property. Since the
owner property is of type “Address”, which in turn has a property called
“DisplayName”, these properties can be combined to show the DisplayName of
an account. Here is how it could easily be done in Visual Basic, with
AccountOwner of type String.

AccountOwner = MyAccount.Owner.DisplayName
C h a p t e r 2 31

Other Properties

A brief summary of a few other Account properties are listed below:

ObjType. The ObjType property is an enumerated value that represents the type
of Account object, such as User, Resource, etc.

PathToHost. This string property represents the path-to-host of the GroupWise
server that was logged into, or an empty string if the user logged in through
TCP/IP.

Remote. This boolean read only property shows whether the account is remote.

TCPIPAddress. This string property shows the TCP/IP address of the GroupWise
server that was logged into, or an empty string if the user logged in through a
mapped path or a Universal Naming Convention (UNC) path.

TCPIPPort. This Long property gives the TCP/IP port of the GroupWise server
that was logged into, or an empty string if the user logged in through a mapped
path or a UNC path.

Trash. The Trash property is an object of type Trash representing the trash for
this account. The Trash object can be emptied or refreshed, and holds a
TrashEntries collection, consisting of the individual items in the trash. The Trash
Object is discussed in the Folders chapter.

Account Object Methods

There are 12 methods available from the Account Object. These methods will
now be briefly discussed.

Archive Methods

GetArchiveAccount ([VARIANT path]). This method returns the archive Account
object specified by an optional argument path. If the argument does not appear, it
returns the archive Account object that has been set by SetArchiveTo, or, if
SetArchiveTo has not been used, it looks up the Archive account in the database.
It is only available from the root account.

SetArchiveTo([path]). This method changes the archive path to the path
specified in the argument. If no path is specified, it will change the archive path to
the archive path specified in your GroupWise preferences. It is only available
from the root account.

MergeArchive (DestinationArchiveAcct). This method merges all messages
from the current archive account into the archive account specified by
DestinationArchiveAcct.
w w w . n o v e l l . c o m / a p p n o t e s
32

Here is a Visual Basic example that uses all three of these methods. It uses two
archive accounts called MyArchive1 and MyArchive2, stored in C:\archived1 and
C:\archived2 respectively. Assume the default archive is MyArchive1. The
example also uses some of the account object archive properties discussed earlier.

‘ Set the path to the MyArchive1 account
MyAccount.SetArchiveTo ("C:\archived1")

‘ Both of these paths will show C:\archived1
MyPath = MyAccount.DefaultPathToArchive
MyPath = MyAccount.PathToArchive

‘ Get the first archive account object
Set MyArchive1 = MyAccount.GetArchiveAccount()

‘ Now set the path to C:\archived2 account
MyAccount.SetArchiveTo ("C:\archived2")

‘ The first path will still show the path to the MyArchive1 account. SetArchiveTo
‘ does not change the default path. The second will show the path to the
‘ MyAchive2 account.
MyPath = MyAccount.DefaultPathToArchive
MyPath = MyAccount.PathToArchive

‘ Get the second archive account
Set MyArchive2 = MyAccount.GetArchiveAccount()

‘ Merge the MyArchive1 account into the MyArchive2 account
MyArchive1.MergeArchive (MyArchive2)

Other Methods

CreateQuery (). This Account object method creates and returns a Query object.
The Query object is explained later in Chapter 9: Understanding Filter and Query
Related Objects. It is helpful when conducting searches.

GetFolder (FolderID). This method returns the folder in this account with the
specified ID. The ID is specified as a string. See Chapter 3: Understanding Folder
and Trash Related Objects.

GetMessage (MessageID). Similar to the GetFolder method, this method returns
the message in this account with the specified ID. The ID is specified as a string.
See Chapter 4: Message Collections.

Refresh (). Calling this method forces the Account object, and all its objects and
collections, to reread property values from the message database.

Proxy (User). This method returns the proxy account specified by the User
argument. The user argument can be specified as a UserID string of the desired
proxy account, or as an address of the desired proxy account.
C h a p t e r 2 33

ConvertEmailAddress (OldAddress, [Format]). This method takes an address,
specified as either a string or an Address object, and converts it into a new format
specified by Format. It returns the address string with the new format. The format
is an enumerated value specified by the EmailAddressFormatConstants. Both the
constants and the method are new to GroupWise 5.5.

Some Newer Methods

For GroupWise 6.0 SP1, and GroupWise 5.5 EP SP4 and later versions, there are
three new methods available at customer request. Here is a description of these
new methods.

SetPassword (OldPassword, NewPassword). Many GroupWise developers have
wanted for some time to be able to change their own password by using the Object
API. Up until now, this has been possible through the GroupWise Client, but not
through the Object API. This new method fulfills this need.

The first argument to SetPassword is simply the old password specified as a
string. The second argument is the desired new password, also specified as a
string. If the old password is incorrect, an error will result. Hence, you must know
your old password to change it. If the GroupWise account had no password, then
the OldPassword should be an empty string. Otherwise an error will occur.

Note that this method does not change the user’s NetWare, Windows, LDAP or
other passwords. It changes only the password associated with the current
GroupWise database.

SetPassword (“OldPsWrd”, “NewPsWrd”)

SynchronizeToRemote (path, masterPassword, isCache, flags). This new
method performs the equivalent of the regular client’s “Hit the Road”
functionality. Here is a description of the different arguments.

Name Data Type Description

path String This is the desired name for the remote
mailbox or the client cache mailbox.

MasterPassword String The user’s main mailbox password.

isCache Boolean Indicates if the call is setting up regular
remote or client cache.

flags Enumerated Integer The flags indicate what is to be down-
loaded. (See the new SynchronizeCon-
stants.)
w w w . n o v e l l . c o m / a p p n o t e s
34

SynchronizeWithMaster (flags). This new method synchronizes the user’s
master mailbox in remote mode. The user needs to have set up the connection to
the master post office from the regular client or by using the new
SynchronizeToRemote above.

Summary

In this chapter we have described several new Account object properties and
methods made available for GroupWise 6.0 SP1 and GroupWise 5.5 EP SP4.
Chapter 3 will discuss Folder and Trash related objects.

For more information on Accounts, please check the GroupWise Object API
documentation http://developer.novell.com/ndk/doc.htm, sample code
http://developer.novell.com/ndk/sample.htm or visit the Developer Support Forum
area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.

Name Data Type Description

flags Enumerated Integer The flags indicate what is to be downloaded.
(See the new SynchronizeConstants.)
C h a p t e r 2 35

Chapter 3
Section 1: GroupWise Object API

Understanding Folder and Trash
Related Objects

Folder objects in GroupWise store messages and folders. The rights of a folder
can be determined through the FolderRights object of an associated
FolderRightsCollection.

Like a GroupWise folder, the Trash object is used to hold messages or
TrashEntries which are likewise accessed through a TrashEntries collection.

The following topics are discussed in this chapter.

Contents:

• Folders

• Accessing Nested Folders

• The Different Types of Folder Objects

• Creating a Folder

• Getting at the Contents of a Folder

• Shared Folders

• Testing a Folder for Shared Status

• Testing a Folder For Folder Rights

• Sharing a Folder

• Accepting a Shared Folder

• Removing User Access to a Shared Folder

• Summary
w w w . n o v e l l . c o m / a p p n o t e s
36

Folders

Folders, like many other collections objects, have a Count property and Item()
method that allows you to access individual Folder objects. Simply call the Item()
method with a single variant parameter called Index.

Folder.Item(Index as Variant)

If Index is an integer between 1 and Folders.Count the method will return
the folder corresponding to index as it appears in the GroupWise client. Be sure to
check your range to avoid a program error. Use Folders.Count, which returns
a long integer, to determine how many folders are within a Folders collection.

This is a particularly useful method if you wish to perform operations on all
folders within a for loop. The following example iterates through all folders in the
cabinet and displays the name of each one in turn:

Example in VB:

‘gwFolder is a valid reference to the Cabinet object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwFolder As GroupwareTypeLibrary.Folder2

Private Sub WalkFolders(gwFolder)
Set gwFolders = gwFolder.Folders
If gwFolders.Count > 0 Then

For i = 1 to gwFolders.Count
Set gwFolder = gwFolders.Item(i)
msgbox gwFolder.Name

Next i
End If

End Sub

Example in Delphi:

//gwFolder is a valid reference to the Cabinet object

procedure WalkFolders (gwFolder:Variant);
var i:integer;gwFolders,gwFolder:variant;
begin

gwFolders:=gwFolder.Folders;
if gwFolders.Count > 0 then begin
For i:=1 to gwFolders.Count do begin

gwFolder := gwFolders.Item(i);
ShowMessage(gwFolder.Name);

end;
end;

end;
C h a p t e r 3 37

Although this method can quickly run through an entire Folders collection, it
leaves much to be desired, if you wish to find a particular folder, in part because
you (and your code) may not know how the end user has ordered the folders in his
or her account. If Index is a string, it represents a FolderID in which case
Folders.Item(Index) will return the folder within the collection that has a
matching FolderID. If the FolderID is invalid or refers to a folder that is not within
the particular Folders collection, then the method will throw an exception. This
too, leaves much to be desired, as a particular FolderID may be unknown. The
following method accepts a folder name.

Folders.ItemByName(Name as String)

This is a tricky method; it will return the first instance of any given folder that
matches Folder.Name. If, for example, you have several sub-folders with the same
name but different parent folders, you should always check the Name property of
Folder.ParentFolder to determine exactly which folder you have obtained.

There is no way to make successive ItemByName() calls; thus, you may need
to use the Item() method and iterate through all of the folders in order to find
the folder you are looking for. Because ItemByName() may be called by any
given Folders object, you can limit the folders in which you search. For
example, you might search in the Cabinet, or you might iterate through each
top-level folder in the cabinet using the Item() method and then call
ItemByName() within each top-level folder’s collection. The following is an
example procedure that searches each top-level folder for the first folder named
‘MainFolder’ in each folder within the Cabinet (but it does not find folders in the
Cabinet that happen to be called ‘MainFolder’):

Example in VB:

'gwAccount is a valid Account object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwFolder As GroupwareTypeLibrary.Folder2
Dim gwCurrentFolder As GroupwareTypeLibrary.Folder2

Private Sub FindFoldersByName()
'Get the most recent Folders list.
gwAccount.Refresh

Set gwFolders = gwAccount.Cabinet.Folders
If gwFolders.Count > 0 Then

For i = 1 To gwFolders.Count
Set gwCurrentFolder = gwFolders.Item(i)

On Error GoTo FldrErr
Set gwFolder = gwCurrentFolder.Folders.ItemByName("MainFolder")

Next i
End If
w w w . n o v e l l . c o m / a p p n o t e s
38

Exit Sub
FldrErr:

MsgBox "Folder not found: " & Err.Description & Err.Number
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure FindFoldersByName;
var i:integer;gwFolders,gwFolder,gwCurrentFolder:variant;
MainFolder:string;
begin

gwAccount.Refresh; {This is to get the most recent Folders list}
MainFolder:='MainFolder';
gwFolders:=gwAccount.Cabinet.Folders;
if gwFolders.Count > 0 then begin

For i:=1 to gwFolders.Count do begin
gwCurrentFolder := gwFolders.Item(i);
try

gwFolder:=gwCurrentFolder.Folders.ItemByName(MainFolder);
ShowMessage('Found one in folder: '+gwCurrentFolder.Name);

except
ShowMessage('No such folder in folder: '+gwCurrentFolder.Name);

end;
end;

end;
end;

Accessing Nested Folders

Every Folder object has a Folders property that holds nested folders if they
exist. You can use recursion to walk folders more efficiently. Here is a new
declaration for WalkFolders that takes advantage of recursion.

Example in VB:

This won’t work on folders with no sub folders or second folders.

'gwFolder is a valid Folder object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwFolder As GroupwareTypeLibrary.Folder2
Dim gwTempFolder As GroupwareTypeLibrary.Folder2

Private Sub WalkFolders(gwFolder)
Set gwFolders = gwFolder.Folders
If gwFolders.Count > 0 Then

For i = 1 To gwFolders.Count
Set gwTempFolder = gwFolders.Item(i)
Msgbox gwTempFolder.Name
C h a p t e r 3 39

Call WalkFolders(gwTempFolder)
Next i

End If
End Sub

Example in Delphi:

//gwFolder is a valid Folder object

procedure WalkFolders (gwFolder:Variant);
var i:integer;gwFolders,gwTempFolder:variant;
begin

gwFolders:=gwFolder.Folders;
if gwFolders.Count > 0 then begin
For i:=1 to gwFolders.Count do begin

gwTempFolder := gwFolders.Item(i);
ShowMessage(gwTempFolder.Name);
WalkFolders(gwTempFolder);

end;
end;

end

Now if you call WalkFolders(), each folder in the Cabinet, and then each
sub-folder, all the way to the bottom level will be displayed in sequence. Of
course, you will likely never just show the folder names in this manner, but this
example is illustrative of the way to recreate a folder structure from GroupWise.

Nesting may create problems with the Folders.ItemByName() method
because it will search all folders within the given Folders collection. Thus, as
discussed above, you should examine the Folder.ParentFolder property to
determine what level of nesting the folder object is in.

The following properties also return a Folder object:

• Account.Cabinet: Returns the Cabinet folder, which is a system folder.

• Account.Calendar: Returns the Calendar folder, which is a system
folder that holds appointment, note, and task items.

• Account.DocumentsFolder: Returns the Documents folder, which
holds recently used document references.

• Account.Mailbox: Returns the Mailbox folder, which is the default
delivery location for new mail items.

• Account.RootFolder: Returns the top-level folder in the account. By
default, this folder holds all other folders including the Mailbox, Calendar,
Cabinet, WorkFolder, and DocumentsFolder. The end user can move them in
the client, but usually does not do so.
w w w . n o v e l l . c o m / a p p n o t e s
40

• Account.WorkFolder: Returns the Work-In-Progress folder, which
holds draft mail messages.

• Account.GetFolder(FolderID): This is actually a method call of the
Account object. If you happen to know the FolderID of a folder (which is
stored in the Folder.FolderID property), then you can obtain any
Folder object reference directly with this method.

• Folder.ParentFolder: Returns the folder that holds the current
Folder object. Be careful. If this is the RootFolder (the very first folder
in the whole system), instead of a folder object, you’ll get ‘Nothing’ which
can lead to bugs in your code if not handled.

The Folder Object

The key properties of the Folder object are:

The following example demonstrates the use of the Name and FolderID, as
well Account.GetFolder(FolderID) to find a specific folder in
GroupWise.

Example in VB:

'gwAccount is a valid Account object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwCabinet As GroupwareTypeLibrary.Folder2
Dim gwTempFolder As GroupwareTypeLibrary.Folder2

Private Sub CompareFolder()
'Get the most recent Folders list.
gwAccount.Refresh

Property Data Type Description

Description String (R/W) Describes the folder.

FolderID String (R/O) A unique ID (similar to MessageID) for the given
folder. You can use this ID in the Account.Get-
Folder() method to obtain a reference to any Folder
object directly.

Name String (R/W) Name of the folder.

ObjType Enum (R/O) EgwUnknownFolder, system folders (egwMailbox,
egwRoot, egwCabinet, egwCalendar, egwWork,
egwDocuments), query folders (egwQuery), and
personal folders (egwPersonalFolder). Note that
incoming shared folders are considered personal
folders in this property.

System Boolean (R/O) This property is TRUE if the folder is a system
folder.
C h a p t e r 3 41

Set gwCabinet = gwAccount.Cabinet
FolderID = gwCabinet.FolderID
Set gwTempFolder = gwAccount.GetFolder(FolderID)

If gwCabinet.Name = gwTempFolder.Name Then
Msgbox “FolderID worked”

Else
Msgbox “FolderID failed”

End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure CompareFolders;
var gwCabinet,gwTempFolder:variant;
gwFolderID:string;
begin
gwCabinet:=gwAccount.Cabinet;
gwFolderID:=gwCabinet.FolderID;
gwTempFolder:=gwAccount.GetFolder(gwFolderID);
if comparetext(gwCabinet.Name,gwTempFolder.Name) then

ShowMessage('FolderID worked') else
ShowMessage('FolderID failed');

end;

The Different Types of Folder Objects

GroupWise recognizes the following folder types:

Personal

These are general-purpose folders that hold messages or other folders. Users may
share their personal folders with other users.

Query

This type of folder is dynamic. It holds only those items that match
Query.Expression. For example, the system defined “Sent Items” query folder
will execute a query to find all outgoing items, regardless of folder location while
the “Task List” query folder will execute a query to find all Tasks associated with
the account.

Shared

These are personal folders that provide shared level access to the folder and its
contents to other GroupWise users.
w w w . n o v e l l . c o m / a p p n o t e s
42

System

These are folders defined by the GroupWise client. They cannot be deleted and
include the Mailbox folder where new items are deposited; the Documents folder
where references to recently opened documents are stored; the Work In Progress
folder where draft messages are stored; the Calendar folder where all accepted
calendar items reside; and the Trash folder where all deleted messages are kept.

For most operations, folder objects may be treated alike. A few differences are
discussed later in this chapter.

Creating a Folder

To create a new folder, use Folders.Add(). The following methods will
create a new Folder:

Folders.Add(Name as String)

This method creates a new personal Folder and adds it to the Folders collection
with Folder.Name set to the string parameter passed to the method and
Folder.ObjType set to egwPersonalFolder.

The following example adds a new personal folder to the Cabinet called
“MainFolder”:

Example in VB:

'gwAccount is a valid Account object

Dim gwCabinet As GroupwareTypeLibrary.Folder2

Private Sub AddFolder()
Set gwCabinet = gwAccount.Cabinet
On Error GoTo FldrErr

gwCabinet.Folders.Add “MainFolder”

Exit Sub
FldrErr:

Msgbox “Error Adding Folder: ” & Err.Description & Err.Number
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure AddFolder;
var gwCabinet:variant;MainFolder:string;
begin

MainFolder:='MainFolder';
C h a p t e r 3 43

gwCabinet:=gwAccount.Cabinet;
try

gwCabinet.Folders.Add(MainFolder);
except

ShowMessage('Error Adding Folder');
end;

end;

Folders.Add(SharedMessage as SharedNotification, [Name as String])

This method creates a shared folder based on the SharedNotification object that is
passed in as the first parameter. Name will set the Folder.Name property of the
newly created folder. For more information on Shared Folders, see below.

Getting at the Contents of a Folder

One of the main reasons for wanting to access a GroupWise folder is to get at the
messages contained within. To that end, look at a folder as the collection of
message and subfolders that it contains. To access the messages in a folder, you
have several options:

First, you can access the Folder.Messages property, which returns all of the
messages contained within the folder in a Messages collection.

Second, you can use the Folder.FindMessages() method.

Folder.FindMessages(Condition)

This method takes one parameter; a variant called Condition. Condition may be a
string filter expression or a previously created Filter object. For more
information on Conditions and how to create them, see Chapter 8: Understanding
Field and Field Related Objects.

Because the Messages collection object returned by Folder.Messages takes
more resources and is slower than a MessageList object returned by
Folder.FindMessages(), you should use Folder.FindMessages() when you
can. However, if you have already instantiated a Messages object using the
Folder.Messages property, feel free to do so again without concern about
performance.

The following sample searches the Mailbox Folder for messages that include the
word “the”. It then displays the number of messages found.
w w w . n o v e l l . c o m / a p p n o t e s
44

Example in VB:

'gwAccount is a valid Account object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwFolder As GroupwareTypeLibrary.Folder2
Dim gwMessages As GroupwareTypeLibrary.Messages

Private Sub FindMessagesWithThe()
Set gwFolder = gwAccount.Mailbox
Set gwMessages = gwFolder.FindMessages(“(Message contains ““the””)”)

Msgbox gwMessages.Count
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure FindMessagesWithThe;
var gwFolder,gwMessages:variant;
begin
gwFolder:=gwAccount.Mailbox;
gwMessages:=gwFolder.FindMessages('(Message contains "the")');
ShowMessage(inttostr(gwMessages.Count));
end;

Manipulation of Messages and MessageList collections are discussed
further in Chapter 5: Understanding Message and Message Related Objects and
Chapter 6: Understanding Folder and Trash Related Objects.

Deleting a Folder

To delete a folder, use Folder.Delete(). All messages in the folder, as well
as all subfolders and all messages in those subfolders will be deleted. The
messages are moved to the trash folder. Note that if the messages are owned by
another account or if the folder is incoming shared, the messages and folder will
not be deleted from the owner’s account.

The following procedure searches for the first folder named ‘MainFolder’ and, if
it exists, deletes it:

Example in VB:

'gwAccount is a valid Account object

Dim gwAllFolders As GroupwareTypeLibrary.Folders
Dim gwMainFolder As GroupwareTypeLibrary.Folder2

Private Sub DeleteFolder()
Set gwAllFolders = gwAccount.AllFolders
Set gwMainFolder = gwAllFolders.ItemByName(“MainFolder”)
C h a p t e r 3 45

On Error GoTo FldrErr
gwMainFolder.Delete

Exit Sub
FldrErr:

Msgbox “Error Deleting Folder: ” & Err.Description & Err.Number
Exit Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure DeleteFolder;
var gwAllFolders, gwFolder:variant;
MainFolder:string;
begin

MainFolder:='MainFolder';
gwAllFolders:=gwAccount.AllFolders;
try

gwFolder:=AllFolders.ItemByName(MainFolder);
gwFolder.Delete;

except
ShowMessage('Error Deleting Folder');

end;
end;

Moving a Folder

To move a folder, use Folder.Move(). This method takes one parameter
called DestFolder which must be a valid Folder object. The Mailbox,
Calendar, and Query folders should not be used. The following code example
moves the first folder in the cabinet, if it exists, into the RootFolder:

Example in VB:

'gwAccount is a valid Account object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwFolder1 As GroupwareTypeLibrary.Folder2
Dim gwFolder2 As GroupwareTypeLibrary.Folder2

Private Sub MoveFolder()
Set gwFolders = gwAccount.Cabinet.Folders
If gwFolders.Count > 0 Then

Set gwFolder1 = gwAccount.Cabinet.Folders.Item(1)
Set gwFolder2 = gwAccount.RootFolder
On Error GoTo FldrErr
gwFolder1.Move gwFolder2

End If
Exit Sub
FldrErr:

Msgbox “Error with move: ” & Err.Description & Err.Number
End Sub
w w w . n o v e l l . c o m / a p p n o t e s
46

Example in Delphi:

//gwAccount is a valid Account object

procedure MoveFolder;
var gwFolder1,gwFolder2:variant;
begin

if gwAccount.Cabinet.Folders.Count > 0 then
begin

gwFolder1:=gwAccount.Cabinet.Folders.Item(1);
gwFolder2:=gwAccount.RootFolder;
gwFolder1.Move(gwFolder2);

end else
ShowMessage('Error with move:');

end;

Renaming a Folder

To change the name of a folder, simply change the Folder.Name property. This
will not work for incoming shared folders or System folders.

Sharing a Folder

For information on Shared folders, see below.

Shared Folders

GroupWise allows you to share your folders with other users.

Testing a Folder for Shared Status

To test whether a folder is shared, check the Folder.Shared property. If the
property is egwNotShared it is not a shared folder. If the property is
egwSharedOutgoing the account owner has shared this folder with others. If
the property is egwSharedIncoming someone else owns the folder and has
shared it with the current account owner. The owner of the folder is stored in
Folder.Owner as an Address object.

The following example tests the type of folder of each top-level folder in the
Cabinet folder and reports the results:

Example in VB:

'gwAccount is a valid Account object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwFolder As GroupwareTypeLibrary.Folder2
Dim gwCurrentFolder As GroupwareTypeLibrary.Folder2
C h a p t e r 3 47

Private Sub CheckSharedStatus()
'Get the most recent Folders list.
gwAccount.Refresh

Set gwFolders = gwAccount.Cabinet.Folders
If gwFolders.Count > 0 Then

For i = 1 To gwFolders.Count
Set gwCurrentFolder = gwFolders.Item(i)
Status = gwCurrentFolder.Shared
Select Case Status

Case "0"
MsgBox "Folder " & gwCurrentFolder.Name & " is not shared"

Case "2"
MsgBox "Folder " & gwCurrentFolder.Name & " is shared by" &

gwCurrentFolder.Owner.EmailAddress
Case "1"

MsgBox "Folder " & gwCurrentFolder.Name & " is shared by the
account owner: " & gwCurrentFolder.Owner.DisplayName

End Select
Next i

End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure CheckSharedStatus;
var i:integer;gwFolders,gwCurrentFolder:variant;
begin

gwAccount.Refresh; {This is to get the most recent Folders list. See
"Refreshing" above.}

gwFolders:=gwAccount.Cabinet.Folders;
if gwFolders.Count > 0 then begin

For i:=1 to gwFolders.Count do begin
gwCurrentFolder := gwFolders.Item(i);
case gwCurrentFolder.Shared of

egwNotShared:ShowMessage('Folder '+ gwCurrentFolder.Name+' is not
shared');

egwSharedIncoming:ShowMessage('Folder '+ gwCurrentFolder.Name +' is
shared by ' + gwCurrentFolder.Owner.EmailAddress);

egwSharedOutgoing:ShowMessage('Folder '+ gwCurrentFolder.Name +' is
shared by the account owner: '
+ gwCurrentFolder.Owner.DisplayName);

end;
end;

end;
end;

Of course, the above code can be modified for nesting either recursively or by
using nested for loops.

When working with a Shared folder, the modifications that you can make depend
on the folder rights that you have been given.
w w w . n o v e l l . c o m / a p p n o t e s
48

Testing a Folder For Folder Rights

If your code attempts to perform an operation on a shared folder that the
folder’s owner has not given to you in the security preferences (such as
deleting the folder), the Object API will return an error. To prevent this
from happening, you should always test the Folder.FolderRights property.
Folder.FolderRights is an object in and of itself. However,
Folder.FolderRights is not a FolderRights object. Rather it is a
FolderRightsCollection object. So, Folder.FolderRights returns
a collection of FolderRights objects.

The following are the key properties of FolderRights:

Like other collection objects, to access a FolderRights object, you must call
the FolderRightsCollection.Item() method.

FolderRightsCollection.Item(Index as Variant)

Property Data Type Description

Address Address object (R/O) The Address that represents the user or group that is associ-
ated with this specific set of rights

AllowAdd Boolean (R/W) TRUE if user may add to folder, FALSE otherwise

AllowDelete Boolean (R/W) TRUE if user may delete from folder, FALSE otherwise

AllowModify Boolean (R/W) TRUE if user may modify items in folder, FALSE otherwise

BitMask Integer (R/W) Mask of the sharing rights for folders. The constants egwAl-
lowDelete (1), egwAllowAdd (2), and egwAllowModify (4) are
all combined in the BitMask property, which is also
read/write. Thus, to set the sharing rights to AllowModify and
AllowDelete, set the BitMask property to egwAllowDelete +
egwAllowModify = (5)

Parameter Data Type Description

Index Variant Index may be either an integer, a string representing an integer, or an
Address object. If Index is an integer, it must be between 1 and FolderRi-
ghtsCollection.Count. This is only useful if you want to see the rights for
each and every user associated with the shared folder. If Index is an
Address object, the FolderRights object for that user, if the user is associ-
ated with the folder. If the user is not associated with the folder, the
Object API will create an OLE exception.
C h a p t e r 3 49

Item() returns the FolderRights object referenced at Index. Note that the
use of Address is difficult because the owner may have shared the folder with a
different address than you are expecting. For example, a nicknamed person or
personal group. If this happens, even Account.Owner, which you would
expect to always work because the folder is in the Owner account, will not work.
For this reason, using Address does not work very well in GroupWise remote. A
work-around if remote operation is necessary is to iterate through all shared users
and test for matching display names.

Let’s take another look at our test code from the previous section. We can slightly
modify this code to check the folder rights of any of the incoming shared folders
on the first level of the cabinet (if they exist). The following example tests the
different properties of a Shared folder and uses the BitMask property to show
how it relates to the different properties of FolderRights:

Example in VB:

'gwAccount is a valid Account object

Dim gwFolders As GroupwareTypeLibrary.Folders
Dim gwCurrentFolder As GroupwareTypeLibrary.Folder2
Dim gwFolderRights As GroupwareTypeLibrary.FolderRights

Private Sub CheckFolderRights()
'Get the most recent Folders list.
gwAccount.Refresh

Set gwFolders = gwAccount.Cabinet.Folders
If gwFolders.Count > 0 Then

For i = 1 To gwFolders.Count
Set gwCurrentFolder = gwFolders.Item(i)
Status = gwCurrentFolder.Shared

On Error GoTo ShareErr
Select Case Status
Case "2"

Set gwFolderRights =
gwCurrentFolder.FolderRights.Item(gwAccount.Owner)
MsgBox gwCurrentFolder.Name & " " & gwFolderRights.Address.DisplayName & " Delete
Allowed: " & CStr(gwFolderRights.AllowDelete) & ", Add Allowed: " &
CStr(gwFolderRights.AllowAdd) & ", Modify Allowed: " &
CStr(gwFolderRights.AllowModify) & ", BitMask: " & CStr(gwFolderRights.BitMask)

End Select
Next i

End If
Exit Sub
ShareErr:

MsgBox "Share Error: " & Err.Description & Err.Number
End Sub
w w w . n o v e l l . c o m / a p p n o t e s
50

Example in Delphi:

//gwAccount is a valid Account object

procedure CheckFolderRights;
var i:integer;gwFolders,gwCurrentFolder, gwAddress,gwFolderRights:variant;
begin

gwAccount.Refresh; {This is to get the most recent Folders list. }
gwFolders:=gwAccount.Cabinet.Folders;
if gwFolders.Count > 0 then begin

For i:=1 to gwFolders.Count do begin
gwCurrentFolder := gwFolders.Item(i);
case gwCurrentFolder.Shared of

egwSharedIncoming:
begin

{trap for errors} try
{Get the folder rights} gwFolderRights:=

gwCurrentFolder.FolderRights.Item(gwAccount.Owner);

{Show the rights info} ShowMessage(gwCurrentFolder.Name+' '+
gwFolderRights.Address.DisplayName +
' Delete Allowed: ' +
truefalse(gwFolderRights.AllowDelete) +
', Add Allowed: ' +
truefalse(gwFolderRights.AllowAdd) +
', Modify Allowed: ' +
truefalse(gwFolderRights.AllowModify) +
', BitMask: ' +
inttostr(gwFolderRights.BitMask));

except end;
end;

end;
end;

end;
end;

Sharing a Folder

Creating a shared folder is a bit tricky. When a folder is not shared, the
Folder.FolderRights collection is empty. Thus, sharing a folder requires
you to create a FolderRights object for each user you wish to grant folder
access. Here is where it gets confusing. The object at issue is called
Folder.FolderRights, which, as discussed above, is actually a
FolderRightsCollection object.

To share a folder, execute the FolderRightsCollection.Add() method
on the FolderRightsCollection object returned by the Folder.FolderRights
property.

FolderRightsCollection.Add(Address as Variant,Rights as Long)
C h a p t e r 3 51

This method takes two parameters; an Address object that represents the user you
are going to share the Folder with and a long value that sets the rights for that user.
If you attempt the Add() method on a non-personal folder, you will receive an
error.

To finalize sharing, you need to call
FolderRightsCollection.Commit(). The Commit() method saves all
sharing changes.

FolderRightsCollection.Commit(Subject as String,BodyText as String,[TypeCommit
as Enum])

This method sends a message to any affected users. If the final parameter is
omitted, the message and body text is sent to all changed users, and all changes to
affected users are committed. If you include TypeCommit, only the affected user
types (deleted users, modified users, or newly shared users) will receive the
message. If you wish to send a different message to each category of users, you
need to call Commit() three times with a different value of TypeCommit for
each call.

The following sample code creates a new shared folder in the Cabinet and then
shares that folder with the first user in the system address book with add and
modify rights. Before testing this, you might wish to change the address to some
other user so you don’t confuse the first person in your address book with shared
folders (you cannot share with the Account.Owner, or we would have written it
like that).

Parameter Data Type Description

Address Address object Address object of the user or group you want to share with

Rights Long Now the FolderRights.BitMask property makes sense – the Rights Bit-
Mask is the same combination of egwAllowDelete (1), egwAllowAdd
(2), and egwAllowModify (4) constants, depending on what rights are
to be granted.

Parameter Data Type Description

Subject String Subject of the notification mail sent to the newly
shared (or modified) users

BodyText String Text of the message the affected user will read

TypeCommit Enum This parameter may equal egwDeleted (1), egwModified
(2), or egwNew (3). If the parameter is present, only
Deleted, Modified, or New users will be committed, and
only those users will receive a message.
w w w . n o v e l l . c o m / a p p n o t e s
52

Example in VB:

'gwAccount is a valid Account object

Dim gwAddress As GroupwareTypeLibrary.Address
Dim gwAllFolders As GroupwareTypeLibrary.Folders
Dim gwNewFolder As GroupwareTypeLibrary.Folder2
Dim gwRightsCollection As GroupwareTypeLibrary.RightsCollection

Private Sub ShareAFolder()
Set gwAllFolders = gwAccount.AllFolders
Set gwNewFolder = gwAllFolders.Add("Test Shared Folder")
Set gwAddress = gwAccount.SystemAddressBook.AddressBookEntries.Item(1)
Set gwRightsCollection = gwNewFolder.FolderRights 'remember that this is a

collection
gwRightsCollection.Add gwAddress, egwAllowAdd Xor egwAllowModify
gwRightsCollection.Commit "New Test Shared Folder", "This is a test shared

folder", egwNew
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure ShareAFolder;
var gwAddress,gwAllFolders,gwNewFolder,gwRightsCollection:variant;
begin

gwAllFolders:=gwAccount.Cabinet.AllFolders;
gwNewFolder:=gwAllFolders.Add('Test Shared Folder');
gwAddress:=gwAccount.SystemAddressBook.AddressBookEntries.Item(1);
gwRightsCollection:=gwNewFolder.FolderRights; {remember that this is a

collection}
gwRightsCollection.Add(gwAddress,egwAllowAdd or egwAllowModify);
gwRightsCollection.Commit('New Test Shared Folder','This is a test shared

folder',egwNew);
end;

Accepting a Shared Folder

When a user creates a shared folder, or the Object API calls the
FolderRightsCollection.Commit() method, a notification message is
sent to all affected users. The incoming Mail object will have a ClassName
property of ‘GW.MESSAGE.MAIL.NGW.SHARED.FOLDER.NOTIFY’.
Testing for this ClassName will allow you to add the new shared folder using the
Folders.Add() method. This version of Add() is slightly different than the
version used to add a personal folder to a Folders collection taking one
required parameter and one optional parameter.

Folders.Add(SharedMessage as Mail,[Name as String])
C h a p t e r 3 53

If the SharedFolder parameter is not a shared folder notification mail, the
Object API will generate an error. Further, the Mail object is deleted as soon as
this method is called. You should not make any further calls after calling this
method. You should also unassign the variable. Finally, you cannot obtain sharing
information from the shared folder notification. Instead, you must call the Add()
method first, and then access the properties of the newly created shared folder, as
described above.

The following example checks a Mail message to see whether it is a notification
and, if so, adds the shared folder to the Cabinet. Note, of course, that any
Folders collection, and not just Cabinet.Folders, can be the recipient of
the new incoming shared folder.

Example in VB:

'gwAccount is a valid Account object and gwMail is a valid Message object

Dim gwMail As GroupwareTypeLibrary.Mail2

Private Sub CheckAndAccept(gwMail)
If gwMail.ClassName = "GW.MESSAGE.MAIL.NGW.SHARED.FOLDER.NOTIFY" Then

gwAccount.Cabinet.AllFolders.Add gwMail, "Test Shared Folder"
End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object and gwMail is a valid Message object

procedure CheckAndAccept(gwMail:variant);
begin

If gwMail.ClassName='GW.MESSAGE.MAIL.NGW.SHARED.FOLDER.NOTIFY' then
gwAccount.Cabinet.AllFolders.Add(gwMail,'Test Shared Folder');

end;

Parameter Data Type Description

SharedMessage Mail object This must be the Mail object that represents the shared folder notifi-
cation. Any other Message or Mail object will fail.

Name String You may use Name to set the name of the new incoming shared
folder to something other than the default name.
w w w . n o v e l l . c o m / a p p n o t e s
54

Removing User Access to a Shared Folder

To remove folder sharing rights for a given user, delete the FolderRights object
for that user. Actually obtaining a reference to the FolderRights object for a given
individual is not necessarily an easy task. You have two ways to find the user’s
FolderRights. If you have the user’s Address property, you may call the
FolderRightsCollection.Item() method and pass the Address to the Item() method.
The return value will be the FolderRights object for the desired user, if the user
exists.

If you do not know if the user is in the collection, or if you don’t have the
Address object, you may need to iterate through the
FolderRightsCollection. First, obtain the value of the
Folder.FolderRights.Count property. Then, iterate through each
FolderRights object in the FolderRightsCollection using the objects
Item() method with an integer Index parameter in the range between 1 and
Folder.FolderRights.Count. For each FolderRights object in the
collection, test the FolderRights.Address property (which is an
Address object) or one of the values of Address (such as
Address.DisplayName) to see whether this is the FolderRights object
of a person you wish to delete. If so, then call the FolderRights.Delete()
method to delete the user. Finally, re-commit the folder rights by calling
FolderRightsCollection.Commit().

Here is the declaration for Delete().

FolderRights.Delete()

That was complicated; the primary confusion is caused by the fact (as discussed
above) that Folder.FolderRights is actually a
FolderRightsCollection object.

The sample code below shows the deletion of a user in practice. We merely
extend the ShareAFolder procedure to both share and delete the user rights.

Example in VB:

'gwAccount is a valid Account object

Dim gwAddress As GroupwareTypeLibrary.Address
Dim gwAllFolders As GroupwareTypeLibrary.AllFolders
Dim gwNewFolder As GroupwareTypeLibrary.Folder2
Dim gwRightsCollection As GroupwareTypeLibrary.RightsCollection
Dim gwRights As GroupwareTypeLibrary.Rights

Private Sub ShareAFolder()
Set gwAllFolders = gwAccount.AllFolders
Set gwNewFolder = gwAllFolders.Add("Test Shared Folder")
Set gwAddress = gwAccount.SystemAddressBook.AddressBookEntries.Item(1)
Set gwRightsCollection = gwNewFolder.FolderRights
C h a p t e r 3 55

gwRightsCollection.Add gwAddress, egwAllowAdd Xor egwAllowModify
gwRightsCollection.Commit "New Test Shared Folder", "This is a test shared

folder", egwNew
Set gwRights = gwRightsCollection.Item(gwAddress)
gwRights.Delete
gwRightsCollection.Commit "No more sharing with you", "Gone before you know

it",
egwDeleted
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure ShareAFolder;
Var gwAddress,gwAllFolders,gwNewFolder,gwRightsCollection,gwRights:variant;
begin

gwAllFolders:=gwAccount.Cabinet.AllFolders;
gwNewFolder:=gwAllFolders.Add('Test Shared Folder');
gwAddress:=gwAccount.SystemAddressBook.AddressBookEntries.Item(1);
gwRightsCollection:=gwNewFolder.FolderRights; {remember that this is a

collection}
gwRightsCollection.Add(gwAddress,egwAllowAdd or egwAllowModify);
gwRightsCollection.Commit('New Test Shared Folder','This is a test shared

folder',egwNew);
gwRights:=gwRightsCollection.Item(Address); {same address we created with}
gwRights.Delete;
gwRightsCollection.Commit('No more sharing with you','Gone before you know

it',egwDeleted);
end;

The Trash Object

The Trash object is a special type of Folder object which is returned by
Account.Trash. The special properties associated with this GroupWise object are:

The Trash folder has two methods.

Trash.Empty()

Property Data Type Description

Name String (R/O) The name of the trash folder

Parent Account (R/O) The Account to which this trash object belongs

TrashEntries TrashEntries (R/O) This object holds the particular deleted items
w w w . n o v e l l . c o m / a p p n o t e s
56

This method empties the trash folder.

Trash.Refresh()

This method rereads the trash data from the database. You should call Refesh()
before performing any functions on the trash folder to make sure you have the
latest data.

The TrashEntries Object

A TrashEntries collection holds TrashEntry objects (described below). This
collection has the same Count property, Item() and Find() methods as
other collections. Item() takes an integer between 1 and
TrashEntries.Count. Find() takes a Condition that returns a collection of
matching TrashEntry objects. In addition, TrashEntries has an additional
method called ItemEx().

TrashEntries.ItemEx(Index as Variant)

Unlike Item(), in ItemEx(), the value of Index is a variant. If Index is an integer,
then ItemEx() returns the TrashEntry at that position in the collection. Index may
also be a valid MessageID in which case the TrashEntry object with the same
MessageID is returned. Finally, Index may be a Message object, in which case the
TrashEntry corresponding to that Message object (if it exists in the collection) is
returned.

The TrashEntry Object

The TrashEntry object is the actual deleted message that shows up in the
GroupWise trash can. The key properties of TrashEntry are:

There are two methods associated with TrashEntry; these methods control
deleting and undeleting the trash items.

TrashEntry.Delete()

This method empties an item from the trash.

TrashEntry.Undelete()

Property Data Type Description

Folder Folder object (R/O) This is the folder that contained the message before it was
deleted

Message Message object (R/O) This is the Message object that corresponds to the trash item.
C h a p t e r 3 57

This method returns the Message object associated with the TrashEntry to the
Folder object from which it came.

The following sample uses all of the trash objects described above. First, it obtains
a reference to the trash object. Next, it finds all items created more than one day
ago. Finally, the code obtains a reference to the first trash message. The code also
shows how ItemEx() works.

Example in VB:

'gwAccount is a valid Account object

Dim gwTrashCan As GroupwareTypeLibrary.Trash
Dim gwAllTrashItems As GroupwareTypeLibrary.TrashEntries2
Dim gwFoundTrashItems As GroupwareTypeLibrary.TrashEntries2
Dim gwTrashMessage As GroupwareTypeLibrary.TrashEntry
Dim gwTestMessage1 As GroupwareTypeLibrary.TrashEntry
Dim gwTestMessage2 As GroupwareTypeLibrary.TrashEntry

Private Sub RunTrashExample()
Set gwTrashCan = gwAccount.Trash
Set gwAllTrashItems = gwTrashCan.TrashEntries
Set gwFoundTrashItems = gwAllTrashItems.Find("(CREATE_DATE <= YESTERDAY)")

If gwFoundTrashItems.Count > 0 Then
Set gwTrashMessage = gwFoundTrashItems.Item(1)
Set gwTestMessage1 = gwFoundTrashItems.ItemEx(gwTrashMessage.Message)
Set gwTestMessage2 =

gwFoundTrashItems.ItemEx(gwTrashMessage.Message.MessageID)

MsgBox "Are they the same? String: " &
gwTrashMessage.Message.Subject.PlainText & ", Message: " &
gwTestMessage1.Message.Subject.PlainText & ", MessageID: " &
gwTestMessage2.Message.Subject.PlainText

gwTrashMessage.Undelete
End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure RunTrashExample;
var gwTrashCan, gwAllTrashItems, gwFoundTrashItems, gwTrashMessage,
gwTestMessage1, gwTestMessage2:variant; gwTrashMessageID:string;
begin
gwTrashCan:=gwAccount.Trash;{note that this line and the next can be done in

one step}
gwAllTrashItems:=gwTrashCan.TrashEntries;
gwFoundTrashItems:=gwAllTrashItems.Find('(CREATE_DATE <= YESTERDAY)');
if gwFoundTrashItems.count > 0 then
begin

gwTrashMessage:=gwFoundTrashItems.Item(1);
{now is the useless testing to show ItemEx()}
w w w . n o v e l l . c o m / a p p n o t e s
58

gwTestMessage1:=gwFoundTrashItems.ItemEx(gwTrashMessage.Message);{item by
message object}

gwTestMessage2:=gwFoundTrashItems.ItemEx(gwTrashMessage.Message.MessageID);
{item by MessageID}

showmessage('Are they the same? String:
'+gwTrashMessage.Message.Subject.Plaintext

+ ', Message: '+gwTestMessage1.Message.Subject.Plaintext+', MessageID: '
+ gwTestMessage2.Message.Subject.Plaintext); {these should all be the

same}
{end testing}
gwTrashMessage.Undelete; {restore from the trash can}

end;
end;

Summary

You have learned how GroupWise uses Folders to store information. Using the
Object API, you can create, access, modify, and delete many types of Folders. In
addition, the Object API provides objects and methods for you to use to
manipulate access rights; Read, Add, Edit, Delete for a given user. In the next
chapter we look at the collections which hold Messages.

For more information on Folders, please check the GroupWise Object API
documentation http://developer.novell.com/ndk/doc.htm, sample code
http://developer.novell.com/ndk/sample.htm or visit the Developer Support Forum
area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
C h a p t e r 3 59

Chapter 4
Section 1: GroupWise Object API

Message Collections

Messages are gathered in message collections. These collections allow you to
find, sort, and process messages in many different ways. In the GroupWise Object
API, there are three different types of objects that hold message collections.

• Messages object

• MessageList object

• AllMessages object

The following topics are discusses in this chapter.

Contents:

• The Messages Collection

• The AllMessages Collection and the AllMessagesIterator

• Message Lists
w w w . n o v e l l . c o m / a p p n o t e s
60

The Messages Collection

The Messages collection object is similar to the Folders collection, except
that it holds messages. It consists of all the messages in a folder, and thus the only
place to find a Messages object collection is by accessing the
Folder.Messages property. This collection can be very useful for
manipulating messages in GroupWise, but it also consumes more resources than
the MessageList object. Therefore, you should only use this collection when
you need to work directly with specific folders.

The following are the key properties and methods for iterating through these
collections and accessing specific messages.

The Count Property and Item() Method

The Count property is an integer that holds the number of messages in the
collection. This property is needed when iterating through the messages in the
collection.

Please note, however, that the number of messages in a query (a find results)
folder is always “0”. Thus, if you were to check on the “Count” property of the
“Sent Items” folder, or the “Task List” folder, or any other query folder that you
might have, the value of Count would be “0”. This has confused many GroupWise
developers.

The reason is simple. There is never anything in a query folder until the folder is
accessed. Accessing the folder causes a search to be conducted according to the
search criterion of the query folder to fill the folder. Every time you click on it, the
search is performed again to display results to the user. But there is nothing in the
folder originally, and hence the Count value is always “0”.

Use the Item() method to obtain a specific message in the collection.

Item(Index)

Item() takes as single parameter called Index, which is a variant. You can
make Index an integer between 1 and Messages.Count, and the Message
object corresponding to that position will be retrieved. This is useful when
iterating in a for loop.

Item() can also be used for retrieving specific messages by making Index a
string. The string you pass must be a valid MessageID to one of the Message
objects in the collection. If Index is a valid MessageID, the Message object
with that MessageID will be returned.
C h a p t e r 4 61

The following Delphi sample will scroll through all of the messages in the
Mailbox’s Messages collection and show the subject of each.

This assumes gwAccount is valid.

procedure ScrollMessages;
var msgs,themessage:variant;i:integer;
begin
Msgs:=gwAccount.Mailbox.Messages;

for i:=1 to Msgs.Count do begin
themessage:=Msgs.Item(i);
showmessage(themessage.subject.plaintext);

end;
end;

Here is an equivalent example in Visual Basic:

This assumes gwAccount is valid.

Dim Msgs As Messages
Dim theMessage As Message

Set Msgs=gwAccount.Mailbox.Messages

For i = 1 To Msgs.Count
Set theMessage=Msgs.Item(i)
MsgBox(themessage.subject.plaintext);

Next

Finding Messages

Use the Find() method of the Messages object to locate messages within the
specific collection that match a search query.

Find(Condition)

This method takes one variant parameter called Condition. Condition may
be a string filter expression or a previously created Filter object. (See Chapter 8:
Understanding Field and Field Related Objects about using filter expressions and
filter objects to execute queries). The Find() method returns a MessageList
object, which is discussed in the next section.

Let’s take another look at FindMessagesWithThe procedure from the folders
discussion in Chapter 3: Understanding Folder and Trash Related Objects. We can
use almost the same code with Messages.Find().
w w w . n o v e l l . c o m / a p p n o t e s
62

procedure FindMessagesWithThe2;
var thefolder,foundmessages:variant;
begin
thefolder:=gwAccount.Mailbox;
foundmessages:=thefolder.messages.find('(Message contains "the")');
ShowMessage(inttostr(foundmessages.count));
end;

Here is a Visual Basic example, which gets all the messages in a Mailbox folder
and then uses a find operation to find just the incoming mail. It uses late binding
(using a Variant type)

This assumes objFolder has already been accessed

Dim Msgs As Variant
Dim FilterString As String
Dim MyMsgList As Variant

Set Msgs=objFolder.Messages
FilterString = “(BOX_TYPE = INCOMING AND MAIL)”
Set MyMsgList = Msgs.Find(FilterString)

Moving Messages in Messages Collections

One of the primary benefits of the Messages collection is the ability to manipulate
messages within the GroupWise database.

Moving Messages. To move messages between Messages object collections – in
other words, between GroupWise folders – you should use the
Messages.Move() method. Move() takes two parameters.

Messages.Move(Index,Destination)

The following code will move the first message in the Mailbox to the
Work-In-Progress folder.

Name Data Type Description

Index Variant Either an ordinal or a MessageID, just as it is defined in the Item()
method. In addition, Index may be a Message object, which will be
a reference to a single message

Destination Messages object This parameter must be another Messages object where you want
to move the message.
C h a p t e r 4 63

procedure MoveAMessage;
begin
If gwAccount.Mailbox.Messages.Count>0 then

begin
gwAccount.Mailbox.Messages.Move(1,gwAccount.WorkFolder.Messages);

end;
end;

Note: The MoveAMessage procedure may move a sent item to the Work-In-Progress
folder. This is because the Folder.Messages object contains all of the messages in
that folder, including sent items. Thus, if you use an ordinal as the index in
methods such as Item() or Move(), you will not be able to control the type of
message you get. You can do a query, find, or test each message to limit the
types of messages you are working with – as shown in a previous example.

We have included a simple index here for exemplary purposes because we do not
know how your users’ GroupWise mailboxes are organized.

Adding New Messages to the Message Object Collection

You can also use one of the three Messages.Add() methods to create new
messages in the OAPI. These Add() methods can take anywhere from 0-3
arguments, depending on the type of message you wish to create. In addition, a
new method called “AddExistingMessage” is now available for GroupWise 6.0
SP1 and GW 5.5 EP SP4. This method can add an already existing message to a
GroupWise database, and is also discussed below.

The most commonly used Add method creates a message type of your choice,
using the following syntax:

Messages.Add([Class],[ObjType])

Note that the parameters used by this version of Add are optional. (Don’t forget, if
you want to get to the second parameter, you must include the first parameter,
even if it is blank). With the defaults above, notice that using Add() without any
parameters will create a draft “Mail” object.

Name Data Type Description

Class String The Class string is the type of message you wish to create, using the
C3PO message string types (see also Message.ClassName above).
This parameter may be ‘GW.MESSAGE.APPOINTMENT’, ‘GW.MES-
SAGE.MAIL’, ‘GW.MESSAGE.NOTE’, ‘GW.MESSAGE.PHONE’, or
‘GW.MESSAGE.TASK’, or any custom class you may create Omitting
this parameter assumes the Class string is GW.MESSAGE.MAIL

ObjType Enumerated Integer You should use the second parameter, ObjType, if you wish to create
a personal message rather than a draft message. If you omit the
parameter, the OAPI will assume that you set this parameter to egw-
Draft (4). You can create a personal message by using the egwPer-
sonal (3) value for the second parameter.
w w w . n o v e l l . c o m / a p p n o t e s
64

Messages.Add()

You can create either a draft message or a personal message, depending upon the
value of ObjType.

Below is a Visual Basic example that accesses the WorkFolder, gets the Messages
collection in this folder, and then adds a new draft message (of an appointment
type) to this collection.

This assumes objAcc has already been accessed and all variables have been
properly dimensioned.
Set MyWorkFolder = objAcc.WorkFolder
Set MyMessages = MyWorkFolder.Messages
Set MyDraftMsg = MyMessages.Add(“GW.MESSAGE.APPOINTMENT”)
MyDraftMsg.Subject = “This is the subject”
MyDraftMsg.BodyText = “This is the body text”

Creating and Sending Messages. As shown above, the Messages.Add() method
can return a new message in the form of a draft message. A typical use for this
new draft message is to give the application developer the chance to fill out the
various fields of the message (using various message properties such as the
Subject and BodyText above), and then to send it (using Message.Send()).

Once the draft message object is sent, it can then be deleted (or should be deleted,
depending on your application). If you attempt to use the same draft message
again by changing only the TO field of the message and sending it out again, you
should get an error message.

If you would like the draft message to be automatically deleted, you should create
all your new messages in the Account.WorkFolder.Messages collection,
which corresponds to the Work-In-Progress folder in GroupWise. Otherwise, you
can call the Message.Delete() method to delete the draft message after you
have called Message.Send(), though the message will automatically be
linked to the WorkInProgress folder as well.

For reasons already discussed, note that the Add() method will not work and will
return an error if you attempt to call it in a Messages collection owned by a
query folder object. In other words, you can’t add messages to a query folder.

Adding Document References. If you choose to pass the Add() method
‘GW.MESSAGE.DOCUMENTREFERENCE’, then you will trigger a second
version of Add() that takes three parameters.

Message Add(Class,Referent,[Version])
C h a p t e r 4 65

Just as you might expect, you will want to trigger this version if you want to create
a new document reference within the folder that holds this Messages collection.
If Referent is a Document object, you should choose either egwOfficial or
egwCurrent for Version (if you omit Version altogether, the OAPI will
assume a value of egwCurrent). If you want a specific version, on the other
hand, Referent should be a DocumentVersion object, and Version
should be egwSpecific – a document reference to the specific version will be
created.

This method returns the DocumentReference message subclass object.

The following procedure shows how to add a document as a document reference.
Ignore for now the code creating the document. We will discuss that later.

procedure AddDocument;
var document,docref:variant;
begin
Document:=gwAccount.DefaultDocumentLibrary.Documents.AddEx('c:\config.sys',

{leave second parameter blank for default},gwAccount.Mailbox);
ShowMessage('New Document Number: '+inttostr(Document.DocumentNumber));
docref:=gwAccount.MailBox.Messages.Add('GW.MESSAGE.DOCUMENTREFERENCE',

Document,egwCurrent);
ShowMessage(docref.subject.plaintext);
end;

Linking Messages. Since it is possible for a message to exist in multiple folders,
you can link an already existing message to a new folder. You can do this by using
one of the syntax types for the Messages.Add() method.

Messages.Add(Message)

Parameter Data Type Description

ClassName String For this version of Add, you must pass ‘GW.MESSAGE.DOCUMENTREFER-
ENCE’ as ClassName

Referent Object If you are creating a document reference, the second parameter, Refer-
ent, is required. Referent must be either a Document or DocumentVersion
object that refers to the document for which you want to create a docu-
ment reference.

Version Enum The third parameter, Version, is an enumerated type that signifies the
document version you want to reference. The possible values egwOfficial
(0) for official versions, egwCurrent (1) for the current version, and
egwSpecific (2) for a specific version.
w w w . n o v e l l . c o m / a p p n o t e s
66

When linking messages, you pass the method a single parameter called
Message, which is a Message object. Thus to link a message to another folder,
you should obtain a reference to the message via the Item() method. Once you
have this reference, you can pass it to the Folder.Messages.Add() method
for the new folder.

If, however, the message does not belong to the owner of the current Account –
for example, if the message was an attachment to an incoming mail message – you
will receive an error.

The following procedure will link Mail, which is a valid Message object, to the
Work-In-Progress folder.

procedure LinkMessage(Mail:variant);
begin
GWAccount.WorkFolder.Messages.Add(Mail);
end;

You should know about one other wrinkle. If you add/link to a shared folder, you
may actually wind up creating a copy of the message. This is one of the few times
in GroupWise when a linked message is actually a copy, and it is caused by the
way GroupWise stores messages in different databases. To allow control in such
cases, the Add() method returns a Message object. In most cases, the returned
object will be the same as the object that you pass in to the method. However, if a
copy of the message is created, the method will return the new Message object.
You should compare the input and output Message.MessageID property to
determine whether a new message was created.

In addition, exercise caution if you ever need to merge archive accounts (using the
MergeArchive API) with messages that are linked to other folders. Duplicate
messages may be created.

AddExistingMessage. A relative newcomer on the scene is the
“AddExistingMessage” method made available for GroupWise 6.0 SP1 and GW
5.5 EP SP4 (and later versions of each). This new method immediately adds a
message to the database, but will not send the message. It can, for example, take
an existing Palm message and add it to the database like it was received by
GroupWise. The GroupWise system treats these like InBox or OutBox items, but
will not try to send them again.

The syntax for this new method is more complicated than most, and is shown
below:

Messages.AddExistingMessage(SenderDisplayName, SenderEmailAddress,
SenderEmailAddressType, CreationDate, MessageBoxType, MessageStatus,
MessagePriority, MessageSecurity, [DraftMessage], [LastMoficationData])
C h a p t e r 4 67

Here is a complete example of using the AddExistingMessage method in Visual
Basic. This example uses late binding. There is also some commented out code
represents an “incorrect” way to use the AddExistingMessage method. You may
have partial success with the commented out code, but it will not allow you to
specify any body text, recipients, etc. for the message. The last few lines simply
show the new message, borrowing some code from the GroupWise token API.

Dim GW As Variant
Dim Acc As Variant
Dim MyMailFolder As Variant
Dim MyMessages As Variant
Dim MyMessage As Variant
Dim MyDraftMsg As Variant
Dim MyRecips As Variant
Dim MyRecip As Variant

Dim SenderDisplayName As String
Dim SenderEmailAddress As String
Dim CreationDate As Date
Dim iCount As Integer

Dim vCommander As Variant
Dim ParamStr As String
Dim MyMsgID As String
Dim sResult As String
Dim iRet As Integer

Parameter Data Type Description

SenderDisplayName String The display name of the person who sent the message

SenderEmailAddress String The email address of the person who sent the mes-
sage

SenderEmailAd-
dressType

String The email address type of the person who sent the
message

CreationDate DATE The date you wish to report as the creation date of
the message

MessageBoxType Enumerated Integer The type of message. See the MessageBoxTypeCon-
stants

MessageStatus Enumerated Integer A bitmask that defines the status of the message. See
the MessageStatusConstants

MessagePriority Enumerated Integer The priority of the message. See the MessagePriority-
Constants

MessageSecurity Enumerated Integer The security of the message. See the MessageSecuri-
tyConstants

DraftMessage Object Optional - the message object you want to insert into
your database, with its properties filled out, such as
body text.

LastModificationdate Object Optional - date and time of last modification
w w w . n o v e l l . c o m / a p p n o t e s
68

Set GW = CreateObject("NovellGroupWareSession")
Set Acc = GW.Login

Set MyMailFolder = Acc.MailBox
Set MyMessages = MyMailFolder.Messages

‘ How many messages are there?
iCount = MyMessages.Count

' Incorrect method. Doesn’t give any subject, recipients, etc.

' SenderDisplayName = "John Doe"
' SenderEmailAddress = "jdoe.GWPost.GWDomain"
' SenderEmailAddressType = "NGW"
' CreationDate = "12/25/2000 8:00:00 AM"

' Set MyMessage = MyMessages.AddExistingMessage(SenderDisplayName, ‘ ‘
‘ SenderEmailAddress, SenderEmailAddressType, CreationDate, egwIncoming,
‘ egwMessageDelivered, egwNormal, egwDefaultSecurity)

' Correct method. Use a draft message.

Set MyDraftMsg = MyMessages.Add("GW.MESSAGE.MAIL")
MyDraftMsg.Subject = "My Subject"
MyDraftMsg.BodyText = "Adding a new message without sending it"

MyDraftMsg.FromText = Acc.RootFolder.Name

Set MyRecips = MyDraftMsg.Recipients
Set MyRecip = MyRecips.AddByDisplayName("Mary Doe")
Set MyRecip = MyRecips.AddByDisplayName("Fu Ling Yu")
Set MyRecip = MyRecips.AddByDisplayName("Santa Claus")

SenderDisplayName = "John Doe"
SenderEmailAddress = "jdoe.GWPost.GWDomain"
SenderEmailAddressType = ""
CreationDate = "12/25/2000 8:00:00 AM"

Set MyMessage = MyMessages.AddExistingMessage(SenderDisplayName,
SenderEmailAddress, SenderEmailAddressType, CreationDate, egwIncoming,
egwMessagePrivate, egwNormal, egwDefaultSecurity, MyDraftMsg)

MyMailFolder.Refresh
Set MyMessages = Nothing
Set MyMessages = MyMailFolder.Messages

‘ This value should be one more than it was before
iCount = MyMessages.Count

‘ Open the new message to view it
MyMsgID = MyMessage.MessageID
Set vCommander = CreateObject("GroupWiseCommander")
ParamStr = "ItemOpen(""" + MyMsgID + """)"
iRet = vCommander.Execute(ParamStr, sResult)
C h a p t e r 4 69

Remove Method. The one remaining method of the Messages Object that we
have not discussed yet is the Messages.Remove() method. As the name suggests,
this method removes a message from the message collection where it is located.

This method takes one variant argument that allows it to remove a message in
various ways. First, it can take an index which can vary from 1 to
Messages.Count. This removes the message at that location in the order the
messages are stored in the collection. A second type of argument can be a
MessageID string identifying the message to be deleted. Finally, the third type of
argument can be the message object itself that we want to delete.

Note: If you attempt to delete the first item in a Messages collection (or any type of
GroupWise collection for that matter), all the other messages are shifted down
by 1 so that old Item(2) is now Item(1). If you attempt to delete multiple
messages by using the “original” item values, you will end up not deleting the
items you thought you were deleting.

The AllMessages Collection and the AllMessagesIterator

The AllMessages collection is a special collection that holds all messages in
an account, in all folders, whether hidden or not. This collection is accessible only
as the Account.AllMessages property. The collection does not include
messages owned by another user’s account (note the difference between this and
AllFolders, which does include shared folders owned by other users’
accounts). Thus, if you wish to access shared messages (including document
references), you will need to use a different means, such as shared folder access or
performing a query.

Notably, because the AllMessages collection can be a very large collection, it
does not include a count property. Instead, to access the messages in an
AllMessages collection, you should instantiate an AllMessagesIterator
object by calling the highly creative AllMessages method called
CreateAllMessagesIterator(). As noted, this method takes no
parameters

AllMessagesIterator := AllMessages.CreateAllMessagesIterator()

Using the AllMessagesIterator you can scroll through all of the messages
in the Account. The methods for AllMessagesIterator are listed in the
following table.

Name Description

Next() This takes no parameters, and returns the next Message object in the
collection.

Reset() This takes no parameters, and returns the iterator to before the first
message, so that calling Next() will return the first message.
w w w . n o v e l l . c o m / a p p n o t e s
70

The following Delphi procedure shows how the AllMessage iterators works in
practice:

procedure IterateMessages;
var Messages,Iterator,Iterator2,TheMessage:variant;docnum:integer;
begin
Messages:=gwAccount.AllMessages;
Iterator:=Messages.CreateAllMessagesIterator;
TheMessage:=Iterator.Next;
ShowMessage('Subject: '+TheMessage.Subject.PlainText);
Iterator.Skip(2);
TheMessage:=Iterator.Next;
ShowMessage('Skipped two, so now on fourth message: ' +

TheMessage.Subject.PlainText);
Iterator2:=Iterator.Clone;
Iterator.Reset;
TheMessage:=Iterator.Next;
ShowMessage('Iterator1, back to the beginning: '+TheMessage.Subject.PlainText);
TheMessage:=Iterator2.Next;
ShowMessage('Iterator2, next message: '+TheMessage.Subject.PlainText);
end;

Here is an example in Visual Basic (assumes GWAccount has already been
dimensioned and accessed). It simply “does something” if the message BoxType
is 1, meaning it is an incoming message.

Dim AllMessages As Variant
Dim MyAllMsgsIterator As Variant
Dim Msg As Variant

Set AllMessages = gwAccount.AllMessages
Set MyAllMsgsIterator = AllMessages.CreateAllMessagesIterator
Set Msg = MyAllMsgsIterator.Next

While Not Msg Is Nothing
If (Msg.BoxType = 1) Then
‘ do something
End If
Set Msg = MyAllMsgsIterator.Next
Wend

Skip(NumMessages) This takes one long integer parameter called NumMessages.Skip(Num-
Messages) will cause the iterator to skip over NumMessages messages.
This method is mostly useless, for two reasons. First, it returns an error
if the number to skip places the iterator beyond the last message, yet it
is impossible to test this because there is no count property. Second,
because the messages are in no particular order, you will have no idea
what you are skipping.

Clone() This method will create a copy of the AllMessagesIterator with the itera-
tor at the same position as the cloned object. This makes it possible to
keep track of multiple iteration positions, and go back if necessary.

Name Description
C h a p t e r 4 71

You can also access messages in the AllMessages collection by using its
Find() method.

Find(Condition)

This method takes one variant parameter called Condition. Condition may
be a string filter expression or a previously created Filter object. The Find
method works the same way as the Find method for the Messages collection,
which was described earlier in this chapter. See also Chapter 8: Understanding
Field and Field Related Objects for additional discussion about using filters and
filter expressions. The Find() method returns a MessageList object, and is
more efficient than instantiating a Messages collection for one or more folders
to perform a search.

The following procedure will find all incoming messages in the user database, and
show the number of incoming messages found.

procedure FindIncomingMessages;
var allmessages,foundmessages:variant;
begin
allmessages:=gwAccount.AllMessages;
foundmessages:=allmessages.find('(BOX_TYPE=INCOMING)');{result is a messagelist}
ShowMessage(inttostr(foundmessages.count));
end;

Message Lists

The MessageList object is similar to the Messages collection, except that
the MessageList is independent of the GroupWise message database. Think of
this object as a “scratch pad” that keeps track of messages without affecting
GroupWise. Other than its disjunction from GroupWise message store,
MessageList behaves nearly identically as the Messages collection. Thus,
the key properties and methods follow.

The Count Property and Item() Method

This Count property is an integer that holds the number of messages in the
collection. This property is needed when iterating through the messages in the
collection. Use the Item() method to obtain a specific message in the
collection.

MessageList.Item(Index)
w w w . n o v e l l . c o m / a p p n o t e s
72

Item() takes as single parameter called Index, which is a variant. You can
make Index an integer between 1 and MessageList.Count, and the
Message object corresponding to that position will be retrieved. This is useful
when iterating in a for loop.

Item() can also be used for retrieving specific messages by making Index a
string. The string you pass must be a valid MessageID to one of the Message
objects in the collection. If Index is a valid MessageID, the Message object
with that MessageID will be returned.

Finding Messages

Use the Find() method to locate messages within the specific collection that
match a search query.

MessageList.Find(Condition)

This method takes one variant parameter called Condition. Condition may
be a string filter expression or a previously created Filter object. The Find
method works the same way as the Find method for the Messages and
AllMessages collections, which was described earlier in this chapter. See
Chapter 8: Understanding Field and Field Related Objects for additional
discussion about using filters and filter expressions. The Find() method returns
another MessageList object with the matching messages.

Adding Messages to the MessageList

Use the Add() method to add messages to the MessageList.

MessageList.Add(AddedMessage)

This method is differs from Messages.Add because with
MessageList.Add(), the added message(s) must exist already.
MessageList.Add() does not create a new message.

This method takes a single variant parameter called AddedMessage. If
AddedMessage is a Message object, then that message will be added to the
MessageList. If AddedMessage is another MessageList, then all the
messages in that list will be added to this list. This Add method can also take a
Message ID as a string. The message with the corresponding ID will be added to
the MessageList.

The following code combines the FindMessagesWithThe procedure and the
FindIncomingMessages procedure into a single message list using the
MessageList.Add() method. It then finds all outgoing messages in the new
combined message list using the MessageList.Find() method.
C h a p t e r 4 73

procedure combinedfind;
var foundmessages,foundmessages2,foundmessages3:variant;
begin
foundmessages:=gwAccount.AllMessages.Find('(Message contains "the")');
ShowMessage('Messages with the: '+inttostr(foundmessages.count));
foundmessages2:=gwAccount.AllMessages.Find('(BOX_TYPE=INCOMING)');
ShowMessage('Incoming messages: '+inttostr(foundmessages2.count));
{found messages and foundmessages2 are MessageList objects}
foundmessages.add(foundmessages2); {add one list to the other}
ShowMessage('Combined messages: '+inttostr(foundmessages.count)+' Note that this

may be smaller than the first two counts due to overlap');
foundmessages3:=foundmessages.find('(Message contains "the")');
ShowMessage('Outgoing messages: '+inttostr(foundmessages3.count) +' This is the
amount of overlap');
end;

Removing Messages from the MessageList

Use Remove() to remove a message from the list.

Remove(Index)

Remove() takes as single parameter called Index, which is a variant. You can
make Index an integer between 1 and MessageList.Count, and the
Message object corresponding to that position will be retrieved. You may also
make Index a string. If Index is a valid MessageID, the Message object with
that MessageID will be removed from the list. Finally, you can make Index a
specific Message object, and that message will be removed from the list.

Summary

In this chapter you learned that messages are gathered in message collections.
Using message collections allow you to find, sort, and process messages in many
different ways. In the next chapter we will discuss how your application can
create, delete, and access the information stored in various properties of a
GroupWise message using the object API.

For more information on Messages, please check the GroupWise Object API
documentation http://developer.novell.com/ndk/doc.htm, sample code
http://developer.novell.com/ndk/sample.htm or visit the Developer Support Forum
area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
w w w . n o v e l l . c o m / a p p n o t e s
74

Chapter 5
Section 1: GroupWise Object API

Understanding Message and
Message Related Objects

The Message class in GroupWise is the base type for all other messages e.g.
Appointment, DocumentReference, Mail, Note, PhoneMessage,
SharedNotification, and Task. As a result, the properties and methods found in
Message can also be found in all message subtypes. In addition, each subtype has
a few unique features that can only be used when you have a subtype of that
specific class.

An Attachment object, part of an Attachments collection, is used to identify the
files or messages that should be sent as part of an outgoing message. Likewise, a
Recipient object, part of a Recipients collection, is used by a GroupWise message
to identify the receiver.

The following topics are discussed in this chapter.

Contents:

• Messages
• The Different Types of Message
• Attachments
• Recipients
C h a p t e r 5 75

Messages

Put simply, GroupWise would not exist without the Message object, nor would
anyone want to use it without messages. Messages are the base object class for
most information transfer in GroupWise. The following message subtypes are
derived from the Message object: Mail, Appointment,
DocumentReference, Note, PhoneMessage, and Task.

For information on the different object collections, properties, and methods that
return a Message object, see Chapter 4: Message Collections.

Using the Object API, it is easy to access many useful properties which
correspond to the Mail, Appointment, Task, and other Message subtypes that are
familiar to most GroupWise users.

The Message Object

The key properties of the Message object are:

Property Data Type Description

Attachments Attachments object (R/O) The collection of Attachment objects that
belong to the message. (See Attachments later
in the chapter)

BodyText Formatted Text object (R/O) This string property holds a maximum of 32,000
characters in the message body text. It is a For-
mattedText object and can be accessed with
either BodyText.PlainText or BodyText.RTF. The
default is PlainText and, as you might have pre-
dicted, returns only the text while RTF returns
the message body in rich text (.rtf) format.

BoxType Enum (R/O) The box type of the message. [egwIncoming (1),
egwOutgoing (2), egwPersonal (3), egwDraft (4)]

ClassName String (R/O) Identifies the type of message that is repre-
sented by the Message object you are working
with. Common options are:
'GW.MESSAGE.APPOINTMENT',
'GW.MESSAGE.DOCUMENTREFERENCE',
'GW.MESSAGE.MAIL','GW.MESSAGE.NOTE',
'GW.MESSAGE.PHONE',
'GW.MESSAGE.TASK'.
In addition, using a Custom 3rd-Party Object
(C3PO) it is possible to create your own custom
contexts e.g. 'GW.MESSAGE.MAIL.PROJECT.ABC'

CreationDate Date (R/O) Date and time that the message was created.

 Deleted Boolean (R/O) TRUE if the message has been deleted.

DownloadStatus
w w w . n o v e l l . c o m / a p p n o t e s
76

EnclosingFolders Folders object (R/O) The collection of Folder objects that contain the
message.

ExpandedRecipients Recipients object (R/O) An expanded RecipientsCollection object that
contains all addresses and all members of a
group to which the message is addressed.

Fields Fields object (R/O) The collection of custom Field objects that
belong to the message.

FromText String (R/O) Display name that appears in the From field of
the message.

MessageID String (R/O) Represents the unique identifier of the underly-
ing incoming or outgoing message.

ModifiedDate Date (R/O) Date and time that the message was last modi-
fied.

NofifyWhenDeleted Enum (R/W) Specifies the type of notification that should be
sent when the message is deleted. [egwNoNotify
(0), egwSendReceipt (1), egwNotify (2), egwSen-
dAndNotify (3)]

NofifyWhenOpened Enum (R/W) Specifies the type of notification that should be
sent when the message is opened. [egwNoNotify
(0), egwSendReceipt (1), egwNotify (2), egwSen-
dAndNotify (3)]

Opened Boolean (R/O) TRUE if the message has been opened. You will
create an error if you attempt to set this prop-
erty to FALSE.

Priority Enum (R/W) Specifies the priority that should be given to the
message. [egwLow (1), egwNormal (2), egwHigh
(3)]

Private Boolean (R/W) TRUE if the message has been marked private.

Read Boolean (R/O) TRUE if the message has been read. You may set
this property to FALSE in order to make the mes-
sage appear unread.

Recipients Recipients object (R/O) The RecipientsCollection object that contains
the addresses to which the message will be sent.
Use one of the Add() methods of the recipients
collection to add additional users and groups to
the message To, BC, or CC list.

ReplyChildren MessageList object (R/O) The collection of Message objects that are next
in the reply thread.

ReplyDaysRe-
quested

Long (R/W) Number of days within which a reply has been
requested.

ReplyParent Message object (R/O) The Message object that appears previous to the
current object in the reply thread.

Property Data Type Description
C h a p t e r 5 77

A few additional properties for Message may be found in the official GroupWise
Object API documentation.

Sending, Forwarding, or Replying to a Message

Note: Because you would never actually use 'Message' in your applications, replace
“MessageSubtype” below with the actual message subtype that you intend to
use.

Use the Send() method on a Message object subtype to send a Mail, Appointment,
or Task.

MessageSubtype.Send()

This method requires no parameters and returns the OutBox message after the
message is sent. Send() will delete the draft message. If a recipient object fails to
resolve, this method will throw an exception. Finally, this method will not update
the Frequent Contacts address book. This should be done manually by the caller
of the method.

Use the Forward() method on a Message object subtype to forward a Mail,
Appointment, or Task.

MessageSubtype.Forward()

This method takes no parameters and returns a new draft Mail object with the
Message object that called it included as an attachment. The new message is
contained in the same folders as the original.

Use the Reply() method on a Message object subtype to reply to a Mail,
Appointment, or Task.

ReplyRequested Enum (R/W) Specifies if and when a reply has been
requested. [egwNoReply (0), egwWhenConvie-
nent (1), egwWithinDaysRequested (2)]

ReplyRoot Message oject (R/O) Corresponds to the first message in a reply
thread.

Routed Boolean (R/W) TRUE if the message has been routed.

RoutingEndOfLine Boolean (R/O) TRUE if the message has reached the last user in
the list of recipients.

Sender Address object (R/O) Corresponds to the message sender. In most
cases, Sender.Displayname will be the same as
FromText.

Subject Formatted Text object (R/O) Holds the subject as a FormattedText object.

Property Data Type Description
w w w . n o v e l l . c o m / a p p n o t e s
78

MessageSubtype.Reply([ClassName as String], [ReplyToAll as Boolean],
[IncludeSenderMessageText as Boolean], [AttachOriginalMessage as Boolean])

This method takes up to four parameters and creates a reply message by returning
a new draft Message object item with the message sender as the recipient.
ClassName, a string, specifies the type of message that GroupWise will create. If
ClassName is omitted, "GW.MESSAGE.MAIL" is assumed. ReplyToAll, a
Boolean, will include all recipients of the message, except the current user, to the
recipients collection of the new draft message if set to TRUE.
IncludeSenderMessageText, a Boolean, will include the BodyText of the original
message in the BodyText property of the reply message if set to TRUE.
AttachOriginalMessage, a Boolean, will add the original message to the
Attachments collection of the reply message if set to TRUE.

Any omitted Boolean parameters default to FALSE. The reply message is
contained in the same folders as the original and is not automatically linked to the
Work In Progress folder (unless the original message was linked there).

Copying a Message

Use the Clone() method on a Message object subtype to duplicate a Mail,
Appointment, or Task.

MessageSubtype.Clone()

This method requires no parameters. Clone() makes an independent copy of the
message and returns it as a new draft message. The new message is contained in
the same folders as the original.

Refreshing a Message

Use the Refresh() method on a Message object subtype to recursively refresh the
Attachments, Fields, Recipients collection on a Mail, Appointment, or Task. In
addition, the Message's BodyText, Subject, Address, ReplyChildren/Parent/Root
properties are also refreshed.

MessageSubtype.Refresh()

This method requires no parameters. Refresh() forces the message, associated
objects and collections to reread property values from the message database. The
actual reading of a specific property may be postponed until the next time the
property is accessed. This “lazy evaluation” is an optimization that avoids
unnecessary reading of unaccessed properties. If the message is an attachment, it
is refreshed when its associated Attachment object is refreshed.
C h a p t e r 5 79

Deleting or Retracting a Message

Use the Delete() method on a Message object subtype to delete a Mail,
Appointment, or Task.

MessageSubtype.Delete()

This method requires no parameters. Delete() moves a message from its
associated folder(s) to the trash. This can be somewhat confusing when deleting
messages from a shared folder as the message is placed in the owner's trash and
not necessarily into the trash of the account that made the delete call.

Use the Retract() method on a Message object subtype to retract a Mail,
Appointment, or Task.

MessageSubtype.Retract()

This method requires no parameters. Retract() will delete a message from a
recipient's mailbox provided that the message's BoxType is egwOutgoing, the
message has not been opened and has not gone through a gateway to another mail
system.

MessageSubtype.Annotate(Note as Note)

This method adds an existing personal Note object as an attachment to this
message. Works even if this message has been sent, because the Note is personal.
See also the Add method in the Attachment object. Annotating an item requires
create and modify rights to the folder that contains the item. Annotating
encapsulated items is not allowed because no distinct containing folders exist for
such an item. Annotations can be edited only by the user who originally created
the annotation (subject also to folder rights). For example, an annotation created
on an item in a shared folder can only be edited by the user who created the
annotation.

The Different Types of Message

GroupWise supports six main subtypes of the Message object. In fact, because the
Message object is never itself created, one of the objects described below will
always be used where a message object is required. Message subtypes include:
Mail (standard “e-mail” messages), Appointments, DocumentReferences, Notes,
Phone Messages, and Tasks. In addition to the properties and methods that each
object inherits from the GroupWise Message object, a Message subtype may also
have its own special properties and possibly methods. For received messages, you
can read these properties, and you can read or write them for draft messages.
w w w . n o v e l l . c o m / a p p n o t e s
80

Mail

The Mail object represents a GroupWise Mail “e-mail” message. Mail includes
only a couple of extra properties in addition to those that it gets from Message:

The Mail object includes one method, in addition to those that it inherits from
Message:

Mail.Delegate()

This method requires no parameters. Delegate() delegates the message to another
user and returns the OutBox mail message.

Appointment

The Appointment object represents a GroupWise Meeting or Posted (Personal)
Appointment. The simplified hierarchy of an Appointment in GroupWise is:

Account object
Folders collection

Messages collection
Appointment object

BusySearchResults object
BusySearchElements collection

BusySearchElement object
TimeBlocks collection

TimeBlock collection

The properties of an Appointment are:

Property Data Type Description

Completed Boolean (R/W) TRUE if the message is completed and can be sent to
next individual in a routing slip

Delegated Boolean (R/O) TRUE if the message was delegated.

NotifyWhenCompleted Enum (R/W) Specifies the type of notification to send when the mes-
sage is marked completed.
[egwNoNotify (0), egwSendReceipt (1), egwNotify (2),
egwSendAndNotify (3)]

Property Data Type Description

Accepted Boolean (R/O) TRUE if the appointment is accepted.

AlarmProgram String (R/W) Identifies the Program to execute when the
alarm time is reached.

AlarmTime Date (R/W) Time when AlarmProgram will execute.

AutoDate Boolean (R/O) TRUE if the appointment has an auto-date.
C h a p t e r 5 81

The Appointment object contains several methods in addition to those that it
inherits from Message.

Accepting, Delegating, or Declining an Appointment. Use the Accept() method
to accept an Appointment.

Appointment.Accept([Comment as String],[AllInstances as Boolean])

AutoDateMessages MessageList object (R/O) The MessageList that contains each Appoint-
ment object in a string of auto-dated mes-
sages.

BusySearchResult BusySearchRestult (R/O) The busy search results for a draft appoint-
ment. Returns nothing if StartBusySearch has
never been called or if this is a draft appoint-
ment.

BusyType Enum (R/W) The type of block this time element repre-
sents. [egwFree (0), egwBlocked (1),
egwOutOfOffice (2), egwTentative (3)]

Delegated Boolean (R/O) TRUE if this appointment has been delegated.

Duration Double (R/W) This is the duration in days between EndDate
and StartDate. The fractional portion repre-
sents the fraction of a day. Duration is consid-
ered fixed. If either StartDate or EndDate
changes, the other will be changed to keep
Duration constant. If Duration changes, then
EndDate will be changed to match.

EndDate Date (R/W) Marks the end of the appointment.

NotifyWhenAccepted Enum (R/W) Specifies the type of notification that should
be sent when the appointment is accepted.
[egwNoNotify (0), egwSendReceipt (1),
egwNotify (2), egwSendAndNotify (3)]

NofifyWhenDeclined Enum (R/W Specifies the type of notification that should
be sent when the appointment is declined.
[egwNoNotify (0), egwSendReceipt (1),
egwNotify (2), egwSendAndNotify (3)]

OnCalendar Boolean (R/W) TRUE if the appointment should appear on the
Calendar

Personal Boolean (R/O) TRUE if the appointment is a personal
appointment.

Place String (R/W) The location of the appointment.

StartDate Date (R/W) Marks the beginning of the appointment.

Property Data Type Description
w w w . n o v e l l . c o m / a p p n o t e s
82

Although this method requires no parameters, Accept will use the first parameter,
Comment, if it exists as the text you want to send in a reply that accepts the
appointment. The second parameter, if it exists and is TRUE, will accept all
instances of an auto-dated appointment. The default for this value is FALSE or if
Appointment is not auto-dated, AllInstances will be ignored altogether.

Use the Delegate() method to delegate an Appointment.

Appointment.Delegate([AllInstances as Boolean])

This method returns a draft appointment upon which you can set the Recipients
and call Send(). Set AllInstances to TRUE if you wish to delegate all instances of
an auto-dated appointment and FALSE if you wish to delegate only one instance.

Use the Decline() method to decline an Appointment.

Appointment.Decline([Comment as String],[AllInstances as Boolean])

As in the previous method, Decline() also requires no parameters. Decline() will
however use Comment, if it exists, as the text you want to send in a reply that
declines the appointment. Likewise, the second parameter, if it exists and is
TRUE, will decline all instances of an auto-dated appointment. Again, if
Appointment is not auto-dated, AllInstances will be ignored. The default for this
value is also FALSE.

Performing Busy Searches for an Appointment. Use the StartBusySearch()
method to check the availability of Recipient objects that you have added to the
Appointment.Recipients collection.

Appointment.StartBusySearch([StartDate as Date], [Range as Long])

This method uses the specified StartDate, or Appointment.StartDate if StartDate
is omitted, to return a BusySearchResult object that meets the specified Range (7
or greater). Because BusySearchResult may return with a partial snapshot of
elements before it completes, check BusySearchResult.Completed within a while
loop using BusySearchResult.Refresh() to make sure you have the full collection
of BusySearchElements.

Use the standard Count and Item() practice to iterate through and access the
individual items of the BusySearchElements collection that is returned by
BusySearchResult.CombinedResult. Using BusySearchElement.FreeBlocks, will
return the collection of free time blocks associated with the search result in the
form of a TimeBlocks collection. As before, use Count and Item() to access the
individual StartDate and EndDate properties of the TimeBlock objects in the
collection.
C h a p t e r 5 83

DocumentReference

For information on DocumentReferences, see Chapter 6: Understanding Message
and Message Related Objects.

Note

The Note object represents a GroupWise Reminder Note. The properties of a
Note are:

The Note object contains three methods in addition to those that it inherits from
Message. These methods: Accept(), Decline(), and Delegate() behave
just like the corresponding methods of the Appointment object (see above).

Property Data Type Description

Accepted Boolean (R/O) TRUE if the note is accepted.

AutoDate Boolean (R/O) TRUE if the note has an auto-date

AutodateMessages MessageList object The MessageList that contains each Note object in a
string of auto-dated messages.

Completed Boolean (R/W) TRUE if the note is completed and can be sent to next
individual in a routing slip

Delegated Boolean (R/O) TRUE if the note has been delegated from someone
else.

NotifyWhenAccepted Enum (R/W) Specifies the type of notification to send when the
note is accepted.
[egwNoNotify (0), egwSendReceipt (1), egwNotify (2),
egwSendAndNotify (3)]

NotifyWhenCompleted Enum (R/W) Specifies the type of notification to send when the
note is marked completed. [egwNoNotify (0), egwSen-
dReceipt (1), egwNotify (2), egwSendAndNotify (3)]

NofifyWhenDeclined Enum (R/W) Specifies the type of notification to send when the
note is declined. [egwNoNotify (0), egwSendReceipt
(1), egwNotify (2), egwSendAndNotify (3)]

OnCalendar Boolean (R/W) TRUE if the note should appear on the Calendar

Personal Boolean (R/O) TRUE if the note is personal.

StartDate Date (R/W) Date when the note will first appear in a recipient's
mailbox.
w w w . n o v e l l . c o m / a p p n o t e s
84

PhoneMessage

The PhoneMessage object represents a GroupWise Phone Message. The
properties of a PhoneMessage are:

A PhoneMessage object does not define any methods of its own.

SharedNotification

For information on SharedNotifications, see Chapter 3: Understanding Folder
and Trash Related Objects.

Task

The Task object represents either a posted or group Task in GroupWise. The
properties of a Task are:

Property Data Type Description

CallerName String (R/W) The caller's name

CallerCompany String (R/W) The name of the caller's company

CameToSee Boolean (R/W) TRUE if the person came to see you

PhoneNumber String (R/W) The caller's phone number

PleaseCall Boolean (R/W) TRUE if the caller wants you to return their call

ReturnedCall Boolean (R/W) TRUE if the caller returned your phone call

Telephoned Boolean (R/W) TRUE if the caller telephoned

Urgent Boolean (R/W) TRUE if the call is urgent

WantsToSee Boolean (R/W) TRUE if the caller wants to see you

WillCall Boolean (R/W) TRUE if the caller will contact you again

Property Data Type Description

Accepted Boolean (R/W) TRUE if the task is accepted, otherwise FALSE.

AssignedDate Date (R/W) Date when the task was assigned.

AutoDate Boolean (R/W) TRUE if the task is one of many auto-dated
tasks.

AutoDateMessages MessageList object (R/W) The MessageList collection that contains each
Task object in a string of auto-dated messages.

Completed Boolean (R/W) TRUE if the task is completed. Your code may
set this to true or false at any time.

Delegated Boolean (R/W) TRUE if the task has been delegated from some-
one else.
C h a p t e r 5 85

The Task object contains four methods in addition to those that it inherits from
Message. The first three: Accept(), Decline(), and Delegate() behave
just like the corresponding methods of the Appointment object (see above).

The fourth method, MoveToMasterTaskList(), has the following definition:

Task.MoveToMasterTaskList()

This method moves the task to the master task list.

DueDate Date (R/W) Date when the task is due.

NotifyWhenAccepted Enum (R/W) Specifies the type of notification that should be
sent when the task is accepted. [egwNoNotify
(0), egwSendReceipt (1), egwNotify (2),
egwSendAndNotify (3)]

NotifyWhenCompleted Enum (R/W) Specifies the type of notification that should be
sent when the task is completed. [egwNoNotify
(0), egwSendReceipt (1), egwNotify (2),
egwSendAndNotify (3)]

NofifyWhenDeclined Enum (R/W) Specifies the type of notification that should be
sent when the task is declined. [egwNoNotify
(0), egwSendReceipt (1), egwNotify (2),
egwSendAndNotify (3)]

OnCalendar Boolean (R/W) TRUE if the task should appear on the Calendar

Personal Boolean (R/W) TRUE if the task is personal

StartDate Date (R/W) Date when the task should be started. The task
will not appear on the recipient's Calendar until
the StartDate.

TaskCategory String Task category must be a single character with
whatever meaning the message sender wants to
assign. You will cause an error if you attempt to
assign more than one character to the string.

TaskPriority Integer (R/W) Task priority can have whatever meaning the
message sender wants to assign. You may enter
a character, a number, or a character followed
by a number.

Property Data Type Description
w w w . n o v e l l . c o m / a p p n o t e s
86

Setting and Accessing the Properties of a Message

The following code creates a duplicate of the last message in the Mailbox and
sends it to the owner of the account. Note how the method for reading properties
is the same as setting them — simply reference the property as a variable. Note
also how this sample takes advantage of the different ClassName values to check
appropriate properties for the message type. This code is also a brief introduction
into creating new messages. Note also that Message.Clone() would do most
of this in one call.

Example in VB:

'gwAccount is a valid Account object and the last message is one of the above
message types

Dim gwMailBox As GroupwareTypeLibrary.Folder
Dim gwSentMsg As GroupwareTypeLibrary.Message
Dim gwOldMsg As GroupwareTypeLibrary.Message
Dim gwNewMsg As GroupwareTypeLibrary.Message

Private Sub CopyMessage()
Set gwOldMsg =

gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.Messages.Count)
Set gwMsgType = gwOldMsg.ClassName
Set gwNewMsg = gwAccount.WorkFolder.Messages.Add(gwMsgType)
gwNewMsg.Recipients.Add gwAccount.Owner
gwNewMsg.FromText = gwOldMsg.FromText
gwNewMsg.Subject.PlainText = gwOldMsg.Subject.PlainText
gwNewMsg.Bodytext.Rtf = gwOldMsg.Bodytext.Rtf

If gwMsgType = "GW.MESSAGE.APPOINTMENT"
Set gwNewMsg.Startdate = gwOldMsg.Startdate
Set gwNewMsg.Endate = gwOldMsg.Enddate
Set gwNewMsg.Place = gwOldMsg.Place

End If
If gwMsgType = "GW.MESSAGE.NOTE"

Set gwNewMsg.Startdate = gwOldMsg.Startdate
End If
If gwMsgType = "GW.MESSAGE.PHONE"

Set gwNewMsg.CallerCompany = gwOldMsg.CallerCompany
Set gwNewMsg.CallerName = gwOldMsg.CallerName
Set gwNewMsg.CameToSee = gwOldMsg.CameToSee
Set gwNewMsg.PhoneNumber = gwOldMsg.CameToSee
Set gwNewMsg.PleaseCall = gwOldMsg.PleaseCall
Set gwNewMsg.ReturnedCall = gwOldMsg.ReturnedCall
Set gwNewMsg.Telephoned = gwOldMsg.Telephoned
Set gwNewMsg.Urgent = gwOldMsg.Urgent
Set gwNewMsg.WantsToSee = gwOldMsg.WantsToSee
Set gwNewMsg.WillCall = gwOldMsg.WillCall

End If
If gwMsgType = "GW.MESSAGE.TASK"

Set gwNewMsg.assigneddate = gwOldMsg.AssignedDate
Set gwNewMsg.duedate = gwOldMsg.DueDate
Set gwNewMsg.startdate = gwOldMsg.StartDate
Set gwNewMsg.taskcategory = gwOldMsg.TaskCategory
Set gwNewMsg.taskpriority = gwOldMsg.TaskPriority

End If
C h a p t e r 5 87

Set gwSentMsg = gwNewMsg.Send
gwAccount.Refresh
Set gwMsgID = gwSentMsg.MessageID

End Sub

Example in Delphi:

//gwAccount is a valid Account object and the last message is one of the above
message types
procedure CopyMessage;
var gwMsgType,gwMsgID:string;gwSentMsg,gwOldMsg,gwNewMsg,gwMailBox:variant;
begin

gwOldMsg:=gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.Messages.Count);
gwMsgType:=gwOldMsg.ClassName; //find out what type of message this is
gwNewMsg:=gwAccount.WorkFolder.Messages.Add(gwMsgType); {create a new message

of that type}
gwNewMsg.Recipients.Add(gwAccount.Owner); {add the account owner's address

to the recipients}
gwNewMsg.FromText:=gwOldMsg.FromText;
gwNewMsg.Subject.PlainText:=gwOldMsg.Subject.PlainText;
gwNewMsg.Bodytext.Rtf:=gwOldMsg.Bodytext.Rtf;
{note that we don't need to process for GW.MESSAGE.MAIL as there are no
special fields}
if (CompareText('GW.MESSAGE.APPOINTMENT',Copy(gwMsgType,1,22)) = 0) then

begin {if appointment or appointment subclass}
gwNewMsg.Startdate:= gwOldMsg.Startdate;
gwNewMsg.Enddate:= gwOldMsg.Enddate;
gwNewMsg.Place:=gwOldMsg.Place;

end;
if (CompareText('GW.MESSAGE.NOTE',Copy(messtype,1,15)) = 0) then begin {if

note}
gwNewMsg.Startdate:=gwOldMsg.Startdate;

end;
if (CompareText('GW.MESSAGE.PHONE',Copy(messtype,1,16)) = 0) then begin {if

phone message}
gwNewMsg.CallerCompany:= gwOldMsg.CallerCompany;
gwNewMsg.CallerName := gwOldMsg.CallerName;
gwNewMsg.CameToSee := gwOldMsg.CameToSee;
gwNewMsg.PhoneNumber := gwOldMsg.PhoneNumber;
gwNewMsg.PleaseCall := gwOldMsg.PleaseCall;
gwNewMsg.ReturnedCall := gwOldMsg.ReturnedCall;
gwNewMsg.Telephoned := gwOldMsg.Telephoned;
gwNewMsg.Urgent := gwOldMsg.Urgent;
gwNewMsg.WantsToSee := gwOldMsg.WantsToSee;
gwNewMsg.WillCall := gwOldMsg.WillCall;

end;
if (CompareText('GW.MESSAGE.TASK',Copy(messtype,1,15)) = 0) then begin {if

task}
gwNewMsg.assigneddate:= gwOldMsg.AssignedDate;
gwNewMsg.duedate:= gwOldMsg.DueDate;
gwNewMsg.startdate:= gwOldMsg.StartDate;
gwNewMsg.taskcategory:= gwOldMsg.TaskCategory;
gwNewMsg.taskpriority:= gwOldMsg.TaskPriority;

end;
gwSentMsg:=gwNewMsg.Send; {send the new message}
w w w . n o v e l l . c o m / a p p n o t e s
88

gwAccount.Refresh; {refresh the database}
gwMsgID:=gwSentMsg.MessageID;{get the messageid of the new message - remember

that outgoing and incoming messageid's are different}
end;

Attachments

Using the Object API, your code can easily access the attachments of a message
(including draft messages) that are already in the GroupWise database. Like many
other collection objects, Attachments has a Count property and Item() method. To
access a specific attachment, you must call the Item() method with a single
Variant parameter.

Attachments.Item(Index as Variant)

If Index is Long between 1 and Attachments.Count, the Attachment object at the
given Index will be returned. Use a for loop if you don't know the order of
attachments in the collection. If Index is a string, it should represent the
MessageID of the Attachment object you are trying to get. If Index is a Message
object, it represents the desired Message object attachment.

The Attachment Object

The key properties of the Attachment object are:

Property Data Type Description

DisplayName String (R/O) Contains the string that the user would see if the message were
viewed in the GroupWise client.

FileName String (R/O) If ObjType is egwFile (or any other value than egwMessage), then
this property will contain a string that is the filename of the—
attached file. Note that this is not related to a GroupWise document
there is no object in the Object API that represents this file (which
is different than a document reference, which is persistent in the
GroupWise database).

Message Message object
(R/O)

If ObjType is egwMessage, then this property will contain a Message
object corresponding to the attached message. It is important to
note that if the attached message is owned by another user, the
ability to manipulate the message will be limited. For example, you
may not be able to add the message to a folder in the current
account. Nonetheless, you will be able to access the primary proper-
ties of the message, such as BodyText. Further, if the message is a
DocumentReference object (check the ClassName property to deter-
mine this), you can manipulate the document as described above.
Note that FileName and Message are mutually exclusive; thus, if one
holds data, the other should be empty.
C h a p t e r 5 89

Referencing Attachments and Attached Message Properties

The following code shows the Attachment.DisplayName property in use. It shows
the name of all attachments of the last message in the Mailbox.

Example in VB:

'gwAccount is a valid Account object and gwMessage has a valid Attachments
collection

Dim gwMessage As GroupwareTypeLibrary.Message
Dim gwAttachment As GroupwareTypeLibrary.Attachment

Private Sub ShowAttachments()
Set gwMessage =
gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.Messages.Count)
For i=1 to gwMessage.Attachment.Count

Set gwAttachment = gwMessage.Attachments.Item(i)
Msgbox gwAttachment.DisplayName

Next I
End Sub

Example in Delphi:

//gwAccount is a valid Account object and gwMessage has a valid Attachments
collection

procedure ShowAttachments;
var i:integer;gwMessage,gwAttachment:variant;
begin
gwMessage:=gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.Messages.Count);
for i := 1 to gwMessage.Attachments.Count do

begin
gwAttachment:=gwMessage.Attachments.Item(i);
ShowMessage(gwAttachment.DisplayName);

end;
end;

This next example will iterate through all of the attachments in the last message in
the mailbox, and determine the type of each attachment. If the attachment is a
message, it will check to see whether the message is a document reference. If so, it
shows the subject of the document reference. If not (and it is thus a “regular”
message) then the procedure will show who sent the message. If the attachment is
a file, it will show the filename.

ObjType Enum (R/O) Determines exactly what the attachment is, given that an attach-
ment can be many different things. The primary types to become
familiar with are egwFile (1) which is an attached file, and
egwMessage(2) which is an attached GroupWise message.

Property Data Type Description
w w w . n o v e l l . c o m / a p p n o t e s
90

Example in VB:

'gwAccount is a valid Account object and gwMessage has a valid Attachments
collection

Dim gwMessage As GroupwareTypeLibrary.Message
Dim gwAttachment As GroupwareTypeLibrary.Attachment

Private Sub ProcessAttachments()
Set gwMessage = gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.
Messages.Count)
For doc=1 to gwMessage.Attachment.Count

Set gwAttachment = gwMessage.Attachments.Item(doc)
If gwAttachment.ObjType = 2 Then

If gwAttachment.ClassName = "GW.MESSAGE.DOCUMENTREFERENCE" Then
Msgbox "The message subject: " & gwAttachment.Message.Subject

Else
Msgbox "The message is from: " & gwAttachment.Message.FromText

End If
End If
If gwAttachment.ObjType = 1 Then

Msgbox "The filename is: " & gwAttachment.FileName
End If

Next doc
End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object and gwMessage has a valid Attachments
collection

procedure ProcessAttachments;
var doc:integer;gwMessage,gwAttachment:variant;
begin
gwMessage:=gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.Messages.Count);
for doc := 1 to gwMessage.Attachments.Count do

begin
gwAttachment:=gwMessage.Attachments.Item(doc);
if gwAttachment.ObjType = egwMessage then begin

if gwAttachment.ClassName = "GW.MESSAGE.DOCUMENTREFERENCE"
then

ShowMessage('The message subject: ' +
gwAttachment.Message.Subject);

else
ShowMessage('The message is from: ' +
gwAttachment.Message.FromText);
end;

end;
if gwAttachment.ObjType =egwFile then begin

ShowMessage('The filename is: ' + gwAttachment.FileName);
end;

end;
end;
C h a p t e r 5 91

Adding Attachments

Use one of two Add() methods of the Attachments object collection to create a
new Attachment object.

Note: Your code will cause an exception if the object that owns the Attachments
collection you are trying to use is not a draft or personal message.

This first version of Add() accepts up to three parameters:

Attachments.Add(FileName as String, [ObjType as
AttachmentTypeConstants],[DisplayName as String])

The first parameter, FileName, is required and sets the Attachment.FileName
property. The second parameter, if it exists, sets the attachments ObjType
property. The default is egwFile. Finally, the third parameter, if it exists, sets the
attachments DisplayName property. For this to work correctly, ObjType of the
Attachment should not be set to egwMessage.

The second version of Add() accepts up to two parameters:

Attachments.Add(Message as Message, [DisplayName as String])

The first parameter, Message, represents a Message object that you are trying to
add to your message. This parameter is required unlike the second which sets the
attachments DisplayName property as described in the previous method. Unlike
the previous Add(), for this method to work correctly, ObjType should be set to
egwMessage.

Saving Attachments

Use the Save() method to save an attachment where Attachment.ObjType
is not egwMessage) to disk.

Attachment.Save(Filename as String)

This method takes a single string parameter called Filename which contains the
filename you wish to save the attachment as. If you omit a path, the file will be
saved in the default location. Note that the Save() method is the only way to
access an attached file. GroupWise does not allow for “in database” access of any
files.

The following example iterates through the attachments in a given message using
the Attachments.Item() method. Attachments will be saved to disk with
Attachment.Save() and the attachments prior file name. Because there is no
path, the attachment will be saved in the default location.
w w w . n o v e l l . c o m / a p p n o t e s
92

Example in VB:

'gwMail is a valid Mail object with attachments

Dim gwAttachment As GroupwareTypeLibrary.Attachment

Private Sub SaveAttachments(gwMail)
If gwMail.Attachments.Count > 0 Then

For i=1 to gwMail.Attachments.Count
Set gwAttachment = gwMail.Attachments.Item(i)
If gwAttachment.ObjType <> egwMessage Then

gwAttachment.Save gwAttachment.FileName
End If

Next i
End If
Next I
End Sub

Example in Delphi:

//gwMail is a valid Mail object with attachments

procedure SaveAttachments(gwMail:variant);
var i:integer;gwAttachment:variant;
begin
If gwMail.Attachments.Count > 0 then

begin
for i:= 1 to gwMail.Attachments.Count do
begin

gwAttachment:=gwMail.Attachments.Item(i);
If gwAttachment.ObjType <> egwMessage then

gwAttachment.Save(Attachment.FileName);
end;

end;
end;

Deleting an Attachment

Use the Delete() method on an Attachment object to delete an attachment from the
objects parent collection.

Attachment.Delete()

This method requires no parameters and will work on a draft or personal item
only.

Recipients

It is important that you correctly understand the role that Recipient related objects
play in GroupWise. For information on what the Recipient object is, see
Chapter 7, Understanding Address and AddressBook Objects.
C h a p t e r 5 93

Recipients, like many other collections objects, has a Count property and Item()
method that allows you to access individual Recipient objects. Simply call the
Item() method with a single Index parameter.

Recipients.Item(Index as Long)

If Index is Long between 1 and Attachments.Count, the Attachment object at the
given Index will be returned. Use a for loop if you don't know the order of
attachments in the collection.

The Recipient Object

The key properties of the Recipient object are:

Property Data Type Description

Address Address object (R/O) The address this recipient resolved to. Can be nothing if
this recipient is unresolved or resolved as an external
address.

DisplayName String (R/W) A descriptive name that is displayed to users.

EmailAddress String (R/W) The e-mail address used by the system to deliver mail. The
format is determined by the EmailType property.

EmailType String (R/W) The type of e-mail address. “NGW” indicates an internal
GroupWise address. Anything else is an external address.
External addresses are submitted to the operating system's
default email transport. (In Windows, for example, the
transport would be MAPI.)

Resolved Enum (R/W) Indicates the resolved status of this recipient. Automati-
cally set to egwNotResolved when the DisplayName, Email-
Address, EmailType, or TargetType properties are changed.
Can be manually set only to egwNotResolved. This property
is not persistent. It will revert to egwNotResolved when-
ever the Recipient object is refreshed or freed from mem-
ory.[egwNotResolved (0), egwNotFound (1), egwAmbiguous
(2), egwResolved (3)]

TargetType Enum (R/W) Indicates whether or not the recipient is a primary recipi-
ent, carbon copy recipient, or blind copy recipient. [egwTo
(0), egwCC (1), egwBC (2)]
w w w . n o v e l l . c o m / a p p n o t e s
94

Adding Recipients

Four different Add() methods allow you to easily populate the Recipients
collection of a Message object before you send.

Use the Add() method below to add a single Address object to the Recipients
collection.

Recipients.Add(Address as Address, [TargetType as AddressTargetTypeConstants])

This method takes up to two parameters and creates an unresolved Recipient
object from the Address object which is passed in. The method returns the new
Recipient object which it has added to the collection with its Address property set
to the Address object that it received. DisplayName, EmailAddress, and
EmailType are copied from the Address object into the new object. TargetType, is
optional and if omitted, defaults to egwTo.

Use the second form of Add() when you want to add entire collections of Address
objects to a Recipients collection.

Recipients.Add(Addresses as Addresses, [TargetType as
AddressTargetTypeConstants])

This method creates an unresolved Recipient for each Address in the Addresses
collection that is passed in as the first parameter. In turn, each Recipient object is
added to the Recipients collection until all Address objects have been added.
Again, if TargetType is omitted, egwTo is assumed. Unlike, the first form of
Add(), this method returns nothing.

Use the third form of Add() when you know the email address of the recipient that
you would like to add.

Recipients.Add(EmailAddress as String, [EmailType as String], [TargetType as
AddressTargetTypeConstants])

Like the second, this method also creates an unresolved Recipient which it adds to
the Recipients collection. An empty string ("") is assumed if EmailType is omitted
and egwTo is assumed if TargetType is omitted. The new recipient is returned as
soon as the Recipient.Address is set to Nothing and Recipient.DisplayName is set
to EmailAddress.

Recipients. AddByDisplayName(DisplayName as String, [TargetType as
AddressTargetTypeConstants TargetType])
C h a p t e r 5 95

This method creates an unresolved Recipient from DisplayName, which it then
adds it to the Recipients collection. If DisplayName is an empty string (""), an
exception is thrown. If TargetType is omitted, egwTo is assumed. The new
Recipient Address property is set to Nothing and its EmailAddress and EmailType
are set to an empty string (""). The new Recipient object is then returned.

Resolving Recipients

Use the Resolve() method on either a single Recipient object or on an entire
Recipients collection to resolve one or multiple recipients.

Recipient.Resolve([ResolveTo as AddressBook])
Recipients.Resolve([ResolveTo as AddressBook])

These methods take as an optional parameter an AddressBook object, which they
will use to try and locate the recipient(s) in question. If the Recipient is already
resolved (its Resolved property is TRUE), the Resolve operation is considered
successful.

Note: If this method is called on a Recipients object collection, it will attempt to
resolve each object in the collection. If an error occurs, it leaves that recipient
unresolved and proceeds to the next recipient. Check the Resolved property of
each Recipient object to determine which ones failed.An exception is thrown if
any recipients failed to resolve.

When an entry is found that matches the Recipien, a new Address property is
created for the Recipient and its values are copied from the found address book
entry. The Resolve operation is considered successful.

If a recipient is not found in an address book and its EmailType is external (such
as an Internet address), the Recipients Address property is set to a new Address
object with ObjType = egwUser and DisplayName, EmailAddress, and
EmailType the same as the Recipient's properties, the Resolve operation is
considered successful.

If the recipient is not found in an address book and its EmailType is internal (such
as a GroupWise address), the Resolve operation throws an exception.

Deleting Recipients

Use the Delete() method on a Recipient object to remove the recipient from the
owning Recipients collection.

Recipient.Delete()

This method requires no parameters.
w w w . n o v e l l . c o m / a p p n o t e s
96

Summary

In this chapter you learned how your application can create, delete and access the
information stored in various properties of a GroupWise message using the Object
API. You learned about various properties and methods of an Appointment,
DocumentReference, Mail, Note, PhoneMessage, and Task object, how to add file
and messages items to a messages Attachments collection and also how to use the
Recipients collection of a Message object when you want to address and send
messages. In the next chapter you will learn about Document and Document
related objects.

For more information on Messages objects, please check the GroupWise Object
API documentation http://developer.novell.com/ndk/doc.htm, sample code
http://developer.novell.com/ndk/sample.htm or visit the Developer Support Forum
area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
C h a p t e r 5 97

Chapter 6
Section 1: GroupWise Object API

Understanding Document and
Document Related Objects

The GroupWise Object API provides a complex set of intertwined objects to
manage documents. DocumentReference objects which are really just special
message objects, point to documents that a user has stored.

A Document object holds default rights information granted to everyone in a
DocumentAccessRights object of a DocumentAccessRightsCollection. Rights
information for the document’s author, a specific user or for a group is also
available as is versioning and library information in which the document resides.

A DocumentIterator object is used to access individual document objects from
within a Documents collection.

The following topics are discussed in the chapter.

Contents:

• Document References

• Document Libraries

• The Documents Collection

• The Document and DocumentVersions Objects

• Document Events

• Document Rights

• Document Types
w w w . n o v e l l . c o m / a p p n o t e s
98

Document References

The DocumentReference object is a special type of message, primarily
because it does not have message text associated with it. Instead, the
DocumentReference can best be described as a pointer to a BLOB document
file in the GroupWise document library. Because the DocumentReference is
only a pointer, you may not manipulate documents directly through the Object
API. Rather, you must save a copy of the document to the local hard disk, and
then manipulate the document using whatever tools and APIs are available to edit
the document on disk.

The key properties of the DocumentReference object are:

The DocumentReference object has one method of note, called
LocalDelete().

DocumentReference.LocalDelete()

This method takes no parameter, and moves the specific DocumentReference
object to the trash can without modifying the underlying document.

Property Data Type Description

Document Document object (R/O) This property is a reference to the actual Docu-
ment object as it is represented in the Group-
Wise library. The Document object is discussed
in more detail below.

DocumentLibrary DocumentLibrary object (R/O) This property is a reference to a DocumentLi-
brary type object for the Document at issue.
The DocumentLibrary object is not discussed at
length here. It is a collection of Document
objects, and has an Add() method to add new
documents. Further DocumentLibrary does not
have a Count property and instead requires iter-
ation through each document, which can be
cumbersome.

DocumentVersion DocumentVersion object
(R/O)

This property is a reference to a DocumentVer-
sion type object that holds information about
this documents version. The DocumentVersion
object is described in more detail below.

RefType Enum This is an enumerated property that holds infor-
mation about the type of document reference.
[egwOfficial (0) for the official version,
egwCurrent (1) for the current version, and
egwSpecific (2) for a specific version]
C h a p t e r 6 99

Let’s take another look at the ProcessAttachments procedure from the
attachments section in Chapter 5: Understanding Document and Document
Related Objects. In that section, we assumed that the attached message was not a
document reference. In reality, however, we must usually test for document
references because they have different properties than most other messages. The
code below performs this test, and shows how to access the subject of a document
reference (which is the subject that users see):

Example in VB:

'gwAccount is a valid Account object

Dim gwMessage As GroupwareTypeLibrary.Message
Dim gwAttachment As GroupwareTypeLibrary.Attachment

Private Sub ProcessAttachments()
Set gwMessage =
gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.Messages.Count)
For doc=1 to gwMessage.Attachments.Count
Set gwAttachment = gwMessages.Attachment.Item(doc)
If gwAttachment.ObjType = egwMessage Then
If gwAttachment.Message.ClassName = “GW.MESSAGE.DOCUMENTREFERENCE” Then
Msgbox “The Document Reference subject is: ” &
gwAttachment.Message.Subject.PlainText
Else
Msgbox “The message is from: ” & gwAttachment.Message.FromText
End If
End If
If gwAttachment.ObjType = egwFile Then
Msgbox “The Filename is: ” & gwAttachment.Filename
End If
Next doc
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure ProcessAttachments;
var doc:integer; gwMessage,gwAttachment:variant;
begin
gwMessage:=gwAccount.Mailbox.Messages.Item(gwAccount.Mailbox.Messages.Count);
for doc := 1 to gwMessage.Attachments.Count do
begin
gwAttachment:=gwMessage.Attachments.Item(doc);
if gwAttachment.ObjType = egwMessage then begin

{now we must test to see whether we have a message or a document
reference, because the properties are different}

if gwAttachment.Message.ClassName='GW.MESSAGE.DOCUMENTREFERENCE' then
ShowMessage('The Document Reference subject is: ' +

gwAttachment.Message.Subject.PlainText)
else
ShowMessage('The message is from: ' +

gwAttachment.Message.FromText);
end;
w w w . n o v e l l . c o m / a p p n o t e s
100

if gwAttachment.ObjType =egwFile then begin
ShowMessage('The Filename is: '+ gwAttachment.Filename);
end;
end;
end;

Document Libraries

Document libraries hold the documents that GroupWise users create and edit. You
can access DocumentLibrary objects from the following objects:

Account.DocumentLibraries
Account.DefaultDocumentLibrary
Document.DocumentLibrary
DocumentReference.DocumentLibrary
DocumentVersion.DocumentLibrary
The DocumentLibraries Object

The DocumentLibraries object is a collection of DocumentLibrary
objects. Like most other collections, DocumentLibraries has a Count
property and Item() method.

This Count property is an integer that holds the number of libraries in the
collection.

Use the Item() method to obtain a specific library object from the collection.

DocumentLibraries.Item(Index as Variant)

Item() takes as single parameter called Index, which is a variant. You can
make Index an integer between 1 and DocumentLibraries.Count, and
the DocumentLibrary object corresponding to that position will be retrieved.
You may alternatively make Index a string. Of course, not every string will
work; rather, the string you pass must be a valid LibraryID to one of the
DocumentLibrary objects in the collection. If Index is a valid LibraryID,
the DocumentLibrary object with that LibraryID will be returned.

Example in VB:

'gwAccount is a valid Account object

Dim gwDocLibrary As GroupwareTypeLibrary.Documentlibrary

Private Sub GetFirstDocumentLibrary ()
If gwAccount.DocumentLibraries.Count > 0 Then
Set gwDocLibrary = gwAccount.DocumentLibraries.Item(1)
Msgbox “gwDocLibrary now points to a DocumentLibrary object”
End If
End Sub
C h a p t e r 6 101

Example in Delphi:

//gwAccount is a valid Account object

procedure GetFirstDocumentLibrary;
var gwDocLibrary:variant;
begin

If gwAccount.DocumentLibraries.Count > 0 then
gwDocLibrary:=gwAccount.DocumentLibraries.Item(1);

{gwDocLibrary now points to a DocumentLibrary object}
end;

The DocumentLibrary Object

The key properties of the DocumentLibrary are:

Name Data Type Description

CurrentArchive Bytes Integer (R/O) The number of bytes that the archive takes
on disk

CurrentArchive Loca-
tion

String (R/O) The full path and name to the location of
the documents archive on disk

Description String (R/O) Description of the library

Documents Documents object (R/O) Holds all of the documents in the library

DocumentTypes Document Types object (R/O) The collection of document types that are
associated with the library. Note that docu-
ment type here means not Word v. WordPer-
fect, but rather the document types
defined in the GroupWise administration for
archiving and automatic deletion. The Doc-
umentLibrary.DocumentTypes property is a
collection of all the available document
types for documents.

Field Definitions Field Definitionsobject (R/O) The collection of field definitions for the
library.

LibraryID String (R/O) The LibraryID for the library. Typically, this
will be Domain.PostOffice.LibraryName

MaxArchive Bytes Integer (R/O) The maximum size of the archive on disk,
as set by the GroupWise administrator

Name String (R/O) Name of the library

NextDocument Num-
ber

Integer (R/O) The next document number to be assigned
in the library. This does not work in Group-
Wise remote. You should use DocumentLi-
brary.Refresh() before accessing this
property to make sure that you have the
latest information from the GroupWise
database
w w w . n o v e l l . c o m / a p p n o t e s
102

Let’s look at some property values for the first collection of Documents in the
library.

Example in VB:

'gwAccount is a valid Account object

Dim gwDocLibrary As GroupwareTypeLibrary.Documentlibrary

Private Sub GetFirstDocumentLibrary ()
If gwAccount.DocumentLibraries.Count > 0 Then
Set gwDocLibrary = gwAccount.DocumentLibraries.Item(1)
Msgbox “Name: ” & gwDocLibrary.Name
Msgbox “Descriptio: ” & gwDocLibrary.Description
Msgbox “LibraryID: ” & gwDocLibrary.LibraryID
End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure GetFirstDocumentLibrary;
var gwDocLibrary:variant;
begin
If gwAccount.DocumentLibraries.Count > 0 then
begin
FirstLibrary:=gwAccount.DocumentLibraries.Item(1);
ShowMessage('Name: ' + gwDocLibrary.Name);
ShowMessage('Description: ' + gwDocLibrary.Description);
ShowMessage('LibraryID: ' + gwDocLibrary.LibraryID);
end;
end;

The DocumentLibrary object also has a variety of methods associated with it.

Locating a Document. If you know the document number, you can use
GetDocument() to obtain a reference to the document.

DocumentLibrary.GetDocument(DocumentNumber as Integer)

DocumentNumber is an integer that contains a valid document number. The
method returns a reference to the Document object associated with
DocumentNumber.

Starting Version Num-
ber

Integer (R/O) The version number assigned to new docu-
ments by default. This value is almost
always 1

Name Data Type Description
C h a p t e r 6 103

The following code will attempt to obtain a random document in the user’s
mailbox. If the user is a librarian, this should return a document every time. If not,
then it will only return a document if the user has a reference to the document in
his or her mailbox. The code will test to see whether a document was returned. If
you want this code to always retrieve a document, set docnum equal to
gwDocLibrary.NextDocumentNumber-1, which should be the last
document in the user’s database.

Example in VB:

'gwAccount is a valid Account object

Dim gwDocLibrary As GroupwareTypeLibrary.DocumentLibrary
Dim gwDocument As GroupwareTypeLibrary.Document

Private Sub GetRandomDoc()
If gwAccount.DocumentLibraries.Count > 0 Then
Set gwDocLibrary = gwAccount.DocumentLibraries.Item(1)

‘Randomize here
End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure GetRandomDoc;
var gwDocLibrary,gwDocument:variant;seed,gwDocNum:integer;
begin
If gwAccount.DocumentLibraries.Count > 0 then
begin
gwDocLibrary:=gwAccount.DocumentLibraries.Item(1);
Randomize;
seed:=FirstLibrary.NextDocumentNumber-1;
docnum:=Trunc(Random(seed));
try
gwDocument:=gwDocLibrary.GetDocument(gwDocNum);
except ShowMessage('Cannot access document number: ' +inttostr(gwDocNum)); end;
if varisempty(gwDocument) then
ShowMessage('Cannot access document number: ' +inttostr(gwDocNum));
end;
end;

Getting Document Event Information. Use
GetDocumentVersionEvents() to find out what has happened to a
document.

DocumentLibrary.GetDocumentVersionEvents(DocNumber as Long)
w w w . n o v e l l . c o m / a p p n o t e s
104

DocNumber is an integer that contains a valid document number. The method
returns a reference to a DocumentVersionEvents object, from which you
can find out what has occurred with the document associated with DocNumber.

Example in VB:

'gwAccount is a valid Account object

Dim gwDocLibrary As GroupwareTypeLibrary.Documentlibrary
Dim gwDocumentEvents As GroupwareTypeLibrary.Document

P rivate Sub GetDocEvents()
If gwAccount.DocumentLibraries.Count > 0 Then
Set gwDocNum = gwAccount.NextDocumentNumber - 1
On Error goto dfadasfda
Set gwDocumentEvents = gwDocLibrary.GetDocumentVersionEvents(gwDocNum)
End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure GetDocEvents;
var gwDocLibrary,gwDocumentEvents:variant;seed,docnum:integer;
begin
If gwAccount.DocumentLibraries.Count > 0 then
begin
gwDocLibrary:=gwAccount.DocumentLibraries.Item(1);
docnum:=gwDocLibrary.NextDocumentNumber-1;
try
gwDocumentEvents:=gwDocLibrary.GetDocumentVersionEvents(docnum);
except end;
if varisempty(gwDocumentEvents) then
ShowMessage('Cannot access document number: ' +inttostr(docnum));
end;
end;

Archiving Documents. Use IncrementArchiveLocation() to begin
archiving documents in the next available directory.

DocumentLibrary.IncrementArchiveLocation ()

This method is not available in GroupWise Remote.
C h a p t e r 6 105

The Documents Collection

The Documents object is a collection of Document objects. You obtain a
reference to Documents by referencing the DocumentLibrary object. The
DocumentLibrary.Documents object will contain all of the documents in
that library.

There are two primary uses for a Documents object. First, it allows you to
iterate through all documents. Second, it allows you to add a new document to the
library.

Iterating through Documents

Use the Documents.CreateDocumentIterator() method to allow for
iteration through each document in the library. Because Documents is a large
collection, like AllMessages, there is no Item() method to individually
index documents.

Documents.CreateDocumentIterator()

This token returns a reference to a DocumentIterator object. From there,
you should call the following methods of DocumentIterator.

The following procedure shows each of the above methods in action.

Example in VB:

'gwAccount is a valid Account object

Dim gwDocLibrary As GroupwareTypeLibrary.Documentlibrary
Dim gwDocument As GroupwareTypeLibrary.Document

Method Description

Clone() This method will create a copy of the DocumentIterator with the iterator at
the same position as the cloned object. This makes it possible to keep track
of multiple iteration positions, and go back if necessary.

Next() This takes no parameters, and returns the next Document object in the col-
lection.

Reset() This takes no parameters, and returns the iterator to before the first docu-
ment so that calling Next() will return the first document.

Skip(NumDocuments) This takes one long integer parameter called NumDocuments. Skip(NumDocu-
ments) will cause the iterator to skip over NumDocuments messages, placing
the iterator just before the document following the skipped documents so
you may then call a Next() method. This is mostly useless for several reasons.
First, NumDocuments must be positive, so you may not move backward. Sec-
ond, the documents are not in any particular order, so you do not know what
you are skipping. Third, there is no end of record checking, in case NumDoc-
uments will move the iterator past the last document.
w w w . n o v e l l . c o m / a p p n o t e s
106

Dim gwDocIterator As GroupwareTypeLibrary.DocumentIterator
Dim gwDocIterator2 As GroupwareTypeLibrary.DocumentIterator

Private Sub IterateDocs()
Set gwDocLibrary = gwAccount.DefaultDocumentLibrary
Set gwDocIterator = gwDocLibrary.Documents.CreateDocumentIterator
Set gwDocIterator = gwIterator.Next
Msgbox “Subject; ” & cStr(gwDocument.DocumentNumber) & “ ” & gwDocument.Subject
gwDocIterator.Skip 2
gwDocument.gwDocIterator.Next
Msgbox “Skipped two, so now on forth doc: ” & “ ” &
cStr(gwDocument.DocumentNumber) & “ ” & gwDocument.Subject
Set gwDocIterator2 = gwDocIterator.Clone
gwDocIterator.Reset
Set gwDocument = gwDocIterator.Next
Msgbox “gwDocIterator, back to the beginning: ” &
cStr(gwDocument.DocumentNumber) & “ ” & gwDocument.Subject
Set gwDocument = gwDocIterator2.Next
Msgbox “gwDocIterator2, next document: ” & cStr(gwDocument.DocumentNumber) & “ ”
& gwDocument.Subject
End If
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure IterateDocs;
var gwDocLibrary,gwDocIterator,gwDocIterator2,gwDocument:variant;
begin
gwDocLibrary:=gwAccount.DefaultDocumentLibrary;
gwDocIterator:=gwDocLibrary.Documents.CreateDocumentIterator;
gwDocument:=gwDocIterator.Next;
ShowMessage('Subject: ' + inttostr(gwDocument.DocumentNumber) + ' ' +
gwDocument.Subject);
gwDocIterator.Skip(2);
gwDocument:=gwDocIterator.Next;
ShowMessage('Skipped two, so now on fourth doc: ' +

inttostr(gwDocument.DocumentNumber) + ' ' + gwDocument.Subject);
gwDocIterator2:=gwDocIterator.Clone;
gwDocIterator.Reset;
gwDocument:=gwDocIterator.Next;
ShowMessage('gwDocIterator, back to the beginning: ' +

inttostr(gwDocument.DocumentNumber) + ' ' + gwDocument.Subject);
gwDocument:=gwDocIterator2.Next;
ShowMessage('gwDocIterator2, next document: ' +
inttostr(gwDocument.DocumentNumber) + ' ' + gwDocument.Subject);
end;

Adding New Documents

Use one of two Documents.Add() to create a new document in the documents
collection. These methods are more like import procedures, because they require a
filename to create the new document.
C h a p t e r 6 107

Document.Add(Filename as String,[DocumentType as Variant])
Document.AddEx(Filename as String,[DocumentType as Variant],[DocRefFolder as
Folder])

Both Add() and AddEx() return a Document reference for the newly created
document. From there, you can set the other Document properties. AddEx()
adds the document reference in DocRefFolder, whild Add() does not create a
document reference in any folder.

The following procedure will add the c:\config.sys file to the GroupWise library,
and create a reference in the mailbox.

Example in VB:

'gwAccount is a valid Account object

Dim gwDocument As GroupwareTypeLibrary.Document

Private Sub AddDocument()
Set gwDocument =
gwAccount.DefaultDocumentLibrary.Documents.AddEx(“c:config.sys”,,gwAccount.Mailb
ox)
Msgbox “New Document Number: ” & cStr(gwDocument.DocumentNumber)
End Sub

Example in Delphi:

//gwAccount is a valid Account object

procedure AddDocument;
var gwDocument:variant;
begin
gwDocument:=gwAccount.DefaultDocumentLibrary.Documents.AddEx('c:\config.sys',

{leave second parameter blank for default},gwAccount.Mailbox);
ShowMessage('New Document Number: ' + inttostr(gwDocument.DocumentNumber));
end;

Parameter Data Type Description

Filename String This is the full path and name of the file on disk that you want to
use to create the new document.

DocumentType Variant This parameter may be either a string that is the name of the Doc-
umentType for the document, or it may be the actual Document-
Type object. The DocumentType object is discussed briefly below
in the ** section.

DocRefFolder Folder object This is a Folder object containing the folder in which to place the
new document reference for the document
w w w . n o v e l l . c o m / a p p n o t e s
108

The Document and DocumentVersions Objects

The Document object is a collection of DocumentVersion objects, plus
some additional information. Each version of each file in the GroupWise library
has an associated DocumentVersion. You cannot access and file in the library
unless you access that files DocumentVersion. The easiest way to access your
DocumentVersion of choice is to access the
DocumentReference.DocumentVersion property. This becomes
problematic, however, when the DocumentReference.RefType is
egwCurrent, yet you want a specific version, or vice versa. To access the
current version of a document, you can access
DocumentReference.Document.CurrentVersion property. If you
need to access all document versions in order to select one, access the
Document.DocumentVersions object.

The Document Object

The Document object encapsulates all versions of a given document. It has
several important properties:

Property Data Type Description

Subject String This string holds the subject description of
the document.

AdditionalRights DocumentAccess Rights object This collection contains information about
the sharing rights of the document for the
particular account that is logged into the
Object API.

Author Address object This is an Address object containing the
address information for the author of this
document.

AuthorCreateRights DocumentAccessRights object
(R/O)

Access rights granted to the document’s
author. If running GroupWise Remote, this
property is empty.

CreationDate Date This is a date property containing the cre-
ation date of the document.

Creator Address object (R/O) This is an Address object containing the
address information for the creator of this
document.

CurrentVersion DocumentVersion object (R/O) This is the current version of the docu-
ment in the form of a DocumentVersion
object.

DefaultRights DocumentAccess Rights object
(R/O)

This collection contains the sharing rights
granted to everyone.

DocumentLibrary DocumentLibrary object (R/O) The library that contains the document
C h a p t e r 6 109

In addition to the Document properties described above, there are also a few
methods that you should know about. The first is Delete().

Document.Delete()

This method takes no parameters, and deletes the document and all versions of it
from GroupWise. Be careful with this one! We will not even give sample code
lest we accidentally delete an important document.

The next method is GetVersion().

Document.GetVersion(VersionNumber as Long)

This method is another way to access a version, if you know the version number
you want. The single parameter for this method is VersionNumber, a Long
representation of a version number. The method returns the appropriate
DocumentVersion object.

Finally, you may call the SetDefaults() method.

Document.SetDefaults()

This is a useful method (that takes no parameters) if you programmatically create
documents. This sets the document properties to be the default values set by the
system administrator.

DocumentNumber DocumentVersion object (R/O) This is an integer that contains the docu-
ment number of the document.

DocumentType DocumentType object (R/W) This property contains information in a
DocumentType object, which holds infor-
mation about the type of document in the
library.

Fields Fields object (R/O) The collection of custom fields for the
document

OfficialVersion DocumentVersion object (R/O) This is the official version of the document
in the form of a DocumentVersion object.

Subject String (R/W) Descriptive name or subject of the docu-
ment.

Property Data Type Description
w w w . n o v e l l . c o m / a p p n o t e s
110

The DocumentVersions Object

The DocumentVersions object is a collection of DocumentVersion
objects for a given Document. DocumentVersions.Count is an integer
property that contains the number of versions associated with a given Document.
You can iterate through all document versions by using the
DocumentVersions.Item() method which, like other collection objects in
the Object API, takes an integer Index parameter between 1 and Count, and
returns a DocumentVersion associated at the Index position. You can also
create a new version by calling the DocumentVersions.Add() method,
which takes no parameters and returns the new DocumentVersion object.

The DocumentVersion Object

Key properties of the DocumentVersion object are:

Property Data Type Description

Archived Boolean (R/O) TRUE if the document version is archived.

CheckedOut Boolean (R/O) TRUE if the document is checked out.

CreationDate Date This date property holds the date this ver-
sion was created.

Creator Address object (R/O) This Address property holds the address
information for the user who created this
version.

Description String This is a string property that holds the
description associated with this version.

Document Document object (R/O) Document from which this version origi-
nated.

DocumentLibrary DocumentLibrary object (R/O) Library where this version is stored.

DocumentVersion-
Events

DocumentVersion Events object
(R/O)

This is a collection object that essentially
holds all of the prior actions taken on this
version. You can iterate through the Docu-
mentVersionEvent objects in the collection
by using the Count property and the Item()
method with a valid integer Index parame-
ter.

InUse Boolean (R/O) TRUE if the document is in use.

ODMADocumentID String (R/O) This is the ODMA document identification
string to be used with ODMA function calls.

OriginalFileType String (R/W)) This is the file extension (such as >WPD=
or >DOC=) for the document. You can use
this to launch appropriate editing and
viewing applications.

RetrievalDate Date (R/O) Date and time when the version was last
retrieved by an application.
C h a p t e r 6 111

The DocumentVersion object has the following key methods.

Saving the DocumentVersion to a Disk File. A document version in the library
does little good if you (and your users) are unable to actually edit the files stored
within the GroupWise store. The Object API, through the DocumentVersion
object, provides three methods to transfer a document to disk for actual editing.

Use CopyOut() to save a copy of the document file to disk. Use the
CheckOut() method check a document version out of the library. Use
Retrieve() to retrieve the document version from the library, and set the “in
use” flag to true.

DocumentVersion.CopyOut(Filename as String)
DocumentVersion.Preview(Filename as String)
DocumentVersion.CheckOut([Filename as String])
DocumentVersion.Retrieve(Filename as String)

With CopyOut(), you can always obtain the latest version of the file, even if it
is checked out or in use. Remember, however, that while the document is checked
out or in use, you may not be getting the latest version of the document.

Preview() is just like CopyOut(), except for a couple of features. First, you
must provide a filename, because Preview() will not assume that you want to
use the default naming scheme; rather, the method was designed with the
expectation that you will copy the file to a temp directory. Second, the
Preview() method will be logged differently by GroupWise. That is, it will be
treated as if you viewed the document (rather than saved the document) from the
GroupWise client.

With CheckOut(), if Filename is not present, the checked out flag is set, but
no file is copied. To obtain access to the file in that case, you will have to use the
CopyOut() method. If the document is already checked out – whether or not
you specified a filename – you will receive an error.

Retriever Address object (R/O) The user who last retrieved the document
version.

StagedFilename String (R/O) Holds the local location of a retrieved doc-
ument.

VersionNumber Long (R/O) The version number of this document ver-
sion.

Property Data Type Description

Parameter Data Type Description

Filename String Full path to where you want the file stored
w w w . n o v e l l . c o m / a p p n o t e s
112

The Retrieve() method will generate an error if the document version is
already in use or checked out.

Putting the Disk File Back Into the GroupWise Message Store. Once your user
has edited the disk file associated with a document, you may want to put it back
into the GroupWise message store. The Object API provides methods to do this as
well.

Us the CheckIn() method to check in a file that has been checked out. Use
EndRetrieve() to end a retrieve session and update the file contents in the
library.

DocumentVersion.CheckIn([Filename],[StatusChange])
DocumentVersion.EndRetrieve([Filename],[StatusChange])
DocumentVersion.EndPreview([Filename])
DocumentVersion.RemoteEndRetrieve([Filename],[Statuschange])

With CheckIn(), if Filename is omitted, then the document version is
“checked in” with no change in content. If the document version is not checked
out when you call this method, you will receive an error.

With EndRetrieve(), if Filename is omitted, then the document version is
marked as no longer “in use” but with no change in content. You will generate an
error if the document version has not been retrieved. If the document was
retrieved on a remote version, you should use RemoteEndRetrieve().

You should call EndPreview() to log the end of the preview action in
GroupWise. If you include the filename, the Object API will delete the file. If you
do not include the filename, the method will attempt to delete the file in
DocumentVersion.StagedFilename. This will generate an error if the
document has not been put into preview mode with a Preview() call.

Deleting DocumentVersions. If you want to delete a version, use the
Delete() method.

Parameter Data Type Description

Filename String The full path to the document file you wish to check in.
You may obtain the current checked out filename from
DocumentVersion.StagedFilename

StatusChange Enum This tells GroupWise how to treat the document version
after completion of the operation. Set it equal to egwDo-
CheckIn/egwDoEndRetrieve (0) if you want to reset the
“checked out”/“retrieved” flag or egwLeaveChecked-
Out/egwLeaveInUse (1) if you simply want to update the
contents in the GroupWise library, but want to keep
working on the document. If you omit the parameter, the
OAPI will assume a check in or end retrieve.
C h a p t e r 6 113

DocumentVersion.Delete()

This method will delete all copies of this version from the library. Be careful
before calling this method.

Document Events

The DocumentVersionEvents Object

A DocumentVersionEvents, like many other collections objects, has a Count
property and Item() method that allows you to access individual
DocumentVersionEvents objects. Simply call the Item() method with a single
Index parameter.

DocumentVersionEvents.Item(Index as Variant)

If Index is Long between 1 and DocumentVersionEvents.Count, the
DocumentVersionEvents object at the given Index will be returned. Use a for loop
if you don’t know the order of objects in the collection. If Index is a string, it
should represent a Long value.

The DocumentVersionEvent Object

The key properties of the DocumentVersionEvent object are:

This object does not have any methods.

Name Data Type Description

CreationDate Boolean (R/O) TRUE if the user can modify access rights of the owning
document. This property cannot be set to TRUE if
RevokeAllRights is also TRUE.

Documents Documents (R/O) If TRUE, the document user is denied all rights to the
document. ModifySecurity (which must be FALSE),
SecurityCurrentVersions, SecurityOfficalVersion, Secu-
rityOtherVersions have no meaning and attempting to
write to any of these properties will generate an error.

DocumentLibrary DocumentLibrary (R/O) Access rights for the documents current version.

DocumentVersion DocumentVersion (R/O) Access rights for the documents official version.

EventType Enum (R/O) Access rights for the documents unofficial, non current
version. For a full list of available EventTypes, see the
official GroupWise Object API Documentation.

Filename String (R/O) The user or group for whom additional rights are set.
May be Nothing if the DocumentAccessRights object is
obtained from a documents AuthorCreatorRights or
DefaultRights property.
w w w . n o v e l l . c o m / a p p n o t e s
114

Document Rights

The DocumentAccessRights Object

DocumentAccessRightsCollections, like many other collections objects, has a
Count property and Item() method that allows you to access individual
DocumentAccessRights objects. Simply call the Item() method with a single
Index parameter.

DocumentAccessRightsCollections.Item(Index as Long)

If Index is Long between 1 and DocumentAccessRightsCollections.Count, the
DocumentAccessRights object at the given Index will be returned. Use a for loop
if you don’t know the order of objects in the collection.

The DocumentAccessRights Object

The key properties of the DocumentAccessRights object are:

DocumentAccessRights has one method, Delete() which is used to delete a
DocumentAccessRights object.

Name Data Type Description

ModifySecurity Boolean (R/W) TRUE if the user can modify access rights
of the owning document. This property
cannot be set to TRUE if RevokeAllRights is
also TRUE.

RevokeAllRights Boolean (R/W) If TRUE, the document user is denied all
rights to the document. ModifySecurity
(which must be FALSE), SecurityCurrent-
Versions, SecurityOfficalVersion, Securi-
tyOtherVersions have no meaning and
attempting to write to any of these prop-
erties will generate an error.

SecurityCurrentVer-
sions

DocumentRights object (R/O) Access rights for the documents current
version.

SecurityOfficialVersion DocumentRights object (R/O) Access rights for the documents official
version.

SecurityOtherVersions DocumentRights object (R/O) Access rights for the documents unofficial,
non current version.

User Address (R/O) The user or group for whom additional
rights are set. May be Nothing if the Docu-
mentAccessRights object is obtained from
a documents AuthorCreatorRights or
DefaultRights property.
C h a p t e r 6 115

The DocumentRights Object

GroupWise uses the DocumentRights object to define and set access rights for a
document that are added to a user’s base level access.

The key properties of the DocumentAccessRights object are:

This object does not have any methods.

Document Types

The DocumentTypes Object

DocumentTypes, like many other collections objects, have a Count property and
Item() method that allows you to access individual DocumentTypes objects.
Simply call the Item() method with a single Index parameter.

DocumentTypes.Item(Index as Variant)

If Index is Long between 1 and DocumentTypes.Count, the DocumentTypes
object at the given Index will be returned. Use a for loop if you don’t know the
order of objects in the collection. If Index is a string, it should represent a Long
value.

Name Data Type Description

AllowDelete Boolean (R/W) TRUE if the user can delete the document
version.

AllowEdit Boolean (R/W) TRUE if the user can modify the document
version.

AllowShare Boolean (R/W) TRUE if the user can share the document
version with others. DocumentVersions are
shared by adding them to a shared folder,
see Chapter 3: Understanding Folder and
Trash Related Objects, and by forwarding
them as attachments to a message, see
Chapter 5: Understanding Message and
Message Related Objects.

AllowView Boolean (R/W) TRUE if the user can view the document
version.

BitMask Long (R/W) The bit mask contains one bit for each
Boolean value.
w w w . n o v e l l . c o m / a p p n o t e s
116

The DocumentType Object

The key properties of the DocumentType object are:

This object does not have any methods.

Summary

In this chapter we discussed different Document Related objects. Chapter 7 will
discuss different Address objects.

For more information on Documents, please check the GroupWise Object API
documentation http://developer.novell.com/ndk/doc.htm, sample code
http://developer.novell.com/ndk/sample.htm or visit the Developer Support Forum
area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.

Name Data Type Description

DisposalMethod Enum (R/O) Identifies the method for disposing of the
document. [egwDisposeByArchive (1),
egwDisposeByDelete (2)]

DocumentLife Long (R/O) Number of days following the last modifi-
cation after which the document will be
disposed of.

MaxVersionCount Long (R/O) Maximum number of versions for docu-
ments of this document type.

Name String (R/O) Name of the document type.
C h a p t e r 6 117

Chapter 7
Section 1: GroupWise Object API

Understanding Address and
AddressBook Objects

Having already been introducted to Address related objects in Chapter 5, this
chapter will build upon what you already know as you are introduced to Address,
AddressBookEntry, and GroupMember objects and the respective collection
object for each.

You’ll also learn about AddressBook objects, how to get and set entries and even
create your own books.

The following topic are discussed in this chapter.

Contents:

• Manipulating Addresses and Address Books

• The Different Types of Addresses

• Address Books

• Summary
w w w . n o v e l l . c o m / a p p n o t e s
118

Manipulating Addresses and Address Books

The Address object is relatively simple. It consists of 6 read-only properties and
no methods. It is, however returned by 16 properties of other objects and may (or
must) be used as arguments in 12 methods of other objects. In this section we will
go over this important object. More importantly, we will compare and contrast it
to 3 similar objects with which Address is sometimes confused: Recipient,
AddressBookEntry, and GroupMember.

In short, the properties of an Address object uniquely identify a User, Group,
Resource, Company, or may be Unknown.

An Address object is returned by the following properties:

Property Data Type Description

Application Application object (R/O) The Application object.

DisplayName String (R/O) Descriptive name displayed to users.

EmailAddress String (R/O) E-Mail Addresss to deliver mail to. Format
varies by type.

EmailType String (R/O) “NGW” is used for an internal GroupWise
address. Any other string means an out-
side address. With GroupWise 5.5 internet
addressing, you may also use “NGW” for
internet addresses.

ObjType Enum (R/O) egwUnknown, egwUser, egwCompany,
egwResource, egwGroup.

Parent Various objects (R/O) The object that owns this address.

Account.Owner DocumentVersion.Retriever

AccountRights.Address DocumentVersionEvent.User

AddressBookRights.Address Folder.Owner

BusySearchElement.Address FolderRights.Address

Document.Author Message.Sender

Document.Creator Message.Sharer

DocumentAccessRights.User Recipient.Address

DocumentVersion.Creator TimeBlock.From
C h a p t e r 7 119

The Address object may (or sometimes must) be used in at least one syntax of
the following methods:

The Different Types of Addresses

So what are the differences between Address, Recipient,
AddressBookEntry, and GroupMember?

Address

The Address object is a resolved version of the information necessary for
GroupWise to send a message or identify a resource. A resolved version in this
sense means that the address information has been found to reside in an address
book, or has been verified to be an external address (see the discussion of resolve
under the Recipient object discussed next.) It is read only. There are no methods
for the Address object.

Recipient

A Recipient object represents initially unresolved information necessary to
send a message. It has a “Resolve” method to attempt to resolve the recipient, and
a “Resolved” property that indicates the state of this resolution
(egwNotResolved, egwNotFound, egwAmbiguous, egwResolved).

The rules for resolving a recipient are:

GroupWise searches its address books in the following order (unless otherwise
specified):

1. Frequent Contacts

2. Personal address books

3. System address book

Account.Proxy Addresses.Remove

Application.Proxy AccountRightsCollection.Add

AddressBookEntries.Add DocumentAccessRightsCollection.Add

AddressBookEntries.Item Folder.ChangeOwner

Addresses.Add FolderRightsCollection.Add

Addresses.Item Recipients.Add
w w w . n o v e l l . c o m / a p p n o t e s
120

If it can find a match, it is considered Resolved. It will create an Address object
from the information provided. This Address object is listed in the “Address”
property of the Recipient object. If GroupWise cannot find a match, then
GroupWise determines if it is an internal recipient by checking the value of the
EmailType property equal to the string “NGW”. If the address is internal,
GroupWise sets the Resolved property to egwNotFound or egwAmbiguous.

Note: This search order of address books can lead to problems of personal address
books containing entries of users who have been deleted, or migrated to other
post offices. Also, groups might contain users in address books that have already
been searched. A useful workaround is to always specify the System address book
as the book to resolve to. To access the system address book, use the
Account.SystemAddressBook property.

The Recipient object also has a property called “TargetType” of an enumeration
type which indicates whether this recipient is a primary recipient (egwTo), carbon
copy recipient (egwCC), or blind copy recipient (egwBC).

Other property values of the Recipient object are duplicated in the Address object,
such as DisplayName, EmailAddress, EmailType, Parent, and Application. Unlike
the Address object, the first three of these properties are read/write. Should some
of these values be changed, the “Resolved” property will automatically be reset to
egwNotResolved – since no verification has yet been made the new property can
be resolved.

The Recipient object also has a method called “Delete” which will allow this
Recipient object to be deleted.

AddressBookEntry and GroupMember

An AddressBookEntry object is a subtype of the Address object, and therefore
contains all the basic information of the Address object. It can be used as an
argument of any method that requires an Address object.

In addition to the type of information that the AddressBookEntry object inherits
from the Address object, the AddressBookEntry object also contains additional
information. One of these important additional properties is called the “Fields”
property. It consists of a collection of “Field” objects, each of which contains
additional information about an address entry such as Phone number and
Department. There are many system defined fields as well as custom fields that
can be created (see Chapter 8: Understanding Field and Field Related Objects).

The AddressBookEntry object also contains a “Members” property that is a
GroupMembers object collection. This property is valid when the “ObjType” of
the AddressBookEntry indicates that it is a “group” (egwGroup). This property
allows a particular address book entry to consist of a group of individual entries
characterized by some group name. Because the GroupMember object is a subset
of the AddressBookEntry object (which in turn is a subset of the Address object),
this allows the Members property to consist of a list of AddressBookEntries
themselves. Thus, the Members object allows a hierarchy or nesting of groups.
C h a p t e r 7 121

The “Revision Number” object contains the number of times the object is
modified, and MasterRevisionNumber contains information about the revision
last downloaded to GroupWise Remote. The only unique property of the
GroupMember object is called “TargetType”, which allows the user to specify the
type of copy (egwTo, egwCC, egwBC) each user in a group gets.

While the documentation indicates many AddressBookEntry and GroupMember
properties are read/write, this is only true for Personal address books. The System
address book cannot be modified through Object API. The GroupWise Admin
Object API (see Chapter 24) must be used to make changes to the System address
book.

Both the AddressBookEntry object and the GroupMembers object have a
“Delete” method which allows that entry to be deleted from the address book, and
a “Refresh” method which allows GroupWise to reread property values from the
message database.

Note: For most methods that accept an Address object as a parameter, an
AddressBookEntry object can be used instead.

The following table lists the common properties of the four different objects
discussed above.

Property Type Address
object

Recipient object
where
Message.BoxTyp
e = egwDraft

AddressBookEntry,
GroupMember objects

Address Address object R/O - Nothing if
not resolved or
resolved to an
external address.

Application Application
object

R/O R/O R/O

DisplayName String R/O R/W R/W

EmailAddress String R/O R/W R/W

EmailType String R/O R/W R/W

Fields Fields
collection

R/O (collection). Individ-
ual Field members of the
collection are R/W. Field
members can be added
with the Fields.Add()
method or removed with
Field.Delete().

MasterRevisionNumber
RevisionNumber

Long R/O
w w w . n o v e l l . c o m / a p p n o t e s
122

Address Books

The Address Books object is a collection of Address Books. The simplified
hierarchy of Address Books in GroupWise is:

Account object
AddressBooks collection
AddressBook object
AddressBookEntries collection
AddressBookEntry object
GroupMembers collection
GroupMember object (if AddressBookEntry.ObjType = egwGroup)

The Account object is returned by one of the 3 methods of the Application
object covered in Chapter 1: Introducing the Object API.

Members GroupMembers
collection

R/O (collection).Individ-
ual GroupMember objects
in this collection are R/W.
GroupMember objects
can be added with the
GroupMembers.Add()
method or removed with
GroupMember.Delete().

ObjType Enum R/O R/W

Parent Object, specific
object varies.

R/O R/O R/O

Resolved Enum R/W – can be
reset to
egwNotRe-
solved, but not
to other values

TargetType Enum R/W R/O – GroupMember only

Methods (none) Delete()
Resolve()

Delete() Refresh()

Property Type Address
object

Recipient object
where
Message.BoxTyp
e = egwDraft

AddressBookEntry,
GroupMember objects
C h a p t e r 7 123

The AddressBooks collection consists of several different address books. The
primary AddressBook is the System address book. Some or all of the following
address books are available in the AddressBooks collection:

The AddressBooks collection has the usual collection properties:

It also supports the following two methods:

AddressBooks.Add(Name as String)

This method allows the user to create a new “personal” address book. It returns a
new AddressBook object. Remember to put an appropriate variable on the left
side of the statement to catch the return Address Book object (using your
language’s method of doing so). Add does not support Before or After parameters
in VB.

AddressBooks.Item(Index as {Long or String})

This method returns an existing AddressBook object. If Index is a Long,
Item() returns the AddressBook object at the given index in the collection. If
Index is a String, Item() returns the AddressBook with the same Name as
Index.

Address Book Type Subtype

System egwNovellSystem egwOther

Personal egwNovellPersonal egwOther

Frequent contacts egwNovellPersonal egwFrequentContact

LDAP egwUnknownBook egwOther

MAPI egwUnknownBook egwOther

Shared (Personal) egwNovellPersonal egwOther

Property Data Type Description

Application Application object (R/O) The Application object

Count Long (R/O) Number of objects in the collection.

_NewEnum Object (R/O) Enumeration object implementing IEnum-
VARIANT for Windows only.

Parent Account object (R/O) The Account that owns this collection.
w w w . n o v e l l . c o m / a p p n o t e s
124

You may also obtain an AddressBook via the Account.SystemAddressBook,
the Account.DefaultAddressBook, or Account.FrequentContacts
properties.

Note: AddressBooks does not have a Remove method. Use the Delete() method of the
individual AddressBook objects instead.

Sharing an AddressBook

With GroupWise 5.5 and later it is possible to accept shared address books using
the Object API. To do this, you need to use the new SharedNotification object.
The SharedNotification object is a new subtype of the Message class. It is the
message subtype that is received when some other user wishes to share an address
book with the recipient.

Since the SharedNotification object is a subtype of the Message object, it includes
the same properties and methods as the Message object. In addition, it adds three
additional properties: Description, Name, and NotificationType. It also has two
methods called “Accept” that enable a user to accept either shared address books
or folders.

This particularly type of message is NOT a message that can be created from
scratch using the Object API. Its properties are “read only”. It needs to be created
through the GroupWise Client. However, it has a “Message.Classname” that can
be recognized by the recipient of the shared notification, and then accepted
through the Object API. This Classname is
"GW.MESSAGE.MAIL.NEW.SHARED.PAB.NOTIFY"

To accept a shared address book with this new object, you have two options:

1. Use the Accept method of the SharedNotification object.
ShareNotification.Accept (String SharedAddressBookName, [String
Description])

2. Use the new AddEx method of the AddressBooks object.
AddressBooks.AddEx(SharedABNotify as SharedNotification, [String
sName])

The AddEx method above actually calls the Accept method in the internal
GroupWise code.

Here is an example in Visual Basic of how a user would accept a Shared Address
Book using the Object API. It demonstrates both options outlined above.

Dim Acc As GroupWareTypeLibrary.Account2
Dim MyFolder As GroupWareTypeLibrary.Folder2
Dim MyMessages As GroupWareTypeLibrary.Messages
Dim MyMessage As GroupWareTypeLibrary.Message2
Dim gwAddressBooks As GroupWareTypeLibrary.AddressBooks2
Dim gwShareMessage As GroupWareTypeLibrary.SharedNotification
C h a p t e r 7 125

Dim gwNewAB As GroupWareTypeLibrary.AddressBook2

Dim i As Integer
Dim MsgName As String
Dim MsgDesc As String
Dim MsgType As Integer
Dim SomeInt As Integer
Dim MsgSubject As String

Dim GWApp As New Application2

Set Acc = GWApp.Login
Set MyFolder = Acc.MailBox
Set MyMessages = MyFolder.Messages

Set gwAddressBooks = Acc.AddressBooks

For i = 1 To MyMessages.Count
Set MyMessage = MyMessages.Item(i)

'Find a SharedNotification message.
If MyMessage.ClassName = "GW.MESSAGE.MAIL.NGW.SHARED.PAB.NOTIFY" Then

'Demonstrate how to get the properties of the SharedNotification message
Set gwShareMessage = MyMessages.Item(i)
MsgName = gwShareMessage.Name
MsgDesc = gwShareMessage.Description

'The MsgType should be equal to egwSharedAddressBook
MsgType = gwShareMessage.NotificationType

'Either of the two methods below will accept a shared address book. Uncomment
'one of them. Here, some additional code is added just to check on the subject
'of the shared address book. It may not be needed.

' MsgSubject = gwShareMessage.Subject.PlainText
' If (MsgSubject = "Sharing of Address Book 'mynewbook'.") Then
' Set gwNewAB = gwAddressBooks.AddEx(gwShareMessage)
' End If

' MsgSubject = gwShareMessage.Subject.PlainText
' If (MsgSubject = "Sharing of Address Book 'mynewbook'.") Then
' gwShareMessage.Accept ("mynewbook")
' End If

End If
Next
w w w . n o v e l l . c o m / a p p n o t e s
126

Summary

In this chapter you learned about different Address objects; Address, Recipient,
AddressBookEntry, and GroupMember. You learned about methods and
properties of the AddressBook object that enable you to add, modify and delete
new entries. In addition, you learned about Shared Address Books. In the next
chapter you will learn about Field and Field related objects.

For more information on Address and AddressBook objects, please check the
GroupWise Object API documentation http://developer.novell.com/ndk/doc.htm,
sample code http://developer.novell.com/ndk/sample.htm or visit the Developer
Support Forum area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
w w w . n o v e l l . c o m / a p p n o t e s
127

Chapter 8
Section 1: GroupWise Object API

Understanding Field and Field
Related Objects

Field objects, contained in Fields objects, in GroupWise represent a user-defined
field in an AddressBookEntry, Document, or Message object. In an
AddressBookEntry or Document, it can also represent a predefined field.

FieldDefinitions objects contain the FieldDefinition objects which define the
fields for an Account, AddressBook or DocumentLibrary. The root account and
all AddressBooks have an independent collection of FieldDefinitions. The root
account also includes user-defined fields that can appear in a message. An account
collection includes user-defined and predefined fields that can appear in its
entries.

Finally, LookupTableEntry objects, referenced in LookupTableEntries, are used
to provide restricted values a field.

The following topics are discussed in this chapter.

Contents:

• Pre-defined and Custom Field Objects
• Accessing Field Information
• Custom Fields and the GroupWise Client
• Deleting Fields and FieldDefinitions
• Custom Fields in the Address Book
• Fields and Document Libraries
• Lookup Tables
• Related Properties
• Summary
C h a p t e r 8 127

Pre-defined and Custom Field Objects

Although the information in most pre-defined fields can be accessed through a
named data member that is associated with a specific GW object, GroupWise also
allows you to directly access the information using a Field object. In addition,
GroupWise allows you to create fields of your own, referred to as “custom fields”.
A custom field is also an object of type “Field”. GroupWise stores its Field
objects in a collector object called “Fields”.

Only the following GroupWise objects have a “Fields” property:

• Objects derived from the base Message class (including mail messages,
appointments, tasks, notes, phone messages, document references, and
custom message types defined via the C3PO API).

• Folder object

• Document object

• AddressBookEntry object

Each time GroupWise adds a custom field to an object, it needs to know what kind
of field it is, and what its name should be. Therefore, before you create a custom
field, you must first create a “template” for the field called a FieldDefinition.

Two GroupWise objects can contain custom fields based on the same
FieldDefinition, but there are properties of the custom fields that are unique to the
object that owns the field, such as the value of the field. A Field object contains a
property that indicates which FieldDefinition the Field object is based on.

A FieldDefinition describes many aspects of the new field, including what it
should be called, what kind of data it can contain, how much data it can contain,
and whether or not it should be visible in a user interface. FieldDefinition objects
are contained in FieldDefinitions collections.

Only the following GroupWise objects have a “FieldDefinitions” property:

• Account Object

• DocumentLibrary Object

• AddressBook Object

Before you can create a custom field for an object, you must first define the Field
in the FieldDefinitions property of the object’s parent. To do this, use the
FieldDefinitions.Add() method. The one exception to this is the DocumentLibrary
object. DocumentLibrary objects have FieldDefinitions properties, but to create
field definitions for a DocumentLibrary, you must use the GroupWise Admin
API.
w w w . n o v e l l . c o m / a p p n o t e s
128

To create a custom field for a GroupWise object, you call “Add()” of that object’s
“Fields” property. This method takes three parameters: the name of the field, a
constant defining the type of the field, and the value of the field. The name of the
field must match the name of a FieldDefinition object in the FieldDefinitions
property of the GroupWise object’s parent. For a Message or Folder object, the
parent is the Account object to which it belongs. For a Document object, the
parent is the DocumentLibrary object to which it belongs. And, for an
AddressBookEntry object, the parent is the AddressBook object to which it
belongs. The type constant passed to the Fields.Add() method must match the
defined type of the FieldDefinition referenced in the name parameter otherwise an
exception is generated. The value is what you intend to store in the Field.

The key FieldDefinition properties are:

To add a field to the Fields collection object referred to by
the following properties…

…We must first insure a
FieldDefinition exists in these
FieldDefinitions collections.

Message.Fields RootAccount.FieldDefinitions

Folder.Fields RootAccount.FieldDefinitions

AddressBookEntry.Fields (AddressBookEntries that are
groups, ObjType = egwGroup, do not support a Fields col-
lection)

AddressBook.FieldDefinitions

Document.Fields DocumentLibrary.FieldDefinitions

Property Data Type Description

FieldID Long (R/O) Not yet implemented. Field identifier.

FieldType Enum (R/O) Type of field defined by the FieldDefinition object.

HasLookupTable Boolean (R/O) TRUE if the FieldDefinition has a lookup table.

Hidden Boolean (R/O) TRUE if the field will not show up in any standard GroupWise use
interface.

MaximumLength Long (R/O) Maximum string or BLOB length of the field.

MinimumValue,
MaximumValue

Long (R/O) Minimum or maximum value of a numeric field.

Name String (R/O) Name of the field being defined. Value is case-sensitive.

ReadOnly Boolean (R/O) TRUE if the field value cannot be changed.

RelatedFieldDef-
inition

FieldDefinition
object (R/O)

A FieldDefinition object which has constraint values for this field.
Constraint values can be stored in a single FieldDefinition object,
simplifying maintenance.

Required Boolean (R/O) TRUE if a value is required for this field.

StringCase Enum (R/O) egwUpperCase, egwLowerCase, egwMixedCase.
C h a p t e r 8 129

Adding a FieldDefinition to a collection is simple.

FieldDefinitions.Add(Name as String,FieldType as Enumerated Integer)

This method uses the first parameter to name the new Field. Because this value is
case sensitive, you may use the same name, so long as the type differs; however,
this is not a good idea in practice. The second parameter defines the value that can
be held by the FieldDefinition.

The following FieldTypes are defined:

Example in VB:

'gwAccount is a valid Account object

Set gwFieldDefs = gwAccount.RootAccount.FieldDefinitions
gwFieldDefs.Add "MyString", egwString
gwFieldDefs.Add "MyNumeric", egwNumeric
gwFieldDefs.Add "MyDate", egwDate
gwFieldDefs.Add "MyBinary", egwBinary

The above code works great the first time, but crashes the second time. This is
because we are attempting to create a new member of a collection where one
already exists. So to be nice to our programs and users, the code should actually
be:

Example in VB:

'gwAccount is a valid Account object

If gwFieldDefs.Item("MyString", egwString) Is Nothing Then
gwFieldDefs.Add "MyString", egwString

End If

FieldType Enum value Description

EgwString 1 String up to 64K.

EgwNumeric 2 A Long, 32 bit, integer. Floating point numbers are not
currently supported, and any decimal values will be trun-
cated. Pass a Single or Double value by converting it to a
String.

EgwDate 3 This has a VarType = 7, or date variant type. Use appro-
priate representation according to the operating system
locality.

EgwBinary 4 BLOB up to 64K.

EgwReserved 5 Reserved for future use.
w w w . n o v e l l . c o m / a p p n o t e s
130

Actually, we can create a useful Sub to remember to do this for us. The one that
follows assumes the gwRootAccount is defined at the module or global level.

Example in VB:

'gwRootAccount is a valid Account object

Public Sub AddFieldDefToRootAccount(sFieldName as String, eFieldType as Long)
If Not gwRootAccount Is Nothing Then

With gwRootAccount.FieldDefinitions
If .Item(sFieldName, eFieldType) Is Nothing Then

.Add(sFieldName, eFieldType)
End If

End With
End If
End Sub

In the following code snippet, we define a custom field for Message and Folder
objects. We then create the Field for a specific folder and all of the messages in
that Folder.

Here is the sample. Note the absence of error handling. This is for simplicity.

Example in VB:

‘gwAccount is a valid Account object

Private Sub CreateProjectIDFieldDefinition()
'the following line creates a field definition called ProjectID with type string

gwAccount.FieldDefinitions.Add "ProjectID", egwString

End Sub

Private Sub AddProjectIDField()
Set gwCabinetFolder = gwAccount.Cabinet
Set gwProjectFolder = gwCabinetFolder.Folders.ItemByName("Project 123")
gwProjectFolder.Fields.Add "ProjectID", egwString, "123"

'the following command allows us to get the count once, rather than placing it
'in the "for" loop, and letting the overhead of COM kill us over and over again…

jCounter = gwProjectFolder.Messages.Count

For iCounter = 1 To jCounter
Set gwMessage = gwProjectFolder.Messages.Item(iCounter)
gwMessage.Fields.Add "ProjectID", egwString, "123"

Next iCounter
End Sub
C h a p t e r 8 131

Example in Delphi:

//gwAccount is a valid Account object

procedure CreateProjectIDFieldDefinition;
begin

// the following line creates a field definition called ProjectID with type
string gwAccount.FieldDefinitions.Add(‘ProjectID’, egwString);

end;

procedure AddProjectIDField;
var

gwCabinetFolder : Variant;
gwProjectFolder : Variant;
gwMessage : Variant;
iCounter : Integer;
jCounter : Integer;

begin

gwCabinetFolder := gwAccount.Cabinet;
gwProjectFolder := gwCabinetFolder.Folders.ItemByName(‘Project 123’);

gwProjectFolder.Fields.Add(‘ProjectID’, egwString, ‘123’);

// the following command allows us to get the count once, rather than
placing it

// in the “for” loop, and letting the overhead of COM kill us over and
over again…

jCounter := gwProjectFolder.Messages.Count;

for iCounter := 1 to jCounter do begin

gwMessage := gwProjectFolder.Messages.Item(iCounter);
gwMessage.Fields.Add(‘ProjectID’, egwString, ‘123’);

end; // for

gwCabinetFolder := unassigned;
gwProjectFolder := unassigned;
gwMessage := unassigned;

end;

At this point, we are able to add whichever of these fields we want to a new
message.

Note: The field values are read/write as long as the message is read/write. This is the
case only for BoxType of egwDraft and egwPersonal messages.

Values of fields must be initialized, therefore the Add() method requires all three
parameters, the third of which is the initial value.

GroupWise currently allows the Add() method to be used multiple times with the
same FieldName and FieldType without raising an error; it just overwrites the
previous entry.
w w w . n o v e l l . c o m / a p p n o t e s
132

Example in VB:

'gwAccount is a valid Account object

Dim gwNewMessage As GroupwareTypeLibrary.Mail3

Set gwNewMessage = gwAccount.WorkFolder.Messages.Add _
(“GW.MESSAGE.MAIL”, egwDraft)

With gwNewMessage
.Subject = “Fields Test Message”
.BodyText.PlainText = “Hello, here is a message with embedded fields.”
.Recipients.AddByDisplayName(“Jane Doe”, egwTo)

End With
Dim gwField As GroupwareTypeLibrary.Field2
Set gwField = ogwNewMessage.Fields.Add(“MyString”, egwString, “Yes”)
‘ Oh, I changed my mind
gwField = “No”
‘ I really can’t decide
gwField.Value = “Maybe”
‘ I can also add a field without returning an object
gwNewMessage.Fields.Add “MyDate”, egwDate, #2/15/2000#
‘ note the lack of parenthesis
‘ now it’s time to send the message
‘ (Lets hope you changed Jane Doe to someone who exists).
gwNewMessage.Send

 The Field object has two methods.

Field.Delete ()

This method deletes a field from an AddressBookEntry, Document, or
Message.

Field.Validate (Value as Variant)

This method returns a Boolean, that is TRUE if ‘Value’ is a valid value for this
field as defined in the FieldDefinition, or
FieldDefinition.RelatedFieldDefinition objects.

Accessing Field Information

Accessing the information in custom fields is fairly simple once you understand
how custom fields are stored for a GroupWise object. You access a custom field
for an object through that object’s Fields property. The Fields property has two
Item() methods.

The first form of Fields.Item() takes two parameters: a string that represents the
name of a field, and a field type constant. If you know the name and type of the
field you want to access, this is the method you want to use. Below is an example.
C h a p t e r 8 133

Example in VB:

Set gwProjectIDField = gwMessage.Fields.Item(“ProjectID”, egwString)

Example in Delphi:

gwProjectIDField := gwMessage.Fields.Item(‘ProjectID’, egwString);

If you want to forage through all of the custom fields for an object, either as an
iteration exercise or as a discovery exercise, then you would use the second form
of the Fields.Item() method. This form takes an integer as a parameter. The
integer acts as an index into the list of custom fields. Fields.Item(1) would return
the first custom field in the list, Fields.Item(2) would return the second. If the
integer is less than 1 or greater than Fields.Count, an exception is generated.
Below is an example.

Example in VB:

For j = 1 to gwMessage.Fields.Count
Set gwProjectIDField = gwMessage.Fields.Item(j)

‘ do something with the field
Next j

Example in Delphi:

for j := 1 to gwMessage.Fields.Count do begin
gwProjectIDField := gwMessage.Fields.Item(j);

// do something with the field
end;

If the number, names and types of custom fields that exist for a GroupWise object
are not known, using this form of Fields.Item() is useful. Once you have a custom
field object, you can examine its definition. The Field object has a FieldDefinition
property that corresponds with the FieldDefinition object in the parent’s
FieldDefinitions collection that the custom field is based on. From this, you can
determine the field’s type and name, value restrictions, etc. Once you know the
field’s type, you are prepared to deal with its value. For instance, the following
code snippet shows how to determine a field’s type before using its value. In this
example, ebFieldName is an edit box on a form, and lblFieldType is a label
object.

Example in VB:

‘gwMessage is a valid Message object

Set gwProjectIDField = gwMessage.Fields.Item(1)
' note that Field.Name = Field.FieldDefinition.Name
w w w . n o v e l l . c o m / a p p n o t e s
134

ebFieldName.Text = gwProjectIDField.Name
iFieldType = gwProjectIDField.FieldDefinition.FieldType
Select Case iFieldType

Case "1"
lblFieldType.Caption = "String"

Case "2"
lblFieldType.Caption = "Numeric"

Case "3"
lblFieldType.Caption = "Date"

Case "4"
lblFieldType.Caption = "Binary"

Case Default:
lblFieldType.Caption = "Unknown type"

End Select

Example in Delphi:

//gwMessage is a valid Message object

gwProjectIDField := gwMessage.Fields.Item(1);
// note that Field.Name = Field.FieldDefinition.Name
ebFieldName.Text := gwProjectIDField.Name;
iFieldType := gwProjectIDField.FieldDefinition.FieldType;
case iFieldType of

egwString : lblFieldType.Caption := ‘String’;
egwNumeric : lblFieldType.Caption := ‘Numeric’;
egwDate : lblFieldType.Caption := ‘Date’;
egwBinary : lblFieldType.Caption := ‘Binary’;
default : lblFieldType.Caption := ‘Unknown type’;

end; // case

Custom Fields and the GroupWise Client

Another more obvious, though less interesting, way to access the values of custom
fields is through the native GroupWise client. The graphic below shows the
GroupWise client’s main window.

Figure 1: The GroupWise client’s main window.

Note the columns and column headings in the right-hand pane of the main
window.
C h a p t e r 8 135

Each column represents a property of message items and folder objects that are
displayed in the pane. By right-clicking on the column and selecting the “More
Columns” menu item from the pop-up menu, you will be presented with a list of
all pre-defined fields as well as custom fields defined in the FieldDefinitions
property for the mailbox. Any defined field, whether pre-defined or custom, can
be displayed in a column in the GroupWise client. What’s more, since custom
fields must be one of four types (string, numeric, date, binary), items can be sorted
in ascending or descending order according to the contents of the custom field.

The only exception here is Binary custom fields. If you create a custom field of
type egwBinary, that custom field will not show up in the More Columns display
in the GroupWise client. Binary custom fields cannot be displayed by the
GroupWise client because their data cannot be interpreted as anything by the
GroupWise client but raw binary data.

Note that you can create custom fields for folder objects. If you have multiple
folders under the Cabinet folder, and you click on the cabinet folder, the child
folders it contains will be displayed in the right-hand pane. If any of those folders
has a custom field that is being displayed in a column, the value for that field will
be displayed for that folder, just as it is for any other object displayed in the
GroupWise client.

Finally note that when a FieldDefinition is added to any FieldDefinitions object,
whether for an Account object, a DocumentLibrary object (through the Admin
API), or an AddressBook object, that FieldDefinition object is accessible by any
account in the same post office as the account that created it. In fact, all field
definitions are stored together at the post office level, regardless of whether they
were created as part of the Account.FieldDefinitions collection, the
DocumentLibrary.FieldDefinitions collection, or the
AddressBook.FieldDefinitions collection. The Object API documentation calls
this a “subterfuge”. The fact that only a subset of the FieldDefinition objects can
be accessed by the Account.FieldDefinitions object creates the illusion that those
FieldDefinition objects are somehow stored separately from
DocumentLibrary.FieldDefinition objects and AddressBook.FieldDefinition
objects, when in fact they are all stored together at the post office level.

Deleting Fields and FieldDefinitions

Suppose you have added a custom field to a GroupWise object, and you now want
to remove it. In order to do this, you must retrieve the Field object itself, and call
its own Delete() method, as demonstrated below.

Example in VB:

Set gwField = gwMessage.Fields.Item(“ProjectID”, egwString)
gwField.Delete
w w w . n o v e l l . c o m / a p p n o t e s
136

Example in Delphi:

gwField := gwMessage.Fields.Item(‘ProjectID’, egwString);
gwField.Delete;

Likewise, if you want to remove a custom FieldDefinition, retrieve the
FieldDefinition object and call its Delete() method, as shown below.

Example in VB:

Set gwFieldDefinition = gwAccount.FieldDefinitions.Item(“ProjectID”,egwString)
gwFieldDefinition.Delete;

Example in Delphi:

gwFieldDefinition := gwAccount.FieldDefinitions.Item(‘ProjectID’,egwString);
gwFieldDefinition.Delete;

If you delete a FieldDefinition without first deleting the existing custom fields
upon which it is based, GroupWise appears to have removed the custom fields.
For example, suppose you have a FieldDefinition object called “ProjectID”.
Suppose further that a message in a GroupWise mailbox has a custom field based
on the ProjectID FieldDefinition object. If you execute FieldDefinition.Delete()
on the ProjectID FieldDefinition object, and then examine the Fields collection of
the GroupWise object, it will appear that the Field object that was based on the
ProjectID FieldDefinition has been deleted, even though you never executed the
Field.Delete() method.

Custom Fields in the Address Book

In order to fully understand how custom fields work for AddressBookEntry items,
you need to have an understanding of AddressBook, AddressBookEntries, and
AddressBookEntry items. For information on SharedNotifications, see Chapter 7:
Understanding Address and AddressBook Objects.

GroupWise supports two types of address books: System and Personal. There is
always only one System address book. The AddressBookEntry objects that exist
in the System address book are read-only. You cannot add custom field
definitions to the System address book AddressBook.FieldDefinitions collection
through the Object API. Instead, you must use the Admin API to invoke
AddressBook.FieldDefinitions methods. With the Object API, you can only
access custom fields and field definitions for the System address book as
read-only objects.
C h a p t e r 8 137

Personal AddressBook objects can be modified in any way using the Object API.
You should note that there are two types of Personal address books: GroupWise
Personal Address Books, and External MAPI Personal Address Books.

The GWORB manages address book items using MAPI. The GroupWise System
Address Book and GroupWise Personal Address Books are all installed as MAPI
Service Providers in the Windows Messaging subsystem on a Win32 machine.
The GroupWise client engine accesses and manages GroupWise address objects
via MAPI. Because of this, you can install other MAPI Address Book Service
Providers and GroupWise will access and manage them just like its own address
books. Note, however, that GroupWise can tell the difference between its GW
system address book, native GW personal address books, and external MAPI
address books.

MAPI is fairly flexible when it comes to defining properties of address book
objects. It does provide a mechanism whereby MAPI Address Book Service
Providers can define and maintain non-standard fields for address book objects.
Each service provider is free to define these fields and maintain them as they see
fit.

As an example, the GroupWise Personal Address Book Provider allows you to
create multiple “additional fields”. If you look at the presentation of object data on
a user in a GroupWise personal address book, you will see a button labeled
“Advanced”.

Figure 2: The data on a user in a GroupWise personal address book.
w w w . n o v e l l . c o m / a p p n o t e s
138

Clicking this button presents an interface that lets you define new fields for
address book items, as well as access and modify values for any custom fields for
this specific address book item. Although this capability is supported by MAPI, it
is exposed in this manner by the GroupWise Personal Address Book MAPI
Service Provider. Not all MAPI address books will provide you with this
capability.

As an example, let’s look at the Microsoft Personal Address Book MAPI Service
Provider. When this service provider is installed and configured, a new address
book is added to the collection. It is labeled “Personal Address Book”, as shown
in the graphic below:

Figure 3: The Microsoft Personal Address Book MAPI Service Provider.

From the outset, there isn’t much difference between this columnar view of data
in the Microsoft Personal Address Book and the native GroupWise Personal
Address Books. But when you look at the details of an address book item in the
Microsoft PAB, it looks like the screen in Figure 4.
C h a p t e r 8 139

Figure 4: The Microsoft PAB.

There is a big difference! In addition to different tabs, this view does not provide
the capabilities described above, i.e. the creation, access, and manipulation of
custom fields. The Object API does not distinguish between GroupWise address
books and non-GW MAPI address books when it comes to dealing with custom
fields. You can access the Fields collection on an address book item that belongs
to a non-GW address book just as you can for items belonging to a native GW
address book. But note also that the list of field definitions and fields that exist for
a non-GW address book and its items will be different than those for native GW
address books.

For example, if you right-click on the column manager for a native GroupWise
personal address book, and select the “More Columns” menu item, you see
something similar to Figure 5.
w w w . n o v e l l . c o m / a p p n o t e s
140

Figure 5: Address Book Column selection.

Note the list of “available” and “selected” columns. Now, if you right-click on the
column manager for the Microsoft Personal Address Book, and select “More
Columns”, you the screen shown in Figure 6.

Figure 6: Address Book Column selection.
C h a p t e r 8 141

It’s quite a different list! The list of fields in this dialog corresponds with the
FieldDefinition objects you would see in the FieldDefinitions collection for the
address book. The GroupWise personal address book has quite an impressive list
of fields, and quite unique as well. One way, though certainly not the only way, to
determine if a specific address book item is a GroupWise address book or not is to
examine its FieldDefinitions container for tell-tale fields such as “NDS
Distinguished Name” or “Domain”.

While the Microsoft PAB provider doesn’t give you an interface to create custom
fields as the GW PAB provider does, you are still free to add FieldDefinition
objects to the MS PAB FieldDefinitions collection using the Object API, just as
you can with the GW address books. Remember that the API does not distinguish
between GW address books and non-GW address books when you call methods
dealing with custom fields for address books.

While these fields cannot be accessed or modified in the “Information” screen
provided by the MS PAB provider, you can display the field in a column, as
demonstrated above. However, note that in the authors’ testing, calling the
AddressBook.FieldDefinitions.Add() method for the MS PAB generated a
protection fault and forced a reboot of the Windows OS. You might consider the
creation and manipulation of custom fields for non-GW address books to be
something of an experiment. We aren’t sure what will happen, or if it is supposed
to work! But you might like trying it!

The GroupWise address books can contain four different types of address book
items:

• Users

• Resources

• Organizations

• Groups

Users, Resources, and Organizations can all have custom fields. Only Groups
(also known as “Distribution Lists” can NOT have custom fields. Attempting to
access or otherwise manipulate FieldDefinitions or Fields objects in conjunction
with Group items will generate an exception.
w w w . n o v e l l . c o m / a p p n o t e s
142

Fields and Document Libraries

Document Objects versus Document References

Each Document Library in GroupWise is a special database that contains
document objects. A user’s GroupWise mailbox can contain Document
References that point to specific document objects in any of the Document
Libraries in the system. It is necessary to distinguish between a document object
and a Document Reference.

As discussed in Chapter 6: Understanding Document and Document Related
Objects, a DocumentReference is a subtype of the GroupWise Message object,
just like an Appointment or Task object. As such, a DocumentReference is an
object in its own right, and resides along with other descendants of the base
Message class in the GroupWise mailbox. As a message object, a
DocumentReference can contain custom fields that are defined by the
FieldDefinitions property of the Account object, just as GroupWise folders, mail
messages, and appointments can do.

Each DocumentReference object also contains fields that indicate which
document object it references, or points to.

The document object is also a database object in its own right, and is contained in
the Document Library database(s). Each document object can also have custom
fields that contain useful information. But just as Message objects in a GroupWise
mailbox may only have custom fields that are based on FieldDefinition objects in
the Account.FieldDefinitions collection, document objects may only have custom
fields that are based on FieldDefinition objects in the
DocumentLibrary.FieldDefinitions collection.

The FieldDefinitions property of any DocumentLibrary object only contains
custom field definitions. It does not contain field definitions that are pre-defined,
such as “Author” or “Document Type”. These fields already exist for every
document object in each library. This contrasts with Account.FieldDefinitions
which contains all FieldDefinition objects for the entire post office and
AddressBook.FieldDefinitions which contains FieldDefinition objects for all
pre-defined and custom fields for AddressBookEntry objects.

While you can access custom field information for DocumentLibrary and
Document objects using the Object API, you cannot create custom
FieldDefinition or Field objects using the Object API. You must use the
GroupWise Administrator plug-in for NWADMN32.EXE, or use the GroupWise
Admin API to create custom FieldDefinition and Field objects for
DocumentLibrary.FieldDefinitions and Document.Fields collections.

To explain further how custom fields work for DocumentLibrary and Document
objects, we use the following example.
C h a p t e r 8 143

Suppose you have a DocumentLibrary named “Legal”. It is the library where all
legal documents are kept. You would like to have a field that contains a case
number identifying which case a particular document is related to. Using the
GroupWise Admin API, you can create a new field called “Case ID”. To do this
with the GW Administrator, the administrator would go to the “Document
Properties Maintenance” screen, as shown in Figure 7.

Figure 7: Document Properties Maintenance.

Click on the “Add” button (the big green plus sign on the tool bar). This will
present the screen shown in Figure 8.

Figure 8: Document Property Definition.
w w w . n o v e l l . c o m / a p p n o t e s
144

Filling in the Property Label with “Case ID” and accepting the defaults, this
creates a new string field called “Case ID” for documents in the Legal library.
This is essentially adding a new FieldDefinition to the
DocumentLibrary.FieldDefinitions collection of the Legal library. The name of
the new FieldDefinition object would be “Case ID”.

After doing this, the user would be able to populate this new field for new
documents in the Legal library, as shown in Figure 9.

Figure 9: New Document.

You could also write an application that uses the Object API to set and read the
case ID for a particular document.

Example in VB:

‘gwDocument is a valid Document object

Set gwCaseIDField = gwDocument.Fields.Item(“Case ID”, 1)
gwCaseIDField.Value = “990304-3432”
C h a p t e r 8 145

Example in Delphi:

//gwDocument is a valid Document object

gwCaseIDField := gwDocument.Fields.Item(‘Case ID’, egwString);
gwCaseIDField.Value := ‘990304-3432’;

Lookup Tables

As a Document Management System administrator, you can imagine the danger
of requiring end users to populate the Case ID field manually for each document
that is created. If it were possible, it would be desirable to force the user to select
from a list of case IDs when selecting a case ID for a particular document. That
way, they couldn’t accidentally type in a case ID that was not valid.

GroupWise allows for this using a concept called a “lookup table”. The
administrator can create a “mini-database” called a lookup table and populate it
with pertinent values. When the administrator creates a custom field using the
GroupWise Administrator, he or she can also associate that field with the lookup
table. Doing so changes the display of the field for the end-user from a free-form
field, like an edit box, to a “combo-box” field, also known as a “drop-down list
box”. The administrator can populate the lookup table using the GroupWise
administrator.

Figure 10 is a view of how a lookup table is created.

Figure 10: How a lookup table is created.
w w w . n o v e l l . c o m / a p p n o t e s
146

Select the “Lookup Tables” item in the left-hand pane, and click the “add” button
on the tool bar. This brings up the dialog box shown in Figure 11.

Figure 11: Lookup table definition.

Here, the administrator can give the table a name (like “Case ID Values”), and
determine what type of data the table can hold (string or numeric). In addition, the
maximum length and allowed case for each value in the table can be set for
strings, and the minimum and maximum values for numbers.

Once the table has been created, the administrator can modify the table by adding
values. This is done by selecting the table and clicking the “add” button to bring
up the dialog box in Figure 12.

Figure 12: Lookup entry.

The administrator can create values and add them to the table.

Once this is done, the administrator can create a custom field and link it with the
table. When the new field is being created, the administrator selects the “Lookup
Table” selection icon, and the following prompt is presented (see Figure 13).
C h a p t e r 8 147

Figure 13: Lookup table list.

In this example, a number of lookup tables have been created. By default, there is
only one pre-defined lookup table. It’s called “Document Types”, and it is already
linked with a pre-defined field called “Document Type”. When users save
documents, they must select from the list of values in the Document Types lookup
table. The administrator can modify the list by adding custom document types and
removing pre-defined types.

When a field is linked to a lookup table, the field’s data type and other parameters
cannot be modified. The field must take on the parameters of the lookup table. For
instance, if you link a field to a lookup table that has string values in it, the field
must be a string field. Furthermore, if the values in the lookup table can only be
ten characters long and must be upper case, the field must take on these
limitations as well.

When a field has been linked with a lookup table, the field is not displayed as a
free-form field as demonstrated above. Rather, it is displayed as a box with a
selector, as shown in Figure 14.
w w w . n o v e l l . c o m / a p p n o t e s
148

Figure 14: New Document window.

The user may type values in free-form fashion, and GroupWise will verify the
typed-in value with matching values from the lookup table, or the user may click
the selector button which will present a dialog box containing a list of values from
the lookup table as shown in Figure 15.
C h a p t e r 8 149

Figure 15: Lookup.

FieldDefinition objects have a Boolean property that indicates whether or not they
are associated with a lookup table. Only FieldDefinition objects belonging to a
DocumentLibrary.FieldDefinitions collection can be associated with a lookup
table.

When a FieldDefinition object is associated with a lookup table, then
FieldDefinition.HasLookupTable is TRUE.

In this case, you can call FieldDefinition.GetLookupTable() to get a
LookupTableEntries object that contains the lookup table entries for fields based
on that FieldDefinition.

FieldDefinition.GetLookupTable (Value As {String or Field})

This returns a LookupTableEntries collection. This collection has a Count
property. Returns a collection of LookupTableEntry objects, each of which has
a Value property, which is a variant.

Additional properties of the Field object in GroupWise are:

Property Data Type Description

FieldDefinition FieldDefinition
object (R/O)

The field definition object used to create this field. A
reference here makes it easy to get reference to the
restrictions and methods defined for us.

FieldID Long (R/O) Not yet implemented. Field identifier
w w w . n o v e l l . c o m / a p p n o t e s
150

The LookupTableEntries object is a simple collection object that has a Count
property and an Item method. The following code sample shows how to access
lookup table entries associated with the Case ID field definition. This sample
assumes that there is a list box object called lbTableEntries.

Example in VB:

‘gwAccount is a valid Account object

‘ get the library object
gwLegalLibrary = gwAccount.DocumentLibraries.Item(“Legal”)
‘ get the Case ID field definition object
gwCaseIDFieldDef := gwLegalLibrary.FieldDefinitions.Item(“Case ID”, egwString)
‘ if it has a lookup table…
If gwCaseIDFieldDef.HasLookupTable then

‘ get the collection of table values…
gwCaseIDValues = gwCaseIDFieldDef.GetLookupTable

‘ clear the list box so we can populate it…
lbTableEntries.Clear
‘ store the number of entries in the lookup table so the following for..

loop doesn’t
‘ have to make a COM call every time (that’s too slow!)
iNumberOfTableEntries = gwCaseIDValues.Count
‘ for each table entry…
For iCounter = 1 to iNumberOfTableEntries

// add it to the list box…
lbTableEntries.Items.Add gwCaseIDValues.Item(iCounter)

Next iCounter
End If ‘ if…

Example in Delphi:

//gwAccount is a valid Account object

// get the library object
gwLegalLibrary := gwAccount.DocumentLibraries.Item(‘Legal’);
// get the Case ID field definition object
gwCaseIDFieldDef := gwLegalLibrary.FieldDefinitions.Item(‘Case ID’, egwString);
// if it has a lookup table…
if gwCaseIDFieldDef.HasLookupTable then begin

// get the collection of table values…
gwCaseIDValues := gwCaseIDFieldDef.GetLookupTable;

// clear the list box so we can populate it…
lbTableEntries.Clear;
// store the number of entries in the lookup table so the following for..

loop doesn’t
// have to make a COM call every time (that’s too slow!)
iNumberOfTableEntries := gwCaseIDValues.Count;
// for each table entry…
for iCounter := 1 to iNumberOfTableEntries do

// add it to the list box…
lbTableEntries.Items.Add(gwCaseIDValues.Item(iCounter);

end; // if…
C h a p t e r 8 151

The LookupTableEntries object does not have a method that allows you to add
values to the table. Adding values to a lookup table can only be done via the
GroupWise Administrator or through the GroupWise Admin API. In addition,
there are no methods in the Object API that allow the creation of addition lookup
tables themselves. This too must be done in the Administrator or through the
Admin API.

One final note on lookup tables, in an application that links a custom field to a
lookup table and allows users to select a Case ID for each document, it is not a
good solution to force the system administrator to be in charge of populating the
lookup table. This is where the Admin API comes in. You would probably want to
create a custom application that uses the Admin API to allow an end-user to
manipulate the values in the Case ID Values lookup table. Otherwise, the end-user
would have to use the GroupWise Administrator to do this, and this is certainly
not a good solution either!

Related Properties

As you might imagine there could be a large number of case IDs in the Case ID
Values lookup table. This could make it difficult for end-users to find the Case ID
they are looking for.

It might be beneficial to limit the values that show up in the Case ID Values list to
a subset of values based on some other criteria.

For example, you might want the end user to select a geographic location, or a
lawyer’s name, and have the Case ID Values list show only those Case IDs that
pertain to that location or lawyer.

To accomplish this, you create two lookup tables, and designate one of them as
being “related” with the other. You would create the table that should be restricted
in its display first. In this case, you would create a table called “Lawyers”. Then,
you would create the “Case ID Values” table. When creating this second table,
you would click on the “Related Table” selector, as shown below, which presents
a list of already-existing tables to choose from. You would choose the “Lawyers”
table.
w w w . n o v e l l . c o m / a p p n o t e s
152

Figure 16: Lookup table definition.

After doing this, each value you add to the Case ID Values lookup table must be
associated with an existing value in the Lawyers table. Of course, this means that
before you add values to the Case ID Values lookup table, the Lawyers table
should already have all possible values in it. As you add values to the Case ID
Values table, the dialog box looks like Figure 17.

Figure 17: Lookup entry.

Notice the “Parent Value” drop-down list; this will allow you to select a value
from the related Lawyers table.

When you select a “Parent Value” for the Case ID Values entry you are creating,
you create a special relationship between this Case ID Value and the Lawyer’s
table value. When the end-user tries to save a document, the Case ID field will
only accept values from the Case ID Values lookup table that match the value
selected for the Lawyer field (a custom field created and linked with the Lawyers
table).

As an example, look at the GroupWise Administrator’s view of the values in the
Case ID Values lookup table.
C h a p t e r 8 153

Figure 18: Values in the Case ID Values lookup table.

There are eight values in the table. But when the user tries to save a document and
selects one of the lawyers for the “Lawyer” field, the Case ID Values table
appears to only have those values that are related to the value of the Lawyer field,
as shown in Figure 19.

Figure 19: The Case ID Values.
w w w . n o v e l l . c o m / a p p n o t e s
154

In this case, the Lawyer field for the document being saved is populated with the
value “B. Seth Bailey”, and the lookup table for the Case ID field appears to only
have those values that are related to B. Seth Bailey.

All FieldDefinition objects have a “RelatedFieldDefinition” property. This
property is a FieldDefinition object for a field definition that is the “parent” field
for this one. In our example, the FieldDefinition.RelatedFieldDefinition property
for the Case ID field would be equal to the FieldDefinition object for the Lawyer
field definition. The Lawyer FieldDefinition.RelatedFieldDefinition would be
null, or otherwise undefined. It is not a two-way relationship. Only the child field
definition has a RelatedFieldDefinition property. For example, see the following
code:

Example in VB:

‘gwAccount is a valid Account object

Set gwLegalLibrary = gwAccount.DocumentLibraries.Item(“Legal”)
Set gwLawyerFieldDef = gwLegalLibrary.FieldDefinitions.Item(“Lawyer”,egwString)
Set gwCaseIDFieldDef = gwLegalLibrary.FieldDefinitions.Item(“Case ID”,egwString)
sLawyerFieldDefName = gwLawyerFieldDef.Name
sCaseIDRelatedFieldDefName = gwCaseIDFieldDef.RelatedFieldDef.Name

Example in Delphi:

//gwAccount is a valid Account object

gwLegalLibrary := gwAccount.DocumentLibraries.Item(‘Legal’);
gwLawyerFieldDef := gwLegalLibrary.FieldDefinitions.Item(‘Lawyer’,egwString);
gwCaseIDFieldDef:=gwLegalLibrary.FieldDefinitions.Item(‘Case ID’,egwString);
sLawyerFieldDefName := gwLawyerFieldDef.Name;
sCaseIDRelatedFieldDefName := gwCaseIDFieldDef.RelatedFieldDef.Name;

After this code executes, sLawyerFieldDefName =
sCaseIDRelatedFieldDefName. However, if we tried to access
gwLawyerFieldDef.RelatedFieldDef.Name, we would get an exception since
there is no parent field for the Lawyer field.

Understanding how related fields work is important when you are working with
lookup table objects.

When you call the FieldDefinition.GetLookupTable() method, you must supply
the method with a value. The GroupWise Object API documentation states that
this value must either be a string value or a Field object. But this method will also
take a numeric value, if the FieldDefinition is of a numeric type and is linked to a
lookup table populated with numbers.

If you pass a Field object, it’s Value property will be used by the method.
C h a p t e r 8 155

The ultimate value that the FieldDefinition.GetLookupTable() method
uses is compared with the parent values in the lookup table. The resultant
LookupTableEntries collection will only contain LookupTableEntry objects that
have parent values that match the value supplied to
FieldDefinition.GetLookupTable(). If the lookup table for the
FieldDefinition object is not a child lookup table, the supplied value is
ignored, and the resultant LookupTableEntries collection will contain all
values in the lookup table.

If the FieldDefinition is not related to a lookup table, then the
FieldDefinition.GetLookupTable() method will either return an empty
list or generate an exception.

Summary

In this chapter, you learned to create a custom field for a specific GroupWise
object like a Message or Folder, based on an existing FieldDefinition. Using the
Object API or the GroupWise client makes it easy to view the list of available
pre-defined and custom fields.

In the next chapter, you will learn about Query and Query related objects.

For more information on Fields, please check the GroupWise Object API
documentation http://developer.novell.com/ndk/doc.htm, sample code
http://developer.novell.com/ndk/sample.htm or visit the Developer Support Forum
area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
w w w . n o v e l l . c o m / a p p n o t e s
156

Chapter 9
Section 1: GroupWise Object API

Understanding Filter and Query
Related Objects

Filter objects represents saved information in GroupWise while Query objects
provide query information and actions. A query object can represent either a
stand-alone search which does not persist in the message database or a search
associated with a query folder which does persisit in the message database.

Both Filter and Query objects in GroupWise have at their core an expression
string which defines the text, numeric, date, enumerated, unary or basic
information on which the search or filter is based.

Location identifies the Account, DocumentLibrary or Folder objects that will be
associated with a given search.

The following topics are discussed in this chapter.

Contents:

• Filters

• The Filter Object

• Creating Filters

• Creating Queries

• Creating Query Folders

• Locations

• Expressions

• Summary
C h a p t e r 9 157

Filters

Like many other collection objects, Filters have a Count property and Item()
method. To access a specific Filter, you must call the Item() method with a single
Variant parameter.

Filter.Item(Index as Variant)

If Index is Long between 1 and Filters.Count, the Filter object at the given Index
will be returned. Use a for loop if you don’t know the order of filters in the
collection. If Index is a long, to avoid an error, it must be between one and
Filters.Count. If Index is a string, it will return the Filter object that matches
Filter.Name.

The Filter Object

The main purpose of a Filter object is as an argument in a find method. Filters can
be saved in an Account.Filters collection. New ones can be created using
the Account.Filters.Add() method, and then used as a parameter in one
of the following methods:

AllMessages.Find()
Folder.FindMessages()
MessageList.Find()
Messages.Find()
TrashEntries.Find()

A notable exception of a method that does not accept a Filter object as a parameter
is AddressBookEntries.Find(), which uses a string expression only.

A Filter object has the following properties:

Property Data Type Description

Description String (R/W) Descriptive text for the filter.

Expression String (R/W) The saved filter expression. The syntax of this prop-
erty should match that used in the Filter dialog box
of the GroupWise client.

LastAccessedDate Date (R/O) Date the filter was last accessed. This date affects
the most recent filters processing in the GroupWise
client. The date can be updated by calling the
TouchAccessedDate method.

Name String (R/W) The name of this filter.
w w w . n o v e l l . c o m / a p p n o t e s
158

Creating Filters

Use Add() on a Filters collection object to create a new Filter.

Filters.Add(Name as String, Expression as String)

This method creates a new Filter object using the Name to represent Filter.Name
and Filter.Expression as described above. The Filter is added to the existing
Filters collection that called it.

Example in VB:

‘gwAccount is a valid object

Dim gwMessageList As GroupwareTypeLibrary.MessageList
Dim gwFilter As GroupwareTypeLibrary.Filter

Set gwFilter = gwAccount.Filters.Add(“MyFilter”, _
“(DELIVERED_DATE >= YESTERDAY)”)

Set gwMessageList = gwAccount.MailBox.FindMessages(gwFilter)

Deleting Filters and Last Time Accessed

A Filter object only has two methods: Delete() which deletes the filter from its
parent collection and TouchAccessDate() which updates the property
LastAccessedTime to the current date and time.

Creating Queries

To create a Query or Query Folder, begin with the Account.CreateQuery() method
which returns a Query object.

Queries that are created and left standing differ from Queries that are part of a
Query Folder in one way:

• The results of a stand-alone Query are returned through the
Query.QueryMessages property.

• The results of a Query Folder are returned in the Folder.Messages collection,
and the Folder.Query.QueryMessages collection is always empty.

A Query can be executed by itself and return results, or be used to create a Query
Folder.

Since the CreateQuery() method takes no arguments, we must fill in the desired
properties after the Query object is created.
C h a p t e r 9 159

The properties we are interested in setting before the Query is operational are
listed in the table below.

At this point we can run the query by executing the Query.Start() method.

This method will return before the query completes, and the Query will run
asynchronously.

When the Query completes, the Query.Completed flag will be true and
Query.QueryResults will contain a MessageList object with the results. In
the interim, Query.QueryMessages may return a snapshot of the partial
results.

It would be prudent to not run a large query too often. GroupWise provides a
Query.CompletionDate property to check the last date and time the Query
completed. The Query may already be running when CompletionDate is
checked, so check the Completed property first.

GroupWise 5.5 and later also provide a Query.Stop() method to stop a Query.

Creating Query Folders

You can create GroupWise query folders using the Object API. Query folders are
Folder objects that execute a query when selected. Only the Folder object with
an ObjType = egwQuery, also know as a Query Folder can store a Query
object. Items matching the search criteria stored in Query.Expression appear in
the Folder. To create a Query Folder, you must first create a Query object.

Once you have a Query object, you should call the CreateFolder() method
to create the folder.

Query.CreateFolder(FolderName as String,[ParentFolder as Folder])

Property Data Type Description

Expression String The filter expression

Locations Variant col-
lection

Use the Query.Locations.Add(Location as Variant/Object) method
you can tell the Query where to search. Adding just the RootAc-
count object will search all folders. Otherwise specific Folder
objects, Account objects, or DocumentLibrary objects can be
added. Folder objects with ObjType of egwQuery or egwCalendar
cannot be added.

SearchLocally Boolean Affects whether GroupWise Remote executes the Query against the
local or master mailbox. Use true if you only want to search the
local mailbox and false otherwise.
w w w . n o v e l l . c o m / a p p n o t e s
160

This method returns a Folder object that represents the new folder. You may set
other folder options for that folder.

On one level, a Query Folder is a Folder where the ObjType = egwQuery. In
fact all the properties and methods of a Folder work. There is one important
difference. Since a Query Folder populates its own Messages collection with
references returned by the underlying Query, it cannot contain real objects. It
cannot be the destination of a Message or Folder via either the
Messages.Move(), Messages.Add(), or Folders.Move() methods.
This also means that Folders cannot be nested below a Query Folder.

A Query Folder is a normal Folder, except that its Messages collection can only
be populated by the underlying Query.

To perform a query from within the folder, call the Folder.Query.Start()
method, which will populate the folder object (specifically Folder. Messages)
with items to be read by the Object API. Note that the GroupWise client will not
change unless the user selects the folder. Finally, note that
Folder.Query.QueryMessages is always empty.

Locations

A Locations collection holds the Accounts, DocumentLibraries, and Folders
objects that GroupWise will use as part of a query search.

In addition to the usual Count property and Item() method, Locations also has the
following two methods.

Locations.Add(Location as Object)

Parameter Data Type Description

FolderName String Name of the folder

ParentFolder Folder object Folder object in which you want to place the new query
folder. If omitted, the folder will be created in the root
folder
C h a p t e r 9 161

Locations.Remove(Index as Long)

Expressions

You have to program an Expression about twice in a blue moon. You know you
can do it, because you can create the Expression using the client, you just can’t
seem to decipher the syntax. The client already knows the syntax, so why not let it
tell us?

The first rule of writing a Filter Expression is let the client do the work.

So start the client and go to the View->Filter->Edit/Create menu. Go to town, then
save the filter using Filter->Save As… on the Filter create interface dialog.

Now let’s run the code:

Example in VB:

Public Sub ListAllFilters()
Dim gwApplication As GroupwareTypeLibrary.Application
Dim gwAccount As GroupwareTypeLibrary.Account
Dim gwFilters As GroupwareTypeLibrary.Filters
Dim gwFilter As GroupwareTypeLibrary.Filter

Set gwApplication = New GroupwareTypeLibrary.Application
Set gwAccount = gwApplication.Login()
Set gwFilters = gwAccount.Filters
For each gwFilter in gwFilters

With gwFilter
Debug.Print
Debug.Print “Name:”, .Name
Debug.Print “Expression:”, .Expression

Parameter Data Type Description

Location Object Adds Location to the collection. Location must be an Account object
(searches account folders), DocumentLibrary object (searches library doc-
ument versions), or Folder object (searches folder). If Location is a Folder
object, it cannot be a Calendar or Query folder. To search all folders with-
out listing them, search the root account.

Parameter Data Type Description

Index Long Removes the location object located at the given Index, from the collec-
tion. This method will not delete or destroy the location object. It merely
removes the object from the collection.
w w w . n o v e l l . c o m / a p p n o t e s
162

End With
Next gwFilter
Set gwFilter = Nothing
Set gwFilters = Nothing
Set gwAccount = Nothing
Set gwApp = Nothing

Exit Sub

At this point, you will have to account for quotation marks in the string. If the
string requires embedded quotation marks, be sure to provide them in a way your
programming language provides for.

Example in VB:

‘ If the Expression should be: (SUBJECT CONTAINS “Wrox”)
‘ The statement should be:
gwFilter.Expression = “(SUBJECT CONTAINS ““Wrox””)”
‘ note we changed the quotes to a pair of quotes.

If we are concatenating the Expression at run time, remember to quote string but
not numbers.

Example in VB:

Dim sText as String
Dim lNumber as Long
SText = “Hello World”
LNumber = 1
OgwFilter.Expression = “(MESSAGE CONTAINS “”” + sText + “””) AND “ + _

“(TOTAL_RECIPIENTS >= “ + lNumber + “)”
‘ The above ends up as:
‘ (MESSAGE CONTAINS “Hello World”) AND (TOTAL_RECIPIENTS >= 1)

With earlier versions of GroupWise, the Expression property returned by the filter
was a user friendly version of the syntactically correct one. Even so, this approach
will help you to develop Expressions in record time.

In addition, Filter Expressions can be built by hand.

Text Statements

Text statements allow you to populate MessageList collections based on textual
properties that a Message contains. There are many ways to create a basic text
statement. The examples below begin with a valid TextField followed by a text
operator (MATCHES, CONTAINS, BEGINSWITH) followed by a text constant
in quotation:

The following syntax returns objects where the item SUBJECT contains
“Internet”
(SUBJECT CONTAINS "Internet")
C h a p t e r 9 163

The following syntax returns objects where the AUTHOR matches “Mr. Byg”
(AUTHOR MATCHES "Mr. Byg")

The following syntax returns objects where the BodyText of a message begins
with “Now hear this”
(MESSAGE BEGINSWITH "Now hear this")

The following syntax returns objects where the subject contains “Inter” OR
“Intra” followed by additional characters AND “Test” followed by “Plan” appears
also in the subject.
(SUBJECT CONTAINS ("Inter*" OR "Intra?") AND ("Test". . "Plan"))

The syntax * and ? denote wildcard while the syntax “..” requires that the second
word follow the first with any number of characters in between.

The following syntax returns objects where FROM matches the string value of the
custom field “MY_BOSS”
(FROM MATCHES <MY_BOSS,STRING>)

The following fields are valid for use in any text statement:

ATTACHMENT_LIST
AUTHOR
BC
CALLER_COMPANY
CALLER_NAME
CALLER_PHONE_NUMBER
CC
CLASS_NAME
DOCUMENT_CREATOR
DOCUMENT_FILENAME
DOCUMENT_TYPE
FROM (Matches the FromText property of the Message object. FromText is
free-form text, but will always contain the sender’s full name in the text.
FromText does not typically contain the user ID of the sender.)
LIBRARY
MESSAGE
PLACE
RETRIEVED_BY
SUBJECT
TO
VIEWNAME
w w w . n o v e l l . c o m / a p p n o t e s
164

Numeric Statements

Numeric statements allow you to populate MessageList objects where the
collection items contain numeric properties that are less than, greater than, less
than or equal to, greater than or equal to, equal to, or not equal to the criteria that
you specify. The following examples should help to show you the types of criteria
that you can specify.

The following syntax returns objects that have SIZE less than ‘12000’
(SIZE < 12000)

The following syntax returns objects where all recipients have accepted the
message
(NUMBER_ACCEPTED = TOTAL_RECIPIENTS)

The following syntax returns objects where the numeric custom field
TOTAL_EMPLOYEES is greater than ‘50’
(<TOTAL_EMPLOYEES,NUMERIC> > 50)

The following numeric fields are valid for use in any numeric statement:

CURRENT_VERSION_NUMBER
DOCUMENT_NUMBER
NUMBER_ACCEPTED
NUMBER_COMPLETED
NUMBER_DELETED
NUMBER_OPENED
NUMBER_READ
NUMBER_REPLIED
OFFICIAL_VERSION_NUMBER
SIZE
TOTAL_RECIPIENTS
VERSION_NUMBER

Date Statements

Date statements allow you to populate MessageList objects where the collection
items contain date properties that are less than, greater than, less than or equal to,
greater than or equal to, or equal to criteria that you specify.

When you create a filter, certain constraints on the range of expressions are
considered valid. For example, when you specify a relative date, the granularity of
a relative offset is the same as the type of pivot point. If you specify TODAY +
offset the offset must be in terms of days. THIS_WEEK + offset requires that the
offset be in terms of weeks.
C h a p t e r 9 165

The following examples should help to show you the types of criteria that you can
specify:

The following syntax returns objects where due date is less than or equal to
tomorrow
(DUEEND_DATE <= TOMORROW)

The following syntax returns objects where start date is greater than or than or
equal to Feb 14, 1996 at 8am.
(START_DATE >= 1996/2/14 AT 8:00:00)

The following syntax returns objects where create date is greater than or equal to
the current year with offset of 31 additional years.
(CREATE_DATE >= THIS_YEAR 31)

The following syntax returns objects where the custom field BIRTHDAY is equal
to this month.
(<BIRTHDAY,DATE> = THIS_MONTH)

The following date fields are valid for use in any date statement:

ASSIGNED_DATE
CREATE_DATE
DELIVERED_DATE
DUEEND_DATE
RETRIEVED_DATE
START_DATE
MODIFY_DATE

Enumerated Statements

Enumerated statements allow you to populate MessageList objects where the
collection items contain date properties that are less than, greater than, less than or
equal to, greater than or equal to, or equal to criteria that you specify. The
following examples should help to show you the types of criteria that you can
specify:

The following syntax returns objects where the message priority is high
(PRIORITY = HIGH)

NORMAL and LOW are also valid priorities.

The following syntax returns objects where attachment type is not equal to OLE
(ATTACHMENT_TYPE <> OLE)
Other valid attachment types include: APPOINTMENT, DOCREFERENCE,
FILE, MAIL, MESSAGE, MOVIE, NOTE, PHONE_MESSAGE, SOUND,
TASK
w w w . n o v e l l . c o m / a p p n o t e s
166

The following syntax returns objects where box type is incoming
(BOX_TYPE = INCOMING)

Other valid box types are: OUTGOING, PERSONAL, DRAFT

Unary Statements

Unary statements allow you to populate MessageList objects where the collection
items contain unary properties such as Type and Status equal the criteria you
specify. The following examples should help to show you the types of criteria that
you can specify.

The following returns objects type is Mail or Appointment
(MAIL OR APPOINTMENT)

Other valid types include: DOCREFERENCE, NOTE, TASK,
PHONE_MESSAGE,

Type statements are mutually exclusive. A message object may have only one
type.

The following returns objects where Accepted and Completed is TRUE
(ACCEPTED AND COMPLETED)

The following returns objects where type is Document, status is not hidden and
not read.
(DOCUMENT AND NOT HIDDEN AND NOT READ)

Additional statuses are: OPENED, READ, HIDDEN, DELEGATED,
DELIVERED, ON_CALENDAR,
OFFICIAL_DOCUMENT_VERSIONS_ONLY, PRIVATE,
REPLY_REQUESTED, ROUTED, DOCVERSION_CHECKED_OUT,
DOCVERSION_IN_USE, DOCVERSION_CONNECTED_READ_WRITE,
DOCVERSION_ARCHIVED, SEARCH_AS_LIBRARIAN

Status statements are not mutually exclusive. Message objects may have any of
the statuses.
C h a p t e r 9 167

Basic Expressions

Use the following syntax to identify certain message types in a Query or Filter
Expression. Any statement, Numeric, Text, Date, Enumerated, Unary may be
connected with either an AND or OR into a compound statement. Parentheses are
required and may only be used at the group level.

Returns only Mail objects.

(Mail)

Returns Mail or Appointment objects.

(Mail) or (Appointment)

Summary

In this chapter you learned about GroupWise custom fields; how to create, access,
and delete them. We covered Query objects and folders and also Filter Expression
syntax which is used to define the MessageList that is returned based on text,
numeric, date, and other criteria.

For more information on Filter and Query objects, please check the GroupWise
Object API documentation http://developer.novell.com/ndk/doc.htm, sample code
http://developer.novell.com/ndk/sample.htm or visit the Developer Support Forum
area at http://developer-forums.novell.com/category/index.tpt.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
w w w . n o v e l l . c o m / a p p n o t e s
168

Chapter 16
Section 3: GroupWise C3POs

Overview

Custom Third-Party Objects (C3POs) extend the functionality of GroupWise as
follows:

• Add menus, menu items, menu actions, and separators to the client

• Add buttons to the toolbar

• Trap predefined commands

• Catch certain GroupWise events

• Build custom message types with custom message icons

In addition, C3POs are often used with other APIs such as the GroupWise Object
API, Administrative Object API, and Token API to perform some action.

When GroupWise begins, it searches the Windows registry for information about
the C3POs that should be loaded along with the client. Keys in the registry point
to a COM server objects that you have built into a .EXE or .DLL. This is the file
that is your C3PO. GroupWise uses a C3PO Manager to interface with your C3PO
which must expose certain methods and properties in order to be understood by
GroupWise.

Although it is possible to build the COM objects that the Manager is looking for
on your own, Novell includes a C3PO Creation Wizard along with the
documentaion and sample that makes the creation of a C3PO extremely easy. The
wizard walks you through a series of menus, prompting you for information on
the type of component that you’d like to create; ultimately the wizard produces the
following files in Visual Basic, Delphi, or C++.

• C3POServer

• CommandFactory

• GWCommand

• EventMonitor
C h a p t e r 1 6 169

• IconFactory

These files may be used, or not used, depending on what you have coded the
C3PO to do.

C3POServer

The C3POServer object is the only object required by the C3PO Manager. It is
used by the Manager to get at the other objects of your C3PO. This object defines
the following four properties and three methods:

Although the wizard will write all the code needed to create an object of type
C3POServer, it is useful to understand the methods and properties that this object makes
available.

Properties

• Description contains a short description of the C3PO.
• CommandFactory returns an object if your C3PO add menus,

menu items, buttons or take over predefined commands; other-
wise the property is NULL.

• EventMonitor returns an object if your C3PO handles events such
as OnReady, OnShutdown, OnDelivery, and OnOverflow. Other-
wise, like CommandFactory, this property is NULL.

• IconFactory returns an object if your C3PO builds custom mes-
sages, otherwise is NULL.

Methods

• CanShutdown is called when GroupWise needs to shutdown. If
TRUE is returned, the client calls DeInit and shuts down. If FALSE
is returned, the manager will check again and again until TRUE is
finally returned.

• DeInit is called by the Manager to release any holds that exist on
the object.

• Init is passed a Manager object by GroupWise to act as the
medium between the C3PO and the client.
w w w . n o v e l l . c o m / a p p n o t e s
170

CommandFactory

The CommandFactory object is used to handle predefined GroupWise commands
such as when a mail message is opened or sent. This object is also used when you
want to add custom menus and toolbar buttons to the client.

CommandFactory is returned to GroupWise via the CommandFactory property of
the C3POServer object.

GWCommand

The GWCommand object defines an instance of a command. This object contains
an Execute method that is called when a user presses a menu, selects a toolbar
button or has chosen to catch and handle a predefined command.

Properties None

Methods

• BuildCommand creates a GWCommand object.
• CustomizeContextMenu adds new menu items and menu actions

to the GroupWise context menus that appear when a user right
clicks on a message object in the client.

• CustomizeMenu adds new menu items and menu actions to exist-
ing GroupWise menus.

• CustomizeToolbar adds buttons to the toolbar.
• Init returns information to the Manager that identifies whether

menus, toolbars or predefined commands will be customized. This
is the first method called in CommandFactory.

• WantCommand determines whether a predefined command is
supported. If, for example, you wish to perform some action
whenever a user creates a new message, the oncompose com-
mand will be listed in this method as one you want to handle.

Properties

• BaseCmd stores the default functionality of a GroupWise com-
mand. This property is often used to continue a process after your
C3PO has had a chance to perform some custom action.

• LongPrompt displays text on a menu.
• PersistentID is a string value that identifies the C3PO to Group-

Wise. If multiple C3POs are loaded this value, which is set to 0 by
default, should be changed to some other value to avoid confusion
by the client when making a request.

• ToolTip displays text on the toolbar.

Methods

• Execute determines actions to execute as part of a C3POs pro-
gram flow. This is the place to put custom code that will run when
a user selects a menu or toolbar or when a predefined command is
trapped.

• Help is not used by the C3POManager but may be used by another
C3PO.

• Undo like help, is not used by the C3POManager but may be used
by another C3PO.

• Validate checks or sets the state of a button or menu item based
on some criteria such as whether the message is new.
C h a p t e r 1 6 171

EventMonitor

The EventMonitor object is used to handle one of four GroupWise events.

When the context and action you want to handle matches the context and action
that is passed to Notify, custom code that you place in Notify will run.

IconFactory

The IconFactory object is used when you build a C3PO to create or handle custom
message types.

Flow of Control

It is helpful to understand that way in which GroupWise goes about adding
menus, toolbars, catching commands, events, and creating custom message types.

Initialize

GroupWise calls Init() in CommandFactory to identify the items that a C3PO
plans to handle e.g. menus, context menus, toolbars, or predefined commands
(described in the next section). Possible flags are:

eGW_CMDINIT_MENUS
eGW_CMDINIT_CONTEXT_MENUS
eGW_CMDINIT_TOOLBARS
eGW_CMDINIT_NO_PREDEFINED

Properties None

Methods

Notify receives one of the following four low level actions along with a
context string.

• eGW_EVT_DELIVERY is passed to Notify when GroupWise receives
a new item.

• eGW_EVT_READY lets your C3PO know that the client has been
initialized.

• eGW_EVT_SHUTDOWN lets your C3PO know that GroupWise is
about to shutdown.

• eGW_EVT_OVERFLOW is passed when too much information is
returned at once.

Properties None

Methods • GetIcons returns a file that contains icon information that your
C3PO will use with a custom message type.
w w w . n o v e l l . c o m / a p p n o t e s
172

A combination of eGW_CMDINIT_MENUS + eGW_CMDINIT_TOOLBARS
tells the Manager that your C3PO should be called before GroupWise draws a
client menu or toolbar. eGW_CMDINIT_CONTEXT_MENUS tells the Manager
that your C3PO should only be called when a user right clicks on an object or a
context menu is about to be drawn.

Customize

Menus. CustomizeMenu() is called if your C3PO has stated in Init() that it
will modify GroupWise menus. A menu object and context are passed to
the method. If your C3PO has code to handle menus with a context of
‘GW.MESSAGE’ and this is the context that the method receives, your
C3PO will have the chance to modify the menu of the GroupWise message
object that will be drawn before it is shown to the user. This gives your
C3PO the chance to remove, override, or add menu items.

Likewise, if your C3PO requests to handle context menus,
CustomizeContextMenu() is called and provides you an opportunity to customize
the menu before it is shown to a user.

Toolbars. The CustomizeToolBar method is called with a toolbar object and a
context before GroupWise adds a button to a toolbar. If the context passed to this
method matches the context that your C3PO is interested in handling, the method
runs code to add the button which will show up on the Calendar, FindResults or
whatever window context matches the criteria you have set.

While not all of the system buttons can be removed, it is possible to remove some
and easy to add new buttons as described later on. Adding a toolbar button
requires that you set the file path in the CustomizeToolBar method to point to a
valid icon file. If this file is missing or invalid, your button will not display.

eGW_CMDINIT_NO_PREDEFINED lets the Manager know that your C3PO
wants to hear about commands that occur in the GroupWise client. Based on the
value returned by Init(), the appropriate customize or command method is then
called next.

In addition to setting the menu, context menu or toolbar appearance, each
customize method also creates a GWCommand object which it associates with a
specific action e.g. a user selects a menu or toolbar button or opens a new mail
message.

Validate

The call that GroupWise makes to Validate gives you the chance to set or check
the state of a GroupWise menu or toolbar button. You may, for example, want to
give users the opportunity to select a certain menu if a message happens to be
new. For additional information on how Validate can work, please see Chapter 19:
Putting It All Together.
C h a p t e r 1 6 173

Execute

Following the call to Validate, GroupWise calls Execute to determine what menu
or button has been selected or what predefined command has been caught. The
appropriate response is invoked based on the actions you have chosen to run. It is
within the Execute method that your C3PO should place custom code to use the
GroupWise Object, Administrative, or Token API.

Trapping Predefined Commands

Similar in program flow to that of menus and toolbars, a call to Initalize that does
not return eGW_CMDINIT_NO_PREDEFINED is followed by a call from the
C3PO Manager to WantCommand. If this method returns TRUE meaning that the
C3PO has matched the context and command passed to the method with the
context and command that you have decided your C3PO will handle, a call to
BuildCommand is made. BuildCommand creates a GWCommand object, sets the
ID and saves the base command of the action that would have been performed for
later use. The command object is then returned to the Manager. Execute is then
called to run custom code in place of the trapped command. BaseCmd is often
used after a C3PO has run through some custom execution to invoke the default
GroupWise action.

Catching GroupWise Events

Program flow for handling events is very simple because the C3PO Manager calls
only the Notify method of the EventMonitor class. All custom handling that
should take place when one of the events (above) is performed in the context of
Notify.

Once you’ve written code to stand behind a menu, toolbar, command, event, or
custom message, it is important that you compile your C3PO to a proper .EXE or
.DLL file and register the file with Windows which will enable GroupWise to find
and load the C3PO.

Registration

On startup, GroupWise searches the Windows registry for information on the
C3POs that it should load. A C3PO is “registered” when proper keys are added to
the registry creating an association between the C3POServer and a particular
name type. GroupWise looks for C3POs in the registry as follows:

HKEY_LOCAL_MACHINES\Software\Novell\GroupWise\5.0\C3PO\Datatypes\

From this location, GroupWise searches ‘GW.MESSAGE’, ‘GW.CLIENT’ or a
subtype therein e.g. ‘GW.MESSAGE.XXX’ or ‘GW.CLIENT.XXX’ for
references to the C3POs that should be loaded.
w w w . n o v e l l . c o m / a p p n o t e s
174

The following contexts are associated with GW.MESSAGE

GW.MESSAGE – identifies any of the following message subtypes

GW.MESSAGE.MAIL – identifies a GroupWise Mail message

GW.MESSAGE.MAIL.Internet – identifies a GroupWise mail message from
the internet

GW.MESSAGE.MAIL.NGW.DISCUSS – identifies a GroupWise Shared
Notification

GW.MESSAGE.APPOINTMENT – identifies a GroupWise Appointment

GW.MESSAGE.TASK – identifies a GroupWise Task

GW.MESSAGE.NOTE – identifies a GroupWise Note

GW.MESSAGE.PHONE – identifies a GroupWise PhoneMessage

GW.MESSAGE.DOCREF – identifies a GroupWise DocumentReference

In addition, it is possible to create custom subtypes of a message by appending
text to an existing message context. For example, your C3PO may wish to handle
or create custom messages of type “GW.MESSAGE.MAIL.NewType”. By
creating or checking for this special context, your C3PO can identify a message of
NewType and your C3PO can take appropriate action.

Unlike the root above, the second type of context “GW.CLIENT” cannot be
extended. Instead, GroupWise understands the following client contexts.

GW.CLIENT – identifies any of the following client windows

GW.CLIENT.WINDOW.ATTACHVIEWER – identifies the attachment viewer

GW.CLIENT.WINDOW.BROWSER – identifies the browser window

GW.CLIENT.WINDOW.CALENDAR – identifies all calendar views

GW.CLIENT.WINDOW.DOCUMENTLIST – identifies the Document list
window.

GW.CLIENT.WINDOW.FINDRESULTS – identifies the Query results window.

GW.CLIENT.WINDOW.PROPERTIES – identifies the Properties window

GW.CLIENT.WINDOW.QUICKVIEWER – identifies the Quickviewer window

Additional keys are placed in the Windows registry to clarify a C3POs use. Under
each key, you will find an Object key that identifies the objects supported by the
C3PO and an Event key that lists events that the C3PO is interested in
intercepting.

How to Register

Although you can register a C3PO by hand (just add the required keys to the
registry directly) a C3PO created with the wizard contains code that will register
the C3PO for you. From Start | Run type the location path to your C3PO or drag
and drop the .EXE or .DLL and enclose the path in quote marks followed by /r. It
is important that the enclosed string not contain /r and not the other way around.
C h a p t e r 1 6 175

Incorrect

"C:\WINDOWS\Desktop\sampleC3PO\sampleC3PO.exe /r"

Correct

"C:\WINDOWS\Desktop\sampleC3PO\sampleC3PO.exe" /r

Check the registry to make sure that the proper keys were added. It is also possible
to register your C3PO from the command line.

How to Unregister

To unregister a C3PO, the same process that you follow to register your C3PO
should be followed with the following change that you use /u rather than /r.
Alternatively, you can just delete the associated keys from the registry.

To make this section more readable, we’ll abbreviate the following:

HKEY_LOCAL_MACHINE\software\Novell\Groupwise\5.0\C3PO\DataTypes\

to:

…DataTypes\

The C3PO class name will be the same as the project name. The C3POServer
object may be renamed, but usually is not. The generic form of the registry keys
are:

…DataTypes\<Context>\<CLSID>.<C3POServer object name>\Objects

and

…DataTypes\<Context>\<CLSID>.<C3POServer object name>\Events

The values entered under these keys depend on the functionality you wish the
C3PO to have. Here are the keys for a HelpDesk project.
w w w . n o v e l l . c o m / a p p n o t e s
176

Figure 1: Regishty Editor.

VB Example

Public Sub RegC3po()

Dim lResult As Long
Const HKEY_LOCAL_MACHINE = &H80000002
Const REG_SZ = 1
Dim btBuffer As Byte
Dim sServerKey As String

btBuffer = 0

sServerKey="SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.MESSAGE.TASK.HelpDes
k
\HelpDesk.C3POServer"

Call RegCreateKey(HKEY_LOCAL_MACHINE, sServerKey + "\Objects", lResult)
Call RegSetValueEx(lResult, "IconFactory", 0, REG_SZ, btBuffer, 0)
Call RegCreateKey(HKEY_LOCAL_MACHINE, sServerKey + "\Events", lResult)

End Sub

Delphi Example

function RegisterServer : HResult;
var

Reg : TRegistry;
sRegKeyName : string [120];
sAppName : string [120];

begin
C h a p t e r 1 6 177

sAppName := 'Help Desk';
Reg := TRegistry.Create;
Reg.RootKey := HKEY_LOCAL_MACHINE;
sRegKeyName := '\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.CLIENT\Help

Desk';
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('EventMonitor', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);
Reg.WriteString ('OnShutdown', '');

sRegKeyName :=
'\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.MESSAGE.TASK.HelpDesk\Help
Desk';

Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('EventMonitor', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);
Reg.WriteString ('OnDelivery', '');
sRegKeyName :=

'\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.MESSAGE.TASK.HelpDesk\Help
Desk';

Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('IconFactory', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);

sRegKeyName := '\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.CLIENT\Help
Desk';

Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('CommandFactory', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);

sRegKeyName := '\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.CLIENT\Help
Desk';

Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('CommandFactory', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);

sRegKeyName :=
'\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.MESSAGE.TASK.HelpDesk\Help
Desk';

Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('CommandFactory', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);

Result := S_OK;
end;
w w w . n o v e l l . c o m / a p p n o t e s
178

In this chapter, we looked briefly at the classes, methods, and properties that make
up a C3PO. Subsequent chapters will walk you through the full process of adding
menus, context menus, toolbar buttons to the client, capturing commands, events,
and creating custom message types. The final step, after you have developed your
C3PO, is to register it with Windows.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
C h a p t e r 1 6 179

Chapter 17
Section 3: GroupWise C3POs

Customizing Menus and Toolbars

GroupWise uses the methods of CommandFactory along with the GWMenu object to
modify menus in GroupWise.

Customizing Main Menus

CommandFactory.CustomizeMenu() takes a GroupWise context and menu
object.

CustomizeMenu(Context;GWMenu)

Because a C3PO object may be subclassed, you need to test for the highest level
object upon which you want to act. If, however, you do an “equals” test for the
high level object, then the code will fail most of the time. For example, if you
write:

If Context = ‘GW.MESSAGE’

Your code will not be triggered for ‘GW.MESSAGE.MAIL’ objects. Instead, you
should do a compare on the first part of the Context like this:

If (CompareText('GW.MESSAGE',Copy(context,1,10)) = 0)

Name Data Type Description

Context String A string containing the current type of window being built by GroupWise. You will
want to test the value of Context against the window type of the menu you want to
modify, and if the values match, you should take steps to modify the menu.

GWMenu GWMenu Object GWMenu that contains all of the information about the menus and that allows you
to modify your menus.
C h a p t e r 1 7 180

Alternatively, the Novell sample code uses:

If Pos('GW.MESSAGE', Context) <> 0 then

To actually define a menu to customize, you need to first tell the C3PO that you
want to customize menus.

VB Example

function CommandFactory.Init(lcid : longint): longint;

begin
result := eGW_CMDINIT_MENUS;

end;

Delphi Example

function CommandFactory.Init(lcid : longint): longint;

begin
result := eGW_CMDINIT_MENUS;

end;

Then, when CommandFactory.CustomizeMenu is called, you can test whether the
Context matches the item you want to customize. The following samples test for
‘GW.CLIENT.WINDOW.BROWSER’ will affect menus that appear on the main
GroupWise window.

VB Example

Public Function CustomizeMenu(sGWContext As String, objGWMenu As Object) As
Boolean

Dim Menu As Object

If sGWContext = "GW.CLIENT.WINDOW.BROWSER" Then ' Check for correct
context Set Menu = objGWMenu ' Get Main menu object

End If
End Function

Delphi Example

function CommandFactory.CustomizeMenu(Context: string;
GWMenu: variant): TOleBool;

var
vMenuItems : variant;
vMenu : variant;
vSeparator: variant;
Cmd : Command;
w w w . n o v e l l . c o m / a p p n o t e s
181

begin

If CompareStr(Context, 'GW.CLIENT.WINDOW.BROWSER') = 0 then //Check for
correct context

begin

end;

result := FALSE;

end;

We can’t go any further until we discuss the GWMenu object.

The GWMenu Object

GWMenu represents an entire menu list on which all menu modification actions
take place. The GWMenu parameter passed into CustomizeMenu() represents
the entire menu bar for the window that is being created. This menu bar will hold
many sub-menus (such as File, Edit, etc.) which themselves are GWMenu objects.

The key properties and methods of this object are listed in the following table.

Name Data Type Description

Caption String This property holds the displayed name of the menu.
Note that if you put an ampersand (&) before any letter,
that letter will be underlined and constitute a hot-key for
the menu.

MenuItems GWMenuItems Object This collection property will hold each of the sub-menus
and menu commands (or “actions”) of the particular
menu. For the GWMenu that is passed into
CustomizeMenu(), this will contain the File, Edit, etc.,
menus. You will do most of your work on this property
when you create new menus and new menu items.

GWCommand GWCommand Object This is the object that represents the actual function of
the menu. It is of type GWCommand. See Chapter
16:GWCommand for a discussion of this object. You will
want to set this property, even though menus don’t really
take actions in GroupWise, if you want to validate the
menu. That is, if there is ever a time when you want an
entire custom menu to be dimmed out, you should set a
command for the menu. Otherwise the command’s
Validate() method will never be called.

Parent GWMenu Object This object property is a reference to the GWMenu object
that contains the current GWMenu. This is helpful for
moving up and down the menu hierarchy.

ObjType Enumerated Integer Check this enumerated property to ensure that you are
working with a GWMenu object rather than a
GWMenuAction object (discussed below), as both objects
are subtypes of the GWMenuItem object. The GWMenu
object will have a value of **.
C h a p t e r 1 7 182

The GWMenu object has one key method which removes a menu.

Delete()

You cannot delete the top-level menu in a window – thus, this method will fail if
you attempt to call it on the GWMenu that is passed into CustomizeMenu().

Let’s get a reference to the File | New menu and we will show you how to use the
object later.

VB Example

Public Function CustomizeMenu(sGWContext As String, objGWMenu As Object) As
Boolean

Dim Menu As Object

If sGWContext = "GW.CLIENT.WINDOW.BROWSER" Then ' Check for correct
context Set Menu = objGWMenu ' Get Main menu object

End If
End Function

Delphi Example

function CommandFactory.CustomizeMenu(Context: string;
GWMenu: variant): TOleBool;

var
vMenuItems : variant;
vMenu : variant;
vSeparator: variant;
Cmd : Command;
begin

If CompareStr(Context, 'GW.CLIENT.WINDOW.BROWSER') = 0 then //Check for
correct context

begin
vMenu := GWMenu; // get menu from GWMenu

end;

result := FALSE;
S

end;

IsModified Boolean This boolean property will be true if this menu has been
modified by any C3PO, and false otherwise.

Name Data Type Description
w w w . n o v e l l . c o m / a p p n o t e s
183

The GWMenuAction Object

The GWMenuAction object is nearly exactly the same as the GWMenu object
because both objects are subtypes of the GWMenuItem. The only differences are
that 1) GWMenuAction.ObjType is a MenuAction in a GWMenuAction and
2) The GWMenuAction.MenuID property defines the unique ID of a menu
action. In practice, the difference is that a GWMenuAction corresponds to an
item on a menu that actually performs some action in GroupWise but does not
have any subitems like menus. Thus, GWMenuAction does not have a
MenuItems property. In order to make a GWMenuAction actually take effect,
you have to set the GWCommand property. See the section below on adding new
menus and menu items for an in-depth discussion of associating commands with
menu items.

The GWMenuItems Collection Object

When you obtain a reference to the GWMenu.MenuItems property, you are
working with an object of type GWMenuItems. This collection object is similar
to each of the other collection items in GroupWise. The key properties of
GWMenuItems are:

Like many other collection objects, Item() is used to access individual objects
from the collection.

Item(Index)

This method returns the GWMenuItem (which will be either the GWMenu
subclass or the GWMenuAction subclass) corresponding to the value of the
single variant parameter called Index. Look at the returned item’s ObjType
property to determine what has been returned by the method.

Name Data Type Description

Count Unsigned Integer Like other collection objects, this property holds an integer that
equals the number of items in the collection.

Parent GWMenu Object This object property is a reference to the GWMenu object that
contains this GWMenuItems collection. This is helpful for moving up
and down the menu hierarchy.

Name Data Type Description

Index Variant If Index is an integer between 1 and Count, then the GWMenuItem
corresponding to that location will be returned. This is useful for iterating
through each item in the collection. Alternatively Index can be a string that is
the display name of the menu you wish to retrieve. This can be a bit touchy, as
the display name may have an ampersand or not be what you expect if another
version of GroupWise with another language than what you anticipate is used.
C h a p t e r 1 7 184

Unlike other collection objects, GWMenuItems also has two other methods to
obtain references to the items held by the collection. The first is
FindByHMenu().

FindByHMenu(hMenu)

This method returns the GWMenu that has a GWCommand property with a
specific Menu handle. This method takes a single parameter called hMenu,
which is a long integer corresponding to the Windows API handle of the desired
menu item. To obtain the handle of an item for future use, you may have to walk
the menubar using the Windows API. This method is recursive – it will move
down levels to find the menu item.

The second additional method is FindByID().

FindByID(ID)

Use this method when you know the actual ID (not the string PersistentID) of a
menu item. This method will return a GWMenuItem. This method takes a single
variant parameter called ID. To get the ID of the menu you desire, you should
keep track of the GWMenuAction.MenuID property. This method is also
recursive – it will search through each of the levels of menus to find the menu
item with the particular ID.

Let’s now access the menu items for a specific menu so that we can begin to
manipulate the items.

VB Example

Public Function CustomizeMenu(sGWContext As String, objGWMenu As Object) As
Boolean

Dim Menu As Object

If sGWContext = "GW.CLIENT.WINDOW.BROWSER" Then ' Check for correct
context

Set Menu = objGWMenu ' Get Main menu object
Set Menu = Menu.MenuItems.Item("File") ' get menu File
Set Menu = Menu.MenuItems.Item("New") ' get menu New

End If
End Function

Delphi Example

function CommandFactory.CustomizeMenu(Context: string;
GWMenu: variant): TOleBool;

var
vMenuItems : variant;
w w w . n o v e l l . c o m / a p p n o t e s
185

vMenu : variant;
vSeparator: variant;
Cmd : Command;
begin

If CompareStr(Context, 'GW.CLIENT.WINDOW.BROWSER') = 0 then //Check for
correct context

begin
vMenu := GWMenu; // get menu from GWMenu
vMenu := vMenu.MenuItems.Item('File'); //get menu File
vMenu := vMenu.MenuItems.Item('New'); //get menu New

end;

result := FALSE;

end;

Add Menus and MenuActions

When CustomizeMenu() method is called, you modify the MenuItems
property of the GWMenu object that is passed in as a parameter. You do not
modify GWMenu itself because this is the top level container. For example, the
File menu is usually the first menu item in the GWMenu object.

From this point, you can add either a new menu or a new menu action. For user
interface reasons, you typically would not add a menu action to the top-level
menu – users just don’t expect to have a top level item result in instant action. It is
much better to add a new menu to the top level menu, and then add the menu
action to that menu. You will use the following methods of GWMenuItems to
configure menus:

AddMenu(): This method adds a new menu to the items collection.

Add(): This method will add a new menuaction item in the given set of
menu items.

AddSeparator(): This method adds a menu separator (one of those lines
you see in a menu to separate the items) within the menu items.

The AddMenu Method

The AddMenu() method takes one required and two optional parameters.

AddMenu(Caption[,Item][,AddBefore])

Name Data Type Description

Caption String This is the string that the user sees on the menu. Add an
ampersand (&) before any single character to make that
character an underlined hot-key.
C h a p t e r 1 7 186

AddMenu() returns the new GWMenu object, which you should assign to a
variable to manipulate.

The Add Method

The Add() method takes the same parameters as the AddMenu() method,
except that CommandItem is no longer optional.

Add(Caption,CommandItem[,AddBefore])

All GWMenuAction items have a GWCommand associated with them. The
GWCommand.Execute method is called when the menu action item is
activated.

The AddSeparator Method

This takes a single optional parameter, AddBefore, which works just like the
AddBefore parameters associated with the AddMenu() and Add()
parameters.

AddSeparator([AddBefore])

Set the Menu or MenuAction Properties

Once you have obtained the new menu or menu action item, you may set the
various properties of the menu, depending on what you want to achieve.

You can also obtain a reference to a submenu and then manipulate the sub menu
just as you would the top-level menu. You can even add a new menu to any
menu, creating a hierarchical menu structure – much like the File | New menu in
GroupWise.

CommandItem GWCommand Object This is an optional GWCommand object. You create this object
using GWCommand.Create(). While a menu does not execute
any commands, you might still want to attach a command to
the menu for searching purposes, for validating the menu, and
for assigning a long prompt to the command.

AddBefore Variant If AddBefore is an integer, then the menu will be added before
that item. The integer must be less than MenuItems.Count. If
AddBefore is a string, then the new menu will be added before
the menu with that display name. This is important, because
you can always tie a menu to another menu, even if you don’t
know where the menu is. The ampersand (&) is ignored in the
display name. If you omit AddBefore, the menu will be added
to the end of the current menu items.

Name Data Type Description
w w w . n o v e l l . c o m / a p p n o t e s
187

Let’s now take a look at actually adding some menus and menu items using all of
these methods. Note in the following that several variants are declared – this is
the output from the C3PO wizard. Note that these command variants actually
need not be redeclared; if they were released after use, they could be reused.
Likewise, they are shown here as local variables, while the Novell samples
usually show global variables. This is a matter of taste, and will depend on
whether you want to access the commands at a later time.

The following code does the following three things in the browser: 1) Adds a
“HelpDesk” menu item to the “File | New” menu; 2) Creates a “Sample” menu
under the tools menu; and 3) Adds a “Sample Item” menu item to the “Sample”
menu that just got created. See if you can spot each of the new menus.

VB Example

Public Function CustomizeMenu(sGWContext As String, objGWMenu As Object) As
Boolean

Dim Menu As Object

If sGWContext = "GW.CLIENT.WINDOW.BROWSER" Then ' Check for correct
context

Set Menu = objGWMenu ' Get Main menu object
Set Menu = Menu.MenuItems.Item("File") ' get menu File
Set Menu = Menu.MenuItems.Item("New") ' get menu New
Dim Cmd00 As New GWCommand ' Build GWCommand object
Let Cmd00.PersistentID = HelpDesk ' Set persistent ID for Custom

menu in GWCommand object
Let Cmd00.LongPrompt = "This is a help desk" ' set long prompt for

menu item
Call Menu.MenuItems.Add("Hel&pDesk", Cmd00) ' add menu item to the

end of menu

Set Menu = objGWMenu ' Get Main menu object
Set Menu = Menu.MenuItems.Item("Tools") ' get menu Tools
Set Menu = Menu.MenuItems.AddMenu("S&le") ' add menu item to

the end of the menu

Set Menu = objGWMenu ' Get Main menu object
Set Menu = Menu.MenuItems.Item("Tools") ' get menu Tools
Set Menu = Menu.MenuItems.Item("S&le") ' get menu S&le
Dim Cmd02 As New GWCommand ' Build GWCommand object
Let Cmd02.PersistentID = SampleItem ' Set persistent ID for Custom

menu in GWCommand object
Let Cmd02.LongPrompt = "This is a sample menu item" ' set long

prompt for menu item
Call Menu.MenuItems.Add("SampleItem", Cmd02) ' add menu item to

the end of menu

End If

End Function
C h a p t e r 1 7 188

Delphi Example

function CommandFactory.CustomizeMenu(Context: string;
GWMenu: variant): TOleBool;

var
vMenuItems : variant;
vMenu : variant;
vSeparator: variant;
Cmd : Command;
begin

If CompareStr(Context, 'GW.CLIENT.WINDOW.BROWSER') = 0 then //Check for
correct context

begin
vMenu := GWMenu; // get menu form GWMenu
vMenu := vMenu.MenuItems.Item('File'); //get menu File
vMenu := vMenu.MenuItems.Item('New'); //get menu New
GwCmdHelpDesk := Command.Create(HelpDesk); //create command for Custom

menu
vMenuItems := vMenu.MenuItems.Add('Hel&pDesk',
GwCmdHelpDesk.OleObject); //add menu item to the end of the menu
GwCmdHelpDesk.LongPrmt := 'This is a help desk'; //set long prompt for

menu item
GwCmdHelpDesk.Release;

vMenu := GWMenu; //get menu form GWMenu
vMenu := vMenu.MenuItems.Item('Tools'); //get menu Tools
vMenu := vMenu.MenuItems.AddMenu('S&le'); //add menu item to the end of

the menu

vMenu := GWMenu; // get menu form GWMenu
vMenu := vMenu.MenuItems.Item('Tools'); // get menu Tools
vMenu := vMenu.MenuItems.Item('S&le'); // get menu S&le
GwCmdSampleItem := Command.Create(SampleItem); // create command for

Custom menu
vMenuItems := vMenu.MenuItems.Add('SampleItem',
GwCmdSampleItem.OleObject); // add menu item to the end of the

menu
GwCmdSampleItem.LongPrmt := 'This is a sample menu item'; // set long

prompt for menu item
GwCmdSampleItem.Release;

end;

result := FALSE;

end;
w w w . n o v e l l . c o m / a p p n o t e s
189

It is important to note a few things based on the above sample. First, we do not
have to define what the menus will actually do here. As discussed above, the
Command.Execute() method should have entries corresponding to each
constant passed when creating the command (e.g. HelpDesk, Sample,
SampleItem). Thus, all we need to do here is select which command we want
by passing the appropriate constant to the Command.Create() method.
Second, we can have menu items attached to different GroupWise objects that
have the same name but that do very different things. The defining factors will be
the object (context) and the command attached to the menu item.

Return Value

Your CustomizeMenu() method should return a value that is true if you want
the method to be called again the next time the menu is updated and false if you
only want the method called only once. In almost all cases, you will return a false
value so that you will only need to modify the menu once. Even if the menu is
rebuilt multiple times, you will have to delete your old menu item and re-install it.
You might consider using the GWCommand.Validate() method instead.

Practice Tip: Even if you return a false value, you may want to check to make
sure that you are not adding a menu twice. Sometimes other
programs (or even your own) will call your C3PO multiple times,
and you don’t want to create confusion for the user.

The two ways to check for an existing menu are to walk the toolbar, and to do a
find. To walk the toolbar, you will iterate through the menu items, and compare
the caption.

VB Example

for count = 1 to mainmenuitems.count
Set contextmenu = mainmenuitems.item(count)
If contextmenu.caption=“&SampleItem” then

'note how the ampersand is in the caption
addmenu=false 'this is a boolean you will use to determine whether to add
End If

next count

Delphi Example

for count:= 1 to mainmenuitems.count do begin
contextmenu:=mainmenuitems.item(count);
if contextmenu.caption='&SampleItem' then begin

//note how the ampersand is in the caption
addmenu:=false; //this is a boolean you will use to determine whether to add
break;
end;
C h a p t e r 1 7 190

Alternatively, you can attempt to find a menu using the Item() method.

VB Example

Set vMenu = vMenu.MenuItems.Item(“SampleItem”) 'Note the lack of ampersand
if vMenu = NULL then
. . .

Delphi Example

vMenu:= unassigned;
try
vMenu := vMenu.MenuItems.Item('SampleItem');//Note the lack of ampersand
except end;
if varisnull(vMenu) or varisempty(vMenu) then
. . .

Finally, you can save the MenuID and find by MenuID.

The wizard will take you through the following steps.

Figure 1: C3PO Creation Wizard.

1. Choose a name for your C3PO. Select the area where the wizard will place
the files it creates. Select ‘Menus’.
w w w . n o v e l l . c o m / a p p n o t e s
191

Figure 2: Choose context to modify menus.

2. Choose the context upon which you would like to modify menus. The
example above will modify menus on the browser window or messages e.g.
mail, appointment, task, etc.

Figure 3: Custom Menus.
C h a p t e r 1 7 192

3. Additional screens will allow you to add menus, menu items, and separators
to existing menus based on the context you have chosen; in this case
‘GW.CLIENT.WINDOW.BROWSER’. The example above will add a
menu item to File | New.

Figure 4: Name, promt, and ID.

4. Choose a name, prompt and ID for the menu item.

Figure 5: Add menu to tools.
w w w . n o v e l l . c o m / a p p n o t e s
193

5. The example above will add a menu to Tools.

Figure 6: New Menu.

6. Name the menu.

Figure 7: Add menu item to Tools.

7. Add a menu item to Tools | Sample that appears. Give the menu item a
name, prompt, and ID.
C h a p t e r 1 7 194

Figure 8: Finishing C3PO Creation Wizard.

8. When you have finished making selections, you should see something
similar to the screen above. Click next and choose language and file output.
Register your C3PO and verify that your menus appear in the correct context
windows.

Customizing Context Menus

Customizing context menus (the menu you see when you right click on an item or
other areas of the GroupWise client) is done in a very similar manner to the way
“regular” menus are customized.

Context menus are also made up of GWMenuItems collections, and are
manipulated in the same way. You will use the CustomizeContextMenu()
method to obtain references to the context menu you wish to modify.

CustomizeContextMenu(Context;GWMenu);

CustomizeContextMenu() takes the same parameters as
CustomizeMenu() method. Check the Context to determine whether the
object this method receives is one that you want to customize. If it is, then you
modify the menu that is passed in the GWMenu object.

CustomizeContextMenu() has no return value. By definition of a context
menu, it is recreated each time the user right-clicks.
w w w . n o v e l l . c o m / a p p n o t e s
195

The following code adds a “Sample Menu” menu item to the context menu for
messages.

VB Example

Public Sub CustomizeContextMenu(sGWContext As String, objGWMenu As Object)

Dim Menu As Object

If InStr(sGWContext, "GW.MESSAGE") > 0 Then ' Check for GW.MESSAGE or
any sub context

Set Menu = objGWMenu ' Get the menu object for the menu at this
context

Dim Cmd00 As New GWCommand ' Build GWCommand object
Let Cmd00.PersistentID = MenuItem ' Set peresistent ID for Custom

menu in GWCommand object
Let Cmd00.LongPrompt = "This is another sample item" ' set long

prompt for menu item
Call Menu.MenuItems.Add("Sample Item", Cmd00) ' add menu item to

the end of the menu

End If

End Sub

Delphi Example

procedure CommandFactory.CustomizeContextMenu(Context: string;
GWMenu: variant);
var
vMenuItems : variant;
vMenu : variant;
vSeparator: variant;
Cmd : Command;
GwCmdMenuItem: Command; // GWCommand for Custom menu item Sample Item
begin
If Pos('GW.MESSAGE', Context) <> 0 then // see if the context is
GW.MESSAGE or any sub class

begin
vMenu := GWMenu; // get menu form GWMenu
GwCmdMenuItem := Command.Create(MenuItem);

// create command for Custom menu
vMenuItems := vMenu.MenuItems.Add('Sample Item',GwCmdMenuItem.OleObject);

// add menu item to the end of the menu
GwCmdMenuItem.LongPrmt := 'This is another sample item';
// set long prompt for menu item

GwCmdMenuItem.Release;
end;

end;
C h a p t e r 1 7 196

Note how this looks very similar to the menu we just created with
CustomizeMenu(), except that here there is no need to first grab the “Tools”
menu, because we are adding to the top level of the context menu. Note also how
we used the exact same command as CustomizeMenu() – the MenuItem constant.
Using the same command ID constant will essentially create the same command
(although a different object is created here, they will act the same). Note also that
you can save the GWCommand object created for your menu in a persistent
variable (don’t release it in that method) and thus assign the very same command
to the context menu. If you extend the GWCommand object, you can thus save the
information and use it as long as the object exists.

Practice Tip: If you are customizing a context menu for message contexts,
always check and see if you have already created the
contextmenu already. Otherwise, if a user right-clicks on
multiple selected messages, you will wind up adding a new
context menu multiple times (because the
CustomizeContextMenu() method will be called once for each
method.

In addition to the methods discussed above for CustomizeMenu(), Novell has
given us a little extra help with context menus. The CommandFactory object has
a private property called ContextMenuID. The Novell samples show this property
being set to the GWMenuAction.MenuID propery. You can use this persistent
property to check and see whether or not the context menu has already been set.
This only works if you are creating a single context menu action at a time, though,
because with multiple menu actions, the ContextMenuID will be continually reset.
Of course, you can extend the object to include more variables to hold this
information if you want.

The wizard will take you through the following steps.
w w w . n o v e l l . c o m / a p p n o t e s
197

Figure 9: C3PO Creation Wizard.

1. Choose a name for your C3PO. Select the area where the wizard will place
the files it creates. Select Context menus.

Figure 10: Create Custom GroupWise Context Menus.

2. Select the string that matches the context you want to specify and press Add.
C h a p t e r 1 7 198

Figure 11: Custom Context Menus.

3. Add menus, menu items or separators that you would like to show up.

Figure 12: New Context Menu.

4. You’ll see the screen above if you choose to add a menu. Select a name.
w w w . n o v e l l . c o m / a p p n o t e s
199

Figure 13:

5. Continue to add menus, menu items, or separators.

Figure 14: New Context Menu Item.

6. Give a name to the menu items that you add. Specify an ID for the command
that does not contain spaces.
C h a p t e r 1 7 200

Figure 15: Finishing C3PO Creation WIzard.

7. When you have finished making selections, you should see something
similar to the screen above. Click next and choose language and file output.
Register your C3PO and look for your new context menu when you right
click an appointment.

Customizing Toolbars

Customizing toolbars is much like customizing menus, except that you attach
commands to toolbar buttons instead of to menu items. Your
CommandFactory.CustomizeToolbar() method will allow you to
customize the toolbar.

CustomizeToolBar(Context,GWToolbar)

Name Data Type Description

Context String This string contains the current GroupWise context. Test this value
to determine whether this is a window whose toolbar you want to
modify.

GWToolBar GWToolBar Object This second parameter is a GWToolbar object. However, you will
never modify the GWToolbar directly – rather, you will modify the
items in the toolbar. Think of GWToolbar as a top-level menu of
toolbar buttons.
w w w . n o v e l l . c o m / a p p n o t e s
201

The GWToolBar.ToolbarItems Property

Initially, CustomizeToolbar() assigns GWToolbar.ToolbarItems to a
variant variable. This property is of type GWToolbarItems, which is a
collection of GWToolbarItem objects. Like other collection objects,
GWToolbarItems has an Item() method.

Item(Index)

The Item() method takes a single variant parameter Index. If Index is an
ordinal integer (less than GWToolbarItems.Count, of course), then the
GWToolbarItem at that ordinal is returned. If Index is a persistent ID, then
the GWToolbarItem with that persistent ID is returned.

FindByID() allows you to find a GWToolbarItem with a ToolbarID equal to
the ID of an existing GWToolbarItem.

FindByID(ID)

This can be an ID for any C3PO’s button. Thus, if you know the ID for another
C3PO’s object, you can obtain the item and modify it in your own code. This
function is also helpful for finding out whether a button has already been added.

Adding Buttons

To add to a toolbar, use the GWToolBarItems.Add() method.

Add(Caption,CommandItem[,AddBefore])

This method takes the same parameters as the GWMenuItems.Add() method.

Add() returns the new GWToolbarItem object, which you should assign to a
variable to manipulate.

Name Data Type Description

Caption String This is a string that the user sees on the menu.

Item GWCommand The second parameter is CommandItem, a GWCommand object that has
been created before calling the Add() method. GWCommand is discussed
above.

AddBefore Variant The third parameter is AddBefore, an optional variant. If AddBefore is
an integer, then the button will be added before that item. The integer
must be less than GWToolBarItems.Count. If AddBefore is a string, then
the new button will be added before the button with that display name –
you should ignore the ampersand (&). If you omit AddBefore, the button
will be added to the end of the current toolbar.
C h a p t e r 1 7 202

Activating the Button. Unlike menu action items, you must “activate” your
toolbar buttons with an additional method. This method is called
GWToolBarItem.SetBitmap().

SetBitmap(Filename,ResID)

The following code puts this all together for you.

VB Example

Public Function CustomizeToolbar(sGWContext As String, objGWToolbar As Object)
As Boolean

Dim Button As Object
Dim FilePath As String

If sGWContext = "GW.CLIENT.WINDOW.BROWSER" Then ' Check for correct
context

Dim Cmd00 As New GWCommand ' Build GWCommand object
Let Cmd00.PersistentID = tool1 ' Set persistent ID for GWCommand

object
Let Cmd00.ToolTip = "This is the browser sample" ' Set Button

tooltip
Set Button = objGWToolbar.ToolbarItems.Add("Sample 1", Cmd00) '

Add button to toolbar
FilePath = App.Path & "\icons.dll" ' Set bitmap for Button

'C3PO WIZARD icons.dll can be replaced by the full path name of any .exe or .dll
that contains a 16x16 and a 32x32 pixel bitmap.

' BUTTON_1 can be replaced with the name of the bitmap contained in the
.exe or .dll

Call Button.SetBitmap(FilePath, "BUTTON_1") ' set were the bitmap
is found and its name

End If
If InStr(sGWContext, "GW.MESSAGE") > 0 Then ' Check for GW.MESSAGE or

any sub context
Dim Cmd10 As New GWCommand ' Build GWCommand object
Let Cmd10.PersistentID = tool2 ' Set persistent ID for GWCommand

object
Let Cmd10.ToolTip = "This is the mail sample" ' Set Button tooltip
Set Button = objGWToolbar.ToolbarItems.Add("Sample 2", Cmd10) '

Add button to toolbar
FilePath = App.Path & "\icons.dll" ' Set bitmap for Button

Name Data Type Description

Filename String Filename is a string containing the path to the .dll file that holds the icon.
parameter This must be a full path name unless the file is in the GroupWise
directory.

ResID Variant ResID is the resource index of the bitmap you want to use on the button. If
the bitmap is represented by a string in your .dll file, then ResID must be a
string corresponding to that name. If the bitmap is represented by a number,
then ResID must be an integer corresponding to that index value. Typically,
you should use integer index values, because you can perform more functions
with the bitmap, as discussed below.
w w w . n o v e l l . c o m / a p p n o t e s
203

'C3PO WIZARD icons.dll can be replaced by the full path name of any .exe or .dll
that contains a 16x16 and a 32x32 pixel bitmap.

' BUTTON_1 can be replaced with the name of the bitmap contained in the
.exe or .dll

Call Button.SetBitmap(FilePath, "BUTTON_1") ' set were the bitmap
is found and its name

End If

CustomizeToolbar = False

End Function

Delphi Example

function CommandFactory.CustomizeToolBar(Context: string;
GWToolbar: variant): TOleBool;

var
Button: variant;
ToolbarItems: variant;
Cmd: Command;
begin

ToolbarItems := GWToolbar.ToolbarItems; // get toolbar items
If CompareStr(Context, 'GW.CLIENT.WINDOW.BROWSER') = 0 then

// Check for correct context
begin

GwCmdtool1 := Command.Create(tool1); // create command for toolbar
Button := ToolbarItems.Add('Sample 1', GwCmdtool1.OleObject);

// add new Button
GwCmdtool1.ToolTp := 'This is the browser sample';

// set tooltip for toolbar item
Button.SetBitmap(GetCurrentDir+'\SampleIcons.dll',1); // set toolbar

bitmap
GwCmdtool1.Release;

end;
If Pos('GW.MESSAGE', Context) <> 0 then

// see if the context is GW.MESSAGE or any sub class
begin

GwCmdTool2 := Command.Create(tool2);
// create command for toolbar

Button := ToolbarItems.Add('Sample 2', GwCmdTool2.OleObject);
// add new Button

GwCmdTool2.ToolTp := 'This is the mail sample';
// set tooltip for toolbar item

Button.SetBitmap(GetCurrentDir+'\SampleIcons.dll',2); // set toolbar
bitmap

GwCmdTool2.Release;
end;
result := FALSE;

end;

More about Icons. Buttons pictures must actually be bitmaps, and not icons.
The bitmaps may be 16 x 18 or 16x 16. Each button picture has its own bitmap.

The C3PO wizard comes with an icons.dll file that you can use for testing.
C h a p t e r 1 7 204

The following information is specific to Delphi which has problems with some
icon files, and thus is very sensitive. Here is some Delphi code for creating icons
– this assumes that you have a .bmp file or two with the icons you want. You can
use the image editor in Delphi or any other suitable tool you want.

Create a new “SampleIcons.dpr” project which is a .dll. The file should look like
this:

library sampleicons;
{$R sampleic.res}
uses
SysUtils,
Classes;

begin
end.

That’s it! That is the whole .dll file. So long as you have bitmaps in
sampleicons.res, you will get a .dll with your icons.

Buttons can also have bitmap masks for special display features. In order to use
this function, your .dll must refer to the toolbar bitmaps as numbers. That is, they
must be named ‘1’, ‘2’, etc. If you use string names, this feature will not work.
Further, your bitmap must be defined as 16 color for these features to work. We
think this is an important feature, and thus our sample is coded this way. The
RGB values for each feature are:

The sample bitmap with this book show what the colors corresponding to each
bitmap actually look like during the design phase.

Deleting Buttons

To delete a toolbar button (including some native to GroupWise), call the buttons
GWToolbarItem.Delete() method. Not all system buttons can be deleted. You
will have to experiment a bit to determine what can be removed and what can not.

RGB(0, 255, 0) Transparent. This is the most important mapping. Any color in the button bitmap
will be “see-through” in GroupWise, and will thus take any color that the button
bar is set to in Windows (though it is usually grey). In a color editor, this color
looks greenish

RGB(192, 192, 192) COLOR_3DLIGHT. This feature will make the “lit” look that depressed buttons
have. Note that you do not need to worry about this usually, as Windows will
change the colors as necessary. This is a light gray color in appearance at design
time

RGB(255, 255, 255) COLOR_3DHILITE. This feature will make the “whitish” color that you see to the
bottom right of a a depressed button. This is a white color at design time

RGB(128, 128, 128) COLOR_3DSHADOW. This feature will make the darker type of shadow you see at
the top left of a button. Like COLOR_3DHILITE, Windows will take care of this
automatically for depressed buttons. This is a dark gray color in appearance at
design time
w w w . n o v e l l . c o m / a p p n o t e s
205

Power Tip: ToolbarID

You can manipulate button items using the WindowsAPI’s by accessing the
GWToolbarItem.ToolbarID property, which is a long integer. This property is
assigned when the button is created, and it corresponds to the unique ID that
Windows assigns to each toolbar button. This is extraordinarily useful if you
would like to do things with the toolbar that you could not do otherwise.

The first thing you need to do is extend the GWCommand object to include a
ButtonID property, which is an integer. You can do this by subclassing the
GWCommand or by just adding the property in your current C3PO declaration.
This property can be private. Next, assign the GWToolbarItem.ToolbarID to
GWCommand.ButtonID. Thus, your CustomizeToolbar() method will include the
following:

Cmd := Command.Create(MyCommandConstant)
MyToolbar := ToolbarItems.Add('Sample ', Cmd.OleObject);
Cmd.ButtonID:=MyToolbar.toolbarid;

Now, whenever Command.Validate or Command.Execute is called, you can

access the Command.ButtonID property and go from there. The following is
some sample WindowsAPI code that will allow you to grab the actual button:

var
handle:thandle;
begin
enumchildwindows(win,@enumproc,longint(@handle));
end;

Your forward declaration will look like this:

function enumproc(childhandle:thandle;address:longint):boolean; stdcall;

And your actual callback declaration will look like this:

Delphi Example

function enumproc(childhandle:thandle;address:longint):boolean; stdcall;
//callback to handle enumchildwindows and grab the toolbar

type pint=^longint;
var classname:pchar;
begin
classname:=stralloc(256);
getclassname(childhandle,classname,256); // look at this window class
if classname=toolbarclassname then begin //if this is it, then OK.

//toolbarclassname is defined in commctrl, which you must include
result:=false; //false here means stop
pint(address)^:=childhandle; //return the handle
end else begin
C h a p t e r 1 7 206

result:=true; //true here means keep going
end;
strdispose(classname);
end;

Now handle from your original EnumChildWindows() call will contain a handle to
the toolbar. From there, you can use the toolbarid saved in GWCommand.ButtonID
to your benefit. Here is an example that “presses” the button and keeps it
depressed. This is useful as a state button (like the bold font button). Note that
you must use the numbering method for your bitmap names in order for shading to
work correctly in this implementation.

enumchildwindows(win,@enumproc,longint(@handle));
sendmessage(handle,TB_SetState,Command.ButtonID,longint(TBSTATE_PRESSED))

//TB_SetState and TBSTATE_ENABLED and TBSTATE_PRESSED are in commctrl

The wizard will take you though the following steps.

Figure 16: C3PO Creation Wizard.

1. Choose a name for your C3PO. Select the area where the wizard will place
the files it creates. Select Toolbars.
w w w . n o v e l l . c o m / a p p n o t e s
207

Figure 17: Context to modify toolbars.

2. Choose the context upon which you would like to modify toolbars. The
example above will modify toolbars on the browser window and mail
messages.
C h a p t e r 1 7 208

Figure 18: Create a New Button on the Toolbar.

3. Choose Add Toolbar Button and give a caption, tool tip and ID to the button
that goes on ‘GW.CLIENT.WINDOW.BROWSER’

Figure 19: Create a New Button on the Toolbar.

4. Choose Add Toolbar Button and give a caption, tool tip and ID to the button
that goes on ‘GW.MESSAGE’.
w w w . n o v e l l . c o m / a p p n o t e s
209

Figure 20: Finishind the C3PO Creation Wizard.

5. When you have finished making selections, you should see something
similar to the screen above. Click Next and choose language and file output.
Register your C3PO and verify that the correct buttons appear on the correct
contexts.

Summary

You now have seen how to add menus, context menus, and toolbar buttons to
GroupWise. With the wizard you are able to focus on adding functionality to your
C3PO while you let the tool build the class files for you. In the next chapter, we
will look at capturing commands, events and creating custom message classes.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
C h a p t e r 1 7 210

Chapter 18
Section 3: GroupWise C3POs

Capturing a Predefined
Command

Capture the following predefined commands.

Event Description

eGW_CMDID_ACCEPT When an item is accepted

eGW_CMDID_ARCHIVE When an item is archived

eGW_CMDID_COMPLETE When an item is completed

eGW_CMDID_COMPOSE When an item is created

eGW_CMDID_DECLINE When an item is declined

eGW_CMDID_DELEGATE When an item is delegated

eGW_CMDID_DELETE When an item is deleted

eGW_CMDID_DOC_CHECKIN Display the check-in time of a document

eGW_CMDID_DOC_CHECKOUT Display the check-out time of a document

eGW_CMDID_DOC_RESETINUSE Display when attempting to reset a document's in-use flag

eGW_CMDID_FORWARD When an item is forwarded

eGW_CMDID_OPEN When an item is opened

eGW_CMDID_OPENFILEATTACH When an item attachment is opened

eGW_CMDID_PRINT When an item is printed

eGW_CMDID_PROPERTIES Display the properties for a GroupWise object

eGW_CMDID_REPLY When an item is replied

eGW_CMDID_RESEND Resend an instance of the item type that is currently in
the GroupWise Out Box

eGW_CMDID_SAVE When an item is saved back to the database

eGW_CMDID_SAVEAS When an item is saved as an external file

eGW_CMDID_SAVEATTACHAS Save an instance of the item type back to the data base
(attachment)

eGW_CMDID_SEND When an item is sent

eGW_CMDID_SETALARMS Set alarms on a GroupWise object

eGW_CMDID_UNDELETE When an item is removed from the trash

eGW_CMDID_VIEW When an item is viewed

eGW_CMDID_VIEWATTACH When an item attachment is viewed
C h a p t e r 1 8 211

GroupWise calls WantCommand() with a context and ID to determine which
commands your C3PO wants to handle. If a match is made and TRUE is returned,
BuildCommand() will create a GWCommand object and set the base command
for later use. Within GWCommand, Execute() tries to find a match for the
command your C3PO is planning to intercept. Execute is where your custom code
should be placed.

The wizard takes you through the following screens.

Figure 1: C3PO Creating Wizard.

1. Choose a name for your C3PO. Select the area where the wizard will place
the files it creates. Select Commands.
w w w . n o v e l l . c o m / a p p n o t e s
212

Figure 2: Content to capture commands.

2. Select the context that you’re interested in using to capture commands. Press
Add.

Figure 3: Custom commands.

3. Choose the commands that you want to intercept. The example above will
work with ‘compose’, when you create a message and ‘send’ when you send
a message.
C h a p t e r 1 8 213

Figure 4: Finishing C3PO Creation Wizard.

4. When you have finished making selections, you should see something
similar to the screen above. Click next and choose language and file output.
Register your C3PO.

Creating a Custom Message

There are 4 major steps to creating a custom message in GroupWise:

• Pick a parent class to subtype and a subclass name.

• Create a new C3POServer class or modify an existing one.

• Register the new object.

• Create or modify existing objects to handle the new classes appearance,
handling of commands, or response to events.

Pick a Parent Class to Subtype

New classes inherit the characteristic properties of the classes that they are
derived from. The following six message classes are available for you to subtype:

• GW.MESSAGE.APPOINTMENT

• GW.MESSAGE.DOCUMENTREFERENCE

• GW.MESSAGE.MAIL
w w w . n o v e l l . c o m / a p p n o t e s
214

• GW.MESSAGE.NOTE

• GW.MESSAGE.PHONE

• GW.MESSAGE.TASK

Many C3PO’s subclass GW.MESSAGE.MAIL. A subclass of MAIL will give
you all the properties and methods normally associated with this GroupWise
object and its parent class MESSAGE. To get at other message characteristics
such as the appearance on the calendar with a StartDate and a Duration, it would
be better to subtype another class of MESSAGE. In this case you would choose to
subtype GW.MESSAGE.APPOINTMENT which provides the added
functionality associated with an appointment. The Subclass name should be
descriptive of what the C3PO is or does in order to make code more readable. We
use “MyC3PO” a lot in instructional materials, but a name like “HelpDesk” is
much more descriptive.

The resulting class name (also called context) that we are going to use in our
project below is:

GW.MESSAGE.TASK.HELPDESK

Note: If a message of type GW.MESSAGE.TASK.HELPDESK arrives in the mailbox of a
client where the C3PO to handle it is not installed and registered, then the client
will assume it is a message of type GW.MESSAGE.TASK and handle it accordingly.
If you used a custom view, that will open as well.

Create a New C3POServer Class

The next step is to either create a new project or modify an existing project with a
C3POServer class. The easiest way to do this is with the C3PO wizard.

The project must be either an ActiveX EXE or ActiveX DLL type. The project
name will determine the CLSID the C3PO is registered under (As well as the EXE
or DLL name). Select a descriptive project name.

Note: The CLSID may be used in code to implement early binding. Choose a project
name without any spaces to make this easier.

Modifying the Appearance of your Custom Message

The appearance of the message can be modified in several ways.

• A custom icon may appear next to the message in the message list of the
browser. Separate icons may be used for unopened or opened items.

• The toolbars, menus, and context menu of the item can be modified in the
same manner they are modified in the browser.
C h a p t e r 1 8 215

• Alternatively, the Compose or Open commands can be trapped, and a custom
designed form opened in place of the normal view. Controls can be placed on
the form to provide a customized interface.

Custom icons are made available by creating an IconFactory object with a single
method: GetIcons(). The syntax is

GetIcons(Context,IconFile,UnOpenedIconIndex,OpenedIconIndex)

Toolbars, menus, and context menu of the item are modified for a custom message
in the same manner as for the browser.

If GW#C#Open and/or GW#C#Compose commands are registered for handling
by the C3PO, and properly coded in the CommandFactory.WantCommand () and
CommandFactory.BuildCommand() methods, then when the Command.Execute()
method is called, custom code could produce a custom form. From a users
perspective, the enter action will be seamless.

In the case of the Compose command, the form must provide the functionality to
fill in fields, and save or send the message using the Token or GroupWise Object
API. Additional functionality may include querying an application or database
for information and adding custom fields to the message.

In the case of the Open command, the functionality of the form is to read and
display the parts and custom fields of the message, and possibly take care of
responding to the message with a new message or interacting with another
application or database.

The wizard will take you through the following screens.

Parameters Data Type Description

Context String (input) The context (message type) of the message to return the icon for.

IconFile String (output) The full or relative path and file name of the .exe or .dll file with
16x16 and 32x32 bit icon resources.

UnOpenedIconInde
x

Long (output) The index to the icon for an unopened item in the IconFile
resource.

OpenedIconIndex Long (output) The index to the icon for an opened item in the IconFile resource.
w w w . n o v e l l . c o m / a p p n o t e s
216

Figure 5: C3PO Creation Wizard.

5. Choose a name for your C3PO. Select the area where the wizard will place
the files it creates. Select Message classes.

Figure 6: Choose message context.

6. Select Add and choose the message context that you’d like to subclass.
Select Yes or No depending on whether or not you want a custom icon
associated with the new message context you’re creating.
C h a p t e r 1 8 217

Figure 7: Finishing C3PO Creation Wizard.

7. When you have finished making selections, you should see something
similar to the screen above. Click Next and choose language and file output.
Register your C3PO.

GroupWise Events

GroupWise events are trapped by Event.Notify in EventMonitor. When
GroupWise calls Event.Notify, it passes in two parameters.

EventMonitor.Notify(Context,Evt)

Different events are passed in as the values of Evt.PersistentID:

Name Data Type Description

Context String This is the context which is generating the event, such as the browser,
message, etc.

Evt GWEvent object This is the actual event that has occurred. It contains a single property:
Evt.PersistentID

Name Data Value Description

eGW_CMDEVTID_READY 'GW#E#0' This event is called once, after the GroupWise client has started
and all services (DDE and OLE) have been activated.
w w w . n o v e l l . c o m / a p p n o t e s
218

The following is a sample method that implements these events. A skeleton for
two events OnShutdown when GroupWise is ready to shutdown and onDelivery
when GroupWise has received a new message item, show you how to trap a new
“HelpDesk” message type, so you can process it specially.

VB Example

Public Sub Notify(sGWContext As String, objGWEvent As Object)
Dim res

Select Case objGWEvent.PersistentID
Case eGW_CMDEVTID_SHUTDOWN 'Check for Shutdown Event

'C3PO WIZARD This is were you put your Shutdown code.
res = MsgBox(objGWEvent.PersistentID, vbOKOnly, sGWContext)

Case eGW_CMDEVTID_DELIVERY 'Check for Delivery Event
'C3PO WIZARD This is were you put your Delivery code.
If sGWContext = "GW.MESSAGE.TASK.HelpDesk" Then ' Check for

correct context
'C3PO WIZARD This is were you put your Delivery code for
GW.MESSAGE.TASK
res = MsgBox(objGWEvent.PersistentID, vbOKOnly, sGWContext)

End If
Case Else

MsgBox "Unsupported Case"
End Select

End Sub

Delphi Example

procedure EventMonitor.Notify(Context:string; evt:variant);

begin
if CompareText(evt.PersistentID,eGW_CMDEVTID_SHUTDOWN) = 0 then// Is this

OnShutdown notify
begin

//Add code here for the shutdown event
end

eGW_CMDEVTID_DELIVERY 'GW#E#1' You will receive this event when a new item is delivered to the
GroupWise mailbox. This event will not be triggered for
personal items. From there you can obtain a reference to
ClientState.CommandMessage to review the message
properties. In addition, you may call the
ClientState.SetupDeliveryFolder() method to deliver the
message to another folder.

eGW_CMDEVTID_SHUTDOWN 'GW#E#2' This event is called once, just before the GroupWise client
exits. However, when this event is sent, all GroupWise access is
still available for last minute processing.

EGW_EVT_OVERFLOW Occurs when more messages of interest are delivered to the In
Box than the Delivery event can handle.

Name Data Value Description
C h a p t e r 1 8 219

else if CompareText(evt.PersistentID,eGW_CMDEVTID_DELIVERY) = 0 then
// Is this OnDelivery notify
begin //we have already added the code for delivery event

if CompareText(Context,'GW.MESSAGE.TASK.HelpDesk') = 0 then
// Check if this is the correct message class
begin

//Add code here to process helpdesk messages
end;

end;
end;

The wizard wil take you though the following screens.

Figure 8: C3PO Creation Wizard.

1. Choose a name for your C3PO. Select the area where the wizard will place
the files it creates. Select Events.
w w w . n o v e l l . c o m / a p p n o t e s
220

Figure 9: Choose GroupWise C3PO events.

2. Choose events that you want to capture. The example above will add code to
Notify to capture onShutdown and onDelivery.

Figure 10: Select context for certain events.

3. Additional screens will allow you to select context for certain events for
example, choose ‘GW.MESSAGE.APPOINTMENT’ to catch the delivery of
GroupWise appointments.
C h a p t e r 1 8 221

Figure 11: Finishing C3PO Creation Wizard.

4. When you have finished making selections, you should see something
similar to the screen above. Click Next and choose language and file output.
Register your C3PO and verify that the correct events are getting captured.

Summary

As you have seen, creating a custom message in GroupWise is rather easy. Not
only do you know how to create a your own context, you also know how to add
menus and toolbar buttons to the message that you subtype. In addition you now
know how to capture and process GroupWise events.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
w w w . n o v e l l . c o m / a p p n o t e s
222

Chapter 19
Section 3: GroupWise C3POs

Putting It All Together

Now that we have learned the basics, let’s take a look at putting all of the tools
together to get some real work done. The real power of the GroupWise APIs are
that you can combine more than one API to achieve your needs. In fact,
sometimes you might have to combine APIs to get the job done because one API
may not have what you need while another will.

Another Look At Validate

The GWCommand.Validate method in C3POs can be exploited if you
combine the OAPI and token interfaces with your C3PO. Let’s take a look at how
to enhance validation.

New Message Menus

Let’s say you want to enable a menu only on new menus. Unfortunately, C3PO
contexts only tell you the view type, but they fail to tell you whether you are
working with a new message or a message in the database. We turn to tokens to
help us out.

The best way to tell if you have a new message is to check its MessageID. If the
message has a MessageID of “X00” then you know it is a new message.

Delphi Example

function Command.Validate: longint;
var messageid:string;
begin
if m_nCmd=MYCOMMANDID then begin
Commander.Execute('itemmessageidfromview()',messageid);

if messageid=”X00” then
result := eGW_CMDVAL_ALWAYS;
end;

end;

That’s all there is to it. Check the MessageID, and enable the menu if it is a new
message.
C h a p t e r 1 9 223

More About the Button Bar

The validation of the button bar we discussed above is a little more complicated
than originally presented. This is because the Validate method runs
continuously on the button bar and continually calls the
ItemMessageIdFromView() token and continuously tests for a depressed
button would take significant processing cycles. As a refresher, here is the
Validate method for depressing the button:

enumchildwindows(win,@enumproc,longint(@handle));
sendmessage(handle,TB_SetState,Command.ButtonID,longint(TBSTATE_PRESSED))

//TB_SetState and TBSTATE_ENABLED and TBSTATE_PRESSED are in commctrl

We don’t want this to be called each and every time – rather we want it to be
called only when the pressed or unpressed state changes. Thus, we need a flag to
keep track of when the status changes; the best place to put that flag is in the
declaration of our GWCommand. Why? Because the GWCommand associated
with our button is both persistent and easily accessible from our Validate
method. Finally, let’s add a property that holds the window handle of the button
bar – why have to search for it each time? The same is true for a property holding
the message’s MessageID. What we are trying to do here is make GWCommand
do the simple task of storing persistent data tied to a particular message view,
rather than having to rediscover the information on each Validate; so we will
add to our declaration, shown in the example below.

Delphi Example

Command = class(TGWCommand)
private

{ Private declarations }
LongPrmt : string;
ToolTp : string;
BaseCommand : Variant;
function GetLongPrompt : string;
function GetToolTip : string;

ButtonID: Integer; //remember that we added this to hold the
button’s toolbarid

dirty:boolean; //this is our added flag to keep track of the depression state
done:boolean; //this is a flag that will keep track of whether Validate has

been run before
window:thandle; //this will hold the handle to the button bar
messageid:string // this will hold the MessageID of the message associated

with the particular command
public

m_nCmd : longint;
Constructor Create(nCmd: longint);

automated
property LongPrompt: string read GetLongPrompt;
property ToolTip: string read GetToolTip;
procedure Execute;
function Validate: longint;

end;
w w w . n o v e l l . c o m / a p p n o t e s
224

We must be sure to set our flags off when we create the Command object:

Delphi Example

Constructor Command.Create(nCmd: longint);
begin

inherited Create;
m_nCmd := nCmd;
done:=false;
dirty:=false;
window=0;
messageid=’’;

end;

Our Execute method will set the dirty flag as necessary. This is a signal to the
Validate that the button state has changed.

Delphi Example

procedure Command.Execute;
begin

case m_nCmd of
MYCOMMANDID:

begin
dirty:=not dirty;
buttonon:=not button on; //this is is a global variable that

will hold the button state
end;

end;
end;

Note that we need buttonon, a global variable, to keep track of whether the
button is pressed. We could also save the state in GWCommand, but that would
make it more difficult to access from other procedures that must know the
button’s state. Another alternative would be to add a custom field to the message
that keeps track of the button state.

Now, we can get to our Validate method where the heart of the work is done.

Delphi Example

function Command.Validate: longint;
var win,handle:thandle;
begin
if m_nCmd = MYCOMMANDID then begin

if not done then //Only get the MessageID if we have not done so already
for this Command. Note, we could also do:if messageid = ‘’
to avoid the done flag. Or, we could have set the
messageid during the Create method.

begin
Commander.Execute('itemmessageidfromview()',messageid);
done:=true;
C h a p t e r 1 9 225

end;
if messageid<>'X00' then //if not new message then disable item

result:=eGW_CMDVAL_DISABLED
else //otherwise, let’s press the button if necessary

if (window=0) then begin//get the handle to the toolbar if we don’t have
it

win:=getforegroundwindow;
enumchildwindows(win,@enumrichedit,0);
enumchildwindows(win,@enumproc,longint(@handle));
window:=handle;
end;
end;

if ButtonOn then //check if the button is on.
this is unrelated to actually pressing the button
if the button is on, we have to ‘check’ it –
unfortunately we can’t save cycles here

result:=eGW_CMDVAL_CHECKED;
if dirty then //only press buttons if the user changed the state

begin
dirty:=false; //reset so we don’t check until user changes again
if not ButtonOn then
sendmessage(window,TB_setstate,toolbarid,longint(TBSTATE_ENABLED))
else
sendmessage(window,TB_setstate,toolbarid,longint

(TBSTATE_PRESSED));
end;

end;

Let’s take a closer look at what we have done here. First, we get the MessageID if
we haven’t already. As discussed in the comments above, there are many ways
that we can do this. Second, we disable the buttons if this is not a new message.
Next, we get the buttonbar window handle if we don’t have it. Finally, we press
the button according to state, but only if the user recently changed. If there is no
change by the user, no change by the Validate code is necessary.

One final note about the button bar. If you want to remove, rather than just
disable buttons on non-new messages, you will need to do that in the
CustomizeToolbar method. The complexity is that tokens will not work, as the
message view is not opened yet. So, we will use the ClientState, yet another
tool:

Delphi Example

function CommandFactory.CustomizeToolBar(Context: string;
GWToolbar: variant): wordbool;

var clistate,testmessage:variant;
begin
if (CompareText('GW.MESSAGE',Copy(context,1,10)) = 0) then begin
try

clistate:=c3po.g_C3POManager.ClientState;
testmessage := clistate.CommandMessage; //get the current messaage

except //exception gets thrown by clistate.commandmessage if it is a new message
This is because new messages are not GW objects yet
w w w . n o v e l l . c o m / a p p n o t e s
226

Cmd := Command.Create(MYCOMMANDID);
Toolbar := ToolbarItems.Add('My Button', Cmd.OleObject);
Cmd.ButtonID:=Toolbar.toolbarid;

PGPcmd.toolbar:=true;
Toolbar.SetBitmap(extractfilepath(paramstr(0))+'myicons.dll',1);
Cmd.ToolTp := ‘Long prompt for my button’;
Cmd.Release;

end;
end;

Note how we use the exception to determine the type of message we have. We
aren’t really deleting the button if it is a new message, we are simply not adding it.
We could, of course, add other buttons in the try block. Those messages would be
added to non-new messages.

The Message Field

We may want to disable menus based on what field the user is in. For example,
we may want to process message text, but not the subject. We would need to
know the field, however, if we were going to select text. Here is a simple
algorithm in the Validate method to test whether you are in the message field:

Delphi Example

if messageid <> 'X00' then result:=eGW_CMDVAL_DISABLED else begin
commander.execute('EnvTextCurrentLineIndex()',temp);
if pos('Token failed',temp)>0 then

result:=eGW_CMDVAL_DISABLED;
end;

Like the ClientState.CommandMessage above, here we are taking advantage of a
token that will fail unless it is in the message view. This example and those above
should hopefully give you an idea of the power of using all of the API interfaces
available to you to creatively achieve your needs.

The Report Generator

The Report Generator is a C3PO that adds a menu to the “Tools” menu. The
generator will search your calendar (or a proxied central calendar) for a code in
the subject, and generate an ordered list of all calendar items with that code in the
subject. A use for this is in a law office, where the code is a client code, and all
appointments have a client code.
C h a p t e r 1 9 227

Use The Wizard

Our first task is to decide how we want to invoke the report generator. A simple
menu item on the toolbar will do. We will be able to use the C3PO Wizard to
create code that will make the menu item. The following is the output of the
C3PO Wizard:

#C3PO WIZARD
#Define Menu=GW.CLIENT.WINDOW.BROWSER
#Begin
#MenuType=MenuItem
#Menu=Tools
#Text=Generate a Docket Report
#LongPrompt=Generate a report of all appointments and tasks with a specific
string in the subject..
#Constant=GENREP
#End
#Define Menu=GW.MESSAGE
#Begin
#MenuType=MenuItem
#Menu=Tools
#Text=Generate Docket Report
#LongPrompt=Generate a report of all appointments and tasks with a given string
in the subject.
#Constant=GENREP
#End
#Done

Let’s take a closer look at what we have done:

#Define Menu=GW.CLIENT.WINDOW.BROWSER
#Define Menu=GW.MESSAGE

These lines tell the wizard code generator to add menus to the browser and to all
message views.

#Constant=GENREP

This is the constant name that will be included in our new GWCommand object

and tested in our GWCommand.Execute method. Note that the code generator will
automatically assign an integer value to this constant name. Note also that I used
the same constant name for both the browser and the message instantiation. This
means that the same command will be called, regardless of where the menu item
sits.

#MenuType=MenuItem
#Menu=Tools

These lines tell the user what type of menu object to make and where to put it.
w w w . n o v e l l . c o m / a p p n o t e s
228

#Text=Generate Docket Report
#LongPrompt=Generate a report of all appointments and tasks with a given string
in the subject.

These lines define the user interface portions of the menus. Let’s assume that the
C3PO wizard has now generated code. We will look at that code later.

The Form

Unrelated to GroupWise but important nonetheless is the form we will use to get
user information. Here, we have a form with a couple of hidden fields to do data
processing.

Figure 1: Create Docket Report.

The form actually does most of the work. All our C3PO needs to do is open the
form. However, you need to call

Application.ShowMainForm:=false;

before

Application.CreateForm(TForm1, Form1);

so that the form will stay hidden until your C3PO opens it.

Delphi Example

Here is the actual code for the form:

object Form1: TForm1
Left = 351
Top = 257
Width = 250
Height = 122
Caption = 'Create Docket Report'
Color = clBtnFace
Font.Charset = DEFAULT_CHARSET
C h a p t e r 1 9 229

Font.Color = clWindowText
Font.Height = -11
Font.Name = 'MS Sans Serif'
Font.Style = []
OldCreateOrder = False
PixelsPerInch = 96
TextHeight = 13
object Label1: TLabel

Left = 8
Top = 27
Width = 91
Height = 13
Caption = 'Enter Subject Text:'

end
object SearchString: TEdit

Left = 104
Top = 24
Width = 113
Height = 21
TabOrder = 0

end
object Create: TButton

Left = 144
Top = 56
Width = 75
Height = 25
Caption = 'Create'
Default = True
TabOrder = 1
OnClick = CreateClick

end
object TheDates: TListBox

Left = 0
Top = 64
Width = 81
Height = 81
ItemHeight = 13
TabOrder = 2
Visible = False

end
object TheDisplay: TListBox

Left = 24
Top = 64
Width = 97
Height = 41
ItemHeight = 13
TabOrder = 3
Visible = False

end
end

The C3PO Server

The C3PO server in this project needs no real modification. The C3PO Wizard
will generate this code, but let’s take a look at some of the key sections.
w w w . n o v e l l . c o m / a p p n o t e s
230

CanShutdown

You want to make sure that you tell GroupWise that it can shut down when it
wants to. Thus, your code should include this.

Delphi Example

function C3POServer.CanShutdown: TOleBool;
begin

Result := TRUE;
end;

RegisterServer

You will need to get your server registered. This is done using the /regsrvr startup
parameter. Also, if you create an executable, you can run the executable once,
and it will automatically register the information. The wizard kindly puts this in
the code for you:

Delphi Example

function RegisterServer : HResult;
var

Reg : TRegistry;
sRegKeyName : string [120];
sAppName : string [120];

begin
sAppName := 'repgen';
Reg := TRegistry.Create;
Reg.RootKey := HKEY_LOCAL_MACHINE;
sRegKeyName :=

'\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.CLIENT.WINDOW.BROWSER
\repgen';

Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('CommandFactory', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);

sRegKeyName :=
‘\SOFTWARE\Novell\GroupWise\5.0\C3PO\DataTypes\GW.MESSAGE\repgen';

Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Objects', TRUE);
Reg.WriteString ('CommandFactory', '');
Reg.OpenKey (sRegKeyName, TRUE);
Reg.OpenKey ('Events', TRUE);

Result := S_OK;
end;

Further, we need to get the OLE information registered as well. The C3PO code
generator also generates this code:
C h a p t e r 1 9 231

Delphi Example

procedure RegisterC3POServer;
const

AutoClassInfo: TAutoClassInfo = (
AutoClass: C3POServer;
ProgID: 'repgen';
ClassID: '{B638DF40-8410-11D3-82BD-0090274773AE}';
Description: 'C3po Automation';
Instancing: acMultiInstance);

begin
Automation.RegisterClass(AutoClassInfo);
RegisterServer;

end;

Initializing

In the initialization sequence, we will set up the Token Commander and the
ObjectAPI.

Delphi Example

procedure C3POServer.Init(Manager: variant);
begin

g_C3POManager := Manager;
AccountLogon;
commander:=CreateOleObject('GroupWiseCommander');

OleInitialize(Nil);
end;

Our AccountLogon procedure looks like this:

Delphi Example

procedure AccountLogon;
var Groupwise,Temp:variant;

begin
try

GroupWise:=CreateOleObject('NovellGroupWareSession');
temp:=GroupWise.Login;
try
GWAccount:=GroupWise.Proxy('Library');
except GWAccount:=temp; end;
except end;

end;

Because the Token Commander and Object API must be accessible from our main
C3PO code, we have declared GWAccount and commander as global variables in
the main form’s unit, and you will add that unit to the main form’s uses clause.
w w w . n o v e l l . c o m / a p p n o t e s
232

uses
. . .
repgenC3PO,
repgenUnit,
. . .;

De-Initializing

It is important to de-initialize your C3PO. Note that we have added to the default
code to release the form and the application.

Delphi Example

procedure C3POServer.DeInit;
begin

g_C3POManager := Unassigned;
OleUninitialize();
Form1.Release;
Application.Terminate;

end;

The C3PO Object

Let’s take a look at the actual C3PO, namely the implementation of the menus.

The CommandID Constant

First, note the following line:

Const

GENREP = 0;

This is where GENREP, from the wizard above, is now defined as an actual
constant. We will use this later.

Initializing the C3PO

This is where you tell GroupWise what your C3PO plans to do with the
GroupWise client. Here, all we want to do is modify the menus.

Delphi Example

function CommandFactory.Init(lcid : longint): longint;

begin
result := eGW_CMDINIT_MENUS;

end;
C h a p t e r 1 9 233

Adding the Menu

Now we will add the menu. GroupWise will call our CustomizeMenu method
whenever it needs to create a new menu. We have left the comments by the C3PO
Wizard in, as they explain exactly how the process proceeds.

Delphi Example

function CommandFactory.CustomizeMenu(Context: string;
GWMenu: variant): TOleBool;

var
vMenuItems : variant;
vMenu : variant;
vSeparator: variant;
Cmd : Command;
begin

If CompareStr(Context, 'GW.CLIENT.WINDOW.BROWSER') = 0 then // Check
for correct context

begin
vMenu := GWMenu; // get menu form GWMenu
vMenu := vMenu.MenuItems.Item('Tools'); // get menu Tools
GwCmdGENREP := Command.Create(GENREP); // create command for

Custom menu
vMenuItems := vMenu.MenuItems.Add('Generate a Docket Report',

GwCmdGENREP.OleObject); // add menu item to the
end of the menu

GwCmdGENREP.LongPrmt := 'Generate a report of all appointments and tasks
with a specific string in the subject..'; // set
long prompt for menu item

GwCmdGENREP.Release;

end;
If Pos('GW.MESSAGE', Context) <> 0 then // see if the context is

GW.MESSAGE or any sub class
begin

vMenu := GWMenu; // get menu form GWMenu
vMenu := vMenu.MenuItems.Item('Tools'); // get menu Tools
GwCmdGENREP := Command.Create(GENREP); // create command for

Custom menu
vMenuItems := vMenu.MenuItems.Add('Generate Docket Report',

GwCmdGENREP.OleObject); // add menu item to the end of the
menu

GwCmdGENREP.LongPrmt := 'Generate a report of all appointments and tasks
with a given string in the subject.'; // set long prompt for

menu item
GwCmdGENREP.Release;

end;

result := FALSE; // this is a non-volatile menu

end;
w w w . n o v e l l . c o m / a p p n o t e s
234

Essentially, this method is testing for which context (e.g. window) is getting the
menu, and then it adds a new menu item to the “Tools” menu. Note how we
release the GWCommand we created after we have passed it to GroupWise. The
command does not disappear, however, because GroupWise still maintains a
reference to it. You could maintain your own reference, as well, if you wanted.

The Execute Method

Now we need to define our Execute method, so that our program actually does
something when the user selects our new menu item.

Delphi Example

procedure Command.Execute;
begin

case m_nCmd of // this is where we test for our CommandID

GENREP:
begin

Form1.Show;
SetForegroundWindow(Form1.Handle);
Form1.SearchString.SetFocus;

end;

-1: //Not used
else

MessageBox(0, 'No Command ID found?', 'Execute Command',
MB_SETFOREGROUND); // do a message box

end;
end;

Note how simple this Execute method is; all we do is open our form, move it to
the front, and focus on the input window. If you have multiple commands, you
will have more CommandID constants to check.

The Validate Method

Because our menu will always be activated, our Validate method will be simple.

Delphi Example

function Command.Validate: longint;
begin

result := eGW_CMDVAL_ALWAYS;
end;

However, we could do checking to enable or disable the menu.
C h a p t e r 1 9 235

The Form Functions

This seems like a lot of wind-up to get to the actual meat of the program. You will
find that the C3PO Wizard automates so much that you will actually be able to get
right to the key parts of the program.

The Create Button

Nothing happens in our form until the Create button is pressed, so let’s start with
this button.

Delphi Example

procedure TForm1.CreateClick(Sender: TObject);
begin

CreateReport;
Form1.Hide;

end;

Simple enough. So here is CreateReport:

Delphi Example

procedure CreateReport;
var FoundMessages:variant;

CurrentMessage:variant;
result:string;
count,max:integer;
commandstring:string;
TheDate:string;

begin
FoundMessages:=GWAccount.AllMessages.Find('(BOX_TYPE = INCOMING) AND (SUBJECT

CONTAINS "'+Form1.SearchString.Text+'") AND (TASK OR APPOINTMENT) AND
(START_DATE >= TODAY)');{ }

SortItems(FoundMessages);
commander.execute('NewMail()',result);

for count := 0 to Form1.TheDisplay.Items.Count-1 do
begin

commander.execute(Form1.TheDisplay.Items[Count],result);
end;
Form1.SearchString.Text:='';
Form1.Hide;

end;

Executing the Query

Here we get our first taste of the ObjectAPI. Because we logged in during the
initialization of the C3PO server, we do not need to log in here – GWAccount
already points to a valid Account object. In this procedure we search for all
incoming appointments and tasks, that contain our search string in the subject
field. We also want to find only messages after today.
w w w . n o v e l l . c o m / a p p n o t e s
236

Sorting the Items

Delphi Example

Then we call SortItems, a procedure that will put the messages in order. We pass in
FoundMessages which is our MessageList object that contains our found messages.

procedure SortItems(Messages:Variant);
var CurrentMessage:variant;TheDate:string;Count,ListCount:Integer;
Date:boolean;
begin
Form1.TheDisplay.Clear;
Form1.TheDates.Clear;
If Messages.Count > 0 then

begin
CurrentMessage:=Messages.Item(1);
try
If CurrentMessage.ClassName = 'GW.MESSAGE.APPOINTMENT' then

TheDate:=CurrentMessage.StartDate
else

TheDate:=CurrentMessage.DueDate;
except TheDate:='Message';end;

Form1.TheDisplay.Items.Add(format('ItemSetText("X00";Message!;"%s %s
%s";Yes!)',[TheDate,CurrentMessage.Subject,chr(10)]));

Form1.TheDates.Items.Add(TheDate);
For Count := 2 to Messages.Count do
begin

CurrentMessage:=Messages.Item(Count);
try
If CurrentMessage.ClassName = 'GW.MESSAGE.APPOINTMENT' then

TheDate:=CurrentMessage.StartDate
else

TheDate:=CurrentMessage.DueDate;
except TheDate:='Message';end;

ListCount:=0;
While (ListCount < (Form1.TheDates.Items.Count)) do

begin
if

StrtoDateTime(TheDate) >
StrToDateTime(Form1.TheDates.Items[ListCount])

then
ListCount:=ListCount+1

else
break;

end;
Form1.TheDates.Items.Insert(ListCount,TheDate);
Form1.TheDisplay.Items.Insert(ListCount,

format('ItemSetText("X00";Message!;"%s %s
%s";Yes!)',[TheDate,CurrentMessage.Subject,chr(10)]));

end;
end;

end;
C h a p t e r 1 9 237

This procedure is doing the bulk of the work. We use the two hidden fields on the
form to hold data; we could have used a linked list, or a tstringlist as well.
The first thing we do is count how many messages were found – we don’t want to
act if there were no found messages.

Then we iterate through the messages one by one. We check to see if the message
is an appointment or a task. We do this using the ObjectAPI. The type of
message is important because the relevant date will either be the start date of the
appointment or the due date of the task. We set a date variable equal to these
dates. Then we go through the dates we have and do a compare to insert the date
in the right place. Note that the date is supposed to be a tdatetime, but for some
reason they did not compare here – they were returned as strings. Thus, we
convert the date string to a tdatetime for comparison.

Finally, note how we add not only the date to the hidden listbox, but instead we
add the entire ItemSetText() token to the box, so that at a later time we can send
it directly to the token commander.

Creating the New Message

Then, we use the token commander to open a new mail.

Delphi Example

commander.execute('NewMail()',result);

for count := 0 to Form1.TheDisplay.Items.Count-1 do
begin

commander.execute(Form1.TheDisplay.Items[Count],result);
end;

Form1.SearchString.Text:='';
Form1.Hide;

Here we call the NewMail() token, and then we scroll through our hidden listbox
and send the token commands we created earlier to the token commander.

Summary

That is the whole project – it uses the Token Commander, ObjectAPI and C3PO’s
in a relatively simple project. It is a good example of how to put all of these
interfaces together.

Copyright © 2002 by Novell, Inc. All rights reserved.
No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.
w w w . n o v e l l . c o m / a p p n o t e s
238

Novell, Inc.
1800 Novell Place
Provo, Utah 84606
USA

464-000063-013Novell, Inc.

GroupWise® Developer’s Guide
by Michael Risch, Sean Kirkby,

Bob Good, & Steve Hughes

www.novell.com/research

	GroupWise Developer's Guide
	Contents
	Section 1:GroupWise Object API
	Introducing the Object API
	Getting Started with the Object API
	Your Application is a COM Client
	What is COM?
	Where to Get More Information on COM
	Language Considerations

	How to Access the GroupWise Object API
	Late Binding
	Early Binding Using Type Libraries
	Setting up VB
	Setting up Delphi
	Setting up C++

	Getting an Application Object
	Visual Basic
	Delphi
	C++

	Logging in
	Proxy
	Multilogin
	Security and Maintenance Considerations for Login
	Application Object Properties

	Summary

	Using the Account Object
	AccountRights Property
	AccountRightsCollection
	AccountRights

	ProxyAccounts and Proxied Properties
	DefaultAccountRights Property
	AddressBook, Folder, and Message Properties
	Collection Type Properties
	Non-Collection Type Properties

	Archive Properties
	Owner Property

	Other Properties
	Account Object Methods
	Archive Methods
	Other Methods
	Some Newer Methods

	Summary

	Understanding Folder and Trash Related Objects
	Folders
	Accessing Nested Folders
	The Folder Object

	The Different Types of Folder Objects
	Personal
	Query
	Shared
	System

	Creating a Folder
	Getting at the Contents of a Folder
	Deleting a Folder
	Moving a Folder
	Renaming a Folder
	Sharing a Folder

	Shared Folders
	Testing a Folder for Shared Status
	Testing a Folder For Folder Rights
	Sharing a Folder
	Accepting a Shared Folder
	Removing User Access to a Shared Folder
	The Trash Object
	The TrashEntries Object
	The TrashEntry Object

	Summary

	Message Collections
	The Messages Collection
	The Count Property and Item() Method
	Finding Messages
	Moving Messages in Messages Collections
	Adding New Messages to the Message Object Collection

	The AllMessages Collection and the AllMessagesIterator
	Message Lists
	The Count Property and Item() Method
	Finding Messages
	Adding Messages to the MessageList
	Removing Messages from the MessageList

	Summary

	Understanding Message and Message Related Objects
	Messages
	The Message Object
	Sending, Forwarding, or Replying to a Message
	Copying a Message
	Refreshing a Message
	Deleting or Retracting a Message

	The Different Types of Message
	Mail
	Appointment
	DocumentReference
	Note
	PhoneMessage
	SharedNotification
	Task
	Setting and Accessing the Properties of a Message

	Attachments
	The Attachment Object
	Referencing Attachments and Attached Message Properties
	Adding Attachments
	Saving Attachments
	Attachment.Save(Filename as String)
	Deleting an Attachment

	Recipients
	The Recipient Object
	Adding Recipients
	Resolving Recipients
	Deleting Recipients

	Summary

	Understanding Document and Document Related Objects
	Document References
	Document Libraries
	The DocumentLibrary Object

	The Documents Collection
	Iterating through Documents
	Adding New Documents

	The Document and DocumentVersions Objects
	The Document Object
	The DocumentVersions Object
	The DocumentVersion Object

	Document Events
	The DocumentVersionEvents Object
	The DocumentVersionEvent Object

	Document Rights
	The DocumentAccessRights Object
	The DocumentAccessRights Object
	The DocumentRights Object

	Document Types
	The DocumentTypes Object
	The DocumentType Object

	Summary

	Understanding Address and AddressBook Objects
	Manipulating Addresses and Address Books
	The Different Types of Addresses
	Address
	Recipient
	AddressBookEntry and GroupMember

	Address Books
	Sharing an AddressBook

	Summary

	Understanding Field and Field Related Objects
	Pre-defined and Custom Field Objects
	Accessing Field Information
	Custom Fields and the GroupWise Client
	Deleting Fields and FieldDefinitions
	Custom Fields in the Address Book
	Fields and Document Libraries
	Document Objects versus Document References

	Lookup Tables
	Related Properties
	Summary

	Understanding Filter and Query Related Objects
	Filters
	The Filter Object
	Creating Filters
	Deleting Filters and Last Time Accessed

	Creating Queries
	Creating Query Folders
	Locations
	Expressions
	Text Statements
	Numeric Statements
	Date Statements
	Enumerated Statements
	Unary Statements
	Basic Expressions

	Summary

	Section 3: GroupWise C3POs
	Overview
	C3POServer
	CommandFactory
	GWCommand
	EventMonitor
	IconFactory
	Flow of Control
	Initialize
	Customize
	Validate
	Execute
	Trapping Predefined Commands
	Catching GroupWise Events

	Registration
	How to Register
	How to Unregister

	Customizing Menus and Toolbars
	Customizing Main Menus
	The GWMenu Object
	The GWMenuAction Object

	The GWMenuItems Collection Object
	Add Menus and MenuActions
	The AddMenu Method
	The Add Method

	Set the Menu or MenuAction Properties
	Return Value
	Customizing Context Menus
	Customizing Toolbars
	The GWToolBar.ToolbarItems Property
	Adding Buttons
	Deleting Buttons
	Power Tip: ToolbarID

	Summary

	Capturing a Predefined Command
	Creating a Custom Message
	Pick a Parent Class to Subtype

	Create a New C3POServer Class
	Modifying the Appearance of your Custom Message

	GroupWise Events
	Summary

	Putting It All Together
	Another Look At Validate
	New Message Menus
	More About the Button Bar

	The Message Field
	The Report Generator
	Use The Wizard

	The Form
	The C3PO Server
	CanShutdown
	RegisterServer
	Initializing
	De-Initializing

	The C3PO Object
	The CommandID Constant
	Initializing the C3PO
	Adding the Menu
	Delphi Example
	The Execute Method
	The Validate Method

	The Form Functions
	The Create Button
	Executing the Query
	Sorting the Items
	Creating the New Message

	Summary

		2002-07-19T14:05:47-0600
	Novell AppNotes

