
Kernel Module Packages Manual
for CODE 10

March 6, 2006
This document specifies the requirements for rpm packages that contain kernel modules, and
describes the processes surrounding those packages including building, signing, installing,
and upgrading. A complete example is given and explained.

This version of the Kernel Module Packages Manual applies to the Novell/SUSE CODE 10
code base, which includes SUSE Linux 10.1, SLES 10 (SUSE Linux Enterprise Server), as
well as all products based on SLES 10. An second version of this document for CODE 9 is
available as well; the CODE 9 version covers SLES 9 and SUSE Linux 10.0.

A few issues related to the new package manager and dependency resolver library still need to
be tested and documented here. The relevant places in this document are highlighted like this
paragraph.

Introduction
The Linux kernel supports adding functionality at runtime through kernel loadable modules.
It includes more than 1500 modules, about 75 percent of which are hardware drivers. These
modules are shipped as part of the kernel packages. In some cases it is desirable to add
additional modules or replace existing ones. (For example, a driver for a particular storage
controller that was not available at the time of product release might be added later in order to
support new hardware.)

Kernel modules interact with the kernel by the means of exported symbols, in a way similar to
how binaries use shared libraries.1 To ensure that the kernel and modules refer to the same
symbols, a version checksum (aka modversion) is added to each symbol that is computed
from the symbol’s type: in the case of function symbols, the checksum is determined by the
function’s parameters and return type.

When any of a function’s parameters or the return type changes, the checksum changes as
well. This includes all the data types involved recursively: if a function takes a struct
task_struct as parameter and struct task_struct includes a field of type struct dentry, then a
change to struct dentry will cause the symbol’s version checksum to change as well. Symbol
version checksums for different kernel flavors (e.g., kernel-default vs. kernel-smp) will not
match, and symbol versions of the same kernel package on different architectures (e.g.,
kernel-default on i386 vs. x86_64) will not match, either. This mechanism ensures that the
kernel and kernel modules agree on the types of data structures that they use to communicate.

Unless symbol version checking is disabled, modules will only load if the checksums of the
symbols they use match the checksums of the symbols that the kernel exports. The exported
symbols and their version checksums comprise the kernel Application Binary Interface (ABI).
When an update kernel includes kernel ABI changes, kernel modules that use any modified
symbols must be updated as well.

1 The /proc/kallsyms file lists all symbols currently known to the kernel.

Kernel Module Packages Manual

During its multi-year life cycle, products like SUSE Linux Enterprise Server (SLES) undergo
continuous changes, and different kinds of updates like Service Packs (SPs), maintenance / security
updates, and customer-specific updates (PTFs = Program Temporary Fixes) are released. The
Application Binary Interface (ABI) between the kernel and kernel modules is volatile, and some
kernel updates will change the kernel ABI by adding or removing exported symbols, or existing
symbol checksums may change because of changes in data structures they reference. We strive to
keep the kernel ABI stable in maintenance / security and customer-specific updates, but sometimes
we cannot avoid changes. In Service Packs, we reserve the right to introduce more intrusive
changes, which increases the likelihood of ABI changes. We believe that the added flexibility
outweighs the disadvantages of breaking older modules. Please see kABI Stability in SLES [1] and
The Linux Kernel Driver Interface [2] for discussions of this topic.

All Linux products that Novell/SuSE offers primarily use the RPM Package Manager for software
management. This also applies to kernel modules, which must be packaged following a number of
rules that ensure that the resulting Kernel Module Packages (which are also referred to as Kernel
Driver Packages) can be installed and updated appropriately, in sync with kernel updates.

This document specifies Kernel Module Packages, describes how they fit into the build system, and
how to create, sign, and deploy them.

 1 Kernel Packages
All Novell/SUSE products based on 2.6.x kernels contain a set of kernel packages that all share the
same version and release number; they are built from the same kernel sources. These packages are:

kernel-flavor

A binary kernel package. Each architecture has its own set of kernel flavors (e.g., kernel-default,
kernel-smp, kernel-bigsmp, kernel-um, kernel-xen). These are the packages that the kernel
modules will be used with.

kernel-source

The kernel source tree, generated by unpacking the vanilla kernel sources and applying all
necessary patches. While the kernel-flavor packages technically are not built from the
kernel-source package, they are built from the same source tree. This tree should be used for
module building.

kernel-syms

Kernel symbol version information for compiling external modules. This package is required for
building external modules. If this package is not used, the resulting modules will be missing
symbol version information, which will cause them to break during kernel updates. The
kernel-source and kernel-syms packages used for compiling external modules must match each
other exactly.

Please refer to Working With The SUSE 2.6.x Kernel Sources [3] for more information.

 2 Kernel Modules
Documentation on general kernel module building can be found in abundance on the Internet [5, 6].
Novell/SUSE specific information is found in Working With The SUSE 2.6.x Kernel Sources [3].

Novell/SUSE March 6, 2006 2

Kernel Module Packages Manual

Once built, kernel module binaries are installed below /lib/modules/version-release-flavor on the
file system (e.g., /lib/modules/2.6.16-97-default for the kernel-default-2.6.16-97 package). Different
kernels have different module directories, and will not usually see each other’s modules.

Update modules must be stored below the /lib/modules/version-release-flavor/updates/ directory.
Modules in the updates/ directory have precedence over other modules with the same name. Never
replace modules from the kernel package by overwriting files: this would lead to inconsistencies
between the file system and the rpm database.

Modules usually remain compatible with a range of kernel-flavor packages. To make such modules
visible to other kernel-flavor packages, symbolic links to compatible modules are put in
/lib/modules/version-release-flavor/weak-updates/ directories. Modules in the weak-updates/
directory has lower priority than modules in the updates/ directory, but higher priority than all other
modules in /lib/modules/version-release-flavor. If more than one compatible module is available for
a kernel, the module with the highest kernel release is chosen.

Kernel modules must never be installed as individual files on a production system, and always as
part of a Kernel Module Package.

 3 Kernel Module Packages
Kernel Module Package spec files define a main package, and a sub-package for each kernel flavor
supported. The kernel-specific sub-packages are defined with the %suse_kernel_module_package
rpm macro. The macro automatically determines for which kernel flavors to generate sub-packages.
Several options are available to modify the macro’s behavior, which are described below:

%suse_kernel_module_package [-s subpkg] [-f filelist] [-p preamble] [-n name] [-v version]
[-r release] [-x] [flavor] ...

The main package of a Kernel Module Package can either contain no %files section, in which case
rpm will not create a binary package with the main package’s name, or it can be used for the
user-space part associated with the kernel modules that end up in the kernel specific sub-packages.
(The example Kernel Module Package in Appendix A has a main package without a %files
section.)

Kernel Module Packages must adhere to the following rules:

● The package Name should consist of two components: a unique provider prefix, and a driver
name. Hyphens are disallowed in the provider prefix, and allowed in the driver name. The
provider prefix serves to create a non-overlapping name space for all providers.

The sub-package names is composed of the main package name, followed by a dash, and the
flavor of the supported kernel. The first component (main package name) can be overridden with
a different value with the -n option of the %suse_kernel_module_package macro.

● The kernel module package Version can have an arbitrary value.

The sub-package versions are composed of the main package version, followed by an underscore,
and the version of the kernel supported. Since sub-packages already include the supported
kernel’s flavor in their name, the flavor is not again included in the sub-package’s version.
Dashes in the kernel release are replaced by underscores. The first component (main package
version) can be overridden with the -v option of the %suse_kernel_module_package macro.

● The kernel module package Release can be assigned freely as required. It must be incremented at
least once for each package release.

Novell/SUSE March 6, 2006 3

Kernel Module Packages Manual

 The sub-package release numbers equal the main package’s release number. It can be overridden
with the -r option of the %suse_kernel_module_package macro.

● The appropriate Requires and Provides tags are computed automatically by rpm as described in
the RPM Provides And Requires section below. Requires and Provides tags in the spec file will
only be effective for the main package.

● Kernel modules must be installed below /lib/modules/version-release-flavor/updates/.

● Packages must be signed with a public/private key pair, and the public key of the private/public
key-pair used for signing must be made known to rpm. See the Signing Kernel Module Packages
section below for details.

The spec file must define a %name-KMP sub-package as shown in the example spec file in
appendix A. This sub-package must have a Summary and Group tag, and a %description section.
The summary and group tags, and description, are used as the summary, group, and description of
each kernel-specific sub.package that is created.1

The %suse_kernel_module_package macro uses a default sub-package template that should work
for most Kernel Module Packages. This template can be overridden using the macro's -s option. The
default template takes care of the following:

● When a Kernel Module Package package is installed, depmod is called to update module
dependency information and various maps. Symlinks pointing at the new modules are created in
other kernels’ weak-modules/ directories for all compatible modules. Initial ramdisks used during
booting are recreated if they contain some of the added modules.

● When a Kernel Module Package us removed, depmod is called to update module dependency
information and various maps. The symlinks pointing to the modules being removed are removed
as well. Initial ramdisks are recreated in case they did contain some of the removed modules.

By default, each kernel-specific sub-package will have the following list of files, which can
separately be overridden with the -f option:

%defattr (-,root,root)
/lib/modules/%2

Additional sub-package preamble lines such as Requires, Provides, and Obsoletes tags can be
specified with the -p option. Filename arguments specified in -s, -f, and -p should be given as
absolute path names (e.g., %_sourcedir/file). The following substitutions are defined in those files:

%1 Flavor of the sub-package (e.g., default).
%2 Kernel release string (e.g., 2.6.16-97-default).
%3 Kernel release string without flavor (e.g., 2.6.16-97).
%{-v*} The sub-package version.
%{-r*} The sub-package release.

Some Kernel Module Packages may make sense only for some of the kernel flavors a given
architecture supports. A list of flavors to exclude from the build can be passed to the
%suse_kernel_module_package macro. The meaning of this list can be inverted with the -x option:
with -x, the flavors mentioned will be included. The example Kernel Module Package spec file in
Appendix A excludes the kdump and uml flavors.

1 For Novell/SUSE employees: Autobuild will replace these fields by whatever data exists in the Package Database.
This mechanism ensures that the sub-package description is translated as for any other package.

Novell/SUSE March 6, 2006 4

Kernel Module Packages Manual

Appendix A contains an example spec file for a Kernel Module Package. When this spec file is built
on x86_64 as described in section Building Kernel Module Packages below, the BuildRequires tag
in the spec file will pull the kernel-source and and kernel-syms packages into the build root. Let us
assume that the two packages are available in version/release 2.6.16_rc1-2, and that the default,
kdump, smp, and xen kernel flavors are available on that platform. RPM would then create the
following packages:

novell-example-kmp-default-1.1_2.6.16_rc1_2-0.x86_64.rpm
novell-example-kmp-smp-1.1_2.6.16_rc1_2-0.x86_64.rpm
novell-example-kmp-xen-1.1_2.6.16_rc1_2-0.x86_64.rpm

The generated packages would contain the following modules, and require and provide the
following symbols:

Package Requires Provides

novell-example-
kmp-default

kernel
kernel(built_in) = 368e76d2ad800f86

novell-example-kmp = 1.1_2.6.16_rc1_2-0
novell-example-kmp-xen =

1.1_2.6.16_rc1_2-0
ksym(exported_function) = 2abca7b2

Modules /lib/modules/2.6.16-rc1-2-default/updates/moo.ko

novell-example-
kmp-smp

kernel
kernel(built_in) = 6f1c8e11b913710f

novell-example-kmp = 1.1_2.6.16_rc1_2-0
novell-example-kmp-xen =

1.1_2.6.16_rc1_2-0
ksym(exported_function) = 85e1229d

Modules /lib/modules/2.6.16-rc1-2-smp/updates/moo.ko

novell-example-
kmp-xen

kernel
kernel(built_in) = e916ffe914f865fb

novell-example-kmp = 1.1_2.6.16_rc1_2-0
novell-example-kmp-xen =

1.1_2.6.16_rc1_2-0
ksym(exported_function) = e52d5bcf

Modules /lib/modules/2.6.16-rc1-2-xen/updates/moo.ko

 4 RPM Provides And Requires
As stated in the introduction, kernels export symbols that kernel modules use. Symbols have version
checksums attached, and the checksums of the exported kernel symbols must match the checksums
of the used kernel symbols. These dependencies are mapped to symbols that the kernel packages
provide and that Kernel Module Packages require at the rpm package level.

Typical packages only require and/or provide a handful of symbols, so package managers are not
designed to handle hundreds and thousands of package dependencies. Therefore, the kernel and
Kernel Module Packages do not provide/require each kernel symbol individually. Instead, symbols
are grouped together into classes. The classes are computed when the kernel packages are built; the
number of classes is much smaller than the number of symbols. The packages then provide and
require these symbol classes instead of individual symbols.

When modules in Kernel Module Packages export additional symbols, those symbols are not in an
existing class. Such symbols are mapped to per-symbol provides of those packages. Modules in
other Kernel Module Packages may require those symbols; they would also do so on a per-symbol
basis.

As an example, a kernel package would provide the following symbols:

Novell/SUSE March 6, 2006 5

Kernel Module Packages Manual

kernel(vmlinux) = 0bbceb16fcab3f0e
kernel(drivers_net) = abbc3a2161979123
kernel(built_in) = f63b376dfb966bec

A matching Kernel Module Package would then require kernel(built_in) in the same version. It
would provide exported functions as ksym(exported_function) = e52d5bcf or similar.

 5 Building Kernel Module Packages
In addition to the C and kernel programming skills required for writing the kernel module source
code in the first place, creating proper Kernel Module Packages requires some familiarity with rpm
and with build environments. Those who are looking for more information on kernel module
building may find the Linux Kernel Module Programming Guide [5] and the Linux Device Drivers
book [6] interesting. Additional Novell/SUSE specific kernel and kernel module information can be
found in Working With The SUSE 2.6.x Kernel Sources [3]. We recommend to take the example
package found in the kernel-source package as a template to reduce the complexities related to rpm.
A lot of additional information on rpm can be found at http://www.rpm.org/, including an online
version of the excellent Maximum RPM.

We strongly recommend to use the kernel build infrastructure (kbuild) for building and installing
the kernel modules, as done in the example package. Kbuild is documented in
/usr/src/linux/Documentation/kbuild/ from the kernel-source package. Trying to emulate kbuild will
lead to various problems including mis-compilations and missing or wrong symbol versions, and
increased support load due to subtle breakage.

In order to achieve consistent and reproducible builds in a defined environment independent of the
software installed on the system used for building, we recommend to use the build script from the
build.rpm package.1 This script sets up a build environment from the rpm packages the script is
pointed at. The packages are then built in this environment using chroot (see the chroot(1) manual
page). All Novell/SUSE packages are built using the same mechanism. When building Kernel
Module Packages with build.rpm, the following options of the build script are particularly relevant:

--root directory

Define the directory in which to set up the build environment. Defaults to the BUILD_ROOT
environment variable, and to /var/tmp/build-root if unset.

--rpms path1[:path2:...]

Define where build will look for packages for constructing the build environment.2 The
directories are searched recursively. Packages found earlier in the path have precedence over
packages found later, similar to how the PATH environment variable works. Defaults to the
BUILD_RPMS environment variable, and to /media/dvd/suse if unset. The --rpms option must
only be specified once.

1 For Novell/SUSE employees: the build script works similarly to Autobuild’s build and mbuild scripts. It is slightly
easier to use Autobuild instead of build.rpm’s build script where you can; this automatically gives you the most up-
to-date packages in the build environments.

2 The SUSE/Novell internal build script fetches the packages over the network based on the distribution specified
(--dist). Mbuild also accepts a set of distributions (--distset). The package selection can be influenced using the
--prefer-rpms option.

Novell/SUSE March 6, 2006 6

http://www.rpm.org/
http://www.rpm.org/

Kernel Module Packages Manual

--clean, --no-init

Reconstruct the build environment entirely from scratch (--clean), or start the build without
initializing the build environment (--no-init) , which skips the check whether all packages in the
build environment are up to date.

Build stores the created packages below usr/src/packages/ in the build environment.

On dual-architecture machines, packages for the other supported architecture can be built by
running the build script inside an architecture selector. On x86_64, the selector is called linux32, on
ppc64 this is ppc32, and on s390x the selector is called s390. The same build environment cannot
be reused for different architectures unless it is reinitialized with build’s --clean option.

See the build(1) manual page and Novell articles on build [7, 8] for further information.

Please Note

For building external modules, you need to have both the kernel-source and the
matching kernel-syms package installed in the build environment; the BuildRequires
line in spec files takes care of this. Without kernel-syms the module build may still
succeed depending on how you do the build, but the resulting modules will have
module symbol versions disabled. Kernel Module Packages without module symbol
versions will appear to match any kernel while in fact they do not. This can easily lead
to very hard to diagnose system malfunctions.

 6 Signing Kernel Module Packages
Before packages are deployed, they should be signed using GNU Privacy Guard (GPG). Signing
packages allows customers to define which parties they trust for producing packages for them. The
package manager will refuse to install unsigned packages.

In order to sign packages, a private/public key pair must be installed on the GPG keyring of the
signing user (see the --gen-key option in the gpg(1) manual page). Then, the following command
can be used to sign a package (replace build@novell.com with the identity that identifies your
signing key):

$ rpm --eval "%define _signature gpg" \
--eval "%define _gpg_name build@novell.com" \
--addsign package.rpm

Note that a package can only be signed once. Another --addsign operation will replace an existing
old signature, and will add the new one.

The public key used for signing must then be exported into a file with:

$ gpg --armor --export build > build-pubkey.txt

Then, import the key into the rpm database with:

$ rpm --import build-pubkey.txt

You can verify that both package signing and key import have succeeded with rpm’s --checksig
option (note the “gpg” in the output):

Novell/SUSE March 6, 2006 7

Kernel Module Packages Manual

$ rpm --checksig package.rpm
package.rpm: (sha1) dsa sha1 md5 gpg OK

The public key exported to build-pubkey.txt must be delivered to customers in a way that they will
trust. It must be imported into the rpm database on systems on which the signed packages shall be
installed.

 7 Deploying Kernel Module Packages
Kernel Module Packages must first be installed on target systems, either from an update medium, or
by installing the package.

 8 System Installation and Kernel Module Packages
Initial system installation is carried out by YaST from some installation media (CDs or DVDs,
network locations, etc.). Support for additional hardware that the installation media do not provide
can be added with update media. This is most important to enable hardware needed for booting,
such as storage controllers.

The update media (aka Driver Update Disks) contain two kinds of modules: those which the kernel
that runs the installation uses, and those which are installed on the target system. The latter should
be put on update media as rpm packages. In addition to modules and Kernel Module Packages,
update media may contain scripts which are run at specific times during the installation. The Update
Media HOWTO [4] describes in more detail what Novell/SUSE Update Media must contain in
order to work.

We need to fix the way in which update media install rpms located on them: right now, they are all
installed, disregarding dependencies. We must make sure to only install rpms that have no
unresolved dependencies.

We do not yet know how to register an installation source, either from an update medium, or by
hand.

After the initial YaST installation, additional driver packages can be installed using any of the
mechanisms for installing rpm packages (the YaST Package Manager, YOU Online Updates, the
rpm command, etc.).

Please note that drivers that are required for getting to and accessing the root file system must be
part of the initial ramdisk (initrd). YaST will automatically include necessary kernel modules in the
initrd created during installation, but when Kernel Module Packages are installed by hand or
updated, this needs to be taken care of. Such drivers may also need to be added to the
INITRD_MODULES variable in /etc/sysconfig/kernel.

 9 Kernel Updates and Kernel Module Packages
After all installation sources that should be checked for updates have been added, the package
manager will automatically detect when new kernel packages as well as new Kernel Module
Packages become available. The dependencies between those packages will ensure that the installed
kernel packages match the installed kernel module packages.

Note that the package manager described above, and zypp, the underlying dependency resolver
library, is not yet finished. We have yet to see if they will work correctly, offer packages for update
as they become available, and handle conflicts properly.

Novell/SUSE March 6, 2006 8

Kernel Module Packages Manual

 10 Querying Installed Kernel Module Packages
Each kernel module package requires the “kernel” symbol. RPM can be used to get a list of installed
kernel module packages with:

$ rpm -q --whatrequires kernel
novell-example-kmp-smp-1.1_2.6.16_rc1_2-0

Novell/SUSE March 6, 2006 9

Kernel Module Packages Manual

Appendix A: novell-example.spec
This example spec file is described in the Kernel Module Packages section. It can be found in the
kernel-source package.

norootforbuild

Name: novell-example
BuildRequires: kernel-source kernel-syms
License: GPL
Group: System/Kernel
Summary: Example Kernel Module Package
Version: 1.0
Release: 0
Source0: %name-%version.tar.bz2
BuildRoot: %{_tmppath}/%{name}-%{version}-build

%suse_kernel_module_package kdump um

%description
This is an example Kernel Module Package.

%package KMP
Summary: Example Kernel Module
Group: System/Kernel

%description KMP
This is one of the sub-packages for a specific kernel. All the
sub-packages will share the same summary, group, and description.

%prep
%setup
set -- *
mkdir source
mv "$@" source/
mkdir obj

%build
export EXTRA_CFLAGS='-DVERSION=\"%version\"'
for flavor in %flavors_to_build; do
 rm -rf obj/$flavor
 cp -r source obj/$flavor
 make -C /usr/src/linux-obj/%_target_cpu/$flavor modules \

M=$PWD/obj/$flavor
done

%install
export INSTALL_MOD_PATH=$RPM_BUILD_ROOT
export INSTALL_MOD_DIR=updates
for flavor in %flavors_to_build; do
 make -C /usr/src/linux-obj/%_target_cpu/$flavor modules_install \

 M=$PWD/obj/$flavor
done

%changelog
* Sat Jan 28 2006 - agruen@suse.de
- Initial package.

Novell/SUSE March 6, 2006 10

mailto:agruen@suse.de

Kernel Module Packages Manual

Changes
January 27, 2006

● Take the CODE 9 Kernel Module Packages Manual, and adapt it to the CODE 10 process. A lot
has changed.

● Incorporate some feedback from discussions to the rpm signing section.

February 2, 2006

● Document the new %name-KMP sub-package used to define the sub-packages’ summary, group,
and description.

● Document %suse_kernel_module_package’s new -f option for defining an alternate list of files.

● Update the spec file example.

February 3, 2006

● Change the naming convention of the kernel-specific sub-packages from name-flavor to name-
kmp-flavor. The spec files do not need to be adapted for that; all the logic is in the rpm package.

March 6, 2006

● Document additional %suse_kernel_module_package options.

References
[1] Kurt Garloff et al.: kABI Stability in SLES,

http://www.suse.de/~agruen/kabi (Temporary location; please contact Kurt Garloff
<garloff@suse.de> in case this URL has become unavailable.)

[2] Greg Kroah-Hartman: The Linux Kernel Driver Interface,
http://www.kroah.com/log/linux/stable_api_nonsense.html

[3] Andreas Grünbacher: Working With The SUSE 2.6.x Kernel Sources,
http://www.suse.de/~agruen/kernel-doc/

[4] Update Media HOWTO, ftp://ftp.suse.com/pub/people/hvogel/Update-Media-HOWTO

[5] Peter Jay Salzman, Michael Burian, Ori Pomerantz: The Linux Kernel Module Programming
Guide, http://www.tldp.org/LDP/lkmpg/2.6/html/index.html.

[6] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman: Linux Device Drivers, Third
Edition, February 2005, http://www.oreilly.com/catalog/linuxdrive3/. Also available online at
http://lwn.net/Kernel/LDD3/.

[7] Cory Aitchison: Building Packages for Novell’s Linux Products,
http://developer.novell.com/ndk/whitepapers/buildrpm.htm.

[8] build.rpm: Reproducible Build and Test Cleanrooms for SUSE LINUX (White Paper), April
2005, http://www.novell.com/collateral/4621440/4621440.pdf.

Novell/SUSE March 6, 2006 11

http://www.novell.com/collateral/4621440/4621440.pdf
http://developer.novell.com/ndk/whitepapers/buildrpm.htm
http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/
http://www.oreilly.com/catalog/linuxdrive3/
http://www.oreilly.com/catalog/linuxdrive3/
http://www.tldp.org/LDP/lkmpg/2.6/html/index.html
ftp://ftp.suse.com/pub/people/hvogel/Update-Media-HOWTO
http://www.suse.de/~agruen/kernel-doc/
http://www.kroah.com/log/linux/stable_api_nonsense.html
http://www.suse.de/~agruen/kabi
http://www.suse.de/~agruen/kabi

	 1 Kernel Packages
	 2 Kernel Modules
	 3 Kernel Module Packages
	 4 RPM Provides And Requires
	 5 Building Kernel Module Packages
	 6 Signing Kernel Module Packages
	 7 Deploying Kernel Module Packages
	 8 System Installation and Kernel Module Packages
	 9 Kernel Updates and Kernel Module Packages
	 10 Querying Installed Kernel Module Packages

