
ODI Specification: Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the
U.S. or Canada.

Copyright © 1993-2000 Novell, Inc. All rights reserved. No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

U.S. Patent Nos 5,553,139; 5,553,143; 5,677,851; 5,758,069; 5,784,560; 5,818,936; 5,864,865; 5,903,650;
5,905,860; 5,910,803 and other Patents Pending.

Novell, Inc.

122 East 1700 South

Provo, UT 84606

U.S.A.

www.novell.com

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

May 2000

104-000194-001

Online Documentation: To access the online documentation for this and other Novell developer products,

and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products, see

www.novell.com/documentation.
Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.

AppTester is a trademark of Novell, Inc., in the United States.

ArcNet 68 is a trademark of Novell, Inc.

BorderManager is a trademark of Novell, Inc.

C3PO is a trademark of Novell, Inc.

Client 32 is a trademark of Novell, Inc.

ConsoleOne is a trademark of Novell, Inc.

Controlled Access Printer is a trademark of Novell, Inc.

Custom 3rd-Party Object is a trademark of Novell, Inc.

DeveloperNet is a registered trademark of Novell, Inc.

DeveloperNet 2000 is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.

GroupWise 5 is a trademark of Novell, Inc.

Hardware Specific Module is a trademark of Novell, Inc.

HostPublisher is a trademark of Novell, Inc.

Hot Fix is a trademark of Novell, Inc.

HSM is a trademark of Novell, Inc.

InForms is a trademark of Novell, Inc.

Internetwork Packet Exchange is a trademark of Novell, Inc.

IPX is a trademark of Novell, Inc.

IPX/SPX is a trademark of Novell, Inc.

LANalyzer is a registered trademark of Novell, Inc., in the United States and other countries.

Link Support Layer is a trademark of Novell, Inc.

LSL is a trademark of Novell, Inc.

ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.

Mirrored Server Link is a trademark of Novell, Inc.

MLI is a trademark of Novell, Inc.

MLID is a trademark of Novell, Inc.

MSL is a trademark of Novell, Inc.

Multiple Link Interface is a trademark of Novell, Inc.

Multiple Link Interface Driver is a trademark of Novell, Inc.

NControl is a trademark of Novell, Inc.

NCP is a trademark of Novell, Inc.

NDebug is a trademark of Novell, Inc.

NDPS is a registered trademark of Novell, Inc.

NDR is a trademark of Novell, Inc.

NDS is a registered trademark of Novell, Inc in the United States and other countries.

NDS Manager is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc., in the United States and other countries.

NetWare 386 is a trademark of Novell, Inc.

NetWare Aware is a trademark of Novell, Inc.

NetWare Connect is a registered trademark of Novell, Inc, in the United States.

NetWare Core Protocol is a trademark of Novell, Inc.
Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NetWare DOS Requester is a trademark of Novell, Inc.

NetWare Loadable Module is a trademark of Novell, Inc.

NetWare Management Portal is a trademark of Novell, Inc.

NetWare MHS is a trademark of Novell, Inc.

NetWare Name Service is a trademark of Novell, Inc.

NetWare Peripheral Architecture is a trademark of Novell, Inc.

NetWare Print Server is a trademark of Novell, Inc.

NetWare Requester is a trademark of Novell, Inc.

NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.

NetWare SQL is a trademark of Novell, Inc.

NetWare Telephony Services is a trademark of Novell, Inc.

NetWare Tools is a trademark of Novell, Inc.

NLM is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc., in the United States and other countries.

Novell Application Launcher is a trademark of Novell, Inc.

Novell Authorized Service Center is a service mark of Novell, Inc.

Novell BorderManager is a trademark of Novell, Inc.

Novell Certificate Server is a trademark of Novell, Inc.

Novell Client is a trademark of Novell, Inc.

Novell Directory Services is a registered trademark of Novell, Inc.

Novell Distributed Print Services is a trademark of Novell, Inc.

Novell Embedded Systems Technology is a registered trademark of Novell, Inc., in the United States and other
countries.

Novell HostPublisher is a trademark of Novell, Inc.

Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.

ODI is a trademark of Novell, Inc.

Open Data-Link Interface is a trademark of Novell, Inc.

Packet Burst is a trademark of Novell, Inc.

Personal NetWare is a trademark of Novell, Inc.

Printer Agent is a trademark of Novell, Inc.

Public Access Printer is a trademark of Novell, Inc.

QuickFinder is a trademark of Novell, Inc.

Remote Console is a trademark of Novell, Inc.

RX-Net is a trademark of Novell, Inc.

Sequenced Packet Exchange is a trademark of Novell, Inc.

SFT, SFT III, and SFT NetWare are trademarks of Novell, Inc.

SMS is a trademark of Novell, Inc.

SMSTSA is a trademark of Novell, Inc.

SoftSolutions is a registered trademark of SoftSolutions Technology Corporation, a wholly owned subsidiary of
Novell, Inc.

SPX is a trademark of Novell, Inc.

Storage Management Services is a trademark of Novell, Inc.

SVR4 is a trademark of Novell, Inc.

System V is a trademark of Novell, Inc.

Topology Specific Module is a trademark of Novell, Inc.
Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Transaction Tracking System is a trademark of Novell, Inc.

TSM is a trademark of Novell, Inc.

TTS is a trademark of Novell, Inc.

Universal Component System is a trademark of Novell, Inc.

ViewMAX is a trademark of Novell, Inc.

ZENworks is a trademark of Novell, Inc.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Java is a trademark or registered trademark of Sun Microsystems, Inc., in the United States and other countries.
 5

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
6 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
Contents

Contents

Preface

Overview . 19
Introduction . 19
Protocol Stacks . 19
Link Support Layer (LSL) . 20
Multiple Link Interface Driver (MLID) . 20
Appendices . 20

References . 20
Prerequisites . 21
Manual Conventions . 21

1 Introduction to ODI

Chapter Overview . 23
Open Data-Link Interface (ODI) . 23

Protocol Stacks . 24
Multiple Protocol Interface (MPI) . 25
Link Support Layer (LSL) . 26
Multiple Link Interface Drivers (MLIDs) . 26
Data Flow . 27

2 ODI Module Design

Chapter Overview . 31
NetWare Environment. . 31

NetWare Loadable Modules (NLMs) . 31
NLM Design and Programming Issues . 32
Memory Protection . 38
Memory Management . 39
Hardware/Media Independence . 40

Development Process. . 40
Related Files . 41

3 Overview of Protocol Stacks

Chapter Overview . 43
The NetWare Server Protocol Stack . 43
Contents 7

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
Protocol Stack Multiplexing. 43
Packet Flow with Multiple Protocol Stacks 46

4 Protocol Stack Data Structures

Chapter Overview . 53
Protocol Stack Configuration Table . 53
Protocol Stack Statistics Table . 54
Event Control Blocks . 57

Receive Event Control Block . 58
Transmit Event Control Block . 60
Event Control Block Field Descriptions. 62

5 Protocol Stack Initialization

Chapter Overview . 67
Protocol Stack Initialization . 67

LAN Boards and Auto-binding . 68
Binding . 68
Initialization . 70

6 Protocol Stack Packet Reception

Chapter Overview . 79
Protocol Stack Packet Receive Operation . 79

Protocol Stack Promiscuous Mode. 79
Receive Routine Events . 80
Prescan and Default Protocol Stack Packet Reception 80
Receive ECBs . 82
The Protocol Stack Receive Handler . 82
Setting the ECB BLink Field . 84
Setting the ECB DriverWorkSpace Field 85
Chained Protocol Stacks and Resubmission 87

7 Protocol Stack Packet Transmission

Chapter Overview . 89
Protocol Stack Packet Transmission. 89
Transmission Routine Events . 89
Starting the Packet Transmission . 90
Supporting Multiple Outstanding Transmission Requests 90

Sending the Packet. 91
Handling a Transmit Event Control Block . 92

Raw Sends . 94
The Prescan Protocol Stack Transmission Handler 97
8 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
Chained Prescan Transmission Protocol Stacks and Resubmission 98
Transmission Complete . 99
Protocol Transmission Complete Handler. 99

8 Protocol Stack Control Routines

Ctl0_GetProtocolStackConfiguration . 103
Ctl1_GetProtocolStackStatistics. . 105
Ctl2_Bind . 107
Ctl3_Unbind . 109
Ctl4_MLIDDeRegistered . 111
Ctl5_ProtocolPromiscuousChange . 113
Ctl100_GetProtocolStringForBoard . 115
Ctl101_GetBoundNetworkInfo . 117

9 Overview of the LSL

Chapter Overview . 119
Link Support Layer (LSL) . 119

10 The LSL Statistics Table

Chapter Overview . 121
LSL Statistics Table . 121
The LSL Logical Board Statistics Structure . 124

11 LSL Support Routines (Assembly Language)

LSLAdapterMutexLock . 133
LSLAdapterMutexTryLock. . 135
LSLAdapterMutexUnlock . 137
LSLAddPollingProcedure . 138
LSLAddProtocolID. . 140
LSLAddTimerProcedure. . 143
LSLAllocatePhysicalBoardID . 145
LSLAssignMutexToInstance. . 147
LSLBindStack . 149
LSLControlStackFilter . 152
LSLDeFragmentECB . 154
LSLDeRegisterDefaultChain . 156
LSLDeRegisterMLID . 158
LSLDeRegisterPreScanRxChain . 160
LSLDeRegisterPreScanTxChain . 162
LSLDeRegisterStack . 164
LSLDeRegisterStackSMPSafe . 166
Contents 9

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
LSLFastRcvEvent . 168
LSLFastSendComplete. 172
LSLFreePhysicalBoardID . 173
LSLGetBoundBoardInfo . 174
LSLGetLinkSupportStatistics . 176
LSLGetMaximumPacketSize . 177
LSLGetMLIDControlEntry . 178
LSLGetMultipleSizedRcvECBRTag . 180
LSLGetPhysicalAddressOfECB . 182
LSLGetPIDFromStackIDBoard . 183
LSLGetProtocolControlEntry . 185
LSLGetSizedRcvECBRTag . 187
LSLGetStackIDFromName . 189
LSLGetStartChain . 191
LSLHoldRcvEvent . 194
LSLModifyStackFilter . 198
LSLRegisterDefaultChain . 200
LSLRegisterMLIDRTag. 203
LSLRegisterPreScanRxChain . 205
LSLRegisterPreScanTxChain . 208
LSLRegisterStackRTag . 211
LSLRegisterStackSMPSafe . 213
LSLRemoveMutexFromInstance . 215
LSLRemovePhysicalMutex. 217
LSLRemovePollingProcedure . 219
LSLRemoveTimerProcedure . 221
LSLReSubmitDefaultECB . 223
LSLReSubmitPreScanRxECB . 225
LSLReSubmitPreScanTxECB . 226
LSLReturnRcvECB . 227
LSLSendComplete . 228
LSLSendPacket . 229
LSLServiceEvents . 233
LSLSMPGetSendQ. 235
LSLSMPReaderLock . 237
LSLSMPReaderToWriterLock . 239
LSLSMPReaderUnLock . 241
LSLSMPWriterLock . 243
LSLSMPWritertoReaderLock. 245
LSLSMPWriterUnLock . 247
LSLUnbindStack . 249
LSLUnBindThenDeRegisterMLID . 251

12 LSL Support Routines (C Language)
10 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
CLSLAddProtocolID . 255
CLSLBindStack . 257
CLSLControlStackFilter . 259
CLSLDeRegisterDefaultChain. . 261
CLSLDeRegisterPreScanRxChain . 263
CLSLDeRegisterPreScanTxChain . 265
CLSLDeRegisterStack . 267
CLSLGetBoundBoardInfo . 269
CLSLGetMLIDControlEntry . 271
CLSLGetPIDFromStackIDBoard . 273
CLSLGetProtocolControlEntry . 275
CLSLGetStackIDFromName . 277
CLSLGetStartChain . 279
CLSLModifyStackFilter . 281
CLSLRegisterDefaultChain . 283
CLSLRegisterPreScanRxChain . 286
CLSLRegisterPreScanTxChain . 289
CLSLRegisterStackRTag . 292
CLSLReSubmitDefaultECB . 294
CLSLReSubmitPreScanRxECB . 295
CLSLReSubmitPreScanTxECB . 296
CLSLReturnRcvECB . 297
CLSLSendPacket . 298
CLSLUnbindStack . 302

13 Overview of the MLID

Chapter Overview . 303
The NetWare Server MLID . 303

MLID Procedures . 303
MLID Initialization . 305
Board Service Routine . 305
Packet Transmission . 306
Multiple Operating System Support . 306
Control Procedures . 306
Timeout Detection . 306
Driver Remove . 306
MLID Data Structures and Variables . 307
Configuration Table . 307
Statistics Table . 307

MLID Functionality . 307
Reentrancy . 307
Multiple Frame Support . 308
Multiple Frame Support in Reentrant Code 308
Contents 11

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
MLID Design Considerations . 313

14 MLID Data Structures

Chapter Overview . 315
Frame Data Space . 315

The MLID Configuration Table . 315
Configuration Table Flags . 327
Deriving the Maximum Packet Size . 332

Adapter Data Space . 333
MLID Statistics Table. 334
MLID Statistics Table Field Descriptions 336
CounterMask Bit Maps . 340
Topology-specific Counters . 342

Event Control Blocks . 350
Receive Event Control Block . 351
Transmit Event Control Block . 352
Event Control Block Field Descriptions. 353

Driver Firmware . 358
Reading Driver Firmware: Example Code 358

15 The MLID Initialization Routine

Chapter Overview . 361
The MLID Initialization Routine . 361

Loading the MLID . 362
Requirements of the Calling Routine . 362
Initialization Parameters Passed on the Stack 362
Adapter Data Space and Frame Data Space 364
Resource Tags . 364
Determining Hardware Options . 366
Parsing the Command Line . 366
Registering Hardware Options . 368
Setting Up A Board Service Routine . 368
Initializing the LAN Adapter . 369
Registering with the LSL . 370
Scheduling a Hardware Time Out Check 370
Error Handling . 371

Pseudocode for DriverInitialize. 371

16 The MLID Packet Reception Routine

Chapter Overview . 377
The Packet Reception Routine. 377

Reception Methods. 378
12 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
Front Ends for the Board Service Routine. 381
The Board Service Routine . 383
Handling Receive Errors . 391
Transmission Complete Interrupt . 392
Transmission Error . 392
Using Shared Interrupts . 392

Pseudocode for the Board Service Routine . 393

17 The MLID Packet Transmission Routine

Chapter Overview . 397
Packet Transmission . 397

General Transmission Method . 397
Sending a Packet . 398
Queuing Sends . 398
Multiple Frame Support . 399
Raw Sends . 399
Priority Sends . 399
Packet Length . 399
Pseudocode for MLID Packet Transmission Routine 400
Pseudocode for Packet Transmission Routine for RX-Net MLlDs 401

18 MLlD Timeout Procedure

Chapter Overview . 403
Establishing a Timeout Procedure . 403

Scheduling an Interrupt Time Callback . 403
Determining the Wait Interval . 404
Identifying a Timeout Error . 404
Using System Alerts . 404
Reinitializing the LAN adapter . 404

Pseudocode for TimeOutCheck. . 405
Pseudocode for the Timeout Procedure for RX-Net MLlDs 406

19 Remove MLID Procedure

Chapter Overview . 407
Removing the MLID . 407

DeRegistering Logical Boards. . 407
Canceling Polling Procedures and Timer Events 408
Shutting Down the LAN Adapter . 408
Removing Data Spaces . 408

Pseudocode for Remove MLID . 409

20 MLID Control Routines
Contents 13

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
Preliminary Information. 412
Ctl0_GetMLlDConfiguration . 416
Ctl1_GetMLIDStatistics. 418
Ctl2_AddMulticastAddress . 420
Ctl3_DeleteMulticastAddress. 424
Ctl4_Reserved . 428
Ctl5_MLIDShutdown . 429
Ctl6_MLIDReset . 431
Ctl7_Reserved . 433
Ctl8_Reserved . 434
Ctl9_SetLookAheadSize . 435
Ctll0_MLIDPromiscuousChange . 437
Ctl11_RegisterMonitor . 440
Ctl12_Reserved . 442
Ctl13_Reserved . 443
Ctl14_Driver Management . 444
Ctl15_Reserved . 447
Ctl16_RemoveNetworkInterface . 448
Ctl17_ShutdownNetworkInterface . 449
Ctl18_ResetNetworkInterface . 451
Pseudocode for DriverControl . 452

21 Operating System Support Routines

AddPollingProcedureRTag . 466
Alloc . 468
AllocateMappedPages . 470
AllocateResourceTag . 473
AllocBufferBelow16Meg . 476
AllocNonMovableCacheMemory . 478
BindProtocolToBoard. 480
BusInterruptClear. 482
BusInterruptEOI . 483
BusInterruptSetup . 484
CancelInterruptTimeCallBack . 488
CancelNoSleepAESProcessEvent . 490
CancelSleepAESProcessEvent . 492
CFindResourceTag. 494
ClearHardwareInterrupt . 496
ClearSymmetricInterrupt . 498
CPSemaphore . 500
CRescheduleLast . 502
CYieldWithDelay . 503
CVSemaphore . 504
14 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
DeAllocateMappedPages . 505
DeRegisterHardwareOptions . 506
DisableHardwareInterrupt . 508
DoEndOfInterrupt . 510
DoRealModeInterrupt . 512
EnableHardwareInterrupt . 515
Free . 517
FreeBufferBelowl6Meg . 519
FreeNonMovableCacheMemory . 521
GetCurrentTime . 522
GetFileServerMajorVersionNumber . 523
GetFileServerMinorVersionNumber . 524
GetHardwareBusType. . 525
GetNumberOfLANs . 527
GetRealModeWorkSpace . 528
GetServerConfigurationType . 532
GetSuperHighResolutionTimer . 533
ImportPublicSymbol . 534
MapAbsoluteAddressToDataOffset . 536
MapDataOffsetToAbsoluteAddress . 538
NetWareAlert . 540
NVMAlloc . 546
NVMAllocIO . 548
NVMFree . 551
OutputToScreen . 552
ParseDriverParameters . 554
QueueSystemAlert . 561
ReadEISAConfig . 565
ReadPhysicalMemory . 567
ReadRoutine . 569
RegisterForEventNotification . 572
RegisterHardwareOptions . 577
RemovePollingProcedure . 579
ScheduleInterruptTimeCallBack. . 580
ScheduleNoSleepAESProcessEvent . 582
ScheduleSleepAESProcessEvent . 584
SetHardwarelnterrupt . 586
SetSymmetricInterrupt. . 589
SMPDoEndOfInterrupt . 592
UnRegisterEventNotification . 593
WritePhysicalMemory . 595

22 Assembling and Linking NLMs
Contents 15

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
Overview . 597
NetWare Loadable Modules (NLMS) . 597

Creating an NLM . 598
The NetWare Linker . 599

The Definition File . 599
Loading and Unloading. 604

23 Debugging NLMs

Overview . 605
The NetWare Debugger . 605

Setting Breakpoints. 606
Changing Memory . 608
Dumping Memory . 609
Register Manipulations . 610
I/O . 611
Miscellaneous . 611
Grouping Operators . 615
Unary Operators . 615
Ternary Operator . 616

24 Server Command Line Parameters and Keywords

Overview . 617
MLID Keywords . 617

DMA . 617
SLOT . 618
PORT. 618
MEMORY ADDRESS . 618
MEMORY LENGTH . 618
INTERRUPT NUMBER. 618
NODE . 619
RETRIES . 619
FRAME . 619

25 Writing Protocol Stacks for NetWare SFT III

Overview . 621
Introduction to NetWare SFT III . 621

Mirrored Server Implementation . 621
Primary and Secondary Servers . 622
MSEngine and IOEngine . 622
Events and Requests on Mirrored Servers. 623
Mirrored Servers and PC Clients . 624
NetWare SFT III and Existing Applications. 625
16 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
Protocol Stacks and NetWare SFT III . 625
NetWare SFT III Basic Architecture . 625
Inter-Engine Support Layer . 625
Protocol Stacks and the Inter-Engine Support Layer 626
The Protocol Stack NLM . 627
Additional Protocol Stack Capabilities. . 627
IPX Protocol Stack Communication . 628

Developing Protocol Stacks for SFT III . 628
Protocol IDs for the VIRTUAL_LAN Frame Type 628
Nonrouting Protocol Stacks on SFT III . 629
LSL Routines, IOCTLS, and OS Routines for SFT 11 Protocol Stacks 631

LSLSendProtocolInfoToOtherEngine . 632
LSLSendProtocolInfoToPartner . 633
Ctl6SFTIIIExchange. . 635

26 Revision History

May 2000 Release - Doc Version 1.21 . 639

27 Glossary
Contents 17

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

doc_tpl.fm Rev 99a 30 July 99
18 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Preface

This is Spec Version 4.10, Doc Version 1.21.

Overview

This document describes the ODI specification in the NetWare server
environment and tells you how to write protocol stacks, and network
communications drivers (LAN drivers) for NetWare file servers (NetWare 3
and NetWare 4). ODI allows multiple protocols to operate in the NetWare 3
and NetWare 4, DOS/WIN, OS/2, WIN95, and NT environments. Writing a
LAN driver that conforms to the ODI specification ensures compatibility with
any protocol that is also written to the ODI specification (for example, TCP/
IP, ISO, IPX, etc.).

This document describes the ODI architecture, which consists of three main
elements: protocol stacks, the LSL, and the LAN driver, also called the
Multiple Link Interface Driver (MLID). This document is organized into
sections that discuss each element of the architecture individually. The
document contains five sections: the introduction, one section for each ODI
module, and the appendices.

Introduction

Introduces the ODI architecture and discusses the design issues relevant to the
ODI architecture as it applies to the NetWare server environment.

Protocol Stacks

Explains the architecture of an ODI protocol stack and discusses the design
issues relevant to an ODI protocol stack for the NetWare server. This section
Preface 19

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
also discusses protocol stack data structures, initialization, packet reception,
and transmission and control routines.

Link Support Layer (LSL)

Presents a brief overview of the LSL and describes its statistics table. This
section also includes descriptions of the general LSL support routines, the
Multiple Protocol Interface (MPI) support routines, and Multiple Link
Interface (MLI) support routines.

Multiple Link Interface Driver (MLID)

Explains the architecture of an ODI MLID and discusses the design issues
relevant to an ODI MLID for the NetWare server. This section also discusses
MLID data structures, initialization, packet reception and transmission, MLID
unloading, time-out, and the control routines.

Appendices

Contains information that is sometimes necessary to build an ODI MLID. This
section also provides more information about particular subjects. The
appendix section contains information such as operating system support
routines that the MLID might need to access, NLM assembling and linking,
and the NetWare debugger.

References

This document refers to the following ODI Specification Supplements:

! The MLID Installation Information File

! The Hub Management Interface

! Source Routing

! Canonical and Noncanonical Addressing

! Frame Types and Protocol IDs

! Standard MLID Message Definitions
20 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Prerequisites

The NetWare 3 and NetWare 4 operating systems run in both real mode and
protected mode. MLID and protocol stack developers must understand
protected mode issues.

Manual Conventions

All numbers in this document are decimal unless noted otherwise.
Hexadecimal numbers are followed by a lowercase h (for example, 00FFh).
Where byte fields are defined, byte 0 is assumed to be the low-order bit.

The data types in this document are defined as follows:

byte 1-byte unsigned integer
char 1-byte ASCII character
offset 4-byte near offset of an Intel 80386/80486 address

Numeric fields composed of more than one byte can be in one of two formats:
high-low or low-high. High-low numbers contain the most significant byte in
the first byte (the byte with the lowest address) of the field, the next most
significant byte in the second byte, and so on, with the least significant byte
appearing last (in the highest address). Low-high numbers are stored in the
opposite order. The Intel 80X86 microprocessors store numbers in low-high
order.

Table 1 How Bytes Are Stored in Memory (Example Number: 123456788h) – Low-high Order

Table 2 How Bytes Are Stored in Memory (Example Number: 123456788h) – High-low Order

Byte Address Number

Least Significant Byte 0000001Ah 78

0000001Bh 56

0000001Ch 34

Most Significant Byte 0000001Dh 12

Byte Address Number

Most Significant Byte 0000001Ah 12
Preface 21

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
0000001Bh 34

0000001Ch 56

Least Significant Byte 0000001Dh 78

Byte Address Number
22 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
1 Introduction to ODI

Chapter Overview

This chapter briefly describes the Open Data-Link Interface (ODI)
specification. It describes the functions of MLIDs, protocol stacks, and the
LSL. This chapter also contains a brief description of data flow through the
ODI.

You should read this chapter if you are not familiar with the basic concepts
involved in the ODI specification.

Because the ODI specification provides for communications between a
variety of protocols and media, LAN drivers are called Multiple Link Interface
Drivers (MLIDs). The Link Support Layer (LSL) handles the transfer of
information between MLIDs and protocol stacks.

The terms MLID and LAN driver are interchangeable.

Open Data-Link Interface (ODI)

NetWare server MLIDs and protocol stacks must conform to the ODI
specification. Figure 1.1 shows the elements that make up the ODI
specification.
Introduction to ODI 23

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The ODI specification allows multiple network protocols and LAN adapters
(physical boards) to be used concurrently on the same workstation or file
server. It also allows any MLID that supports more than one MAC packet
header format (frame type) to do so by making a single physical LAN adapter
appear to be more than one logical LAN adapter (logical board). It provides a
flexible, high-performance Data Link Layer interface to Network Layer
protocol stacks. The ODI specification is comprised of the three elements
listed below and illustrated above in Figure 1.1.

! Protocol Stacks

! Link Support Layer (LSL)

! Multiple Link Interface Drivers (MLIDs)

Protocol Stacks

Functionality

Network Layer protocol stacks transmit and receive data over a logical or
physical network. They also handle routing, connection services, and APIs,
and provide an interface to allow higher layer protocols or applications access
24 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
to the protocol stack's services. As a general rule, protocol stacks written to the
ODI specification provide Open Systems Interconnection (OSI) Network
Layer functionality; however, they are not limited to this. Figure 1.2 illustrates
the ODI/OSI correspondence.

Multiple Protocol Interface (MPI)

Protocol stacks communicate with the LSL through the Multiple Protocol
Interface (MPI). The MPI is an interface that resides between the protocol
stack and the LSL (see Figure 1.3). The MPI provides protocol stacks with all
the APIs that are necessary for the protocol stack to communicate over the
network. However, protocol stacks written to ODI Specification 3 and later
also have full access to the NLM APIs documented in the NetWare SDK NLM
Programming Reference Manual.
Introduction to ODI 25

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Link Support Layer (LSL)

The LSL handles the communication between protocol stacks and MLIDs.
Because the ODI allows the physical topology to support many different types
of protocols, the MLID receives packets destined for different protocol stacks
that might be present in the system. For example, one Ethernet network might
support all of the following protocols: IPX, TCP/IP, AppleTalk, and LAT (a
Digital Equipment Corporation protocol). The LSL determines which
protocol stack is to receive the packet. Then, the protocol stack determines
where the packet should be sent.

When the protocol stack transmits a packet, it hands the packet to the LSL.
The LSL then routes the packet to the appropriate MLID. The LSL also tracks
the various protocols and MLIDs that are currently loaded in the system and
provides a consistent method of finding and using each of the loaded modules.

Multiple Link Interface Drivers (MLIDs)

Functionality

MLIDs are device drivers that send and receive packets to and from the
physical layer or logical topology. (For example, Ethernet SNAP is a logical
topology.) The MLID interfaces with a physical board called a Network
Interface Card (NIC) or LAN adapter.
26 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The MLID appends or strips the Frame Header from the packet. MLIDs also
help determine the packet's Frame Type.

The interface used by the MLID is determined by the LAN adapter's hardware.

MLIDs can handle packets from various protocols because MLIDs do not
interpret packets. MLIDs pass received packets to the Link Support Layer
(LSL) based on information in Event Control Blocks (ECBs). ECBs are data
structures.

The MLID communicates with the LSL through an interface called the
Multiple Link Interface (MLI). The MLI (see Figure 1.4) contains the APIs
necessary for the MLID to communicate with the LSL.

Data Flow

As packets are sent and received, protocols add or remove their layer of
information.

Send Data Flow

Data is sent as follows and as shown in Figure 1.5:

1. The protocol stack receives data from the application.

2. The protocol stack determines whether to split the packet into fragments.

3. The protocol stack determines the size of the fragments.
Introduction to ODI 27

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
4. The protocol stack adds the protocol header to the packet.

5. The protocol stack sends the packet to the LSL.

6. The LSL routes the packet to the appropriate MLID.

7. The MLID adds the MAC header to the packet and hands the packet to
the LAN adapter.

8. The hardware adds the preamble to the packet and places the packet on
the wire.

Data Flow

Data is received as follows and as shown in Figure 1.6:

1. The LAN adapter receiving the packet off the wire strips the preamble
from the packet and transfers the packet to the MLID.

2. The MLID strips the MAC header from the packet and transfers the
packet to the LSL.

3. The LSL routes the packet to the appropriate protocol stack.
28 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
4. The protocol stack removes the protocol header from the packet and
transfers the data to the application.
Introduction to ODI 29

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
30 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
2 ODI Module Design

Chapter Overview

This chapter briefly describes the design, programming, and functionality
factors you must understand to write NetWare server MLIDs and Protocol
Stacks. This chapter discusses the NetWare environment, basic NLM
programming issues, and basic NetWare memory management.

You should read this chapter if you have not written a NetWare MLID or
Protocol Stack before. If you have not yet developed an NLM for the NetWare
4 and later operating systems, pay particular attention to the section on
Memory Management.

NetWare Environment

The operating system environment of the NetWare 3 and 4 servers is
significantly different from DOS, OS/2, and Windows. The NetWare
Loadable Module (NLM) is one of the key features that distinguishes
NetWare 3 and later versions of the operating system from other operating
systems.

NetWare Loadable Modules (NLMs)

NLMs are software modules that are dynamically linked to the NetWare
operating system at run-time. Once an NLM is loaded, it functions as an
integral component of the NetWare operating system, as shown in Figure 2.1.
The network supervisor uses NLMs to load or unload additional functionality
on the NetWare 3 and later operating systems without disturbing the active
network. All NetWare server MLIDs and Protocol Stacks and NLMs.
ODI Module Design 31

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Different types of loadable modules have unique filename extensions that
signify the module's function. MLIDs use the .LAN filename extension, disk
drivers use the .HAM file name extension, and Protocol Stacks and general
utility or support modules use the .NLM filename extension.

NLM Design and Programming Issues

Because server MLIDs and Protocol Stacks operate as an integral part of the
NetWare 3 and 4 operating systems, you must keep in mind the following OS
characteristics:

! NetWare is multitasking.

! Some versions of NetWare use nopreemptive scheduling and some use
preemptive scheduling.

! NetWare can call MLIDs, Protocol Stacks, and other server applications
reentrantly.

! All server MLIDs and Protocol Stacks run in 32-Bit protected mode.

! NetWare uses a flat memory model.
32 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! NetWare supports two execution levels: process time and interrupt time.

! Portions of the NetWare operating system are written in C.

Multitasking and Preemptive Issues

All versions of the NetWare operating system are multitasking; some are
uniprocessor and some are symmetric multiprocessor; some are preemptive
and some are non-preemptive.

Multitasking means that the NetWare server MLIDs and Protocol Stacks run
concurrently with other NLMs.

Preemptive means that the NetWare operating system will interrupt a process
after it has executed for a certain length of time to allow another process to
run.

Non-preemptive means that the NetWare operating system will not interrupt a
process to allow another process to run.

Since some versions of the NetWare OS are nonpreemptive, every NLM must
periodically return control of the CPU to the operating system. NLMs must
not process for extended periods of time without relinquishing control of the
CPU to the operating system so that other processes can run.

Usually MLIDs and Protocol Stacks execute for limited periods of time before
returning control to the calling process. However, you should pay special
attention to initialization time, error condition handling, and the loading and
unloading processes so that the MLIDs and Protocol Stacks do not
monopolize the processor.

Multiprocessing Issues

Beginning with NetWare 4 SMP, support for Symmetric Multiprocessing
(SMP) aware Protocol Stacks and MLIDs is included in the operating system.
Stacks and MLIDs wishing to include this support should pay close attention
to those sections new to this specification which describe the requirements for
being SMP aware. In particular, great care must be taken to make sure global
resources are protected from simultaneous access by multiple processors.

Although we recommend that MLIDs and Protocol Stacks be updated to be
SMP aware, non-SMP modules are fully supported.
ODI Module Design 33

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Reetrancy Issues

We strongly recommend that MLIDs and Protocol Stacks be written to
support reentrance. This allows the most efficient use of the server's resources.
However, you may not always need to write a reentrant MLID. For instance,
MLIDs used for testing purposes need not be reentrant. Also, if an MLID
drives a LAN adapter that supports only one frame type, and if only one of
these boards will ever be loaded in a server at one time, that MLID need not
be reentrant.

32-Bit Protected Mode Issues

The NetWare 3 and higher operating systems run in 32-bit protected mode.
When choosing the assembler to use for development, remember that it must
support the use of 32-bit registers. The assembler must also be Phar Lap
compatible so that the NLM LinkP module can link your modules.

Flat Memory Model Issues

NetWare 3 and later accesses a flat code space where CS=SS=ES=DS. All
offsets are 32-bit. Consequently, all of the support routines available within
the operating system are near calls for the MLIDs and Protocol Stacks.

Utilization of the LAN Adapter

Each Protocol Stack minimally utilizes one LAN adapter. The Protocol Stack
is independent of the LAN adapter; it sees the frame types supported by each
LAN adapter as a logical board with a corresponding board number (see
Figure 2.2). This board number is a handle the Protocol Stack uses when it
requests the LSL to perform a function on the LAN adapter.
34 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ODI was created to allow multiple LAN adapters, and to allow multiple frame
formats on each adapter. Therefore, your Protocol Stack should be able to
service multiple LAN adapters as needed. As a minimum requirement, your
Protocol Stack will service one LAN adapter.

Because ODI is a dynamic specification that allows Protocol Stacks and LAN
driver modules to be loaded and unloaded as they are needed, we strongly
recommend that your MLID or Protocol Stack be fully unloadable.

Execution Time Issues

The two principal execution times are process time and interrupt time. As you
write your MLID or Protocol Stack, you must be aware of which routines are
called at process time, which are called at interrupt time, and which can be
called at either time. The time or level at which the MLID or Protocol Stack
is called also affects what operating system routines it can access.

The process/interrupt time considerations for each operating system routine
are discussed in detail in those chapters that describe the particular routine.
The following lists show which procedures can be called at which execution
time.

MLID Routines Executed at Process Time

! Initialization
ODI Module Design 35

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! Polling Procedure

! Ctl5_MLIDShutdown

! Driver Remove Procedure

! AES Call Back Routines

! Ctl14_Driver Management

! Ctl9_SetLookAheadSize

! Ctl10_MLIDPromiscuousChange

! Ctl11_RegisterReceiveMonitor

MLID Routines Executed at Interrupt Time

! Interrupt Service Routine

! Interrupt Call Back Routines

MLID Routines Executed at Process Time or Interrupt Time

! Send

! Ctl16_RemoveNetworkInterface

! Ctl17_ShutdownNetworkInterface

! Ctl18_ResetNetworkInterface

! Ctl0_GetMLIDConfiguration

! Ctl1_GetMLIDStatistics

! Ctl2_AddMulticastAddress

! Ctl3_DeleteMulticastAddress

! Ctl6_MLIDReset

! Ctl6_RemoveNetworkInterface

! Ctl7_ShutdownNetworkInterface

! Ctl8_ResetNetworkInterface

Protocol Stack Routines Executed at Process Time

! Initialization

! BindToMLID
36 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! GetProtocolStringForBoard

! GetProtocolStackConfiguration

! GetProtocolStackStatistics

! MLIDDeRegistered

! UNbindFromMLID

! ProtocolPromiscuousChange

Protocol Stack Routines Executed at Process Time or Interrupt Time

! Send

! ReceiveHandler

NOTE: Be aware of any additional restrictions that result from calls between MLID
procedures. For example, the MLID's interrupt service routine typically calls the
MLID's packet transmission routine to transmit the next packet in the send queue
after a transmit complete interrupt. Since the MLID's interrupt service routine
executes at interrupt time, the MLID's packet transmission routine must also
observe interrupt time restrictions. In most cases, the MLID may not be reentered.
For example, if an MLID interrupt service routine calls a protocol stack transmit
complete ESR, the protocol stack may not reenter the MLID by calling
Ctl2_AddMulticastAddress. However, a protocol stack may call an MLIDs send
routine at any time.

Process Time

At process time, MLIDs and Protocol Stacks can allocate memory and (with
certain exceptions) perform file input and output (I/O). All MLIDs and
Protocol Stacks access two types of process time routines: routines that
suspend their own execution and routines that do not. Processes that put
themselves to sleep (suspend their own execution) to allow other processes on
the run queue to execute are referred to as blocking processes. Processes that
do no put themselves to sleep are called non-blocking processes.

The Protocol Stack should be restricted to limited processing during interrupt
time. It should queue interrupt time events and handle them at process time,
rather that at interrupt time.

C Language Issues

Because portions of the NetWare operating system are written in the C
programming language, and MLID procedures that are called from a C routine
ODI Module Design 37

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
must preserve the EBX, EBP, ESI, and EDI registers. This is especially true
for the MLID's driver initialization and driver removal procedures.

Processor Flags

Whenever the operating system calls an MLID or Protocol Stack routine, it
does so with the direction flag cleared (cld is in effect). If a routine needs to
set the direction flag (set), it should clear the flag before returning control to
the operating system.

In addition whenever the operating system interrupt handler calls an MLID or
Protocol Stack routine, the system interrupts are disabled (cli is in effect). If
the routine enables interrupts operating system.

Operating System Version Issues

Many features have been added or changed during the evolution of the
NetWare Operating System. It is the responsibility of the NLM developer to
detect the version of the operating system and be able to use the available
features correctly.

The memory management and interrupt registration features have been
enhanced the most.

The ImportPublicSymbol function (added in OS version 3.12, see Appendix
A, Operating System Support Routines) has been implemented to make
managing these enhancements easier. The ImportPublicSymbol function
allows external symbols to be imported dynamically, which makes it possible
to write code that will load on any version of the OS and discover what
functions are available.

Memory Protection

Protection Scheme

NetWare 4.0 has undergone extensive revision in its memory protection/
management scheme. The memory protection scheme now uses the hardware
paging mechanisms built into the Intel 386+ processors.

Illegal NLM Operations

The new memory protection scheme has resulted in increased protection of the
operating system and of NLMs. NLMs can now be loaded at either ring 0, ring
38 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
1 or ring 3. In rings 1 and 3, NLMs can be loaded within a specific domain that
is assigned at the server console. If an NLM is loaded in ring 1 and attempts
an invalid memory access or an illegal operation, the system quarantines that
NLM instead of abending. That NLMs code cannot be executed, and other
processes cannot call any of that NLM's functions. The only allowed function
for that NLM is unloading.

Memory Management

Memory Pools

Memory management was enhanced in the NetWare 4 operating system. The
five memory pools that were available before NetWare 4 have been collapsed
into two memory pools, accessible using the Alloc, Free,
AllocateMappedPages, and DeAllocateMappedPages routines (see Appendix
A, "Operating System Support Routines").

Alloc and Free are byte-level APIs that allocate memory from a local pool
created for the NLM at load time. The other two APIs are page-level (4KB)
pages that allocate from system cache. AllocateMappedPages allocates
memory below the 16MB boundary by using flags.

Memory on Page Boundaries

This management scheme means that MLIDs (DMA adapters, for example)
that require memory on physical page boundaries are guaranteed that memory
allocated with AllocateMappedPages will be on a page boundary.

Shared RAM/ROM

However, some problems arise for MLIDs that read and write to shared RAM
or ROM at initialization time before they register their memory. The NetWare
4 protection scheme recognizes these reads and writes as illegal memory
accesses and quarantines the MLID as it initializes. Because it is the operating
system console command process that initializes loading NLMs, the console
freezes.

IMPORTANT: If your MLID accesses shared RAM or ROM before it calls
RegisterHardwareOptions, use ReadPhysicalMemory and WritePhysicalMemory
APIs.
ODI Module Design 39

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Compatibility Settings

The NetWare 4 operating system has compatibility settings for memory reads
and writes to unregistered memory. These command line set commands are
called READ (or WRITE) EMULATION ON (or OFF) and READ (or
WRITE) NOTIFICATION ON (or BOTH).

EMULATION set to ON means that the operating system allows access to the
unregistered memory region. NOTIFICATION set to ON means that the
operating system displays a warning message on the console if an unregistered
memory access is attempted. EMULATION set to OFF means that the
operating system quarantines any process attempting to access unregistered
memory. EMULATION and NOTIFICATION default to ON.

Virtual Memory

Virtual memory was introduced into the NetWare Operating System in
NetWare 5. Consequently, MLID and Protocol Stack developers must make
sure that I/O memory gets locked into physical memory and is, in some cases,
physically contiguous.

Hardware/Media Independence

The LSL allows Protocol Stacks to be independent of the underlying topology
and frame type. In other words, Protocol Stacks can be used on any adapter
with any frame type without using frame-specific code. This allows the
Protocol Stacks to be used in environments that traditionally have not
supported them. Specialized Protocol Stacks can be written to be frame-
aware, but these are exceptions.

Development Process

The process of creating and loading a NetWare driver and Protocol Stack is
briefly described below.

1. Create the source files.

2. Assemble the source files into object files.

3. Link the object files using the NetWare Linker.

4. Load the NLM as part of the NetWare operating system

5. Debug the files using the NetWare Debugger.
40 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Chapters 3 through 8 provide detailed information on writing Protocol Stacks.
Chapters 13 through 20 provide detailed information on writing MLIDs.
Appendixes B and C provide a full description of assembling, linking,
installing, loading, and debugging the source files.

Related Files

The following section describes the files you will need to develop MLIDs and
Protocol Stacks.

Source Files

All MLIDs and Protocol Stacks are written in 386 Assembly Language.

Include Files

We have provided several include files with the support modules. These files
contain external variable declarations and define the equates, macros, and data
structures needed by the MLID and Protocol Stack.

Linker Definition File

The NetWare Linker requires that each NLM have a corresponding linker
definition file with a .DEF extension. This file contains a list of object files
that comprise the module, external variables, and routines the module must
access, the names of the modules initialization and exit procedures, and
several other linker directives. (See Appendix B, "Assembling and Linking
NLMs" for details).

Installation Information File

You can create an optional driver information file to simplify driver
installation. This file provides information related to the driver configuration
and loading parameters, and is required if you use the Install utility. (See ODI
Supplement: The MLID Installation Information File.)
ODI Module Design 41

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
42 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
3 Overview of Protocol Stacks

Chapter Overview

This chapter provides an overview of NetWare server protocol stack
operation. It covers protocol stack and MLID multiplexing and introduces the
concept of logical boards. This chapter also introduces packet transmission
and reception.

The NetWare Server Protocol Stack

Protocol stacks transmit and receive data over a network. They provide the
interface that allows higher layer protocols or applications access to the
protocol stack's services such as routing and connection.

Protocol Stack Multiplexing

ODI protocol stacks provide maximum flexibility because they are
independent of physical media and frame type. For instance, the following
three scenarios are possible:

! One protocol stack can concurrently use multiple frame types (also called
logical boards; see Chapter 13, "Overview of MLIDs").

! Multiple protocol stacks can be concurrently used by a frame type

! Or any combination of multiple protocols and multiple frame type is
possible. (See Figures 3.1 through 3.3)
Overview of Protocol Stacks 43

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
44 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Overview of Protocol Stacks 45

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Packet Flow with Multiple Protocol Stacks

Protocol stacks are media and frame type unaware. There fore, in order for
multiple protocol stacks to communicate with the logical boards, the LSL
must have a unique value identifying each protocol stack and logical board (or
frame type).

Routing a Packet to the Correct Protocol Stack

Packet reception is more involved than packet transmission and requires that
the protocol stack bind to a logical board in the system. Binding enables the
LSL to route incoming frames to the protocol stack.

Figure 3.4 illustrates the configuration for the following discussion.

NOTE: While tracing the packet's journey from the wire to the protocol stack, keep
in mind that the NetWare server only responds to requests from either a client or
another server.
46 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
During protocol stack initialization, the stack registers with the LSL. During
registration, the LSL assigns a unique value known as a Stack ID to each
protocol stack. When the LSL binds the protocol stack to a frame type, The
LSL assigns a predefined Protocol ID (PID) to that protocol stack. The LSL
stores the PID, the Stack ID, and the logical board number of the frame type
in a table. The LSL uses the Stack ID, PID, and logical board number to allow
communication between the protocol stacks and the logical boards.

Before the requesting entity (client or server) sends a request to the server, that
entity's MLID embeds the appropriate PID in the MAC header of the request
packet (see Figure 3.5). The location and format of the PID in the frame header
is topology and frame dependent and does not concern the protocol stack.
Overview of Protocol Stacks 47

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
When a logical board in the server's MLID receives a request from the wire,
its Interrupt Service Routine (ISR) fills in the ECB field BoardNumber with
that logical board number. (An ECB is a buffer that contains information
regarding the packet and fragment descriptors pertaining to the packet data;
see Chapter 4, "Protocol Stack Data Structures".) The logical board in the
MLID takes the PID from the MAC header and places it in the ECB field
ProtocolID. The board number and the PID to index the table and determine
the Stack ID of the stack that is to receive the packet. (See Figure 3.6.)
48 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Routing a Packet to the Correct Logical Board

When the server transmits a response, the server's LSL is able to check the
ECB Board Number field (filled out in the process above) to determine which
logical board in the MLID prepares the packet for transmission.

The information in the ECB boardNumber field is preserved, because when
an application responds, it usually returns either the same ECB or an ECB with
a copy of the pertinent fields from the original.

Packet Reception with Multiple Protocol Stacks

A protocol stack uses the following two system handles to concurrently utilize
and service multiple boards in a system boards in a system:

! The boardNumber specifies the logical board and the frame type.

! The ProtocolID (PID), together with the boardNumber, specifies which
protocol stack the packet will be sent to.

When a protocol stack registers with he LSL, the stack gives the LSL the
address of the stack's receive handler routine. This routine can be called at
interrupt time and is entered with interrupts disable. No registers or flags need
to be preserved.
Overview of Protocol Stacks 49

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Packet Reception Methods

The ODI specification defines three protocol stack reception methods:

! Bound

! Prescan

! Default

Prescan and default protocol stacks can be chained (see Chapter 5, "Protocol
Stack Initialization").

Bound Protocol Stacks

Bound protocol stacks are the most common method. A bound protocol stack
requires that frames received from the LSL have a registered Protocol ID
(PID) in the ECB ProtocolID field. The system administrator registers
Protocol IDs at the command line for each protocol stack that will be used.
The appropriate PIDs for a given protocol stack are usually different for each
frame type. ODI Specification Supplement: Frame Types and Protocol IDs
lists the common protocol stack PID values for most frame types.

The LSL uses the PID in the ECB Protocol ID field to locate the appropriate
protocol stack to receive the packet . A bound protocol stack receives only the
packets that have the registered PID for that stack.

A registered protocol stack only receives packets with one PID per logical
board. Protocol stacks containing a limited number of Network Layer
protocols that use different PIDs (for example, TCP/IP, ARP, RARP) must be
registered to the LSL as separate and distinct protocols. These protocol stacks
should be logically fragmented and each fragment registered with the LSL as
a separate protocol stack. However, these fragments can still be located in the
same NLM and can specify the same receive handler routine. The receive
handler routine then examines the ECB stackID field to determine which
subprotocol the frame is intended for.

The bound protocol stack method allows multiple protocol stacks to service
and share a single LAN adapter. This method also minimizes protocol cross
talk because the packet's protocol type is not determined by parsing the
protocol header.

Prescan Protocol Stacks

Prescan protocol stacks receive all incoming packets from a particular LAN
adapter before the packet is routed to the appropriate bound protocol stack.
50 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The protocol stack either consumes the packet, allows other protocols to
process the packet, or discards the packet. Only diagnostic utilities, or
compression protocol stacks should be used as prescan stacks.

LSLENH.NLM must be loaded before a prescan protocol stack written to this
specification can be installed on NetWare 3.12.

Default Protocol Stacks

Default protocol stacks receive every frame not claimed by any other protocol
stack (prescan or bound).

Protocol stacks that provide an alternate Data-Link Layer solution should be
default protocol stacks.

LSLENH.NLM must be loaded before a default protocol stack written to this
specification can be installed on NetWare 3.12.

Packet Reception Process

To receive packets from an MLID, a protocol stack must register with the LSL
and then bind to that MLID. Registration provides the LSL with the
information required to route packets from MLIDs to protocol stacks. The
following table describes the steps involved in packet reception.

Packet Reception Process

1. The MLID places the MLID's board number, the Protocol ID embedded
in the packet's MAC layer header, and the packet's data into a receive
ECB.

2. The MLID passes the ECB to the Link Support Layer.

3. The LSL uses the board number and Protocol ID to route the packet to the
protocol stack.

4. The LSL calls the prescan stack chain registered for the MLID.

5. The LSL in the absence of a prescan stack chain, searches for any stack
that is bound to receive packets from the MLID.

6. The LSL in the absence of a bound stack, calls the default protocol stack
chain registered for the MLID.

7. The LSL in the absence of a default stack chain, ignores the packet.

8. The LSL returns the ECB to the LSL's ECB pool.
Overview of Protocol Stacks 51

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
A protocol stack can be bound to any number of MLIDs. An MLID can be
bound to multiple protocol stacks.
52 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
4 Protocol Stack Data Structures

Chapter Overview

This chapter describes the protocol stack configuration table and the protocol
stack statistics table. It also describes the Event Control Block. The Event
Control Block is also described in Chapter 14, "MLID Data Structures", but is
included here as reference material for protocol stack developers.

Protocol Stack Configuration Table

Sample 4-1 shows the sample code of the protocol stack configuration table.
Figure 1 shows a graphic representation of the protocol stack configuration
table. Table 3 describes the fields of the protocol stack configuration table.

Sample 4-1 Protocol Stack Configuration Table Sample Source Code

CFGMajorVersion db ?
CFGMinorVersion db ?
Name db ?
ShortName dd ?
Stack_MajorVersion db ?
Stack_MinorVersion db ?
Reserved db 16 Dup (?)
Protocol Stack Data Structures 53

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 1 Graphic Representation of the Protocol Stack Configuration Table

Table 3 Protocol Stack Configuration Table Fields

Protocol Stack Statistics Table

The examples below include sample code and a graphic representation of the
protocol stack statistics table. Table 4 describes the statistics table fields.

Offset Label Size(bytes
)

Description

00h CFG_MajorVersion 1 Major version number of the configuration table (1 for this
specification).

01h CFG_MinorVersion 1 Minor version number of (0 through 99 decimal) of the
configuration table (00 for this specification).

02h Name 4 Address of a length-preceded, zero-terminated string with the
name of the protocol stack. This name may be longer than the
name used to register the stack with the Link Support Layer.
The name cannot be longer than 127 bytes.

06h ShortName 4 Address of the protocol name (length-preceded, zero-
terminated, 15 characters maximum) used to register the
stack with the Link Support Layer. This is also the name by
which the user refers to the protocol stack.

0Ah Stack_MajorVersion 1 Major version number of the protocol stack.

0Bh Stack_MinorVersion 1 Minor version number (0 through 99 decimal) of the protocol
stack.

0Ch Reserved 16 Must be set to 0.
54 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 2 Protocol Stack Statistics Table Sample Source Code
Protocol Stack Data Structures 55

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 3 Graphic Representation of the Protocol Stack Statistics Table

Table 4 Protocol Stack Statistics Table

Offset Label Size(byte
s)

Description

00h STAT_MajorVersion 1 Major version number of the statistics table (1 for this
specification).

01h STAT_MinorVersion 1 Minor version number of the statistics table (0 through 99
decimal, 0 for this specification).

02h GenericCnts 2 Number of 4-byte counters in fixed portion of table. This should
be set to 3.

08h ValidCntsMask 4 Bit mask indicating which counters are valid. The value 0
indicates Yes; the value 1 indicates No. The bit/counter
correlations are determined by shifting left as you move down
the counters in the table.
56 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Event Control Blocks

NetWare shells and operating systems use structures called Event Control
Blocks (ECBs) to receive, send, and manage packets. In the NetWare 3+
operating systems, MLIDs, the LSL, and protocol stacks all use ECBs.

0Ah TotalTXPackets 4 Total number of packets that were requested to be transmitted
(whether or not they were actually transmitted).

0Ch TotalRXPackets 4 Total number of incoming packets the protocol stack received.

10h IgnoredRXPackets 4 Total number of incoming packets the protocol stack ignored.

14h NumCustom 2 This field contains the number of custom counters defined by
the protocol stack. Each custom counter must have an
associated string that can be accessed through the
CustomStrings area (defined below).

18h Custom1 4 These fields contain custom counters that the protocol stack
can configure for its specific needs.

1Ch Custom2 4 These fields contain custom counters that the protocol stack
can configure for its specific needs.

??h CustomN 4 This field is the last of the custom counter fields.

??h+4 CustomStringPtr1 4 This field contains a pointer to the CustomString
corresponding to the first custom counter (Custom1). Each
string in this area must be null-terminated. The string order
must correspond with the custom counters.

??h+4 CustomStringPtr2 4 This field contains a pointer to the CustomString
corresponding to the second custom counter (Custom2). Each
string in this area must be null-terminated, and the table of
string is terminated by two nulls. The string order must
correspond with the custom counters.

??h+4 CustomStringPtr3 4 This field contains a pointer to the CustomString
corresponding to the last custom counter (CustomN). Each
string in this area must be null-terminated, and the table of
strings is terminated by two nulls. The string order must
correspond with the custom counter.

Offset Label Size(byte
s)

Description
Protocol Stack Data Structures 57

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Because MLIDs and protocol stacks both use ECBs, this section is duplicated
in the MLID portion of the document.

When receiving a packet, the MLID obtains an ECB, fills it out, and copies the
packet into a buffer that is immediately below the ECB. Remember that the
buffers associated with receive ECBs are contiguous. After copying the packet
from the board, the MLID passes the ECB to the LSL. The LSL then examines
the ECB and hands it to the correct protocol stack.

When sending a packet, a protocol stack puts a list of fragment pointers (that
describe the packet) in the ECB and passes the ECB to the LSL. The LSL
refers to the ECB to determine the destination MLID, and then passes the ECB
to the MLID. The MLID collects all packet fragments and sends the packet.

Receive Event Control Block

The following source code defines the receive ECB structure. The asterisks (*)
indicate the fields that the MLID fills in before passing the ECB to the LSL.
Figure 5 provides a graphic representation of the receive ECB.
58 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 4 Receive Event Control Block Sample Source Code
Protocol Stack Data Structures 59

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 5 Graphic Representation of the Receive Event Control Block

Transmit Event Control Block

The following source code is the definition of the transmit ECB. The asterisks
(*) indicate the fields that must be filled in by higher layers of the operating
system before the ECB is passed to the MLID. Figure 7 provides a graphic
representation of the transmit ECB. A description of each ECB field follows
the figures.
60 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 6 Transmit Event Control Block Sample Source Code
Protocol Stack Data Structures 61

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 7 Graphic Representation of the Transmit Event Control Block

Event Control Block Field Descriptions

The following table describes the Event Control Block fields:

Table 5 Event Control Block Field Descriptions

Offset Name Size(bytes) Descriptions

00h Link 4 Forward link to another ECB. The LSL uses this field to queue
ECBs. Protocol stacks and MLIDs can also use this field when
they possess the ECB.
62 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
04h BLink 4 This field is typically used as a back link for managing a list of
ECBs. The current owner of the ECB uses this field. When an
ECB is returned from an MLID containing a received packet,
this field contains the received packet error status. See the
"Setting the ECB BLink Field" section in Chapter 6, "Protocol
Stack Packet Reception".

08h Status 2 MLIDs must not use or modify this field. The LSL uses this field
to indicate the current state of the ECB (for example, the ECB
is currently unused, or queued for sending, etc.)

0Ah ESRAddress 4 When an ECB originates from the LSL, the LSL sets this field,
and MLIDs and protocol stacks must not use it. When a transmit
ECB originates from the protocol stack, the protocol stack sets
this field to point to a routine to be called when the transmission
is complete and the ECB is available again.

0Eh LogicalID 2 MLIDs use this field, but must not change it. When a protocol
stack registers with the LSL, the LSL assigns the stack a logical
number (0 through 15). This field contains the logical number.
If the packet is a priority send, this field contains a value
between 0FFF7h (lowest priority) and 0FFF0h (highest priority).
If the packet is a raw send, this field contains a 0FFFFh. If the
packet is a priority raw send, this field contains a value between
0FFFFh (lowest priority) and 0FFF8h (highest priority). On
normal sends, the protocol stack places its own logical number
in this field. On receives, the LSL places the target stack's
logical number in this field.

10h ProtocolID 6 This field contains the Protocol ID (PID) value on both sends
and receives. This value is stored in high-low order. For a full
explanation of how to fill out this field, refer to ODI Supplement:
Frame Types and Protocol IDs.

16h BoardNumber 4 When an MLID registers with the LSL for a particular LAN
adapter, the LSL assigns that logical board a number. (Logical
board 0 is used internally in the operating system.)
Consequently, MLIDs are assigned logical board numbers 1
through 255). On sends, protocol stacks fill in this field to
indicate the target logical board. On receives, the MLID fills in
this field to indicate which logical board received the packet.

Offset Name Size(bytes) Descriptions
Protocol Stack Data Structures 63

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
1Ah ImmediateAddres
s

6 On receives, the immediate address represents either 1) the
packet's source node address or 2) the routing LAN adapter's
node address if the packet was routed from another network.
During a receive, the MLID fills in this field. This value is stored
in high-low order. On RX-Net, or whenever the node address is
less than six bytes, put the node address in the least significant
byte and pad the remaining bytes with 0. On sends, the
immediate address represents either the destination node
address or the destination router address; the protocol stack fills
in this field. Addresses passed to the upper layers are in either
canonical or noncanonical format, depending upon whether the
MLID bit-swaps MSB format addresses. The protocol stack fills
in this field on sends. All addresses passed down to the MLID
are in canonical format if the MLID is configured to be in LSB.

In general, protocol stacks do not need to be aware of this field's
format. Protocol stacks can just copy the contents of the receive
ECBs ImmediateAddress field into the transmit ECBs
ImmediateAddress field before sending the packet. Protocol
stacks may get the immediate address from somewhere else,
but it must still be copied into the transmit ECBs
ImmediateAddress field.

Offset Name Size(bytes) Descriptions
64 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
20h DriverWorkSpace 4 An MLID can use this field for any purpose. However, be aware
that the LSL uses the bytes at offsets 22h and 23h as temporary
storage during the receive prescan stack filtering. Before
passing a completed receive ECB to the LSL, the MLID will fill
in the byte at offset 20h with the destination address type of the
received packet:

! 00h = Direct

! 01h = Multicast

! 03h = Broadcast

! 04h = Remote Unicast

! 08h = Remote Multicast

! 10h = No Source Route

! 20h = Error Packet

! 80h = Direct Unicast

Set the second byte of the field (offset 21h) to indicate whether
the MAC header contains one or two 802.2 control bytes:

! 0 = All frame types other than 802.2

! 1 = 802.2 header has only Ctrl0 byte (Type I)

! 2 = 802.2 header has Ctrl0 and Ctrl1 (Type II)

! For an explanation of 802.2 Type I and Type II, refer to ODI
Supplement: Frame Types and Protocol Ids.

24h ProtocolWorkspac
e

8 Reserved for the protocol's workspace. The MLID must not
modify this field.

2Ch PacketLength 4 This field contains the total length of the packet in bytes. This is
the length of the data portion of the packet (not including media
headers or SAP headers contained in the PacketEnvelope
portion).

30h FragmentCount 4 This field indicates the total number of packet fragment
descriptors that follow. Each descriptor consists of a pointer to
a fragment buffer and the size of that buffer. On receives, this
value is always 1 or greater. On sends, the fragment count can
be 0. The ECB and all fragments must be guaranteed
convertible to a valid physical address if the MLID uses
GetServerPhysicalOffset. If the MLID is a type 4 NLM, it should
not allow the OSData segment to contain the buffers.

Offset Name Size(bytes) Descriptions
Protocol Stack Data Structures 65

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
34h FragmentOffset 4 On receives, a buffer immediately follows the ECB in memory.
The MLID copies the received packet into this buffer. After the
MLID copies the packet into this buffer, it must set the
FragmentOffset to point around any media headers to the data
portion of the packet. The MLID must also set the
FragmentLength field to the total length of the data portion of
the packet. On sends, the FragmentOffset field points to the first
fragment buffer containing packet data. The FragmentSize field
specifies the length of that buffer. Additional fragment
descriptors can immediately follow the ECB in memory. The
MLID collects the data from these fragment buffers to form the
packet for transmission (see Figure 7).

38h FragmentSize 4 This field indicates the length in bytes of the first packet
fragment. On receives, the value in this field is the same as the
value in the PacketLength field. On sends, this value can be 0.
On receives only, the memory immediately following the ECB
also contains the following two fields:

3Ch PacketEnvelope varies Everything below this field is included in the packet envelope.
The first piece of data in the packet envelope is the media
header of the packet. This field varies in length according to
topology and frame-type, and appears only in receive ECBs.
This field is not used or present if the LAN topology splits the
data of the packet and transmits it in more than one frame (for
example, RX-Net).

??h Data varies The data portion of the packet that immediately follows the
MediaHeader. On sends only, the memory immediately
following the ECB also contains the following two fields.

3Ch FragmentOffset2 4 This field contains additional fragment descriptors when the
FragmentCount is greater than 1.

40h FragmentLength2 4 This field contains additional fragment descriptors when the
FragmentCount is greater than 1.

Offset Name Size(bytes) Descriptions
66 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
5 Protocol Stack Initialization

Chapter Overview

This chapter discusses registering and binding prescan protocol stacks, bound
protocol stacks, and default protocol stacks. This chapter also discusses
information on chaining protocol stacks.

Protocol Stack Initialization

When initializing a protocol stack, you must keep the following items in mind:

! The protocol stack is not fully operational until it is bound to a board. The
protocol stack must not send or receive frames until Ctl2_Bind has been
called and the protocol stack is bound to a board, or the protocol stack has
bound itself to a board.

! If the protocol stack does not auto-bind when it is installed, it should do
limited initialization and return control of the CPU to the operating
system.

! When the protocol stack is initialized, it gets a protocol stack ID from the
LSL by calling LSLRegisterStackRTag. This informs the LSL about the
protocol stack.

! If the protocol stack is SMP aware, it must call
LSLRegisterStackSMPSafe.

! If the protocol stack auto-binds and then receives a Ctl2_Bind request, it
can unbind from the board and re-bind to a board according to the user's
registration information.
Protocol Stack Initialization 67

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LAN Boards and Auto-binding

In some cases, a protocol stack may know what frame type or what media type
to bind to, or it may bind by default to a particular frame type. Caution should
be used when writing a protocol stack to do auto-binding, since many different
high level protocols can be transmitted over a wide variety of different MAC
layer frame types. Developers must not assume that all users of all sites will
use the same frame type for each protocol. Auto-binding must never prevent
a system administrator from binding a protocol stack to the frame type he
wishes to use.

To identify the logical LAN boards present on a system, the protocol stack
should first call GetNumberOfLANs, which returns the maximum number of
logical boards that can be present on the system. Then, the protocol stack
should call LSLGetMLIDControlEntry for each logical board number from 1
to the number returned by GetNumberOfLANs. Logical board numbers are not
necessarily contiguous.

The valid logical board numbers are indicated by the completion code and the
control entry point returned by LSLGetMLIDControlEntry. Information of the
frame types supported by each logical board is returned by the
Ctl0_GetMLIDConfiguration entry point (see Chapter 13, "Overview of
MLIDs" and Chapter 20, "MLID Control Routines" for information about this
function).

Binding

Bound Protocol Stacks

All bound protocol stacks call LSLGetPIDFromStackIDBoard to get a defined
Protocol ID (PID) from the LSL. Protocol stacks must get a PID before they
can transmit and receive on a LAN adapter. If the LSL returns a PID, the
protocol stack should save this value internally. The protocol stack blindly
places this value in the ECB's ProtocolID field when it transmits a packet.

NOTE: In rare cases, if the LSL does not return a PID, the protocol stack can add
a PID by calling LSLAddProtocolID. An intelligent protocol stack that finds it has no
PID registered, can register a PID for itself based on well-known frame type and
stack name combinations. For example, IP on Ethernet_II or Ethernet_SNAP
always uses the PID 800h.

To conform to this specification, you must write protocol stacks that are
independent of any specific frame type or topology. Protocol stacks must not
68 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
interpret Protocol IDs, because Protocol IDs depend on the frame type and the
topology on which the protocol stack is used.

The network administrator usually enters the Protocol ID of the Protocol stack
for each frame-type/board combination into the AUTOEXEC.NCF file. The
network administrator then binds the MLID, by frame type (logical board), to
the protocol stack as follows:

Bind<Protocol>to<MLID Name>Frame=<XX>

The protocol stack then calls LSLGetPIDFromStackIDBoard to get the
Protocol ID.

The operating system reads the AUTOEXEC.NCF file and passes the Protocol
ID, of the frame it is to bind to, to the protocol stack. If the protocol stack does
not find a Protocol ID, the protocol stack loads, but is not functional. In which
case, after the protocol stack has loaded, the network administrator can bind
the protocol stack to a frame type by specifying a Protocol ID from the
command line using the following command line syntax:

Protocol Register <Protocol Name><Frame Name><Protocol ID>

For example: Protocol Register IP Ethernet_II 800

where:

<Protocol Name>=IP

<Frame Name>=Ethernet_II

<Protocol ID>=800

NOTE: IPX protocol stacks are the only exception to the above rule. Because the
IPX PIDs are static for each frame type, the user does not ever need to change the
frame type's PID at the command line. Most MLIDs written for NetWare 3+
automatically register the IPX protocol stack using LSLAddProtocolID.

The network administrator can register media-aware protocol stacks from the
command line. Media-aware protocol stacks are stacks that only communicate
with one or two frame types.

Typing Protocol at the command line produces the protocols, frame types, and
Protocol IDs that have been registered.

Determining the Maximum Packet Size

After the protocol stack binds as either a prescan, default, or bound stack, it
determines the maximum packet size it can send and receive on the LAN
Protocol Stack Initialization 69

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
adapter by examining the MLID's configuration table MLIDRecvSize field.
The protocol stack gets a pointer to the configuration table by calling
LSLGetMLIDControlEntry and invoking the MLID control handler with the
proper function code (see Chapter 20, "MLID Control Routines").

The value in the MLIDRecvSize configuration table field represents the
largest amount of data the protocol stack can consistently send and receive
using that LAN adapter (see Chapter 14, "MLID Data Structures" for the
MLID configuration table). The protocol stack must subtract the size of any
protocol headers (for example, the IPX header) from this value. The
difference between MLIDRecvSize and the protocol headers represents the
maximum, amount of real data that the LAN adapter can send and receive.

Initialization

During main initialization, the protocol stack must register with the LSL. The
function the protocol stack uses to register depends on the method it uses to
transmit and receive packets (bound, prescan, or default). See Table 6 below.

Table 6 Protocol Stack Registration Functions

Bound Protocol Stack Initialization

Using the above calls, protocol stacks register with the LSL by exchanging
information. Bound protocol stacks register by following the steps below:

Reception Method Registration Functions

Bound LSLRegisterStackRTag

Prescan LSLRegisterPrescanRxChain

LSLRegisterPrescanTxChain

Default LSLRegisterDefaultChain

Bound/Prescan/Default LSLRegisterStackSMPSafe
70 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 7 Bound Protocol Stack Initialization

Prescan and Default Protocol Stack Registration

The LSL keeps a list of chained stack structures on a per-logical-board basis.
The LSL chain registration routines allocate and fill in each chain structure.
These routines pass back a Chain ID, which is a pointer to this structure if
registration is successful. The prescan and default protocol stack follow the
steps below to register:

Table 8 Prescan and Default Protocol Stack Registration

Module Action

Protocol Stack
(Initialization
Routine)

1. Calls LSLRegisterStackRTag to pass the following items to the LSL:

! A resource tag for the protocol stack

! A resource tag for the protocol stack's receive ECBs

! A pointer to the protocol stack's receive entry point

! A pointer to the protocol stack's control entry point

! The protocol stack's name

LSL 2. Stores the pointers listed above and returns the Stack ID (through
LSLRegisterStackRTag).

Protocol Stack(Bind
IOCTL)

3. Stores the Stack ID.

4. If the stack is SMP aware, calling LSLRegisterStackSMPSafe will pass in the
stack ID obtained in step 2.

5. Calls LSLBindStack to bind with a specific board (either a physical or a logical
board) after it gets the BindToMLID IOCTL.

6. Calls LSLGetPIDFromStackIDBoard to get the Protocol ID to use for a specific
board after being bound with the Bind IOCTL.

Module Action

Protocol Stack
(Initialization Routine)

1. Calls the appropriate routine to bind to the specified board during the protocol
stack's initialization. (The LSL routines that register the default and prescan
protocol stacks are described below.)
Protocol Stack Initialization 71

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Chaining Prescan and Default Protocol Stacks

Prescan and default protocol stacks can be chained so that the received and
transmitted packets flow through the chained stacks in a prescribed order.
Figure 5.2 illustrates sample receive packet flow through a system with
chained prescan and default stacks.

The LSL adds the chained stacks in the chain position order that the stacks
request. If a stack must be first or must be last in the chain, and another stack
that also must be first or must be last already occupies that position, the
attempt to load the second stack returns an error message.

LSL 2. Links the stack into the proper position of the logical board's chain list.

3. Stores the pointers provided by LSLRegisterPrescanRxChain,
LSLRegisterPrescanTxChain, LSLRegisterDefaultChain.

4. Returns a Chain ID to the protocol stack if the registration is successful.

Module Action
72 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Registering and Deregistering Prescan and Default Protocol Stacks

A protocol stack can specify a position in the chain when it registers. The
registration routines and their purposes are listed in the following table.

Table 9 Registration Routines

NOTE: We have replaced several deregistration and registration routines with new
routines. Old default protocol stacks are placed at the last position in the default
protocol stack chain. These stacks must clear EAX before they return for their
receive routine if they have consumed the ECB. Old prescan protocol stacks are
linked into the next available position on the prescan receive chain. Although we
still support the older registration and deregistration routines, we consider them as
obsolete. These routines will not be supported in the future. We recommend that
you replace the old routines in your protocol stack with the new routines. Table
11.2: "Correlation of Old and New Registration and Deregistration Functions"
illustrates the correspondence between the old and new registration calls.

IMPORTANT: The LSL deregister and register protocol stack calls must be used
in the following pairs:

! LSLDeRegisterPreScanRxChain

! LSLRegisterPreScanRxChain

!

! LSLDeRegisterPreScanTxChain

! LSLRegisterPreScanTxChain

!

Stack Type Registration Routine Purpose

Prescan LSLRegisterPrescanRxChai
n

CLSLRegisterPrescanRxCh
ain

Allows the stack to monitor received packets before the bound
protocol stack receives them.

Prescan LSLRegisterPrescanTxChai
n

CLSLRegisterPrescanTxCh
ain

Allows the stack to monitor transmit packets and to request a
position in the chain.

Default LSLRegisterDefaultChain

CLSLRegisterDefaultChain

Allows the stack to receive packets that no prescan or bound
protocol stack wanted, and to request a position in the chain.
Protocol Stack Initialization 73

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! LSLDeRegisterDefaultChain

! LSLRegisterDefaultChain

!

! LSLDeRegisterStack

! LSLRegisterStackRTag

!

! LSLDeRegisterStackSMPSafe

! LSLRegisterStackSMPSafe

Default and Prescan Protocol Stack Chaining

The LSL fills in the ChainStructure with the information in the registration
routine's parameters. The ChainStructure is defined in 11.31 -
LSLGetStartChain. To request a chain position in this structure, the assembly
routines use the value in EBP, and the C Language routines use the value in
the parameter StackChainPositionRequested. The following table contains the
range of values and their meanings.

Table 10 Chain Position Values

Chain Position

A chained protocol stack that both sends and receives must register as two
separate stacks: it must register as the appropriate type of transmit protocol
stack and request the correct chain position; it must also register as the

Value Name Position in Chain

0 STACK_REQ_FIRST The stack must start the chain.

1 STACK_REQ_NEXT_FIRST The stack must be loaded at the next available position from the
front of the chain.

2 STACK_REQ_DEPEND The stack's position in the chain is dependent on the order in
which the stacks are loaded. The stack will take the next available
position when it loads.

3 STACK_REQ_NEXT_LAST The stack must be loaded at the next available position from the
end of the chain.

4 STACK_REQ_LAST The stack must end the chain.
74 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
appropriate type of receive protocol stack with the correct chain position.
Keep in mind that the receiving station must undo algorithms applied to
packets in the opposite order in which they were applied. For example, if a
packet goes through LANalyzer protocol stack A and then through
compression protocol stack B, the receiving station must send the packet
through decompression protocol stack B and then through LANalyzer
protocol stack A. The following figures (5.2, 5.3, 5.4) illustrate the stack
chaining concept.
Protocol Stack Initialization 75

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
76 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
If a protocol stack has registered with a chain position parameter of 2, the LSL
ensures that the protocol stack is in the correct transmit and receive order. If a
protocol stack loads with 0, 1, 3, or 4 as its chain position request, the protocol
stack must ensure that it has registered properly for transmit and for receive.
A stack that loads as a transmit stack with a chain position request equaling 0,
should load as a receive stack with a chain position request equaling 4. If it
loads as a transmit stack with a chain position request equaling 1, it must load
as a receive stack with a chain position request equaling 3.

WARNING: A protocol stack is not prevented from loading out of order. But if out
of order loading is used, it should be done carefully and rarely.

Stack Chain Mask

By default, all protocol stacks can receive direct unicast, broadcast, and direct
multicast packets. This is set in the ChainMask field of the ChainStructure.
Protocol stacks call LSLModifyStackFilter to set the ChainMask field of the
ChainStructure and notify the LSL of the type of packets they want to receive.
(See LSLGetStartChain for the definition of the chainMask field.)
Protocol Stack Initialization 77

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
78 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
6 Protocol Stack Packet Reception

Chapter Overview

This chapter describes the protocol stack receive routine. It details bound,
prescan, and default protocol stack receive methods. The chapter also
describes how the protocol stack uses the ECB when the stack receives a
packet.

Protocol Stack Packet Receive Operation

A protocol stack can elect to receive all packets addressed to it, or only certain
types of packets (using LSLModifyStackFilter).

Protocol Stack Promiscuous Mode

A protocol stack must switch promiscuous modes if it is currently receiving
only packets addressed to it and it wants to start receiving packets which are
not addressed to it specifically.

A protocol stack must also switch promiscuous modes if it is currently
receiving all packets and it wants to start receiving only packets addressed to
it.

To change promiscuous modes, the protocol stack calls the
Ctl10_MLIDPromiscuousChange IOCTL , which causes the MLID to switch
its promiscuous mode to match that of the protocol stack.

Ctl10_MLIDPromiscuousChange calls LSLControlStackFilter which, in turn,
calls the Ctl5_ProtocolPromiscuousChange IOCTL.
Ctl5_ProtocolPromiscuousChange informs the protocol stack(s) bound to the
MLID that the MLID has changed promiscuous modes.
Protocol Stack Packet Reception 79

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
If more than one protocol stack is bound to an MLID operating in promiscuous
mode, a single protocol stack is not able to change the MLID out of
promiscuous mode. The MLID only changes out of promiscuous mode if all
protocol stacks bound to it have also changed out of promiscuous mode.

Receive Routine Events

When a protocol stack registers with the LSL, it specifies a receive routine for
the LSL to call when an MLID receives a packet destined for that protocol
stack.

The following events must occur during a protocol stack receive routine:

Table 11 Protocol Stack Receive Routine Events

Prescan and Default Protocol Stack Packet Reception

The ODI specification defines three methods of packet reception for protocol
stacks:

! Bound

! Prescan

! Default

If a prescan protocol stack chain exists, older unchained prescan protocol
stacks will be placed into the chain, but will not be able to request a position
in the chain. This allows the logical board to chain all prescan protocol stacks.

Module Action

MLID 1. Attempts to get a receive buffer from the LSL for the packet data when a packet is
received.

2. Copies the packet data into the buffer if a buffer is available from the LSL.

3. Hands the buffer and its ECB to the LSL.

LSL 4. Determines which protocol stack to give the data to.

5. Calls the protocol stack's receive handler with a pointer to the receive buffer
described by the ECB.

Protocol Stack 6. Processes the received packet.

7. Frees the ECB by returning it to the LSL.
80 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: Unless the protocol stacks are chained, we strongly discourage
using the prescan or default method of packet reception for the following two
reasons:

! A default protocol stack might conflict with another protocol stack using
the same method of packet reception. This would prevent the use of both
protocols with the same board.

! A protocol stack parses the packet header to determine if the packet is the
correct type. Therefore, a protocol stack might receive a packet that
passes the protocol stack's acceptance tests, but in reality, the packet is not
the correct type. This could cause unpredictable results.

Only specialized protocol stacks that must receive packets having a large
range of Protocol IDs should use the prescan and default reception methods.
For example, the 802.2 protocol stack receives packets with any Destination
SAP and could use these reception methods. Protocol stacks that provide a
Data-Link layer interface to the Network layer protocol stacks (for example,
the 802.2 protocol stack) are candidates for using the prescan or default
receive methods.

Each type of protocol stack should use the appropriate packet receive routine
as follows:

Bound Protocol Stacks

Bound protocol stacks receive packets with the appropriate Protocol ID (PID)
filled in the ECB's Protocol ID field. The PID is obtained from the low-level
frame header. If a logical board has no bound protocol stack registered with it,
the packet is passed to the default protocol stack registered with the logical
board.

Prescan Protocol Stacks

Prescan protocol stacks receive all packets received by the logical board they
are bound to before any other protocol stack receives the packets. Prescan
protocol stacks are typically used for such functions as diagnostics and
compression/decompression routines. The protocol stack consumes select
packets and allows the other packets to be passed to the appropriate bound or
default protocol stack.

Default Protocol Stacks

Default protocol stacks receive packets that are not consumed by the prescan
and bound protocol stacks.
Protocol Stack Packet Reception 81

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Receive ECBs

The LSL maintains a pool of receive buffers. These receive buffers are the size
of the largest packet the node station can send and receive. Each receive buffer
is contained in a contiguous, DWORD aligned, nonpaged region of memory.
Each buffer is also described by an ECB and immediately follows that ECB in
memory. In other words, receive ECBs (buffers) always contain one fragment.

When an underlying MLID receives a packet into an LSL receive buffer, the
entire packet (including the low-level headers) is copied, starting immediately
after the ECB FragmentLength field. The MLID sets the FragmentAddress to
point past the low-level headers to the protocol header. See Chapter 4,
"Protocol Stack Data Structures" for a complete description of the Event
Control Block.

The Protocol Stack Receive Handler

The protocol receive handler is used for all protocol stacks default, prescan,
and bound. The LSL calls a protocol stack's receive handler when an MLID
receives a packet and the LSL determines that the packet is intended for that
particular protocol stack. The protocol receive handler has the following
processor state on entry:

! ESI has a pointer to a receive ECB.

! Interrupts are disabled.

If the protocol stack is a chained stack, it receives the following additional
information:

! EBX has a board number.

! EDI has the chain ID (this ID will be given to the appropriate
LSLReSubmit call).

NOTE: If the protocol stack is written in C Language, the LSL uses the following
syntaxes to call the receive handler.

Bound protocol stack: BoundRcvHandler (*ECB);

Chained protocol stack: ChainRcvHandler (*ECB,
BoardNumber, *ChainID);

The protocol receive handler has the following processor states on return:

! Interrupts are disabled.

! Preserved EBP, ESP.
82 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
If the protocol stack is a chained stack, it has the following processor states on
return:

! EAX 0 if the protocol stack consumed the packet.

 !0 if the protocol stack returns an ECB to the LSL.

! ESI if EAX = !0, it has a pointer to the ECB.

Handling a Receive ECB

When the LSL calls the protocol receive handler, the LSL passes ownership
of the ECB and its associated data buffer to the protocol stack. Before the LSL
passes the ECB, either the LSL or the MLID sets the receive ECB fields as
described in the following table:

Table 12 ECB Fields Set by the LSL and the MLID

Offset ECB Field Description

04h BLink See the "Setting the ECB BLink Field" section in this chapter.

08h Status Always set to 0000h.

0Ah LogicalID The Stack ID (or the Chain ID) of the protocol stack or protocol stack chain
receiving the packet. The LSL assigns this value when the protocol stack
registers.

10h ProtocolID The Protocol ID that the MLID extracted from the packet.

16h BoardNumber The logical board number representing the physical adapter the packet was
received on and the frame type present in the packet.

1Ah ImmediateAddres
s

The source node address. Addresses passed to the upper layers are in
either canonical or noncanonical format, depending upon whether the MLID
bit-swaps MSB format addresses. The protocol stack fills in this field on
sends. All addresses passed down to the MLID are in canonical format if the
MLID is configured to be in LSB. See ODI Supplement: Canonical and
NonCanonical Addressing.

20h DriverWorkSpace See the "Setting the DriverWorkSpace ECB Field" section in this chapter.

2Ch PacketLength The length of the packet (not including the MAC header).

30h FragmentCount Always set to 0001h.

34h FragmentOffset Pointer to the packet, past the MAC header. This pointer typically points to
the protocol header.
Protocol Stack Packet Reception 83

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 8 Graphic Representation of the Receive Event Control Block

Setting the ECB BLink Field

The BLink field is typically used as a back link to manage a list of ECBs. The
current owner of the ECB uses this field. When an ECB is returned from an
MLID containing a received packet, this field contains the received packet
error status as defined in the following table:

Table 13 ECB BLink Error Descriptions

38h FragmentSize The length of the packet (not including the MAC header).

Bit Value Description

0000 0001h CRC error, such as Frame Check Sequence (FCS) error.

Offset ECB Field Description
84 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Setting the ECB DriverWorkSpace Field

Set the first byte in the DriverWorkSpace field (offset 20h) to one of the values
shown in the following table:

Table 14 Values for First Byte of Driver WorkSpace Field

0000 0002h CRC/Frame Alignment error.

0000 0004h Runt packet.

0000 0100h Packet is larger than allowed by the media.

0000 0200h The received packet is for a frame type that is not supported. For example, the logical
board is not registered for the frame type of the received packet. A board number
associated with the physical adapter is placed in the lookahead structure.

0000 0400h Malformed packet. For example, the packet size is smaller than the minimum size allowed
for the Media Header, such as an incomplete MAC Header. In an Ethernet 802.3 header,
the length field value is larger than the total packet size.

8000 0000h The MLID is shutting down.

No error bits
set

If no error bits are set, the packet was received without error, and the data can be used.
All undefined bits are cleared.

Bit Value Packet Type Description

00h Direct The packet is destined for this station only.

01h Multicast The packet is destined to a group of nodes on the network. The adapter
was registered to receive packets addressed to these addresses by a call
to Ctl2_AddMulticastAddress.

02h Broadcast The packet is destined to all nodes on the physical network.

04h Remote Unicast The packet is destined to an individual node on the network. A remote
unicast address is not addressed to this adapter's node address. The
protocol stack must put the adapter into promiscuous mode if it wants to
receive these packets.

Bit Value Description
Protocol Stack Packet Reception 85

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Set the second byte (offset 21h) to indicate whether the MAC header contains
one or two 802.2 control bytes as follows:

! 00h All frame types other than 802.2.

! 01h The 802.2 header has only Ctrl0 byte (Type I).

! 02h The 802.2 header has Ctrl0 and Ctrl1 (Type II).

See ODI Supplement: Frame Types and Protocol IDs for an explanation of
802.2 Type I and Type II, and Chapter 4, "Protocol Stack Data Structures" for
a description of Event Control Blocks.

Description of the Protocol Receive Handler

The LSL can call this routine from the context of a hardware interrupt, or it
can call this routine at process time. Protocol stacks should queue events and
process them from a handler that is running at process time. Protocol stacks
have the option of processing receive events as a run-to-completion events;
however, this degrades performance and can cause the LAN adapter to drop
packets.

If you choose to run to completion in the context in which you were called,
you must switch to an internal stack to avoid overflowing the caller's stack.
You must guard against reentrancy if you enable interrupts or call functions
which enable interrupts.

08h Remote
Multicast

The packet is addressed to a group of nodes, but the adapter is not
registered to receive it. The MLID has not called
Ctl2_AddMulticastAddress. A protocol stack must put the adapter into
promiscuous mode if it wants to receive these packets.

10h No Source
Route

The MLID received a source-routed packet, but there was no source route
module (ROUTE.NLM) to record it, and the packet was not generated by
the local ring. This is an exclusive bit; if this bit is set, it overrides all other
bits.

20h Error Packet The packet contains an error. See the ECB BLink field for the specific
error. This is an exclusive bit, if set all other bits should be 0. This value
supersedes the No Source Route bit.

80h Direct Unicast The packet is destined for this station only.

Bit Value Packet Type Description
86 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Be aware that the network hardware is fully functional at this point and that
the protocol stack must maintain packet receive order.

MLID control routines must not be invoked from this routine, because these
routines must be called only at process time. However, the protocol stack can
freely make requests (such as LSLSendPacket) to the LSL.

Chained Protocol Stacks and Resubmission

Chained receive protocol stacks process ECBs and then pass them to the LSL,
which passes them to the next protocol stack in the chain. If a protocol stack
cannot process an ECB immediately, it queues it to be processed at process
time. When a protocol stack is done processing an ECB, it calls
LSLReSubmitRcvECB to let the next prescan, default, or bound protocol stack
process it. When a protocol stack passes an ECB back to the LSL, the LSL
passes it to the next protocol stack in the chain at process time.

A protocol stack can be optimized to avoid resubmitting an ECB at process
time as follows:

! If a protocol stack has only minor, non-time-intensive processing to do on
an ECB, it can process the ECB immediately to completion (even at
interrupt time) and then pass it to the LSL, which will pass it to the next
protocol stack in the chain immediately.

When a protocol stack is finished processing a receive ECB, and the ECB does
not get passed to the next protocol stack in the chain, the protocol stack should
return the ECB to the LSL by calling LSLReturnRcvECB.
Protocol Stack Packet Reception 87

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
88 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
7 Protocol Stack Packet Transmission

Chapter Overview

This chapter describes the send operation of the protocol stack. The chapter
details how the protocol stack sends packets, uses the ECB, and ends the
transmission. It also discusses the resubmitting process.

Protocol Stack Packet Transmission

Protocol stacks treat packet transmission as an asynchronous operation that
entails building an Event Control Block (ECB) and calling the LSLSendPacket
support routine (see Chapter 11, "LSL Support Routines (Assembly)").
Packets at the LSL layer and below (the Data Link layer and the MAC layer)
are connectionless, and are not guaranteed to reach their destinations, nor be
placed on the LAN medium.

Some protocol stacks that support transport layer capabilities must provide
guaranteed packet delivery to the upper layers. If this is the case, your protocol
stack must contain the necessary time-outs, retries, and packet
acknowledgments to guarantee complete and accurate delivery.

Transmission Routine Events

The following events occur when a protocol stack sends a packet:

Table 15 Protocol Stack Transmission Routine

Module Event

Protocol Stack 1. Hands the ECB to the LSL for transmission.
Protocol Stack Packet Transmission 89

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: The ECB and its associated data buffers must not be modified until
ownership is returned to the protocol stack. If the protocol stack times out while
waiting for a transmission to complete, it cannot re-use the ECB it is waiting for for
any purpose until it is released by the MLID and the LSL.

Starting the Packet Transmission

Protocol stacks may transmit packets at process time or interrupt time.

If the send routine uses an internal stack and is guarded against reentry, it may
enable interrupts and run processes for an extended period of time. However,
the network hardware is fully functional at this point and the protocol stack
must maintain packet transmission order.

The protocol stack may also run the send routine to completion, but this
degrades performance.

The protocol stack cannot directly invoke MLID control routines at interrupt
time. However, it may send requests to the LSL at process time or interrupt
time. For example, a protocol stack may request additional ECB buffers from
the LSL at any time during a send routine.

Supporting Multiple Outstanding Transmission
Requests

The underlying MLIDs generally support multiple outstanding transmission
requests from protocol stacks. While the LAN adapter transmits one packet
onto the LAN medium, the MLID loads the next transmission packet's data
onto the adapter. The number of transmissions an MLID can give an adapter

LSL 2. Calls the underlying MLID transmission handler with a pointer to the ECB.

3. Passes ownership of the ECB and its associated packet data buffers to the MLID.

MLID 4. Transmits the packet.

5. Passes ownership of the ECB and its associated packet data buffers to the LSL,
regardless of whether the packet transmission was completed successfully or with an
error.

LSL 6. Calls the Event Service Routine specified in the ECB.

Module Event
90 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
before the MLID must queue the ECBs varies, because this number is MLID-
dependent.

When the protocol stack must transmit bursts of packets, it achieves its best
performance by being able to pass multiple transmission requests to an
underlying MLID. In theory, an MLID can handle any number of outstanding
transmission requests. It will internally queue the packets it can't send.)
Therefore, a protocol stack must be capable of having multiple transmissions
outstanding on a particular board.

Protocol stacks can impede system performance and consequently their own
performance by overwhelming the MLID with transmissions and tying up too
many system resources. Protocol stacks should not transmit so many packets
that it causes the MLID's Qdepth statistics counter to begin to grow.

Sending the Packet

To send a packet, the protocol stack must provide data buffers and an ECB
describing the data to be sent. The protocol stack can specify from 1 to 16 data
buffers per transmission request. The underlying MLID must then combine
the buffers together to form a single data packet.

Raw Sends

If the ECB is sent in raw mode, the fragment list contains the complete packet,
including the link-level envelope. However, the link-level envelope must be
entirely contained within the first fragment. In other words, the envelope
cannot be split between the first and second fragments. See also the "Raw
Sends" section under "Handling a Transmit Event Control Block" in this
chapter for more information.

Calling LSLSendPacket

The protocol stack transmits the packet to the appropriate MLID by calling
LSLSendPacket. LSLSendPacket can be called either at process or interrupt
time and has the following processor states:

On Entry

ESI Has a pointer to a send ECB.

Interrupts Can be in any state.
Protocol Stack Packet Transmission 91

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
On Return

(For more information about LSLSendPacket, see Chapter 11, "LSL Support
Routines (Assembly)".)

Handling a Transmit Event Control Block

An Event Control Block (ECB) is a general purpose request control block that
the MLID and protocol stacks use for transmission and receive events. The
protocol stack gets an ECB by calling LSLGetRcvECBRTag. The stack can
use the ECB's ProtocolWorkspace for any purpose. Neither the LSL nor the
MLID can modify the ProtocolWorkspace field. (See Chapter 4, "Protocol
Stack Data Structures" for a more detailed discussion of ECBs.)

The protocol stack must set the ECB fields listed in Table 16 before it gives
the ECB to the LSL for transmission:

Table 16 ECB Fields to Set Before Calling LSLSendPacket

EAX Has a completion code.

Interrupts Are disabled but could have been enabled.

Preserved No registers.

Offset Field Name Description

0Ah ESRAddress The address of a routine that is called when the ECB is released (after the
packet has been transmitted). A pointer to the ECB is passed to this routine
in ESI. This pointer is also the first parameter on the stack for ESRs written
in C. This field is a near pointer.

0Eh LogicalID The Stack ID of the protocol stack sending the packet. See the "Raw Send"
and "Priority Sends" sections below for more detail.

10h ProtocolID The Protocol ID (returned by LSLGetPIDFromStackIDBoard) that the MLID
is to use when excapsulating the data. This field is ignored if a raw packet
is sent. See the sections "The ECB Protocol ID Field" and "Ethernet 802.2
Frames" below for more detail.

16h BoardNumber The board number of the MLID that will be sending the packet.
92 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
1Ah ImmediateAddres
s

The node address on the physical network that the packet is destined for.
If the packet is raw, this field is undefined. The address FFFFFFFFFFFFh
always indicates a broadcast packet. (A broadcast packet is received by all
nodes on the physical network.)

2Ch PacketLength The total length of all fragment buffers.

30h FragmentCount The number of fragments in the packet to be sent. Descriptor data
structures follow this field. This field must contain a value between 1 and
16, inclusive. The protocol stack can specify a maximum of 16 fragment
descriptors. The MLID combines these fragments together to form one
contiguous packet.

Note: If the MLID uses GetServerPhysicalOffset, the ECB and all the
fragments must be convertible to a valid physical address. If the MLID is a
Type 4 NLM, it must not allow the OSData segment to contain the buffers.

34h FragmentOffset On sends, this field describes the location of a contiguous section of RAM
memory (32-bit offset).

38h FragmentLength The length in bytes of the first packet fragment. On sends, this value can
be 0. On sends, the ECB may contain the following additional fields as
needed:

3Ch FragmentOffsetX Additional fragment descriptor when the FragmentCount is greater than 1.
The X stands for the additional fragment number (2 through 16).

40h FragmentLengthX Additional fragment descriptor when the FragmentCount is greater than 1.
The X stands for the addition fragment number (2 through 16) . The
FragmentOffsetX and FragmentLengthX fields may repeat up to 16 times.

Offset Field Name Description
Protocol Stack Packet Transmission 93

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 9 Graphic Representation of the Transmit Event Control Block

The LSL and the MLIDs treat these ECB fields as read-0only. Therefore, the
protocol stack does not have to reinitialize each field after a transmission
operation unless that field's value has changed.

Raw Sends

ODI MLIDs have the optional capability of allowing Raw Sends. A Raw Send
is when a protocol stack sends the complete low-level header of a packet. In
general, protocol stacks only use raw sends if the MLID cannot build the MAC
header or if the protocol stack has to be frame type aware.

Because a Raw Send is optional, some MLIDs do not support it. To determine
whether a particular board supports raw sends, the protocol stack must check
94 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
the RawSendBit (Bit6(0040h)] in the MLIDModeFlags field of the board's
configuration table. If this bit is set, the MLID supports raw sends.

A protocol stack signals a raw send to the MLID by placing a value between
0FFFFh and 0FFF8h, inclusive, in the ECB's LogicalID field. These values
correspond to priority levels between 0 and 7, inclusive. (0FFFFh equals
priority level 0, the least priority.)

The protocol stack can check the MLID's MLIDPrioritySup configuration
table field (offset 50h) for the number of priorities the MLID supports. The
value in this field is zero-based.

The MLID checks the ECB's LogicalID field for a value between 0FFFFh and
0FFF8h. If present, the MLID skips over the code to build the MAC header.
In which case, the first fragment of the ECB must contain the entire MAC
header.

The first data fragment must specify the source address. However, in some
cases, the source address is not used because some adapters automatically
insert the source address into the MAC header.

Even though protocol stacks should be frame type unaware, protocol stacks
must be aware of some frame type characteristics. However, the MLID
handles minimum packet length padding and evenization. Only protocol
stacks which do raw sends must be frame type aware.

Priority Sends

Protocol stacks can also support priority sends without doing raw sends. The
protocol stack sends a priority packet by putting a value between 0FFF0h and
0FFF7h in the LogicalID field of the send packet ECB. The priority level
values are defined as follows:

FFF7 priority level 0 - lowest priority

FFF6 priority level 1

FFF5 priority level 2

FFF4 priority level 3

FFF3 priority level 4

FFF2 priority level 5
Protocol Stack Packet Transmission 95

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The protocol stack can check the MLID configuration table MLIDPrioritySup
field (offset 50h) for the number of priorities the MLID supports. The value in
this field is zero-based.

The ECB ProtocolID Field and Ethernet 802.2 Frames

The ProtocolID field specifies which Protocol ID value that the MLID
embeds into the frame header. This value stamps the packet as a particular
protocol type (such as IPX, TCP/IP, etc.).

For example, the ProtocolID field for an ECB that manages an 802.2 frame
type contains a Destination Service Access Point (DSAP).

When the MLID builds the frame header, the Source Service Access Point
(SSAP) can be set equal to the DSAP Protocol ID. The MLID can also set the
802.2 control byte equal to 03h (UI).

However, MLIDs that support the 802.2 frame type have a special flag in the
transmit ECB ProtocolID field that allows a protocol stack to specify the
complete 802.2 Type I or Type II header (that is the DSAP, SSAP, or control
byte). When this flag is present, the MLID uses the specified 802.2 header,
instead of setting the SSAP Protocol ID equal to DSAP Protocol ID and the
Control byte equal to 03h (the usual method).

If an explicit 802.2 header needs to be specified, the protocol stack sets the
ProtocolID field to the following values:

Table 17 Protocol ID Field Bytes

FFF1 priority level 6

FFF0 priority level 7 - highest priority

0 1 2 3 4 5

00 00 00 00 00 DSAP

02 00 00 DSAP SSAP Ctrl0

03 00 DSAP SSAP Ctrl0 Ctrl1
96 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 18 802.2 Packet Header Bytes

The Prescan Protocol Stack Transmission Handler

The prescan protocol stack transmission handler has the following processor
state on entry:

NOTE: If the protocol stack is written in C language, the LSL uses the following
syntax to call the transmission handler:

StackChainTransmitHandler (*ECB, BoardNumber, *ChainID);

The protocol stack transmission handler has the following processor state on
return:

NOTE: If the protocol stack is written in C language, it returns zero after it
consumes the packet.

1 2 3 4

DSAP DSAP 03

DSAP SSAP Ctrl0

DSAP SSAP Ctrl0 Ctrl1

ESI Pointer to a send ECB.

EBX The board number.

EDI The Chain ID.

Interrupts Disabled.

EAX 0 = the protocol stack consumed the packet.

nonzero = the protocol stack returns an ECB to the LSL.

ESI Pointer to the ECB if EAX equals nonzero.

Interrupts Disabled.

Preserved EBP, ESP.
Protocol Stack Packet Transmission 97

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
WARNING: Calling LSLSendPacket from a transmit prescan stack may cause the
prescan stack's protocol transmission handler to be called from itself.

Chained Prescan Transmission Protocol Stacks and Resubmission

Chained prescan transmission protocol stacks process ECBs first, then pass
them to the LSL. The LSL then passes them to the next protocol stack in the
chain.

If a protocol stack cannot process an ECB immediately, it queues the ECB
until process time and returns from its transmission handler with zero in EAX.

When a protocol stack is done processing an ECB, a prescan transmission
protocol stack calls LSLReSubmitTxECB to pass the ECB to another protocol
stack.

Some ECBs require only minor, short term processing. In such cases, instead
of resubmitting the ECB, the prescan transmission protocol stack can be
optimized to process the ECB immediately, even at interrupt time, and then
pass it to the LSL in ESI on return from the protocol stack's transmission
handler.

In some cases, a chained transmission protocol stack may decide to consume
a transmission. In which case, it returns from its transmission handler with
zero in EAX and does not call LSLReSubmitTxECB.

Prescan transmission protocol stacks must treat ECBs as read-only because
the original protocol stack will still need to be able to manipulate the data in
the original ECB. For example, if a prescan transmission protocol stack
compresses the data, the original protocol stack will not be able to read it.

If a prescan transmission protocol stack must modify the data in an ECB (such
as with compression stacks), the protocol stack must copy the ECB and
modify the copy of the ECB only.

The protocol stack also saves the Event Service Routine (ESR) of the original
ECB. When the ESR is called, the protocol stack must either call the original
ESR using the pointer to the original ECB, in the ESI register, or it must place
the original ECB in the LSL's event queue and call LSLServiceEvents.

The amount of data that the prescan stack can transmit is limited to the size
contained in the MLID configuration table MLIDRecvSize field.
98 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Transmission Complete

The following events occur to complete the packet transmission:

Table 19 Transmission Complete Event

NOTE: The MLID can invoke the protocol stack's Transmission Complete Handler
before the call to SendPacket returns.

The protocol stack's Transmission Complete Handler is described in the next
section.

Protocol Transmission Complete Handler

This routine must complete quickly because it is usually invoked from an
Interrupt Service Routine. Transmission requests can be issued from this
routine, but the protocol stack must not poll for a completed transmission
unless the protocol switches to its own stack and allows reentry. However, we
strongly recommend against doing this because it degrades protocol stack
performance.

The Protocol Transmission Complete Handler has the following processor
entry state:

Module Action

Protocol Stack 1. Gives the ECB to the MLID through the LSL.

MLID 2. Transmits the ECB.

3. Returns the ECB to the LSL. (If the MLID uses LSLSendComplete to return the ECB,
proceed to Step 4. If the MLID uses LSLFastSendComplete to return the ECB, skip to
Step 7.)

LSL 4. Places the ECB into a temporary event queue.

MLID 5. Calls LSLServiceEvents after the MLID has finished servicing the hardware.

LSL's Service
Events Routine

6. Removes each ECB from the queue in turn.

7. Calls the ESR defined in the ECB's ESR field. In the case of a transmission
complete, the ESR will be the protocol stack's transmission complete handler. (See the
Protocol Transmission Complete Handler section in this chapter).

ESI Pointer to the completed ECB.
Protocol Stack Packet Transmission 99

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: If the transmit complete handler is written in C, the ECB is the first
parameter on the stack.

The protocol Transmission Complete Handler has the following processor
return state:

Interrupts Disabled.

Interrupts Disabled.

Preserved EBP, ESP.
100 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
8 Protocol Stack Control Routines

This chapter describes the control commands that your protocol stack must
provide to support the MPI interface.

When an NLM calls a protocol stack control command, that NLM must place
a function code into EBX and call the protocol stack control entry point. The
address of the entry point is obtained by calling LSLGetProtocolControlEntry.

The value returned in EAX is always generated so that the Z flag is set
correctly. If the call completes with no error, EAX will be 0 (and the Z flag
set). If the call completes with an error, EAX will be nonzero (and the Z flag
clear). The value in EAX indicates the error.

The following list indicates which calls are optional and which calls must be
supported:

NOTE: EAX and the Z flag are undefined for calls that return no error.

Ctl0_GetProtocolStackConfiguration Required

Ctl1_GetProtocolStackStatistics Required

Ctl2_Bind Required (bound stacks only)

Ctl3_Unbind Required (bound stacks only)

Ctl4_MLIDDeRegistered Optional

Ctl5_ProtocolPromiscuousChange Required

Ctl100_GetProtocolStringForBoard Required

Ctl101_GetBoundNetworkInfo Required
Protocol Stack Control Routines 101

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The following table lists the IOCTLs described in this chapter and provides a
summary of each one.

Table 20 Summary of Protocol Stack Control Functions

Control Function Type Summary Function Name

Binding and Unbinding
Functions

Bind Protocol Stack to MLID Ctl2_Bind

Unbind from MLID Ctl3_Unbind

Table Retrieval Get Pointer to Configuration Table Ctl0_GetProtocolStackConfiguratio
n

Get Pointer to Statistics Table Ctl1_GetProtocolStackStatistics

NLM Interaction Routines Get an ID string Ctl100_GetProtocolStringForBoard

Inform of Deregistered MLID Ctl4_MLIDDeRegistered

Inform of Requested Promiscuous
Mode Change on Adapter

Ctl5_ProtocolPromiscuousChange
102 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl0_GetProtocolStackConfiguration

Returns a pointer to the protocol stack configuration table.

Entry State

EBX

Equals 0.

Interrupts

Enabled.

Return State

EAX

Equals 0.

ESI

Pointer to the protocol stack configuration table.

Interrupts

Enabled.

Preserved

EBP, ESP.

Completion Code (EAX)

Remarks

GetProtocolStackConfiguration returns a pointer to the protocol stack
configuration table.

0 Successful
Protocol Stack Control Routines 103

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

Chapter 4, "Protocol Stack Data Structures" for the protocol stack
configuration table format.
104 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl1_GetProtocolStackStatistics

Returns a pointer to the protocol stack statistics table.

Entry State

EBX

1

Interrupts

Enabled.

Return State

EAX

0

ESI

Pointer to a statistics table.

Interrupts

Enabled.

Preserved

EBP, ESP.

Completion Code (EAX)

Remarks

GetProtocolStackStatistics returns a pointer to the protocol stack statistics
table.

0 Successful
Protocol Stack Control Routines 105

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

Chapter 4, "Protocol Stack Data Structures" for the protocol stack statistics
table format.
106 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl2_Bind

Binds a protocol stack with an MLID.

Entry State

EBX

2

EDI

The board number that the protocol stack will bind to.

ESI

Pointer to a user-specified parameter string.

Interrupts

Enabled.

Return State

EAX

Completion Code.

Interrupts

Enabled.

Preserved

EBP, ESP.

Completion Code (EAX)

0 Successful

The protocol stack was successfully bound.

FFFFFFF3 DuplicateEntry

The protocol stack is already bound.
Protocol Stack Control Routines 107

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl2_Bind provides a consistent method of binding a protocol stack with an
MLID. The protocol stack is expected to issue the LSLBindStack call to the
Link Support Layer, as well as to perform any other maintenance commands
required to bind to an MLID.

This function is invoked when the user issues the Bind command. For
example:

bind ipx to ne1000

NOTE: This control routine is required for bound protocol stacks only.

See Also

Appendix A, "Operating System Support Routines'': BindProtocolToBoard.
108 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl3_Unbind

Unbinds a protocol stack from an MLID.

Entry State

EBX

3

EDI

The board number to unbind the protocol stack from.

ESI

Pointer to an implementation-dependent parameter string. If ESI equals
0, no string exists.

Interrupts

Enabled.

Return State

EAX

0

Interrupts

Enabled.

Preserved

EBP, ESP.

Completion Code (EAX)

0 Successful
Protocol Stack Control Routines 109

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl3_Unbind provides a consistent method of unbinding a protocol stack from
an MLID.

This function is invoked when the user has issued the unbind command. For
example:

unbind ipx from ne1000

Optionally, this routine can send a few packets before the protocol stack is
unbound.

NOTE: This control routine is required for bound protocol stacks only.
110 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl4_MLIDDeRegistered

Informs the protocol stack that the MLID has deregistered.

Entry State

EBX

4

EDI

The number of the board being deregistered.

Interrupts

Enabled.

Return State

Interrupts

Enabled.

Preserved

EBP, ESP.

Completion Code (EAX)

Remarks

The Link Support Layer uses MLIDDeRegistered to inform all protocol stacks
bound to a specific MLID that the MLID has deregistered.

As a result of this call, the MLID will no longer be available. Be aware that
the MLID calls this IOCTL instead of the Unbind IOCTL if the MLID can no
longer send packets because of a hardware failure. If this is the case, the
protocol stack must clean up its tables that are related to the logical board

0 Successful
Protocol Stack Control Routines 111

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
number contained in EDI. The protocol stack should no longer attempt to
transmit any packets through this logical board.
112 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl5_ProtocolPromiscuousChange

Informs the protocol stack that a promiscuous mode change has been
requested on the adapter.

Entry State

EAX

The board number of the MLID.

EBX

5

ESI

The promiscuous mode state of the driver:

! Bit 0 is set if all MAC frames are to be received.

! Bit 1 is set if all non-MAC frames are to be received.

! Bit 2 is set if FDDI SMT type MAC frames are to be received.

! Bit 3 is set if remote multicast frames are to be received.

Interrupts

Disabled.

Return State

Interrupts

Preserved.

Completion Code (EAX)

0 Successful
Protocol Stack Control Routines 113

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl5_ProtocolPromiscuousChange informs the protocol stack that another
protocol stack has requested the LAN adapter to change its promiscuous
mode. The MLID calls this routine before it responds to another protocol
stack's request to change its promiscuous mode. The protocol stack makes this
request by calling MLIDPromiscuousChange.

Protocol stacks implement ProtocolPromiscuousChange if they must be
aware that the MLID is switching its promiscuous mode from promiscuous-
mode-disabled to promiscuous-mode-enabled. In other words, the MLID has
been sending only qualified packets to the protocol stack, but will now be
sending all packets to the protocol stack.

ProtocolPromiscuousChange notifies the protocol stack of this change so that
the protocol stack can adjust its filtering methods.

An example of this would be a protocol stack (stack A) that enabled itself to
receive packets with remote unicast addresses after it has enabled a hardware
filtering mechanism through the MLID's Ctl14_DriverManagement IOCTL.
If another protocol stack (stack B) enables promiscuous mode, stack A must
be aware that the hardware filter is disabled and that it will be receiving all
unicast packets.
114 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl100_GetProtocolStringForBoard

Gets a unique ID string for a protocol.

Entry State

EBX

100h

EDI

The board number.

ESI

Pointer to the user-supplied buffer (at least 17 bytes) where the string will
be returned.

Interrupts

Enabled.

Return State

EAX

0

ESI

Pointer to the buffer holding the NULL-terminated protocol description
string of length 16 bytes or less.

Interrupts

Enabled.

Preserved

EBP, ESP.

Completion Code (EAX)

0 Successful
Protocol Stack Control Routines 115

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

This function gets a unique ID string for a protocol.

For example, an IPX protocol stack might return a string similar to Network
FADE2200 for the board on which the protocol stack is functioning. In this
string, the IPX network number, FADE2200, is being used with that particular
board.

A TCP/IP protocol stack might return a string similar to 128.34.31.01.

In the future, this protocol IOCTL will become function number 7 instead of
100. Currently, protocol stacks should accept 7 or 100 as valid. However,
users of the this IOCTL should begin using 7 instead of 100.
116 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl101_GetBoundNetworkInfo

Gets the bound network address.

Entry State

EBX

101h

EDI

The board number.

ESI

Pointer to the user-supplied buffer for the bound network address.

Interrupts

Enabled.

Return State

Interrupts

Enabled.

Preserved

EBP, ESP.

Remarks

The protocol control function is entered with ESI pointing to a user-supplied
buffer of type struct networkAddressStruct, and with EDI containing the
board number. The protocol stack fills in the networkAddressStruct.address
type with its own transport type (IPX_TRANSPORT_ADDRESS for IPX),
networkAddressStruct.size with the length of the address, and
networkAddressStruct.address with the bound network address. IPX needs to
return all 12 bytes, network:node:socket. IP needs to return 4 bytes, network
address only (no socket).
Protocol Stack Control Routines 117

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
In the future, this protocol IOCTL will become function number 9 intead of
101. Currently, protocol stacks should accept 9 or 101 as valid. However,
users of the this IOCTL should begin using 9 instead of 101.
118 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
9 Overview of the LSL

Chapter Overview

This chapter provides a brief overview of the LSL and its functions. It also
documents the completion codes the LSL returns in the support routines.

Link Support Layer (LSL)

The Link Support Layer (LSL) handles the communication between protocol
stacks and MLIDs. The ODI allows a physical topology to support many
different types of protocols. MLIDs send and receive packets of different
frame types, destined for different protocol stacks. The LSL acts as a
demultiplexer, or switchboard, and determines which protocol stack or MLID
receives the packet.

The LSL also tracks the various protocols and MLIDs that are currently loaded
in the system and provides a consistent method of finding and using each of
the loaded modules.

The LSL provides the following services for protocol stacks:

! Queues and recovers ECBs for later use.

! Maintains lists of all active protocol stacks and MLIDs.

The LSL also provides protocol stacks with the ability to perform the
following tasks:

! Get and return ECBs.

! Get timing services.

! Get stack IDs and protocol IDs.
Overview of the LSL 119

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! Get MLID statistics.

! Bind with MLIDs.

! Transmit and receive packets through the MLID.

! Get information about MLIDs and other protocol stacks.

! Change the operational state of an MLID (such as shutting down or
resetting an MLID).

 The following table shows the completion codes returned by the LSL.

Table 21 LSL Completion Codes

Value Message

00000000h Successful

0FFFFF81h BadCommand

0FFFFF82h BadParameters

0FFFFFFCh Canceled

0FFFFF83h DuplicateEntry

0FFFFF84h Fail

0FFFFF85h ItemNotPresent

0FFFFF86h NoMoreItems

0FFFFF87h NoSuchDriver

0FFFFF88h NoSuchHandles

0FFFFF89h OutOfResources

0FFFFF8Ah RxOverflow

0FFFFF8Bh InCriticalSection

0FFFFF8Ch TransmitFailed

0FFFFF8Dh PacketUndeliverable
120 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
10 The LSL Statistics Table

Chapter Overview

This chapter describes the fields in the LSL Statistics Table. NLMs do not
modify any of the LSL Statistics Table fields.

LSL Statistics Table

The LSL keeps a statistics table for the purpose of network management. The
examples below include sample code and a graphic representation of the LSL
statistics table. Table 22 describes the statistics table fields.
The LSL Statistics Table 121

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 10 LSL Statistics Table Sample Source Code
122 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 11 Graphic Representations of the LSL Statistics Table

Table 22 LSL Statistics Table

Offset Label Size Description

00h MajorVersion 1 The major version number of the LSL statistics table.
The current major version number is 1.

01h MinorVersion 1 The minor version number of the LSL statistics table.
The current minor version number is 00.

02h TotalTxPackets 4 The number of packet transmit requests, regardless
of whether the packets were actually transmitted.

06h GetECBBfrs 4 The total number of ECBs that were requested.

0Ah GetECBFails 4 The total number of ECB requests that failed.

0Eh AESEventCounts 4 The total number of AES events that have been
processed.

12h PostponedEvents 4 The number of AES events postponed because of
critical sections.
The LSL Statistics Table 123

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NumCustom dwords corresponding to the custom statistics for the LSL start
at offset 2Ch. A dword holding the offset of a string describing each custom
counter follows the NumCustom dwords. Each string is length-preceded and
null-terminated.

The LSL Logical Board Statistics Structure

The LSL also declares a pointer to an array of LogicalBoardStatStructures.
The pointer and the LogicalBoardStatStructure are declared as follows:

public LogicalBoardStatTable
 LogicalBoardStatTable db(MaximumNumberofLans* size
 LogicalBoardStatStructure)
LogicalBoardStatTable struc
 LTotalTxPackets dd ? ;count of packets the logical board transmitted
 LTotalRxPackets dd ? ;count of packets the logical board received
 LUnclaimedPackets dd ? ;count of packets not claimed by any logical board
 LReserved dd ?

16h ECBCxlFails 4 The number of AES cancel requests that failed
because the event was not found on the AES list.

1Ah ValidBfrsReused 4 The number of ECBs in the hold queue that were
reused before they were removed from the hold
queue.

1Eh EnqueuedSendCnt 4 The number of send events in the queue that have
occurred.

22h TotalRxPackets 4 The total number of received incoming packets.

26h UnclaimedPackets 4 The total number of received incoming packets.

2Ah NumCustom 2 The total number of custom counters that follow this
field. Currently, this value is 2.

2Ch ErrorAllocatingMoreReceiveBuffer
s

4 Custom counter.

30h LogicalBoardStatTable 4 Custom counter.

34h ErrorAllocatingDescription 4 Pointer to a string describing the counter.

38h LogicalBoardStatDescription 4 Pointer to a string describing the counter.

Offset Label Size Description
124 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LogicalBoardStatsStructure end
The LSL Statistics Table 125

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
126 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
11 LSL Support Routines (Assembly
Language)

This chapter describes the Link Support Layer (LSL) which contains the
support functions that comprise the Multiple Protocol Interface (MPI) and the
Multiple Link Interface (MLI).

Figure 11-1 is a block diagram illustrating these interfaces. The functions in
this chapter are available to both protocol stacks and MLIDs.
LSL Support Routines (Assembly Language) 127

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: EAX and the Z flag are undefined for calls that reutrn no errors. In NetWare
3+ and NetWare 4+ environments, MLIDs access the APIs that are contained in
this chapter as near calls.

Table 23 List of LSL Support Functions

Function Type Function Purpose

Binding and Registration
Functions

LSLBindStack Binds a protocol stack to an MLID.

LSLRegisterDefaultChain Places a default protocol stack into a
protocol stack chain for an MLID.

LSLRegisterPreScanRxChain Places a receive prescan protocol stack into
a protocol stack chain for an MLID.

LSLRegisterPreScanTxChain Places a transmit prescan protocol stack into
a protocol stack chain for an MLID.

LSLRegisterStackRTag Registers a bound stack with the LSL.

LSLRegisterStackSMPSafe Informs the LSL that the stack is SMP aware.

LSLRegisterMLIDRTag Registers a logical board.

Miscellaneous Chaining
Functions

LSLGetStartChain Pointer to the start of all protocol stack
chains for a given board.

LSLModifyStackFilter Modifies the protocol stack reception mask.

LSLControlStackFilter Notifies the protocol stack of an MLID status
change.

NLM Interaction
Functions

LSLAddProtocolID Adds a Protocol ID to the LSL statistics table.

LSLGetMLIDControlEntry Gets the control entry point of an MLID.

LSLGetProtocolControlEntry Gets the control entry point of an MLID.

LSLGetLinkSupportStatistics Gets a pointer to the LSL statistics table.

LSLGetPIDFromStackIDBoard Gets a Protocol ID for a registered bound
protocol stack and logical board
combination.

LSLGetBoundBoardInfo Gets the Stack IDs of the protocol stacks
bound to a specified board.
128 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetStackIDFromName Gets the Stack ID for a registered bound
protocol stack.

Packet Reception
Routines

LSLDeFragmentECB Consolidates packet fragments.

LSLGetMaximumPacketSize Determines the maximum size of the ECB.

LSLGetPhysicalAddressOfEC
B

Gets the physical memory address of a
receive ECB.

LSLGetSizedRcvECBRTag Gets a receive ECB.

LSLReSubmitDefaultECB Passes the ECB to another default protocol
stack for processing.

LSLReSubmitPreScanRxECB Passes the ECB to another receive prescan
stack for processing.

LSLFastRcvEvent Passes the ECB to the protocol stack.

LSLHoldRcvEvent Queues the receive ECB until
LSLServiceEvents is called.

LSLServiceEvents Removes packets from the LSL's queue and
dispatches them to the appropriate protocol.

LSLReturnRcvECB Returns a previously allocated receive ECB.

Packet Transmission
Functions

LSLGetMaximumPacketSize Determines the maximum size of the ECB.

LSLReSubmitPreScanTxECB Passes the ECB to another transmit prescan
stack for processing.

LSLSendComplete Queues a send ECB until LSLServiceEvents
is called.

LSLFastSendComplete Returns the send ECB directly to the owner.

LSLSendPacket Sends a packet to the MLID.

Unbinding and
DeRegistration
Functions

LSLDeRegisterStack Deregisters a bound protocol stack from the
LSL.

Function Type Function Purpose
LSL Support Routines (Assembly Language) 129

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeRegisterMLID Deregisters a logical board.

LSLDeRegisterStackSMPSafe Deregisters an SMP aware protocol stack.

LSLDeRegisterPreScanRxCh
ain

Removes a receive prescan protocol stack
from a protocol stack chain for an MLID.

LSLDeRegisterPreScanTxCha
in

Removes a transmit prescan protocol stack
from a protocol stack chain for an MLID.

LSLUnbindStack Unbinds a bound protocol stack from an
MLID.

LSLDeRegisterDefaultChain Unbinds a chained default protocol stack
from an MLID.

LSLUnbindThenDeRegisterML
ID

Unbinds and deregisters an MLID.

SMP Specific Functions LSLSMPReaderLock Gets a read lock.

LSLSMPReaderUnlock Releases a read lock.

LSLSMPWriterLock Gets a write lock.

LSLSMPWriterUnlock Releases a write lock.

LSLSMPReaderToWriterLock Converts a read lock to a write lock.

LSLWriterToReaderLock Converts a writer to a read lock.

LSLAssignMutexToInstance Assigns a mutex to an instance of a logical
adapter.

LSLRemoveMutexFromInstan
ce

Removes a mutex from an instance of a
logical adapter.

LSLRemovePhysicalMutex Removes a mutex from all instances of a
physical adapter.

LSLAdapterMutexLock Gets a hardware adapter mutex lock.

LSLAdapterMutexTryLock Gets a hardware adapter mutex lock.

LSLAdapterMutexUnlock Releases a hardware adapter mutex lock.

LSLAddPollingProcedure Registers an SMP-aware polling procedure.

Function Type Function Purpose
130 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The old style registration and deregistration functions are no longer supported
in this specification. Table 24 shows the correlation between the old and the
new registration and deregistration functions:

Table 24 Correlation of Old and New Registration and Deregistration Functions

LSLRemovePollingProcedure Deregisters an SMP-aware polling
procedure.

LSLAddTimerProcedure Registers an SMP aware timer-driven
callback procedure.

LSLRemoveTimerProcedure Deregisters an SMP-aware timer callback
procedure.

Old Function New Function Description

LSLDeRegisterDefaultStack LSLDeRegisterDefaultChain Unbinds a chained default protocol stack
from a specific logical board or LAN
adapter.

LSLRegisterDefaultStackRTa
g

LSLRegisterDefaultChain Binds a chain of default protocol stacks
to a specific logical board or LAN
adapter. A chained default protocol
stack uses this call to request and
register its position in the chain.

LSLDeRegisterPreScanStack LSLDeRegisterPreScanRxCh
ain

Unbinds a chained receive prescan
protocol stack from a specific logical
board or LAN adapter.

LSLDeRegisterPreScanTxCh
ain

Unbinds a chained transmit prescan
protocol stack from a specific logical
board or LAN adapter.

LSLRegisterPreScanStackRT
ag

LSLRegisterPreScanRxChai
n

Binds a single receive prescan protocol
stacks to a specific logical board or LAN
adapter. A chained receive prescan
protocol stack uses this call to register
and request its position in the chain.

Function Type Function Purpose
LSL Support Routines (Assembly Language) 131

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: The LSL register and deregister functions must be used in the
following pairs:

! LSLRegisterPreScanRxChain

! LSLDeRegisterPreScanRxChain

!

! LSLRegisterPreScanTxChain

! LSLDeRegisterPreScanTxChain

!

! LSLRegisterDefaultChain

! LSLDeRegisterDefaultChain

!

! LSLRegisterStack

! LSLDeRegisterStackRTag

!

! LSLRegisterStackSMPSafe

! LSLDeRegisterStackSMPSafe

LSLRegisterPreScanTxChain Binds a single transmit prescan protocol
stack to a specific logical board or LAN
adapter. A chained transmit prescan
protocol stack uses this call to register
and request its position in the chain.

LSLDeRegisterStack LSLDeRegisterStack
(unchanged)

Deregisters a bound protocol stack from
a specific logical board or LAN adapter.

LSLRegisterStackRTag LSLRegisterStackRTag
(unchanged)

Registers a bound protocol stack to a
specific logical board or LAN adapter.

Old Function New Function Description
132 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAdapterMutexLock

Gets the hardware adapter mutex lock for a given logical board;
generally used by MLIDs.

Entry State

EBX

The logical board number.

Interrupts

Disabled and must remain disabled until after calling
LSLAdapterMutexUnlock.

Call

At process time only.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Remarks

SMP aware MLIDs call this function at the beginning of critical sections of
code that require exclusive access to an adapter's resources.

This function uses an atomic spin lock and should only be called at process
time. If the mutex cannot be acquired, this function spins until the mutex can
be acquired. This function will not return until the mutex is acquired.

NOTE: Beware of deadlocks when using this function.

See Also

! LSLAdapterMutexTryLock
LSL Support Routines (Assembly Language) 133

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! LSLAdapterMutexUnlock

! LSLAssignMutexToInstance

! LSLRemovePhysicalMutex
134 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAdapterMutexTryLock

Gets the hardware adapter mutex lock for a given logical board;
generally used by MLIDs.

Entry State

EBX

The logical board number.

Interrupts

Disabled and must remain disabled until after calling
LSLAdapterMutexUnlock.

Call

At process or interrupt time.

Return State

EAX

Completion Code.

Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

 0 Successful

The lock was obtained.

1 Failed

The lock was not obtained.
LSL Support Routines (Assembly Language) 135

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

SMP aware MLIDs call this function at the beginning of critical sections of
code that require exclusive access to a hardware adapter's resources. This
function is typically called repeatedly until the lock is obtained or until a
maximum number of attempts has been reached. If the lock cannot be
obtained, the intended operation must be aborted or postponed until a later
time.

See Also

! LSLAdapterMutexTryLock

! LSLAdapterMutexUnlock

! LSLAssignMutexToInstance

! LSLRemovePhysicalMutex
136 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAdapterMutexUnlock

Releases the hardware adapter mutex for a given logical board;
generally used by MLIDs.

Entry State

EBX

The logical board number.

Interrupts

Can be in any state.

Call

At process or interrupt time.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Remarks

SMP-aware MLIDs call this function after completion of critical code
requiring exclusive access to an adapter's resources. The released lock must
have been obtained earlier using LSLAdapterMutexLock or
LSLAdapterMutexTryLock.

See Also

! LSLAdapterMutexTryLock

! LSLAdapterMutexUnlock

! LSLAssignMutexToInstance

! LSLRemovePhysicalMutex
LSL Support Routines (Assembly Language) 137

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAddPollingProcedure

Used by polled drivers to register a polling procedure in the SMP
environment; generally used by MLIDs.

Entry State

EBX

The physical board ID.

ESI

Pointer to the polling procedure.

Interrupts

Can be in any state.

Call

At process time only.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Remarks

SMP-aware polled MLIDs call this function to register their polling
procedures with SMP. This call is used in place of
AddPollingProcedureRTag, which is used for nonSMP MLIDs.

See Also

! LSLAllocatePhysicalBoardID

! LSLRemovePollingProcedure
138 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! AddPollingProcedureRTag in Appendix A, "Operating System Support
Routines''
LSL Support Routines (Assembly Language) 139

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAddProtocolID

Adds the Protocol ID to the LSL statistics table; generally used by
protocol stacks and MLIDs.

Entry State

EAX

Pointer to the 6-byte Protocol ID that is being added.

ECX

Pointer to the length-preceded, zero-terminated media/frame type
description string with a length of less than or equal to 15 bytes.

EDX

Pointer to a length-preceded, zero-terminated string containing the
protocol stack short name. This protocol stack receives incoming frames
with the Stack ID that EAX points to.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code

Interrupts

Unchanged.

Preserved

No other registers.
140 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Code (EAX)

NOTE: MLIDs normally ignore the return code.

Remarks

Protocol Stacks

LSLAddProtocolID allows a protocol stack to add a new PID for a given
media. Because protocol stacks are topology and frame-type unaware, they do
not interpret Protocol IDs. Protocol IDs depend on the frame type and
topology the protocol stack is using.

The network administrator usually enters a Protocol ID for each frame-type/
board combination in the AUTOEXEC.NCF file. The protocol stack then calls
LSLGetPIDFromStackIDBoard to get the Protocol ID.

If a protocol stack does not find a Protocol ID, it loads, but is not functional.
In which case, the network administrator can bind the protocol stack to a frame
type by specifying a Protocol ID from the command line using the following
syntax:

Protocol Register<Protocol Name><Frame Name><Protocol ID>

For example:

Protocol Register IP Ethernet_II 800

 00000000h Successful

The LSL successfully added the new Protocol ID.

0FFFFF82h BadParameter

The specified parameter is an illegal (unknown) name. The protocol name string
and media name string length must be equal to or less than 15.

0FFFFF83h DuplicateEntry

A different protocol ID is already registered for the given media/frame type/
protocol stack combination.

0FFFFF89h OutOfResources

The LSL has no resources to register another Protocol ID.
LSL Support Routines (Assembly Language) 141

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Typing the word ``Protocol'' at the command line will produce a list of all
protocols, frame types, and Protocol IDs that need to be registered.

Intelligent protocol stacks that cannot find a Protocol ID can register based on
common, well-known protocol stack / frame type combinations. For example,
IP on Ethernet_II or Ethernet _SNAP always use Protocol ID 800.

MLIDs

LSLAddProtocolID allows the MLID to tell the LSL the names and Protocol
IDs (PIDs) of each protocol stack it can support. The MLID initialization
procedure should call this routine to add the default PID for IPX.

NOTE: If a Protocol ID value is less than 6 bytes, the most significant bytes must
be padded with zeros (0).

See Also

! ODI Supplement: Frame Types and Protocol IDs
142 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAddTimerProcedure

Registers a timer based call back procedure in the SMP environment;
generally used by MLIDs.

Entry State

EBX

The physical board ID.

ESI

Pointer to a timer node data structure.

Interrupts

Can be in any state.

Call

At process or interrupt time.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Remarks

SMP-aware MLIDs call this function to register a timer driven call back
procedure with SMP. Note that this call must be used instead of
ScheduleInterruptTimeCallBack in the SMP environment.

The timer node data structure used by this function is in the same format used
by ScheduleInterruptTimeCallBack.

See Also

! LSLAllocatePhysicalBoardID
LSL Support Routines (Assembly Language) 143

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! LSLRemoveTimerProcedure

! ScheduleInterrupTimeCallBack in Appendix A, ``Operating System
Support Functions''.
144 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAllocatePhysicalBoardID

Assigns a unique ID to a physical board.

Entry State

EAX

Pointer to MLID resource tag.

ECX

0 if the MLID must run on processor 0.

-1 if the MLID can run on any processor.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion code.

EBX

Physical board ID

Completion Code (EAX)

Successful A unique physical board ID has been assigned.

Bad parameter EAX does not point to a valid resource tag.

Out of Resources A unique physical board ID could not be allocated.
LSL Support Routines (Assembly Language) 145

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLFreePhysicalBoard
146 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLAssignMutexToInstance

Assigns a mutex lock for a specified logical board instance and
allocates the mutexes for the physical adapter if they have not already
been allocated; generally used by MLIDs.

Entry State

EBX

The logical board that the mutex will be assigned to.

ESI

The physical board ID associated with the physical adapter. This number
is returned by LSLAllocatePhysicalBoardID.

Interrupts

Can be in any state.

Call

At process or interrupt time.

Return State

EAX

Completion code.

Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

00000000h Successful

The mutex was successfully assigned to an instance of a physical board.
LSL Support Routines (Assembly Language) 147

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

SMP-aware MLIDs call this function for each logical board instance.
Typically this function is called soon after calling LSLRegisterMLIDRTag.

See Also

! LSLAllocatePhysicalBoardID

! LSLRemoveMutexFromInstance

! LSLRemovePhysicalMutex

00000001h Failed

The mutex could not be allocated.
148 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLBindStack

Enters the Stack ID into the LSL's table. Generally used by bound
protocol stacks.

Entry State

EAX

The Stack ID number.

EBX

The board number that the protocol stack will bind to.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

Interrupts

Preserved and never changed.

Preserved

No other registers.

Completion Code (EAX)

00000000h Successful

The LSL successfully added the protocol stack to its table.
LSL Support Routines (Assembly Language) 149

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLBindStack binds a protocol stack to an MLID. The protocol stack receives
a packet from the MLID as follows:

1. The MLID places the board number of the MLID, the Protocol ID from
the MAC header, and the data into a receive ECB.

2. MLID passes the ECB and the packet to the Link Support Layer.

3. LSL checks its statistics table to find the Protocol ID that matches the one
in the ECB.

4. LSL uses the Protocol ID to reference the Stack ID in the statistics table.

5. LSL passes the packet and the ECB to the receive handler of the protocol
stack that corresponds to the Stack ID.

The protocol stack specified the address receive handler when it registered
with the LSL.

Before making this call, the protocol stack must be ready to receive packets
and must also be registered with the LSL using LSLRegisterStackRTag.

See Also

! LSLRegisterStackRTag

! LSLUnbindStack

0FFFFF82h BadParameter

The MLID corresponding to the requested board number or the protocol stack
corresponding to the specified stack ID does not exist.

0FFFFF83h DuplicateEntry

The specified binding already exists.

0FFFFF85h ItemNotPresent

The frame type specified by the logical board number does not have a PID
registered for this protocol stack.

0FFFFF89h OutOfResources

The LSL has no resources to register another protocol stack.
150 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! BindProtocolToBoard in Appendix A, ``Operating System Support
Functions''.
LSL Support Routines (Assembly Language) 151

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLControlStackFilter

Notifies all protocol stacks bound to the MLID that the MLID state has
changed. Generally used by MLIDs.

Entry State

EAX

The number of the logical board filtering packets to protocol stacks which
are bound and registered or chained with the logical board.

EBX

The control handler function number of the protocol stacks to be notified.

ECX

The filter mask for the protocol stacks to be notified. See
LSLGetStartChain for the definitions of the bits in this mask.

ESI

Parameter 1 to pass to the control handler.

EDI

Parameter 2 to pass to the control handler.

Interrupts

Must be disabled.

Call

At process time only.

Return State

EAX

Completion Code.

Flags

Set according to EAX.
152 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

Remarks

This function calls the specified control function of some or all protocol stacks
associated with the physical LAN adapter that the logical board is operating
on. It updates protocol stacks that are operating on logical boards with the
same name and instance as the logical board specified by board number.

One example of this functions use is when an MLID enters promiscuous
mode, it can use this routine to call all protocol stacks who need to know the
MLID is now in promiscuous mode.

See Also

! LSLModifyStackFilter

! CLSLControlStackFilter

00000000h Successful

All protocol stacks have been notified.

0FFFFF82h BadParameter

The specified board does not exist.
LSL Support Routines (Assembly Language) 153

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeFragmentECB

Consolidates packet fragments.

Entry State

EAX

The amount of memory (in bytes) to skip before de-fragmenting the ECB.
If EAX = -1, the ECB header will not be copied.

EBX

Pointer to the source ECB.

EDX

Pointer to the destination ECB. If EAX = -1, EDX has a pointer to a
buffer.

Interrupts

Can be in any state.

Call

At process time or interrupt time

Return State

EAX

Completion Code

Interrupts

Unchanged.

Preserved

No other registers.
154 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Code (EAX)

Remarks

LSLDeFragmentECB consolidates packet fragments before the protocol stack
processes the ECB. The resulting ECB is a copy of the original, but it consists
of only one fragment. The protocol stack places the data from the original
fragments at the specified offset from the FragLen1 field in the destination
ECB.

If EAX is -1, EDI has a pointer to a buffer where the buffer fragments should
be placed.

00000000h Successful

No error occurred.

0FFFFF82h BadParameter

The ECB to be defragmented contains invalid fields describing the data contents.
LSL Support Routines (Assembly Language) 155

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeRegisterDefaultChain

Removes the chained default prescan stack from the LSL tables.

Entry State

ECX

The chain ID.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code

Interrupts

Unchanged.

Destroyed

EBX, ECX, EDX.

Flags

Set according to EAX.

Completion Code (EAX)

00000000h Successful

The protocol stack was deregistered.

0FFFFF85h ItemNotPresent

No default chain stack with this stack ID is registered for an MLID.
156 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLDeRegisterDefaultChain removes the specified chained default stack for
a logical board from the LSL's internal default stack table.

After making this call, the protocol stack chain will not receive incoming
packets from the MLID it was bound to.

See Also

! LSLRegisterDefaultChain
LSL Support Routines (Assembly Language) 157

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeRegisterMLID

De-registers the logical board.

Entry State

EBX

The board number.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code

Interrupts

Disable, but could have been enabled.

Preserved

No other registers.

Completion Code (EAX)

00000000h Successful

The LSL successfully de-registered the MLID.

0FFFFF82h BadParameter

The LSL did not have an MLID registered for the board number that was passed
in EBX.
158 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

The MLID calls LSLDeRegisterMLID to de-register one logical board from
the LSL. The LSL then calls Ctl_4MLIDDeRegistered to inform all protocol
stacks bound to that logical board that the logical board is no longer available.

IMPORTANT: If the LAN adapter is not having trouble sending out packets, the
MLID should use LSLUnbindThenDeRegisterMLID.
LSL Support Routines (Assembly Language) 159

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeRegisterPreScanRxChain

Removes the chained receive prescan stack from the LSL tables.

Entry State

ECX

The chain ID.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code

Interrupts

Disabled.

Destroyed

EBX, ECX, and EDX.

Completion Code (EAX)

00000000h Successful

The protocol stack was deregistered.

0FFFFF82h ItemNotPresent

No chained receive stack with this Stack ID is registered for the MLID.
160 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLDeRegisterPreScanRxChain removes the specified chained receive
prescan stack for a logical board from the LSL's internal receive prescan stack
table.

After making this call, the protocol stack chain will not receive any incoming
packets from the MLID it was bound to.

See Also

! LSLRegisterPreScanTxChain
LSL Support Routines (Assembly Language) 161

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeRegisterPreScanTxChain

Removes the chained transmit prescan stack from the LSL tables.

Entry State

ECX

The chain ID.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code

Interrupts

Disabled.

Destroyed

EBX, ECX, and EDX.

Completion Code (EAX)

00000000h Successful

The protocol stack was deregistered.

0FFFFF82h ItemNotPresent

No chained transmit prescan stack with this Stack ID is registered for the MLID.
162 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLDeRegisterPreScanTxChain removes the specified chained transmit
prescan stack for a logical board from the LSL's internal transmit prescan
stack table.

After making this call, the protocol stack chain will not get any send packets
for the MLID it was bound to.

See Also

! LSLRegisterPreScanRxChain
LSL Support Routines (Assembly Language) 163

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeRegisterStack

Removes a bound protocol stack from the LSL's tables. Generally used
by protocol stacks.

Entry State

EAX

Has the protocol stack ID.

Interrupts

Are in any state.

Call

At process time only.

Return State

EAX

Completion Code

Interrupts

Are disabled.

Preserved

No other registers.

Flags

Are set according to EAX.

Completion Code (EAX)

00000000h Successful

The bound protocol stack has been removed from the LSL tables.
164 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLDeRegisterStack removes the specified bound protocol stack registered
with the LSL from the LSL's internal protocol stack tables.

After making this call, a protocol stack will not receive incoming packets from
the specified MLID unless the protocol stack is still bound to it as another type
of stack.

The protocol stack must not call LSLDeRegisterStack during a critical section.

See Also

! LSLRegisterStackRTag

0FFFFF82h BadParameter

Either the StackID is invalid, or no protocol stack is registered for that ID.
LSL Support Routines (Assembly Language) 165

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLDeRegisterStackSMPSafe

Used by SMP aware protocol stacks to inform the LSL of
deregistration.

Entry State

[ESP+4]

Contains the stack ID.

Interrupts

Are in any state.

Call

At process time only.

Return State

EAX

Completion Code

Interrupts

Unchanged.

Preserved

EBX, EBP, ESI, EDI.

Completion Code (EAX)

00000000h Successful

The LSL has been notified of the de-registration.

0FFFFF82h BadParameter

The stack ID is invalid.
166 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

SMP aware protocol stacks call this function to inform the LSL that stack
deregistration is pending. Protocol stacks must still call LSLDeRegisterStack,
LSLDeRegisterDefaultChain, LSLDeRegisterPreScanRxChain, or
LSLDeRegisterPreScanTxChainfollowing this call.

See Also

! LSLRegisterStackSMPSafe

! LSLDeRegisterStack
LSL Support Routines (Assembly Language) 167

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLFastRcvEvent

Dispatches the ECB directly to the protocol stack.

Entry State

ESI

Points to the receive buffer to be processed.

Interrupts

Can be in any state.

Call

At process or interrupt time.

Return State

Interrupts

Are disabled, but could have been enabled.

Preserved

No other registers.

Completion Code (EAX)

None.

Remarks

LSLFastRcvEvent improves the performance of MLIDs that call
LSLServiceEvents immediately after calling LSLHoldRcvEvent.
LSLFastRcvEvent dispatches the ECB directly to the protocol stack.

Beware, however, that LSLFastRcvEvent can enable interrupts.

If your MLID board service routine must run with interrupts disabled, you can
use either of the following options:

! The board service routine calls LSLFastRcvEvent as the last call before it
issues a return.
168 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! The board service routine handles being reentered at the point it calls
LSLFastRcvEvent.

If the board service routine masks the PIC or the adapter interrupts instead of
disabling them, it can use LSLFastRcvEvent at any point without being
reentered.

The board service routine must set the following fields of the ECB before
calling LSLFastRcvEvent:

Table 25 ECB Fields to Set Before Calling LSLFastRcvEvent

Offset Field Name Description

04h BLink See Chapter 6, "Setting the ECB Blink Field".

10h Protocol ID The Protocol ID value obtained from the media header of the received
packet.

16h BoardNumber Contains the board number of the MLID that received this packet.

1Ah ImmediateAddres
s

Contains the node address of the station that sent this packet. This address
is in either canonical or noncanonical format, depending upon whether the
MLID bit-swaps MSB format addresses. The protocol stack fills in this field
on sends. All addresses passed down to the MLID are in canonical format if
the MLID is configured for LSB.
LSL Support Routines (Assembly Language) 169

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
29h DriverWorkspace Before passing a completed receive ECB to the LSL, fill in the most
significant byte of this field with the destination address type of the received
packet.

! 00h = Direct

! 01h = Multicast

! 03h = Broadcast

! 04h = Remote Unicast

! 08h = Remote Multicast

! 10h = No Source Route

! 20h = Error Packet

! 80h = Direct Unicast

Set the second byte of this field (offset 21h) to indicate whether the MAC
header contains one or two 802.2 control bytes:

! 0 = Not 802.2.

! 1 = 802.2 Ctrl0 only

! 2 = 802.2 Ctrl0 and Ctrl1

2Ch PacketLength Length of the data portion of the packet (RData).

30h FragmentCount The number of fragments in the packet. For receive packets, this value is
always 1.

34h FragmentOffset For receive packets, this field contains a pointer to the only packet fragment.
It points around any media headers contained in the PacketEnvelope portion
of the packet (see Figure 12).

38h FragmentSize The length of the first packet fragment in bytes. On receives, the value in this
field is the same as the value in the PacketLength field.

3Ch PacketEnvelope The beginning of the packet data. The media header is the first item of data
in this section of the ECB. The media header varies in size with frame-type
and topology.

Offset Field Name Description
170 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 12 Graphic Representation of the Receive Event Control Block

IMPORTANT: This process could call the MLID's packet transmission routine and
could enable the interrupts.

See Also

! ODI Supplement: Frame Types and Protocol IDs for information about
802.2 Type II and Type I frames.
LSL Support Routines (Assembly Language) 171

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLFastSendComplete

Returns the ECB immediately to its owner. Generally used by MLIDs.

Entry State

ESI

Contains a pointer to the ECB that was sent.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

Interrupts

Are disabled, but could have been enabled.

Preserved

No other registers.

Completion Code (EAX)

None.

Remarks

LSLFastSendComplete improves the performance of MLIDs that call
LSLServiceEvents immediately after calling LSLSendComplete.
LSLFastSendCompleteimmediately returns the ECB to the protocol stack.

Be aware, however, that LSLFastSendComplete could enable interrupts.
Consequently, the LSL could reenter the MLID's send routine before
LSLFastSendComplete returns.

NOTE: The MLID does not have to call LSLServiceEvents on behalf of this ECB.
172 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLFreePhysicalBoardID

Releases the unique physical board ID associated with a physical
board.

Entry State

EAX

Pointer to the MLID resource tag.

EBX

The physical board ID to be released.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code

Completion Code (EAX)

See Also

! LSLAllocatePhysicalBoardID

Successful The unique physical board ID was released

BadParameter An invalid parameter was passed to the function.
LSL Support Routines (Assembly Language) 173

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetBoundBoardInfo

Returns the Stack ID of the stack that is bound to the specified logical
board or LAN adapter. Generally used by protocol stacks.

Entry State

EBX

Contains the board number.

EDI

Contains a pointer to buffer large enough to hold (MaxProtocols+1)*4
bytes.

Note: MaxProtocols is 16 in NetWare 3 or higher.

Interrupts

Can be in any state.

Call

At process time only.

EAX

Contains the completion code.

Return State

EDI

Contains a pointer to the buffer if the routine is successful.

! [Buffer + 0] = the number of protocol stacks

! [Buffer + 4] = the ID of first protocol stacks

! [Buffer + 8] = the ID of the second protocol stack

! [Buffer + 4n] = the ID of the nth protocol stack

Interrupts

Unchanged.
174 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Preserved

All registers except ECX and ESI.

Completion Code (EAX)

00000000h Successful

The function executed successfully.

0FFFFF82h BadParameter

The board number is invalid.

0FFFFF85h ItemNotPresent

The board number is not registered.

0FFFFF89h OutOfResources

The buffer is too small. [EDI+0] will contain the desired buffer length.
LSL Support Routines (Assembly Language) 175

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetLinkSupportStatistics

Gets a pointer to the LSL's statistics table.

Entry State

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

ESI

Pointer to the link support statistics vector.

Interrupts

Preserved.

Preserved

All other registers.

Completion Code (EAX)

None.

Remarks

LSLGetLinkSupportStatistics gets a pointer to the link support layer's statistics
table.

See Also

! Chapter 10, "LSL Statistics Table"
176 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetMaximumPacketSize

Determines the maximum size of the ECB. Generally used by protocol
stacks and MLIDs.

Entry State

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Contains the maximum physical packet size for which the LSL is
configured.

Interrupts

Preserved and never changed.

Completion Code (EAX)

None.

Remarks

LSLGetMaximumPacketSize returns the largest physical packet size for which
the LSL has been configured by entering ``Set Maximum Physical Receive
Packet Size = x'' in the STARTUP.NCF file.

Protocol stacks use LSLGetMaximumPacketSize to determine the maximum
size of the event Control Block, not the size of send or receive packets that the
MLID can handle.
LSL Support Routines (Assembly Language) 177

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetMLIDControlEntry

Returns the control entry point for the specified MLID. Generally used
by protocol stacks.

Entry State

EBX

The logical board number.

Interrupts

Can be in any state.

Call

At process time only.

Return State

ESI

Contains a pointer to the control entry point.

Interrupts

Preserved and never changed.

Preserved

All other registers.

Completion Code (EAX)

00000000h Successful

ESI contains the MLID control entry point..

0FFFFF82h BadParameter

The board number in EAX is invalid..
178 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLGetMLIDControlEntry returns the MLID control entry point for the
MLID that corresponds to the board number in EBX.

This command allows a protocol stack to communicate directly with the
MLID and get information such as the addresses of the MLID configuration
table and the MLID statistics table.

See Also

! Chapter 20, "MLID Control Routines''

! Chapter 14, "MLID Data Structures", for the format of the MLID
configuration table.
LSL Support Routines (Assembly Language) 179

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetMultipleSizedRcvECBRTag

Gets multiple receive buffers. Generally used by protocol stacks and
MLIDs.

Entry State

EAX

Pointer to a valid resource tag.

ECX

The number of ECBs.

ESI

The maximum size of packets including headers.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Completion Code.

ECX

The number of ECBs allocated.

ESI

POINTER to list of ECBs.

Flags

Set according to EAX.

Interrupts

Disabled.
180 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Preserved

All other registers.

Completion Code (EAX)

Remarks

LSLGetMultipleSizedRcvECBRTag returns a linked list of ECBs, which are
linked via the LINK field. The last ECB in the list contains a zero (0) in the
LINK field.

00000000h Successful

No errors.

0FFFFF89h Out of Resources

Either the packet size exceeded the maximum ECB size, or an ECB was not
available.
LSL Support Routines (Assembly Language) 181

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetPhysicalAddressOfECB

Gets the physical memory address of a receive ECB.

Entry State

ESI

Logical pointer to the receive ECB.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Physical pointer to the receive ECB.

Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

None.

Remarks

MLIDs that require physical addresses for DMA use
LSLGetPhysicalAddressOfECB to quickly convert the logical address of the
receive ECB to a physical address. LSLGetPhysicalAddressOfECB must only
be used to get the physical address of LSL receive ECBs that the MLID
acquired using LSLGetSizedECBRTag or LSLGetMultipleSizedRcvECBRTag.
182 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetPIDFromStackIDBoard

Returns a Protocol ID

Entry State

EAX

Contains the Stack ID.

EBX

Contains the board number.

EDI

Contains a pointer to a 6-byte area for the Protocol ID.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

EDI

Pointer to the 6-byte area which now contains the protocol ID.

Interrupts

Preserved and not changed.

Preserved

No other registers.
LSL Support Routines (Assembly Language) 183

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Code (EAX)

Remarks

LSLGetPIDFromStackIDBoard returns a Protocol ID that corresponds to a
combination of the Stack ID and board number. The protocol stack fills in the
ProtocolID field of a send ECB with this information.

00000000h Successful

A match was found. EDI contains a pointer to the 6-byte buffer which now
contains the protocol ID.

0FFFFF82h BadParameter

The Stack ID or the board number in EAX is invalid.

0FFFFF85h ItemNotPresent

No Protocol ID is associated with the parameters passed in.
184 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetProtocolControlEntry

Gets the entry point to a protocol stack. Generally used by protocol
stacks.

Entry State

EAX

Contains an index number or the Stack ID. (See EBX).

EBX

Contents depend on EAX.

If EAX = FFFFFFFFh, EBX contains the board number to get the default
protocol control handler for.

If EAX = FFFFFFFEh, EBX contains the board number to get the prescan
protocol control handler for.

Otherwise, EAX contains the Stack ID of a bound protocol stack, and
EBX contains the board number to get the protocol control handler for.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

ESI

Contains a pointer to the control entry point for the specified protocol
stack.

Interrupts

Preserved and never changed.
LSL Support Routines (Assembly Language) 185

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Preserved

All other registers.

Completion Code (EAX)

Remarks

LSLGetProtocolControlEntry allows a protocol stack or an application to
communicate directly with another protocol stack and get information from
the LSL's list of protocol stacks.

NOTE: If you need to locate a control entry point for a default protocol stack or a
prescan protocol stack, call LSLGetStartChain, because it supports chained
protocol stacks.

See Also

! LSLGetStartChain

00000000h Successful

A protocol Stack ID exists that corresponds to the value that was in EAX on entry.
ESI contains the address of the protocol stack control entry point.

0FFFFF82h BadParameter

If EAX was equal to -1 or -2 on entry, the board number passed in EBX is not
bound to any old- style unchained prescan stacks or default protocol stacks;
otherwise, EAX contained an invalid Stack ID.

0FFFFF85h ItemNotPresent

The value that was in EAX on entry does not correspond to a valid Stack ID, but
a Stack ID higher than the value that was in EAX on entry may exist.

0FFFFF86h NoMoreItems

If EAX was equal to -1 or -2 on entry, EBX contained an invalid board number.
186 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetSizedRcvECBRTag

Gets a receive buffer. Generally used by protocol stacks and MLIDs.

Entry State

EAX

Pointer to a valid resource tag.

ESI

Packet size, including headers.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Completion Code.

ESI

Pointer to the receive ECB.

Flags

Set according to EAX.

Interrupts

Disabled.

Preserved

All other registers.
LSL Support Routines (Assembly Language) 187

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Code (EAX)

Remarks

MLIDs call LSLGetSizedRcvECBRTag to get buffers for received packets.
The LSL returns an ECB and a buffer large enough to hold the received frame.

The length of all the protocol and hardware headers must be included in the
length in the ESI register. For example, an Ethernet II frame uses
DataLength+14.

If a receive ECB is not available, the MLID must discard the packet.

MLIDs that take advantage of bus-mastering DMA must preallocate ECBs.
First these MLIDs must call LSLGetMaximumPacketSize and put either the
returned value or the maximum packet length that the LAN adapter can
receive-whichever is less-into ESI. Then, the MLID calls
LSLGetSizedRcvECBRTag.

00000000h Successful

No errors.

0FFFFF89h Out of Resources

Either the packet size exceeded the maximum ECB size, or an ECB was not
available.
188 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetStackIDFromName

Gets a Protocol Stack ID for any protocol stack. Generally used by
protocol stacks.

Entry State

EDX

Pointer to a length-preceded, zero-terminated string containing the short
name of the protocol stack.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

EBX

Protocol Stack ID.

Interrupts

Preserved and never changed.

Preserved

All other registers.

Completion Code (EAX)

00000000h Successful

A protocol stack corresponding to the name specified in EDX was found. The
Protocol Stack ID for it is returned in EBX.
LSL Support Routines (Assembly Language) 189

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLGetStackIDFromName allows a protocol stack or application to get its
own Stack ID or any other Stack ID.

With the Stack ID and the MLID board number, a protocol stack can call
LSLGetPIDFromStackIDBoard to get the Protocol ID.

NOTE: The stack name match is case-sensitive.

0FFFFF82h BadParameter

The length of the name string was either zero or was greater than 15 characters.

0FFFFF85h ItemNotPresent

The specified protocol stack name is not registered with the LSL.
190 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLGetStartChain

Gets pointers to the starting offsets of the default chain, the prescan
receive chain, and the prescan transmit chain.

Entry State

EBX

The board number of the LAN adapter or logical board bound to the
desired chains.

Interrupts

Disabled.

Call

At process time only.

Return State

EAX

Completion Code.

EBX

The address of the default chain pointer.

EDI

The address of the transmit prescan chain pointer.

ESI

The address of the receive prescan chain pointer.

Interrupts

Disabled.

Preserved

ECX, EDX, EBP.

Flags

Set according to EAX.
LSL Support Routines (Assembly Language) 191

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Code (EAX)

Remarks

LSLGetStartChain returns the pointers to the starting offsets of the default
chain, the prescan receive chain, and prescan transmit chain. Each chain is a
linked list of protocol stacks. If no protocol stacks are registered for a
particular chain, a NULL pointer is returned.

ChainStructure struc
ChainLink dd 0 ;Link Field
ChainProcessHandler dd -1 ;Stack Tx or Rx Handler
ChainCtlHandler dd 2 ;Stack Control Entry Point
ChainRTag dd ? ;Stack Resource Tag
ChainReceiveBufferRTag dd ? ;Receive ECB's Resource Tag
ChainLoadOrder dd ? ;Stack Requested Chain Position
ChainID dd 0 ;Stack ID Number (-1 indicates
 an old style prescan or default
 protocol stack.)
ChainMask dd 0 ;Stack Packet Filter Mask
ChainStructure ends

The ChainMask assigns the bit values as follows:

00000000h Successful

The routine successfully returned the chain pointers.

0FFFFF82h BadParameter

The board number is invalid.

DEST_MULTICAST equ 0001h

DEST_BROADCAST equ 0002h

DEST_REMOTE_UNICAST equ 0004h

DEST_REMOTE_MULTICAST equ 0008h

DEST_NO_ROUTE equ 0010h Exclusive bit

DEST_ERROR_PACKET equ 0020h
192 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Reserved equ 0040h

DEST_DIRECT equ 0080h

DEST_PROMISCUOUS equ FFFFh All packets, including errors
LSL Support Routines (Assembly Language) 193

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLHoldRcvEvent

Directs the receive ECB to the LSL service event queue. Generally
used by MLIDs.

Entry State

ESI

Pointer to the receive ECB.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

ESI

Preserved.

EDI

Preserved.

EBP

Preserved.

Interrupts

Disabled.

Completion Code (EAX)

None.

Remarks

If the MLID is unable to use LSLFastRcvEvent, it can call
LSLHoldRcvEventto hand a receive ECB and a received packet to the LSL.
194 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The MLID must set the following ECB fields prior to calling this routine:

Table 26 ECB Fields to Set Before Calling LSLHoldRcvEvent

Offset Field Name Description

04h BLink See Chapter 6, "Setting the ECB Blink Field".

10h Protocol ID The Protocol ID value obtained from the media header of the received
packet.

16h BoardNumber Contains the board number of the MLID that received this packet.

1Ah ImmediateAddres
s

Contains the node address of the station that sent this packet. This address
is in either canonical or noncanonical format, depending upon whether the
MLID bit-swaps MSB format addresses. The protocol stack fills in this field
on sends. All addresses passed down to the MLID are in canonical format
if the MLID is configured for LSB.

29h DriverWorkspace Before passing a completed receive ECB to the LSL, fill in the most
significant byte of this field with the destination address type of the received
packet.

! 00h = Direct

! 01h = Multicast

! 03h = Broadcast

! 04h = Remote Unicast

! 08h = Remote Multicast

! 10h = No Source Route

! 20h = Error Packet

! 80h = Direct Unicast

Set the second byte of this field (offset 21h) to indicate whether the MAC
header contains one or two 802.2 control bytes:

! 0 = Not 802.2.

! 1 = 802.2 Ctrl0 only

! 2 = 802.2 Ctrl0 and Ctrl1

2Ch PacketLength Length of the data portion of the packet (RData).

30h FragmentCount The number of fragments in the packet. For receive packets, this value is
always 1.
LSL Support Routines (Assembly Language) 195

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 13 Graphic Representation of the Receive Event Control Block

NOTE: The MLID cannot modify any ECB fields after making this call.

After the board service routine calls LSLGetSizedRcvECBRTag and reads the
packet into the receive ECB, it calls LSLHoldRcvEvent to queue the receive
ECB on the LSL's service events queue. Before leaving the board service

34h FragmentOffset For receive packets, this field contains a pointer to the only packet
fragment. It points around any media headers contained in the
PacketEnvelope portion of the packet (see Figure 13).

38h FragmentSize The length of the first packet fragment in bytes. On receives, the value in
this field is the same as the value in the PacketLength field.

3Ch PacketEnvelope The beginning of the packet data. The media header is the first item of data
in this section of the ECB. The media header varies in size with frame-type
and topology.

Offset Field Name Description
196 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
routine the MLID calls LSL Service Events to dispatch the ECBs on the hold
queue.
LSL Support Routines (Assembly Language) 197

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLModifyStackFilter

Modifies the ChainMask field of the ChainStructure. Generally used by
protocol stacks.

Entry State

EAX

The protocol Stack ID or the chain Stack ID.

EBX

The board number.

ECX

The new ChainMask filter bits or zero to query.

Return State

EAX

Completion Code.

ECX

The current ChainMask filter bits.

Interrupts

Unchanged.

Preserved

All register except ESI.

Completion Code (EAX)

00000000h Successful

The ChainMask filter has been set to the new value.
198 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLModifyStackFilter lets the protocol stack set the ChainMask field of the
ChainStructure. If the protocol stack is bound, this routine allows the stack to
set the filter mask. The protocol stack uses the filter mask to notify the LSL of
the type of packets the stack wants to receive.

See Also

! LSLGetStartChain for the definition of the Chain Mask bits.

0FFFFF82h BadParameter

The board number or the stack/chain ID was invalid.
LSL Support Routines (Assembly Language) 199

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRegisterDefaultChain

Binds a chained default protocol stack to the specified MLID. Generally
used by protocol stacks.

Entry State

EAX

The address of the default stack chain's resource tag.

EBX

The board number.

ECX

The address of the protocol stack's default receive handler.

EDX

The address of the control handler for the default protocol handler.

ESI

The address of the receive ECB's resource tag.

EBP

The protocol stack's required position in the chain. See Table 27.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

EBX

The stack chain ID.
200 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Interrupts

Disabled.

Preserved

ECX, EDX, ESI, EDI, and EBP.

Flags

 Set according to EAX.

Completion Code (EAX)

Remarks

LSLRegisterDefaultChain binds the chained default protocol stack to the
MLID whose board number is specified in EBX. The default protocol stack
chain receives all packets that are not requested by either a chained receive
prescan protocol stack or a bound protocol stack.

Protocol stacks use this routine to put themselves in the proper position in the
chain.

00000000h Successful

No errors occurred.

0FFFFF82h BadParameter

The board number, the resource tag, or the requested position in the stack chain
was invalid.

0FFFFF83h DuplicateEntry

The requested chain position is either the first or last position (EBP equals 0 or
4) and is already occupied.

0FFFFF89h OutOfResources

The LSL was unable to allocate the node structure for the chain.
LSL Support Routines (Assembly Language) 201

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
To acquire the stack chain resource tag, the protocol stack calls the operating
system support routine, AllocateResourceTag, with the
LSLDefaultStackSignature 'DLSL'.

The stack chain ID returned in EBX is a unique identifier based on a logical
board/protocol stack chain combination. This chain ID is not the same as the
Stack ID that is issued to a single, normally registered protocol stack that can
be bound to a number of different boards.

The protocol stack's required position in the chain is defined in the following
table.

WARNING: If the protocol stack requests a chain position of 0 or 4, and another
protocol stack is already registered for that board number at that position, the
registration routine will abort.

See Also

! LSLDeRegisterDefaultChain

0 The stack must start the chain.

1 The stack must be loaded at the next available position from the front of the chain.

2 The stack's position in the chain is dependent on the order in which the stacks are loaded. The
stack will take the next available position when it loads.

3 The stack must be loaded at the next available position from the end of the chain.

4 The stack must end the chain.
202 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRegisterMLIDRTag

Registers a logical board. Generally used by MLIDs.

Entry State

EAX

Pointer to the MLID send routine.

EBX

The MLID resource tag.

ECX

Pointer to the MLID configuration table.

EDX

Loadable Module Handle (passed to your driver during initialization. See
Figure 3-1)

ESI

Pointer to the MLID control handler routine.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

EBX

The assigned board number.

ECX

The maximum buffer size of receive ECBs.
LSL Support Routines (Assembly Language) 203

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Flags

Set according to EAX.

Interrupts

Preserved.

Preserved

No other registers.

Completion Code (EAX)

Remarks

The MLID initialization procedure calls LSLRegisterMLIDRTag to register a
logical board.

By making this call, the MLID initialization procedure gives the LSL a send
procedure, a control procedure, and a configuration table for the logical board.

If the value returned in ECX is smaller than MLIDMaximumSize, the MLID
must adjust the three packet size fields: MLIDMaximumSize,
MLIDMaxRecvSize, MLIDRecvSize according to Table 39, Maximum Packet
Sizes.

00000000h Successful

No errors occurred.

0FFFFF89h OutOfResources

There was not enough memory to register MLID.

0FFFFF82h BadParameter

The resource tag was invalid.
204 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRegisterPreScanRxChain

Binds a chained receive prescan protocol stack to the specified MLID.
Generally used by protocol stacks.

Entry State

EAX

Address of the receive prescan stack chain resource tag.

EBX

The board number.

ECX

Address of the protocol stack prescan receive handler.

EDX

Address of the protocol stack control handler.

EBP

The protocol stack's required position in the chain. See Table 27.

ESI

Address of the receive ECB resource tag.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

EBX

Stack Chain ID.
LSL Support Routines (Assembly Language) 205

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Interrupts

Disabled.

Preserved

ECX, EDX, ESI, EDI, and EBP.

Flags

Set according to EAX.

Completion Code (EAX)

Remarks

LSLRegisterPreScanRxChain binds the chained receive prescan protocol
stack to the MLID whose board number is specified in EBX. Protocol stacks
use this routine to put themselves in the proper position in the chain.

To acquire the stack chain resource tag, the protocol stack calls the operating
system support routine, AllocateResourceTag with the
LSLPreScanStackSignature 'PLSL'.

The stack chain ID, returned in EBX, is a unique identifier based on a logical
board protocol stack chain combination. This chain ID is not the same as the
Stack ID that is issued to a single, normally registered protocol stack that can
be bound to a number of different boards.

00000000h Successful

No errors occurred.

0FFFFF82h BadParameter

The board number, the resource tag, or the requested offset in the stack chain
was invalid.

0FFFFF83h DuplicateEntry

The requested chain position is either the first or last position (EBP equals 0 or
4) and is already occupied.

0FFFFF89h OutOfResources

The LSL was unable to allocate the node structure for the chain.
206 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The protocol stack's required position in the chain is defined in the following
table.

Table 27 Chain Position Values

WARNING: If the protocol stack requests a chain position of 0 or 4, and another
protocol stack is already registered for that board number at that position, the
registration routine will abort.

See Also

! LSLDeRegisterPreScanRxChain

Parameter Value Position in Chain

0 The stack must start the chain.

1 The stack must be loaded at the next available position from the front of the chain.

2 The stack's position in the chain is dependent on the order in which the stacks are
loaded. The stack will take the next available position when it loads.

3 The stack must be loaded at the next available position from the end of the chain.

4 The stack must end the chain.
LSL Support Routines (Assembly Language) 207

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRegisterPreScanTxChain

Binds a chained transmit prescan protocol stack to the specified MLID.
Generally used by protocol stacks.

Entry State

EAX

Address of the prescan stack chain resource tag.

EBX

The board number.

ECX

Address of the protocol stack prescan transmit handler.

EDX

Address of the protocol stack control handler.

EBP

The protocol stack's required position in the chain. See Table 28.

ESI

Address of the transmit ECB resource tag.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

EBX

Stack Chain ID.
208 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Interrupts

Disabled.

Preserved

ECX, EDX, ESI, EDI, and EBP.

Flags

Set according to EAX.

Completion Code (EAX)

Remarks

LSLRegisterPreScanTxChain binds the chained receive prescan protocol
stack to the MLID whose board number is specified in EBX. Protocol stacks
use this routine to put themselves in the proper position in the chain.

To acquire the stack chain resource tag, the protocol stack calls the operating
system support routine, AllocateResourceTag with the
LSLTxPreScanStackSignature 'TLSL'.

The stack chain ID, returned in EBX, is a unique identifier based on a logical
board protocol stack chain combination. This chain ID is not the same as the
Stack ID that is issued to a single, normally registered protocol stack that can
be bound to a number of different boards.

00000000h Successful

No errors occurred.

0FFFFF82h BadParameter

The board number, the resource tag, or the requested offset in the stack chain
was invalid.

0FFFFF83h DuplicateEntry

The requested chain position is either the first or last position (EBP equals 0 or
4) and is already occupied.

0FFFFF89h OutOfResources

The LSL was unable to allocate the node structure for the chain.
LSL Support Routines (Assembly Language) 209

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The protocol stack's required position in the chain is defined in the following
table:

Table 28 Chain Position Values

WARNING: If the protocol stack requests a chain position of 0 or 4, and another
protocol stack is already registered for that board number at that position, the
registration routine will abort.

NOTE: If a prescan transmit protocol stack must modify the data of an ECB that
has been passed to it (for example, as in a compression stack), the stack should
treat the ECB as read-only. The protocol stack copies the ECB and processes the
copy. The prescan stack keeps a copy of the original ECB's Event Service Routine
(ESR). When the prescan stack's ESR is called, it takes one of two actions:

! It calls the original stack's ESR with a pointer to the original ECB in ESI.

! It puts the original ECB in the LSL Event Queue and calls
LSLServiceEvents.

See Also

! LSLDeRegisterPreScanTxChain

Parameter Value Position in Chain

0 The stack must start the chain.

1 The stack must be loaded at the next available position from the front of the
chain.

2 The stack's position in the chain is dependent on the order in which the stacks
are loaded. The stack will take the next available position when it loads.

3 The stack must be loaded at the next available position from the end of the chain.

4 The stack must end the chain.
210 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRegisterStackRTag

Registers a bound protocol stack with the LSL. Generally used by
protocol stacks.

Entry State

EAX

Address of the protocol stack resource tag.

EBX

Address of the protocol stack receive handler.

ECX

Address of the control entry point for the protocol stack.

EDX

Pointer to the protocol name, which is a length-preceded, zero-terminated
string.

EBP

Address of the receive ECB resource tag.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

EBX

Protocol stack number.

Interrupts

Preserved.
LSL Support Routines (Assembly Language) 211

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Preserved

No other registers.

Completion Code (EAX)

Remarks

When the protocol stack is bound at the command line, the bind IOCTL is
called.

Registering the protocol stack does not mean that it can receive packets. To
enable packet reception through the LSL, the protocol stack must also call
LSLBindStack after the network administrator has requested to bind the
protocol stack to an MLID. The protocol stack only makes these calls once for
each MLID that the stack wants to receive packets from.

A protocol stack can transmit packets and communicate with MLIDs even if
it is not registered with the LSL or bound to an MLID. If a protocol stack does
not bind to an MLID, it must call either LSLRegisterDefaultChain or
LSLRegisterPreScanRXChain to receive packets.

00000000h Successful

The protocol stack has registered successfully.

0FFFFF82h BadParameter

Either the resource tag was invalid, or the length of the protocol name equaled 0
or was greater than 15.

0FFFFF83h DuplicateEntry

This protocol stack is already registered.

0FFFFF89h OutOfResources

The LSL was unable to allocate the node structure for the chain.
212 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRegisterStackSMPSafe

Informs the LSL that the stack is SMP aware. Generally used by
protocol stacks.

Entry State

ESP + 4

The stack ID.

Interrupts

Can be in any state.

Call

At process time only.

Return State

Interrupts

Unchanged.

Preserved

EBX, EBP, ESI, EDI

Completion Code (EAX)

Remarks

Protocol stacks call this function to inform the LSL that the stack is written to
be SMP aware. LSLRegisterStackSMPSafe is intended for use by Bound

00000000h Successful

Routine completed successfully.

0FFFFF82h BadParameter

The Stack ID is invalid.
LSL Support Routines (Assembly Language) 213

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Protocol Stacks only. The stack must have registered using
LSLRegisterStackRTag previous to making this call.

See Also

! LSLDeRegisterStackSMPSafe

! LSLRegisterStackRTag
214 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRemoveMutexFromInstance

Removes a mutex lock for a specified instance of a logical board.
Generally used by MLIDs.

Entry State

EBX

The logical board number, the mutex was assigned to.

ESI

The physical board ID.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

None.

Remarks

SMP aware MLIDs call this function as part of their clean up sequence during
unload. Typically, this function is called soon after
LSLDeRegisterMLIDRTag.
LSL Support Routines (Assembly Language) 215

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLAllocatePhysicalBoardID

! LSLAssignMutexToInstance

! LSLRemovePhysicalMutex
216 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRemovePhysicalMutex

Removes all logical board mutexes associated with the given physical
adapter. Generally used by MLIDs.

Entry State

EBX

The physical board ID.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

None.

Remarks

SMP aware MLIDs can call this function once instead of calling
LSLRemoveMutexFromInstancemultiple times while the MLID is unloading.

See Also

! LSLAllocatePhysicalBoardID

! LSLRemoveMutexFromInstance
LSL Support Routines (Assembly Language) 217

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! LSLAssignMutexToinstance
218 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRemovePollingProcedure

Deregisters a polling procedure in the SMP environment. Generally
used by polled MLIDs.

Entry State

EBX

The physical board ID.

Interrupts

Can be in any state.

Call

At process time only.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

None.

Remarks

SMP aware polled MLIDs call this function to deregister their polling
procedures with SMP.

NOTE: This call is used in place of RemovePollingProcedure, which is used for
non-SMP aware MLIDs.

See Also

! LSLAllocatePhysicalBoardID
LSL Support Routines (Assembly Language) 219

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! LSLAddpollingProcedure

! RemovePollingProcedureRTag in Appendix A, ``Operating System
Support Routines''
220 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLRemoveTimerProcedure

Deregisters a timer based callback procedure in the SMP environment.
Generally used by MLIDs.

Entry State

EBX

The physical board ID.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

Interrupts

Unchanged.

Preserved

All other registers.

Completion Code (EAX)

None.

Remarks

SMP-aware MLIDs call this function to deregister a timer driven call back
procedure with SMP (CancelInterruptTimeCallBack in the SMP
environment).

See Also

! LSLAllocatePhysicalBoardID

! LSLAddTimerProcedure
LSL Support Routines (Assembly Language) 221

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! CancelInterruptTimeCallBack in Appendix A, ``Operating System
Support Routines''
222 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLReSubmitDefaultECB

Allows another default stack in the default stack chain to process the
ECB.

Entry State

ESI

Address of the receive ECB.

EDI

The logical ID of the protocol stack (Chain ID).

Interrupts

Disabled.

Call

At process time or interrupt time.

Return State

Interrupts

Disabled.

Preserved

No other registers.

Completion Code (EAX)

None.

Remarks

LSLReSubmitDefaultECB allows chained default protocol stacks to pass
ECBs to the LSL for further processing.

A protocol stack normally calls this routine at process time after the stack has
queued the ECB for further processing. After the protocol stack has processed
LSL Support Routines (Assembly Language) 223

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
the ECB, it passes the ECB to other stacks in the chain, For example, default
stacks that perform data compression use this call.
224 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLReSubmitPreScanRxECB

Allows the next stack in the receive prescan stack chain to process the
ECB. Generally used by protocol stacks.

Entry State

ESI

Address of the receive ECB.

EDI

The logical ID of the protocol stack (Chain ID).

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

Interrupts

Disabled.

Preserved

No other registers.

Completion Code (EAX)

None.

Remarks

LSLReSubmitPreScanRxECB allows chained prescan receive protocol stacks
to pass ECBs to the LSL for further processing.

A protocol stack normally calls this routine at process time after the stack has
queued the ECB for further processing. After, the protocol stack has processed
the ECB, it passes the ECB to other stacks in the chain.
LSL Support Routines (Assembly Language) 225

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLReSubmitPreScanTxECB

Allows the next stack in the transmit prescan stack chain to process the
ECB. Protocol stacks.

Entry State

ESI

Address of the transmit ECB.

EDI

The logical ID of the protocol stack (Chain ID).

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

Interrupts

Disabled.

Preserved

No other registers.

Completion Code (EAX)

None.

Remarks

LSLReSubmitPreScanTxECB allows chained prescan transmit protocol stacks
to pass ECBs to the LSL for further processing.

A protocol stack normally calls this routine at process time after the stack has
queued the ECB for further processing. After, the protocol stack has processed
the ECB, it passes the ECB to other stacks in the chain.
226 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLReturnRcvECB

Returns a preallocated receive ECB. Generally used by protocol stacks
and MLIDs.

Entry State

ESI

Pointer to the receive buffer

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Destroyed.

Interrupts

Disabled.

Completion Code (EAX)

None.

Remarks

Protocol stacks call LSLReturnRcvECB to return previously allocated receive
ECB buffers to the LSL.

MLIDs call LSLReturnRcvECB to return unneeded receive ECBs to the LSL.

See Also

! LSLGetRcvECBRTag
LSL Support Routines (Assembly Language) 227

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSendComplete

Queues a send ECB in the LSL service events queue. Generally used
by MLIDs.

Entry State

ESI

Pointer to the ECB that was sent.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Destroyed.

Interrupts

Disabled.

Completion Code (EAX)

None.

Remarks

If the MLID is unable to use LSLFastSendComplete, it can call
LSLSendComplete to return a send ECB to the LSL after the MLID has
finished processing it.

This call does not return the ECB to its owner. It simply queues the ECB on
the LSL service events queue and returns.

The MLID should call LSLServiceEvents at the end of the board interrupt
service routine and/or the MLID's packet transmission procedure.
228 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSendPacket

Sends a packet to the MLID. Generally used by protocol stacks.

Entry State

ESI

Pointer to a send ECB.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Completion Code.

Interrupts

Disabled, but could have been enabled.

Preserved

No registers.

Completion Code (EAX)

00000000h Successful

The ECB was successfully passed to the MLID.

0FFFFF85h ItemNotPresent

The board number in the ECB was invalid.
LSL Support Routines (Assembly Language) 229

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLSendPacket sends a packet to one of the registered MLIDs.

The ESR field of the ECB must have the address of an Event Service Routine
(ESR) to call when the send is complete. Until the ESR is called, the ECB and
all its data areas belong to the LSL and must not be modified.

NOTE: The LSL can call the ESR before LSLSendPacket returns.

The ESR is called with ESI and the first parameter on the stack containing a
pointer to the ECB that was sent. This call is made at either interrupt time or
process time with interrupts disabled. The ESR can enable interrupts, but if it
does so, it must guard against reentry. The ESR must complete quickly.

Raw Sends

If the ECB is sent in raw mode, the fragment list contains the complete packet,
including the link-level envelope. However, the link-level envelope must be
entirely contained with in the first fragment. In other words, the envelope
cannot be split between the first and second fragments.

All media/frame type anomalies must be accounted for in the media/frame
type header. Raw packets are sent with the StackID field of the ECB set equal
to a value between FFFFh and FFF8h. These values represent priority raw
sends. The protocol stack must check the board's configuration table
MLIDModeFlags field to see if the board supports raw sends (See Chapter 14,
"MLID Data Structures" for the MLID Configuration Table format.)

Priority Sends

Priority sends are sent with the stackID field of the ECB set to a value between
0FFF7h (lowest priority) and 0FFF0h (highest priority).

The Transmit ECB

The following fields in the ECB must be set before calling LSLSendPacket:

Table 29 ECB Fields to Set Before Calling LSLSendPacket

Offset Field Name Description

0Ah ESRAddress The address of a routine that is called when the ECB is released (after the
packet has been transmitted). A pointer to the ECB is passed to this routine
in ESI. This pointer is also the first parameter on the stack for ESRs written
in C. This field is a near pointer.
230 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
0Eh LogicalID The Stack ID of the protocol stack sending the packet. See the "Raw Send"
and "Priority Sends" sections above for more detail.

10h ProtocolID The Protocol ID (returned by LSLGetPIDFromStackIDBoard) that the
MLID is to use when excapsulating the data. This field is ignored if a raw
packet is sent. See the section 7.6.1.2 - The ECB ProtocolID Field and
Ethernet 802.2 for more detail.

16h BoardNumber The board number of the MLID sending this packet.

1Ah ImmediateAddress The node address on the physical network that the packet is destined for.
If the packet is raw, this field is undefined. The address FFFFFFFFFFFFh
always indicates a broadcast packet. (A broadcast packet is received by all
nodes on the physical network.)

2Ch PacketLength The total length of all fragment buffers.

30h FragmentCount The number of fragments in the packet to be sent. Descriptor data
structures follow this field. This field must contain a value between 1 and
16, inclusive. The protocol stack can specify a maximum of 16 fragment
descriptors. The MLID combines these fragments together to form one
contiguous packet.

34h FragmentOffset On sends, this field describes the location of a contiguous section of RAM
memory (32-bit offset).

38h FragmentLength The length in bytes of the first packet fragment. On sends, this value can
be 0. On sends, the ECB may contain the following additional fields as
needed:

3Ch FragmentOffsetX Additional fragment descriptor when the FragmentCount is greater than 1.
The X stands for the additional fragment number (2 through 16).

40h FragmentLengthX Additional fragment descriptor when the FragmentCount is greater than 1.
The X stands for the addition fragment number (2 through 16) . The
FragmentOffsetX and FragmentLengthX fields may repeat up to 16 times.

Offset Field Name Description
LSL Support Routines (Assembly Language) 231

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 14 Graphic Representation of the Transmit Event Control Block
232 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLServiceEvents

Removes packets from the queue. Generally used by MLIDs.

Entry State

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

Interrupts

Disabled, but could have been enabled.

Preserved

None. All registers are destroyed.

Completion Code (EAX)

None.

Remarks

If the MLID has not used LSLFastRcvEvent or LSLFastSendComplete, it must
call LSLServiceEvents to remove packets queued by LSLHoldRcvEvent or
LSLSendComplete.

The board service routine calls LSLServiceEvents after processing all
transmissions and receptions. This is the last thing the board service routine
does before returning.

The MLID must complete all hardware processing, and the Board Service
Routine must be ready for a new interrupt before the MLID can make this call.

The LSLServiceEvents routine routes all received packets to the correct
protocol stack, using the Stack ID that the MLID put in the LogicalID field of
the ECB.
LSL Support Routines (Assembly Language) 233

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
This routine also returns the sent packets to their owners.

IMPORTANT: If the MLID uses LSLFastSendComplete and LSLHoldRcvEvent for
completing events, it does not need to call LSLServiceEvents.
234 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSMPGetSendQ

Gets the entire send queue for a logical board from the LSL. Generally
used by MLIDs.

Entry State

EBX

The logical board number.

Interrupts

Can be in any state.

Call

At process time or interrupt time.

Return State

EAX

Completion Code.

ESI

Pointer to the first ECB in the chain of ECBs to be sent.

Interrupts

Disabled.

Preserved

All other registers except ECX.

Completion Code (EAX)

00000000h Successful

The routine completed successfully.
LSL Support Routines (Assembly Language) 235

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
0FFFFF86h NoMoreItems

The send queue is empty.
236 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSMPReaderLock

Sets a data reader lock. Generally used by SMP aware protocol stacks.

Entry State

Interrupts

Must be disabled.

Call

At process time only.

Return State

Interrupts

Disabled.

Preserved

EBX, EBP, ESI, EDI

Completion Code (EAX)

None.

Remarks

When running in SMP mode, the LSL allocates a system wide protocol stack
read-write lock for use in protecting a stack ̀ s data. SMP aware stacks can use
this routine to set the reader lock.

NOTE: SMP aware protocol stack receive handlers are called with a reader lock
already set, which is sufficient to protect the stack's data if it is only read. In which
case, it is unnecessary for the stack to make this call. If the stack needs to write
data while processing a receive packet, it must upgrade the reader lock to a write
lock using LSLSMPReaderToWriterLock. Then, after making the data changes,
the stack must downgrade the lock back to a reader lock using
LSLSMPWriterToReaderLock.
LSL Support Routines (Assembly Language) 237

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLSMPReaderUnlock

! LSLSMPWriterLock

! LSLSMPWriterUnlock

! LSLSMPReaderToWriterLock

! LSLSMPWriterToReaderLock
238 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSMPReaderToWriterLock

Converts a reader lock to a writer lock. Generally used by SMP aware
protocol stacks.

Entry State

Interrupts

Must be disabled.

Call

At process time only.

Return State

EAX

Completion Code.

Interrupts

Disabled.

Preserved

EBX, EBP, ESI, EDI

Completion Code (EAX)

00000000h Successful

Write lock obtained successfully.

Non-zero Failure

The write lock had to wait on another writer (such as when the pre-read data is
invalid).
LSL Support Routines (Assembly Language) 239

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

SMP aware protocol stacks can use this function to convert a previously
obtained reader lock to a writer lock.

This call is typically used inside the stack's receive handler when the stack
needs to update its data. Since the receive handler is called with the reader lock
already set, the stack uses this call to convert the reader lock to a writer lock.

After the stack performs its data modification, it must convert the lock back to
a reader lock using LSLSMPWriterToReaderLock before it returns. This
method uses less overhead than calling LSLSMPReaderUnLock,
LSLSMPWriterLock, LSLSMPWriterUnlock, and LSLSMPReaderLock in
sequence.

NOTE: This call can spin; therefore, any memory controlled by this lock may have
been changed if EAX is a non-zero value on return. If this is the case, the stack
must re-read and check all of the protected data.

See Also

! LSLSMPWriterToReaderLock

! LSLSMPReaderUnLock

! LSLSMPWriterLock

! LSLSMPWriterUnlock

! LSLSMPReaderLock
240 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSMPReaderUnLock

Releases a data reader lock. Generally used by SMP aware protocol
stacks.

Entry State

Interrupts

Must be disabled.

Call

At process time only.

Return State

Interrupts

Disabled.

Preserved

EBX, EBP, ESI, EDI

Completion Code (EAX)

None.

Remarks

When running in SMP mode, the LSL allocates a system wide protocol stack
read-write lock for use in protecting a stack's data. SMP aware stacks can use
this routine to release the reader lock obtained previously with
LSLSMPReaderLock.

NOTE: SMP aware protocol stack receive handlers are called with a reader lock
already set, which is sufficient to protect the stack's data if it is only read. In which
case, it is unnecessary for the stack to make this call. If the stack needs to write
data while processing a receive packet, it must upgrade the reader lock to a write
lock using LSLSMPReaderToWriterLock. Then, after making the data changes,
the stack must downgrade the lock back to a reader lock using
LSLSMPWriterToReaderLock.
LSL Support Routines (Assembly Language) 241

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLSMPWriterToReaderLock

! LSLSMPReaderToWriterLock

! LSLSMPWriterLock

! LSLSMPWriterUnlock

! LSLSMPReaderLock
242 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSMPWriterLock

Sets a data writer lock. Generally used by SMP aware protocol stacks.

Entry State

Interrupts

Must be disabled.

Call

At process time only.

Return State

Interrupts

Disabled.

Preserved

EBX, EBP, ESI, EDI

Completion Code (EAX)

None.

Remarks

When running in SMP mode, the LSL allocates a system wide protocol stack
read-write lock for use in protecting a stack's data. SMP aware stacks can use
this routine to set the writer lock.

NOTE: SMP aware protocol stack receive handlers are called with a reader lock
already set, which is sufficient to protect the stack's data if it is only read. In which
case, it is unnecessary for the stack to make this call. If the stack needs to write
data while processing a receive packet, it must upgrade the reader lock to a write
lock using LSLSMPReaderToWriterLock. Then, after making the data changes,
the stack must downgrade the lock back to a reader lock using
LSLSMPWriterToReaderLock.
LSL Support Routines (Assembly Language) 243

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLSMPWriterToReaderLock

! LSLSMPReaderToWriterLock

! LSLSMPReaderUnLock

! LSLSMPWriterUnlock

! LSLSMPReaderLock
244 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSMPWritertoReaderLock

Converts a writer lock to a reader lock. Generally used by SMP aware
protocol stacks.

Entry State

Interrupts

Must be disabled.

Call

At process time only.

Return State

Interrupts

Disabled.

Preserved

EBX, EBP, ESI, EDI

Completion Code (EAX)

None.

Remarks

SMP aware protocol stacks can use this function to convert a previously
obtained writer lock to a reader lock.

This call is typically used inside the stack's receive handler when the stack
needs to update its data. Since the receive handler is called with the writer lock
already set, the stack uses this call to convert the writer lock to a reader lock.

After the stack performs its data modification, it must convert the lock back to
a writer lock using LSLSMPReaderToWriterLock before it returns. This
method uses less overhead than calling LSLSMPWriterUnLock,
LSLSMPReaderLock, LSLSMPReaderUnlock, and LSLSMPWriterLock in
sequence.
LSL Support Routines (Assembly Language) 245

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLSMPReaderToWriterLock

! LSLSMPReaderUnLock

! LSLSMPWriterLock

! LSLSMPWriterUnlock

! LSLSMPReaderLock
246 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSMPWriterUnLock

Releases a data writer lock. Generally used by SMP aware protocol
stacks.

Entry State

Interrupts

Must be disabled.

Call

At process time only.

Return State

Interrupts

Disabled.

Preserved

EBX, EBP, ESI, EDI

Completion Code (EAX)

None.

Remarks

When running in SMP mode, the LSL allocates a system wide protocol stack
read-write lock for use in protecting a stack's data. SMP aware stacks can use
this routine to release the reader lock obtained previously with
LSLSMPReaderLock.

NOTE: SMP aware protocol stack receive handlers are called with a reader lock
already set, which is sufficient to protect the stack's data if it is only read. In which
case, it is unnecessary for the stack to make this call. If the stack needs to write
data while processing a receive packet, it must upgrade the reader lock to a write
lock using LSLSMPReaderToWriterLock. Then, after making the data changes,
the stack must downgrade the lock back to a reader lock using
LSLSMPWriterToReaderLock.
LSL Support Routines (Assembly Language) 247

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLSMPWriterToReaderLock

! LSLSMPReaderToWriterLock

! LSLSMPWriterLock

! LSLSMPReaderUnlock

! LSLSMPReaderLock
248 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLUnbindStack

Removes a bound protocol stack from the LSL configuration table.
Generally used by protocol stacks.

Entry State

EAX

The Stack ID

EBX

The board number.

Interrupts

Can be in any state.

Call

At process time only.

Return State

EAX

Completion Code.

Interrupts

Preserved.

Preserved

No registers.

Completion Code (EAX)

00000000h Successful

No error occurred.
LSL Support Routines (Assembly Language) 249

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLUnbindStack unbinds a bound protocol stack from an MLID.

After this call is completed, the protocol stack can no longer receive packets
from the MLID.

However, the protocol stack can still receive packets from the board if the
protocol stack was also registered with the board as the default protocol stack
or the receive prescan protocol stack.

0FFFFF82h BadParameter

The board number or the protocol Stack ID is invalid.

0FFFFF85h ItemNotPresent

The specified binding does not exist.
250 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLUnBindThenDeRegisterMLID

Unbinds an MLID from its bound protocol stacks, then deregisters the
board also.

Entry State

EBX

The board number.

Interrupts

Can be in any state.

Call

At process time only.

NOTE: The LAN adapter must not be in a critical section.

Return State

Interrupts

Disabled.

Preserved

No other registers.

Completion Code (EAX)

None.

Remarks

MLID remove procedures should call LSLUnBindThenDeregisterMLID to
unbind a LAN adapter from all protocol stacks, and then deregister the board
also.

The MLID remove procedure should call this routine (or
LSLDeRegisterMLID) for each logical board that the LAN adapter supports.
LSL Support Routines (Assembly Language) 251

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
This routine is identical to LSLDeRegisterMLID except that this routine
allows protocol stacks to transmit packets that are notifying other machines on
the network that this connection is being destroyed (the stack's Ctl3_Unbind
control routine has been called). For this reason, MLIDs must not use this call
if the hardware is having trouble sending packets, such as when a fatal
hardware error has occurred.

See Also

! LSLDeRegisterMLID
252 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
12 LSL Support Routines (C Language)

This chapter provides the specifications for the C Language Support Routines
in the LSL.

When an MLID or a protocol stack calls one of these routines, the EBP, EBX,
ESI, and EDI registers are preserved, all parameters are passed to the protocol
stack, and EAX has the completion code.

The direction flag is preserved by all C Language Support Routines.

CLD must be in effect. All calls preserve the direction flag.

Table 30 summarizes the C Interface LSL Support Routines.

Table 30 Summary of the C Language Support Routines

Routine Type Routine Description

Binding and
Registration Routines

CLSLBindStack Binds a protocol stack to an MLID.

CLSLRegisterDefaultChain Puts a default protocol stack in a protocol
stack chain for an MLID.

CLSLRegisterPreScanRxChain Puts a prescan receive protocol stack in a
protocol stack chain for an MLID.

CLSLRegisterStackRTag Registers a bound stack with the LSL.

CLSLRegisterPreScanTxChain Puts a transmit prescan protocol stack into
a protocol stack chain for an MLID.

Miscellaneous
Chaining Routines

CLSLGetStartChain Gets a pointer to the start of all protocol
stack chains for a given board.
LSL Support Routines (C Language) 253

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 NLM Interaction
Routines

CLSLAddProtocolID Adds a Protocol ID to the MLID
configuration table.

CLSLGetMLIDControlEntry Gets the control entry point of an MLID.

CLSLGetPIDFromStackIDBoard Gets a protocol ID for a registered bound
protocol stack and logical board
combination.

CLSLGetStackIDFromName Gets the Stack ID for a registered bound
protocol stack.

Reception Routines CLSLReSubmitDefaultECB Passes the ECB to another default prescan
stack for processing.

CLSLReSubmitPreScanRxECB Passes the ECB to another receive protocol
stack for processing.

CLSLReturnRcvECB Returns a preallocated receive ECB.

Transmission Routines CLSLReSubmitPreScanTxECB Passes the ECB to another transmit
prescan stack for processing.

CLSLSendPacket Sends a packet to the MLID.

Unbinding and
Deregistration Routines

CLSLDeRegisterStack Deregisters a bound protocol stack from the
LSL.

CLSLDeRegisterDefaultChain Removes a default protocol stack from an
MLID's protocol stack chain.

CLSLDeRegisterPreScanRxCha
in

Removes a receive prescan protocol stack
from an MLID's protocol stack chain.

CLSLDeRegisterPreScanTxCha
in

Removes a transmit prescan protocol stack
from an MLID's protocol stack chain.

CLSLUnbindStack Unbinds a bound protocol stack from an
MLID.

Routine Type Routine Description
254 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLAddProtocolID

Adds a Protocol ID to the LSL's protocol stack table.

Syntax

LONG CLSLAddProtocolID (
 void *ProtocolID,
 void *ProtocolName,
 void *MediaName);

Parameters

ProtocolID

(IN) Pointer to the 6-byte area containing the Protocol ID.

ProtocolName

(IN) Pointer to a length-preceded, zero-terminated string containing the
short name of the protocol stack that is to be added to the LSL's protocol
stack table.

MediaName

(IN) Pointer to a length-preceded, zero-terminated string describing the
frame type.

Completion Code (EAX)

0x00000000 Successful The LSL successfully added the new Protocol ID to its
configuration table.

0x0FFFFF82 BadParameter The specified parameter is an illegal (unknown) name. The
protocol name string and media name string length must be
equal to or less than 15.

0x0FFFFF83 DuplicateEntry A different protocol ID is already registered for the given
media/frame type/protocol stack combination.

0X0FFFFF89 OutOfResources The LSL has no resources to register another Protocol ID.
LSL Support Routines (C Language) 255

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

CLSLAddProtocolID allows a protocol stack to add a new Protocol ID for a
given media. Because protocol stacks are topology and frame type unaware,
they do not interpret the Protocol ID. Protocol ID values depend on the frame
type and topology the protocol stack is using .

If the protocol stack does not find a Protocol ID, the protocol stack will be
loaded, but will not be functional. After the protocol stack has loaded, the
network administrator can bind the protocol stack to a frame type by typing a
Protocol ID on the command line. The syntax is as follows:

Protocol Register<Protocol Name><Frame Name><Protocol ID>

For example:

Protocol Register IP Ethernet_II 800

Typing the command: Protocol, by itself, at the command line produces the
protocols, frame types, and Protocol IDs that have already been registered.

An intelligent protocol stack that has no Protocol ID registered, can register a
Protocol ID for itself based on the combination of the frame type and stack
name.

For example, IP on Ethernet_II or Ethernet_SNAP always uses the PID
0x800.

See Also

! CLSLGetPIDFromStackIDBoard

! LSLAddProtocolID
256 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLBindStack

Puts the Stack ID in the LSL's protocol stack table.

Syntax

LONG CLSLBindStack (
 LONG StackIDNumber,
 LONG BoardNumber);

Parameters

StackIDNumber

(IN) Protocol Stack ID number.

BoardNumber

(IN) The board number.

Completion Code (EAX)

Remarks

NOTE: This routine must be called at process time only.

CLSLBindStack binds a protocol stack to an MLID, allowing the protocol
stack to receive packets from the MLID. The MLID passes the frames it
receives to the LSL. The LSL then checks a table to find which protocol
stack's Protocol ID matches the one embedded in the frame's MAC header.
The LSL then passes the frames to that protocol stack's receive handler. (The
protocol stack specifies the address of the receive handler when it registers
with the LSL.)

0x00000000 Successful No errors occurred.

0x0FFFFF82 BadParameter The board number or the Stack ID is invalid.

0x0FFFFF83 DuplicateEntry The specified binding already exists.

0X0FFFFF89 OutOfResources The routine could not allocate enough memory.
LSL Support Routines (C Language) 257

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: Before making this call, the protocol stack must be ready to receive
frames and must have already registered by calling either LSLRegisterStackRTag
or CLSLRegisterStackRTag.

See Also

! CLSLUnBindStack

! LSLBindStack

! CLSLRegisterStackRTag

! LSLRegisterStackRTag

! BindProtocolToBoard in Appendix A, "Operating System Support
Routines''.
258 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLControlStackFilter

Notifies all protocol stacks bound to an MLID that the MLID status has
changed.

Syntax

LONG CLSLControlStackFilter (
 LONG BoardNumber,
 LONG FunctionNumber,
 LONG FilterMask,
 LONG Parameter1,
 LONG Parameter2);

Parameters

BoardNumber

(IN) The logical board number notifying the filtering of packets to
protocol stacks which are bound/registered with this logical board (bound
and chained stacks).

FunctionNumber

(IN) The protocol stack control handler function number to be called.

FilterMask

(IN) The filter mask for all stacks to be called. See LSLGetStartChain for
the definitions of the bits in this mask.

Parameter1

(IN) Possible parameter to pass to the control handler.

Parameter2

(IN) Possible parameter to pass to the control handler.

Completion Code (EAX)

0x00000000 Successful All stacks bound/registered with the logical board have been
notified.
LSL Support Routines (C Language) 259

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

When an MLID enters promiscuous mode, it can use this routine to call all
protocol stacks that need to know that the MLID is now in promiscuous mode.

This function updates all protocol stacks associated with the physical LAN
adapter that the logical board is operating on. This function updates other
protocol stacks that are operating on logical boards that have the same name
and instance as the logical board specified by BoardNumber.

See Also

! CLSLModifyStackFilter

! CLSLControlStackFilter

0x0FFFFF82 BadParameter The board number is invalid.
260 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLDeRegisterDefaultChain

Removes the chained default stack from the LSL tables.

Syntax

LONG CLSLDeRegisterDefaultChain (
 LONG StackChainID);

Parameters

StackChainID

(IN) The chain Stack ID of the default protocol stack.

Interrupts

(IN) Any state.

Call

(IN) At process time only.

Completion Code (EAX)

Remarks

CLSLDeRegisterDefaultChain removes the specified chained default stack
for a logical board from the LSL's internal default stack table.

After making this call, the protocol stack chain will not receive send packets
for the MLID it was registered with.

See Also

! LSLDeRegisterDefaultChain

0x00000000 Successful The protocol stack was deregistered.

0x0FFFFF85 ItemNotPresent No chained default stack with this Stack ID is registered for
this MLID.
LSL Support Routines (C Language) 261

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! CLSLRegisterDefaultChain
262 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLDeRegisterPreScanRxChain

Removes the chained prescan receive stack from the LSL's internal
default stack table.

Syntax

LONG CLSLSDeRegisterPreScanRxChain (
 LONG StackChainID);

Parameters

StackChainID

(IN) The chain Stack ID of the prescan receive protocol stack.

Interrupts

(IN) Any state.

Call

(IN) At process time only.

Completion Code (EAX)

Remarks

CLSLDeRegisterPreScanRxChain removes the specified chained prescan
receive stack for a logical board from the LSL's internal default stack table.

After making this call, the protocol stack chain will not receive send packets
for the MLID it was registered with.

0x00000000 Successful The protocol stack was deregistered.

0x0FFFFF85 ItemNotPresent No chained prescan receive stack with this Stack ID is
registered for this MLID.
LSL Support Routines (C Language) 263

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLDeRegisterPreScanRxChain

! CLSLRegisterPreScanRxChain
264 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLDeRegisterPreScanTxChain

Removes the chained prescan transmit stack from the LSL's internal
default stack table.

Syntax

LONG CLSLSDeRegisterPreScanTxChain (
 LONG StackChainID);

Parameters

StackChainID

(IN) The chain Stack ID of the prescan transmit protocol stack.

Interrupts

(IN) Any state.

Call

(IN) At process time only.

Completion Code (EAX)

Remarks

CLSLDeRegisterPreScanTxChain removes the specified chained prescan
transmit stack for a logical board from the LSL's internal default stack table.

After making this call, the protocol stack chain will not receive send packets
for the MLID it was registered with.

0x00000000 Successful The protocol stack was deregistered.

0x0FFFFF85 ItemNotPresent No chained prescan transmit stack with this Stack ID is
registered for this MLID.
LSL Support Routines (C Language) 265

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLDeRegisterPreScanTxChain

! CLSLRegisterPreScanTxChain
266 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLDeRegisterStack

Removes a bound stack from the LSL's internal default stack table.

Syntax

LONG CLSLDeRegisterStack (
 LONG ProtocolNumber);

Parameters

ProtocolNumber

(IN) The protocol Stack ID.

Interrupts

(IN) Any state.

Call

(IN) At process time only.

Completion Code (EAX)

Remarks

CLSLDeRegisterStack removes the specified protocol stack from the LSL's
internal bound protocol stack table.

After making this call, the protocol stack will not receive packets from an
MLID unless it is also registered with the MLID as a default or prescan receive
protocol stack.

See Also

! LSLDeRegisterStack

0x00000000 Successful The protocol stack was deregistered.

0x0FFFFF82 BadParameter The Stack ID is invalid.
LSL Support Routines (C Language) 267

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! CLSLRegisterStack
268 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLGetBoundBoardInfo

Returns the Stack ID of a protocol stack bound to a specified logical
board or LAN adapter.

Syntax

LONG CLSLGetBoundBoardInfo (
 LONG BoardNumber,
 void *StackBuffer);

Parameters

BoardNumber

(IN) The logical board number.

StackBuffer

(IN) Pointer to an array of n LONGS where n is the maximum possible
number of protocol stacks.

StackBuffer

(OUT)

! [Buffer+0] = the number of protocol stacks

! [Buffer+4] = the ID of the 1st protocol stack

! [Buffer+8] = the ID of the 2nd protocol stack

! [Buffer+4n] = the ID of the nth protocol stack

Completion Code (EAX)

0x00000000 Successful The routine returned no errors.

0x0FFFFF82 BadParameter The board number is invalid.

0x0FFFFF85 ItemNotPresent The board number is not registered.

0X0FFFFF89 OutOfResources The buffer is too small. The first 4 bytes of the buffer will
contain the appropriate buffer length.
LSL Support Routines (C Language) 269

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

CLSLGetBoundBoardInfo returns the Stack IDs of all the protocol stacks that
are bound to the specified logical board or LAN adapter.
270 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLGetMLIDControlEntry

Returns the control entry point for the specified MLID.

Syntax

LONG CLSLGetMLIDControlEntry (
 LONG BoardNumber,
 void (*ControlEntryPoint)(void));

Parameters

BoardNumber

(IN) The board number.

ControlEntryPoint

(IN) Pointer to a buffer of size sizeof(*void).

ControlEntryPoint

(OUT) Pointer to a pointer holding the address of the MLID's control
handler routine.

Completion Code (EAX)

Remarks

This routine must be called at process time only.

CLSLGetMLIDControlEntry returns the MLID Control Entry Point for the
MLID specified by BoardNumber.

This routine allows a protocol stack to communicate directly with an MLID
and get information such as the addresses of the MLID configuration table and
statistics table.

0x00000000 Successful The buffer pointed to by ControlEntryPoint contains the
MLID control entry point.

0x0FFFFF82 BadParameter The board number is invalid.
LSL Support Routines (C Language) 271

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! LSLGetMLIDControlEntry

! Chapter 20, ``MLID Control Routines''

! Chapter 14, ``MLID Data Structures''
272 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLGetPIDFromStackIDBoard

Returns a Protocol ID.

Syntax

LONG CLSLGetPIDFromStackIDBoard (
 LONG ProtocolNumber,
 LONG BoardNumber,
 void *ProtocolID);

Parameters

ProtocolNumber

(IN) The Stack ID.

BoardNumber

(IN) The board number.

ProtocolID

(IN) Pointer to a 6-byte area for the Protocol ID.

ProtocolID

(OUT) Pointer to the 6-byte Protocol ID

Completion Code (EAX)

Remarks

This routine must be called at process time only.

0x00000000 Successful The PID associated with the protocol stack and logical board
was returned.

0x0FFFFF82 BadParameter The board number is invalid.

0x0FFFFF85 ItemNotPresent No Protocol ID is associated with the parameters passed in.
LSL Support Routines (C Language) 273

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLGetPIDFromStackIDBoard returns a Protocol ID that corresponds to a
combination of the protocol Stack ID and a board number. The protocol stack
puts this information in the ProtocolID field of a send ECB.

See Also

! LSLGetPIDFromStackIDBoard
274 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLGetProtocolControlEntry

Gets an entry point to a protocol stack.

Syntax

LONG CLSLGetProtocolControlEntry (
 LONG StackID,
 LONG BoardID,
 void (*ControlEntryPoint) (void));

Parameters

StackID

(IN) The Stack ID.

BoardID

(IN) The board number.

ControlEntryPoint

(IN) Pointer to the pointer to be filled in with the address of the protocol
stack's control handler routine.

ControlEntryPoint

(OUT) Pointer to the address of the protocol stack's control handler
routine.

Completion Code (EAX)

0x00000000 Successful The protocol stack's control entry point is at the address
pointed to by ControlEntryPoint.

0x0FFFFF82 BadParameter The specified protocol stack is not bound to the specified
board.

0x0FFFFF85 ItemNotPresent The Stack ID is invalid.

0X0FFFFF86 NoMoreItems The Board ID is invalid.
LSL Support Routines (C Language) 275

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

This routine must be called at process time only.

CLSLGetProtocolControlEntry allows a protocol stack, or an application, to
communicate directly with another protocol stack and get information from
the LSL's list of protocol stacks.

To get a control entry point for a default or prescan protocol stack, use
CLSLGetStartChain.

See Also

! LSLGetProtocolControlEntry

! LSLGetStartChain

! CLSLGetStartChain
276 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLGetStackIDFromName

Gets a Stack ID for any protocol stack.

Syntax

LONG CLSLGetStackIDFromName (
 BYTE *Name,
 LONG *ProtocolNumber);

Parameters

Name

(IN) Pointer to a length-preceded, zero-terminated string containing the
name of the protocol stack.

ProtocolNumber

(IN) Pointer to the LONG variable that will hold the Stack ID.

ProtocolNumber

(OUT) Pointer to the Stack ID.

Completion Code (EAX)

Remarks

This routine must be called at process time only.

CLSLGetStackIDFromName allows a protocol stack, or an application, to get
its own Stack ID or another Stack ID.

0x00000000 Successful The Stack ID is at the address in ProtocolNumber.

0x0FFFFF82 BadParameter The length of the name is 0 or is greater than 15 characters.

0x0FFFFF85 ItemNotPresent The given protocol stack name is not registered with the
LSL.
LSL Support Routines (C Language) 277

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
If the Stack ID and the MLID board number are known, a protocol stack can
get the Protocol ID by calling CLSLGetPIDFromStackIDBoard.

NOTE: The match of the stack name is case sensitive.

See Also

! LSLGetStackIDFromName
278 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLGetStartChain

Gets pointers to the starting offsets of the default chain, the prescan
receive chain, and the prescan transmit chain.

Syntax

LONG CLSLGetStartChain (
 LONG BoardNumber,
 void **DefaultChainPtr,
 void **PreScanRxChainPtr,
 void **PreScanTxChainPtr);

Parameters

BoardNumber

(IN) The board number of the logical board or LAN adapter bound to the
desired chain.

DefaultChainPtr

(OUT) Pointer to the address of the default stack chain pointer.

PreScanRxChainPtr

(OUT) Pointer to the address of the prescan receive stack chain.

PreScanTxChainPtr

(OUT) Pointer to the address of the prescan transmit stack chain pointer.

Completion Code (EAX)

Remarks

CLSLGetStartChain returns the pointers to the starting offsets of the default
chain, the prescan receive chain, and prescan transmit chain. Each chain is a

0x00000000 Successful The routine successfully returned the pointers.

0x0FFFFF82 BadParameter The board number is invalid.
LSL Support Routines (C Language) 279

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
linked list of protocol stacks. If no protocol stacks are registered for a
particular chain, a NULL pointer is returned.

ChainStructure struc
ChainLink dd ? ;Link Field
ChainProcessHandler dd ? ;Stack Tx or Rx Handler
ChainCtlHandler dd ? ;Stack Control Entry Point
ChainRTag dd ? ;Stack Resource Tag
ChainReceiveBufferRTag dd ? ;Receive ECB's Resource Tag
ChainLoadOrder dd ? ;Stack Requested Chain Position
ChainID dd ? ;Stack ID Number (-1 indicates
 an old style prescan or
 default protocol stack.)
ChainMask dd ? ;Stack Packet Filter Mask
ChainStructure ends

The ChainMask assigns the bit values as follows:

See Also

! LSLGetStartChain

DEST_MULTICAST equ 0x0001

DEST_BROADCAST equ 0x0002

DEST_REMOTE_UNICAST equ 0x0004

DEST_REMOTE_MULTICAST equ 0x0008

DEST_NO_ROUTE equ 0x0010 Exclusive bit

DEST_ERROR_PACKET equ 0x0020

Reserved equ 0x0040

DEST_DIRECT equ 0x0080

DEST_PROMISCUOUS equ 0xFFFF All packets, including errors
280 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLModifyStackFilter

Modifies the ChainMask field of the Chain Structure.

Syntax

LONG CLSLModifyStackFilter (
 LONG StackID,
 LONG BoardNumber,
 LONG NewMask,
 LONG *CurrentMask);

Parameters

StackID

(IN) The protocol Stack ID or the chain Stack ID.

BoardNumber

(IN) The logical board number.

NewMask

(IN) The new ChainMask filter bits (zero to query).

CurrentMask

(IN) Pointer to a LONG that will hold the current mask

CurrentMask

(OUT) Pointer to the current setting of ChainMask.

Completion Code (EAX)

0x00000000 Successful The ChainMask filter has been set to the new value.

0x0FFFFF82 BadParameter The board number, the stack ID, or the chain ID is invalid.
LSL Support Routines (C Language) 281

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

CLSLModifyStackFilter is used by protocol stacks to set the ChainMask field
of the ChainStructure.

If the protocol stack is bound, this call sets the filter mask.

The protocol stack uses the chain mask or the filter mask to notify the LSL of
the type of packets it wants to receive. (See CLSLGetStartChain for the
definition of the ChainStructure.)

See Also

! CLSLGetStartChain
282 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLRegisterDefaultChain

Binds a chained default protocol stack to the specified MLID.

Syntax

LONG CLSLRegisterDefaultChain (
 struct ResourceTagStructure *StackChainRTag,
 LONG StackChainBoardNumber,
 LONG StackChainPositionRequested,
 void *StackChainID,
 LONG (*StackChainReceiveHandler) (
 ECB *RxECB,
 LONG BoardNumber,
 void *ChainID),
 void (*StackChainControlEntryPoint) (void)),
 struct ResourceTagStructure *StackChainReceiveECBRTag
);

Parameters

StackChainRTag

(IN) Pointer to the protocol stack's resource tag.

StackChainBoardNumber

(IN) The board number.

StackChainPositionRequested

(IN) Request for a chain position (see Remarks below).

StackChainReceiveHandler

(IN) Pointer to the protocol stack's receive handler. The receive handler
is called with a pointer to a receive ECB, the board number, and a pointer
to the protocol stack's chain ID.

StackChainControlEntryPoint

(IN) Pointer to the protocol stack's control entry point.

StackChainReceiveECBRTag

(IN) Pointer to the receive ECB's resource tag.
LSL Support Routines (C Language) 283

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
StackChainlD

(OUT) Pointer to a buffer that holds the chained stack's ID.

Completion Code (EAX)

Remarks

CLSLRegisterDefaultChain binds the chained default protocol stack to the
MLID whose board number is specified in StackChainBoardNumber. A
protocol stack uses this routine to insert itself into the proper position in the
chain.

In order to acquire the stack chain resource tag, the protocol stack calls the
operating system support routine AllocateResourceTag with the
LSLDefaultStackSignature 'DLSL'.

The stack chain ID returned is a unique identifier based on a logical board/
protocol stack chain combination. This ID is not the same as the Stack ID,
which is issued to a single, normally registered, protocol stack that can be
bound to a number of different boards.

The protocol stack's required position in the chain is defined by the following
table.

Table 31 Chain Position Values

0x00000000 Successful No error occurred.

0x0FFFFF82 BadParameter The board number is invalid, one of the resource tags is
invalid, or an invalid position in the stack chain has been
requested.

0x0FFFFF83 DuplicateEntry The requested chain position is either the first or last
position (StackChainPositionRequested equals either 0 or
4) and is already occupied.

0X0FFFFF89 OutOfResources The LSL was unable to allocate the node structure for the
chain.

Parameter Value Position in Chain

0 The stack must start the chain.
284 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: If the protocol stack requests a chain position of 0 or 4, the
registration routine will abort if another protocol stack is already registered at that
position for that board number.

See Also

! CLSLDeRegisterDefaultChain

! LSLRegisterDefaultChain

1 The stack must be loaded at the next available position from the front of the chain.

2 The stack's position in the chain is dependent on the order in which the stacks are
loaded. The stack will take the next available position when it loads.

3 The stack must be loaded at the next available position from the end of the chain.

4 The stack must end the chain.

Parameter Value Position in Chain
LSL Support Routines (C Language) 285

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLRegisterPreScanRxChain

Binds a chained receive prescan protocol stack to the specified MLID.

Syntax

LONG CLSLRegisterPreScanRxChain (
 struct ResourceTagStructure *StackChainRTag,
 LONG StackChainBoardNumber,
 LONG StackChainPositionRequested,
 LONG *StackChainID,
 LONG StackChainReceiveHandler(
 ECB *RxECB,
 LONG BoardNumber,
 void *ChainID),
 void (*StackChainControlEntryPoint) (),
 struct ResourceTagStructure *StackChainReceiveECBRTag
);

Parameters

StackChainRTag

(IN) Pointer to the protocol stack's resource tag.

StackChainBoardNumber

(IN) The board number.

StackChainPositionRequested

(IN) Request for a chain position (see Remarks below).

StackChainReceiveHandler

(IN) Pointer to the protocol stack's receive handler. The receive handler
is called with a pointer to a receive ECB, the board number, and a pointer
to the protocol stack's chain ID.

StackChainControlEntryPoint

(IN) Pointer to the protocol stack's control entry point.

StackChainReceiveECBRTag

(IN) Pointer to the receive ECB's resource tag.
286 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
StackChainlD

(OUT) Pointer to a LONG that holds the chained stack's ID.

Completion Code (EAX)

Remarks

CLSLRegsterPreScanRxChain binds the chained receive prescan protocol
stack to the MLID whose board number is specified in
StackChainBoardNumber. A protocol stack uses this routine to insert itself
into the proper position in the chain.

In order to acquire the stack chain resource tag, the protocol stack calls the
operating system support routine AllocateResourceTag with the
LSLPreScanStackSignature 'PLSL'.

The stack chain ID returned is a unique identifier based on a logical board/
protocol stack chain combination. This ID is not the same as the Stack ID,
which is issued to a single, normally registered, protocol stack that can be
bound to a number of different boards.

The protocol stack's required position in the chain is defined by the following
table.

Table 32 Chain Position Values

0x00000000 Successful No error occurred.

0x0FFFFF82 BadParameter The board number is invalid, one of the resource tags is
invalid, or an invalid position in the stack chain has been
requested.

0x0FFFFF83 DuplicateEntry The requested chain position is either the first or last
position (StackChainPositionRequested equals either 0 or
4) and is already occupied.

0X0FFFFF89 OutOfResources The LSL was unable to allocate the node structure for the
chain.

Parameter Value Position in Chain

0 The stack must start the chain.
LSL Support Routines (C Language) 287

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: If the protocol stack requests a chain position of O or 4, the
registration routine will abort if another protocol stack is already registered at that
position for that board number.

See Also

! CLSLDeRegisterPreScanRxChain

! LSLRegisterPreScanRxChain

1 The stack must be loaded at the next available position from the front of the chain.

2 The stack's position in the chain is dependent on the order in which the stacks are
loaded. The stack will take the next available position when it loads.

3 The stack must be loaded at the next available position from the end of the chain.

4 The stack must end the chain.

Parameter Value Position in Chain
288 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLRegisterPreScanTxChain

Binds a chained transmit prescan protocol stack to the specified MLID.

Syntax

LONG CLSLRegisterPreScanTxChain (
 struct ResourceTagStructure *StackChainRTag,
 LONG StackChainBoardNumber,
 LONG StackChainPositionRequested,
 LONG *StackChainID,
 LONG StackChainReceiveHandler(
 ECB *RxECB,
 LONG BoardNumber,
 void *ChainID),
 void (*StackChainControlEntryPoint) (),
 struct ResourceTagStructure *StackChainReceiveECBRTag
);

Parameters

StackChainRTag

(IN) Pointer to the protocol stack's resource tag.

StackChainBoardNumber

(IN) The board number.

StackChainPositionRequested

(IN) Request for a chain position (see Remarks below).

StackChainReceiveHandler

(IN) Pointer to the protocol stack's receive handler. The receive handler
is called with a pointer to a receive ECB, the board number, and a pointer
to the protocol stack's chain ID.

StackChainControlEntryPoint

(IN) Pointer to the protocol stack's control entry point.

StackChainReceiveECBRTag

(IN) Pointer to the receive ECB's resource tag.
LSL Support Routines (C Language) 289

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
StackChainlD

(OUT) Pointer to a LONG that holds the chained stack's ID.

Completion Code (EAX)

Remarks

CLSLRegsterPreScanTxChain binds the chained transmit prescan protocol
stack to the MLID whose board number is specified in
StackChainBoardNumber. A protocol stack uses this routine to insert itself
into the proper position in the chain.

In order to acquire the stack chain resource tag, the protocol stack calls the
operating system support routine AllocateResourceTag with the
LSLPreScanStackSignature 'TLSL'.

The stack chain ID returned is a unique identifier based on a logical board/
protocol stack chain combination. This ID is not the same as the Stack ID,
which is issued to a single, normally registered, protocol stack that can be
bound to a number of different boards.

The protocol stack's required position in the chain is defined by the following
table.

Table 33 Chain Position Values

0x00000000 Successful No error occurred.

0x0FFFFF82 BadParameter The board number is invalid, one of the resource tags is
invalid, or an invalid position in the stack chain has been
requested.

0x0FFFFF83 DuplicateEntry The requested chain position is either the first or last
position (StackChainPositionRequested equals either 0 or
4) and is already occupied.

0X0FFFFF89 OutOfResources The LSL was unable to allocate the node structure for the
chain.

Parameter Value Position in Chain

0 The stack must start the chain.
290 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: If the protocol stack requests a chain position of O or 4, the
registration routine will abort if another protocol stack is already registered at that
position for that board number.

See Also

! CLSLDeRegisterPreScanTxChain

! LSLRegisterPreScanTxChain

1 The stack must be loaded at the next available position from the front of the chain.

2 The stack's position in the chain is dependent on the order in which the stacks are
loaded. The stack will take the next available position when it loads.

3 The stack must be loaded at the next available position from the end of the chain.

4 The stack must end the chain.

Parameter Value Position in Chain
LSL Support Routines (C Language) 291

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLRegisterStackRTag

Registers a bound protocol stack with the LSL. The stack must then
bind with a logical board before it can receive. Generally used by
protocol stacks.

Syntax

LONG CLSLRegisterStackRTag (
 void *ProtocolStackName,
 void *ReceiveEntryPoint,
 void *ControlEntryPoint,
 LONG *StackID,
 struct ResourceTagStructure *StackRTag,
 struct ResourceTagStructure *StackReceiveECBRTag);

Parameters

ProtocolStackName

(IN) Pointer to the name of the protocol stack.

ReceiveEntryPoint

(IN) Pointer to the protocol stack's receive handler.

ControlEntryPoint

(IN) Pointer to the protocol stack's control entry point.

StackRTag

(IN) Handle to the ResourceTagStructure.

StackReceiveECBRTag

(IN) Handle to the receive ECB resource tag.

StacklD

(OUT) Pointer to the protocol Stack ID.
292 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Code (EAX)

Remarks

This routine must be called only at process time.

When the protocol stack is bound at the command line, the Bind IOCTL is
called.

Registering the protocol stack does not mean that it can receive packets. To
enable packet reception through the LSL, the protocol stack must call
CLSLBindStack after the network administrator has requested to bind the
protocol stack to an MLID. The protocol stack only makes these calls once for
each MLID that the stack wants to receive packets from.

Keep in mind that a protocol stack can transmit packets and communicate with
MLIDs even if it has not registered with the LSL or bound to an MLID. If a
protocol stack does not bind to an MLID, it must call either
CLSLRegisterDefaultChain or CLSLRegisterPreScanRxChain in order to
receive packets.

See Also

! CLSLBindStack

! LSLBindStack

! CLSLRegisterStackRTag

! LSLRegisterStackRTag

0x00000000 Successful The protocol stack registered successfully.

0x0FFFFF82 BadParameter The resource tag was invalid, or the length of the protocol
name equaled zero, or the length of the protocol name was
greater than 15.

0x0FFFFF83 DuplicateEntry This protocol stack is already registered.

0X0FFFFF89 OutOfResources The LSL was unable to allocate the node structure for the
chain.
LSL Support Routines (C Language) 293

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLReSubmitDefaultECB

Allows the next stack in the default stack chain to process the ECB

Syntax

LONG CLSLReSubmitDefaultECB (
 LONG StackChainID,
 void *ReceiveECB);

Parameters

StackChainID

(IN) Contains the chained Stack ID.

ReceiveECB

(IN) Pointer to a received ECB to process.

Completion Code (EAX)

None.

Remarks

CLSLReSubmitDefaultECB allows chained default protocol stacks to pass
ECBs to the LSL for further processing.

A protocol stack normally calls this routine after the stack has queued the ECB
for further processing at process time. Then, after the protocol stack has
processed the ECB during process time, it needs to pass the ECB on to other
stacks in the chain. For example, default stacks that are performing data
compression would use this call.

See Also

! LSLReSubmitDefaultECB
294 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLReSubmitPreScanRxECB

Allows the next stack in the receive prescan stack chain to process the
ECBs.

Syntax

void CLSLReSubmitPreScanRxECB (
 LONG StackChainID,
 void *ReceiveECB);

Parameters

StackChainID

(IN) Contains the chained Stack ID.

ReceiveECB

(IN) Pointer to a receive ECB to process.

Completion Code (EAX)

None.

Remarks

CLSLReSubmitPreScanRxECB allows chained prescan receive protocol
stacks to pass ECBs to the LSL for further processing.

A protocol stack normally calls this routine after the stack has queued the ECB
for further processing at process time. Then, after the protocol stack has
processed the ECB during process time, it needs to pass the ECB on to other
stacks in the chain.

See Also

! LSLReSubmitPreScanRxECB
LSL Support Routines (C Language) 295

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLReSubmitPreScanTxECB

Allows the next stack in the transmit prescan stack chain to process the
ECBs.

Syntax

void CLSLReSubmitPreScanTxECB (
 LONG StackChainID,
 void *SendECB);

Parameters

StackChainlD

(IN) Contains the chained Stack ID.

SendECB

(IN) Pointer to a transmit ECB to process.

Completion Code (EAX)

None.

Remarks

LSLReSubmitPreScanTxECB allows chained prescan transmit protocol stacks
to pass ECBs to the LSL for further processing.

A protocol stack normally calls this routine after the stack has queued the ECB
for further processing at process time. Then, after the protocol stack has
processed the ECB during process time, it needs to pass the ECB on to other
stacks in the chain.

See Also

! LSLReSubmitPreScanTxECB
296 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLReturnRcvECB

Returns a preallocated receive ECB.

Syntax

void CLSLReturnRcvECB (
 void *ReceiveECB);

Parameters

ReceiveECB

(IN) Pointer to the receive ECBs.

Completion Code (EAX)

None.

Remarks

This routine must be called only at process time.

Protocol stacks call CLSLReturnRcvECB to return a previously allocated
receive ECBs buffer to the LSL.

See Also

! LSLGetRcvECBRTag
LSL Support Routines (C Language) 297

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLSendPacket

Sends the packet to the MLID

Syntax

LONG CLSLSendPacket (
 void *SendECB);

Parameters

SendECB

(IN) Pointer to the send ECB.

Completion Code (EAX)

Remarks

CLSLSendPacket sends a packet to one of the registered MLIDs.

The ESR field of the ECB must have the address of an Event Service Routine
to call when the send is complete. Until the ESR is called, the ECB and all its
data areas belong to the Link Support Layer and must not be touched. (Stacks
must not read or write any of the ECB fields.)

NOTE: The LSL can call the ESR before the call to CLSLSendPacket returns.

Priority Sends

Priority sends are sent with the stackID field of the ECB set to a value between
0FFF7h (lowest priority) and 0FFF0h (highest priority).

Raw Sends

If the ECB is sent in "raw" mode, the fragment list contains the complete
packet, including the link-level envelope. However, the link-level envelope

0x00000000 Successful The ECB was successfully passed to the MLID.

0x0FFFFF85 ItemNotPresent The board number in ECB was invalid.
298 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
must be entirely contained within the first fragment. In other words, the
envelope cannot be split between the first and second fragments.

All media/frame type anomalies must be accounted for in the media/frame
type header. Raw packets are sent with the StackID field of the ECB set equal
to FFFFh through OFFF8h. (These values represent priority raw sends.) The
protocol stack must check the board's configuration table MLIDModeFlags
field to see if the board supports raw sends (see Chapter 14, "MLID Data
Structures" for the MLID configuration table format).

The ESR is called with ESI (and the first parameter on the stack) containing a
pointer to the ECB that was sent. This call is made at either interrupt or process
time with interrupts disabled. The ESR can enable interrupts, but if it does so,
it must guard against reentry. The ESR should complete quickly.

The following fields in the ECB must also be set before calling
LSLSendPacket.

Table 34 ECB Fields to Set Before Calling LSLSendPacket

Offset Field Name Description

0Ah ESRAddress The address of a routine that is called when the ECB is released (after the
packet has been transmitted). A pointer to the ECB is passed to this routine
in ESI. This pointer is also the first parameter on the stack for ESRs written
in C. This field is a near pointer.

0Eh LogicalID The Stack ID of the protocol stack sending the packet. See the "Raw Send"
and "Priority Sends" sections above for more detail.

10h ProtocolID The Protocol ID (returned by LSLGetPIDFromStackIDBoard) that the
MLID is to use when excapsulating the data. This field is ignored if a raw
packet is sent. See the section 7.6.1.2 - The ECB ProtocolID Field and
Ethernet 802.2 for more detail.

16h BoardNumber The board number of the MLID sending this packet.

1Ah ImmediateAddress The node address on the physical network that the packet is destined for.
If the packet is raw, this field is undefined. The address FFFFFFFFFFFFh
always indicates a broadcast packet. (A broadcast packet is received by all
nodes on the physical network.)

2Ch PacketLength The total length of all fragment buffers.
LSL Support Routines (C Language) 299

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
30h FragmentCount The number of fragments in the packet to be sent. Descriptor data
structures follow this field. This field must contain a value between 1 and
16, inclusive. The protocol stack can specify a maximum of 16 fragment
descriptors. The MLID combines these fragments together to form one
contiguous packet.

34h FragmentOffset On sends, this field describes the location of a contiguous section of RAM
memory (32-bit offset).

38h FragmentLength The length in bytes of the first packet fragment. On sends, this value can
be 0. On sends, the ECB may contain the following additional fields as
needed:

3Ch FragmentOffsetX Additional fragment descriptor when the FragmentCount is greater than 1.
The X stands for the additional fragment number (2 through 16).

40h FragmentLengthX Additional fragment descriptor when the FragmentCount is greater than 1.
The X stands for the addition fragment number (2 through 16) . The
FragmentOffsetX and FragmentLengthX fields may repeat up to 16 times.

Offset Field Name Description
300 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 15 Graphic Representation of the Transmit Event Control Block

See Also

! Chapter 4, "Protocol Stack Data Structures" for more information about
Event Control Blocks
LSL Support Routines (C Language) 301

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLSLUnbindStack

Removes a bound protocol stack from the LSL's table

Syntax

LONG CLSLUnbindStack (
 LONG StackID,
 LONG BoardID);

Parameters

StacklD

(IN) The protocol Stack I D.

BoardlD

(IN) The board number.

Completion Code (EAX)

Remarks

CLSLUnbindStack unbinds a bound protocol stack from an MLID.

After this call is completed, the protocol stack no longer receives packets from
the MLID it was once bound to. However, the protocol stack can still receive
packets from that board if it is also registered as a default or receive prescan
protocol stack for it.

See Also

! LSLBindStack

0x00000000 Successful No enor occurred.

0x0FFFFF82 BadParameter The requested board number or the protocol Stack ID does
not exist.

0x0FFFFF85 ItemNotPresent The specified binding does not exist.
302 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
13 Overview of the MLID

Chapter Overview

This chapter describes the procedures and functionality that the MLID should
provide. However, depending on the hardware and topology of your LAN
adapter, your MLID might not need to meet all of the requirements discussed
in this chapter.

The NetWare Server MLID

MLIDs handle the sending and receiving of packets on the network. MLIDs
drive a LAN adapter (also referred to as Network Interface Card [NIC]) and
handle frame header appending and stripping. They also help determine the
packet's frame type.

The requirements of your LAN adapter dictate how you write your MLID.

MLID Procedures

In the NetWare server environment, the ODI specification defines the
following procedures:

! MLID initializationroutine (Required)

! Board service routine (one of the following required)

! Interrupt Service Routine (ISR)

! Driver polling routine

! Second Interrupt Service Routine (optional)

! Packet transmission routine (Required)
Overview of the MLID 303

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The MLID also supports the following control procedures:

! Control procedures for the ODI (IOCTLs)

! AddMulticastAddress (Required if hardware supports multicast
addressing)

! DeleteMulticastAddress (Required if hardware supports multicast
addressing)

! GetMLIDConfiguration (Required)

! GetMLIDStatistics (Required)

! DriverPromiscuousChange (Recommended)

! SetLookAheadSize (Required)

! DriverManagement (Optional)

! MLIDReset (Required)

! MLIDShutdown (Required)

! RemoveNetworkInterface (Optional)

! ShutdownNetworkInterface (Optional)

! ResetNetworkInterface (Optional)

! Timeout detection (some LAN adapters do not need to provide this
procedure)

! Interrupt call back routine (Optional)

! AES call back routine (Optional)

! MLID removal routine (Required)

Of course, the specific hardware requirements of the LAN adapter might
require that you write additional procedures; however, the procedures listed
above represent the generic code elements found in every MLID.

A brief description of each procedure is provided below. These descriptions
are high-level generalizations only and are not true in every case, nor do they
describe every possible case. More detailed descriptions of each procedure
(including pseudocode) is provided in Chapters 15 through 20 of this manual.
304 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MLID Initialization

! In general terms, the MLID's initialization routine must perform the
following actions:

! Allocate the memory for the MLID's variables and structures.

! Parse the standard LOAD command line options.

! Process custom command line parameters and custom firmware.

! Register the MLID with the LSL.

! Register the hardware configuration with the operating system.

! Provide a hook for the MLID's board service routine by allocating an
interrupt or by establishing a polling procedure.

! Schedule callback events for timeout detection and recovery.

! Initialize the LAN adapter.

Board Service Routine

The board service routine generally needs to detect and handle the following
events on the LAN adapter:

! Packet received

! Error receiving a packet

! Transmission complete

! Error transmitting a packet

The MLID can be notified of these events by an interrupt service routine
(ISR), a polling procedure, or a polling procedure with interrupt backup.

The system ISR receives the interrupt and calls the MLID's interrupt service
routine. When the system ISR calls the MLID's ISR, the direction flag is
cleared, interrupts are disabled, and all registers are pushed onto the stack. The
MLID only needs to service the interrupt and return (do not use iret). If the
MLID sets the direction flag during the routine, it should clear it before it
returns.

IMPORTANT: We recommend that interrupts remain disabled during MLID's
interrupt service routine and it's packet transmission routine. If either routine must
enable interrupts, it must disable them before returning.
Overview of the MLID 305

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Packet Transmission

The MLID's packet transmission routine is called whenever a packet needs to
be transmitted onto the wire. The MLID must build the necessary frame and
media headers and then sends the packet.

Multiple Operating System Support

MLID development depends upon the operating system under which the
MLID will run. An MLID developed to the NetWare operating system must
be developed differently than an MLID developed to the DOS, OS/2, or NT
operating systems. We strongly recommend that you use the LAN driver
toolkit to aid you in developing an HSM (Hardware Specific Module), instead
of a complete MLID.

Control Procedures

Among the control procedures the MLID must provide are control procedures
to support multicast addressing, if the hardware supports it, and procedures to
reset and shut down the hardware. The MLID can also supply a control
procedure to support promiscuous mode.

MLIDs that support the Hub Management Interface implement the
DriverManagement IOCTL.

Timeout Detection

The MLID can schedule timers that it uses to repeatedly call back the
DriverAESCallBack or the DriverINTCallBack routines at specified intervals.

For example, the MLID might need to be called regularly so that it can inspect
the LAN adapter to determine if the adapter has failed to complete a
transmission. If a timeout error had occurred, the procedure would discard the
packet being sent, reset the board, and begin transmitting the next packet in
the send queue.

Driver Remove

Every MLID must have a remove procedure that allows the network
supervisor to unload the MLID from the operating system. This procedure
must shut down the LAN adapter and return any resources that the MLID has
allocated from the operating system.
306 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MLID Data Structures and Variables

In addition to the procedures discussed above, the MLID must also contain
certain data structures and variables. The primary structures include:

! MLID configuration table

! MLID statistics table

Configuration Table

The configuration table is a data structure that defines the configuration of the
LAN adapter and MLID. The fields in this table are primarily used during
initialization and are referred to by the LSL and the MLID. The requirements
for configuration tables are explained in detail in Chapter 14.

Statistics Table

The statistics table is a data structure that contains data on the operation of the
LAN adapter and the MLID. Both the LSL and the MLID look at fields in this
table. Chapter 14, "MLID Data Structures" contains a detailed description of
this data structure.

MLID Functionality

Reentrancy

We strongly recommend that your MLID provide the following functionality.
(In some instances this manual recommends certain ways of implementing
this functionality, but it is up to you to implement this functionality in any way
you choose.)

We strongly recommend that your MLID support reentrancy. When you link
your LAN driver for the NetWare 3 and later environments, you can declare
your driver reentrant. This allows the operating system to use a single code
image of the MLID to run multiple LAN adapters (of the same type) or to run
multiple frame types (logical boards) on the same LAN adapter. A non-
reentrant driver would require the operating system to load an additional code
image of the driver each time it used another LAN adapter or supported
another logical board.
Overview of the MLID 307

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
To illustrate the advantage of reentrant code, consider the following example.
Suppose you wanted to configure a server to drive two Novell NTR2000
cards. You would enter the following commands at the server console:

load ntr2000

load ntr2000

If have written reentrant code, the first load actually loads the code image of
the driver into the server's memory and then calls the MLID's initialization
routine The second load merely calls the MLID's initialization routine again.
If you have not written reentrant code, two copies of the NTR2000 LAN driver
would be loaded into memory.

Multiple Frame Support

If the LAN adapter runs on a topology that supports multiple frame types, we
strongly recommend that the MLID support all that topology's frame types.
We implement multiple frame support by using logical boards.

Multiple Frame Support and Logical Boards

To illustrate how logical boards are used, consider the preceding example of
loading an NTR2000 twice. When you enter the load command the second
time, you could be indicating one of two things:

! You want the MLID to run a second LAN adapter

! You want the MLID to run a second frame type on the LAN adapter that
is already loaded

Which ever is the case, your MLID creates a "logical board" in response to this
command. (A fuller description of logical boards is provided below.) The
operating system does not concern itself with distinguishing between logical
boards that have exclusive use of a LAN adapter and logical boards that share
the same LAN adapter with other logical boards. Only the MLID makes this
distinction.

Multiple Frame Support in Reentrant Code

If you are writing reentrant code, each logical board uses the single code
image of the MLID that was loaded into the operating system with the first
load command. However, the MLID must maintain a separate adapter data
space for each adapter and a separate frame data space for each logical board.
308 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Frame Data Space and Adapter Data Space

Adapter Data Space

To allow the MLID to resolve the ambiguity that arises with the second load
command, the operating system asks the following question:

Do you want to add another frame type for a previously loaded
board?

If your response to the operating system's question is no, the MLID must
allocate an adapter data space to drive a second adapter. The adapter data
space is a structure that contains the hardware-specific information which the
MLID needs to drive the LAN adapter (interrupt number, beginning memory
address, etc.). The statistics table required by the ODI specification is
contained in this adapter data space. The MLID allocates one adapter data
space for each LAN adapter, regardless of the number of logical boards (frame
types) it supports.

NOTE: The MLID must create an adapter data space for every LAN adapter of the
same type that is loaded in the server.

Frame Data Space

Every logical board also has a frame data space associated with it. The frame
data space is a structure that contains the frame-specific information the
MLID needs to support that frame type. The MLID allocates one frame data
space for each logical board. The MLID then copies the configuration table
template for that logical board into its frame data space.

NOTE: The MLID must create a frame data space for every frame type that is
loaded.

Implementing Multiple Frame Support

Figure 16 illustrates how you might implement multiple frame support in an
NE2000 server driver. In order for the server to use the first NE2000 adapter,
you would enter:

load ne2000

In response to this command, the MLID would create logical board 1, which
uses Frame Data Space 1 and Adapter Data Space A to run Adapter A. By
default, Frame Data Space 1 contains the information necessary to support
Ethernet 802.2. (Logical board 0 is reserved for use by the operating system.)
Overview of the MLID 309

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Now suppose you wanted to use a second NE2000 adapter that supported both
SNAP and 802.2 frames. To do this you would enter the following command:

load ne2000 frame=ETHERNET_SNAP

Afterwards, the server would ask the following question:

Do you want to add another frame type for a previously loaded
board?

In order to use the second NE2000 adapter, you would need to enter 'n'. This
would cause the MLID to create logical board 2, which uses Frame Data Space
2 and Adapter Data Space B to run Adapter B. The
frame=ETHERNET_SNAP command tells the MLID that Frame Data Space
2 will support Ethernet SNAP.

In order for Adapter B to also support 802.2, you would need to load the
NE2000 driver a third time:

load ne2000 frame=ETHERNET_802.2

This time, however, you would enter 'y' in response to the question:

Do you want to add another frame type for a previously loaded
board?

The operating system would then let you indicate which LAN adapter you
want to add additional frame support to. If you were to specify Adapter B, the
MLID would then create logical board 3, which uses Frame Data Space 3 and
Adapter Data Space B to communicate with Adapter B.
310 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 16 Implementation of Multiple Frame Support Using Ethernet

Figure 17 shows that when the boards are not all the same type, each board has
its own executable code image and adapter data space.
Overview of the MLID 311

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 17 Implementation of Multiple Boards/Frame Support

Optional Functionality

A NetWare server MLID can support source routing (Token-Ring and FDDI),
promiscuous mode, and multicast addressing. We recommend that your
MLID support all of these options, if the LAN adapter supports them.

Source Routing Support

The ODI Specification Supplement: Source Routing describes how to add and
configure source routing in the MLID.

Promiscuous Mode

When MLIDs operate in promiscuous mode, they pass all packets they receive
to the upper layers. This includes bad packets, if possible. Because various
monitoring functions operate in promiscuous mode, we strongly recommend
that your MLID support promiscuous mode if your adapter is capable of such
support. The MLID enables or disables promiscuous mode upon request by
312 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
using the DriverPromiscuousChange routine described in Chapter 20, "MLID
Control Routines".

Multicast Address Support

NOTE: If your LAN adapter is capable of supporting multicast addressing, your
MLID must also support it. The Ctl2_AddMulticastAddress and
Ctl3_DeleteMulticastAddress IOCTLs implement multicast support. These control
procedures are discussed in more detail in Chapter 20, "MLID Control Routines".

MLID Design Considerations

The following section discusses hardware and coding issues you must
consider when developing the MLID.

Hardware Issues

Every type of LAN adapter, such as the NE3200 and the NE2000, have
different hardware and data transfer characteristics. A thorough understanding
of your LAN adapter and LAN topology allows you to create a more efficient
driver. Keep in mind that the board and chip manufacturer's support engineers
can provide you with up-to-date information regarding their hardware.

Data Transfer Mode

The LAN adapter's mode of data transfer is a primary consideration in MLID
development. To achieve the highest performance, you must select support
procedures geared to the data transfer mode. The data transfer modes are:

! Programmed I/O

! Shared RAM (Memory Mapped I/O)

! Direct Memory Access (DMA)

! Bus Master

Bus Type

You must also consider the LAN adapter's bus type and size. The Network Bus
Interface (NBI) routines (new with this spec). Provide all the information
needed to determine the bus type and get the hardware resource information.
Overview of the MLID 313

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
314 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
14 MLID Data Structures

Chapter Overview

This chapter describes the data structures and variables that the MLID must
define. All the data structures defined in this chapter must be present in the
OSDATA segment of the MLID.

This chapter describes the structures in the adapter and frame data spaces as
well as the Event Control Block. This chapter contains useful reference
material for the developer.

Frame Data Space

The ODI specification requires that every MLID has an MLID configuration
table as part of the frame data space. The MLID keeps a copy of the
configuration table template in the OSDATA segment. The MLID uses the
configuration table in the OSDATA segment as the working configuration
table for the default logical board and as a template for the configuration tables
it must copy for each loaded logical board.

When the MLID allocates the frame data space for each logical board (frame
type) that loads, it copies the configuration table template for that logical
board into that logical board's frame data space (See Chapter 13, "Overview
of MLIDs"). Because external processes can also access this table, the ODI
specification defines this table's format strictly.

The MLID Configuration Table

The MLID configuration table contains information about the MLID and the
LAN adapter's hardware configuration.
MLID Data Structures 315

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The MLID must define the configuration table to contain the LAN adapter's
default configuration and any other information about that configuration. The
table must be defined by the fields described in this chapter, with each entry
filled accordingly. Certain variables in the configuration table will be specific
to your MLID. Other variables will be specific to the particular LAN adapter
the MLID is running. The following pages show the configuration table
format. Asterisks indicate that the field is configurable from the command line
at load time. These fields should be set to their default value. Any field that is
not used should be set to 0, unless otherwise noted. A description of each field
follows the figures.

The MLID provides external processes access to the configuration tables in
two ways:

! The MLID passes the LSL a pointer to the copy of the configuration table
the MLID creates during the initialization of each logical board.

! The MLID provides a control procedure called
CtlO_GetMLIDConfiguration, which, when called by a protocol stack or
some other external process, returns a pointer to the specified logical
board's configuration table.

NOTE: All data strings pointed to by the pointers in the configuration table are
length-preceded and null-terminated.

The following figures and tables contains the field names, descriptions, and
other necessary information about the configuration table.

The following is MLID Configuration Table Sample Source Code

DriverConfigTemplate

DriverConfigTemplate label dword
MLIDConfigurationStructure struc
MLIDCFG_Signature db 'HardwareDriverMLID',8 dup (")
MLIDCFG_MajorVersion db 01 ;v1.14
MLIDCFG_MinorVersion db 14 ;v1.14
MLIDNodeAddress db 6 dup (?)
MLIDModeFlags dw 0
MLIDBoardNumber dw 0
MLIDBoardInstance dw 0
MLIDMaximumSize dd 0
MLIDMaxRecvSize dd 0
MLIDRecvSize dd 0
MLIDCardName dd 0
MLIDShortName dd 0
MLIDFrameType dd 0
MLIDReserved0 dw 0
316 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MLIDFrameID dw 0
MLIDTransportTime dw 0
MLIDSrcRouting dd 0
MLIDLineSpeed dw 0
MLIDLookAheadSize dw 0
MLIDCFG_SGCount db 0
MLIDReserved db 0
MLIDPrioritySup dw 0
MLIDReserved dd 0
MLIDMajorVersion db 0
MLIDMinorVersion db 0
MLIDFlags dw 0
MLIDSendRetries dw 0
MLIDLink dd 0
MLIDSharingFlags dw 0
MLIDSlot dw 0
MLIDIOPortsAndLengths dw 4 dup (0)
MLIDMemoryDecode0 dd 0
MLIDLength0 dw 0 ;in paragraphs
MLIDMemoryDecode1 dd 0
MLIDLengthl dw 0
MLIDInterrupt db 2 dup (?)
MLIDDMAUsage db 2 dup (?)
MLIDResourceTag dd 0
MLIDConfig dd 0
MLIDCommandString dd 0
MLIDLogicalName db 18 dup (?)
MLIDLinearMemory0 dd 0 ;NetWare 4 field only
MLIDLinearMemory1 dd 0 ;NetWare 4 field only
MLIDChannelNumber dw 0 ;NetWare 4 field only
MLIDBusTag dd 00 00 00 00 ;NetWare 4 field only
MLIDCfgMajorVersion db 1 ;NetWare 4 field only
MLIDCfgMinorVersion db 0 ;NetWare 4 field only
MLIDConfigurationStructure ends
MLID Data Structures 317

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 18 Graphic Representation of the MLID Configuration Table

The following table describes the MLID configuration table fields and how
they should be initialized.
318 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 35 MLID Configuration Table

Offset Field Name Size Description

0h MLIDCFG_Signature 26 This field is a mandatory remnant from the NetWare 2
environment. In pre-MLID LAN drivers, this field indicated
the start of the configuration table. External entities could
search on the string in this field to find the driver's
configuration table.

This string is now less useful because MLIDs provide a
pointer to this table. However, you must still include this
field in the configuration table. The string is
"HardwareDriverMLID" followed by exactly eight spaces.
The MLID must initialize this field to that string.

1Ah MLIDCFG_MajorVersion 1 Set this field to the major version number of the
configuration table. The version is controlled by Novell and
is currently v1.14; therefore, 1 is the maior version number.

1Bh MLIDCFG_MinorVersion 1 Set this field to the minor version number of the
configuration table. The version is controlled by Novell and
is currently v1.14; therefore, 14 is the minor version
number.

1Ch MLIDNodeAddress 6 This field contains the node address of the LAN adapter.
This address is in either canonical (LSB mode) or
noncanonical (MSB mode), depending upon the topology.

Usually, the MLID places the node address it reads from
the hardware into this field during the MLID's initialization
routine. However, the MLID can also call
ParseDriverParameters to prompt a console operator to
configure this address at command line.

If both bits 14 and 15 of the ModeFlags field (offset 22h) are
set to 0, the address in this field is in the physical layer
format.

If bit 15 of the ModeFlags field is set to 1, the MLID can tell
by the state of bit 14 whether this address is canonical or
noncanonical.

Note: Noncanonical mode is valid only for Token-Ring
MLIDs. Ethernet and FDDI MLIDs must use canonical
addresses. (For more information, refer to ODI
Supplement: Canonical and Noncanonical Addressing.)
MLID Data Structures 319

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
22h MLIDModeFlags 2 This field contains flags that the MLID should set using the
definitions found in Table 36.

Note: Unused bits are reserved and should always be set
to 0.

24h MLIDBoardNumber 2 During initialization, the MLID fills this field with the
assigned board number that it received when it registered
with the LSL during it's initialization routine. The MLID
should not modify this field.

Logical board 0 is used internally in the operating system.
Drivers are assigned logical board numbers 1 through 255.

26h MLIDBoardInstance 2 The MLID sets this field during its initialization routine. If the
MLID is driving two adapters, all logical boards associated
with the first adapter would have a value of 1, and all the
logical boards associated with the second adapter would
have a value of 2.

Note: Each controller on a multi-channel adapter is treated
as a separate adapter.

28h MLIDMaximumSize 4 The value in this field defines the largest possible frame
size that the driver/LAN adapter combination can transmit
or receive. This value includes all headers.

This value cannot exceed the size of the LSL's maximum
ECB buffer.

Token-Ring: Token-Ring MLIDs can send and receive a
number of different frame sizes. Therefore, during its
initialization routine, a Token-Ring MLID must determine
the appropriate frame size and place that value in this field.
Token-Ring MLIDs should support 4KB (4096+74+40 =
4210) frame sizes whenever it is possible and practical.
The value in this field should not be less than 626 decimal
(586 bytes + 18 bytes [source routing] +14 bytes [802.5
header] + 3 bytes [802.2 UI] + 5 bytes [SNAP header]).

Ethernet: The value in this field should be either 1514 or the
LSL's maximum ECB buffer size, whichever is lowest. (See
Table 39: Maximum Packet Sizes)

Note: The MLID sets this field before it calls
LSLRegisterMLIDRTag.

Offset Field Name Size Description
320 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
2Ch MLIDMaxRecvSize 4 The MLID sets this field after calling
LSLRegisterMLIDRTag. The MLID subtracts the size of the
smallest media header(s) from the value in the
MLIDMaximumSize field. For example, the Ethernet Media
module sets this field to 1500 decimal (1514 bytes - 14
bytes [MAC header] = 1500) if the MLID were running the
Ethernet_II frame type; the Token-Ring media module
which would set this to MLIDMaximumSize - 14 bytes
[MAC] - 3 bytes [802.2 UI] if the MLID's frame type were
Token-Ring.

30h MLIDRecvSize 4 The MLID sets this field after calling
LSLRegisterMLIDRTag. The MLID subtracts the length of
the largest media header(s) from the MLIDMaximumSize
field.

For example, the Token-Ring 802.2 Media module would
set this field to MLIDMaximumSize- 14 bytes [MAC header]
4 bytes [802.2 Type II header]. Because source routing is
a possibility, you should subtract the largest source routing
header, which is 30 bytes. (Transparent source routing
bridging requires a header of 30 bytes.)

34h MLIDCardName 4 The MLID sets this field to point to a byte-length preceded,
null-terminated, ASCII string that is identical to the
description string in the linker definition file (see Appendix
B, "Assembling and Linking NLMs").

For example: 14, "NetWare NE2000", 0

38h MLIDShortName 4 The MLID must set this field to point to a byte-length
preceded, null-terminated, ASCII string that describes the
adapter in eight bytes or less.

For example: 6, "NE2000", 0

The content of this string is arbitrary, but it is usually the
name of your .LAN file.

3Ch MLIDFrameType 2 The MLID sets this field during it's initialization routine. This
field contains a far pointer to a length-preceded, 0-
terminated string describing the frame and media type the
MLID uses. (See ODI Supplement: Frame Types and
Protocol IDs.)

40h MLIDReserved0 2 The MLID sets this field to 0.

Offset Field Name Size Description
MLID Data Structures 321

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
42h MLIDFrameID 2 The MLID sets this field during it's initialization routine. This
field contains the frame type ID number. (See the ODI
Specification Supplement: Frame Types and Protocol IDs.
)

44h MLIDTransportTime 2 This field indicates the time (in ticks) it takes the LAN
adapter to transmit a 576-byte packet. Most MLIDs set this
field to 1. This field cannot be set to 0.

If the MLID is for a slow asynchronous line, the value of this
field should be set according to a representative time.

46h MLIDSrcRouting 4 If the LAN adapter does not support generic token-ring
source routing, the MLID sets this field to 0.

If the LAN adapter does support source routing, the MLID
initializes this field to the address of a routine which simply
does a RET. Later, the ROUTE.NLM utility replaces this
address. (For more information on source routing, see the
ODI Specification Supplement: Source Routing.)

Offset Field Name Size Description
322 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
4Ah MLIDLineSpeed 2 This field holds the data rate used by the LAN adapter's
medium (usually specified in megabits per second). The
MLID sets this field to an appropriate value.

This value is normally specified in megabits per second
(Mbps). If the line speed is less than 1 Mbps or if it is a
fractional number, the value of this field can be defined in
kilobits per second (Kbps) by setting the most significant bit
(bit 15) to 1. This field is undefined if it is set to 0.

For example: If the speed of the line driver is 10 Mbps, put
10 (decimal) in this field. If the speed is 2.5 Mbps, then the
value of this field is 2500 (decimal) logically ORed with
8000h (most significant bit is 1 for Kbps).

If the line speed can be selected, as with Token-Ring, the
MLID determines the selected line speed and places that
value in this field. Some common values are listed below:

Ethernet 10 Mbps 000Ah

Token-Ring 4 Mbps 0004h

Token-Ring 16 Mbps 0010h

RX-Net 2,500 Kbps 89C4h

FDDI 100 Mbps 0064h

ISDN 64 Kbps 8040h

4Ch MLIDLookAheadSize 2 The MLID sets this field to the amount of data required by
the protocol stacks to preview received packets. The MLID
can change this size dynamically. This size can be a
maximum value of 128 bytes. This field defaults to 18
bytes.

Note: This value cannot be decreased below 18 bytes.

4Eh MLIDCFG_SGCount 1 The maximum number of scatter/gather elements the
adapter is capable of handling. The MLID sets this variable.
The minimum value is 2 (1 for the MAC header and 1 for
data). The maximum value is 17 (1 for the MAC header and
16 for data).

4Fh MLIDReserved 1 This field is used by the operating system. The MLID must
set this field to 0.

Offset Field Name Size Description
MLID Data Structures 323

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
50h MLIDPrioritySup 2 This field contains the number of send priorities the MLID
can support.

54h MLIDReserved 4 This field is used by the operating system. The MLID must
set this field to 0.

56h MLIDMajorVersion 1 This field contains the major version number of the MLID.
The number must match the version number specified with
the "version" keyword in the linker definition file (see
Appendix B).

57h MLIDMinorVersion 1 This field contains the minor version nurnber of the MLID.
The number must match the version number specified with
the "version" keyword in the linker definition file (see
Appendix B).

58h MLIDFlags 2 See the MLIDFlags bit map in Table 36.

5Ah MLIDSendRetries 2 Set this field to a value indicating the number of times the
MLID should retry sending a packet before aborting the
transmission. This retry count can be any value, but it might
be overwritten by a value entered on the server console at
load time.

5Ch MLIDLink 4 The operating system uses this field. The MLID's
initialization routine passes a pointer to this field when
calling ParseDriverParameters and
RegisterHardwareOptions. MLIDs should not change this
field.

60h MLIDSharingFlags 2 This field informs the system of the hardware resources
that an MLID/LAN adapter can share with other MLID/LAN
adapters.

The MLID uses these flags to enable shareable interrupts
and memory.

See the MLIDSharingFl ags bit map in Table 38.

Offset Field Name Size Description
324 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
62h MLIDSlot 2 If the MLID is for an ISA board, this field is not used and
should be set to -1.

If the MLID is for a PCI, MicroChannel, or EISA type LAN
adapter, the MLID's initialization routine typically scans the
machine's slots and prepares a list that the MLID passes to
the ParseDriverParameters operating system routine.
ParseDriverParameters then fills in this slot using either the
AUTOEXEC.NCF file, or input from the command line or
the user.

When using NBI, set this field to the HIN value.

64h

(64h)

(66h)

(68h)

(6Ah)

MLIDIOPortsAndLength
s

(MLIDIOPort0)

(MLIDIORange0)

(MLIDIOPortl)

(MLIDIORangel)

8

(2)

(2)

(2)

(2)

This field contains the I/O port information as described
below. Set this field to 0 if it is not used.

Primary base I/O port.

Number of I/O ports starting at MLIDIOPort0.

Secondary base I/O port.

Number of I/O ports starting at MLIDIOPortl.

6Ch MLIDMemoryDecode0 4 This field contains the absolute primary memory address
used by the LAN adapter. If not used, set this field to 0.
(See the note in the MLIDLinearMemory0 description at
offset 9Ah.)

70h MLIDMemoryLength0 2 This field contains the amount of memory (in paragraphs)
that the LAN adapter uses, starting at
MLIDMemoryDecode0. If not used, set this field 0.

72h MLIDMemoryDecode1 4 This field contains the absolute secondary memory
address used by the LAN adapter. If not used, set this field
to 0. (See the note in the MLIDLinearMemory1 description
at offset 9Eh.)

76h MLIDMemoryLength1 2 This field contains the amount of memory in paragraphs
starting at MLIDMemoryDecodel. If not used, set this field
to 0.

78h

(78h)

(79h)

MLIDInterrupt

(MLIDInterrupt0)

(MLIDInterruptl)

2

(1)

(1)

This field contains interrupt information as described
below. (Set to FFh if this field is not used.)

Primary interrupt vector number.

Secondary interrupt vector number.

Offset Field Name Size Description
MLID Data Structures 325

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
7Ah

(7Ah)

(7Bh)

MLIDDMAUsage

(MLIDDMAUsage0)

(MLIDDMAUsagel)

2

(1)

(1)

This field contains DMA channel information as described
below. (Set to FFh if this field is not used.)

Primary DMA channel.

Secondary DMA channel.

7Ch MLIDResourceTag 4 This field contains a pointer to the MLID's IOResourceTag.

80h MLIDConfig 4 This field contains a pointer to the MLID's configuration
table. This field is used only by operating system; the MLID
or protocol stack should not modify it.

84h MLIDCommandString 4 If the INSTALL utility needs to replace the default
command line in the AUTOEXEC.NCF file, it uses the null-
terminated string accessed through this field. This field
contains a pointer to a linked list:

LANCommandLinelnfo struct

CommandLineNext dd ? ;Set to 0 if another
string does not follow

CommandLineStringPtr dd ? ;Points to a
command line string

LANCommandLineInfo end

Bits 9 and 10 of the MLIDSharingFlags bit map are used in
conjunction with this field.

88h MLIDLogicalName 18 MLID should not use this field. It contains the logical name
of the MLID, if the MLID has a logical name. The MLID is
usually given this logical name at load time. For example:

load NE2000 NAME=" "

9Ah MLIDLinearMemory0 4 The operating system fills in this field with the linear
address of MLIDMemoryDecode0 during
RegisterHardwareOptions.

Do not use the operating system conversion routines to
convert MLIDMemoryDecode0 to the logical address.

Offset Field Name Size Description
326 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Configuration Table Flags

The following table contains the bit map and bit descriptions for the
Configuration Table MLIDModeFlags field.

9Eh MLIDLinearMemory1 4 The operating system fills in this field with the linear
address of MLIDMemoryDecodel during
RegisterHardwareOptions.

Do not use the operating system conversion routines to
convert MLIDMemoryDecodel to the logical address.

A2h MLIDChannelNumber 2 This field is used for multichannel adapters. It holds the
channel number of the Network Interface Circuit to use.
The channel number can be specified when an MLID is
loaded using the "channel=#" keyword (where # is any
value greater than 0). Set this field to 0 if multichannels are
not used.

A4h MLIDBusTag 4 Pointer to an architecture-dependent value which specifies
the bus on which the adapter is found. Set this field to 0
before calling ParseDriverParameters. The MLID must
enter the value returned by the NBI function,
SearchAdapter, in this field.

ABh MLIDIOConfigMinorVer 1 The current major revision level of the IO_CONFIG
structure (the bottom half of CONFIG_TABLE structure).
The MLID sets this variable to 1.

A9h MLIDIOConfigMinorVer 1 The current minor revision level of the IO_CONFIG
structure (the bottom half of CONFIG_TABLE structure).
The MLID sets this variable to 1.

Offset Field Name Size Description
MLID Data Structures 327

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 36 Configuration Table MLIDModeFlags Field Bit Map (Offset 22h)

Bit # Name Map Description

0 RealDriverBit This bit is a remnant from previous specifications. The MLID now sets this bit
to 1.

1 Reserved This bit has been retired and must be set to 0.

2 Reserved This bit has been retired and must be set to 0.

3 MulticastBit The MLID sets this bit if it supports multicast addressing. The MLID must
support multicast addressing, if the hardware supports it.

4 PointToPointBit Set this bit to allow the MLID to bind with a protocol stack without providing a
network number. No network number exists in point-to-point connections. The
MLID must set this bit if the MLID supports dynamic call setup or teardown.
Typically, asynchronous or X.25 MLIDs set this bit.

5 Reserved Set to 0.

6 RawSend The MLID sets this bit to indicate that it supports raw sends. Refer to Chapter
17, "The MLID Packet Transmission Routine" for information on raw sends.
(RX-Net does not support raw sends.) This bit defaults to 0.

7 Reserved Set to 0.

8 SMPBit Set this bit if the MLID is written to be SMP aware.

9 Reserved Set to 0.

10 Reserved Set to 0.

11 Reserved Set to 0.

12 Reserved Set to 0.

13 PromiscuousMod
e

Bit The MLID must set this bit if it supports Promiscuous Mode.
328 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 37 MLIDFlags Bit Map (Offset 58h)

15

14

CanonicalBits The MLID sets these bits to indicate whether the MLIDNodeAddress field of
the configuration table contains a canonical or a noncanonical address.

15 is always set to 1 for NetWare operating system versions later than 3.11.
This bit indicates whether the node address format is configurable.

14 indicates whether the configuration table MLIDNodeAddress field contains
the node address in canonical or noncanonical form. The state of bit 14 is
defined only when bit 15 is set.

Bit 15 and bit 14 combinations are as follows:

! 00 = MLIDNodeAddress format is unspecified. The node address is
assumed to be in the physical layer's native format.

! 01 = This is an illegal value and must not occur.

! 10 = MLIDNodeAddress is canonical.

! 11 = MLIDNodeAddress is noncanonical. (See the definition of the
MLIDNodeAddress field in the Configuration Table and ODI Supplement:
Canonical and Noncanonical Addressing.)

Bit # Description

0 Reserved. Set to 0.

1 Reserved. Set to 0.

2 Reserved. Set to 0.

3 Reserved. Set to 0.

4 Reserved. Set to 0.

5 Reserved. Set to 0.

6 Reserved. Set to 0.

Bit # Name Map Description
MLID Data Structures 329

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
7 Reserved. Set to 0.

8 Set to 1 if the MLID supports HUB Management.

10

9

These bits indicate different support mechanisms for multicast filtering and multicast address
format. These bits are only valid if bit 3 of the MLIDModeFlags is set, indicating that the MLID
supports multicast addressing. The MLID sets bit 10 if it has specialized adapter hardware (such
as hardware that utilizes CAM memory). If this bit is set, DriverMulticastChange receives a pointer
to the multicast address table and the number of addresses in the table.

Note: If an MLID that usually defaults to using functional addresses also supports group
addressing and sets bit 10, it receives both functional and group addresses. The state of bit 9 is
defined only if bit 10 is set. Bit 9 is set if the adapter completely filters group addresses and the
MLID does not need to perform any checking. The MLID can dynamically set and reset bit 9. For
example, if the adapter utilizes CAM memory, but has temporarily run out of memory, the MLID
must temporarily filter the group addresses. In this case, the MLID would reset bit 9.

The bit 10/bit 9 combinations are:

! 00 = The format of the multicast address defaults to that of the topology:

Ethernet => Group Addressing

Token-Ring => Functional Addressing

PCN2 => Functional Addressing

FDDI =>Group Addressing

! 01 = Illegal value and must not occur

! 10 = A specialized adapter supports group addressing, but the MLID should filter the
addresses

! 11 = A specialized adapter supports group addressing, and the MLID is not required to filter
the addresses

11 Reserved. Set to 0.

12 Reserved. Set to 0.

13 Reserved. Set to 0.

14 Reserved. Set to 0.

15 Reserved. Set to 0.

Bit # Description
330 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 38 MLIDSharingFlags Bit Map (Offset 60h)

Bit # Description

0 Set to 1 if the LAN logical board is currently shut down.

1 Set to 1 if the LAN adapter can share I/O port 0.

2 Set to 1 if the LAN adapter can share I/O port 1.

3 Set to 1 if the LAN adapter can share memory range 0.

4 Set to 1 if the LAN adapter can share memory range 1.

5 Set to 1 if the LAN adapter can share interrupt 0.

6 Set to 1 if the LAN adapter can share interrupt 1.

7 Set to 1 if the LAN adapter can share DMA channel 0.

8 Set to 1 if the LAN adapter can share DMA channel 1.

9 The MLID sets this bit to indicate to the INSTALL utility that it has its own command line
information to place in the AUTOEXEC.NCF file. The INSTALL utility may use any
default information and the string pointed to by MLIDCommandString. (Default
information is the frame type and the values chosen from the
AdapterOptionsDefinitionStructure for each option. The NeedsBitMap determines what
options are chosen. See the ParseDriverParameters description in Appendix A,
"Operating System Support Routines" for a description of these structures.

10 The MLID sets this bit to prevent default information from being placed in the
AUTOEXEC.NCF file option information entered on the command line. If this bit is 0
(the default value), and bit 9 is set to 1, the INSTALL utility could use the string pointed
to by MLIDCommandString to add to the default information. Setting this bit overrides
the setting of bit 9.

11 Reserved. Set to 0.

12 Reserved. Set to 0.

13 Reserved. Set to 0.
MLID Data Structures 331

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: MLIDs typically set bit 9, copy the command line to a buffer point to by the
configuration table's MLIDCommandString field, and clear bit 10. Bit 10 allows the
install utility to make a nearly accurate entry into the AUTOEXEC.NCF file.

Deriving the Maximum Packet Size

During the MLID's initialization routine, the MLID sets the configuration
table MLIDMaximumSize field to equal either the LSL's maximum ECB
buffer size or the topology's maximum size, whichever is smaller. (In MLIDs
written to the NetWare 4 operating system, this size defaults to 2KB but can
be changed in the STARTUP.NCF file to a maximum of 24KB). The MLID
also sets the configuration table MLIDMaxRecvSize and MLIDRecvSize fields.
After the LSLRegisterMLIDRTag routine returns, MLIDs for intelligent
adapters pass the maximum size to the hardware if it's required. The following
table shows how these values are determined.

All the values in the table below are derived from the value returned in ECX
when the MLID calls LSLRegisterMLIDRTag. This value in ECX is the
maximum ECB buffer size.

Table 39 Maximum Packet Sizes

14 Reserved. Set to 0.

15 Reserved. Set to 0.

Frame Type MLIDMaximumSize MLIDMaxRecvSize MLIDRecvSize

RX-Net Maximum ECB buffer size Maximum ECB buffer
size

Maximum ECB buffer size

Ethernet 802.3 Maximum ECB buffer size
or 1,514 (whichever is less)

MLIDMaximumSize - 14 MLIDMaximumSize - 14

Ethernet 802.2 Maximum ECB buffer size
or 1,514 (whichever is less)

MLIDMaximumSize- 17 MLIDMaximumSize- 18

Ethernet II Maximum ECB buffer size
or 1,514 (whichever is less)

MLIDMaximumSize- 14 MLIDMaximumSize- 14

Ethernet SNAP Maximum ECB buffer size
or 1,514 (whichever is less)

MLIDMaximumSize - 22 MLIDMaximumSize - 22

Bit # Description
332 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Example of Deriving Maximum Packet Size

If the maximum ECB buffer size equals 8,192 bytes and the Token-Ring
adapter can handle 4,096 bytes, then the Token-Ring 802.2 values are
calculated as follows:

MLIDMaximumSize = 4,096

MLIDMaxRecvSize
(The maximum packet size minus the headers
if the source routing header is not included.)
 = 4,096 - MAC header (14)
 - 802.2 Type I LLC header (3)
 = 4,079

MLIDRecvSize
(The maximum packet size minus the headers
if the source routing header is included.)
 = 4,096 - MAC header (14)
 - 802.2 Type II LLC header (4)
 - Source Routing header (30)
 = 4,048

Adapter Data Space

The MLID must allocate and initialize a structure called
DriverAdapterDataSpaceTemplate. This structure must contain the data that

Token-Ring 802.2 Maximum ECB buffer size
or the maximum size the
adapter can handle
(whichever is less)

MLIDMaximumSize - 17 MLIDMaximumSize - 48

Token-Ring SNAP Maximum ECB buffer size
or the maximum size the
adapter can handle
(whichever is less)

MLIDMaximumSize - 22 MLIDMaximumSize - 52

FDDI 802.2 Maximum ECB buffer size
or 4,491 (whichever is less)

MLIDMaximumSize -16 MLIDMaximumSize - 47

FDDI SNAP Maximum ECB buffer size
or 4,491 (whichever is less)

MLIDMaximumSize - 21 MLIDMaximumSize - 51

Frame Type MLIDMaximumSize MLIDMaxRecvSize MLIDRecvSize
MLID Data Structures 333

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
is specific to a particular LAN adapter. You must determine what hardware-
specific fields the MLID needs in this structure in order to drive its particular
LAN adapter. But keep in mind that this structure must also contain the MLID
statistics table.

MLID Statistics Table

When the MLID's initialization routine calls RegisterHardwareOptions, the
MLID allocates the adapter data space and creates a copy of the MLID's
template in this area. The MLID allocates one adapter data space for each
LAN adapter, regardless of the number of logical boards (frame types) it
supports.

The statistics table contains various diagnostic counters. All statistics counters
shown must be present in the table; however, the MLID is only required to
support those counters marked "mandatory." These counters can be grouped
into the following categories.

! Generic Statistics Counters

! Standard Counters

! Topology-specific Counters

! Custom Statistics Counters

The following figures and tables contains the field names, descriptions, and
other necessary information about the statistics table.

MLID Statistics Table Sample Source Code

DriverAdapterDataSpace struc
[*** Hardware Specific Variables ***]
 DriverStatisticsTable db 0 dup (?) ; (Label)
 StatMajorVersion db 3
 StatMinorVersion db 0
 NumGenericCounters dw (GenericEnd - GenericBegin) / 4
 CounterMask0 dd 1111 1011 0000 1111 1110 1111 1111 1111
 GenericBegin db 0 dup (?) ; (Label)
 TotalTxPacketCount dd 0 ; (mandatory)
 TotalRxPacketCount dd 0 ; (mandatory)
 NoECBAvailableCount dd 0 ; (mandatory)
 PacketTxTooBigCount dd 0 ; (mandatory)
 Reserved1 dd 0 ; (reserved)
 PacketRxOverflowCount dd 0 ; (optional)
 PacketRxTooBigCount dd 0 ; (mandatory)
 PacketRxTooSmallCount dd 0 ; (optional)
334 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 TotalTxMiscCount dd 0 ; (mandatory)
 TotalRxMiscCount dd 0 ; (mandatory)
 RetryTxCount dd 0 ; (optional)
 ChecksumErrorCount dd 0 ; (optional)
 HardwareRxMismatchCount dd 0 ; (optional)
 TotalTxOKByteCountLow dd 0 ; (mandatory)
 TotalTxOKByteCountHigh dd 0 ; (mandatory)
 TotalRxOKByteCountLow dd 0 ; (mandatory)
 TotalRxOKByteCountHigh dd 0 ; (mandatory)
 TotalGroupAddrTxCount dd 0 ; (mandatory)
 TotalGroupAddrRxCount dd 0 ; (mandatory)
 AdapterResetCount dd 0 ; (mandatory)
 AdapterOprTimeStamp dd 0 ; (mandatory)
 QDepth dd 0 ; (mandatory)
[*** Topology-specific Statistics Counters ***]
 GenericEnd db 0 dup (?) ; (Label)
 NumCustomCounters dw (CustomEnd - CustomBegin) / 4
 CustomBegin db 0 dup (?) ; (Label)
 CustomCounter1 dd 0
 CustomCounterN dd 0
 CustomEnd db 0 dup (?) ; (Label)
 CustomCounterStrings dd offset CustomStrings
DriverAdapterDataSpace Ends
DriverAdapterDataSpaceTemplate DriverAdapterDataSpace
MLID Data Structures 335

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 19 Graphic Representation of the MLID Statistics Table

MLID Statistics Table Field Descriptions

The following table describes the MLID statistics table fields and how they
should be initialized.
336 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 40 MLID Statistics Table Field Descriptions

Offset Name Size (bytes) Description

00h MajorVersion 1 This field contains the major version number of the
statistics table. The version number is controlled by
Novell and is currently v3.00; therefore, 3 is the major
version number.

01h StatMinorVersion 1 This field contains the minor version number of the
statistics table. The version number is controlled by
Novell and is currently v3.00; therefore, 00 is the
minor version number.

02h NumGenericCounters 2 This field contains the total number of generic
counters (standard and topology specific counters)
present in the statistics table (but not necessarily
supported). This number should also include any
additional counter masks used except
CounterMaskO. (See the next field description for
more information on counter masks.)

04h CounterMask0 4 This field contains a bit mask indicating which
counters of the first 32 standard and topology-specific
portions of the statistics table are implemented in the
driver. If the bit is O the counter is supported. (See the
bit map definition following this table.)

If the MLID requires more than 32 standard and
topology-specific counters (as with Token-Ring), a
second mask (CounterMaskl) is placed after the 32nd
counter at offset 88h to indicate the status of the next
set of 32 counters.

08h TotalTxPacketCount 4 The MLID increments this counter whenever a packet
is successfully transmitted by the adapter.

0Ch TotalRxPacketCount 4 The MLID increments this counter whenever a packet
is successfully received by the adapter.

10h NoECBAvailableCount 4 The MLID increments this counter if it cannot obtain a
receive ECB for a received packet.

14h PacketTxTooBigCount 4 The MLID increments this counter whenever a packet
is too big for the adapter to transmit.

18h Reserved1 4 This field is reserved, but should be initialized to 0.
MLID Data Structures 337

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
lCh PacketRxOverflowCount 4 The MLID uses this counter to indicate the number of
times the adapter's receive buffers overflowed
causing subsequent incoming packets to be
discarded.

20h PacketRxTooBigCount 4 The MLID increments this counter in two situations: 1.
A packet is received that is too large for the
preallocated receive buffer(s) the host provided. 2. A
packet is received that is too large for topology
definitions.

24h PacketRxTooSmallCount 4 Some MLIDs increment this counter if a packet is
received that is too small for media definitions.
Currently, only the RX-Net MLID maintains this
counter.

28h TotalTxMiscCount 4 The MLID increments this counter if a fatal transmit
error occurs and no other appropriate standard
counter exists in the generic portion of the statistics
table. The MLID can also increment a topology-
specific or custom counter for this event.

2Ch TotalRxMiscCount 4 The MLID must increment this counter if a fatal
receive error occurs and no other appropriate
standard counter exists in the generic portion of the
statistics table. The MLID can also increment a
topology-specific or custom counter for this event.

30h RetryTxCount 4 The MLID can use this counter to indicate the number
of times packet transmissions were retried due to
failure.

34h ChecksumErrorCount 4 The MLID can use this counter to indicate the number
of times it receives a packet with corrupt data due to
CRC errors, etc.

38h HardwareRxMismatchCoun
t

4 Some MLIDs increment this counter when they
receive a packet that does not pass length
consistency checks. Currently, only the Ethernet
MLID maintains this counter.

3Ch TotalTxOKByteCountLow 4 This field contains the number of bytes, including low-
level headers that the MLID successfully transmitted.

40h TotalTxOKByteCountHigh 4 This field contains the upper 32-bits of the
TotalTxOkByteCount counter.

Offset Name Size (bytes) Description
338 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
44h TotalRxOKByteCountLow 4 This field contains the number of bytes, including low-
level headers that the MLID successfully received.

48h TotalRxOKByteCountHigh 4 This field contains the upper 32 bits of the
TotalRxOKByteCount counter.

4Ch TotalGroupAddrTxCount 4 This field contains the number of packets the MLID
transmitted with a group destination address.

50h TotalGroupAddrRxCount 4 This field contains the number of packets the MLID
received with a group destination address.

54h AdapterResetCount 4 The MLID increments this counter to reflect the
number of times the LAN adapter was reset because
of internal failure or because of other calls to the
MLID's reset routine.

58h AdapterOprTimeStamp 4 This field contains a time stamp indicating when the
LAN adapter last changed operational state (load,
shutdown, reset, etc.).

5Ch QDepth 4 This field reflects the number of transmit ECBs the
MLID has queued in the LAN adapter.

60h (Topology-specific
Counters)

4 each See the "Topology-specific Counters" section.

?? NumCustomCounters 2 This field contains the number of custom counters
defined by the MLID. For example, an MLID could
create a counter to keep track of the number of fatal
retransmissions. Each custom counter must have an
associated st;ring that can be accessed through the
CustomStrings area (defined in the
CustomCounterStrings field).

?? CustomCounter1 4 These fields contain custom counters that the each
MLID can configure for its specific needs or for the
needs of the LAN adapter.

Offset Name Size (bytes) Description
MLID Data Structures 339

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CounterMask Bit Maps

The CounterMask0 field of the statistics table is a bit mask indicating which
counters in the standard and topology-specific portions of the table are
supported by the MLID. If more than 32 standard and topology-specific
counters exit (as with Token-Ring and FDDI), a second bit mask (
CounterMaskl) is placed after the 32nd counter at offset 88h to indicate the
status of the next set of 32 counters. This continues every 32 counters as more
statistics are added to the table in the future.

The table below indicates whether a counter is optional or mandatory. The
MLID maintains most of the standard counters and optionally supports several
others. If the MLID does not support a counter, the MLID must set the
corresponding bit in the CounterMask0 field 1. A bit value of 0 in the
CounterMask0 field means the corresponding counter is supported.

?? CustomCounterStrings 4 This field contains a pointer to the CustomStrings
area. The first word of the CustomStrings area
contains the size of the area in bytes. Each string in
this area must be null-terminated, and the table of
strings is terminated by two nulls. The string order
must correspond with the custom counters.

CustomStrings label dword

CustomStrSize dw

(CustomStrEnd - CustomStrings)

 db 'Custom String 1', 0

 db 'Custom String 2', 0

 db 'Custom String 3', 0

 .

 .

 .

 db 'Custom String N', 0

 db 0,0

CustomStrEnd db 0 dup (?)

Offset Name Size (bytes) Description
340 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: The bits marked as mandatory in Table 41must be set to zero (0) and
supported by the MLID. Bits 9 and below correspond to the topology-specific
counters defined in section 14.3.4 - Topology-specific Counters.

Figure 20 CounterMask0 Bit Map

Table 41 Supported Counters

Bit Counter Name Support

10 QDepth Mandatory

11 AdapterOprTimeStamp Mandatory

12 AdapterResetCount Mandatory

13 TotalGroupAddrRxCount Mandatory

14 TotalGroupAddrTxCount Mandatory

15 TotalRxOKByteCountHigh Mandatory

16 TotalRxOKByteCountLow Mandatory

17 TotalTxOKByteCountHigh Mandatory

18 TotalTxOKByteCountLow Mandatory

19 HardwareRxMismatchCount Optional

20 ChecksumErrorCount Optional

21 RetryTxCount Optional

22 TotalRxMiscCount Mandatory

23 TotalTxMiscCount Mandatory

24 PacketRxTooSmallCount Optional
MLID Data Structures 341

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Topology-specific Counters

This section defines the topology-specific counters for each topology. The
statistics table must contain the counters for the appropriate topology.

Token-Ring Topology-specific Counters

ACErrorCounter dd 0 ;60h Mandatory
AbortDelimiterCounter dd 0 ;64h Mandatory
BurstErrorCounter dd 0 ;68h Mandatory
FrameCopiedErrorCounter dd 0 ;6Ch Mandatory
FrequencyErrorCounter dd 0 ;70h Mandatory
InternalErrorCounter dd 0 ;74h Mandatory
LastRingStatus dd 0 ;78h Mandatory
LineErrorCounter dd 0 ;7Ch Mandatory
LostFrameCounter dd 0 ;80h Mandatory
TokenErrorCounter dd 0 ;84h Mandatory
CounterMask1 dd 00001111111111111111111111111111b
UpstreamNodeHighDword dd 0 ;8Ch Mandatory
UpstreamNodeLowWord dd 0 ;90h Mandatory
LastRinglD dd 0 ;94h Mandatory
LastBeaconType dd 0 ;98h Mandatory

IMPORTANT: CounterMask1 is included when calculating the
NumGenericCounters field of the statistics table.

25 PacketRxTooBigCount Mandatory

26 PacketRxOverflowCount Optional

27 Reserved1 Reserved

28 PacketTxlDoBigCount Mandatory

29 NoECBAvailableCount Mandatory

30 TotalRxPacketCount Mandatory

31 TotalTxPacketCount Mandatory

Bit Counter Name Support
342 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 42 Token-Ring Topology-specific Counter Descriptions

Offset Name Sizes
(bytes)

Description

60h ACErrorCounter 4 The MLID increments this counter when a station
receives an AMP or SMP frame with A=C=0, and then
receives another SMP frame with A=C=0 without first
receiving an AMP frame.

64h AbortDelimiterCounter 4 The MLID increments this counter when a station
transmits an abort delimiter while transmitting.

68h BurstErrorCounter 4 The MLID increments this counter when a station
detects the absence of transitions for five half-bit times
(burst-five error). Note that only one station detects a
burst-five error, because the first station to detect it
converts it to a burst-four.

6Ch FrameCopiedErrorCounte
r

4 The MLID increments this counter when a station
recognizes a frame addressed to its specific address
and detects that the FS field A bits are set to 1, which
indicates a possible line hit or duplicate address.

70h FrequencyErrorCounter 4 The MLID increments this counter when the frequency
of the incoming signal differs from the expected
frequency by more than that specified in Section 7
(IEEE Std 802.5-1989).

74h InternalErrorCounter 4 The MLID increments this counter when a station
recognizes a recoverable internal error. The MLID can
use this counter to detect a station in marginal
operating condition.
MLID Data Structures 343

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
78h LastRingStatus 4 This value contains the last Ring Status reported by the
adapter. This field has the following bit definitions:

 bit 0-4 reserved

 bit 5 ring recovery

 bit 6 single station

 bit 7 counter overflow

 bit 8 remove received

 bit 9 reserved

 bit 10 auto-removal error 1

 bit 11 lobe wire fault

 bit 12 transmit beacon

 bit 13 soft error

 bit 14 hard error

 bit 15 signal loss

7Ch LineErrorCounter 4 The MLID increments this counter when a station
copies or repeats a frame or token, the E bit is 0 in the
frame or token, and one of the following conditions
exist:

! The frame or token contains a nondata bit (J or K)
between the SD and the ED of the frame or token.

! The frame contains an FCS error.

The first station detecting a line error increments its
appropriate error counter and sets E equal to 1 in the
ED of the frame. This prevents other stations from
logging the error and isolates the source of the
disturbance to proper error domain.

80h LostFrameCounter 4 The MLID increments this counter when a station is
transmitting and its TRR timer expires. This counts how
often frames transmitted by a particular station fail to
return to it (causing the active monitor to issue a new
token).

Offset Name Sizes
(bytes)

Description
344 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ethernet Topology-specific Counters

TxOKSingleCollisionsCount dd 0 ;60h Mandatory
TxOKMultipleCollisionsCount dd 0 ;64h Mandatory
TxOKButDeferred dd 0 ;68h Mandatory
TxAbortLateCollision dd 0 ;6Ch Mandatory
TxAbortExcessCollision dd 0 ;70h Mandatory
TxAbortCarrierSense dd 0 ;74h Mandatory
TxAbortExcessiveDeferral dd 0 ;78h Mandatory
RxAbortFrameAlignment dd 0 ;7Ch Mandatory

Table 43 Ethernet Topology-specific Counter Descriptions

84h TokenErrorCounter 4 The MLID increments this counter when a station acting
as the active monitor recognizes an error condition that
needs a token transmitted. This occurs when the TVX
timer expires.

88h CounterMask1 4 This field is a bit mask indicating the status of the next
set of counters. The most significant bit corresponds to
UpstreamNodeHighDword . If this bit is 0, the MLID
supports this counter.

90h UpstreamNodeHighDwor
d

4 This field contains the high 4 bytes of the 6-byte
Upstream Neighbor Node Address.

90h UpstreamNodeLowWord 4 This field contains the lower 2 bytes of the 6-byte
Upstream Neighbor Node Address.

94h LastRingID 4 This field contains the value of the local ring.

98h LastBeaconType 4 This field contains the value of the last beacon type.

Offset Name Size
(bytes)

Description

60h TxOKSingleCollisionsCount 4 This field contains the number of frames involved in
a single collision that are subsequently transmitted
successfully. The MLID increments this counter
when the result of a transmission is reported as
transmitOK and the attempt value is 2.

Offset Name Sizes
(bytes)

Description
MLID Data Structures 345

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
FDDI Topology-specific Counters

FConfigurationState dd 0 ;60h Mandatory
FUpstreamNodeHighDword dd 0 ;64h Mandatory
FUpstreamNodeLowWord dd 0 ;68h Mandatory
FDownstreamNodeHighDword dd 0 ;6Ch Mandatory
FDownstreamNodeLowWord dd 0 ;70h Mandatory
FFrameErrorCount dd 0 ;74h Mandatory
FFramesLostCount dd 0 ;78h Mandatory
FRingManagementState dd 0 ;7Ch Mandatory

64h TxOKMultipleCollisionsCount 4 This field contains the number of frames involved in
more than one collision that are subsequently
transmitted successfully. The MLID increments this
counter when the result of a transmission is reported
as transmitOK and the attempt value is greater than
2 and less than or equal to the attemptLimit.

68h TxOKButDeferred 4 The MLID increments this counter for frames whose
transmission was delayed on the first attempt
because the medium was busy.

6Ch TxAbortLateCollision 4 This field contains the number of collisions detected
later than 512 bit times into the transmitted packet.
A late collision is counted both as a collision and as
a late collision.

70h TxAbortExcessCollision 4 This field contains the number of frames not
transmitted successfi~lly due to excessive
collisions. The MLID increments this counter when
the attemptValue equals the attemptLimit during a
transmission.

74h TxAbortCarrierSense 4 This field contains the number of times the
carrierSense variable was not asserted or was
deasserted during transmission of a frame without
collision.

78h TxAbortExcessiveDeferral 4 This field contains the number of frames deferred for
an excessive period of time. Increment this counter
only once per LLC transmission.

7Ch RxAbortFrameAlignment 4 This field contains the number of frames that are not
an integral number of octets in length and do not
pass the FCS check.

Offset Name Size
(bytes)

Description
346 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
FLCTFailureCount dd 0 ;80h Mandatory
FLemRejectCount dd 0 ;84h Mandatory
CounterMask1 dd 00111111111111111111111111111111b;**
FLemCount dd 0 ;8Ch Mandatory
LconnectionState dd 0 ;90h Mandatory

IMPORTANT: CounterMask1 is included when calculating the
NumGenericCounters field of the statistics table.

Table 44 FDDI Topology-specific Counter Descriptions

Offset Name Size
(bytes)

Description

60h FConfigurationState 4 (ANSI fddiSMTCF-State) The attachment
configuration for the station or concentrator:

 0 = Isolated 7 = wrap_ab

 1 = local_a 8 = wrap_s

 2 = local_b 9 = c_wrap_a

 3 = local_ab 10 = c_wrap_b

 4 = local_s 11 = c_wrap_s

 5 = wrap_a 12 = thru

 6 = wrap_b

64h FUpstreamNodeHighDword 8 (ANSI fddiMACUpstreamNbr)
FUpstreamNodeLowWord The MAC's upstream
neighbor's long individual MAC address (0 if
unknown).

6Ch FDownstreamNodeHighDwor
d

8 (ANSI fddiMACDownstreamNbr)
FDownstreamNodeLowWord The MAC's downstream
neighbor's long individual MAC address (0 if
unknown).

74h FFrameErrorCount 4 (ANSI fddiMACError-Ct) The number of errored
frames this MAC detected that had not been detected
by another MAC. (The error evidently occurred
between this MAC and the upstream MAC.)

78h FFramesLostCount 4 (ANSI fddiMACLost-Ct) The number of instances that
this MAC detected a format error that caused the
frame to be stripped during frame reception.
MLID Data Structures 347

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
RX-Net Topology-specific Counters

NoResponseToFreeBufferEnquiry dd 0 ;60h Mandatory
NetworkReconfigurationCount dd 0 ;64h Mandatory
InvalidSplitFlaglnPacketFrag dd 0 ;68h Mandatory
OrphanPacketFragmentCount dd 0 ;6Ch Mandatory
ReceivePacketTimeout dd 0 ;70h Mandatory
FreeBufferEnquiryNAKTimeout dd 0 ;74h Mandatory
TotalTxPacketFragmentsOK dd 0 ;78h Mandatory

7Ch FRingManagementState 4 (ANSI fddiMACRMTD-State) Indicates the current
state of the Ring Management state machine.

 0 = Isolated 4 = Non_Op_Dup

 1 = Non_Op 5 = Ring_Op_Dup

 2 = Ring_Op 6 = Directed

 3 = Detect 7 = Trace

80h FLCTFailureCount 4 (ANSI fddiPORTLem-Ct) The count of the
consecutive times the link confidence test (LCT) has
failed during connection management.

84h FLemRejectCount 4 (ANSI fddiPortLem-Reject_Ct) The link error monitor
count of the times that a link was rejected.

88h CounterMask1 4 This field is a bit mask indicating the status of the next
counters. The most significant bit corresponds to
FLemCount. If a bit is 0, the counter is supported.

8Ch FLemCount 4 (ANSI fddiPORTLem-Ct) The aggregate link error
monitor error count (0 only on station power-up).

90h FConnectionState 4 (ANSI fddiPortPCM-State) The state of this port's
PCM state machine.

 0 = Off 5 = Signal

 1 = Break 6 = Join

 2 = Trace 7 = Verify

 3 = Connect 8 = Active

 4 = Next 9 = Maint

Offset Name Size
(bytes)

Description
348 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
TotalRxPacketFragmentsOK dd 0 ;7Ch Mandatory

Table 45 RX-Net Topology-specific Counter Descriptions

PCN2 Topology-specific Counters

TxOKSingleCollisionsCount dd 0 ;60h Mandatory
TxOKMultipleCollisionsCount dd 0 ;64h Mandatory
TxOKButDeferred dd 0 ;68h Mandatory
TxAbortExcessCollision dd 0 ;6Ch Mandatory
TxAbortCarrierSense dd 0 ;70h Mandatory

Offset Name Size
(bytes)

Description

60h NoResponseToFreeBufferEnquir
y

4 The MLID increments this counter each time the
receiving node does not respond to FREE
BUFFER ENQUIRY.

64h NetworkReconfigurationCount 4 The MLID increments this counter each time a
NETWORK_RECONFIGURATION occurs.

68h InvalidSplitFlagInPacketFrag 4 The MLID increments this counter each time the
Split Flag in the packet fragment is not the
expected value. For example, the MLID
increments this counter each time it receives
packet fragments out of order.

6Ch OrphanPacketFragmentCount 4 The MLID increments this count each time it
receives a packet fragment that is not a part of a
previously received packet and, therefore, cannot
be appended to a packet.

70h ReceivePacketTimeout 4 The MLID increments this counter each time a
packet times-out waiting for the rest of the packet
fragments to arrive.

74h FreeBufferEnquiryNAKTimeout 4 The MLID increments this counter each time a
transmit packet times out waiting for an
acknowledgement to a FREE BUFFER ENQUIRY
from the receiving node.

78h TotalTxPacketFragmentsOK 4 This counter contains the number of packet
fragments the MLID sent successfillly.

7Ch TotalRxPacketFragmentsOK 4 The counter contains the number of packet
fragments the MLID received successfillly.
MLID Data Structures 349

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
RxAbortFrameAlignment dd 0 ;74h Mandatory

Table 46 PCN2 Topology-specific Counter Descriptions

Event Control Blocks

NetWare shells and operating systems use structures called Event Control
Blocks (ECBs) to receive, send, and manage packets. In the NetWare 3 and
later operating systems, MLIDs, the LSL, and protocol stacks all use ECBs.

Offset Name Size
(bytes)

Description

60h TxOKSingleCollisionsCount 4 This field contains the number of frames that were
involved in a single collision and then were
subsequently transmitted successfully. The MLID
increments this counter when the result of a
transmission is reported as transmitOK and the
attempt value is 2.

64h TxOKMultipleCollisionsCount 4 This field contains the number of frames that were
involved in more than one collision and then were
subsequently transmitted successfully. The MLID
increments this counter when the result of a
transmission is reported as transmitOK and the
attempt value is greater than 2 and less than or equal
to the attemptLimit.

68h TxOKButDeferred 4 The MLID increments this counter for frames whose
transmission was delayed on the first attempt
because the medium was busy.

6Ch TxAbortExcessCollision 4 This field contains the number of frames that were not
transmitted successfully due to excessive collisions.
The MLID increments this counter when the attempts
value equals the attemptLimit during a transmission.

70h TxAbortCarrierSense 4 This field contains the number of times the
carrierSense variable was not asserted, or was de-
asserted, during transmission of a frame without
collision.

74h RxBadFrameAlignment 4 This field contains the number of frames that are not
an integral number of octets in length and do not pass
the FCS check.
350 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: Because MLIDs and protocol stacks both use ECBs, this section is
duplicated in Chapter 4, "Protocol Stack Data Structures".

When receiving a packet, the MLID obtains an ECB, fills it out, and copies the
packet into a buffer that is immediately below the ECB. (Remember that the
buffers associated with receive ECBs are contiguous; they have no
fragments.) After copying the packet from the LAN adapter, the MLID passes
the ECB to the LSL. The LSL then examines the ECB and hands it to the
correct protocol stack.

When sending a packet, a protocol stack puts a list of fragment pointers (that
describe-the packet) in the ECB and passes the ECB to the LSL. The LSL
refers to the ECB to determine the destination MLID and then passes the ECB
to that MLID. The MLID collects all packet fragments and sends the packet.

Receive Event Control Block

Sample 14-1 shows the sample source code of a receive ECB structure. The
asterisks indicate the fields that the MLID must fill in before passing the ECB
to the LSL. Figure 14-4 shows a graphic representation of a receive ECB.

Sample 14-1: Receive Event Control Block Sample Source Code

 Link dd 0
 *BLink dd 0
 Status dw 0
 ESRAddress dd 0
 LogicalID dw 0
 * ProtocolID db 6 dup (?)
 * BoardNumber dd 0
 * ImmediateAddress db 6 dup (?)
 * DriverWorkspace dd 0
 ProtocolWorkspace db 8 dup (?)
 * PacketLength dd 0
 FragmentCount dd 1
 * FragmentOffset dd 0
 * FragmentSize dd 0
 * ;PacketEnvelope db 0 dup (?) ; variable length field
 ; that contains media
 ; headers
 * Data ; variable length field
 ; that contains protocol
 ; headers and packet
 ; information
 PacketEnvelope equ byte ; ptrFragmentSize+ 4 *
 * The MLID must fill in these fields before passing the ECB to the LSL.
MLID Data Structures 351

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 21 Graphic Representation of the Receive Event Control Block

Transmit Event Control Block

Sample 14-2 shows the sample source code of a transmit ECB structure. The
asterisks indicate the fields that must be filled in by higher layers of the
operating system before the ECB is passed to the MLID. Figure 19 provides a
graphic representation of the transmit ECB. A description of each ECB field
is shown in Table 47.

Sample 14-2 Transmit Event Control Blink Block Sample Source
Code

 Link dd 0
 BLink dd 0
 Status dw 0
 * ESRAddress dd 0
 * LogicalID dw 0
 * ProtocolID db 6 dup (?)
352 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 * BoardNumber dd 0
 * ImmediateAddress db 6 dup (?)
 DriverWorkspace dd 0
 ProtocolWorkspace db 6 dup (?)
 ProtocolWorkspaceRest db 6 dup (?)
 * PacketLength dd 0
 * FragmentCount dd 0 : at least 1
 * FragmentOffset dd 0 : repeated FragmentCount times
 * FragmentSize dd 0
 * The stack must fill in these fields before passing the ECB to the MLID.

Figure 22 Graphic Representation of the Transmit Event Control Block

Event Control Block Field Descriptions

Table 47 describes the fields used in the Event Control Block.
MLID Data Structures 353

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 47 Event Control Block Field Descriptions

Offset Name Size(bytes) Descriptions

00h Link 4 Forward link to another ECB. The LSL uses this field to queue
ECBs. Protocol stacks and MLIDs can also use this field when
they possess the ECB.

04h BLink 4 This field is typically used as a back link for managing a list of
ECBs. The current owner of the ECB uses this field. When an
ECB is returned from an MLID containing a received packet,
this field contains the received packet error status. See the
"Setting the ECB BLink Field" section in Chapter 6, "Protocol
Stack Packet Reception".

08h Status 2 MLIDs must not use or modify this field. The LSL uses this field
to indicate the current state of the ECB (for example, the ECB
is currently unused, or queued for sending, etc.)

0Ah ESRAddress 4 When an ECB originates from the LSL, the LSL sets this field,
and MLIDs and protocol stacks must not use it. When a transmit
ECB originates from the protocol stack, the protocol stack sets
this field to point to a routine to be called when the transmission
is complete and the ECB is available again.

0Eh LogicalID 2 MLIDs use this field, but must not change it. When a protocol
stack registers with the LSL, the LSL assigns the stack a logical
number (0 through 15). This field contains the logical number.
If the packet is a priority send, this field contains a value
between 0FFF7h (lowest priority) and 0FFF0h (highest priority).
If the packet is a raw send, this field contains a 0FFFFh. If the
packet is a priority raw send, this field contains a value between
0FFFFh (lowest priority) and 0FFF8h (highest priority). On
normal sends, the protocol stack places its own logical number
in this field. On receives, the LSL places the target stack's
logical number in this field.

10h ProtocolID 6 This field contains the Protocol ID (PID) value on both sends
and receives. This value is stored in high-low order. For a full
explanation of how to fill out this field, refer to ODI Supplement:
Frame Types and Protocol IDs.
354 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
16h BoardNumber 4 When an MLID registers with the LSL for a particular LAN
adapter, the LSL assigns that logical board a number. (Logical
board 0 is used internally in the operating system.)
Consequently, MLIDs are assigned logical board numbers 1
through 255). On sends, protocol stacks fill in this field to
indicate the target logical board. On receives, the MLID fills in
this field to indicate which logical board received the packet.

1Ah ImmediateAddres
s

6 On receives, the immediate address represents either 1) the
packet's source node address or 2) the routing LAN adapter's
node address if the packet was routed from another network.
During a receive, the MLID fills in this field. This value is stored
in high-low order. On RX-Net, or whenever the node address is
less than six bytes, put the node address in the least significant
byte and pad the remaining bytes with 0. On sends, the
immediate address represents either the destination node
address or the destination router address; the protocol stack fills
in this field. Addresses passed to the upper layers are in either
canonical or noncanonical format, depending upon whether the
MLID bit-swaps MSB format addresses. The protocol stack fills
in this field on sends. All addresses passed down to the MLID
are in canonical format if the MLID is configured to be in LSB.

In general, protocol stacks do not need to be aware of this field's
format. Protocol stacks can just copy the contents of the receive
ECBs ImmediateAddress field into the transmit ECBs
ImmediateAddress field before sending the packet. Protocol
stacks may get the immediate address from somewhere else,
but it must still be copied into the transmit ECBs
ImmediateAddress field.

Offset Name Size(bytes) Descriptions
MLID Data Structures 355

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
20h DriverWorkSpace 4 An MLID can use this field for any purpose. However, be aware
that the LSL uses the bytes at offsets 22h and 23h as temporary
storage during the receive prescan stack filtering. Before
passing a completed receive ECB to the LSL, the MLID will fill
in the byte at offset 20h with the destination address type of the
received packet:

! 00h = Direct

! 01h = Multicast

! 03h = Broadcast

! 04h = Remote Unicast

! 08h = Remote Multicast

! 10h = No Source Route

! 20h = Error Packet

! 80h = Direct Unicast

Set the second byte of the field (offset 21h) to indicate whether
the MAC header contains one or two 802.2 control bytes:

! 0 = All frame types other than 802.2

! 1 = 802.2 header has only Ctrl0 byte (Type I)

! 2 = 802.2 header has Ctrl0 and Ctrl1 (Type II)

For an explanation of 802.2 Type I and Type II, refer to ODI
Supplement: Frame Types and Protocol Ids.

The 16-bit word at offsets 2 and 3 of DriverWorkSpace must be
filled in with the size of the received frame minus the MAC
header.

24h ProtocolWorkspac
e

8 Reserved for the protocol's workspace. The MLID must not
modify this field.

2Ch PacketLength 4 This field contains the total length of the packet in bytes. This is
the length of the data portion of the packet (not including media
headers or SAP headers contained in the PacketEnvelope
portion).

On receives, the value in this field is also the value in the
FragmentSize field; the MLID fills in this field. On sends, the
protocol stack fills in this field.

Offset Name Size(bytes) Descriptions
356 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
30h FragmentCount 4 This field indicates the total number of packet fragment
descriptors that follow. Each descriptor consists of a pointer to
a fragment buffer and the size of that buffer.

On receives, this value is always 1 or greater.

On sends, the fragment count can be 0.

Note: The ECB and all fragments must be guaranteed
convertible to a valid physical address if the MLID uses
GetServerPhysicalOffset. If the MLID is a type 4 NLM, it should
not allow the OSData segment to contain the buffers.

34h FragmentOffset 4 On receives, a buffer immediately follows the ECB in memory.
The MLID copies the received packet into this buffer. After the
MLID copies the packet into this buffer, it must set the
FragmentOffset to point around any media headers to the data
portion of the packet. The MLID must also set the
FragmentLength field to the total length of the data portion of
the packet.

On sends, the FragmentOffset field points to the first fragment
buffer containing packet data. The FragmentSize field specifies
the length of that buffer. Additional fragment descriptors can
immediately follow the ECB in memory.

The MLID collects the data from these fragment buffers to form
the packet for transmission (see Sample 14-2).

38h FragmentSize 4 This field indicates the length in bytes of the first packet
fragment. On receives, the value in this field is the same as the
value in the PacketLength field. On sends, this value can be 0.
On receives only, the memory immediately following the ECB
also contains the following two fields:

3Ch MediaHeader varies The media header of a packet is placed in this field. This field
varies in length and appears only in receive ECBs. This field is
not used or present if the LAN topology splits the data of a
packet and transmits it in more than one frame (for example,
RX-Net)..

??h Data varies The data portion of the packet that immediately follows the
MediaHeader. On sends only, the memory immediately
following the ECB also contains the following two fields.

3Ch FragmentOffset2 4 This field contains additional fragment descriptors when the
FragmentCount is greater than 1.

Offset Name Size(bytes) Descriptions
MLID Data Structures 357

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Driver Firmware

MLIDs might need to download firmware to intelligent adapters. Because
most intelligent adapters employ an on board microprocessor such as an
80186, the firmware code must be separately written, assembled, and linked
to generate a binary file. This section describes how that firmware binary file
can be attached to the MLID at link time and then transferred to the adapter
during initialization.

To attach a firmware binary file to the MLID, the linker definition file (see
Appendix B, "Assembling and Linking NLMs") must include the custom
keyword followed by the name of the binary file. When the MLID is linked,
the file is attached to the end of the code and becomes part of the NLM.

 During the initialization process, the MLID allocates a buffer and copies the
contents of the attached file to that buffer. The MLID can then download the
contents of the firmware buffer to the adapter.

Reading Driver Firmware: Example Code

 mov EAX, dword ptr [ESP + CustomDataSize]
 ;get size of firmware
 push MemoryRTag ;push tag
 push EAX ;push size
 push AllocSemiPermMemory ;allocate memory to
 lea ESP, [ESP + 4 * 2] ;clean up stack
 or EAX, EAX ;did we get it?
 jz ErrorGettingExtraMemory ;error exit if not
 mov FirmWareBuffer@, EAX ESI, EAX ;save firmware buffer
 mov mov EAX, [ESP + LoadableModuleFileHandle]
 ;file handle firmware
 mov EBX, [ESP +] ;read routine address
 mov EDX, [ESP + CustomDataOffset] ;start address in file
 mov ECX, [ESP + CustomDataSize] ;get size of firmware
 push ECX ;amount to read
 push ESI ;where to read to
 push EDX ;offset in file
 push EAX ;file handle
 call EBX ;call read routine

40h FragmentLength2 4 This field contains additional fragment descriptors when the
FragmentCount is greater than 1.

Offset Name Size(bytes) Descriptions
358 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 cli ;stop interrupts
 add ESP,4*4 ;adjust the stack
 or EAX, EAX ;check for read
 jnz ReadError ;errors

CustomDataSize, LoadableModuleFileHandle, ReadRoutine,
CustomDataOffset, and CustomDataSize are parameters that the operating
system passes on the stack to the MLID initialization routine. For a description
of these parameters, see Chapter 15, "The MLID Initialization Routine".
MLID Data Structures 359

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
360 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
15 The MLID Initialization Routine

Chapter Overview

This chapter covers the issues involved in initializing and registering the
MLID. This chapter discusses determining hardware options, parsing the
command line, allocating the frame and data adapter space, and setting up the
board service routine.

The MLID Initialization Routine

When the NetWare operating system receives the command to load the driver,
it calls the MLID's initialization routine. This initialization routine must
accomplish the following:

! Allocate the frame and adapter data spaces

! Process the custom command line keywords and custom firmware

! Parse the standard LOAD command line options

! Register hardware options

! Initialize the adapter hardware

! Register the MLID with the Link Support Layer

! Load the firmware

! Allocate resource tags

! Set the hardware interrupts

! Start the callback routines

If the MLID is unsuccessful in these initialization tasks, it should return with
EAX equal to a nonzero value.
The MLID Initialization Routine 361

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
If the MLID is successful, it returns with EAX set to 0.

Loading the MLID

After you have written, compiled, and linked the MLID, you can load it into
the server's memory by entering the following command on the NetWare 3
and later server console:

load mydriver

The first time this command is issued, the NetWare loader loads the MLID
into memory and calls the MLID's initialization procedure. When you used the
NLM linker to create your NLM, you specified the name of the MLID's
initialization procedure using the "start" keyword in the .DEF file. (For a
description of definition files and keywords see Appendix B, "Assembling
and Linking NLMs".) For example, if you had named the initialization
procedure for an NE2000 MLID DriverInitialize, you would have included the
following line in the NE2000.DEF file:

 start DriverInitialize

Then, when the command load ne2000 is issued, the operating system calls
your driver initialization procedure.

Requirements of the Calling Routine

The operating system routine that calls your initialization procedure is written
in C, and the C programming language expects your initialization procedure
to preserve the following registers: EBP, EBX, ESI, and EDI. The MLID's
remove procedure must also save and restore these registers.

Initialization Parameters Passed on the Stack

When the operating system calls the MLID's initialization procedure, it passes
nine parameters on the stack. These nine parameters are described below and
are available for the MLID's use during initialization. Be aware, however, that
after returning from the initialization routine, the file and screen handles are
no longer valid.

Syntax of the MLID Initialization Routine

The operating system calls the MLID initialization routine as follows:

Long Driverlnititialize(
362 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 Long LoadableModuleHandle,
 Long ScreenHandle,
 BYTE *CommandLine,
 Reserved (4 bytes),
 Reserved (4 bytes),
 Long CustomeDataFileHandle,
 Long ReadRoutine,
 Long *CustomDataOffset,
 Long CustomDataSize);

The following list defines the parameters in the initialization routine:

LoadableModuleHandle

This handle identifies your NetWare Loadable Module (NLM). Your
initialization routine must provide this handle when calling many of the
operating system support routines for MLlDs.

ScreenHandle

Your initialization routine must use this handle during the OutputToScreen
function to perform any screen 1/0. This handle is not valid after initialization.

CommandLine

This is a 4-byte pointer to the command line that was used to load the driver.
This parameter is passed to ParseDriverParameters to get the hardware
configuration information from the command line.

CustomDataFileHandle

The custom data file is appended to the end of your NLM by the NLM linker.
Because the NLM was opened during loading, this handle points to a structure
that the operating system uses to read the custom data file. This value is
provided as a parameter to ReadRoutine.

ReadRoutine

This is a pointer to an operating system routine that reads the custom data file.
(A description of ReadRoutine is found in Appendix A, "Operating System
Support Routines".)
The MLID Initialization Routine 363

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
*CustomDataOffset

This is the starting offset of the custom data inside the .NLM (or .LAN) file.
This value is provided as a parameter to ReadRoutine.

CustomDataSize

This contains the length of the custom data file. This value is provided as a
parameter to ReadRoutine.

Return Values

Zero Successful

Nonzero Unsuccessful: The MLID is unable to initialize.

Adapter Data Space and Frame Data Space

Each time the operating system calls the initialization procedure, the MLID
creates a logical board. The initialization procedure needs to allocate the frame
data space for that logical board's use. The MLID must also create a copy of
the configuration table in this space. In addition, if the MLID is being loaded
for the first time, the initialization routine must allocate the adapter data space.

If the network supervisor loads a second board of the same type into the server
operating system, the NetWare loader will again call the MLID's initialization
procedure. If the supervisor indicates that the server should support another
LAN adapter, the initialization routine must not only allocate frame data space
for the new logical board, but must also allocate memory for another adapter
data space.

If the supervisor indicates that the server should support another frame format,
the initialization procedure simply needs to allocate the frame data space for
the new logical board. This logical board will use the previously created
adapter data space to communicate with the LAN adapter.

Resource Tags

Before the MLID allocates any memory, or before it makes an operating
system call that allocates memory, it must first obtain a resource tag by calling
AllocateResourceTag. This routine passes the operating system three values:

! The MLID's NLM handle

! A description string of the MLID and the resource
364 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! A value that identifies the type of resource tag needed

For example, the MLID might pass to the operating system a pointer to the
null-terminated string "NE2000 Event Control Blocks" along with the value
"SBCE". The operating system would return a resource tag that would allow
the MLID to allocate Event Control Blocks (ECBs). With the returned
resource tag, the MLID could then call LSLGetSizedRcvECBRTag. If, for
some reason, the MLID cannot obtain all the resource tags it needs, it should
abort the initialization procedure, return any allocated resources and not load
at all.

Resource tags were implemented in NetWare 3.1 in order to allow the system
supervisor to monitor the resources the NLMs are using. For example, if
inordinate amounts of server memory are being used up, the network
supervisor can see the description string of which NLM is taking the memory.

Table 48 shows some of the common operating system routines that require
resource tags. For a complete description of the AllocateResourceTag routine,
see Appendix A, "Operating System Support Routines".

NOTE: The fact that a resource tag has been allocated does not mean that the
resource itself has been allocated. The resource tag is merely an identification
number the MLID includes as a parameter when it calls for system resources.

Table 48 Routines that Require Resource Tags

Activity Resource Signature
Value

Operating System Routine

Obtaining an ECB SBCE LSLGetSizedRcvECBRTag

Registering for event notification TNVE RegisterForEventNotification

Allocating an interrupt and specifying an ISR
entry point

PTNI SetHardwareInterrupt

Reserving hardware options for the LAN adapter SROI RegisterHardwareOptions

Registering the MLID with the LSL DILM LSLRegisterMLIDRTag

Adding a polling procedure RPLP AddPollingProcedureRTag

Allocating memory TRLA Alloc

Scheduling an event on the timer interrupt RMIT ScheduleInterrupmmeCallBa
ck
The MLID Initialization Routine 365

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Determining Hardware Options

After the operating system has allocated the resource tags, the MLID must
determine the hardware configuration of the LAN adapter. This includes
parameters such as the Hardware Instance Number (HIN) for Micro Channel,
EISA, PCI, PnP ISA, and PC Card adapters, the base port for programmed I/
O adapters, memory decode addresses for shared RAM adapters, interrupt
numbers, and DMA channels. In Micro Channel, EISA, PCI, PnP ISA, and PC
Card machines, the MLID can get this information directly from the system
once the slot number has been identified.

The MLID's initialization routine should perform each of the following steps
if appropriate for the hardware.

1. If the MLID supports multiple buses, it should use SearchAdapter or
ScanBusInfo to determine the bus type (see also The NetWare Bus
Interface (NBI) Specification).

2. If the MLID supports a Plug and Play bus, it should scan all slots using
SearchAdapter or GetInstanceNumber to search for the adapter's ID. Any
hardware instances that are found should be recorded in the IOSlot option
list of the AdapterOptionDefinitionStructure. This structure is described
in Appendix A, "Operating System Support Routines" under the
ParseDriverParameters routine. (See also The NetWare Bus Interface
(NBI) Specification.)

NOTE: Step 2 must be performed every time DriverInit is called, because hot plug
cards can change the system hardware configuration between calls to DriverInit.

3. The MLID next calls ParseDriverParameters to determine the hardware
configuration options (or Hardware Instance Number (HIN)) specified on
the load command line and to query the operator for any required
parameters which were not specified.

The ParseDriverParameters procedure requires an
AdapterOptionDefinitionStructure containing the valid options for the
hardware configuration. A NeedsBitMap is also required to indicate which
specific hardware options must be obtained from either the command line or
the console operator. (For a description of ParseDriverParameters see
Appendix A, "Operating System Support Routines".)

Parsing the Command Line

Once the operating system has determined the hardware options, the MLID
calls ParseDriverParameters to determine what options were specified with
366 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
the load command. ParseDriverParameters fills in the I/O portion of the
logical board's configuration table (contained in the frame data space).

The following table illustrates the correspondence between the load options
and the configuration table fields. The standard load options are described in
the Appendix D, "Server Command Line Parameters and Keywords". An
example load command is shown here:

load frame=ethernet_802.2, port=300, int=3

Table 49 Correspondence Between Load Options and Configuration Table Fields

After returning from ParseDriverParameters, the I/O portion of the logical
board's configuration table in the frame data space has been filled in with the
parsed values.

Configuration Table Fields Command Line

MLIDSlot load <driver> SLOT=4

MLIDPort0 load <driver> PORT=300

MLIDIORange0 load <driver> PORT=300:A

MLIDIOPort1 load <driver>PORT1=700

MLIDIORange1 load <driver> PORT=700:14

MLIDMemoryDecode0 load <driver> MEM=C0000

MLIDMemoryLength0 load <driver> MEM=C0000:1000

MLIDMemoryDecode1 load <driver> MEM1=CC000

MLIDMemoryLength1 load <driver> MEMl=CC000:2000

MLIDInterrupt0 load <driver> INT=3

MLIDInterrupt1 load <driver> INTl=5

MLIDDMAUsage0 load <driver> DMA=0

MLIDDMAUsage1 load <driver> DMAl=3

MLIDChannelNumber load <driver> CHANNEL=2 (NetWare 4 only)
The MLID Initialization Routine 367

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
For Plug and Play buses (Micro Channel, EISA, PCI, PnP ISA, and PC Card),
the configuration table now contains the selected Hardware Instance Number
(HIN). The MLID should use GetCardConfigInfo to determine the
configuration and fill in the Configuration Table (see the NetWare Bus
Interface (NBI) Specification).

When the MLID has obtained all the information needed for the configuration
table, the MLID's initialization routine calls RegisterHardwareOptions.

NOTE: In NetWare 4, if the driver must access shared memory before registering
the hardware options, it must use ReadPhysicalMemory and
WritePhysicalMemory.

Registering Hardware Options

After calling ParseDriverParameters, the MLID's initialization routine calls
RegisterHardwareOptions, which tells the MLID whether the board being
loaded is a new LAN adapter or will drive a new logical board (frame format)
for an existing LAN adapter. If a new adapter is being registered, the MLID
allocates the adapter data space and copies the AdapterDataSpaceTemplate to
that area. This routine also notifies the MLID of any conflicts with existing
hardware in the system.

The MLID must be able to handle four possible conditions on return from
RegisterHardwareOptions:

! If EAX = O, a new LAN adapter was successfully registered and the
MLID must proceed with the hardware initialization. (The adapter data
space must be allocated.)

! If EAX = 1, a new frame type for an existing adapter was successfully
registered. For NetWare 3, anything greater than 1 is an error.

! If EAX = 2, a new channel for an existing multichannel adapter was
successfully registered. The MLID typically treats the registering of a
new channel as a new adapter (NetWare 4 only).

! If EAX > 2, the MLID was unable to register the hardware options.

Setting Up A Board Service Routine

You can implement the MLID's board service routine either as a polling
procedure or as an Interrupt Service Routine (ISR). If you choose to
implement a polling procedure to service your LAN adapters, we strongly
recommend that you provide interrupt backup.
368 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Using Polled Boards

By polling the LAN adapter, you can eliminate much of the overhead
(interrupt latency) of using the operating system's interrupt handler. However,
as a general rule, you should consider the following points before deciding to
poll your LAN adapters:

! Does your LAN adapter have a DMA bus-mastering chip to move the
packets off the board while the MLID is dormant or is performing other
work?

! Does your LAN adapter have enough intelligence to detect if it is getting
starved for CPU time, and if so, can it enable interrupt back up?

! Can your MLID process the "no operation" condition (in other words,
nothing has happened on the board) in 10 to 20 instructions per board?

If you decide the MLID should poll the LAN adapters, the initialization
procedure should call AddPollingProcedureRTag to initiate a polling
procedure. You might want to have the MLID put a pointer to the adapter data
space on a linked list after the LAN adapter is initialized and is ready to be
polled. The front end for the board service routine can then use this list to
quickly check all the LAN adapters for pending events.

NOTE: If the MLID is SMP aware, you should use LSLAddPollingProcedure.

In addition, you might want the MLID to call SetHardwareInterrupt to hook
an interrupt for interrupt backup.

Using Interrupts

If you want the MLID to service the LAN adapters using interrupts, the
initialization procedure needs to reserve an interrupt using the
SetHardwareInterrupt system call. Using this call, the MLID can specify the
address of an Interrupt Service Routine (ISR) entry point. Even though a
single ISR procedure services all the LAN adapters of the same type in the
system, you might want to specify alternate entry points into the ISR so that
the logical board can get a pointer to the correct adapter data space.

NOTE: If the MLID is SMP aware, you should use SetSymmetricInterrupt. In
NetWare 5 environments, the MLID should use BusInteruptSetup.

Initializing the LAN Adapter

At this point, the MLID initializes the adapter hardware. This consists of all
setup appropriate for the hardware and might also include RAM and other
The MLID Initialization Routine 369

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
hardware tests. The MLID's reset routine should be called to handle all parts
of the hardware initialization procedure.

NOTE: The MLID's initialization routine must set up the correct number of transmit
buffers (the maximum number of simultaneous sends allowed by the hardware).

If an error occurs during the hardware initialization, the MLID's initialization
routine should print an appropriate error message, return its resources, and
return to the operating system with EAX set to a nonzero value. If the
hardware initializes successfully, the MLID then registers with the LSL.

Registering with the LSL

Under the ODI specification, the MLID has two essential functions: 1) to take
packets off the LAN adapter and pass them to the Link Support Layer (LSL),
and 2) to take packets from the LSL and place them on the board.
Consequently, each time the MLID creates a logical board, it needs to call
LSLRegisterMLIDRTag. When calling this command the MLID passes the
LSL the address of its send procedure, the address of its control procedure
handler (see Chapter 20, "MLID Control Procedures"), and a pointer to the
logical board's configuration table (contained in the frame data space). The
LSL returns a logical board number for the board that is registering. If an error
occurs, LSLRegisterMLIDRTag returns a nonzero value in EAX.

If the MLID successfully registers, it must fill in the configuration table with
the returned board number. MLIDs for intelligent bus master adapters can now
pass the board number and frame ID information to the adapter, if necessary.

If the MLID is SMP aware it should call LSLAssignMutexToInstance to assign
a Mutex lock to the logical board.

NOTE: Even though the MLID can request services from the operating system, it
passes packets to the Link Support Layer.

Scheduling a Hardware Time Out Check

If the MLID is running an interrupt-driven LAN adapter, it could schedule a
timer event that checks to see if the LAN adapter was unable to complete a
send. To establish this timer event, the MLID can use the operating system
routine ScheduleInterrupTimeCallBack, or LSLAddTimerProcedure for SMP
aware MLIDs.

If the LAN adapter is not interrupt-driven, the polling procedure can check to
see if a board failed to complete a send.
370 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Error Handling

At any step in the initialization process, the MLID might encounter an error.
If this occurs, the MLID must backtrack through all previous steps and return
any system resources that were allocated. The DriverInitialize pseudocode
contains an example of how to implement this kind of error checking.

Pseudocode for DriverInitialize

/* This pseudocode is intended to illustrate a flow of events and does not
 necessarily describe optimized code. */

save the base and index registers (EBP, EBX, ESI, EDI)

IF first initialization of driver

 call AllocateResourceTag for Semi-Permanent Memory

 IF error allocating resource tag
 push pointer to error message
 jump to PrintMessage
 ENDIF

 call AllocateResourceTag for 10 Configuration for logical boards

 IF error allocating resource tag
 push pointer to error message
 jump to PrintMessage
 ENDIF

 /*Even polled drivers should get a hardware interrupt resource tag to
 provide interrupt backup */

 call AllocateResourceTag for Hardware Interrupt
 (unless your card is physically unable to support interrupts)

 IF error allocating resource tag
 push pointer to error message
 jump to PrintMessage
 ENDIF

 call AllocateResourceTag for MLID

 IF error allocating resource tag
 push pointer to error message
 jump to PrintMessage
The MLID Initialization Routine 371

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 ENDIF

 call AllocateResourceTag for Timer Signature

 IF error allocating resource tag
 push pointer to error message
 jump to PrintMessage
 ENDIF

 call AllocateResourceTag for Receive ECBs

 IF error allocating resource tag
 push pointer to error message
 jump to PrintMessage
 ENDIF

 call RegisterForEventNotification for EventDownServer

 IF error obtaining EvenUD (EventlD= 0)
 push pointer to error message
 jump to PrintMessage
 ENDIF

 /* You do not need to allocate a resource tag for a polling procedure
 (nor do the error checking) if you are not going to poll your board */

 call AllocateResourceTag for polling procedure

 IF error allocating resource tag
 call UnRegisterEventNotification
 push pointer to error message
 jump to PrintMessage
 ENDIF

 /* We strongly recommend that you have only one polling procedure polling
 all the boards of the same type in the server*/

 /* You do not need to call AddPollingProcedureRTag (nor error check)
 if you are not polling your board */

 call AddPollingProcedureRTag or LSLAddPollingProcedure for SMP aware
 MLIDs

 IF unable to establish polling procedure
 call UnRegisterEventNotification
 push pointer to error message
 jump to PrintMessage
 ENDIF
372 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ENDIF

call AllocSemiPermMemory to get memory to hold frame data space information

IF error allocating memory
 push pointer to error message
 jump to CancelPollingandEvents
ENDIF

fill in frame data space information from a template in the Data Segment
(OSDATA) save a pointer to the frame data space memory (in a register or
in OSDATA) copy resource tag for 10 Configuration into the configuration
table (contained in the Frame Data Space)

/* If you are supporting a Micro Channel, EISA, PCI, PnPISA, or PCCARD
boards, you should scan all the slots on the bus for your board by calling
SearchAdapter and GetInstanceNumber. You can then provide this information
to ParseDriverParameters. */

ParseDriverParameters /*fills in parts of the configuration table */ call
ParseDriverParameters to get command line options

IF error parsing parameters
 push pointer to error message
 jump to ReturnFrameMemory
ENDIF

IF Micro Channel, EISA, PCI, PnPISA, or PCCARD, use
GetInstanceNumberMapping and GetCardConfigInfo to retrieve the remaining
hardware resource value (1/0, Int, etc.) and save it into the configuration
table.

ENDIF

call RegisterHardwareOptions to see if there are any conflicts with active
hardware

IF error registering hardware
 push pointer to error message
 jump to ReturnFrameMemory
ENDIF

IF first time loading physical card (or new channel, if channels are
supported)
 call AllocSemiPermMemory to allocate memory to hold adapter data space
 information

 IF error allocating memory
The MLID Initialization Routine 373

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 push pointer to error message
 jump to ReturnHardwareOptions
 ENDIF

 save a pointer to adapter data space memory (somewhere in OSDATA)
 fill in adapter data space information from a template in Data
 Segment (OSDATA) copy the pointer to the frame data space into the
 adapter data space

 /* even polled drivers should provide interrupt backup, unless your
 board is physically unable to support interrupts */

 call SetHardwareInterrupt, or SetSymmetricInterrup if SMP aware, to
 establish the board's hardware interrupt

 IF error setting hardware interrupt
 push pointer to error message
 jump to ReturnPDriverSpace
 ENDIF

 call a routine to initialize driver's hardware

 IF error initializing hardware
 push pointer to error message
 jump to ReturnInterrupts
 ENDIF

 save node address in adapter data space unless ParseDriverParameters
 filled it in

 /* The next two steps schedule a "dead man timer" to see if your card
 failed to complete a send. Not every card must schedule this
 timeout check */

 fill out the Interrupt time callback structure
 call SchedulelnterruptTimeCallBackc
 or
 call LSLAddtimerProcedure if SMP aware (to call Timeout routine at a
 specified interval)
 initialize send queue for this adapter data space

ELSE
 /* Loading a frame data space for an existing LAN adapter*/

 get interrupt number from configuration table in frame data space
 (filled in by ParseDriverParameters)

 LOOP until all available adapter data spaces have been checked:
374 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 check if interrupt number matches interrupt number in any adapter
 data spaces
 ENDLOOP

 IF error matching interrupt number with an adapter data space
 push error message
 jump to ReturnHardwareOptions
 ENDIF

 copy a pointer to the frame data space into the adapter data space
 move node address from adapter data space into frame data space

ENDIF

call LSLRegisterMLlDRTag (this call returns a board number and maximum
packet size)

IF error registering MLID with the LSL

 push pointer to error message

 IF first time loading LAN adapter
 jump to TurnOffCard
 ELSE
 jump to ReturnHardwareOptions
 ENDIF
ENDIF

IF the MLID is SMP aware
 call LSLAssignMutexToInstance
 save the board number into the configuration table of the frame data
 space

IF the operating system's maximum receive size is smaller than the frame
data space's maximum receive size

 reduce board's maximum receive size to match operating systems

ENDIF

/* calling LSLAddProtocollD binds the Protocol ID with a protocol stack */

call LSLAddProtocollD to register the Protocol ID for this logical board
with the IPX protocol stack

restore the base and index registers (EBP, EBX, ESI, EDI)
set eax = 0
ret /*Error Handling*/
The MLID Initialization Routine 375

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00

TumOffCard:
 turn off board

ReturnInterrupts:
 clear hardware interrupt contained in current adapter data space

ReturnPDriverSpace:
 return adapter data space memory

ReturnHardwareOptions:
 return hardware options contained in current frame data space

ReturnFrameMemory:
 return frame data space memory

CancelPollingandEvents:
 /* You do not need to perform the following check if you have not
 registered for event notification and are not using a polling
 procedure to service your boards */

 IF this is the only logical board
 call UnRegisterEventNotification
 call RemovePollingProcedure, or LSLRemovePollingProcedure if SMP
 aware
 ENDIF
 PrintMessage:
 pop pointer to error message
 print error message

 set EAX = -1 /* error condition */
 restore the base and index registers (EBP, EBX, ESI, EDI)
 ret
376 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
16 The MLID Packet Reception Routine

Chapter Overview

This section provides a brief overview of the commonly used reception
methods available to the developer. This chapter discusses the board service
routine, broadcasts and multicasts, as well as transmit complete and transmit
error.

When the LAN adapter receives a packet, the MLID obtains an ECB which
contains pointers to the necessary receive buffer(s) from the LSL, copies the
packet into a receive buffer, and processes the ECB. The MLID then transfers
the ECB to the LSL. The LSL then directs the ECB to the proper protocol
stack.

The Packet Reception Routine

Your board service routine generally needs to detect and handle the following
events on your adapter:

! Packet reception

! Packet reception error

! Transmission complete

! Packet transmission error

The MLID can be notified of these events by using either an Interrupt Service
Routine (ISR), a polling procedure, or a polling procedure with interrupt
backup. If you decide to implement a polling procedure for your board service
routine, we strongly recommend that you provide interrupt backup.
The MLID Packet Reception Routine 377

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Reception Methods

The receive portion of the board service routine checks for receive errors and
jumps to an error handler if an error has occurred. Otherwise, the routine
services the packet using one of the reception methods described below.

The method of packet reception you select depends upon the LAN adapter's
data transfer method. The following examples illustrate a general flow of
events.

Reception Method: Option 1

We recommend that you use this option for DMA and bus-mastering LAN
adapters, as well as for any LAN adapters that use preallocated ECBs.

This is the simplest reception method. During development it might be helpful
to initially use this method, then implement Option 2 after the MLID is
functioning properly. The steps performed for this reception method are
outlined below.

DriverInitMILD: calls LSLGetSizedRcvECBRTag to get first ECB(s)
 or
 calls LSLGetMultipleSizedRcvECBRTag to get first ECB(s)
 queues ECB(s) until a packet is received in DriverISR.
DriverISRMLID: copies received packet into the DataBuffer.
 checks the header information, and if valid:
 fills in the remainder of the ECB fields
 delivers the ECB to the LSL
 attempts to get another ECB from the LSL to replenish the queue
IF the header information is not valid,
 calls the receive monitor, if one is registered.
ENDIF
queues the new ECB until next packet is received
calls LSLServiceEvents

Reception Method: Option 2

We recommend that you use this option for Programmed I/O and shared RAM
LAN adapters.

This method uses a type of look-ahead process, in which the frame header
information is first confirmed before the entire packet is transferred from the
adapter into a receive buffer. For this reason, we recommend Option 2 over
Option 1.
378 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The LAN adapter's data transfer mode determines how the LookAhead
process is handled. Programmed I/O adapters must transfer the size, in bytes,
of the maximum frame header into a LookAhead buffer allocated for this
purpose. If the LAN adapter uses a shared RAM transfer mode, the
LookAhead buffer is simply the start of the packet in shared RAM.

The steps performed for this reception method are outlined below.

DriverISRMLID: reads in the first part of the packet
 checks the header information and if valid:
 obtains an ECB
 fills in the ECB
IF the header information is not valid
 IF a receive monitor is registered
 copies the remainder of the packet into an ECB
 calls the receive monitor
 ELSE
 discards the packet.
 ENDIF
ENDIF
IF the header information is valid
 copies the remainder of the packet into the ECB
 IF a receive monitor is registered
 calls the receive monitor
 ENDIFgives the ECB to the LSL.
ENDIF

For more information about the receive monitor, see ODI Supplement: The
Receive Monitor.

Reception Method: Option 3

We recommend this method for intelligent adapters that are designed to be
"ECB aware."

This option reduces the load on the server by offloading code to the LAN
adapter. In this way, the LAN adapter's firmware handles most of the
reception process. The steps performed for this reception method are outlined
below.

DriverInit Use LSLGetSizedRcvECBRTag obtain first ECB(s)
 Queue ECB(s) until a packet is received.
 Firmware
 Filters the frame header information and if valid,
 fills in all pertinent fields of the ECB.
 Generates interrupt when receive is complete (ready).
 DriverISR
The MLID Packet Reception Routine 379

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 IF a receive monitor is registered, call the receive monitor
 Give the ECB to the LSL
 Use LSLGetSizedRcvECBRTag to get another ECB for queue
 or
 Use LSLGetMultipleSizedRcvECBRTag to get another ECB for queue
 Call LSLServiceEvents

Reception Method: RX-Net

RX-Net MLIDs use the following method to receive packets.

MLID: checks the header information
 IF packet fragment is 1 of 1
 calls LSLGetSizedRcvECBRTag to get an ECB
 fills in the ECB fields
 copies the data into the receive buffers
 gives the completed ECB back to the LSL using
 LSLHoldRcvEvent or LSLFastRcvEvent ENDIF
 IF packet fragment is first of many
 calculates worst case packet size by multiplying number of
 packet fragments by 504
 uses LSLGetSizedRcvECBRTag to get an ECB of worst case
 size
 fills in the ECB fields
 places time stamp in DriverWorkspace field to use in timing out
 ECBs that are never completed
 copies data from the first packet fragment into receive buffers
 places ECB on the internal queue until all the fragments have been
 received
 IF packet fragment is one of many
 searches the queued ECB list for the ECB that the fragment belongs
 to
 IF the ECB is found
 IF MLID expected a fragment
 copies data into the receive buffers at the appropriate
 location
 increments TotalRxPacketFragmentOKcount
 IF last fragment
 gives completed ECB back to LSL using LSLHoldRcvEvent
or LSLFastRcvEvent increments TotalRxPacketCount
 adjusts TotalRxOKByteCount
 ELSE increments InvalidSplitFlagInPacketFrag
 ENDIF
 ELSE increments OrphanPacketFragmentCount
 ENDIF
 ENDIF
 ENDIF
380 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 calls LSLServiceEvents

Front Ends for the Board Service Routine

Regardless of whether the MLID uses interrupts or polling to detect events on
the LAN adapter, the front ends to your board service routines needs to
perform the following tasks:

! Identify which LAN adapter has an event pending

! Obtain a pointer to the adapter data space for that LAN adapter.

After completing these tasks, the front end calls the main body of the board
service routine.

Polling Front End

In order to poll the LAN adapters in the server, the MLID must obtain a
pointer to the adapter data space for each LAN adapter. The MLID can
efficiently obtain this pointer by keeping a pointer to each LAN adapter's
adapter data space on a linked list. The polling front end can then get each
pointer off the list and use the information in the adapter data space to
interrogate each LAN adapter for pending events.

Remember, though, that the "no operation" condition (for example, nothing
has happened on the board) will be the most prevalent case. And because the
polling front end could be called several thousand times a second, you will
want it to be highly optimized.

NOTE: Polling is normally not used by interrupt-driven MLIDs. However, some
MLIDs might still require polling, or might use polling in addition to the ISR.

Interrupt Front End

The MLID can efficiently obtain a pointer to the adapter data space of the
LAN adapter that has generated the interrupt by specifying alternate entry
points into the interrupt front end. The MLID specifies these entry points
when it calls SetHardwareInterrupt, SetSymmetricInterrupt, or
BusInterruptSetup for a new LAN adapter. BusInterruptSetup allows you to
pass a parameter on input that will be returned when the MLID's ISR is called.

At each of these entry points, the front end can load a register with a pointer
to the adapter data space for that board. In this way, the body of the board
service routine can reference all hardware specific information relative to this
The MLID Packet Reception Routine 381

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
register and never concern itself with knowing which specific board is being
manipulated. Figure 23 provides an illustration of how this implementation
works.

Disabling Interrupts

The operating system's interrupt handler calls the front end with interrupts
disabled. You must prevent the board service routine from recursing by
disabling the interrupts on the LAN adapter.

Reenabling Interrupts

Before returning control to the operating system, the interrupt front end must
reenable the interrupts on the board and EOI the PIC. The MLID must not
issue an EOI. To EOI the interrupt, call DoEndOfInterrupt.

SMP Issues

In the SMP environment, supported in NetWare 4 and higher, if the MLID is
SMP aware, it is not enough to disable the system interrupts or the LAN card
interrupt. The MLID must also make use of the LSL locking APIs (
LSLAdapterMutexLock and LSLAdapterMutexUnlock) to prevent the board
service routine from being called recursively.

To prevent deadlocks, the system interrupts must be disabled on the processor
you are running on before calling LSLAdapterMutexLock.

The MLID should also call SMPDoEndOfInterrupt instead of doing an EOI to
the PIC directly. SMPDoEndOfInterrupt should be called only once in all
cases.
382 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 23 Implemenbng Alternate Entry Points in the Interrupt Front End

The Board Service Routine

Generally, the receive portion of the board service routine must perform the
following general operations:

! Check for any corruption that might have occurred in receiving the packet

! Determine the frame type of the packet (if more than one type is
supported)

! Obtain and fill in a receive Event Control Block (ECB)

! Copy the packet from the adapter to the buffer described by the ECB (this
step is not necessary if you have a bus-mastering DMA controller on your
adapter)

! Pass the ECB to the Link Support Layer (LSL)

In general, the MLID's ISR should continue checking for receive and transmit
events until it has serviced all of them. However, the MLID must not remain
The MLID Packet Reception Routine 383

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
in its ISR indefinitely. Care must be taken not to monopolize the CPU. For
example, a gigabit Ethernet driver on a 200 Mhz Pentium processor should
exit after processing about 30 receive packets.

Optimizing Packet Reception

Of all the functions in your MLID, the receive portion is the most important
one to optimize. Because MLIDs spend the bulk of their processing time
receiving packets, one of the most effective ways to improve your MLID's
performance is to optimize the receive routine.

One strategy for optimization is to structure your MLID to use "fall through"
code. That is, you identify the most common receive event (or default path),
and then structure your MLID to handle that event with a minimum number
of jumps or calls.

For example, suppose the most common event for your MLID is to receive
EthernetII packets that are directly addressed to your LAN adapter and that
have encountered no receive errors. You would write your code so that the
flow of execution branches to handle errors, broadcasts and multicasts,
different frame types, and other exceptionsbut not a successful EthernetII
reception event.

Error Handling

While optimization is important, ensuring the data integrity of received
packets should be the MLID's first priority. While the packet is being
transmitted, traversing the wire, and being received, any number of errors can
be introduced into it, and the MLID should check every possible hardware and
software indicator to make sure the packet has not been corrupted. The exact
nature of this error handling is determined by the capabilities of your LAN
adapter and the media or topology it supports.

Error detection and handling are optional in the cases where the hardware is
able to handle transmit and receive errors without MLID intervention. Even if
the hardware has this capability, the MLID must still be able to update or
maintain the statistics table.

Multiple Frame Support

If your MLID is designed to support multiple frame types, it must provide an
algorithm to determine the frame type of each received packet. The media and
frame types currently supported on NetWare are described in the ODI
Specification Supplement: Frame Types and Protocol IDs.
384 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ethernet

With Ethernet LAN adapters, the MLID accomplishes multiple frame support
by using logical boards and unique frame data spaces. The MLID must first
determine the frame type of the packet and then get a pointer to the appropriate
frame data space for the logical board receiving the packet.

The following pseudocode outlines an algorithm that can be used to determine
the frame type of the incoming packet on Ethernet.

IF FrameLength/FrameType field is less than 1500 (decimal)
 IF the first two bytes following the FrameLength/FrameType field are
 FFh AND FFh
 the packet is raw 802.3
 ELSE/* the packet has a valid DSAP and SSAP*/
 IF DSAP iS AAH AND SSAP is AAH AND Control is 03h
 the packet is SNAP
 ELSE the packet is 802.2
ELSE
/*FrameType field is greater than 1500*/
 the packet is Ethernet II

Token-Ring

Token-Ring also supports multiple frame types using logical boards and
unique frame data spaces. The MLID can determine the correct frame data
space to load by evaluating the 802.2 header inside the 802.5 packet. If DSAP
is AAh, SSAP is AAh, and Control is 03h, then the frame type is Token-Ring
SNAP. If the frame type is not Token-Ring SNAP, the frame type is 802.2.

RX-Net

While RX-Net does not technically support frame types, it must accommodate
three distinct packet types: Short, Long, and Exception. RX-Net MLIDs do
not use logical boards to handle these different packet types; rather, they
examine the packet to determine packet type and then fill out the receive ECB
according to that packet type.

The following pseudocode outlines an algorithm that can be used to determine
the packet type on RX-Net.

IF LongPacketFIag = O (byte 3= 0)
 IF Pad2-SplitFIag = FF (second byte after Unusedportion)
 the packet is an RX-Net exception packet
 ELSE the packet is an RX-Net long packet
ELSE /* ByteOffset (byte 3) contains a pointer around the unused portion
The MLID Packet Reception Routine 385

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 to the ProtocolType held */
 the packet is an RX-Net short packet

Broadcasts and Multicast Packets

In general, the MLID only concerns itself with receiving packets that are
directly addressed to the boards it is supporting. However, broadcast packets,
which on many LAN adapters contain a value of FFFFFFFFFFFFh in the
DestinationAddress field of the media header, should also be accepted.

NOTE: Broadcast packets on RX-Net contain a Oh in the DestinationAddress field
of the media header, and the RX-Net MLID must change this field to
FFFFFFFFFFFFh before handing the packet to the LSL.

If the MLID has enabled multicast reception on the LAN adapter, the MLID
must also check whether the destination address in the packet matches an
address in that LAN adapter's multicast tables. See
Ctl2_AddMulticastAddress and Ctl3_DeleteMulticastAddress in Chapter 20,
"MLID Control Procedures."

Filling in the ECB

After performing all the error checking possible, the MLID fills out the
receive ECB. The following table shows the fields that the MLID must fill in
before handing the packet to the LSL. Refer to ODI Supplement: Frame Types
and Protocol IDs for information regarding field names for specific media.

Table 50 Receive ECB Fields the MLID Must Set

Offset Field Name Description

04h Blink See the "Setting the ECB Blink Field" section below.

10h ProtocolID Contains the Protocol ID value extracted from the media header. See Table
53 and ODI Supplement: Frame Types and Protocol IDs for more detail.

16h BoardNumber This value comes out of the configuration table of the logical board
receiving the packet.

lAh ImmediateAddress This value is contained in the SourceAddress of the packet's media header.
This address is the address of the LAN adapter that actually sent the packet
you are receiving (not necessarily the LAN adapter that originated the
packet).

20h DriverWorkSpace See the "Setting the ECB field DriverWorkSpace" section below.
386 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
2Ch PacketLength This field contains the length of the data portion of the packet. This does not
include media headers.

30h FragmentCount This field contains the number of fragments that follow. In receive ECBs this
value is always 1.

34h FragmentOffset On receives, a buffer immediately follows the ECB in memory. The MLID
copies the received packet into this buffer. After the MLID copies the packet
into this buffer, it must set the FragmentOffset to point around any media
headers to the data portion of the packet. The MLID must also set the
FragmentLength field to the total length of the data portion of the packet.

38h FragmentSize This field contains the length of the Data portion of the packet. This does
not include media headers. This field contains the same value as
RPacketLength.

3Ch PacketEnvelope This field is a variable length field that contains the media headers.

??h Data This field is a variable length field that begins with protocol header
information and is followed by the rest of the packet.

Offset Field Name Description
The MLID Packet Reception Routine 387

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 24 Graphic Representation of the Receive Event Control Block

Setting the ECB BLink Field

The BLink field is typically used as a back link to manage a list of ECBs. The
current owner of the ECB uses this field. When an ECB is returned from an
MLID containing a received packet, this field contains the received packet
error status as defined in the following table:

Table 51 ECB BLink Error Descriptions

Bit Value Description

0000
0001h

CRC error, such as Frame Check Sequence (FCS) error.

0000
0002h

CRC/Frame Alignment error.

0000
0004h

Runt packet.
388 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Setting the ECB DriverWorkSpace ECB Field

Set the first byte in the DriverWorkSpace field (offset 20h) to one of the
following values):

Table 52 Setting the First Byte in the DriverWorkspace Field

0000
0010h

Packet is larger than allowed by the media.

0000
0020h

The received packet is for a frame type that is not supported. For example, the logical board
is not registered for the frame type of the received packet. A board number associated with
the physical adapter is placed in the lookahead structure.

0000
0040h

Malformed packet. For example, the packet size is smaller than the minimum size allowed
for the Media Header, such as an incomplete MAC Header. In an Ethernet 802.3 header,
the length field value is larger than the total packet size.

0000
4000h

Do not decompress the received packet.

8000
0000h

The MLID is shutting down.

No error
bits set

If no error bits are set, the packet was received without error, and the data can be used. All
undefined bits are cleared.

Value Type of Packet Definition

00h Direct The packet is destined for this station only.

01h Multicast The packet is destined to a group of all nodes on the network. The adapter was
registered to receive packets addressed to these ad dresses by a call to
Ctl2_AddMulticastAddress.

02h Broadcast The packet is destined to all nodes on the physical network.

04h Remote Unicast The packet is destined to an individual node on the network. A re mote unicast
address is not addressed to this adapter's node ad dress. The protocol stack
must put the adapter into promiscuous mode if it wants to receive these
packets.

Bit Value Description
The MLID Packet Reception Routine 389

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Set the second byte (offset 21h) to indicate whether the MAC header contains
one or two 802.2 control bytes:

! 00h All frame types other than 802.2

! 01h The 802.2 header has only Ctl0 byte (Type I)

! 02h The 802.2 header has Ctl0 and Ctll (Type II)

See ODI Supplement: Frame Types and Protocol IDs for an explanation of
802.2 Type I and Type II, and Chapter 14, "MLID Data Structures" for a
description of the Event Control Block.

Table 53 Filling Out the ProtocolID Field of the Receive ECB

08h Remote
Multicast

The packet is addressed to a group of nodes, but the adapter is not registered
to receive it. (The MLID has not called Ctl2_AddMulticastAddress.) A protocol
stack must put the adapter into promiscuous mode if it wants to receive these
packets.

10h No Source
Route

In this case, the MLID received a source-routed packet, but there was no
source route module (ROUTE.NLM) to record it, and the packet was not
generated by the local ring.

20h ErrorPacket See the "Error Handling" section in this chapter.

80h Direct Unicast The packet is destined for this station only.

Direct Unicast (80h) is new and should be used in place of Direct (00h).

Frame Type Value

RX-Net For all RX-Net packet types, put the value in the ProtocolType field into the least
significant byte and pad the five most significant bytes with 0.

Ethernet 802.3 Fill all 6 bytes with 0.

Ethernet 802.2 Put the value in the DSAP field into the least significant byte and pad the five most
significant bytes with 0.

Ethernet EII Put the value of the Ethernet type field in the last two bytes and pad the others with 0.

Ethernet SNAP Set the most significant byte to 0 and put the value in the ProtocolIdentification field
into the five least significant bytes.

Value Type of Packet Definition
390 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Handling Receive Errors

If the MLID encounters a receive error, it should perform the following
actions:

! Attempt to identify the error. While some LAN adapters provide greater
diagnostic support than others, the MLID pinpoints the specific cause of
the error (buffer overflow, missed packet, checksum error, etc.).

! Increment diagnostic counters. The MLID maintains diagnostic counters
for every detectable error condition on the LAN adapter. This will aid you
in debugging the MLID as well as maintaining it in the future.

! Set the appropriate receive error bits in the ECB Blink field (see the
"Setting the ECB Blink Field" section in this chapter).

! Attempt to recover from the error. When attempting to recover from a
receive error, be careful not to interfere with the normal function of the
LAN adapter. For example, the error handling should not interfere with a
transmit in progress, nor should it affect packets that could be held in
receive buffers on the LAN adapter.

Be sure to structure your code so that the MLID will not go into an infinite
recovery loop. If the MLID encounters an error that is unrecoverable, follow
the instructions given under "Unrecoverable Hardware Errors" in Chapter 20,
"MLID Control Routines"/

PCN2 802.2 Put the value in the DSAP field into the least significant byte and pad the five most
significant bytes with 0.

PCN2 SNAP Set the most significant byte to 0 and put the value in the ProtocolIdentification field
into the five least significant bytes.

Token-Ring Put the value in the DSAP field in the least significant byte and pad the five most
significant bytes with 0.

Token-Ring
SNAP

Set the most significant byte to 0 and put the value in the ProtocolIdentification field
into the five least significant bytes.

FDDI Put the value in the DSAP field in the least significant byte and pad the five most
significant bytes with 0.

FDDI SNAP Set the most significant byte to 0 and put the value in the ProtocolIdentification field
into the five least significant bytes.

Frame Type Value
The MLID Packet Reception Routine 391

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Transmission Complete Interrupt

Each time the MLID receives a transmit complete interrupt, it should do two
things:

! Release the ECB (if not already released during the MLID's packet
transmission routine).

! Increment a "total packets transmitted" counter.

! Add the transmitted size to the TXOKBytes counter and, if the transmit
is a group send, increment the TxGroupStats counter.

! Transmit the next packet, if one is waiting to be sent. Chapter 17, "The
MLID Packet Transmission Routine" describes how the MLID should
handle queuing transmissions.

Transmission Error

If the MLID encounters a transmit error, it should perform the following
actions:

! Attempt to identify the error. As with receive errors, the MLID pinpoints
the cause of the error as specifically as possible (excess collisions, cable
disconnect, FIFO underrun, etc.).

! Increment diagnostic counters. As with receive errors, the MLID should
maintain diagnostic counters for every detectable error condition on the
LAN adapter.

! Attempt to send the packet again. In the event the MLID has reached the
maximum retry limit for sending that particular packet, the MLID should
transmit the next packet if one is waiting to be sent.

NOTE: For Token-Ring and FDDI adapters, do not resend the packet on a transmit
error. All transmit errors should be ignored.

Be sure to structure your code so that the MLID will not go into an infinite
recovery loop. If the MLID encounters an error that is unrecoverable, follow
the instructions given under "Unrecoverable Hardware Errors" in Chapter 20,
"MLID Control Routines ".

Using Shared Interrupts

An MLID can support shared interrupts if they are also supported by the host
bus and the LAN adapters that share the interrupt. Interrupts can be shared if
392 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
the bus is operating in level-triggered mode or if external logic exists on the
adapters sharing the PCI bus and the interrupt.

! The PCI bus always supports shared interrupts.

! The Micro Channel bus always supports shared interrupts.

! The PC/AT bus uses edge-triggered interrupts and will not support shared
interrupts unless external logic exists on the adapters sharing the
interrupt.

! The EISA bus normally uses edge-triggered interrupts, but each interrupt
can be individually set to level-triggered mode in order to support shared
interrupts.

A ISR that supports shared interrupts is very similar to one that does not. If the
MLID supports shared interrupts, the ISR must perform the following
operations:

! The interrupt service routine immediately determines if the interrupt
request is from its LAN adapter. If not, the ISR should return at once to
the operating system ISR with EAX equal to one and the zero flag
cleared.

 or al, 01 h ; clear the zero flag
 ret ; return to operating system ISR code

! If the interrupt request is from the LAN adapter, the interrupt service
routine should proceed. Upon completion, the ISR should return with
EAX equal to O and with the zero flag set.

 xor eax,eax ; zero eax & set the zero flag
 ret ; returns to operating system ISR code

The MLID must indicate that the LAN adapter is sharing interrupts by setting
bit 5 in the MLIDSharingFlags field of the configuration table and setting the
ShareFlagparameter when it calls SetHardwareInterrupt.

Pseudocode for the Board Service Routine

/* This pseudocode is intended to illustrate a flow of events and does not
 necessarily describe optimized code.*/

 Entry State The Dir Flag is cleared.
 Interrupts are disabled.
 /* We recommend that the interrupts remain disabled during the MLID's
The MLID Packet Reception Routine 393

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 ISR. */

 Return State
 The Dir Flag must be cleared.
 The interrupts must be disabled.
 No registers are preserved.

 /* POLLING FRONT END */

 If SMP aware call LSLAdapterMutexLock
 LOOP through all adapters of same type in server
 load a register with a pointer to the adapter data space for this board
 set a semaphore to indicate this board is being polled
 IF there is work to be done on board
 call BoardServiceRoutine (see code below)
 ENDIF
 clear the semaphore to indicate the board is no longer being polled
 ENDLOOP

 IF SMP aware call LSLAdapterMutexUnLock

 ret

 /* INTERRUPT FRONT END */
 IF SMP aware call LSLAdapterMutexLock
 determine which board the interrupt is for (by using alternate entry
 points for each board)

 load a register with a pointer to the adapter data space for this board
 mask the board's interrupt request line on the PIC OR disable interrupts
 on the board
 IF SMP aware call LSLDoEndOfInterrupt ELSE IF EOI FLAG=1
 Call the OS to EOI the slave PIC
 ENDIF
 EOI the master PIC
 ENDIF

 call BoardServiceRoutine
 unmask the board's interrupt request line on the PIC
 OR
 re-enable interrupts on the board /* do not use iret */

 IF SMP aware call LSLAdapterMutexUnLock
 ret

 BoardServiceRoutine:
 LOOP until no more events are pending
 IF receive event
394 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 IF board has received a packet
 read in enough of the packet to determine the frame type of the
 media
 /* this next check is 802.3 specific */
 IF the FrameLength field in the media header is greater than
 the length report by the hardware
 increment diagnostic counter
 notify board that you are finished with the packet
 RETURN to the events pending loop
 ENDIF

 IF the frame type is NOT registered with your driver
 increment diagnostic counter
 notify board that you are finished with the packet
 RETURN to the events pending loop
 ENDIF
 IF packet is NOT addressed to this LAN adapter
 IF packet is NOT a broadcast packet
 IF address does not exist in the current multicast tables
 notify board that you are finished with the packet
 RETURN to the events pending loop
 ENDIF
 ENDIF
 ENDIF

 call LSLGetSizedRcvECBRTag
 IF no more ECBs are available OR packet size is too large
 increment a diagnostic counter
 notify board that you are finished with the packet
 RETURN to the events pending loop
 ENDIF
 fill in the PacketLength field of the ECB
 /* this is the length of Data portion of the packet,
 including protocol headers but not media headers */

 fill in the FragmentSize field of the ECB
 (this is the same value as PacketLength)
 fill in the ProtocollD field of the ECB
 copy the media headers from the packet to the PacketEnvelope
 portion of the ECB
 point FragmentOffset to the beginning of the Data portion of the
 ECB
 copy the remaining packet information into the Data area of the
 ECB
 copy board number into the BoardNumber field of ECB
 copy source address into the ImmediateAddress field of the ECB
 copy reception type into the first byte of the
 DriverWorkSpace field
The MLID Packet Reception Routine 395

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 set second byte of DriverWorkSpace field to appropriate 802.2
 type.

 call LSLHoldRcvEvent
 (you might want to refer to Chapter 11, "LSL Support Routines
 (Assembly Language)" to see if you can use LSLFastRcvEvent)
 increment diagnostic counter

 RETURN to the events pending loop

 ELSE /* the board encountered an error receiving the packet */
 handle receive error
 ENDIF

 ELSE /* transmit event */
 IF transmit complete
 increment diagnostic counter
 IF a packet is queued
 unqueue packet
 call StartSend (see DriverSend pseudocode in Chapter 17)
 call LSLSendComplete
 (see Chapter 11, "LSL Support Routines (Assembly Language)"
 to see if you can use LSLFastSendComplete
 ENDIF

 ELSE /* error transmitting */
 increment diagnostic counter handle transmit error
 ENDIF
 ENDIF
ENDLOOP

IF no receives or transmits processed
/* spurious event */
 increment diagnostic counter
ENDIF call LSLServiceEvents (only if LSLHoldRcvEventor LSLSendComplete is
used)
ret

396 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
17 The MLID Packet Transmission
Routine

Chapter Overview

This chapter discusses the common methods of packet transmission. This
chapter covers queuing sends, multiple frame support, and packet length
issues.

Packet Transmission

This section provides a brief overview of the methods commonly used for
packet transmission.

General Transmission Method

In general, the MLID performs the following tasks during packet
transmission:

1. Determines the number of adapter transmit resources available during it's
packet transmission routine.

2. Checks to see if it can handle another transmit and, if so, proceeds to step
3. Otherwise, builds the media header and queues the packet.

3. Copies the media header and data fragments to the transmit buffer.

4. Returns the ECB to the LSL. The MLID can return the ECB before the
actual transmission is complete, as long as all information has been
collected from the ECB and the MLID no longer needs it (This is also
referred to as a "lying send".) The underlying transmit ECB will be placed
in the LSL's hold queue until the MLID issues a service events command.
The MLID can call either LSLSendComplete and LSLServiceEvents or
The MLID Packet Transmission Routine 397

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLFastSendComplete. (LSLFastSendComplete calls
LSLServiceEvents.)

Sending a Packet

When sending a packet, a protocol stack assembles a list of fragment pointers
in a transmit ECB and passes the packet to the LSL. The MLID builds the
header, copies the packet fragments, and transmits the packet.

Each time the MLID initializes a logical board, it calls
LSLRegisterMLIDRTag to register the following information with the Link
Support Layer (LSL):

! The address of the logical board's send procedure

! The address of the logical board's control procedure handler

! The address of the logical board's configuration table

In response to this call, the LSL assigns a board number to that logical board.
Later, when the LSL needs to send a packet to that board, it calls the send
routine that the MLID registered. The LSL always calls the send routine in the
following manner:

! With ESI pointing to an ECB that describes the packet to be sent

! With interrupts disabled

! With EBX containing the logical board number

Also, remember that the board service routine can call the MLID's send
routine to transmit a packet on the send queue. Consequently, the send routine
should be written to run at interrupt time, and we recommend that the send
routine run with interrupts disabled.

If the MLID must enable interrupts in the course of the send routine (perhaps
the MLID is waiting for an event to occur, or perhaps it is taking an unusually
long time to send the packet), the MLID must disable interrupts before
returning control to the LSL.

NOTE: The send routine does not need to preserve any registers.

Queuing Sends

Because the LAN adapter might not have any transmit buffers available when
the LSL calls the MLID's send routine, the MLID must create and maintain a
"first in,first out" (FIFO) send queue for the LAN adapter (as well as for every
398 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
other LAN adapter of the same type in the server). The MLID can use the
ECB's Link and BLink fields for this purpose. Later, when the LAN adapter
generates a transmit complete interrupt or when the polling procedure
determines a send is complete, the ISR or polling procedure should take any
ECBs off the send queue and transmit them.

Multiple Frame Support

If the MLID supports multiple frame formats, structure the send routine to
prepare the appropriate media header for each logical board. The MLID
inspects the MLIDFrameType field in the logical board's configuration table
to determine which media header needs to be built.

Raw Sends

In some cases, the protocol stack has enough information about a logical
board's media and frame type to completely prepare the packet for
transmission. This is referred to as a "raw send." The protocol stack signals a
raw send by putting a value between FFFFh and FFF8h (each value
corresponds to a raw send priority) in the ECB's LogicalID field. If the packet
is to be a raw send, the MLID does not build a media header for the packet; it
simply moves the packet to the LAN adapter and sends it.

Priority Sends

If a protocol stack supports priority transmissions and is communicating via
an MLID that also supports priority transmissions (see MLIDPrioritySup in
Table 35), the protocol stack may indicate a priority transmission by putting a
value between FFF6h and FFF0h in the ECB LogicalID field.

FFF7h can be used to indicate a normal (non-priority) transmission, but it is
better to put the Protocol Stack ID in the LogicalID field to indicate a normal
(non- priority) transmission rather than FFF7h.

FFF6h indicates the lowest priority transmission, while FFF0h inicates the
highest priority transmission.

Packet Length

On some topologies, the MLID must pad the packets being sent to meet a
specific topology's length criteria.
The MLID Packet Transmission Routine 399

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Even Packet Length on Ethernet

Some Ethernet drivers on NetWare 2 servers will not route packets that are an
odd length. Consequently, raw 802.3 and EII packets need to be an even length
or"evenized." The send procedure must also set the FrameLength field in the
802.3 header to the actual length of the packet (including the evenizing byte).
For example, if the MLID must transmit a 121-byte packet, it would evenize
the packet to 122 bytes. Then, the MLID would set the FrameLength field in
the 802.3 header to 122, and the LAN adapter would transmit 122 bytes.
Although MLIDs with raw 802.3 and EII frame types should always evenize
transmitted packets, they should not count on receiving only evenized packets.
MLIDs should accept the evenized and odd-length packets they receive.

60 Byte Minimum Packet Size on Ethernet

The minimum packet size on Ethernet is 60 bytes, so the send procedure must
pad any "short" packets with enough data to meet this requirement. The send
procedure must also set the FrameLength field in the 802.3 header to the
evenized length of the packet before padding. For example, if the MLID must
transmit a 41-byte packet, it would pad the packet to 60 bytes. The MLID
would set the FrameLength field to 42, and the LAN adapter would transmit
60 bytes.

Pseudocode for MLID Packet Transmission Routine

/* This pseudocode is intended to illustrate a flow of events and does
 not necessarily describe optimized code. */
IF MLlDShutdownState is DOWN (a flag indicating that the physical board
 has been shutdown)
 jump to LSLFastSendComplete (which fully returns to the LSL)
ENDIF

IF board is transmitting
 put the packet on the send queue
 ret (to the procedure that called the MLID's packet transmission routine)
ENDIF

call StartSend jump LSLFastSendComplete (Lying send)

StartSend:
IF NOT a raw send
 set PacketLength = actual data size + media header
ENDIF

/* if your driver supports Ethernet 802.3 or Ethernet 11 you will need to
400 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 evenize any packets that have an odd length */

/* if your driver supports Ethernet you will need to pad any short packets
 to a minimum of 60 bytes */
inform board that it will need to send PacketLength bytes

IF NOT a raw send
 build all the necessary headers for the packet (see the ODI Specification
 Supplement: Frame Types and Protocol IDs for media- and frame- specific
 header information)
 move all necessary headers to the transmit buffer
ENDIF

move fragments to transmit buffer
tell the board to send the packet
get current time and save for timeout check
reset your driver's retry counter
ret

Pseudocode for Packet Transmission Routine for RX-Net MLlDs

IF MLID is shut down
 jump to LSLFastSendComplete
ENDIF

IF ECBs are queued
 queue ECB
 return
ENDIF

IF board is transmitting
 queue ECB
 return
ENDIF

Get data size from ECB

IF data will fit into one packet
 copy packet to board
 save time stamp for timeout routine
 reset TxRetryCount
 tell LAN adapter to transmit packet
ELSE
 calculate the number of fragments by dividing data size by 504
 copy first fragment to board
 save time stamp for TimeOut routine
The MLID Packet Transmission Routine 401

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 reset Tx
 retry count
 tell LAN adapter to transmit packet
ENDIF

Save the state so that after the transmission completes, the MLID can
determine if there are more fragments of the current ECB to send or if it
should check the transmit queue.
402 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
18 MLlD Timeout Procedure

Chapter Overview

This chapter discusses the timeout procedure. The chapter discusses
scheduling the interrupt time callback, determining the wait interval,
identifying a timeout error, using system alerts, and reinitializing the LAN
adapter.

Establishing a Timeout Procedure

Depending on the hardware capabilities of the LAN adapter, the MLID might
need to establish a timeout check or "dead man timer" that regularly checks
the LAN adapter to determine if the LAN adapter is blocked by an unfinished
transmission. If a transmission has failed to complete after a reasonable period
of time, the timeout procedure should perform the following steps:

! Call QueueSystemAlert

! Reinitialize the LAN adapter

! Increment diagnostic counters

Scheduling an Interrupt Time Callback

You can establish a timer function for the MLID's timeout check using the
ScheduleInterruptTimeCallBack function call.
ScheduleInterrupTimeCallBack hooks into the timer interrupt and, after the
specified interval, calls the timeout procedure as part of the timer's interrupt
service routine.

NOTE: If the call back routine makes blocking calls, you can schedule an AES
event.
MLlD Timeout Procedure 403

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: ScheduleInterrupTimeCallBack results in the timeout procedure
being called at interrupt time. ScheduleInterrupTimeCallBack does not create a
perpetual timer function. Each time the MLID timeout procedure is called, it must
call ScheduleInterruptTimeCallBack again to reschedule the next interrupt time
callback.

NOTE: SMP aware MLIDs should use LSLAddTimerProcedure instead of
ScheduleInterruptTimerCallBack. LSLAddTimerProcedure creates a perpetual
timer procedure and only needs to be called once.

Determining the Wait Interval

You might need to experiment with the interval you set between timeout
checks in order to empirically determine the optimal wait interval. This value
is affected by the LAN adapter's hardware, the network topology, and the
network load. As a general rule, you will want to start working with an interval
of 1 or 2 seconds.

Identifying a Timeout Error

Immediately after the MLID sends a packet, the send procedure should call
GetCurrentTime and save the returned time value for later inspection. The
timeout procedure also calls GetCurrentTime and compares the returned time
value MLlDTimeout Procedure with the time value saved by the MLID's send
procedure. If the difference between the two values is less than the established
wait interval, the timeout procedure simply reschedules itself. If the wait
interval has expired and the LAN adapter is still trying to transmit, a timeout
condition has occurred.

Using System Alerts

Whenever a timeout condition occurs, the timeout procedure should call
QueueSystemAlert or NetWareAlert . This system call not only allows the
MLID to print a message at the file server console, but also makes this
information available to a wide range of network management applications.

Reinitializing the LAN adapter

After identifying a timeout condition, the MLID should try to reinitialize the
LAN adapter without destroying the send event in progress. If the maximum
number of retries allowed for the LAN adapter has not been exceeded, the
MLID should increment the retry counter and tell the LAN adapter to resend
404 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
the packet. If the maximum number of retries has been exceeded, the MLID
increments the transmit error diagnostic counter, resets and clears the
transmission bits and buffers on the board, and then sends the next packet on
the send queue (if one is waiting to be sent).

Pseudocode for TimeOutCheck

/* This pseudocode is intended to illustrate a flow of events and does not
 necessarily describe optimized code. */

IF the MLID is SMP aware
 call LSLAdapterMutexLock

IF a transmit-in-progress flag has been set
 call GetCurrentTime
 IF transmit has been pending for too long
 call QueueSystemAlert
 call Ctl6_MLlDReset (see Chapter 20, "MLID Control Routines ")
 increment diagnostic counter
 clear transmit-in-progress flag
 get next send
 IF a packet is queued
 call StartSend (see pseudocode outline for the MLID packet
 transmission procedure)
 call LSLFastSendCompelete (Lying send)
 ENDIF
 ENDIF
ENDIF

IF MLID is RX-Net
 check the queued receive ECB list to see if any ECBs have timed out.
ENDIF

IF the MLID is not SMP aware
 /* reschedule interrupt time callback */
 call SchedulelnterruptTimeCallBack
 ret
IF the MLID is SMP aware
 call LSLAdapterMutexUnLock

MLlD Timeout Procedure 405

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Pseudocode for the Timeout Procedure for RX-Net
MLlDs

Interrupts are disabled
Mask off the LAN adapter's transmit interrupt
Issue the Disable Transmitter command to the LAN adapter
ret
406 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
19 Remove MLID Procedure

Chapter Overview

This chapter discusses the remove MLID procedure. The remove MLID
procedure is a routine that allows the operating system to dynamically unload
the MLID. This chapter discusses how the MLID should shut down. In
particular, it covers deregistering, cancelling events, shutting down the LAN
adapter, and removing the data spaces.

Removing the MLID

Every NetWare Loadable Module (NLM) must have a remove procedure that
allows the network supervisor to unload the NLM from the operating system.
This procedure must shut down the LAN adapter and give back any resources
the MLID has allocated specifically, such as interrupts and memory. When
you use the NLM linker to create your NLM, you specify the name of your
remove procedure in the .DEF file using the "exit" keyword. For example, if
the remove procedure for an NE2000 MLID were named DriverRemove, you
would include the following line in the NE2000.DEF file:

 exit MLIDRemove

Then, when the network supervisor enters unload ne2000 on the server
console, the operating system calls your MLID's removal routine.

DeRegistering Logical Boards

When unloading the MLID, the remove procedure must deregister all of the
MLID's logical boards with the Link Support Layer (LSL). In addition, the
remove procedure must deregister the hardware options the MLID reserved
Remove MLID Procedure 407

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
with the operating system. The routine accomplishes this by calling the
following two calls for each logical board the MLID supports:

! LSLUnBindThenDeRegisterMLID

! DeRegisterHardwareOptions

Be aware, however, that LSLUnBindThenDeRegisterMLID gives protocol
stacks an opportunity to call the MLID's packet transmission routine and
transmit packets to other servers or stations on the network, notifying them
that the LAN adapter is being unloaded. Therefore, if the LAN adapter is
unable to send, the MLID's remove procedure should call
LSLDeRegisterMLID instead.

Canceling Polling Procedures and Timer Events

If the MLID polls the LAN adapter, it must cancel the polling procedure by
calling RemovePollingProcedure, or if the MLID is SMP aware, by calling
LSLRemovePollingProcedure.

Also, be sure to cancel any timer events before returning control to the
operating system. If the MLID's remove procedure does not cancel all AES
events and interrupt time callbacks, the server will most likely abend when the
operating system tries to call one of the MLID's procedures at a memory
address that is no longer valid.

Shutting Down the LAN Adapter

The remove procedure must disable the LAN adapter turn-off interrupts, etc.
If the MLID is driving an interrupt-driven LAN adapter or using interrupt
backup for a polling procedure, the remove procedure must call
ClearHardwareInterrupt to return the LAN adapter's interrupt to the
operating system. If the MLID is SMP aware, the remove procedure must call
ClearSymmetricInterrupt to return the LAN adapter's interrupt to the
operating system.

In NetWare 5 environments, the MLID must use BusInterruptClear.

Removing Data Spaces

The MLID must also give back all the memory that each LAN adapter has
allocated for the adapter data space and frame data space. However, the MLID
should be careful not to try to remove any adapter data space or frame data
408 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
space for a logical board that has been completely shut down using
Ctl6_MLIDShutdown.

Pseudocode for Remove MLID

/* This pseudocode is intended to illustrate a flow of events and does not
 necessarily describe optimized code. */

/* The Ctl6_MLIDReset and Ctl5_MLIDShutDown control procedures also call
portions of the remove procedure. The elements of the outline that pertain
to these two calls are indicated below. */

save the base and index registers (EBX, EBP, ESI, EDI)
LOOP until all the LAN adapters are removed
 IF the LAN adapter has not been completely shut down previously by
 Ctl5_MLlDShutdown
 /* because we want to call LSLUnBindThenDeRegisterMLlD we set this
 flag */
 set unbinding flag to 1
 call Removelnstance
 ENDIFENDLOOP

/* if you are using a polling procedure you will need to cancel it */
call RemovePollingProcedure
or
If SMP aware, call LSLRemovePollingProcedure
restore the base and index registers (EBX, EBP, ESI, EDI)

RemoveInstance:
If SMP aware, call LSLRemoveMutexFromInstance
 IF unbinding flag is set
 LOOP until all logical boards have been unbound
 call LSLUnBindThenDeRegisterMLID
 call DeRegisterHardwareOptions
 ENDLOOP

 ELSE
 LOOP until all logical boards have been deregistered
 call LSLDeRegisterMLID
 call DeRegisterHardwareOptions
 ENDLOOP
 ENDIF
 disable LAN adaptor

 /* if the LAN adapter is interrupt driven or the MLID uses interrupt
 backup */
Remove MLID Procedure 409

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 call ClearHardwarelnterrupt
 or
 If SMP aware, call ClearSymmetricInterrupt

 /* if the MLID uses a timeout check or "dead man timer" */
 call CancelInterruptTimeCallBack
 or
 If SMP aware, call LSLRemoveTimerProcedure
 cancel any outstanding timer events
LOOP until the memory for all frame data spaces has been returned
 call FreeSemiPermMemory to give back frame data space memory
ENDLOOP

call FreeSemiPermMemory to give back memory for the adapter data space
ret /* to remove the next LAN adapter */
410 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
20 MLID Control Routines

This chapter discusses the control routines that ODI requires an MLID to
provide.

The Open Data-Link Interface (ODI) requires the MLID to make a number of
control procedures available to protocol stacks and other NetWare Loadable
Modules (NLMs). When the MLID calls LSLRegisterMLIDRTag during
initialization, it passes the address of the MLID's control procedure handler to
the Link Support Layer (LSL). The LSL, in turn, gives this address to any
protocol stacks or NLMs that request it.
MLID Control Routines 411

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Preliminary Information

Contains preliminary information for working with the MLID Control
Routines.

Processor States

Entry State

ODI requires that the MLID Control Procedure Handler always be called with
the processor entry state set as follows:

EAX

contains the board number.

EBX

contains a subfunction number (0-18).

Interrupts

can be enabled or disabled.

Other registers

may contain parameters.

NOTE: The MLID control procedures must be called at process time.

Return State

After executing the requested control procedure, ODI requires the MLID to
return with the processor return state set as follows:

EAX

contains the completion code.

Interrupts

state is preserved.

The MLID does not have to fully implement every control procedure defined
by ODI; however, it must return a completion code for each control procedure.
412 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Interrupt States

If a control procedure is called with interrupts enabled, it should return with
interrupts enabled. If a control procedure is called with interrupts disabled, it
should return with interrupts disabled. Nevertheless, each control procedure
can enable or disable interrupts as necessary.

Required and Optional Control Procedures

All MLIDs are required to implement the following control procedures:

! Ctl0_GetMLIDConfiguration

! Ctll_GetMLIDStatistics

! Ctl5_MLIDShutdown

! Ctl6_MLIDReset

! Ctl2_AddMulticastAddress (if supported by the hardware)

! Ctl3_DeleteMulticastAddress (if supported by the hardware)

! Ctl9_SetLookAheadSize

MLIDs can optionally support the following control procedures:

! Ctll0_MLIDPromiscuousChange

! Ctlll_RegisterMonitor

! Ctl 14_DriverManagement

! Ctl16_RemoveNetworkInterface

! Ctl17_ShutdownNetworkInterface

! Ctl18_ResetNetworkInterface

We recommend that the MLID support multicast addressing if the hardware
allows. However, if the MLID does not support the optional control
procedures, it must return BadCommand (EAX = FFFFFF81h) for these two
procedures.

Earlier versions of the ODI specification define six control procedures that the
MLID no longer uses. Nevertheless, the MLID must provide these procedures
in order to maintain compatibility with previous versions of the Open Data-
Link Interface. The following control procedures should return BadCommand
(EAX=FFFFFF81h) when called:
MLID Control Routines 413

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! Ctl4_Reserved

! Ctl7_Reserved

! Ctl8_Reserved

! Ctll2_Reserved

! Ctll3_Reserved

! Ctll5_Reserved

Unrecoverable Hardware Errors

If Ctl6_MLIDReset cannot reinitialize the LAN adapter, the MLID should
permanently shut down the adapter after queuing a system alert.

MLID Control Routines

The following lists provide the names the IOCTLs described in this chapter:

Multicast Routines

! Ctl2_AddMulticastAddress

! Ctl3_DeleteMulticastAddress

NLM Interaction Routines

! Ctll4_DriverManagement

! Ctl6_MLIDReset

! Ctl5_MLIDShutdown

! Ctl16_RemoveNetworkInterface

! Ctl17_ShutdownNetworkInterface

! Ctl18_ResetNetworkInterface

Obtaining Structures Routines

! Ctl0_GetMLIDConfiguration

! Ctll_GetMLIDStatistics

Packet Reception Routines

! Ctl9_SetLookAheadSize
414 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! Ctll0_DriverPromiscuousChange mode

Registration Routines

! Ctlll_RegisterReceiveMonitor
MLID Control Routines 415

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl0_GetMLlDConfiguration

Returns a pointer to the configuration table.

Entry State

EAX

The logical board number.

EBX

Subfunction = 0.

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

Set to 0.

ESI

Pointer to the logical board's configuration table (part of the frame data
space).

Interrupt

State is preserved.

Preserved

 EBP

Completion Codes (EAX)

None.
416 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl0_GetMLIDConfiguration returns a pointer to the logical board's
configuration table.
MLID Control Routines 417

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl1_GetMLIDStatistics

Returns a pointer to the statistics table.

Entry State

EAX

The logical board number.

EBX

Subfunction = 1.

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

Set to 0.

ESI

Pointer to the statistics table of the LAN adapter (part of the adapter data
space) that is being used by the logical board indicated on entry in EAX.

Interrupt

State is preserved.

Preserved

 EBP

Completion Codes (EAX)

None.
418 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl1_GetMLIDStatistics returns a pointer to the statistics table. The logical
board number passed in EAX indicates which logical board the statistics are
for. ESI holds a pointer to the statistics table of the LAN adapter to which the
logical board is bound.
MLID Control Routines 419

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl2_AddMulticastAddress

Adds the specified node address to the multicast address table.

Entry State

EAX

The logical board number.

EBX

Subfunction = 2.

ESI

Pointer to the 6-byte multicast address to add to the multicast address list

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

Has a completion code.

Interrupt

State is preserved.

Preserved

 EBP

Completion Codes (EAX)

0x00000000 Successful Multicast address has been added or already exists.

0x0FFFFF81 BadCommnd The board does not support multicast addressing.
420 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl2_AddMulticastAddress adds the specified node address to a LAN
adapter's multicast address table.

Even though this control procedure receives a logical board number, the
multicast address table is only maintained for each LAN adapter. This
procedure uses the logical board number in order to reference the appropriate
LAN adapter. Be aware, however, that this call affects all logical boards using
the affected LAN adapter.

More than one protocol stack or NLM could add the same multicast address
for the same logical or LAN adapter. For this reason, the MLID should
maintain a count of how many times a multicast address has been added. This
prevents one protocol stack from deleting a multicast address that another
protocol stack is still using.

Bit 3 of the MLIDModeFlags must be set to indicate whether or not multicast
addressing is supported. This bit is set to 1 if the MLID supports multicast
addressing.

The MLID should enable multicast reception on the LAN adapter and might
also calculate a hash bit that is sent to the LAN adapter. The LAN adapter
could then use this hash bit in its own multicast table to filter out most (but not
all) unwanted packets. If the hardware cannot guarantee multicast filtering,
the MLID must inspect the destination address of the packets to insure the
proper multicast filtering.

NOTE: Adapters most commonly use hashing to filter incoming packets. However,
hashing does not guarantee 100% multicast filtering. This is why the MLID might
need to look up incoming packets in its multicast address table to ensure that the
packet's destination address is enabled.

Token-Ring Multicast Addresses

Token-Ring supports two kinds of group addresses: multicast addresses,
similar to those used by Ethernet; and functional addresses, where individual
bits designate the intended recipient. The format of each of these is as follows:

 multicast: W0 00 VY YY YY YY

0x0FFFFF82 BadParameter Address is not a valid multicast address.

0X0FFFFF89 OutOfResources Number of multicast addresses is greater than allowed.
MLID Control Routines 421

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 functional: C0 00 XY YY YY YZ

! V is a number between 8 and Fh

! W is either 8 or Ch

! X is a number between 0 and 7h

! Y is a number between 0 and Fh

! Z must be an even number

Canonical and Noncanonical Addresses

Noncanonical addresses are significant bit first on the wire. Canonical
addresses are sent with the least significant bit of the most significant byte first
on the wire.

A Token-Ring MLID's default is to send Physical Layer addresses in
noncanonical format. Token-Ring MLIDs are the only MLIDs that can select
between canonical and noncanonical address formats. All other MLIDs must
use canonical format.

NOTE: Even though FDDI uses noncanonical addresses at the Physical Layer, it
presents canonical addresses to the Data-Link Layer.

Specifying Address Formats

Bits 9 and 10 of the configuration table MLIDFlags field specify the different
support mechanisms for multicast filtering and multicast address format.
These bits are only valid if bit 3 of the MLIDModeFlags is set, indicating that
the MLID supports multicast addressing.

The MLID sets bit 10 if it has specialized adapter hardware (such as hardware
that utilizes CAM memory). If this bit is set, DriverMulticastChange receives
a pointer to the multicast address table and the number of addresses in the
table.

NOTE: If an MLID that usually defaults to using functional addresses also supports
group addressing and sets bit 10, it receives both functional and group addresses.

The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the adapter
completely filters group addresses and the MLID does not need to perform any
checking. The MLID can dynamically set and reset bit 9. For example, if the
adapter utilizes CAM memory, but has temporarily run out of memory, the
422 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MLID must temporarily filter the group addresses. In this case, the MLID
would reset bit 9.

Table 54 Possible Combinations of MLID Flags, Bits 9 and 10

See Also

! ODI Supplement: Canonical and Noncanonical Addressing for more
information about the receive monitor.

Bit 10 Bit 9 Meaning

0 0 The format of the multicast address defaults to that of the topology:

 Ethernet => Group Addressing

 Token-Ring => Functional Addressing

 PCN2 => Functional Addressing

 FDDI => Group Addressing

0 1 Illegal value and must not occur.

1 0 A specialized adapter supports group addressing, but the MLID
should filter the addresses.

1 1 A specialized adapter supports group addressing, and the MLID is
not required to filter the addresses.
MLID Control Routines 423

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl3_DeleteMulticastAddress

Deletes a specified node address from the multicast table.

Entry State

EAX

The logical board number.

EBX

Subfunction = 3.

ESI

Pointer to the 6-byte multicast address to delete from the multicast
address list.

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

Has a completion code.

Interrupt

State is preserved.

Preserved

 EBP

Completion Codes (EAX)

0x00000000 Successful The address was successfully deleted, or is no longer in
use.
424 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl3_DeleteMulticastAddress deletes a specified node address from a LAN
adapter's multicast table.

Even though Ctl3_DeleteMulticastAddress receives a logical board number,
the multicast address table is only maintained for each LAN adapter. This
procedure uses the logical board number in order to reference the appropriate
LAN adapter. Be aware, however, that this call affects all logical boards using
the affected LAN adapter.

More than one protocol stack or NLM could add the same multicast address
for the same logical or LAN adapter. For this reason, the MLIID should
maintain a count of how many times a multicast address has been added. If this
counter is greater than 1, Ctl3_DeleteMulticastAddress decrements the
counter and returns a successful completion code. If this counter is 1,
Ctl3_DeleteMulticastAddress removes the address from the table and notifies
the LAN adapter that the address has been removed. In this way, the MLID
will not delete an address that another protocol stack is still using.

If an address is deleted from the table and the LAN adapter supports a hash
table, Ctl3_DeleteMulticastAddress also rewrites the LAN adapter's hash
table to reflect the change. If the deleted address is the last multicast address
contained in the table, this procedure also disables multicast reception on the
LAN adapter, if it is appropriate.

Canonical and Noncanonical Addresses

Noncanonical addresses are addresses sent with the most significant bit first
on the wire. Canonical addresses are sent with the least significant bit of the
most significant byte first on the wire.

Token-Ring MLIDs default is to send Physical Layer addresses in
noncanonical format. Token-Ring MLIDs are the only MLIDs that can select
between canonical and noncanonical address formats. All other MLIDs must
use canonical format.

NOTE: Even though FDDI uses noncanonical addresses at the Physical Layer, it
presents canonical addresses to the Data-Link Layer.

0x0FFFFF81 BadCommnd The board does not support mufticast addressing.

0x0FFFFF85 ItemNotPresent No matching address was found.
MLID Control Routines 425

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Specifying Address Formats

Bits 9 and 10 of the configuration table MLIDFlags field specify the different
support mechanisms for multicast filtering and multicast address format.
These bits are only valid if bit 3 of the MLIDModeFlags is set, indicating that
the MLID supports multicast addressing.

The MLID sets bit 10 if it has specialized adapter hardware (such as hardware
that utilizes CAM memory). If this bit is set, DriverMulticastChange receives
a pointer to the multicast address table and the number of addresses in the
table.

NOTE: If an MLID that usually defaults to using functional addresses also supports
group addressing and sets bit 10, it receives both functional and group addresses.

The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the adapter
completely filters group addresses and the MLID does not need to perform any
checking. The MLID can dynamically set and reset bit 9. For example, if the
adapter utilizes CAM memory, but has temporarily run out of memory, the
MLID must temporarily filter the group addresses. In this case, the MLID
would reset bit 9.

Table 55 Possible Combinations of MLID Flags, Bits 9 and 10

Bit 10 Bit 9 Meaning

0 0 The format of the multicast address defaults to that of the topology:

 Ethernet => Group Addressing

 Token-Ring => Functional Addressing

 PCN2 => Functional Addressing

 FDDI => Group Addressing

0 1 Illegal value and must not occur.

1 0 A specialized adapter supports group addressing, but the MLID
should filter the addresses.

1 1 A specialized adapter supports group addressing, and the MLID is
not required to filter the addresses.
426 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! ODI Supplement: Canonical and Noncanonical Addressing for more
information about the receive monitor.
MLID Control Routines 427

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl4_Reserved

Returns BadCommand.

Entry State

EAX

The logical board number.

EBX

Subfunction = 4.

Return State

EAX

Has completion code.

Completion Codes (EAX)

Remarks

This procedure is reserved and when called must return BadCommand.

0x0FFFFF81 BadCommnd This procedure is no longer used.
428 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl5_MLIDShutdown

Shuts down the LAN adapter.

Entry State

EAX

Has a logical board number.

EBX

Subfunction = 5.

ECX

0 for full shutdown.

Nonzero for partial shutdown

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

Has a completion code.

Interrupt

State is preserved.

Preserved

 EBP

Completion Codes (EAX)

0x00000000 Successful
MLID Control Routines 429

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl5_MLIDShutdown either completely or partially shuts down a LAN
adapter.

Ctl5_MLIDShutdown is passed a logical board number so that it can reference
the LAN adapter to shut down. Be aware that all logical boards that use the
LAN adapter will also be shut down.

If ECX is 0, Ctl5_MLIDShutdown must not only return the hardware interrupt
for the LAN adapter, but also all of the data spaces the logical board allocated
during initialization. Ctl5_MLIDShutdown must also return other tracked
resources allocated from the operating system (polling procedure, timer
events, etc.). The code for this process is equivalent to that found in the
remove MLID procedure. (See the Pseudocode for RemoveMLID in Chapter
19, "Remove MLID Procedure")

If ECX is set to a nonzero value, Ctl5_MLIDShutdown sets the shutdown flag
(MLIDSharingFlags) in the configuration table of each logical board that is
bound to the LAN adapter. It should then set an internal flag indicating that
the LAN adapter is shut down. After setting these flags, Ctl5_MLIDShutdown
disables the board. The MLID can also call ClearHardwareInterrupt to
unhook the LAN adapter's interrupt, but this is not required.

After the MLID has been partially shut down, the only available IOCTLs are:

! Ctl0_LGetMLIDConfiguration

! Ctl1_GetMLIDStatistics

! Ctl5_MLIDShutdown

! Ctl6._MLIDReset

! Ctll5_DriverManagement (whether this is available depends upon the
implementation)

0x0FFFFF81 BadCommnd

0x0FFFFF84 Fail
430 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl6_MLIDReset

Reactivate a partially shutdown LAN adapter.

Entry State

EAX

Has a logical board number.

EBX

Subfunction = 6.

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

Has a completion code.

Interrupt

State is preserved.

Preserved

 EBP

Completion Codes (EAX)

0x00000000 Successful The physical card has been reactivated.

0x0FFFFF84 Fail An error occurred while attempting to initialize the board.
MLID Control Routines 431

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl6_MLIDReset resets or reactivates a LAN adapter partially shut down by
CTL5_MLIDShutdown. This routine might also check the LAN adapter's
hardware to verify that it is functional.

Ctl6_MLIDReset uses the logical board number passed in EAX to reference
the LAN adapter. Be aware that this procedure reactivates all the logical
boards that were partially shut down with Ctl5_MLIDShutdown.

Ctl5_MLIDShutdown checks to see if the LAN adapter is shut down. If the
LAN adapter has been partially shut down, this procedure should clear the
shutdown flag (MLIDSharingFlags) in the configuration table of each logical
board bound to the LAN adapter and then reinitialize the LAN adapter. If the
LAN adapter's interrupt was unhooked as part of the partial shutdown, the
MLID should call SetHardwareInterrupt to re-hook the interrupt.

If the LAN adapter has not been shut down at all, this procedure only needs to
reinitialize the LAN adapter.
432 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl7_Reserved

Returns BadCommand.

Entry State

EAX

The logical board number.

EBX

Subfunction = 7.

Return State

EAX

Has completion code.

Completion Codes (EAX)

Remarks

This procedure is reserved and when called must return BadCommand.

0x0FFFFF81 BadCommnd This procedure is no longer used.
MLID Control Routines 433

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl8_Reserved

Returns BadCommand.

Entry State

EAX

The logical board number.

EBX

Subfunction = 8.

Return State

EAX

Has completion code.

Completion Codes (EAX)

Remarks

This procedure is reserved and when called must return BadCommand.

0x0FFFFF81 BadCommnd This procedure is no longer used.
434 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl9_SetLookAheadSize

Changes the minimum look-ahead size.

Entry State

EAX

The logical board number.

EBX

Subfunction = 9.

ECX

The requested look-ahead size.

Interrupt

cli or sti (could temporarily be sti).

Return State

EAX

Has a completion code.

Interrupt

State is preserved.

Completion Codes (EAX)

Remarks

Ctl9_SetLookAheadSize allows the protocol stack to dynamically change the
MLID's minimum look-ahead size. Protocol stacks call this IOCTL when they
initialize.

0x00000000 Successful

0x0FFFFF82 BadParameter
MLID Control Routines 435

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The MLID compares the request value in ECX to the current look-ahead size
in the configuration table LookAheadSize field.

If the ECX value is greater, the MLID sets the value in the LookAheadSize
field equal to the value in ECX. The default LookAheadSize is 18 bytes.
Maximum value of ECX is 128 bytes.

Byte offset 4Ch through 4Dh in the configuration table is used to store the
look-ahead size in ECX
436 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctll0_MLIDPromiscuousChange

Enables and disables the MLID's promiscuous mode.

Entry State

EAX

The logical board number.

EBX

Subfunction = 10.

ECX

0 to disable promiscuous mode.

If ECX is nonzero:

! Bit 0 is set if MAC frames are to be received

! Bit 1 is set if non-MAC frames are to be received

! Bit 2 is set if Station Management (SMT) frames are to be received
(FDDI only)

! Bit 3 is set if Remote Multicast Frames are to be received

! All bits are set if all frames are to be received

EDX

0 to query bits.

Nonzero to change bits.

Interrupt

Disabled, but could be enabled.

Return State

EAX

Has completion code.

ECX

Current bits.
MLID Control Routines 437

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Interrupt

State is preserved.

Preserved

 EBP and EBX

Completion Codes (EAX)

Remarks

EDX has the same bit definitions as ECX. The value in EDX determines
which modes to change and the value in ECX determines what the modes
should be changed to.

For Example:

ECX = 0A5A5A5A5h (10100101101001011010010110100101b)

EDX = 05h (00000000000000000000000000001001b)

In this example, EDX bits 0 and 3 are set, indicating that MAC frame
reception and Remote Multicast frame reception are to be changed. ECX bit 0
is set, indicating that MAC frame reception is to be turned ON and ECX bit 3
is cleared, indicating that Remote Multicast frame reception is to be turned
OFF. Ctll0_MLIDPromiscuousChange will return the current condition of the
bits. All other bits of ECX are ignored regardless of value. In the event
Ctll0_MLIDPromiscuousChange is called with EDX = 0, there will be no
changes; ECX is totally ignored, and Ctll0_MLIDPromiscuousChange will
return the current status of each bit.

Ctll0_MLIDPromiscuousChange allows the protocol stack monitor function
to enable or disable promiscuous reception. Adapters/MLIDs that can pass all
packets to a monitor function in the Protocol stack are said to have a
promiscuous reception mode. All LAN adapters running in promiscuous
mode should pass up all packets, including bad packets, if possible.

A monitoring function examines all packets sent from or received by a LAN
adapter. If promiscuous mode is supported, the monitoring function can

0x00000000 Successful

0x0FFFFF81 BadCommnd The MLID does not support promiscuous mode.
438 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
request that the adapter enter promiscuous mode. When promiscuous mode is
enabled, the MLID should allow all packets (including bad packets, if
possible) to be passed up to the monitor function. Only one monitor function
at a time can be registered with an MLID.

Be aware that a monitor function could set the configuration table's
MLIDLookAheadSize to a value other than the 18-byte default.

The MLID must maintain a counter for each protocol stack that is using
promiscuous mode. When a protocol stack requests that the MLID enable
promiscuous mode, the MLID should increment the counter. When a protocol
stack requests that the MLID disable promiscuous mode, the MLID should
decrement the counter. When the counters reach 0, the MLID should disable
promiscuous mode on the LAN adapter. This method prevents one protocol
stack from disabling promiscuous mode while other protocol stacks are
depending on it.

If a protocol stack has called Ctll0_MLIDPromiscuousChange, this routine
must call LSLModifyStackFilter, which, in turn, calls the
ProtocolPromiscuousChange IOCTL.

If more than one protocol stack is bound to an MLID operating in promiscuous
mode, a single protocol stack should not be able to change the MLID out of
promiscuous mode. The MLID should only change out of promiscuous mode
if all protocol stacks bound to it have also changed out of promiscuous mode.

IMPORTANT: Enabling promiscuous mode slows system performance.

Setting the Remote Multicast Frames bit causes the HSM to activate all
multicast frame reception. For example, if the adapter utilizes a hash table for
filtering active multicast frames, then the adapter must set the hash table to
accept all multicast frames.

Filtering of active multicast entries must be disabled while this bit is set.
HSMs that can filter, must also disable filtering while this bit is set.

Multiple bits may be set. Each bit adds to the type of frames that are to be
received.
MLID Control Routines 439

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl11_RegisterMonitor

Allows protocol stacks to monitor the packets the adapter is
transmitting.

Entry State

EAX

The logical board number.

EBX

Subfunction = 11.

ECX

0 to deregister.

1 to register.

EDI

Pointer to the transmit monitor routine, or zero (0) to deregister.

ESI

Reserved and must be set to zero.

Interrupt

Can be enabled or disabled.

Return State

EAX

Completion code.

Interrupt

State is preserved.

Completion Codes (EAX)

0x00000000 Successful
440 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctl11_RegisterMonitor should be used only by line monitoring NLMs that
need to see a packet in as near final form as possible before it is transmitted.
All other NLMs should implement a transmit prescan stack instead.

Whether or not the MLID is in promiscuous mode has no effect on the transmit
monitoring.

0x0FFFFF82 BadParameter The board number is invalid.

0x0FFFFF84 Failure The operation failed.

0X0FFFFF89 OutOfResources A monitor is already registered.

0x0FFFFF89 NoSuchDriver The MLID is in a partial shutdown state.
MLID Control Routines 441

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl12_Reserved

Returns BadCommand

Entry State

EAX

The logical board number.

EBX

Subfunction = 12.

Return State

EAX

Has completion code.

Completion Codes (EAX)

Remarks

This procedure is reserved and when called must return BadCommand.

0x0FFFFF81 BadCommnd This procedure is no longer used.
442 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl13_Reserved

Returns BadCommand

Entry State

EAX

The logical board number.

EBX

Subfunction = 13.

Return State

EAX

Has completion code.

Completion Codes (EAX)

Remarks

This procedure is reserved and when called must return BadCommand.

0x0FFFFF81 BadCommnd This procedure is no longer used.
MLID Control Routines 443

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl14_Driver Management

Allows an NLM to manage the MLID

Entry State

EAX

The logical board number.

ESI

Pointer to the management ECB containing the request.

EBX

Subfunction = 14.

EBP

Pointer to the adapter data space.

EBX

Pointer to the frame data space.

Interrupt

cli or sti (could temporarily be sti).

Return State

EAX

The Completion Code.

Interrupt

State is preserved.

Completion Codes (EAX)

0x00000000 Successful The ECB is relinquished.

0x00000001 Successful The ECB is queued.
444 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Ctll4_DriverManagement has been added to allow the MLID to handle all
management requests without queuing them in the send queue. This control
routine also avoids extracting them from the MLID's packet transmission
routine. If the MLID will accept management requests from outside NLMs
(for example, HMI or CSL NLMS), it must provide a driver management
routine.

The MLID verifies that the management request is valid by checking the ECB
ProtocolID field. If the first byte is an ASCII character greater than 40h, it is
a valid management Protocol ID. The MLID then passes the ECB to the hub's
DriverManagement routine, if such a routine is available.

The DriverManagement routine should scan the whole Protocol ID to verify
that the management request is valid before processing it. The Protocol ID
differs depending upon which NLM called the MLID. For example, the
Protocol ID is HUBMGR for Hub management requests.

If the MLID must respond asynchronously to the management request, it
should queue the ECB and return a status of 00000001h in EAX. (If the MLID
is responding asynchronously, it must manage its own queue.) When the
queued request is complete, the MLID calls the event service routine specified
in the ESRAddress field of the ECB as follows:

Example Code

mov esi, PtrToECB ;get ptr to command ECB
push esi ;pass on stack
call [esi].ESRAddress ;call Event Service Routine
add esp, 4 ;clean up stack

Pseudocode for Ctl14DriverManagement

IF ProtocolID is not valid
 return FFFFFF88h

0x0FFFFF81 BadCommnd The MLID does not support driver management.

0x0FFFFF82 BadParameter The first byte of the ECBRProtocolID field is not above 40h.

0x0FFFFF88 NoSuchHandle The Protocol ID is not supported.
MLID Control Routines 445

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ENDIF

FOR each object
IF Domain-ObjectID combination is not supported
 ObjectStatus 2 (not supported)
ELSE IF SET function
 IF legal value
 ObjectStatus = 0 (success)
 set specified object
 ELSE
 ObjectStatus = appropriate error code
 ENDIF
 ELSE
 ObjectStatus - 0 (success)
 ObjectValue - get specified object value
 ENDIF
ENDIF
continue to next object
return 0

446 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl15_Reserved

Returns BadCommand

Entry State

EAX

The logical board number.

EBX

Subfunction = 15.

Return State

EAX

Has completion code.

Completion Codes (EAX)

Remarks

This procedure is reserved and when called must return BadCommand.

0x0FFFFF81 BadCommnd This procedure is no longer used.
MLID Control Routines 447

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl16_RemoveNetworkInterface

Allows an application to remove (unload) a logical board.

Entry State

EAX

The logical board number.

EBX

Subfunction = 16.

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

The completion code.

Completion Codes (EAX)

Remarks

This call should permanently remove from the system all resources associated
with the logical board specified in EAX.

0x00000000 Successful The logical board has been removed.

0x0FFFFF81 BadCommnd The MLID does not support this operation.

0x0FFFFF82 BadParameter The specified board number is invalid.

0x0FFFFF84 Fail The MLID was unable to remove the logical board.
448 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl17_ShutdownNetworkInterface

Allows an application to perform a partial shutdown of a logical board

Entry State

EAX

The logical board number.

EBX

Subfunction = 17.

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

The completion code.

Completion Codes (EAX)

Remarks

This call should place the logical board specified in EAX in a partial shutdown
state. A partial shutdown means that the logical board is in a state where an

0x00000000 Successful The logical board has been successfully shutdown.

0x0FFFFF81 BadCommnd The MLID does not support this operation.

0x0FFFFF82 BadParameter The specified board number is invalid.

0x0FFFFF84 Fail The MLID was unable to shutdown the logical board.
MLID Control Routines 449

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
application can bring the logical board back to a fully functional state by
calling Ctl18_ResetNetworkInterface.
450 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ctl18_ResetNetworkInterface

Allows an application to reset a logical board

Entry State

EAX

The logical board number.

EBX

Subfunction = 18.

Interrupt

cli or sti (could temporarily be sti).

Call

At process time.

Return State

EAX

The completion code.

Completion Codes (EAX)

Remarks

This call will reset the logical board specified in EAX.

0x00000000 Successful The logical board has been successfully reset.

0x0FFFFF81 BadCommnd The MLID does not support this operation.

0x0FFFFF82 BadParameter The specified board number is invalid.

0X0FFFFF84 Fail The MLID was unable to reset the logical board.
MLID Control Routines 451

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Pseudocode for DriverControl

This pseudocode is intended to illustrate a flow of events and does not
necessarily describe optimized code.

Pseudocode

IF subfunction number in EBX is not valid
 set EAX to BadCommand
 ret
ENDIF

WHEN subfunction = 0 (Ctl0_GetMLIDConfiguratfon)
 move pointer to MLID configuration table into ESI set EAX to 0
 ret

WHEN subfunction = 1 (Ctl1_GetMLIDStatitics)
 move pointer to MLID statistics table into ESI set EAX to 0
 ret

WHEN subfunction - 2 (Ctl_AddMulticastAddress)
 IF multicast is not supported
 set EAX to BadCommand ret
 ENDIF

 IF address is NOT a valid multicast address
 set EAX to BadParameter ret
 ENDIF

 IF multicast address already exists in the table
 increment EntryUsed (a counter to track how many times this address
 has been added to this board)
 set EAX to 0 ret
 ENDIF

 IF the number of multicast addresses is greater than the maximum
 multicast addresses allowed
 set EAX to OutOfResources ret
 ENDIF

 add multicast address to table
 increment EntityUsed (a counter to track how many times this address has
 been added to this board)
 notify board of new multicast address
 /* there is a separate EntryUsed counter for eachmulficast entry in the
 mulficast table */
452 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 enable multicasting on the board
 ret

WHEN subfunction = 3 (Ctf3 DeleteMufficast4ddress)
 LOOP until all entries in multicast table have been examined or a match
 is found
 IF address matches a previously added multicast address
 decrement EntryUsed (a counter to track how many times this address
 has been added to this board)
 IF EntryUsed is NOT 0
 /* address is still in use */
 set EAX to 0
 ret
 ENDIF

 decrement multicast address count
 notify board that this multicast address has been removed
 IF the number of multicast addresses for this board is 0
 disable multicast reception on the board
 ENDIF

 set EAX to 0
 ret
 ENDIF

 /* no match found in multicast address tables */
 set EAX to ItemNotPresent
 ENDLOOP
 ret

WHEN subfunction = 4 (Ctl_Reserved)
 set EAX to BadCommand
 ret

WHEN subfunction = 5 (MLIDShutdown)
 IF ECX is 0 (M LID should deregister with the LSL)
 /* complete shutdown */
 set unbinding flag
 call RemoveInstance (see pseudocode for remove MLID procedure)
 set MLIDShutdownState to DOWN (a flag indicating the LAN adapter is
 down)
 set a flag to indicate that the LAN adapter has been completely shut
 down
 ELSE
 /* partial shutdown
 LOOP through all the logical boards using the LAN adapter
 set bit 0 of MLIDSharingFlags to 1
 ENDLOOP
MLID Control Routines 453

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00

 set a flag to indicate the LAN adapter has been partially shut down
 turn off the board
 /* the MLID can optionally call ClearHardwareInterrupt at this time */
 ENDIF
 set EAX to 0
 ret

WHEN subfunction = 6 (Ctl6_MLIDReserved)
 IF board has been completely shut down
 ret
 ENDIF

 IF the board has been partially shut down
 /* if you unhooked the interrupt during Ctl5_MLIDShutdown, call
 SetHardwhereInterrrupt and rehook it */
 LOOP through all the logical boards the LAN adapter supports
 set bit 0 of MLIDSharingFlags to 0
 ENDLOOP

 set a flag to indicate the LAN adapter has been reset and is
 now active
 ENDIF
 initialize the board
 IF
 error initializing board
 call QueueSystemAlert saying the LAN adapter will not reset.
 permanently shut down the adapter.
 set EAX to FFFFFF84h (FAILURE)
 ret
 ENDIF

 set EAX to 0
 ret

WHEN subfunction = 7 (Ctl7_Reserved)
 set EAX to BadCommand
 ret

WHEN subfunction = 8 (Ctl8_Reserved)
 set EAX to BadComman
 ret

WHEN subfunction = 9 (SetLookAheadSize)
 IF
 ECX <= current LookAheadSize
 set EAX to 0
 ret
454 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 ENDIF

 IF
 ECX > 128
 set EAX to BadParameter
 ret
 ENDIF

 set current LookAheadSize = ECX
 LOOP for all logical boards using the LAN adapter
 set ConfigTable.MLIDLookAheadS!ze a CL
 set EAX to 0
 ENDLOOP

 ret

WHEN subfunction = 10 (Ctl10_MLIDPromiscuousChange)
 IF
 DriverSupportsPromiscuousBit not set in configuration table
 set EAX to Failure
 ret
 ENDIF

 IF
 EDX = 0 (Query)
 set ECX to PromFlag
 set EAX to 0
 ret
 ENDIF

 IF
 EDX is not equal to 0 (Enable Promiscuous Mode)
 use EDX to calculate new PromFlag, incrementing one counter per bit
 that is set
 ELSE (Disable Promiscuous Mode)
 use EDX to calculate new PromFlag, decrementing one counter per
 bit that is set
 ENDIF
 LOOP through all logical boards using LAN adapter
 set ESI to PromFlag
 set EAX to board number
 set EBX to 5 (ProtocolPromiscuousChange)
 set ECX to -1
 call LSLControlStackFifter
 ENDLOOP

 set/clear promiscuous mode on hardware using PromFlag
 set EAX to 0
MLID Control Routines 455

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 ret

WHEN subfunction = 11 (Ctl11_RegisterReceiveMonitor)
 IF ECX is not equal to 0 (Enable Receive Monitor)
 IF a receive monitor is already registered
 set EAX to OutOfResources
 ret
 ENDIF

 set ReceiveMonitor = ESI
 set TransmitMonitor = EDI
 ELSE
 IF (ReceiveMonitor is not equal to ESI)or (TransmitMonftor is not
 equal to EAX)
 set EAX to Failure
 ret
 ENDIF

 clear ReceiveMonitor and TransmitMonitor
 ENDIF

 set EAX to 0
 ret

WHEN subfunction = 12 (Ctl12_Reserved)
 set EAX to BadCommand
 ret

WHEN subfunction = 13 (Ctl13_Reserved)
 set EAX to BadCommand
 ret

WHEN subfunction = 14 (Ctl14_DriverManagement)
 IF MLID does not support Driver Management
 set EAX to BadCommand
 ret
 ENDIF

 IF
 [ESI].RProtocolID < 40h
 set EAX to BadPararneter
 ret
 ENDIF

 IF
 [ESI].RProtocoliD does not match a service provided by this
 MLID
 set EAX to NoSuchHandle
456 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 ret
 ENDIF

 call the driver management routine
 IF
 MLID is going to hold onto the ECB
 set EAX to 1
 ret
 ENDIF

 Set EAX to 0
 ret

WHEN subfunction = 15 (Ctl15_Reserved)
 set EAX to BadCommand
 ret

WHEN subfunction = 16 (Ctl16_RemoveNetworkInterface)
 IF
 operation not supported
 set EAX to Badcommand
 ret
 ENDIF

 IF
 logical board is invalid
 set EAX to BadParameter
 ret
 ENDIF

 IF
 logical board is last one associated with an adapter
 set unbinding flag
 call RemoveInstance
 (see pseudocode for Remove MLID Procedure)
 set MLIDShutdownState to DOWN
 (a flag indicating the LAN adapter is down)
 set a flag to indicate that the LAN adapter
 has been completely shutdown
 ELSE
 call LSLUnBindThenDeRegisterMLID
 IF SMP aware
 call LSLRemoveMutexFromInstance
 call FreeSemiPermMemory to give back frame
 data space memory for logical board
 ENDIF
 set EAX to 0
 ret
MLID Control Routines 457

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00

WHEN subfunction = 17 (Ctl17_ShutdownNetworkInterface)
 IF operation is not supported
 set EAX to BadCommand
 ret
 ENDIF

 IF
 logical board is invalid
 set EAX to BadParameter
 ret
 ENDIF

 Set bit 0 of logical board's MLIDSharingFlags to 1
 IF
 logical board is last one associated with an adapter
 set a flag to indicate that the Lan adapter
 has been partially shutdown
 turn off the board
 ENDIF

 set EAX to 0
 ret

WHEN subfunction = 18 (Ctl18_ResetNetworkInterface)
 IF operation is not supported
 set EAX to BadCommand
 ret
 ENDIF

 IF logical board is invalid
 Set EAX to BadParameter
 ret
 ENDIF

 set bit 0 of logical board's MLIDSharingFlags to 0
 IF logical board is first one associated with an adapter
 initialize the adapter
 If error initializing board
 call QueueSystemAlert say the LAN adapter will not reset
 permanently shutdown the adapter
 set EAX to Fail
 ret
 ENDIF

 set a flag to indicate that the LAN adapter
 has been reset and is not active
ENDIF
458 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00

set EAX to 0
ret
MLID Control Routines 459

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
460 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
21 Operating System Support Routines

This appendix describes the support routines that the NetWare operating
system provides to the developer.

The majority of the calls in this appendix are C language routines. The support
routine descriptions show the procedure and parameter names in C syntax.
Each explanation includes the parameters that must be passed on entry into the
routine, the results returned (if any) and an example.

As the examples show, the parameters are placed on the stack in the reverse
order of their definition. The calling module has the responsibility of cleaning
up the stack on return.

A few calls are assembly language routines. Unlike the APIs in the LSL, the
C language operating support routines are not interchangeable with the
assembly language routines. In other words, CancelInterruptTimeCallBack is
an assembly routine and does not exist as a C language routine. Conversely,
AllocateResourceTag is a C language routine and does not exist as an
assembly routine.

As with other NetWare operating system routines written in C, the EBX, EBP,
ESI, and EDI registers are preserved. Be aware that this is not the case for the
assembly language routines.

These calls reside in the NetWare operating system and, therefore, can be
version-specific. This is one of the reasons that we recommend that you use
the LAN driver toolkit to develop an MLID. The LAN driver toolkit provides
an interface to the operating system routines that is not NetWare version-
specific.

The following table provides a summary of the support routines that are
provided for the developer:
Operating System Support Routines 461

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Table 56 Summary of OS Support Routines

Routine Type Name of Routine Summary

Address Conversion
Routines

MapAbsoluteAddressToDataOffs
et

Convert a hardware memory address to a
logical address.

MapDataOffsetToAbsoluteAddre
ss

Convert a logical address to a hardware
memory address.

Event Scheduling
Routines

ScheduleInterruptTimeCallBack Add an event to the interrupt handler's event
list.

RegisterForEventNotification Enable calling of the NLM's event routine.

CancelNoSleepAESProcessEve
nt

Cancel an event that will not put itself to sleep.

CancelSleepAESProcessEvent Cancel an event that may put itself to sleep.

CancelInterruptTimeCallBack Remove an event from the interrupt handler's
event list.

ScheduleNoSleepAESProcessE
vent

Schedule a process that will not put itself to
sleep.

ScheduleSleepAESProcessEven
t

Schedule a process that may put itself to
sleep.

CRescheduleLast (NetWare 3
only)

Schedule a task as the last to be executed.

CYieldWithDelay (NetWare 4
only)

Schedule a task to execute later.

 UnRegisterEventNotification Unhook the event routine.

Hardware
Interaction Routines

DoEndOfInterrupt EOI the PIC

SMPDoEndOfInterrupt EOI the APIC in an SMP system.

BusInterruptEOI EOI the APIC in a NetWare 5 system.

GetHardwareBusType Get the processor's bus type.

DoRealModeInterrupt Performs real mode interrupt such as DOS or
BIOS.
462 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SetHardwareInterrupt Provide the ISR entry point.

SetSymetricInterrupt Provide the ISR entry point in an SMP system.

BusInterruptSetup Provide the ISR entry point in a NetWare 5
system.

ReadRoutine Read firmware.

ReadEISAConfig Read the EISA configuration block.(NetWare
4 only)

DeRegisterHardwareOptions Release hardware options.

RegisterHardwareOptions Reserve hardware options.

ClearHardwareInterrupt Release hardware processor interrupt.

ClearSymetricInterrupt Release hardware processor information in an
SMP system.

BusInterruptClear Release hardware processor information in a
NetWare 5 system.

Memory Routines GetRealModeWorkspace Access memory in real mode.

Alloc (pre-NetWare 5 only) Allocate memory.

NVMAlloc (NetWare 5 only) Allocate virtual memory.

NVMAllocIO (NetWare 5 only) Allocate locked memory in a NetWare 5
system.

AllocNonMovableCacheMemory
(NetWare 3 only)

Allocate memory on 4KB page boundary.

AllocateMappedPages (NetWare
4 only)

Allocate memory on 4KB page boundaries and
memory below 16MB.

AllocBufferBelowl6Meg
(NetWare 3.1x only)

Allocate memory for 24-bit host adapters.

FreeBufferBelowl6Meg (NetWare
3.1x only)

Free memory allocated with
AllocBufferBelowl6Meg.

ReadPhysicalMemory (NetWare
4 only)

Read memory outside NLM's domain.

Routine Type Name of Routine Summary
Operating System Support Routines 463

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Free (NetWare 4 only) Return allocated memory.

NVMFree (NetWare 5 only) Return memory allocated with NMVAlloc.

DeAllocateMappedPages
(NetWare 4 only)

Return memory allocated with
AllocateMappedPages.

WritePhysicalMemory (NetWare
4 only)

Write to memory outside NLMs domain.

FreeNonMovableCacheMemory.
(NetWare 3 only)

Return memory allocated with
AllocNonMovableCacheMemory.

NLM Interaction
Routines

AllocateResourceTag Allocate an operating system resource tag.

BindProtocolToBoard Bind a protocol stack to a board.

CFindResourceTag Obtain a resource tag that has already been
allocated.

AddPollingProcedureRTag Register a polling procedure.

RemovePollingProcedure Remove a polling procedure.

Timer Routines GetCurrentTime Determine elapsed time.

Operating System
Interaction Routines

CVSemaphore Clear Semaphore.

GetServerConfigurationType Determine which operating system or SFT III
engine is operating.

OutputToScreen Display a message on the monitor.

GetFileServerMajorVersionNumb
er (NetWare 4 only)

Get the major version number of the operating
system.

GetFileServerMinorVersionNumb
er (NetWare 4 only)

Get the Minor version number of the operating
system.

CPSemaphore Lock semaphore.

QueueSystemAlert (NetWare 3
only)

Notify the system of a problem.

NetWareAlert (NetWare 4 only) Notify the system of a problem.

Routine Type Name of Routine Summary
464 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ParseDriverParameters Parse command line parameters.

ImportPublicSymbol (NetWare 4
and higher)

Dynamic (run time) import a public symbol.

Routine Type Name of Routine Summary
Operating System Support Routines 465

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
AddPollingProcedureRTag

Registers a polling procedure. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

int AddPollingProcedureRTag (
 void (*Procedure) (void),
 struct ResourceTagStructure *Rtag);

Parameters

Procedure

(IN) Pointer to a polling procedure that is defined by the MLID. This
polling procedure will be called at process time.

RTag

(IN) The resource tag acquired in an earlier call to AllocateResourceTag.
This resource tag was given to the polling procedure and is used only as
a pointer to pass to other routines.

Completion Codes (EAX)

Remarks

LSLAddPollingProcedure should be used if it is available, instead of
AddPollingProcedureRTag.

NOTE: Call this routine only at process time.

The MLID calls AddPollingProcedureRTag in order to register its polling
procedure. The MLID normally only calls this routine during initialization.

0x00000000 Successful The polling procedure was added.

Nonzero Failure The polling procedure was not added.
466 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
After this routine has completed successfully, the operating system
continuously calls the procedure specified by the Procedure parameter
whenever the server has no other work to do. However, because the specified
procedure is not guaranteed to be called within a certain period of time (the
operating system may have other work to perform), we strongly recommend
that the MLID also include an interrupt backup procedure that allows it to get
immediate attention from the operating system.

You should only add one polling procedure per MLID. That is, a single polling
procedure should service all the LAN adapters of the same type in the server.

The polling procedure specified as a parameter will be called at process time,
with the interrupts disabled and no parameters passed to it. The polling
procedure can enable interrupts and destroy all registers.

Example

push PollResourceTag ;Poll tag
push OFFSET MyDriverPoll ;Add poll to OS
call AddPollingProcedureRTag ;Tell OS to add poll
add ESP, 4 * 2
or EAX,EAX
jnz ErrorAddingPollProcedure
Operating System Support Routines 467

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Alloc

Allocates memory. Generally used byProtocol stacks and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void *Alloc (
 LONG numberOfBytes,
 struct ResourceTagStructure *Rtag);

Parameters

numberOfBytes

(IN) The amount of memory (in bytes) to be allocated.

RTag

(IN) The previously obtained resource tag for the allocated memory. The
signature to get this tag is "TRLA". For NetWare 5, use "IRLA" to
allocate I/O memory less than 4KB.

Completion Codes (EAX)

NOTE: Call this routine at either process or interrupt time. Interrupts can be any
state and will remain unchanged.

Remarks

Alloc obtains memory for any protocol stack or MLID requirements, such as
IOConfigurationStructures or special buffers. Alloc receives the amount of
memory to be allocated and returns a pointer to the allocated memory. This

Nonzero Successful EAX contains a pointer to the allocated memory.

0 Fail The operating system did not allocate memory.
468 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
routine does not zero or initialize the memory; this must be done by whichever
entity (protocol stack or MLID) called it.

In NetWare 4, the memory returned by Alloc starts on a dword boundary, is
physically contiguous, may not be paged out, and is not guaranteed to exist
below 16MB.

This call can be used in NetWare 5 to allocate I/O memory less than 4KB,
using the RTag signature "IRLA".
Operating System Support Routines 469

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
AllocateMappedPages

Allocates memory on 4KB page boundaries and also memory below
the 16MB boundary. Generally used by MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 and 5 only

Syntax

void *AllocateMappedPages (
 LONG NumberOf4KPages,
 LONG SleepOKFlag,
 LONG Belowl6MegFIag,
 struct ResourceTagStructure *Rtag,
 LONG *SleptFlag);

Parameters

NumberOf4KPages

(IN) Has the number of 4KB pages to allocate.

SleepOKFlag

(IN) Set to any nonzero value to allow this call to let other processes
execute temporarily. If the Belowl6MegFlag is set to 1, the SleepOKFlag
flag must also be set. Otherwise, setting this flag is optional. However,
setting this flag is advantageous because it allows the operating system to
rearrange pages if it is unable to find a continuous buffer.

Below16MB

(IN) Set to 1, if the pages must be physically below the first boundary.
This flag is usually only set for intelligent 24-bit adapters that access
memory through a bus-mastering device.

RTag

(IN) Has the resource tag previously obtained by the MLID for memory
allocation. If the Belowl6MegFlag is set to 1, the MLID must use the
CacheBelowl6Meg memory signature to get the RTag. Otherwise, the
MLID uses the same resource tag as it used for the Alloc routine.
470 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SleptFlag

(IN) Has a pointer to a dword to be filled in by this procedure. This dword
will act as a flag that indicates if the call went to sleep. If this flag is not
needed, set it to 0.

Completion Codes (EAX)

Remarks

AllocateMappedPages allocates memory on 4KB (page) boundaries and,
optionally, obtains the memory below the 16MB boundary. We recommend
that the MLID uses this procedure instead of AllocBufferBelowl6Meg. The
MLID must use DeAllocateMappedPages to return this buffer when it shuts
down.

NOTE: Call this routine at process time only. Interrupts can be in any state, but
they will not be enabled.

NOTE: In NetWare 5, AllocateMappedPages is the only way to allocate memory
below 16MB.

If this call is used to allocate memory below the 16MB boundary, the default
number of cache buffers below 16MB is limited to 16 buffers or 64KB of total
memory.

Example

push 0 ;Null slept flag
push AllocRTag ;resource tag
push 0 ;no 16 meg boundary concerns
push 1 ;call can sleep if it must
push (size TableStruct + 4095) SHR 12 ;Round up and convert to pages
call AllocateMappedPages ;allocate memory
add esp, (5*4) ;clean up stack
or eax, eax ;buffer returned?
je ErrorAllocatingPages ;jump if not
mov TablePointer, eax ;save pointer

Nonzero Successful EAX contains a pointer to the allocated memory.

0 Fail The operating system did not allocate memory.
Operating System Support Routines 471

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! DeAllocateMappedPages
472 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
AllocateResourceTag

Allocates an operating system resource tag. Generally used by
Protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

struct ResourceTagStructure *AllocateResourceTag (
 struct LoadDefinitionStructure *LoadRecord,
 void *ResourceDescriptionString,
 LONG ResourceSignature);

Parameters

LoadRecord

(IN) Has a pointer to the loadable module handle. The handle is passed on
the stack to the Initialization routine. The LoadDefinitionStructure is not
modified by either the MLID or the protocol stack.

ResourceDescriptionString

(IN) Has a pointer to a null-terminated descriptive text string. for
example: StackRTagDescriptionMessage db 'ACME Protocol Stack' 0).

ResourceSignature

(IN) Has a value identifying a specific resource type.

ResourceTagStructure

(OUT) Declares a pointer to a ResourceTagStructure. The NLM does not
modify any fields of this structure. It uses this pointer as a parameter
called *RTag and passes it to other routines.

Completion Codes (EAX)

Nonzero Successful EAX contains a resource tag identifying the specified entry
type.
Operating System Support Routines 473

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

AllocateResourceTag allocates an operating system resource tag for a specific
category. Some operating system calls use this tag as the tracking identifier to
track system resources. In order to get resources, the protocol stacks and the
MLIDs must acquire an operating system resource tag for each different type
of resource they need allocated.

NOTE: Call this routine only at process time, as it might suspend the process and
change the processor state.

Each type of resource has a unique tag. The following resource signatures
must be used to identify each resource tag type:

0 Fail The operating system did not allocate a resource tag. The
initialization routine should be aborted.

AESProcessSignature equ 'PSEA'

AllocSignature equ 'TRLA'

AllocIOSignature equ 'IRLA'

CacheBelow16MegMemorySignature equ '61BC'

CacheNonMovableMemorySignature equ 'TMNC'

ECBSignature equ 'SBCE'

EventSignature equ 'TNVE'

InterruptSignature equ 'PTNI'

IORegistrationSignature equ 'SROI'

LSLDefauftStackSignature equ 'DLSL'

LSLPreScanStackSignature equ 'PLSL'

LSLStackSignature equ 'SLSL'

NWManageObjectSignature equ 'EJBO'

MLIDSignature equ 'DILM'

LSLTxPreScanStackSignature equ 'TLSL'
474 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Example

push AllocSignature ;Resource signature
push OFFSET SPermMemoryRTagMessage ;Resource message
push [ESP + MyHandle + (2 * 4)] ;Module handle
call AllocateResourceTag ;Allocate a tag
add ESP, (3 - 4) ;Restore stack
or EAX, EAX ;Allocation successful?
jz ErrorAllocatingRTag ;Exit init if not
mov SemiPermMemoryRTag, EAX ;Store pointer to tag

PollingProcedureSignature equ 'RPLP'

TimerSignature equ 'RMIT'
Operating System Support Routines 475

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
AllocBufferBelow16Meg

Allocates memory for MLIDs that drive 24-bit host adapters. Generally
used by MLIDs.

Language: C Language

NetWare Operating System: NetWare 3.lx only

Syntax

LONG AllocBufferBelow16meg (
 LONG requestedsize,
 LONG *actualsize,
 struct ResourceTagStructure *Rtag);

Parameters

requestedSize

(IN) Has the number of contiguous bytes of memory requested.

ActualSize

(IN) Has a pointer to a location to place the actual number of allocated
bytes of memory. This parameter may be NULL if it is not needed.

Rtag

(IN) Resource tag previously required by the MLID for the memory. The
MLID called ResumeTag with CacheBelowl6MegMemorySignature to
get this resource tag.

Completion Codes (EAX)

Nonzero Successful EAX contains a pointer to the allocated memory.

0 Fail Memory could not be allocated.
476 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

Only MLIDs that support 24-bit host adapters running in machines with more
than 16MB of memory call AllocBufferBelowl6Meg to allocate memory. All
other MLIDs call Alloc to allocate required memory.

NOTE: Call this routine only at process time.

AllocBufferBelowl6Meg allocates memory so that the MLID can do I/O
operations to or from intermediate buffers below 16MB. The MLID can then
copy the data to or from the actual request buffer when it is above the 16MB
boundary.

This function returns a pointer in EAX to the allocated buffer. If the function
does not allocate any memory, it returns 0. The allocated memory is not
initialized.

IMPORTANT: Use these buffers sparingly. The pool of buffers below 16MB is
defaulted to 16. The size of each allocated buffer is equal to the cache buffer size.
The default cache buffer size on a server is 4KB. For example, if all 16 buffers are
allocated using the default cache buffer size, 64KB of memory is allocated. The
number of buffers in the pool can be set in the STARTUP.NCF file (up to a
maximum of 200).

Example: Set reserved buffers below 16MB = 32

NOTE: MLIDs developed for NetWare 3.lx services must use this call in order to
allocate buffers below 16MB. MLIDs written for NetWare 4 servers should call
AllocateMappedPages.

Example

push MemBelowl6RTag ;pointer to resource tag
push OFFSET ActualSize ;amount of memory acquired
push RequestedSize ;number of bytes required
call AllocBufferBelowl6Meg
add esp, 3*4 ;adjust stack pointer
or eax, eax ;check if successful
jz ErrorAllocatingMemory ;jump if error
mov MyBufferPtr, eax ;save pointer to allocated memory

See Also

! Alloc

! AllocateMappedPages
Operating System Support Routines 477

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
AllocNonMovableCacheMemory

Allocates memory for MLIDs that need memory starting on a 4KB page
boundary. Generally used by protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: NetWare 3 only

Syntax

void *AllocNonMovableCacheMemory (
 LONG size,
 LONG *actualsize,
 struct ResourceTagStructure *Rtag);

Parameters

size

(IN) Contains the size of the memory to be allocated.

actualsize

(IN) Has a pointer to a variable that this routine will fill in with the actual
size. Set this variable to zero if it is not needed.

RTag

(IN) Resource tag previously acquired by the MLID for the memory. The
MLID called AllocateResourceTag with
CacheNonMovableMemorySignature to obtain this resource tag.

Completion Codes (EAX)

None.

Remarks

When the MLID shuts down, it must use FreeNonMovableCacheMemory to
return the buffer.

NOTE: Call this routine only at process time.
478 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Example

mov eax, CacheNonMovableRTag ;EAX ->resource tag
mov ecx, [eax+4] ;EAX->module handle
ord word ptr[ecx+30h], 80000000h ;sets the Needs 4K Page bit
push eax ;resource tag pointer
push ActualSize ;*ActualSize
push [ebp].BufferSize ;Size of memory
call AllocNonMovableCacheMemory
add esp, 3*4 ;clean up the stack
cmp ActualSize, 0
je ErrorAllocating4KBuffer ;jump if unable to allocate memory

See Also

! FreeNonMovableCacheMemory
Operating System Support Routines 479

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
BindProtocolToBoard

Binds the protocol stack to the board.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG BindProtocolToBoard (
 LONG ProtocolNumber,
 LONG BoardNumber,
 BYTE *Config);

Parameters

ProtocolNumber

(IN) Has the protocol stack ID.

BoardNumber

(IN) Has the logical board number of the virtual MLID associated with
the IOEngine.

Config

(IN) Has a pointer to a string containing the board's protocol
configuration information.

Completion Codes (EAX)

0x00000000 Successful The specified protocol stack was bound to the specified
board.

0x0FFFFF82 BadParameters No protocol stack with the specified ProtocolNumber has
been registered with the LSL.

0x0FFFFF83 DuplicateEntry The specified protocol stack Is already bound to the
specified board.

0x0FFFFF84 Fail The specified protocol stack failed to bind to the specified
board.
480 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

BindProtocolToBoard binds the protocol stack to the logical board.

This function calls the protocol stack's Ctl2_Bind entry point which calls
LSLBindStack to make the connection.

NOTE: If you are writing a NetWare NLM that runs above the protocol stack layer
and you need to bind a protocol stack to a board, use this function because it is
easier to use and implement in the SFT III environment.

See Also

! Ctl2_Bind

! LSLBindStack

! CLSLBindStack

0x0FFFFF85 ItemNotPresent No protocol stack with the specified ProtocolNumber has
been registered with the LSL, but protocol stacks with a
higher ProtocolNumber might exist.

0x0FFFFF86 NoMoreltems No protocol stack with the specified ProtocolNumber has
been registered with the LSL, and no protocol stacks with a
higher ProtocolNumber exist.

0x0FFFFFFF If SFT III is implemented and this code is returned, one of
the following has happened: the specified protocol stack is
already bound to the specified board, or there was
insufficient memory to queue the bind request to the other
MSEngine.
Operating System Support Routines 481

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
BusInterruptClear

Unhooks a service routine from a bus interrupt. If there are no other
service routines hooked to the interrupt, the kernel will mask the
associated interrupt hardware, preventing additional interrupts from
occurring.

Language: C Language

NetWare Operating System: NetWare 5 only

Thread Context: Non-Blocking

Syntax

#include <mpklib.h >

UINT BusInterruptClear (
 INTTAG interruptTag);

Parameters

interruptTag

(IN) The tag returned by BusInterruptSetup. Specifies the interrupt on
which the operation is to be performed.

Completion Codes (EAX)

0 ISUCCESS

5 IERR_HARDWARE_FAILURE

20 IERR_INVALID_INTTAG
482 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
BusInterruptEOI

Writes the EOI command to the interrupting hardware allowing another
interrupt at the same or lower priority to occur.

Language: C Language

NetWare Operating System: NetWare 5 only

Thread Context: Non-Blocking

Syntax

#include <mpklib.h>

UINT BusInterruptEOI (
 INTTAG interruptTag);

Parameters

interruptTag

(IN) The tag returned by BusInterruptSetup. Specifies the interrupt on
which the operation is to be performed.

Completion Codes (EAX)

0 ISUCCESS

5 IERR_HARDWARE_FAILURE

20 IERR_INVALID_INTTAG
Operating System Support Routines 483

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
BusInterruptSetup

Associates a system bus interrupt with a service routine to be called at
interrupt time. This function also unmasks the associated interrupt
hardware at the system level.

Language: C Language

NetWare Operating System: NetWare 5 only

Thread Context: Non-Blocking

Syntax

#include <mpklib.h>

UINT BusInterruptSetup (
 UINT *interruptPtr,
 UINT (*serviceRoutine)(void *serviceRoutineParameter),
 void *serviceRoutineParameter,
 UINT32 flags, UINT32 hardwareInstanceNumber,
 struct ResourceTagStructure *resourceTag,
 INTTAG *interruptTagPtr);

Warning

It is possible for an interrupt to occur before BusInterruptSetup has returned.
It is the responsibility of the caller to be prepared for an interrupt as soon as
this function is invoked.

Parameters

interruptPtr

(IN) The address of a UINT which contains the default interrupt
assignment for the device, 0-15 for PC/AT systems. For devices which
are NBI aware the OS will use the hardwareInstanceNumber to gather
additional information about the device, so that if the system supports an
alternate interrupt route the hardware corresponding to the new interrupt
may be enabled, in which case the UINT pointed to by interruptPtr will
contain the new interrupt assignment.
484 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
serviceRoutine

(IN) Points to the start address of the service routine to be called at
interrupt time. The service routine is defined as follows.

UINT serviceRoutine(void * serviceRoutineParameter);
0 - INTERRUPT_SERVICED
1 - INTERRUPT_NOT_SERVICED

return

(IN) If the interrupt is not serviced the OS calls the next service routine
on a shared interrupt. If there are no other shared interrupts to call a
spurious interrupt event is recorded.

serviceRoutineParameter

(IN) A unique parameter to be passed on the stack to the serviceRoutine
when an interrupt occurs. The use of this parameter by the service routine
is not specified. However, in the case where there is a common service
routine for a number of device/drivers the serviceRoutineParameter
might be used to quickly identify the correct device to service. If a
common serviceRoutine is used multiple times on a shared interrupt, the
serviceRoutineParameter must be unique for each occurrence of the
serviceRoutine.

flags

(IN)

BitValue Meaning

0 0=Do not share this interrupt with other devices or service routines.

1=Set this bit if the interrupt can be shared.

1-28 Reserved (Set to 0)

29 0=The interrupt service routine is not MP aware. Deliver this interrupt to the boot
processor only.

1=The interrupt service routine is MP aware. This interrupt may be delivered to any
processor as the OS sees fit.

30 0 =Do not save the floating point state before servicing this interrupt.

1=Save floating point state before servicing this interrupt. Set this bit if the interrupt
service routine changes the state of the floating point unit.
Operating System Support Routines 485

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
hardwareInstanceNumber

(IN) A unique number that NetWare Bus Interface (NBI) aware drivers
use. If the device is not NBI aware hardwareInstanceNumber must be set
to -1 or 0xFFFFFFFF indicating that this is not an NBI aware device. (For
additional information on hardwareInstanceNumber please refer to the
NBI specification.).

Legacy ISA devices use -1 for the hardwareInstanceNumber.

resourceTag

(IN) The caller's resource tag for this interrupt obtained by calling
AllocateResourceTag() with the resource signature equal to
InterruptSignature, 0x50544E49.

interruptTagPtr

(IN) The address of an INTTAG.

interruptPtr

(OUT) On return the UINT pointed to by interruptPtr contains the
interrupt assignment for the device.

interruptTagPtr

(OUT) On return the INTTAG pointed to by interruptTagPtr contains a
tag or handle for the interrupt which is used in subsequent calls to bus
interrupt related APIs.

Completion Codes (EAX)

31 Reserved (Set to 0)

0 ISUCCESS

1 IERR_INVALID_PARAMETER

2 IERR_INTERRUPT_NOT_SHAREABLE

3 IERR_SHARING_LIMIT_EXCEEDED

BitValue Meaning
486 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
4 5IERR_REAL_MODE_SHARING_LIMIT_EXCEEDED

5 IERR_HARDWARE_FAILURE

6 IERR_HARDWARE_ROUTE_NOT_AVAILABLE

9 IERR_INTERRUPT_IS_SHAREABLE

21 IERR_INVALID_INTERRUPT

22 IERR_INVALID_FLAGS

23 IERR_INVALID_HARDWARE_INSTANCE_NUMBER

24 IERR_INVALID_RESOURCE_TAG

41 IERR_INTERRUPT_NOT_ALLOCATED
Operating System Support Routines 487

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CancelInterruptTimeCallBack

Cancels a callback event. Generally used by Protocol stacks and
MLIDs.

Language: Assembly Language

NetWare Operating System: Not version specific

Entry State

EDX

Has a pointer to the timer node to be canceled.

Interrupts

Are disabled.

Return State

Interrupts

Preserved and never changed.

Preserved

 All registers but EDI and ESI.

Completion Codes (EAX)

None.

Remarks

CancelInterruptTimeCallBack cancels a callback event that the protocol stack
previously scheduled using ScheduleInterrupTimeCallBack. This procedure
removes the specified timer node from the list of events that the timer interrupt
handler will call.

Remember that ScheduleInterruptTimeCallBack must be rescheduled after
every callback, and CancelInterruptTimeCallBack is usually only used to
cancel a callback if the protocol stack or MLID is unloaded before the callback
occurs.
488 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Example

push ESI If needed to be preserved
push EDI If needed to be preserved
cli
mov EDX, OFFSET My TimerNode Pointer to TimerDataStructure
call CancelInterruptTimeCallBack Cancel TimerCallBack
sti
pop EDI Restore to original value
pop ESI Restore to original value

See Also

! ScheduleInterruptTimeCallBack
Operating System Support Routines 489

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CancelNoSleepAESProcessEvent

Cancels a no-sleep AES event. Generally used by Protocol stacks and
MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void CancelNoSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Has a pointer to the AESProcessEventStructure to be canceled.

Completion Codes (EAX)

None.

Remarks

NOTE: Call this routine at either process or interrupt time.

CancelNoSleepAESProcessEvent cancels the no-sleep
AESProcessEventStructure pointed to by EventNode.
CancelNoSleepAESProcessEvent removes the specified AES event from the
list of events that is to be called by the AES no-sleep process.

Remember that ScheduleNoSleepAESProcessEvent must be rescheduled
every time it calls the specified process, and CancelNoSleepAESProcessEvent
is usually only used to cancel a process event if the protocol stack or MLID is
unloaded before the process executes.

Interrupts can be in any state when this routine is called, and the interrupt state
is preserved when the routine returns.

The AESProcessStructure is defined below:

struct AESProcessStructure struc
490 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ALink dd ? ;used by the operating system.
AWakeUpDelayAmount dd ? ;filled out by caller, won't be changed
AwakeUpTime dd ? ;used by operating system
AProcessToCall dd ? ;filled out by caller, won't be changed
ARTag dd ? ;filled out by caller, won't be changed
AOldLink dd ?;used by operating system
AESProcessStructure ends

IMPORTANT: The AESProcessStructure must be in static memory and available
long-term.

Example

cli
push OFFSET MyAESEventStructure ;Address of AES structure
call CancelNoSleepAESProcessEvent ;No further event callbacks
add ESP, 4 ;Adjust stack pointer
sti

See Also

! ScheduleNoSleepAESProcessEvent
Operating System Support Routines 491

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CancelSleepAESProcessEvent

Cancels a sleep AES event. Generally used by Protocol stacks and
MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void CancelSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Has a pointer to an AESProcessStructure to be canceled.

Completion Codes (EAX)

None.

Remarks

NOTE: Call this routine at process time or interrupt time.

CancelSleepAESProcessEvent cancels the sleep AESEventStructure pointed
to by EventNode. The specified event is removed from the list of events that
is to be called by the AES sleep process.

Remember that ScheduleSleepAESProcessEvent must be rescheduled, every
time it calls the specified process, and CancelSleepAESProcessEvent is
usually only used to cancel a process event if the protocol stack or MLID is
unloaded before the process executes.

The interrupts can be in any state when this routine is called. The interrupt
state is preserved.

IMPORTANT: The AESProcessStructure must be in static memory and available
long-term.
492 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Example

cli
push OFFSET AESEventStructure ;Address of AES structure
call CancelSleepAESProcessEvent ;No further event callbacks
add ESP, 1*4 ;Adjust stack pointer
sti

See Also

! ScheduleSleepAESProcessEvent

! CancelNoSleepAESProcessEvent
Operating System Support Routines 493

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CFindResourceTag

Obtains a predefined resource tag. Generally used by Protocol stacks
and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

struct ResourceTagStructure *CfindReSourceTag (
 struct LoadDefinitionStructure *LoadRecord,
 LONG *ResourceSignature);

Parameters

LoadRecord

(IN) Has a pointer to the module handle. The LoadDefinitionStructure is
not modified by either the MLID or the protocol stack. This is a pointer
that is passed to other routines.

ResourceSignature

(IN) Has the value identifying a specific resource type.

ResourceTagStructure

(OUT) Declares a pointer to a ResourceTagStructure. The NLM does not
modify any fields of this structure. It uses this pointer as a parameter
called RTag and passes it to other routines.

Completion Codes (EAX)

Nonzero Successful EAX contains a pointer to the specified resource tag.

0 Fail The resource tag could not be found.
494 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

CFindResourceTag gets a resource tag that has been defined using
AllocateResourceTag.

Example

push LSLStackSignature ;Resource signature
push [ESP + MyHandle + 4] ;Module handle
call CfindResourceTag ;Find the Rtag
add ESP, 2 * 4
or EAX, EAX ;Was it found?
jnz Don'tNeedToAllocateResourceTag ;Allocate a resource tag

See Also

! AllocateResourceTag
Operating System Support Routines 495

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ClearHardwareInterrupt

Releases an interrupt allocated by SetHardwareInterrupt. Generally
used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG ClearHardwareInterrupt (
 LONG hardwareInterruptLevel,
 void (*InterruptProcedure) (void));

Parameters

hardwareInterruptLevel

(IN) Has the IRQ level of the hardware interrupt.

InterruptProcedure

(IN) Has a pointer to the interrupt procedure.

Completion Codes (EAX)

Remarks

NOTE: Call this routine only at process time. Interrupts must be disabled.

ClearHardwareInterrupt releases a processor hardware interrupt that was
previously allocated by SetHardwareInterrupt for a LAN adapter.

NOTE: SMP-aware MLIDs should use ClearSymmetricInterrupt instead of this call.

0x000000000 Successful The hardware interrupt was removed successfully.

Nonzero Fail The routine did not clear the interrupt vector, either because
the parameters were invalid or because it could not find the
vector.
496 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MLIDs usually call ClearHardwareInterrupt either when they are unloading
or when their initialization procedure fails after an interrupt has been set.

Example

cli
push OFFSET MyInterruptHandler ;interrupt entry
push InterruptLevel ;interrupt number
call ClearHardwareInterrupt
add esp, (2 * 4) ;restore stack sti

See Also

! SetHardwareInterrupt

! ClearSymmetricInterrupt

! SetSymetricInterrupt
Operating System Support Routines 497

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ClearSymmetricInterrupt

Releases an interrupt allocated by SetSymmetricInterrupt. Generally
used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG ClearSymmetricInterrupt (
 LONG hardwareInterruptLevel,
 void (*ServiceRoutine));

Parameters

hardwareInterruptLevel

(IN) The IRQ level of the hardware interrupt.

ServiceRoutine

(IN) Pointer to the interrupt procedure.

Completion Codes (EAX)

Remarks

NOTE: Call this routine only at process time. Interrupts must be disabled.

SMP aware MLIDs use this routine to release an interrupt allocated with
SetSymmetricInterrupt.

In the NetWare SMP environment, MLIDs must use SetSymmetricInterrupt
and ClearSymmetricInterrupt in place of SetHardwareInterrupt and
ClearHardwareInterrupt.

zero Successful The hardware interrupt was removed successfully

Nonzero Fail The routine did not clear the interrupt vector, either because
the parameters where invalid or because it could not find the
vector.
498 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NetWare 5 uses BusInterruptSetup and BusInterruptClear.

See Also

! SetSymmetricInterrupt

! SetHardwareInterrupt

! ClearHardwareInterrupt

! BusInterruptSetup

! BusInterruptClear
Operating System Support Routines 499

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CPSemaphore

Locks the semaphore. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void CPSemaphore (
 semaphoreNumber);

Parameters

semaphoreNumber

(IN) Pointer to the semaphore in the GetRealModeWorkSpace structure.

Completion Codes (EAX)

None.

Remarks

IMPORTANT: The function that calls CPSemaphorehas been superceded by the
NBI function: GetCardConfigInfo. Therefore, this function will not be supported in
future releases of NetWare and should not be used any longer.

The MLID uses CPSemaphore to lock the real mode workspace when making
an EISA BIOS call (see Appendix E, "Writing Protocol Stacks for NetWare
SFT III").

Call this routine with interrupts disabled. Interrupts must remain disabled.

MLIDS for NetWare 4 servers should call ReadEISAConfig to read the EISA
configuration.

This function should not be used to handle critical sections local to the MLID.

Example

push WorkSpaceSemaphore ;load semaphore
500 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
call CPSemaphore ;lock workspace for our use
add esp, (2*4)

See Also

! CVSemaphore

! ReadEISAConfig

! Appendix E, "Writing Protocol Stacks for NetWare SFT III"
Operating System Support Routines 501

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CRescheduleLast

Schedules a task to be executed last. Generally used by Protocol
stacks and MLIDs.

Language: C Language

NetWare Operating System: NetWare 3 only

Syntax

void CRescheduleLast (void);

Parameters

None

Completion Codes (EAX)

None.

Remarks

NOTE: Call this routine only at process time, as it suspends the process.

CRescheduleLast places a task last on the list of active tasks to be executed.
This causes the active task to relinquish control of the CPU and allow other
processes to execute. Processes that occupy the CPU for a significant amount
of time should use CRescheduleLast to allow the vital server processes to
function. CRescheduleLast is normally used in conjunction with
ScheduleSleepAESProcessEvent and should only be used in the initialization
procedure or the removal procedure. Example

Example

call CReschaduleLast ; will regain control some undefined time later
502 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CYieldWithDelay

Reschedules the calling task to execute later to allow other tasks to
execute first. Generally used by protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 only

Syntax

void CYieldWithDelay (void);

Parameters

None.

Completion Codes (EAX)

None.

Remarks

NOTE: Call this routine only at process time, as it suspends the process.

CYieldWithDelay places a task last on the list of active tasks to be executed.
This causes the active task to relinquish control of the CPU and allow other
processes to execute. Processes that occupy the CPU for a significant amount
of time should use CYieldWithDelay to allow the vital server processes to
function. CYieldWithDelay is normally used in conjunction with
ScheduleSleepAESProcessEvent and should only be used in the initialization
procedure or the removal procedure. Example

Example

call CYieldWithDelay ; will regain control some undefined time later
Operating System Support Routines 503

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CVSemaphore

Unlocks the semaphore. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void CVSemaphore (
 semaphoreNumber);

Parameters

semaphoreNumber

(IN) Pointer to the semaphore.

Completion Codes (EAX)

None.

Remarks

IMPORTANT: The function that calls CVSemaphorehas been superceded by the
NBI function: GetCardConfigInfo. Therefore, this function will not be supported in
future releases of NetWare and should not be used any longer.

The MLID calls CVSemaphore to clear the semaphore it set with
CPSemaphore. This routine returns with interrupts enabled.

Normally, the MLID uses CVSemaphore when it has finished making an
EISA BIOS call, and it can allow other processes to use the workspace (see
Appendix E, "Writing Protocol Stacks for NetWare SFT III").

Example

push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;Unlock workspace
call esp,(1*4)
504 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
DeAllocateMappedPages

Returns memory allocated with AllocateMappedPages . Generally
used by MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 only

Syntax

void DeAllocateMappedPages (
 void *Memory);

Parameters

Memory

(IN) Pointer to the buffer to free.

Completion Codes (EAX)

None.

Remarks

DeAllocateMappedPages returns memory buffers that were previously
allocated on 4KB page boundaries using AllocateMappedPages.

Example

push TablbPdinter ;Pointer to buffer
call DeAllocateMappedPages ;deallocate memory
add esp, 1*4 ;clean up stack

See Also

! AllocateMappedPages
Operating System Support Routines 505

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
DeRegisterHardwareOptions

Releases reserved hardware options. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void DeRegisterHardwareOptions (
 struct IOConfigurationStructure *IOConfig);

Parameters

IOConfig

(IN) Pointer to the LAN adapter's corresponding
IOConfigurationStructure (starting at the MLIDLink field of the
configuration table).

Completion Codes (EAX)

None.

Remarks

DeRegisterHardwareOptions releases the previously reserved hardware
options specified in a particular LAN adapter's IOConfigurationStructure
starting at the MLIDLink field of the configuration table).

NOTE: Call this routine at process time. Interrupts must be disabled.

DeRegisterHardwareOptions will usually be called from the MLID's remove
procedure (or possibly from Ctl_5MLIDShutdown, if the control procedure is
doing a complete shutdown).

Example

cli
push offset DriverConfig.MLIDLink ;Pointer to IOConfigurationStructure
call DeRegisterHardwareOptions ;DeRegisterhardware
add ESP, 4
506 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
sti
Operating System Support Routines 507

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
DisableHardwareInterrupt

Masks off the specified interrupt line on the PIC. Generally used by
MLIDs.

Language: Assembly Language

NetWare Operating System: Not version specific

Entry State

ECX

Contains the interrupt level.

Interrupts

Are disabled.

Call

At process or interrupt time.

Return State

Interrupts

Are unchanged.

Preserved

 All registers except for EAX and EDX.

Completion Codes (EAX)

None.

Remarks

DisableHardwareInterrupt masks off the ECX- specified interrupt request
line on the programmable interrupt controller (PIC), preventing the LAN
adapter from interrupting the operating system. The MLID does not need to
use this routine if the LAN adapter provides a command that disables the
interrupt line.
508 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: We recommend disabling interrupts at the LAN adapter if possible,
because disabling interrupts at the PIC is slow.

Example

DriverISR proc
mov ecx, InterruptLevel
call DisableHardwareInterrupt
call DoEndOfInterrupt
.
. (Service the adapter)
.
mov ecx, InterruptLevel
call EnableHardwareInterrupt
call LSLServiceEvents ;Let LSL unqueue returned
ret
DriverISR endp
Operating System Support Routines 509

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
DoEndOfInterrupt

EOIs the PIC. Generally used by MLIDs.

Language: Assembly Language

NetWare Operating System: Not version specific

Entry State

ECX

Contains the interrupt level.

Interrupts

Are disabled.

Call

At process or interrupt time.

Return State

Interrupts

Are unchanged.

Preserved

 All registers except for EAX

Completion Codes (EAX)

None.

Remarks

DoEndOfInterrupt issues the appropriate End of Interrupt (EOI) commands to
one or both Programmable Interrupt Controllers (PICs).

If the level is assigned to a secondary PIC, an EOI will be issued to the
secondary PIC, then to the primary PIC. Using this routine (instead of hard-
coding EOIs in the MLID) allows flexibility when an MLID runs on several
510 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
platforms. It also ensures that the EOI is executed correctly in the event of
future operating system changes.

NOTE: SMP aware MLIDs must call SMPDoEndOfInterrupt instead of this routine,
and NetWare 5 MLIDs must call BusInterruptEOI instead of this routine.

Example

DriverISR proc
mov ecx, InterruptLevel
call DisableHardwareInterrupt
call DoEndOfInterrupt
.
. (Service the adapter)
.
mov ecx, InterruptLevel
call EnableHardwareInterrupt
call LSLServiceEvents ;Let LSL unqueue returned
ret
DriverISR endp
Operating System Support Routines 511

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
DoRealModeInterrupt

Perform real mode interrupts. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG DoRealModeInterrupt (
 void *InputParameters,
 void *OutputParameters);

Parameters

InputParameters

(IN) Pointer to a filled-in InputParameterStructure (defined in Remarks
below).

OutputParameters

(IN) Pointer to a filled-in OutputParameterStructure (defined in Remarks
below).

Completion Codes (EAX)

Remarks

This function should not be used if there is another way to accomplish the
same result.

In the future, this function will no longer be supported.

On current versions of NetWare, use NBI calls to do the things that
DoRealModeInterrupt used to do.

0x00000000 Successful The zero flag is set to 1, if the interrupt vector is called.

0x00000001 Fail The zero flag is cleared to 0, if the interrupt vector is no
longer available because DOS has been removed.
512 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: Call this routine only at process time. This routine could enable interrupts
and put the calling process to sleep.

The MLID calls DoRealModeInterrupt to perform real mode interrupts, such
as BIOS interrupts.

The input and output parameter structures are defined below:

InputParameterStructure

InputParameterStructure struc
IAXRegister dw?
IBXRegister dw?
ICXRegister dw?
DXRegister dw?
IBPRegister dw?
SIRegister dw?
IDSRegister dw?
IESRegister dw?
IntNumber db?
InputStructure ends

OutputParameterStructure

OutputParameterStructure struc
OAXRogister dw ?
OBXRegister dw ?
OCXRegister dw ?
ODXRegister dw ?
OBPRegister dw ?
OSIRegister dw ?
ODSRegister dw ?
OESRegister dw ?
Oflags dw ?
OutputStructure ends

Example

NOTE: The input parameter structure has already been initialized.

push OFFSET OutputParameters
push OFFSET InputParameters
call DoRealModeInterrupt
add esp, 2 * 4
cmp eax, 0
jne IntNotValidErrorExit
Operating System Support Routines 513

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! ReadEISAConfig

! Appendix E, "Writing Protocol Stacks for NetWare SFT III" for
information on reading the EISA configuration
514 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
EnableHardwareInterrupt

Enables the PICs interrupt line. Generally used by MLIDs.

Language: Assembly Language

NetWare Operating System: Not version specific

Entry State

ECX

Contains the interrupt level.

Interrupts

Are disabled.

Call

At process or interrupt time.

Return State

Interrupts

Are unchanged.

Preserved

 All registers except for EAX and EDX

Completion Codes (EAX)

None.

Remarks

EnableHardwareInterrupt enables the LAN adapter's interrupt line on the
Programmable Interrupt Controller (PIC), if it was disabled using
DisableHardwareInterrupt.
Operating System Support Routines 515

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! DisableHardwareInterrupt
516 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Free

Returns memory allocated with Alloc . Generally used by protocol
stacks and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void Free (
 void *address);

Parameters

address

(IN) Pointer to the previously allocated memory to be released.

Completion Codes (EAX)

None.

Remarks

Protocol stacks and MLIDs call Free to release memory previously allocated
with the Alloc function. This memory could have been used for any purpose.

Call this routine at process time or interrupt time. Interrupts can be in any
state. The interrupt state is preserved.

Protocol stacks and MLIDs should call Free to release all memory that they
allocated during initialization. Protocol stacks should call this routine as an
essential part of cleaning up before exit.

Example

push MyMemoryBlock ;place pointer to memory on stack
call Free
add esp, 1*4 ;restore stack
Operating System Support Routines 517

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! Alloc
518 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
FreeBufferBelowl6Meg

Returns memory allocated with AllocBufferBelowl6Meg. Generally
used by MLIDs.

Language: C Language

NetWare Operating System: NetWare 3 only

Syntax

void FreeBufferBelowl6Meg (
 void *MemoryBuffer);

Parameters

MemoryBuffer

(IN) Pointer to the memory to be returned.

Completion Codes (EAX)

None.

Remarks

The MLID calls FreeBufferBelowl6Meg to return the memory it previously
allocated for Bus Master or DMA I/O. This was memory that was required to
be below 16MB. The MLID must return memory as an essential part of
cleaning up before it exits.

NOTE: Call this routine at process time or interrupt time.

Example

push eax ;pointer to memory
call FreeBufferBelowl6Meg
lea esp, [esp+4] ;adjust stack pointer
Operating System Support Routines 519

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! AllocateMappedPages
520 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
FreeNonMovableCacheMemory

Returns memory allocated with AllocNonMovableCacheMemory.
Generally used by Protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: NetWare 3 only

Syntax

void FreeNonMovableCacheMemory (
 void *memoryAddress);

Parameters

memoryAddress

(IN) pointer to the address of the memory to be freed.

Completion Codes (EAX)

None.

Remarks

NOTE: Call this routine only at process time.

The MLID calls FreeNonMovableCacheMemory to return the memory it
previously allocated using AllocNonMovableCacheMemory. The MLID must
return memory as an essential part of cleaning up before it exits.

Example

push [ebp].AdapterPagedBuffers
call FreeNonMovableCacheMemory
lea esp,[esp+4]

See Also

! AllocNonMovableCacheMemory
Operating System Support Routines 521

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetCurrentTime

Determines the current relative time. Generally used by Protocol
stacks and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG GetCurrentTime (void);

Parameters

None.

Completion Codes (EAX)

Remarks

GetCurrentTime determines the current relative time. The protocol stack can
use this time to determine the elapsed time for stack-related activities. The
current time value less the value returned at the start of an operation is the
elapsed time in 1/18 second clock ticks. This timer requires more than 7 years
to roll over, allowing it to be used for a variety of elapsed time comparisons.

Example

mov EDX,[EBP].Command ;Let LAN adapter attempt to
mov AL, NICTransmit ;Transmit packet again
out DX, AL
call GetCurrentTime ;EAX = current time
mov [EBP].TxStartTime, EAX ;Set new timeout time

Nonzero Successful EAX contains a LONG integer that contains the number of
clock ticks (1 /1 8 second, or 56.6 milliseconds) since the
server was last loaded and began execution.
522 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetFileServerMajorVersionNumber

Gets the major version number of the file server. Generally used by
MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 and 5 only

Syntax

LONG GetFileServerMajorVersionNumber (void);

Parameters

None.

Completion Codes (EAX)

Remarks

GetFileServerMajorVersionNumber returns the major version number of the
file server. NLMs use this routine to determine the file server version and to
choose the path of execution.

See Also

! GetFileServerMinorVersionNumber

Nonzero Successful EAX contains the major version number of the file server.
Operating System Support Routines 523

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetFileServerMinorVersionNumber

Gets the minor version number of the file server. Generally used by
MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 and 5 only

Syntax

LONG GetFileServerMinorVersionNumber (void);

Parameters

None.

Completion Codes (EAX)

Remarks

GetFileServerMinorVersionNumber returns the major version number of the
file server. NLMs use this routine to determine the file server version and to
choose the path of execution.

See Also

! GetFileServerMajorVersionNumber

Nonzero Successful EAX contains the minor version number of the file server.
524 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetHardwareBusType

Gets the processor bus type. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG GetHardwareBusType (void);

Parameters

None.

Completion Codes (EAX)

Remarks

IMPORTANT: GetHardwareBusType is obsolete and will not be supported in
future releases of NetWare. This function should not be used. Use the NBI call
GetBusType instead.

GetHardwareBusType returns a value that indicates the processor bus type.

GetHardwareBusType allows one MLID to be written so that it can be used
for LAN adapters with different bus types.

Call this routine at process time or interrupt time. The interrupt state is
preserved.

NOTE: These values are different than those used in the MLIDFlags field of the
configuration table.

00000000h 1/0 bus is ISA (industry Standard Architecture).

00000001h 1/0 bus is Micro Channel Architecture.

00000002h 1/0 bus is EISA (Extended Industry Standard Architecture).
Operating System Support Routines 525

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Example

call GetHardwareBusType
mov HardwareBusType, EAX
526 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetNumberOfLANs

Returns the maximum number of LAN logical boards that may be
present in a system.

Language: Assembly Language

NetWare Operating System: Not version specific

Entry State

Interrupts

May be in any state.

Call

At process time or interrupt time.

Return State

EAX

The maximum number of logical boards which may be present in the
system

Completion Codes (EAX)

None.

Remarks

Note that this function does not return the number of logical boards that are
present in the system, but the maximum number that may be present in the
system.
Operating System Support Routines 527

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetRealModeWorkSpace

Accesses real mode memory. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void GetRealModeWorkSpace (
 struct SemaphoreStructure *workSpaceSemaphore,
 LONG *protectedModeAddressOfWorkSpace,
 WORD *realModeSegmentOfNorkSpace,
 WORD *realModeOffsetOfWorkSpace,
 LONG *workSpaceSizeInBytes);

Parameters

workSpaceSemaphore

(IN) Pointer to the operating system semaphore structure.

protectedModeAddressOfWorkSpace

(OUT) Protected mode address of where to read the information.

realModeSegmentOfWorkSpace

(OUT) Pointer to the real mode segment of workspace.

realModeOffsetOfWorkSpace

(OUT) Pointer to the real mode offset in the workspace segment.

workSpaceSizeInBytes

(OUT) Pointer to the size of the workspace.

Completion Codes (EAX)

None.
528 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

IMPORTANT: GetRealModeWorkSpace is obsolete and will not be supported in
future releases of NetWare. This function should not be used. Use an NBI function
instead.

The MLID uses GetRealModeWorkSpace with DoRealModeInterrupt in order
to access memory in real mode.

 The 386 and 486 processors allow MLIDs to run in protected mode and do
not allow direct access to BIOS based information. The DoRealModeInterrupt
call allows the MLID to access the BIOS and get data from it. (See Appendix
E, "Writing Protocol Stacks for NetWare SFT III".) DoRealModeInterrupt
turns on the system interrupts and executes in a critical section; therefore, the
MLID calls the semaphore routines, CPSemaphore and CVSemaphore, in
order to keep other processes out of the workspace.

 The MLID must provide the following structure. When it calls
GetRealModeWorkspace, the MLID passes a pointer to this structure.
GetRealModeWorkspace then fills in the structure fields with the appropriate
values.

 The semaphore structure is as follows:

WorkspaceSemaphore dd 0
WorkspaceProtectedModeAddress dd 0
WorkspaceRealModeSegment dw 0
WorkspaceRealModeOffset dw 0
WorkspaceSize dd 0

Example

 ;**
 ; Get real mode workspace
 ;**

 push OFFSETWorkSpaceSize ;size of workspace
 push OFFSETWorkSpaceRealModeOffset ;real mode offset into segment
 push OFFSETWorkSpaceRealModeSegment ;real mode segment address
 push OFFSETWorkSpaceProtectedModeAddress ;address in protected mode
 push OFFSETWorkSpaceSemaphore ;semaphore
 call GetRea]ModeWorkSpace ;call OS to fill in information
 add esp, [5 * 4] ;clean up stack

 ;**
Operating System Support Routines 529

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 ;Lock the workspace
;**

push WorkSpaceSemaphore ;load semaphore
call CPSemaphore ;lock workspace for our use
add esp, [1*4] ;clean up stack

;**
;Setup and execute real mode interrupt
;**

movzx eax, WorkSpaceRealModeSegmerit ;get WorkSpWo segment
movzx ebx, WorkSpaceRealModeOffset ;get offset into segment
mov el, SlotToReadConfiguration ;get slot number
xor ch, ch ;read first block
mov esi, OFFSET lnputparms ;point to input am
mov [esi].IAXRegister, OD801h ;EISA read conflourabon
mov [esi].ICXRegister, ex ;slot and data block
mov [esi].ISIRegister, bx ;offset of DosWorkArea
mov [esi].IDSRegister, ax ;segment of prkarea
mov [esi].IlntNumber, 15h ;irderrupt number
push OFFSETOutputParms ;pt at outputrs
push OFFSETInputParms ;pt at input registers
call DoRealModeinterrupt ;tell OS to do it
lea esp, [esp + 2 * 4] ;clear up stack
cmp eax, 0 ;did the OS do the
jne lntNotValidErrorExit ;int correctly
cmp byte ptr OutputParms.OAXRegister + 1,0
 ;Bios Int 15 return
jne lntNotValidErrorExit ;successful ?
mov esi, WorkSpaceProtectedModeAddress ;load pointer to data
movzx ecx, BYTE PTR [esi + INTERRUPTOFFSEII
 ;get lnt if any
and el, ISOLATEINTMASK ;isolate interrupt level
jecxz NoAddinterrupt ;if none skip add
mov Savelnterrupt, cl ;save Interrupt for later

;**
;Unlock interrupt
;**

NoAddinterrupt:
push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, [1 4] ;clean up stack
530 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NOTE: MLIDs for NetWare 4 servers can call ReadEISAConfig to read the EISA
configuration.

See Also

! ReadEISAConfig

! DoRealModeInterrupt

! Appendix E, "Writing Protocol Stacks for NetWare SFT III" (for
information on reading the EISA configuration)
Operating System Support Routines 531

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetServerConfigurationType

Determines which operating system or SFT III engine is running.
Generally used by protocol stacks.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG GetServerConfigurationType (void);

Parameters

None.

Completion Codes (EAX)

Remarks

GetServerConfigurationType informs an NLM which operating system or
which SFT III engine it is running on. This enables the NLM to decide
whether or not it should load.

Nonzero Successful EAX has a long integer that represents the server
configuration type.

! EAX = 0 Type Normal Server

! EAX = 1 Type IOEngine (SFT III)

! EAX = 2 Type MSEngine (SFT III)

0 Fail The routine failed to determine the server configuration.
532 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
GetSuperHighResolutionTimer

Returns a 32-bit timer that increments each microsecond.

Language: C Language

NetWare Operating System: Not version specific

Entry State

Interrupts

Can be in any state.

Return State

EAX

Contains the 32-bit timer.

Interrupts

Unchanged.

Preserved

 All registers except EAX, EDX

Completion Codes (EAX)

None.

Remarks

On 486 processors running pre-NetWare 5, the high order 16 bits of this timer
will not increment if the routine is called with interrupts disabled. This will
cause time to appear to back up when the low order 16 bits overflow.
Therefore, caution must be used when using this routine in a pre-NetWare 5
environment.
Operating System Support Routines 533

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ImportPublicSymbol

Attempts to dynamically import a public symbol at run time. This allows
an NLM to load whether or not a public symbol is available, and tailor
its functions to the environment in which it finds itself.

Language: C Language

NetWare Operating System: NetWare 4 and higher

Syntax

void ImportPublicSymbol (
 LONG moduleHandle,
 BYTE *symbolName);

Parameters

moduleHandle

(IN) The module handle passed to the NLM's initialization routine.

symbolName

(IN) The length-preceeded, NULL-terminated public symbol name to be
imported.

Completion Codes (EAX)

Remarks

NOTE: Call this routine only at process time.

This routine is the most important routine to use in allowing NLMs to be
written to run on any version of NetWare since its introduction.

Nonzero Successful The value of the imported public symbol.

0 Fail The symbol is not available.
534 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
By attempting to import public symbols starting with the most recent version
of NetWare and working backwards, an NLM can determine which version of
NetWare it is running on and function accordingly.
Operating System Support Routines 535

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MapAbsoluteAddressToDataOffset

Converts absolute hardware memory address to logical addresses in
the NetWare address space. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG MapAbsoluteAddressToDataOffset (
 LONG AbsoluteAddress);

Parameters

AbsoluteAddress

(IN) The 32-bit absolute hardware memory data address.

Completion Codes (EAX)

Remarks

Call this routine at process time or interrupt time. The interrupt state is
preserved.

MapAbsoluteAddressToDataOffset converts absolute hardware memory
addresses to logical NetWare addresses used by MLIDs and operating
systems.

MLIDs use MapAbsoluteAddressToDataOffset to convert an absolute address
of shared LAN adapter RAM to a logical address. This logical address is will
appear in a NetWare address space. The MLID needs to do this only once for
shared RAM if it saves the result in a variable for subsequent use.

IMPORTANT: NLMs written to the NetWare 3 operating system must use this call.
NLMs that are written to the NetWare 4 operating cannot use
MapAbsoluteAddressToDataOffset to convert absolute memory addresses in

Nonzero Successful EAX contains a logical 32-bit address relative to NetWare's
assignment of address 0h.
536 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
DriverConfig.MLIDMemoryCode0 or DriverConfig.MLJDMemoryCodel. These
NLMs should use MLIDLinearMemory0 or MLIDLinearMemoryl after calling
RegisterHardwareOptions to convert the corresponding logical address. NLMs
written to the NetWare 4 operating system should use ReadPhysicalMemory and
WritePhysicalMemory to access physical memory other than the shared RAM
addresses.

Example

push 0B0000h
call MapAbsoluteAddressToDataOffset ;EAX = address to use
add ESP, 1*4 ;Restore stack
mov MonoScreen, EAX

See Also

! MapDataOffsetToAbsoluteAddress

! ReadPhysicalMemory

! RegisterHardwareOptions

! WritePhysicalMemory
Operating System Support Routines 537

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MapDataOffsetToAbsoluteAddress

Converts logical addresses in the NetWare address space to an
absolute hardware memory address. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG MapDataOffsetToAbsoluteAddress (
 LONG DataOffset);

Parameters

DataOffset

(IN) The 32-bit NetWare logical memory data address.

Completion Codes (EAX)

Remarks

Call this routine either at process or interrupt time. Interrupts can be in any
state and is preserved.

MapDataOffsetToAbsoluteAddress converts a logical NetWare address to the
real hardware memory address required to initialize DMA channels and bus-
mastering devices, and to validate specified hardware options.

Example

push OFFSET MyReceiveBuffer
call MapDataOffsetToAbsoluteAddress
add ESP, 1*4
mov RealModeBufferAddress, EAX

Nonzero Successful EAX contains a logical 32-bit real hardware memory
address.
538 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! MapAbsoluteAddressToDataOffset
Operating System Support Routines 539

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NetWareAlert

Handles system alerts. Generally used by protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 and higher

Syntax

void NetWareAlert (
 struct LoadDefinitionStructure *nlmHandle,
 NetWareAlertStructure *alertStructure,
 LONG ParameterCount,
 ...
);

Parameters

nlmHandle

(IN) Pointer to the caller's NLM handle.

alertStructure

(IN) Pointer to the following structure of control information. The
structure fields are defined in the table that follows the structure
definition.

typedef struct {
 void *ptrNetWorkManagementAttribute;
 LONG AlertFlags;
 union TargetUnion {
 struct TStation {
 LONG TargetConnectionNumber;
 }
 struct TStationList {
 LONG *ptrTargetStationListStruct;
 }
 }
 LONG TargetNotificationBits;
 LONG AlertID;
 LONG AlertLocus;
 LONG AlertClass;
 LONG AlertSeverity;
 void *AlertDataPtr;
540 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 void *(AlertDataFree)(void *AlertDataPtr);
 BYTE *ControlString;
 LONG ControlStringMessageNumber;
} NetwareAlertStructure;

***** alertStructure Parameters Defined *****

pNetWorkManagementAttribute

Should be set to NULL. This parameter deals with the internal network
management system

AlertFlags

These bits are defined as follows (all bits not defined are reserved and set
to 0):

TargetUnion

Uses the following structures, depending upon the state of bit 31 in
AlertFlags.

The TStation structure contains the connection number to broadcast the
alert message to.

Bit 0 Queue the alert

Bit 1 AlertID field is valid

Bit 2 AlertLocus is field is valid

Bit 3 Generate an EventReport for this alert, no other alert processing

Bit 4 Don't generate an EventReport for this alert, all other processing is done

Bit 16 ControlStringMessageNumber is valid. ControlString pointer is ignored

Bit 22 Don'tl ring the bell on this alert

Bit 23 AlertID field is a valid NetWare 4 unique ID number

Bit 28 Don't display the locus value to the console

Bit 29 Don't display the alert ID value to the console

Bit 30 Allow Internal Network Management to override Notification Bits

Bit 31 TargetUnion is using the TStationList structure (default is TStation)
Operating System Support Routines 541

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
struct TStation {
 LONG TargetConnectionNumber;
 }

The TStationList structure contains a pointer to a list of connections to
broadcast the alert message to. The first LONG in the list is the number
of connection numbers in the list. You can have 1 to 32 LONGs in the list.

struct TStationList {
 ptrTargetStationListStruct;
 }

TargetNotificationBits

The following bit definitions describe the different alert notifications:

AlertID

Contains the alert ID value. The AlertID forms a two-part ID. The upper
16 bits of the ID contain the mask for an NLM or product. Novell assigns
this value. The lower 16 bits allow each mask to have 1K to 64K unique
IDs. Companies outside of Novell will have masks that range between
0x8000000 and 0XFFFF0000. The following masks have been assigned:

NOVELL_ALERT_BINDERY 0x0l020000
NOVELL_ALERT_0S 0x0l030000
NOVELL_ALERT_LLC 0x0l040000
NOVELL_ALERT_SDLC 0x0l050000
NOVELL_ALERT_REM0TE 0x0l060000
NOVELL_ALERT_MLID 0x0l070000
NOVELL_ALERT_QLLC 0x0l080000
NOVELL_ALERT_UPS 0x01090000
NOVELL_ALERT_DS 0x0l0a0000
NOVELL_ALERT_DOMAIN 0x0l0b0000
NOVELL_ALERT_RSPX 0x0l0c0000
NOVELL_ALERT_R232 0x0l0d0000

Bit 0 Broadcast the alert to the TargetUnion

Bit 1 Broadcast the alert to everyone

Bit 2 Place the alert entry in the SYS$LOG.ERR file

Bit 3 Display the alert to the console
542 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
AlertLocus

Contains the Locus value, currently defined as follows:

LOCUS_UNKNOWN 00h
LOCUS_MEMORY 0lh
LOCUS_FILESYSTEM 02h
LOCUS_DISKS 03h
LOCUS_LANBOARDS 04h
LOCUS_COMSTACKS 05h
LOCUS_TTS 07h
LOCUS_BINDERY 08h
LOCUS_LSTATION 09h
LOCUS_LROUTER 10h
LOCUS_LOCKS llh
LOCUS_KERNEL 12h
LOCUS_UPS 13h
LOCUS_SERVICEPROTOCOL 14h
LOCUS_LOCUS_SFT_III 15h
LOCUS_RESOURCE_TRACKING 16h
LOCUS_NIM 17h
LOCUS_OS_INFORMATION 18h
LOCUS_CACHE 19h
LOCUS_DOMAIN 20h

AlertClass

Contains the class value, currently defined as follows:

CLASS_UNKNOWN 00h
CLASS_OUT_OF_RESOURCE 0lh
CLASS_TEMP_SITUATION 02h
CLASS_AUTHORIZATION_FAILURE 03h
CLASS_INTERNAL_ERROR 04h
CLASS_HARDWARE_FAILURE 05h
CLASS_SYSTEM_FAILURE 06h
CLASS_REQUEST_ERROR 07h
CLASS_NOT_FOUND 08h
CLASS_BAD_FORMAT 09h
CLASS_LOCKED 10h
CLASS_MEDIA_FAILURE llh
CLASS_ITEM_EXISTS 12h
CLASS_STATION_FAILURE 13h
CLASS_LIMIT_EXCEEDED 14h
CLASS_CONFIGURATION_ERROR 15h
CLASS_LIMIT_ALMOST_EXCEEDED 16h
CLASS_SECURITY_AUDIT_INFO 17h
CLASS_DISK_INFORMATION 18h
Operating System Support Routines 543

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CLASS_GENERAL_INFORMATION 19h
CLASS_FILE_COMPRESSION 20h
CLASS_PROTECTION_VIOLATION 21h

AlertSeverity

Has the value of the severity of the error. The values are defined as
follows:

SEVERITY_INFORMATIONAL 00h
 Thresholds have been reached, etc.
SEVERITY_WARNING 0lh
 Configuration errors, etc. (no damage).
SEVERITY_RECOVERABLE 02h
 Hot Fix disk, etc. Work around made.
SEVERITY_CRITICAL 03h
 Disk mirror failure, etc. Fix-up attempted.
SEVERITY_FATAL 04h
 Resource fatally affected. Shut down.
SEVERITY_OPERATION_ABORTED 05h
 Operation cannot complete. Ramifications unknown.
SEVERITY_NONOS_UNRECOVERABLE 06h
 Operation cannot complete. Ramifications will not affect
 operating system.

AlertDataPtr

Has a pointer to a block of data to be passed to the AlertDataFree routine.

AlertDataFree

This routine is called after the execution of NetWareAlert. This routine is
passed AlertDataPtr.

ControlString

Has a pointer to the control string. This pointer is only valid when the
MessageNumber bit 0 is set to 0. This pointer is used with the parameters
to make the alert message.

ControlStringMessageNumber

Has the message number of the control string in the NLM's enabling
table. This value is only valid if the MessageNumber bit 0 is set to 1.

***** End of alertStructure Parameters *****
544 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ParameterCount

(IN) Has the number of parameters (following- ParameterCount) passed
on the stack to this routine.

...

(IN) Can take a variable number of LONG arguments. The number of
arguments passed on the stack is the number held in ParameterCount.

Completion Codes (EAX)

None.

Remarks

NetWareAlert allows the calling function to determine where the alert goes.
The alert could be sent to a file, the console, a connection number, etc. This
routine also allows the calling NLM to its own enabled messages.
NetWareAlert also allows NLMS to queue the alert if the routine is called at
interrupt time.
Operating System Support Routines 545

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NVMAlloc

NVMAlloc is the primary allocation API within the VM system.

NetWare Operating System: NetWare 5 only

Syntax

LONG NVMAlloc (
 void *virtualAddress,
 LONG pageCount,
 LONG memoryState,
 LONG attributeFlags,
 LONG rights);

Parameters

virtualAddress

(IN) The address where the allocated virtual memory begins.

pageCount

(IN) This value indicates the number of pages of virtual memory to be
allocated. This value can be from 1 up the maximum number of pages
defined as being part of the address space.

memoryState

(IN) This value describes initial state of memory at allocation time. Valid
states include:

Reserved - Reserve the logical space, do not back it with RAM or swap
store. A page fault occurs if the space is "touched".

Auto-Commit - Reserve the logical space, do not back it with RAM or
swap store initially. A page fault will cause an attempt to back the page
with RAM or swap store. This state exhibits non-deterministic behavior
because backing store is not initially reserved.

Committed - Reserve logical space and back it with RAM or backing
store at alloc time.

attributeFlags

(IN)
546 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Locked - Do not permit committed memory to be paged out. (May still be
"moved")

User/Supervisor - Used to determine in which portion of the address
space memory will be allocated. Will be set to "user" by the marshaling
code. User requests will be zero filled; supervisor requests will not. This
may end up being a "hidden" flag.

NoSleep - Do not allow the call to "yield"

rights

(IN)

Read - Allocated memory is read only

Read/Write - Allocated memory is read/write

VirtualMemory

(OUT) The value returned here is the address of the newly allocated
virtual memory with the given specifications. If the function return code
is non-zero, then the value returned is undetermined.

Completion Codes (EAX)

The return value of the function is the condition code representing the
outcome of the VM alloc request. Possible return values are:

Normal = 0

Errors = ?????

Remarks

This function is used to obtain logical address space and virtual memory
within both the kernel and user portions of the currently visible address space.
If this call is made from user space, the memory allocated will be in the user
portion of the address map. If the call is made from kernel space, the user/
kernel attribute flag determines if the allocated memory will be in user space
or kernel space. All memory allocated in user space will be zero initialized.
Kernel memory will not be initialized.
Operating System Support Routines 547

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NVMAllocIO

NVMAllocIO is used to allocate virtual memory which has one or more
portions of physically contiguous memory backing it. The memory
returned is committed, page locked and move locked, ie. the memory
is backed with RAM, will not be paged to backing store and the logical
to physical address translation will remain constant.

NetWare Operating System: NetWare 5 only

Syntax

LONG NVMAllocIO (
 void *virtualMemory,
 LONG pageCount,
 LONG attributeFlags,
 LONG rights,
 LONG *nonContiguousCount,
 specStruct *specStructure[],
 LONG *sleptFlag);

Parameters

virtualAddress

(IN) The address where the allocated virtual memory begins.

pageCount

(IN) This value indicates the number of pages of virtual memory to be
allocated. This value can be from 1 up the maximum number of pages
defined as being part of the address space.

attributeFlags

(IN)

User/Supervisor - Used to determine in which portion of the address
space memory will be allocated. Will be set to "User" by the marshaling
code. User requests will be zero filled; supervisor requests will not. This
may end up being a "hidden" flag.

NoSleep - Do not allow the call to "yield"
548 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
rights

(IN)

Read - Allocated memory is read only

Read/Write - Allocated memory is read/write

nonContiguousCount

(IN) This parameter points to a value which indicates the maximum
number of permissible physically contiguous memory regions. The value
is modified by the API and is returned as the number of regions that where
allocated to fulfill the request. The input value also specifies how many
elements the array of specStructure contains. The output value specifies
how many elements of the array of specStructure where filled in by the
API.

nonContiguousCount

(OUT) This parameter points to a value which indicates the maximum
number of permissible physically contiguous memory regions. The value
is modified by the API and is returned as the number of regions that where
allocated to fulfill the request. The input value also specifies how many
elements the array of specStructure contains. The output value specifies
how many elements of the array of specStructure where filled in by the
API.

virtualMemory

(OUT) The value returned here is the address of the newly allocated
virtual memory with the given specifications. If the function return code
is non-zero, then the value returned is undetermined.

specStructure

(OUT) This parameter points to an array of specification structures which
are filled in by the API. The array elements order corresponds to the order
in which the physical memory segments appear in the logical address
region allocated by the API. Each array element structure contains an
address and a size field which specify the physical address and the size in
pages of its segment.

sleptFlag

(OUT) This parameter specifies whether or not a yield was necessary to
fulfill the request. A non-zero value indicates that the API yielded at some
point during its execution.
Operating System Support Routines 549

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Codes (EAX)

The return value of the function is the condition code representing the
outcome of the request. Possible return values are:

Normal = 0

Errors = ?????

Remarks

This API is used to obtain logical address space and virtual memory within
both the kernel and user portions of the currently visible address space. If this
call is made from user space, the memory allocated will be in the user portion
of the address map. If the call is made from kernel space, the user/kernel
attribute flag determines if the allocated memory will be in user space or
kernel space. All memory allocated in user space will be zero initialized.
Kernel memory will not be initialized.

The number of distinct physical address regions that can be tolerated is
specified in the pagecount parameter. The starting addresses and sizes (in
number of pages) of each physically contiguous memory region is returned in
the array of structures pointed to by specStructure. This API may sleep, if
necessary, to find the required number of physically contiguous memory
segments. The sleptFlag parameter notifies the caller that a yield was
necessary to fulfill the request.
550 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NVMFree

NVMFree returns the virtual memory, allocated by NVMAlloc or
NVMAllocIO to the VM system.

NetWare Operating System: NetWare 5 only

Syntax

LONG NVMFree (
 void *virtualMemory);

Parameters

virtualMemory

(IN) The value input here is the address of the segment of virtual memory
to be freed.

Completion Codes (EAX)

The return value of the function is the condition code representing the
outcome of the request. Possible return values are:

Normal = 0

Errors = ?????

Remarks

This function is object oriented in that it takes as an argument only a memory
address which was previously obtained using NVMAlloc and NVMAllocIO.
The entire region originally obtained is freed.
Operating System Support Routines 551

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
OutputToScreen

Displays a message on the server console screen. Generally used by
protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void OutputToScreen (
 struct ScreenStruct *screenID,
 char *controlString,
 args...);

Parameters

screenID

(IN) Has the screen handle of the console screen, which the MLID
receives during initialization.

controlString

(IN) Has a pointer to a null-terminated ASCII string.

 args...

(IN) Is a procedure that can take a variable number of standard printf
control string arguments.

Completion Codes (EAX)

None.

Remarks

NOTE: Call this routine only at process time. It will not suspend the calling process.

MLIDs use OutputToScreen to display a message on the server console
screen.
552 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MLIDs should not display nonvital messages. MLIDs should also limit the
number of lines output to the screen for essential messages, because
displaying unneeded output causes important information to scroll off the
screen.

controlstring can be embedded with returns, line feeds, bells, tabs, and
backspaces. However, if strings contain embedded sub-strings, numbers, and
control information, they must be no longer than 200 characters. Strings
longer than this cause the server to abend. If the MLID must use longer strings,
split the string into several strings and call OutputToScreen multiple times.

NOTE: ScreenID is not valid after returning from the initialization routine, so the
MLID can call OutputToScreen only during initialization.

Example

push OFFSET MyMessage
push [ESP + InitializationErrorScreen + 4] ;Screen handle
call OutputToScreen ;The string is on the stack
add ESP, 2 * 4 ;Restore stack
Operating System Support Routines 553

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ParseDriverParameters

Parses the command line parameters. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG ParseDriverParameters (
 struct IOConfigurationStructure *IOConfig,
 struct DriverConfigurationStructure *configuration,
 struct AdapterOptionDefinitionStructure *adapterOptions,
 struct LANConfigurationLimitStructure
 *ParseDriverParameters,
 BYTE (*FrameTypeDescription)[],
 LONG needBitMap,
 BYTE *commandLine,
 struct ScreenStruct *screenID);

Parameters

IOConfig

(IN) Pointer to the LAN adapter's corresponding
IOConfigurationStructure (starting at the MLIDLink field of the
configuration table).

configuration

(IN) Pointer to the logical board's configuration table.

adapterOptions

(IN) Pointer to the AdapterOptionDefinitionStructure.

ParseDriverParameters

(IN) Pointer to the LANConfigurationLimitStructure.

FrameTypeDescription

(IN) Pointer to the beginning array of pointers. These are pointers to
frame descriptors defining the packet's frame type.
554 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
needBitMap

(IN) Bit map telling ParseDriverParameters which hardware options the
LAN adapter requires

commandLine

(IN) Pointer to the command line, passed to the MLI D at load time

screenID

(IN) Has a pointer to the ScreenHandle that was passed to the MLID at
initalization

Completion Codes (EAX)

Remarks

Call this routine only at process time. This routine can suspend the process and
change the processor state. screenID is valid only during initialization.

ParseDriverParameters uses the command line parameters, operator input,
and tables provided by the MLID to fill in the configuration table of the logical
board and the IOConfigurationStructure associated with that configuration
table. The IOConfigurationStructure starts at the MLIDLink field of the
configuration table.

The MLID uses ParseDriverParameters with RegisterHardwareOptions.

Tables provided by the MLID.

Frame Descript Table

FrameDescriptTable
dd Ethenet8O23Descript
dd EthenetIIDescript
dd Ethenet8O22Descipt
dd EthenetSNAPDescript
Message Ethernet8O23Descript, 'ETHERNET_802.3'
Message EthernetIIDescript, 'ETHERNET_II'

Zero Successful

Nonzero Fail
Operating System Support Routines 555

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Message Ethernet8O22Descript, 'ETHERNET_802.2'
Message EthemetSNAPDescript, 'ETHERNET_SNAP'

Message Macro Definition

Message macroMessageName, MessageString
local StringEnd, StringBegin
MessageName db StringEnd - StringBegin
StringBegin db MessageString
StringEnd db 0
endm

The message macro used above causes the strings in the NameDescriptTable
to be length-preceded and null-terminated. The number of provided messages
depends upon the value in the ParseDriverParameters structure
NumberFrames field. In the above example, four messages are provided.
AdapterOptionDefinitionStucture

The AdapterOptionDefinitionStructure is a hard- coded part of the MLID's
data structure. Using the NeedsBitMap as a guide, ParseDriverParameters
collects the necessary information from the command line and from the
AdapterOptionDefinitionStructure, fills out the appropriate fields in the
configuration table, and returns successfully.

The MLID doesn't necessarily set the bit in the bitmap field if it uses a
parameter. However, if the MLID has multiple possibilities (for instance, it
must parse input from the console or parse the command line) and it must use
ParseDriverParameters to determine which option to use, it must set the
appropriate bit in the NeedsBitMap.

Each field in the AdapterOptionDefinitionStructure is a pointer. If the MLID
does not support that option, it places a 0 in that field. If the MLID does
support that option, it places a pointer to an option list in that field. The
AdapterOptionDefinitionStructure is defined below:

AdapterOptionDefinitionStructure struc
IOSLOT dd ?
IOPort0 dd ?
IOLength0 dd ?
IOPortl dd ?
IOLongthl dd ?
MemoryDecode0 dd ?
MemoryLength0 dd ?
MemoryDecodel dd ?
MemoryLengthl dd ?
556 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Interrupt0 dd ?
Interruptl dd ?
DMA0 dd ?
DMAL dd ?
Channel dd ? ;the field exists in NetWare 4 only
AdapterOptionDefinitionStructure ends

Option List

The option list appears as follows:

IRQOptions dd 4 ;option count
 dd 3,2,5,7
Memory0ptions dd 2
 dd OD000h,OD8000h
IOPortOptions dd 4 ;Number of available options
 dd 300h,31Oh ;300,310
 dd 320h,330h ;320,330
InterruptOptions dd 3,4,6,9 ;4,5,9
AdapterOptions AdapterOptionDefinftoure
 <,IOPort Options,,,,Memory Options,,,,IRQ Options>

Option for Scanning Slots

If the MLID uses slots, and scans the slots at run time to determine which slots
have a LAN adapter in them, it should build the appropriate option
dynamically.

The MLID must specify the CanSetNode.Address or MustSetNodeAddress
flags in the NeedsBitMap parameter if it desires to use this option. (These
flags were previously in the NeedFlags parameter of NetWare 3.0.) The
NeedsBitMap parameter is defined below:

Table 57 Bit Map of NeedsBitMap

Bit Needs Option

0 NeedsIOSlotBit (00000001h)

1 NeedsIOPort0Bit (00000002h)
Operating System Support Routines 557

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
2 NeedsIOLengthOBit (00000004h)

3 NeedsIOPortlBit (00000009h)

4 NeedsIOLengthlBit (00000010h)

5 NeedsMemoryDecode0Bit (00000020h)

6 NeedsMemoryLength0Bit (00000040h)

7 NeedsMemoryDecodelBit (00000080h)

8 NeedsMemoryLengthlBit (00000100h)

9 NeedsInterrupt0Bit (00000200h)

10 NeedsInterruptlBit (00000400h)

11 NeedsDMA0Bit (00000800h)

12 NeedsDMAlBit (00001000h)

13 NeedsChannelBit (NetWare 4 field only) (00002000h)

14 Reserved

15 Reserved

16 Reserved

17 Reserved

18 Reserved

19 Reserved

20 Reserved

21 Reserved

22 Reserved

23 Reserved

24 Reserved

25 Reserved

Bit Needs Option
558 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LANConfigurationLimitsStructure

The ConfigLimits parameter is a pointer to a
LANConfigurationLimitsStructure, defined below:

ConfigLimits label byte
MinNodeAddress dd MinAddress
MaxNodeAddress dd MaxAddress
MinRetries dd 0
MaxRetries dd 255
NumberFrames dd 4
NumberChannels dd 0 ;NetWare 4.x only

ParseDriverParameters fills in the configuration table field
MLIDChannelNumber (offset 40h) with the channel number. For most LAN
adapters, this number will be 0. For multichannel LAN adapters, this number
can be 0, 1, 2, etc.

Example

push [ESP + lnifializabonErrorScreen] ;Screen handle
push [ESP + Configurationinfo + 4] ;Pointer to command line
push NeedsIOPortOBit OR NeedsInterrupt0Bit OR CanSetNodeAddress
push OFFSET FrameDescriptTable ;Mecha ID string array
push OFFSET ParseDriverParameters ;Node and Retry limits
push OFFSET Adapter Options ;Options to query from user
push OFFSET DriverConfiguration ;Driver configuration table
push OFFSET [ebp] CDriverlink ;IO configuration table
call ParseDriverParameters ;Call parser
add ESP, 8 * 4
or EAX, EAX ;Successful?

26 Reserved

27 Reserved

28 Reserved

29 Reserved

30 CAN_SET_NODE_ADDRESS (40000000h)

31 MUST_SET_NODE_ADDRESS (80000000h)

Bit Needs Option
Operating System Support Routines 559

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
jnz ErrorParsingDriverOptions ;if not, Exit init
560 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
QueueSystemAlert

Notifies the system of hardware or software problems. Generally used
by protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: NetWare 3 only

Syntax

LONG QueueSystemAlert (
 LONG TargetStation,
 LONG TargetNotificationBits,
 LONG ErrorLocus,
 LONG ErrorClass,
 LONG ErrorCode,
 LONG ErrorSeverity,
 void *controlString,
 ...);

Parameters

TargetStation

(IN) Has the connection number of the affected station, or 0 if no single
station is affected (this parameter usually holds a 0, which means that no
single station is affected).

TargetNotificationBits

(IN) Has the destinations of the notification..

Target Notification Bits:

NOTIFY_CONNECTION_BIT 0lh
NOTIFY_EVERYONE__BIT 02h
NOTIFY_ERROR_LOG_B1T 04h
NOTIFY_CONSOLE_BIT 08h
DONT_NOTIFY_NMAGENT 80000000h

ErrorLocus

(IN) Has the locus of the error.

Error Locus Bits:
Operating System Support Routines 561

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LOCUS_UNKNOWN 00h
LOCUS_LANBOARDS 04h
LOCUS_COMMSTACKS 05h
LOCUS_NLM llh
LOCUS_ROUTERS OAh

ErrorClass

(IN) Has the class of the error.

Error Class Bits:

CLASS_UNKNOWN 00h
CLASS_OUT_OF_RESOURCE Olh
CLASS_TEMP_SITUATION 02h
CLASS_AUTHORIZATION_FAILURE 03h
CLASS_INTERNAL_ERROR 04h
CLASS_HARDWARE_FAILURE 05h
CLASS_SYSTEM_FAILURE 06h
CLASS_REQUEST_ERROR 07h
CLASS_NOT_FOUND 08h
CLASS_BAD_FORMAT 09h
CLASS_LOCKED 10h
CLASS_MEDIA_FAILURE llh
CLASS_ITEM_EXISTS 12h
CLASS_STATION_FAILURE 13h
CLASS_LIMIT_EXCEEDED 14h
CLASS_CONFIGURATION_ERROR 15h

ErrorCode

(IN) Error codes for the system log.

Error Code Bits:

OK 00h
ERR_HARDFAILURE 0ffh

ErrorSeverity

(IN) Has the severity of the error.

 Error Severity Bits:

SEVERITY_INFORMATIONAL 00h
SEVERITY_WARNING Olh
SEVERITY_RECOVERABLE 02h
SEVERITY_CRITICAL 03h
562 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SEVERITY_FATAL 04h
SEVERITY_OPERATION_ABORTED 05h

controlString

(IN) Has a pointer to a message string, which has a maximum of 256
characters and is null-terminated.

...

(IN) Can take a variable number of control string arguments.

Completion Codes (EAX)

Remarks

Call this routine at either process or interrupt time. This routine runs to
completion and preserves the interrupt states.

QueueSystemAlert provides a system notification of stack or MLID hardware
or software problems that must be reported at run time. Use OutputToScreen
to display errors at initialization.

IMPORTANT: NLMs written to the NetWare 4 operating system should use
NetWareAlert instead of QueueSystemAlert.

Example

TransmitTimeoutMessage db Transmit failure on board #%d', 0
movzx EAX, [EBX].CStackBoardNumber ;Pass our board number
push EAX
push OFFSET TransmitTimeoutMessage ;Pass error string
push 2 ;SeverityRecoverable
xor EAX, EAX
push EAX ;Error code
push 6 ;ClassHardwareFailure
push 0
push 01100b ;Console & ErrorLog
push EAX ;Station #, not used

00000000h Successful

00000001h Alert Not Available
Operating System Support Routines 563

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
call QueueSystemAlert
add ESP, 8 * 4 ;Clean up stack

See Also

! NetWareAlert

! OutputToScreen
564 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ReadEISAConfig

Reads the EISA configuration block for the specified slot. Generally
used by MLIDs.

Language: Assembly Language

NetWare Operating System: NetWare 4

Entry State

CH

Function/block.

CL

Board slot.

Interrupts

Are in any state.

Call

At process time only.

Return State

EAX

Has a completion code.

ESI

Address of the configuration buffer.

Interrupts

Are preserved.

Preserved

 ECX
Operating System Support Routines 565

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Codes (EAX)

Remarks

IMPORTANT: ReadEISAConfig has been superseded by the NBI function
ReadCardConfigInfo.

ReadEISAConfig reads the EISA configuration block for the specified slot
into a 320-byte buffer. The MLID typically calls this routine during
initialization.

Usually the MLID calls this routine with Block - 0. If the MLID does not find
the information in this block, it continues calling this routine and incrementing
the block number until it either receives the right block or runs out of blocks.

The MLID should copy the returned configuration block into local memory.
Once the MLID returns to the operating system or calls a blocking procedure,
the block information is no longer valid.

0x00000000 Successful

0x00000001 Int 15h vector removed

0x00000080 Invalid slot number

0x00000081 Invalid function number

0x00000082 Nonvolatile memory corrupt

0x00000083 Empty slot

0x00000086 Invalid BIOS routine called

0x00000087 Invalid system configuration
566 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ReadPhysicalMemory

Reads memory from a physical address into a buffer pointed to by a
logical address. Generally used by MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 and higher

Syntax

LONG ReadPhysicalMemory (
 BYTE *Source,
 BYTE *Dest,
 LONG NumUnits,
 LONG UnitLength);

Parameters

Source

(IN) The physical address of the memory to be read.

Dest

(IN) The logical memory address of the buffer to read into.

NumUnits

(IN) The number of memory units to read.

UnitLength

(IN) Has the length of the memory units:

1=Byte

2=Word

4=DWord

Completion Codes (EAX)

0x00000000 Failure The routine failed because of a bad parameter.
Operating System Support Routines 567

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

ReadPhysicalMemory reads memory, from a physical address into a buffer
pointed to by a logical address. This routine is used on the NetWare 4
operating system when the NLM only knows a physical address.

MLIDs can use this call to read memory from shared RAM before they call
RegisterHardwareOptions.

See Also

! RegisterHardwareOptions

! WritePhysicalMemory
568 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ReadRoutine

Allows the MLID to read custom data or firmware. Generally used by
MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG (*ReadRoutine)(
 LONG CustomFileHandle,
 LONG *CustomData0ffset,
 LONG *Destination,
 LONG CustomDataSize);

Parameters

CustomFileHandle

(IN) Has the file handle, supplied as LoadableModuleFileHandle to the
MLID's initialization routine.

CustomDataOffset

(IN) Has the starting offset in the file, supplied as CustomDataOffset to
the MLID's initialization routine.

Destination

(IN) Has the location of where to read the file to.

CustomDataSize

(IN) Has the amount of the data to read, supplied as CustomDataSize to
the MLID's initialization routine.

Completion Codes (EAX)

0 Successful

Nonzero Fail
Operating System Support Routines 569

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

ReadRoutine allows MLIDs to read custom data and firmware into system
memory during initialization. Before the MLID calls this routine, it must
allocate memory to read the custom data into.

This routine can only be called during initialization. This routine could go to
sleep and could return with interrupts enabled.

ReadRoutine's entry point is not exported by the operating system. The only
time this entry point is valid is during the initialization routine. In fact, the
entry point is passed as a local parameter () and must be called indirectly.

The NLM linker actually appends the custom data file to the MLID in the
LAN file. NetWare only loads the MLID's code data at load time, leaving the
file open for the MLID to handle custom data however it must.

To define the custom file, use the CUSTOM keyword in the MLID's definition
file, followed by the file's name. The NetWare operating system passes the
custom file handle, starting address, and size to the MLID's initialization
routine. NetWare also passes the address of the ReadRoutine. The MLID's
initialization routine can then read the file into memory by calling the
ReadRoutine.

The MLID must supply the destination in memory according to the needs of
the LAN adapter.

Example

mov EAX, dword ptr [ESP + CustomDataSize) ;get size of firmware
push MemoryRTag ;push tag
push EAX ;push size
push AllocSemiPermMemory ;allocate memory to
lea ESP, [ESP + 4 * 2] ;clean up stack
or EAX, EAX ;did we get it'?
jz ErrorGetfingExtraMemory ;error exit if not
mov FirmWareBuffer EAX ;save firmware
 ;buffer
mov ESI, EAX ;allocated memory
mov EAX, [ESP + LoadableModuleFileHandle] ;file handle firmware
mov EBX, [ESP +] ;read routine
 ;address
mov EDX, [ESP + CustomDataOffset] ;start address in file
mov ECX, [ESP + CustomDataSize] ;get size of firmware
push ECX ;amount to read
push ESI ;where to read to
570 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
push EDX ;offset in file
push EAX ;file handle
call EBX ;call read routine
cli ;stop interrupts
add ESP, 4 * 4 ;adjust the stack
or EAX, EAX ;check for read
jnz ReadError ;errors

NOTE: The CUSTOM keyword must be used in the definition file to specify the file
name for the firmware.
Operating System Support Routines 571

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
RegisterForEventNotification

Registers a routine to be called when a certain event occurs. Generally
used by protocol stacks and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG RegisterForEventNotification (
 struct ResourceTagStructure *resourceTag,
 LONG eventType,
 LONG priority,
 LONG (*warnProcedure)(
 void (*OutputRoutine) (
 void *controlstring,
 ...);
 LONG parameter,
 LONG userParameter),
 void (*reportProcedure) (
 LONG parameter,
 LONG userParameter)
 LONG userParameter);

Parameters

resourceTag

(IN) Pointer to a ResourceTagStructure that contains an EventSignature.
This resource tag is to be used for event notification.

eventType

(IN) The type of event the protocol stack wants to be notified of (see the
Remarks section).

priority

(IN) The order in which to call registered callback routines.

EventPriorityOS 00h
EventPriorityApplication 20h
EventPriorityDevice 40h
572 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
warnProcedure

(IN) Pointer to a callback routine that will be called before the event has
occurred. If the warnProcedure does not want the event to occur, it should
return with a nonzero value. Set to zero if not used.

OutputRoutine

(IN) Sends an output message to the user of a particular event.

controlString

(IN) Standard printf control string that is to be used in the output routine.

...

(IN) Additional parameters can be passed to the output routine in order to
match the control string requirements.

parameter

(IN) 32-bit value that is defined according to the event type.

reportProcedure

(IN) Pointer to a callback routine that is called when an event occurs.

userParameter

(IN) 32-bit value passed on input and returned in warnProcedure and in
reportProcedure.

warnProcedure

(OUT) Pointer to a callback routine that will be called before the event
has occurred. If the warnProcedure does not want the event to occur, it
should return with a nonzero value. Set to zero if not used.

reportProcedure

(OUT) Pointer to a callback routine that is called when an event occurs.

Completion Codes (EAX)

Nonzero Successful EAX has an EventID that should be used when
UnRegisterEventNotificatfon is called.

0 Fail
Operating System Support Routines 573

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

RegisterForEventNotification adds routines to the list when an event is
reported. The protocol stacks and MLIDs call these routines according to
priority. The warning routine is called when the operating system calls an
EventCheck. The report routine is called when the operating system calls an
EventReport. The protocol stack or MLID passes the parameter that it receives
when the event is reported to the called routine. This called routine returns an
EventID that the protocol stack or MLID should use when it calls
UnRegisterEventNotification.

When the type of event defined by eventType occurs, the operating system
calls the callback routine. The types of events that can be defined in eventType
are listed below:

EventDownServer 4h The parameter is undefined. The warn routine and the
report routine are called before the server is shut down.

EventChangeToRealMode 5h The parameter is undefined. The report
routine is called before the server changes to real mode and must not go to
sleep.

EventReturnFromRealmode 6h The parameter is undefined. The report
routine is called after the server returns from DOS and must not go to sleep.

EventExitToDOS 7h The parameter is undefined. The report routine is called
before the server exits to DOS.

EventProtocolBind 21h This parameter is a pointer to an EventProtocolBind
structure. This event is generated every time a board is bound to a protocol
stack. This event may sleep.

EventProtocolBind struct (
 LONG BoardNumber;
 LONG ProtocolNumber;

EventProtocolUnbind 22h This parameter is a pointer to an
EventProtocolBind structure (see above). This event is generated every time a
board is unbound to a protocol stack. This event may sleep.

EventMLIDRegister 27h This parameter is a board number. The report
routine is called after the MLID is registered. This event may sleep.

EventMLIDDeregister 28h This parameter is a board number. The report
routine is called before the MLID is deregistered. This event may sleep.
574 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
EventProtocolRegistered 87h This parameter is generated when a Protocol
is registered. The parameter is a pointer to the EventProtocolRegisteredStruct.
This event may sleep.

EventProtocolUnregistered 88h This parameter is generated when a
Protocol is unregistered. The parameter is a pointer to the
EventProtocolRegisteredStruct. This event may sleep.

The order in which the call back routines are called is determined by the
priority parameter. The priorities are notified first. The available priorities are
listed below:

EventPrioritvOS 0h
EventPriorityApplication 20h
EventPriorityDevice 40h

The protocol stack or MLID passes the callback routines a parameter (which
can include nulls) and a report routine to be used to warn the user against the
occurrence of a particular event. The parameter reportprocedure is passed
additional event-specific information when it is needed.

This routine is also used at initialization to register an event callback routine.
For example, the MLID calls this routine so that it can be notified if the server
is going to eidt to DOS. This gives the MLID a chance to cancel any AES or
timer events, and allows bus-master devices to return any preallocate resource
and shut down the LAN adapter. It also prevents LAN adapters that use DMA
or are bus-master devices from writing to memory after DOS gains control.

Example

push OFFSET ExitOSAndR@wd ;Address of exit routine
push 0
push EventPriorityOS ;Set priority level
push EventExitToDOS ;Set what event
push EventRTag ;Resource event tag
call RegisterForEventNotification ;Have OS patch in routine
add ESP, 4 * 5 ;Clear up stack
or EAX, EAX ;Did OS patch in call?
jz EventPatchError ;Error did not add procedure

See Also

! AllocateResourceTag
Operating System Support Routines 575

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! UnregisterEventNotification
576 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
RegisterHardwareOptions

Reserves hardware options for a LAN adapter. Generally used by
MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG RegisterHardwareOptions (
 struct IOConfigurationStructure *IOConfig,
 struct DriverConfigurationStructure *configuration);

Parameters

IOConfig

(IN) Has a pointer to the MLIDLink field in the logical board's
configuration table.

configuration

(IN) Has a pointer to the logical board's configuration table.

Completion Codes (EAX)

0 Successful The hardware is successfully registered.

1 Successful Duplicate hardware with a new frame type is registered.

2 Successful (NetWare 4 only) A new channel for existing hardware is registered.

2 Failure (NetWare 3 only) The routine failed to register the hardware because of
either a conflict or a bad parameter.

3 Failure (NetWare 4 only) The routine failed to register the hardware because of
either a conflict or a bad parameter.
Operating System Support Routines 577

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

RegisterHardwareOptions reserves hardware options for a specific LAN
adapter.

Call this routine only at process time. This routine runs to completion.
Interrupts can be in any state and do not change.

The MLID passes RegisterHardwareOptions a pointer to an
IOConfigurationStructure that has the specified hardware options to reserve.
If any of the hardware options are already in use, the routine returns an error
code. The IOConfigurationStructure starts at the MLIDLink field of the
configuration table.

In NetWare 4, this function fills in MLIDLinearMemory0 and
MLIDLinearMemory1, which the MLID must subsequently use to access its
card's memory.

In NetWare 3, the MLID must use MapAbsoluteAddressToDateOffset to
convert MLIDMemoryDecode0 to MLIDLinearMemory0 and
MLIDMemoryDecode1 to MLIDLinearMemory1 .

Example

push OFFSET DriverConfiguration
push OFFSET MyIOConfig
call RegisterHardwareOptions ;Register hardware
add ESP, 2 - 4 ;Now restore stack
emp EAX, 1 ;Duplicate Hardware
je AddNewFrameType
ja ErrorRegisteringHardware
578 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
RemovePollingProcedure

Removes the MLID's polling procedure from the server. Generally used
by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void RemovePollingProcedure (
 void (*Procedure) (void));

Parameters

Procedure

(IN) Has a pointer to a previously added polling procedure.

Completion Codes (EAX)

None.

Remarks

Call this routine only at process time. This routine runs to completion.
Interrupts can be in any state, and do not change.

The MLID uses RemovePollingProcedure to remove its poll routine from the
server's list of polling procedures.

A polled MLID calls RemovePollingProcedure when it unloads.

Example

push OFFSET NewDriverPoll ;Remove us from poll
call RemovePollingProcedure ;List
add ESP, 4
Operating System Support Routines 579

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ScheduleInterruptTimeCallBack

Adds an event to the timer interrupt handler's event list. Generally used
by protocol stacks and MLIDs.

Language: Assembly Language

NetWare Operating System: Not version specific

Entry State

EDX

Has a pointer to a timer node data structure.

Interrupts

Are disabled.

Call

At process or interrupt time.

Return State

Interrupts

Are disabled and are not enabled

Preserved

 All registers but EDI and ESI

Completion Codes (EAX)

None.

Remarks

IMPORTANT: This process does not relinquish control of the CPU.

ScheduleInterruptTimeCallBack adds an event to the list of events called by
the timer interrupt handler. The TimerNodeDataStructure is shown below:

TimerNodeDataStructure struc
TLINK dd
580 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
TCallBackProcedure dd ;Set by caller
TCallBackEBXParameter dd ;Set by caller
TCallBackWaitTime dd ;Set by caller
TResourceTag dd ;Set by caller
TReservedl dd
TReserved2 dd
TimerNodeDataStructure ends

The appropriate fields of this structure should be filled out as follows:

The operating system does not change the fields described above. Therefore,
if you reschedule another callback, you do not need to reset these fields.

Example

cli
mov EDX, OFFSET MyTimerNode ;TimerNodeDataStructure
mov [EDX].TCallBackEBXParameter, EBP
mov EBX, OFFSET MyTimerinterruptCallBackRoutine
mov [EDX],TCal[BackProcedure, EBX
 ;can also use offset
 ;MyTimerinterruptCallBackRoudne
 ;instead of EBX
mov EBX, 1-imerResourceTag mov [EDX].TResourceTag, EBX
mov [EDX].TCallBackWa!tTime ;Wake up in 5 ticks
call SchedulelnterruptTimeCallBack

NOTE: TResourceTag points to the resource tag acquired by the protocol stack or
by the MLID for InterruptTimeCallBacks (with a TimerSignature).

See Also

! CancelInterruptTimeCallBack

TCallBackProcedure Pointer to the procedure to be called by the timer interrupt handler.

TCallBackEBXParameter The value EBX should contain when the callback procedure is
invoked.

TCallBackWaitTime The amount of time, in ticks, before the callback procedure is
invoked.

TResourceTag The resource tag that was allocated in order to use this call.
Operating System Support Routines 581

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ScheduleNoSleepAESProcessEvent

Sets up a background no-sleep thread. Generally used by protocol
stacks and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void ScheduleNoSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Pointer to an AESProcessStructure.

Completion Codes (EAX)

None.

Remarks

ScheduleNoSleepAESProcessEvent sets up a background AESNoSleep thread
to be executed at specific intervals. (AES stands for Asynchronous Event
Scheduler.)

The protocol stack or the MLID must allocate the AESProcessStructure
before calling this routine and must provide the execution level and the
execution address.

Calling this routine once creates a single entry in the defined thread.

You must call ScheduleNoSleepAESProcessEvent every time you want to
execute the thread.

NOTE: The call specified in AESProcessStructure must not relinquish control of
the processor.

Call this routine at process time or interrupt time. When the procedure returns,
the interrupt state is preserved.
582 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The AESProcessStructure is defined below:

struct AESProcessStructure struc
ALink dd ? ;used by the operating system.
AWakeUpDelayAmount dd ? ;filled out by caller, won't be changed
AwakeUpTime dd ? ;used by operating system
AProcessToCall dd ? ;filled out by caller, won't be changed
ARTag dd ? ;filled out by caller, won't be changed
AOldLink dd ?;used by operating system
AESProcessStructure ends

IMPORTANT: The AESProcessStructure must be in static memory and available
long-term.

The operating system does not change any of the AESProcessStructure fields
filled by the caller. Therefore, you do not need to reset these flags before you
reschedule the process.

Example

push EAX ;Points to an AES structure
call ScheduleNoSleepAESProcessEvent
add ESP, 4 ;Adjust the stack pointer

See Also

! AllocateResourceTag

! CancelNoSleepAESProcessEvent
Operating System Support Routines 583

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
ScheduleSleepAESProcessEvent

Sets up a background sleep thread. Generally used by protocol stacks
and MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

void ScheduleSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Pointer to an AESProcessStructure.

Completion Codes (EAX)

None.

Remarks

Call this routine at process time or interrupt time. When the procedure returns,
the interrupt state is preserved.

ScheduleSleepAESProcessEvent sets up a background AES (Asynchronous
Event Scheduler) thread that can be executed at desired intervals. This thread
can be blocked and can make blocking calls while executing. The protocol
stack or MLID must have allocated the AESProcessStructure prior to the first
call and must have provided the execution level and execution address. A
single call to this routine causes a single entry to the defined thread.

NOTE: The call specified in AESProcessStructure may relinquish control of the
processor. AESProcessStructure must be in static memory and available long-
term. The AESProcessStructure is defined below:

struct AESProcessStructure struc
ALink dd ? ;used by the operating system.
AWakeUpDelayAmount dd ? ;filled out by caller, won't be changed
AwakeUpTime dd ? ;used by operating system
584 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
AProcessToCall dd ? ;filled out by caller, won't be changed
ARTag dd ? ;filled out by caller, won't be changed
AOldLink dd ?;used by operating system
AESProcessStructure ends

Example

push EAX ; Points to an AES structure
call ScheduleSleepAESProcessEvent
add ESP, 4 ; Adjust the stack pointer

See Also

! AllocateResourceTag

! CancelSleepAESProcessEvent

! ScheduleNoSleepAESProcessEvent
Operating System Support Routines 585

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SetHardwarelnterrupt

Provides an ISR entry point. Generally used by MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG SetHardwareInterrupt (
 BYTE hardwareinterruptlevel,
 void (*InterruptProcedure) (void),
 struct ResourceTagStructure *Rtag,
 BYTE endOfChainFlag,
 BYTE shareflag,
 LONG *EOIFlag);

Parameters

HardwareInterruptLevel

(IN) The hardware interrupt level.

InterruptProcedure

(IN) Has a pointer to the address of the interrupt procedure that will be
assigned to the specified interrupt vector.

RTag

(IN) Pointer to the resource tag that the MLI D acquired for interrupts.

endOfChainFlag

(IN) Indicates whether the ISR is to be placed in the front or the back of
the queue.

shareFlag

(IN) Indicates whether the MLID and the LAN adapter can share
interrupts with other adapters.

E0IFlag

(IN) Has a pointer to a double-word flag. When the routine returns, this
flag indicates whether this interrupt will require a second EOI.
586 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Completion Codes (EAX)

Remarks

SetHardwareInterrupt allocates the specified interrupt and provides an ISR
entry point.

Call this routine only at process time. This routine does not suspend the calling
process. Interrupts must be disabled and will not be enabled.

The interrupt procedure (ISR) will be called with all the registers preserved,
ES and DS initialized, and the direction flag cleared. Because interrupt
procedures are called as a near procedure, they should return using a RET.

NOTE: SMP aware MLIDs should use SetSymmetricInterrupt instead of
SetHardwareInterrupt, and NetWare 5 MLIDs should use BusInterruptSetup
instead of SetHardwareInterrupt.

This routine uses three flags:

! endOfChainFlag

If this flag is equal to 0, the ISR is to be placed on the front of the queue
(nonshared interrupts should use 0). If the flag is equal to 1, the ISR
should be placed at the rear of the queue.

! shareflag

If this flag is equal to 0, the interrupt is nonshareable. If the flag is equal
to 1, the interrupt can be shared.

! EOIFlag

If this flag returns with a 0, only one EOI will be required for this
interrupt. This flag will be initialized by SetHardwareInterrupt. If this flag
is not 0, the interrupt is chained and the second PIC will also need an EOI.
Always EOI the slave (or secondary) PIC first, and then EOI the master
(or primary) PIC second.

00000000h Successful

00000001h Invalid Parameter

00000002h Invalid Sharing Mode

00000003h Out of Memory
Operating System Support Routines 587

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Example

push OFFSET E0IFlag
push 0 ;Nonshareable interrupt
push 0 ;End of Chain Flag
push InterruptResourceTag ;Pointer to RTag
push OFFSET MyInterruptHandler
push MylrtterruDtLevel ;Interrupt entry
call SetHardwareInterrupt ;Get interrupt back
add ESP, (B * 4) ;Interrupt number
or EAX, EAX ;Error getting interrupt
jnz MLIDResetExit ;Exit if so
.
.
.
MyInterruptHandler proc near
.
.
.
ret
MyInterruptHandler endp

See Also

! ClearHardwareInterrupt
588 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SetSymmetricInterrupt

Provides an ISR entry point for SMP aware MLIDs. Generally used by
MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG SetSymmetricInterrupt (
 LONG hardwareinterruptLevel,
 void (*ServiceRoutine),
 LONG deliveryMode,
 LONG processorNumber,
 BYTE endOfChainflag,
 LONG shareFlag,
 LONG *virtualInterruptNumber,
 struct ResourceTagStructure *Rtag);

Parameters

hardwareInterruptLevel

(IN) The IRQ level of the hardware interrupt.

ServiceRoutine

(IN) Pointer to the interrupt procedure that will be assigned to the
specified interrupt vector.

deliveryMode

(IN)

Set to 0 to force processor 0 to always handle the interrupt.

Set to 1 to assign the interrupt to a specific processor.

Set to 2 to allow dynamic interrupt assignment among all processors.

processorNumber

(IN) Processor number (0, 1, 2, etc.) that the interrupt will be assigned to;
only valid for deliverMode = 1.
Operating System Support Routines 589

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
endOfChainflag

(IN)Flag that indicates whether the ISR is to be placed on the front or the
back of the queue.

shareFlag

(IN) Flag that indicates whether the MLID and the LAN adapter can share
interrupts with other adapters.

Rtag

(IN) Pointer to the resource tag that the MLID acquired for interrupts.

virtualInterruptNumber

(OUT) Pointer to the virtual interrupt number assigned by SMP.

Completion Codes (EAX)

Remarks

Call this routine only at process time. This routine does not suspend the calling
process. Interrupts must be disabled and will not be enabled.

SMP aware MLIDs use this routine to set up an interrupt service routine.
SetSymmetricInterrupt and ClearSymmetricInterrupt must be used in place of
SetHardwareInterrupt and ClearHardwareInterrupt in the NetWare SMP
environment.

See Also

! ClearSymmetricInterrupt

0 Successful

7 SMP sharing not allowed.

8 SMP chain exceeded the maximum length allowed.

9 SMP invalid parameter.

10 SMP not currently supported.
590 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! SetHardwareInterrupt

! ClearHardwareInterrupt

! NetWare 5's BusInterrupt procedure
Operating System Support Routines 591

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SMPDoEndOfInterrupt

EOIs the PIC/APIC in the NetWare SMP environment. Generally used
by MLIDs.

Language: Assembly Language

NetWare Operating System: Not version specific

Entry State

ECX

Contains the virtualInterruptNumber returned by SetSymmetricInterrupt.

Interrupts

Are disabled.

Call

At process time or interrupt time.

Return State

Interrupts

Are unchanged.

Preserved

 All registers except EAX.

Completion Codes (EAX)

None.

Remarks

SMP aware MLIDs use this routine in place of DoEndOfInterrupt.

See Also

! DoEndOfInterrupt
592 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
UnRegisterEventNotification

Unhooks the event routine. Generally used by protocol stacks and
MLIDs.

Language: C Language

NetWare Operating System: Not version specific

Syntax

LONG UnRegisterEventNotification (
 LONG eventID);

Parameters

eventID

(IN) Has the value returned from RegisterForEventNotification.

Completion Codes (EAX)

Remarks

UnRegisterEventNotification should be called to unhook your event
(callback) routine.

Call this routine when the protocol stack or MLID is being unloaded.

IMPORTANT: Important: Do not call this routine from within a routine that was
called by RegisterForEventNotification.

Example

push EventID ;Unhook from operating system exit
call UnRegisterEventNotification ;Call operating system unhook
add ESP, 4 ;Clear stack

0 Successful
Operating System Support Routines 593

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
See Also

! RegisterForEventNotification
594 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
WritePhysicalMemory

Write to a buffer pointed to by a physical address. Generally used by
MLIDs.

Language: C Language

NetWare Operating System: NetWare 4 and higher

Syntax

LONG WritePhysicalMemory (
 BYTE *Source,
 BYTE *Dest,
 LONG NumUnits,
 LONG UnitLength);

Parameters

Source

(IN) The logical address of the memory to write from.

Dest

(IN) The physical address of the buffer to write to.

NumUnits

(IN) The number of memory units to write.

UnitLength

(IN) Has the size of the memory units:

1= Byte

2= Word

3= DWord

Completion Codes (EAX)

0x00000000 Failure The routine failed because of a bad parameter.
Operating System Support Routines 595

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

WritePhysicalMemory writes to a buffer that is pointed to by a physical
address. MLIDs use this routine if they must write data to shared RAM before
they call RegisterHardwareOptions.

See Also

! ReadPhysicalMemory

! RegisterHardwareOptions
596 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
22 Assembling and Linking NLMs

Overview

This appendix discusses the steps involved in creating an NLM, the files
associated with it, and the steps involved in loading and unloading it.

You should read this appendix if you have never created an NLM before. If
you have previously created NLMS, the section "The Definition File" contains
keywords that you might want to review.

NetWare Loadable Modules (NLMS)

Using NLMs (NetWare Loadable Modules), network supervisors can
dynamically load or unload additional functions to a NetWare 3 and later
server without disturbing a fully functioning network. An NLM is an
independent module containing a set of functions that can be added to a
NetWare server. Figure 25 depicts loadable modules as NetWare building
blocks.
Assembling and Linking NLMs 597

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 25 Loadable Modules as NetWare Building Blocks

Creating an NLM

All NetWare server MLIDs and protocol stacks are NLMS. NLMS are created
in four steps as follows:

1. Create the source file. NetWare NLMs can be written in ANSI C or Intel
Assembly Language.

2. Compile or assemble the source file. The source file assembles into an
object (.OBJ) file. Novell currently uses the Watcom C Compiler and the
386 v4.10 Protected Mode Assembler by Phar Lap Software, Inc.

3. Link the object file with the NetWare linker. The NetWare linker converts
the object (.OBJ) file into a super object file (.NLM).

NOTE: Different kinds of NLMs have different extensions, each signifying the
module's function. For example, and MLID has an .LAN extension.

4. Load the NLM as part of the operating system. Using the LOAD console
command, the network supervisor can load a .LAN file or a .NLM file
into server memory while the file server is running. Once loaded, an NLM
works as if it was hardcoded into the NetWare operating system.
598 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
The sample NLMs used in this appendix have the same name for source files,
object files, definition files, and super object files. However, each file can
have a separate name.

The NetWare Linker

 The NetWare Linker requires two files:

! An object file (for this example, LDRIVER.OBJ or PSTACK.OBJ)

! A definition file (for this example, LDRIVER.DEF or PSTACK.DEF)

The definition file LDRIVER.DEF or PSTACK.DEF contains information
describing the object file LDRIVER.OBJ or PSTACK.OBJ. This information
includes a list of all NetWare 3 and 4 operating system internal variables and
routines that LDRIVER and PSTACK must access after being loaded. To link
the object file, type the name of the NetWare Linker (NLMLINK) followed
by the name of the definition file:

nlmlink ldriver or nlmlinkp ldriver

nlmlink pstack or nlmlinkp pstack

The Definition File

Each NetWare loadable module must have a corresponding definition file
with a DEF extension. The definition file contains information about the
loadable module, including a list of NetWare variables and routines that the
loadable module must access. The following sample code illustrates a
definition file that can be used to create an MLID, as well as a definition file
that can be used to create a protocol stack:

LDRIVER.DEF

TYPE 1
DESCRIPTION "NetWare NF9000 v5.30 (930718)"
OUTPUT MyDriverName
INPUT MyDriverOBJFiles
START DriverInitialize
EXIT DriverRemove
REENTRANT
MAP
IMPORT

 GetCurrentTime
 SetHardwareInterrupt
Assembling and Linking NLMs 599

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 ClearHardwareInterrupt
 ParseDriverParameters
 RegisterHardwareOptions
 DeRegisterHardwareOptions
 LSLRegisterMLIDRTag
 LSLGetSizedRcvECBRTag
 LSLFastRcvEvent
 LSLHoldRcvEvent
 LSLFastSendComplete
 LSLSendComplete
 LSLServiceEvents
 LSLDeRegisterMLID
 LSLUnBindThenDeRegisterMLID
 LSLAddProtocoliD

PSTACK.DEF

DESCRIPTION "NetWare 4 Dummy Protocol Driver vl.x (930718)"
OUTPUT MyStackName
INPUT MyStackOBJFiles
START StartProcedure
EXIT ExitProcedure
MAP
VERSION 1.20
COPYRIGHT
EXPORT

 DummyStackRoutinel
 DummyStackRoutine2
 DummyStackRoutine3

IMPORT

 RegisterForEventNotication
 UnRegisterEventNotfication
 ScheduleNoSleepAESProcessEvent
 CancelNoSleepAESProcessEvent
 AllocateResourceTag
 CFindResourceTag
 CREScheduleLast
 QueueSystemAlert
 FreeSemiPermMemory
 AllocSemiPermMemory
 GetCurrentTime
 LSLAddProtocolID
 LSLReturnRcvECB
 LSLGetMaximumPacketSize
600 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 LSLBindStack
 LSLGetMLIDControlEntry
 LSLGetIntervalMarker
 LSLGetStackIDFromName
 LSLRegisterStackRTag
 LSLSendPacket
 LSLUnBindStack
 CLSLRegisterStack
 CLSLGetPIDFromStackIDBoard

The definition file consists of keywords (which can be uppercase or
lowercase) followed by data:

TYPE Tells the linker which extension to append to the output file. The
default extension is .NLM. A value of 1 specifies .LAN, and a value of 2
specifies .DSK.

DESCRIPTION Tells the linker to save the string following DESCRIPTION
in LDRIVER.LAN and PSTACK.NLM. This string describes the loadable
module and can be from 1 to 127 bytes long. The MODULES console
command which displays a list of currently loaded modules, displays this
description string on the file server console.

The standardized string format is shown below:

MLIDs

NetWare NE2000 v5.30 (930718) 3Com EtherLink Plus 3c5O3 v3.59
(930718)

Protocol Stacks

My Protocol Stack vl.00 (930718)

For NetWare 3 NLMs, the version indicator must be a lowercase "v" and must
be preceded by two spaces. In both examples above, the date stamp is in the
format "YYMMDD" indicating 18 July 1993. This is a byte-length-preceded
ASCIIZ string.

NOTE: In NetWare 3 NLMs, the linker parses for ".NLM" or ".LAN" files and looks
for the version information, which must be formatted as specified above. If the
linker finds the version information, it puts it in the version field of the NLM header.
If the linker does not find the version information, or the information is formatted
incorrectly, or the version keyword is not used, the linker puts zeros in the version
field of the NLM header.
Assembling and Linking NLMs 601

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NetWare 4 NLMs will use the VERSION keyword, but will not include a
version number in the DESCRIPTION. Typing "modules" or "config" at the
command line in NetWare 4 displays the version number.

OUTPUT Tells the linker the name of the output file (for example,
LDRIVER).

INPUT Tells the linker the names of the object files to look for. You can list
the names of several OBJ files on this line. You do not have to list the filename
extension. For example: PSTACK or LDRIVER.

START Tells the linker the name of the loadable module's initialization
routine. In the case of the example MLID, the routine is DriverInit. The
sample protocol stack's routine is called StartProcedure. The NetWare loader
calls this procedure during load time.

EXIT Tells the linker the name of the loadable module's remove routine. In
the case of the example MLID, the routine is DriverRemove. The sample
protocol stack routine is called ExitProcedure. The UNLOAD command uses
this routine to unload the module from file server memory.

REENTRANT Tells the linker that more than one process can be active in the
loadable module's code at one time. (See Chapter 2, "ODI Module Design" for
more information about re-entrancy.)

MAP Tells the linker to create a map file.

IMPORT Tells the linker which NetWare variables and routines the loadable
module must access.

EXPORT Tells the linker that the list following the keyword contains
variables and procedure names that are resident in the loadable module. The
NLM must make these variables and procedure names available to other
loadable modules.

MODULE Tells which loadable modules must be loaded before the current
loadable module is loaded. If the necessary loadable modules are not already
in file server memory, the loader will attempt to find and load them. If the
loader cannot find the necessary modules, it will not load the current module.

You can list multiple files by separating them with "|". The operating system
will scan through this list until it finds the file that it needs.

CUSTOM Tells the name of a file that contains custom data. When the linker
sees this keyword, it includes the specified file in the output file it is creating.
602 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
DEBUG Tells the linker to include debug information in the output file that it
creates.

CHECK Contains the name of the loadable module's check procedure. When
a module is unloaded, or the server is brought down, the UNLOAD and
DOWN console commands call a loadable module's check procedure, if it
exists. The check procedure can do anything you want it to do. For example,
an MLID's check procedure might check to see if a LAN adapter is currently
being accessed and return a nonzero value to the operating system if the
adapter is busy. NetWare can then display a message on the console screen
warning the console operator (who wants to unload the driver or bring down
the server) that an adapter is busy. A protocol stack could do the same type of
check.

MULTIPLE Tells the linker that more than one code image of the loadable
module may be loaded into file server memory.

COPYRIGHT Tells the linker to include a copyright string in the output file.
By placing an ASCII string (from 1 to 252 bytes long) in double quotes after
the keyword Copyright, the copyright message will be displayed whenever the
module is loaded. "\n" can be used in the string to start a new line. If the
Copyright keyword is used, but no string is included, the linker will include a
Novell default copyright message.

NOTE: To use the Copyright keyword, you must use either NLMLINEP.EXE,
NLMLINKR.EXE, or NLMLINKX.EXE. NLMLINKP.EXE runs in protected mode.
(Protected mode means that it uses the memory above the IMB boundary.) You
can use this linker for large object files. NLMLINKR.EXE runs in resident mode.
(Resident mode means that it uses the memory below the 16MB boundary). You
can use this linker for small object files. NLMLINKX.EXE uses extended memory
and can run with an extended memory management device driver loaded.

VERSION Gives the linker the version of the module that should be placed
into the NLM's header version field. The format for this keyword is:

 VERSION MajorVersion, MinorVersion, Rev

The version must be separated by commas. MajorVersion is one digit;
MinorVersion is two digits. The last comma and the Rev are optional. Rev is
a number from 1 to 26, representing a through z. For example: "Version
3.10,1" in the DEF file produces version 3.10a in the output file.

NOTE: The linker automatically sets the date to the date on which the files are
linked. You must use either NLMLINKP.EXE, NLMLINKR.EXE, or NLMLINKX.EXE
to use the VERSION keyword. (See the previous Note for an explanation of the two
linkers.)
Assembling and Linking NLMs 603

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
You can also embed all definition file information inside a make file and have
the make file produce the definition file.

Loading and Unloading

You can load LDRIVER.LAN and PSTACK.NLM at the file server console
after the file server is up and running. These NLMs can also be loaded from a
floppy, from a directory on a DOS partition of the file server's hard disk, or
from the SYS:SYSTEM directory of the NetWare partition. You can then use
the LOAD console command to load these NLMs into the file server's
memory. The following examples show how to load LDRIVER from all three
sources:

load a:ldriver

load c:ldriver

load ldriver

The protocol stack NLM is loaded in the same manner.

The NetWare Loader resolves the NLM's import list and links the NLM to the
NetWare operating system. To unload these NLMs, use the UNLOAD
console command as follows:

unload ldriver

The protocol stack NLM is unloaded in the same manner.
604 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
23 Debugging NLMs

Overview

The NetWare operating system includes a debugger to help you debug your
code. This appendix includes some basic instructions on using the debugger,
setting break points, and changing memory.

The debugger commands vary with different versions of NetWare. Use the H,
.H, HB, and HE commands to discover which debugger commands are
supported on the Netware version you are using.

The NetWare Debugger

The NetWare operating system includes a built-in debugger that you can use
to debug your programs. You can enter the debugger in three ways.

1. Enter 386debug after your NLM abends or GPIs the server.

2. Include INT 3 at some point in your code segment.

3. Type Ctrl-Alt-Shift-Shift-Esc at the console. (Use the left Ctrl key.)

The debugger displays a # command line prompt. The debugger is not case-
sensitive.

Once you have entered Debug, enter .m to display the addresses of the code
and data segments of each NLM that is loaded.

To display a help screen, you can use any of the following commands:

.h displays help for.COMMANDS
 h displays help for general commands
\h displays help for LSL commands
-h displays help for MSM commands
Debugging NLMs 605

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
hb displays help for breakpoints
he displays help for grouping operators and expressions

Setting Breakpoints

Four breakpoint registers exist, allowing a maximum of four breakpoints to be
set simultaneously.

Breakpoints can be set as follows:

! Permanent breakpoint using the "B" commands

! Temporary breakpoint using the "G" command

! Temporary breakpoint using the "P" command if the current instruction
cannot be single stepped.

A breakpoint condition can be any expression. If a breakpoint condition is
specified, the condition will be evaluated when the break occurs. If the
condition is not true, execution will be resumed immediately without entering
the interactive debugger.

(The P and G commands are described in the "Miscellaneous" section of this
appendix.)

In a NetWare 5 system, adding an 'L' to the end of the command name used to
set permanent breakpoints causes the breakpoint to be set in the current local
processor only.

For example, on a multiprocessor system running NetWare 5:

! typing "b = FC005424" sets a breakpoint at address FC005424 on all
processors

! typing "BL=FC005424" sets a break point at address FC005424 in the
current local processor only. (See the "X" command for how to change
processors.)

B

Displays all breakpoints that are currently set. For example, entering

b

after the # prompt will result in the following display:

#bBreakpoint 0 write byte at FF65623Breakpoint 1 read or
write byte at 000653BABreakpoint 2 execute at FFFOSBA3
606 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
BC <number>

Clears the breakpoint specified by <number>. For example, entering

bc <number>

after the prompt (using 2 for the number) will result in the following display:

#bc 2Breakpoint cleared

BCA

Clears all breakpoints. For example, entering

bca

after the # prompt will result in the following display:

#bcaAll breakpoints cleared

BD <number>

Disable but do not clear all break points on the breakpoint specified by
<number>.

BE <number>

Enable all break points on the breakpoint specified by <number>.

B = <address> {condition}

Sets an execution breakpoint at the specified address when the indicated
condition is true. A breakpoint condition can be any expression. If a
breakpoint condition is specified, that condition will be evaluated when the
breakpoint occurs. If the condition is not true (equals zero), then execution
will resume immediately without entering the interactive debugger mode.

For example, entering

b = fff8765a

after the prompt might result in the following display:

b = fff8765aSet as breakpoint 0

BW = <address> {condition}

Sets a write breakpoint at the specified address when the indicated condition
is true. For example, entering
Debugging NLMs 607

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
bw = fff665ab

after the prompt will result in the following display:

bw = fff665abSet as breakpoint 1

BR = <address> {condition}

Sets a read /write breakpoint at the specified address when the indicated
condition is true. For example, entering

br =<address> {condition}

after the prompt might result in the following display:

br = 0065acf3Set as breakpoint 2

BI = address{condition}

Sets an I/O read/write breakpoint at the specified address.

Changing Memory

C <address>

Interactively changes the contents of memory location <address> For
example, entering C and an address after the prompt might result in the
following display:

c fff6432aFFF6432A (00) = 33FFF6432B (34) = 98FFF6432C (5A)
= .

To end interactive mode, type a period.

 CD <address>

Same as C <address>, except in 32-bit words instead of 8 bit bytes.

C <address> = <number or numbers>

Changes the memory value or values, beginning at <address>, to the specified
number or numbers. For example, entering c and some address = some
number(s) after the # prompt will result in the following display:

#c fff534c5 = 00,00,12,5a,78Change successfully completed
608 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
CD <address> = <number or numbers>

Same as C <address> = <number or numbers>, except in 32-bit
words instead of 8 bit bytes.

C <address> = "text"

Places the specified text string beginning at <address>. For example, entering
C <address> = "text" after the # prompt will result in the following display:

c fff60db3 = "This is a string."Change successfully
completed

Dumping Memory

D <address> {count}

Dumps the contents of memory staring at <address> for <count> number of
bytes. For example, entering D <address> {count} at the # prompt will result
in the following displays:

d fff7765e

FFF7766E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7766E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7767e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7768e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776ge 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776Ae 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776Be 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776Ce 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776Ee 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776Fe 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7770e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF777le 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7772e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7773e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7774e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7775e 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

or

d fff7765e 3
FFF7765E 00 00 00
Debugging NLMs 609

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
 DD <address> {count}

Same as D <address> {count}, except that the dump is displayed as 32-
bit words.

 DL {+linkoffset}<address> {count}

Display the contents of a linked list at <address> for the count number of
bytes, treating {offset} as the offset from <address> to the forward link to the
next list element. Use <enter < to dump the next list element.

 DDL {+linkoffset}<address> {count}

Same as DL {offset}<address> {count}, except that memory is
displayed as 32-bit words.

 DDS {+linkoffset}<address> {count}

Display the stack symbolically. The default address is [ESP].

Register Manipulations

R

Displays the registers EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, and EIP
registers; it also displays all flags. For example, entering R after the # prompt
might result in the following display.

REAX=99999999 EBX-00005455 ECX=78787878
EDX=00060544ESI=OOOOOOOO EDI=80868086 EBP=OOOOOOOO
ESP=FFF67876EIP=FFF56784 FLAGS=00010002

<REG = value>

Changes the specified register to the new value. The command is effective
with the EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, and BIP registers. For
example, entering <REG = value> after the # prompt will result in the
following display:

eax = 8099acb3Register changed

F <FLAG > = <value>

Changes the specified flag to the new value (O or - 1). The command is
effective with the CF, AF, ZF, SF, IF, TF, PF, DF, and OF flags. For example,
610 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
entering F <FLAG > = <value> after the # prompt results in the following
display:

f pf = 0Flag changed

RC

Display control registers.

I/O

I {BarWord} <PORT>

Inputs a byte, word, or double from a port. For example, entering I {BarWord}
<PORT> after the prompt results in the following display:

i 255Port (255) = ff

 O (BarWord) <PORT > = <VALUE>

Outputs a byte, word, or double value to a port. For example, entering 0
(BarWord) <PORT > after the prompt results in the following display:

o 255= 78Output completed

Miscellaneous

.A

Display the reason for the abend or break.

G {break address(es)}

Begins execution at current EIP and sets temporary breakpoint(s) to
address(es). For example enter G (break address(es)) after the # prompt results
in the following display:

g fff56784Break at FFFS6784 because of go
breakpointEAX=99999999 EBX=00005456 EXC=78787878
EDX=00060544ESI=OOOOOOOO EDI=80868086 EBP.OOOOOOOO
ESP=FFF67876EIP=FFF56784 FLAGS=00010002FFF56784
BB30CE0500MOV EBX, 0005CE30

H, HB, HE, .H, -H, \H

Displays help screens.
Debugging NLMs 611

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
.L <logical address>

Display page table information for this <logical address>.

.LA <logical address>

Find all aliases at <logical address>.

.LB

The .LB command allows you to get last branch information from the
processor. Branches include CALL, RET, JMP, etc. Conditional branches
which are not taken are not considered a branch. INTERRUPTS and the
IRETD instruction are also considered branches but do not cause debug
exceptions.

When a debug exception, INT1 or INT3, occurs, the processor automatically
stops tracking last branch information. The branch from the executing code
into the debug exception, INT1 or INT3, is not recorded. The OS debugger
reads and saves the last branch MSRs for later reference then reenables last
branch tracking just prior to the IRETD as the debugger exits from the INT1
or INT3 debug exception. Be aware that the IRETD instruction from a INT1
or INT3 debug exception is recorded as a branch by the processor.

Once enabled, last branch tracking is performed automatically by the
processor. This happens without any software intervention and without a
performance hit to the processor.

There are two sets of last branch MSRs in the processor. The first is for
recording last branch taken. The second is for recording the last branch taken
prior to an interrupt or exception. When an interrupt or exception occurs,
excluding exceptions INT1 and INT3, the processor takes a snapshot of the
information in the last branch MSRs and places it in the last branch prior to
interrupt or exception MSRs. This information remains frozen until the next
interrupt or exception.

By using the Pentium Pro last branch MSRs and last branch prior to interrupt
or exception MSRs the kernel debugger may now provide the developer with
a useful execution path back trace. This back trace may be obtained using the
.LBT debugger command.

.LBT

The last branch table is a per processor ring buffer. When used with the single
step command the buffer provides a history of last branch information. To use
612 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
this feature single step through the debugger and observe that the table fills up
with the last branch information available from the Pentium Pro MSRs.

.LBTC

As mentioned, the last branch table is a per processor ring buffer. It may be
cleared on a per processor basis by typing .LBTC. You may change processors
using the "X" command.

.LP <physical address>

Find all linear mappings of <physical address>.

.M

Display loaded module names and address.

M <Start >{L len} <byte(s)>

Searches memory for pattern from the start until the length is reached. For
example, entering B>M <Start > {L len}<byte(s)> at the # prompt results in
the following display.

m fff77e5O 48 61 72 64
FFF77EfO 54 48 45 52 4E 45 54 5F-49 49 00 90 00 00 00 00 ETHERNET_ll.....
FFF77FOO 00 oo oo oo oo oo go SS-F7 FF 00 oo oo oo oo oo kw
FFF77Fl0 48 61 72 64 77 61 72 65-44 72 89 76 65 72 4D 4C HardwareDriverML

N <symbolname> <value>

Defines a new symbol with a value. For example, entering N at the prompt
might result in the following display.

n thissym 0f0f

P

Proceeds over the next instruction.

Q

Quits and returns to DOS.

T or S

T traces and S single-steps through the program.
Debugging NLMs 613

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SBON and SBOFF

When stepping on branches taken is enabled, a single step debug command
will execute until a branch is taken. The processor stops execution on the
instruction which was the target of the branch. All code from one branch to the
next is executed without entering the debugger unless the processor hits some
other break point. Be aware that if single stepping on branches is enabled by
typing SBON in a segment of code between a PUSHFD and POPFD and the
trap flag (TF) in the EFLAGS register was not previously set, when the
POPFD instruction is executed the trap flag will not remain set and no debug
exceptions will be generated from that point on.

U <address> {COUNT}

Unassembles count instructions from address. For example, entering U
<address> {COUNT) at the # prompt results in the following display:

u FFF87885 2FFF87885 0000 ADD [EAX],ALFFF87887 0000 ADD
[EAX],AL

V

Views the screens (steps through the screens sequentially).

.V

Display server version.

 X <number>

Change to the next available processor or change to the processor specified by
<number>.

Z <expression>

Evaluates the expression. For example, typing z and an expression at the #
prompt results in the following display.

z 7+8Evaluates to: F

? <address>

If symbolic information has been loaded, display the closest symbols to
<address> (default [EIP]) are displayed.

NOTE: The D, M, P, S, T, and U commands can be continued or repeated by
simply pressing the enter key at the # prompt.
614 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Grouping Operators

These operators and (), [], and {} have a precedence of 0. The grouping
operators can be nested in any combination. The size is a data size specifier of
type B, W, or D.

(expression) This example causes an expression to be evaluated at a higher
precedence.

[size expression] This example causes an expression to be evaluated at a
higher precedence and then uses that expression as a memory address. The
bracketed expression is replaced with the byte, word, or double word at that
address.

{size expression} This example causes an expression to be evaluated at a
higher precedence and then uses that expression as a port address. The
bracketed expression is replaced with the byte, word, or double word input
from the port.

Unary Operators

Table 58 NetWare Debugger Operators

Symbol Description Precedence

! logical not 1

- 2s compliment 1

~ l's compliment 1

* multiply 2

/ divide 2

% mod 2

+ addition 3

- subtraction 3

<< bit shift right 4

>> bit shift left 4

< greater than 5
Debugging NLMs 615

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Ternary Operator

expression1 ? expression2, expression3

If expressionl is true, the result is the value of expression2; otherwise, the
result is the value of expression3.

> less than 5

>= greater than or equal to 5

<= less than or equal to 5

== equal to 6

!= not equal to 6

& bitwise AND 7

^ bitwise XOR 8

| bitwise OR 9

&& logical AND 10

| | logical OR 11

Symbol Description Precedence
616 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
24 Server Command Line Parameters
and Keywords

Overview

This appendix contains the keywords and parameters you can use from the
command line when loading the MLID. The keywords and parameters specify
custom options for the MLID.

MLID Keywords

When loading an MLID on the server console command line, you can use the
keywords listed below as parameters. LAN Parameters and I/O parameters do
not have a set order, and the two can be mixed together. For example, you
could enter a command similar to this:

LOAD LDRIVER FRAME=ETHERNET_802.3, PORT=300,
NODE=2608C760361, INT = 3

The commas used in the load command are optional.

DMA

If your LAN adapter supports DMA, this is the Direct Memory Address
channel that the adapter should use for data transfer to memory. This value is
available to ParseDriverPararneters.

DMA = n

DMA CHANNEL = n
Server Command Line Parameters and Keywords 617

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SLOT

System-wide, unique Hardware Instance Number (HIN) that may be the
physical slot number on a slot based bus such as PCI, PC Card, EISA,
MicroChannel, or another uniquely assigned number. This value is available
to ParseDriverParameters.

SLOT = n

PORT

This is the I/0 mapped address base that the user wants the board to use. This
value is available to ParseDriverParameters.

I/O PORT = n

PORT = n

MEMORY ADDRESS

This is the beginning address of the shared RAM that the board can use. This
value is available to ParseDriverParameters.

MEMORY ADDRESS = n

MEM = n

MEMORY LENGTH

This is the size of the shared memory buffer that was specified by Memory
Address. This value is available to ParseDriverParameters.

MEMORY LENGTH = n

INTERRUPT NUMBER

This is the interrupt number that the LAN adapter is expected to use to awaken
the ISR routine. This value is available to ParseDriverParameters.

INTERRUPT NUMBER = n

INT = n
618 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
NODE

This is the node address that the board is to use; this address should override
the default address on the board if any. This value is available to
ParseDriverParameters.

NODE = nnnnnnnnnnnn

RETRIES

This is the number of send retries that the MLID should use in its attempts to
send packets. This value is available to ParseDriverParameters.

RETRIES = n

RETR = n

FRAME

This is the frame type that the next instance of the MLID will be set to. This
value is available to Parse.DriverParameters.

FRAME = type
Server Command Line Parameters and Keywords 619

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
620 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
25 Writing Protocol Stacks for NetWare
SFT III

Overview

This appendix contains a basic description of NetWare SFT III. It also
contains the information, LSL support routines and IOCTLs you need in order
to write a protocol stack for a NetWare 4 SFTIII system.

Introduction to NetWare SFT III

SFT III (System Fault Tolerance) is the latest in a series of products that
provide fault tolerance. SFT I provided redundant directory entry tables and
FATs (File Access Table), volume consistency checking, read-after-write
verification and the Hot Fix feature. SFT II provided disk mirroring, disk
duplicating, and the TTS (Transaction Tracking System). SFT III includes all
of the features of its predecessors and introduces an architecture which allows
mirrored servers.

Mirrored Server Implementation

The SFT III architecture allows an entire server (memory image and disk
contents) to be mirrored on another server. This duplicate (or secondary)
server quickly takes over network operations if the primary server fails. The
failure of the primary server and the assumption of the network by the
mirrored server is invisible to the client workstations. Figure 26 illustrates
mirrored servers.
Writing Protocol Stacks for NetWare SFT III 621

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 26 Mirrored Servers

Primary and Secondary Servers

One of the servers acts as the primary server; the other acts as the secondary
server. The designation of primary and secondary is dynamic. The server that
is active the longest acts as the primary server. The other server takes the
secondary role and uses most of its CPU cycles to maintain synchronization
with the primary server. The secondary server must mirror every change on
the primary server so that it can instantaneously take over the network.

MSEngine and IOEngine

To enable mirrored servers, the NetWare operating system has been split into
two pieces: the Mirrored Server Engine (MSEngine) and the Input / Output
Engine (IOEngine). Most of the operating system, including the bindery
(NetWare 3),directory services (NetWare 4), and the file system is in the
MSEngine. The remainder of the operating system (the part that deals with the
hardware) is in the IOEngine. These two parts of the SFT III operating system
provide all of the functions of the traditional NetWare system (see Figure 27).
622 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Figure 27 Correspondence of Operating System Standard NetWare and SFT III NetWare File

The mirrored servers do not have to be identical, but they should be evenly
matched in terms of CPU speed, memory and storage capacity.

Because the two servers could be different, the IOEngine is not mirrored. This
allows the two servers to contain different types of LAN adapters and disk
drives.

Events and Requests on Mirrored Servers

The MSEngine contains the non-hardware-specific portions of the operating
system and is mirrored on both machines. As the primary server's IOEngine
receives input from external sources (for example, from the LAN or disk
channel, or from programs running in the IO Engine), it converts them to
mirrored server events and submits them to the primary copy of the
MSEngine.

At the same time, these events are sent across a special high-speed link called
the Mirrored Server Link (MSL) to the secondary MSEngine copy. Both
Writing Protocol Stacks for NetWare SFT III 623

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
copies of the MSEngine process the event and generate identical responses in
the form of IOEngine requests, as illustrated in Figure 28.

Figure 28 Mirrored MSEngines Respond with Identical Requests to Events from IOEngine

NOTE: Figure 28 also illustrates that the two MSEngines form a single logical
entity. This logical unit has one network address.

Both the primary and secondary server's MSEngines receive exactly the same
sequence of events and respond with identical requests; therefore, both servers
mirror each other. The two servers are not actually in "lockstep" at the
instruction level; they may be slightly skewed at any specific instant.
However, the two servers are in 'lockstep' at the event level. Because events
are always given to the secondary MSEngine before allowing the primary
MSEngine to complete, no data or state information is lost if the MSEngine
fails. The SFT III operating system manages the synchronization of the servers
so that the secondary server will always converge to exactly the same state as
the primary server.

Mirrored Servers and PC Clients

Each network client sees only one instance of the MSEngine. Both copies of
the MSEngine share the same internal network address, but only the primary
IOEngine advertises; itself as the route to the MSEngine.
624 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Client PCs communicate over the network only with the primary IOEngine,
which copies the messages received over the MSL (Mirrored Server Link) to
the secondary IOEngine. The messages are then given to the copy of the
MSEngine in both servers, and result in an MSEngine request to send a
response packet back to the client. The MSEngine outputs are compared; then
only the primary server sends the response packet. The secondary server
discards the response.

NetWare SFT III and Existing Applications

Most applications that do not interface directly to the server's hardware can
run unmodified in the NetWare SFT III environment.

Device drivers (LAN and disk drivers) and server application that deal with
the hardware (print spoolers and backup/restore applications) reside in the
IOEngine and are not mirrored by SFT III. Current NetWare LAN drivers can
run unmodified in SFT III's IOEngine.

Protocol Stacks and NetWare SFT III

NetWare SFT III Basic Architecture

NetWare SFT III uses the ODI architecture, thus allowing device drivers and
protocol stacks to be independent of each other and of the underlying media
or topology. SFT III extends the ODI architecture to support the division of
the NetWare operating system into the IOEngine and the MSEngine.

Inter-Engine Support Layer

The support layer in the NetWare SFT III incorporates a two-phased interface.
(This interface operates in much the same way as the LSL). This two-phased
interface allows logical structures such as file systems or protocol stacks to run
unaltered the MSEngine despite the fact that all device drivers are loaded in
the IOEngine. Conversely, device drivers can run unaltered in the IOEngine,
despite the fact that the logical structures they are supporting reside in the
MSEngine. Standard NetWare device driver compatibility is maintained by
the insertion of an inter-engine support layer between the upper and lower
interfaces of the device driver support layers.

The inter-engine layer resides in the middle of all SFT III support layers. Data
submitted to the support layer through its lower-level interface is converted
Writing Protocol Stacks for NetWare SFT III 625

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
into MSEngine events and submitted to the MSEngine side of the support
layer. Data submitted to the support layer though its high-level interface is
converted into IOEngine requests and submitted to the IOEngine side of the
support layer Figure 29 provides a NetWare Server Protocol Stacks and
MLIDs conceptual diagram of protocol communications through this
interface.

Figure 29 Logical LAN Conceptual Model of Protocol Communications in SFT III

Protocol Stacks and the Inter-Engine Support Layer

The inter-engine layer in SFT III means that the protocol stacks are loaded
twice: once in the IOEngine and a second time in the MSEngine. The
IOEngine's protocol stack operates as a router and communicates with the
MPI portion of the LSL. The MSEngine's stack operates as an end node and
communicates with the application above the LSL. The inter-engine support
layer is conceptually placed between these two implemtations of the protocol
stack and handles their communications over a virtual network. This virtual
626 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
network uses a logical board with a proprietary frame type called
VIRTUAL_LAN.

NOTE: The protocol stack handles communications between the IOEngine and
the MSEngine just as it would any other communications between LANs; it fills out
an ECB and calls LSLSendPacket. The following discussion illustrates this
communication.

The Protocol Stack NLM

SFT III for NetWare 3 only supports the IPX protocol stack. However, SFT
III for NetWare 4 supports all currently supported protocol stacks for NetWare
4.

Additional Protocol Stack Capabilities

A protocol stack NLM for SFT III requires the additional capability of
performing inter-engine communications. When developing the protocol
stack, remember that both physical instances of the MSEngine combine to
form a single logical unit with one network address.

Protocol communication among the primary IOEngine, secondary IOEngine,
and MSEngine is completely normal, with the exception that only the primary
IOEngine can route packets to the MSEngine network. Likewise, the
MSEngine knows about the LAN configuration of the primary IOEngine, but
not about the configuration of the secondary IOEngine.

Figure 30 Logical SFT III Network
Writing Protocol Stacks for NetWare SFT III 627

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IPX Protocol Stack Communication

An IPX protocol stack handles the communications depicted in Figure 30 as
follows: An application running on the secondary IOEngine sends a packet to
an application running on the MSEngine by placing 0x01 in the network field
of the IPX header destinationAddress field, the logical board number
associated with the primary IOEngine's virtual MLID in the ECBs
boardNumber field, and 0x02 in the ECBs immediateAddress field.

NOTE: For more information about NetWare SFT III see "Implementing Fault
Tolerance with NetWare SFT III", A Novell Research Report (August 1993),
available from Novell's Systems Research Department.

Developing Protocol Stacks for SFT III

Protocol IDs for the VIRTUAL_LAN Frame Type

As Figure 29 illustrated, the two conceptual portions of the protocol stack
communicate with each other by using Logical Board 0 over a virtual LAN.
Logical Board 0 uses a proprietary frame type called VIRTUAL_LAN. (In
standard Netware, the server uses Logical Board 0.) The inter-engine support
layer contains a vectoring function to direct communication between the
protocol stacks. This vectoring function operates much like the LSL.
Therefore, the protocol stacks need a protocol ID for the VIRTUAL_LAN
frame type. The inter-engine support layer uses this protocol ID to route
communications. Like normal inter-LAN communications, the protocol ID is
placed in the ProtocolID field of the ECB. For simplicity, these protocol IDs
should be the same protocol IDs as those used on the medium the protocol
most commonly uses, if this is possible. The following table defines these
protocol IDs.

Table 59 Protocol IDs for the VIRTUAL_LAN Frame Type

Protocols ProtocolID Comment

IPX/SPX 00 00 00 00 00 00 Original definition

Apple-Talk 00 08 00 07 80 9B Same as 802.2 SNAP; Apple-Talk

AARP 00 00 00 00 80 F3 Same as 802.2 SNAP; Apple-Talk

ARP 00 00 00 00 08 06 Same as Ethernet II; TCP/IP
628 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Other protocols that are not yet defined use the same PIDS they use on their
common medium.

IMPORTANT: Protocol IDs must be unique. If the protocol ID cannot be assigned
as per the above table, the protocol must be assigned another unique ID.

802.2 LLC frames that use Type I and Type II frames use the same guidelines
as those defined in ODI Supplement: Frame Types and Protocol IDs. The
guidelines are summarized as follows:

NOTE: DS is the DSAP value; SS is the SSAP value; CO is the Control 0 value,
and Cl is the Control 1 value.

Nonrouting Protocol Stacks on SFT III

The above protocol communications described in Figure 29 assumes a routing
protocol. This protocol essentially routes packets between the external and the
internal networks during normal operations. The routing implementation of
the protocol stack runs in the IOEngine and the end node implementation of
the stack runs in the MS engine.

Protocols such as native NetBIOS and LLC are nonrouting protocols and must
handle routing issues differently in order to run in a NetWare SFT III system.

RARP 00 00 00 00 80 35 Same as Ethernet II; TCP/IP

IP 00 00 00 00 08 00 Same as Ethernet II; TCP/IP

XNS 00 00 00 00 06 00 Same as Ethernet II; XNS

RPL 00 00 00 00 00 FC Same as 802.2; Find Found RPL

SNA 00 00 00 00 00 04 Same as 802.2; SNA

NetBIOS 00 00 00 00 00 F0 Same as 802.2; NetBIOS

802.2 Frame Type ECBs Protocol ID Field

Type I 02 00 00 DS SS CO

Type II 03 00 DS SS CO Cl

Protocols ProtocolID Comment
Writing Protocol Stacks for NetWare SFT III 629

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
We recommend developing nonrouting protocols by using the same physical
adapter node address on both machines.

Using a MAC Layer Bridge

To use this solution, you must develop code that runs a MAC layer bridge
between the physical LAN and the internal virtual LAN. The result of this is
that to the outside world, the source node address of the received packets will
be the internal server node address. This internal node address must fit within
the 802.2 locally administered address guidelines. (The current internal node
address of 1 may not always work.)

Advantages

This method has the following advantages:

! Novell is currently designing and developing a MAC layer bridge system.

! Novell is currently shipping a source routing bridge.

! This method fits into the same architectural design implemented by
routing protocols.

Disadvantages

 This method has the following disadvantages:

! Dumb adapters could experience degraded performance.

! A MAC layer bridge requires adapters to use promiscuous mode.
Therefore, some adapters would use all of the system bus bandwidth.

! Source routing implementations that assume that a route cannot change
during a session would lose the session during switch overs.

Using the Same Physical Node Address

Using a locally administered node address (node address override) causes the
adapters in both machines of the mirrored server pair to appear as the same
node address to non-routing protocols.

IMPORTANT: In the case of Token-Ring or FDDI, the secondary adapter must
remain in a shutdown state until the switch over occurs.

Advantages

This method has the following advantages:
630 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! Adapters do not need to run in promiscuous mode; therefore,
performance is not impacted.

! Software changes are minimal.

! Protocols that cannot handle route changes would still work after a switch
over.

Disadvantages

This method has the following disadvantages:

! This solution does not work in the case of Token-Ring and FDDI if the
server fails in such a way that the LAN adapter is still inserted and active
in the ring.

! Token-Ring does not allow two adapters on the same ring with the same
node address.

! This solution assumes that the secondary server performs no activity on
the wire under normal operations, thus enabling it to work with the LAN
adapter in a shutdown state.

! This solution also assumes that the two machine's adapters are connected
to the same physical wire segment. Therefore, if you expect the mirrored
server to be miles apart from each other on different physical LANs, this
solution would be extremely difficult to implement. (One of NetWare
SFT III unique features is to allow mirrored servers on different physical
LANs.)

LSL Routines, IOCTLS, and OS Routines for SFT 11 Protocol Stacks

The routines described on the following pages allow protocol stacks to support
the functions required by SFT III on NetWare_4.

SFT III Status Values Defined

The following SFT III Status values are used by the following routines:

#define STF3STA_SUCCESSFUL 0
#define STF3STA_MIRROR_NOT_ACTIVE 1
#define STF3STAT_NO_PARTNER 2
#define SFT3_OUT_OF_RESOURCES 3
#define STF3_STAT_NOT_SUPPORTED -1 (0xFFFFFFFF)
Writing Protocol Stacks for NetWare SFT III 631

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
LSLSendProtocolInfoToOtherEngine

Description

Allows two-way communication between the primary IOEngine and
MSEngine.

Syntax

LONG LSLSendProtocolInfoToOtherEngine (
 LONG ProtocolNumber
 Byte *ProtocolInfo
 LONG Length
 void *InfoSendCallBack
 BYTE *ProtocolInfo);

Input Parameters

! ProtocolNumber

has the protocol stack ID.

! ProtocolInfo

has a pointer to the information to be sent.

! Length

has the number of bytes pointed to by ProtocolInfo.

! InfoSendCallBack

has a pointer to a function to be called when the information pointed to by
ProtcolInfo has been sent.

! ProtocolInfo

has a pointer to the information that was sent.

Output Parameters

None.

Completion Codes (EAX)

STF3STAT_SUCCESSFUL The operation completed successfully.

STF3STAT_MIRROR_NOT_ACTIVE The mirrored server engine was not active.
632 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Remarks

LSLSendProtocolInfoToOtherEngine is used with the NetWare SFT III
operating system. This routine allows two-way communication between the
protocol stacks in the primary IOEngine and in the MSEngine.

Protocol stacks might use this call because they need to send information to
each other after binding or unbinding operations. The operating system also
sometimes signals the protocol stack to give all needed protocol information
to the other engine.

IMPORTANT: A notification that the information was sent does not imply that the
destination received the information. These routines are connectionless sends.

NOTE: LSLSeadProtocolInfoToOtherEngine and LSLSendProtocolInfoToPartner
are available in all three server engines (IOEngine, MSEngine and regular server).
If these APIs are unsupported, the engine will return -1 (all bits set).

LSLSendProtocolInfoToPartner

Description

Sends information to the other IOEngine.

Syntax

LONG LSLSendProtocolInfoToPartner(
 LONG ProtocolNumber
 Byte *ProtocolInfo
 LONG Length
 void (*InfoSendCallBack)(
 LONG Reserved
 BYTE *ProtocolInfo));

Input Parameters

! ProtocolNumber

has the protocol stack ID.

STF3STAT_NO_PARTNER The server does not have a mirrored partner.

SFT3STAT_OUT_OF_RESOURCES There was no memory to queue the request.

STF3STAT_NOT SUPPORTED This function was not supported.
Writing Protocol Stacks for NetWare SFT III 633

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! ProtocolInfo

has a pointer to the information to be sent.

! Length

has the number of bytes pointed to by ProtocolInfo.

! InfoSendCallBack

has a pointer to a function to be called when the information pointed to by
ProtocolInfo has been sent.

! Reserved

This parameter is reserved.

! ProtocolInfo

has a pointer to the information that was sent.

Output Parameters

None.

Completion Codes (EAX)

Remarks

LSLSendProtocolInfoToPartner is used with the NetWare SFT III operating
system. The protocol stack calls this routine whenever it must send
information to the other IOEngine.

Protocol stacks might use this call because they need to send information to
each other after binding or unbinding operations. The operating system also
sometimes signals the protocol stack to give all needed protocol information
to the other IOEngine.

STF3STAT_SUCCESSFUL The operation completed successfully.

STF3STAT_MIRROR_NOT_ACTIVE The mirrored server engine was not active.

STF3STAT_NO_PARTNER The server does not have a mirrored partner.

SFT3STAT_OUT_OF_RESOURCES There was no memory to queue the request.

STF3STAT_NOT SUPPORTED This function was not supported.
634 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IMPORTANT: A notification that the information was sent does not imply that the
destination received the information. These routines are connectionless sends.

NOTE: LSLSendProtocolInfoToOtherEngine and LSLSendProtocolInfoToPartner
are available in all three server engines (IOEngine, MSEngine and regular server).
If these APIs are unsupported, the engine will return -I (all bits set).

Ctl6SFTIIIExchange

Protocol Stack IOCTL

Description

Allows protocol stacks to exchange state information.

Syntax

LONG SFTillExchange(
 SFTIIIExchangeNode *pSFTIIIXNode);

Input Parameters

! pSFTIIIXNode

is a pointer to a SFT III Exchange Node structure. This structure is
defined as follows:

typedef struc_SFTIIIExchangeNode_{
 LONG SubFunction,
 void *Parameterl,
 void *Parameter2,
}SFTIIIExhangeNode;

The structure fields are defined as follows:

! SubFunction

is a function number defining the state and contents of Parameterl
and Parameter2 and the command to be executed. The SubFunction
values and the subsequent state and contents of Parameterl and
Parameter2 are defined below.

! Parameterl

is an input whose state and contents is defined by the SubFunction
field.
Writing Protocol Stacks for NetWare SFT III 635

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
! Parameter2

is an input whose state and contents is defined by the SubFunction
field.

Output Parameters

None.

Completion Codes (EAX)

Remarks

Ctl6SFTIIIExchange allows protocol stacks in the NetWare server
environment to exchange state information with each other. This routine
allows the protocol stack to communicate with its mirrored partner, or with its
IO or MS portion.

The following table defines the SubFunction values:

IMPORTANT: These functions are called at interrupt time with the interrupts
disabled. These functions cannot relinquish control or change the interrupt state.

Table 60 SubFunction Values and the Corresponding Parameter State or Contents

ODISTAT_SUCCESSFUL The operation completed successfully.

ODISTAT_BAD_COMMAND The protocol stack does not support this control function.

Any bit set The operation failed.

Value Description Parameterl/
Parameter2

Comment

0 GetProtocolInfo destination. Allows communication
between the IOEngines. Returns pointers to
ProtocolInfo and Length with correct values.

BYTE
*ProtocolInfo

 LONG Length

returns a pointer to a
buffer where the
protocol information
should be placed.

number of bytes of
protocol information
that will be written. May
be modified.
636 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
1 Information updated. Allows communication between
the IOEngines. Signals an update of protocol
information from the other IOEngine.

BYTE
*ProtocolInfo

LONG Length

pointer to the
information just
received.

number of bytes pointed
to by ProtocolInfo.

2 Send information to partner. Allows communication
between the IOEngines. Indicates to the protocol
stack that all needed protocol information should be
sent to the other IOEngine by the use of the function
LSLSendProtocolInfoToPartner.

BYTE
*ProtocolInfo

LONG Length

3 Partner unload. Indicates to the protocol stack that it
should clear any information it had that concerned the
other IOEngine.

undefined

undefined

4 Link to partner gone. Still primary. Indicates to the
protocol stack that it should clear any information it
had that concerned the other IOEngine.

undefined

undefined

5 Link to partner gone. Becoming primary. Performs any
operation necessary to take over as the new primary
server. (For example, it might need to send false
packets in behalf of the dead partner in order to
facilitate router switch overs.)

undefined

undefined

10 GetProtocolInfo destination. Allows communication
between the MSEngine and the IOEngine. Returns
pointers to ProtocolInfo and Length with correct
values.

BYTE
*ProtocolInfo

 LONG Length

returns a pointer to a
buffer where protocol
information should be
placed.

number of bytes of
protocol information
that will be written. May
be modified.

11 Information updated. Allows communication between
the MSEngine and the IOEngine. Signals an update of
the protocol information from the other engine.

BYTE
*ProtocolInfo

 LONG Length

pointer to the
information just
received.

number of bytes pointed
to by ProtocolInfo.

Value Description Parameterl/
Parameter2

Comment
Writing Protocol Stacks for NetWare SFT III 637

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
12 Send information to the other engine. Allows
communication between the MSEngine and the
IOEngine. Indicates to the protocol stack that all
needed protocol information should be sent to the
other engine by calling
LSLSendProtocolInfoToOtherEngine.

undefined

undefined

13 Protocol stack in other engine unloaded. Indicates to
the protocol stack that it should clear any information
it had that concerned the other engine.

undefined

undefined

Value Description Parameterl/
Parameter2

Comment
638 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
26 Revision History

May 2000 Release - Doc Version 1.21

! Updated the Remarks section of the LSLRegisterStackSMPSafe function
in LSL Support Routines (Assembly Language).
Revision History 639

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
640 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
27 Glossary

Abort

Termination of a CPU process when the process cannot complete.

Adapter

A circuit board driven by software. In the context of ODI LAN Driver
development, an adapter refers to a physical board. See also NIC. MLID,
Driver.

Address

A unique group of characters that correspond to a selected memory
location, an input/output port, or a device on the network. See also Node
Address.

AES (Asynchronous Event Scheduler)

An auxiliary service that measures elapsed time and triggers events at the
conclusion of measured time intervals.

API (Application Programming Interface)

A defined set of routines that enables two or more software modules to
exchange information.

ARP (Address Resolution Protocol)

The protocol used by TCP/IP to locate nodes on a network.

Asynchronous Process

A process that does not depend on timing signals.

Bit

A binary digit that can only be 0 or 1.
Glossary 641

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Broadcast

A simultaneous transmission of data from a single source to all
destinations.

Buffer

A data area in memory used for the temporary storage of data being
moved between processes.

Bus

A hardware interface used to transfer data between devices.

Byte

A sequence of 8 bits.

CAM (Content Addressable Memory)

Memory data space on the adapter. In ODI, this memory holds the group
addresses that the adapter filters.

Completion Code

The code returned by a routine indicating whether the routine completed
successfully or failed. Control Block A data structure used by a process
to store control information. See also ECB.

Destination Address

A field that identifies the physical location to which data is to be sent.

Driver

The software module that operates a circuit board. In ODI, driver refers
to a software module that drives a network board (or adapter) and enables
a device to communicate over a LAN. See also Adapter, NIC, MLID.

ECB (Event Control Block)

A data structure that contains the information required to coordinate the
scheduling and activation of certain operations and/or the transfer of data.
All ODI layers and AES functions act upon ECBs.

EISA (Extended Industry Standard Architecture)

A 32-bit bus standard, a superset of the ISA standard.
642 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
EOI (End of Interrupt)

A command issued to the program interrupt controller (PIC) indicating
the end of the interrupt.

ESR (Event Service Routine)

An application-defined procedure that is called after an event occurs. An
event can be the completion of a send request, or the recurrence of an
event that rescheduled itself with the AES.

Ethernet

A wire medium usually used in a bus topology.

FDDI (Fiber Distributed Data Interface)

A dual ring topology.

Frame

The unit of transmission on the network. The frame includes the
associated addresses and control information in the Media Access
Control (MAC) Layer and the transmitted data.

HSM (Hardware specific Module)

One of three modules comprising the LAN driver toolkit. The developer
writes the HSM to handle all the hardware interactions for a specific
physical board.

Interrupt

A hardware signal that causes the orderly suspension of the currently
executing process in order to execute a special program (or interrupt
handler).

IOCTL (I/O Control)

An MLID procedure that performs a specific action such as Add
Multicast Address, Reset, Shutdown, etc.).

IP (Internet Protocol)

The protocol used by TCP/IP. IP is connectionless and was designed to
handle a large number of WANs and LANs on an internetwork.
Glossary 643

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
IPX (Internet Packet Exchange)

An implementation of the Internetwork Datagram Packet (IDP) protocol
from Xerox. It allows applications running on NetWare workstations to
take advantage of NetWare communications drivers to communicate
directly with other workstations, servers, or devices on the internetwork.

ISA (Industry Standard Architecture)

An 8/16-bit bus standard used with Intel's microprocessors.

ISR (Interrupt Service Routine)

A routine that is executed to handle a hardware or software interrupt
request.

LAN (Local Area Network)

Two or more computers (usually located in the same building) connected
together for communication and resource sharing.

LSL (Link Support Layer)

The ODI layer that directs multiple incoming and outgoing data packets
from the MLID to the designated protocol stack, and vice versa.

MAC Header (Media Access Control Header)

The packet header that controls the transmission of the packet through the
network. The MAC header includes source and destination data.

Medium

The physical carrier of a signal.

Micro Channel Architecture

A bus standard defined by IBM.

MLI (Multiple Link Interface)

The interface between the MLID and the LSL that allows multiple
MLIDs to exist concurrently.

MLID (Multiple Link Interface Driver)

The ODI layer that receives and transmits packets to a hardware device.
This acronym refers to an ODI LAN driver.
644 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
MMIO (Memory Mapped I/O)

An architecture for input and output that allows I/O ports to be accessed
as though they were memory locations.

MPI (Multiple Protocol Interface)

The interface between the LSL and a Network Layer protocol stack that
allows different communication protocols to operate concurrently.

MSM (Media Support Module)

One of three modules comprising the LAN driver toolkit. The MSM
standardizes and manages the generic details of interfacing ODI MLIDs
to the LSL and the operating system.

Multicast

The simultaneous transmission of data from a single source to a selected
group of destination addresses on the network.

NIC (Network Interface)

Controller/Card The physical network board installed in workstations and
file servers.

NLM (NetWare Loadable Module)

Applications that are loaded dynamically and integrated with all the
NetWare server operating systems starting with NetWare 3.

Node

Any network device that transmits and/or receives data. The device must
have a physical board and a unique address. See also Node Address.

Node Address

A unique combination of characters that corresponds to a physical board
on the network. Each adapter must have a unique node address.

ODI (Open Data-Link Interface)

The model that allows multiple network protocols, physical boards, and
frame types to coexist on a single workstation or server.

OSI (Open Systems Interconnection)

A standard communications model that defines communications between
computer systems.
Glossary 645

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
Packet

The unit of transmission on the network. The packet includes the
associated addresses and control information.

PCI

An industry standard 32-bit (eventually to be 64-bit) processor
independent bus architecture.

PID (Protocol Identification)

A stamp containing a globally administered value (1 to 6 bytes in length)
that reflects the protocol stack in use (for example, E0h=IPX 802.2). The
PID located in every packet is a stamp that uniquely identifies the packet
as belonging to a specific protocol.

Protocol

The set of rules and conventions that determines how data is to be
transmitted and saved on the network.

Pseudocode

Describes computer program algorithms generically without using the
specific syntax of any programming language.

RAM (Random Access Memory)

The computer (or physical board) storage area into which data can be
entered and retrieved nonsequentiafly.

RCB (Receive Control Block)

A data structure used by the MLID to receive data.

ROM (Read Only Memory)

The portion of the computer's (or physical board's) storage area that can
be read only (write operations are ignored).

Shared RAM

The RAM on some physical boards that can be accessed by either the
computer or the physical board on which the RAM is installed.

Source Address

A field that identifies the physical location that is sending the data.
646 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
SPX (Sequenced Packet Exchange)

A Session Layer protocol that uses IPX. SPX provides connection
oriented services and guarantees packet delivery.

Stubbed Routine

A routine that contains only a return (ret) instruction.

Synchronous Process

A process that depends on the occurrence of another event such as a
timing signal.

TCB (Transmit Control Block)

The data structure used by the MLID to transmit data.

TCP (Transmission Control Protocol)

Allows a process on one machine to send a stream of data to a process on
another machine.

Token-Ring

A network that utilizes a ring topology and passes a token from one
device to another. A node that is ready to send data can capture the token
and send the data for as long as it holds the token.

TSM (Topology Specific Module)

One of three modules comprising the LAN driver toolkit. The .OBJ
manages the operations unique to a specific media type.

Virtual Machine

An illusion of multiple processes, each executing on its own processor
with its own memory. The resources of the physical computer can be used
to share the CPU and make it appear that each process has its own
processor. The virtual machine is created with an interface that appears to
be identical to the underlying hardware.

WAN (Wide Area Network)

At least two computers remotely connected together in such a way as to
allow them to communicate over wide distances and to share resources.
Glossary 647

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

Manual Rev 99a25 22 March 00
648 Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)

Protocol Stacks and MLIDs (Intel 32-bit Assembly Language)
104-000194-001

April 7, 2000
Novell Confidential

	Contents
	Preface
	Overview
	Introduction
	Protocol Stacks
	Link Support Layer (LSL)
	Multiple Link Interface Driver (MLID)
	Appendices

	References
	Prerequisites
	Manual Conventions

	1 Introduction to ODI
	Chapter Overview
	Open Data-Link Interface (ODI)
	Protocol Stacks
	Functionality

	Multiple Protocol Interface (MPI)
	Link Support Layer (LSL)
	Multiple Link Interface Drivers (MLIDs)
	Functionality

	Data Flow
	Send Data Flow
	Data Flow

	2 ODI Module Design
	Chapter Overview
	NetWare Environment
	NetWare Loadable Modules (NLMs)
	NLM Design and Programming Issues
	Multitasking and Preemptive Issues
	Multiprocessing Issues
	Reetrancy Issues
	32-Bit Protected Mode Issues
	Flat Memory Model Issues
	Utilization of the LAN Adapter
	Execution Time Issues
	MLID Routines Executed at Process Time
	MLID Routines Executed at Interrupt Time
	MLID Routines Executed at Process Time or Interrupt Time
	Protocol Stack Routines Executed at Process Time
	Protocol Stack Routines Executed at Process Time or Interrupt Time
	Process Time
	C Language Issues
	Processor Flags
	Operating System Version Issues

	Memory Protection
	Protection Scheme
	Illegal NLM Operations

	Memory Management
	Memory Pools
	Memory on Page Boundaries
	Shared RAM/ROM
	Compatibility Settings
	Virtual Memory

	Hardware/Media Independence

	Development Process
	Related Files
	Source Files
	Include Files
	Linker Definition File
	Installation Information File

	3 Overview of Protocol Stacks
	Chapter Overview
	The NetWare Server Protocol Stack
	Protocol Stack Multiplexing
	Packet Flow with Multiple Protocol Stacks
	Routing a Packet to the Correct Protocol Stack
	Routing a Packet to the Correct Logical Board
	Packet Reception with Multiple Protocol Stacks
	Packet Reception Methods
	Bound Protocol Stacks
	Prescan Protocol Stacks
	Default Protocol Stacks
	Packet Reception Process
	Packet Reception Process

	4 Protocol Stack Data Structures
	Chapter Overview
	Protocol Stack Configuration Table
	Protocol Stack Statistics Table
	Event Control Blocks
	Receive Event Control Block
	Transmit Event Control Block
	Event Control Block Field Descriptions

	5 Protocol Stack Initialization
	Chapter Overview
	Protocol Stack Initialization
	LAN Boards and Auto-binding
	Binding
	Bound Protocol Stacks
	Determining the Maximum Packet Size

	Initialization
	Bound Protocol Stack Initialization
	Prescan and Default Protocol Stack Registration
	Chaining Prescan and Default Protocol Stacks
	Registering and Deregistering Prescan and Default Protocol Stacks
	Default and Prescan Protocol Stack Chaining
	Chain Position
	Stack Chain Mask

	6 Protocol Stack Packet Reception
	Chapter Overview
	Protocol Stack Packet Receive Operation
	Protocol Stack Promiscuous Mode
	Receive Routine Events
	Prescan and Default Protocol Stack Packet Reception
	Bound Protocol Stacks
	Prescan Protocol Stacks
	Default Protocol Stacks

	Receive ECBs
	The Protocol Stack Receive Handler
	Handling a Receive ECB

	Setting the ECB BLink Field
	Setting the ECB DriverWorkSpace Field
	Description of the Protocol Receive Handler

	Chained Protocol Stacks and Resubmission

	7 Protocol Stack Packet Transmission
	Chapter Overview
	Protocol Stack Packet Transmission
	Transmission Routine Events
	Starting the Packet Transmission
	Supporting Multiple Outstanding Transmission Requests
	Sending the Packet
	Raw Sends
	Calling LSLSendPacket

	Handling a Transmit Event Control Block
	Raw Sends
	Priority Sends
	The ECB ProtocolID Field and Ethernet 802.2 Frames

	The Prescan Protocol Stack Transmission Handler
	Chained Prescan Transmission Protocol Stacks and Resubmission
	Transmission Complete
	Protocol Transmission Complete Handler

	8 Protocol Stack Control Routines
	Ctl0_GetProtocolStackConfiguration
	Ctl1_GetProtocolStackStatistics
	Ctl2_Bind
	Ctl3_Unbind
	Ctl4_MLIDDeRegistered
	Ctl5_ProtocolPromiscuousChange
	Ctl100_GetProtocolStringForBoard
	Ctl101_GetBoundNetworkInfo

	9 Overview of the LSL
	Chapter Overview
	Link Support Layer (LSL)

	10 The LSL Statistics Table
	Chapter Overview
	LSL Statistics Table
	The LSL Logical Board Statistics Structure

	11 LSL Support Routines (Assembly Language)
	LSLAdapterMutexLock
	LSLAdapterMutexTryLock
	LSLAdapterMutexUnlock
	LSLAddPollingProcedure
	LSLAddProtocolID
	LSLAddTimerProcedure
	LSLAllocatePhysicalBoardID
	LSLAssignMutexToInstance
	LSLBindStack
	LSLControlStackFilter
	LSLDeFragmentECB
	LSLDeRegisterDefaultChain
	LSLDeRegisterMLID
	LSLDeRegisterPreScanRxChain
	LSLDeRegisterPreScanTxChain
	LSLDeRegisterStack
	LSLDeRegisterStackSMPSafe
	LSLFastRcvEvent
	LSLFastSendComplete
	LSLFreePhysicalBoardID
	LSLGetBoundBoardInfo
	LSLGetLinkSupportStatistics
	LSLGetMaximumPacketSize
	LSLGetMLIDControlEntry
	LSLGetMultipleSizedRcvECBRTag
	LSLGetPhysicalAddressOfECB
	LSLGetPIDFromStackIDBoard
	LSLGetProtocolControlEntry
	LSLGetSizedRcvECBRTag
	LSLGetStackIDFromName
	LSLGetStartChain
	LSLHoldRcvEvent
	LSLModifyStackFilter
	LSLRegisterDefaultChain
	LSLRegisterMLIDRTag
	LSLRegisterPreScanRxChain
	LSLRegisterPreScanTxChain
	LSLRegisterStackRTag
	LSLRegisterStackSMPSafe
	LSLRemoveMutexFromInstance
	LSLRemovePhysicalMutex
	LSLRemovePollingProcedure
	LSLRemoveTimerProcedure
	LSLReSubmitDefaultECB
	LSLReSubmitPreScanRxECB
	LSLReSubmitPreScanTxECB
	LSLReturnRcvECB
	LSLSendComplete
	LSLSendPacket
	LSLServiceEvents
	LSLSMPGetSendQ
	LSLSMPReaderLock
	LSLSMPReaderToWriterLock
	LSLSMPReaderUnLock
	LSLSMPWriterLock
	LSLSMPWritertoReaderLock
	LSLSMPWriterUnLock
	LSLUnbindStack
	LSLUnBindThenDeRegisterMLID

	12 LSL Support Routines (C Language)
	CLSLAddProtocolID
	CLSLBindStack
	CLSLControlStackFilter
	CLSLDeRegisterDefaultChain
	CLSLDeRegisterPreScanRxChain
	CLSLDeRegisterPreScanTxChain
	CLSLDeRegisterStack
	CLSLGetBoundBoardInfo
	CLSLGetMLIDControlEntry
	CLSLGetPIDFromStackIDBoard
	CLSLGetProtocolControlEntry
	CLSLGetStackIDFromName
	CLSLGetStartChain
	CLSLModifyStackFilter
	CLSLRegisterDefaultChain
	CLSLRegisterPreScanRxChain
	CLSLRegisterPreScanTxChain
	CLSLRegisterStackRTag
	CLSLReSubmitDefaultECB
	CLSLReSubmitPreScanRxECB
	CLSLReSubmitPreScanTxECB
	CLSLReturnRcvECB
	CLSLSendPacket
	CLSLUnbindStack

	13 Overview of the MLID
	Chapter Overview
	The NetWare Server MLID
	MLID Procedures
	MLID Initialization
	Board Service Routine
	Packet Transmission
	Multiple Operating System Support
	Control Procedures
	Timeout Detection
	Driver Remove
	MLID Data Structures and Variables
	Configuration Table
	Statistics Table

	MLID Functionality
	Reentrancy
	Multiple Frame Support
	Multiple Frame Support and Logical Boards

	Multiple Frame Support in Reentrant Code
	Frame Data Space and Adapter Data Space
	Optional Functionality

	MLID Design Considerations
	Hardware Issues

	14 MLID Data Structures
	Chapter Overview
	Frame Data Space
	The MLID Configuration Table
	Configuration Table Flags
	Deriving the Maximum Packet Size
	Example of Deriving Maximum Packet Size

	Adapter Data Space
	MLID Statistics Table
	MLID Statistics Table Field Descriptions
	CounterMask Bit Maps
	Topology-specific Counters
	Token-Ring Topology-specific Counters
	Ethernet Topology-specific Counters
	FDDI Topology-specific Counters
	RX-Net Topology-specific Counters
	PCN2 Topology-specific Counters

	Event Control Blocks
	Receive Event Control Block
	Transmit Event Control Block
	Event Control Block Field Descriptions

	Driver Firmware
	Reading Driver Firmware: Example Code

	15 The MLID Initialization Routine
	Chapter Overview
	The MLID Initialization Routine
	Loading the MLID
	Requirements of the Calling Routine
	Initialization Parameters Passed on the Stack
	Syntax of the MLID Initialization Routine

	Adapter Data Space and Frame Data Space
	Resource Tags
	Determining Hardware Options
	Parsing the Command Line
	Registering Hardware Options
	Setting Up A Board Service Routine
	Using Polled Boards
	Using Interrupts

	Initializing the LAN Adapter
	Registering with the LSL
	Scheduling a Hardware Time Out Check
	Error Handling

	Pseudocode for DriverInitialize

	16 The MLID Packet Reception Routine
	Chapter Overview
	The Packet Reception Routine
	Reception Methods
	Reception Method: Option 1
	Reception Method: Option 2
	Reception Method: Option 3
	Reception Method: RX-Net

	Front Ends for the Board Service Routine
	Polling Front End
	Interrupt Front End

	The Board Service Routine
	Optimizing Packet Reception
	Error Handling
	Multiple Frame Support
	Broadcasts and Multicast Packets
	Filling in the ECB
	Setting the ECB BLink Field
	Setting the ECB DriverWorkSpace ECB Field

	Handling Receive Errors
	Transmission Complete Interrupt
	Transmission Error
	Using Shared Interrupts

	Pseudocode for the Board Service Routine

	17 The MLID Packet Transmission Routine
	Chapter Overview
	Packet Transmission
	General Transmission Method
	Sending a Packet
	Queuing Sends
	Multiple Frame Support
	Raw Sends
	Priority Sends
	Packet Length
	Even Packet Length on Ethernet
	60 Byte Minimum Packet Size on Ethernet

	Pseudocode for MLID Packet Transmission Routine
	Pseudocode for Packet Transmission Routine for RX-Net MLlDs

	18 MLlD Timeout Procedure
	Chapter Overview
	Establishing a Timeout Procedure
	Scheduling an Interrupt Time Callback
	Determining the Wait Interval
	Identifying a Timeout Error
	Using System Alerts
	Reinitializing the LAN adapter

	Pseudocode for TimeOutCheck
	Pseudocode for the Timeout Procedure for RX-Net MLlDs

	19 Remove MLID Procedure
	Chapter Overview
	Removing the MLID
	DeRegistering Logical Boards
	Canceling Polling Procedures and Timer Events
	Shutting Down the LAN Adapter
	Removing Data Spaces

	Pseudocode for Remove MLID

	20 MLID Control Routines
	Preliminary Information
	Ctl0_GetMLlDConfiguration
	Ctl1_GetMLIDStatistics
	Ctl2_AddMulticastAddress
	Ctl3_DeleteMulticastAddress
	Ctl4_Reserved
	Ctl5_MLIDShutdown
	Ctl6_MLIDReset
	Ctl7_Reserved
	Ctl8_Reserved
	Ctl9_SetLookAheadSize
	Ctll0_MLIDPromiscuousChange
	Ctl11_RegisterMonitor
	Ctl12_Reserved
	Ctl13_Reserved
	Ctl14_Driver Management
	Ctl15_Reserved
	Ctl16_RemoveNetworkInterface
	Ctl17_ShutdownNetworkInterface
	Ctl18_ResetNetworkInterface
	Pseudocode for DriverControl

	21 Operating System Support Routines
	AddPollingProcedureRTag
	Alloc
	AllocateMappedPages
	AllocateResourceTag
	AllocBufferBelow16Meg
	AllocNonMovableCacheMemory
	BindProtocolToBoard
	BusInterruptClear
	BusInterruptEOI
	BusInterruptSetup
	CancelInterruptTimeCallBack
	CancelNoSleepAESProcessEvent
	CancelSleepAESProcessEvent
	CFindResourceTag
	ClearHardwareInterrupt
	ClearSymmetricInterrupt
	CPSemaphore
	CRescheduleLast
	CYieldWithDelay
	CVSemaphore
	DeAllocateMappedPages
	DeRegisterHardwareOptions
	DisableHardwareInterrupt
	DoEndOfInterrupt
	DoRealModeInterrupt
	EnableHardwareInterrupt
	Free
	FreeBufferBelowl6Meg
	FreeNonMovableCacheMemory
	GetCurrentTime
	GetFileServerMajorVersionNumber
	GetFileServerMinorVersionNumber
	GetHardwareBusType
	GetNumberOfLANs
	GetRealModeWorkSpace
	GetServerConfigurationType
	GetSuperHighResolutionTimer
	ImportPublicSymbol
	MapAbsoluteAddressToDataOffset
	MapDataOffsetToAbsoluteAddress
	NetWareAlert
	NVMAlloc
	NVMAllocIO
	NVMFree
	OutputToScreen
	ParseDriverParameters
	QueueSystemAlert
	ReadEISAConfig
	ReadPhysicalMemory
	ReadRoutine
	RegisterForEventNotification
	RegisterHardwareOptions
	RemovePollingProcedure
	ScheduleInterruptTimeCallBack
	ScheduleNoSleepAESProcessEvent
	ScheduleSleepAESProcessEvent
	SetHardwarelnterrupt
	SetSymmetricInterrupt
	SMPDoEndOfInterrupt
	UnRegisterEventNotification
	WritePhysicalMemory

	22 Assembling and Linking NLMs
	Overview
	NetWare Loadable Modules (NLMS)
	Creating an NLM

	The NetWare Linker
	The Definition File
	Loading and Unloading

	23 Debugging NLMs
	Overview
	The NetWare Debugger
	Setting Breakpoints
	Changing Memory
	Dumping Memory
	Register Manipulations
	I/O
	Miscellaneous
	Grouping Operators
	Unary Operators
	Ternary Operator

	24 Server Command Line Parameters and Keywords
	Overview
	MLID Keywords
	DMA
	SLOT
	PORT
	MEMORY ADDRESS
	MEMORY LENGTH
	INTERRUPT NUMBER
	NODE
	RETRIES
	FRAME

	25 Writing Protocol Stacks for NetWare SFT III
	Overview
	Introduction to NetWare SFT III
	Mirrored Server Implementation
	Primary and Secondary Servers
	MSEngine and IOEngine
	Events and Requests on Mirrored Servers
	Mirrored Servers and PC Clients
	NetWare SFT III and Existing Applications

	Protocol Stacks and NetWare SFT III
	NetWare SFT III Basic Architecture
	Inter-Engine Support Layer
	Protocol Stacks and the Inter-Engine Support Layer
	The Protocol Stack NLM
	Additional Protocol Stack Capabilities
	IPX Protocol Stack Communication

	Developing Protocol Stacks for SFT III
	Protocol IDs for the VIRTUAL_LAN Frame Type
	Nonrouting Protocol Stacks on SFT III
	Using a MAC Layer Bridge
	Using the Same Physical Node Address

	LSL Routines, IOCTLS, and OS Routines for SFT 11 Protocol Stacks
	SFT III Status Values Defined

	LSLSendProtocolInfoToOtherEngine
	LSLSendProtocolInfoToPartner
	Ctl6SFTIIIExchange

	26 Revision History
	May 2000 Release - Doc Version 1.21

	27 Glossary

