
Novell exteNd Composer™

TUTORIAL

www.novell.com

Legal Notices

Copyright ©1999, 2000, 2001, 2002, 2003 Novell, Inc. and SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

SilverStream is a registered trademark of SilverStream Software, LLC. Novell is a registered trademark of Novell, Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at
all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action inconsistent
with such title. The Software is protected by copyright laws and international treaty provisions. You shall not remove any
copyright notices or other proprietary notices from the Software or its documentation, and you must reproduce such notices
on all copies or extracts of the Software or its documentation. You do not acquire any rights of ownership in the Software.

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The
Apache Software Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights
reserved. Xerces Copyright ©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-Regexp, Ant,
Xalan, Crimson and Xerces software is licensed by The Apache Software Foundation and redistribution and use of Jakarta-
Regexp, Ant, Xalan, Crimson and Xerces in source and binary forms, with or without modification, are permitted provided
that the following conditions are met: 1. Redistributions of source code must retain the above copyright notices, this list of
conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4.
The names "The Jakarta Project", "Jakarta-Regexp", "Xerces", "Xalan", "Ant" and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org <mailto:apache@apache.org>. 5. Products derived from this software may
not be called "Apache", nor may "Apache" appear in their name, without prior written permission of The Apache Software
Foundation. THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these
conditions in the documentation and/or other materials provided with the distribution. 3. The name "JDOM" must not be
used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact license@jdom.org <mailto:license@jdom.org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management
(pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans,
Enterprise JavaBeans, JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava
Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager,
Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk,
Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java Coffee
Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

Copyright ©2001 Extreme! Lab, Indiana University License. http://www.extreme.indiana.edu. Permission is hereby
granted, free of charge, to any person obtaining a copy of the Indiana University software and associated Indiana University
documentation files (the "IU Software"), to deal in the IU Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the IU Software, and to permit
persons to whom the IU Software is furnished to do so, subject to the following conditions: The above copyright notice and
this permission notice shall be included in all copies or substantial portions of the IU Software. THE IU SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE IU SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE IU SOFTWARE.

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved.

Copyright © 1994-2002 W3C® (Massachusetts Institute of Technology, Institut National de Recherche Informatique et en
Automatique, Keio University), all Rights Reserved. http: www.w3.org/consortium/legal. This W3C work (including
software, documents, or other related items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions: Permission to use, copy, modify, and distribute this software and its documentation,
with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications, that you make:
1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2. Any pre-existing
intellectual property disclaimers, notices, or terms and conditions. If none exist, a short notice of the following form
(hypertext is preferred, text is permitted) should be used within the body of any redistributed or derivative code: "Copyright
© [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/" 3. Notice of any changes or modifications to the W3C files, including the date
changes were made. (We recommend you provide URIs to the location from which the code is derived.) THIS SOFTWARE
AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS. COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.
The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software
without specific, written prior permission. Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

Novell, Inc.

1800 South Novell Place

Provo, UT 85606

www.novell.com

Novell exteNd 5 Composer Tutorial
December 2003

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see http://www.novell.com/documentation.

http://www.novell.com/documentation

1

Contents

About This Guide . 5

1 Introduction to the Composer Environment . 9
What you will learn . 9
What you will do . 9
Composer Basics . 10

Composer Building Blocks .10
Launching Composer .10

EXERCISE 1-1: Launch Composer . 10
Navigating in the Composer Environment .11

EXERCISE 1-2: Explore the Composer Environment . 11
Composer Project Structure .12
About the Tutorial Project .13

Project Requirements . 14
EXERCISE 1-3: Create a Composer Project . 15

Summary of what you’ve done . 16

2 Components and XML Mapping. 17
What you will learn . 17
What you will do . 17
Design and Structure of Composer Components . 18

Composer Component Architecture .18
Document Object Model (DOM) .18
XML Map Action .19
Component Animation . 19

EXERCISE 2-1: Create an XML Map Component . 20
EXERCISE 2-2: Add a Map Action to the Component. 21
EXERCISE 2-3: Modify the Input DOM and Save as an XML Template 22
EXERCISE 2-4: Animate the Map Component . 24

Summary of what you’ve done . 25

3 XML Templates . 27
What you will learn . 27
What you will do . 27
Composer XML Templates . 28

XML Template Categories .28
XML Sample Documents .28
XML Schema .28
XSL Style Sheets .29
XML Templates .29

EXERCISE 3-1: Work with XML Templates. 29
EXERCISE 3-2: Create an XML Template using the template wizard. 30
EXERCISE 3-3: Import an XML template from another Composer project 32

2

EXERCISE 3-4: Edit the PatientLookup XML Map Component to use the XML Templates34

Summary of what you’ve done . 35

4 Web Services . 37
What you will learn . 37
What you will do . 37
Composer Web Services. 38

Web Service Definition .38
Services vs. Components .38

EXERCISE 4-1: Create a Web Service . 38
Summary of what you’ve done . 42

5 Deployment . 43
What you will learn . 43
What you will do . 43
Composer Web Service Deployment . 44

Deployment Considerations .44
Server Profile .45

EXERCISE 5-1: Creating a Server Profile . 45
Deployment xObject .47

EXERCISE 5-2: Create a Deployment xObject.. 48
Service Triggers .52

EXERCISE 5-3: Set up the Service Trigger(s) for your Web Service 52
EXERCISE 5-4: Import the MySQL JAR resource file. . 54
EXERCISE 5-5: Deploying to the Novell exteNd Application Server 56

.Summary of what you’ve done . 61

6 JDBC and LDAP. 63
What you will learn . 63
What you will do . 63
Composer Connection Resources and Connection Components. 64

JDBC Connection .64
EXERCISE 6-1: Create a JDBC Connection . 64

JDBC Component. .67
EXERCISE 6-2: Create a JDBC Component . 68
EXERCISE 6-3: Access a Database using the JDBC Component 70

LDAP Connection .73
EXERCISE 6-4: Check for an active LDAP directory connection. 74
EXERCISE 6-5: Start the Novell exteNd LDAP Utility . 74
EXERCISE 6-6: Create an LDAP Connection . 75

LDAP Component. .76
EXERCISE 6-7: Create an LDAP Component . 77
EXERCISE 6-8: Add a Create DSML action to the Action Model 80
EXERCISE 6-9: Set the Depth of the Directory Search . 80

3

EXERCISE 6-10: Create the Filter for the Search . 82

EXERCISE 6-11: Select the attributes to be returned by the search 83
EXERCISE 6-12: Add the Execute DSML action to the Action Model 83

Summary of what you’ve done . 85

7 Basic Composer Actions . 87
What you will learn . 87
What you will do . 87
Composer Action Model and Actions . 88

Comment Action .88
Decision .89
Log Action. .89
Component .89
Function .90
XPath and ECMAScript (The Composer Expression Builder). .90

EXERCISE 7-1: Set up the component for edits . 91
EXERCISE 7-2: Add a comment to the Action Model. 92
EXERCISE 7-3: Add a Decision Action . 93
EXERCISE 7-4: Add Map Actions . 95
EXERCISE 7-5: Add a Log Action . 96
EXERCISE 7-6: Create or increment the hit count for the physician 98
EXERCISE 7-7: Add Actions to the False Branch of the Decision action. 100
EXERCISE 7-8: Add Actions to the True Branch of the Decision action. 104
EXERCISE 7-9: Edit the XML map component properties . 109
EXERCISE 7-10: Add Component Actions . 110
EXERCISE 7-11: Add Map Actions . 112

Summary of what you’ve done . 114

8 Publishing and Consuming Web Services . 115
What you will learn . 115
What you will do . 115
Publishing Web Services. 116

Servlets. 116
Web Service Description Language (WSDL) . 116

Consuming Web Services . 117
Java Server Pages (JSP) . 117
XForms. 117
XML Interchange . 118
WS Interchange . 118

EXERCISE 8-1: Create a JSP resource file. 118
EXERCISE 8-2: Add the JSP to the Deployment Component 120
EXERCISE 8-3: Deploy the Web Service with the JSP . 121
EXERCISE 8-4: Create an XML Map Component that uses XML interchange 122
EXERCISE 8-5: Modify the Deployment Component for the XML Interchange. 123

4

EXERCISE 8-6: Deploy the Web Service with Servlet Type XML(HTTP/Post) 125

EXERCISE 8-7: Create a WSDL for the PatientRecResponse Web Service 126
EXERCISE 8-8: Create XML Templates for the WSDL . 127
EXERCISE 8-9: Add a Soap Trigger to the Deployment Component 129
EXERCISE 8-10: Deploy the Web Service with SOAP . 130
EXERCISE 8-11: Create an XML Map component that executes a WSInterchange action130
EXERCISE 8-12: Create an XForm for Physician Input. 133
EXERCISE 8-13: Create a Web Service that uses the XForm 136
EXERCISE 8-14: Create the deployment profile for the XFormWS. 138
EXERCISE 8-15: Deploy the XForm Web Service . 140

Summary of what you’ve done . 141

About This Guide 5

About This Guide

Purpose

This tutorial introduces you to the environment and features of Novell exteNd
Composer. You will learn about:

! The exteNd Composer design-time environment

! XML Templates

! Composer Actions and the Action Model

! Composer Connection Resources

! Deploying Web Services with Composer

Audience

This tutorial is intended for application developers who will be using exteNd
Composer to develop J2EE applications, especially XML integration applications and
Web Services.

Prerequisites

Experience: No prior Java programming experience is required to complete the
tutorial. It is helpful to have some knowledge of the following:

! J2EE file packaging concepts (EAR, WAR, JAR)

! XML and its related standards (XSL, XPath, Schema)

Software: This tutorial is designed to use the following software. (All of these are
included in the Novell exteNd 5 Enterprise Edition Suite.)

! Novell exteNd Composer (Enterprise Edition)

! Novell exteNd Composer Enterprise Server

! Novell exteNd Application Server

! MySQL

! Novell exteNd LDAP Utility

6 Novell exteNd Composer Tutorial

! A web browser that supports HTML 4.0 and (optionally) XML+XSL, to see the
final output of the service you deploy

NOTE: You can use the Novell exteNd 5 Professional Edition Suite for all lessons
except those involving deployment. The deployment techniques shown in this tutorial
use the Enterprise Edition features, but you can still deploy your project(s) with the
Professional Edition tools. See the Novell exteNd Director and App Server
documentation for information on how to deploy Composer projects using Director’s
Utility Tools.

If you don't have the required software, you can download a trial version of the Novell
exteNd 5 Enterprise Edition Suite (which includes MySQL as well as the Novell
exteNd LDAP Utility) from the Novell download site.

Organization

A summary of the lessons you’ll find in this tutorial:

Lesson Description

1 Lesson 1,
“Introduction to
the Composer
Environment”

Introduces the Composer Environment

2 Lesson 2,
“Components and
XML Mapping”

Teaches the design and structure of Composer
Components

3 Lesson 3, “XML
Templates”

Presents XML Templates and the files that XML
templates may incorporate

4 Lesson 4, “Web
Services”

Provides an overview of Web Services and how to
create one in Composer

5 Lesson 5,
“Deployment”

Discusses deployment considerations and shows
you how to deploy a simple web service

6 Lesson 6, “JDBC
and LDAP”

Introduces Composer Connection Resources and
how to create JDBC and LDAP connections

7 Lesson 7, “Basic
Composer
Actions”

Teaches Basic Composer Actions used to operate
on data elements in the Action Model

http://download.novell.com/pages/PublicSearch.jsp

About This Guide 7

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-index/index.jsp).

8 LESSON 8,
“Publishing and
Consuming Web
Services”

Discusses methods of publishing and consuming
web services, including JSP, XFORMS, XML
Interchange and Web Service Interchange

Lesson Description

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8 Novell exteNd Composer Tutorial

9

1

Introduction to the Composer Environment

Introduction to the Composer
Environment Lesson 1

What you will learn
This lesson describes the Novell exteNd Composer environment, and shows you how
to use Composer’s basic UI features. You will be introduced to some of the
nomenclature associated with the creation of web services, and learn about
Composer’s project architecture.

You will learn about Composer Basics:

! Composer Building Blocks

! Launching Composer

! Navigating in the Composer Environment

! Composer Project Structure

What you will do
You will perform the following tasks using exteNd Composer:

1 Launch Composer

2 Explore the Composer Environment

3 Create a Composer Project

How long will it take? About 10 minutes

10 Novell exteNd Composer Tutorial

Composer Basics
Novell exteNd Composer (hereafter just “Composer”) provides rich-UI design
environment in which to design, create, test, debug, package, and deploy web services.

Composer Building Blocks

Composer wrappers almost all of the objects you create in a special kind of object
known as an xObject. An xObject is in most cases little more than an XML metadata
description of a deployable artifact.

There are four main categories of xObject:

! Services – A service is a high level object that performs a unit of work or
business transaction. Services are deployed on the application server and take
XML documents as their input. Services utilize components to operate on the
XML data and produce output XML documents.

! Components – A component in exteNd Composer performs a unit of work or
business logic, and is invoked by a service or another Composer component.
Components XML enable applications, i.e. a relational database, via the JDBC
component.

! Resources – Components and Services utilize resource objects to perform tasks.
Resources are specialized objects that perform such functions as establishing
connections. map code tables, and define schemas for XML documents.

! XML Templates – XML Templates provide a way of categorizing and
aggregating the sample XML documents your services operate on at design time.

Launching Composer

When Composer launches, it opens the last project that the user opened or modified.
The first time you launch Composer after installation, it will start with the tutorial
project (“hospital”) as the current project. You can tell which project is the currently
open project by looking at the title bar on the main Composer window.

EXERCISE 1-1: Launch Composer

1 You may launch Composer in any of the following ways

! From the Windows Start Menu, click Programs>Novell exteNd
5.0>Composer>Composer Designer

! Open Windows Explorer, navigate to the exteNd5\Composer\Designer\bin
directory under the location where you installed Composer and double-click on
the XC.exe file.

! Upon successful launch you will see a screen similar to the one depicted here.

Introduction to the Composer Environment 11

Navigating in the Composer Environment

Composer contains several editors and wizards to aid in the design, building, testing,
and debugging of Composer applications. When Composer is first launched it displays
the navigation, editor and message frames.

EXERCISE 1-2: Explore the Composer Environment

1 Examine the Composer Frames and become familiar with the function of the
different panes.

! Navigation Frame – The Navigation frame provides the user with a visual
interface for creating and editing Composer objects.

The upper, category pane, displays icons of the services, components and
resources available to the user to build Composer projects.

The lower, instance pane, displays project defined objects for the selected
xObject in the category pane.

! Editor Frame – Component editor content such as DOM and action models
are displayed in the editor frame.

12 Novell exteNd Composer Tutorial

! Message Frame – The message frame is composed of four tabs: the find tab
displays the result of system searches. The log tab displays error and log
messages. The watch tab displays system watch variables. The Todo tab
allows you to track project related tasks.

In the example shown above, a project named “hospital” is the current Composer
project. The Web Services Component has been selected in the category pane. The
instance pane shows all the web services defined in the project “hospital.”

Use the mouse or keyboard and investigate the menus and options in the Composer
environment.

Composer Project Structure

Services in Composer are organized into projects. A project contains one or more
deployable services and all of the code, metadata, and other resources needed by those
services at runtime. Composer uses projects as the unit of deployment to the
application server.

When you create a project in Composer a hierarchy of folders is created to organize the
xObjects and aid in deployment.

Introduction to the Composer Environment 13

The project file extension utilized by Composer is .spf. When creating a project the
.spf file is created in the folder you select for the project. Composer creates three
subdirectories under the project folder: \Composer, \staging, and \build. As you
create your application all of the xObjects you create are stored as XML files within
subdirectories named after the category of the object, i.e. xmlcategories under the
Composer subdirectory in the project folder.

About the Tutorial Project

In the tutorial project you will be acting as both the publisher and consumer of the web
service you build. The exercises in each lesson are designed to build on the previous
lesson and will instruct you on how to use Composer to create, deploy, and trigger the
service.

Tutorial Scenario

Pantagruelico Hospital maintains an e-directory of all its staff. The hospital also
maintains a database of patient records. Insurance companies, medical offices and
other hospital departments have a need to retrieve information from both data sources
for their daily operations.

You will be creating a Composer web service that will provide the client information
about physicians and their patients, when supplied with a physician’s name. The
service will be deployed to the application server, where the client may invoke it.

The solution to the tutorial may be found under the exteNd Suite install directory in the
location \Composer\tutorial\solution\hospital.

14 Novell exteNd Composer Tutorial

The diagram below gives a very-high-level architectural overview of the major pieces
of this tutorial. At the far left are the major data sources (a database and a directory).
The Web Service wrappers a JDBC Component and an LDAP Component, which
together serve as the “data access” layer of the deployed application. The service (in
this tutorial, at least) is triggered by servlets, which are exposed on URLs. The triggers
may (optionally) be front-ended by JSPs, XForms, or ordinary HTML (or no
presentation objects at all: an RPC type of scenario, common in B2B interactions).

The workings of these various pieces will become clearer as you go through the lessons
of the tutorial.

Project Requirements
The requirements for the service are listed below:

1 The service may be invoked by any of the following service triggers:

! Servlet of the type Params(URL/Form) that outputs a raw XML document

! Servlet of the type Params(URL/Form) that uses an XForm

! Servlet that utilizes a JSP to format the output

! Servlet of the type XML (HTTP/Post) that outputs an XML document

! SOAP Servlet using WSDL

! Servlet of the type XML(HTTP/Post) which outputs XHTML that is
formatted with a stylesheet

2 The input will be either parameters on a URL, a submission via an XForm, or an
XML document containing the physician’s name.

Introduction to the Composer Environment 15

3 Retrieve the patient data from the hospital database for the given physician.

4 Retrieve the physician’s title, phone number, e-mail address, and the number of
directory inquiries from the hospital e-directory.

5 Combine the retrieved data into an XML document and return it to the client as
output.

EXERCISE 1-3: Create a Composer Project

1 Select File > New >Project from the menu bar. The new project dialog will
appear.

2 In the project name field, type: hospital.

3 Click the Browse button to select a Project Location.

4 Navigate to the tutorial directory located in the exteNd5\Composer directory
where you installed the Novell software. For example D:\Program
Files\Novell\exteNd5\Composer\tutorial.

NOTE: The location of your files is dependent on where you installed Composer.

5 Click the Create New Folder button.

A folder named New Folder is added to the browser window. Note that the folder
name is recessed and highlighted in the window.

6 Change the name of the folder to hospital

7 Click Open.

The Project Location dialog should look like the one below.

16 Novell exteNd Composer Tutorial

8 Click OK to close the project location dialog.

Accept the default deployment context, composer.hospital entered for you by
Composer in the Deployment Context textfield.

Your New Project dialog should look similar to the one below.

9 Click OK to close the dialog and create the project.

10 Notice that the title bar on the Composer UI contains hospital as the open project.

Summary of what you’ve done
You have accomplished the following tasks:

! Learned about the basic Composer Building Blocks.

! Launched the Composer application

! Explored the Composer environment

! Created a Composer Project folder

! Investigated the Composer project folder structure

! Created a Composer Project

Next lesson

In the next lesson you will learn about DOM, Components and the XML Map Action.

17

2

Components and XML Mapping

Components and XML Mapping Lesson 2

What you will learn
In lesson 2 you will learn more about the design and construction of components
within the Composer environment. The “hospital” Service that you will create in the
tutorial will execute an XML Map Component. The map component will use a
Mapping Action to take input you provide and transform it to output. Within this
lesson, you will create a map component that the service will utilize. This map
component will take a physician’s name as input. You will use it to model the data that
will be passed to your web service. Once you have your component constructed,
Composer’s features for animation and debugging will be introduced.

You will learn about Design and Structure of Composer Components:

! Composer Component Architecture

! Document Object Model (DOM)

! XML Map Action

! Component Animation

What you will do
You will perform the following exercise using exteNd Composer:

1 Create an XML Map Component.

2 Add a Map Action to the Component

3 Modify the Input DOM and Save as an XML Template

4 Animate the Map Component

How long will it take? About 15 minutes

18 Novell exteNd Composer Tutorial

Design and Structure of Composer Components
Composer applications are much like any other design project. First, the service to be
provided must be understood and agreed upon between the client and the service
provider. Composer applications are often utilized to provide services between
business partners; for example, information exchange between a catalog and inventory
supplier. Once the application is defined, Composer components are designed, created,
and packaged to implement the service.

Composer Component Architecture

Components are the cornerstone of the Composer Architecture. They use resources,
connections, and actions to accomplish the requirements of a service. Since
components are capable of utilizing other components, they are readily
compartmentalized into units of functionality. This makes them ideal for reuse by other
services and components in your design.

Components are xObjects that take XML documents as their input, operate on these
documents, and produce an XML document as output.

Document Object Model (DOM)

Composer represents XML documents in system memory as a DOM. The DOM
represents the XML as a tree structure. The tree has a single root node, and a hierarchy
of child nodes and elements that contain the data on which the component operates.
The DOM provides standard methods of dealing with the XML document. A DOM is
the structure that is created and manipulated at runtime.

When you create a component, Composer represents the input and output XML
documents as a DOM in the Composer environment. The screen shot below shows a
sample of a Composer XML Map Component with two input XML documents and one
output XML document, represented as DOMs.

Components and XML Mapping 19

XML Map Action

An Action in Composer is similar to a programming statement. As the verb implies,
something takes place when an action executes. Components utilize actions to operate
on the elements and data in the XML input document to produce the required output.
These actions provide a wide variety of operations, that may include transformation
and re-ordering of the elements and data.

The XML Map Action is one of the most important of all the actions available within
Composer. A Map action can be as simple as passing the data from the input to the
output with no intermediate steps, or a complex action with data transformations.

Composer has two methods of creating map actions, Drag and Drop, which allows
nodes from the Input DOM to be dragged and dropped in the Output DOM. The second
method is via the Map Action Dialog, which provides means for more complex
mappings and transformations. The Map Action Dialog also allows you to use XPath
or ECMAScript expressions to address locations in the DOM. You will be using some
basic XPath in the exercises within the lessons. XPath will be covered more
completely later in the tutorial.

Component Animation

Composer allows you to animate your components for testing and debugging.
Animation provides you the ability to step into, or over, component actions as they
execute. You may also set break points and watch variables to aid in the debug process.
Use the animation tool bar at the top of the action model or the animate menu to access
these features.

20 Novell exteNd Composer Tutorial

EXERCISE 2-1: Create an XML Map Component

1 If Composer is not running on your system, launch Composer as described in
Exercise 1-1.

When Composer launches, it will open the last project you worked with in the
application.

2 Check the title bar to insure you that the project listed is “hospital”. If not, open
the “hospital” project by selecting File>Recent from the menu. You will see a
list of the most recently accessed projects. Select “hospital” from the list.

3 Select the Project Tab in the Navigation Frame.

In this portion of the exercise you will create the map component that will be
accessing the patient database. The input to this component will be the
physician’s name. In the course of the exercise you will modify the Input DOM,
and create the XML templates that model this input.

4 In the category pane highlight XML Map Component.

5 RMB (Right Mouse Button).

6 Select New.

The XML Map Component Wizard will appear.

7 Type PatientLookup in the Name text field.

8 Optionally, you may enter text in the Description fields, or leave them blank. The
example below shows an entry in the remarks field.

Components and XML Mapping 21

Your wizard should look similar to the one depicted below.

9 Click Next.

The Select XML Template dialog appears. You will be creating and saving an
XML Template for the component later in the exercise. For this step, accept the
default input and output templates provided by Composer.

10 Click Next.

The Temp and Fault document dialog appears. You can think of Temp documents
as a scratch pad area to use when manipulating data. Fault documents are used in
fault handling. You will be using temp documents in a later lesson. The fault
documents are beyond the scope of this introductory tutorial. For more
information on them, please consult the Novell exteNd Composer User Guide.
For the purpose of this exercise, you will accept the default values provided by
Composer for these documents.

11 Click Finish.

The component editor window for the XML component will open.

Note that in the component editor you have an Input DOM and an Output DOM.
The component name has been added to the Instance pane in the project tab, and
the Action Model contains the XML Component Named “PatientLookup”.

EXERCISE 2-2: Add a Map Action to the Component

1 Click to highlight “PatientLookup” in the action model.

2 RMB select New Action>Map, the map dialog appears.

Note that the XPath radio button is selected for both the Source and the Target.

3 Type a,“.”,without the quotes in both the source and target text fields. The period
is XPath notation indicating that the current node is to be copied.

22 Novell exteNd Composer Tutorial

4 Click OK.

A Map Action appears in the action model.

EXERCISE 2-3: Modify the Input DOM and Save as an XML Template

Composer lets you view XML documents in three ways, tree, stylized, and text.
The default view is tree. The easiest way to edit the XML document is to use the
text view.

1 Select View>XML Documents>As Text from the menu.

Note that the Input and Output DOM change to text view, which allows you to
edit the structure of the XML document.

2 Click within the Input pane below the text “<?xml version="1.0"
encoding="UTF-8"?>.”

3 Enter the following XML elements in the order they appear below, include the
brackets and slashes. Composer will generate an error if your XML document is
not well-formed.

<RecordRequest>

 <physician>SSpade</physician>

</RecordRequest>

Components and XML Mapping 23

4 Select View>XML Documents>As Tree, the Input DOM displays physician as a
child element of the root node RecordRequest.

Next you will save the XML document you just created as a template to be used
in later lessons. Any DOM that is visible in the component editor may be saved
as an XML Template. A full discussion of XML templates is covered in Lesson 3

5 Click anywhere in the Input DOM, RMB>Save XML As.

The Save XML As dialog appears. Note that input appears in the dropdown list
for the part. You will be saving your template as a template sample.

6 Select the Save as Template Sample radio button.

7 Type patientrecords in the Template Category dropdown box.

8 Type PatientRecRequest in the Template Name dropdown box.

9 Type PatientRecRequestSample in the Sample Name dropdown box.

24 Novell exteNd Composer Tutorial

10 Click OK

Composer creates a new folder under the XML Template Category named
patientrecords.

11 Double click on the patientrecords folder in the Category pane.

Note that the XML template named PatientRecRequest is listed in the Instance
pane. You will be using this template throughout the remainder of the tutorial.

EXERCISE 2-4: Animate the Map Component

1 Animate the map action by selecting Animate>Start Animation from the
Composer menu.

Note that the animation tool bar buttons become active above the action model.

2 Hover the mouse over the buttons to determine their function.

3 Click the Step Into button twice to step through the component.

4 Click OK on the Animation dialog when you see the Animation Completed
message.

5 Note that the physician element with the data “SSpade” has been mapped to the
output DOM.

Components and XML Mapping 25

6 Select File>Save from the menu to save your work.

Summary of what you’ve done
You have accomplished the following tasks:

! Learned about Composer Component Architecture

! Gained understanding about the Document Object Model (DOM)

! Created a XML Map Component.

! Added a XML Map Action to the component

! Created and saved an XML template

! Animated a Composer component

Next lesson

In the next lesson you will learn about Schemas, XML Templates and XML Template
Categories.

26 Novell exteNd Composer Tutorial

27

3

XML Templates

XML Templates Lesson 3

What you will learn
Lesson 3 introduces you to XML Templates and the XML files that comprise them.
Templates provide frameworks on which to build components. You create XML
templates that provide the input and output structure for the design, and test of
components you build with Composer.

You will learn about Composer XML Templates:

! XML Template Categories

! XML Sample Documents

! XML Schema

! XSL Style Sheets

! XML Templates

What you will do
You will perform the following tasks using exteNd Composer:

1 Work with XML Templates

2 Create an XML Template using the template wizard

3 Import an XML template from another Composer project

4 Edit the PatientLookup XML Map Component to use the XML Templates

How long will it take? About 20 minutes

28 Novell exteNd Composer Tutorial

Composer XML Templates
Composer XML Templates are an organization of XML files in a functional group.
They are used by the components and services you build. XML Templates model the
elements and data a service or component will encounter. The type of documents that
can be included in an XML template are XML Sample Documents, XML Schemas,
and XSL Style Sheets

XML Template Categories

XML Categories provide a convenient mechanism for grouping like instances of
templates.When you create a template category, it appears as a folder in the Category
pane of the Composer Navigation frame. When you create the XML template, you
assign it to a category. The instances of the templates you have created appear in the
Instance pane of the Navigation frame, when you select the appropriate XML
Category.

XML Sample Documents

XML sample documents provide a representation of the runtime XML documents that
a component or service will process. The elements and data in the sample document are
the same as those encountered in practice. In B2B applications the sample documents
are often supplied by your business partners. They may be used as inputs or outputs to
a component or service.

XML Schema

XML Schema Definition (XSD) files are used to validate XML documents. They can
be thought of as the contract that the XML document must fulfill to be interpreted
properly by a service or component. Schemas are developed at design time between
business partners. They act as an interface or description of the XML documents
involved in the service. While XML documents are strictly concerned with data,
schemas define the data’s valid format and may also define data types. A schema can
also declare namespaces to uniquely identify elements as belonging to a particular
document vocabulary. Schemas allow extensibility, in that new custom data types may
be defined within them.

The scope of schemas reach far beyond this tutorial. Entire books have been devoted
to them. A good starting point to investigate them further is the W3 Schools website.

http://www.w3schools.com/

XML Templates 29

XSL Style Sheets

XSL Style Sheets may be included as part of the XML Template. While XML
documents are strictly concerned with elements and data, XSL Style Sheets define how
the data within the XML document is displayed. If your application is to be
implemented as a page within a web browser, you may want to include a style sheet as
part of your XML template.

XML Templates

XML Templates are a collected grouping of related documents that represent the
information a component or service would receive at runtime. The primary use of
XML Templates in Composer is as a design and debugging aid. Components often
have to handle a multitude of documents at runtime. These documents may have
different optional elements that the components must handle gracefully. Templates
allow you to test your component with the different document types your component
may process at runtime.

EXERCISE 3-1: Work with XML Templates

1 If Composer is not running on your system, launch Composer as described in
Exercise 1-1.

2 If you are not already in the “hospital” project, open it by either selecting it from
the recent project list File>Recent on the menu. Alternatively, you may browse
to the project location by selecting File>Open Project.

3 Select XML Template Category in the Navigation Frame.

4 RMB>New.

The New XML Category dialog appears.

5 Type physicianrecords in the dialog text field.

6 Click OK.

30 Novell exteNd Composer Tutorial

A new folder, “physicianrecords” appears in the Category pane of the Navigation
frame.

7 Save your work by selecting File>Save from the menu.

EXERCISE 3-2: Create an XML Template using the template wizard

In this exercise you will create the XML templates that model the input and outputs of
your service. The first template you create will model the final output of your service.
It will combine the patient information retrieved from the database with the physician
information extracted from the directory. In practice, a sample XML file might be
supplied by the consumer of your service, you would then build your template using
that sample file.

1 Click on the patientrecords folder.

2 RMB>New to launch the Create a New XML Template Resource Wizard.

3 Enter PatientRecResponse in the Name text field.

Notice that Composer has entered the template category “patientrecords” in the
category drop-down list.

4 (Optional) Enter text in the Description fields.

Your wizard should look similar to the one depicted below.

5 Click Next.

6 Add the XML Sample document to be used with the XML template.

XML Templates 31

! Click the Add button on the dialog.

! Navigate to the directory: \tutorial\files. This directory is located under the
directory where Composer was installed. Double click on the file:
PatientResponseSample.xml.

! The wizard adds the file to the list and to the Default Samples drop-down lists
for Input and Output.

! The panel should look like the one below.

! Click Next.

The sample document specified in the previous panel doesn’t have an associated
validation document. The wizard has selected the None radio button on this
panel. Accept this default.

7 Click Next.

The Namespace and Prefix panel appears. Namespaces are used by Composer
Map Actions to resolve prefix usage between documents that belong to the same
Namespace. For this exercise, you will leave this panel blank.

8 Click Next.

9 No stylesheet definition is associated with this template, click Finish.

The new template appears in the Navigation frame’s Instance Pane and the XML
Template Component Editor opens with the PatientRecRequest Template
displayed. Note that the sample document’s name appears in the title of the Part
pane for the template.

32 Novell exteNd Composer Tutorial

Next you will create templates for the input and output of the physician directory.

1 Click on the “physicianrecords” folder.

2 RMB>New to launch the Import dialog.

3 Enter PhysDirInq in the name text field.

4 Click Next.

5 Add the XML Sample document to be used with the XML template.

! Click the Add button on the dialog.

! Navigate to the directory: \tutorial\files. This directory is located under the
directory where Composer was installed. Double click on the file:
PhysDirInqSpl.xml.

! The wizard adds the file to the list and to the Default Samples drop-down lists
for Input and Output.

6 Click Next.

The sample document specified in the previous panel doesn’t have an associated
validation document. The wizard has selected the None radio button on this
panel. Accept this default.

7 Click Next.

The Namespace and Prefix panel appears. Namespaces are used by Composer
Map Actions to resolve prefix usage between documents that belong to the same
Namespace. For this exercise you may leave this panel blank.

8 Click Next.

No stylesheet definition is associated with this template.

9 Click Finish.

10 Open the template. Double click on the template name in the Instance pane. The
XML Template Component Editor opens with the “PhysDirInq” template
displayed.

11 Save the XML Templates by selecting File>Save All from the menu.

EXERCISE 3-3: Import an XML template from another Composer project

In this exercise you will learn how to import an XML template from another project.
You will be importing the output template that will be used by the physician directory
search component.

XML Templates 33

1 Click on the physiciansrecords folder under XML Template Category in the
Category pane.

2 RMB>Import

The Import XObject dialog appears.

3 Using the Browse button on the dialog navigate to the directory
\Composer\tutorial\solution\hospital\composer\xmlcategories\physicianrecords
under the location where you installed the exteNd Suite.

4 Double click on the file PhysDirResp.xml.

Your dialog should look similar to the one pictured here.

5 Click OK.

The template is added to the Instance pane.

6 Double click on the PhysDirResp template in the instance pane to open it.

7 Expand the root node in the template by clicking on the plus sign next to the root
node.

8 Select File>Save from the menu, or use the Save button on the Composer
toolbar to save your work.

34 Novell exteNd Composer Tutorial

EXERCISE 3-4: Edit the PatientLookup XML Map Component to use the XML Templates

In this part of the exercise you will modify the PatientLookup map component to use
the templates you have added to the project

1 Click on the XML Map component in the Category pane.

The PatientLookup map component appears in the instance pane.

2 RMB on the PatientLookup component in the instance pane.

3 Select Properties on the pop-up menu.

The properties dialog for the PatientLookup component appears.

4 Select the Messages tab on the Properties dialog.

The template category for the component is currently set to System and the
template name to ANY.

5 Select the Template Category patientrecords from the dropdown list under the
Input Message.

6 Select PatientRecRequest from the Template Name dropdown list for the Input.

7 Select the Template Category patientrecords from the dropdown list under the
Output Message.

8 Select PatientRecResponse from the Template Name dropdown list for the
Output.

XML Templates 35

9 Click OK.

10 Double click on the PatientLookup component in the Instance pane to open it.

Note that input and output DOM reflect the templates you just added.

11 Save your work, select File>Save All from the menu.

12 Animate and step through the component using the animation tool bar.

Summary of what you’ve done
You have accomplished the following tasks:

! Learned about XML Templates and the documents that comprise them

! Created an XML Template Category

! Created an XML Template

! Imported an existing XML Template into a Composer project

! Modified an XML Map Component that uses your templates

Next lesson

36 Novell exteNd Composer Tutorial

In the next lesson you will learn how to create a Composer Service.

37

4

Web Services

Web Services Lesson 4

What you will learn
This lesson will show you how to create a web service in the Composer environment.

You will learn about:

! Composer Service Basics

! Services vs. Components

NOTE: This lesson is just a very quick introduction to the basics of creating a new
service in Composer. It does not discuss WSDL or SOAP. For a detailed example of how
to create and deploy a web service that uses WSDL and SOAP, see LESSON 8,
“Publishing and Consuming Web Services”.

What you will do
You will perform the following tasks using exteNd Composer:

1 Create a Web Service

How long will it take? About 5 minutes

38 Novell exteNd Composer Tutorial

Composer Web Services

Web Service Definition

Web Services are applications that reside on a server, and execute when triggered by a
client request. The request that initiates the service provides any input parameters the
service needs to carry out its function. The service’s response may be returned within
the same transaction as the request, or it may occur as a separate operation.

Transactions in a web service often occur between business partners. One partner
provides the service that the other consumes. For example; a catalog website may
interact with an inventory supplier via a web service that, in turn, invokes the service
of a third party shipping company.

Composer web services accept XML documents as their input, use components and
resources to act upon the data in the document, and return an XML document as their
output.

Services vs. Components

Services in Composer are very similar to Composer Components, they each have an
Action Model, and can execute the same tasks. The wizard to create services is similar
to the Component Wizard. Like components, services take XML documents as their
input, and produce XML documents as their output.

The major difference between a service and a component is that the service is the unit
of deployment. The service is the actual application that is invoked when the server
receives a client request. Services are registered with the server, and may be published
via a UDDI registry. Components reside within services, and perform units of work for
the service. Services may also invoke other services to accomplish their tasks. When
designing your application, keep in mind that the service is the highest level of your
application. It presents the public interface to your application. The primary objective
of the service is to coordinate the activities of the other services and components
needed to fulfill the requirements of the service, and deliver the appropriate response
to the client.

EXERCISE 4-1: Create a Web Service

The web service you will create in this exercise will be deployed in the next lesson. The
service you will implement is intentionally very simple, your goal is to understand how
to create the service. In later lessons, you will add more complex tasks to components
and service.

Web Services 39

1 If Composer is not running on your system, launch Composer as described in
Exercise 1-1.

2 If you are not already in the “hospital” project, open it by either selecting it from
the recent project list File>Recent on the menu, or browse to the project location
by selecting File>Open Project.

3 Select the Web Service Category in the Navigation Frame.

4 RMB>New.

5 The Create a New Web Service Wizard appears.

6 Type PatientRecReqWS in the Name text field.

7 (Optional) Enter text in the Description fields.

Your wizard should look similar to the one depicted below.

8 Click Next.

9 Specify the XML Templates.

! For the Input Message, select patientrecords from the Template Category
dropdown list. Select PatientRecRequest as the Template Name.

! For the Output Message, select patientrecords from the Template Category
drop-down list. Select PatientRecResponse as the Template Name.

40 Novell exteNd Composer Tutorial

! Click Next.

10 You won’t be using Temp or Fault documents in this section of the tutorial, so
click Next to bypass this panel.

You will be deploying your service using SOAP as the service trigger in a later
lesson. For this exercise, leave this panel blank.

11 Click Finish.

The component editor opens with the web service in the Native Environment
pane. Next you will add an action to your web service to execute the
PatientLookup XML component you created in Lesson 2.

12 Highlight PatientRecReqWS in the action model.

13 RMB>New Action>Component.

Web Services 41

The Component dialog appears, with the Predefined radio button selected. At this
point in the project, the PatientLookup component is the only component
defined. The dialog defaults to this component. You will be passing the Input Part
from the Web Service to the component and placing the output from the
component into the Output Part of the service.

14 Select Input as the Passed Part, patientrecords as the Template Category, and
PatientRecRequest as the Template Name.

15 Select Output as the Returned Part, patientrecords as the Template Category,
and PatientRecResponse as the Template Name

16 Click OK.

The execute component statement is added to the action model. Your component
should be similar to the one below.

17 Save your work, select File>Save All from the menu.

18 Animate and step through the service using the animation tool bar.

42 Novell exteNd Composer Tutorial

Summary of what you’ve done
You have accomplished the following tasks:

! Studied Web Services

! Discovered the difference between a service and a component

! Created a Web Service in Composer

Next lesson

In the next lesson you will deploy your web service.

43

5

Deployment

Deployment Lesson 5

What you will learn
Lesson 5 shows you how to deploy your Web Service.

You will learn about:

! Deployment Considerations

! Composer Deployment Profiles

! Server Profiles

! Deployment Components

! Creating a Server Profile

! Service Triggers

What you will do
You will perform the following tasks using exteNd Composer:

1 Create a Server Profile

2 Create a Deployment Object

3 Set up a Service Trigger for your Web Service.

4 Deploy your service

How long will it take? About 40 minutes

44 Novell exteNd Composer Tutorial

Composer Web Service Deployment
When you have completed the design, building, testing, and debugging of your service
on your local system, it’s time to deploy the service to your application server.

Each application server supports its own method(s) of deployment. The following
discussions pertain to the Novell exteNd Application Server. If you are using another
type of server, consult the documentation for your application server to learn how to
deploy to your server.

Deployment Considerations

Prior to deploying your service, you need to take into account a number of factors ,as
shown in the following table.

Factor Details

Deployment
Package

How will your service be packaged? Depending on
your project requirements, you can choose to
deploy your project from within the Composer
product or you can choose to create your own
WAR or EAR file and deploy the archive
manually, using Novell exteNd Director’s Utility
Tools.

Triggering How will your service be instantiated? There are
several options for triggering a service, including
servlets, JSP, EJB, custom Java objects, scheduled
tasks, e-mail, and (on Enterprise Edition only) SAP
RFCs and/or JMS listeners

Input
Parameters

How will your service receive incoming data, and
what will be the format and content of that data?

Resources Will your service share resources with other
services? How and where will you publish these
resources?

Security Will your service have restricted access? What
about resource security?

Deployment 45

In the tutorial you will package and deploy your web service using the Deployment
xObject user interface of Composer Enterprise Edition. You will first create a Server
Profile (which is a prerequisite for deploying any kind of J2EE artifacts, using any
edition of Composer or Director), then you will create a Deployment xObject; and
finally, you will deploy your project to the app server.

Server Profile

A Server Profile contains information characteristic to a given server, such as name (or
IP address) and port number. Once a Server Profile is defined within Composer, any
project can be deployed to that server. If you’ve defined more than one Server Profile
(for example, a local “development server” versus a QA or production server, etc.),
you can choose the desired profile at deployment time, and deploy directly to the server
of your choice without having to reenter or re-specify host and port parameters.

NOTE: Once you’ve created profiles for the server(s) you need to deploy to, there is
no need to revisit the following procedure (unless you’ve upgraded servers or need to
add an entirely new profile for some reason). This can be thought of as a onetime task.

EXERCISE 5-1: Creating a Server Profile

The first time you deploy using Composer you need to define a server profile, as
follows.

1 If Composer is not running on your system, launch Composer as described in
Exercise 1-1.

2 If you are not already in the “hospital” project, open it either by selecting it from
the recent project list File>Recent on the menu, or browse to the project location
by selecting File>Open Project.

3 Select Tools>Profiles from the Composer menubar. The Profiles dialog appears.

46 Novell exteNd Composer Tutorial

4 Select the Servers tab if it is not already in front.

5 Click the New... button next to the Profile Name dropdown list. The New Server
Profile dialog appears.

Deployment 47

6 Type “tutorial” in the Profile Name text field.

7 Select your Server Type from the dropdown list.

8 Type the name and port number (separated by a colon) of your server in the
Server Name text field. For example: localhost:80

9 Enter “SilverMaster50” for the Database Name.

10 Enter your User Name and Password for accessing the server in question, in the
indicated text fields.

11 (Optional) You may elect to use this server profile as a default for all your
Composer Projects. To do so, select the checkbox at the bottom of the dialog.

12 Click OK to save the Server Profile.

13 Click Close on the Profiles dialog.

The server profile you just created will be available from any Composer project. It
persists across

Deployment xObject

NOTE: The Deployment xObject is supported only in Novell exteNd 5 Enterprise
Edition (or Composer Enterprise Edition standalone). If you are using Professional
Edition, you will not be able to create Deployment xObjects in Composer and should
skip this section. (You can, however, deploy your project manually, using exteNd
Director. Consult the Director documentation and/or the Deployment chapter of the
Composer User’s Guide for more information.)

48 Novell exteNd Composer Tutorial

The Deployment xObject is a special type of resource that wrappers deployment-
configuration info specific to a particular collection of Composer resources. The
Deployment object specifies:

! The particular services to be deployed

! The types of service triggers that should be associated with the various services,
along with parameters (URLs, Role names, etc.) specific to those triggers

! Any “publishable resources” that should be packaged into the deployment
archive (such as WSDL, XSL, Image Resources, and other static resource types
that should have archive-wide visibility)

! Any JARs that should be packaged into the deployment archive

It is possible to create more than one Deployment xObject within a given project. But
for purposes of this tutorial, we will create just one Deployment xObject.

EXERCISE 5-2: Create a Deployment xObject.

1 Select the Deployment Category in the Navigation Frame.

2 RMB>New.

The Create a new Deployment xObject wizard launches.

3 Type GetRecords in the Name text field.

4 (Optional) Enter a description of the object.

Deployment 49

5 Click Next. A new wizard panel appears.

6 You can accept the default values for Deployment Object Name, Deployment
Context, Base URL, and Deployment Staging Directory.

! The Deployment Object Name defaults to the project name you specified
when you created your project.

! The Context in the JAR is any arbitrary string of names separated by periods,
such as, for example,com.composer.tutorial.

NOTE: As a best-practice, Novell recommends that you include the
word “composer” in the deployment context of any applications built with
Composer, to distinguish them from apps built in Director or other
environments.

! The Base URL text field defaults to the Deployment xObject name.

! The staging directory defaults to the one that was specified when your project
was originally created.

7 Click Next. A new wizard panel appears.

50 Novell exteNd Composer Tutorial

Accept the default URL Prefix for the resources and leave the security role blank.

! The Resource URL Prefix defines where project resource files will be stored
within the EAR file.

! The Security Role defines the access privileges for the project resources. For
the purpose of the tutorial, you will leave the resource files fully accessible.

8 Click Next. A new panel appears.

Your project’s name appears in the Project dropdown list.

The purpose of this panel is to allow you to change the names or values of any
Project Variables that you might want to change before deployment. (Project
Variables might contain values that are relevant to a test environment but not to a
production environment, or vice versa.) The tutorial project doesn’t use any
Project Variables, at this point, so it’s safe to just ignore this panel for now.

Deployment 51

9 Click Finish to complete creation of the Deployment xObject. You should see a
new Deployment Object name show up in the instance pane of the explorer
frame.

The Deployment xObject should appear in its own tree-view (to the right of
Composer’s regular explorer frame) as shown in the screenshot below. If it does not,
find the Deployment category in the regular explorer frame, and in the instance area,
double-click the name of your deployment object.

10 To save your work, select File>Save from the menubar, or click the diskette icon
in the main toolbar.

52 Novell exteNd Composer Tutorial

Service Triggers

When planning the design of a web service, you should have a clear idea of the method
by which the service will be triggered, and the parameters (or messages) that will need
to be passed to the service. Composer can create many types of service triggers for you
(and associate them with URLs that you specify). You can also create your own custom
service trigger classes, if you wish. An in-depth discussion of service triggers is outside
the scope of this tutorial, but if you want to learn more, please refer to the Novell
exteNd Composer User’s Guide in the chapter on deployment; and also see the separate
Composer Enterprise Server User’s Guide for code-level discussions of trigger
objects.

The following procedure leads you through the creation of JSP and servlet trigger types
for the services contained in the tutorial project.

EXERCISE 5-3: Set up the Service Trigger(s) for your Web Service

The first method you will use to trigger your service is a servlet of the type
Params(URL/Forms).

1 Expand the Service Triggers node in the Deployment Profile tree, if it is not
already expanded.

2 Select Web Service at the top of Composer’s main explorer tree.

3 Select “PatientRecReqWS” from the instance pane.

4 Drag PatientRecReqWS to the Deployment Profile pane and drop it on the
Servlet icon under Service Triggers.

“PatientRecReqWS” appears as a node under the Servlet branch, and the Servlet
Properties sheet is displayed in the editor pane (what would normally be the
Native Environment Pane). See below.

Deployment 53

5 In the property-sheet pane, enter a URL string representing the final piece of the
URL (after the final forward slash) that will trigger this servlet.

6 Select Params (URL/Form) for the Servlet Type in the dropdown list.

7 Select XML as the Output Type from the dropdown list.

8 There is no Stylesheet Resource associated with this web service, so skip this
control.

9 Likewise, for purposes of the tutorial, you will leave the Security Role and Run
As Role fields blank. These fields have the following effect:

! The Security Role defines the access privileges for the service. (Roles are a
J2EE 1.3 security construct and are implemented by the server; not by
Composer.)

! The Run As Role defines the access privileges that PatientRecReqWS has to
invoke other services.

10 Select File>Save from the menu.

54 Novell exteNd Composer Tutorial

EXERCISE 5-4: Import the MySQL JAR resource file.

IMPORTANT: Skip this procedure if you are deploying to the Novell exteNd App
Server. This task is required only if you are deploying to another vendor’s server. If you
are deploying to the Novell exteNd Application Server, skip to exercise 5-5 and
continue.

1 Select the JAR in the Resource section of the Category Pane.

2 RMB>NEW.

3 Click the Browse button on the Create a New Jar Resource wizard panel.

4 Navigate to the ..\MySQL\jdbc directory under the location where you installed
the exteNd Suite.

5 Double click on the file mysql-connector-java-3.0.8-stable-bin.jar to select it.

6 Click OK.

The file name is added to the file/URL to import text window of the wizard
panel.

Deployment 55

7 Click Finish.

The MySQL jar file is added to the Instance pane and opens in the component
editor.

8 Double click the GetRecords tab in the component editor.

9 Drag the mysql-connector-java-3 JAR resource from the Instance pane and drop
it on the Jars element of the Resources tree in the Deployment Profile.

10 Select File>Save from the menu.

56 Novell exteNd Composer Tutorial

NOTE: The tutorial was written for deployment on the Novell exteNd Application
Server via Composer Enterprise Edition. If you wish to deploy to a different application
server, please refer to the deployment specific documentation for that server type.

EXERCISE 5-5: Deploying to the Novell exteNd Application Server

Before proceeding, be sure the exteNd Application Server is installed and running,
with Composer Enterprise Server also installed and running. (Composer Enterprise
Server is the runtime engine that executes and manages Composer-built services in the
app-server environment. If you installed the full exteNd 5 Professional or Enterprise
Edition Suite, you already have Composer Enterprise Server.) The server must also
have access to the MySQL database. These instructions assume the database and app
server are installed on your local machine.

Start the MySQL service.

1 The exteNd Suite installs MySQL as a service on your local machine. Check to
be sure that the service has started on your system. From the Windows Start
menu, select Start>Settings>Control Panel to open the Control Panel Window.

NOTE: The tutorial is based on a Windows 2000 OS. Access to your services
window may be different, dependent on your operating system.

2 Select Administrative Tools in the window and double click it to open the
Administrative Tools Window.

Deployment 57

3 Select Services in the window and double click to open the Services Window.

4 In the Services window locate the MySQL service, and note the status of the
service. It should read Started.

5 If the MySQL service is stopped, start it by RMB on the MySQL service and
selecting Start from the pop-up menu.

Start the Novell ExteNd Application Server

1 If the application server is not running on your system, start the server by
selecting Start>Programs>Novell exteNd 5.0>AppServer >Application
Server from the Windows Start Menu.

58 Novell exteNd Composer Tutorial

Deploy to the Novell exteNd Application Server

1 Select Deployment in the Category Pane.

2 Select the GetRecords deployment component in the Instance pane.

3 From the exteNd Composer menu, Select File>Deploy. The Deployment dialog
appears.

The “GetRecords” deployment object is listed in the Deployment Object
dropdown list.

4 Select your server profile from the Profile Name dropdown list.

5 Click Deploy.

Composer will do a deployment validation to ensure that all required entries have
been filled out in the properties sheet. If anything is missing, an entry will be
made in the Todo list tab of the Message frame.

If your deployment is valid, your browser will launch. When the browser
launches it will prompt you for the user name and password.

6 Enter the user name and password that you selected when you installed the
Novell exteNd Suite application server. The password will appear as asterisks.

Deployment 59

7 Click OK.

The browser opens and the administration sign-on page appears.

8 Enter your user name and password if the fields are not already populated for
you.

9 Click the Next button.

10 Enter SilverMaster50 as the target database.

60 Novell exteNd Composer Tutorial

11 Click Next.

12 Follow the directions on the browser page. Namely: Cut and paste the fully
qualified jar-file pathname into the text field. (In Windows, triple-click the
pathname to select all of it at once.)

13 Click Finish.

14 When the deployment is complete the server will issue a deployment report.

Deployment 61

15 Enter http://localhost/GetRecords/PatientRecReqWS?physician=SSpade in
your browser address.

The service will run and display the XML file with SSpade in the physician
element.

.Summary of what you’ve done
You have accomplished the following tasks:

! Learned about deployment of Web Services in Composer

! Created a Server Profile

! Created a Deployment xObject

! Set up a Service Trigger for your Web Service

! Deployed your Web Service

Next lesson

 In the next lesson you will learn about Connections.

62 Novell exteNd Composer Tutorial

63

6

JDBC and LDAP

JDBC and LDAP Lesson 6

What you will learn
Lesson 6 introduces you to the JDBC and LDAP Connections, and their corresponding
components.

You will learn how to create connection resources, and components that use those
connections:

! Composer Connection Resources and Connection Components

! JDBC Connection

! JDBC Component

! LDAP Connection

! LDAP Component

What you will do
You will perform the following exercises:

! Create a JDBC Connection

! Create a JDBC Component

! Access a Database using the JDBC Component

! Check for an active LDAP directory connection.

! Start the Novell exteNd LDAP Utility

! Create an LDAP Connection

! Create an LDAP Component

! Access a directory using the LDAP component

64 Novell exteNd Composer Tutorial

How long will it take? About 30 minutes

Composer Connection Resources and Connection
Components

Composer uses connections to interface with databases, directories, and legacy data
systems. The Connection Component contains information about drivers, time-outs,
transport protocols, and any necessary parameters, specific to the establishment of a
connection with the data source. Since Connections are specific to their data source,
they are created for each data source that a Composer project accesses.

Connection Components in Composer allow legacy systems to become “XML aware.”
That is, they provide a mechanism for the data in the system to be brought into a
Composer application as XML. This allows the Composer application to operate on
the data, and in turn, output it to another system. The reverse is also true. Composer can
take an XML input from a source, and update the legacy system via the Connection
Component.

The tutorial will be using the JDBC and LDAP Connectors. You may have other,
connectors in your Composer installation, i.e. 3270. Each connector has its own user
guide to help you understand its function.

JDBC Connection

JDBC is the JAVA-API for database connectivity. JDBC contains the classes and
interfaces needed to establish database connections, execute SQL statements within a
database, and process the result sets returned by the database.

The Composer JDBC Connection provides connectivity to JDBC-accessible data
stores. This connectivity is established utilizing a JDBC driver. A wide variety of
database vendors supply JDBC drivers for their databases, enabling you to create
connections to those databases within a Composer application.

EXERCISE 6-1: Create a JDBC Connection

The tutorial uses the MySQL database that is packaged with Composer, however
Composer supports any database that provides a JDBC driver.

1 If Composer is not running on your system, launch Composer as described in
Exercise 1-1.

When Composer launches, it will open the last project you worked with in the
application.

JDBC and LDAP 65

2 Check the title bar to ensure you that the project listed is “hospital”. If not, open
the “hospital” project by selecting File>Recent from the menu. You will see a
list of the most recently accessed projects. Select “hospital” from the list.

3 Select the Project Tab in the Navigation Frame.

4 In the Category pane, under Resource highlight Connection.

5 RMB (Right Mouse Button).

6 Select New.

7 The Create a New Connection Resource Wizard will appear.

8 Type JDBCConnection in the Name text field.

9 (Optional) Enter text in the Description fields.

Your wizard should look similar to the one depicted below.

66 Novell exteNd Composer Tutorial

10 Click Next.

11 The Select Connection panel appears.

! Select JDBC Connection from the Connection Type dropdown list.

! Type com.mysql.jdbc.Driver into the JDBC Driver text field. This is the
driver for the MySQL database that ships with Composer.

! Type jdbc:mysql://localhost:63306/samples50 into the JDBC URL field.

The JDBC Driver text field contains the context where the database driver is
packaged in your Composer project.

The JDBC URL is the location on your Novell exteNd Application Server where
the MySQL samples50 database can be found.

! Type your user name into the User ID field.

! Type your password into the Password field, note the password will appear
as asterisks.

NOTE: These are the user name and password you entered for the database,
when you installed the exteNd Suite.

! Leave the remaining fields blank and the “Allow SQL Transactions”
checkbox un-checked.

JDBC and LDAP 67

12 Click Test.

You should see a “Connected Successfully” dialog.

13 Click OK.

14 Click Finish, your connection is added to the Instance pane.

JDBC Component

A JDBC Component in Composer uses a JDBC connection component to interact with
a database. The component is similar to the XML Map Component, and can map,
transform, and transfer data between XML Parts. The JDBC Component, can also
create and execute SQL statements. The component interprets database result sets,
converting them to XML. In addition, the component can make use of all available
Composer actions to operate on the data it receives.

68 Novell exteNd Composer Tutorial

EXERCISE 6-2: Create a JDBC Component

The JDBC Component you create will utilize the PatientRecReq XML template. The
template contains the name of the physician, whose patients you want to retrieve from
the database. Creating this component will fulfill the third requirement of your service;
retrieve the patient data for the given physician.

1 In the Category pane under Components highlight JDBC.

2 RMB>New.

3 The Create a New JDBC Component Wizard appears.

4 Type AccessPatientDB in the Name text field.

5 Click Next.

6 Select patientrecords from the dropdown menu for the Input Template Category.

7 Select PatientRecRequest as the Template Name for the Input Part.

Accept the defaults, System, for the Template Category, and Any, for the
Template Name, for the Output Part.

JDBC and LDAP 69

8 Click Next.

This section of the tutorial does not use Temp or Fault Messages.

9 Click Next to bypass this screen.

The wizard defaults to the JDBC Connection you created in the previous
exercise.

10 Click Finish.

The “AccessPatientDB” component is added to the Instance pane and the JDBC
Component Editor opens.

11 Select File>Save.

70 Novell exteNd Composer Tutorial

EXERCISE 6-3: Access a Database using the JDBC Component

1 Highlight the AccessPatientDB in the Action model.

2 Add a SQL Statement action to the component, RMB>New Action>SQL
Statement.

3 The Create a New SQL Statement Wizard appears.The SQL Statement wizard
aids you in building SQL expressions.

4 Select the Create a Custom SQL radio button.

5 Click Finish.

JDBC and LDAP 71

The JDBC Native Environment pane opens. Note the three tabs, SQL Statement,
Result Mapping and Result Text. The SQL Statement editor is where you will
build your SQL statement to query the database.

NOTE: If the editor is not visible hover the cursor over the border between the
Native Environment pane and the Action Model. Use the double arrow to pull the
editor window into view.

You will be adding a SQL Select statement that will search the database for
patients whose physician is listed in the input document.

6 Click the plus sign before the SQL node in the SQL Operators and Keyword tree
to expand the node.

7 Click the plus sign before the Select node in the SQL Operators and Keyword
tree to expand the node.

8 Double-click SELECT then *, then FROM, in the Operators and Keywords list
tree. Note the phrase “SELECT * FROM” is added to the SQL Statement editor.

NOTE: You may have to use the scroll bar on the right side of the list to see all of
the operators and keywords available.

9 Double-click the patients table in the Data tree, patients is added to the SQL
statement.

10 Scroll down in the Operators and Keywords list and double-click on the
WHERE operator to add it to the statement.

11 Expand the patients node in the Data list and double-click on the physician
element.

12 Scroll down in the Operators and Keywords list to the Relational node.

13 Expand the node and double-click on the = Equal element.

Your statement should now read “SELECT * FROM patients WHERE
physician = ”.

14 Click in the SQL Statement window at the end of the statement to ensure the
cursor is placed after the equal sign.

15 Highlight the physician element in the Input Part.

72 Novell exteNd Composer Tutorial

16 Drag the element from the Input physician node, and Drop it in the SQL
Statement editor.

17 Your statement should now read: “SELECT * FROM patients WHERE
physician = ':Input.XPath("RecordRequest/physician")' “.

NOTE: Composer has created the XPath expression that accesses the data in
the Input. When executed, this SQL statement will retrieve all the entries in the
patients table whose physician element is equal to the data value in the physician
element of the Input document.

You can uses the Result Mapping tab in the Native Environment pane to map the
components output.

18 Select the Result Mapping tab in the Native Environment pane.

19 Delete the text RESULTINFO/ROW in the Result Row Placement textbox.

20 Enter patients/PatientData in the Result Row Placement textbox.

21 Using the scrollbar, scroll down in the pane to locate the Generate Row
numbers checkbox.

22 Click the Generate Row numbers checkbox.

23 Select File>Save from the menu.

24 Execute the component, select Component>Execute from the menu.

JDBC and LDAP 73

25 Expand the nodes in the Output Part to examine the data.

The Result Text tab shows the exact text that was sent to the database, and the result set
prior to being parsed into the Output Part.

Note that Composer has placed the result set in the component Output part.

LDAP Connection

LDAP (Lightweight Directory Access Protocol) is a specification for accessing
information within directories. It defines a standard protocol (much like HTTP) for
communicating with directory servers.

The Composer LDAP Connector allows you to access any directory that supports the
LDAP protocol, and query the director using DSML (Directory Services Markup
Language), which is a dialect of XML specific to directories. Composer creates and
manages DSML documents as it does any other type of XML document. You do not
have to write DSML yourself: the LDAP Connector creates DSML-formatted queries
for you, based on parameters you set using a point-and-click/drag-and-drop GUI.

" For more information on LDAP, please refer to the Novell exteNd Composer
LDAP Connect User’s Guide.

74 Novell exteNd Composer Tutorial

EXERCISE 6-4: Check for an active LDAP directory connection.

A small LDAP directory tree and lightweight directory server (the Novell exteNd
LDAP Utility) are included with exteNd Composer. You will be using the test directory
in the tutorial. The LDAP Utility must be running on your workstation in order to
complete the remaining tutorial lessons.

If the LDAP Utility is running, the Windows OS tray will contain the JAVA icon as
pictured below. (The Sent and Recv numbers will vary with your accesses to the
directory.)

1 Double-click on the icon in the tray. Adialog with the title pictured below
appears.

2 If the tool is not running on your work station, complete Exercise 6-5.
Otherwise, skip to Exercise 6-6.

EXERCISE 6-5: Start the Novell exteNd LDAP Utility

1 From the Windows start menu select Programs>Novell exteNd
5.0>Tools>LDAP Utility to launch the Evaluation tool. A window appears, as
shown below.

(If need be, you can locate the LDAP Utility in the \tools folder under your main
exteNd installation directory, and start it from there using the batch file
provided.)

IMPORTANT: Be sure the LDAP Utility is listening on port 50389. You can see
the current port number in the main window, above the Build Number. (If the port
is not 50389, either modify the LDAP Utility’s startup batch file and restart the
server on that port, or modify your Connection Resource, below, as necessary to
utilize the port that you want to use.)

JDBC and LDAP 75

EXERCISE 6-6: Create an LDAP Connection

1 In the Category Pane of the Navigation Frame select Connection.

2 RMB>New.

3 The Create a New Connection Resource Wizard appears.

4 Type LDAPConnection in the Name text field.

5 Click Next.

6 Select LDAP Connection from the Connection Type dropdown list.

Composer populates the dialog for you, setting the Host or IP Address to
localhost, and 389 as the default Port Number.

7 Change the Port Number to 50389.

8 You may leave the Base DN, User DN and Password fields blank. Leaving the
Base DN blank will enable you to see the entire LDAP directory tree, from the
root node within Composer.

A blank UserDN and Password creates an anonymous bind when you connect to
the directory.

76 Novell exteNd Composer Tutorial

9 Use the scroll bar to access the Time Limit field, enter 10000 in this field. (This is
a millisecond value. It means that if no connection has been established after ten
seconds, Composer will stop trying to establish a connection.)

10 Leave the Size Limit value at its default of 1000. (This is strictly a design-time
value that has to do with limiting the number of tree nodes Composer will try to
import for GUI/display purposes.)

11 Click the Test button to check the connection.

You should receive a “Connected Successfully”dialog. If not, check to be sure
the port number matches that used by the LDAP Utility (see note further above,
under Step 1); and be sure the utility is actually running.

12 Click OK.

13 Click Finish.

The LDAP Connection Resource will appear in the Instance pane in the
Navigation Frame.

LDAP Component

The LDAP Component provides communication, via the LDAP Connection Resource,
with an LDAP directory server. It supports the full set of Composer actions, allowing
you to transform, map and manipulate directory data. In addition, the LDAP
Component can create and execute DSML statements. You will typically use Temp
documents to store transient DSML query and response info.

As with XML Map Components, you can use XML Templates to define the structure
and mapping of the LDAP Component’s Input and Output message parts.

JDBC and LDAP 77

The LDAP Component you create in this exercise will query a directory in order to
obtain a given physician’s title, e-mail address, phone number, and hit count. The hit
count indicates the number of directory inquiries that have been made for that
particular physician.

EXERCISE 6-7: Create an LDAP Component

1 In the Category pane under Components, highlight LDAP.

2 RMB>New.

The Create a New LDAP Component Wizard appears.

3 Type PhysicianLDAPLookup in the Name text field.

4 Click Next.

5 Select patientrecords as the Template Category for the Input part from the
dropdown list.

6 Select PatientRecRequest as the Template Name for the Input part from the
dropdown list.

7 Select physicianrecords as the Template Category for the Output part from the
dropdown list.

78 Novell exteNd Composer Tutorial

8 Select PhysDirResp as the Template Name for the Output part from the
dropdown list.

9 Click Next.

10 Your LDAP component will be using temp docs for creating DSML requests and
responses.

Click the Add button twice in the Temp Message portion of the panel.

Two Temp parts are added to the panel, Temp and Temp1. You may leave the
Template Category and Template Name fields at their default values.

You won’t be using Fault docs in this section of the tutorial.

JDBC and LDAP 79

11 Click Next.

The wizard defaults to the LDAP Connection you created in the previous
exercise.

12 Click Finish.

The LDAP Component is added to the Instance pane of the Navigation Frame,
and Composer launches the LDAP Component Editor. Note that there are 4
DOM in the Component, Input, Output, Temp and Temp1.

Access a directory using the LDAP component

In this exercise, you will query the LDAP directory. The search will return
information from the directory for the physician in the Input DOM. After
completing the search, you will either create an initial hit count for this
physician, or increment the existing hit count.

80 Novell exteNd Composer Tutorial

EXERCISE 6-8: Add a Create DSML action to the Action Model

1 Highlight the “PhysicianLDAPLookup” component in the Action Model.

2 RMB>New Action> Create DSML.

The Create DSML Request dialog appears. The dialog defaults to the Search
action.

3 Select Temp for the Request Map.

4 Click OK.

A Create DSML Search Request action is added to the Action Model.

EXERCISE 6-9: Set the Depth of the Directory Search

1 In the Native Environment Pane, with the Search Tab forward, click the DN
button next to the Base DN text field.

JDBC and LDAP 81

The Select DN expression builder opens.

2 Expand the Novell node in the LDAP Entries Pane, click on the plus sign next to
the node to expand it.

3 Double-click on the HR node, the expression "ou=HR,o=novell" is added to the
dialog’s expression window.

4 Click OK.

The Base DN field of the Search Tab in the Native Environment pane should now
contain the expression you just built surrounded by quotes. This expression
indicates that the search of the directory should begin at the “HR” organization
unit, under the organization “novell”.

5 Select wholeSubTree from the dropdown list for Scope on the Search Tab.

The scope of the search will be the base node, and entire subtree under the Base
DN, the HR node and all the nodes under it.

82 Novell exteNd Composer Tutorial

6 Select derefAlways from the dropdown list for the Dereference Aliases field.
The search will dereference aliases (directory entries that contain a pointer to
another entry in the directory) and search both.

Leave the remaining settings at the default values.

EXERCISE 6-10: Create the Filter for the Search

The filters tab helps you build expressions that determine what data is returned
by the search. Only the data from directory entries matching the filter
specification will be returned.

1 Select the Filters tab in the LDAP Native Environment pane.

Accept the default of objectClass in the first dropdown list on the tab.

2 Select “inetOrgPerson” from the second dropdown list positioned after the
equal sign on the tab.

3 Click the left most Plus button on the dialog to add an additional row to the filter.

Note that the relational operator at the end of the first expression changes from
End to And.

4 Select “cn” from the first dropdown list of the new row.

Next you will use drag and drop to create the XPath expression representing the
data within the input DOM physician element.

5 Highlight the physician node in the Input DOM.

6 Using the mouse drag the physician element from the Input DOM and drop it on
the second dropdown list of the row you added in the filter tab.

The expression Input.XPath("RecordRequest/physician") is added to the
dropdown.

The filter you created will return directory items where the objectClass is equal
to “inetOrgPerson” and whose “cn” (common name) is equal to the physician
element of the input document.

JDBC and LDAP 83

EXERCISE 6-11: Select the attributes to be returned by the search

The attributes tab lets you select what fields you would like returned from the directory
for the searched object. You will be retrieving the physician’s surname, e-mail address,
hitCount, telephone number and title from the directory.

1 Select the Attributes tab in the Native Environment Pane

2 Select inetOrgPerson from the Filter by object class dropdown list.

3 While holding the control key (Ctrl) down, highlight the following items from
the Available scroll list on the tab: mail, hitCount, sn, telephoneNumber, and
title.

4 Click the Plus sign between the two windows to copy the objects to the Selected
window.

5 Select File>Save from the menu to save your work.

DSML expressions must be created and executed in two steps, next you will add
an execute DSML action to the Action Model

EXERCISE 6-12: Add the Execute DSML action to the Action Model

1 Highlight the “Create DSML action”.

2 RMB>New Action>Execute DSML.

The Execute DSML Action Dialog appears.

3 Select Temp as the Request part.

4 Select Temp1 as the Response part.

84 Novell exteNd Composer Tutorial

5 Click OK.

Leave the remaining values at the default settings supplied by Composer.

Your action model should look similar to the one portrayed:

6 Select Component>Execute from the menu to test your LDAP Component.

7 Expand the searchResponse node in the Temp1 DOM and explore the
information.

You should see data similar to the following screenshot in your Temp1 Part.

8 Select File>Save from the menu to save your work.

JDBC and LDAP 85

Summary of what you’ve done
You have accomplished the following tasks:

! Learned about Composer Connections and Components

! Become familiar with the JDBC Connect and the JDBC Component

! Learned about the LDAP Connect and LDAP Component

! Created a JDBC Connection

! Created a JDBC Component

! Accessed a database using the JDBC Component

! Created an LDAP Connection

! Created an LDAP Component

! Accessed a directory using the LDAP Component

Next lesson

In the next lesson you will add new functionality to the LDAP Component you just
built, including a modify operation that actually writes to the directory. You’ll also see
how to map data into and out of DSML queries, check for error conditions, and
perform conditional branching.

86 Novell exteNd Composer Tutorial

87

7

Basic Composer Actions

Basic Composer Actions Lesson 7

What you will learn
In Lesson 7 you will become familiar with some of the basic actions available in
Composer that will help you accomplish the requirements of your projects. You add the
actions to your components and web services that act on the data and elements passed
to it in the Input Part, transforming them to the desired Output Part. If you are familiar
with programming languages, you will find Actions analogous to the programming
constructs found in any modern computer programming language. However, you don’t
need to be a programmer to use Composer. The most important items to understand
when adding actions to your Composer components are the requirements of the
component. The tutorial instructs you in some of the most common actions used when
creating Composer projects. For information on the remaining actions supported by
Composer, please refer to the Novell exteNd Composer User Guide and system help.

You will learn about the Composer Action Model and Actions:

! Comment Action

! Function

! XPath and ECMAScript (The Composer Expression Builder)

What you will do
You will perform the following tasks using exteNd Composer:

1 Edit the PhysicianLDAPLookup Component

! Add a comment to the Action Model.

! Add a Decision Actions

! Add Map Actions

88 Novell exteNd Composer Tutorial

! Add Function Actions

! Add a Log Action

2 Edit the PatientLookup XML Map Component

! Add Component Actions

! Add Map Actions

How long will it take? About 30 minutes

Composer Action Model and Actions
Components and Web Services in Composer both use action models to achieve their
goals.

In Composer, an Action Model is the set of instructions that a component implements
to complete a task. The inputs to the action model are one or more XML Input Parts.
The Input Parts may be data from XML documents, or from non-XML sources via
Composer Connections, or both. The Component operates on the Input Parts by
applying the actions in its Action Model to the data and elements of the Input Parts.
The result of the Action Model is the Output Part of the component.

The architecture of Composer allows you to create components that break your project
into logical units of work. Each Component performs a specific task needed by your
web service or another component. You might have a LDAP Component that reads in
data from a directory, another JDBC component that accesses a database, and a third
Map Component that combines the output of those components into an XML Output
Part, based on a common element in each.

Comment Action

Comment Actions are used to document your Action Models. Comments aid you in
remembering what your action model does and are a valuable resource in the
maintenance of your projects. Since comments are not executed, they do not add to
run-time overhead. You may add comment actions anywhere in the Action Model.

Basic Composer Actions 89

Decision

The Decision statement is one of the conditional actions supported by Composer. It
provides you with the ability to choose a course of action based on a provisional
statement. When you add a Decision Action to Composer, you specify a condition on
which to base the branch in the Action Model. One branch of actions is executed if the
condition evaluates to “True”, the other if the evaluation is “False”. Decision actions
allow your components to be flexible, and react to different run-time conditions in an
appropriate manner.

Log Action
Log actions are designed to provide customized reporting capabilities (design-time as
well as runtime) for Composer applications. You can exercise fine control over the
degree of reporting desired, by the use of Log Level settings.

Examples of places where Log actions are useful include, writing error information to
a file or console, debugging web services and components, capturing cycle specific
information in looping constructs, and to track actions, i.e. hits on a URL.

Component

The Component action calls and executes another component or web service in your
Composer project. You use Component Actions to process a unit of work in your
project. When you call a component, you pass in four parameters, the Component
Type, the Component Name, the Input Parts you want the component to process, and
the name of the Output Part where you want the component’s output placed when it
returns to the calling component. You can use Pre-defined or Dynamic parameters to
call the component.

Pre-defined parameters are defined at design time, when you build the Action Model
for the calling component.They are static and remain the same each time the
component executes.

Dynamic parameters are generated at run-time while the calling component is
executing. They vary dependent on the circumstances at the time of the call.

90 Novell exteNd Composer Tutorial

Function

A function action in Composer executes a task for a component, within the frame of the
component or service. They differ from Component actions, in that a function is not an
entity in your project, although it may make use of parameters and produce an output.
You can use a functions to operate on individual or multiple Part Elements, perform a
complex operations i.e. a mathematical operation, or access a file system or URL.

Function actions make “function calls”, that is, they call either ECMAScript or
previously created Custom Script functions that will execute the desired operation. In
addition, you may register Java methods in the Custom Script Resources that you can
invoke with a function action. Custom Scripts are outside the scope of a beginning
tutorial, refer to the Novel exteNd Composer Users Guide for more information on this
topic.

XPath and ECMAScript (The Composer Expression Builder)

The Expression Builder allows you to use either XPath or ECMAScript expressions to
access and operate on XML document elements.

Basic Composer Actions 91

XPath is the primary means of addressing elements in an XML document. XPath uses
pattern matching to locate a specific element or node in a document. XPath also
provides simple expression statements that allow you to manipulate element data.
Composer provides pick lists in the Expression Builder to generate XPath expressions.
You select the elements from the pick list, and the expression is built for you by the
editor. You will find the complete XPath Specification at
http://www.w3.org/TR/xpath.

The second method of addressing Part elements in Composer is via ECMAScript.
ECMAScript (ECMA-262and ISO/IED16262) is a scripting language that you can use
to do more complex manipulation of objects within Composer. ECMAScript allows
you to extend the operations you can perform in the Composer environment.
ECMAScript is a powerful tool, to find out more about it, consult the Novell exteNd
Composer User Guide.

Edit the PhysicianLDAPLookup Component

In exercises 7-1 to 7-5 you will modify the PhysicianLDAPLookup component
you created in lesson 6. You will use a decision action, to determine if your
directory search was successful Upon a successful search, you will return the
physician attributes retrieved from the directory via the Output part. If the
directory search fails, you will log the failure to System Out.

You will also be incrementing the hitCount for the physician that is the object of
your directory search. If the hitCount element does not exist, you will create the
element by modifying the directory.

Make sure the app server, the Novell exteNd LDAP Utility and the MySQL
service are all running on your system before continuing. (See Lesson 6 for
detailed instructions.)

EXERCISE 7-1: Set up the component for edits

1 If Composer is not running on your system, launch Composer as described in
Exercise 1-1.

2 If you are not already in the “hospital” project, open it by either selecting it from
the recent project list File>Recent on the menu, or browse to the project location
by selecting File>Open Project

3 Select the LDAP Component in the Category pane.

4 Double-click on the PhysicianLDAPLookup component in the Instance pane.

You will first need to execute the existing component to obtain data from the
directory to use in when adding actions to the component.

5 Execute the component by selecting Component>Execute from the menu.

You will need to reload the output XML template to complete the map actions

6 Click in the Output Part window.

92 Novell exteNd Composer Tutorial

7 RMB>Load XML Sample.

8 Click OK on the Load XML Sample dialog.

9 Highlight the Execute DSML Request statement in the Action Model.

EXERCISE 7-2: Add a comment to the Action Model.

1 RMB>New Action>Comment.

Basic Composer Actions 93

2 Enter Check for a successful directory search in the Comment Text field.

3 Click OK.

EXERCISE 7-3: Add a Decision Action

The Decision Action you add will check for a successful directory search and branch
on that result. If true, the component will execute map actions that will map data to the
Output Part. If false, the component will log a message to System Out.

1 Highlight the comment “Check for a successful directory search” in the Action
Model.

2 RMB>New Action >Decision.

The Decision Dialog appears.

3 Click the Editor Expression Button on the Dialog.

The Enter Decision Expression Dialog appears.

4 In the Variables pane of the dialog drill down the tree to the following node:
Temp1/batchResponse/searchResponse/searchResultDone/resultCode. Click
on the plus symbol next to each of the respective nodes to expand them.

5 Double-click on the code element under the resultCode node.

94 Novell exteNd Composer Tutorial

The XPath expression is added to the editor pane.

6 Expand the Relational node in the Operators pane.

7 Double-click on the = = Equal element.

8 Click in the lower pane of the dialog just after the equal signs, type 0.

The expression,
“Temp1.XPath("batchResponse/searchResponse/searchResultDone/resultC
ode/@code")==0 appears in the lower window of the dialog.

9 Click OK to close the expression builder.

10 Click OK to close the Decision Dialog.

Note the Decision Action is added to the Action Model.

If you examine the syntax, you will see the path through the tree structure to the
code element.

Basic Composer Actions 95

! Temp.XPath("batchResponse/searchResponse/searchResultDone/resultCode/@
code”)

! Temp is the Part

! batchREsponse is the root node

! searchResponse is a child node of the root

! searchResult Done is a child node of searchResponse

! resultCode is a child node of searchResultDone

! @code indicates retrieve the data from the element code

EXERCISE 7-4: Add Map Actions

1 Highlight the TRUE branch of the Decision Action.

2 Expand the nodes in the Temp1 part under searchResponse to expose the
attributes retrieved by the search.

The attribute nodes are abbreviated attr. You may have to use the scroll bar on
the side of the dialog to access all of the nodes.

3 Use drag and drop to map the Temp1 Part attr/value elements sn, title, mail and
telephoneNumber to physician, Department, email, and phone, respectively
in the Output Part. Be careful to drag the value element under attr, in order to
properly retrieve the data.

Note the map actions have been added to the “TRUE” branch of the Decision
Action in the Action Model.

96 Novell exteNd Composer Tutorial

EXERCISE 7-5: Add a Log Action

You will be adding two log actions that will output messages to System Out. The log
actions will output the result code and description from the directory search, if the
search was not successful.

1 Highlight the FALSE branch of the Decision Action.

2 RMB>New Action>Log.

3 Enter ("Error in directory Search, Result Code No. " +) in the Log Expression
text window, include the quotes, the space after No., and the plus sign.

4 Click on the Expression Editor button next to the text window.

5 Expand the Temp1 node in the Variables pane to access the code attribute under
the resultCode element.

6 Double-click on the code attribute to place the expression in the editor text pane.

7 Click OK.

Basic Composer Actions 97

8 Click OK to add the log expression to the Action Model.

9 Highlight the Log action you just added in the Action Model.

10 RMB>New Action>Log.

11 Click on the Expression Editor button next to the text window.

12 Expand the Temp1and it child nodes in the Variables pane to drill down to the
descr attribute under the resultCode node.

13 Double-click on the descr attribute to place the expression in the editor text pane.

14 Click OK.

15 Click OK to add the log expression to the Action Model.

Your Action Model should look similar to the one pictured.

Execute your component. You will see data mapped to the Output part.

16 To execute the False path of the Decision Action, select Animate>Start
Animation from the Composer toolbar.

17 Using the Step Over button on the animation toolbar, click twice to animate to
the Execute DSML statement in the Action Model.

The Temp Part is now populated with the search request data.

18 In the Temp Part expand the searchRequest node, and double-click on the Data
in the dn element.

98 Novell exteNd Composer Tutorial

19 In the Edit Data dialog, modify the expression ou=HR to ou=NC.

20 Click OK. The data in the Temp Part is changed. (This will cause the LDAP
search to fail since NC is not in the directory.)

21 Click the Run to Breakpoint End button on the Animation Toolbar.

The Log messages will appear in the Message Pane Output tab.

22 File>Save to save your work.

EXERCISE 7-6: Create or increment the hit count for the physician

The hitCount element has a value of null when the directory is first created. In the next
set of exercises you will use a decision statement to determine if the hitCount element
has a value in the directory. If the hitCount element exists, you will return the current
hit count in the output, increment the count, and update the directory. If the element
does not exist you will modify the directory to include the element, giving it an initial
value of one.

Basic Composer Actions 99

The decision statement will utilize an exteNd Composer extension method “XML”.
The XML method returns a string representation of the DOM it receives as input, in
this example Temp1. You will then use the ECMAScript string match method to search
for the string “hitCount”, within the string returned from the XML method. If a match
is found, the True branch of the decision statement will be executed. If no match is
found, the False branch will be executed.

1 Highlight the last Map action in the True branch in the action model.

2 RMB>New Action>Decision.

3 Click on the Expression Editor button next to the text window.

4 Double-click on Temp1 in the Variables pane in the editor.

5 Expand the Document element in the Functions/Methods pane in the editor.

6 Expand the Node element under the Document element.

7 Double-click on XML under the Node element.

8 Scroll down in the Functions/Methods window and expand the ECMAScript
element.

9 Locate and expand the String element under the ECMAScript element.

10 Double-click on the match method under the String element.

The lower pane of the editor should now contain the text:
“Temp1.XML.match()”.

100 Novell exteNd Composer Tutorial

11 Click between the parenthesis following the word match, and enter “/hitCount/”,
do not include the quotes.

12 Click after the ending parenthesis and enter “!=null”.

The lower pane of the editor should now contain the text:
“Temp1.XML.match(/hitCount/) != null”.

13 Click OK.

Your decision dialog should look similar to the one depicted below.

14 Click OK.

15 Save your work, select File>Save from the menu.

EXERCISE 7-7: Add Actions to the False Branch of the Decision action.

In this exercise you will add the actions to create the hit count, if it is not
currently part of the physician directory entry. First you need to add actions that
will clear the temp documents, to create a clean scratch pad area.

1 Highlight the False branch of the decision statement you just added.

2 RMB>New Action>Function.

3 Enter the text (without quotes) “Temp.removeChild(Temp.firstChild); //
first, zero out the temp document” in the Function Expression text window.

4 Click OK.

You could, alternatively, use the expression editor to create the statement. Make
sure you include the semi-colon after the last parenthesis.

Basic Composer Actions 101

You will use the removeChild function a second time to clear the Temp1
document.

5 Highlight the Temp.removeChild function action you just added.

6 RMB>New Action>Function.

7 Enter the text “Temp1.removeChild(Temp1.firstChild);” in the Function
Expression text window.

8 Click OK.

Next you will create the DSML statements to add the hitCount element to the
physician, whose cn (common name) element in the directory matches that of the
one passed into the Input part of the LDAP component.

9 Highlight the Temp1.removeChild function call in the action model.

10 RMB>New Action>Create DSML.

11 Select Modify from the DSML Action dropdown list.

12 Select Temp from the Request Map dropdown list.

Accept the default batchRequest in the Request Map text field.

13 Click OK.

The modify action will add the hitCount element to the directory entry for the
physician. Steps 14 through 21 set up the XPath expression that maps the proper
physician element in the directory.

14 In the native environment pane, enter “cn=” + (include the quotes and the plus
sign) in the Entry DN text field of the Modify tab.

15 Click the DN expression builder button.

16 In the Variables pane of the expression builder, expand the Input node.

17 Expand the RecordRequest node in the Input tree.

18 Double-click on the physician element.

The text “Input.XPath("RecordRequest/physician")” is added to the expression in
the lower pane of the expression builder.

19 Enter a plus sign “ + “ after the second parenthesis in physician.

The expression should read: "cn=" + Input.XPath("RecordRequest/physician") +

20 Expand the novell node in the LDAP entries window.

21 Double-click on the HR node in the novell tree.

The expression should read: "cn=" + Input.XPath("RecordRequest/physician") +
",ou=HR,o=novell".

102 Novell exteNd Composer Tutorial

22 Click OK.

Use the add operation to add the hitCount element with an initial value of 1.

23 In the native environment Modify tab, click the plus button to add a new row to
the attribute modification mappings.

24 Select add from the Operation dropdown list.

25 Select hitCount from the Attribute dropdown list.

26 Enter the number 1 in the Value field.

27 Highlight the Create DSML Modify Request in the LDAP component action
model.

28 RMB>New Action>Execute DSML.

29 Select Temp from the Request part dropdown list.

30 Select Temp1 from the Response part dropdown list.

Accept the default values for the remaining dialog fields.

Basic Composer Actions 103

31 Click OK.

The Execute DSML Request is added to the action model. Map the newly created
data value for hitCount to the NoOfInquiries attribute in the Output part.

32 In the action model, highlight the Execute DSML Request that you added in the
preceding steps.

33 RMB>New Action>Map.

34 Select the Expression radio button in the Source section of the dialog.

35 Enter the number 1 in the Source section text field.

36 Select the XPath radio button in the Target section of the dialog.

37 Enter PhysDirResponse/NoOfInquires in the Target text field.

38 Click OK.

39 Select File>Save from the menu to save your work.

40 Select Component>Execute from the menu.

Your False block for the if hitCount decision action should look similar to the one
below.

NOTE: Comments have been added to the tutorial action model to clarify the
model.

104 Novell exteNd Composer Tutorial

EXERCISE 7-8: Add Actions to the True Branch of the Decision action.

In this exercise you will add the actions to increment the hit count, if it is
currently part of the physician directory entry.

Before incrementing the count, map the current value of the count to the output.
To accomplish this you need to add a breakpoint to the action model. Breakpoints
are handy for debugging and modifying components during development. In this
case, you will use the breakpoint to assist with mapping the hitCount to the
Output part.

1 Highlight the first Decision action in the model. The one that checks for a
successful search.

2 Click the Toggle Breakpoint button on the animation toolbar.

The Decision action will become red indicating that there is a breakpoint set on
that action.

3 Click the Start Animation button on the animation toolbar.

4 Click the Run to Breakpoint/End button on the animation toolbar.

The results from the physician search are now in the Temp1 part. To facilitate the
mapping of the hitCount, reload the XML document for the Output part. If you
have forgotten how to do this, refer back to EXERCISE 7-1: “Set up the
component for edits”.

5 Highlight the True branch within the check for match decision action.

Basic Composer Actions 105

6 Expand the nodes in the Temp1 part under searchResponse to expose the
attributes retrieved by the search.

7 Drag the value element of the hitCount attribute and drop it on the
NoOfInquiries element in the Output part.

Once the hitCount has been mapped, the component must increment and update
the value in the directory. The component will use function calls to clear the
Temp parts, to create a clean scratch pad area that will hold the modify request
and response documents. You can do this by using cut and paste from the False
block you created in the previous exercise.

8 Highlight the Temp.removeChild(Temp.firstChild) function call in the False
block created in the previous exercise.

9 Holding down the shift key, click on the second function call in the block,
Temp1.removeChild(Temp1.firstChild).

Both function calls should now be highlighted.

10 RMB>Copy.

11 Highlight the Map hitCount action in the True block under the
Temp1.XML.match decision action.

12 RMB>Paste.

The function calls are added to the action model.

Add the DSML Create and Execute statements to the True block.

13 Highlight the Temp1.removeChild function call in the True block.

14 RMB>New Action>Create DSML.

15 Select Modify from the DSML Action dropdown list.

16 Select Temp from the Request Map dropdown list.

Accept the default batchRequest in the Request Map text field.

17 Click OK.

Set up the XPath expression that maps to the proper physician element in the
directory.

106 Novell exteNd Composer Tutorial

18 In the native environment pane, enter “cn=” + (include the quotes and the plus
sign) in the Entry DN text field of the Modify tab.

19 Click the DN expression builder button.

20 In the Variables pane of the expression builder, expand the Input node.

21 Expand the RecordRequest node in the Input tree.

22 Double-click on the physician element.

The text “Input.XPath("RecordRequest/physician")” is added to the expression in
the lower pane of the expression builder.

23 Enter a plus sign “ + “ after the second parenthesis in physician.

The expression should read: "cn=" + Input.XPath("RecordRequest/physician") +

24 Expand the novell node in the LDAP entries window.

25 Double-click on the HR node in the novell tree.

The expression should read: "cn=" + Input.XPath("RecordRequest/physician") +
",ou=HR,o=novell".

26 Click OK.

Use the replace operation to increment the hitCount element.

27 In the native environment Modify tab, click the plus button to add a new row to
the attribute modification mappings.

28 Select replace from the Operation dropdown list.

29 Select hitCount from the Attribute dropdown list.

Basic Composer Actions 107

30 Click the Expression builder button next to the Value field.

The current hitCount is available in the Output part as NumberOfInquiries. You
can use this value to modify the directory entry. XML documents are represented
as strings. In order to increment the hitCount, you must cast the value to a
Number. You will be using an ECMAScript function to perform the cast.

31 Enter Number() in the lower pane of the Expression builder.

32 Click between the parenthesis following the word Number.

Use the pick list in the variables window to select the NumberOfInquiries
element from the Output.

33 In the Variables pane expand the Output node.

34 Expand the PhysDirResponse node under Output.

35 Double-click on the NumberOfInquiries element under PhysDirResponse.

The XPath expression Output.XPath("PhysDirResponse/NoOfInquires") is
placed between the parenthesis.

36 Enter “+ 1” (no quotes) after the last parenthesis in the editor pane.

The expression Number(Output.XPath("PhysDirResponse/hitCount")) + 1
should now appear in the lower window of the editor. The expression editor
should look similar to the one pictured.

37 Click OK.

108 Novell exteNd Composer Tutorial

38 Highlight the Create DSML Modify Request that you added in the action
model.

39 RMB>New Action>Execute DSML.

40 Select Temp from the Request part dropdown list.

41 Select Temp1 from the Response part dropdown list.

Accept the default values for the remaining dialog fields.

42 Click OK.

The Execute DSML Request is added to the action model.

43 Select File>Save from the menu.

44 Select Component>Execute from the menu.

By executing the component several times you can observe the
NumberOfInquires increment in the Output part. Your component action model
should be similar to the one pictured.

Basic Composer Actions 109

Edit the PatientLookup XML Map Component

The web service described in Lesson 1 required that the output from the patient
database and physician directory, be combined prior to returning the data to the
consumer. (Requirement number 5)

In this series of exercises, you will edit the PatientLookup component. The component
will call both the JDBC and LDAP components you have created, and combine their
output. The final output of the PatientLookup component will be passed to the web
service

EXERCISE 7-9: Edit the XML map component properties

In this exercise you will modify the properties of the component adding two temp parts
to use as scratch pads, while combining the data for output. In the Category pane under
Components, highlight XML Map.

1 Highlight PatientLookup in the Instance pane.

2 RMB>Properties

3 Click on the Messages tab in the Properties dialog.

4 Select the Temp tab.

5 Press the Add button twice.

Two parts, Temp and Temp1, are added to the dialog.

Leave the Template Category and Template Name at the default values.

110 Novell exteNd Composer Tutorial

6 Click OK.

EXERCISE 7-10: Add Component Actions

Currently the PatientLookup component maps the name of the physician from the
input to the output. You will first need to delete this map action. You will then add other
actions to the model.

1 Select XML Map in the Category pane.

2 Double-click on PatientLookup in the Instance pane to open the component.

3 Click on the Map action in the Action Model.

4 RMB>Delete.

A confirmation dialog will appear, with the text “Are you sure you want to delete
this action?”

5 Click the Yes button on the Confirm Delete dialog.

Add the actions that will call the JDBC and LDAP components.

6 Highlight PatientLookup in the Action Model.

7 RMB>New Action>Component.

8 Select JDBC from the Component Type dropdown list.

9 Select AccessPatientDB from the Component Name dropdown list.

10 Select Temp from the dropdown list under Returned Part(s).

Basic Composer Actions 111

11 Click OK.

12 Highlight the Execute AccessPatientDB action in the Action Model.

13 RMB>New Action>Component.

14 Select LDAP from the Component Type dropdown list.

15 Select PhysicianLDAPLookup from the Component Name dropdown list.

16 Select Temp1 from the dropdown list under Returned Part(s).

17 Click OK.

Two temp parts should now appear in the Native Environment pane with the
Input and Output parts. If they do not appear, use the Show/Hide dialog from the
menu to display them.

18 Select View>XML Documents>Show/Hide from the menu.

19 Highlight the Temp part in the Hide window.

20 Click the left pointing arrow button between the Show and Hide windows to
move the document to the show list.

112 Novell exteNd Composer Tutorial

21 Repeat steps 18 and 19 for the Temp1 part.

EXERCISE 7-11: Add Map Actions

To complete the mapping, you will first have to execute the component. This will
provide you with data, from the directory and the database to use in mapping. After
executing the component, you will need to reload the sample document in the Output
part.

1 Select Component>Execute from the menu.

2 Click OK on the Component Executed message dialog.

3 Click in the Output Part.

4 RMB>Load XML Sample.

Basic Composer Actions 113

5 Click OK on the Load XML Sample dialog.

6 Expand the physician node in the Output part.

Using drag and drop, you will map the results from the two component actions to
the output. Note that each drag and drop creates a new map action in the Action
Model.

7 Highlight the Execute PhysicianLDAPLookup action.

8 Drag the NoOfInquiries element from the Temp1 part to the NoOfInquiries
element in the Output.

9 Drag the Department element from the Temp1 part to the Department element
in the Output.

10 Drag the email element from the Temp1 part to the email element in the Output.

11 Drag the phone element from the Temp1 part to the phone element in the
Output.

12 Drag the patients node (this will map all the child nodes of this node) from the
Temp part to the patients node in the Output part.

13 Highlight the Execute PhysicianLDAPLookup action.

14 Drag the physician element from the Input part to the physician element of the
Output part.

Your action model should be similar to the one pictured here.

114 Novell exteNd Composer Tutorial

15 Select File>Save from the menu.

16 Select Component>Execute from the menu.

Summary of what you’ve done
You have accomplished the following tasks:

! Learned about the Composer Action Model and Actions:

! Have been briefly introduced to XPath, ECMAScript and the Composer
Expression Builder

! Worked with Actions

! Created a Comment Action

! Created a Decision Action

! Created a Log Action

! Created a Function Action

! Created a Component Action

Next lesson

In the next lesson you will learn about publishing and consuming web services.

115

8 Publishing and Consuming Web Services LESSON 8

What you will learn
In this lesson you will complete the last outstanding requirement outlined for your
Composer project in the first lesson. You will learn how to trigger your service in a
number of ways. You will also act as a consumer of your service via XML and Web
Services Interchange. First review the requirement.

The service may be invoked by any of the following service triggers:

! Servlet of the type Params(URL/Form) that outputs a raw XML document

! Servlet of the type Params(URL/Form) that uses an XForm

! Servlet that utilizes a JSP to format the output

! Servlet of the type XML (HTTP/Post)

! SOAP Servlet using WSDL

After creating and deploying the service with the service triggers, you will act as a
consumer of the service via both XML Interchange, and Web Service Interchange.

What you will do
You will perform the following exercises

! Create a JSP resource file

! Add the JSP to the Deployment Component

! Deploy the Web Service with the JSP

! Create an XML Map Component that uses XML interchange

! Modify the Deployment Component for the XML Interchange.

116 Novell exteNd Composer Tutorial

! Deploy the Web Service with Servlet Type XML(HTTP/Post)

! Create a WSDL for the PatientRecResponse Web Service

! Create XML Templates for the WSDL

! Add a Soap Trigger to the Deployment Component

! Deploy the Web Service with SOAP

! Create an XML Map component that executes a WSInterchange action

! Create an XForm for Physician Input.

! Deploy the XForm as a web service

How long will it take? About 40 minutes

Publishing Web Services

Servlets

The most common analogy regarding servlets is that they are to servers, what applets
are to browsers. Servlets model a request/response architecture. A client makes a
request of the server and the server provides a response. The servlet acts a middle-tier
between the client and the server, containing the information necessary to invoke the
service. A servlet resides on the server where the web service is deployed. When a hit
on the web services URL reaches the server, the servlet triggers the service. In lesson
5 you deployed the service using a servlet of type Params(URL/Form). The servlet
type is based on the method by which it receives parameters. In this lesson you will be
creating a JSP resource to use with the Params(URL/Form) servlet. You will also
create additional servlets of type SOAP and XML (HTTP/Post).

Web Service Description Language (WSDL)

After designing, developing, and testing a web service, the next step is to publish it via
the UDDI (Universal Description, Discovery and Integration) registry. Publishing the
service allows potential business partners to discover and utilize the service. A WSDL
file is an XML file that contains all the necessary information to invoke your service.
There are many sources of information on WSDL, including the SUN website.
http://java.sun.com/

Composer generates the WSDL files for your service. In this lesson you will generate
a WSDL file for the PatientReqRequest web service. The SOAP servlet you create will
be based on this file.

Publishing and Consuming Web Services 117

Consuming Web Services

Java Server Pages (JSP)

A complete explanation of JSP is outside the scope of this tutorial. The Sun website
offers a vast amount of information, and a tutorial on JSP.
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/

JSP provide a means of separating the business logic of a service, from the presentation
logic of the browser. By separating display issues from business logic, JSP provide
platform independence for web services. Several different web pages or browsers, can
invoke a service via a JSP. The web page can then format the data returned by the
service in a manner suitable for their audience.

For the purpose of the tutorial, you will be creating a JSP resource within Composer.
The page will invoke your web service and publish the output to the browser. The
tutorial’s JSP scenario represents a business to client exchange between the JSP and the
web service.

XForms

Forms are the most common way of retrieving data from a web browser. An example
of a form might be the order page for a book store site. XForms separate form data from
the presentation logic of the device on which the “form” is displayed. They differ from
JSP in that XForms are not limited to use by a server.

XForms provide device independence, the same form might collect data from a hand
held device, a phone, or a browser window. For example, a dropdown list in a browser
window might appear as a selection on a menu in a handheld device. The XForm
would process the data from either into the same XML document and pass the data on
to the web service. This separates the need for the service to have knowledge of the
input device.

XForms process the “instance data” into an XML document. The data is then passed
on to the server. The XForm maps the data to and from the form controls of the display
device. The instance data is defined using an XPath tree representation. This method of
structuring the data “binds” the date to the form control. The XForm standard defines
the form controls For more information on XForms refer to the W3C’s website.
http://www.w3.org/MarkUp/Forms.

In the tutorial you will create an XForm that will utilize a textfield for entry. You will
create a web service that will invoke the XForm processor and display the form in the
browser. When the user clicks the submit box on the form, the data in the form will be
retrieved and the PatientRecReq web service will be invoked.

118 Novell exteNd Composer Tutorial

XML Interchange

The XML Interchange action in Composer reads external XML documents into a
component and writes the data out as XML files. There are four types of XML
Interchange actions: get, put, post and post with response.

You will be using the post with response action in the tutorial. The XML Interchange
you create represents a business to business exchange. A business that utilized your
web service might “post” its input to the web service as an XML document, via the
interchange. The web service would then process the document and return a response.

WS Interchange

The WS Interchange is another example of a business to business exchange. As
discussed in the above WSDL section, the web service would publish a WSDL
describing the service. A business searching for services via the UDDI registry, would
obtain a copy of the WSDL, and generate the appropriate SOAP trigger for the service.
The business would then utilize the WSInterchange action to invoke the service with
the SOAP servlet.

NOTE: The LDAP directory evaluation tool, the MySQL service and the exteNd
Application server must all be running on your system to successfully complete the lab
exercises for this unit.

EXERCISE 8-1: Create a JSP resource file

1 If Composer is not running on your system, launch Composer as described in
Exercise 1-1.

2 If you are not already in the “hospital” project, open it by either selecting it from
the recent project list File>Recent on the menu, or browse to the project location
by selecting File>Open Project

3 Select Java Server Page under Resources in the Category Pane.

4 Select JSP from the Resource section of the Navigation frame.

5 RMB>New.

The Create a New Java Server Page Resource wizard appears.

6 Select the Create using Composer editor radio button.

7 Enter PatientResponseJSP in the name text field.

Publishing and Consuming Web Services 119

8 Click Next.

9 Select the Execute a Composer Service checkbox.

This will cause Composer wizard to generate a JSP file with the proper tags to
invoke your service.

10 Select PatientRecReqWS from the Service drop down list.

11 Select Params/URL as the Service Trigger Type.

12 Click Finish.

A PatientResponseJSP is created and opened in the Composer Native
Environment window. The PatientResponseJSP is added to the Instance pane.

You will have to edit the JSP to tell it the deployment object of your service.

120 Novell exteNd Composer Tutorial

13 Find the <composer:execute service= tag in the file.

14 Enter GetRecords. after the . following the word hospital and preceding
PatientRecReqWS.

The line should now look like this one indicated by the arrow in the image above.

15 Select File>Save from the menu to save your work.

EXERCISE 8-2: Add the JSP to the Deployment Component

NOTE: The Deployment xObject is supported only in Novell exteNd 5 Enterprise
Edition (or Composer Enterprise Edition standalone). If you are using Professional
Edition, you will not be able to create Deployment xObjects in Composer and should
skip this section. (You can, however, deploy your project manually, using exteNd
Director. Consult the Director documentation and/or the Deployment chapter of the
Composer User’s Guide for more information.)

1 Select Deployment in the Category pane.

2 Double click on GetRecords in the Instance pane.

3 Click JSP under Resources in the Category pane.

4 Click PatientResponseJSP in the Instance pane.

5 Drag the PatientResponseJSP from the Instance pane and drop it on JSP under
Service Trigger in the Deployment component

Publishing and Consuming Web Services 121

6 Select File>Save from the menu.

The PatientResponseJSP Properties sheet is displayed. The URL for the JSP is
PatientResponseJSP. Leave the remaining fields blank for this exercise.

EXERCISE 8-3: Deploy the Web Service with the JSP

The steps to deploy your service pertain to the Novell exteNd Application Server, and
are identical to those in Lesson 4. If you have difficulty following these instructions,
you may want to page back to Lesson 4 for more detailed steps with pictures.

If you are deploying to a server other than the Novell exteNd Application Server refer
to the documentation for your server for deployment instructions.

1 Select File>Deploy from the menu.

2 Click Deploy on the deployment dialog.

Your browser will launch. The following instructions refer to the pages displayed
by the browser during deployment.

3 Enter your app server user name and password, when prompted by the browser.

4 Click Next, when the browser displays the Deployment - Administrator Sign-On
Page.

NOTE: If the user name and password are not filled in by the browser, manually enter
your App Server user name and password.

The Deployment-Target database page is displayed.

5 Enter SilverMaster50 in the database field.

6 Click Next.

122 Novell exteNd Composer Tutorial

7 Cut and paste the displayed file name into the browser text window, as directed
by the browser page.

8 Click Finish.

When the deployment is complete the browser will display a deployment
completed message. After receiving this message proceed to the next step.

9 Enter

http://localhost/GetRecords/PatientResponseJSP?physician=SSpade in the
text window of your browser.

You will see the output from the service displayed by the JSP.

EXERCISE 8-4: Create an XML Map Component that uses XML interchange

1 Select XML Map in the Category Pane.

2 RMB>New.

The Create a New XML Map Component dialog appears.

3 Enter PatientInfoB2bXMLI in the Name textfield.

4 Click Next.

5 Select patientrecords from the Template Category dropdown list for the Input.

6 Select PatientRecRequest from the Template Name dropdown list for the Input

7 Select patientrecords from the Template Category dropdown list for the Output.

8 Select PatientRecResponse from the Template Name dropdown list for the
Output.

9 Click Next.

You won’t be using temp or fault documents in this component.

10 Click Finish.

11 Highlight the PatientInfoB2bXMLI component in the Action Model.

12 RMB>New Action>Data Exchange>XML Interchange

Publishing and Consuming Web Services 123

The XML Interchange Dialog appears.

13 Select Post with Response from the Interchange Type dropdown list.

14 Select Input from the Request Part dropdown list.

15 Select Output from the Response Part dropdown list.

16 Enter "http://localhost/GetRecords/PatientRecReqWS2", including quotes in
the Interchange URL Expression textfield.

17 Click OK.

The interchange action is added to the component action model.

18 Select File>Save from the menu.

EXERCISE 8-5: Modify the Deployment Component for the XML Interchange.

NOTE: The Deployment xObject is supported only in Novell exteNd 5 Enterprise
Edition (or Composer Enterprise Edition standalone). If you are using Professional
Edition, you will not be able to create Deployment xObjects in Composer and should
skip this section. (You can, however, deploy your project manually, using exteNd
Director. Consult the Director documentation and/or the Deployment chapter of the
Composer User’s Guide for more information.)

The current deployment of the patient record request web service expects
parameters of the type Params(URL/Form). The XML Interchange uses XML
documents as it method of passing parameters. You will need to modify the
deployment component. You will also create a servlet of type XML(HTTP/Post),
which expects input as an XML document.

124 Novell exteNd Composer Tutorial

1 Select Deployment in the Category Pane.

2 Select GetRecords in the Instance Pane.

You will need to add an additional URL for the service prior to deployment. This
will avoid a name collision with your previously deployed version of web
service.

3 Double click on GetRecords in the Instance Pane, to open the component.

4 Select Web Service in the Category Pane.

5 Highlight PatientRecReqWS in the Instance Pane.

6 Drag and Drop a second copy of PatientRecReqWS onto the servlet icon under
Service Triggers in the Deployment Profile.

7 Enter PatientRecReqWS2 in the URL field.

The URL must be a unique name for each servlet. The XML Servlet expects an
XML document as its parameters.

8 Select XML(HTTP/Post) from the Servlet Type dropdown list in the servlet
properties sheet.

9 Select File>Save from the menu.

Publishing and Consuming Web Services 125

EXERCISE 8-6: Deploy the Web Service with Servlet Type XML(HTTP/Post)

If you are deploying to a server other than the Novell exteNd Application Server refer
to the documentation for your server for deployment instructions.

1 Select File>Deploy from the menu.

2 Click Deploy on the deployment dialog.

Your browser will launch. The following instructions refer to the pages displayed
by the browser during deployment.

3 Enter your app server user name and password, when prompted by the browser.

4 Click Next, when the browser displays the Deployment - Administrator Sign-On
Page.

The Deployment-Target database page is displayed.

5 Enter SilverMaster50 in the database field.

6 Click Next.

7 Cut and paste the displayed file name into the browser text window, as directed
by the browser page.

8 Click Finish.

When the deployment is complete the browser will display a deployment
completed message. After receiving this message proceed to the next step.

9 Return to Composer.

10 Select the PatientInfoB2bXMLI tab.

11 Select Component>Execute from the menu.

The service runs and returns data to the XML Map Components Output Part.

126 Novell exteNd Composer Tutorial

EXERCISE 8-7: Create a WSDL for the PatientRecResponse Web Service

1 Select WSDL from the Resource section of the Category Pane.

2 RMB>New.

3 Select the Create using Composer Editor radio button.

4 Enter WSIPatientRecReqWSDL in the Name textfield.

5 Click Next.

6 Select PatientRecReqWS from the Service dropdown list.

7 Select the Generate SOAP Service checkbox.

8 Enter http://localhost:80/GetRecords/PatientRecReqSOAP in the URL field.

Publishing and Consuming Web Services 127

9 Click Finish.

A message dialog appears informing you that Composer has created element
types of xsd:string in the WSDL.

10 Click OK.

The WSDL is created and opened in the component editor.

11 Select File>Save from the menu.

EXERCISE 8-8: Create XML Templates for the WSDL

You will need to have XML templates corresponding to message parts in the WSDL,
in order to create working components. The templates will act as sample document that
can be validated against the WSDL.

128 Novell exteNd Composer Tutorial

1 Click the Create XML Templates button on the Composer toolbar.

2 Select patientrecords as the Template Category from the dropdown list for the
Input Message.

3 Select patientrecords as the Template Category from the dropdownl list for the
Output Message.

4 Manually type faults in the Template Category for the Fault Message if it is not
already populated by Composer.

Accept the defaults, Composer has created for the other fields.

5 Click OK.

Composer will return a message dialog “XML templates created.”

6 Click OK.

7 Select File>Save ALL from the menu.

If you look in the patientrecords folder under XML Template Categories you will
see the newly created WSDL templates.

A new category “faults” has also been created, which contains the fault template.

Publishing and Consuming Web Services 129

EXERCISE 8-9: Add a Soap Trigger to the Deployment Component

NOTE: The Deployment xObject is supported only in Novell exteNd 5 Enterprise
Edition (or Composer Enterprise Edition standalone). If you are using Professional
Edition, you will not be able to create Deployment xObjects in Composer and should
skip this section. (You can, however, deploy your project manually, using exteNd
Director. Consult the Director documentation and/or the Deployment chapter of the
Composer User’s Guide for more information.)

1 Select Deployment in the Category Pane.

2 Double click on GetRecords in the Instance Pane.

3 Select Web Service in the Category Pane.

4 Drag the PatientRecReqWS from the Instance Pane and drop it on the SOAP
HTTP trigger in the Deployment Profile pane.

The properties sheet for the SOAP HTTP:PatientRecReqWS appears.

You need to modify the URL so that you won’t create a name collision with the
servlet triggered version of the web service.

5 Enter PatientRecReqSOAP in the URL field in the properties sheet.

6 Select File>Save from the menu to save your work.

130 Novell exteNd Composer Tutorial

EXERCISE 8-10: Deploy the Web Service with SOAP

If you are deploying to a server other than the Novell exteNd Application Server refer
to the documentation for your server for deployment instructions.

1 Select File>Deploy from the menu.

2 Click Deploy on the deployment dialog.

Your browser will launch. The following instructions refer to the pages displayed
by the browser during deployment.

3 Enter your app server user name and password, when prompted by the browser.

4 Click Next, when the browser displays the Deployment - Administrator Sign-On
Page.

The Deployment-Target database page is displayed.

5 Enter SilverMaster50 in the database field.

6 Click Next.

7 Cut and paste the displayed file name into the browser text window, as directed
by the browser page.

8 Click Finish.

When the deployment is complete the browser will display a deployment
completed message. After receiving this message proceed to the next step.

9 Return to Composer.

EXERCISE 8-11: Create an XML Map component that executes a WSInterchange action

You will create an XML Map component that uses the templates that you created from
the WSDL in exercise 8-8.

1 Select the XML Map Component in the Category Pane.

2 RMB>New

3 Enter PatientInfoB2BWSI in the Name field

4 Click Next.

5 Select patientrecords as the Template Category for both the Input and Output
parts.

6 Select RecordRequest as the Input Template Name.

7 Select DoctorResp as the Output Template Name.

Publishing and Consuming Web Services 131

8 Click Next.

9 Click the Add button in the Fault Message section of the dialog.

10 Select faults as the Template Category for the Fault Message.

11 Select FaultInfo as the Fault Template Name.

12 Click Finish.

13 Click on the Apply NameSpaces statement in the Action Model.

14 RMB>New Action>Data Exchange>WS Interchange.

132 Novell exteNd Composer Tutorial

The WS Interchange dialog is populated by Composer, accept these value.

15 Click the Messages tab.

16 Click the Expression Editor button in the Expression list textfield for the input.

17 Expand the input node in the Variables pane and double click on the
RecordRequest element.

The XPath expression appears in the editor pane.

Publishing and Consuming Web Services 133

18 Click OK.

19 Enter Output in the Expression list textfield for output.

20 Enter Fault in the Expression list textfield for fault.

21 Click OK.

22 Select File>Save from the menu.

23 Double click on the data field of the physician element in the input.

24 Enter SSpade in the textfield of the Edit Data dialog.

25 Click OK.

26 Select Component>Execute from the menu.

The component executes invoking the web service via the WSInterchange action.
You should see data in your Output part.

NOTE: You must have the Enterprise edition of exteNd Composer in order to complete
the remaining exercises of the tutorial. If your installation of Composer is not an
Enterprise edition skip to the summary section at the end of the lesson.

EXERCISE 8-12: Create an XForm for Physician Input

Composer will build an XML Form for you based on the instance data in the templates
you specify.

1 Select the Form in the Category Pane.

2 RMB>New

3 Enter PatientRecXForm in the Name field.

134 Novell exteNd Composer Tutorial

4 Click Next.

5 Select patientrecords as the XML Template Category from the dropdown list.

6 Select RecordRequest as the XML Template Name.

7 Select RecordRequest.xml as the Sample Name.

8 Click Finish.

A “Creating Form” message dialog appears.

Publishing and Consuming Web Services 135

When Composer has completed creating the form, the message “Done creating Form”
is displayed.

9 Click OK.

The XForm Component editor opens with the Form layout editor displayed. Note the
four tabs at the bottom of the editor window.

Next you will set the URL of the service that will be invoked when the submit button
is clicked.

10 Select the Model tab in the component editor.

11 Expand the submission node in the editor.

136 Novell exteNd Composer Tutorial

12 Click on submission id=submit01.

The Submission property tab appears in the lower right corner of the editor. You
will set the URL of the web service, and the method of passing parameters to the
service in this tab.

13 Enter http://localhost/GetRecords/PatientRecReqWS3 in the Action URI
field.

14 Select post from the Method dropdown list.

15 Select File>Save from the menu.

EXERCISE 8-13: Create a Web Service that uses the XForm

In this exercise you create a web service that will process the XForm.

1 Select Web Service in the Category Pane.

2 RMB>New.

3 Enter XFormWS in the Name field.

4 Click Next.

You can accept the default templates for the templates, the XForm contains the
information about the templates. You will not be using the fault or temp parts for
this web service or headers. Accept the defaults for these panels.

5 Click Next.

6 Click Next.

Publishing and Consuming Web Services 137

7 Click Finish.

The web service component editor appears. You will add an XForm Process
action, that will use the form you created to process the input and output the
result as html.

8 Highlight XFormWS in the component editor.

9 RMB>New Action>Advanced>XFormProcess.

The Form Process dialog appears.

10 Select the Form radio button for the source.

11 Select PatienRecXForm from the source dropdown list.

12 Select the XPath radio button for the target.

13 Enter html in the target text box.

14 Click OK.

The XForm process action is added to the model.

15 Select File>Save from the menu.

138 Novell exteNd Composer Tutorial

EXERCISE 8-14: Create the deployment profile for the XFormWS

In this exercise you will deploy both the XFormWS you just created, and the
PatientRecReqWS. The PatientRecReqWS will be deployed as a servlet, which
expects XHTML output by the XForm. You will also import a XSL style sheet that will
format the output from the PatientRecReqWS in the browser.

1 Select XSL in the Category Pane.

2 RMB>Import XObject.

The Import XObject dialog appears.

3 Click the Browse button on the dialog.

4 Navigate to the ..\tutorial\files directory.

This directory is located under where you installed Composer.

5 Double click the file PatientXSL.xsl to select it.

Publishing and Consuming Web Services 139

6 Click OK.

PatientXSL is added to the Instance Pane.

7 Click on Deployment in the Category Pane.

8 Double click on the GetRecords deployment object in the Instance Pane to open
it.

9 Select Web Service in the Category Pane.

10 Drag the XFormWS from the Instance Pane and drop it on the Servlet section of
the Service Triggers in the Deployment Profile pane.

11 Select Params(URL/Form) as the Servlet Type from the dropdown.

12 Select XHTML as the Output Type.

140 Novell exteNd Composer Tutorial

13 Drag PatientRecReqWS from the Instance Pane and drop it onto the Servlet
section of the Service Triggers in the Deployment Profile pane.

14 Enter PatientRecReqWS3 in the URL field.

15 Select XML (HTTP/Post) as the Servlet Type from the dropdown list.

16 Select XHTML as the Output Type from the dropdown list.

17 Select PatientXSL from the dropdown list as the Stylesheet Resource.

18 Select File>Save from the menu.

EXERCISE 8-15: Deploy the XForm Web Service

1 Select File>Deploy from the menu.

2 Click Deploy on the deployment dialog.

Your browser will launch. The following instructions refer to the pages displayed
by the browser during deployment.

3 Enter your app server user name and password, when prompted by the browser.

4 Click Next, when the browser displays the Deployment - Administrator Sign-On
Page.

The Deployment-Target database page is displayed.

5 Enter SilverMaster50 in the database field.

6 Click Next.

7 Cut and paste the displayed file name into the browser text window, as directed
by the browser page.

8 Click Finish.

When the deployment is complete the browser will display a deployment
completed message. After receiving this message proceed to the next step.

9 Enter http://localhost/GetRecords/XFormWS in your browser URL.

The XForm displays with physician field populated.

Publishing and Consuming Web Services 141

10 Click the Submit button in the browser window.

11 The data is displayed in the browser window.

Summary of what you’ve done
! Created a JSP resource

! Deployed the PatientRecReqWS with a servlet trigger using a JSP

! Utilized XML Interchange as a consumer of the web service

! Created a WSDL for the PatientRecReqWS

! Deployed the PatientRecReqWS with a SOAP HTTP service trigger

! Utilized WSInterchange to consume the web service.

! Created an XForm.

! Deployed the XForm in a web service that processes the input and invokes the
PatientRecReq web service.

What’s next

Congratulations. You’ve completed the Novell exteNd Composer Tutorial. To learn
more about Composer, consult your Novell exteNd Composer User Guide and the
system help files. In addition, Novell offers classroom training on Composer, refer to
the Novell website for more information.
http://www.novell.com/training/train_product/extend.html

M

142 Novell exteNd Composer Tutorial

1

Index

A
Action 88

Comment 88
Component 89
Decision 90

Action Model 88

C
Component 10

JDBC 67
LDAP 76

Component Animation 19
Composer Architecture 18
Composer Environment 9
Connection 64

JDBC 64
LDAP 73

ConsumingWS 117
Create a Web Service 38
Creating and Importing XML Templates 30

D
Deployment 44

Considerations 44
Profiles 45
Service Triggers 52

DOM 18

E
ECMAScript 90
Editor Frame 11
Expression Builder 90

J
JSP 117

L
Launch Composer 10

M
Message Frame 12

N
Navigation Frame 11

P
Project Create 15
Project Structure 12
Publishing Web Services 115
PublishWS 116

R
Resource 10

S
Service 10
Service vs. Components 38
Servlets 116

T
Template 10

W
Web Service Definition 38
WSDL 116
WS Interchange 118

X
XML

Sample Documents 28

2

Schema 28
Template Categories 28
Templates 29

XML Interchange 118
XML Map Action 19
XPath 90
XSL Style Sheets 29

	Contents
	1 Introduction to the Composer Environment 9
	2 Components and XML Mapping 17
	3 XML Templates 27
	4 Web Services 37
	5 Deployment 43
	6 JDBC and LDAP 63
	7 Basic Composer Actions 87
	8 Publishing and Consuming Web Services 115

	About This Guide
	Introduction to the Composer Environment
	What you will learn
	What you will do
	Composer Basics
	Composer Building Blocks
	Launching Composer
	EXERCISE 1-1: Launch Composer
	Navigating in the Composer Environment
	EXERCISE 1-2: Explore the Composer Environment
	Composer Project Structure
	About the Tutorial Project

	Project Requirements
	EXERCISE 1-3: Create a Composer Project

	Summary of what you’ve done

	Components and XML Mapping
	What you will learn
	What you will do
	Design and Structure of Composer Components
	Composer Component Architecture
	Document Object Model (DOM)
	XML Map Action
	Component Animation
	EXERCISE 2-1: Create an XML Map Component
	EXERCISE 2-2: Add a Map Action to the Component
	EXERCISE 2-3: Modify the Input DOM and Save as an XML Template
	EXERCISE 2-4: Animate the Map Component

	Summary of what you’ve done

	XML Templates
	What you will learn
	What you will do
	Composer XML Templates
	XML Template Categories
	XML Sample Documents
	XML Schema
	XSL Style Sheets
	XML Templates
	EXERCISE 3-1: Work with XML Templates
	EXERCISE 3-2: Create an XML Template using the template wizard
	EXERCISE 3-3: Import an XML template from another Composer project
	EXERCISE 3-4: Edit the PatientLookup XML Map Component to use the XML Templates

	Summary of what you’ve done

	Web Services
	What you will learn
	What you will do
	Composer Web Services
	Web Service Definition
	Services vs. Components
	EXERCISE 4-1: Create a Web Service

	Summary of what you’ve done

	Deployment
	What you will learn
	What you will do
	Composer Web Service Deployment
	Deployment Considerations
	Server Profile
	EXERCISE 5-1: Creating a Server Profile
	Deployment xObject
	EXERCISE 5-2: Create a Deployment xObject.
	Service Triggers
	EXERCISE 5-3: Set up the Service Trigger(s) for your Web Service
	EXERCISE 5-4: Import the MySQL JAR resource file.
	EXERCISE 5-5: Deploying to the Novell exteNd Application Server

	.Summary of what you’ve done

	JDBC and LDAP
	What you will learn
	What you will do
	Composer Connection Resources and Connection Components
	JDBC Connection
	EXERCISE 6-1: Create a JDBC Connection
	JDBC Component
	EXERCISE 6-2: Create a JDBC Component
	EXERCISE 6-3: Access a Database using the JDBC Component
	LDAP Connection
	EXERCISE 6-4: Check for an active LDAP directory connection.
	EXERCISE 6-5: Start the Novell exteNd LDAP Utility
	EXERCISE 6-6: Create an LDAP Connection
	LDAP Component
	EXERCISE 6-7: Create an LDAP Component
	EXERCISE 6-8: Add a Create DSML action to the Action Model
	EXERCISE 6-9: Set the Depth of the Directory Search
	EXERCISE 6-10: Create the Filter for the Search
	EXERCISE 6-11: Select the attributes to be returned by the search
	EXERCISE 6-12: Add the Execute DSML action to the Action Model

	Summary of what you’ve done

	Basic Composer Actions
	What you will learn
	What you will do
	Composer Action Model and Actions
	Comment Action
	Decision
	Log Action
	Component
	Function
	XPath and ECMAScript (The Composer Expression Builder)
	EXERCISE 7-1: Set up the component for edits
	EXERCISE 7-2: Add a comment to the Action Model.
	EXERCISE 7-3: Add a Decision Action
	EXERCISE 7-4: Add Map Actions
	EXERCISE 7-5: Add a Log Action
	EXERCISE 7-6: Create or increment the hit count for the physician
	EXERCISE 7-7: Add Actions to the False Branch of the Decision action.
	EXERCISE 7-8: Add Actions to the True Branch of the Decision action.
	EXERCISE 7-9: Edit the XML map component properties
	EXERCISE 7-10: Add Component Actions
	EXERCISE 7-11: Add Map Actions

	Summary of what you’ve done

	Publishing and Consuming Web Services
	What you will learn
	What you will do
	Publishing Web Services
	Servlets
	Web Service Description Language (WSDL)

	Consuming Web Services
	Java Server Pages (JSP)
	XForms
	XML Interchange
	WS Interchange
	EXERCISE 8-1: Create a JSP resource file
	EXERCISE 8-2: Add the JSP to the Deployment Component
	EXERCISE 8-3: Deploy the Web Service with the JSP
	EXERCISE 8-4: Create an XML Map Component that uses XML interchange
	EXERCISE 8-5: Modify the Deployment Component for the XML Interchange.
	EXERCISE 8-6: Deploy the Web Service with Servlet Type XML(HTTP/Post)
	EXERCISE 8-7: Create a WSDL for the PatientRecResponse Web Service
	EXERCISE 8-8: Create XML Templates for the WSDL
	EXERCISE 8-9: Add a Soap Trigger to the Deployment Component
	EXERCISE 8-10: Deploy the Web Service with SOAP
	EXERCISE 8-11: Create an XML Map component that executes a WSInterchange action
	EXERCISE 8-12: Create an XForm for Physician Input
	EXERCISE 8-13: Create a Web Service that uses the XForm
	EXERCISE 8-14: Create the deployment profile for the XFormWS
	EXERCISE 8-15: Deploy the XForm Web Service

	Summary of what you’ve done

	Index

