
n

Policy Builder and Driver Customization Guide
Novell

ovdocx (E
N

U
) 29 January 2007
w w w . n o v e l l . c o m

Identity Manager
3

N o v e m b e r 1 3 , 2 0 0 6

P O L I C Y B U I L D E R A N D D R I V E R
C U S T O M I Z A T I O N G U I D E

novdocx (E
N

U
) 29 January 2007
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

novdocx (E
N

U
) 29 January 2007
Novell Trademarks

DirXML is a registered trademark of Novell, Inc., in the United States and other countries.
eDirectory is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Nsure is a trademark of Novell, Inc.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 29 January 2007

Contents

novdocx (E
N

U
) 29 January 2007
About This Guide 11

1 Policies and Filters 13
1.1 What Are Policies and Filters?. 13

1.1.1 Terminology Changes from Earlier Versions. 14
1.1.2 DirXML Script . 15

1.2 Introduction to Policies. 15
1.2.1 Policies . 16
1.2.2 Defining Policies . 35

1.3 Filters . 37

2 Defining Policies By Using the Policy Builder with Designer 39
2.1 Policies . 39
2.2 Policy Builder Tasks in Designer . 40

2.2.1 Opening Policy Builder . 40
2.2.2 Creating a Policy . 44
2.2.3 Creating a Rule . 52
2.2.4 Creating an Argument . 61
2.2.5 Editing a Policy . 71
2.2.6 Using Predefined Rules. 74
2.2.7 Testing Policies with the Policy Simulator . 105
2.2.8 Editing the DirXML Script . 114

2.3 Regular Expressions . 120
2.4 XPath 1.0 Expressions . 121
2.5 Conditions . 122

2.5.1 If Association . 122
2.5.2 If Attribute . 123
2.5.3 If Class Name . 124
2.5.4 If Destination Attribute . 125
2.5.5 If Destination DN . 127
2.5.6 If Entitlement . 127
2.5.7 If Global Configuration Value . 128
2.5.8 If Local Variable. 129
2.5.9 If Named Password . 131
2.5.10 If Operation . 132
2.5.11 If Operation Attribute . 133
2.5.12 If Operation Property . 135
2.5.13 If Password . 136
2.5.14 If Source Attribute . 136
2.5.15 If Source DN . 137
2.5.16 If XPath Expression. 138

2.6 Actions . 139
2.6.1 Add Association. 140
2.6.2 Add Destination Attribute Value . 141
2.6.3 Add Destination Object . 142
2.6.4 Add Source Attribute Value . 144
2.6.5 Add Source Object . 145
2.6.6 Append XML Element . 146
2.6.7 Append XML Text . 147
Contents 5

6 Policy Build

novdocx (E
N

U
) 29 January 2007
2.6.8 Break . 148
2.6.9 Clear Destination Attribute Value . 148
2.6.10 Clear Operation Property . 149
2.6.11 Clear Source Attribute Value . 149
2.6.12 Clear SSO Credential. 150
2.6.13 Clone By XPath Expressions . 151
2.6.14 Clone Operation Attribute. 151
2.6.15 Delete Destination Object . 152
2.6.16 Delete Source Object . 153
2.6.17 Find Matching Object . 153
2.6.18 For Each. 155
2.6.19 Generate Event . 156
2.6.20 Implement Entitlement . 158
2.6.21 Move Destination Object . 159
2.6.22 Move Source Object. 160
2.6.23 Reformat Operation Attribute . 161
2.6.24 Remove Association . 162
2.6.25 Remove Destination Attribute Value . 163
2.6.26 Remove Source Attribute Value. 164
2.6.27 Rename Destination Object . 165
2.6.28 Rename Operation Attribute . 165
2.6.29 Rename Source Object . 166
2.6.30 Send Email . 166
2.6.31 Send Email From Template . 168
2.6.32 Set Default Attribute Value. 169
2.6.33 Set Destination Attribute Value . 170
2.6.34 Set Destination Password . 171
2.6.35 Set Local Variable . 172
2.6.36 Set Operation Association . 173
2.6.37 Set Operation Class Name . 174
2.6.38 Set Operation Destination DN . 174
2.6.39 Set Operation Property . 175
2.6.40 Set Operation Source DN . 176
2.6.41 Set Operation Template DN. 176
2.6.42 Set Source Attribute Value. 177
2.6.43 Set Source Password. 178
2.6.44 Set SSO Credential . 179
2.6.45 Set SSO Passphrase . 179
2.6.46 Set XML Attribute . 180
2.6.47 Status . 181
2.6.48 Strip Operation Attribute. 182
2.6.49 Strip XPath . 182
2.6.50 Trace Message . 183
2.6.51 Veto . 184
2.6.52 Veto If Operational Attribute Not Available. 185

2.7 Noun Tokens . 186
2.7.1 Added Entitlement . 186
2.7.2 Association. 187
2.7.3 Attribute . 187
2.7.4 Class Name . 188
2.7.5 Destination Attribute. 188
2.7.6 Destination DN . 189
2.7.7 Destination Name. 190
2.7.8 Entitlement . 190
2.7.9 Global Configuration Value . 191
2.7.10 Local Variable . 191
2.7.11 Named Password. 192
2.7.12 Operation . 192
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2.7.13 Operation Attribute . 193
2.7.14 Operation Property . 194
2.7.15 Password. 194
2.7.16 Removed Attribute. 194
2.7.17 Removed Entitlement . 194
2.7.18 Source Attribute. 195
2.7.19 Source DN. 195
2.7.20 Source Name . 196
2.7.21 Text . 196
2.7.22 Unique Name . 197
2.7.23 Unmatched Source DN . 199
2.7.24 XPath. 200

2.8 Verb Tokens . 200
2.8.1 Escape Destination DN . 200
2.8.2 Escape Source DN . 201
2.8.3 Lower Case . 201
2.8.4 Parse DN. 202
2.8.5 Replace All . 204
2.8.6 Replace First . 205
2.8.7 Substring . 206
2.8.8 Upper Case . 207

2.9 Values . 208
2.9.1 Comparison Modes . 208

3 Defining Policies By Using the Policy Builder in iManager 211
3.1 Policies . 211
3.2 Policy Builder Tasks in iManager. 212

3.2.1 Opening The Policy Builder . 212
3.2.2 Creating a Policy . 212
3.2.3 Defining Individual Rules within a Policy . 213
3.2.4 Defining Individual Arguments within a Rule . 214
3.2.5 Modifying a Policy . 222
3.2.6 Removing a Policy. 222
3.2.7 Renaming a Policy . 222
3.2.8 Deleting a Policy . 223
3.2.9 Importing a Policy from an XML File . 223
3.2.10 Exporting a Policy to an XML File . 223
3.2.11 Creating a Policy Reference . 223
3.2.12 Using Predefined Rules. 224

3.3 Regular Expressions . 244
3.4 XPath 1.0 Expressions . 245
3.5 Conditions . 246

3.5.1 If Association . 246
3.5.2 If Attribute . 247
3.5.3 If Class Name . 248
3.5.4 If Destination Attribute . 249
3.5.5 If Destination DN . 250
3.5.6 If Entitlement . 251
3.5.7 If Global Configuration Value . 253
3.5.8 If Local Variable. 254
3.5.9 If Named Password . 256
3.5.10 If Operation . 256
3.5.11 If Operation Attribute . 258
3.5.12 If Operation Property . 259
3.5.13 If Password . 260
3.5.14 If Source Attribute . 261
Contents 7

8 Policy Build

novdocx (E
N

U
) 29 January 2007
3.5.15 If Source DN. 262
3.5.16 If XPath Expression . 263

3.6 Actions . 264
3.6.1 Add Association . 265
3.6.2 Add Destination Attribute Value . 266
3.6.3 Add Destination Object . 267
3.6.4 Add Source Attribute Value . 269
3.6.5 Add Source Object . 269
3.6.6 Append XML Element . 270
3.6.7 Append XML Text . 271
3.6.8 Break . 272
3.6.9 Clear Destination Attribute Value . 272
3.6.10 Clear Operation Property . 273
3.6.11 Clear SSO Credential. 273
3.6.12 Clear Source Attribute Value . 274
3.6.13 Clone By XPath Expression . 274
3.6.14 Clone Operation Attribute. 275
3.6.15 Delete Destination Object . 276
3.6.16 Delete Source Object . 276
3.6.17 Find Matching Object . 276
3.6.18 For Each. 278
3.6.19 Generate Event . 279
3.6.20 Implement Entitlement . 281
3.6.21 Move Destination Object . 282
3.6.22 Move Source Object. 283
3.6.23 Reformat Operation Attribute . 284
3.6.24 Remove Association . 284
3.6.25 Remove Destination Attribute Value . 285
3.6.26 Remove Source Attribute Value. 286
3.6.27 Rename Destination Object . 287
3.6.28 Rename Operation Attribute . 287
3.6.29 Rename Source Object . 288
3.6.30 Send Email . 288
3.6.31 Send Email from Template. 289
3.6.32 Set Default Attribute Value. 291
3.6.33 Set Destination Attribute Value . 292
3.6.34 Set Destination Password . 293
3.6.35 Set Local Variable . 294
3.6.36 Set Operation Association . 295
3.6.37 Set Operation Class Name . 295
3.6.38 Set Operation Destination DN . 295
3.6.39 Set Operation Property . 296
3.6.40 Set Operation Source DN . 296
3.6.41 Set Operation Template DN. 297
3.6.42 Set Source Attribute Value. 297
3.6.43 Set Source Password. 298
3.6.44 Set SSO Credential . 299
3.6.45 Set SSO Passphrase . 299
3.6.46 Set XML Attribute . 300
3.6.47 Status . 301
3.6.48 Strip Operation Attribute. 301
3.6.49 Strip XPath . 302
3.6.50 Trace Message . 302
3.6.51 Veto . 303
3.6.52 Veto if Operation Attribute Not Available . 304

3.7 Noun Tokens . 305
3.7.1 Added Entitlement . 305
3.7.2 Association. 306
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3.7.3 Attribute . 306
3.7.4 Class Name. 307
3.7.5 Destination Attribute . 307
3.7.6 Destination DN . 308
3.7.7 Destination Name . 309
3.7.8 Entitlement . 309
3.7.9 Global Configuration Value . 310
3.7.10 Local Variable . 310
3.7.11 Named Password . 311
3.7.12 Operation. 311
3.7.13 Operation Attribute . 312
3.7.14 Operation Property . 313
3.7.15 Password. 313
3.7.16 Removed Attribute. 313
3.7.17 Removed Entitlements . 313
3.7.18 Source Attribute. 314
3.7.19 Source DN. 314
3.7.20 Source Name . 315
3.7.21 Text . 315
3.7.22 Unique Name . 316
3.7.23 Unmatched Source DN . 317
3.7.24 XPath. 318

3.8 Verb Tokens . 318
3.8.1 Escape Destination DN . 319
3.8.2 Escape Source DN . 319
3.8.3 Lower Case . 319
3.8.4 Parse DN. 320
3.8.5 Replace All . 322
3.8.6 Replace First . 323
3.8.7 Substring . 324
3.8.8 Upper Case . 325

3.9 Values . 326
3.9.1 Comparison Modes . 326

4 Novell Credential Provisioning Policies 327
4.1 Credential Provisioning Policies with Novell SecureLogin. 327
4.2 Implementing Credential Provisioning Policies with Novell SecureLogin 329

4.2.1 Meeting Requirements for Credential Provisioning Policies with Novell
SecureLogin . 329

4.2.2 Extending LDAP Schema for Novell SecureLogin . 330
4.2.3 Determining Deployment Configuration Parameters for Novell SecureLogin 330
4.2.4 Creating a Repository Object for Novell SecureLogin. 333
4.2.5 Creating an Application Object for Novell SecureLogin . 339
4.2.6 Configuring Credential Provisioning Policies for Novell SecureLogin 345

4.3 Credential Provisioning Policies with Novell SecretStore . 349
4.4 Implementing Credential Provisioning Policies with SecretStore. 351

4.4.1 Meeting Requirements for Credential Provisioning Policies with Novell
SecretStore . 352

4.4.2 Determining Deployment Configuration Parameters for Novell SecretStore. 352
4.4.3 Creating a Repository Object for Novell SecretStore . 355
4.4.4 Creating an Application Object for Novell SecretStore . 361
4.4.5 Configuring Credential Provisioning Policies for Novell SecretStore. 368

5 Defining Policies using XSLT Style Sheets 373
5.1 Managing XSLT Style Sheets in Designer. 373
Contents 9

10 Policy Build

novdocx (E
N

U
) 29 January 2007
5.1.1 Adding an XSLT Policy in Designer . 373
5.2 Managing XSLT Style Sheets in iManager. 375

5.2.1 Adding an XSLT Policy in iManager. 375
5.3 Starting with an Identity Transformation . 376
5.4 Using the Parameters that Identity Manager Passes . 377
5.5 Using Extension Functions . 379
5.6 Creating a Password Example: Creation Policy . 380
5.7 Creating an eDirectory User Example: Creation Policy . 381

6 Managing Filters 387
6.1 Filter Tasks in Designer . 387

6.1.1 Accessing the Filter Editor . 387
6.1.2 Editing the Filter . 390
6.1.3 Testing Filters. 394
6.1.4 Viewing the Filter XML Source. 400
6.1.5 Additional Filter Options . 406

6.2 Filter Tasks in iManager . 408
6.2.1 Accessing the Filter . 408
6.2.2 Editing the Filter . 408

7 Managing Schema Mapping Policies 413
7.1 Schema Mapping Policy Tasks in Designer . 413

7.1.1 Accessing the Schema Map Editor . 413
7.1.2 Editing a Schema Mapping Policy . 417
7.1.3 Testing Schema Mapping Policies . 420
7.1.4 Accessing the Schema Mapping Policy XML. 426
7.1.5 Additional Schema Map Policy Options . 432

7.2 Schema Mapping Policy Tasks in iManager. 436
7.2.1 Accessing Schema Mapping Policies . 436
7.2.2 Editing the Schema Mapping Policy. 436

A Documentation Update 441
A.1 March 26, 2007. 441

A.1.1 Introduction to Policies . 441
A.2 October 3, 2006 . 441

A.2.1 Defining Policies By Using the Policy Builder with Designer 441
A.2.2 Defining Policies By Using the Policy Builder with iManager 442

A.3 September 8, 2006 . 442
A.3.1 Implementing Credential Provisioning Policies with Novell SecureLogin. 442
A.3.2 Configuring Credential Provisioning Policies for Novell SecureLogin 442
A.3.3 Implementing Credential Provisioning Policies with Novell SecretStore 443
A.3.4 Configuring Credential Provisioning Policies for Novell SecretStore 443

A.4 July 31, 2006 . 443
A.4.1 Introduction to Policies . 443
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
About This Guide

Novell® Identity Manager 3.0.1 is a data sharing and synchronization service that enables
applications, directories, and databases to share information. It links together scattered information
and enables you to establish policies that govern automatic updates to designated systems when
identity changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user
self-service, authentication, authorization, automated workflows and Web services. It allows you to
integrate, manage and control your distributed identity information so you can securely deliver the
right resources to the right people.

This guide provides detailed reference on Policy Builder and Driver Configuration in Identity
Manager 3.0.1.

Chapter 1, “Policies and Filters,” on page 13
Chapter 2, “Defining Policies By Using the Policy Builder with Designer,” on page 39
Chapter 3, “Defining Policies By Using the Policy Builder in iManager,” on page 211
Chapter 5, “Defining Policies using XSLT Style Sheets,” on page 373
Chapter 6, “Managing Filters,” on page 387
Chapter 7, “Managing Schema Mapping Policies,” on page 413

Audience

This guide is intended for Identity Manager administrators.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager Documentation Web site
(http://www.novell.com/documentation/idm)

For documentation on Identity Manager 2.0, see the Identity Manager Documentation Web site
(http://www.novell.com/documentation/idm)

Additional Documentation

For documentation on using the Identity Manager drivers, see the Identity Manager Documentation
Web site (http://www.novell.com/documentation/idmdrivers/index.html)
About This Guide 11

http://www.novell.com/documentation/idm
http://www.novell.com/documentation/idm
http://www.novell.com/documentation/idmdrivers/index.html
http://www.novell.com/documentation/idmdrivers/index.html

12 Policy Build

novdocx (E
N

U
) 29 January 2007
Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
er and Driver Customization Guide

1
novdocx (E

N
U

) 29 January 2007
1Policies and Filters

This section contains an overview of policies and filters, and their function in an Identity Manager
environment. The following topics are covered:

Section 1.1, “What Are Policies and Filters?,” on page 13
Section 1.2, “Introduction to Policies,” on page 15

1.1 What Are Policies and Filters?
At a high level, policies enable you to customize the way Identity Manager sends and receives
updates.

To understand policies, it helps to understand some level of detail regarding what a driver shim is
written to do.

When a driver shim is written, an attempt is made to include the ability to synchronize anything a
company deploying the driver might use. The developer writes the driver shim to detect any relevant
changes in the connected system, then pass this change to the Identity Vault.

This change is contained in an XML document, formatted according to the Identity Manager
specification. The following snippet contains one of these XML documents:
<nds dtdversion="2.0" ndsversion="8.7.3">
<source>
 <product version="2.0">DirXML</product>
 <contact>Novell, Inc.</contact>
</source>

<input>
 <add class-name="User" event-id="0" src-dn="\ACME\Sales\Smith"
 src-entry-id="33071">
 <add-attr attr-name="Surname">
 <value timestamp="1040071990#3" type="string">Smith</value>
 </add-attr>
 <add-attr attr-name="Telephone Number">
 <value timestamp="1040072034#1" type="teleNumber">111-1111</
value>
 </add-attr>
 </add>
</input>
</nds>

Drivers are designed to report any relevant changes, then enable you to filter the information. Filters
are designed to block information. You modify the filter to allow only the information you desire to
enter your environment. The logic of what changes are important and how to process these changes
is handled in the engine, not in the driver shim.

If one company isn’t very concerned with groups, they can implement a filter to block all operations
regarding groups in either the Identity Vault or the connected system. If the company cared about
users and groups, they can implement a filter to allow both types of objects to synchronize between
the Identity Vault and the connected system.
Policies and Filters 13

14 Policy Build

novdocx (E
N

U
) 29 January 2007
Defining filters to allow the synchronization of only objects that are interesting to you is the first
step in driver customization.

The next step defines what Identity Manager does with the objects that are allowed by your filter. As
an example, refer to the add operation in the XML document above. A user named Smith with a
telephone number of 111-1111 was added to your connected system. Assuming you allow this
operation, Identity Manager needs to decide what to do with this user.

To make this decision, Identity Manager applies a set of policies, in a specific order.

First, a Matching policy answers the question, “Is this object already in the data store?” To answer
this, you need to define the characteristics that are unique to an object. A common attribute to check
might be an e-mail address, because these are usually unique. You can define a policy that says “If
two objects have the same e-mail address, they are the same object.”

If a match is found, Identity Manager notes this in an attribute called an association. An association
is a unique value that enables Identity Manager to associate objects in connected systems.

In circumstances where a match is not found, a Creation policy is called on. The Creation policy
tells Identity Manager under what conditions you want objects to be created. You can make the
existence of certain attributes mandatory in the creation rule. If these attributes do not exist, Identity
Manager blocks the creation of the object until the required information is provided.

After the object is created, a Placement policy tells Identity Manager where to put it. You can
specify that objects should be created in a hierarchical structure identical to the system they came
from, or you can place them somewhere completely different based on an attribute value.

If you want to place users in a hierarchy according to a location attribute on the object, and name
them according to the Full Name, you can make these attributes required in the create policy. This
ensures that the attribute exists so your placement strategy works correctly.

There are many other things you can do with policies. Using the Policy Builder, you can easily
generate unique values, add and remove attributes, generate events and commands, send e-mail, and
more. Even more advanced transformations are available by using XSLT to transform the XML
document directly (remember that changes are sent to and from the Identity Vault in XML
documents).

The basic thing to keep in mind is that policies enable you to control how Identity Manager handles
updates.

Continue to Section 1.2, “Introduction to Policies,” on page 15 to learn more about the different
types of policies, then move on to Chapter 2, “Defining Policies By Using the Policy Builder with
Designer,” on page 39 or Chapter 3, “Defining Policies By Using the Policy Builder in iManager,”
on page 211 to learn how to use the Policy Builder.

1.1.1 Terminology Changes from Earlier Versions
In DirXML® 1.1a, the term “rule” was used to describe a set of rules, the individual rules in this set,
and the conditions and actions within the individual rules, depending on the context. This overlap
caused confusion in circumstances when the context was not clear.

In Identity Manager 2, the term “policy” is now used to replace the previous usage of the term
“rule”, when describing the high-level transformation that is occurring. You now define a set of
policies, and each policy contains one or more rules. The term “rule” is now used to describe only an
individual set of conditions and actions.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The following table shows the terminology changes from DirXML 1.1a to Identity Manager 2.x.

Table 1-1 Terminology Changes from DirXML 1.1a to Identity Manager 2.x

The following table shows the terminology changes from Identity Manager 2.x to Identity Manager
3.0.1.

Table 1-2 Terminology Changes from Identity Manager 2.x to Identity Manager 3.x

1.1.2 DirXML Script
DirXML Script is the primary method of implementing Identity Manager policies. It describes a
policy that is implemented by an ordered set of rules. A rule consists of a set of conditions to be
tested and an ordered set of actions to be performed when the conditions are met.

DirXML Script is created using the Policy Builder, which provides a GUI interface for easy of use.

1.2 Introduction to Policies
This section provides an introduction to the types of policies available, their roles in Identity
Manager, and how to define your own policies. The following topics are covered:

Section 1.2.1, “Policies,” on page 16
Section 1.2.2, “Defining Policies,” on page 35

Concept DirXML 1.1a Terminology Identity Manager 2.x Terminology

Set of transformations Rule Set of policies

An individual
transformation within a
set

Rule Policy

The conditions and
actions within an
individual transformation

Rule Rule

Concept Identity Manager 2.x Terminology Identity Manager 3.x Terminology

The product DirXML Identity Manager

A server that has the product
installed

DirXML server Metadirectory server

A server in the application or
database the data is
synchronizing with

DirXML connected system
server

Connected system server

Where the objects are stored eDirectoryTM Identity Vault

The processing component DirXML engine Metadirectory engine
Policies and Filters 15

16 Policy Build

novdocx (E
N

U
) 29 January 2007
1.2.1 Policies
There are several different types of policies you can define on both the Subscriber and Publisher
channels. Each policy is applied at a different step in the data transformation, and some policies are
only applied when a certain action occurs. For example, a Creation policy is applied only when a
new object is created.

The order of execution of the policies on the channel are:

“Event Transformation Policy” on page 16
“Matching Policies” on page 19
“Creation Policy” on page 20
“Placement Policy” on page 23
“Command Transformation Policy” on page 26
“Schema Mapping Policy” on page 29
“Output Transformation Policy” on page 31
“Input Transformation Policy” on page 34

Figure 1-1 Order of Execution of the Policies

Event Transformation Policy

Event Transformation policies alter the Metadirectory engine's view of the events that happen in the
Identity Vault or the connected application. The most common task performed in an Event
Transformation policy is custom filtering, such as scope filtering and event-type filtering.

Scope filtering removes unwanted events based on event location or an attribute value. For example,
removing the event if the department attribute is not equal to a specific value or is not a member of a
specific group.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Event-type filtering removes unwanted events based on event type. For example, removing all
delete events.

Examples:

Scope Filtering
Type Filtering

Scope Filtering: This example DirXML Script policy allows events through only for users who are
contained within the Users subtree, are not disabled, and do not contain the word Consultant or
Manager in the Title attribute. It also generates a status document indicating when an operation has
been blocked.
<policy>
 <rule>
 <description>Scope Filtering</description>
 <conditions>
 <or>
 <if-class-name op="equal">User</if-class-name>
 </or>
 <or>
 <if-src-dn op="not-in-subtree">Users</if-
src-dn>
 <if-attr name="Login Disabled"
op="equal">True</if-attr>
 <if-attr mode="regex" name="Title"
op="equal">.*Consultant.*</if-attr>
 <if-attr mode="regex" name="Title"
op="equal">.*Manager.*</if-attr>
 </or>
 </conditions>
 <actions>
 <do-status level="error">
 <arg-string>
 <token-text>User doesn’t meet required
conditions</token-text>
 </arg-string>
 </do-status>
 <do-veto/>
 </actions>
 </rule>
</policy>

This DirXML Script policy votes modify operations on User objects except for modifies of objects
that are already associated.
<policy>
 <rule>
 <description>Veto all operation on User except modifies
of already associated objects</description>
 <conditions>
 <or>
 <if-class-name op="equal">User</if-class-name>
 </or>
 <or>
 <if-operation op="not-equal">modify</if-
Policies and Filters 17

18 Policy Build

novdocx (E
N

U
) 29 January 2007
operation>
 <if-association op="not-associated"/>
 </or>
 </conditions>
 <actions>
 <do-veto/>
 </actions>
 </rule>
</policy>

Type Filtering - The first rule of this example DirXML Script policy allows only objects in the
Employee and Contractor containers to be synchronized. The second rule blocks all Rename and
Move operations.
<policy>
 <rule>
 <description>Only synchronize the Employee and Contractor
subtrees</description>
 <conditions>
 <and>
 <if-src-dn op="not-in-
container">Employees</if-src-dn>
 <if-src-dn op="not-in-
container">Contractors</if-src-dn>
 </and>
 </conditions>
 <actions>
 <do-status level="warning">
 <arg-string>
 <token-text>Change ignored: Out of
scope.</token-text>
 </arg-string>
 </do-status>
 <do-veto/>
 </actions>
 </rule>
 <rule>
 <description>Don’t synchronize moves or renames</
description>
 <conditions>
 <or>
 <if-operation op="equal">move</if-
operation>
 <if-operation op="equal">rename</if-
operation>
 </or>
 </conditions>
 <actions>
 <do-status level="warning">
 <arg-string>
 <token-text>Change ignored:
We don’t like you to do that.</token-text>
 </arg-string>
 </do-status>
 <do-veto/>
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
 </actions>
 </rule>
</policy>

This DirXML Script policy blocks all Add events.
<policy>
 <rule>
 <description>Type Filtering</description>
 <conditions>
 <and>
 <if-operation op="equal">add</if-
operation>
 </and>
 </conditions>
 <actions>
 <do-status level="warning">
 <arg-string>
 <token-text>Change ignored:
Adds are not allowed.</token-text>
 </arg-string>
 </do-status>
 <do-veto/>
 </actions>
 </rule>
</policy>

Matching Policies

Matching policies, such as Subscriber Matching and Publisher Matching, look for an object in the
destination data store that corresponds to an unassociated object in the source datastore. It is
important to note that Matching policies are not always needed or desired.

For example, a Matching policy might not be desired in the following situation:

Performing an initial migration when there are not preexisting or corresponding objects

A Matching policy must be carefully crafted to ensure that the Matching policy doesn’t find false
matches.

Examples:

Match by Internet Email Address
Match by Common Name

Match by ID: This example DirXML Script policy matches users based on the Internet Email
Address.
<policy>
 <rule>
 <description>Match Users based on email address</
description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-class-name>
 </and>
 </conditions>
Policies and Filters 19

20 Policy Build

novdocx (E
N

U
) 29 January 2007
 <actions>
 <do-find-matching-object>
 <arg-dn>
 <token-text>ou=people,o=novell</token-text>
 </arg-dn>
 <arg-match-attr name="Internet EMail Address"/>
 </do-find-matching-object>
 </actions>
 </rule>
</policy>

Match by Name: This example DirXML Script policy matches a Group object based on its
Common Name attribute.
<?xml version="1.0" encoding="UTF-8"?>
<policy>
 <rule>
 <description>Match Group by Common Name</description>
 <conditions>
 <or>
 <if-class-name op="equal">Group</
if-class-name>
 </or>
 </conditions>
 <actions>
 <do-find-matching-object scope="subtree">
 <arg-match-attr name="CN"/>
 </do-find-matching-object>
 </actions>
 </rule>
</policy>

Creation Policy

Creation policies, such as a Subscriber Creation policy and a Publisher Creation policy, define the
conditions that must be met to create a new object. The absences of a Creation policy implies that
the object can be created.

For example, you create a new user in the Identity Vault, but you only give the new User object a
name and ID. This creation is mirrored in the eDirectory tree, but the addition is not immediately
reflected in applications connected to the Identity Vault because you have a Creation policy
specifying that only User objects with a more complete definition are allowed.

A Creation policy can be the same for both the Subscriber and the Publisher, or it can be different.

Template objects can be specified for use in the creation process when the object is to be created in
eDirectory.

Creation policies are commonly used to:

Veto creation of objects that don’t qualify, possibly due to a missing attribute.
Provide default attribute values.
Provide a default password.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Examples:

Required Attributes
Default Attribute Values
Default Password
Specify Template

Required Attributes: The first rule of this example DirXML Script policy requires that a User
object contain a CN, Given Name, Surname, and Internet EMail Address attribute before the user
can be created. The second rule requires an OU attribute for all Organizational Unit objects. The
final rule vetoes all User objects with a name of Fred.
<policy>
 <rule>
 <description>Veto if required attributes CN, Given Name,
Surname and Internet EMail Address not available</description>
 <conditions>
 <or>
 <if-class-name op="equal">User</if-class-
name>
 </or>
 </conditions>
 <actions>
 <do-veto-if-op-attr-not-available name="CN"/>
 <do-veto-if-op-attr-not-available name="Given Name"/>
 <do-veto-if-op-attr-not-available name="Surname"/>
 <do-veto-if-op-attr-not-available name="Internet
EMail Address"/>
 </actions>
 </rule>
 <rule>
 <description>Organizational Unit Required Attributes</
description>
 <conditions>
 <or>
 <if-class-name op="equal">Organizational
Unit</if-class-name>
 </or>
 </conditions>
 <actions>
 <do-veto-if-op-attr-not-available name="OU"/>
 </actions>
 </rule>
 <rule>

<description>Conditionally veto guys named "Fred"</
description>

<conditions>
<and>

<if-global-variable name="no-fred"
op="equal">true</if-global-variable>

<if-op-attr name="Given Name"
op="equal">Fred</if-op-attr>

</and>
Policies and Filters 21

22 Policy Build

novdocx (E
N

U
) 29 January 2007
</conditions>
<actions>

<do-status level="warning">
<arg-string>

<token-text xml:space="preserve"
xmlns:xml="http://www.w3.org/XML/1998/namespace">Vetoed "Fred"</token-
text>

</arg-string>
</do-status>

 <do-veto/>
 </actions>
 </rule>
</policy>

Default Attribute Values: This example DirXML Script policy adds a default value for a user’s
Description attribute.
<policy>
 <rule>
 <description>Default Description of New Employee</
description>
 <conditions>
 <or>
 <if-class-name op="equal">User</if-class-name>
 </or>
 </conditions>
 <actions>
 <do-set-default-attr-value name="Description">
 <arg-value type="string">
 <token-text>New Employee</token-text>
 </arg-value>
 </do-set-default-attr-value>
 </actions>
 </rule>
</policy>

Default Password: This example DirXML Script policy provides creates a password value
comprised of the first two characters of the first name and the first six characters of the last name, all
in lower case.
<policy>
 <rule>

 <description>Default Password of [2]FN+[6]LN</
description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-class-name>
 <if-password op="not-available"/>
 </and>
 </conditions>
 <actions>
 <do-set-dest-password>
 <arg-string>
 <token-lower-case>
 <token-substring length="2">
 <token-op-attr name="Given
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Name"/>
 </token-substring>
 <token-substring length="6">
 <token-op-attr
name="Surname"/>
 </token-substring>
 </token-lower-case>
 </arg-string>
 </do-set-dest-password>
 </actions>
 </rule>
</policy>

Specify Template: This example DirXML Script policy specifies a template object if a user’s Title
attribute indicates that the user is a Manager (contains “Manager”).
<policy>
 <rule>
 <description>Assign Manager Template if Title
contains Manager</description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-class-
name>
 <if-op-attr name="Title" op="available"/
>
 <if-op-attr mode="regex" name="Title"
op="equal">.*Manager.*</if-op-attr>
 </and>
 </conditions>
 <actions>
 <do-set-op-template-dn>
 <arg-dn>
 <token-text>Users\Manager
Template</token-text>
 </arg-dn>
 </do-set-op-template-dn>
 </actions>
 </rule>
</policy>

Placement Policy

Placement policies determine where new objects are placed and what they are named in the Identity
Vault and the connected application.

A Placement policy is required on the Publisher channel if you want object creations to occur in the
Identity Vault. A Placement policy might not be necessary on the Subscriber channel even if you
want object creations to occur in the connected application, depending on the nature of the
destination datastore. For example, no Placement policy is needed when synchronizing to a
relational database because rows in a relational database do not have a location or a name.

Example:

Placement by Attribute Value
Policies and Filters 23

24 Policy Build

novdocx (E
N

U
) 29 January 2007
Placement by Name

Placement By Attribute Value: This example DirXML Script policy creates the user in a specific
container based on the value of the Department attribute.
<policy>
 <rule>
 <description>Department Engineering</description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-class-name>
 <if-op-attr mode="regex" name="Department"
op="equal">.*Engineering.*</if-op-attr>
 </and>
 </conditions>
 <actions>
 <do-set-op-dest-dn>
 <arg-dn>
 <token-text>Eng</token-text>
 <token-text>\</token-text>
 <token-op-attr name="CN"/>
 </arg-dn>
 </do-set-op-dest-dn>
 </actions>
 </rule>
 <rule>
 <description>Department HR</description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-class-
name>
 <if-op-attr mode="regex" name="Department"
op="equal">.*HR.*</if-op-attr>
 </and>
 </conditions>
 <actions>
 <do-set-op-dest-dn>
 <arg-dn>
 <token-text>HR</token-text>
 <token-text>\</token-text>
 <token-op-attr name="CN"/>
 </arg-dn>
 </do-set-op-dest-dn>
 </actions>
 </rule>
</policy>

This DirXML Script policy determines placement of a User or Organization Unit by the src-dn in
the input document.
<policy>
 <rule>
 <description>PublisherPlacementRule</description>
 <conditions>
 <or>
 <if-class-name op="equal">User</if-class-
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
name>
 <if-class-name op="equal">Organizational
Unit</if-class-name>
 </or>
 <or>
 <if-src-dn op="in-subtree">o=people,
o=novell</if-src-dn>
 </or>
 </conditions>
 <actions>
 <do-set-op-dest-dn>
 <arg-dn>
 <token-text>People</token-text>
 <token-text>\</token-text>
 <token-unmatched-src-dn convert="true"/>
 </arg-dn>
 </do-set-op-dest-dn>
 </actions>
 </rule>
</policy>

Placement By Name: This example DirXML Script policy creates the user in a specific container
based on the first letter of the user’s last name. Users with a last name beginning with A-I are placed
in the container Users1, while J-R are placed in Users2, and S-Z in Users3.
<policy>
 <rule>
 <description>Surname - A to I in Users1</description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-
class-name>
 <if-op-attr mode="regex" name="Surname"
op="equal">[A-I].*</if-op-attr>
 </and>
 </conditions>
 <actions>
 <do-set-op-dest-dn>
 <arg-dn>
 <token-text>Users1</token-text>
 <token-text>\</token-text>
 <token-op-attr name="CN"/>
 </arg-dn>
 </do-set-op-dest-dn>
 </actions>
 </rule>
 <rule>
 <description>Surname - J to R in Users2</description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-class-
name>
 <if-op-attr mode="regex" name="Surname"
op="equal">[J-R].*</if-op-attr>
 </and>
Policies and Filters 25

26 Policy Build

novdocx (E
N

U
) 29 January 2007
 </conditions>
 <actions>
 <do-set-op-dest-dn>
 <arg-dn>
 <token-text>Users2</token-text>
 <token-text>\</token-text>
 <token-op-attr name="CN"/>
 </arg-dn>
 </do-set-op-dest-dn>
 </actions>
 </rule>
 <rule>
 <description>Surname - S to Z in Users3</description>
 <conditions>
 <and>
 <if-class-name op="equal">User</if-class-
name>
 <if-op-attr mode="regex" name="Surname"
op="equal">[S-Z].*</if-op-attr>
 </and>
 </conditions>
 <actions>
 <do-set-op-dest-dn>
 <arg-dn>
 <token-text>Users3</token-text>
 <token-text>\</token-text>
 <token-op-attr name="CN"/>
 </arg-dn>
 </do-set-op-dest-dn>
 </actions>
 </rule>
</policy>

Command Transformation Policy

Command Transformation policies alter the commands that Identity Manager is sending to the
destination datastore by either substituting or adding commands. Intercepting a Delete command
and replacing it with Modify, Move, or Disable command is an example of substituting commands
in a Command Transformation policy. Creating a Modify command based on the attribute value of
an Add command is a common example of adding commands in a Command Transformation policy.

In the most general terms, Command Transformation policies are used to alter the commands that
Identity Manager executes as a result of the default processing of events that were submitted to the
Metadirectory engine.

It is also common practice to include policies here that do not fit neatly into the descriptions of any
other policy.

Examples:

Convert Delete to Modify and Move
Create Additional Operation
Set Password Expiration Time
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Convert Delete to Modify: This DirXML Script policy converts a Delete operation to a Modify
operation of the Login Disabled attribute.
<policy>
 <rule>
 <description>Convert User Delete to Modify</description>
 <conditions>
 <and>
 <if-operation op="equal">delete</if-
operation>
 <if-class-name op="equal">User</if-class-name>
 </and>
 </conditions>
 <actions>
 <do-set-dest-attr-value name="Login Disabled">
 <arg-value type="state">
 <token-text>true</token-text>
 </arg-value>
 </do-set-dest-attr-value>
 <do-veto/>
 </actions>
 </rule>
</policy>

Create Additional Operation: This DirXML Script policy determines if the destination container
for the user already exists. If the container doesn’t exist, the policy creates an Add operation to
create the Container object.
<policy>
 <rule>
 <description>Check if destination container already
exists</description>
 <conditions>
 <and>
 <if-operation op="equal">add</if-operation>
 </and>
 </conditions>
 <actions>
 <do-set-local-variable name="target-container">
 <arg-string>
 <token-dest-dn length="-2"/>
 </arg-string>
 </do-set-local-variable>
 <do-set-local-variable name="does-target-exist">
 <arg-string>
 <token-dest-attr class-
name="OrganizationalUnit" name="objectclass">
 <arg-dn>
 <token-local-variable
name="target-container"/>
 </arg-dn>
 </token-dest-attr>
 </arg-string>
 </do-set-local-variable>
 </actions>
Policies and Filters 27

28 Policy Build

novdocx (E
N

U
) 29 January 2007
 </rule>
 <rule>
 <description>Create the target container if necessary</
description>
 <conditions>
 <and>
 <if-local-variable name="does-target-exist"
op="available"/>
 <if-local-variable name="does-target-exist"
op="equal"/>
 </and>
 </conditions>
 <actions>
 <do-add-dest-object class-name="organizationalUnit"
direct="true">
 <arg-dn>
 <token-local-variable name="target-
container"/>
 </arg-dn>
 </do-add-dest-object>
 <do-add-dest-attr-value direct="true" name="ou">
 <arg-dn>
 <token-local-variable name="target-
container"/>
 </arg-dn>
 <arg-value type="string">
 <token-parse-dn dest-dn-format="dot"
length="1" src-dn-format="dest-dn" start="-1">
 <token-local-variable
name="target-container"/>
 </token-parse-dn>
 </arg-value>
 </do-add-dest-attr-value>
 </actions>
 </rule>
</policy>

Setting Password Expiration Time: This DirXML Script policy modifies an eDirectory user’s
Password Expiration Time attribute.
<?xml version="1.0" encoding="UTF-8"?>
<policy xmlns:jsystem="http://www.novell.com/nxsl/java/
java.lang.System">
 <rule>
 <description>Set password expiration time for a given
interval from current day</description>
 <conditions>
 <and>
 <if-operation op="equal">modify-password</if-
operation>
 </and>
 </conditions>
 <actions>
 <do-set-local-variable name="interval">
 <arg-string>
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
 <token-text>30</token-text>
 </arg-string>
 </do-set-local-variable>
 <do-set-dest-attr-value class-name="User"
name="Password Expiration Time" when="after">

 <arg-association>
 <token-association/>
 </arg-association>
 <arg-value type="string">

 <token-
xpath expression="round(jsystem:currentTimeMillis() div 1000 +
(86400*$interval))"/>
 </arg-value>
 </do-set-dest-attr-value>
 </actions>
 </rule>
</policy>

Schema Mapping Policy

Schema Mapping policies hold the definition of the schema mappings between the Identity Vault
and the connected system.

The Identity Vault schema is read from eDirectory. The Identity Manager driver for the connected
system supplies the connected application’s schema. After the two schemas have been identified, a
simple mapping is created between the Identity Vault and the target application.

After a Schema Mapping policy is defined in the Identity Manager driver configuration, the
corresponding data can be mapped.

It is important to note the following:

The same policies are applied in both directions.
All documents that are passed in either direction on either channel between the Metadirectory
engine and the application shim are passed through the Schema Mapping policies.

See Chapter 7, “Managing Schema Mapping Policies,” on page 413 for administrative information.

Examples:

Basic Schema Mapping policy
Custom Schema Mapping policy

Basic Schema Mapping Policy: This example DirXML Script policy shows the raw XML source
of a basic Schema Mapping policy. However when you edit the policy through Designer for Identity
Manager, the default Schema Mapping editor allows the policy to be displayed and edited
graphically.
<?xml version="1.0" encoding="UTF-8"?><attr-name-map>
 <class-name>
 <app-name>WorkOrder</app-name>
 <nds-name>DirXML-nwoWorkOrder</nds-name>
 </class-name>
 <class-name>
 <app-name>PbxSite</app-name>
Policies and Filters 29

30 Policy Build

novdocx (E
N

U
) 29 January 2007
 <nds-name>DirXML-pbxSite</nds-name>
 </class-name>
 <attr-name class-name="DirXML-pbxSite">
 <app-name>PBXName</app-name>
 <nds-name>DirXML-pbxName</nds-name>
 </attr-name>
 <attr-name class-name="DirXML-pbxSite">
 <app-name>TelephoneNumber</app-name>
 <nds-name>Telephone Number</nds-name>
 </attr-name>
 <attr-name class-name="DirXML-pbxSite">
 <app-name>LoginName</app-name>
 <nds-name>DirXML-pbxLoginName</nds-name>
 </attr-name>
 <attr-name class-name="DirXML-pbxSite">
 <app-name>Password</app-name>
 <nds-name>DirXML-pbxPassword</nds-name>
 </attr-name>
 <attr-name class-name="DirXML-pbxSite">
 <app-name>Nodes</app-name>
 <nds-name>DirXML-pbxNodesNew</nds-name>
 </attr-name>
 </attr-name-map>

Custom Schema Mapping Policy: This example DirXML Script policy uses DirXML Script to
perform custom Schema Mapping.
<?xml version="1.0" encoding="UTF-8"?><policy>
 <rule>

<!--
The Schema Mapping Policy can only handle one-to-one

mappings.
That Mapping Policy maps StudentPersonal addresses.
This rule maps StaffPersonal addresses.

-->
 <description>Publisher Staff Address Mappings</
description>
 <conditions>
 <and>
 <if-local-variable name="fromNds"
op="equal">false</if-local-variable>
 <if-xpath op="true">@original-class-name =
’StaffPersonal’</if-xpath>
 </and>
 </conditions>
 <actions>
 <do-rename-op-attr dest-name="SA" src-name="Address/
Street/Line1"/>
 <do-rename-op-attr dest-name="Postal Office Box"
src-name="Address/Street/Line2"/>
 <do-rename-op-attr dest-name="Physical Delivery
Office Name" src-name="Address/City"/>
 <do-rename-op-attr dest-name="S" src-name="Address/
StatePr"/>
 <do-rename-op-attr dest-name="Postal Code" src-
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
name="Address/PostalCode"/>
 </actions>

</rule>
<rule>

 <description>Subscriber Staff Address Mappings</
description>

<!--
The Schema Mapping Policy has already mapped addresses to

StudentPersonal.
This rule maps StudentPersonal to StaffPersonal.

-->
 <conditions>
 <and>
 <if-local-variable name="fromNds"
op="equal">true</if-local-variable>
 <if-op-attr name="DirXML-sifIsStaff"
op="equal">true</if-op-attr>
 </and>
 </conditions>
 <actions>
 <do-rename-op-attr dest-name="Address/Street/Line1"
src-name="StudentAddress/Address/Street/Line1"/>
 <do-rename-op-attr dest-name="Address/Street/Line2"
src-name="StudentAddress/Address/Street/Line2"/>
 <do-rename-op-attr dest-name="Address/City" src-
name="StudentAddress/Address/City"/>
 <do-rename-op-attr dest-name="Address/StatePr" src-
name="StudentAddress/Address/StatePr"/>
 <do-rename-op-attr dest-name="Address/PostalCode"
src-name="StudentAddress/Address/PostalCode"/>
 </actions>
 </rule>
</policy>

Output Transformation Policy

Output Transformation policies primarily handle the conversion of data formats from data that the
Metadirectory engine provides to data that the application shim expects. Examples of these
conversions include:

Attribute value format conversion
XML vocabulary conversion
Output Transformation policies can also provide custom handling of status messages returned
from the Metadirectory engine to the application shim

All documents that the Metadirectory engine supplies to the application shim on either channel pass
through the Output Transformation policies. Since the Output Transformation happens after schema
mapping, all schema names are in the application namespace.

Examples:

Attribute Value Format Conversion
Custom Handling of Status Messages
Policies and Filters 31

32 Policy Build

novdocx (E
N

U
) 29 January 2007
Attribute Value Conversion: This example DirXML Script policy reformats the telephone
number from the (nnn) nnn-nnnn format to the nnn.nnn.nnnn format. The reverse transformation can
be found in the Input Transformation policy examples.
<policy>
 <rule>
 <description>Reformat all telephone numbers from (nnn)
nnn-nnnn to nnn.nnn.nnnn</description>
 <conditions/>
 <actions>
 <do-reformat-op-attr name="telephoneNumber">
 <arg-value type="string">
 <token-replace-first
regex="^\((\d\d\d)\) *(\d\d\d)-(\d\d\d\d)$" replace-with="$1.$2.$3">
 <token-local-
variable name="current-value"/>
 </token-replace-first>
 </arg-value>
 </do-reformat-op-attr>
 </actions>
 </rule>
</policy>

Custom Handling of Status Messages: This example DirXML Script policy detects status
documents with a level not equal to success that also contain a child password-publish-status
element within the operation data and then generate an e-mail message using the
DoSendEmailFromTemplate action.
<?xml version="1.0" encoding="UTF-8"?>
 <policy>
 <description>Email notifications for failed password
publications</description>
 <rule>
 <description>Send e-mail for a failed publish
password operation</description>
 <conditions>
 <and>
 <if-global-variable
mode="nocase" name="notify-user-on-password-dist-failure"
op="equal">true</if-global-variable>
 <if-operation
op="equal">status</if-operation>
 <if-xpath
op="true">self::status[@level != ’success’]/operation-data/password-
publish-status</if-xpath>
 </and>
 </conditions>
 <actions>
 <!-- generate email notification -->
 <do-send-email-from-template notification-
dn="\cn=security\cn=Default Notification Collection" template-
dn="\cn=security\cn=Default Notification Collection\cn=Password Sync
Fail">
 <arg-string name="UserFullName">
 <token-src-attr name="Full Name">
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
 <arg-association>
 <token-xpath
expression="self::status/operation-data/password-publish-status/
association"/>
 </arg-association>
 </token-src-attr>
 </arg-string>
 <arg-string name="UserGivenName">
 <token-src-attr name="Given Name">
 <arg-association>
 <token-xpath
expression="self::status/operation-data/password-publish-status/
association"/>
 </arg-association>
 </token-src-attr>
 </arg-string>
 <arg-string name="UserLastName">
 <token-src-attr name="Surname">

 <arg-association>
 <token-xpath
expression="self::status/operation-data/password-publish-status/
association"/>
 </arg-association>
 </token-src-attr>
 </arg-string>
 <arg-string name="ConnectedSystemName">
 <token-global-variable
name="ConnectedSystemName"/>
 </arg-string>
 <arg-string name="to">
 <token-src-attr name="Internet Email
Address">
 <arg-association>
 <token-xpath
expression="self::status/operation-data/password-publish-status/
association"/>
 </arg-association>
 </token-src-attr>
 </arg-string>
 <arg-string name="FailureReason">
 <token-text/>
 <token-xpath
expression="self::status/child::text()"/>
 </arg-string>
 </do-send-email-from-template>
 </actions>
 </rule>
</policy>
Policies and Filters 33

34 Policy Build

novdocx (E
N

U
) 29 January 2007
Input Transformation Policy

Input Transformation policies primarily handle the conversion of data formats from data that the
application shim provides to data that the Metadirectory engine expects. Examples of these
conversions include:

Attribute value format conversion
XML vocabulary conversion
Driver Heartbeat
Input Transformation policies can also provide custom handling of status messages returned
from the application shim to the Metadirectory engine.

All documents supplied to the Metadirectory engine by the application shim on either channel pass
through the Input Transformation policies.

Examples:

Attribute Value Format Conversion
Driver Heartbeat

Attribute Value Format Conversion: This example DirXML Script policy reformats the
telephone number from the nnn.nnn.nnnn format to the (nnn) nnn-nnnn format. The reverse
transformation can be found in the Output Transformation policy examples.
<policy>
 <rule>
 <description>Reformat all telephone numbers from
nnn.nnn.nnnn to (nnn) nnn-nnnn</description>
 <conditions/>
 <actions>
 <do-reformat-op-attr name="telephoneNumber">
 <arg-value type="string">
 <token-replace-first
regex="^(\d\d\d)\.(\d\d\d)\.(\d\d\d\d)$" replace-with="($1) $2-$3">

<token-local-variable name="current-value"/>
 </token-replace-first>
 </arg-value>
 </do-reformat-op-attr>
 </actions>
 </rule>
</policy>

Driver Heartbeat: This DirXML Script policy creates a status heartbeat event. The driver’s
heartbeat functionality is used to send a success message (HEARTBEAT: $driver) at each heartbeat
interval. The message can be monitored by Novell Audit.The Identity Manager driver must support
heartbeat, and heartbeat must be enabled at the driver configuration page.
<?xml version="1.0" encoding="UTF-8" ?>
 <policy>
 <rule>
 <description>Heartbeat Rule, v1.01, 040126, by Holger Dopp</
description>
 <conditions>
 <and>
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
 <if-operation op="equal">status</if-operation>
 <if-xpath op="true">@type="heartbeat"</if-
xpath>
 </and>
 </conditions>
 <actions>
 <do-set-xml-attr expression="." name="text1">
 <arg-string>
 <token-global-variable
name="dirxml.auto.driverdn" />
 </arg-string>
 </do-set-xml-attr>
 <do-set-xml-attr expression="." name="text2">
 <arg-string>
 <token-text>HEARTBEAT</token-text>
 </arg-string>
 </do-set-xml-attr>
 </actions>
 </rule>
</policy>

1.2.2 Defining Policies
All policies are defined in one of two ways:

Using the Policy Builder interface to generate DirXML Script. Existing, non-XSLT rules are
converted to DirXML Script automatically upon import.
Using XSLT style sheets.

Schema Mapping policies can also be defined (and usually are) using a schema mapping table.

Policy Builder and DirXML Script

The Policy Builder interface is used to define the majority of policies you might implement. The
Policy Builder interface uses a graphical environment to enable you to easily define and manage
policies.

The underlying functionality of rule creation within Policy Builder is provided by a custom scripting
language, called DirXML Script.

DirXML Script contains a wide variety of conditions you can test, actions to perform, and dynamic
values to add to your policies. Each of these options are presented using intelligent drop-down lists,
providing only valid selections at each point, and quick links to common values.

Policy Builder makes working directly with DirXML Script unnecessary.

See Chapter 2, “Defining Policies By Using the Policy Builder with Designer,” on page 39 and
Chapter 3, “Defining Policies By Using the Policy Builder in iManager,” on page 211, for more
information on Policy Builder. See Section 1.1.2, “DirXML Script,” on page 15 for more
information on DirXML Script.
Policies and Filters 35

36 Policy Build

novdocx (E
N

U
) 29 January 2007
TIP: Although it is not necessary for using Policy Builder, a complete DirXML Script reference is
available at the DirXML Driver Developer Kit Documentation (http://developer.novell.com/ndk/
doc/dirxml/dirxmlbk/ref/index.html) Web site.

XSLT Style Sheets

To define more complex policies, XSLT style sheets are used to directly transform one XML
document into another XML document containing the required changes.

Style sheets provide you a large amount of flexibility, and are used when the transformation doesn’t
fit into the predefined conditions and actions available using rule creation in Policy Builder.

To create an XSLT style sheet, you need a through understanding of XSLT, the nds.dtd, and the
commands and events transferred to and from the Metadirectory engine. For detailed nds.dtd
reference, see the NDS DTD reference (http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/
ndsdtd/index.html).

See Chapter 5, “Defining Policies using XSLT Style Sheets,” on page 373 for more information on
XSLT style sheets.

Downloadable Identity Manager Policies

Novell has provided sample policies you can download and use in your environment. The policies
are available at the Novell Support Web site (http://support.novell.com/patches.html). To download
the policies:

1 At the Novell Support Web site (http://support.novell.com/patches.html) select View the
minimum patch list.

2 Browse to and select Identity Manager in the Product or Technology field, then click search.
3 Browse to and select the desired policy.

Table 1-3 contains a list of the policies available for download.
4 Select proceed to download, to download the policy.
5 Click download by the file name.
6 Click Save, then browse to and select a location to save the file.
7 Click Save, then click Close.
8 Extract the file, then read the How_To_Install.rtf file for installation instructions.

Table 1-3 Downloadable Policies

Name File Name

Policy to Place by Surname placebyname.tgz

Policy: Reset value of the email attribute pushback.tgz

Policy to enforce the presence of attributes requiredattrs.tgz

Policy: Create email from GivenName & Surname setemailname.tgz

Policy: Create FullName from GivenName,
Surname

synthfullname.tgz
er and Driver Customization Guide

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/index.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html
http://support.novell.com/patches.html
http://support.novell.com/patches.html

novdocx (E
N

U
) 29 January 2007
To use Designer to import the files, see “Importing a Policy From an XML File” on page 60. To use
iManager to import the files, see Section 3.2.9, “Importing a Policy from an XML File,” on
page 223.

1.3 Filters
Filters specify the object classes and the attributes for which the Metadirectory engine processes
events and how changes to those classes and attributes are handled.

Filters only pass events occurring on objects whose base class matches one of those classes specified
by the filter. Filters do not pass events occurring on objects that are a subordinate class of a class
specified in the filter unless the subordinate class is also specified. There a separate filter settings for
each channel, which allows the control of the synchronization direction and the authoritative data
source for each class and attribute.

NOTE: In eDirectory, a base class is the object class that is used to create an entry. You must specify
that class in the filter, rather than a super class from which the base class inherits or the auxiliary
classes from which additional attributes may come.

For example, if the User class with the Surname and Given Name attributes are set to synchronize in
the filter, the Metadirectory engine passes on any changes to these attributes. However, if the entry’s
Telephone Number attribute is modified, the Metadirectory engine drops this event because the
Telephone Number attribute is not in the filter.

Filters must be configured to include the following:

Attributes that are to be synchronized
Attributes that are not synchronized, but are used to trigger policies to do something

See Chapter 6, “Managing Filters,” on page 387 for information on defining filters.

Policy: Convert First/Last name to uppercase uppercasenames.tgz

Policy to add user to group based on Title addcreategroups.tgz

Policy: Assign template to user based on title assigntemplate.tgz

Disable user account and move when terminated dismvonterm.tgz

Policy to filter events filterby.tgz

Govern Groups for user based on the title attribute groupchange.tgz

Name File Name
Policies and Filters 37

2
novdocx (E

N
U

) 29 January 2007
2Defining Policies By Using the
Policy Builder with Designer

The Policy Builder is a complete graphical interface for creating and managing the policies that
define the exchange of data between connected systems.

These section gives the following information on policies and how to use the Policy Builder:

Section 2.1, “Policies,” on page 39
Section 2.2, “Policy Builder Tasks in Designer,” on page 40

These section also contains the following detailed reference sections:

Section 2.3, “Regular Expressions,” on page 120
Section 2.4, “XPath 1.0 Expressions,” on page 121
Section 2.5, “Conditions,” on page 122
Section 2.6, “Actions,” on page 139
Section 2.7, “Noun Tokens,” on page 186
Section 2.8, “Verb Tokens,” on page 200

2.1 Policies
As part of understanding how policies work, it is important to understand the components of
policies.

Policies are made up of rules.
A rule is a set of conditions (see “Conditions” on page 122) that must be met before a defined
action (see “Actions” on page 139) occurs.
Actions can have dynamic arguments that derive from tokens that are expanded at run time.
Tokens are broken up into two classifications: nouns (see “Noun Tokens” on page 186) and
verbs (see “Verb Tokens” on page 200).

Noun tokens expand to values that are derived from the current operation, the source or
destination data stores, or some external source.
Verb tokens modify the concatenated results of other tokens that are subordinate to them.

Regular expressions (see “Regular Expressions” on page 120) and XPath 1.0 expressions (see
“XPath 1.0 Expressions” on page 121) are commonly used in the rules to create the desired
results for the policies.
A policy operates on an XDS document and its primary purpose is to examine and modify that
document.
An operation is any element in the XDS document that is a child of the input element and the
output element. The elements are part of Novell’s nds.dtd; for more information, see the
NDS DTD (http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html).
An operation usually represents an event, a command, or a status.
Defining Policies By Using the Policy Builder with Designer 39

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html

40 Policy Build

novdocx (E
N

U
) 29 January 2007
The policy is applied separately to each operation. As the policy is applied to each operation in
turn, that operation becomes the current operation. Each rule is applied sequentially to the
current operation. All of the rules are applied to the current operation unless an action is
executed by a prior rule that causes subsequent rules to no longer be applied.
 A policy can also get additional context from outside of the document and cause side effects
that are not reflected in the result document.

2.2 Policy Builder Tasks in Designer
This section contains instructions on performing common tasks in the Policy Builder:

Section 2.2.1, “Opening Policy Builder,” on page 40
Section 2.2.2, “Creating a Policy,” on page 44
Section 2.2.3, “Creating a Rule,” on page 52
Section 2.2.4, “Creating an Argument,” on page 61
Section 2.2.5, “Editing a Policy,” on page 71
Section 2.2.6, “Using Predefined Rules,” on page 74
Section 2.2.7, “Testing Policies with the Policy Simulator,” on page 105
Section 2.2.8, “Editing the DirXML Script,” on page 114

2.2.1 Opening Policy Builder
The Policy Builder can be opened from the Model Outline view, from the Policy Flow view, or from
a policy set.

Model Outline View

1 Open a project in Designer.
2 Click the Outline tab > select the Show Model Outline icon.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3 Double-click a policy listed in the Model Outline view or right-click and select Edit.

Policy Flow View

1 Open a project in Designer.
2 Select the Outline tab > select the Show Policy Flow icon.
Defining Policies By Using the Policy Builder with Designer 41

42 Policy Build

novdocx (E
N

U
) 29 January 2007
3 Right-click a policy (for example, the Matching policy) in the Policy Flow view, then select
Edit Policy.

4 You can also double-click the Matching policy in the Policy Flow.
5 Select the policy, then click Edit.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Policy Set

1 Right-click the policy in the policy set, then click Edit.

2 You can also select the policy in the policy set, then click the Edit the policy icon.
Defining Policies By Using the Policy Builder with Designer 43

44 Policy Build

novdocx (E
N

U
) 29 January 2007
To see all of the information in the Policy Builder window, without scrolling double-click the policy
tab so the Policy Builder fills the entire window. To minimize the window, double-click the policy
tab.

Figure 2-1 Policy Builder Full Screen

2.2.2 Creating a Policy
A policy sends data to the connected systems. A policy is created through the policy set.

“Accessing the Policy Set” on page 45
“Using the Policy Set” on page 46
“Using the Add Policy Wizard” on page 48
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Accessing the Policy Set

1 Select a driver object from the Outline view in an open project.

2 Select the Policy Set tab.
Defining Policies By Using the Policy Builder with Designer 45

46 Policy Build

novdocx (E
N

U
) 29 January 2007
If the Policy Set tab is not shown:

1 Click the double arrow.

2 Select Policy Set.

Using the Policy Set

The policy set contains a toolbar and a list of policies.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The policy list displays all the policies contained in the selected policy set. During a transformation,
the policies within the list are executed from top to bottom. The toolbar contains buttons and a drop-
down menu that you can use to manage policies displayed in the list, including, editing, adding,
deleting, renaming, and changing the processing order of the policies.

Policy Set Toolbar

The policy set displays a copy of the policy. The buttons on the toolbar are enabled or disabled
depending upon the item you have selected. The different icons are described below.

Table 2-1 Policy Set Toolbar

Keyboard Support

You can move through the policy set with keystrokes as well as using the mouse. The supported
keystrokes are listed below.

Table 2-2 Keyboard Support

Operation Description

Edit a policy Launches the Policy Builder.

Create or add a new policy to the Policy Set Launches the Add Policy Wizard.

Remove and delete the selected policy Deletes the policy from the project.

Remove the selected policy from the Policy Set, do
not delete

Removes the policy from the selected policy set
object but doesn’t delete the policy.

Move the policy up the policy chain Moves the policy up in the processing order.

Move the policy down the policy chain Moves the policy down in the processing order.

Keystroke Description

Up-arrow Moves the selected policy up in the processing
order.

Down-arrow Moves the selected policy down in the processing
order.

Delete Deletes the policy from the project.
Defining Policies By Using the Policy Builder with Designer 47

48 Policy Build

novdocx (E
N

U
) 29 January 2007
Using the Add Policy Wizard

The Add Policy Wizard launches when you click the Create or add a new policy to the Policy Set
icon in the toolbar. The Add Policy Wizard enables you to do the following:

“Creating a Policy” on page 48
“Copying a Policy” on page 50
“Linking to a Policy” on page 51

To launch the Add Policy Wizard:

1 Select a driver in the Outline view.
2 Select a policy set item in the policy set, then click the Create or add a new policy to the Policy

Set icon in the toolbar.

Creating a Policy

1 In the Add Policy Wizard, select Create a new policy, then click Next.

Minus Removes the policy from the selected policy set,
but does not delete it.

Plus Launches the Add Policy Wizard.

Ctrl+Z Undoes the last operation.

Ctrl+Y Redoes the last operation.

Keystroke Description
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2 Provide a policy name.

3 Accept the default container, or browse to and select the Driver, Publisher, or Subscriber object
where you want the policy to be created.
This decision depends on how you want to organize the policies. By default, policies are placed
under the container object that is selected in the Outline tab when the Add Policy Wizard is
launched.

For example, if you move to a Publisher object in the Outline tab and then add a policy to a
policy set, the policy defaults to the Publisher container.

You can change this setting if you want to create policies in a different container. For example,
you can set up a policy library under a dummy driver, put all of the common policies under this
driver, and then simply reference the policies from the other drivers. That way, the policy is
common. If you need to change a policy, you need to do it only once.

If a policy is not reused by multiple drivers, you typically create that policy under the driver or
channel that is using it.

4 Select the type of policy you want to implement. The policy type defaults to DirXML Script.
You can select XSLT or Schema Mapping, if you don’t want to use DirXML® Script.

5 Click Finish.

If the Schema Mapping policy set is selected, then an additional option is available for Schema
Mapping. The new policy appears in the expanded policy set.

You can also add a policy by right-clicking a policy set.

1 Right-click a policy set (for example, Input Transformation Set).
Defining Policies By Using the Policy Builder with Designer 49

50 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Select Add Policy.
3 Select how to implement the policy: DirXML Script, Schema Mapping, XSLT or Copy Existing.

4 Name the policy.

5 Click Open Editor after creating policy.
6 Click OK.

Copying a Policy

1 In the Add Policy Wizard, select Copy a policy, then click Next.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2 Name the policy.

3 Accept the default container, or browse to and select the Driver, Publisher or Subscriber object
where you want the policy to be created.

4 Browse to and select the policy you want to copy, then click OK.
5 Click Finish to make a copy of the selected policy.

Linking to a Policy

1 In the Add Policy Wizard, select Link in a policy, then click Next.
Defining Policies By Using the Policy Builder with Designer 51

52 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Click Browse to launch the model browser.

3 Browse to and select the Policy object you want to link into the policy set, then click OK.

Linking a policy into a policy set doesn’t create a new Policy object. Instead, it adds a reference
to an existing policy. This reference can be to any existing policy within the current Identity
Vault. It doesn’t need to be contained within the current Driver object, but the policy type must
be valid for the policy set that it is being linked to. For example, you can’t link a Schema
Mapping policy into an Input policy set.
Linking a policy into a policy set is not permitted when viewing all policies.

4 Click Finish to link to the selected policy.

2.2.3 Creating a Rule
A rule is defined as a set of conditions that must be met before a defined action occurs. Rules are
created from condition groups, conditions, and actions.

Rules can be created in four different ways:

“Creating a New Rule” on page 53
“Using Predefined Rules” on page 57
“Including an Existing Rule” on page 58
“Importing a Policy From an XML File” on page 60
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Creating a New Rule

When you create a rule, you create condition groups, conditions, and actions. Each rule is composed
of conditions, actions, and arguments. For more information, click the Help icon when creating
each item. The help files contain a definition and an example of the item being used.

“Creating a Rule” on page 53
“Creating a Conditional Group” on page 56
“Creating a Condition” on page 57
“Creating an Action” on page 57

Creating a Rule

1 From the Policy Builder toolbar, select Rule.

You can also right-click and click New > Rule.

Either option launches the Create Rule Wizard.
Defining Policies By Using the Policy Builder with Designer 53

54 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Specify the name of the rule, then click Next.

3 Select the condition structure (OR Conditions, AND Groups or AND Conditions, OR Groups)
then click Next.

4 Select the condition you want, specify the appropriate information, then click Next.

Click the Help icon for information about each condition you can create.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5 You can define an additional condition or condition group at this point. For this example, there
is only one condition. Select Continue, then click Next.

6 Select the action that you want, then click Next.

Click the Help icon for information about each action you can create.
7 You can define additional actions at this point. For this example, there is only one action. Select

Continue, then click Next.
Defining Policies By Using the Policy Builder with Designer 55

56 Policy Build

novdocx (E
N

U
) 29 January 2007
8 The summary page displays the rule that was created. Click Finish to complete the creation of
the rule.

You can expand or collapse the view of the rule by clicking the plus or minus sign.

Creating a Conditional Group

1 Right-click the Conditions tab or right-click the name of the Conditional Group, then click New
> Append Condition Group.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Creating a Condition

1 Right-click the condition, then click New > Insert Condition Before or Insert Condition After.

Creating an Action

1 Right-click the action, then click New > Insert Action Before or Insert Action After.

Using Predefined Rules

Designer includes a list of predefined rules. You can import and use these rules as well as create
your own rules.

1 Right-click in the Policy Builder and select New > Predefine Rules > Insert Predefined Rule
Before or Insert Predefined Rule After.
Defining Policies By Using the Policy Builder with Designer 57

58 Policy Build

novdocx (E
N

U
) 29 January 2007
See Section 2.2.6, “Using Predefined Rules,” on page 74 for more information.

Including an Existing Rule

Designer allows you to include the rules from another policy.

1 Right-click in the Policy Builder and click New > Include > Insert Include Before or Insert
Include After.

2 Click the Browse icon.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3 Browse to the policy you want to include, then click OK.

4 The field is now populated with the path to the policy. Click OK.

The rule is a link to the original rule. You cannot edit the rule in this location. Access the
original rule to make changes.
Defining Policies By Using the Policy Builder with Designer 59

60 Policy Build

novdocx (E
N

U
) 29 January 2007
Importing a Policy From an XML File

Rules and policies can be saved as XML files. If you have a file that contains a rule or a policy you
want to use, the Policy Builder allows you to import the file.

1 In the Policy Builder, right-click and select Import Policy.

 You can also select the Import Policy icon from the drop-down list in the toolbar.

2 Select one of the two options: Append the rules from the imported policy or Replace the rules
from the imported policy.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3 Click the browse icon and select the file that contains the DirXML Script, then click Open.

4 Click OK.

2.2.4 Creating an Argument
The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within the Policy Builder. To access the Argument Builder, see
“Argument Builder” on page 64.

Arguments are dynamically used by actions and are derived from tokens that are expanded at run
time.

Tokens are broken up into two classifications: nouns and verbs. Noun tokens expand to values that
are derived from the current operation, the source or destination data stores, or some external source.
Verb tokens modify the concatenated results of other tokens that are subordinate to them.

To define an expression, select one or more nouns tokens (values, objects, variables, etc.), and
combine then with verb tokens (substring, escape, uppercase, and lowercase) to construct
arguments. Multiple tokens are combined to construct complex arguments.
Defining Policies By Using the Policy Builder with Designer 61

62 Policy Build

novdocx (E
N

U
) 29 January 2007
For example, if you want the argument set to an attribute value, you select the attribute noun, then
select the attribute name:

Figure 2-2 Argument Builder

If you only want a portion of an attribute, you can combine the attribute noun with the substring
verb:

Figure 2-3 Expression

After you add a noun or verb, you can provide values in the editor, then immediately add another
noun or verb. You do not need to refresh the Expression pane to apply your changes; they appear
when the next operation is performed.

See “Noun Tokens” on page 186 and “Verb Tokens” on page 200 for a detailed reference on tokens
available in the Argument Builder.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Although you define most arguments using the Argument Builder, there are several more builders
that are used by the Condition Editor and Action Editor in the Policy Builder. Each builder can
recursively call anyone of the builders in the following list:

“Actions Builder” on page 63
“Argument Builder” on page 64
“Match Attribute Builder” on page 65
“Action Argument Component Builder” on page 66
“Argument Value List Builder” on page 67
“Named String Builder” on page 68
“Condition Argument Component Builder” on page 69
“Pattern String Builder” on page 70

The information below describes how to access each Builder.

Actions Builder

To launch the Actions Builder, select one of following two actions, then click the Edit the arguments
icon .

For Each
Implement Entitlement

In the following example the add destination attribute value action is performed for each Group
entitlement that is being added in the current operation.

Figure 2-4 For Each Action
Defining Policies By Using the Policy Builder with Designer 63

64 Policy Build

novdocx (E
N

U
) 29 January 2007
To define the action of the add destination attribute value, click the icon that launches the Actions
Builder. In the Actions Builder, you define the desired action. In the following example, the member
attribute is added to the destination object for each added Group entitlement.

Figure 2-5 Argument Action Builder

Argument Builder

To launch the Argument Builder, select one of the following actions, then click the Edit the
Arguments icon .

“Add Association” on page 140
“Add Destination Attribute Value” on page 141
“Add Destination Object” on page 142
“Add Source Attribute Value” on page 144
“Append XML Text” on page 147
“Clear Destination Attribute Value” on page 148 (when the selected object is DN or
Association)
“Clear Source Attribute Value” on page 149 (when the selected object is DN or Association)
“Delete Destination Object” on page 152 (when the selected object is DN or Association)
“Delete Source Object” on page 153 (when the selected object is DN or Association)
“Find Matching Object” on page 153
“For Each” on page 155
“Move Destination Object” on page 159
“Move Source Object” on page 160
“Reformat Operation Attribute” on page 161
“Remove Association” on page 162
“Remove Destination Attribute Value” on page 163
“Remove Source Attribute Value” on page 164
“Rename Destination Object” on page 165 (when the selected object is DN or Association and
Enter String)
“Rename Source Object” on page 166 (when the selected object is DN or Association and
Enter String)
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
“Set Destination Attribute Value” on page 170 (when the selected object is DN or Association
and Enter Value Type is not structured)
“Set Destination Password” on page 171
“Set Local Variable” on page 172
“Set Operation Association” on page 173
“Set Operation Class Name” on page 174
“Set Operation Destination DN” on page 174
“Set Operation Property” on page 175
“Set Operation Source DN” on page 176
“Set Operation Template DN” on page 176
“Set Source Attribute Value” on page 177
“Set Source Password” on page 178
“Set XML Attribute” on page 180
“Status” on page 181
“Trace Message” on page 183

1 Create the argument using the nouns and verbs.

The noun and verbs can be combined to create the desired argument.
2 Click Finish.

Match Attribute Builder

The Match Attribute Builder enables you to select attributes and values used by the “Find Matching
Object” on page 153 action to determine if a matching object exists in a data store.

For example, if you wanted to match users based on a common name and a location:

1 Select the action of find matching object.
2 Select the scope of the search for the matching objects. Select from entry, subordinates, or

subtree.
3 Specify the DN of the starting point for the search.
4 Click the Edit match attributes icon to launch the Match Attribute Builder.
Defining Policies By Using the Policy Builder with Designer 65

66 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Click the Browse attributes icon to launch the Schema Browser.

6 Click the Attributes tab, then browse to and select the desired attribute.
7 Click OK.

If you want to add more than one attribute, click the Append new item icon to add another
line.

8 Click Finish.

Action Argument Component Builder

To launch the Action Argument Component Builder, select one of the following actions when the
Enter value type selection is structured, then click the Edits components icon .

“Add Destination Attribute Value” on page 141
“Add Source Attribute Value” on page 144
“Reformat Operation Attribute” on page 161
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
“Remove Destination Attribute Value” on page 163
“Remove Source Attribute Value” on page 164
“Set Destination Attribute Value” on page 170
“Set Source Attribute Value” on page 177

Figure 2-6 Add Destination Attribute Value Action

1 Click the Edit the components icon when the value type is set to structured.
2 Create the value of the action component.

You can enter in the value, or click on the Edit the arguments icon to create the value in the
Argument Builder.

3 Click Finish.

Argument Value List Builder

To launch the Argument Value List Builder, select the following action, then click the Edit the
arguments icon .

Set Default Attribute Value

Figure 2-7 Set Default Attribute Value
Defining Policies By Using the Policy Builder with Designer 67

68 Policy Build

novdocx (E
N

U
) 29 January 2007
1 Select the type of the value: counter, dn, int, interval, octet, state, string, structured,
teleNumber, time.

2 Click the Edit the value lists icon .

3 Click the Edit the arguments icon .
4 Create the value of the action component.

You can enter in the value, or click on the Edit the arguments icon to create the value in the
Argument Builder.

5 Click Finish.

Named String Builder

To launch the Named String Builder, select one of the following actions, then click the Edit the
strings icon .

Generate Event
Send Email
Send Email From Template

1 Select the name of the string from the drop-down list.
2 Create the value for the string by clicking the Edit the arguments icon to launch the

Argument Builder.

3 Click Finish.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
For a Send Email action, the named strings correspond to the elements of the e-mail:

Figure 2-8 E-mail Elements in the Send Mail Action

A complete list of possible values is contained in the help file corresponding to the action that
launches the Named String Builder.

Condition Argument Component Builder

To launch the Condition Argument Component Builder, select one of the following conditions, then
you must select the structured selection for Mode in order to see the Launch ArgComponent Builder
icon .

If Attribute
If Destination Attribute
If Source Attribute
If Operation Attribute

1 Specify the name and value of the condition component.

2 Click Finish.
Defining Policies By Using the Policy Builder with Designer 69

70 Policy Build

novdocx (E
N

U
) 29 January 2007
Pattern String Builder

You can launch the Pattern String Builder from the Argument Builder editor when the Unique Name
token is selected. The Argument Builder editor pane shows a Pattern field where you can click to
launch the Pattern String Builder.

Figure 2-9 Unique Name Token in the Argument Builder

1 Click the Edit patterns icon to launch the Pattern Builder.
2 Specify the pattern or click the Edit the arguments icon to use the Argument Builder to

create the pattern.

3 Click Finish.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2.2.5 Editing a Policy
The Policy Builder allows you to create and edit policies. You can drag and drop rules, conditions
and actions. For additional operations, access the Policy Builder toolbar. To display a context menu,
right-click an item.

Figure 2-10 Policy Builder Context Menu and Toolbar

Actions and Menu Items in the Policy Builder

The table contains a list of the different actions and menu items in the Policy Builder.

Table 2-3 Policy Builder Actions and Menu Items

Operation Description

Collapse All Collapses all expanded rules.

Copy Copies the selected item to the Clipboard.

Copy and drop Select the item, press Ctrl, then drag the item.
Defining Policies By Using the Policy Builder with Designer 71

72 Policy Build

novdocx (E
N

U
) 29 January 2007
KeyBoard Support

You can move through the Policy Builder with keystrokes as well as using the mouse. The supported
keystrokes are listed below.

Table 2-4 Keyboard Support in the Policy Builder

Cut Cuts the selected item and copies it to the
Clipboard.

Delete Deletes the selected item.

Disable Disables a rule, condition, or action. Click the
icon.

Drag and drop Enables you to select an item, then relocate it.
Select the item, then drag it to the new location.

Edit Enables you to edit the selected item. To open the
Rule Builder, select a rule, then click Edit.

Enable Enables a rule, condition, or action. Click the
icon.

Expand All Expands all the rules so that you can view the
conditions and actions of each rule.

Import Policy Imports a policy from the file system and appends it
to the policy, or replaces all the rules of the policy.

Launch Simulator Launches the Policy Simulator.

Move and drop Enables you to select and move an item. Select the
item, then drag it.

Move the selected item down Moves the item down in the list of policies.

Move the selected item up Moves the item up in the list of policies.

New > Condition Group Creates a new condition group after a selected
item.

New > Include Creates a new Include after a selected item.

New > Predefined Rule Inserts a predefined rule.

New > Rule Creates a new rule after a selected item.

Paste Pastes the contents of the Clipboard after the
selected item.

Preferences Enables you to change how the information is
displayed.

Select Click any item to select it.

Keystroke Description

Ctrl+C Copies the selected item into the Clipboard.

Operation Description
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Renaming a Policy

1 In the Outline view, select the policy you want to rename.
2 Right-click and select Properties.
3 Change the name of the policy in the Policy Name field.

4 Click OK.

Saving Your Work

Do one of the following:

From the Main menu, click File > Save (or Save All).
Close the editor by clicking the X in the editor’s tab.
Select Close from the Main Menu’s file menu.
Press Ctrl+S.

Ctrl+X Cuts the selected item and adds it to the Clipboard.

Ctrl+V Pastes the contents of the Clipboard after the
selected item.

Delete Deletes the selected Item.

Left-Arrow Collapses a rule node.

Right-Arrow Expands a rule node.

Up-Arrow Navigates up.

Down-Arrow Navigates down.

Ctrl+Z Undo

Ctrl+Y Redo

Keystroke Description
Defining Policies By Using the Policy Builder with Designer 73

74 Policy Build

novdocx (E
N

U
) 29 January 2007
Policy Description

The Description field provides a place to add notes about the functionality of the policy.

Figure 2-11 Policy Description

2.2.6 Using Predefined Rules
Designer includes twenty predefined rules. You can import and use these rules as well as create your
own rules. These rules include common tasks that administrators use. You need to provide
information specific to your environment to customize the rules.

“Command Transformation - Create Departmental Container - Part 1 and Part 2” on page 76
“Command Transformation - Publisher Delete to Disable” on page 78
“Creation - Require Attributes” on page 79
“Creation - Publisher - Use Template” on page 81
“Creation - Set Default Attribute Value” on page 82
“Creation - Set Default Password” on page 83
“Event Transformation - Scope Filtering - Include Subtrees” on page 85
“Event Transformation - Scope Filtering - Exclude Subtrees” on page 86
“Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn” on page 88
“Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn)
nnn-nnnn” on page 89
“Matching - Publisher Mirrored” on page 90
“Matching - Subscriber Mirrored - LDAP Format” on page 92
“Matching - By Attribute Value” on page 94
“Placement - Publisher Mirrored” on page 95
“Placement - Subscriber Mirrored - LDAP Format” on page 97
“Placement - Publisher Flat” on page 98
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
“Placement - Subscriber Flat - LDAP Format” on page 100
“Placement - Publisher By Dept” on page 101
“Placement - Subscriber By Dept - LDAP Format” on page 103

To access the predefined rules:

1 In the Policy Builder, right-click and select New > Predefined Rules > Insert Predefined Rule
Before or Insert Predefined Rule After.

The Predefined Rules dialog box displays a list of the available rules.
Defining Policies By Using the Policy Builder with Designer 75

76 Policy Build

novdocx (E
N

U
) 29 January 2007
Command Transformation - Create Departmental Container - Part 1 and Part 2

Creates a department container in the destination data store, if one does not exist. Implement the rule
on the Command Transformation policy in the driver. You can implement the rule on either the
Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 76.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Command Transformation policy set in the Policy Set view, then click Create or add

a new policy to the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Command
Transformation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Command Transformation - Create Department Container - Part 1, then click OK.
3 Right-click in Policy Builder and click New > Predefined Rule > Insert Predefined Rule Before

or Insert Predefined Rule After.
4 Select Command Transformation - Create Department Container - Part 2, then click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5 Save the rule by clicking File > Save.

There is no information to change in the rules that are specific to your environment.

IMPORTANT: Make sure that the rules are listed in order. Part 1 must be executed before Part 2.

How the Rule Works

The rule is used when the destination location for an object does not exist. Instead of getting a veto
because the object cannot be placed, this rule creates the container and places the object in the
container.

Part 1 looks for any Add event. When the Add event occurs, two local variables are set. The first
local variable is named target-container. The value of target-container is set to the destination DN.
The second local variable is named does-target-exist. The value of does-target-exist is set to the
destination attribute value of objectclass. The class is set to OrganizationalUnit. The DN of the
OrganizationalUnit is set to the local variable of target-container.

Part 2 checks to see if the local variable does-target-exist is available. It also checks to see if the
value of the local variable does-target-exist is set to a blank value. If the value is blank, then an
Organizational Unit object is created. The DN of the organizational unit is set to the value of the
local variable target-container. It also adds the value for the OU attribute. The value of the OU
attribute is set to the local variable of target-container. It uses the source format as the destination
DN and the destination format is dot format.
Defining Policies By Using the Policy Builder with Designer 77

78 Policy Build

novdocx (E
N

U
) 29 January 2007
Command Transformation - Publisher Delete to Disable

Transforms the Delete event for a user object into disabling the user object. Implement the rule on
the Command Transformation policy in the driver. The rule needs to be implemented on the
Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 78.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Command Transformation policy set in the Policy Set view, then click Create or add

a new policy to the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Command
Transformation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Command Transformation - Publisher Delete to Disable, then click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.

How the Rule Works

The rule is used when a Delete event occurs in the connected data store. Instead of the user object
being deleted in the Identity Vault, the User object is disabled. Anytime a Delete event occurs for a
User object, the destination attribute value of Login Disabled is set to True and the association is
removed from the User object. The User object can no longer log in into the Novell eDirectory tree,
but the User object was not deleted.

Creation - Require Attributes

The rule does not allow user objects to be created unless the required attributes are populated.
Implement the rule on the Creation policy in the driver. You can implement the rule on either the
Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 80.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
Defining Policies By Using the Policy Builder with Designer 79

80 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder and click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Require attributes, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter name of required attribute] from the Enter Name field.
5 Browse to the attributes you require for a User object to be created, then click OK.
6 Click OK.
7 Save the rule by selecting File > Save.

How the Rule Works

The rule is used when your business processes require a user to have specific attributes populated
when the user object is created. When a user object is created, the rule vetoes the creation of the
object unless the required attributes are provided. You can have one or more required attributes.

If you want more than one required attribute, right-click the action and select New > Append Action.
Select veto if operation attribute not available, then browse to the attribute you want to require.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Creation - Publisher - Use Template

Allows the use of a Novell eDirectory template object during the creation of a User object.
Implement the rule on the Publisher Creation policy in the driver. You can implement the rule only
on the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 81.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Publisher - Use Template, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter DN of Template object] from the Enter DN field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list.
7 Double-click Text to add it to the argument.
8 In the Editor, click the browse icon, browse to and select the template object, then click OK.
9 Click OK.
Defining Policies By Using the Policy Builder with Designer 81

82 Policy Build

novdocx (E
N

U
) 29 January 2007
10 Save the rule by clicking File > Save.

How the Rule Works

The rule is used when you want to use a template object to create a user in the Identity Vault. If you
have attributes that are the same for different users, using the template saves time. You fill in the
information in the template object, and when the User object is created, Identity Manager calls the
template and uses that to create the User object.

During the creation of User objects, the rule performs the action of the set operation template DN.
The action calls the template object and creates the User object with the information in the template.

Creation - Set Default Attribute Value

Allows you to set default values for attributes that are assigned during the creation of User objects.
Implement the rule on the Subscriber Creation policy or Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 83.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Creation policy set in the Policy Set view, then click the Create or add a new policy

to the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Set Default Attribute Value, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter attribute name] from the Enter attribute name field.
5 Click the browse icon, then browse to and select the attribute you want to create.
6 Delete [Enter default attribute value] from the Enter arguments values field.
7 Click the Edit Arguments icon to launch the Argument Values List Builder.
8 Select the type of data you want the value to be.
9 Click the Edit Arguments icon to launch the Argument Builder.

10 Create the value for the attribute in the Argument Builder, then click OK.
11 Click OK.
12 Save the rule by clicking File > Save.

How the Rule Works

The rule is used when you want to create a User object with default attributes and values. When a
User object is created, the rule sets the attribute and the value for that attribute.

If you want more than one attribute value defined, right-click the action and click New > Append
Action. Select the action, set the default attribute value, and follow Step 1 on page 83 through
Step 12 on page 83to assign the value to the attribute.

Creation - Set Default Password

During the creation of user objects, it sets a default password for user objects. Implement the rule on
the Creation policy in the driver. You can implement the rule on either the Subscriber or the
Publisher channel or on both channels.
Defining Policies By Using the Policy Builder with Designer 83

84 Policy Build

novdocx (E
N

U
) 29 January 2007
There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 84.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Creation policy set in Policy Set view, then click Create or add a new policy to the

Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Set Default Password, then click OK.
3 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
How the Rule Works

The rule is used when you want User objects to be created with a default password. During the
creation of a User object, the password that is set for the User object is the Given Name attribute
plus the Surname attribute of the User object.

You can change the value of the default password by editing the argument. You can set the password
to any other value you want through the Argument Builder.

Event Transformation - Scope Filtering - Include Subtrees

Excludes all events that occur except for the specific subtree. Implement the rule on the Event
Transformation policy in the driver. You can implement the rule on either the Subscriber or the
Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule
(page 86).

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Event Transformation policy set in the Policy Set view, then click Create or add a

new policy to the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Event Transformation
policy is saved.
Defining Policies By Using the Policy Builder with Designer 85

86 Policy Build

novdocx (E
N

U
) 29 January 2007
Importing the Predefined Rule

1 Right-click in the Policy Builder, then select New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Event Transformation - Scope Filtering - Include subtrees, then click OK.
3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter a subtree to include] in the Value field.
5 Click the browse button to browse the Identity Vault for the part of the tree you were you want

events to synchronize, then click OK.
6 Click OK.
7 Save the rule by clicking File > Save.

How the Rule Works

The rule is used when you want to exclude part of the Identity Vault from synchronizing. It allows
you synchronize some objects and not other objects, without using the Filter. When an event occurs
anywhere but in that specific part of the Identity Vault, it is vetoed.

Event Transformation - Scope Filtering - Exclude Subtrees

Excludes all events that occur in a specific subtree. Implement the rule on the Event Transformation
policy in the driver. You can implement the rule on either the Subscriber or the Publisher channel or
on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 87.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Event Transformation policy set in Policy Set view, then click Create or add a new

policy to the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Event Transformation
policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule.
2 Select Event Transformation - Scope Filtering - Exclude subtrees, then click OK.
3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter a subtree to exclude] in the Value field.
5 Click the browse button to browse the Identity Vault for the part of the tree where you want to

exclude events from synchronizing, then click OK.
6 Click OK.
7 Save the rule by clicking File > Save.

How the Rule Works

The rule is used when you want to exclude part of the Identity Vault from synchronizing. It allows
you synchronize some objects and not other objects, without using the Filter. Anytime an event
occurs in that specific part of the Identity Vault, it is vetoed.
Defining Policies By Using the Policy Builder with Designer 87

88 Policy Build

novdocx (E
N

U
) 29 January 2007
Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn
to nnn-nnn-nnnn

Transforms the format of the telephone number when a desired condition is met. Implement the rule
on the Input or Output Transformation policy in the driver. You can implement the rule on either the
Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Input or Output
Transformation policy set and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 88.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Input or Output Transformation policy set in the Policy Set view, then click Create or

add a new policy to the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. Policy Builder is launched and the new Input or Output
Transformation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to
nnn-nnn-nnnn, then click OK.

3 Edit the condition by double-clicking the Conditions tab.
4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
6 Save the rule by clicking File > Save.

How the Rule Works

The rule is used when you want to reformat the telephone number. You define the condition that is to
be met when the telephone number is reformatted.

Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn

Transforms the format of the telephone number when a desired condition is met. Implement the rule
on the Input or Output Transformation policy. You can implement the rule on either the Subscriber
or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules; creating a policy in the Input or Output
Transformation policy set and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 90.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Input or Output Transformation policy set in the Policy Set view, then click Create or

add a new policy to the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
Defining Policies By Using the Policy Builder with Designer 89

90 Policy Build

novdocx (E
N

U
) 29 January 2007
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. Policy Builder is launched and the new Input or Output
Transformation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder and click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Click Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn, then click OK.

3 Edit the condition by double-clicking the Conditions tab.
4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.
6 Save the rule by clicking File > Save.

How the Rule Works

The rule is used when you want to reformat the telephone number. You define the condition that is to
be met when the telephone number is reformatted.

Matching - Publisher Mirrored

Matches for objects in the Identity Vault by using the mirrored structure in the data store from a
specified point. Implement the rule on the Matching policy in the driver. You can implement the rule
only on the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 91).

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Matching - Publisher Mirrored, then click OK.
3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to and select the container in the source hierarchy where you want the matching to

start, then click OK.
6 Click OK.
7 Edit the action by double-clicking the Actions tab.
8 Delete [Enter base of destination hierarchy] from the Enter string field.
9 Click the Edit Arguments icon to launch the Argument Builder.

10 Select Text in the Noun list.
11 Double-click Text to add it to the argument.
12 In the Editor, click the browse icon and browse to the container in the destination hierarchy

where you want the source structure to be matched, then click OK.
13 Click OK.
Defining Policies By Using the Policy Builder with Designer 91

92 Policy Build

novdocx (E
N

U
) 29 January 2007
14 Save the rule by clicking File > Save.

How the Rule Works

Matches for objects in the Identity Vault by using the mirrored structure in the data store from a
specified point. When an Add event occurs and the driver checks to see if the object exists, it starts
checking at the specific DN in the data store. The driver then sets a local variable of dest-base to be
the starting point in the Identity Vault that the structure is mirrored to in the data store. The driver
then creates the context it is searching by adding the local variable of dest-base plus a \ and the
source DN of the object. It creates the path it is looking for in the slash format.

Matching - Subscriber Mirrored - LDAP Format

Matches for objects in the data store by using the mirrored structure in the Identity Vault from a
specified point. Implement the rule on the Matching policy in the driver. You can implement the rule
only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 93.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Matching - Subscriber Mirrored - LDAP format, then click OK.
3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to and select the container in the source hierarchy where you want the matching to

start, then click OK.
6 Click OK.
7 Edit the action by double-clicking the Actions tab.
8 Delete [Enter base of destination hierarchy] from the Enter String field.
9 Click the Edit Arguments icon to launch the Argument Builder.

10 Select Text in the Noun list.
11 Double-click Text to add it to the argument.
12 In the Editor, click the browse icon, browse to and select the container in the destination

hierarchy where you want the source structure to be matched, then click OK.
13 Click OK.
14 Save the rule by clicking File > Save.

How the Rule Works

Matches for objects in the data store by using the mirrored structure in the Identity Vault from a
specified point. When an Add event occurs and the driver checks to see if the object exists, it starts
checking at the specific DN in the Identity Vault. The driver then sets a local variable of dest-base to
be the starting point in the data store that the structure is mirrored to in the Identity Vault. The driver
then creates the context it is searching by adding the source DN of the object plus a, and the local
variable of dest-base. It creates the path it is looking for in LDAP format.
Defining Policies By Using the Policy Builder with Designer 93

94 Policy Build

novdocx (E
N

U
) 29 January 2007
Matching - By Attribute Value

Matches for objects by specific attribute values. Implement the rule on the Matching policy in the
driver. You can implement the rule on either the Subscriber or the Publisher channel or on both
channels.

There are two steps involved in using the predefined rules; creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you would like to
add this rule to, skip to “Importing the Predefined Rule” on page 94.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Matching - by attribute value, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter base DN to start search] from the Enter DN field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list.
7 Double-click Text to add it to the argument.
8 In the Editor, click the browse icon, then browse to and select the container where you want the

search to start, then click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
9 Delete [Enter name of attribute to match on] from the Enter Match Attributes field.
10 Click the Edit Arguments icon to launch the Match Attributes Builder.
11 Click the browse icon and select the attributes you want to match. You can select one or more

attributes to match against, then click OK.
12 Click OK.
13 Save the rule by clicking File > Save.

How the Rule Works

Matches for User objects by attributes. When a User object is synchronized, the driver uses the rule
to check and see if the specified attributes exist. If they attributes do not exist, a new User object is
created.

Placement - Publisher Mirrored

Places objects in the Identity Vault by using the mirrored structure in the data store from a specified
point. Implement the rule on the Placement policy in the driver. You can implement the rule only on
the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 96.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in the policy set, then click Create or add a new policy to the

Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
Defining Policies By Using the Policy Builder with Designer 95

96 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Publisher Mirrored, then click OK.
3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to and select the container in the source hierarchy where you want the object to be

acted upon, then click OK.
6 Edit the action by double-clicking the Actions tab.
7 Delete [Enter base of destination hierarchy] from the Enter String field.
8 Click the Edit Arguments icon to launch the Argument Builder.
9 Select Text in the Noun list.

10 Double-click Text to add it to the argument.
11 In the Editor, click the browse icon, browse to and select the container in the destination

hierarchy where you want the object to be placed, then click OK.
12 Click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
13 Save the rule by clicking File > Save.

How the Rule Works

If the User object resides in the source hierarchy, the object is placed in the mirrored structure from
the data store. The placement starts at the point that the local variable dest-base is defined. It places
the User object in the location of dest-base\unmatched source DN. The rule uses the slash format.

Placement - Subscriber Mirrored - LDAP Format

Places objects in the data store by using the mirrored structure in the Identity Vault from a specified
point. Implement the rule on the Placement policy in the driver. You can implement the rule only on
the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 98.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
Defining Policies By Using the Policy Builder with Designer 97

98 Policy Build

novdocx (E
N

U
) 29 January 2007
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber Mirrored - LDAP format, then click OK.
3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to the container in the source hierarchy where you want the object to be acted upon,

then click OK.
6 Edit the action by double-clicking the Actions tab.
7 Delete [Enter base of destination hierarchy] from the Enter String field.
8 Click the Edit Arguments icon to launch the Argument Builder.
9 Select Text in the Noun list.

10 Double-click Text to add it to the argument.
11 In the Editor, click the browse icon and browse to the container in the destination hierarchy

where you want the object to be placed, then click OK.
12 Click OK.
13 Save the rule by clicking File > Save.

How the Rule Works

If the User object resides in the source hierarchy, then the object is placed in the mirrored structure
from the Identity Vault. The placement starts at the point that the local variable dest-base is defined.
It places the User object in the location of unmatched source DN, dest-base. The rule uses LDAP
format.

Placement - Publisher Flat

Places objects from the data store into one container in the Identity Vault. Implement the rule on the
Placement policy in the driver. You can implement the rule only on the Publisher channel.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 99.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Publisher Flat, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter DN of destination container] from the Enter String field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list.
7 Double-click Text to add it to the argument.
8 In the Editor, click the browse icon, then browse to and select the destination container where

you want all of the User objects to be placed, then click OK.
9 Click OK.
Defining Policies By Using the Policy Builder with Designer 99

100 Policy Build

novdocx (E
N

U
) 29 January 2007
10 Save the rule by clicking File > Save.

How the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be the dest-
base\CN attribute. The CN attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute as lowercase. The rule uses slash format.

Placement - Subscriber Flat - LDAP Format

Places objects from the Identity Vault into one container in the data store. Implement the rule on the
Subscriber Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 101.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in Policy Set view, then click Create or add a new policy to the

Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber Flat - LDAP format, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter DN of destination container] from the Enter String field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list.
7 Double-click Text to add it to the argument.
8 In the Editor, add the destination container where you want all of the User objects to be placed.

Make sure the container is specified in LDAP format, then click OK.
9 Click OK.

10 Save the rule by clicking File > Save.

How the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be uid=unique
name,dest-base. The uid attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute in lowercase. The rule uses LDAP format.

Placement - Publisher By Dept

Places objects from one container in the data store into multiple containers in the Identity Vault.
Implement the rule on the Placement policy in the driver. You can implement the rule only on the
Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 102.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
Defining Policies By Using the Policy Builder with Designer 101

102 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

Importing the Predefined Rule

1 Right-click in Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Publisher By Dept, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter DN of destination Organization] from the Enter String field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list.
7 Double-click Text to add it to the argument.
8 In the Editor, click the browse icon, then browse to and select the parent container in the

Identity Vault. Make sure all of the department containers are child containers of this DN, then
click OK.

9 Click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
10 Save the rule by clicking File > Save.

How the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is placed in the dest-base\value of OU attribute\CN attribute.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The child containers must be associated for the user objects to be placed. The value of the OU
attribute must be the name of the child container. If the OU attribute is not present, this rule is not
executed.

The CN attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute in lowercase. The rule uses slash format.

Placement - Subscriber By Dept - LDAP Format

Places objects from one container in the Identity Vault into multiple containers in the data store
based on the OU attribute. Implement the rule on the Placement policy in the driver. You can
implement the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 104.

Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to

the Policy Set icon to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
Defining Policies By Using the Policy Builder with Designer 103

104 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Use the location that is populated to place the policy in the driver.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.
8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber By Dept - LDAP format, then click OK.
3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter DN of destination Organization] from the Enter string field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list.
7 Double-click Text to add it to the argument.
8 In the Editor, add the parent container in the data store. The parent container must be specified

in LDAP format. Make sure all of the department containers are child containers of this DN,
then click OK.

9 Click OK.
10 Save the rule by clicking File > Save.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
How the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is placed in the uid=unique name,ou=value of OU attribute,dest-base.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The child containers must be associated for the User objects to be placed. The value of the OU
attribute must be the name of the child container. If the OU attribute is not present, then this rule is
not executed.

The uid attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses LDAP format.

2.2.7 Testing Policies with the Policy Simulator
The Policy Simulator allows you to execute a policy at any point in the flow of the driver and see the
results without implementing the policy in the Identity Vault. You can test the policies without
affecting the production environment or the connected system.

For more information about common tasks with the Policy Simulator, see the following sections:

“Accessing the Policy Simulator” on page 105
“Using the Policy Simulator” on page 107

The Policy Simulator uses XML. The eDirectory document type definition file (nds.dtd) defines
the schema of the XML documents that the Metadirectory engine can process. XML documents that
do not conform to this schema generate errors. To verify whether the document conforms to the
nds.dtd and find information about why errors are occurring, see eDirectory DTD Commands
and Events (http://developer.novell.com/ndk/doc/dirxml/index.html?page=/ndk/doc/dirxml/
dirxmlbk/data/a36pjzu.html).

The Policy Simulator cannot simulate the initial policy sets from application drivers such as SOAP
and Delimited text. These drivers use comma-separated files or text files as input, and the XML or
XDS is derived from policies in the policy chain. Currently, the Policy Simulator only accepts valid
XML or XDS as input. Additional functionality is being considered for future releases.

Accessing the Policy Simulator

The Policy Simulator can be accessed in three different ways:

“Outline View” on page 105
“Policy Flow” on page 106
“Editors” on page 106

Outline View

1 Click the Show Model Outline icon .
Defining Policies By Using the Policy Builder with Designer 105

http://developer.novell.com/ndk/doc/dirxml/index.html?page=/ndk/doc/dirxml/dirxmlbk/data/a36pjzu.html
http://developer.novell.com/ndk/doc/dirxml/index.html?page=/ndk/doc/dirxml/dirxmlbk/data/a36pjzu.html

106 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Right-click the driver, publisher, subscriber, mapping rule, filter, or any policy you want to
simulate, then click Simulate.

Policy Flow

1 Click the Show Policy Flow icon .
2 Right-click the input, output, schemaMapping, filter, and any policy set icons you want to

simulate, then click Simulate.

Editors

You can access the Policy Simulator through the Policy Builder, the Schema Mapping editor, or the
Filter editor by selecting the Policy Simulator icon in the toolbar of each editor.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Using the Policy Simulator

The Policy Simulator allows you to select a point in the driver flow to test the policy with a specific
operation. It allows you to edit the input and output documents while you are testing. If you want to
keep the changes, select the Save As icon to save the document as an XML file.

To use the Policy Simulator:

1 From the Simulation Point drop-down list, select the place in the driver flow that you want to
test the policy. You can select the any of the following items: Publisher Channel, Subscriber
Channel, Input, Schema Mapping, Event, Sync Filter, Matching, Creation, Placement,
Command and Notify Filter.

 If you select a specific policy or rule to test, the Simulation Point option only shows To NDS or
From NDS.

2 Select Import, then browse to and select a file to test.
Defining Policies By Using the Policy Builder with Designer 107

108 Policy Build

novdocx (E
N

U
) 29 January 2007
Designer comes with sample event files you can use. The files are located in the plug-in
com.novell.designer.idm.policy\simulation. The event are Add,
Association, Delete Instance, Modify, Move, Query, Rename and Status.

3 Double-click a folder and to display the available events. Each event has different files you can
select. For example, if you select Add, you have three options: Organization.xml,
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
OrganizationalUnit.xml, and User.xml. The file indicates the event. If you select
User.xml, it is an Add event for a user object.

4 Select a file, then click Open to display the input document in the window.
Defining Policies By Using the Policy Builder with Designer 109

110 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Click Next.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
6 Select the Trace tab to see the results of the event as the policy was processed. The information
in this window is the same information that you see in DSTRACE.
Defining Policies By Using the Policy Builder with Designer 111

112 Policy Build

novdocx (E
N

U
) 29 January 2007
7 Select the Output tab to see the output document that was generated.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
8 Select the Compare tab to compare the output document to the input document.

9 When you are finished looking at the results, click Repeat to test another event against the
policy.

10 When you are finished testing, click Finish to close the Policy Simulator.

Simulating Policies with Java Extensions

Policies that contain references to external Java extensions can now be simulated by specifying the
directory where the jar file is located.

To determine or change the extension directory:

1 Select Windows > Preferences from the tool bar.
2 Navigate to the Designer for IDM > Simulation page.
Defining Policies By Using the Policy Builder with Designer 113

114 Policy Build

novdocx (E
N

U
) 29 January 2007
3 Copy the jar file containing the Java class to the specified directory and simulate the policy.

NOTE: The Enable unsupported and experimental pre-release functionality option enables the
Policy Simulator to test the policies against a live Identity Vault or the connected systems. This
option is not supported in Designer 1.2 and is not documented.

2.2.8 Editing the DirXML Script
 Designer enables you to view, edit, and validate the XML by using an XML editor or text editor.

“Viewing the XML Source” on page 114
“Editing the XML Source” on page 118
“Validating the XML Source” on page 120

Viewing the XML Source

You can view the XML Source in XML or in the XML tree format.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
To open the XML Source view:

1 Click XML Source at the bottom of the Policy Builder's workspace.

The XML editor displays line numbers.
2 To see the line number, right-click in the left margin, then select Show Line Numbers.
Defining Policies By Using the Policy Builder with Designer 115

116 Policy Build

novdocx (E
N

U
) 29 January 2007
The XML editor expands or collapses the XML by function. If there are functions that contain
a large amount of XML, you can collapse the XML by clicking the minus icon in the top left
corner.

3 To expand all of the XML functions, click the plus icon in the left corner.
Each element has its own plus or minus icon in the left margin.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
To view the XML in the tree format:

1 Click XML Tree at the bottom of the Policy Builder's workspace.

To see the entire tree view, expand each item listed.
Defining Policies By Using the Policy Builder with Designer 117

118 Policy Build

novdocx (E
N

U
) 29 January 2007
Editing the XML Source

You can edit the XML through the XML editor. You can make changes here as well as through the
GUI interface.

Figure 2-12 Editing the XML Source

The default editor that is loaded is associated to .xml file types. If a default editor can't be found, the
system text editor is loaded. The functionality of the XML Source view is based on the editor that
loads.

Right-click to display the list of the functions the XML editor contains.

Table 2-5 XML Editor Options

Function Description

Undo Undoes the last action.

Revert File Reverts the file to the last version that was saved.

Saves Saves the file.

Cut Cuts the selected information.

Paste Pastes the information into the document.

Shift Right Indents the line to the right.

Shift Left Indents the line to the left.

Attach DTD or XML Schema Attaches a DTD or XML schema file for validation of the policy.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
To select a different XML editor for your Source view:

1 From the Main menu, select Window > Preferences.
2 Select General > Editors > File Associations.
3 Select *.xml from the list under File Types.

4 Select the editor you want (for example, Novell XML Editor) in the Associated editors pane. (If
the editor you want isn't in the list, you can click Add, then add it to the list.)

Validate Validates the XML code.

Preferences Sets the preferences for the XML editor.

Function Description
Defining Policies By Using the Policy Builder with Designer 119

120 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Click OK.
6 Close and reopen the Policy Builder.

Validating the XML Source

The XML editor validates the XML code. Right-click, then select Validate. If there are errors, a red
x is displayed on the line where the error occurs. An explanation at the bottom of the window gives
more information about the problem.

Figure 2-13 Validating the XML Source

In this example, the end tag for if-operation has no matching start tag.

2.3 Regular Expressions
A regular expression is a formula for matching text strings that follow some pattern. Regular
expressions are made up of normal characters and metacharacters. Normal characters include
uppercase and lowercase letters and digits. Metacharacters have special meanings. The following
table contains some of the most common metacharacters and their meanings.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Table 2-6 Common Regular Expressions

The Argument Builder is designed to use regular expressions as defined in Java. The Java Web site
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html) contains further information.

2.4 XPath 1.0 Expressions
Arguments to some conditions, actions, and tokens use XPath 1.0 expressions. XPath is a language
created to provide a common syntax and semantics for functionality shared between XSLT and
XPointer. It is used primarily for addressing parts of an XML document, but also provides basic
facilities for manipulation of strings, numbers and Booleans.

The XPath specification requires that the embedding application provide a context with several
application-defined pieces of information. In DirXML Script (see Section 1.1.2, “DirXML Script,”
on page 15), XPath is evaluated with the following context:

The context node is the current operation.
The context position and size are 1.
There are several available variables:

Those available as parameters to style sheets within Identity Manager (currently
fromNDS, srcQueryProcessor, destQueryProcessor, srcCommandProcessor,
destCommandProcessor, and dnConverter).
Global configuration variables.
Local policy variables.
If there is a name conflict between the different variable sources, then the order of
precedence is local variable, style sheet parameters, global variables.

Metacharacter Description

. Matches any single character.

$ Matches the end of the line.

^ Matches the beginning of a line.

* Matches zero or more occurrences of the character
immediately preceding.

\ Literal escape character. It allows you to search for
any of the metacharacters. For example \$ finds
$1000 instead of matching at the end of the line.

[] Matches any one of the characters between the
brackets.

[0-9] Matches a range of characters with the hyphen.
The example matches any digit.

[A-Za-z] Matches multiple ranges as well. The example
matches all uppercase and lowercase letters.

(?u) Enables Unicode-aware case folding. This flag can
impact performance.

(?i) Enables case-insensitive matching.
Defining Policies By Using the Policy Builder with Designer 121

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

122 Policy Build

novdocx (E
N

U
) 29 January 2007
Namespaces are declared on the policy element.
There are several available functions:

All built-in XPath 1.0 functions.
Java extension functions as provided by NXSL.

Namespaces declarations to associate a prefix with a Java class must be declared on the policy
element.

The W3 Web site (http://www.w3.org/TR/1999/REC-xpath-19991116) contains further information.

2.5 Conditions
This section contains detailed information on all conditions available using the Policy Builder
interface.

Section 2.5.1, “If Association,” on page 122
Section 2.5.2, “If Attribute,” on page 123
Section 2.5.3, “If Class Name,” on page 124
Section 2.5.4, “If Destination Attribute,” on page 125
Section 2.5.5, “If Destination DN,” on page 127
Section 2.5.6, “If Entitlement,” on page 127
Section 2.5.7, “If Global Configuration Value,” on page 128
Section 2.5.8, “If Local Variable,” on page 129
Section 2.5.9, “If Named Password,” on page 131
Section 2.5.10, “If Operation,” on page 132
Section 2.5.11, “If Operation Attribute,” on page 133
Section 2.5.12, “If Operation Property,” on page 135
Section 2.5.13, “If Password,” on page 136
Section 2.5.14, “If Source Attribute,” on page 136
Section 2.5.15, “If Source DN,” on page 137
Section 2.5.16, “If XPath Expression,” on page 138

2.5.1 If Association
Performs a test on the association value of the current operation or the current object.

Fields

Operator Condition is Met When...

Operator Condition is met when...

associated There is an established association for the current object.

available There is a non-empty association value specified by the current
operation.
er and Driver Customization Guide

http://www.w3.org/TR/1999/REC-xpath-19991116

novdocx (E
N

U
) 29 January 2007
Example

This example tests to see if the association is available. When this condition is met, the actions that
are defined are executed.

2.5.2 If Attribute
Performs a test on attribute values of the current object in either the current operation or the source
data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the
test is satisfied if the condition is met in the source data store or in the operation.

Fields

Name
Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

Operator Condition is Met When...

equal The association value specified by the current operation is exactly equal
to the content of the if association.

not-associated There is not an established association for the current object.

not available The association is not available for the current object.

not-equal The association value specified by the current operation is not equal to
the content of the if association.

Operator Condition is met when...

available There is a value available in either the current operation or the source
data store for the specified attribute.

equal There is a value available in either the current operation or the source
data store for the specified attribute, which equals the specified value
when compared using the specified comparison mode.

not available Available would return False.

Operator Condition is met when...
Defining Policies By Using the Policy Builder with Designer 123

124 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example uses the condition If Attribute when filtering for User objects that are disabled or have
a certain title. The policy is Policy to Filter Events, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The condition is looking for any User object that has an attribute of Title with a value of consultant
or sales.

2.5.3 If Class Name
Performs a test on the object class name in the current operation.

Fields

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

not-equal Equal would return False.

Operator Condition is met when...
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

The example uses the condition If Class Name to govern group membership for a User object based
on their title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

Checks to see if the class name of the current object is User.

2.5.4 If Destination Attribute
Performs a test on attribute values of the current object in the destination data store.

Fields

Name
Specify the name of the attribute to test.

Operator Condition is met when...

available There is an object class name available in the current operation.

equal There is an object class name available in the current operation, and it
equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.
Defining Policies By Using the Policy Builder with Designer 125

126 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

Operator Condition is Met When...

Example

The example uses the condition If Attribute to govern group membership for a User object based on
the title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The policy checks to see if the value of the title attribute contains manager.

Operator Condition is met when...

available There is a value available in the destination data store for the specified
attribute.

equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2.5.5 If Destination DN
Performs a test on the destination DN in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Example

2.5.6 If Entitlement
Performs a test on entitlements of the current object, in either the current operation or the Identity
Vault.

Fields

Name
Specify the name of the entitlement to test for the selected condition.

Operator Condition is met when...

available There is a destination DN available.

equal There is a destination DN available, and it equals the specified value
when compared using semantics appropriate to the DN format of the
destination data store.

in-container There is a destination DN available, and it represents an object in the
container, specified by value, when compared using semantics
appropriate to the DN format of the destination data store.

in-subtree There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared using semantics appropriate
to the DN format of the destination data store.

not available Available would return False.

not-equal Equal would return False.

not-in-container In-container would return False.

not-in-subtree In-subtree would return False.
Defining Policies By Using the Policy Builder with Designer 127

128 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

Operator Condition is Met When...

Example

2.5.7 If Global Configuration Value
Performs a test on a global configuration variable.

Operator Condition is met when...

available The named entitlement is available in either the current operation or the
Identity Vault.

changing The current operation contains a change (modify attribute or add attribute)
of the named entitlement.

changing-from The current operation contains a change that removes a value (remove
value) of the named entitlement, which has a value that equals the
specified value, when compared using the specified comparison mode.

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement. It has a value that equals the
specified value, when compared using the specified comparison mode.

equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-changing Changing would return False.

not-changing-from Changing-from would return False.

not-changing-to Changing-to would return False.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

Name
Specify the name of the global variable to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

Operator Condition is Met When...

Example

2.5.8 If Local Variable
Performs a test on a local variable.

Fields

Name
Specify the name of the local variable to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

Operator Condition is met when...

available There is a global configuration variable with the specified name.

equal There is a global configuration variable with the specified name and its
value equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.
Defining Policies By Using the Policy Builder with Designer 129

130 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Operator Condition is met when...

available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.

equal There is a local variable with the specified name, and its value equals the
specified value when compared using the specified comparison mode.

not available Available would return False.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The policy contains five rules that are dependent on each other.

For the If Locate Variable condition to work, the first rule sets four different local variables to test
for groups and where to place the groups.

The condition the rule is looking for is to see if the local variable of manager-group-info is available
and if manager-group-info is not equal to group. If these conditions are met, then the destination
object of group is added.

2.5.9 If Named Password
Performs a test on a password in the current operation with the specified name.

Fields

Name
Specify the name of the named password to test for the selected condition.

Operator
Select the condition test type.
Defining Policies By Using the Policy Builder with Designer 131

132 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

2.5.10 If Operation
Performs a test on the name of the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Value
The values are the operations that the Metadirectory engine looks for in this condition:

add
add-association
check-object-password
delete
get-named-password
modify
modify-association
modify-password
move
init-params

Operator Condition is met when...

available There is password with the specified name available.

not available Available would return False.

Operator Condition is met when...

equal The name of the current operation is exactly equal to content of If
Operation.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
instance

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The condition is checking to see if an add or modify operation has occurred. When one of these
occurs, it sets the local variables.

2.5.11 If Operation Attribute
Performs a test on attribute values in the current operation.

Fields

Name
Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.
Defining Policies By Using the Policy Builder with Designer 133

134 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Operator Condition is met when...

available There is a value available in the current operation (add attribute, add
value, attribute) for the specified attribute.

changing The current operation contains a change (modify attribute or add attribute)
of the specified attribute.

changing-from The current operation contains a change that removes a value (remove
value) of the specified attribute. It equals the specified value when
compared using the specified comparison mode.

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the specified attribute. It equals the specified value when
compared using the specified comparison mode.

equal There is a value available in the current operation (other than a remove
value) for the specified attribute. It equals the specified value when
compared using the specified comparison mode.

not available Available would return False.

not-changing Changing would return False.

not-changing-from Changing-from would return False.

not-changing-to Changing-to would return False.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The condition is checking to see if the attribute of Title is equal to .*manager*, which is a regular
expression. It is looking for a title that has zero or more characters before manager and a single
character after manager. It finds a match if the User object’s title was sales managers.

2.5.12 If Operation Property
Performs a test on an operation property on the current operation.

Fields

Name
Specify the name of the operation property to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

Operator Condition is Met When...

Operator Condition is met when...

available There is an operation property with the specified name on the current
operation.

equal There is a an operation property with the specified name on the current
operation and its value equals the provided content when compared using
the specified comparison mode.

not available Available would return False.

not-equal Equal would return False.
Defining Policies By Using the Policy Builder with Designer 135

136 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

2.5.13 If Password
Performs a test on a password in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Example

2.5.14 If Source Attribute
Performs a test on attribute values of the current object in the source data store.

Fields

Name
Specify the name of the source attribute to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 208.

Operator Condition is met when...

available There is password available in the current operation.

not available Available would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

2.5.15 If Source DN
Performs a test on the source DN in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the source data store for the specified
attribute.

equal There is a value available in the source data store for the specified
attribute. It equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.

Operator Condition is met when...

available

 DN available.

equal There is a source DN available, and it equals the content of the specified
value in-container There is a source DN available, and it represents an
object in the container identified by the specified value.

in-subtree There is a source DN available, and it represents an object in the subtree
identified by the specified value.

not available Available would return False.

not-equal Equal would return False.
Defining Policies By Using the Policy Builder with Designer 137

138 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example uses the condition If Source DN to check if the User object is in the source DN. The
rule is from the predefined rules that come with Identity Manager. For more information, see “Event
Transformation - Scope Filtering - Exclude Subtrees” on page 86.

The condition is checking to see if the source DN is in the Users container. If the object is coming
from that container, it is vetoed.

2.5.16 If XPath Expression
Performs a test on the results of evaluating an XPath 1.0 expression.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

not-in-container In-container would return False.

not-in-subtree In-subtree would return False.

Operator Condition is met when...

true The XPath expression evaluates to True.

false True would return False.

Operator Condition is met when...
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6 Actions
This section contains detailed reference to all actions available using the Policy Builder interface.

Section 2.6.1, “Add Association,” on page 140
Section 2.6.2, “Add Destination Attribute Value,” on page 141
Section 2.6.3, “Add Destination Object,” on page 142
Section 2.6.4, “Add Source Attribute Value,” on page 144
Section 2.6.5, “Add Source Object,” on page 145
Section 2.6.6, “Append XML Element,” on page 146
Section 2.6.7, “Append XML Text,” on page 147
Section 2.6.8, “Break,” on page 148
Section 2.6.9, “Clear Destination Attribute Value,” on page 148
Section 2.6.10, “Clear Operation Property,” on page 149
Section 2.6.11, “Clear Source Attribute Value,” on page 149
Section 2.6.12, “Clear SSO Credential,” on page 150
Section 2.6.13, “Clone By XPath Expressions,” on page 151
Section 2.6.14, “Clone Operation Attribute,” on page 151
Section 2.6.15, “Delete Destination Object,” on page 152
Section 2.6.16, “Delete Source Object,” on page 153
Section 2.6.17, “Find Matching Object,” on page 153
Section 2.6.18, “For Each,” on page 155
Section 2.6.19, “Generate Event,” on page 156
Section 2.6.20, “Implement Entitlement,” on page 158
Section 2.6.21, “Move Destination Object,” on page 159
Section 2.6.22, “Move Source Object,” on page 160
Section 2.6.23, “Reformat Operation Attribute,” on page 161
Section 2.6.24, “Remove Association,” on page 162
Section 2.6.25, “Remove Destination Attribute Value,” on page 163
Section 2.6.26, “Remove Source Attribute Value,” on page 164
Section 2.6.27, “Rename Destination Object,” on page 165
Defining Policies By Using the Policy Builder with Designer 139

140 Policy Build

novdocx (E
N

U
) 29 January 2007
Section 2.6.28, “Rename Operation Attribute,” on page 165
Section 2.6.29, “Rename Source Object,” on page 166
Section 2.6.30, “Send Email,” on page 166
Section 2.6.31, “Send Email From Template,” on page 168
Section 2.6.32, “Set Default Attribute Value,” on page 169
Section 2.6.33, “Set Destination Attribute Value,” on page 170
Section 2.6.34, “Set Destination Password,” on page 171
Section 2.6.35, “Set Local Variable,” on page 172
Section 2.6.36, “Set Operation Association,” on page 173
Section 2.6.37, “Set Operation Class Name,” on page 174
Section 2.6.38, “Set Operation Destination DN,” on page 174
Section 2.6.39, “Set Operation Property,” on page 175
Section 2.6.40, “Set Operation Source DN,” on page 176
Section 2.6.41, “Set Operation Template DN,” on page 176
Section 2.6.42, “Set Source Attribute Value,” on page 177
Section 2.6.43, “Set Source Password,” on page 178
Section 2.6.44, “Set SSO Credential,” on page 179
Section 2.6.45, “Set SSO Passphrase,” on page 179
Section 2.6.46, “Set XML Attribute,” on page 180
Section 2.6.47, “Status,” on page 181
Section 2.6.48, “Strip Operation Attribute,” on page 182
Section 2.6.49, “Strip XPath,” on page 182
Section 2.6.50, “Trace Message,” on page 183
Section 2.6.51, “Veto,” on page 184
Section 2.6.52, “Veto If Operational Attribute Not Available,” on page 185

2.6.1 Add Association
Sends an add association command to the Identity Vault, with the specified association.

Fields

Mode
Select whether this actions should be added to the current operation, or written directly to the
Identity Vault.

DN
Specify the DN of the target object or leave blank to use the current object.

Association
Specify the value of the association to be added.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6.2 Add Destination Attribute Value
Adds a value to an attribute on an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to be added.

Value
Specify the attribute value to be added.

Example

The example adds the destination attribute value to the OU attribute. It creates the value from the
local variables that are created. The rule is from the predefined rules that come with Identity
Defining Policies By Using the Policy Builder with Designer 141

142 Policy Build

novdocx (E
N

U
) 29 January 2007
Manager. For more information, see “Command Transformation - Create Departmental Container -
Part 1 and Part 2” on page 76.

2.6.3 Add Destination Object
Creates a new object in the destination data store.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

Class Name
Specify the class name of the object to be created.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the object to be created.

Remarks

Any attribute values to be added as part of the object creation must be done in subsequent
Section 2.6.2, “Add Destination Attribute Value,” on page 141 actions using the same DN.

Example

The example creates the department container that is needed. The rule is from the predefined rules
that come with Identity Manager. For more information, see “Command Transformation - Create
Departmental Container - Part 1 and Part 2” on page 76.
Defining Policies By Using the Policy Builder with Designer 143

144 Policy Build

novdocx (E
N

U
) 29 January 2007
The Organizational Unit object is created. The value for the OU attribute is created from the
destination attribute value action that occurs after this action.

2.6.4 Add Source Attribute Value
Adds a value to an attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to be added.

Value
Specify the attribute value to be added.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6.5 Add Source Object
Creates an object of the specified type to be created in the source data store. Any attribute values to
be added as part of the object creation must be done in subsequent Add Source Attribute Value
(page 144) actions using the same DN.

Fields

Class Name
Specify the class name of the object to be added.

DN
Specify the DN of the object to be added.
Defining Policies By Using the Policy Builder with Designer 145

146 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

2.6.6 Append XML Element
Appends an element to a set of elements selected by an XPath expression.

Fields

Variable Name
Specify the tag name of the XML element. This name can contain a namespace prefix if the
prefix has been previously defined in this policy.

XPath Expression
Specify an XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6.7 Append XML Text
Appends text to a set of elements selected by an XPath expression.

Fields

XPath Expression
XPath 1.0 expression that returns a node set containing the elements to which the text should be
appended.

String
Specify the text to be appended.
Defining Policies By Using the Policy Builder with Designer 147

148 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

2.6.8 Break
Ends processing of the current operation by the current policy.

Example

2.6.9 Clear Destination Attribute Value
Removes the all values of an attribute from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Example

2.6.10 Clear Operation Property
Clears any operation property the current operation.

Fields

Property Name
Specify the name of the operation property to clear.

Example

2.6.11 Clear Source Attribute Value
Removes the all values of an attribute from an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.
Defining Policies By Using the Policy Builder with Designer 149

150 Policy Build

novdocx (E
N

U
) 29 January 2007
Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Example

2.6.12 Clear SSO Credential
Clears the Single Sign On credential, so objects can be deprovisioned. This action is part of the
Credential Provisioning policies. For more information, see Chapter 4, “Novell Credential
Provisioning Policies,” on page 327.

Fields

Credential Store Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object.

Login Parameter Strings
Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6.13 Clone By XPath Expressions
Appends deep copies of a set of XML nodes selected by an XPath expression to a set of elements
selected by another XPath expression.

Fields

Source XPath Expression
Specify the XPath 1.0 expression that returns the node set containing the nodes to be copied.

Destination XPath Expression
Specify the XPath 1.0 expression that returns a node set containing the elements to which the
copied nodes are to be appended.

Example

2.6.14 Clone Operation Attribute
Copies all occurrences of an attribute within the current operation to a different attribute within the
current operation.

Fields

Source Name
Specify the name of the attribute to be copied from.
Defining Policies By Using the Policy Builder with Designer 151

152 Policy Build

novdocx (E
N

U
) 29 January 2007
Destination Name
Specify the name of the attribute to be copied to.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The Clone Operation Attribute is taking the information from the Group Membership attribute and
adding that to the Security Equals attribute so the values are the same.

2.6.15 Delete Destination Object
Deletes an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Example

2.6.16 Delete Source Object
Deletes an object in the source data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object to delete in the source data store. This object can be the current object,
or be specified by a DN or an association.

Example

2.6.17 Find Matching Object
Finds a match for the current object in the destination data store.

Fields

Scope
Select the scope of the search. The scope might be an entry, a subordinates, or a subtree.
Defining Policies By Using the Policy Builder with Designer 153

154 Policy Build

novdocx (E
N

U
) 29 January 2007
DN
Specify the DN that is the base of the search.

Match Attributes
Specify the attribute values to search for.

Remarks

Find Matching Object is only valid when the current operation is an add.

The DN argument is required when scope is “entry”, and is optional otherwise. At least one match
attribute is required when scope is “subtree” or “subordinates”.

The results are undefined if scope is entry and there are match attributes specified. If the destination
data store is the connected application, then an association is added to the current operation for each
successful match that is returned. No query is performed if the current operation already has a non-
empty association, thus allowing multiple find matching object actions to be strung together in the
same rule.

If the destination data store is the Identity Vault, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of the
current operation is set to the source DN of the matching object. If only a single result is returned
and it is already associated, then the destination DN of the current operation is set to the single
character ￼. If multiple results are returned, then the destination DN of the current
operation is set to the single character �.

Example

The example matches on Users objects using the attributes CN and L. The location where the rule is
searching starts at the Users container and adds the information stored in the OU attribute to the DN.
The rule is from the predefined rules that come with Identity Manager. For more information, see
“Matching - By Attribute Value” on page 94.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
When you click the Argument Builder icon, the Match Attribute Builder comes up. You specify the
attribute you want to match in the builder. This examples uses the CN and L attributes.

2.6.18 For Each
Repeats a set of actions for each node in a node set.

Fields

Node Set
Specify the node set.

Action
Specify the actions to perform on each node in the node set.

Remarks

The current node is a different value for each iteration of the actions, if a local variable is used.

If a node in the node set is an entitlement, then the for each implicitly performs an “Implement
Entitlement” on page 158 action.

Example
Defining Policies By Using the Policy Builder with Designer 155

156 Policy Build

novdocx (E
N

U
) 29 January 2007
The following is an example of the Argument Actions Builder being used to provide the action
argument:

2.6.19 Generate Event
Sends a user-defined event to Novell Audit.

Fields

ID
Specify the ID of the event. The ID must be an integer in the range of 1000-1999.

Level
Select the level of the event.

Strings
Specify User-defined string, integer, and binary values to include with the event. These values
are provided using the Named String Builder.

Level Description

log-emergency Events that cause the Metadirectory engine or driver to shut down.

log-alert Events that require immediate attention.

log-critical Events that can cause parts of the Metadirectory engine or driver to
malfunction.

log-error Events describing errors that can be handled by the Metadirectory
engine or driver.

log-warning Negative events not representing a problem.

log-notice Events (positive or negative) an administrator can use to understand or
improve use and operation.

log-info Positive events of any importance.

log-debug Events of relevance for support or engineers to debug the operation of
the Metadirectory engine or driver.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Remarks

The Novell Audit event structure contains a target, a subTarget, three strings (text1, text2, text3),
two integers (value, value3), and a generic field (data). The text fields are limited to 256 bytes, and
the data field can contain up to 3 KB of information, unless a larger data field is enabled in your
environment.

Example

The example has four rules that implement a placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The Generate Event action is used to send an event Novell Audit. The policy name is Policy

String Name Description

target The object being acted upon.

target-type Integer specifying a predefined format for the target. Predefined values
for target-type are currently:

0 = None

1 = Slash Notation

2 = Dot Notation

3 = LDAP Notation

subTarget The subcomponent of the target being acted upon.

text1 Text entered here is stored in the text1 event field.

text2 Text entered here is stored in the text2 event field.

text3 Text entered here is stored in the text3 event field.

value Any number entered here is stored in the value event field.

value3 Any number entered here is stored in the value3 event field.

data Data entered here is stored in the blob event field.
Defining Policies By Using the Policy Builder with Designer 157

158 Policy Build

novdocx (E
N

U
) 29 January 2007
to Place by Surname, and it is available for download from Novell’s support Web site. For more
information “Downloadable Identity Manager Policies” on page 36.

The following is an example of the Named String Builder being used to provide the strings
argument.

Generate Event is creating an event with the ID 1000 and displaying the text that is generated by the
local variable of LVUser1. The local variable LVUser1 is the string of User:Operation Attribute “cn”
+” added to the “+”Training\Users\Active\Users1”+” container”. The event reads User:jsmith added
to the Training\Users\Active\Users1 container.

2.6.20 Implement Entitlement
Designates actions that implement an entitlement so that the status of those entitlements might be
reported to the agent that granted or revoked the entitlement.

Fields

Node Set
Node set containing the entitlements being implemented by the specified actions.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Action
Actions that implement the specified entitlements.

Example

The following is an example of the Argument Actions Builder, used to provide the action argument:

2.6.21 Move Destination Object
Moves an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Class Name
(Optional) Specify the class name of the object to be moved. Leave blank to use the class name
from the current object.

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container to Move to
Select the target container. This container is specified by a DN or an association.
Defining Policies By Using the Policy Builder with Designer 159

160 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example contains a single rule that disables a user’s account and moves it to a disabled
container when the Description attribute indicates the user is terminated. The policy is named
Disable User Account and Move When Terminated, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The policy checks to see if it is a modify event on a User object and if the attribute Description
contains the value of terminated. If that is the case, then it sets the attribute of Login Disabled to true
and moves the object to the User\Disabled container.

2.6.22 Move Source Object
Moves an object in the source data store.

Fields

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container to Move to
Select the target container. This container is specified by a DN or an association.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6.23 Reformat Operation Attribute
Reformats all values of an attribute within the current operation using a pattern.

Fields

Name
Specify the name of the attribute.

Value Type
Specify the syntax of the new attribute values.

Value
Specify a value to use as a pattern for the new format of the attribute values. If the original
value is needed to constructed the new value, it must be obtained by referencing the local
variable current-value.

Example

The example reformats the telephone number. It changes it from (nnn)-nnn-nnnn to nnn-nnn-nnnn.
The rule is from the predefined rules that come with Identity Manager. For more information, see
“Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-
nnnn” on page 88.
Defining Policies By Using the Policy Builder with Designer 161

162 Policy Build

novdocx (E
N

U
) 29 January 2007
The action reformat operation attribute changes the format of the telephone number. The rule uses
the Argument Builder and regular expressions to change how the information is displayed.

2.6.24 Remove Association
Sends a remove association command to the Identity Vault.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association
Specify the value of the association to be removed.

Example

The example takes a delete operation and disables the User object instead. It transforms the event.
The rule is from the predefined rules that come with Identity Manager. For more information, see
“Command Transformation - Publisher Delete to Disable” on page 78.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
When a delete operation occurs for a User object, the value of the attribute Login Disabled is set to
true and the association is removed from the object. The association is removed because the
associated object in the connected application no longer exists.

2.6.25 Remove Destination Attribute Value
Removes an attribute value from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type
Specify the syntax of the attribute value to be removed.

Value
Specify the value of the new attribute.
Defining Policies By Using the Policy Builder with Designer 163

164 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

2.6.26 Remove Source Attribute Value
Removes the specified value from the named attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type
Specify the syntax of the attribute value to be removed

Value
Specify the attribute value to be removed.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6.27 Rename Destination Object
Renames an object in the destination data store

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

String
Specify the new name of the object.

Example

2.6.28 Rename Operation Attribute
Renames all occurrences of an attribute within the current operation.
Defining Policies By Using the Policy Builder with Designer 165

166 Policy Build

novdocx (E
N

U
) 29 January 2007
Fields

Source Name
Specify the original attribute name.

Destination Name
Specify the new attribute name.

Example

2.6.29 Rename Source Object
Renames an object in the source data store.

Fields

Object
Select the target object. This object can be the current object, or specified by a DN or an
association.

String
Specify the new name of the object.

Example

2.6.30 Send Email
Sends an e-mail notification.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

ID
(Optional) Specify the User ID in the SMTP system sending the message.

Server
Specify the SMTP server name.

Password
(Optional) Specify the SMTP server account password.

IMPORTANT: The value of the password attribute is stored in clear text.

Type
Select the e-mail message type.

Strings
Specify the values containing the various e-mail addresses, subject, and message. The
following table lists valid named string arguments:

Example

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

from Specifies the address to be used as the originating e-mail address.

reply-to Specifies the address to be used as the e-mail message reply address.

subject Specifies the e-mail subject.

message Specifies the content of the e-mail message.

encoding Specifies the character encoding to use for the e-mail message.
Defining Policies By Using the Policy Builder with Designer 167

168 Policy Build

novdocx (E
N

U
) 29 January 2007
The following is an example of the Named String Builder being used to provide the strings
arguments:

2.6.31 Send Email From Template
Generates an e-mail notification using a template.

Fields

Notification DN
Specify the slash form DN of the SMTP notification configuration object.

Template DN
Specify the slash form DN of the e-mail template object.

Password
(Optional) Specify the SMTP server account password.

IMPORTANT: The value of the password attribute is stored in clear text.

Strings
Specify additional fields for the e-mail message. The following table contains reserved field
names, which specify the various e-mail addresses:

Each template might also define fields that can be replaced in the subject and body of the email
message.

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

reply-to Specifies the address to be used as the e-mail message reply address.

encoding Specifies the character encoding to use for the e-mail message.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The following is an example of the Named String Builder being used to provide the strings
argument:

2.6.32 Set Default Attribute Value
Adds default values to the current operation (and optionally to the current object in the source data
store) if no values for that attribute already exist. It is only valid when the current operation is add.

Fields

Attribute Name
Specify the name of the default attribute.

Write Back
Select whether or not to also write back the default values to source data store.

Values
Specify the default values of the attribute.

Example

The example sets the default value for the attribute company. You can set the value for an attribute
of your choice. The rule is from the predefined rules that come with Identity Manager. For more
information, see “Creation - Set Default Attribute Value” on page 82.
Defining Policies By Using the Policy Builder with Designer 169

170 Policy Build

novdocx (E
N

U
) 29 January 2007
To build the value, the Argument Value List Builder is launched. See “Argument Value List Builder”
on page 67 for more information on the builder. You can set the value to what is needed. In this case,
the Argument Builder is used and the text is set to be the name of the company.

2.6.33 Set Destination Attribute Value
Adds a value to an attribute on an object in the destination data store, and removes all other values
for that attribute.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object in the destination data store. Leave blank
to use the class name from the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to set.

Value
Specify the attribute values to set.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The example takes a delete operation and disables the User object instead. The rule is from the
predefined rules that come with Identity Manager. For more information, see “Command
Transformation - Publisher Delete to Disable” on page 78.

The rule sets the value for the attribute of Login Disabled to true. The rule uses the Argument
Builder to add the text of true for the value of the attribute. See “Argument Builder” on page 64 for
more information about the builder.

2.6.34 Set Destination Password
Sets the password for the current object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.
Defining Policies By Using the Policy Builder with Designer 171

172 Policy Build

novdocx (E
N

U
) 29 January 2007
String
Specify the password to be set.

Example

The example sets a default password for a User object that is created. The rule is from the predefined
rules that come with Identity Manager. For more information, see “Creation - Set Default Password”
on page 83.

When a User object is created, the password is set to the Given Name attribute plus the Surname
attribute.

2.6.35 Set Local Variable
Sets a local variable.

Fields

Variable Name
Specify the name of the local variable.

Variable Type
Select the type of local variable. This can be a string, an XPath 1.0 Node Set, or a Java object.

Value
Specify the value of the local variable.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title, and it is available for download from Novell’s support Web site. For
more information, see “Downloadable Identity Manager Policies” on page 36.

The local variable is set to the value that is in the User object’s destination attribute of Object Class
plus the Local Variable of manager-group-info. The Argument Builder is used to construct the local
variable. See “Argument Builder” on page 64 for more information.

2.6.36 Set Operation Association
Sets the association value for the current operation.

Fields

Association
Provide the new association value.
Defining Policies By Using the Policy Builder with Designer 173

174 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

2.6.37 Set Operation Class Name
Sets the object class name for the current operation.

Fields

String
Provide the new class name.

Example

2.6.38 Set Operation Destination DN
Sets the destination DN for the current operation.

Fields

DN
Specify the new destination DN.

Example

The example places the objects in the Identity Vault using the structure that is mirrored from the
connected system. You need to define at what point the mirroring begins in the source and
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
destination data stores. The rule is from the predefined rules that come with Identity Manager. For
more information, see “Creation - Set Default Attribute Value” on page 82.

The rule sets the operation destination DN to be the local variable of the destination base location
plus the source DN.

2.6.39 Set Operation Property
Sets an operation property. An operation property is a named value that is stored within an
operation. It is typically used to supply additional context that might be needed by the policy that
handles the results of an operation.

Fields

Property Name
Specify the name of the operation property.

String
Specify the name of the operation property.

Example
Defining Policies By Using the Policy Builder with Designer 175

176 Policy Build

novdocx (E
N

U
) 29 January 2007
2.6.40 Set Operation Source DN
Sets the source DN for the current operation.

Fields

DN
Specify the new source DN.

Example

2.6.41 Set Operation Template DN
Sets the template DN for the current operation to the specified value. This action is only valid when
the current operation is add.

Fields

DN
Specify the template DN.

Example

The example applies the Manager template if the Title attribute contains the word Manager. The
name of the policy is Policy: Assign Template to User Based on Title, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The template Manager Template is applied to any User object that has the attribute of Title available
and it contains the word manager somewhere in the title. The policy uses regular expressions to find
all possible matches.

2.6.42 Set Source Attribute Value
Adds a value to an attribute on an object in the source data store, and removes all other values for
that attribute.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object in the source data store. Leave blank to
use the class name from the current object.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value.

Value
Specify the attribute value to be set.
Defining Policies By Using the Policy Builder with Designer 177

178 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The action takes the value of the destination attribute Internet EMail Address and sets the source
attribute of Email to this same value.

2.6.43 Set Source Password
Sets the password for the current object in the source data store.

Fields

String
Specify the password to be set.

Example
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2.6.44 Set SSO Credential
Sets the SSO credential when a user object is created or when a password is modified. This action is
part of the Credential Provisioning policies. For more information, see Chapter 4, “Novell
Credential Provisioning Policies,” on page 327.

Fields

Credential Store Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object.

Login Parameter Strings
Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.

Example

2.6.45 Set SSO Passphrase
Sets the Novell SecureLogin® passphrase and answer when a User object is provisioned. This action
is part of the Credential Provisioning policies. For more information, see Chapter 4, “Novell
Credential Provisioning Policies,” on page 327.

Fields

Credential Store Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.
Defining Policies By Using the Policy Builder with Designer 179

180 Policy Build

novdocx (E
N

U
) 29 January 2007
Question and Answer Strings
Specify the SecureLogin passphrase question and answer.

Example

The SecureLogin passphrase question and answer are stored as strings in the policy. Click the Edit
the strings icon to launch the string builder. Specify the passphrase question and answer.

2.6.46 Set XML Attribute
Sets an XML attribute on a set of elements selected by an XPath expression.

Fields

Name
Specify the name of the XML attribute. This name can contain a namespace prefix if the prefix
has been previously defined in this policy.

XPath Expression
XPath 1.0 expression that returns a node set containing the elements on which the XML
attribute should be set.

String
Specify the value of the XML attribute.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.6.47 Status
Generates a status notification.

Fields

Level
Specify the status level of the notification.

Message
Provide the status message by using the Argument Builder.

Remarks

If level is retry, then the policy immediately halts processing of the input document and schedules a
retry of the event currently being processed.

If level is fatal, then the policy immediately halts processing of the input document and initiates a
shutdown of the driver.

If the current operation has an event-id, then that event-id is used for the status notification,
otherwise there is no event-id reported.
Defining Policies By Using the Policy Builder with Designer 181

182 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

2.6.48 Strip Operation Attribute
Strips all occurrences of an attribute from the current operation.

Fields

Name
Specify the name of the attribute to be stripped.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The action strips the attribute of Email. The value that is kept is what was in the destination Email
attribute.

2.6.49 Strip XPath
Strips nodes selected by an XPath expression.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

XPath Expression
Specify the XPath 1.0 expression that returns the node set containing the nodes to be stripped.

Example

2.6.50 Trace Message
Sends a message to DSTRACE.

Fields

Level
Specify the trace level of the message. The default level is 0. The message only appears if the
specified trace level is less than or equal to the trace level configured in the driver.
For information on how to set the trace level on the driver, see “Viewing Identity Manager
Processes” in the Novell Identity Manager 3.0.1 Administration Guide.

Color
Select the color of the trace message.

String
Specify the value of the trace message.

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The Trace Message action is used to send a trace message into DSTRACE. The policy name
Defining Policies By Using the Policy Builder with Designer 183

184 Policy Build

novdocx (E
N

U
) 29 January 2007
is Policy to Place by Surname, and it is available for download from Novell’s support Web site. For
more information “Downloadable Identity Manager Policies” on page 36.

The action sends a trace message to DSTRACE. The contents of the local variable is LVUsers1 and
it shows up in yellow in DSTRACE.

2.6.51 Veto
Vetoes the current operation.

Example

The example excludes all events that come from the specified subtree. The rule is from the
predefined rules that come with Identity Manager. For more information, see “Event Transformation
- Scope Filtering - Exclude Subtrees” on page 86.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The action vetoes all events that come from the specified subtree.

2.6.52 Veto If Operational Attribute Not Available
Conditionally cancels the current operation and ends processing of the current policy, based on the
availability of an attribute in the current operation.

Fields

Name
Specify the name of the attribute.

Example

The example does not allow all User objects to be created unless the attributes Given Name,
Surname, Title, Description, and Internet EMail Address are available. The policy name is Policy to
Enforce the Presences of Attributes and it is available for download from Novell’s support Web site.
For more information, see “Downloadable Identity Manager Policies” on page 36.

The actions vetoes the operation if the attributes of Given Name, Surname, Title, Description, and
Internet Email Address are not available.
Defining Policies By Using the Policy Builder with Designer 185

186 Policy Build

novdocx (E
N

U
) 29 January 2007
2.7 Noun Tokens
This section contains detailed reference to all noun tokens available using the Argument Builder
interface.

Section 2.7.1, “Added Entitlement,” on page 186
Section 2.7.2, “Association,” on page 187
Section 2.7.3, “Attribute,” on page 187
Section 2.7.4, “Class Name,” on page 188
Section 2.7.5, “Destination Attribute,” on page 188
Section 2.7.6, “Destination DN,” on page 189
Section 2.7.7, “Destination Name,” on page 190
Section 2.7.8, “Entitlement,” on page 190
Section 2.7.9, “Global Configuration Value,” on page 191
Section 2.7.10, “Local Variable,” on page 191
Section 2.7.11, “Named Password,” on page 192
Section 2.7.12, “Operation,” on page 192
Section 2.7.13, “Operation Attribute,” on page 193
Section 2.7.14, “Operation Property,” on page 194
Section 2.7.15, “Password,” on page 194
Section 2.7.16, “Removed Attribute,” on page 194
Section 2.7.17, “Removed Entitlement,” on page 194
Section 2.7.18, “Source Attribute,” on page 195
Section 2.7.19, “Source DN,” on page 195
Section 2.7.20, “Source Name,” on page 196
Section 2.7.21, “Text,” on page 196
Section 2.7.22, “Unique Name,” on page 197
Section 2.7.23, “Unmatched Source DN,” on page 199
Section 2.7.24, “XPath,” on page 200

2.7.1 Added Entitlement
Expands to the values of an entitlement granted in the current operation.

Fields

Name
Name of the entitlement.

Example
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2.7.2 Association
Expands to the association value from the current operation.

Example

The example is from the predefined rules that come with Identity Manager. For more information on
the predefined rule, see “Command Transformation - Publisher Delete to Disable” on page 78.

The action of Remove Association uses the Association token to retrieve the value from the current
operation. The rule removes the association from the User object so that any new events coming
through do not affect the User object.

2.7.3 Attribute
Expands to the value of an attribute from the current object in current operation and in the source
data store. It can be logically thought of as the union of the operation attribute token and the source
attribute token. It does not include the removed values from a modify operation.

Fields

Name
Specify the name of the attribute.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see “Creation - Set Default Password” on page 83.
Defining Policies By Using the Policy Builder with Designer 187

188 Policy Build

novdocx (E
N

U
) 29 January 2007
The action of Set Destination Password uses the attribute token to create the password. The
password is made up of the Given Name attribute and the Surname attribute. When you are in the
Argument Builder Editor, you browse and select the attribute you want to use.

2.7.4 Class Name
Expands to the object class name from the current operation.

Example

2.7.5 Destination Attribute
Expands to the specified attribute value of the current object, a DN, or association, in the destination
data store.

Fields

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name
Name of the attribute.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The policy creates the Destination Attribute with the Argument Builder. The action of Set Local
Variable contains the Destination Attribute token.

You build the Destination Attribute through the Editor. In this example, the attribute of Object Class
is set. DN is used to select the target object. The value of DN is the Local Variable of manager-
group-dn.

2.7.6 Destination DN
Expands to the destination DN from the current operation.

Fields

Convert
Select whether or not to convert the DN to the format used by the source data store.

Start
Specify the RDN index to start with:

Index 0 is the root-most RDN
Positive indexes are an offset from the root-most RDN
Index -1 is the leaf-most segment
Negative indexes are an offset from the leaf-most RDN towards the root-most RDN
Defining Policies By Using the Policy Builder with Designer 189

190 Policy Build

novdocx (E
N

U
) 29 January 2007
Length
Specify the number of RDN to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) + 1 =
5, -2 = (5 + (-2)) + 1 = 4, etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Example

The example uses the Destination DN token to set the value for the local variable of target-container.
The policy creates a department container for the User object if it does not exist. The policy is from
the predefined rules that come with Identity Manager. For more information, see “Command
Transformation - Create Departmental Container - Part 1 and Part 2” on page 76.

2.7.7 Destination Name
Expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified
from the current operation.

Example

2.7.8 Entitlement
Expands to the values of a granted entitlement from the current object.

Fields

Name
Specify the name of the entitlement.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.7.9 Global Configuration Value
Expands to the value of a global configuration value.

Fields

Name
Name of the global configuration value.

Example

2.7.10 Local Variable
Expands to the value of a local variable.

Fields

Name
Specify the name of the local variable.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The action Add Destination Object uses the Local Variable token.
Defining Policies By Using the Policy Builder with Designer 191

192 Policy Build

novdocx (E
N

U
) 29 January 2007
The Local Variable can only be used if the action Set Local Variable has been used previously in the
policy. It sets the value that is stored in the Local Variable. In the Editor, you click the browse icon
and all of the local variables that have been defined are listed. Select the correct local variable.

The value of the local variable is group-manager-dn. In the rule before this one, the Set Local
Variable action defined group-manager-dn as DN of the manager’s group Users\ManagersGroup.

2.7.11 Named Password
Expands to the named password from the driver.

Fields

Name
Specify the name of the password.

Example

2.7.12 Operation
Expands to the name of the current operation.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

2.7.13 Operation Attribute
Expands to the value of the specified attribute from the current XDS operation. It is different from
Source Attribute and Destination Attribute, because it is always accessed directly from what is
available in the current XDS operation as opposed to being queried from the source or destination
data stores. It does not include the removed values from a modify operation.

Fields

Name
Specify the name of the attribute.

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The policy name is Policy to Place by Surname, and it is available for download from
Novell’s support Web site. For more information “Downloadable Identity Manager Policies” on
page 36.
Defining Policies By Using the Policy Builder with Designer 193

194 Policy Build

novdocx (E
N

U
) 29 January 2007
The action Set Operation Destination DN contains the Operation Attribute token. The Operation
Attribute token sets the Destination DN to the CN attribute. The rule takes the context of
Training\Users\Active\Users and adds a \ plus the value of the CN attribute.

2.7.14 Operation Property
The XML attribute attached to an <operation-data> element by a policy. It is a place for
policies to store and forward information for consumption by other policies.

Remarks

An XML attribute is a name value pair associated with an element in the XDS document.

Fields

Name
Specify the name of the operation property

Example

2.7.15 Password
Expands to the password from the current operation.

Example

2.7.16 Removed Attribute
Expands to the values of an attribute being removed in the current operation. It only applies to
modify operations.

Fields

Name
Specify the name of the attribute

Example

2.7.17 Removed Entitlement
Expands to the values of an entitlement revoked in the current operation.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

Name
Specify the name of the entitlement.

Example

2.7.18 Source Attribute
Expands to the values of an attribute from an object in the source data store.

Fields

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name
Name of the attribute.

Example

2.7.19 Source DN
Expands to the source DN from the current operation.

Fields

Convert
Select whether or not to convert the DN to the format used by the destination data store.

Start
Specify the RDN index to start with:

Index 0 is the root-most RDN
Positive indexes are an offset from the root-most RDN
Index -1 is the leaf-most segment
Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Number of RDN’s segments to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) + 1 =
5, -2 = (5 + (-2)) + 1 = 4, etc.
Defining Policies By Using the Policy Builder with Designer 195

196 Policy Build

novdocx (E
N

U
) 29 January 2007
Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used, otherwise only the
portion of the DN specified by start and length is used.

Example

2.7.20 Source Name
Expands to the unqualified Relative Distinguished Name (RDN) of the source DN from the current
operation.

Example

2.7.21 Text
Expands to the text.

Fields

Text
Specify the text.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The Text token is used in the action Set Location Variable to define the DN of the manager’s group.
The Text token can contain objects or plain text.

The Text noun contains the DN for the manager’s group. You can browse to the object you want to
use, or type the information into the editor.

2.7.22 Unique Name
Expands to a pattern-based name that is unique in the destination data store according to the criteria
specified.

Fields

Name
Specify the name of attribute to check for uniqueness.

Scope
Specify the scope in which to check uniqueness.

Start Search
Select a starting point for the search. The starting point can be the root of the data store, or
specified by a DN or association.
Defining Policies By Using the Policy Builder with Designer 197

198 Policy Build

novdocx (E
N

U
) 29 January 2007
Pattern
Specify patterns to use to generate unique values by using the Argument Builder.

Counter Start
Specify the a number to start counter used when needed to find a unique name.

Digits
Specify the width in digits of counter, the default is 1. The Pad counter with leading 0’s
checkbox prepends 0 to match the digit length. For example, with a digit width of 3, the initial
unique value is be appended with 001, then 002, and so on.

Remarks

For each specified pattern, a query is performed against the destination data store, using the supplied
attribute name, scope, and search start. Each specified pattern is tried in order until a value is found
that does not return any found objects.

If all of the specified patterns are exhausted, the final pattern has a counter appended to it and the
pattern is tried repeatedly (increasing the counter each time) until the query does not return any
instances.

The counter can be set to start at a different number using the counter start field. The counter uses
the number of digits specified by the digits field. If the number of digits is less than those specified,
then the counter is right padded with zeros. When the number of digits exceeds those specified, then
no unique name is generated and the enclosing rule returns an error status.

If the destination data store is the Identity Vault and name field is left blank, then a search is
performed against the pseudo-attribute “[Entry].rdn”, which represents the RDN of an object
without respect to what the naming attribute might be. If the destination data store is the connected
application, then the name field is required.

Example

The following is an example of the Editor pane when constructing the unique name argument:
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The following pattern was constructed to provide unique names:

If this pattern does not generate a unique name, a digit is appended, incrementing up to the specified
number of digits. In this example, nine additional unique names would be generated by the
appended digit before an error occurs (pattern1 - pattern9).

2.7.23 Unmatched Source DN
Expands to the part of the source DN in the current operation that corresponds to the part of the DN
that was not matched by the most recent match of an If Source DN condition.

Fields

Convert
Select whether or not to convert the DN to the format used by the destination data store.

Remarks

If there were no matches, the entire DN is used.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see “Matching - Subscriber Mirrored - LDAP Format” on page 92.

The action of Finding Matching Object uses the Unmatched Source DN token to build the matching
information in LDAP format. It takes the unmatched portion of the source DN to make a match.
Defining Policies By Using the Policy Builder with Designer 199

200 Policy Build

novdocx (E
N

U
) 29 January 2007
2.7.24 XPath
Expands to results of evaluating an XPath 1.0 expression.

Fields

Expression
Specify the XPath 1.0 expression to evaluate.

Example

2.8 Verb Tokens
This section contains detailed reference to all verbs tokens available using the Argument Builder
interface.

Section 2.8.1, “Escape Destination DN,” on page 200
Section 2.8.2, “Escape Source DN,” on page 201
Section 2.8.3, “Lower Case,” on page 201
Section 2.8.4, “Parse DN,” on page 202
Section 2.8.5, “Replace All,” on page 204
Section 2.8.6, “Replace First,” on page 205
Section 2.8.7, “Substring,” on page 206
Section 2.8.8, “Upper Case,” on page 207

2.8.1 Escape Destination DN
Escapes a string according to the rules of the DN format of the destination data store.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see “Placement - Publisher Flat” on page 98.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The action of Set Operation Destination DN uses the Escape Destination DN token to build the
destination DN of the User object.

The Escape Destination DN token takes the value in Unique Name and sets it to the format for the
destination DN.

2.8.2 Escape Source DN
Escapes a string according to the rules of the DN format of the source data store.

Example

2.8.3 Lower Case
Converts the characters in a string to lowercase.

Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Defining Policies By Using the Policy Builder with Designer 201

202 Policy Build

novdocx (E
N

U
) 29 January 2007
Given Name and Surname, and it is available for download at Novell’s support Web site. For more
information, see “Downloadable Identity Manager Policies” on page 36.

The Lower Case token sets all of the information in the action Set Destination attribute value to
lowercase.

2.8.4 Parse DN
Converts a DN to an alternate format.

Fields

Start
Specify the RDN index to start with:

Index 0 is the root-most RDN
Positive indexes are an offset from the root-most RDN
Index -1 is the leaf-most segment
Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Number of RDN’s to include. Negative numbers are interpreted as (total # of segments +
length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) + 1 = 5, -2 = (5 +
(-2)) + 1 = 4, etc.

Source DN Format
Specifies the format used to parse the source DN.

Destination DN Format
Specify the format used to output the parsed DN.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Source DN Delimiter
Specify the custom source DN delimiter set if Source DN Format is set to custom.

Destination DN Delimiter
Specify the custom destination DN delimiter set if Destination DN Format is set to custom.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

When specifying custom DN formats, the eight characters that make up the delimiter set are defined
as follows:

1. Typed Name Boolean Flag: 0 means names are not typed, and 1 means names are typed

2. Unicode No-Map Character Boolean Flag: 0 means don’t output or interpret unmappable Unicode
characters as escaped hex digit strings, such as \FEFF. The following Unicode characters are not
accepted by eDirectory: 0xfeff, 0xfffe, 0xfffd, and 0xffff.

3. Relative RDN Delimiter

4. RDN Delimiter

5. Name Divider

6. Name Value Delimiter

7. Wildcard Character

8. Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, the orientation of the name is
root right, otherwise the orientation is root left.

If there are more than eight characters in the delimiter set, the extra characters are considered as
characters that need to be escaped, but they have no other special meaning.

Example

The example uses the Parse DN token to build the value for the Add Destination Attribute Value
action. The example is from the predefined rules that come with Identity Manager. For more
Defining Policies By Using the Policy Builder with Designer 203

204 Policy Build

novdocx (E
N

U
) 29 January 2007
information, see “Command Transformation - Create Departmental Container - Part 1 and Part 2” on
page 76.

The Parse DN token takes the information from the source DN and converts it to the dot notation.
The information from the Parse DN is stored in the attribute value of OU.

2.8.5 Replace All
Replaces all occurrences of a regular expression in a string.

Fields

Regular Expression
Specify the regular expression that matches the substrings to be replaced.

Replace With
Specify the replacement string.

Remarks

For details on creating regular expressions, see:

Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)
Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))
er and Driver Customization Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

novdocx (E
N

U
) 29 January 2007
The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but can be
reversed by using the appropriate embedded escapes.

Example

2.8.6 Replace First
Replaces the first occurrence of a regular expression in a string.

Fields

Regular Expression
Specify the regular expression that matches the substring to replace.

Replace With
Specify the replacement string.

Remarks

The matching instance is replaced the string specified by the value specified in the Replace with
field.

For details on creating regular expressions, see:

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html (http://java.sun.com/j2se/1.4/
docs/api/java/util/regex/Pattern.html)
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll
(java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but can be
reversed using the appropriate embedded escapes.

Example

The example reformats the telephone number (nnn)-nnn-nnnn to nnn-nnn-nnnn. The rule is from the
predefined rules that come with Identity Manager. For more information, see “Input or Output
Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn” on page 88.
Defining Policies By Using the Policy Builder with Designer 205

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

206 Policy Build

novdocx (E
N

U
) 29 January 2007
The Replace First token is used in the Reformat Operation Attribute action.

The regular expression of ^\((\d\d\d)\)\s*(\d\d\d)-(\d\d\d\d)$ represents (nnn) nnn-nnnn and the
regular expression of $1-$2-$3 represents nnn. This rule transforms the format of the telephone
number from (nnn) nnn-nnnn to nnn-nnn-nnnn.

2.8.7 Substring
Extracts a portion of a string.

Fields

Start
Specify the starting character index:

Index 0 is the first character.
Positive indexes are an offset from the start of the string
Index -1 is the last character
Negative indexes are an offset from the last character toward the start of the string

For example, if the start is specified as -2, then it starts reading the first character from the end.
If -3 is specified, then is starts 2 characters from the end.

Length
Number of characters from the start to include in the substring. Negative numbers are
interpreted as (total # of characters + length) + 1. For example, -1 represents the entire length or
the original string. If -2 is specified, the length is the entire -1. For a string with 5 characters a
length of -1 = (5 + (-1)) + 1 = 5, -2 = (5 + (-2)) + 1 = 4, etc.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname and it is available at Novell’s support Web site for download. For more
information, see “Downloadable Identity Manager Policies” on page 36.

The Substring token is used twice in the action Set Destination Attribute Value. It takes the first
character of the First Name attribute and adds eight characters of the Last Name attribute together to
form one substring.

2.8.8 Upper Case
Converts the characters in a string to uppercase.
Defining Policies By Using the Policy Builder with Designer 207

208 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example converts the first and last name attributes of the User object to uppercase. The policy
name is Policy: Convert First/Last Name to Upper Case, and it is available for download at Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

2.9 Values
This section contains a list of common policy builder values.

2.9.1 Comparison Modes

Table 2-7 Comparison Modes

Mode Description

case Character-by-character case sensitive comparison.

nocase Character-by-character case insensitive comparison.

regex Regular expression match of entire string. Case insensitive by default, but can be changed
by an escape in the expression.

See Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html) and Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/
regex/Matcher.html#matches()).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but
can be reversed using the appropriate embedded escapes.

src-dn Compare using semantics appropriate to the DN format for the source data store.

dest-dn Compare using semantics appropriate to the DN format for the destination data store.
er and Driver Customization Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#matches()

novdocx (E
N

U
) 29 January 2007
numeric Compare numerically.

octet Compare octet (Base64 encoded) values.

structured Compare the structured attribute according to the comparison rules for the structured
syntax of the attribute.

Mode Description
Defining Policies By Using the Policy Builder with Designer 209

3
novdocx (E

N
U

) 29 January 2007
3Defining Policies By Using the
Policy Builder in iManager

The Policy Builder is a complete, graphical interface for creating and managing the policies that
define the exchange of data between connected systems.

These section gives the following information on policies and how to use the Policy Builder:

Section 2.1, “Policies,” on page 39
Section 3.2, “Policy Builder Tasks in iManager,” on page 212

This section also contains the following detailed reference sections:

Section 3.3, “Regular Expressions,” on page 244
Section 3.4, “XPath 1.0 Expressions,” on page 245
Section 3.5, “Conditions,” on page 246
Section 3.6, “Actions,” on page 264
Section 3.7, “Noun Tokens,” on page 305
Section 3.8, “Verb Tokens,” on page 318

3.1 Policies
As part of understanding how policies work, it is important to understand the components of
policies.

Policies are made up of rules.
A rule is a set of conditions (see “Conditions” on page 246) that must be met before a defined
action (see “Actions” on page 264) occurs.
Actions can have dynamic arguments that derive from tokens that are expanded at run time.
Tokens are broken up into two classifications: nouns (see “Noun Tokens” on page 305) and
verbs (see “Verb Tokens” on page 318).

Noun tokens expand to values that are derived from the current operation, the source or
destination data stores, or some external source.
Verb tokens modify the concatenated results of other tokens that are subordinate to them.

Regular expressions (see “Regular Expressions” on page 244) and XPath 1.0 expressions (see
“XPath 1.0 Expressions” on page 245) are commonly used in the rules to create the desired
results for the policies.
A policy operates on an XDS document and its primary purpose is to examine and modify that
document.
An operation is any element in the XDS document that is a child of the input element and the
output element. The elements are part of Novell’s nds.dtd; for more information, see the
NDS DTD (http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html).
An operation usually represents an event, a command, or a status.
Defining Policies By Using the Policy Builder in iManager 211

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html

212 Policy Build

novdocx (E
N

U
) 29 January 2007
The policy is applied separately to each operation. As the policy is applied to each operation in
turn, that operation becomes the current operation. Each rule is applied sequentially to the
current operation. All of the rules are applied to the current operation unless an action is
executed by a prior rule that causes subsequent rules to no longer be applied.
 A policy can also get additional context from outside of the document and cause side effects
that are not reflected in the result document.

3.2 Policy Builder Tasks in iManager
This section contains instructions on performing common tasks in the Policy Builder:

Section 3.2.1, “Opening The Policy Builder,” on page 212
Section 3.2.2, “Creating a Policy,” on page 212
Section 3.2.5, “Modifying a Policy,” on page 222
Section 3.2.3, “Defining Individual Rules within a Policy,” on page 213
Section 3.2.4, “Defining Individual Arguments within a Rule,” on page 214
Section 3.2.12, “Using Predefined Rules,” on page 224

3.2.1 Opening The Policy Builder
1 In iManager, expand the Identity Manager Role, then click Identity Manager Overview.
2 Specify a driver set.
3 Click the driver for which you want to manage policies. The Identity Manager Driver Overview

opens:

Figure 3-1 Identity Manager Driver Overview

Policies are managed from the Identity Manager Driver Overview.

3.2.2 Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to define.

 represents an undefined policy.
 represents a defined policy.

3 Click Insert.
4 Enter a name for the new policy, then select the Policy Builder.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5 The policy is displayed. To define one or more rules for this policy, click Append New Rule,
then follow the instructions in Section 3.2.3, “Defining Individual Rules within a Policy,” on
page 213.

3.2.3 Defining Individual Rules within a Policy
Rules are defined in the Rule Builder window of the Policy Builder:

Figure 3-2 Rule Builder Window of Policy Builder

The Rule Builder interface enables you to quickly create and modify rules using intelligent drop-
down menus.

In the Rule Builder, you define a set of conditions that must be met before a defined action occurs.

For example, if you needed to create a rule that disallowed any new objects from being added to
your environment, you might define this rule similar to the following: When an add operation
occurs, veto the operation.

To implement this logic in the Rule Builder, you could select the following condition:

Figure 3-3 Move User Condition in the Rule Builder Interface
Defining Policies By Using the Policy Builder in iManager 213

214 Policy Build

novdocx (E
N

U
) 29 January 2007
And the following action:

Figure 3-4 Veto Action in the Rule Builder Interface

See Section 3.5, “Conditions,” on page 246 and Section 3.6, “Actions,” on page 264 or a detailed
reference on the conditions and actions available in the Rule Builder.

Tips

To create more complex conditions, you can join conditions and groups of conditions together with
and/or statements. You can modify the way these are joined by selecting the condition structure:

Figure 3-5 Condition Structure Radio Buttons

Click the icon to see a list of values for a field. In the example above, this icon opens a list
of valid class names.
Click the icon to use the Argument Builder interface to construct an argument.
Click the icon to disable a policy, rule, condition, or action. Click the icon to re-enable
it.
Click the icon to add a comment to a policy or rule. Comments are stored directly on the
policy or rule, and can be as long as necessary.
Use the Cut/Copy/Paste icons, to use the Policy Builder clipboard. The Paste icon is
disabled if the current content on the clipboard is invalid at that location.
Use the icons to add, remove, and position conditions.
Use the button to add condition groups.
Use the icons to remove and position condition groups.

3.2.4 Defining Individual Arguments within a Rule
The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within the Rule Builder. To access the Argument Builder, see
“Argument Builder” on page 217.

Arguments are dynamically used by actions and are derived from tokens that are expanded at run
time.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Tokens are broken up into two classifications: nouns and verbs. Noun tokens expand to values that
are derived from the current operation, the source or destination data stores, or some external source.
Verb tokens modify the concatenated results of other tokens that are subordinate to them.

Figure 3-6 Default Argument Builder Interface

To define an expression, select one or more nouns tokens (values, objects, variables, etc.), and
combine then with verb tokens (substring, escape, uppercase, and lowercase) to construct
arguments. Multiple tokens are combined to construct complex arguments.

For example, if you want the argument set to an attribute value, you select the attribute token, then
select the attribute name:

Figure 3-7 Editor Displaying ds.novell as a Text Argument
Defining Policies By Using the Policy Builder in iManager 215

216 Policy Build

novdocx (E
N

U
) 29 January 2007
If you only want a portion of this attribute, you can combine the attribute token with the substring
token:

Figure 3-8 Expression Displaying a Substring of Length 1 on the Give Name Attribute, Combined with the Surname
Attribute.

After you add a token, you can edit its fields in the editor.

See Section 3.7, “Noun Tokens,” on page 305 and Section 3.8, “Verb Tokens,” on page 318 for a
detailed reference on the nouns and verbs available in the Argument Builder.

Tips

To create more complex conditions, you can join conditions or groups of conditions together
with and/or statements.
Use the icons to move and delete noun tokens and verb tokens.
Click the icon to see a list of values for a field.
After you add a noun token or a verb token, you can provide values in the editor, then
immediately add another noun token or verb token. You do not need to refresh the Expression
pane to apply your changes; they appear when the next operation is performed.

Although you define most arguments using the Argument Builder, there are several more builders
that are used by the Condition Editor and Action Editor in the Policy Builder. Each builder can
recursively call anyone of the builders in the following list:

“Argument Actions Builder” on page 216
“Argument Builder” on page 217
“Match Attribute Builder” on page 218
“Action Argument Component Builder” on page 219
“Argument Value List Builder” on page 220
“Named String Builder” on page 220
“Condition Argument Component Builder” on page 221

Argument Actions Builder

The Argument Actions Builder enables you to set the action that is required by the For Each
(page 278) action and the Implement Entitlement (page 281) action.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
In the following example, the add destination attribute value action is performed for each Group
entitlement that is being added in the current operation.

Figure 3-9 Argument Actions Builder

To define the action of add destination attribute value, click the icon that launches the Argument
Actions Builder. In the Argument Actions Builder, you define the desired action. In the following
example, the member attribute is added to the destination object for each added Group entitlement.

Figure 3-10 Argument Actions Builder

Figure 3-11 Argument Actions Builder

Argument Builder

Launch the Argument Builder from the following actions by clicking the Edit Arguments icon.

Add Association (page 265)
Add Destination Attribute Value (page 266)
Add Destination Object (page 267)
Add Source Attribute Value (page 269)
Append XML Text (page 271)
Clear Destination Attribute Value (page 272) When the selected object is DN or Association.
Clear Source Attribute Value (page 274) When the selected object is DN or Association.
Delete Destination Object (page 276) When the selected object is DN or Association.
Defining Policies By Using the Policy Builder in iManager 217

218 Policy Build

novdocx (E
N

U
) 29 January 2007
Delete Source Object (page 276) When the selected object is DN or Association.
Find Matching Object (page 276)
For Each (page 278)
Move Destination Object (page 282)
Move Source Object (page 283)
Reformat Operation Attribute (page 284)
Remove Association (page 284)
Remove Destination Attribute Value (page 285)
Remove Source Attribute Value (page 286)
Rename Destination Object (page 287) When the selected object is DN or Association and
Enter String.
Rename Source Object (page 288) When the selected object is DN or Association and Enter
String.
Set Destination Attribute Value (page 292)When the selected object is DN or Association and
Enter Value type is not structured.
Set Destination Password (page 293)
Set Local Variable (page 294)
Set Operation Association (page 295)
Set Operation Class Name (page 295)
Set Operation Destination DN (page 295)
Set Operation Property (page 296)
Set Operation Source DN (page 296)
Set Operation Template DN (page 297)
Set Source Attribute Value (page 297)
Set Source Password (page 298)
Set XML Attribute (page 300)
Status (page 301)
Trace Message (page 302)

Match Attribute Builder

The Match Attribute Builder enables you to select attributes and values used by the Section 3.6.17,
“Find Matching Object,” on page 276 action to determine if a matching object exists in a data store.

For example, if you want to match users based on a common name and a location, you would select
the following condition:

Figure 3-12 Find Matching Object
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
You then click the Edit Arguments icon next to the Enter Match Attributes field to launch the Match
Attribute Builder interface:

Figure 3-13 Match Attribute Builder

Select the Browse attributes icon to browse to and select the attributes you want to match. In this
example they are L and CN.

The second column allows you to match the current value stored in the attribute by selecting Use
value(s) from current Object. You can match against another value by selecting Other Value. You
can create any value you want to match. Select the value type, and the appropriate builder is
available through the Enter State field.

Action Argument Component Builder

Launch the Action Argument Component Builder by selecting the following actions when the Enter
Value Type selection is the Structured selection.

Add Destination Attribute Value (page 266)
Add Source Attribute Value (page 269)
Reformat Operation Attribute (page 284)
Remove Destination Attribute Value (page 285)
Remove Source Attribute Value (page 286)
Set Default Attribute Value (page 291)
Set Source Attribute Value (page 297)

Figure 3-14 Action Argument Component Builder
Defining Policies By Using the Policy Builder in iManager 219

220 Policy Build

novdocx (E
N

U
) 29 January 2007
Figure 3-15 Action Argument Component Builder

Argument Value List Builder

The Argument Value List Builder enables you to construct default argument values for the Set
Default Attribute Value (page 291) action.

For example, if you want to set a default location of Unknown, you select the following action:

Figure 3-16 Argument Value List Builder

You then click the icon next to the Enter Values field to launch the Argument Value List Builder
interface, and construct an argument similar to the following:

Figure 3-17 Argument Value List Builder

Named String Builder

The Named String Builder enables you to construct name/value pairs for use in certain actions such
as Generate Event (page 279), Send Email (page 288) and Send Email from Template (page 289).

For a Generate Event action, the named strings correspond to the custom value fields you can
provide with an event:

Figure 3-18 Named String Builder
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
For a Send Mail action, the named strings correspond to the elements of the e-mail:

Figure 3-19 Send Mail Action

A complete list of possible values is contained in the help file corresponding to the action that
launches the Named String Builder.

Condition Argument Component Builder

Launch the Condition Argument Component Builder by clicking the Edit Arguments Icon.

In order to see the icon, you must select the Structured selection for Mode with the following
conditions:

If Attribute (page 247)
If Destination Attribute (page 249)
If Source Attribute (page 261)

Figure 3-20 Structured Option
Defining Policies By Using the Policy Builder in iManager 221

222 Policy Build

novdocx (E
N

U
) 29 January 2007
Figure 3-21 Condition Argument Component Builder

3.2.5 Modifying a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to modify.
3 Select the policy you want to modify, then click Edit.

3.2.6 Removing a Policy
Removes the policy from the selected Policy Set but doesn’t delete the policy.

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to remove.

To view a policy that is not associated with a policy set:

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the View All Policies icon .

To add the removed policy back to the policy set:

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the policy set where you want to add the policy.
3 Click Insert.
4 Select Use an existing policy, then click the browse button.
5 Browse to the policy you want to add.

TIP: Make sure you are in the proper container to see the policy.

6 Click OK.
7 Click Close.

3.2.7 Renaming a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2 Click the icon representing the policy you want to rename.
3 Click Rename and rename the policy.
4 Click OK.
5 Click Close.

3.2.8 Deleting a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to delete.
3 Select the policy you want to delete, then click Delete.

3.2.9 Importing a Policy from an XML File
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to import.
3 Select the policy, then click Edit.
4 Click the Insert button, then select Import an XML file containing DirXML® Script.
5 Browse to and select the policy file to import, then click OK.

3.2.10 Exporting a Policy to an XML File
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to export.
3 Select the policy, then click Edit.
4 Click the Save As button, then select a location to save the DirXML Script XML file.
5 Click Save.

3.2.11 Creating a Policy Reference
A policy reference enables you to create a single policy, and reference it in multiple locations. If you
have a policy that is used by more than one driver or policy, creating a reference simplifies
management of this policy.

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to add as a reference.
3 Select the policy, then click Edit.
4 Click the Insert button, and select Append a reference to a policy containing DirXML Script.
5 Browse to and select the policy object to reference, then click OK.
Defining Policies By Using the Policy Builder in iManager 223

224 Policy Build

novdocx (E
N

U
) 29 January 2007
3.2.12 Using Predefined Rules
iManager includes twenty predefined rules. You can import and use these rules as well as create
your own rules. These rules include common tasks that administrators use. You need to provide
information specific to your environment to customize the rules.

“Command Transformation - Create Departmental Container - Part 1 and Part 2” on page 225
“Command Transformation - Publisher Delete to Disable” on page 227
“Creation - Require Attributes” on page 227
“Creation - Publisher - Use Template” on page 228
“Creation - Set Default Attribute Value” on page 229
“Creation - Set Default Password” on page 230
“Event Transformation - Scope Filtering - Include Subtrees” on page 231
“Event Transformation - Scope Filtering - Exclude Subtrees” on page 232
“Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn” on page 233
“Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn)
nnn-nnnn” on page 234
“Matching - Publisher Mirrored” on page 235
“Matching - Subscriber Mirrored - LDAP Format” on page 236
“Matching - By Attribute Value” on page 237
“Placement - Publisher Mirrored” on page 238
“Placement - Subscriber Mirrored - LDAP Format” on page 239
“Placement - Publisher Flat” on page 240
“Placement - Subscriber Flat - LDAP Format” on page 241
“Placement - Publisher By Dept” on page 242
“Placement - Subscriber By Dept - LDAP Format” on page 243

To access the predefined rules:

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy where you want to add the predefined rule.
3 Select a policy, then click Edit.
4 Click Insert and select the predefined rule you want to use.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Command Transformation - Create Departmental Container - Part 1 and Part 2

Creates a department container in the destination data store, if one does not exist. Implement the rule
on the Subscriber Command Transformation policy or Publisher Command Transformation policy
in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set, and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 225.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Command Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Command Transformation - Create Department Container - Part 1.
3 Click Insert.
4 Select Command Transformation - Create Department Container - Part 2.
5 Click OK.
Defining Policies By Using the Policy Builder in iManager 225

226 Policy Build

novdocx (E
N

U
) 29 January 2007
There is no information to change in the rules that is specific to your environment.

IMPORTANT: Make sure that the rules are listed in order. Part 1 must be executed before Part 2.

How the Logic in the Rule Works

The rule is used when the destination location for an object does not exist. Instead of getting a veto
because the object cannot be placed, this rule creates the container and places the object in the
container.

Part 1 looks for any Add operation. When the Add operation occurs, two local variables are set. The
first local variable is named target-container. The value of target-container is set to the destination
DN. The second local variable is named does-target-exist. The value of does-target-exist is set to the
destination attribute value of objectclass. The class is set to OrganizationalUnit. The DN of the
OrganizationalUnit is set to the local variable of target-container.

Figure 3-22 Create Container

Part 2 checks to see if the local variable does-target-exist is available. It also checks to see if the
value of the local variable does-target-exist is set to a blank value. If the value is blank, then an
Organizational Unit object is created. The DN of the organizational unit is set to the value of the
local variable target-container. It also adds the value for the OU attribute. The value of the OU
attribute is set to the name of the new organizational unit, which is obtained by parsing the value of
the local variable target-container.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Command Transformation - Publisher Delete to Disable

Transforms a Delete operation for a User object into a Modify operation that disables the target User
object in eDirectoryTM. Implement the rule on the Publisher Command Transformation policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set, and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule
(page 227).

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Command Transformation Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Command Transformation - Publisher Delete to Disable.
3 Click OK.

There is no information to change in the rule that is specific to your environment.

How the Logic in the Rule Works

The rule is used when a Delete command is going to be sent to the Identity Vault, usually in response
to a Delete event that occurred in the connected system. Instead of the User object being deleted in
the Identity Vault, the User object is disabled. When a Delete command is processed for a User
object, the destination attribute value of Login Disabled is set to true, the association is removed
from the User object, and the Delete command is vetoed. The User object can no longer log in into
the Novell eDirectory tree, but the User object was not deleted.

Creation - Require Attributes

Prevents User objects from being created unless the required attributes are populated. Implement the
rule on the Subscriber Creation policy or the Publisher Creation policy in the driver.
Defining Policies By Using the Policy Builder in iManager 227

228 Policy Build

novdocx (E
N

U
) 29 January 2007
There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 228.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Creation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Creation - Required Attributes.
3 Click Creation - Required Attributes in the Rule Builder, to edit the rule.
4 Delete [Enter name of required attribute] from the Enter Name field.
5 Click the browse icon, then browse to and select the attribute you require for a User object to be

created.
6 (Optional) If you want more than one required attribute, click the plus icon to add a new action.
7 Select Veto if operation attribute not available and browse to the additional required attribute.
8 Click OK.

How the Logic in the Rule Works

The rule is used when your business processes require that a user has specific attributes populated in
the source User object before the destination the User object can be created. When a User object is
created in the source data store, the rule vetoes the creation of the object in the destination data store
unless the required attributes are provided when the User object is created. You can have one or
more required attributes.

Creation - Publisher - Use Template

Allows for the use of a Novell eDirectory template object during the creation of a User object.
Implement the rule on the Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 229.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Creation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Creation - Publisher - Use Template.
3 Click Creation - Publisher - Use Template in the Rule Builder, to edit the rule.
4 Delete [Enter DN of Template object] from the Enter DN field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list, then click Add.
7 In the Editor, click the browse icon and browse to and select the template object, then click OK.
8 Click OK.

How the Logic in the Rule Works

The rule is used when you want to create a user in the Identity Vault based on a template object. If
you have attributes that are the same for users, using the template saves time. You fill in the
information in the template object and when the User object is created, Identity Manager uses the
attribute values from the template to create the User object.

During the creation of User objects, the rule does the action of the set operation template DN, which
instructs the Identity Manager to use the referenced template when creating the object.

Creation - Set Default Attribute Value

Allows you to set default values for attributes that are assigned during the creation of User objects.
Implement the rule on the Subscriber Creation policy or Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 230.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
Defining Policies By Using the Policy Builder in iManager 229

230 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Click the Creation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Creation - Set Default Attribute Value.
3 Click Set Default Attribute Value in the Rule Builder, to edit the rule.
4 Delete [Enter attribute name] from the Enter attribute name field.
5 Click the browse icon, then browse to and select the attribute you want to have created.
6 Delete [Enter default attribute value] from the Enter arguments values field.
7 Click the Edit Arguments icon to launch the Argument Values List Builder.
8 Select the type of data you want the value to be.
9 Click the Edit Arguments icon to launch the Argument Builder.

10 Create the value you want the attribute to be through the Argument Builder, then click OK.
11 Click OK.

How the Logic in the Rule Works

The rule is used when you want to populate default attribute values when creating a User object.
When a User object is created, the rule adds the specified attribute values if and only if the attribute
has no values supplied by the source object.

If you want more than one attribute value defined, right-click the action and click New > Action.
Select the action, set the default attribute value, and follow the steps above to assign the value to the
attribute.

Creation - Set Default Password

During the creation of User objects, it sets a default password for User objects. Implement the rule
on the Subscriber Creation policy or Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 231.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Creation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Creation - Set Default Password.
3 Click OK.

There is no information to change in the rule that is specific to your environment.

How the Logic in the Rule Works

The rule is used when you want User objects to be created with a default password. During the
creation of a User object, the password that is set for the User object is the Given Name attribute
plus the Surname attribute of the User object.

You can change the value of the default password by editing the argument. You can set the password
to any other value you want through the Argument Builder.

Event Transformation - Scope Filtering - Include Subtrees

Excludes all events that occur outside of the specific subtrees. Implement the rule on the Subscriber
Event Transformation policy or the Publisher Event Transformation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set, and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 232.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Event Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.
Defining Policies By Using the Policy Builder in iManager 231

232 Policy Build

novdocx (E
N

U
) 29 January 2007
Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Event Transformation - Scope Filtering - Include subtrees.
3 Click Event Transformation - Scope Filtering - Include subtrees in the Rule Builder, to edit the

rule.
4 Delete [Enter a subtree to include] in the Value field.
5 Click the browse button to browse the Identity Vault for the part of the tree you were you want

events to synchronize, then click OK.
6 Click OK.

How the Logic in the Rule Works

The rule is used when you only want to synchronize specific subtrees between the Identity vault and
the connected system.When an event occurs anywhere but in that specific part of the Identity Vault,
it is vetoed. You can add additional subtrees to be synchronized by copying and pasting the
Section 3.5.15, “If Source DN,” on page 262 condition.

Event Transformation - Scope Filtering - Exclude Subtrees

Excludes all events that occur in a specific subtree. Implement the rule on the Subscriber Event
Transformation or the Publisher Event Transformation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set, and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 232.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Event Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Event Transformation - Scope Filtering - Excluding subtrees.
3 Click Event Transformation - Scope Filtering - Excluding subtrees in the Rule Builder, to edit

the rule.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
4 Delete [Enter a subtree to exclude] in the Value field.
5 Click the browse button to browse the Identity Vault for the part of the tree you want to exclude

events from synchronizing, then click OK.
6 Click OK.

How the Logic in the Rule Works

The rule is used when you want to exclude part of the Identity Vault or connected system from
synchronizing. When an event occurs in that specific part of the Identity Vault, it is vetoed. You can
add additional subtrees to be excluded by copying and pasting the if source DN condition.

Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn
to nnn-nnn-nnnn

Converts the format of the telephone number. Implement the rule on the Input or Output
Transformation policy in the driver. Typically, if this rule is used on an Input Transformation, you
would you then use the rule Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-nnnn on
the Output Transformation and vice versa to convert the format back and forth.

There are two steps involved in using the predefined rules: creating a policy in the Input or Output
Transformation policy set, and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 233.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Input or Output Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to

nnn-nnn-nnnn.
3 Click Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to

nnn-nnn-nnnn in the Rule Builder, to edit the rule.
4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.
Defining Policies By Using the Policy Builder in iManager 233

234 Policy Build

novdocx (E
N

U
) 29 January 2007
How the Logic in the Rule Works

The rule is used when you want to reformat the telephone number. It finds all the values for the
attribute phone in the current operation that match the pattern (nnn) nnn-nnnn and replaces each
with nnn-nnn-nnnn.

Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn

Transforms the format of the telephone number. Implement the rule on the Input or Output
Transformation policy. Typically, if you use this rule on an Output Transformation, you would use
the rule Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn on the Input
Transformation and vice versa to convert the format back and forth.

There are two steps involved in using the predefined rules; creating a policy in the Input or Output
Transformation policy set, and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 234.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Input or Output Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to

(nnn) nnn-nnnn.
3 Click Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to

(nnn) nnn-nnnn in the Rule Builder, to edit the rule.
4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
How the Logic in the Rule Works

The rule is used when you want to reformat the telephone number. It finds all the values for the
attribute phone in the current operation that match the pattern (nnn) nnn-nnnn and replaces each
with nnn-nnn-nnnn.

Matching - Publisher Mirrored

Finds matches in the Identity Vault for objects in the connected system based on their name and
location. Implement the rule on the Publisher Matching policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 235.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Matching Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Matching - Publisher Mirrored.
3 Click Matching - Publisher Mirrored in the Rule Builder, to edit the rule.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to the container in the source hierarchy where you want the matching to start, then

click OK.
6 Click OK.
7 Delete [Enter base of destination hierarchy] from the Enter string field.
8 Click on the Edit Arguments icon to launch the Argument Builder.
9 Select Text in the Noun list, then click Add.

10 In the Editor, click the browse icon and browse to and select the container in the destination
hierarchy where you want the source structure to be matched, then click OK.

11 Click OK.
Defining Policies By Using the Policy Builder in iManager 235

236 Policy Build

novdocx (E
N

U
) 29 January 2007
How the Logic in the Rule Works

When an Add event occurs on an object in the connected system that is located within the specified
source subtree, the rule constructs a DN that represents the same object name and location within the
Identity Vault relative to the specified destination subtree. If the destination objects exists and is of
the desired object class then it is considered a match. You must supply the DN's of the source
(connected system) and destination (Identity Vault) subtrees.

Matching - Subscriber Mirrored - LDAP Format

Finds matches in a connected system that uses LDAP format DN's for objects in the Identity Vault
based on their name and location. Implement the rule on the Subscriber Matching policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 236.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Matching Policy object on the Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Matching - Subscriber Mirrored - LDAP format.
3 Click Matching - Subscriber Mirrored - LDAP format in the Rule Builder, to edit the rule.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to the container in the source hierarchy where you want the matching to start, then

click OK.
6 Click OK.
7 Delete [Enter base of destination hierarchy] from the Enter String field.
8 Click on the Edit Arguments icon to launch the Argument Builder.
9 Select Text in the Noun list, then click Add.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
10 In the Editor, click the browse icon and browse to and select the container in the destination
hierarchy where you want the source structure to be matched, then click OK.

11 Click OK.

How the Logic in the Rule Works

When an Add event occurs on an object in the Identity Vault that is located within the specified
source subtree, the rule constructs a DN that represents the same object name and location within the
connected system relative to the specified destination subtree. If the destination objects exists and is
of the desired object class then it is considered a match. You must supply the DN's of the source
(Identity Vault) and destination (connected system) subtrees. The connected system must use an
LDAP formatted DN.

Matching - By Attribute Value

Finds matches for objects by specific attribute values. Implement the rule on the Subscriber
Matching policy or the Publisher Matching policy in the driver.

There are two steps involved in using the predefined rules; creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you would like to
add this rule to, skip to “Importing the Predefined Rule” on page 237.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Matching Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Matching - By Attribute Value.
3 Click Matching - By Attribute Value in the Rule Builder, to edit the rule.
4 Delete [Enter base DN to start search] from the Enter DN field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list, then click Add.
Defining Policies By Using the Policy Builder in iManager 237

238 Policy Build

novdocx (E
N

U
) 29 January 2007
7 In the Editor, click the browse icon and browse to and select the container where you want the
search to start, then click OK.

8 Delete [Enter name of attribute to match on] from the Enter Match Attributes field.
9 Click the Edit Arguments icon to launch the Match Attributes Builder.

10 Click the browse icon and select the attributes you want to match. You can select one or more
attributes to match against, then click OK.

11 Click OK.

How the Logic in the Rule Works

When an Add event occurs on an object in the source data store, rule searches for an object in the
destination data store that has the same values for the specified attribute. You must supply the DN of
the base of the subtree to search in the connected system and the name of the attribute to match on.

Placement - Publisher Mirrored

Places objects in the Identity Vault by based on the name and location from the connected system.
Implement the rule on the Publisher Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you would like to
add this rule to, skip to “Importing the Predefined Rule” on page 238.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Placement - Publisher Mirrored.
3 Click Placement - Publisher Mirrored in the Rule Builder, to edit the rule.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to and select the container in the source hierarchy where you want the object to be

acted upon, then click OK.
6 Delete [Enter base of destination hierarchy] from the Enter String field.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
7 Click the Edit Arguments icon to launch the Argument Builder.
8 Select Text in the Noun list, then click Add.
9 In the Editor, click the browse icon and browse to and select the container in the destination

hierarchy where you want the object to be placed, then click OK.
10 Click OK.

How the Logic in the Rule Works

If the User object resides in the specified source subtree in the connected system, then the object is
placed at the same relative name and location within the Identity Vault. You must supply the DN's of
the source (connected system) and destination (Identity Vault) subtrees.

Placement - Subscriber Mirrored - LDAP Format

Places objects in the data store by using the mirrored structure in the Identity Vault from a specified
point. Implement the rule on the Placement policy in the driver. You can implement the rule only on
the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 239.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Placement - Subscriber Mirrored - LDAP Format.
3 Click Placement - Subscriber Mirrored - LDAP Format in the Rule Builder, to edit the rule.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to and select the container in the source hierarchy where you want the object to be

acted upon, then click OK.
6 Delete [Enter base of destination hierarchy] from the Enter String field.
Defining Policies By Using the Policy Builder in iManager 239

240 Policy Build

novdocx (E
N

U
) 29 January 2007
7 Click the Edit Arguments icon to launch the Argument Builder.
8 Select Text in the Noun list, then click Add.
9 In the Editor, click the browse icon and browse to and select the container in the destination

hierarchy where you want the object to be placed, then click OK.
10 Click OK.

How the Logic in the Rule Works

If the User object resides in the specified source subtree, then the object is placed at the same
relative name and location within the Identity Vault. You must supply the DN's of the source
(Identity Vault) and destination (connected system) subtrees. The connected system must use an
LDAP formatted DN.

Placement - Publisher Flat

Places objects from the data store into one container in the Identity Vault. Implement the rule on the
Publisher Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 240.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Placement - Publisher Flat.
3 Click Placement - Publisher Flat in the Rule Builder, to edit the rule.
4 Delete [Enter DN of destination container] from the Enter String field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list, then click Add.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
7 In the Editor, click the browse icon and browse to and select the destination container were you
want all of the user objects to be placed, then click OK.

8 Click OK.

How the Logic in the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be dest-base\CN
attribute. The CN attribute of the User object is the first two letters of the Given Name attribute plus
the Surname attribute as lowercase. The rule uses slash format.

Placement - Subscriber Flat - LDAP Format

Places objects from the Identity Vault into one container in the data store. Implement the rule on the
Subscriber Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 241.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Placement - Subscriber Flat - LDAP Format.
3 Click Placement - Subscriber Flat - LDAP Format in the Rule Builder, to edit the rule.
4 Delete [Enter DN of destination container] from the Enter String field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list, then click Add.
7 In the Editor, add the destination container were you want all of the User objects to be placed.

Make sure the container is specified in LDAP format, then click OK.
Defining Policies By Using the Policy Builder in iManager 241

242 Policy Build

novdocx (E
N

U
) 29 January 2007
8 Click OK.

How the Logic in the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be uid=unique
name, dest-base. The uid attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute as lowercase. The rule uses LDAP format.

Placement - Publisher By Dept

Places objects from one container in the data store into multiple containers in the Identity Vault
based on the value of the OU attribute. Implement the rule on the Publisher Placement policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 242.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Placement - Publisher By Dept.
3 Click Placement - Publisher By Dept to edit the rule.
4 Delete [Enter DN of destination Organization] from the Enter String field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list, then click Add.
7 In the Editor, click the browse icon and browse to and select the parent container in the Identity

Vault. Make sure all of the department containers are child containers of this DN, then click
OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
8 Click OK.

How the Logic in the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is placed in the dest-base\value of OU attribute\CN attribute.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The value of the OU attribute must be the name of the child container. If the OU attribute is not
present, this rule is not executed.

The CN attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses slash format.

Placement - Subscriber By Dept - LDAP Format

Places objects from one container in the Identity Vault into multiple containers in the data store base
on the OU attribute. Implement the rule on the Placement policy in the driver. You can implement
the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 243.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Placement - Subscriber By Dept - LDAP format.
Defining Policies By Using the Policy Builder in iManager 243

244 Policy Build

novdocx (E
N

U
) 29 January 2007
3 Click Placement - Subscriber By Dept - LDAP format in the Rule Builder, to edit the rule.
4 Delete [Enter DN of destination Organization] from the Enter string field.
5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list, then click Add.
7 In the Editor, add the parent container in the data store. The parent container must be specified

in LDAP format. Make sure all of the department containers are child containers of this DN,
then click OK.

8 Click OK.

How the Logic in the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is place in the uid=unique name,ou=value of OU attribute,dest-base.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The value of the OU attribute must be the name of the child container. If the OU attribute is not
present, then this rule is not executed.

The uid attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses LDAP format.

3.3 Regular Expressions
A regular expression is a formula for matching text strings that follow some pattern. Regular
expressions are made up of normal characters and metacharacters. Normal characters include
uppercase and lowercase letters and digits. Metacharacters have special meanings. The following
table contains some of the most common metacharacters and their meanings.

Table 3-1 Common Regular Expressions

Metacharacter Description

. Matches any single character.

$ Matches the end of the line.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The Argument Builder is designed to use regular expressions as defined in Java*. The Java Web site
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html) contains further information.

3.4 XPath 1.0 Expressions
Arguments to some conditions, actions, and tokens use XPath 1.0 expressions. XPath is a language
created to provide a common syntax and semantics for functionality shared between XSLT and
XPointer. It is used primarily for addressing parts of an XML document, but also provides basic
facilities for manipulation of strings, numbers and booleans.

The XPath specification requires that the embedding application provide a context with several
application defined pieces of information. In DirXML Script (see Section 1.1.2, “DirXML Script,”
on page 15), XPath is evaluated with the following context:

The context node is the current operation.
The context position and size are 1.
Available variables

Those available as parameters to style sheets within Identity Manager (currently
fromNDS, srcQueryProcessor, destQueryProcessor, srcCommandProcessor,
destCommandProcessor, and dnConverter).
Global configuration variables.
Local policy variables.
If there is a name conflict between the different variable sources then the order of
precedence is local variable, style sheet parameters, global variables.

Namespaces that are declared on the policy element.
Available functions

All built-in XPath 1.0 functions

^ Matches the beginning of a line.

* Matches zero or more occurrences of the character
immediately preceding.

\ Literal escape character. It allows you to search for
any of the metacharacters. For example \$ finds
$1000 instead of matching at the end of the line.

[] Matches any one of the characters between the
brackets.

[0-9] Matches a range of characters with the hyphen.
The example matches any digit.

[A-Za-z] Matches multiple ranges as well. The example
matches all uppercase and lowercase letters.

(?u) Enables Unicode-aware case folding. This flag can
impact performance.

(?i) Enables case-insensitive matching.

Metacharacter Description
Defining Policies By Using the Policy Builder in iManager 245

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

246 Policy Build

novdocx (E
N

U
) 29 January 2007
Java extension functions as provided by NXSL
Namespaces declarations to associate a prefix with a Java class must be declared on
the policy element.

The W3 Web site (http://www.w3.org/TR/1999/REC-xpath-19991116) contains further information.

3.5 Conditions
This section contains detailed reference to all conditions available using the Policy Builder interface.

Section 3.5.1, “If Association,” on page 246
Section 3.5.2, “If Attribute,” on page 247
Section 3.5.3, “If Class Name,” on page 248
Section 3.5.4, “If Destination Attribute,” on page 249
Section 3.5.5, “If Destination DN,” on page 250
Section 3.5.6, “If Entitlement,” on page 251
Section 3.5.7, “If Global Configuration Value,” on page 253
Section 3.5.8, “If Local Variable,” on page 254
Section 3.5.9, “If Named Password,” on page 256
Section 3.5.10, “If Operation,” on page 256
Section 3.5.11, “If Operation Attribute,” on page 258
Section 3.5.12, “If Operation Property,” on page 259
Section 3.5.13, “If Password,” on page 260
Section 3.5.14, “If Source Attribute,” on page 261
Section 3.5.15, “If Source DN,” on page 262
Section 3.5.16, “If XPath Expression,” on page 263

3.5.1 If Association
Performs a test on the association value of current operation or the current object.

Fields

Operator Condition is Met When...

Operator Condition is met when...

associated There is an established association for the current object.

available There is a non-empty association value specified by the current
operation.

equal The association value specified by the current operation is exactly equal
to the content of the if association.

not-associated There is not an established association for the current object.

not available The association is not available for the current object.
er and Driver Customization Guide

http://www.w3.org/TR/1999/REC-xpath-19991116

novdocx (E
N

U
) 29 January 2007
Example

This example tests to see if the association is available. When this condition is met, the actions that
are defined are executed.

3.5.2 If Attribute
Performs a test on attribute values of the current object in either the current operation or the source
data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the
test is satisfied if the condition is met in the source data store or n in the operation.

Fields

Name
Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.

Operator Condition is Met When...

not-equal The association value specified by the current operation is not equal to
the content of the if association.

Operator Condition is met when...

available There is a value available in either the current operation or the source
data store for the specified attribute.

equal There is a value available in either the current operation or the source
data store for the specified attribute, which equals the specified value
when compared using the specified comparison mode.

not available Available would return False.

not-equal Equal would return False.

Operator Condition is met when...
Defining Policies By Using the Policy Builder in iManager 247

248 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example uses the condition If Attribute when filtering for User objects that are disabled or have
a certain title. The policy is Policy to Filter Events, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The condition is looking for any User object that has an attribute of Title with a value of consultant
or sales.

3.5.3 If Class Name
Performs a test on the object class name in the current operation.

Fields

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See Section 3.9.1, “Comparison Modes,” on page 326.

Operator Condition is Met When...

Operator Condition is met when...

available There is an object class name available in the current operation.

equal There is an object class name available in the current operation, and it
equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The example uses the condition If Class Name to govern group membership for a User object based
on their title. The policy is Govern Groups for User Based on Title Attribute and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

Checks to see if the class name of the current object is User.

3.5.4 If Destination Attribute
Performs a test on attribute values of the current object in the destination data store.

Fields

Name
Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the destination data store for the specified
attribute.
Defining Policies By Using the Policy Builder in iManager 249

250 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example uses the condition If Attribute to govern group membership for a User object based on
the title. The policy is Govern Groups for User Based on Title Attribute and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The policy checks to see if the value of the title attribute contains manager.

3.5.5 If Destination DN
Performs a test on the destination DN in the current operation. The test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.

Operator Condition is met when...
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

3.5.6 If Entitlement
Performs a test on entitlements of the current object, in either the current operation or the Identity
Vault.

Fields

Name
Specify the name of the entitlement to test for the selected condition.

Operator Condition is met when...

available There is a destination DN available.

equal There is a destination DN available, and it equals the specified value
when compared using semantics appropriate to the DN format of the
destination data store.

in-container There is a destination DN available, and it represents an object in the
container, specified by value, when compared using semantics
appropriate to the DN format of the destination data store.

in-subtree There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared using semantics appropriate
to the DN format of the destination data store.

not available Available would return False.

not-equal Equal would return False.

not-in-container In-container would return False.

not-in-subtree In-subtree would return False.
Defining Policies By Using the Policy Builder in iManager 251

252 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.

Operator Condition is Met When...

Operator Condition is met when...

available The named entitlement is available in either the current operation or the
Identity Vault.

changing The current operation contains a change (modify attribute or add attribute)
of the named entitlement.

changing-from The current operation contains a change that removes a value (remove
value) of the named entitlement, which has a value that equals the
specified value, when compared using the specified comparison mode.

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement. It has a value that equals the
specified value, when compared using the specified comparison mode.

equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-changing Changing would return False.

not-changing-from Changing-from would return False.

not-changing-to Changing-to would return False.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

3.5.7 If Global Configuration Value
Performs a test on a global configuration variable.

Fields

Name
Specify the name of the global variable to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.
Defining Policies By Using the Policy Builder in iManager 253

254 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

3.5.8 If Local Variable
Performs a test on a local variable.

Fields

Name
Specify the name of the local variable to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.

Operator Condition is Met When...

Operator Condition is met when...

available There is a global configuration variable with the specified name.

equal There is a global configuration variable with the specified name and its
value equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.

Operator Condition is met when...

available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.

equal There is a local variable with the specified name, and its value equals the
specified value when compared using the specified comparison mode.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The policy contains five rules that are dependent on each other.

not available Available would return False.

not-equal Equal would return False.

Operator Condition is met when...
Defining Policies By Using the Policy Builder in iManager 255

256 Policy Build

novdocx (E
N

U
) 29 January 2007
For the If Locate Variable condition to work, the first rule sets four different local variables to test
for groups and where to place the groups.

The condition the rule is looking for is to see if the local variable of manager-group-info is available
and if manger-group-info is not equal to group. If these conditions are met, then the destination
object of group is added.

3.5.9 If Named Password
Performs a test on a password in the current operation with the specified name.

Fields

Name
Specify the name of the named password to test for the selected condition.

Operator
Select the condition test type.

Operator Condition is Met When...

Example

3.5.10 If Operation
Performs a test on the name of the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is met when...

available There is password with the specified name available.

not available Available would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Value
The values are the operations that the Metadirectory engine looks for in this condition:

add
add-association
check-object-password
delete
get-named-password
modify
modify-association
modify-password
move
init-params
instance

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Operator Condition is met when...

equal The name of the current operation is exactly equal to content of If
Operation.

not-equal Equal would return False.
Defining Policies By Using the Policy Builder in iManager 257

258 Policy Build

novdocx (E
N

U
) 29 January 2007
The condition is checking to see if an add or modify operation has occurred. Once one of these
occurs, then it sets the local variables.

3.5.11 If Operation Attribute
Performs a test on attribute values in the current operation. The test performed depends on the
specified operator.

Fields

Name
Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the current operation (add attribute, add
value, attribute) for the specified attribute.

changing The current operation contains a change (modify attribute or add attribute)
of the specified attribute.

changing-from The current operation contains a change that removes a value (remove
value) of the specified attribute. It equals the specified value when
compared using the specified comparison mode.

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the specified attribute. It equals the specified value when
compared using the specified comparison mode.

equal There is a value available in the current operation (other than a remove
value) for the specified attribute. It equals the specified value when
compared using the specified comparison mode.

not available Available would return False.

not-changing Changing would return False.

not-changing-from Changing-from would return False.

not-changing-to Changing-to would return False.

not-equal Equal would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The condition is checking to see if the attribute of Title is equal to .*manager*, which is a regular
expression. It means it is looking for a title that has zero or more characters before manager and a
single character after manager. It would find a match if the User object’s tile was sales managers.

3.5.12 If Operation Property
Performs a test on an operation property on the current operation.

Fields

Name
Specify the name of the operation property to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.
Defining Policies By Using the Policy Builder in iManager 259

260 Policy Build

novdocx (E
N

U
) 29 January 2007
Operator Condition is Met When...

Example

3.5.13 If Password
Performs a test on a password in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Example

Operator Condition is met when...

available There is an operation property with the specified name on the current
operation.

equal There is a an operation property with the specified name on the current
operation and its value equals the provided content when compared using
the specified comparison mode.

not available Available would return False.

not-equal Equal would return False.

Operator Condition is met when...

available There is password available in the current operation.

not available Available would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3.5.14 If Source Attribute
Performs a test on attribute values of the current object in the source data store.

Fields

Name
Specify the name of the source attribute to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See Section 3.9.1, “Comparison Modes,” on page 326.

Operator Condition is Met When...

Fields

Name
Specify the name of the source attribute to test for the selected condition.

Operator
Select the condition test type.

Compare Mode
Select the comparison mode. See “Comparison Modes” on page 326.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the source data store for the specified
attribute.

equal There is a value available in the source data store for the specified
attribute. It equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.

Operator Condition is met when...

available There is a value available in the source data store for the specified
attribute.

equal There is a value available in the source data store for the specified
attribute. It equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.
Defining Policies By Using the Policy Builder in iManager 261

262 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

3.5.15 If Source DN
Performs a test on the source DN in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...

available There is a source DN available.

equal There is a source DN available, and it equals the content of the specified
value in-container There is a source DN available, and it represents an
object in the container identified by the specified value.

in-subtree There is a source DN available, and it represents an object in the subtree
identified by the specified value.

not available Available would return False.

not-equal Equal would return False.

not-in-container In-container would return False.

not-in-subtree In-subtree would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Example

The example uses the condition If Source DN to check if the User object is in the source DN. The
rule is from the predefined rules that come with Identity Manager. For more information, see “Event
Transformation - Scope Filtering - Exclude Subtrees” on page 232.

The condition is checking to see if the source DN is in the Users container. If the object is coming
from that container, it is vetoed.

3.5.16 If XPath Expression
Performs a test on the results of evaluating an XPath 1.0 expression.

Operator Condition is met when...

available There is a source DN available.

equal There is a source DN available, and it equals the content of the specified
value in-container There is a source DN available, and it represents an
object in the container identified by the specified value.

in-subtree There is a source DN available, and it represents an object in the subtree
identified by the specified value.

not available Available would return False.

not-equal Equal would return False.

not-in-container In-container would return False.

not-in-subtree In-subtree would return False.
Defining Policies By Using the Policy Builder in iManager 263

264 Policy Build

novdocx (E
N

U
) 29 January 2007
Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Example

3.6 Actions
This section contains detailed reference to all actions available using the Policy Builder interface.

Section 3.6.1, “Add Association,” on page 265
Section 3.6.2, “Add Destination Attribute Value,” on page 266
Section 3.6.3, “Add Destination Object,” on page 267
Section 3.6.4, “Add Source Attribute Value,” on page 269
Section 3.6.5, “Add Source Object,” on page 269
Section 3.6.6, “Append XML Element,” on page 270
Section 3.6.7, “Append XML Text,” on page 271
Section 3.6.8, “Break,” on page 272
Section 3.6.9, “Clear Destination Attribute Value,” on page 272
Section 3.6.10, “Clear Operation Property,” on page 273
Section 3.6.11, “Clear SSO Credential,” on page 273
Section 3.6.12, “Clear Source Attribute Value,” on page 274
Section 3.6.13, “Clone By XPath Expression,” on page 274
Section 3.6.14, “Clone Operation Attribute,” on page 275
Section 3.6.15, “Delete Destination Object,” on page 276
Section 3.6.16, “Delete Source Object,” on page 276
Section 3.6.17, “Find Matching Object,” on page 276
Section 3.6.18, “For Each,” on page 278
Section 3.6.19, “Generate Event,” on page 279
Section 3.6.20, “Implement Entitlement,” on page 281
Section 3.6.21, “Move Destination Object,” on page 282

Operator Condition is met when...

true The XPath expression evaluates to True.

false True would return False.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Section 3.6.22, “Move Source Object,” on page 283
Section 3.6.23, “Reformat Operation Attribute,” on page 284
Section 3.6.24, “Remove Association,” on page 284
Section 3.6.25, “Remove Destination Attribute Value,” on page 285
Section 3.6.26, “Remove Source Attribute Value,” on page 286
Section 3.6.27, “Rename Destination Object,” on page 287
Section 3.6.28, “Rename Operation Attribute,” on page 287
Section 3.6.29, “Rename Source Object,” on page 288
Section 3.6.30, “Send Email,” on page 288
Section 3.6.31, “Send Email from Template,” on page 289
Section 3.6.32, “Set Default Attribute Value,” on page 291
Section 3.6.33, “Set Destination Attribute Value,” on page 292
Section 3.6.34, “Set Destination Password,” on page 293
Section 3.6.35, “Set Local Variable,” on page 294
Section 3.6.36, “Set Operation Association,” on page 295
Section 3.6.37, “Set Operation Class Name,” on page 295
Section 3.6.38, “Set Operation Destination DN,” on page 295
Section 3.6.39, “Set Operation Property,” on page 296
Section 3.6.40, “Set Operation Source DN,” on page 296
Section 3.6.41, “Set Operation Template DN,” on page 297
Section 3.6.42, “Set Source Attribute Value,” on page 297
Section 3.6.43, “Set Source Password,” on page 298
Section 3.6.44, “Set SSO Credential,” on page 299
Section 3.6.45, “Set SSO Passphrase,” on page 299
Section 3.6.46, “Set XML Attribute,” on page 300
Section 3.6.47, “Status,” on page 301
Section 3.6.48, “Strip Operation Attribute,” on page 301
Section 3.6.49, “Strip XPath,” on page 302
Section 3.6.50, “Trace Message,” on page 302
Section 3.6.51, “Veto,” on page 303
Section 3.6.52, “Veto if Operation Attribute Not Available,” on page 304

3.6.1 Add Association
Sends an add association command to the Identity Vault, with the specified association.
Defining Policies By Using the Policy Builder in iManager 265

266 Policy Build

novdocx (E
N

U
) 29 January 2007
Fields

Mode
Select whether this action should be added to the current operation, or written directly to the
Identity Vault.

DN
Specify the DN of the target object or leave blank to use the current object.

Association
Specify the value of the association to be added.

Example

3.6.2 Add Destination Attribute Value
Adds a value to an attribute on an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to be added.

Value
Specify the attribute value to be added.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The example adds the destination attribute value to the OU attribute. It creates the value from the
local variables that are created. The rule is from the predefined rules that come with Identity
Manager. For more information, see “Command Transformation - Create Departmental Container -
Part 1 and Part 2” on page 225.

3.6.3 Add Destination Object
Creates a new object of the specified type in the destination data store.

Fields

Class Name
Specify the class name of the object to be created.
Defining Policies By Using the Policy Builder in iManager 267

268 Policy Build

novdocx (E
N

U
) 29 January 2007
Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the object to be created.

Remarks

Any attribute values to be added as part of the object creation must be done in subsequent “Add
Destination Attribute Value” on page 266 actions using the same DN.

Example

The example creates the department container that is needed. The rule is from the predefined rules
that come with Identity Manager. For more information, see “Command Transformation - Create
Departmental Container - Part 1 and Part 2” on page 225 from the predefined rules.

The OU object is created. The value for the OU attribute is created from the destination attribute
value action that occurs after this action.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3.6.4 Add Source Attribute Value
Adds the specified value the specified attribute on an object in the source data store. The target
object is the current object, a DN, or an association.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to be added.

Value
Specify the attribute value to be added.

Example

3.6.5 Add Source Object
Creates an object of the specified type to be created in the source data store. Any attribute values to
be added as part of the object creation must be done in subsequent Add Source Attribute Value
(page 269) actions using the same DN.

Fields

Class Name
Specify the class name of the object to be added.

DN
Specify the DN of the object to be added.
Defining Policies By Using the Policy Builder in iManager 269

270 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

Fields

Class Name
Specify the class name of the object to add to the source data store.

DN
Specify the DN of the new object to add to the source data store.

3.6.6 Append XML Element
Appends an element to a set of elements selected by the XPath expression.

Fields

Name
Specify the tag name of the XML element. This name can contain a namespace prefix if the
prefix has been previously defined in this policy.

XPATH Expression
Specify an XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

3.6.7 Append XML Text
Appends text to a set of elements selected by the XPath expression.

Fields

XPATH Expression
XPath 1.0 expression that returns a node set containing the elements to which the new elements
should be appended.

String
Specify the text to be appended.
Defining Policies By Using the Policy Builder in iManager 271

272 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

3.6.8 Break
Ends processing of the current operation by the current policy.

Example

3.6.9 Clear Destination Attribute Value
Removes the all values for the named attribute from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

3.6.10 Clear Operation Property
Clears any operation property current operation.

Fields

Property Name
Specify the name of the operation property to clear.

Example

3.6.11 Clear SSO Credential
Clears the Single Sign On credential, so objects can be deprovisioned. This action is part of the
Credential Provisioning policies. For more information, see Chapter 4, “Novell Credential
Provisioning Policies,” on page 327.

Fields

Credential Store Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object.

Login Parameter Strings
Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.
Defining Policies By Using the Policy Builder in iManager 273

274 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

3.6.12 Clear Source Attribute Value
Removes the all values of an attribute from an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Example

3.6.13 Clone By XPath Expression
Appends deep copies of a set of XML nodes selected by an XPath expression to a set of elements
selected by another XPath expression.

Fields

Source XPATH Expression
Specify the XPath 1.0 expression that returns a node set containing the nodes to be copied.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Destination XPATH Expression
Specify the XPath 1.0 expression that returns a node set containing the elements to which the
copied nodes are to be appended.

Example

3.6.14 Clone Operation Attribute
Copies all occurrences of an attribute within the current operation to a different attribute within the
current operation.

Fields

Source Name
Specify the name of the attribute to be copied from.

Destination Name
Specify the name of the attribute to be copied to.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and setup security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.
Defining Policies By Using the Policy Builder in iManager 275

276 Policy Build

novdocx (E
N

U
) 29 January 2007
The Clone Operation Attribute is taking the information from the Group Membership attribute and
adding that to the Security Equals attribute so the values are the same.

3.6.15 Delete Destination Object
Deletes an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object to delete in the destination data store. This object can be the current
object, or be specified by a DN or an association.

Example

3.6.16 Delete Source Object
Deletes the object in the source data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object to delete in the source data store. This object can be the current object,
or be specified by a DN or an association.

Example

3.6.17 Find Matching Object
Finds a match for the current object in the destination data store.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

Scope
Select the scope of the search. The scope might be an entry, a subordinates, or a subtree.

DN
Specify the DN that is the base of the search.

Match Attributes
Specify the attribute values to search for.

Remarks

Find Matching Object is only valid when the current operation is an add.

The DN argument is required when scope is “entry”, and is optional otherwise. At least one match
attribute is required when scope is “subtree” or “subordinates”.

The results are undefined if scope is entry and there are match attributes specified. If the destination
data store is the connected application, then an association is added to the current operation for each
successful match that is returned. No query is performed if the current operation already has a non-
empty association, thus allowing multiple find matching object actions to be strung together in the
same rule.

If the destination data store is the Identity Vault, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of the
current operation is set to the source DN of the matching object. If only a single result is returned
and it is already associated, then the destination DN of the current operation is set to the single
character ￼. If multiple results are returned, then the destination DN of the current
operation is set to the single character �.

Example

The example matches on Users objects with the attributes CN and L. The location where the rule is
searching starts at the Users container and adds the information stored in the OU attribute to the DN.
The rule is from the predefined rules that come with Identity Manager. For more information, see
“Matching - By Attribute Value” on page 94.
Defining Policies By Using the Policy Builder in iManager 277

278 Policy Build

novdocx (E
N

U
) 29 January 2007
When you click on the Argument Builder icon, the Match Attribute Builder comes up. You specify

the attribute you want to match on in the builder. This examples uses the CN and L attributes.

3.6.18 For Each
Repeats a set of actions for each node in a node set.

Fields

Node Set
Specify the node set.

Action
Specify the actions to perform on each node in the node set.

Remarks

The current node is a different value for each iteration of the actions, if a local variable is used.

If a node in the node set is an entitlement, then the for each implicitly performs an “Implement
Entitlement” on page 281 action.

Example
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The following is an example of the Argument Actions Builder, used to provide the action argument:

3.6.19 Generate Event
Sends a user-defined event to Novell Audit.

Fields

ID
ID of the event. The provided value must result in an integer in the range of 1000-1999 when
parsed using the parseInt method of java.lang.Integer.

Level
Level of the event.

Strings
Specify User-defined string, integer, and binary values to include with the event. These values
are provided using the Named String Builder.

Level Description

log-emergency Events that cause the Metadirectory engine or driver to shut down.

log-alert Events that require immediate attention.

log-critical Events that can cause parts of the Metadirectory engine or driver to
malfunction.

log-error Events describing errors that can be handled by the Metadirectory
engine or driver.

log-warning Negative events not representing a problem.

log-notice Events (positive or negative) an administrator can use to understand or
improve use and operation.

log-info Positive events of any importance.

log-debug Events of relevance for support or engineers to debug the operation of
the Metadirectory engine or driver.
Defining Policies By Using the Policy Builder in iManager 279

280 Policy Build

novdocx (E
N

U
) 29 January 2007
Remarks

The Novell Audit event structure contains a target, a subTarget, three strings (text1, text2, text3),
two integers (value, value3), and a generic field (data). The text fields are limited to 256 bytes, and
the data field can contain up to 3 KB of information, unless a larger data field is enabled in your
environment.

Example

The example has four rules that implements a placement policy for User objects based on the first
character of the Surname attribute and generates both a trace message and a custom Novell Audit
event. The Generate Event action is used to send Novell Audit an event. The policy name is Policy
to Place by Surname and is available for download from Novell’s support Web site. For more
information “Downloadable Identity Manager Policies” on page 36.

Tag Description

target The object being acted upon.

target-type Integer specifying a predefined format for the target. Predefined values
for target-type are currently:

0 = None

1 = Slash Notation

2 = Dot Notation

3 = LDAP Notation

subTarget The subcomponent of the target being acted upon.

text1 Text entered here is stored in the text1 event field.

text2 Text entered here is stored in the text2 event field.

text3 Text entered here is stored in the text3 field.

value Any number entered here is stored in the value event field.

value3 Any number entered here is stored in the value3 event field.

data Data entered here is stored in the blob event field.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The following is an example of the Named String Builder, used to provide the strings argument.

Generate Event is creating and event with the ID 1000 and displaying the text that is generated by
the local variable of LVUser1. The local variable LVUser1 is the string of User:Operation Attribute
“cn” +” added to the “+”Training\Users\Active\Users1”+” container”. The event will read
User:jsmith added to the Trainging\Users\Active\Users1 container.

3.6.20 Implement Entitlement
Designates actions that implement an entitlement so that the status of those entitlements might be
reported to the agent that granted or revoked the entitlement.

Fields

Node Set
Node set containing the entitlement being implemented by the specified actions.

Action
Actions that implement the specified entitlements.

Example
Defining Policies By Using the Policy Builder in iManager 281

282 Policy Build

novdocx (E
N

U
) 29 January 2007
The following is an example of the Argument Actions Builder, used to provide the action argument:

3.6.21 Move Destination Object
Moves an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Class Name
(Optional) Specify the class name of the object to be moved. Leave blank to use the class name
from the current object.

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container
Select the container to receive the object. This container is specified by a DN or an association.

Example

The example contains a single rule which disables a user’s account and moves them to a disabled
container when the Description attribute indicates they are terminated. The policy is named Disable
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
User Account and Move When Terminated, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The policy checks to see if it is a modify event on a User object and if the attribute Description
contains the value of terminated. If that is the case, then it sets the attribute of Login Disabled to true
and moves the object in to the User\Disabled container.

3.6.22 Move Source Object
Moves an object in the source data store.

Fields

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Select Container
Select the container to receive the object. This container is specified by a DN or an association.

Example
Defining Policies By Using the Policy Builder in iManager 283

284 Policy Build

novdocx (E
N

U
) 29 January 2007
3.6.23 Reformat Operation Attribute
Reformats all values of an attribute within the current operation using a pattern.

Fields

Name
Specify the name of the attribute.

Value Type
Specify the syntax of the new attribute value.

Value
Specify a value to use as a pattern for the new format of the attribute values. If the original
value is needed to constructed the new value, it must be obtained by referencing the local
variable current-value.

Example

The example reformats the telephone number. It changes it from (nnn)-nnn-nnnn to nnn-nnn-nnnn.
The rule is from the predefined rules that come with Identity Manager. For more information, see
“Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-
nnnn” on page 233.

The action reformat operation attribute changes the format of the telephone number. The rule uses
the Argument Builder and regular expressions to change how the information is displayed.

3.6.24 Remove Association
Sends a remove association command to the Identity Vault.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association
Specify the value of the association to be removed.

Example

The example takes a delete operation and disables the User object instead. The transforms an event.
The rule is from the predefined rules that come with Identity Manager. For more information, see
“Command Transformation - Publisher Delete to Disable” on page 227.

When a delete operation occurs for a User object, value of the attribute Login Disabled is set to true
and the association is removed from the object. The association is removed because the associated
object in the connected application no longer exists.

3.6.25 Remove Destination Attribute Value
Removes an attribute value from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.
Defining Policies By Using the Policy Builder in iManager 285

286 Policy Build

novdocx (E
N

U
) 29 January 2007
Select Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type
Specify the syntax of the new attribute value.

Value
Specify the value of the new attribute.

Example

3.6.26 Remove Source Attribute Value
Removes the specified value from the named attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type
Specify the syntax of the attribute value to be removed.

Value
Specify the attribute value to be removed.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

3.6.27 Rename Destination Object
Renames an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

String
Specify the new name of the object.

Example

3.6.28 Rename Operation Attribute
Renames all occurrences of an attribute within the current operation.

Fields

Source Name
Specify the original attribute name.

Destination Name
Specify the new attribute name.
Defining Policies By Using the Policy Builder in iManager 287

288 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

3.6.29 Rename Source Object
Renames an object in the source data store.

Fields

Select Object
Select the target object. This object can be the current object, or specified by a DN or an
association.

String
Specify the new name of the object.

Example

3.6.30 Send Email
Sends an e-mail notification.

Fields

ID
(Optional) Specify the User ID in the SMTP system sending the message.

Server
Specify the SMTP server name.

Password
(Optional) Specify SMTP server account password.

IMPORTANT: The value of the password attribute is stored in clear text.

Type
Select the e-mail message type.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Strings
Specify the values containing the various e-mail addresses, subject, and message. The
following table lists valid named string arguments:

Example

The following is an example of the Named String Builder being used to provide the strings
argument:

3.6.31 Send Email from Template
Generates an e-mail notification using a template.

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

from Specifies the address to be used as the originating e-mail address.

reply-to Specifies the address to be used as the e-mail message reply address.

subject Specifies the e-mail subject.

message Specifies the content of the e-mail message.

encoding Specifies the character encoding to use for the e-mail message.
Defining Policies By Using the Policy Builder in iManager 289

290 Policy Build

novdocx (E
N

U
) 29 January 2007
Fields

Notification DN
Specify the slash form DN of the SMTP notification configuration object.

Template DN
Specify the slash form DN of the e-mail template object.

Password
(Optional) Specify SMTP server account password.

IMPORTANT: The value of the password attribute is stored in clear text.

Strings
Specify additional fields for the e-mail message. The following table contains reserved field
names, which specify the various e-mail addresses:

Each template might also define fields that can be replaced in the subject and body of the email
message.

Example

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

reply-to Specifies the address to be used as the e-mail message reply address.

encoding Specifies the character encoding to use for the e-mail message.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The following is an example of the Named String Builder, used to provide the strings argument:

3.6.32 Set Default Attribute Value
Adds default values to the current operation (and optionally to the current object in the source data
store) if no values for that attribute already exist. It is only valid when the current operation is add.

Fields

Attribute Name
Specify the name of the default attribute.

Write Back
Select whether or not to also write back the default values to the source data store.

Values
Specify the default values of the attribute.

Example

The example sets the default value for the attribute company. You can set the value for an attribute
of your choice. The rule is from the predefined rules that come with Identity Manager. For more
information, see “Creation - Set Default Attribute Value” on page 229.
Defining Policies By Using the Policy Builder in iManager 291

292 Policy Build

novdocx (E
N

U
) 29 January 2007
To build the value, the Argument Value List Builder is launched. See “Argument Value List Builder”
on page 220 for more information on the builder. You can set the value to what is needed. In this
case, we used the Argument Builder and set the text to be the name of the company.

3.6.33 Set Destination Attribute Value
Adds a value to an attribute on an object in the destination data store, and removes all other values
for that attribute.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object in the destination data store. Leave blank
to use the class name from the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to set.

Value
Specify the attribute values to set.

Example

The example takes a delete operation and disables the User object instead. The rule is from the
predefined rules that come with Identity Manager. For more information, see “Command
Transformation - Publisher Delete to Disable” on page 227.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The rule sets the value for the attribute of Login Disabled to true. The rule uses the Argument
Builder to add the text of true for the value of the attribute. See “Argument Builder” on page 217 for
more information about the builder.

3.6.34 Set Destination Password
Sets the password for the current object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or be specified by an DN or an
association.

String
Specify the password to be set.

Example

The example sets a default password for the User object that is created. The rule is from the
predefined rules that come with Identity Manager. For more information, see “Creation - Set Default
Password” on page 230.
Defining Policies By Using the Policy Builder in iManager 293

294 Policy Build

novdocx (E
N

U
) 29 January 2007
When a User object is created, the password is set to the Given Name attribute plus the Surname
attribute.

3.6.35 Set Local Variable
Sets a local variable.

Fields

Variable Name
Specify the name of the new local variable.

Variable Type
Select the type of local variable. This can be a string, an XPath 1.0 Node Set, or a Java object.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and setup security equal to that group. The policy name is Govern
Groups for User Based on Title and it is available for download from Novell’s support Web site. For
more information, see “Downloadable Identity Manager Policies” on page 36.

The local variable is set to the value that is in the User object’s destination attribute of Object Class
plus the Local Variable of manager-group-info. The Argument Builder is used to construct the local
variable. See “Argument Builder” on page 217 for more information.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3.6.36 Set Operation Association
Sets the association value for the current operation.

Fields

Association
Provide the new association value.

Example

3.6.37 Set Operation Class Name
Sets the object class name for the current operation.

Fields

String
Specify the new class name.

Example

3.6.38 Set Operation Destination DN
Sets the destination DN for the current operation.

Fields

DN
Specify the new destination DN.

Example

The example places the objects in the Identity Vault using the structure that is mirrored from the
connected system. You need to define at what point the mirroring begins in the source and
Defining Policies By Using the Policy Builder in iManager 295

296 Policy Build

novdocx (E
N

U
) 29 January 2007
destination data stores. The rule is from the predefined rules that come with Identity Manager. For
more information, see “Creation - Set Default Attribute Value” on page 82.

The rule sets the operation destination DN to be the local variable of the destination base location
plus the source DN.

3.6.39 Set Operation Property
Sets an operation property. An operation property is a named value that is stored within an
operation. It is typically used to supply additional context that might be needed by the policy that
handles the results of an operation.

Fields

Property Name
Specify the name of the operation property.

String
Specify the name of the operation property.

Example

3.6.40 Set Operation Source DN
Sets the source DN for the current operation.

Fields

DN
Specify the new source DN.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

3.6.41 Set Operation Template DN
Sets the template DN for the current operation to the specified value. This action is only valid when
the current operation is add.

Fields

DN
Specify the template DN.

Example

The example applies the Manager template if the Title attribute contains the word Manager. The
name of the policy is Policy: Assign Template to User Based on Tile, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The template Manager Template is applied to any User object the has the attribute of Title available
and it contains the word manager somewhere in the title. The policy uses regular expressions to find
all possible matches.

3.6.42 Set Source Attribute Value
Adds a value to an attribute on an object in the source data store, and removes all other values for
that attribute.
Defining Policies By Using the Policy Builder in iManager 297

298 Policy Build

novdocx (E
N

U
) 29 January 2007
Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object in the source data store. Leave blank to
use the class name from the current object.

Object
Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value.

Value
Specify the attribute value to be set.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The action takes the value of the destination attribute Internet EMail Address and set the source
attribute of Email to this same value.

3.6.43 Set Source Password
Sets the password for the current object in the source data store.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

String
Specify the password to be set.

Example

3.6.44 Set SSO Credential
Sets the SSO credential when a user object is created or when a password is modified. This action is
part of the Credential Provisioning policies. For more information, see Chapter 4, “Novell
Credential Provisioning Policies,” on page 327.

Fields

Credential Store Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object.

Login Parameter Strings
Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.

Example

3.6.45 Set SSO Passphrase
Sets the Novell SecureLogin® passphrase and answer when a User object is provisioned. This action
is part of the Credential Provisioning policies. For more information, see Chapter 4, “Novell
Credential Provisioning Policies,” on page 327.
Defining Policies By Using the Policy Builder in iManager 299

300 Policy Build

novdocx (E
N

U
) 29 January 2007
Fields

Credential Store Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Question and Answer Strings
Specify the SecureLogin passphrase question and answer.

Example

The SecureLogin passphrase question and answer are stored as strings in the policy. Click the Edit
these strings icon to launch the string builder. Specify the passphrase question and answer.

3.6.46 Set XML Attribute
Sets an XML on a set of elements selected by an XPath expression.

Fields

Name
Specify the name of the XML attribute. This name can contain a namespace prefix if the prefix
has been previously defined in this policy.

XPATH Expression
XPath 1.0 expression that returns a node set containing the elements on which the XML
attribute should be set.

String
Specify the value of the XML attribute.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

3.6.47 Status
Generates a status notification.

Fields

Level
Specify the status level of the notification.

Message
Provide the status message using the Argument Builder.

Remarks

If level is retry then the policy immediately halt processing of the input document and schedules a
retry of the event currently being processed.

If level is fatal then the policy immediately halt processing of the input document and initiates a
shutdown of the driver.

If a the current operation has an event-id, then that event-id is used for the status notification,
otherwise there is no event-id reported.

Example

3.6.48 Strip Operation Attribute
Strips all occurrences of an attribute from the current operation.
Defining Policies By Using the Policy Builder in iManager 301

302 Policy Build

novdocx (E
N

U
) 29 January 2007
Fields

Name
Specify the name of the attribute to be stripped.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

The action strips the attribute of Email. The value that is kept is what was in the destination Email
attribute.

3.6.49 Strip XPath
Strips nodes selected by an XPath 1.0 expression.

Fields

XPATH Expression
Specify the XPath 1.0 expression that returns a node set containing the nodes to be stripped.

Example

3.6.50 Trace Message
Sends a message to DSTRACE.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Fields

Level
Specify the trace level of the message. The default level is 0. The message only appears if the
specified the trace level is less than or equal to the trace level configured in the driver.
For information on how to set the trace level on the driver, see “Viewing Identity Manager
Processes” in the Novell Identity Manager 3.0.1 Administration Guide.

Color
Select the color of the trace message.

String
Specify the value of the trace message.

Example

The example has four rules that implements a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The Trace Message action is used to send a trace message into DSTRACE. The policy name
is Policy to Place by Surname and it is available for download from Novell’s support Web site. For
more information “Downloadable Identity Manager Policies” on page 36.

The action sends a trace message to DSTRACE. The contents of the local variable is LVUsers1 and
it shows up in yellow in DSTRACE.

3.6.51 Veto
Vetoes the current operation.
Defining Policies By Using the Policy Builder in iManager 303

304 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

The example excludes all events that come from the specified subtree. The rule is from the
predefined rules that come with Identity Manager. For more information, see “Event Transformation
- Scope Filtering - Exclude Subtrees” on page 232 from the predefined rules.

The action vetoes all events that come from the specified subtree.

3.6.52 Veto if Operation Attribute Not Available
Conditionally cancels the current operation and ends processing of the current policy, based on the
availability of an attribute in the current operation.

Fields

Name
Specify the name of the attribute.

Example

The example does not all User objects to be created unless the attributes Given Name, Surname,
Title, Description, and Internet EMail Address are available. The policy name is Policy to Enforce
the Presences of Attributes and it is available for download from Novell’s support Web site. For
more information, see “Downloadable Identity Manager Policies” on page 36.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The actions vetoes the operation if the attributes of Given Name, Surname, Title, Description, and
Internet Email Address are not available.

3.7 Noun Tokens
This section contains detailed reference to all noun tokens available using the Policy Builder
interface.

Section 3.7.1, “Added Entitlement,” on page 305
Section 3.7.2, “Association,” on page 306
Section 3.7.3, “Attribute,” on page 306
Section 3.7.4, “Class Name,” on page 307
Section 3.7.5, “Destination Attribute,” on page 307
Section 3.7.6, “Destination DN,” on page 308
Section 3.7.7, “Destination Name,” on page 309
Section 3.7.8, “Entitlement,” on page 309
Section 3.7.9, “Global Configuration Value,” on page 310
Section 3.7.10, “Local Variable,” on page 310
Section 3.7.11, “Named Password,” on page 311
Section 3.7.12, “Operation,” on page 311
Section 3.7.13, “Operation Attribute,” on page 312
Section 3.7.14, “Operation Property,” on page 313
Section 3.7.15, “Password,” on page 313
Section 3.7.16, “Removed Attribute,” on page 313
Section 3.7.17, “Removed Entitlements,” on page 313
Section 3.7.18, “Source Attribute,” on page 314
Section 3.7.19, “Source DN,” on page 314
Section 3.7.20, “Source Name,” on page 315
Section 3.7.21, “Text,” on page 315
Section 3.7.22, “Unique Name,” on page 316
Section 3.7.23, “Unmatched Source DN,” on page 317
Section 3.7.24, “XPath,” on page 318

3.7.1 Added Entitlement
Expands to the values of an entitlement granted in the current operation.

Fields

Name
Name of the entitlement.
Defining Policies By Using the Policy Builder in iManager 305

306 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

3.7.2 Association
Expands to the association value from the current operation.

Example

The example is from the predefined rules that come with Identity Manager. For more information on
the predefined rule, see “Command Transformation - Publisher Delete to Disable” on page 227.

The action of Remove Association uses the Association token to retrieve the value from the current
operation. The rule removes the association from the User object so that any new events coming
through do not affect the User object.

3.7.3 Attribute
Expands to the value of an attribute from the current object in the current operation and in the source
data store. It can be logically thought of as the union of the operation attribute token and the source
attribute token. It does not include the removed values from a modify operation.

Fields

Name
Specify the name of the attribute.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see “Creation - Set Default Password” on page 230.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The action of Set Destination Password uses the attribute token to create the password. The
password is made up of the Given Name attribute and the Surname attribute. When you are in the
Argument Builder Editor, you browse and select the attribute you want to use.

3.7.4 Class Name
Expands to the object class name from the current operation.

Example

3.7.5 Destination Attribute
Expands to the specified attribute value of the current object, a DN, or association, in the destination
data store.

Fields

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name
Name of the attribute.

Example

The example is from the Govern Groups for User Based on Title policy and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.
Defining Policies By Using the Policy Builder in iManager 307

308 Policy Build

novdocx (E
N

U
) 29 January 2007
The policy creates the Destination Attribute with the Argument Builder. The action of Set Local
Variable contains the Destination Attribute token.

You build the Destination Attribute through the Editor. In this example, the attribute of Object Class
is set. DN is used to select the object. The value of DN is the Local Variable of manager-group-dn.

3.7.6 Destination DN
Expands to the destination DN specified in the current operation.

Fields

Convert
Select whether or not to convert the DN to the format used by the source data store.

Start
Specify the RDN index to start with:

Index 0 is the root-most RDN
Positive indexes are an offset from the root-most RDN
Index -1 is the leaf-most segment
Negative indexes are an offset from the leaf-most RDN towards the root-most RDN
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Length
Specify the number of RDN to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) + 1 =
5, -2 = (5 + (-2)) + 1 = 4, etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Example

The example uses the Destination DN token to set the value for the local variable of target-container.
The policy creates a department container for the User object if it does not exist. The policy is from
the predefined rules that come with Identity Manager. For more information, see “Command
Transformation - Create Departmental Container - Part 1 and Part 2” on page 225.

3.7.7 Destination Name
Expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in
the current operation.

Example

3.7.8 Entitlement
Expands to the values of a granted entitlement from the current object.

Fields

Name
Name of the entitlement.
Defining Policies By Using the Policy Builder in iManager 309

310 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

3.7.9 Global Configuration Value
Expands to the value of a global configuration variable.

Fields

Name
Name of the global configuration value.

Example

3.7.10 Local Variable
Expands to the value of a local variable.

Fields

Name
Specify the name of the local variable.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The action Add Destination Object uses the Local Variable token.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The Local Variable can only be used if the action Set Local Variable has been used previously in the
policy. It sets the value that is stored in the Local Variable. In the Editor, you click the browse icon
and all of the local variables that have been defined are listed. Select the correct local variable.

The value of the local variable is group-manager-dn. It the rule before this one, the Set Local
Variable action defined group-manager-dn as DN of the manager’s group Users\ManagersGroup.

3.7.11 Named Password
Expands to the named password from the driver.

Fields

Name
Name of the password.

Example

3.7.12 Operation
Expands to the name of the current operation.

Example
Defining Policies By Using the Policy Builder in iManager 311

312 Policy Build

novdocx (E
N

U
) 29 January 2007
3.7.13 Operation Attribute
Expands to the value of the specified attribute from the current XDS operation. It is different from
Source Attribute and Destination Attribute, because it is always accessed directly from what is
available in the current XDS operation as opposed to being queried from the source or destination
data stores. It does not include the removed values from a modify operation.

Fields

Name
Specify the name of the attribute.

Example

The example has four rules that implements a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The policy name is Policy to Place by Surname, and it is available for download from
Novell’s support Web site. For more information “Downloadable Identity Manager Policies” on
page 36.

The action Set Operation Destination DN contains the Operation Attribute token. The Operation
Attribute token sets the Destination DN to the CN attribute. The rule takes the context of
Training\Users\Active\Users and adds a \ plus the value of the CN attribute.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3.7.14 Operation Property
The XML attribute attached to an <operation-data> element by a policy. It is a place for policies to
store and forward information for consumption by other policies.

Remarks

An XML attribute is a name value pair associated with an element in the XDS document.

Fields

Name
Specify the name of the operation property.

Example

3.7.15 Password
Expands to the password specified in the current operation.

Example

3.7.16 Removed Attribute
Expands to the specified attribute value being removed in the current operation. It only applies to
modify operation.

Fields

Name
Specify the name of the attribute.

Example

3.7.17 Removed Entitlements
Expands to the values of the an entitlement revoked in the current operation.

Fields

Name
Specify the name of the entitlement.
Defining Policies By Using the Policy Builder in iManager 313

314 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

3.7.18 Source Attribute
Expands to the values of an attribute from an object in the source data store.

Fields

Class Name
(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name
Name of the attribute.

Example

3.7.19 Source DN
Expands to the source DN from the current operation.

Fields

Convert
Select whether or not to convert the DN to the format used by the destination data store.

Start
Specify the RDN index to start with:

Index 0 is the root-most RDN
Positive indexes are an offset from the root-most RDN
Index -1 is the leaf-most segment
Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Number of RDN’s segments to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) + 1 =
5, -2 = (5 + (-2)) + 1 = 4, etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

3.7.20 Source Name
Expands to the unqualified Relative Distinguished Name (RDN) of the source DN specified in the
current operation.

Example

3.7.21 Text
Expands to the text.

Fields

Text
Specify the text.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The Text token is used in the action Set Location Variable to define the DN of the manager’s group.
The Text token can contain objects or plain text.
Defining Policies By Using the Policy Builder in iManager 315

316 Policy Build

novdocx (E
N

U
) 29 January 2007
The Text token contains the DN for the manager’s group. You can browse to the object you would
like to use, or type in the information into the editor.

3.7.22 Unique Name
Expands to a pattern-based name that is unique in the destination data store according to the criteria
specified.

Fields

Name
Specify the name of attribute to check for uniqueness.

Scope
Specify the scope in which to check uniqueness.

Start Search
Select a starting point for the search. The starting point can be the root of the data store, or
specified by a DN, or association.

Pattern
Specify patterns to use to generate unique values by using the Argument Builder.

Counter Start
Specify the a number to start counter used when needed to find a unique name.

Digits
Specify the width in digits of counter; the default is 1. The Pad counter with leading 0’s
checkbox prepends 0 to match the digit length. For example, with a digit width of 3, the initial
unique value would be appended with 001, then 002, and so on.

Remarks

For each provided pattern, a query is performed against the destination data store, using the supplied
attribute name, scope, and search start. Each specified pattern is tried in order until a value is found
that does not return any found objects.

If all of the specified patterns are exhausted, the final pattern has a counter appended to it and the
pattern is tried repeatedly (increasing the counter each time) until the query does not return any
instances.

The counter can be set to start at a different number using the counter start field. The counter uses
the number of digits specified by the digits field. If the number of digits is less than those specified,
then the counter is right padded with zeros. When the number of digits exceeds those specified, then
no unique name is generated and the enclosing rule returns an error status.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
If the destination data store is the Identity Vault and name field is left blank, then a search is
performed against the pseudo-attribute “[Entry].rdn”, which represents the RDN of an object
without respect to what the naming attribute might be. If the destination data store is the connected
application, then the name field is required.

Example

The following is an example of the Editor pane when constructing the unique name argument:

The following pattern was constructed to provide unique names:

If this pattern does not generate a unique name, a digit is appended, incrementing up to the specified
number of digits. In this example, nine additional unique names would be generated by the
appended digit before an error occurs (pattern1 - pattern9).

3.7.23 Unmatched Source DN
Expands to the part of the source DN in the current operation that corresponds to the part of the DN
that was not matched by the most recent match of an If Source DN condition.

Fields

Convert
Select whether or not to convert the DN format used by the destination data store.

Remarks

If there were no matches, the entire DN is used.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see “Matching - Subscriber Mirrored - LDAP Format” on page 236.
Defining Policies By Using the Policy Builder in iManager 317

318 Policy Build

novdocx (E
N

U
) 29 January 2007
The action of Finding Matching Object uses the Unmatched Source DN token to build the matching
information in LDAP format. It takes the unmatched portion of the source DN to make a match.

3.7.24 XPath
Expands to results of evaluating an XPath 1.0 expression.

Fields

Expression
XPath 1.0 expression to evaluate.

Example

3.8 Verb Tokens
This section contains detailed reference to all verbs available using the Policy Builder interface.

Section 3.8.1, “Escape Destination DN,” on page 319
Section 3.8.2, “Escape Source DN,” on page 319
Section 3.8.3, “Lower Case,” on page 319
Section 3.8.4, “Parse DN,” on page 320
Section 3.8.5, “Replace All,” on page 322
Section 3.8.6, “Replace First,” on page 323
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Section 3.8.7, “Substring,” on page 324
Section 3.8.8, “Upper Case,” on page 325

3.8.1 Escape Destination DN
Escapes a string according to the rules of the DN format of the destination data store.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see “Placement - Publisher Flat” on page 98.

The action of Set Operation Destination DN uses the Escape Destination DN token to build the
destination DN of the User object.

The Escape Destination DN token takes the value in Unique Name and sets it to the format for the
destination DN.

3.8.2 Escape Source DN
Escapes a string according to the rules of the DN format of the source data store.

Example

3.8.3 Lower Case
Converts the characters in a string to lowercase.
Defining Policies By Using the Policy Builder in iManager 319

320 Policy Build

novdocx (E
N

U
) 29 January 2007
Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname and it is available for download at Novell’s support Web site. For more
information, see “Downloadable Identity Manager Policies” on page 36.

The Lower Case token sets all of the information in the action Set Destination attribute value to
lowercase.

3.8.4 Parse DN
Converts a DN to an alternate format.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

The example uses the Parse DN token to build the value the Add Destination Attribute Value action.
The example is from the predefined rules that come with Identity Manager. For more information,
see “Command Transformation - Create Departmental Container - Part 1 and Part 2” on page 225.

The Parse DN token is taking the information from the source DN and converting it to the dot
notation. The information from the Parse DN is stored in the attribute value of OU.

Fields

Start
Specify the RDN index to start with:

Index 0 is the root-most RDN
Positive indexes are an offset from the root-most RDN
Index -1 is the leaf-most segment
Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Number of RDN’s to include. Negative numbers are interpreted as (total # of segments +
length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) + 1 = 5, -2 = (5 +
(-2)) + 1 = 4, etc.
Defining Policies By Using the Policy Builder in iManager 321

322 Policy Build

novdocx (E
N

U
) 29 January 2007
Source DN Format
Specifies the format used to parse the source DN.

Destination DN Format
Specify the format used to output the parsed DN.

Source DN Delimiter
Specify the custom source DN delimiter set if Source DN Format is set to custom.

Destination DN Delimiter
Specify the custom destination DN delimiter set if Destination DN Format is set to custom.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

When specifying custom DN formats, the eight characters that make up the delimiter set are defined
as follows:

1. Typed Name Boolean Flag: 0 means names are not typed, and 1 means names are typed

2. Unicode No-Map Character Boolean Flag: 0 means don’t output or interpret unmappable Unicode
characters as escaped hex digit strings, such as \FEFF. The following Unicode characters are not
accepted by eDirectory: 0xfeff, 0xfffe, 0xfffd, and 0xffff.

3. Relative RDN Delimiter

4. RDN Delimiter

5. Name Divider

6. Name Value Delimiter

7. Wildcard Character

8. Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, the orientation of the name is
root right, otherwise the orientation is root left.

If there are more than eight characters in the delimiter set, the extra characters are considered as
characters that need to be escaped, but they have no other special meaning.

3.8.5 Replace All
Replaces all occurrences of a regular expression in a string.

Fields

Regular Expression
Specify the regular expression that matches the substring to be replaced.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Replace With
Specify the replacement string.

Remarks

For details on creating regular expressions, see:

Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)
Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but can be
reversed by using the appropriate embedded escapes.

Example

3.8.6 Replace First
Replaces the first occurrence of a regular expression in a string.

Fields

Regular Expression
Specify the regular expression that matches the substring to replace.

Replace With
Specify the replacement string.

Remarks

The matching instance is replaced the string specified by the value specified in the Replace with
field.

For details on creating regular expressions, see:

Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)
Sun’s Web site (java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but can be
reversed using the appropriate embedded escapes.

Example

The example reformats the telephone number (nnn)-nnn-nnnn to nnn-nnn-nnnn. The rule is from the
predefined rules that come with Identity Manager. For more information, see “Input or Output
Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn” on page 233.
Defining Policies By Using the Policy Builder in iManager 323

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

324 Policy Build

novdocx (E
N

U
) 29 January 2007
The Replace First token is used in the Reformat Operation Attribute action.

The regular expression of ^\((\d\d\d)\)\s*(\d\d\d)-(\d\d\d\d)$ represents (nnn) nnn-nnnn and the
regular expression of $1-$2-$3 represents nnn. This rule transforms the format of the telephone
number from (nnn) nnn-nnnn to nnn-nnn-nnnn.

3.8.7 Substring
Extracts a portion of a string.

Fields

Start
Specify the starting character index:

Index 0 is the first character.
Positive indexes are an offset from the start of the string.
Index -1 is the last character.
Negative indexes are an offset from the last character towards the start of the string.

For example, if the start is specified as -2, then it starts reading the first character from the end.
If -3 is specified, then is starts 2 characters from the end.

Length
Number of characters from the start to include in the substring. Negative numbers are
interpreted as (total # of characters + length) + 1. For example, -1 represents the entire length or
the original string. If -2 is specified, the length is the entire -1. For a string with 5 characters a
length of -1 = (5 + (-1)) + 1 = 5, -2 = (5 + (-2)) + 1 = 4, etc.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname and it is available for download at Novell’s support Web site. For more
information, see “Downloadable Identity Manager Policies” on page 36.

The Substring token is used twice in the action Set Destination Attribute Value. It takes the first
character of the First Name attribute and adds eight characters of the Last Name attribute together to
form one substring.

3.8.8 Upper Case
Converts the characters in a string to uppercase.

Example

The example converts the first and last name attributes of the User object to uppercase. The policy
name is Policy: Convert First/Last Name to Upper Case and it is available for download at Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.
Defining Policies By Using the Policy Builder in iManager 325

326 Policy Build

novdocx (E
N

U
) 29 January 2007
3.9 Values
This section contains a list of common Policy Builder values.

3.9.1 Comparison Modes

Mode Description

case Character-by-character case sensitive comparison.

nocase Character-by-character case insensitive comparison.

regex Regular expression match of entire string. Case insensitive by default, but may be changed
by an escape in the expression.

See Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html) and Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/
regex/Matcher.html#matches()).

Note that pattern option CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used
but can be reversed using the appropriate embedded escapes.

src-dn Compare using semantics appropriate to the DN format for the source data store.

dest-dn Compare using semantics appropriate to the DN format for the destination data store.

numeric Compare numerically.

octet Compare octet (Base64 encoded) values.

structured Compare structured attribute according to the comparison rules for the structured syntax of
the attribute.
er and Driver Customization Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#matches()

4
novdocx (E

N
U

) 29 January 2007
4Novell Credential Provisioning
Policies

Novell® Credential Provisioning Policies for Identity Manager 3.0.1 enhance the user provisioning
abilities of any Identity Manager driver by providing the capability to simultaneously provision
application credentials to the Novell SecretStore® and Novell SecureLogin credential repositories.
Additionally, it can provision the SecureLogin passphrase question and answer in environments
where non-repudiation is desired.

These features enhance the user Single Sign-On experience and increase the return on investment of
Single Sign-On technologies by eliminating the initial setup of SecureLogin account information,
providing additional security to application credentials, and reducing the replication of effort
normally associated with provisioning Single Sign-On credential stores for users. In addition, the
Credential Provisioning policies can use Identity Manager policies to automatically de-provision
application credentials to prevent access to application data.

Section 4.1, “Credential Provisioning Policies with Novell SecureLogin,” on page 327
Section 4.2, “Implementing Credential Provisioning Policies with Novell SecureLogin,” on
page 329
Section 4.3, “Credential Provisioning Policies with Novell SecretStore,” on page 349
Section 4.4, “Implementing Credential Provisioning Policies with SecretStore,” on page 351

4.1 Credential Provisioning Policies with Novell
SecureLogin
Credential Provisioning policies allow you automatically provision application credentials that
SecureLogin supports. This topic documents the steps required to configure objects and policies in
Identity Manager. It does not contain deployment and configuration information for any
SecureLogin components. For SecureLogin documentation, see Novell SecureLogin 6.0
documentation (http://www.novell.com/documentation/securelogin60/index.html).

To implement Credential Provisioning with SecureLogin requires a repository object, an application
object, and policies. The repository and application objects store the SecureLogin information so
that Identity Manager can use it. The policies are used to enable a driver to use Credential
Provisioning. See Section 4.2, “Implementing Credential Provisioning Policies with Novell
SecureLogin,” on page 329 for more information.

You can also configure the following options:

Credential Provisioning can be provided by the Publisher channel, Subscriber channel, or both
channels.
SecureLogin synchronization can occur as part of an application password synchronization or
can be triggered by some other event.
Web Services credentials can be provisioned without provisioning accounts for the application.
An initial SecureLogin passphrase question and answer can be provisioned.
Novell Credential Provisioning Policies 327

http://www.novell.com/documentation/securelogin60/index.html
http://www.novell.com/documentation/securelogin60/index.html

328 Policy Build

novdocx (E
N

U
) 29 January 2007
Figure 4-1 on page 328 shows a typical, yet simple, scenario involving the provisioning of the
SecureLogin credentials for a new User of a SAP* Finance application in a Finance department.
SAP User provisioning is being utilized because it is an application that requires more login
parameters than a typical username and password provided for most application.

This department provisions new users into the Identity Vault via a SAP HR system and Identity
Manager. Depending on organizational information, the User object is then provisioned into a
department authentication tree implemented on Active Directory. This is where new users
authenticate to the network and is therefore the location for the SecureLogin credential repository.
As users are subsequently provisioned by Identity Manager to the various finance applications, their
credentials for those systems are synchronized to the SecureLogin store in Active Directory.

Figure 4-1 shows user Glen’s authentication credentials being provisioned. When Glen authenticates
to his department’s Active Directory authentication domain and launches SecureLogin client, he has
single sign-on to his SAP Finance account without ever needing to enter, or even know, his
password on that system.

Figure 4-1 Credential Provisioning with SecureLogin

Figure 4-1 illustrates the following steps:

1. A SAP HR system publishes the data for a newly hired user named Glen Canyon. The Identity
Manager SAP HR driver processes this data.

2. A new User object is created in the Identity Vault with a CN value of GCANYON and a
workforceID value of 50024222. Because this user is assigned to the Finance organization of

6

SAP User
Driver

Active Directory
Auth Tree

(151.150.191.5)
SAP

HR System

SAP Finance
Application

(Client “010”)

1
7

New User:
Glen Canyon

Pos: 50034211
Org. 50011344

ID: 50024222

3

Identity Manager

Identity
Vault

CN: GCANYON
Given Name: Glen
Surname: Canyon
DirXML-ADContext: CN=GLCanyon,OU=finance, dc=prod, dc=testco, dc=com
Title: 500342311-Finance Clerk
workforceID: 50024222

2 5

SAPHR
Driver

AD
Driver

4

User
Provisioned

to AD

NSL Credentials
for SAP set on
AD User

DN returned

User Provisioned
to SAP
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
his company, he needs to authenticate to the Finance department Active Directory server in the
finance.prod.testco.com domain. The Identity Manager Active Directory driver that
synchronizes that domain now uses the Identity Vault information.

3. Glen is provisioned to the Finance department Active Directory server.
4. The driver is configured to obtain Glen’s fully distinguished LDAP name:

CN=GLCanyon,OU=finace,dc=prod,dc=testco,dc=com.
5. The driver places the name into the DirXML-ADContext attribute of the GCANYON user in

the Identity Vault.
Now that the required attributes are available in the Identity Vault, the SAP User Management
driver processes the attributes of the GCANYON object.

6. Because Glen is in the Finance organization, the driver provisions a SAP user account
GCANYON on the SAP Finance server.

7. After the account creation is successful, the SAP User Management driver policies provision
Glen’s SAP authentication credentials to his AD user account. Because the command is an Add
operation, the policies also provision his SecureLogin passphrase question and answer.

4.2 Implementing Credential Provisioning
Policies with Novell SecureLogin
The implementation of Credential Provisioning policies with SecureLogin is very customizable. The
steps to implement it are different depending upon the platforms SecureLogin is installed on, the
applications that are provisioned, and which Identity Manager drivers are involved.

To implement Credential Provisioning policies with SecureLogin, see the following topics:

Section 4.2.1, “Meeting Requirements for Credential Provisioning Policies with Novell
SecureLogin,” on page 329
Section 4.2.2, “Extending LDAP Schema for Novell SecureLogin,” on page 330
Section 4.2.3, “Determining Deployment Configuration Parameters for Novell SecureLogin,”
on page 330
Section 4.2.4, “Creating a Repository Object for Novell SecureLogin,” on page 333
Section 4.2.5, “Creating an Application Object for Novell SecureLogin,” on page 339
Section 4.2.6, “Configuring Credential Provisioning Policies for Novell SecureLogin,” on
page 345

4.2.1 Meeting Requirements for Credential Provisioning
Policies with Novell SecureLogin
In order to use Credential Provisioning Policies with SecureLogin, the following must be in place:

Identity Manager 3.0.1
Supported on eDirectoryTM 8.7x and eDirectory 8.8.1 or above; eDirectory 8.8 is not supported.
Verify that jsso.jar, idmcp.jar, and jnet.jar are in the standard location for Identity
Manager Java libraries.
Novell SecureLogin 6.0 or above
Novell Credential Provisioning Policies 329

330 Policy Build

novdocx (E
N

U
) 29 January 2007
After you have verified that your environment meets the requirements, proceed to Section 4.2.2,
“Extending LDAP Schema for Novell SecureLogin,” on page 330.

4.2.2 Extending LDAP Schema for Novell SecureLogin
When SecureLogin is deployed on eDirectory servers, a tool called ndsschema.exe is utilized to
extend the eDirectory schema with a set of SecureLogin attributes that are used to store encrypted
credentials, policies, etc. on Users and container objects. These attributes are:

Prot:SSO Auth
Prot:SSO Entry
Prot:SSO Entry Checksum
Prot:SSO Profile
Prot:SSO Security Prefs
Prot:SSO Security Prefs Checksum

These attributes are specific to eDirectory and are required in order for the SecureLogin product to
function. The provisioning API provided in Identity Manager 3.0 Support Pack 1 utilizes the LDAP
namespace to perform its functions so that it can work with any SecureLogin credential store. In
order to provide LDAP mappings to the attributes listed above, a second tool provided with the
SecureLogin product must be utilized. The tool name is ldapschema.exe, and it is used in
eDirectory environments to provide the LDAP namespace mapping to the eDirectory attributes.

After running ldapschema.exe, verify the mappings by checking the LDAP Group attribute
map in iManager.

1 In iManager, click LDAP > LDAP Options.
2 Select the LDAP Group associated with your eDirectory servers that host SecureLogin.
3 From the LDAP Group properties page, select the Attribute Map option and verify the

attributes above are mapped to the following Primary LDAP Attributes:
protocom-SSO-Auth-Data
protocom-SSO-Entries
protocom-SSO-Entries-Checksum
protocom-SSO-Profile
protocom-SSO-Security-Prefs
protocom-SSO-Security-Prefs-Checksum

After the schema is extended, proceed to Section 4.2.3, “Determining Deployment Configuration
Parameters for Novell SecureLogin,” on page 330.

4.2.3 Determining Deployment Configuration Parameters for
Novell SecureLogin
In order to provide the synchronization functionality described in the deployment scenario
illustrated in Figure 4-1, the first step is to gather all of the business process information related to
the Identity Manager and SecureLogin environments. You can print Table 4-1, “Credential
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Provisioning Policies Worksheet for SecureLogin,” on page 331, and use it as a worksheet to record
the information.

Table 4-1 Credential Provisioning Policies Worksheet for SecureLogin

Configuration Information Needed Information

1) Which applications will be configured for
SecureLogin Single Sign-On provisioning?

2) Verify that SecureLogin application definitions
are preconfigured on the authentication server and
are inheritable by new users provisioned to those
systems.

3) The DNS name or IP address of the
SecureLogin repository server.

4) The SSL LDAP port for the SecureLogin
repository server.

5) The fully qualified LDAP distinguished name of
the administrator for the SecureLogin repository
server.

6) The password of the administrator for the
SecureLogin repository server.

7) The full path and the name of the SSL certificate
exported from the SecureLogin server. The
certificate must be local to the Identity Manager
server.

8) Determine if one SecureLogin repository will be
used by multiple drivers or if each driver will use a
separate repository.

9) The application ID for each SecureLogin
application.

10) Find all required authentication keys for each
application. Such as, Username, Password, Client,
and Language. They might be different for each
application.

11) Determine if any of the authentication key
values can be set with a static value.

12) For non-static values that are or can be
different for each user, make a note of the source of
the non-static information (event information or
Identity Vault attribute values).

13) If you are implementing SecureLogin
provisioning on a driver that is also synchronizing a
password to the target application, determine if the
SecureLogin provisioning takes place before or
after the password is set in the target application
server.
Novell Credential Provisioning Policies 331

332 Policy Build

novdocx (E
N

U
) 29 January 2007
Example Provisioning Configuration Data

Using the provisioning scenario, the following example data provisions a user’s SecureLogin
credentials for the SAP Finance server for users in the Finance Active Directory authentication tree:

Table 4-2 Example Credential Provisioning Policies Worksheet for SecureLogin

14) The name of the Driver object where the
repository and application objects are to be stored.
(Can be different drivers.)

15) Determine the DN of the User objects for the
target application.

16) If you are implementing a SecureLogin
passphrase, determine the passphrase question
and answer.

Question:
Answer:

Configuration Information Needed Information

1) Which applications will be configured for
SecureLogin Single Sign-On provisioning?

SAP Finance Application

2) Verify that SecureLogin application definitions
are preconfigured on the authentication server and
are inheritable by new users provisioned to those
systems.

Verified

3) The DNS name or IP address of the
SecureLogin repository server.

151.150.191.5

4) The SSL LDAP port for the SecureLogin
repository server.

636

5) The fully qualified LDAP distinguished name of
the administrator for the SecureLogin repository
server.

cn=admin,ou=prod,dc=testco,dc=.com

6) The password of the administrator for the
SecureLogin repository server.

dixml

7) The full path and the name of the SSL certificate
exported from the SecureLogin server. The
certificate must be local to the Identity Manager
server.

c:\novell\nds\FinanceAD.cer

8) Determine if one SecureLogin repository will be
used by multiple drivers or if each driver will use a
separate repository.

For this example, there is only one repository.

9) The application ID for each SecureLogin
application.

SAP - 151.150.191.27

10) Find all required authentication keys for each
application. Such as, Username, Password, Client,
and Language. They might be different for each
application.

SAP Client 010 Login Parameter Client
SAP Client 010 Login Parameter Language
SAP Client 010 Login Parameter Username
SAP Client 010 Login Parameter Password

Configuration Information Needed Information
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Miscellaneous Environment Information:

The Finance department AD tree serves as the SecureLogin repository for all Finance
applications.
All finance department provisioning drivers are in a driver set called Finance Drivers.
The SAP user account must be deleted and the SecureLogin credentials for the SAP user
account must be removed from the Active Directory user when the Identity Vault attribute
“employeeStatus” is set to the value “I”.

After all of the configuration data has been determined, proceed to Section 4.2.4, “Creating a
Repository Object for Novell SecureLogin,” on page 333.

4.2.4 Creating a Repository Object for Novell SecureLogin
Repository objects store static configuration information for SecureLogin. Repository information is
independent from the applications that consume the application credentials. This information is
applicable for all provisioning events regardless of the connected system (for example SAP,
PeopleSoft*, Notes*, etc.). The repository object can be created in Designer or iManager.

“Creating a Repository Object for Novell SecureLogin in Designer” on page 333
“Creating a Repository Object for Novell SecureLogin in iManager” on page 337

Creating a Repository Object for Novell SecureLogin in Designer

The following is one of many methods you can use to create the repository object in Designer.

1 Right-click the driver object where you want to store the repository object in the outline view.

11) Determine if any of the authentication key
values can be set with a static value.

SAP Client 010 Login Parameter Client:”010”
SAP Client 010 Login Parameter Language: “EN”

12) For non-static values that are or can be
different for each user, make a note of the source of
the non-static information (event information or
Identity Vault attribute values).

SAP Client 010 Login Parameter Username:
Identity Vault attribute “sapUsername”
SAP Client 010 Login Parameter Password: Event
<password>

13) If you are implementing SecureLogin
provisioning on a driver that is also synchronizing a
password to the target application, determine if the
SecureLogin provisioning takes place before or
after the password is set in the target application
server.

After

14) The name of the Driver object where the
repository and application objects are to be stored.
(Can be different drivers.)

SAP driver

15) Determine the DN of the User objects for the
target application.

Identity Vault attribute “DirXML-ADContext”

16) If you are going to provision the SecureLogin
passphrase, determine the passphrase question
and answer.

Question: “Employee code?”
Answer: Identity Vault attribute “workforceID”

Configuration Information Needed Information
Novell Credential Provisioning Policies 333

334 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Click Credential Provisioning > New Repository Object.

3 Specify a name for the repository object.
4 Select NSLRepository.xml to use the SecureLogin template.

5 Click OK.
6 Double-click the repository object in the outline view to add configuration information.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
7 Click Yes to save the new repository object.

8 Specify the DNS name or IP address of the SecureLogin server. See worksheet item 3).

9 Specify the SSL port for the SecureLogin server. See worksheet item 4).

10 Specify the full path to the SSL certificate exported from the SecureLogin server. The path
must include the certificate name and must be local to the Identity Manager server. See
worksheet item 7).

The SecureLogin server can run on multiple platform types. Refer to the platform-specific
documentation for information on how to export the SSL certificates.

11 Specify the fully qualified LDAP distinguished name of the SecureLogin administrator. See
worksheet item 5).

12 Click Set password.
Novell Credential Provisioning Policies 335

336 Policy Build

novdocx (E
N

U
) 29 January 2007
13 Specify the SecureLogin administrator’s password twice, then click OK. See worksheet item
6).

14 Review the information, then click the Save icon to save the information.
15 (Optional) If you want to create other configuration parameters for the repository object, click

the Add new item icon.

15a Specify a name for the parameter.
15b Specify a display name for the parameter.
15c Specify a description for the parameter for your reference.

The parameter is stored as a string.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
15d Click OK.
15e Click the Save icon to save the repository object.

After the repository object is created, proceed to “Creating an Application Object for Novell
SecureLogin” on page 339.

Creating a Repository Object for Novell SecureLogin in iManager

1 In iManager, select Credential Provisioning > Configuration.
2 Browse to and select the Driver object where the repository object will be stored, then click

OK.

3 Click New to create a repository.

4 Specify a name for the repository object, then select NSLRepository.xml to use the SecureLogin
template to create a repository.

5 Click OK.
Novell Credential Provisioning Policies 337

338 Policy Build

novdocx (E
N

U
) 29 January 2007
6 Specify the DNS name or IP address of the SecureLogin server. See worksheet item 3).

7 Specify the SSL port for the SecureLogin server. See worksheet item 4).

8 Specify the full path to the SSL certificate exported from the SecureLogin server. The path
must include the certificate name and must be local to the Identity Manager server. See
worksheet item 7).

The SecureLogin server can run on multiple platform types. Refer to the platform specific
documentation for the steps on how to export the SSL certificate.

9 Specify the fully qualified LDAP distinguished name of the SecureLogin administrator. See
worksheet item 5).

10 Click Set password.

11 Specify the SecureLogin administrator’s password twice, then click OK. See worksheet item
6).

12 Review the values specified, then click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
13 (Optional) If you need to create other configuration parameters for the repository, click New.

13a Specify a name for the parameter.
13b Specify a display name for the parameter.
13c Specify a description of the parameter for your reference.

The parameter is stored as a string.

13d Click OK.

After the repository object is created, proceed to “Creating an Application Object for Novell
SecureLogin in iManager” on page 342.

4.2.5 Creating an Application Object for Novell SecureLogin
Application objects store application authentication parameter values for SecureLogin. Application
information is specific to the applications that are consuming the application credential (for
Novell Credential Provisioning Policies 339

340 Policy Build

novdocx (E
N

U
) 29 January 2007
example, GroupWise® client information or SAP database client information). The application
objects can be created in Designer or iManager.

“Creating an Application Object for Novell SecureLogin in Designer” on page 340
“Creating an Application Object for Novell SecureLogin in iManager” on page 342

Creating an Application Object for Novell SecureLogin in Designer

The following is one of many methods you can use to create the application object in Designer.

1 In the outline view, right-click the driver object where you want to store the application object.
2 Click Credential Provisioning > New Application Object.

3 Specify a name for the application object.
4 Select NSLApplication.xml to use the SecureLogin template.

5 Click OK.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
6 Double-click the application object in the outline view to add configuration information.

7 Click Yes to save the new application object.

8 Specify the SecureLogin Application ID. See worksheet item 9).

To find the application ID in SecureLogin, click My Logins. The application ID is stored in the
Id field.

9 Click the Save icon to save the application.
Novell Credential Provisioning Policies 341

342 Policy Build

novdocx (E
N

U
) 29 January 2007
10 Click the Add new item icon to add the authentication keys required for the application.

10a Specify a name for the authentication key.
10b Specify a display name for the authentication key.
10c Specify a description of the authentication key for your reference.

The authentication key is stored as a string.

10d Click OK.
10e Repeat Step 10 for each new authentication key that needs to be entered.

To find the authentication key for your application, manually create a SecureLogin
credential for a user in the application and have the user log in. After the user has logged
in, the authentication key information is displayed under My Logins in the SecureLogin
administration window.

11 Specify the authentication key value if it is a static value that is shared by all user credentials.
12 Click the Save icon to save the application.

After the application object is created, proceed to “Configuring Credential Provisioning Policies for
Novell SecureLogin” on page 345.

Creating an Application Object for Novell SecureLogin in iManager

1 In iManager, select Credential Provisioning > Configuration.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2 Browse to and select the Driver object where the application object will be stored, then click
OK.

3 Select the Applications tab, then click New.

4 Specify a name for the application object.
5 Select NSLApplication.xml to use the SecureLogin template to create an application.

6 Click OK.
7 Specify the SecureLogin Application ID. See item worksheet 9).
Novell Credential Provisioning Policies 343

344 Policy Build

novdocx (E
N

U
) 29 January 2007
To find the application ID in SecureLogin, click My Logins. The application ID is stored in the
Id field.

8 Click New to create an authentication key parameter. See worksheet item 10).

8a Specify a name for the authentication key.
8b Specify a display name for the authentication key.
8c Specify a description of the authentication key for your reference.

The authentication key is stored as string.

To find the authentication key for your application, manually create a SecureLogin
credential for a user in the application and have the user log in. After the user has logged
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
in, the authentication key information is displayed under My Logins in the SecureLogin
administration window.

8d Click OK.
8e Specify the value of the authentication key, if it is static, then click OK.

After the application object is created, proceed to “Configuring Credential Provisioning Policies for
Novell SecureLogin” on page 345.

4.2.6 Configuring Credential Provisioning Policies for Novell
SecureLogin
After the repository and application objects are created, policies need to be created to provision
SecureLogin information. The policies use the information stored in the repository and application
objects. There are three actions in the Policy Builder that allow the provisioning of SecureLogin
credentials:

“Clear SSO Credential” on page 346
“Set SSO Credential” on page 346
“Set SSO Passphrase” on page 347
Novell Credential Provisioning Policies 345

346 Policy Build

novdocx (E
N

U
) 29 January 2007
Clear SSO Credential

The clear SSO credential action allows you to clear the SSO credential, so objects can be
deprovisioned.

Figure 4-2 Clear SSO Credential

Enter Credential Store Object DN: Browse to and select the repository object.
Enter Target User DN: Create the DN of the target users by using the Argument Builder. See
worksheet item 15).
Enter Application Credential ID: Specify the application ID. See worksheet item 9).
Enter Login Parameter Strings: Launch the String Builder and enter each authentication key
for the application. See worksheet item 10).

Set SSO Credential

The set SSO credential action allows you to set the SSO credential when a user object is created or
when a password is modified.

Figure 4-3 Set SSO Credential

Enter Credential Store Object DN: Browse to and select the repository object.
Enter Target User DN: Create the DN of the target users by using the Argument Builder. See
worksheet item 15).
Enter Application Credential ID: Specify the application ID. See worksheet item 9).
Enter Login Parameter Strings: Launch the String Builder and enter each authentication key
for the application. See worksheet item 10).
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Set SSO Passphrase

The set SSO passphrase action allows you to create a SecureLogin passphrase and answer for a user
object when it is provisioned.

Figure 4-4 Set SSO Passphrase

Enter Credential Store Object DN: Browse to and select the repository object.
Enter Target User DN: Create the DN of the target users by using the Argument Builder. See
worksheet item 15).
Enter Question and Answer Strings: Launch the String Builder and enter the passphrase
question and answer. See worksheet item 16).

Example Credential Provisioning Policies

The provisioning policies can be implemented and customized to meet the needs of your
environment. The following example explains how to implement the polices for the scenario
presented in Figure 4-1 on page 328.

In the Finance scenario, SecureLogin provisioning occurs after a password is successfully set in
SAP. Most of the necessary parameters are statically configured and available to all policies through
the repository and application objects. However, there are non-static data parameters (sapUsername,
password, DirXML-ADContext, and workforceID) that are available only after the SAP User
Management driver <add> or <modify-password> commands complete and the <output>
status document is returned from the SAP User Management driver shim. The <ouput> document
no longer contains any of the Subscriber channel operation attributes and the user context of the
command is lost, thus preventing queries on the object. It is therefore necessary to do the following:

Make sure the SAP User driver’s Subscriber Create policy enforces the presence of the non-
static data parameters.
Cache the non-static parameters required for the provisioning operation prior to issuing the
Subscriber command to the SAP User driver shim.
Retrieve cached data for use in SecureLogin provisioning after the command completes
successfully.

NOTE: Sample policies are available in XML format on the Identity Manager 3.0 Support Pack 1
media. The filenames are SampleInputTransform.xml,
SampleSubCommandTransform.xml, and SampleSubEventTransform.xml. The files
are found in the following directories, depending upon the platform:

linux\setup\utilities\cred_prov

nt\dirxml\utilities\cred_prov

nw\dirxml\utilities\cred_prov
Novell Credential Provisioning Policies 347

348 Policy Build

novdocx (E
N

U
) 29 January 2007
The files are installed to the Identity Manager server, if Credential Provisioning Sample Policies is
selected during the installation of the utilities. The sample policies are installed to the following
locations, depending upon the platform:

Windows: C:\Novell\NDS\DirXMLUtilities (default; the user can change it during
install)
NetWare®: SYS:\System\DirXmlUtilities
Linux (eDir 8.7): /usr/lib/dirxml/rules/credprov
Linux (eDir 8.8.1): /opt/novell/eDirectory/lib/dirxml/rules/credprov
(default; the user can change it during the install)

The sample policies provide a starting point to develop a policy that works for your environment.

Operation Data Caching

The mechanism that is available for required operation data caching is the <operation-data>
element. Because you might need to provision the SecureLogin account from either an <add> or
<modify-password> command, a logical place to implement the non-static data caching policy
is in the Subscriber Command Transformation policy. The following example shows a typical
SecureLogin Provisioning <operation-data> element:

<operation-data>
 <nsl-sync-data>
 <nsl-target-user-dn>
cn=GLCANYON,ou=finance,dc=prod,dc=testco,dc=com

 </nsl-target-user-dn>
 <nsl-app-username>GCANYON</nsl-app-username>

 <password><!-- content suppressed --></password>
 <nsl-passphrase-answer>50024222</nsl-passphrase-answer>
 </nsl-sync-data>
</operation-data>

In the sample Finance department scenario from Figure 4-1 on page 328, the following values are
needed to populate the operation data payload:

The <nsl-target-user-dn> element is populated with the value of the DirXML-
ADContext attribute from the Identity Vault, which was set by the Active Directory driver. To
ensure that the SAP User driver is notified when the value is set by the AD driver, make sure
you add DirXML-ADContext to the Subscriber filter as a notify attribute.
The <nsl-app-username> element is populated by the value of the sapUsername attribute
which, for an <add> command, is generated by the Create policy of the SAP User driver and is
therefore available as an operation attribute. With the SAP User driver, the SAP User name
value is part of the association value. This means that for password modification events the
names are parsed from the association.
The password element is populated with the value of the <password> element in the <add>
or <modify-password> command.
The <nsl-passphrase-answer> element is populated with the value of the workforceID
attribute from the Identity Vault, which was set by the SAP HR driver. Although this value
should be set during initial provisioning to the Identity Vault, it is still a good practice to add
workforceID to the Subscriber filter as a notify attribute.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
SecureLogin Provisioning

In the scenario, the first available location from which the operation data can be retrieved and
utilized for SecureLogin credential provisioning is in the driver's Input Transformation policy. In the
sample scenario, three policies are implemented:

Set SecureLogin Credentials after successful password synchronization.
Set SecureLogin Passphrase and Answer
Remove SecureLogin Credentials if Application User Deleted (Identity Vault object not
deleted)

NOTE: There is a sample policy in the SampleInputTransform.xml file that sets
SecureLogin credentials after a successful password synchronization occurs. The file is located
in the Credential Provisioning folder on the Identity Manager 3.0 Support Pack 1 media.

The Set SecureLogin Credentials policy needs to make sure the provisioning happens only if the
returned command status is success and the previously set <operation-data> is present.

SecureLogin Deprovisioning

There are many scenarios that can utilize a policy in which a user account for a connected
application is deleted and the Identity Vault account remains. In the Finance scenario, there is a
requirement to delete the SAP User account and deprovision the SecureLogin credentials when the
User's Identity Vault employeeStatus attribute value is set to “I”. To handle this situation, the SAP
User driver's Subscriber Event Transformation contains a policy to transform the modify attribute
value into an object delete. Because the Active Directory account name is still needed after the
delete command is completed, the <operation-data> event needs to be set on the <delete>
command so it is available to the SecureLogin deprovisioning policy in the Input Transformation
policy.

<operation-data>
 <nsl-sync-data>

 <nsl-target-user-dn>
cn=GLCANYON,ou=finance,dc=prod,dc=testco,dc=com

 </nsl-targer-user-dn>
 </nsl-sync-data>
</operation-data>

The policy for transforming the <modify> event into a <delete> and creating this element is
available in the sample Credential Provisioning policies in the
SampleSubEventTransform.xml file.

4.3 Credential Provisioning Policies with Novell
SecretStore
Credential Provisioning policies allow you to provision application credentials to User objects in a
Novell SecretStore repository. The capability to provision the Application Server and the User
credentials as part of a standard Identity Manager provisioning scenario provides a much more
secure and synchronized Web Single Sign-On experience for users.

This document contains the steps required to configure objects and policies in Identity Manager. It
does not contain deployment and configuration information for any SecretStore components. For
Novell Credential Provisioning Policies 349

350 Policy Build

novdocx (E
N

U
) 29 January 2007
SecretStore documentation, see Novell SecretStore 3.3.3 documentation (http://www.novell.com/
documentation/secretstore33/index.html).

To implement Credential Provisioning with SecretStore requires a repository object, an application
object, and creating policies. Repository and application objects store the SecretStore information so
that Identity Manager can use it. The policies are used so that any driver can be enabled to use
Credential Provisioning. It is also possible to configure the following options:

Credential Provisioning can be provided by the Publisher channel, Subscriber channel, or both
channels.
SecretStore synchronization can occur as part of an application password synchronization or be
triggered by some other event.
Web Services credentials can be provisioned without provisioning accounts for the application.

Figure 4-5 shows a typical, yet simple, scenario involving the provisioning of the Single Sign-On
credentials for a new user in GroupWise®. This department provisions new users into the Identity
Vault via a SAP HR system and Identity Manager. Depending on organizational information, the
user is then provisioned into a department authentication tree implemented on eDirectory. This is
where new users authenticate to the network, and is also the repository of GroupWise security
credentials that Novell iChain® or Access Manager® utilizes to provide secure Single Sign-On
functionality from outside the company firewall. As users are subsequently provisioned by Identity
Manager to GroupWise, the credentials for those systems are synchronized to their SecretStore
attributes in the authentication tree.

Figure 4-5 Credential Provisioning with SecretStore

6

GroupWise
Driver

eDirectory
Auth Tree

(151.150.191.5)
SAP

HR System GroupWise

1
7

New User:
Glen Canyon

Pos: 50034211
Org. 50011344

ID: 50024222

3

Identity Manager

Identity
Vault

CN: GCANYON
Given Name: Glen
Surname: Canyon
DirXML-AuthContext: CN=GLCanyon,OU=finance, O=Testco Financials
Title: 500342311-Finance Clerk
workforceID: 50024222

2 5

SAPHR
Driver

eDirectory
Driver

4

User Provisioned
to eDirectory

Secret Store
Credentials for
GroupWise

DN returned

User Provisioned
to GroupWise
er and Driver Customization Guide

http://www.novell.com/documentation/secretstore33/index.html

novdocx (E
N

U
) 29 January 2007
Figure 4-5 illustrates the following provisioning steps:

1. The SAP HR system publishes the data for a newly hired user named Glen Canyon. The
Identity Manager SAP HR driver processes this data.

2. A new User object is created in the Identity Vault with a CN value of GCANYON and a
workforceID value of 50024222. Because this user is assigned to the Finance organization of
his company, he needs to authenticate to the Finance Department eDirectory server. The
Identity Manager eDirectory driver that synchronizes that domain now uses the Identity Vault
information.

3. Glen is provisioned to the Finance department eDirectory server.
4. The driver is configured to obtain Glen’s fully distinguished LDAP name:

CN=GLCanyon,OU=finance,O=Testco Financials.
5. The LDAP name is placed into the DirXML-AuthContext (extension of User object, copy of

DirXML-ADContext) attribute of the GCANYON user in the Identity Vault.
Now that the required attributes are available in the Identity Vault, the GroupWise driver
processes the attributes of the GCANYON object.

6. Because Glen is in the Finance organization, the driver provisions a GroupWise account for
GCANYON on the Finance Departments GroupWise domain server.

7. After the account creation is successful, the GroupWise driver policies provision Glen's
GroupWise authentication credentials to the Secret Store of his eDirectory user account.

When Glen authenticates to his company's Web site from the Internet, an iChain server can use the
SecretStore credentials to form-fill his authentication to his secure GroupWise e-mail account,
eliminating the need for him to enter his GroupWise credentials and also providing additional
security for the company's resources.

4.4 Implementing Credential Provisioning
Policies with SecretStore
The implementation of Credential Provisioning policies with SecretStore is very customizable. The
steps to implement it are different depending upon the platforms SecretStore is installed on, the
applications that are provisioned, and which Identity Manager drivers are involved.

To implement Credential Provisioning policies with SecretStore:

Section 4.4.1, “Meeting Requirements for Credential Provisioning Policies with Novell
SecretStore,” on page 352
Section 4.4.2, “Determining Deployment Configuration Parameters for Novell SecretStore,” on
page 352
Section 4.4.3, “Creating a Repository Object for Novell SecretStore,” on page 355
Section 4.4.4, “Creating an Application Object for Novell SecretStore,” on page 361
Section 4.4.5, “Configuring Credential Provisioning Policies for Novell SecretStore,” on
page 368
Novell Credential Provisioning Policies 351

352 Policy Build

novdocx (E
N

U
) 29 January 2007
4.4.1 Meeting Requirements for Credential Provisioning
Policies with Novell SecretStore
In order to use Credential Provisioning Policies with SecretStore, the following items must be in
place:

Identity Manager 3.0.1
Supported on eDirectory 8.7x and eDirectory 8.8.1; eDirectory 8.8 is not supported
Verify that jsso.jar, idmcp.jar, and jnet.jar are in the standard location for Identity
Manager Java libraries
SecretStore 3.3 or above

After you have verified your environment meets the requirements, proceed to Section 4.4.2,
“Determining Deployment Configuration Parameters for Novell SecretStore,” on page 352.

4.4.2 Determining Deployment Configuration Parameters for
Novell SecretStore
In order to provide the synchronization functionality described in the deployment scenario
illustrated in Figure 4-5, the first step is to gather all of the business process information related to
the Identity Manager and SecretStore environments.You can print Table 4-3, “Credential
Provisioning Policies Worksheet for SecretStore,” on page 352, and use it as a worksheet to record
the information.

Table 4-3 Credential Provisioning Policies Worksheet for SecretStore

Configuration Information Needed Information

1) Which applications will be configured for Web
Single Sign-On provisioning?

2) The DNS name or IP address of the SecretStore
repository server.

3) The SSL LDAP port for the SecretStore
repository server.

4) The fully qualified LDAP distinguished name of
the administrator for the SecretStore repository
server.

5) The password of the administrator for the
SecretStore repository server.

6) The full path and the name of the SSL certificate
exported from the SecretStore server. The
certificate must be local to the Identity Manager
server.

7) Determine if SecretStore repositories will be
used by multiple drivers or if each driver will use a
separate repository.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Example Provisioning Configuration Data

Using the provisioning scenario, the following example data was determined for provision user’s
SecretStore credentials for the Finance department’s GroupWise domain server onto users in the
Finance eDirectory authentication tree:

Table 4-4 Example Credential Provisioning Policies Worksheet for SecretStore

8) Record the type of SecretStore secret that is
being used.

There are two supported types of secrets:

A: Application Secret (SS_App: prefix)

C: Credential Set Secret (SS_CredSet: prefix)

9) The application ID or Credential Set name for
each provisioned application.

10) Find all required authentication keys for each
application, such as Username and Password.
They might be different for each application.

11) Determine if any of the authentication key
values can be set with a static value.

12) For non-static values that are or can be
different for each user, make a note of the source of
the non-static information (event information or
Identity Vault attribute values.)

13) If you are implementing SecretStore
provisioning on a driver that is also synchronizing a
password to the target application, determine if the
SecretStore provisioning takes place before or after
the password is set in the target application server.

14) The name of the Driver object where the
repository and application objects are to be stored.
(Can be different drivers.)

15) Determine the DN of the User objects for the
target application.

Configuration Information Needed Information

1) Which applications will be configured for Web
Single Sign-On provisioning?

GroupWise

2) The DNS name or IP address of the SecretStore
repository server.

151.150.191.5

3) The SSL LDAP port for the SecretStore
repository server.

636

4) The fully qualified LDAP distinguished name of
the administrator for the SecretStore repository
server.

cn=admin,ou=finance,o=Tesetco Financials

Configuration Information Needed Information
Novell Credential Provisioning Policies 353

354 Policy Build

novdocx (E
N

U
) 29 January 2007
Miscellaneous Environment Information:

The Finance department eDirectory tree would serve as the SecretStore repository for all
Finance applications.
All finance department provisioning drivers are in a driver set call Finance Drivers.
The GroupWise account must be deleted and the SecretStore credentials for the GroupWise
user account must be removed from the eDirectory user when the Identity Vault attribute
employeeStatus is set to the value “I”.

As can be seen from the data gathered, the SecretStore repository information is global for all
drivers that provision Finance department applications. In addition all provisioning information can

5) The password of the administrator for the
SecretStore repository server.

dixml

6) The full path and the name of the SSL certificate
exported from the SecretStore server. The
certificate must be local to the Identity Manager
server.

c:\novell\nds\FinanceAD.cer

7) Determine if SecretStore repositories will be
used by multiple drivers or if each driver will use a
separate repository.

For this example, there is only one repository.

8) Record the type of SecretStore secret that is
being used.

There are two supported types of secrets:

A: Application Secret (SS_App: prefix)

C: Credential Set Secret (SS_CredSet: prefix)

9) The application ID or Credential Set name for
each provisioned application.

GroupWise_Credentials

10) Find all required authentication keys for each
application, such as Username and Password.
They might be different for each application.

Username
Password

11) Determine if any of the authentication key
values can be set with a static value.

No static information for this scenario.

12) For non-static values that are or can be
different for each user, make a note of the source of
the non-static information (event information or
Identity Vault attribute values.)

Username: Identity Vault attribute “CN”
Password: Event <password>

13) If you are implementing SecretStore
provisioning on a driver that is also synchronizing a
password to the target application, determine if the
SecretStore provisioning takes place before or after
the password is set in the target application server.

After

14) The name of the Driver object where the
repository and application objects are to be stored.
(Can be different drivers.)

GroupWise-Finance driver

15) Determine the DN of the User objects for the
target application.

Identity Vault attribute “DirXML-ADContext”

Configuration Information Needed Information
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
be statically configured, with the exception of the GroupWise login parameters Username,
Password, and Target User DN.

After all of the configuration data has been determined, proceed to Section 4.4.3, “Creating a
Repository Object for Novell SecretStore,” on page 355.

4.4.3 Creating a Repository Object for Novell SecretStore
Repository objects store static configuration information for SecretStore. Repository information is
independent from the applications that consume the application credentials. This information is
applicable for all provisioning events regardless of the connected system (for example SAP,
PeopleSoft, Notes, etc.) The repository objects can be created in Designer or iManager.

“Creating Repository Objects for Novell SecretStore in Designer” on page 355
“Creating Repository Objects for Novell SecretStore in iManager” on page 358

Creating Repository Objects for Novell SecretStore in Designer

The following is one of many methods you can use to create the repository object in Designer.

1 In the outline view, right-click the driver object where you want to store the repository object.
2 Click Credential Provisioning > New Repository Object.

3 Specify a name for the repository object.
4 Select NSSRepository.xml to use the SecretStore template.

5 Click OK.
Novell Credential Provisioning Policies 355

356 Policy Build

novdocx (E
N

U
) 29 January 2007
6 Double-click the repository object in the outline view to add configuration information.

7 Click Yes, to save the new repository object.

8 Specify the DNS name or IP address of the SecretStore server. See worksheet item 2).

9 Specify the SSL port for the SecretStore server. See worksheet item 3).

10 Specify the full path to the SSL certificate exported from the SecretStore server. The path must
include the certificate name and must be local to the Identity Manager server. See worksheet
item 6).

NOTE: Refer to the iManager documentation for the information on how to export the SSL
certificate.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
11 Specify the fully qualified LDAP distinguished name of the SecretStore administrator. See
worksheet item 4).

12 Click Set password.

13 Specify the SecretStore administrator’s password twice, then click OK. See worksheet item 5).

14 Review the information, then click the Save icon to save the information.
15 (Optional) If you want to create other configuration parameters for the repository object, click

the Add new item icon .

15a Specify a name for the parameter.
15b Specify a display name for the parameter.
15c Specify a description for the parameter for your reference.
Novell Credential Provisioning Policies 357

358 Policy Build

novdocx (E
N

U
) 29 January 2007
The parameter is stored as a string.

15d Click OK.
15e Click the Save icon to save the repository object.

After the repository object is created, proceed to “Creating an Application Object for Novell
SecureLogin in Designer” on page 340.

Creating Repository Objects for Novell SecretStore in iManager

1 In iManager, select Credential Provisioning > Configuration.
2 Browse to and select the Driver object where the repository object will be stored, then click

OK.

3 Click New to create a repository.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
4 Specify a name for the repository object.
5 Select NSSRepository.xml to use the SecretStore template to create a repository.

6 Click OK.
7 Specify the DNS name or IP address of the SecretStore server. See worksheet item 2).

8 Specify the SSL port for the SecretStore server. See worksheet item 3).

9 Specify the full path to the SSL certificate exported from the SecretStore server. The path must
include the certificate name and must be local to the Identity Manager server. See worksheet
item 6).

NOTE: Refer to the iManager documentation for the information on how to export the SSL
certificate.

10 Specify the fully qualified LDAP distinguished name of the SecretStore administrator. See
worksheet item 4).

11 Click Set password.
Novell Credential Provisioning Policies 359

360 Policy Build

novdocx (E
N

U
) 29 January 2007
12 Specify the SecretStore administrator’s password twice, then click OK. See worksheet item 5).

13 Review the values specified, then click OK.
14 (Optional) If you want to create other configuration parameters for the repository object, click

New.

The example information, is from the scenario in Figure 4-1 on page 328.
14a Specify a name for the parameter.
14b Specify a display name for the parameter.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
14c Specify a description of the parameter for your reference.
The parameter is stored as a string.

14d Click OK.

After the repository object is created, proceed to “Creating an Application Object for Novell
SecureLogin in iManager” on page 342.

4.4.4 Creating an Application Object for Novell SecretStore
Applications store static configuration parameter values for SecretStore. Application information is
specific to the applications that are consuming the application credential (for example, GroupWise
client information or SAP database client information). The application objects can be created in
Designer or iManager.

“Creating an Application Object for Novell SecretStore in Designer” on page 361
“Creating an Application Object for Novell SecretStore in iManager” on page 364

Creating an Application Object for Novell SecretStore in Designer

The following is one of many methods you can use to create the application in Designer.

1 In the outline view, right-click the driver object where you want to store the application object.
2 Click Credential Provisioning > New Application Object.
Novell Credential Provisioning Policies 361

362 Policy Build

novdocx (E
N

U
) 29 January 2007
3 Specify a name for the application object.
4 Select NSSApplication.xml to use the SecretStore template.

5 Click OK.
6 Double-click the application object in the outline view to add configuration information.

7 Click Yes to save the new application object.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
8 Specify the SecretStore Application ID. See worksheet item 9).

9 Select the SecretStore Secret Type. See worksheet item 8).

10 Select the SecretStore Shared Secret Type. See worksheet item 8).

11 Select whether the SecretStore Use Enhanced Protection Flag is Disabled or Enabled.

12 Click Set Password to set the Enhanced Protection Password if it is enabled.

13 Specify the password twice, then click OK.

14 Click the Save icon to save the application.
Novell Credential Provisioning Policies 363

364 Policy Build

novdocx (E
N

U
) 29 January 2007
15 Click the Add new item icon to add the authentication keys required for the application.

15a Specify a name for the authentication key.
15b Specify a display name for the authentication key.
15c Specify a description of the authentication key for your reference.

The authentication key is stored as a string.

15d Click OK.
15e Repeat Step 15 for each new authentication key that needs to be entered.

16 Specify the authentication key value, if it is a static value that is shared by all user credentials.
17 Click the Save icon to save the application.

After the application object is created, proceed to Section 4.4.5, “Configuring Credential
Provisioning Policies for Novell SecretStore,” on page 368.

Creating an Application Object for Novell SecretStore in iManager

1 In iManager, select Credential Provisioning > Configuration.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2 Browse to and select the Driver object where the application object will be stored, then click
OK.

3 Select the Applications tab, then click New.

4 Specify a name for the application object
5 Select NSSApplication.xml to use the SecretStore template to create an application.

6 Click OK.
7 Specify the SecretStore Application ID. See worksheet item 9).
Novell Credential Provisioning Policies 365

366 Policy Build

novdocx (E
N

U
) 29 January 2007
8 Select the SecretStore Secret Type. See worksheet item 7). The SecretStore type is Shared or
Not Shared.

9 Select the SecretStore Shared Secret Type. See worksheet item 8). The Shared SecretStore type
is Credential Set or Application.

10 Select whether the SecretStore Use Enhanced Protection Flag is Disabled or Enabled.

11 Click Set password to set the Enhanced Protection Password if it is enabled.

12 Specify the password twice, then click OK.

13 Click New to create an authentication key that the application requires. See worksheet item 10).
13a Specify a name for the authentication key.
13b Specify a display name for the authentication key.
13c Specify a description of the authentication key for your reference.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The authentication key is stored as a string.

13d Click OK.
13e Repeat Step 13 for each authentication key the application requires.
Novell Credential Provisioning Policies 367

368 Policy Build

novdocx (E
N

U
) 29 January 2007
14 Specify the value of the authentication key, if it is static, then click OK.

After the application object is created, proceed to Section 4.4.5, “Configuring Credential
Provisioning Policies for Novell SecretStore,” on page 368.

4.4.5 Configuring Credential Provisioning Policies for Novell
SecretStore
After the repository and application objects are created, policies need to be created to provision
SecretStore information. The policies use the information stored in the repository and application
objects. There are two actions in the Policy Builder that allow the provisioning of SecretStore
credentials:

“Clear SSO Credential” on page 346
“Set SSO Credential” on page 346
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Clear SSO Credential

The clear SSO credential action allows you to clear the SSO credential, so objects can be
deprovisioned.

Figure 4-6 Clear SSO Credential

Enter Credential Store Object DN: Browse to and select the repository object.
Enter Target User DN: Create the DN of the target users by using the Argument Builder. See
worksheet item 15).
Enter Application Credential ID: Specify the application ID. See worksheet item 9).
Enter Login Parameter Strings: Launch the String Builder and enter each authentication key
for the application. See worksheet item 10).

Set SSO Credential

The set SSO credential action allows you to set the SSO credential when a user object is created or
when a password is modified.

Figure 4-7 Set SSO Credential

Enter Credential Store Object DN: Browse to and select the repository object.
Enter Target User DN: Create the DN of the target users by using the Argument Builder. See
worksheet item 15).
Enter Application Credential ID: Specify the application ID. See worksheet item 9).
Enter Login Parameter Strings: Launch the String Builder and enter each authentication key
for the application. See worksheet item 10).
Novell Credential Provisioning Policies 369

370 Policy Build

novdocx (E
N

U
) 29 January 2007
Example Credential Provisioning Policies

The credential provisioning policies can be implemented and customized to meet the needs of your
environment. The following example explains how to implement the polices for the scenario
presented in Figure 4-5 on page 350.

In the Finance scenario, SecretStore provisioning occurs after a password is successfully set in
GroupWise. Most of the necessary parameters are statically configured and available to all policies
through the repository and application objects. However, there are non-static data parameters (CN,
password, and DirXML-ADContext) that are available only after the GroupWise user <add> or
<modify-password> commands complete and the <output> document is returned from the
GroupWise driver shim. The <output> document no longer contains any of the Subscriber
operation attributes and the User context of the command is lost, thus preventing queries on the
object. It is therefore necessary to do the following:

Make sure the GroupWise driver’s Subscriber Create policy enforces the presence of the non-
static data parameters.
Cache the non-static parameters required for the provisioning operation prior to issuing the
Subscriber command to the GroupWise driver shim.
Retrieve cached data for use in SecretStore provisioning after the command completes
successfully.

NOTE: Sample policies are available in XML format on the Identity Manager 3.0 Support Pack 1
media. The filenames are SampleInputTransform.xml,
SampleSubCommandTransform.xml, and SampleSubEventTransform.xml. The files
are found in the following directories:

linux\setup\utilities\cred_prov

nt\dirxml\utilities\cred_prov

nw\dirxml\utilities\cred_prov

The files are installed to the Identity Manager server, if Credential Provisioning Sample Policies is
selected during the installation of the utilities. The sample policies are installed to the following
locations, depending upon the platform:

Windows: C:\Novell\NDS\DirXMLUtilities (default; the user can change it during
install)
NetWare: SYS:\System\DirXmlUtilities
Linux (eDir 8.7): /usr/lib/dirxml/rules/credprov
Linux (eDir 8.8.1): /opt/novell/eDirectory/lib/dirxml/rules/credprov
(default; the user can change it during the install)

The sample policies provide a starting point to develop a policy that works for your environment.

Operation Data Caching

The mechanism that is available for required operation data caching required is the <operation-
data> element. Because you might need to provision the SecretStore account from either an
<add> or <modify-password> command, a logical place to implement the non-static data
caching policy is in the Subscriber Command Transformation policy. The following example shows
a typical SecretStore Provisioning element:
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
<operation-data>
 <nss-sync-data>
 <nss-target-user-dn>
cn=GLCANYON,ou=finance,o=Testco Financials

 </nss-target-user-dn>
 <nss-app-username>GCANYON</nsl-app-username>

 <password><!-- content suppressed --></password>
 <nss-passphrase-answer>50024222</nsl-passphrase-answer>
 </nss-sync-data>
</operation-data>

In the sample Finance department scenario from Figure 4-5 on page 350, the following values are
needed to populate the operation data payload:

The <nss-target-user-dn> element is populated with the value of the DirXML-
ADContext attribute from the Identity Vault, which was set by the eDirectory driver. To ensure
that the GroupWise driver is notified when the value is set by the eDirectory driver, make sure
you add DirXML-ADContext to the Subscriber filter as a notify attribute.
The <nss-app-username> element is populated by the value of the CN attribute in the
Identity Vault.
The password element is populated with the value of the <password> element in the <add>
or <modify-password> command.

SecretStore Provisioning

In the sample scenario, the first available location from which the operation data can be retrieved
and utilized for SecretStore credential provisioning is in the driver's Input Transformation policy. In
the sample scenario, two policies are implemented:

Set SecretStore Credentials after successful password synchronization
Remove SecretStore Credentials if Application User Deleted (Identity Vault object not deleted)

NOTE: There is a sample policy in the SampleInputTransform.xml file that sets the
SecretStore credentials after a successful password synchronization occurs. The file is located
in the cred_prov folder in the utilities directory on the Identity Manager 3.0 Support Pack 1
media.

The Set SecretStore Credentials policy needs to make sure the provisioning happens only if the
returned command status is Success and the previously set <operation-data> is present.

SecretStore Deprovisioning

There are many scenarios that can utilize a policy in which a user account for a connected
application is deleted and the Identity Vault account remains. In the Finance scenario, there is a
requirement to delete the GroupWise account and deprovision the SecretStore credentials when the
user's Identity Vault employeeStatus attribute value is set to “I”. To handle this situation, the
GroupWise driver's Subscriber Event Transformation contains a policy to transform the modify
attribute value into an object delete. Because the eDirectory account name is still needed after the
delete command is completed, the <operation-data> event needs to be set on the <delete>
command so it is available to the SecretStore deprovisioning policy in the Input Transformation
policy.
Novell Credential Provisioning Policies 371

372 Policy Build

novdocx (E
N

U
) 29 January 2007
<operation-data>
 <nss-sync-data>

 <nss-target-user-dn>cn=GLCANYON,ou=finance,o=Testco
Financials

 </nss-targer-user-dn>
 </nss-sync-data>
</operation-data>

The policy for transforming the <modify> event into a <delete> and creating this element is
available in XML format in a file called SampleSubEventTransform.xml files in the
cred_prov folder in the utilities directory on the Identity Manager 3.0 Support Pack 1
media.
er and Driver Customization Guide

5
novdocx (E

N
U

) 29 January 2007
5Defining Policies using XSLT Style
Sheets

Policies can be implemented as XSLT style sheets. XSLT is a standard language for transforming
XML documents. The XSLT processor in the Metadirectory engine is compliant with the 16
November 1999 W3C recommendation. For the relevant specifications, see the following:

XSL Transformations (XSLT) (http://www.w3.org/TR/1999/REC-xslt-19991116)
XML Path Language (XPath) (http://www.w3.org/TR/1999/REC-xpath-19991116)

The following sections describe the implementation specifics of using style sheets with Identity
Manager.

Section 5.1, “Managing XSLT Style Sheets in Designer,” on page 373
Section 5.2, “Managing XSLT Style Sheets in iManager,” on page 375
Section 5.3, “Starting with an Identity Transformation,” on page 376
Section 5.4, “Using the Parameters that Identity Manager Passes,” on page 377
Section 5.5, “Using Extension Functions,” on page 379
Section 5.6, “Creating a Password Example: Creation Policy,” on page 380
Section 5.7, “Creating an eDirectory User Example: Creation Policy,” on page 381

5.1 Managing XSLT Style Sheets in Designer
XSLT policy style sheets are added, modified, and deleted using Designer. The following sections
provide details on using XSLT style sheets in Designer:

Section 5.1.1, “Adding an XSLT Policy in Designer,” on page 373

5.1.1 Adding an XSLT Policy in Designer
1 Open a project in Designer and select the Outline tab.
2 Select the driver and location where you want the style sheet.
Defining Policies using XSLT Style Sheets 373

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

374 Policy Build

novdocx (E
N

U
) 29 January 2007
3 Right-click and select Add Policy >XSLT.

4 Specify the name of the style sheet.
5 Select Open Editor after creating policy, then click OK.

6 Select Yes to save the project before editing the new policy.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
7 Add the style sheet information below the line add your custom templates here.

8 Save the style sheet by selecting File > Save.

5.2 Managing XSLT Style Sheets in iManager
XSLT policy style sheets are added, modified, and deleted using iManager. The following sections
provide details on using XSLT style sheets in iManager:

Section 5.2.1, “Adding an XSLT Policy in iManager,” on page 375

5.2.1 Adding an XSLT Policy in iManager
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to define.
3 Click Insert.
4 Provide a name for the new policy, select XSLT, then click Enter.
Defining Policies using XSLT Style Sheets 375

376 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Define your XSLT policy, then click OK:

5.3 Starting with an Identity Transformation
When you create a new stylesheet in iManager or Designer, it is pre-populated with a stylesheet that
implements the identity transformation. In the absence of additional templates, the identity
transformation allows the input XML document to pass through the stylesheet unchanged. You
usually implement policy by adding additional templates to act on just the XML that you want to be
changed. If your stylesheet is being used to translate a document to or from an XML vocabulary that
is different then XDS (such as the Input and Output Transformations for the SOAP and Delimited
Text drivers) you may need to remove the identity template.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5.4 Using the Parameters that Identity Manager
Passes
The Metadirectory engine passes the policy style sheets the following parameters that the style sheet
can use.

srcQueryProcessor—A Java object that implements the XdsQueryProcessor interface. This
allows the style sheet to query the source datastore for more information.
destQueryProcessor—A Java object that implements the XdsQueryProcessor interface. This
allows the style sheet to query the destination datastore for more information.
srcCommandProcessor—A java object that implements the XdsCommandProcessor interface.
This allows the style sheet to write-back a command to the event source. Not available in
DirXML 1.0.
destCommandProcessor-A java object that implements the XdsCommandProcessor interface.
This allows the style sheet to issue a command directly to send a command to the destination
datastore.
dnConverter—This is a java object that implements the XdsCommandProcessor interface.This
allows the style sheet to convert Identity Vault object DNs from one format to another. For
more information see Interface DNCoverter (http://developer.novell.com/ndk/doc/dirxml/
dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html).
fromNds—This is a boolean value that is true if the source datastore is the Identity Vault and
false if it is the connected application.

When you create a new stylesheet in iManager or Designer, it is pre-populated with a stylesheet that
contains the declarations for these parameters.

When using the query and command parameters with the schema mapping policies, input
transformation policies, and output transformation policies. The following limitations apply:

Queries issued to the application shim must be in the form expected by the application shim. In
other words, schema names must be in the application namespace and the query must conform
to whatever XML vocabulary is used natively by the shim. No association references are added
to the query.
Responses from the application shim are in the form returned by the shim with no modification
or schema mapping performed and no resolution of association references.
Queries issued to eDirectoryTM must be in the form expected by eDirectory. In other words
schema names must be in the eDirectory namespace and the query must be XDS. Association
references are not resolved.
Responses from the application shim are in the form returned by the shim with no modification
or schema mapping performed.

Query Processors

Use of the query processors depends on the Novell® XSLT implementation of extension functions.
To make a query, you need to declare a namespace for the XdsQueryProcessor interface. This is
done by adding the following to the <xsl:stylesheet> or <xsl:transform> element of the style sheet.
xmlns:query="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.XdsQueryProcessor"
Defining Policies using XSLT Style Sheets 377

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html

378 Policy Build

novdocx (E
N

U
) 29 January 2007
When you create a new stylesheet in iManager or Designer, it is pre-populated with the namespace
declaration. For more information about query processors see Class XdsQueryProcessor (http://
developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/
XdsQueryProcessor.html)

The following example uses one of the query processors (the extra long lines are wrapped and do not
begin with a <):
<!-- Query object name queries NDS for the passed object name -->

<xsl:template name="query-object-name">
 <xsl:param name="object-name"/>

<!-- build an xds query as a result tree fragment -->
 <xsl:variable name="query">
 <query>
 <search-class class-name="{ancestor-or-self:
 :add/@class-name}"/>

<!-- NOTE: depends on CN being the naming attribute -->
 <search-attr attr-name="CN">
 <value><xsl:value-of select="$object-name"/
 ></value>
 </search-attr>
<!-- put an empty read attribute in so that we don’t get -->
<!-- the whole object back -->
 <read-attr/>
 </query>
 </xsl:variable>

<!-- query NDS -->
<xsl:variable name="result" select="query:query($destQuery
 Processor,$query)"/>

<!-- return an empty or non-empty result tree fragment -->
<!-- depending on result of query -->
 <xsl:value-of select="$result//instance"/>
</xsl:template>

Here is another example.
<?xml version="1.0"?>
<xsl:transform
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:cmd="http://www.novell.com/nxsl/java
 com.novell.nds.dirxml.driver.XdsCommandProcessor"
>
<xsl:param name="srcCommandProcessor"/>

<xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>
er and Driver Customization Guide

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html

novdocx (E
N

U
) 29 January 2007
<xsl:template match="add">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>

<!-- on a user add, add Engineering department to the source
object -->

<xsl:variable name="dummy">
 <modify class-name="{@class-name} "dest-dn="{@src-dn}">
 <xsl-copy-of select="association"/>
 <modify-attr attr-name="OU">
 <add-value>
 <value type="string">Engineering</value>
 </add-value>
 </modify-attr>

</modify>
</xsl:variable>

 <xsl:variable name="dummy2"
 select="cmd:execute($srcCommandProcessor, $dummy)"/>
</xsl:template>

</xsl:transform>

5.5 Using Extension Functions
XSLT is an excellent tool for performing some kinds of transformations and a rather poor tool for
other types of transformations such as non-trivial string manipulation and iterative processes.
Fortunately the Novell XSLT processor implements extension functions that allow the style sheet to
call a function implemented in Java, and by extension, any other language that can be accessed
through JNI.

For specific examples, see the above example using the query processor, and the following example
that illustrates using Java for string manipulation (the extra long lines are wrapped and do not begin
with a <).
<!-- get-dn-prefix places the part of the passed dn that -->
<!-- precedes the last occurrence of ’\’ in the passed dn -->
<!-- in a result tree fragment meaning that it can be -->
<!-- used to assign a variable value -->

<xsl:template name="get-dn-prefix" xmlns:jstring="http://
 www.novell.com/nxsl/java/java.lang.String">

 <xsl:param name="src-dn"/>

<!-- use java string stuff to make this much easier -->
 <xsl:variable name="dn" select="jstring:new($src-dn)"/>
 <xsl:variable name="index" select="jstring:lastIndexOf
 ($dn,’\’)"/>
 <xsl:if test="$index != -1">
 <xsl:value-of select="jstring:substring($dn,0,$index)
 "/>
 </xsl:if>
</xsl:template>
Defining Policies using XSLT Style Sheets 379

380 Policy Build

novdocx (E
N

U
) 29 January 2007
5.6 Creating a Password Example: Creation
Policy
The following style sheet can be used for a Creation policy. It creates a user, generates a password
for the user from the user’s Surname and CN attributes, and performs an identity transformation
(which passes through everything in the document except the events you are trying to intercept and
transform).
<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- This stylesheet has an example of how to replace a create rule
with
 an XSLT stylesheet and supply an initial password for "User"
objects. -->

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform
 "version="1.0">

<!-- ensure we have required NDS attributes -->
<xsl:template match="add">
 <xsl:if test="add-attr[@attr-name=’Surname’] and
 add-attr[@attr-name=’CN’]">
 <!-- copy the add through -->
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <!-- add a <password> element -->
 <xsl:call-template name="create-password"/>
 </xsl:copy>
 </xsl:if>

<!-- if the xsl:if fails, we don’t have all the required attributes
 so we won’t copy the add through, and the create rule will veto
the add -->

</xsl:template>

<xsl:template name="create-password">
 <password>
 <xsl:value-of select="concat(add-attr[@attr-name=’Surname’]/
value,
 ’-’,add-attr[@attr-name=’CN’]/value)"/>
 </password>
</xsl:template>

<!-- identity transform for everything we don’t want to change -->

<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

</xsl:transform>
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5.7 Creating an eDirectory User Example:
Creation Policy
This style sheet can be used for a Creation policy. It shows how to create an eDirectory user from an
entry created in an external application. This example is based on the idea that a newly hired person
is first created in the Human Resources database and then on the network. It takes the user’s first
name and last name and generates a unique CN in the eDirectory tree. Although eDirectory requires
the CN to be unique in only the container, this style sheet ensures that it is unique across all
containers in the eDirectory tree.
<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- This stylesheet is an example of how to replace a create rule
with an
 XSLT stylesheet and that creates the User name from the Surname
and
 given Name attributes -->

<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns:query="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.
 XdsQueryProcessor"
 >

<!-- This is for testing the stylesheet outside of Identity Manager so
things
 are pretty to look at -->
<xsl:strip-space elements="*"/>
<xsl:preserve-space elements="value,component"/>
<xsl:output method="xml" indent="yes"/>

<!-- Identity Manager always passes two stylesheet parameters to an
XSLT rule:
 an inbound and outbound query processor -->
<xsl:param name="srcQueryProcessor"/>
<xsl:param name="destQueryProcessor"/>

<!-- match <add> elements -->
<xsl:template match="add">

 <!-- ensure we have required NDS attributes we need for the name -->
 <xsl:if test="add-attr[@attr-name=’Surname’] and
 add-attr[@attr-name=’Given Name’]">

 <!-- copy the add through -->
 <xsl:copy>
 <!-- copy any attributes through except for the src-dn -->
 <!-- we’ll construct the src-dn below so that the placement
rule will work -->
 <xsl:apply-templates select="@*[string(.) != ’src-dn’]"/>

 <!-- call a template to construct the object name and place the
result in a variable -->
Defining Policies using XSLT Style Sheets 381

382 Policy Build

novdocx (E
N

U
) 29 January 2007
 <xsl:variable name="object-name">
 <xsl:call-template name="create-object-name"/>
 </xsl:variable>

 <!-- now create the src-dn attribute with the created name -->
 <xsl:attribute name="src-dn">
 <xsl:variable name="prefix">
 <xsl:call-template name="get-dn-prefix">
 <xsl:with-param name="src-dn" select="string(@src-
dn)"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of select="concat($prefix,’\’,$object-name)"/>
 </xsl:attribute>

 <!-- if we have a "CN" attribute, set it to the constructed
name -->
 <xsl:if test="./add-attr[@attr-name=’CN’]">
 <add-attr attr-name="CN">
 <value type="string"><xsl:value-of select="$object-
name"/></value>
 </add-attr>
 </xsl:if>

 <!-- copy the rest of the stuff through, except for what we
have already copied -->
 <xsl:apply-templates select="*[name() != ’add-attr’ or @attr-
name != ’CN’] |
 comment() |
 processing-instruction() |
 text()"/>

 <!-- add a <password> element -->
 <xsl:call-template name="create-password"/>

 </xsl:copy>
 </xsl:if>
 <!-- if the xsl:if fails, it means we don’t have all the required
attributes
 so we won’t copy the add through, and the create rule will veto
the add -->
</xsl:template>

<!-- get-dn-prefix places the part of the passed dn that precedes the
-->
<!-- last occurrance of ’\’ in the passed dn in a result tree fragment
-->
<!-- meaning that it can be used to assign a variable value
-->
<xsl:template name="get-dn-prefix" xmlns:jstring="http://
www.novell.com/nxsl/java/java.lang.String">
 <xsl:param name="src-dn"/>

 <!-- use java string stuff to make this much easier -->
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
 <xsl:variable name="dn" select="jstring:new($src-dn)"/>
 <xsl:variable name="index" select="jstring:lastIndexOf($dn,’\’)"/>
 <xsl:if test="$index != -1">
 <xsl:value-of select="jstring:substring($dn,0,$index)"/>
 </xsl:if>
</xsl:template>

<!-- create-object-name creates a name for the user object and places
the -->
<!-- result in a result tree fragment
-->
<xsl:template name="create-object-name">

 <!-- first try is first initial followed by surname -->
 <xsl:variable name="given-name" select="add-attr[@attr-name=’Given
Name’]/value"/>
 <xsl:variable name="surname" select="add-attr[@attr-
name=’Surname’]/value"/>
 <xsl:variable name="prefix" select="substring($given-name,1,1)"/>
 <xsl:variable name="object-name" select="concat($prefix,$surname)"/
>

 <!-- then see if name already exists in NDS -->
 <xsl:variable name="exists">
 <xsl:call-template name="query-object-name">
 <xsl:with-param name="object-name" select="$object-name"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- if exists, then try 1st fallback, else return result -->
 <xsl:choose>
 <xsl:when test="$exists != ’’">
 <xsl:call-template name="create-object-name-2"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$object-name"/>
 </xsl:otherwise>
 </xsl:choose>

</xsl:template>

<!-- create-object-name-2 is the first fallback if the name created by
-->
<!-- create-object-name already exists
-->
<xsl:template name="create-object-name-2">

 <!-- first try is first name followed by surname -->
 <xsl:variable name="given-name" select="add-attr[@attr-name=’Given
Name’]/value"/>
 <xsl:variable name="surname" select="add-attr[@attr-
name=’Surname’]/value"/>
 <xsl:variable name="object-name" select="concat($given-
name,$surname)"/>
Defining Policies using XSLT Style Sheets 383

384 Policy Build

novdocx (E
N

U
) 29 January 2007
 <!-- then see if name already exists in NDS -->
 <xsl:variable name="exists">
 <xsl:call-template name="query-object-name">
 <xsl:with-param name="object-name" select="$object-name"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- if exists, then try last fallback, else return result -->
 <xsl:choose>
 <xsl:when test="$exists != ’’">
 <xsl:call-template name="create-object-name-fallback"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$object-name"/>
 </xsl:otherwise>
 </xsl:choose>

</xsl:template>

<!-- create-object-name-fallback recursively tries a name created by
-->
<!-- concatenating the surname and a count until NDS doesn’t find
-->
<!-- the name. There is a danger of infinite recursion, but only if
-->
<!-- there is a bug in NDS -
->
<xsl:template name="create-object-name-fallback">
 <xsl:param name="count" select="1"/>

 <!-- construct the a name based on the surname and a count -->
 <xsl:variable name="surname" select="add-attr[@attr-
name=’Surname’]/value"/>
 <xsl:variable name="object-name" select="concat($surname,’-
’,$count)"/>

 <!-- see if it exists in NDS -->
 <xsl:variable name="exists">
 <xsl:call-template name="query-object-name">
 <xsl:with-param name="object-name" select="$object-name"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- if exists, then try again recursively, else return result -->
 <xsl:choose>
 <xsl:when test="$exists != ’’">
 <xsl:call-template name="create-object-name-fallback">
 <xsl:with-param name="count" select="$count + 1"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$object-name"/>
 </xsl:otherwise>
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
 </xsl:choose>

</xsl:template>

<!-- query object name queries NDS for the passed object-name. Ideally,
this would -->
<!-- not depend on "CN": to do this, add another parameter that is the
name of the -->
<!-- naming attribute.
-->
<xsl:template name="query-object-name">
 <xsl:param name="object-name"/>

 <!-- build an xds query as a result tree fragment -->
 <xsl:variable name="query">
 <nds ndsversion="8.5" dtdversion="1.0">
 <input>
 <query>
 <search-class class-name="{ancestor-or-self::add/@class-
name}"/>
 <!-- NOTE: depends on CN being the naming attribute -->
 <search-attr attr-name="CN">
 <value><xsl:value-of select="$object-name"/></value>
 </search-attr>
 <!-- put an empty read attribute in so that we don’t get
the whole object back -->
 <read-attr/>
 </query>
 </input>
 </nds>
 </xsl:variable>

 <!-- query NDS -->
 <xsl:variable name="result"
select="query:query($destQueryProcessor,$query)"/>

 <!-- return an empty or non-empty result tree fragment depending on
result of query -->
 <xsl:value-of select="$result//instance"/>
</xsl:template>

<!-- create an initial password -->
<xsl:template name="create-password">
 <password>
 <xsl:value-of select="concat(add-attr[@attr-name=’Surname’]/
value,’-’,add-attr[@attr-name=’CN’]/value)"/>
 </password>
</xsl:template>

<!-- identity transform for everything we don’t want to mess with -->
<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
Defining Policies using XSLT Style Sheets 385

386 Policy Build

novdocx (E
N

U
) 29 January 2007
</xsl:template>

</xsl:transform>
er and Driver Customization Guide

6
novdocx (E

N
U

) 29 January 2007
6Managing Filters

The Filter editor allows you to manage the filter. In the Filter editor, you define how each class and
attribute should be handled by the Publisher and Subscriber channels.

This section covers the following filter-related topics:

Section 6.1, “Filter Tasks in Designer,” on page 387
Section 6.2, “Filter Tasks in iManager,” on page 408

6.1 Filter Tasks in Designer
This section contains instructions on performing common filter-related tasks in Designer:

Section 6.1.1, “Accessing the Filter Editor,” on page 387
Section 6.1.2, “Editing the Filter,” on page 390
Section 6.1.3, “Testing Filters,” on page 394
Section 6.1.4, “Viewing the Filter XML Source,” on page 400
Section 6.1.5, “Additional Filter Options,” on page 406

6.1.1 Accessing the Filter Editor
The Filter editor allows you to edit the filter. There are three different ways to access the Filter
editor: through the model outline, through the policy flow, and through the Policy Set view.

Model Outline View

1 In an open project, click the Outline tab.
2 Click the Show Model Outline icon.
3 Select the driver you want to manage the filter for, then click the plus sign to the right.
4 Double-click the Filter icon and to launch the Filter editor.

or
Managing Filters 387

388 Policy Build

novdocx (E
N

U
) 29 January 2007
Right-click and select Edit.

Policy Flow View

1 In an open project, click the Outline tab.
2 Select the Show Policy Flow icon.
3 Double-click the Sync icon or Notify icon to launch the Filter editor.

or
Right-click and select Edit Policy > Filter.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Policy Set View

1 Double-click the filter policy in the Policy Set view.

Keyboard Support

Table 6-1 Filter Editor Keyboard Support

Action Description

Up-arrow Moves the cursor up in the Filter editor.

Down-arrow Moves the cursor down in the Filter editor.

Left-arrow Collapses the information displayed

Right-arrow Expands the information displayed.

Insert Adds a class.
Managing Filters 389

390 Policy Build

novdocx (E
N

U
) 29 January 2007
6.1.2 Editing the Filter
The Filter editor allows you to create and edit the filter. To display a context menu, right-click an
item.

Figure 6-1 Filter Options

“Removing or Adding Classes and Attributes” on page 390
“Modifying Multiple Attributes” on page 391
“Copying an Existing Filter” on page 391
“Setting Default Values for Attributes” on page 391
“Changing the Filter Settings” on page 392

Removing or Adding Classes and Attributes

By removing or adding classes and attributes, you determine the objects that synchronize between
the connected data store and the Identity Vault.

Removing a Class or Attribute

If you do not want a class or an attribute to synchronize, the best practice is to completely remove
the class or the attribute completely from the filter. There are two different ways to add or remove
attributes and classes from the filter:

Right-click the class or attribute you want to remove, then select Delete.
Select the class or attribute you want to remove, then click the Delete icon in the upper right
corner.

Adding a Class

1 Right-click in the Filter editor, then click Add Classes.

Ctrl+Insert Adds an attribute.

Delete Deletes the selected items.

Enter Accesses the edit mode. Press Enter a second time
to commit the changes.

Esc Exits the edit mode.

Action Description
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
or

Click the Add Classes icon in the upper right corner
2 Browse and select the class you want to add, then click OK.
3 Change the options to synchronize the information.
4 To save the changes, click File > Save.

Adding an Attribute

1 Right-click in the Filter editor, then click Add Attribute.

or

Click the attribute icon in the upper-right corner.
2 Browse and select the attribute you want to add, then click OK.
3 Change the options to synchronize the information.
4 To save the changes, click File > Save.

Modifying Multiple Attributes

The Filter editor allows you to modify more than one attribute at a time. Press the Ctrl key and select
multiple attributes; when the option changes, it is changed for all of the selected attributes.

Copying an Existing Filter

You can copy an existing filter from another driver and use it in the driver you are currently working
with.

1 Click the Copy an Existing Filter icon

Or

Right-click in the Filter editor, then click Copy an Existing Filter.
2 Browse to and select the filter object you want to copy, then click OK.

If you have more than one Identity Vault in your project, you can copy filters from the other
Identity Vaults. When you are browsing to select the other object, you can browse to the other
Identity Vault and use a filter stored there.

Setting Default Values for Attributes

You can define the default values for new attributes when they are added to the filter.

1 Click the Set Default Values for New Attributes icon in the upper right corner.
Managing Filters 391

392 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Select the options you want new attributes to have, then click OK.

Changing the Filter Settings

The Filter editor gives you the option of changing how information is synchronized between the
Identity Vault and the connected system. The filter has different settings for classes and attributes.

1 In the Filter editor, select a class.

2 Change the filter settings for the selected class.

Options Definitions

Publisher Synchronize: Allows the class to synchronize from the
connected system into the Identity Vault.

Ignore: Does not synchronize the class from the connected
system into the Identity Vault.

Subscriber Synchronize: Allows the class to synchronize from the Identity
Vault into the connected system.

Ignore: Does not synchronize the class from the Identity Vault
into the connected system.

Create Home Directory Yes: Automatically creates home directories.

No: Does not create home directories.

Track Member of Template Yes: Determines whether or not the Publisher channel
maintains the Member of Template attribute when it creates
objects from a template.

No: Does not track the Member of Template attribute.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3 Select an attribute.

4 Change the filter settings for the selected attribute.

Options Definitions

Publisher Synchronize: Changes to this object are reported and
automatically synchronized.

Ignore: Changes to this object are not reported nor automatically
synchronized.

Notify: Changes to this object are reported, but not automatically
synchronized.

Rest: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)

Subscriber Synchronize: Changes to this object are reported and
automatically synchronized.

Ignore: Changes to this object are not reported nor automatically
synchronized.

Notify: Changes to this object are reported, but not automatically
synchronized.

Reset: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)
Managing Filters 393

394 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Click the Save icon to save the changes.

6.1.3 Testing Filters
Designer comes with a tool called the Policy Simulator, which allows you to test your policies
without implementing them in a production environment. You can launch the Policy Simulator
through the Filter editor to test your policy after you have modified it.

1 Click the Launch Policy Simulator icon in the toolbar.

Merge Authority Default Behavior: If an attribute is not being synchronized in
either channel, no merging occurs.

If an attribute is being synchronized in one channel and not the
other, then all existing values on the destination for that channel
are removed and replaced with the values from the source for that
channel. If the source has multiple values and the destination can
only accommodate a single value, then only one of the values is
used on the destination side.

If an attribute is being synchronized in both channels and both
sides can accommodate only a single value, the connected
application acquires the Identity Vault values unless there is no
value in the Identity Vault. If this is the case, the Identity Vault
acquires the values from the connected application (if any).

If an attribute is being synchronized in both channels and only one
side can accommodate multiple values, the single-valued side’s
value is added to the multi-valued side if it is not already there. If
there is no value on the single side, you can choose the value to
add to the single side.

This is always valid behavior.

Identity Vault: Behaves the same way as the default behavior if
the attribute is being synchronized on the Subscriber channel and
not on the Publisher channel.

This is valid behavior when synchronizing on the Subscriber
channel.

Application: Behaves the same as the default behavior if the
attribute is being synchronized on the Publisher channel and not
on the Subscriber channel.

This is valid behavior when synchronizing on the Publisher
channel.

None: No merging occurs regardless of synchronization.

Optimize Modification to
Identity Manager

Yes: Changes to this attribute are examined on the Publisher
channel to determine the minimal change made in the Identity
Vault.

No: Changes are not examined.

Options Definitions
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
2 Select Import to browse to a file that simulates an event.
Managing Filters 395

396 Policy Build

novdocx (E
N

U
) 29 January 2007
3 Select the file, then click Open. This example uses the
com.novell.designer.idm.policy\simulation\add\User.xml file, which
simulates an Add event for a User object.

The Policy Simulator displays the input document of the user Add event.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
4 Click Next to begin the simulation.

The Policy Simulator displays the log of the Add event, the output document, and a comparison
of the Input document to the Output document that is generated.
Managing Filters 397

398 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Select the Trace tab display the results of the Add event as you see them in DSTRACE.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
6 Select the Output tab to see the output document that is generated when the filter is executed
against an input document. The input document is the user Add event.

You can edit the input and output documents. If you want to keep the changes, click Save As.
Managing Filters 399

400 Policy Build

novdocx (E
N

U
) 29 January 2007
7 Select the Compare tab to compare the text of the input document to the output document that
is generated.

8 Click Repeat to select a different input document and see the results of that event.
9 When you have finished testing the filter, click Finish to close the Policy Simulator.

6.1.4 Viewing the Filter XML Source
Designer enables you to view, edit, and validate the XML by using an XML editor or text editor.

“Viewing the XML Source” on page 400
“Editing the XML Source” on page 403
“Validating the XML Source” on page 406

Viewing the XML Source

You can view the XML Source in XML or in the XML tree format.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
To open the XML Source view:

1 Click XML Source at the bottom of the Filter editor's workspace.

The XML editor displays line numbers. To see the line number, right-click in the left margin, then
select Show Line Numbers.

Figure 6-2 Filter Show Line Numbers
Managing Filters 401

402 Policy Build

novdocx (E
N

U
) 29 January 2007
The XML editor expands or collapses the XML by function. If there are functions that contain a
large amount of XML, you can collapse the XML by clicking the minus icon in the top left corner.
To expand all of the XML functions, click the plus icon in the top left corner.

Each element has its own plus or minus icon in the left margin.

Figure 6-3 Filter XML Plus or Minus

To view the XML in the tree format:

1 Click XML Tree at the bottom of the Filter editor's workspace.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
To see the entire tree view, expand each item listed.

Editing the XML Source

You can edit the XML through the XML editor. You can make changes here as well as through the
GUI interface.

Figure 6-4 Editing the XML Source of the Filter

The default editor that is loaded is associated to .xml file types. If a default editor can't be found, the
system text editor is loaded. The functionality of the XML Source view is based on the editor that
loads.

Right-click to display the list of the functions the XML editor contains.

Undo: Undoes the last action.
Revert File: Reverts the file to the last version that was saved.
Save: Saves the file.
Cut: Cuts the selected information.
Copy: Copies the selected information to the Clipboard.
Managing Filters 403

404 Policy Build

novdocx (E
N

U
) 29 January 2007
Paste: Pastes the information into the document.
Shift Right: Indents the line to the right.
Shift Left: Indents the line to the left.
Attache DTD or XML Schema: Attaches a DTD or XML schema file for validation of the
policy.
Validate: Validates the XML code.
Preferences: Sets the preferences for the XML editor.

 To choose a different XML editor for your XML Source view:

1 From the Main menu, click Window > Preferences.
2 Click General > Editor > File Associations.
3 Select *xml from the list of file types.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
4 Select the editor you want (for example, Novell XML Editor) from the Associated editors. (If
the editor you want isn't in the list, you can click Add, then add it to the list.)

5 Click OK.
6 Close and reopen the Filter editor. The default editor should be loaded in the XML Source view.
Managing Filters 405

406 Policy Build

novdocx (E
N

U
) 29 January 2007
Validating the XML Source

The XML editor validates the XML code. Right-click, then select Validate. If there are errors, a red
x is displayed on the line where the error occurs. An explanation at the bottom of the window gives
more information about the problem.

Figure 6-5 Validate Filter

In this example, the beginning tag and the first letter of the <filter-attr> are missing.

6.1.5 Additional Filter Options
When you right-click on a filter object, there are multiple options presented in the Outline view, the
Policy Flow view, and the Policy Set view.

“Outline View Additional Options” on page 407
“Policy Flow View Additional Options” on page 407
“Policy Set View Additional Options” on page 407
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Outline View Additional Options

1 Right-click the filter object in the Outline view.

Live Operations > Deploy Filter: Deploys the filter into the Identity Vault.
Clear: Deletes all content from the filter policy, but leaves the object.
Edit: Launches the Filter editor. For more information, see Section 6.1.2, “Editing the
Filter,” on page 390.
Save As: Saves the Filter as a .xml file.
Simulate: Launches the Policy Simulator. For more information, see Section 6.1.3,
“Testing Filters,” on page 394.

Policy Flow View Additional Options

1 Right-click the filter object in the Policy Flow view.

Edit Policy > Filter: Launches the Filter editor. For more information, see Section 6.1.2,
“Editing the Filter,” on page 390.
Simulate: Launches the Policy Simulator. For more information, see Section 6.1.3,
“Testing Filters,” on page 394.

Policy Set View Additional Options

1 Right-click the filter object in the Policy Set view.

Clear: Deletes all content from the filter policy, but leaves the object.
Edit: Launches the Filter editor. For more information, see Section 6.2.2, “Editing the
Filter,” on page 408.
Managing Filters 407

408 Policy Build

novdocx (E
N

U
) 29 January 2007
Save: Saves the filter as a Xml file.
Simulate: Launches the Policy Simulator. For more information, see Section 6.1.3,
“Testing Filters,” on page 394.
Live Operations > Deploy Filter: Allows you to deploy the filter into the Identity Vault.

6.2 Filter Tasks in iManager
This section contains instructions on performing common filter-related tasks in iManager:

Section 6.2.1, “Accessing the Filter,” on page 408
Section 6.2.2, “Editing the Filter,” on page 408

6.2.1 Accessing the Filter
1 In iManager, expand the Identity Manager Role, then click Identity Manager Overview.
2 Select Search entire tree or Search in container, then click Search.
3 Click the driver for which you want to access the filter. The Identity Manager Driver Overview

opens:

Figure 6-6 Driver Overview

4 Click the Filter icon on the Publisher or Subscriber channel. It is the same object.

6.2.2 Editing the Filter
The Filter editor gives you the options of editing how information is synchronized between the
Identity Vault and the connected system. Here is a list of most common tasks when editing the filter:

“Removing a Class or an Attribute from the Filter” on page 409
“Adding a Class” on page 409
“Adding an Attribute” on page 409
“Copying a Filter” on page 409
“Setting a Template” on page 409
“Changing the Filter Settings” on page 409
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Removing a Class or an Attribute from the Filter

1 Select the class or attribute, then click Delete.

Adding a Class

1 Click Add Class.
2 Change the options to synchronize the information.
3 Click Apply.

Adding an Attribute

1 Click Add Attribute.
2 Change the option to synchronize the information.
3 Click Apply.

Copying a Filter

Allows you to copy the filter from an existing driver into the driver you are currently working on.

1 Click Copy Filter From.
2 Browse to the driver you want to copy the filter from, then click OK.

Setting a Template

Allows you to set the default values for an attribute you add to the filter.

1 Click Set Template.
2 Select options you would like new attributes to have, then click OK.

You can change the values of the attributes after they have been created.

Changing the Filter Settings

The Filter editor gives you the option of changing how information is synchronized between the
Identity Vault and the connected system. The filter has different settings for classes and attributes.

1 In the Filter editor, select a class.
2 Change the filter settings for the selected class.

Options Definitions

Publisher Synchronize: Allows the class to synchronize from the
connected system into the Identity Vault.

Ignore: Does not synchronize the class from the connected
system into the Identity Vault.

Subscriber Synchronize: Allows the class to synchronize from the Identity
Vault into the connected system.

Ignore: Does not synchronize the class from the Identity Vault
into the connected system.
Managing Filters 409

410 Policy Build

novdocx (E
N

U
) 29 January 2007
3 Select an attribute.
4 Change the filter settings for the selected attribute.

Create Home Directory Yes: Automatically creates home directories.

No: Does not create home directories.

Track Member of Template Yes: Determines whether or not the Publisher channel
maintains the Member of Template attribute when it creates
objects from a template.

No: Does not track the Member of Template attribute.

Options Definitions

Publisher Synchronize: Changes to this object are reported and
automatically synchronized.

Ignore: Changes to this object are not reported nor automatically
synchronized.

Notify: Changes to this object are reported, but not automatically
synchronized.

Rest: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)

Subscriber Synchronize: Changes to this object are reported and
automatically synchronized.

Ignore: Changes to this object are not reported nor automatically
synchronized.

Notify: Changes to this object are reported, but not automatically
synchronized.

Reset: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)

Options Definitions
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
5 Click OK to save the changes.

Merge Authority Default Behavior: If an attribute is not being synchronized in
either channel, no merging occurs.

If an attribute is being synchronized in one channel and not the
other, then all existing values on the destination for that channel
are removed and replaced with the values from the source for that
channel. If the source has multiple values and the destination can
only accommodate a single value, then only one of the values is
used on the destination side.

If an attribute is being synchronized in both channels and both
sides can accommodate only a single value, the connected
application acquires the Identity Vault values unless there is no
value in the Identity Vault. If this is the case, the Identity Vault
acquires the values from the connected application (if any).

If an attribute is being synchronized in both channels and only one
side can accommodate multiple values, the single-valued side’s
value is added to the multi-valued side if it is not already there. If
there is no value on the single side, you can choose the value to
add to the single side.

This is always valid behavior.

Identity Vault: Behaves the same way as the default behavior if
the attribute is being synchronized on the Subscriber channel and
not on the Publisher channel.

This is valid behavior when synchronizing on the Subscriber
channel.

Application: Behaves the same as the default behavior if the
attribute is being synchronized on the Publisher channel and not
on the Subscriber channel.

This is valid behavior when synchronizing on the Publisher
channel.

None: No merging occurs regardless of synchronization.

Optimize Modification to
Identity Manager

Yes: Changes to this attribute are examined on the Publisher
channel to determine the minimal change made in the Identity
Vault.

No: Changes are not examined.

Options Definitions
Managing Filters 411

412 Policy Build

novdocx (E
N

U
) 29 January 2007
er and Driver Customization Guide

7
novdocx (E

N
U

) 29 January 2007
7Managing Schema Mapping
Policies

Schema Mapping policies map class names and attribute names between the Identity Vault
namespace and the application namespace. The same schema mapping policy is applied in both
directions. All documents that are passed in either direction on either channel between the
Metadirectory engine and the application shim are passed through the Schema Mapping policy.

There is one Schema Mapping policy per driver.

This section covers the following filter-related topics:

Section 7.1, “Schema Mapping Policy Tasks in Designer,” on page 413
Section 7.2, “Schema Mapping Policy Tasks in iManager,” on page 436

7.1 Schema Mapping Policy Tasks in Designer
This section contains instructions on performing common tasks related to Schema Mapping policies
in Designer:

Section 7.1.1, “Accessing the Schema Map Editor,” on page 413
Section 7.1.2, “Editing a Schema Mapping Policy,” on page 417
Section 7.1.3, “Testing Schema Mapping Policies,” on page 420
Section 7.1.4, “Accessing the Schema Mapping Policy XML,” on page 426
Section 7.1.5, “Additional Schema Map Policy Options,” on page 432

7.1.1 Accessing the Schema Map Editor
The Schema Map editor allows you to edit the Schema Mapping policies. There are three different
ways to access the Schema Map editor in Designer: through the Outline view, through the Policy
Flow view, or through the Policy Set view.

“Outline View” on page 413
“Policy Flow View” on page 414
“Policy Set View” on page 415
“KeyBoard Support” on page 416

Outline View

1 In an open project, click the Outline tab.
2 Click the Show Model Outline icon.
3 Select the driver you want to manage the schema mapping policy on, and click the plus sign to

the right.
4 Double-click the Schema Map icon to launch the Schema Map editor.
Managing Schema Mapping Policies 413

414 Policy Build

novdocx (E
N

U
) 29 January 2007
or
Right-click and select Edit.

Policy Flow View

1 In an open project, click the Outline tab.
2 Click the Show Policy Flow icon.
3 Double-click the Schema Mapping policy to launch the Schema Map editor.

or
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Right-click and select Edit Policy to launch the Schema Map editor.

Policy Set View

1 Double-click the Schema Map policy in the Policy Set view.

or
Managing Schema Mapping Policies 415

416 Policy Build

novdocx (E
N

U
) 29 January 2007
Right-click the Schema Map policy and select Edit.

KeyBoard Support

Table 7-1 Schema Map Editor Keyboard Support

Action Description

Up-arrow Moves the cursor up in the Schema Map editor.

Down-arrow Moves the cursor down in the Schema Map editor.

Left-arrow Collapses the information displayed

Right-arrow Expands the information displayed.

Insert Adds a class.

Ctrl+Insert Adds an attribute.

Delete Deletes the selected items.

Enter Accesses the edit mode. Press Enter a second time
to commit the changes.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
7.1.2 Editing a Schema Mapping Policy
The Schema Map editor allows you to create and edit schema mapping policies. To display a context
menu, right-click an item.

Figure 7-1 Context Menu of the Schema Map Editor

“Removing or Adding Classes and Attributes” on page 417
“Refreshing the Application Schema” on page 418
“Editing Items” on page 419
“Sorting Items” on page 419
“Managing Schema” on page 419

Removing or Adding Classes and Attributes

“Removing a Class or Attribute” on page 417
“Adding a Class” on page 418
“Adding a Attribute” on page 418

Removing a Class or Attribute

If you do not want a class or an attribute to be mapped to a class or attribute in the connected system,
the best practice is to completely remove the class or the attribute from the Schema Mapping policy.
There are three different ways to add or remove attributes and classes from the Schema Mapping
policy:

Select the class or attribute you want to remove, then right-click and click Delete.
Select the class or attribute you want to remove, then click the Delete icon in the upper right
corner.
Select the class or attribute you want to remove, then press the Delete key.

You can select multiple classes or attributes to delete at the same time.

1 Press Ctrl and select each item with the mouse.

Esc Exits the edit mode.

Action Description
Managing Schema Mapping Policies 417

418 Policy Build

novdocx (E
N

U
) 29 January 2007
2 Press the Delete key to delete the items.

Adding a Class

1 Right-click in the Schema Map editor, then click Add Class Mapping.

or

Select the Add Class Mapping icon in the upper right corner.
2 From the drop-down list for the Identity Vault, select the class you want to add.
3 From the drop-down list for the connected system, select the class you want to add.
4 To save the changes, click File > Save.

Adding a Attribute

1 Right-click in the Schema Map editor, then click Add Attribute Mapping.

or

Select the Add Attribute Mapping icon in the upper-right corner.
2 From the drop-down list for the Identity Vault, select the attribute you want to add.
3 From the drop-down list for the connected system, select the attribute you want to add.
4 To save the changes, click File > Save.

Refreshing the Application Schema

If you have modified the schema in the application, these changes need to be reflected in the Schema
Mapping policy. To make the new schema available, click the Refresh application schema icon in
the toolbar.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
When you create a new class or attribute mapping, you can see the new schema in the drop-down list
for the connected application.

Editing Items

To edit a mapping, double-click the selected row. An in-place editor appears, allowing you to edit
the mapping.

Figure 7-2 Schema Map Editor

Sorting Items

The Schema editor allows you to sort the items in ascending order based on either Identity Manager
or the connected system. To sort, click the header of either column.

Figure 7-3 Schema Map Editor Sorting Items

Managing Schema

Designer allows you to manage the Identity Vault schema and any connected system's schema. You
can import the schema, modify it, and deploy the changed schema back into the Identity Vault or the
connected systems. To manage the Identity Vault schema, right-click in the Schema Map editor and
click Manage Identity Vault Schema. To manage the connected systems schema, right-click in the
Managing Schema Mapping Policies 419

420 Policy Build

novdocx (E
N

U
) 29 January 2007
Schema Map editor and click Manage Application Schema. For information about how to manage
the schema, see “Managing the Schema” in the Designer for Identity Manager 3: Administration
Guide.

7.1.3 Testing Schema Mapping Policies
Designer comes with a tool called the Policy Simulator. It allows you to test your policies without
implementing them a production environment. You can launch the Policy Simulator through the
Schema Mapping editor to test your policy after you have modified it.

To access the Policy Simulator and test the Schema Mapping policy:

1 Click the Launch Policy Simulator icon in the toolbar.
2 Select Import to browse to a file that simulates an event.

3 Select the file, then click Open.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
This example uses the
com.novell.designer.policy\simulation\add\user.xml file, which
simulates an Add event of a user object.

The Policy Simulator displays the input document of the user Add event.
Managing Schema Mapping Policies 421

422 Policy Build

novdocx (E
N

U
) 29 January 2007
4 Click Next to begin the simulation.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
The Policy Simulator displays the log of the Add event, the output document, and a comparison
of the input document to the output document that was generated.
Managing Schema Mapping Policies 423

424 Policy Build

novdocx (E
N

U
) 29 January 2007
5 Select the Trace tab to see the results of the Add event as you would through DSTRACE.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
6 Select the Output tab to view the output document that is generated from the Schema Map
policy executed against the input document. In this example, it is the user Add event.
Managing Schema Mapping Policies 425

426 Policy Build

novdocx (E
N

U
) 29 January 2007
7 Select the Compare tab to compare the text of the input document to the document that is
generated, which is the output document.

8 Click Repeat to select a different input document and see the results of that event.
9 When you have finished testing the Schema Mapping Policy, click Finish to close the Policy

Simulator.

7.1.4 Accessing the Schema Mapping Policy XML
 Designer enables you to view, edit, and validate the XML by using an XML editor or text editor.

“Viewing the XML Source” on page 426
“Editing the XML Source” on page 430
“Validating the XML Source” on page 432

Viewing the XML Source

You can view the XML Source in XML or in the XML tree format.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
To open the XML Source view:

1 Click XML Source at the bottom of the Schema Map editor's workspace.
Managing Schema Mapping Policies 427

428 Policy Build

novdocx (E
N

U
) 29 January 2007
The XML editor displays line numbers. To see the line number, right-click in the left margin, then
select Show Line Numbers.

Figure 7-4 Schema Map Policy Line Numbers

The XML editor expands or collapses the XML by function. If there are functions that contain a
large amount of XML, you can collapse the XML by clicking the minus icon in the top left corner.
To expand all of the XML functions, click the plus icon in the top left corner.

Each element has its own plus or minus icon in the left margin.

Figure 7-5 Schema Map Policy XML Plus or Minus
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
 To view the XML in the tree format:

1 Click XML Tree at the bottom of the Schema Map editor's workspace.

To see the entire tree view, expand each item listed.
Managing Schema Mapping Policies 429

430 Policy Build

novdocx (E
N

U
) 29 January 2007
Editing the XML Source

You can edit the XML through the XML editor. You can make changes here as well as through the
GUI interface.

Figure 7-6 Editing the XML Source for the Schema Map Policy

The default editor that is loaded is associated to .xml file types. If a default editor can't be found,
the system text editor is loaded. The functionality of the XML Source view is based on the editor
that loads.

Right-click to display the list of the functions the XML editor contains.

Undo: Undoes the last action.
Revert File Reverts the file to the last version that was saved.
Saves: Saves the file.
Cut: Cuts the selected information.
Paste: Pastes the information into the document.
Shift Right: Indents the line to the right.
Shift Left: Indents the line to the left.
Attach DTD or XML Schema: Attaches a DTD or XML schema file for validation of the
policy.
Validate: Validates the XML code.
Preferences: Sets the preferences for the XML editor.

 To choose a different XML editor for your source view:

1 From the Main menu, click Window > Preferences.
2 Click General > Editor > File Associations.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
3 Select *xml from the list of file types.

4 Select the editor you want (for example, Novell XML Editor) from the Associated editors. If
the editor you want isn't in the list, you can click Add, then add it to the list.

5 Click OK.
6 Close and reopen the Schema Map editor. The default editor should be loaded in the XML

Source view.
Managing Schema Mapping Policies 431

432 Policy Build

novdocx (E
N

U
) 29 January 2007
Validating the XML Source

The XML editor validates the XML code. Right-click, then select Validate. If there are errors, a red
x is displayed on the line where the error occurs. An explanation at the bottom of the window gives
more information about the problem.

Figure 7-7 Validating Schema Map Policy

In this example, the end tag of <attr-name> has no matching start tag.

7.1.5 Additional Schema Map Policy Options
When you right-click on a Schema Map policy, there are multiple options presented in the Outline
view, the Policy Flow view, and the Policy Set view.

“Outline View Additional Options” on page 433
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
“Policy Flow Additional Options” on page 434
“Policy Set View Additional Options:” on page 435

Outline View Additional Options

1 Right-click the Schema Map policy in the Outline view.

Export Policy to Configuration File: Saves the Schema Map policy as a .xml file.
Live Operations > Deploy Policy: Deploys the Schema Map policy into the Identity
Vault.
Live Operations > Compare Policy: Compares the Schema Map policy in Designer to
the Schema Map policy in the Identity Vault.
Delete: Deletes the Schema Map policy.
Edit: Launches the Schema Map editor. For more information, see Section 7.1.2, “Editing
a Schema Mapping Policy,” on page 417.
Duplicate: Creates a copy of the Schema Map policy.
Save As: Saves the Schema Map policy as a .xml file.
Simulate: Tests the Schema Map policy. For more information, see Section 7.1.3,
“Testing Schema Mapping Policies,” on page 420.
Properties: Allows you to rename the Schema Map policy.
Managing Schema Mapping Policies 433

434 Policy Build

novdocx (E
N

U
) 29 January 2007
Policy Flow Additional Options

1 Right-click the Schema Map policy in the Policy Flow view.

Add Policy > DirXML Script: Adds a new Schema Map policy using DirXML® Script.
Add Policy > XSLT: Adds a new Schema Map policy using XSLT.
Add Policy > Schema Mapping: Adds a new Schema Map policy, that contains no
information.
Add Policy > Link to Existing: Allows you to browse and select an existing Schema
Map policy to link to the current Schema Map policy.
Add Policy > Copy Existing: Allows you to browse to and select an existing Schema
Map policy to copy to the current Schema Map policy.
Edit Policy > Schema Mapping: Launches the Schema Map editor. For more
information, see Section 7.2.2, “Editing the Schema Mapping Policy,” on page 436.
Delete All Set Policies: Deletes all policies in the selected policy set.
Remove All Set Policies: Removes all policies from the selected policy set, but it does
not delete the existing policies.

Live Operations > Import Driver: Imports an existing driver from the Identity Vault.
Live Operations > Deploy Driver: Deploys the existing driver into the Identity Vault.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Live Operations > Driver Configuration > Import Attributes: Allows you to import
attributes from the Identity Vault and compare the attributes from the Identity Vault to
what is in Designer.
Live Operations > Driver Configuration > Deploy Attributes: Allows you to deploy
attributes from Designer into the Identity Vault and compare the attributes from Designer
with the attributes in the Identity Vault.
Live Operations > Driver Status: Displays the status of the driver.
Live Operations > Start Driver: Starts the driver.
Live Operations > Stop Driver: Stops the driver.
Live Operations > Restart Driver: Restarts the driver.
Simulate: Tests the Schema Map policy. For more information, see Section 7.1.3,
“Testing Schema Mapping Policies,” on page 420.

Policy Set View Additional Options:

1 Right-click the Schema Map policy in the Policy Set view.

Remove Policy from Set: Removes the Schema Map policy from the policy set, but does
not delete the Schema Map policy.
Link to Existing Policy: Allows you to browse to another Schema Map policy and link it
into the existing policy.
Move Up: Moves the Schema Map policy up in the execution order of the policy.
Move Down: Moves the Schema Map policy down in the execution order of the policy.
Edit: Launches the Schema Map editor. For more information, see Section 7.2.2, “Editing
the Schema Mapping Policy,” on page 436.
Duplicate: Creates a copy of the Schema Map policy.
Save As: Saves the Schema Map policy as a .xml file.
Managing Schema Mapping Policies 435

436 Policy Build

novdocx (E
N

U
) 29 January 2007
Simulate: Tests the Schema Map policy. For more information, see Section 7.1.3,
“Testing Schema Mapping Policies,” on page 420.
Export Policy to Configuration File: Saves the Schema Map policy as a .xml file.
Live Operations > Deploy the Policy: Deploys the Schema Map policy into the Identity
Vault.
Live Operations > Compare Policy: Compares the Schema Map policy in Designer to
the Schema Map policy in the Identity Vault.
Properties: Allows you to rename the Schema Map policy.
Delete: Deletes the Schema Map policy.

7.2 Schema Mapping Policy Tasks in iManager
This section contains instructions on performing common tasks related to Schema Mapping policies
in iManager:

Section 7.2.1, “Accessing Schema Mapping Policies,” on page 436
Section 7.2.2, “Editing the Schema Mapping Policy,” on page 436

7.2.1 Accessing Schema Mapping Policies
1 In iManager, expand the Identity Management Role, then click Identity Manager Overview.
2 Select Search entire tree or Search in container for a Driver set, then click Search.
3 Click the driver you want to manage the Schema Mapping Policy. The Identity Manager Driver

Overview page opens.

4 Click the Schema Mapping Policy.
5 Click Edit.

7.2.2 Editing the Schema Mapping Policy
There are two different parts to editing a Schema Mapping policy. First, you edit the placement of
the policies in the policy set. Second, you edit the policy itself through the Schema Map editor.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
Placement of the Policies

When you click on the Schema Mapping Policy, it brings up a window with options.

These options allow you to position the policy you are currently working with. The following table
explains each of the options.

Option Description

Move Policy Up Moves the selected policy up if there is more than
one policy.

Move Policy Down Moves the selected policy down if there is more
than one policy.

Insert Inserts a new or an existing policy into the policies
listed.

Remove Removes the selected policy without deleting the
policy from the policy set.

Edit Launches the Schema Map editor.

Rename Renames the selected policy.

Delete Deletes the selected policy.
Managing Schema Mapping Policies 437

438 Policy Build

novdocx (E
N

U
) 29 January 2007
Schema Map Editor

The Schema Map editor is a complete graphical interface for creating and managing the schema
mapping policies. The Schema Map editor creates a policy by using XML.

The Schema Map editor has three tabs:

“Identity Manager Policy” on page 438
“Edit XML” on page 439
“Usage” on page 439

Identity Manager Policy

Contains the most information and is where you edit the policy through the GUI interface. You can
do the following tasks in the Schema Map editor:

Removing Classes and Attributes Select the class or attribute you would like to
remove, then click Remove.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
WARNING: Do not delete any classes or attributes that are being used in the Identity Vault. It can
cause objects to become unknown.

Edit XML

Clicking Enable XML editing allows you to edit the DirXML Script policy. Make the changes you
desire to the DirXML Script, then click Apply to save the changes.

Usage

Shows you a list of the drivers that are currently referencing this policy. The list only refers to
policies in this policy’s driver set. If this policy is referenced from a different driver set, those
references do not appear here.

Adding Classes Select the eDirectory class from the drop-down list
and then select the Application class from the
drop-down list. With the items selected, click Add,
then click Apply to save the change.

Adding Attributes Select the class of the attribute you want to add,
then click Attribute. Select the eDirectory attribute
from the drop-down list and then select the
Application attribute from the drop-down list. With
the items selected, click Add, then click OK to
save the changes.

Listing Non Specific Class Attributes If there are attributes that are not associated with
a class, click the Non-specific Class Attributes
icon and all of these attributes are listed.

Refreshing Application Schema If the schema has changed for the application,
click the Refresh Application Schema icon. The
wizard contacts the Connected System server to
retrieve the new schema. After the schema has
been updated, the schema is listed in the drop-
down lists.

Using eDirectory Schema Tools Add Attribute - Adds an existing attribute to
the selected class.

Create Attribute - Creates a new attribute.

Create Class - Creates a new class.

Delete Attribute - Deletes the selected
attribute.

Delete Class - Deletes the selected class.

Refresh eDirectory Schema - After making
changes to the eDirectory schema, click
Refresh eDirectory Schema and the drop-
down lists are updated with the new
information.
Managing Schema Mapping Policies 439

440 Policy Build

novdocx (E
N

U
) 29 January 2007
er and Driver Customization Guide

A
novdocx (E

N
U

) 29 January 2007
ADocumentation Update

The documentation was updated on the following dates:

Section A.1, “March 26, 2007,” on page 441
Section A.2, “October 3, 2006,” on page 441
Section A.3, “September 8, 2006,” on page 442
Section A.4, “July 31, 2006,” on page 443

A.1 March 26, 2007
The following section was updated:

A.1.1 Introduction to Policies

A.2 October 3, 2006
The following sections were updated:

A.2.1 Defining Policies By Using the Policy Builder with
Designer

Location Change

Section ,
“Downloadable Identity
Manager Policies,” on
page 36

Added the procedure of how to download the policies from the Novell
Support Web site.

Location Change

Section 2.7.13,
“Operation Attribute,”
on page 193

Changed the definition. It is now “Expands to the value of the specified
attribute from the current XDS operation. It is different from Source Attribute
and Destination Attribute, because it is always accessed directly from what
is available in the current XDS operation as opposed to being queried from
the source or destination data stores. It does not include the removed
values from a modify operation.”

Section 2.7.14,
“Operation Property,”
on page 194

Changed the definition. It is now “The XML attribute attached to an
<operation-data> element by a policy. It is a place for policies to store and
forward information for consumption by other policies. An XML attribute is a
name value pair associated with an element in the XDS document.”
Documentation Update 441

442 Policy Build

novdocx (E
N

U
) 29 January 2007
A.2.2 Defining Policies By Using the Policy Builder with
iManager

A.3 September 8, 2006
The following sections were updated:

A.3.1 Implementing Credential Provisioning Policies with
Novell SecureLogin

A.3.2 Configuring Credential Provisioning Policies for Novell
SecureLogin

Location Change

Section 3.7.13,
“Operation Attribute,”
on page 312

Changed the definition. It is now “Expands to the value of the specified
attribute from the current XDS operation. It is different from Source Attribute
and Destination Attribute, because it is always accessed directly from what
is available in the current XDS operation as opposed to being queried from
the source or destination data stores. It does not include the removed
values from a modify operation.”

Section 3.7.14,
“Operation Property,”
on page 313

Changed the definition. It is now “The XML attribute attached to an
<operation-data> element by a policy. It is a place for policies to store and
forward information for consumption by other policies. An XML attribute is a
name value pair associated with an element in the XDS document.”

Location Change

Section 4.2.1, “Meeting
Requirements for
Credential Provisioning
Policies with Novell
SecureLogin,” on
page 329

Added eDirectory 8.8.1 as a supported version.

Location Change

Section , “Example
Credential Provisioning
Policies,” on page 347

Added the path for eDirectory 8.8.1.
er and Driver Customization Guide

novdocx (E
N

U
) 29 January 2007
A.3.3 Implementing Credential Provisioning Policies with
Novell SecretStore

A.3.4 Configuring Credential Provisioning Policies for Novell
SecretStore

A.4 July 31, 2006
Updates were made to the following sections. The changes are explained below.

A.4.1 Introduction to Policies
The following updates were made in this section:

Location Change

Section 4.4.1, “Meeting
Requirements for
Credential Provisioning
Policies with Novell
SecretStore,” on
page 352

Added eDirectory 8.8.1 as a supported version.

Location Change

Section , “Example
Credential Provisioning
Policies,” on page 370

Added the path for eDirectory 8.8.1.

Location Change

Section , “Creation
Policy,” on page 20

Added the last example of vetoing all users named Fred.
Documentation Update 443

	Policy Builder and Driver Customization Guide
	About This Guide
	1 Policies and Filters
	1.1 What Are Policies and Filters?
	1.1.1 Terminology Changes from Earlier Versions
	1.1.2 DirXML Script

	1.2 Introduction to Policies
	1.2.1 Policies
	1.2.2 Defining Policies

	1.3 Filters

	2 Defining Policies By Using the Policy Builder with Designer
	2.1 Policies
	2.2 Policy Builder Tasks in Designer
	2.2.1 Opening Policy Builder
	2.2.2 Creating a Policy
	2.2.3 Creating a Rule
	2.2.4 Creating an Argument
	2.2.5 Editing a Policy
	2.2.6 Using Predefined Rules
	2.2.7 Testing Policies with the Policy Simulator
	2.2.8 Editing the DirXML Script

	2.3 Regular Expressions
	2.4 XPath 1.0 Expressions
	2.5 Conditions
	2.5.1 If Association
	2.5.2 If Attribute
	2.5.3 If Class Name
	2.5.4 If Destination Attribute
	2.5.5 If Destination DN
	2.5.6 If Entitlement
	2.5.7 If Global Configuration Value
	2.5.8 If Local Variable
	2.5.9 If Named Password
	2.5.10 If Operation
	2.5.11 If Operation Attribute
	2.5.12 If Operation Property
	2.5.13 If Password
	2.5.14 If Source Attribute
	2.5.15 If Source DN
	2.5.16 If XPath Expression

	2.6 Actions
	2.6.1 Add Association
	2.6.2 Add Destination Attribute Value
	2.6.3 Add Destination Object
	2.6.4 Add Source Attribute Value
	2.6.5 Add Source Object
	2.6.6 Append XML Element
	2.6.7 Append XML Text
	2.6.8 Break
	2.6.9 Clear Destination Attribute Value
	2.6.10 Clear Operation Property
	2.6.11 Clear Source Attribute Value
	2.6.12 Clear SSO Credential
	2.6.13 Clone By XPath Expressions
	2.6.14 Clone Operation Attribute
	2.6.15 Delete Destination Object
	2.6.16 Delete Source Object
	2.6.17 Find Matching Object
	2.6.18 For Each
	2.6.19 Generate Event
	2.6.20 Implement Entitlement
	2.6.21 Move Destination Object
	2.6.22 Move Source Object
	2.6.23 Reformat Operation Attribute
	2.6.24 Remove Association
	2.6.25 Remove Destination Attribute Value
	2.6.26 Remove Source Attribute Value
	2.6.27 Rename Destination Object
	2.6.28 Rename Operation Attribute
	2.6.29 Rename Source Object
	2.6.30 Send Email
	2.6.31 Send Email From Template
	2.6.32 Set Default Attribute Value
	2.6.33 Set Destination Attribute Value
	2.6.34 Set Destination Password
	2.6.35 Set Local Variable
	2.6.36 Set Operation Association
	2.6.37 Set Operation Class Name
	2.6.38 Set Operation Destination DN
	2.6.39 Set Operation Property
	2.6.40 Set Operation Source DN
	2.6.41 Set Operation Template DN
	2.6.42 Set Source Attribute Value
	2.6.43 Set Source Password
	2.6.44 Set SSO Credential
	2.6.45 Set SSO Passphrase
	2.6.46 Set XML Attribute
	2.6.47 Status
	2.6.48 Strip Operation Attribute
	2.6.49 Strip XPath
	2.6.50 Trace Message
	2.6.51 Veto
	2.6.52 Veto If Operational Attribute Not Available

	2.7 Noun Tokens
	2.7.1 Added Entitlement
	2.7.2 Association
	2.7.3 Attribute
	2.7.4 Class Name
	2.7.5 Destination Attribute
	2.7.6 Destination DN
	2.7.7 Destination Name
	2.7.8 Entitlement
	2.7.9 Global Configuration Value
	2.7.10 Local Variable
	2.7.11 Named Password
	2.7.12 Operation
	2.7.13 Operation Attribute
	2.7.14 Operation Property
	2.7.15 Password
	2.7.16 Removed Attribute
	2.7.17 Removed Entitlement
	2.7.18 Source Attribute
	2.7.19 Source DN
	2.7.20 Source Name
	2.7.21 Text
	2.7.22 Unique Name
	2.7.23 Unmatched Source DN
	2.7.24 XPath

	2.8 Verb Tokens
	2.8.1 Escape Destination DN
	2.8.2 Escape Source DN
	2.8.3 Lower Case
	2.8.4 Parse DN
	2.8.5 Replace All
	2.8.6 Replace First
	2.8.7 Substring
	2.8.8 Upper Case

	2.9 Values
	2.9.1 Comparison Modes

	3 Defining Policies By Using the Policy Builder in iManager
	3.1 Policies
	3.2 Policy Builder Tasks in iManager
	3.2.1 Opening The Policy Builder
	3.2.2 Creating a Policy
	3.2.3 Defining Individual Rules within a Policy
	3.2.4 Defining Individual Arguments within a Rule
	3.2.5 Modifying a Policy
	3.2.6 Removing a Policy
	3.2.7 Renaming a Policy
	3.2.8 Deleting a Policy
	3.2.9 Importing a Policy from an XML File
	3.2.10 Exporting a Policy to an XML File
	3.2.11 Creating a Policy Reference
	3.2.12 Using Predefined Rules

	3.3 Regular Expressions
	3.4 XPath 1.0 Expressions
	3.5 Conditions
	3.5.1 If Association
	3.5.2 If Attribute
	3.5.3 If Class Name
	3.5.4 If Destination Attribute
	3.5.5 If Destination DN
	3.5.6 If Entitlement
	3.5.7 If Global Configuration Value
	3.5.8 If Local Variable
	3.5.9 If Named Password
	3.5.10 If Operation
	3.5.11 If Operation Attribute
	3.5.12 If Operation Property
	3.5.13 If Password
	3.5.14 If Source Attribute
	3.5.15 If Source DN
	3.5.16 If XPath Expression

	3.6 Actions
	3.6.1 Add Association
	3.6.2 Add Destination Attribute Value
	3.6.3 Add Destination Object
	3.6.4 Add Source Attribute Value
	3.6.5 Add Source Object
	3.6.6 Append XML Element
	3.6.7 Append XML Text
	3.6.8 Break
	3.6.9 Clear Destination Attribute Value
	3.6.10 Clear Operation Property
	3.6.11 Clear SSO Credential
	3.6.12 Clear Source Attribute Value
	3.6.13 Clone By XPath Expression
	3.6.14 Clone Operation Attribute
	3.6.15 Delete Destination Object
	3.6.16 Delete Source Object
	3.6.17 Find Matching Object
	3.6.18 For Each
	3.6.19 Generate Event
	3.6.20 Implement Entitlement
	3.6.21 Move Destination Object
	3.6.22 Move Source Object
	3.6.23 Reformat Operation Attribute
	3.6.24 Remove Association
	3.6.25 Remove Destination Attribute Value
	3.6.26 Remove Source Attribute Value
	3.6.27 Rename Destination Object
	3.6.28 Rename Operation Attribute
	3.6.29 Rename Source Object
	3.6.30 Send Email
	3.6.31 Send Email from Template
	3.6.32 Set Default Attribute Value
	3.6.33 Set Destination Attribute Value
	3.6.34 Set Destination Password
	3.6.35 Set Local Variable
	3.6.36 Set Operation Association
	3.6.37 Set Operation Class Name
	3.6.38 Set Operation Destination DN
	3.6.39 Set Operation Property
	3.6.40 Set Operation Source DN
	3.6.41 Set Operation Template DN
	3.6.42 Set Source Attribute Value
	3.6.43 Set Source Password
	3.6.44 Set SSO Credential
	3.6.45 Set SSO Passphrase
	3.6.46 Set XML Attribute
	3.6.47 Status
	3.6.48 Strip Operation Attribute
	3.6.49 Strip XPath
	3.6.50 Trace Message
	3.6.51 Veto
	3.6.52 Veto if Operation Attribute Not Available

	3.7 Noun Tokens
	3.7.1 Added Entitlement
	3.7.2 Association
	3.7.3 Attribute
	3.7.4 Class Name
	3.7.5 Destination Attribute
	3.7.6 Destination DN
	3.7.7 Destination Name
	3.7.8 Entitlement
	3.7.9 Global Configuration Value
	3.7.10 Local Variable
	3.7.11 Named Password
	3.7.12 Operation
	3.7.13 Operation Attribute
	3.7.14 Operation Property
	3.7.15 Password
	3.7.16 Removed Attribute
	3.7.17 Removed Entitlements
	3.7.18 Source Attribute
	3.7.19 Source DN
	3.7.20 Source Name
	3.7.21 Text
	3.7.22 Unique Name
	3.7.23 Unmatched Source DN
	3.7.24 XPath

	3.8 Verb Tokens
	3.8.1 Escape Destination DN
	3.8.2 Escape Source DN
	3.8.3 Lower Case
	3.8.4 Parse DN
	3.8.5 Replace All
	3.8.6 Replace First
	3.8.7 Substring
	3.8.8 Upper Case

	3.9 Values
	3.9.1 Comparison Modes

	4 Novell Credential Provisioning Policies
	4.1 Credential Provisioning Policies with Novell SecureLogin
	4.2 Implementing Credential Provisioning Policies with Novell SecureLogin
	4.2.1 Meeting Requirements for Credential Provisioning Policies with Novell SecureLogin
	4.2.2 Extending LDAP Schema for Novell SecureLogin
	4.2.3 Determining Deployment Configuration Parameters for Novell SecureLogin
	4.2.4 Creating a Repository Object for Novell SecureLogin
	4.2.5 Creating an Application Object for Novell SecureLogin
	4.2.6 Configuring Credential Provisioning Policies for Novell SecureLogin

	4.3 Credential Provisioning Policies with Novell SecretStore
	4.4 Implementing Credential Provisioning Policies with SecretStore
	4.4.1 Meeting Requirements for Credential Provisioning Policies with Novell SecretStore
	4.4.2 Determining Deployment Configuration Parameters for Novell SecretStore
	4.4.3 Creating a Repository Object for Novell SecretStore
	4.4.4 Creating an Application Object for Novell SecretStore
	4.4.5 Configuring Credential Provisioning Policies for Novell SecretStore

	5 Defining Policies using XSLT Style Sheets
	5.1 Managing XSLT Style Sheets in Designer
	5.1.1 Adding an XSLT Policy in Designer

	5.2 Managing XSLT Style Sheets in iManager
	5.2.1 Adding an XSLT Policy in iManager

	5.3 Starting with an Identity Transformation
	5.4 Using the Parameters that Identity Manager Passes
	5.5 Using Extension Functions
	5.6 Creating a Password Example: Creation Policy
	5.7 Creating an eDirectory User Example: Creation Policy

	6 Managing Filters
	6.1 Filter Tasks in Designer
	6.1.1 Accessing the Filter Editor
	6.1.2 Editing the Filter
	6.1.3 Testing Filters
	6.1.4 Viewing the Filter XML Source
	6.1.5 Additional Filter Options

	6.2 Filter Tasks in iManager
	6.2.1 Accessing the Filter
	6.2.2 Editing the Filter

	7 Managing Schema Mapping Policies
	7.1 Schema Mapping Policy Tasks in Designer
	7.1.1 Accessing the Schema Map Editor
	7.1.2 Editing a Schema Mapping Policy
	7.1.3 Testing Schema Mapping Policies
	7.1.4 Accessing the Schema Mapping Policy XML
	7.1.5 Additional Schema Map Policy Options

	7.2 Schema Mapping Policy Tasks in iManager
	7.2.1 Accessing Schema Mapping Policies
	7.2.2 Editing the Schema Mapping Policy

	A Documentation Update
	A.1 March 26, 2007
	A.1.1 Introduction to Policies

	A.2 October 3, 2006
	A.2.1 Defining Policies By Using the Policy Builder with Designer
	A.2.2 Defining Policies By Using the Policy Builder with iManager

	A.3 September 8, 2006
	A.3.1 Implementing Credential Provisioning Policies with Novell SecureLogin
	A.3.2 Configuring Credential Provisioning Policies for Novell SecureLogin
	A.3.3 Implementing Credential Provisioning Policies with Novell SecretStore
	A.3.4 Configuring Credential Provisioning Policies for Novell SecretStore

	A.4 July 31, 2006
	A.4.1 Introduction to Policies

