User Application: Design Guide
Designer for Identity Manager Roles Based
Provisioning Tools 4.0.2

June 15, 2012

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any
person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right
to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of
such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade
laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or
classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S.
export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use
deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade
Services Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software. Novell assumes
no responsibility for your failure to obtain any necessary export approvals.

Copyright © 2011-2012 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on
a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.

1800 South Novell Place
Provo, UT 84606

U.S.A.

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see the Novell
Documentation Web page (http://www.novell.com/documentation).

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/trademarks/
tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/info/exports/
http://www.novell.com/info/exports/
http://www.novell.com/documentation
http://www.novell.com/documentation
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide 11
1 Introduction to the User Application Design Tools 13
1.1 Aboutthe Provisioning VIEWo e 13
1.2 About the Directory Abstraction Layer Editor. 14
1.3 About the Provisioning Request Definition Editor 14
1.4 Aboutthe ECMA Expression Builder 14
1.5 About the Provisioning Team Editor. 15
1.6 Aboutthe Roles Catalogt e e 15
1.7 Documenting @ ProjECt.ot 15
1.71 Provisioning LOCales i 15

1.7.2 Directory Abstraction Layer it e e 15

1.7.3 Provisioning Request Definitons 16

1.74 Provisioning TeamSot e 16

1.75 Role Catalogo 16

2 Working with the Provisioning View 17
2.1 Setting Up a Provisioning Project. 17
211 Creating a User Application Driver 17

2.1.2 Creating a Role Service Driver e e e e e 19

2.1.3 Modifying the Role Service Driver Properties 20

2.1.4 About E-Mail Notification Templates 21

2.2 Accessing the Provisioning VIEWottt 21
2.3 Setting Provisioning View Preferences 23
2.4 Importing Provisioning ObJectS 23
2.4.1 Importing from a Driver Configuration File. i 23

2.4.2 Importing from an Identity Vault. 23

2.5 Exporting Provisioning ODbjJects e 24
2.6 Validating Provisioning ObJECES ot 24
26.1 Directory Abstraction Layer ObJectst 25

2.6.2 Provisioning Request Definitions. 25

2.6.3 Provisioning TeamISot 25

2.6.4 Role Configuration ObJECtS e 26

2.6.5 ROIES ... 26

2.6.6 RESOUICES . . .o 26

2.6.7 User Application Driver LOCaleS. oot 27

2.7 Deploying Provisioning ODbjJects 27
27.1 Deploying Provisioning ObJectS.o 27

2.7.2 Testingthe Deployed Changes i e 29

2.8 Comparing Provisioning ODbjJects 29
2.9 Specifying Locales and Localization Resource GroUPS.o v vt et i i 30
291 Specifying the Default Locale e 30

2.9.2 Defining the User Application’s Supported Locales. oo, 30

293 Creating a Custom Localization Resource Groupcv it i 32

2.10 Localizing Provisioning ObjeCtso 35
2.10.1 Using DesignertoLocalize 36
2.10.2 SUPPOred LanQUageS o oottt et e e 37
2.10.3 Exporting and Importing Datato Localize i 37

Contents 3

4

3 Configuring the Directory Abstraction Layer
3.1 About the Directory Abstraction Layer
3.1.1 Analyzing the User Application's Data Needs
3.1.2 About the Directory Abstraction Layer Editor.
3.1.3 About Directory Abstraction Layer Editor Files
3.2 Working with Entities and Attributes. e
3.2.1 About Entities and Attributes
3.22 AddIng Entities.o
3.23 AddINg AtrbULES . . .o oo e
3.2.4 Updating the Schema Elements List i e
3.3 WOorking With LIStSot
3.4 WOorking With QUETIES o ottt e
3.5 Working with Relationships e
3.6 Working with Configuration Settings i e e e
3.7 Directory Abstraction Layer Property Reference i
3.7.1 Entity Properties
3.7.2 Attribute Properties e
3.7.3 QUETIES PropertieS. . . oo
3.7.4 Relationship Properties
4 Configuring Provisioning Request Definitions
4.1 About Provisioning Request Definitions.
4.2 Using the Provisioning Request Definition Editor.
42.1 Creating a Provisioning Request Definition.
422 Starting the Provisioning Request Definition Editor.
423 Creating a Provisioning Request Definition By Using a Template.
4.2.4 Creating a Custom Provisioning Request Definition
4.2.5 Creating a Roles Based Provisioning Request Definition
4.2.6 Modifying Settings of a Provisioning Request Definition
4.3 Provisioning and Workflow Example
43.1 Step 1: Initiating the Request.
43.2 Step 2: Approving the Request
4.3.3 Step 3: Fulfilling the Request.
4.3.4 Step 4: Completing the Workflow
5 Creating Forms for a Provisioning Request Definition
5.1 ABOUL FOMMS. ..
5.1.1 About Form ControlDataBinding i
5.1.2 About Forms and EVENtS
5.2 Aboutthe FOrms Tab e
5.2.1 About FOrm Selection e e
5.22 About FOrm COoNtrolSo
5.3 Creating FOrmMS e
53.1 Creating New FOrmMS e e
5.3.2 Adding Form Controls and ACiONSt
533 Defining EVENTS
5.3.4 Using the Scripts Tab e e e
5.4 Action Referenceo
5.5 Form Control RefEerence.
55.1 Data Type for Roles Based Request FOrms i
5.5.2 Data Type for Resource Based Request Forms
5.5.3 Controls for User-Entered CommeNntst
5.5.4 General Form Control Properties. i
555 CheckBoXPICKLISE
5.5.6 DatePICKer . . .

User Application: Design Guide

55.7 DateTimEPICKETo 131

5.5.8 DNCONAINET . . . oottt e e e e e e e 132
5.5.9 DNDISPIayo 134
5.5.10 DNLOOKUP . . vttt e e e 136
5.5 11 DNMaAKET . . oottt 141
5.5.12 DNQUETY . . ottt e 143
5513 Global Listo 144
5.5.14 Localized Label 145
5 5. A5 HIMI . o 147
5.5.16 MVChECKDOX 147
5517 MVEAUOr ..o 149
5.5.18 PasSWOId.ot 154
B5.5.19 PICKLISt . oottt 154
5.5.20 StAtiC LIStttt 157
B 20 T OXl . ottt 158
5.5.22 TeXt AICa . . e 159
55,23 Tl Lo 160
5.5.24 TrueFalseCheckBoOXt 161
5.5.25 TrueFalseRadioBULIONS o 162
5.5.26 TrueFalseSelectBOX 162
5.6 Working with Distinguished Names. 163
5.6.1 Formatting DNS 163
5.6.2 Working with Object Selectors. e 163
5.7 Using DAL QUENES IN FOMMIS . . .ottt e e e e e e e e 165
5.8 Printing FOIMS . ..o 170
5.9 Providing Direct ACCESS t0 @ FOIM 171
Creating the Workflow for a Provisioning Request Definition 173
6.1 Aboutthe Workflow Tab.o e 173
6.1.1 CaANVAS. . . e 174
6.1.2 Palette . . . 175
B.1.3 VWS . o o 176
6.2 Adding Activities to a WOrkflow 177
6.2.1 Setting the General Properties of an Activity i 177
6.2.2 Defining the Data Item Mappingsot 180
6.2.3 Defining the E-Mail Notification Settings i 181
6.3 Adding Flow Paths e 182
6.4 Configuring Flow Paths 182
6.5 Guidelines for Creating Workflows. 184
6.5.1 RUlES fOr ACHIVITIES o e 185
6.5.2 Rules for Flow Paths 185
6.5.3 Understanding Workflow Data. e 187
6.6 Guidelines for Creating Roles Based Workflows i 192
6.6.1 About Role Approval Workflows e 192
6.6.2 Writing Custom Role Workflows i 194
6.6.3 About Separation of Duties Approval Workflows. 198
6.6.4 Customizing the Standard Separation of Duties Workflow 201
6.7 Guidelines for Creating Resource Based Workflows 201
6.7.1 About Resource Approval Workflows 202
6.7.2 Writing Custom Resource Workflows 204
6.8 Debugging a Workflow e 207
6.8.1 Using the Log ACtiVItY e 207
6.8.2 Using the Workflow Database 207
6.8.3 Changing Log Levels. 207
6.9 Provisioning Multiple Individuals with One Workflow Instance. 208
6.9.1 Basic Steps for Using the Workflow. e 208
6.9.2 Setting up the Workflow fora ManagertoUse, 209

Contents

5

6

6.10 Making Distinguished Name References Portable. 210
6.11 Configuring Digital Signature SUPPOITot 210
6.11.1 Digital Signature Workflow Properties. 211
6.11.2 Creating a Signature Declaration. e 212
Workflow Activity Reference 213
7.1 St ACHVILY . . .ot e 214
7.11 PrOPEItIES . . 214
7.1.2 Data ltem Mappingo o 215
7.13 E-Mail Notification e 216
7.2 APProval ACHVitY. . . oot e e 216
7.2.1 PrOpEItiES . .o 217
7.2.2 Data ltem Mappingo o v 223
7.2.3 Available ECMAScript Methods. 224
7.24 E-Mail Notification e 224
7.2.5 Addressing an Approval ACLiVIty e 226
7.3 LOg ACHVILY. . . .t e 233
731 PrOPEItIES . . 233
7.3.2 Data ltem Mappingo o 234
7.3.3 E-Mail Notification 234
T4 Branch ACHVILYot 234
7.4.1 PrOpErtiES . . o 234
7.4.2 Data Item Mappingo ot 235
7.4.3 E-Mail Notification e 235
7.5 Merge ACHiVItY.o e 235
751 PrOPEItIES . . 235
7.5.2 Data ltem Mappingo o 235
753 E-Mail Notification e 235
7.6 Condition ACHVILYottt e 236
7.6.1 PropErtiES . . o 236
7.6.2 Data ltem Mappingo oo 236
7.6.3 E-Mail Notification 236
7.7 Mapping ACHIVItY o 237
7.7.1 PrOPE S . . .o 237
7.7.2 Data ltem Mapping oo 237
7.7.3 E-mail Notification e 238
7.8 WOrkflow Statuso 238
7.8.1 PrOPEIIES . . o 238
7.8.2 Data ltem Mappingo oo 238
7.8.3 E-Mail Notification 238
7.9 E-Mail ACtIVItY. . . .o 239
79.1 PrOPE IS . . o 239
7.9.2 Data Item Mappingo ot 239
7.9.3 E-Mail Notification e 239
7.10 Role Request Binding ACLIVILYo i e 241
7.00.1 PrOPertieS .ot 241
7.10.2 Dataltem Mappingttt 241
7.10.3 E-Mail Notification 241
7.11 RoOle ReqUESt ACHVITY . . . o oo e 241
7.1 PrOPEIIES .ottt 242
7.11.2 Data ltem Mappingvo i 246
7.11.3 E-Mail Notification 246
7.12 Resource Request Binding ACLIVItY e 246
T.12. 1 PrOPEIIES . ottt 247
7.12.2 Dataltem Mappingttt 247
7.12.3 E-Mail Notification e 247
7.13 Resource Request ACHIVILYt 247

User Application: Design Guide

7.14

7.15

7.16

7.17

7.18

7.19

7.13.1 Properties
7.13.2 DataltemMapping it
7.13.3 E-Mail Notification
Start Workflow Activity
7.14.1 Properties
7.142 DataltemMappingot
7.14.3 E-Mail Notification i,
Finish ACiVity
7.15. 1 Propertiest
7.15.2 DataltemMappingt
7.15.3 E-mail Notification
ReSt ACtIVItY
7.16.1 Properties
7.16.2 DataltemMappingc.. i,
7.16.3 E-Mail Notification
Integration Activity
7171 Properties e
7.17.2 DataltemMappingt
7.17.3 E-Mail Notification
Entitlement Activity.
7.18.1 Properties
7.18.2 DataltemMapping it
7.18.3 E-Mail Notification
Entity ACHIVItYo
7.19.1 Properties
7.19.2 DataltemMappingot
7.19.3 E-Mail Notification
7.19.4 Working with Entity Activities.

8 Working with Integration Activities

8.1
8.2
8.3
8.4

8.5

About the Integration Activity
Adding an Integration Activity
Moving Data to and from the Integration Activity
Using the Integration Activity Editor Interface
XML VIBWS. . o e
ActionModel
WSDL EdItor
MeSSagesS

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
Actions
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8

Regenerating Code for the Action Model

Adding Actions to the Action Model

DECISION. . ..
Function.

9 Working with ECMA Expressions

9.1

About the ECMA Expression Builder
About ECMASCript.o
ECMAScript Capabilities
Using the ECMA Expression Builder.
About Java Integration.

911
9.1.2
9.1.3
9.14

Contents

8

9.1.5 About XPath Integration. e 320

9.1.6 About Global Configuration Values Integration 322

9.1.7 About Global ECMASCcripts Integration 322

9.1.8 Performance Considerations.ttt 322

9.2 ECMASCHPt EXampPIes.o 323
9.2.1 General EXamples 323

9.2.2 Flowdata EXamples oo 323

9.2.3 Form Control EXamples.o 324

9.2.4 Error Handling oo 325

9.3 User Application APl e 325
9.3.1 Form Action Script Methods 326

9.3.2 IDVault FUNCHIONSot e e 336

9.3.3 nrfRequest Propertiesand Methods 337

9.4 Role VaUlt APl . . 342
9.4.1 Aboutthe Role Vault APl 342

9.4.2 Role Script API Reference. e 348

9.4.3 Role Vault Bean API Reference e 354

10 Configuring Provisioning Teams 365
101 ADOUL TEAMS . . oottt e e e e e e 365
10.1.1 About Team ReqUESES.ttt e 366

10.1.2 Using a Team to Manage DireCt Reports 367

10.2 Managing TeaMSo ot e e e e 367
10.2.1 Creating @ TeAMttt ittt e et et e e e e e e 367

10.2.2 Deleting a Provisioning T@amottt e 370
10.2.3 Creatinga Team to Manage DireCt REpOrtst 371

11 Configuring Roles 373
11.1 About the Roles Based Provisioning Module i 373
11.2 Aboutthe Role Catalogt 373
11.3 Aboutthe Role EditOr.o 374
11.3.1 Understanding Role Hierarchy. i e 374
11.3.2 Usingthe Role EdItOr e 375
11.3.3 Role Properties Reference 386

11.4 About the Separation of Duties Editor 388
11.4.1 Using the Separation of Duties Editor 388
11.4.2 Separation of Duties Constraints Properties i 389

11.5 About the Role Configuration Editor. 392
11.5.1 Role Configuration Editor Properties 393

11.6 Importing Roles Defined in CSV Files e 395
11.6.1 SettingUpthe Fileto Import e 395
11.6.2 Required CSV File Format.o e e e 398
11.6.3 Usingthe Wizardto Import Roles i e e 398
11.6.4 ErrorHandling 400

12 Configuring Resources 401
12,1 ADBOUL RESOUICES ot e e e e e e 401
12.2 Aboutthe Resource EditOr. 401
12.2.1 Usingthe Resource EditOr. 401
12.2.2 Resource Property Reference. e 407

12.3 Importing Resources Defined in CSV Files e 408
12.3.1 SettingUpthe Fileto Import e 408
12.3.2 Required CSV File Format. e 411
12.3.3 Using the Wizard to Import Rolesfroma CSV File 412
12.3.4 Error Handlingot e e 413

User Application: Design Guide

A ECMAScript Core Reference 415

Al
A2
A3

A4

ECMASCHIPt OPErators. . . . oottt e e e e 415
FUuNCtionsS/Methods. 418
DOM Methods. e e e e 418
A3l NOOE ..o e 418
A.3.2 DOCUMENT . . . 423
A.3.3 Element . .. 428
A3.4 AHIDULE . . . e 434
A3.5 CharacterData. e 435
A.3.6 NOdELISt. e 436
A37 NamedNOodeMapo e e 438
A B8 T XL o 440
A.3.9 DOCUMENITYPE . ot e 440
A.3.10 DOMIMplemMeENtation e e 441
AB.LL N ON . .. e e 442
A3 L2 BNty ..ttt 443
A.3.13 ProcessingInstruCtionttt e 443
ECMASCIIPL COME. .« ottt e e 443
AdLl Array ObJECt. . .ot e 444
A.4.2 Boolean Object 445
A.4.3 Date ObjJecCt 445
A4d.4 Function Object 452
A4S Global 452
Ad6 Math ObjJeCt e 454
A4T7 Number ObJeCt. . . .o e 459
A48 ObJECt ..o e 461
A49 String Object e 461

Contents

9

10 User Application: Design Guide

About This Guide

This guide describes how to use the Designer to create User Application components. It explains how
to work with the Provisioning view, the directory abstraction layer editor, the provisioning request
definition editor, the provisioning team editor, and the role catalog.

¢ Chapter 1, “Introduction to the User Application Design Tools,” on page 13

¢ Chapter 2, “Working with the Provisioning View,” on page 17

¢ Chapter 3, “Configuring the Directory Abstraction Layer,” on page 43

¢ Chapter 4, “Configuring Provisioning Request Definitions,” on page 83

¢ Chapter 5, “Creating Forms for a Provisioning Request Definition,” on page 107

¢ Chapter 6, “Creating the Workflow for a Provisioning Request Definition,” on page 173

¢ Chapter 7, “Workflow Activity Reference,” on page 213

¢ Chapter 8, “Working with Integration Activities,” on page 267

¢ Chapter 9, “Working with ECMA Expressions,” on page 315

¢ Chapter 10, “Configuring Provisioning Teams,” on page 365

¢ Chapter 11, “Configuring Roles,” on page 373

¢ Chapter 12, “Configuring Resources,” on page 401

¢ Appendix A, “ECMAScript Core Reference,” on page 415

Audience

This guide is intended for designers responsible for creating and modifying User Application
components.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Additional Documentation

For documentation on other Identity Manager features, see the Identity Manager Documentation
Web site (http://www.novell.com/documentation/idm).

About This Guide 11

http://www.novell.com/documentation/idm
http://www.novell.com/documentation/idm

12 User Application: Design Guide

11

Introduction to the User Application
Design Tools

This section provides an overview of the tools available for designing and configuring the User
Application. Topics include:

¢ Section 1.1, “About the Provisioning View,” on page 13

¢ Section 1.2, “About the Directory Abstraction Layer Editor,” on page 14

¢ Section 1.3, “About the Provisioning Request Definition Editor,” on page 14

¢ Section 1.4, “About the ECMA Expression Builder,” on page 14

¢ Section 1.5, “About the Provisioning Team Editor,” on page 15

¢ Section 1.6, “About the Roles Catalog,” on page 15

¢ Section 1.7, “Documenting a Project,” on page 15

IMPORTANT: The User Application is an application and not a framework. The areas within the
User Application that are supported to be modified are outlined within the product documentation.
Modifications to areas not outlined within the product documentation are not supported.

About the Provisioning View

The Provisioning view provides persistent access to Designer’s provisioning, roles, and compliance
features. Use the Provisioning view to perform the following actions on provisioning and roles
objects:

¢ Access the editors that allow you to create and manipulate User Application components, such
as:
¢ The directory abstraction layer editor.
¢ The provisioning request definitions editor.
¢ The provisioning editor.

¢ The roles catalog.

Double-clicking an item from the Provisioning view opens the editor for that item.
¢ Manipulate object definitions, such as:
¢ Importing and exporting object definitions from the Identity Vault or the local file system.
¢ Validating local object definitions.
¢ Deploying object definitions to the Identity Vault.
¢ Comparing the objects on the local file system with those in the Identity Vault.

Introduction to the User Application Design Tools

13

¢ Define the User Application driver’s supported and default locales, including:
¢ Importing and exporting display labels and other User Application strings for localization.

¢ Defining custom localization resource groups (used only for field localization).

1.2 About the Directory Abstraction Layer Editor

The directory abstraction layer editor allows you to define directory abstraction layer definitions. Use
the directory abstraction layer editor to modify the User Application’s behavior by:

¢ Adding new entities (Identity Vault objects).

¢ Defining the set of attributes for an entity.

¢ Specifying the contents of lists.

¢ Modeling relationships among entities.

¢ Defining automatic lookups between entities.

¢ Defining LDAP searches as Queries that you can run from request and approval forms.

1.3 About the Provisioning Request Definition Editor

The provisioning request definition editor allows you to create custom provisioning request
definitions by using a rich set of Eclipse-based design tools. Use the provisioning request definition
editor to:

¢ Define the basic characteristics of the provisioning request.

¢ Design the associated workflow.

¢ Define the request and approval forms.

¢ Configure the activities and flow paths.

1.4 About the ECMA Expression Builder

Designer incorporates an ECMAScript interpreter and expression editor, which allows you create
script expressions that refer to and modify workflow data. For example, you can use scripting to:
¢ Create new data items needed in a workflow under the flowdata element.
¢ Perform basic string, date, math, relational, concatenation, and logical operations on data.
¢ Call standard or custom Java classes for more sophisticated data operations.
¢ Use expressions for runtime control to:
¢ Modify or override form field labels.
¢ Initialize form field data.
¢ Customize e-mail addresses and content.
¢ Set entitlement grant/revoke rights and parameters.

¢ Evaluate any past activity data to conditionally follow a workflow path by using the
Condition Activity.

¢ Write different log messages that are conditionally triggered by using a single Log Activity.

14 User Application: Design Guide

1.5

1.6

1.7

1.7.1

1.7.2

About the Provisioning Team Editor

The provisioning team editor allows you to define a set of users who can act as a team within the
User Application. The team definition determines who can manage provisioning requests and
approval tasks associated with this team. The team definition consists of a list of team managers,
team members, and team options. In addition, you can define the set of provisioning request objects
that the team can act on.

About the Roles Catalog

The Roles Catalog includes tools that let you define the contents of the Roles tab of the User
Application. The tools available through the roles catalog include:

+ Resource editor: Defines the set of available resources. Includes information about the
resource’s trustees, owners, approval workflow, and entitlements.

+ Role editor: Defines the set of available roles. Includes information about the role’s trustees,
owners, role containment hierarchy, and entitlements.

¢ Separation of Duties editor: Defines the separation of duties constraints and how to handle
requests for exceptions to those constraints.

¢ Role Configuration editor: Lets you modify the roles subsystem administrative settings.

The Roles Catalog also includes a menu option that enables you to import roles defined in a comma-
separated values (CSV) file.

Documenting a Project

Designer provides a document generator that helps you quickly generate customized documentation
for your Designer projects. You can define your own document style, but Designer ships with a
default provisioning style. The default provisioning style includes sections for the User Application.
The sections include:

¢ Section 1.7.1, “Provisioning Locales,” on page 15

¢ Section 1.7.2, “Directory Abstraction Layer,” on page 15

¢ Section 1.7.3, “Provisioning Request Definitons,” on page 16

¢ Section 1.7.4, “Provisioning Teams,” on page 16

¢ Section 1.7.5, “Role Catalog,” on page 16

Provisioning Locales

Lists the supported locales and default locales along with the provisioning resource groups.

Directory Abstraction Layer

Includes the following sections:

¢ Entities: Including access properties, auxiliary classes, and LDAP classes.
¢ Global lists: Including key and display label.

¢ Queries: Including the query’s keys, parameters, and conditions.

Introduction to the User Application Design Tools 15

¢ Relationships: Including key, parent key, parent attribute, child key, and child attribute.

¢ Configuration: Including default entity key, default locale, and container classes.

1.7.3 Provisioning Request Definitons

Includes:

¢ A table containing the definition’s category, status, and e-mail notification.
¢ Animage of the workflow’s structure.

¢ A section for each activity with a table that lists the data mappings for the activity or the
expression (if supported by the activity type).

+ A section for each form.

1.7.4 Provisioning Teams

Includes:
¢ Display name
¢ The team members

¢ The request type and scope

¢ The manager’s permissions

1.7.5 Role Catalog

Includes the following section:

+ Resources:
+ Roles: Including display name, description, role level, and categories.

¢ Separation of Duties Constraints: Including display name, description, conflicting roles,
approval type, and approvers.

¢ Role Configuration: Including role removal grace period, role level display names and
descriptions, approval types and approval definitions.

16 User Application: Design Guide

2.1

211

Working with the Provisioning View

This section provides details on using the Provisioning view. Topics include:

¢ Section 2.1, “Setting Up a Provisioning Project,” on page 17

¢ Section 2.2, “Accessing the Provisioning View,” on page 21

¢ Section 2.3, “Setting Provisioning View Preferences,” on page 23

¢ Section 2.4, “Importing Provisioning Objects,” on page 23

¢ Section 2.5, “Exporting Provisioning Objects,” on page 24

¢ Section 2.6, “Validating Provisioning Objects,” on page 24

¢ Section 2.7, “Deploying Provisioning Objects,” on page 27

¢ Section 2.8, “Comparing Provisioning Objects,” on page 29

¢ Section 2.9, “Specifying Locales and Localization Resource Groups,” on page 30

¢ Section 2.10, “Localizing Provisioning Objects,” on page 35
To perform many of the operations available from the Provisioning view (such as compare, import,
and deploy along with the wizards and editors), Designer must be able to establish a connection to
the Identity Vault. Designer generates error messages when it cannot connect to the Identity Vault
while performing these actions. To ensure that Designer is always able to connect to the Identity
Vault, you can choose to save the password when you configure the Identity Vault credentials for

your project. When you choose Save password, Designer saves the password to the local file system,; it
is not secure.

Setting Up a Provisioning Project

The Provisioning view is only available for Designer projects that contain a User Application driver.
After you set up an Identity Manager project and configure an Identity Vault and driver set for the
project, you add and configure a User Application driver.

To use Designer to configure the Roles tab of the User Application, you must additionally add a Role
Service driver to your project. See Section 2.1.2, “Creating a Role Service Driver,” on page 19 after
completing Section 2.1.1, “Creating a User Application Driver,” on page 17.

¢ Section 2.1.1, “Creating a User Application Driver,” on page 17

¢ Section 2.1.2, “Creating a Role Service Driver,” on page 19

¢ Section 2.1.3, “Modifying the Role Service Driver Properties,” on page 20

¢ Section 2.1.4, “About E-Mail Notification Templates,” on page 21

Creating a User Application Driver

1 In an open Designer project, create a new driver by using one of these methods:

¢ Click Provisioning in the Palette, then drag a User Application icon onto the canvas.

Working with the Provisioning View 17

18

Palette 4

k Select

I:I+ Marquee

w—s Connection
Identity Yault
&0 Driver Set
| Damain Group
= Database

[== Directary

(= E-Mail

= Enterprise
[= Identity Assurance
[-= MainFrame
[-=- Message Bus
[0p System
(= PBX

[Service

(= Toal

Role Service
User Application

¢ Right-click the driver set for your project, then select New > Driver.

L= <7 Undo Change Location

|§i§ﬁ

e & Driver...
Copy v & Job...
i Library...

& Role-Based Entilement Policies. ..
- = DS Chject..
Arrange Applications *| & Global Configuration...

¢ Click the driver set for your project, then select Model > Driver > New.

Window Help

Application il 7
Deesign Element
D airy GGroup
Ciriver
Driver Set

MPackages - Developer g test project - Developer

Role-Based Entidement Folices 4
ECMASCrpt 4
elir-to-eDir 4
Identity Wault 4
Job 4

2 Select User Application Base from the list of driver base packages in the Driver Configuration

Wizard, then click Next.

3 Use the following information to configure the driver:

Field Description

Driver Name Specify the name of an existing User Application

driver (the driver specified during the User

Application installation), or the name of a new User

Application driver.

User Application: Design Guide

2.1.2

Field

Description

Authentication ID

Application Password

Host

Port

Application context

Allow Initiator Override

Specify the DN of the User Application
Administrator.

Specify the password for the User Application
Administrator (above).

Specify the hostname or IP address of the
application server where the Identity Manager User
Application is deployed. This information is used:

+ To trigger workflows on the application server
to connect to access workflows (terminate,
retract, and so on).

+ To update cached data definitions.
Specify the port for the Host (above).

Specify context of the User Application context. For
example, IDMProv.

This property applies to workflows that are started
automatically. Workflows started automatically are
typically started under the Admin identity. Selecting
Yes for this property allows those workflows to be
started under another user identity. For more
information, see the Identity Manager User
Application: Administration Guide.

4 Click Next.
5 Click Finish.

NOTE: When you create a User Application driver, e-mail templates for the User Application
are added to the Default Notification Collection. You must explicitly deploy them. They are not
deployed by default when you deploy the User Application driver.

Creating a Role Service Driver

1 In the same project where you created a User Application driver, click Provisioning in the Palette,
then drag and drop Role Service icon onto the Modeler.

Working with the Provisioning View

19

Palette 4
k Select

w—s Connection

Tdentity Yaulk
&, Driver Set
|e| Domain Group

[-=-Database

Marquee

.= Directory

(= E-Mail
|.—=Enterprise

(= Identity Assurance
|—= MainFrarme

.=~ Message Bus

== Op Syskem

(= PBY

== Service

= Tool

El Role Service

E}ﬂ User Application

2 Select Role and Resource Service Base from the list of driver base packages in the Driver
Configuration Wizard, then click Next.

3 Specify the name you want to use for the driver and click Next.

4 Specify the properties you want to use for connecting the driver to the User Application and
click Next.

5 Click Finish.

2.1.3 Modifying the Role Service Driver Properties

After creating the Role Service driver, you can optionally modify some of the driver configuration
settings and modify the additional settings described in Table 2-1. To customize the additional
settings:

1 In the Modeler, right-click the Role Service driver and select Driver > Properties.

2 Select Driver Configuration (in the left pane).

3 Click the Driver Parameters tab.

4 Click the Driver Options tab. You can modify the driver’s properties that you specified when you
created the driver as well as the properties described in Table 2-1.

5 Click OK to save the changes.

Table 2-1 Additional Settings for Customizing the Role Service Driver

Field Description

Number of days before processing removed request The number of days the driver should wait before

objects cleaning up request objects that have finished
processing. This value determines how long you are
able to track the status of requests that have been
fulfilled.

20 User Application: Design Guide

Field

Description

Frequency of reevaluation of dynamic and nested
groups (in minutes)

Generate audit events

The number of minutes the driver should wait before
reevaluating dynamic and nested groups. This
value determines the timeliness of updates to
dynamic and nested groups used by the User
Application. In addition, this value can have an
impact on performance. Therefore, before
specifying a value for this option, you need to weigh
the performance cost against the benefit of having
up-to-date information in the User Application.

Determines whether audit events are generated by
the driver.

2.1.4 About E-Mail Notification Templates

Identity Manager includes a standard set of e-mail notification templates, (see “Working with E-Mail
Templates” in the User Application: Administration Guide). When you create a User Application driver,
any e-mail notification templates that are missing from the standard set are replaced. However,
existing e-mail notification templates, which might come from an earlier version of Identity Manager,
are not updated. To replace existing templates with new templates:

1 Expand the Outline view.

= Project | 5= Qutine 3 W mE & =0
SENJrroject 01
&% Package Catalog
@ [@] Identity vault
=&l Identity Yault 2
iy Library
& server
=81 Driver Set
- Role and Resource Service Driver
- User Application 40
=2 Default Motification Colection
f&) Attestation Completed Motification
f2) Attestation Motification
(&) Avallability
[Default Job MNotfication
f2) Delegate
f2) Expire Passward
(&) Expire Passward
[Forgot Hint

2 In the Default Notification Collection, delete the e-mail notification templates that you want to

replace.

3 Right-click Default Notification Collection and select Add Default Templates or Add All Templates.

You can also use this command at any time to update e-mail notification templates without

creating a new User Application driver.

4 To deploy the e-mail notification templates to the Identity Vault, right-click Default Notification

Collection and select Live > Deploy.

2.2 Accessing the Provisioning View

You can access the Provisioning view in the following ways:

¢ Select Window > Show View > Provisioning.

Working with the Provisioning View 21

¢ In the Modeler window, right-click the User Application, then select Show Provisioning View.

¢ In the Outline view, right-click the User Application, then select Show Provisioning View.

When it is open, the Provisioning view displays all of the provisioning projects located in the same
workspace. The contents of the view depend on what version of the User Application driver you
selected when you created the project.

Figure 2-1 Sample Provisioning View

=& UserApplication_37
=8 $lfuserapplication_37
= ’E Directory Abstraction Layer
4| L4 Entities
+-[7] Lists
@ Queries
+ @ Relationships
4} Configuration
= E" Provisioning Request Definitio
Ez Accounts
+ Ez Attestations
- .
+-0= Entitements
o
8= Groups
om
+ 8= Roles
8= Uncategorized
@ Prowisioning Teams
= [ﬁ Role Catalog
¥ Resources
+- (3 Roles
¥ Separation of Duties
¥ Role Configuration

The Provisioning view displays icons to indicate the object’s status. The icons are described in Table
2-2.

Table 2-2 Provisioning View Status Icons

Icon Description

o] Indicates that the local object has changed.

i Indicates that the local object contains a validation warning.

E] Indicates that the local object contains a validation error.

The User Application driver icon includes a tooltip that provides the project's Identity Vault name,
the DriverSet, the driver name, and the version. Figure 2-2 shows an example of the tooltip for a
Version 3.5 User Application driver.

Figure 2-2 User Application Driver Tooltip

ver 1026

ault:: TestDrivers: \WalDocDriver 1026: :\WalDocDriver 1026
ersion = "IDM 3.5"

22 User Application: Design Guide

2.3

2.4

24.1

2.4.2

TIP: If you do not see the User Applications that you expect, it might be because the project is
corrupt. If your project is corrupt, you must re-create it.

Setting Provisioning View Preferences

You can customize some Provisioning view behaviors by setting preferences. You access the
preferences page through Windows > Preferences > Novell > Provisioning. For more information, see
“Provisioning” in the “Setting Preferences” chapter of the Designer 4.0.2 for Identity Manager 4.0.2
Administration Guide.

Importing Provisioning Objects
The Provisioning view’s import feature lets you import provisioning objects in different ways.

¢ Section 2.4.1, “Importing from a Driver Configuration File,” on page 23
¢ Section 2.4.2, “Importing from an Identity Vault,” on page 23
This feature is useful when you begin a new project based on one or more definitions from an

existing project, or when you want to share definitions with other developers working on the same
project.

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the project
before performing an import. If you do not save the change, Designer continues to use the old deploy
context for import operations.

Importing from a Driver Configuration File

To import objects from a driver configuration file:

1 Open the Provisioning view.
2 Select the root node representing the type of object you want to import.

3 Right-click the container and select Import from File. Confirm the import operation (which might
overwrite existing definitions of the same name) by clicking OK.

4 Specify the name of the driver configuration file you want to import, then click OK.
Trustee information is stored in the driver configuration file. When you import a driver configuration

file using Designer, the trustee information is processed as expected. If you import the driver
configuration file using iManager, the trustee information is ignored.

Importing from an Identity Vault

1 Open the Provisioning view and select the container into which you want to import the
definitions.

To import a specific provisioning object, select that node in the Provisioning view. To import all
objects of a specific type, select the root node representing that type.

2 Right-click the container and select one of the following:

¢ Live > Import to import the contents of the currently selected container.

Working with the Provisioning View 23

24

2.5

2.6

¢ Live > Import Object to browse the Identity Vault and select the object to import.

¢ Live > Import From to browse the Identity Vault and select a container whose contents you
want to import objects from.

If prompted, provide the Identity Vault credentials and click OK.

NOTE: For provisioning teams, Import Object imports only the team object. Import Team Requests
imports any associated team request objects.

3 Navigate to the Identity Vault container or object that you want to import and click OK.

4 Review the Import Summary page to determine how you want to proceed. To complete the
import, click Import, or click Cancel. If you click Import, Designer performs the operation and
displays a summary of the completed operation.

Exporting Provisioning Objects

The Provisioning view’s export feature allows you to move project components from one project to
another without re-creating the contents. It also allows you to clone a project. You can use it to export
provisioning objects (and their children) to an XML-based driver configuration file. You use the
resulting file as the input to the Import from File feature, enabling you to easily share the contents of
your provisioning project with other developers.

To export to a driver configuration file:

1 Open the Provisioning view and select the object containing the definitions to export.

To export a specific provisioning object, select that node in the Provisioning view. To export all
of the objects of a specific type, select the root node representing that type.

2 Right-click the container or object and select Export to File.
3 Provide the name and location of the file to generate, then click OK.

The default name for the file reflects the contents of the file. For example, if you export lists, the
default name for the file is 1ists.xml. You can change the name as needed.

Validating Provisioning Objects

The Validation feature allows you to validate provisioning objects on the local file system before you
deploy. The validation runs Designer’s project checker and displays the results in the Project Checker
view.

You can validate provisioning objects individually, by node (such as the directory abstraction layer, a
provisioning team, or a separation of duty constraint), or at the User Application driver level. Each
node (individual, container-level, or driver-level) has a right-click menu item called Validate. In
addition, when you open an object in the editor, you can access the Validate option, for that item, from
Designer’s main menu and toolbar. For example, if you have a provisioning request definition open
in the editor, the main menu and toolbar provides a PRD > Validate menu option.

NOTE: Validation does not check the Identity Vault for the existence of any object.

Each object type has unique validation rules. They are described in each of the following sections:

¢ Section 2.6.1, “Directory Abstraction Layer Objects,” on page 25
¢ Section 2.6.2, “Provisioning Request Definitions,” on page 25

¢ Section 2.6.3, “Provisioning Teams,” on page 25

User Application: Design Guide

*

*

*

*

Section 2.6.4, “Role Configuration Objects,” on page 26
Section 2.6.5, “Roles,” on page 26
Section 2.6.6, “Resources,” on page 26

Section 2.6.7, “User Application Driver Locales,” on page 27

2.6.1 Directory Abstraction Layer Objects

Designer does the following:

*

Verifies that the XML is well-formed and complies with the schema that defines the elements
needed for entities, attributes, lists, relationships, and so on.

Checks every entity to ensure that references to other entities and global lists are valid.

For example, when validating an entity and its attributes, the validator checks that all references
to other entities via the Edit Entity, DNLookup, and Detail Entity references exist.

Ensures that every entity has at least one attribute defined.

Ensures that every local and global list contains at least one item.

2.6.2 Provisioning Request Definitions

Designer does the following:

*

Validates that every Provisioning Request Definition has at least one request form and one
approval form.

Ensures that the Condition Activity has both an outbound true flow path and an outbound false
flow path.

Ensures that the Entitlement Activity Data Item Mapping for DirXML-Entitlement-DN is valid.

Ensures that the Final Timeout Action property (for User Activities) has a matching flow path
link leading from the activity. For example, if Final Timeout Action=denied, there must be a
denied link.

For Branch and Merge activities, ensures that a workflow has an equal number of Branch and
Merge activities. It also ensures that all paths descending from a Branch activity merge into one
Merge activity, that all merge activities have a branch activity, and that all Merge activities have
a branch-activity-id attribute.

Ensures that static list keys contain the correct data for the decimal data type.

2.6.3 Provisioning Teams

Designer does the following:

*

*

*

Validates that managers and members have been defined for the team.
Validates that team requests are specified for the team.

If the request scope is Categories, it validates that the team request actually references a
category.

Working with the Provisioning View 25

26

2.6.4 Role Configuration Objects

Designer does the following:
¢ Ensures that the Quorum value should be a number between 0 and 100. Validation rules take into
consideration that a percentage can be entered.
¢ Ensures that the Removal Grace Period is a positive number.
¢ Ensures that Display Names and Descriptions use supported locales.

¢ Ensures that the Provisioning Request Definitions defined for the Role Approval and SoD
Conflict Approvals are valid, are not templates, and whose process types match properly.

¢ Separation of Duties (SoD) approvers must exist and be valid.

2.6.5 Roles

Before deployment, Designer validates that:

¢ The category exists.
¢ The description is provided for all supported languages.
¢ The Quorum is a valid expression.

¢ Approvers are present when the approval type is set to standard serial or parallel.
On deploy, Designer validates that the following objects exist in the Identity Vault:

¢ The entitlement

¢ The owner

¢ The Role Trustees

¢ The lower-level roles
¢ Groups

¢ Containers

¢ Approvers

¢ Provisioning request definition

2.6.6 Resources

Before deployment, Designer validates that:

¢ The category exists.
¢ The description is provided for all supported languages.
¢ The Quorum is a valid expression.

¢ Approvers are present when the approval type is set to standard serial or parallel.
On deploy, Designer validates that the following objects exist in the Identity Vault:

+ The owner
+ The Resource Trustees
¢ Approvers

¢ Provisioning request definition

User Application: Design Guide

2.6.7

2.1

2.7.1

User Application Driver Locales

For the User Application driver locales, Designer ensures that the locales contain descriptions and
display names. You can turn off the validation of display names for each locale by setting a
preference. For more information, see Section 2.3, “Setting Provisioning View Preferences,” on
page 23.

Deploying Provisioning Objects

The Provisioning view’s Deploy feature deploys your provisioning objects to the specified User
Application driver. You must deploy any changes you’ve made to the provisioning objects in the
design environment before you see them reflected in the Identity Manager User Application. The
Provisioning view allows you to deploy a container and all its children (for example, all entities or all
lists), or to deploy just a single provisioning object (such as a single list element). When you select an
item to deploy, Designer compares it to the same item in the Identity Vault. If the items are equal,
Designer prevents you from deploying. When there are differences, Designer displays them and
allows you to proceed or to cancel the deployment.

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the project
before performing a deploy. If you do not save the change, Designer continues to use the old deploy
context for deploy operations.

Deployment and Versions

If you deploy a Version 4.0 User Application driver and the Identity Vault does not contain the
necessary 4.0 schema changes, the provisioning objects are not deployed and Designer displays an
error message in the Deploy Results dialog box. This is to prevent you from deploying a 4.0 driver to
a 3.0 Identity Vault.

Deploying Provisioning Objects

1 Save any changes.

If the objects contain unsaved changes, Designer displays the unsaved definitions and prompts
you to save them. If you do not, Designer still deploys the objects but does not deploy the
unsaved changes. Choosing not to save the changes does not cancel the deployment.

2 Open the Provisioning view, right-click the object to deploy, then select Live > Deploy or Live >
Deploy All.

To deploy a specific provisioning object, select that node in the Provisioning view. To deploy all
of the objects of a specific type, select the root node representing that type.

Designer prompts you for Identity Vault credentials (if necessary), validates the objects, and
writes any messages to the project checker view.

When you deploy a driver that contains provisioning objects that fail validation, Designer
deploys the driver but not the invalid objects (regardless of the deployment preferences).
Designer displays the errors in the deployment result dialog box.

When you deploy a provisioning object that contains validation errors, Designer performs the
deployment based on the defined preferences and writes the errors to the Project Checker view.

¢ “Tips for Deploying Provisioning Request Definitions” on page 28

¢ “Deploying Roles” on page 28

Working with the Provisioning View 27

28

Tips for Deploying Provisioning Request Definitions

¢ If errors associated with activities are detected during deployment of a provisioning request
definition, Designer identifies the activity in which the error occurred by activity Id. However, in
the user interface, Designer by default displays activities by activity name. To make it easier to
identify the activity in an error message, turn on the display of activity Ids before you deploy the
provisioning request definition. To turn on the display of activity Ids, right-click the Workflow
canvas and select Show Activity Ids.

¢ A common error occurs when you fail to replace a placeholder expression in an entitlement
provisioning activity. If this is the case, correct the error, then deploy the provisioning request
definition again.

¢ Designer cannot evaluate expressions at design time, so it might display a warning when you
use an expression for an entitlement that must be resolved at runtime. This is not a fatal error
and the deployment will succeed.

¢ Make sure that the Status is Active (in the Overview tab).

¢ If a provisioning request definition with the same CN already exists in the Identity Vault, the
Deployment Summary displays the differences. You can review the differences before you
decide to proceed.

Deploying Roles

Because roles can be related through a role hierarchy, Designer notifies you, on deploy, if the role you
are deploying contains any dependent roles. To ensure that roles in the Identity Vault are in a valid
state, Designer requires that you deploy the role and any dependent roles at the same time by
displaying them in the dialog box shown in Figure 2-3 on page 28.

Figure 2-3 Deploying Dependent Roles

@ Deployment Dependencies

Deployment Dependencies

To deploy the selected objects, vou have ko deploy the Following dependent objects as well.

5 permission_1

(7 (0]] [Cancel

User Application: Design Guide

2.1.2

2.8

Testing the Deployed Changes

You can access the User Application from within Designer to view or test what you deploy:

1 Select Tools > Access User Application.

2 Choose the project and User Application driver container associated with the User Application
you want to view, then click OK.

Designer uses the driver configuration information that you defined for the project to make the
connection. Designer uses the browser settings specified in Windows > Preferences > General > Web
Browser

Comparing Provisioning Objects

The Provisioning view’s Compare feature allows you to see the differences between the provisioning
objects in the local file system and those that are running in the deployed User Application driver.
When Designer encounters a difference, it allows you to specify what action you want to take on that
difference. You can ignore or reconcile it.

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the project
before performing a compare. If you do not save the change, Designer continues to use the old deploy
context for compare operations.

To compare provisioning objects:

1 Right-click a container or object in the Provisioning view, then select Live > Compare.
2 If prompted, provide Identity Vault credentials, then click OK.

Designer displays the results of the comparison. By default, only the differences are displayed,
but you can show the full comparison by deselecting Only show differences.

NOTE: For provisioning teams, you must select the container to compare the provisioning
request and provisioning team objects. If you select an individual team, it compares only the
provisioning team objects.

3 If there are differences, select one of the following actions:

Reconcile Status Description

Do not reconcile Do not change any definitions.

Update Designer Import the definitions from the Identity Vault.

Update eDirectory Deploy the definition from Designer to the Identity Vault.

Reconciled by parent For informational purposes. Specifies whether one of the parent objects is

already being reconciled. It is always disabled and is only set if the parent
object is already being reconciled to Designer or the Identity Vault.

If a provisioning request definition or role object contains trustees, the trustees for the local object are
compared with the trustees defined for the object in the Identity Vault. Trustees are not compared for
directory abstraction layer objects.

Working with the Provisioning View 29

30

2.9

29.1

2.9.2

Specifying Locales and Localization Resource Groups

¢ Section 2.9.1, “Specifying the Default Locale,” on page 30
¢ Section 2.9.2, “Defining the User Application’s Supported Locales,” on page 30

¢ Section 2.9.3, “Creating a Custom Localization Resource Group,” on page 32

Specifying the Default Locale

To specify the User Application driver’s default locale:

1 Right-click the User Application driver in the Provisioning view, then select Configure > Default
Locale.

2 Select the locale from the drop-down list box, then click OK. If you do not see the locale in the
list, you must add it through the Locales dialog box.

Defining the User Application’s Supported Locales

1 Right-click the User Application driver in the Provisioning view, then select Configure > Locales.
Designer displays the Supported Locales dialog box.

® EEX

Locales and Localization Resource Groups

() Specify the locales and resource groups that should be used for Roles_UserApplication,

Locales . Localization Resource Groups

+ &
Locale Display Name

de German
en English

s Spanish

fr French

it Tralian

ja Japanese
nl Dutch

Pt Portuguese
] Russian

sv Swedish

zh-CN Chinese (China)

I
RS TLs9YNTLRNN

zh-Tw Chinese (Taiwan)

Button Description

| Lets you add a new locale to the list of locales supported by the User Application

Lt driver. When you click the Add button, Designer prompts you for the Language and
Country. You can either select them or type a value. The Language is required and
displays as the locale. The country is not required.

4 Deletes the selected Locale from the supported list. Any files for the selected locale
are not deleted.

User Application: Design Guide

Button Description

& Lets you localize all supported locales in one dialog box. When you click the button,
it launches this dialog box:
® Localize Cﬁlm
Sebech thee Larget larguage avd Fill in e values
St 1900080¢: | German v Tt lusge: v

Origin -~ Source Target

de Deutsch Caemnan

on Erghsch Englsh

s Spantsch Spanth

fr Franstrsisch French

L 3 Tralberisch Deakan

o] Japanisch Japanan

il Nomder b wcisch Dutch

m Purlugesisch Purbugoess

@

You can select the source language from which you want to translate the names of
the supported locales. Select the target language into which you want to translate
the names of the supported locales. Type the translation in the Target field.

& Lets you localize the display labels for the selected locale. This is the same
procedure described in Section 2.10, “Localizing Provisioning Objects,” on page 35.

2 Click + , then select the Language and optionally the Country from the drop-down list, or type
the value. The language is required, but the country is not. The language is displayed as the
Locale in the Supported Locales dialog box.

3 Click OK.

4 Click Resource groups, then click the localization resource group that you want to support the
new locale.

Working with the Provisioning View 31

Locales and Resource Groups

® specify the locales and resource groups that should be used For WWalDocDriver07 1707,

Lacales | Resource Groups
%
» Default Locales
b Accessory Portlets
b Base
b Administrative
¥ Requests and Approvals
» Identity

» Password Managment

\2) Ok] [Cancel

5 Click =+ in the Locales area, then select the locale from the Available Locales list and move it to
the Selected Locales list, then click OK.

® X
Add Locales

Add one or more locales to the Identity resource group

Available Locales: Selected Locales:
Albanian (Albania)
Armenian (Armenia) i
el -
i
':':’:' I [o]4 l [Cancel

2.9.3 Creating a Custom Localization Resource Group

1 Right-click the User Application driver in the Provisioning view, then select Configure > Locales.
Go to the Localization Resource Groups tab.

32 User Application: Design Guide

k] (S=1E3

Locales and Localization Resource Groups
@ Specify the locales and resource groups that should be used for Roles_Userapplication,

Locales |Localization Resource Groups
¥
b Default Locales

¥ Commion

-

Accessory Portlets

-

Base

-

Administrative

-

Requests and Approvals

-

Identity

-

Password Management

-

Roles

(3] [o]4 H Cancel]

New Localization Resource Group

X

Create new resource group by specifving identifier and display name

Identifier: | |

Display Mare: | |

@ Cancel

3 Complete the fields as follows:

Field Description
Identifier A unique name used to identify the localization resource group.
Display Name The name displayed in Designer to correspond with this group.

4 Click OK. The Localization Resource Groups property dialog box displays:

Working with the Provisioning View 33

34

+ &

+ Default Locales

-

Common

-

-

Base

-

Administrative

-

-

Identity

-

Locales and Localization Resource Groups

@ Specify the locales and resource groups thak should be used for Roles_Userapplication,

Locales |Localization Resource Groups

Accessory Portlets

Requests and Approvals

Password Management

} Roles
~ Test ®
Idertifier: Test_Resource_Group
Display Mame: Test 5
Description: | 5
Required Group: w
Locales:
qr
o
@ Ok] [Cancel]

5 Complete the fields as follows:

Button

Description

Description

Required Group

Lets you add a new localization resource group.

Deletes the current localization resource group.

Lets you localize the localization resource groups in one dialog box.

Lets you add descriptive text for this entry.
Lets you specify dependencies on other localization resource groups.

Localization resource groups are used for creating resource bundles for non-standard
language. The required groups are defined in the User Application: Localization
Toolkit Guide. Contact your Novell Sales Representative for more information about
the toolkit.

User Application: Design Guide

2.10

Button Description

Locales Lets you add or remove the locales into which this localization resource group must be
localized. If the locale is not on the list, see “To specify the User Application driver’s

default locale:” on page 30.

Localizing Provisioning Objects

¢ Section 2.10.1, “Using Designer to Localize,” on page 36

¢ Section 2.10.2, “Supported Languages,” on page 37

¢ Section 2.10.3, “Exporting and Importing Data to Localize,” on page 37

Designer allows you to translate the names and descriptions of provisioning objects into multiple
languages. Table 2-3 describes the types of provisioning objects that you can translate.

Table 2-3 Localizable Objects

Designer Tool

Description

Directory Abstraction Layer Editor

Provisioning Request Definition Editor

Provisioning Team Editor

Roles Catalog

Entity and attribute display labels
Relationship names
Global and local list items

Query display labels and parameter display labels

Activity properties that are displayed to the user

Form properties that are displayed to the user
Provisioning team display name and descriptions

Resource display label and description
Role display label and description
Separation of Duties display label and description

Role level display label and description

To localize the provisioning objects listed in Table 2-3:

1 Verify that the locale (or language) is supported by the User Application driver. See
Section 2.10.2, “Supported Languages,” on page 37 for the list of languages supported by

default.

2 If necessary, add the new locale (or language) to the User Application driver and to the resource
groups. For more information, see Section 2.9.2, “Defining the User Application’s Supported

Locales,” on page 30.

3 Translate the names and descriptions in one of the following ways:

3a Directly within Designer.

NOTE: You cannot edit the provisioning request definitions in the Attestation category. For
this reason, you cannot use this method for localizing them. You must use the method

described in Step 3b.

For more information, see Section 2.10.1, “Using Designer to Localize,” on page 36.

Working with the Provisioning View 35

3b By exporting the set of localizable objects into an external properties or XML file, translating
the contents of the file, then importing the data back into the project.

For more information, see Section 2.10.3, “Exporting and Importing Data to Localize,” on
page 37).

2.10.1 Using Designer to Localize

1 Click the localize button.

&=l

When you click this button, Designer displays a dialog box that lets you add the localized text.
This is an example of the Localization dialog box.

@ Localization @

Localization

@ Specify the localized string walues For "Group”,
Chinese (China): | gl !
Chinese (Taiwan): |E$ﬁ=ﬁ |
Dukch: | Groep |
English: | Group |
French: | Groupe |
GErman: | Gruppe |
Italian: | Eruppo |
Japanese: | -7 |
Portuguese: | GErupo |
Russian: [Fp';.-'nna |
Spanish: | Erupo |
Swedish; | Erupp |

7 [Ok] [Cancel]

The languages displayed in this dialog box are the languages currently supported by the User
Application driver. If your language is not shown in this dialog, you must add it. For more
information, see Section 2.9.2, “Defining the User Application’s Supported Locales,” on page 30.

The directory abstraction layer editor provides multiple ways to localize data. You can access the
localization dialog boxes in these ways:

36 User Application: Design Guide

2.10.2

2.10.3

Table 2-4 Accessing the Localization Dialog Boxes

To define the localization text for... Perform this action...

Every localizable item in the directory Select DAL > Set Global Localization.

abstraction layer
or

Click Set Global Localization (from the editor’s toolbar), then
select the Target Language before entering the localized
text in the Target field.

A specific entity, relationship, or list From the tree view, right-click the object to localize, select
Localize, then select the Target Language before entering
the localized text in the Target field.

A single display label Select a specific entity or attribute, then click Localize
Display Label (beside the Display Label field in the Property
pane).

Supported Languages

You can localize the display labels, display names, and descriptions into the languages listed in the
localization dialog box. This list represents the languages (locales) supported by the User Application
driver. For information about adding new languages to this list, see Section 2.9, “Specifying Locales
and Localization Resource Groups,” on page 30.

The locale configuration is stored in the driver’s <default-locale> element in the
AppConfig. AppDefs.locale-configuration XMLData attribute.

You must provide a display label for the User Application driver’s default language, or the User
Application generates the following runtime error: The resource resolver
com.novell.soa.common.il8n.LocalizedMapResolver did not return a resource for the
default locale of <locale>. It is required that a resource exist for the default
local.

Exporting and Importing Data to Localize

You can export the localizable data (such as display names and descriptions) in your project to an
XML or properties file. After the data in that file is translated, you can import it back to the Designer
project. You can export an entire driver, one object, or a subset of objects.

¢ “Exporting Data to Localize” on page 37

¢ “Importing Localized Files” on page 39

Exporting Data to Localize

1 Right-click a container node or an object in the Provisioning view.

2 Select Localize > Export Localization Data.

Working with the Provisioning View 37

Export Localization Data

Select the folder ko store the exported localization data.

File Locations

Skore in Folder: | Ci\Documents and Settingsitestyworkspace!walDocDriver 1026\Provisioning | AppConfigiRequestDefs | lBerse... l

Prefix for generated files: | Wit alDocDriver 1026 _Provisioning Request Definitions |

File: bype: (ML (%) Properties

Languages

Select the languages ko export:

Locale Language
O Il Dutch
O en English
O fr French
| de GErman
O it Italian
O ia Japanese
O uld Portuguese
O zh-CN Simplified Chinese
O es Spanish
O zh-TwW Traditional Chinese

[IPrompt before overwriting existing Files

7 Finish Cancel

3 Fill in the fields as follows:

38 User Application: Design Guide

Field Description

Store in folder Specify the name of a local folder where the
exported files should be written.

Prefix for generated files Specify a prefix for the generated files. Determine a
naming strategy so you are able to identity the files
for projects.

File Type Select XML or Properties depending on the
encoding or format you prefer. XML files are UTF-8
encoded. Properties use Unicode*.

Select the languages to export Select the languages you want localizations for. A
file containing the display label key is generated for
that language. The localizations need to be added
to this file in the proper format so you can import
them to the proper User Application driver objects.

Prompt before overwriting existing files If this option is selected, Designer prompts you
before it overwrites any existing files of the same
name in the target directory.

4 Click Finish. Designer displays a message describing the result of the export operation and the
location of the exported data.

Importing Localized Files

1 Right-click a container node or an object in the Provisioning view, then select Localize > Import
Localization Data.

Working with the Provisioning View 39

Import Localization Data

Select the Folder containing the localization files ko impart.

Search in folder: | Ci\Documents and Settings\test,workspace)WalDocDriver 10261 ProvisioninglAppConfiglR equestDefs | [Browse...]

File bvpe Preferences
@ HML |:| Suppress warnings about unused strings
() Propetties [Jcreate backup of existing display label strings
Files

Select the files ko import:

File Language

(il Finish Cancel

2 Fill in the fields as follows:

40 User Application: Design Guide

Field

Description

Search in folder

File Type

Preferences

Files

Specify the folder location where the files to import
are located.

Select XML if the file you want to import is in XML
format.

Select Properties if the file you want to import is in
the properties format.

Select Suppress warnings about unused strings if
you want the wizard to suppress warning
messages.

Select Create backup of existing display label
strings if you want the wizard to create a backup of
the existing strings before the import. Useful in case
you need to revert.

Select the files to import. This table is populated
with the files from the folder location and file type
specified above. If it is blank, no files of the
specified type are located in the target folder. The
wizard attempts to determine the language by
looking at the filename. If the name cannot be
determined, it defaults to English.

You can change the Language column if the wizard
assumes the wrong language. The wizard changes
the filename to reflect the language you specify and
import the display labels to the corresponding
language.

3 Click Finish to complete the import. Designer displays a status dialog box that describes the
results including any errors reading the files and any warnings about display label keys that are

unused.

Working with the Provisioning View

41

42 User Application: Design Guide

3.1

Configuring the Directory Abstraction
Layer

This section provides details on configuring the directory abstraction layer. Topics include:

¢ Section 3.1, “About the Directory Abstraction Layer,” on page 43

¢ Section 3.2, “Working with Entities and Attributes,” on page 47

¢ Section 3.3, “Working with Lists,” on page 54

¢ Section 3.4, “Working with Queries,” on page 57

¢ Section 3.5, “Working with Relationships,” on page 61

¢ Section 3.6, “Working with Configuration Settings,” on page 64

¢ Section 3.7, “Directory Abstraction Layer Property Reference,” on page 65

About the Directory Abstraction Layer

The directory abstraction layer is a set of XML-based files that define a logical view of an Identity
Vault for the User Application. The User Application uses the directory abstraction layer definitions
to determine:

¢ The Identity Vault objects and attributes that the User Application can display or modify.

¢ How the User Application displays Identity Vault data.

¢ The relationships the User Application can display.

¢ The provisioning request categories, e-mail notification types, and delegate relationships the

User Application can display.

The User Application ships with a default set of entities, relationships, and lists that it needs to
function, but you can add new or modify existing directory abstraction layer objects to customize the
User Application for your own business needs. You use the directory abstraction layer editor to
define the contents of the directory abstraction layer.

¢ Section 3.1.1, “Analyzing the User Application’s Data Needs,” on page 44

¢ Section 3.1.2, “About the Directory Abstraction Layer Editor,” on page 44

¢ Section 3.1.3, “About Directory Abstraction Layer Editor Files,” on page 46

Configuring the Directory Abstraction Layer 43

44

3.1.1 Analyzing the User Application’s Data Needs

Before you make changes to the directory abstraction layer objects, analyze how you want to display
your Identity Vault data in the User Application. Consider:

¢ What parts of the Identity Vault you want to make available to the User Application.

For example, what objects do you want your users to be allowed to search and display? Check
this list against the base set of abstraction layer definitions to determine if you need to add any
new objects.

¢ What is the structure of your Identity Vault schema? Have you added custom extensions and
auxiliary classes?
¢ What is the structure of your data?
¢ What is required and what is optional?
¢ What validation rules are in place?
¢ What are the relationships between objects (DN references)?

¢ How are the attributes defined? (For example, an attribute that represents a phone number
might be multi-valued for home, office, and cell phone numbers)

¢ Who sees the data? Is the User Application available as a public or private site?

Use the information about your data needs to map your Identity Vault objects to abstraction layer
entities.

3.1.2 About the Directory Abstraction Layer Editor

The directory abstraction layer editor is a graphical tool for defining the directory abstraction layer
files. When you add a User Application driver to an Identity Manager project and run the
configuration wizard, Designer creates an initial set of directory abstraction layer files. If you do not
run the configuration wizard, the initial files are not created. These base files are displayed when you
start the directory abstraction layer editor.

To start the directory abstraction layer editor:

1 Open the Provisioning view and double-click the Directory Abstraction Layer node.

Designer displays the directory abstraction layer tree containing nodes for Entities, Lists, Queries,
Relationships, and Configuration.

@ walliocDriver - Directory Abstraction Layer X

. .
L B AS] 1 1=

44 Entities

20 Lists

@ Queries
@ Relationships
L4 Configuration

User Application: Design Guide

Node Description

Entities Entities represent the Identity Vault objects
available to the User Application. There are two
types of entities:

+ Entities mapped from the schema: Entities
that represent Identity Vault objects directly
exposed to users via the User Application.
Users can typically create, search, and modify
the attributes of these entities.

+ Entities representing LDAP relationships:
Called DN lookups, these entities represent
indexed searches and are used to support
particular types of attributes in the User
Application. DN lookup entities provide
information about relationships between LDAP
objects. DN lookup entities are:

+ Used by the Org Chart portlet to
determine relationships.

¢ Used in the Search List, Create, and
Detail portlets to provide selection lists
and DN contexts.

+ Available to the workflow request and
approval flow forms you define using the
provisioning request definition editor.

Lists Defines the contents of global lists. Global lists are:

* Associated with an attribute. The User
Application displays the attribute values as a
drop-down list in the User Application.

+ Used to display Resource Request categories.

Queries Lets you define LDAP search criteria that can be run
from a workflow form.

Relationships Lets you map hierarchical relationships among
schema-based entities. Used by the Organization
Chart action of the Identity Self-Service tab of the
User Application and in iManager when defining
provisioning s.

Configuration General configuration parameters.

2 Use the left pane to navigate the directory abstraction layer nodes. When you select an item in
the left pane, the right pane displays the properties for the selection.

3 Use the right pane to define the properties for the selection. For more information about the
properties, see Section 3.7, “Directory Abstraction Layer Property Reference,” on page 65.

The following table describes the directory abstraction layer toolbar:

Configuring the Directory Abstraction Layer

45

Table 3-1 Directory Abstraction Layer Toolbar

Toolbar Button Description
@ Launches the Add Entity Wizard.
@ Launches the Add Attribute Wizard.
& Launches the New List Wizard.
@ Launches the New Query Wizard
Launches the New Relationship Wizard.
i
_.l
& Launches the Set Global Access Modifiers dialog box.
O Launches the Set Global Localization dialog box.

Expands and collapses the directory abstraction layer tree.

3.1.3 About Directory Abstraction Layer Editor Files

The directory abstraction layer files you work with are stored in the Designer project’s
Provisioning\AppConfig\DirectoryModel directory. The filenames are derived from the object
key.

Table 3-2 Local Directory Abstraction Layer Directories

Directory name Description

ChoiceDefs Contains the files that define global lists. Files have the choice extension.

EntityDefs Contains the files that define the entities and attributes. Files have the entity
extension.

QueryDefs Contains the files that define queries. Files have the query extension.

RelationshipDefs Contains the files that define the relationships available to the Org Chart portlet
and iManager provisioning configuration. These files have the relation
extension.

Designer creates the base set of directory abstraction layer files for each provisioning project. An
identical set is added to the User Application driver when the User Application is installed.

To customize the Identity Manager User Application, you change the directory abstraction layer
objects and the changes to the User Application driver. Some entities, attributes, lists, and
relationships are required for the User Application to function properly. The editor displays a lock
next to the definitions that you should not delete. From the list below, you can see that you should
not delete the Group, User or User Lookup entities.

46 User Application: Design Guide

3.2

3.2.1

Figure 3-1 DAL User Application Default Entities, Lists, and Relationships

W oE G s | mE

e q_} Group

E? ._\J_’; User

+- [User Lookup

=[] Lists

m Delegate Relationship
|—,_J, Email natification types
|—,_J, Prowisioning Categaory
m Roles Category

@ Queries
= @ Relationships
#1 aroup's membership
#] Manager-Emploves
User groups
8 Configuration

If you define multiple User Application drivers in a single project, Designer creates multiple
AppConfig folders and names them AppConfig, AppConfigl, AppConfig2, and so on.

Working with Entities and Attributes

You can customize your User Application by adding objects and their attributes based on the content
of your own Identity Vault. You do this by adding new entities and attributes to the directory
abstraction layer and deploying them to the User Application driver.

To modify the entity files installed by default, see Section 3.2.2, “Adding Entities,” on page 48 and
Section 3.2.3, “Adding Attributes,” on page 53. To modify the entity files of an already ed project or a
set of files defined by another developer, you must first import the files to your design environment.
For information on importing files, see Section 2.4, “Importing Provisioning Objects,” on page 23.

About Entities and Attributes

Any Identity Vault object that you want users to search, display, or edit in the Identity Manager User
Application must be defined as an entity in the directory abstraction layer. For example, to use the
inetOrgPerson Identity Vault object in the User Application, you must create an entity definition for
it. There are two logical kinds of entities (but you create them the same way):

+ Entities that are mapped from schema: These entities represent objects that exist in the Identity
Vault that are directly exposed to users in the User Application. When defining this type of
entity, expose all of the attributes that you want your users to work with. Examples of this entity
type include User and Group. You can create more than one entity definition for the same object
to expose different sets of attributes to different kinds of users. For more information, see
“Creating Multiple Entity Definitions for a Single Object” on page 48.

+ Entities that represent LDAP relationships: This type of entity is known as a DNLookup and it is
used by the User Application to:

¢ Populate a list with the results of a DN search among related entities
¢ Maintain referential integrity across DN referenced attributes during updates and deletes

Entities that support DNLookups are used by the Org Chart portlet to determine relationships
and are also used by the Search, Create, and Detail portlets to provide pop-up selection lists and
DN contexts. The User Lookup entity is an example of this type of entity. For more information,
see “Attributes and DNLookup Properties” on page 74.

Configuring the Directory Abstraction Layer a7

48

3.2.2

Creating Multiple Entity Definitions for a Single Object

You can create more than one entity definition that represents the same Identity Vault object but
provides a different view of the data. Within the entity definitions, you can define different attributes
for each entity definition, or you can define the same attributes but specify different access properties
that control how the attributes are searched, viewed, edited, or hidden.

NOTE: You can optionally define a filter to hide certain entities from the result set.

You can then use these different entity definitions in different parts of the user interface. For example,
suppose that you want to create a directory of employees; one for a public site and one for an internal
site. On the public site you want to supply first and last names and a phone number, but on the
internal site, you want to list additional information like title, managers, and so on. Here’s how you
can accomplish this:

1 Create two entity definitions (with different keys).

Both entity definitions expose the same Identity Vault object, but one entity definition key is
public-staff-information, and the other is internal-staff-information.

2 Within each entity definition, define a different set of attributes: one for public-staff-information,
the other for internal-staff-information.

3 Use the Portal Administration tab of the Identity Manager User Application to create a portlet
instance for the public page, and another one for the internal page.

For more information about creating portlet instances, see the Portlet Reference section in the
Identity Manager 3.5 User Application: Administration Guide.

Adding Entities

You add entities through the Add Entity Wizard (described in the next procedure) or by clicking Add
Entity (from the toolbar).

NOTE: When using the Add Entity button, you are prompted to select the object class of the entity to
create, and the editor automatically adds the required attributes to the entity. Use the Add Attribute
dialog box to complete the entity definition.

To add an entity using the Add Entity Wizard:

1 Launch the Add Entity Wizard in one of these ways:
From Designer’s menus:
¢ Select File > New > Provisioning. Choose Directory Abstraction Layer Entity, then click Next.
From the Provisioning view:
¢ Right-click the Entities node, then choose New.
From the directory abstraction layer editor:
¢ Select DAL > New > Entity
or
¢ Right-click the Entities node, then choose New Entity-Attributes Wizard.
The New Entity dialog box displays.

NOTE: If launched from the File menu, the dialog box contains the additional fields shown
below.

User Application: Design Guide

E»! Mew Entity a

Mew Entity

ke For the new entity.,

Specify project and application For the new entity as well as the display name and

Identity Manager Project: |Pr0ject0ne

Provisioning Application: |User Application

ERAER

Entiky Key: |

Display Label; |

Cancel

2 Fill in the fields as follows:

Field

Description

Identity Manager Project and
Provisioning Application

Entity Key

Display Label

The Identity Manager project and the provisioning
application where you want to add the entity and
attributes.

NOTE: These fields display when you launch the wizard
from the File menu.

A unique identifier for the entity.

The string displayed when the entity is displayed by the
User Application. You can localize this label. For more
information, see Section 2.10, “Localizing Provisioning
Objects,” on page 35.

3 Click Next. The New Entity dialog box displays:

Configuring the Directory Abstraction Layer

49

MNew Entity

Select the Object Class that will defing wour nesw Enkity,
Then select and add any Attributes vou wank created in the Entity,

Select Object Class:

::i::sServer A §:= Configure Filker,
applicationEntity —
applicationProcess

Audit:File Object

Bindery Ohject

Bindery Queue

CommExec

Compuker

Counkry

CRLDistribukionPoint

Device

Directory Map

DireML-Drriver

DirsML-Drriver 3ek »

Available Attributes For Entity: Selected Attributes in Entity:

®

4 Choose the entity’s object class and add the attributes you want by double-clicking them in the
Available Attributes for Entity list. Mandatory attributes are added when you select an Object
Class, and you cannot remove them from the Selected Attributes in Entity list.

TIP: If the entity’s object class is not shown in the Select Object Class list, you should update

Designer’s local schema file by following the steps described in Section 3.2.4, “Updating the
Schema Elements List,” on page 54.

5 Click Finish.

The property page displays for editing. For more information, see “Entity Properties” on
page 65. You must deploy the entity before it is available to the User Application.

50 User Application: Design Guide

Filter the Object Class List

You can limit the object classes shown in the New Entity dialog box by adding a filter. To add a filter:

1 Click Configure Filter to launch the Class List Filters dialog box.

rﬂ‘: Class Filters

Manage the filkers applied to the Class list,

conkains

W

............

skarts-with 'DirkML
skarts-with 'srvpry'

[Select Al] ’Deselect All l

Ik,] [iZancel

By default, Designer does not apply any class filters. The Class Filter dialog box contains two
predefined filters (starts-with "DirXML" and starts-with “sroprv”). To activate them, click Select
All, then click OK. The filters are immediately applied to the object class list. Filters are applied

until you deselect them.

Configuring the Directory Abstraction Layer

51

52

2

Use the buttons as follows:

Button Description

Choose one of the string comparison operators, such as

contans [contains, starts-with, ends-with, then type the string to
compare against.
- Adds a filter. Enabled when you define the filter
= comparison value.

Removes the selected filter.

Click this option Whgn you want to use all of the filters. It
selects all of the defined filters.

Click this option when you want to deselect all of the
defined filters. If you apply this change, no filters are

used.

Adding Entity Filters

You define an entity filter to limit the entries returned for the specified entity. You define the filter
based on attributes and their comparison to another value that you specify. For example, you can
create a filter so that the User entity includes only those entries whose Region attribute contains
Northeast.

1

a b~ W N

Click Add Condition Grouping.

~ Filter
Specify attribute filker conditions For the entity:

(4F Add Condition Grouping

(% Remove Condition Grouping gk

Reqgian “ | | contains w ®

Use the drop-down list on the left to select an attribute.
Use the drop-down list in the middle to select a comparison operation.
Use the entry on the right to specify a value for comparison.

To specify multiple condition groupings, repeat this procedure. Within a condition grouping,
you specify each criterion that you want and connect them by using the logical operations: and,
or.

The conditions are evaluated in the order in which you define them.

User Application: Design Guide

3.2.3 Adding Attributes

1 Select an entity.
2 Do any of the following to add an attribute:
¢ Right-click an entity, then select Add Attribute.
or
¢ Click the Add Attribute button.
or
¢ Click DAL > New > Attribute.

You are prompted to choose the entity class that contains the attributes that you want to add to
the entity. You can also add (and remove) auxiliary classes if you need to add a class that
contains the attribute you are looking for.

Add Attribute

Select an Entity ko display its lisk of available direckory attributes,
Then select and add any atkributes wou wank created inwour Entiky.,

Selected Entity:

EET I - |

Entity Classes:

[.C\dd,fRemuve aux classes, ..

fyailable attributes For Entity Class: Entitw Attributes:

DL Calculaked Atkribute ~ =] L_!] Group
ACL = . -
Audit:File Link) Description
Authority Revocation L% Members
auxClassCompatibiliby

Back Link,

Bindery Property

businessCateqory

C& Private Key

CA Public Key

Certificake Revocation _
Certificate Yalidity Interval

N

creatorshame

Cross Certificate Pair

Descripkion

DirXML-Associations

EMail Address

Equivalent To Me

Full Mame

GID

GUID

L
Last Referenced Time v

% '?) I Ok l [Cancel

3 Add attributes by double-clicking them in the Available Attributes for Entity Class list.

LDAP operational attributes are supported by the directory abstraction layer editor and User
Application; however, when you add an operational attribute, the Edit, Required, and Hidden
properties are set to false and are disabled so you cannot change these property values.

Configuring the Directory Abstraction Layer 53

54

3.24

3.3

TIP: If the attribute you want to add is not displayed in the Available Attributes from Entity Class
list, you should update Designer’s local schema file by following the procedure in Section 3.2.4,
“Updating the Schema Elements List,” on page 54.

4 Click OK. The property page displays for editing.

For more information, see “Attribute Properties” on page 69. To make an attribute available to
the User Application, you must deploy it.

Adding DAL Calculated Attributes

You can create an attribute that is derived from an expression. For example, you can concatenate two
or more attributes to produce a single calculated value. The expressions are ECMAScript compatible
and conform to the ECMA 262 Language specification.

Restrictions: Because this attribute type does not map to a specific attribute in the Identity Vault,
these attributes cannot be updated, removed, multivalued, required, or searched.

To create a calculated attribute:

1 Add an attribute as instructed in Section 3.2.3, “Adding Attributes,” on page 53 and make sure
to select DAL Calculated Attribute from the Available Attributes for Entity Class list.

Designer adds the Attribute with the following restrictions:

Table 3-3 Calculated Attribute Properties

Property Name Description

Expression Click Build ECMAScript Expression to launch the
ECMA Expression Builder. To learn more about how to
use the ECMA Expression Builder, see Chapter 9,
“Working with ECMA Expressions,” on page 315.

Updating the Schema Elements List

1 With the Identity Manager project open, right-click your Identity Vault, then select Live > Import
Schema.

2 Choose Import from eDirectory and provide the specifications for the eDirectory host.
3 Click Next.

4 Select the classes and attributes to import, then click Finish.

Working with Lists

The lists node lets you define the contents of global lists. You can then define an attribute control type
as a global list. When the User Application displays the attribute for editing, the contents of the
global list are displayed in a drop-down list for the user to make a selection. By default, the directory
abstraction layer includes the global lists described in Table 3-4.

User Application: Design Guide

Table 3-4 Directory Abstraction Layer Default Global Lists

List Name Description

Delegate Relationship Defines the relationships that can be selected when making a Delegate
Assignment by relationship. The contents of this list display in a drop-down
list box. The values can only be DN attributes from the User entity.

Email Notification Types Represents the type of e-mail notification that a user wants to receive when
involved in proxy/delegate processing of resource requests. Types are
locked.

WARNING: Do not edit these values.
This is used by the Preferred Notification attribute of the user entity.

Provisioning Category Defines the set of categories that organize provisioned resources
(entitlements) and provisioning requests. The categories in this list display in:

+ Designer: Provisioning request definition editor plug-in
+ iManager: Provisioning Request Configuration plug-in
¢ User Application: Requests and Approvals tab

Resources Category Defines the set of categories that organize resources. The categories are
displayed in:

+ Designer: Role Plug-in
* User Application: Roles and Resources tab

Roles Category Defines the set of categories that organize roles. The categories are
displayed in:

+ Designer: Role plug-in

¢ User Application: Roles tab

NOTE: You cannot delete these lists or change the key values for the lists. Except for the Email
Notification types, you can add and remove items and change existing values and labels.

To create a new global list:

1 Launch the New List Wizard in one of these ways:
From Designer’s menus:
¢ Select File > New > Provisioning, select Directory Abstraction Layer List, then click Next.

When launched from the File menu, the dialog box contains fields not displayed when
launched in other ways.

¢ Select DAL > New > List.
From the Provisioning view:

¢ Right-click the Lists node, then select New.
From the directory abstraction layer editor:

¢ Click New List.

¢ Right-click the Lists node, then select Add List.
The New List dialog box displays.

Configuring the Directory Abstraction Layer 55

i,?-! MHew List

Mew List

niew list,

Specify project and application For the new lisk as well as the key For the

Identity Manager Project: |TestF‘ruject

Provisioning Application: |User Application

Led Lo

List Kew: |

Display Label: |

| | Cancel

2 Fill in the fields as follows:

Field

Description

Identity Manager Project and Provisioning
Application

List Key

Display Label

Select the Identity Manager project and
provisioning application where you want to add
the list.

NOTE: These fields display when you launch the
wizard from the File menu.

The unique identifier for the list.

The string used when the list is displayed in the

User Application. You can localize this label. For
more information, see Section 2.10, “Localizing

Provisioning Objects,” on page 35.

3 Click Finish.The Global Lists property page displays for editing.

[F Test List

Global List

Provide a user-Friendly label For the list, Click '+ to add walue/label items ko the lisk:

ke | TestLisk

Display Label: | Test List

* ¢ 4 B
Yalues Labels
| valuel | | label1

56 User Application: Design Guide

4 Fill in the fields as follows:

Field Description

Display Label The name of the list. This is the name displayed in Designer.

Labels The text for the list item to display in the User Application.

Values The list item value stored in the Identity Vault. Valid characters include

letters, numbers, and the underscore (_) character.

The following table describes the wizard’s buttons:

Button Description
= Adds a new value
&
4 Moves the row up or down in the list. This order specifies how the labels are displayed
in the User Application.
v
5o Displays the localization dialog box. For more information on using the dialog box, see
. Section 2.10, “Localizing Provisioning Objects,” on page 35.
Deletes the row.
*x

5 Save the project.
6 to make it available to the User Application.

3.4 Working with Queries

The Queries node allows you to define commonly used LDAP searches that you can execute from a
request or approval form by using the DNQuery control or by calling the globalQuery() method. To
define the query, you specify the directory abstraction layer entity, the search root, the number of
rows to retrieve, and the conditions for retrieving the source entity. You can hard-code the conditions
(for example, Where LastName contains s) or specify one or more parameters that are supplied by
the user on the request or approval form.

To create a query:

1 Launch the New Query Wizard in any of these ways:

From Designer’s menus:
¢ Select File > New > Provisioning. Choose Directory Abstraction Layer Query, then click Next.
¢ Select DAL > New > Query.

From the Provisioning view:
¢ Right-click Query, then select Add.

From the directory abstraction layer editor:
¢ Click the Add Query button.
¢ Right-click Query, then select Add Query.

Configuring the Directory Abstraction Layer 57

58

The New Query dialog box displays.

NOTE: When launched from the File menu, the dialog box contains fields not displayed when
launched in other ways.

E‘}: New Query

New Query

Specify project and application For the new query as well as the display
name and key for the new query,

Identity Manager Project: |WaIDDcDriver V|
Provisioning Application: |User Application w |
Quuery Key: | |
Display Label: | |

Cancel

2 Fill in the fields as follows:

Field What to do
Identity Manager Project and Select the correct Identity Manager project and Provisioning
Provisioning Application Application.

NOTE: This field displays when you create queries from the
File menu.

Query Key Type a unique value for the query key. This value is used in
the Expression Builder to identify the query.

Display Label Type a string to display in the directory abstraction layer
editor and Provisioning view. This value is not visible in the
Expression Builder.

3 Click Finish.
The editor creates the query and opens the property page for editing.

User Application: Design Guide

@ Sample Query ®

General
Provide a user-friendly label for the query:

K | SampleQuery |

Display Label: | Sample Query | F?

Cuuery Entity: | =Select an ikem = w |

~ Parameters
Define parameter references:

+ %

+ Query Conditions
Provide conditions for the query entity selected above:

{4 add Condition Grouping

+ Search

Provide search constraints for the query:

Search Root: | | I @

Search Scope: | <Default> w |

Max Search Entries: |D “ | {0=use runkime setting)

4 Select a Query Entity. If the entity you want to use is not displayed, make sure it is defined in the
Entities node.

5 In the Parameters section, define one or more parameters for the query. To add parameters:
5a Click Add Row.

 Parameters
Define parameter references:

+ ¢ 4 &
Parameter Kevs Parameter Display Labels
| . || label1 | %

5b Specify a unique key and a display label for the parameter. You pass this key when calling
the globalQuery() method on a form. For more information on globalQuery(), see
“globalQuery(fieldname, key, param)” on page 335.

5¢ Add additional parameters by repeating these steps.
6 To further refine the query, add Query Conditions.

6a Click Add Condition Grouping (a Query Entity must be selected to enable Add Condition
Grouping).

Configuring the Directory Abstraction Layer 59

60

6b

6¢c

6d

* Query Conditions
Provide conditions for the query entity selected above:

I:%‘ &dd Condition Grouping

|9 Remove Condition Grouping

El
X +

|c:58|ect an ikem = v| |::5&|ect an ikem = v| | |

Use the drop-down list on the left to select an attribute. The attributes in this drop-down are
the attributes on the selected Query Entity.

Use the drop-down in the middle to select a comparison operation to perform against your
chosen attribute.

Use the entry on the right to specify a value to compare against your chosen attribute. You
can select a variable name by clicking Predefined Parameters to launch the Predefined
Parameters dialog box.

t X
Parameters

Select one of the predefined parameters For wour Field,

Yegroupnane s

.:-E:. [(0] 4] [Zancel

If the query needs to filter on more than one attribute or condition and you want to control
the order in which the conditions are evaluated, you can define multiple conditions or
condition groups. Within a condition grouping, you specify each criterion that you want
and connect them by using the logical operations: and, or.

7 To specify multiple condition groupings, click Add Condition Groupings and make your selections
from the drop-down list boxes.

8 Define the query’s LDAP Search properties if you want to narrow the search further than already
defined for the selected entity. The query’s search root, unlike the entity search root, does not
support the use of predefined parameters. For more information, see Section 3.7.3, “Queries
Properties,” on page 79.

9 Click Save.

10 the query to make it available to the User Application.

User Application: Design Guide

3.5

Working with Relationships

The Relationships node allows you to define relationships between entities defined in the directory
abstraction layer. The relationships you define are used in the User Application by the Organization
Chart and in iManager for defining the members within a group.

The relationship you define can be between like entities (such as user/user) or unlike entities (such as
user/device). You can define conditions for the relationship to further refine it. For example, you
might want to create a condition that shows all Manager-Employee relationships and then refine it to
show only employees in one particular region, or show all the subordinates of a vice president
located in the eastern region.

The following relationships are defined, by default, for the User Application:

¢ Group’s membership (Org Chart only)
¢ Manager-Employee (Org Chart and Management)
¢ User groups (Org Chart only)

A relationship can only be used by Management when the Source and Target entities are both related
to the InetOrgPerson object.

To successfully deploy a relationship, all of the components (entities and attributes) of the
relationship must already be deployed.
1 Create a new relationship in any of these ways:
From Designer’s menus:

¢ Select File > New > Provisioning. Choose Directory Abstraction Layer Relationship, then click
Next.

¢ Select DAL > New > Relationship.
From the Provisioning view:

¢ Right-click Relationships, then select Add.
From the directory abstraction layer editor:

¢ Click the Add Relationship button.

¢ Right-click Relationships, then select Add Relationship.
The New Relationship dialog box displays.

NOTE: When launched from the File menu, the dialog box contains fields not displayed when
launched in other ways.

Configuring the Directory Abstraction Layer 61

62

Mew Relationship

Relationship Key:

Display Label:

Specify project and application For the new relationship as well as the
display name and key For the new relationship,

Identity Manager Project: |F‘ru:ujeu:t0ne

Provisioning Application: |User Application

Led Lo

< Back

| | Cancel

2 Fill in the fields as follows:

Field

What to do

Identity Manager Project and

Provisioning Application

Relationship Key

Display Label

Select the correct Identity Manager project and Provisioning
Application.

NOTE: This field displays when you create relationships from
the File menu.

Type a unique value for the relationship key.

Type the string to display when the relationship displays in
the User Application.

3 Click Finish.

The editor creates the relationship and opens the property page for editing.

User Application: Design Guide

PR, ' .
@ & RTINS = | # Group's membership
(=144 Entities
= & oo — pr—
& Description Specify the type of application which can use this relationship:
@ Members Used by Organizational Chart
@ Manager Lookup
5] User
Fdl User Lookup
= ﬂ Lists Relationship

m Delegates Relationship

Pravide a user-friendly label for the relationship:
m Email notification bypes

5 Preferred Locale Key: | o |
m Provisioning Category Display Label: | Group's membership | ﬁ?
m Request Scope
Queries
= @ Relationships Source Object Target Dbject
&roup's membership Source Enkity: |Gr0up v | Target Entity: |User v |
#4 Manager-Emploves
#1 User aroups Source Attribube: |This entity's key w | Target Attribute: |Gr0up b |

£l Configuration

~ Conditions

Specify any additional conditions For your target attribute: dh

For property definitions, see Section 3.7.4, “Relationship Properties,” on page 80.
To delete a relationship:
1 Right-click the relationship you want to delete, then click Delete.
To add a relationship condition:

1 Click Add Row.

2 Use the drop-down list box (on the left) to select an attribute. The attributes in this drop-down
are attributes on the Target Object entity.

3 Select an operator from the middle drop-down list box.

Configuring the Directory Abstraction Layer

63

4 Use the text field on the right to specify the comparison value to complete the condition. For

example:

#} Manager-Employee(region) @

Access

Specify the type of application which can use this relationship:

Used by Organizational Chart
Used by Team-Management

Relationship

[JEnable Cascading Relationship

Y .
a | Maximum levels to cascade

Provide a user-friendly label For the relationship:

Kes: User2users?

Display Label; | Manager-Employes(region)

Source Dbject
Source Entity: User

Source Attribute: | This entity's key

= Conditions

Target Object

<

Targek Enkity: User w

<

Target Attribuke: |Manager L'

Specify any additional conditions For vour target attribute; &k

Reqgion

| |equals “ || Latin ®

You can create a condition that filters on more than one attribute or condition and connect the
attributes by using the logical operations: and, or. The conditions are evaluated in the order in which

you define them.

3.6 Working with Configuration Settings

The Configuration node allows you to set general configuration properties for the User Application.

Table 3-5 Configuration Settings

Field

Description

Default ‘My Profile’ Entity

Default LDAP Naming Attributes

Defines the entity to display when the user clicks My Profile in the
user interface.

This field is restricted to show only entities whose object class is
user (or LDAP inetOrgPerson).

Defines the default LDAP naming attribute if the entity’s Create
Naming Attribute is not defined.

64 User Application: Design Guide

3.7

3.7.1

Field

Description

Default Management Attributes

Container Classes

The attributes used to look up members. In the My 's Work and My
's Settings pages of the User Application, the user is able to search
for members by clicking the search icon. For example:

Team Membhber: E

The search displays the attributes specified here, for example:

Ohject Lookup T & O

Search ohjectlist; (example: &% Lar®, 1D, *n

Last Mame

| =% Search

These settings only affect the lookups performed by Managers.
The User Application administrator sees only First Name and Last
Name.

This provides the Create User or Group action with the contents of
a selection list of container classes. The user selects a container
from the selection list as the location for the newly created object.

Directory Abstraction Layer Property Reference

The section provides definitions for the properties for the following abstraction layer nodes:

¢ Section 3.7.1, “Entity Properties,” on page 65

¢ Section 3.7.2, “Attribute Properties,” on page 69

¢ Section 3.7.3, “Queries Properties,” on page 79

¢ Section 3.7.4, “Relationship Properties,” on page 80

Entity Properties

You can set the following kinds of properties on entities:

¢ “Entity Access Properties” on page 66

¢ “Entity General Properties” on page 66

+ “Entity Auxiliary Properties” on page 66

¢ “Entity Search Properties” on page 67

¢ “Entity Create Properties” on page 68

Configuring the Directory Abstraction Layer

65

¢ “Entity Password Management Properties” on page 68

¢ “Using Predefined Parameters” on page 68

Entity Access Properties

Access properties control how the User Application interacts with the entity.

NOTE: You can also access the access properties by selecting DAL > Set Global Access.

Table 3-6 Entity Access Properties

Property Name Description
Create When selected, this object can be created by the User Application.
Edit When deselected, this object cannot be changed by the User Application

regardless of the underlying ACLs.

When selected, this object is editable, but the Identity Vault ACLs are used
to determine this.

View When selected, this object can be displayed by the User Application.

Remove When selected, this object can be deleted by the User Application.

Entity General Properties

Table 3-7 Entity General Properties

Property Name Description

Key The unique identifier for this entity. It defines the way the User Application
references this object. It is defined when the entity is created and cannot be
modified after the entity is created.

Display Label Defines how the object is shown in the user interface.

Class Name The eDirectory object class name.

LDAP Name The LDAP object class name.

Include in Search When selected, this entity is searchable in the User Application. Entities used in

queries by identity portlets (such as Entity Search List or Entity Org Chart) must
be selected (True).

Entity Auxiliary Properties

66 User Application: Design Guide

Table 3-8 Entity Auxiliary Properties

Property Name Description

Auxiliary Classes A list of zero or more auxiliary classes for this entity.

classes, you are prompted to define:

* The auxiliary class by selecting from the list of those available

* Whether it is searchable. Setting searchable to True applies a filter to

LDAP searches that involve directory abstraction layer relationships. For
example, if you added an aux class to the user entity and specified that the
aux class was searchable, the Org Chart (using the manager-employee
relationship) would display only the employees that have the aux class.

* Whether to Add Always. When True (selected), the object class is

automatically added when the entity is modified in the User Application.
Modification includes create or update operations. When False, the object
class is only added if an attribute associated with the auxiliary class is

If you are adding auxiliary

modified.
Entity Search Properties
Table 3-9 Entity Search Properties
Property Name Description

Search Container

Search Scope

Search Time Limit [ms]

Max Search Entries

The distinguished name of the LDAP node or container where
searching starts (the search root). For example:

ou=sample, o=ourOrg

You can browse the Identity Vault to select the container, or you
can use one of the predefined parameters described in “Using
Predefined Parameters” on page 68.

Specifies where the search occurs in relation to the search root.
Values are:

<Default>: This search scope is the same as selecting
Containers and subcontainers.

Container: The search occurs in the search root DN and all
entries at the search root level.

Container and subcontainers: The search occurs in the search
root DN and all subcontainers. This is the same as selecting
<Default>.

Object: Limits the search to the object specified. This search is
used to verify the existence of the specified object.

Specify a value in milliseconds or specify 0 for no time limit.

Specify the maximum number of search result entries you want
returned for a search. Specify 0 if you want to use the runtime
setting. Recommendations: Set it between 100 and 200 for
greatest efficiency. Do not set it over 1000.

Configuring the Directory Abstraction Layer

67

Property Name Description

Perform Automatic Query When selected, performs an automatic query of the entity and
presents the results in a selectable list. Do not choose this option
if the data returned will be a large number because it forces the
user to scroll through a large result set.

When not selected, allows the user to specify the search criteria
for the entity query, then presents the results in a selectable list.

Entity Create Properties

Table 3-10 Entity Create Properties

Property Name Definition

Create Container The name of the container where a new entity of this type is created.

You can browse the Identity Vault to select the container, or you can use
one of the predefined parameters described in “Using Predefined
Parameters” on page 68.

If you do not specify this value, then the Create portlet prompts the user to
specify a container for the new object. The portlet uses the search root
specified in the entity definition as the base and allows the user to drill
down from there. If there is no search root specified in the entity definition
then it uses the root DN specified during the User Application installation.

Create Naming Attribute The naming attribute of the entity. It is the relative distinguished name
(RDN). This value is only necessary for entities where the access
parameter Create is selected.

LDAP attribute The LDAP attribute for the Create Naming Attribute.
Create Naming Label Display label displayed in the User Application for the Create Naming
Attribute.

Entity Password Management Properties

Table 3-11 Entity Password Management Properties

Property Name Definition

Password required when entity is created If the password attribute is required, set this value
to True (selected) to ensure that one is required by
the Create portlet. If a password is required, then
you cannot create this entity in a workflow.

Using Predefined Parameters

The directory abstraction layer editor allows you to use predefined parameters for certain values.

68 User Application: Design Guide

3.7.2

Table 3-12 Predefined Parameters

Predefined Parameter Description

%(driver-root% Represents the Provisioning Driver DN. This value is specified during

the User Application configuration during installation or a later
configuration. It is stored in the User Application’s realm configuration.

%user-root% Represents the User Container DN. This value is specified during the

User Application configuration during installation or a later
configuration. It is stored in the User Application’s realm configuration.

%group-root% Represents the Group Container DN.This value is specified during the

User Application configuration during installation or a later
configuration. It is stored in the User Application’s realm configuration.

Attribute Properties

You can set the following kinds of properties on attributes:

*

*

*

*

*

“Attribute Access Properties” on page 69
“Attribute General Properties” on page 71
“Attribute Default Value Properties” on page 71
“Attribute UI Control Properties” on page 71
“Attributes and DNLookup Properties” on page 74

Attribute Access Properties

NOTE: You can set attribute access for all of an entity’s attributes by selecting DAL > Set Attribute
Access, right-clicking an entity, and selecting Set Attribute Access.

Table 3-13 Attribute Access Properties

Name Description

Edit When selected, this attribute can be edited/modified by the User Application. Even if
it is selected (True), the attribute might still not be editable if the underlying Identity
Vault ACLs/effective rights prevent it.

Enable When deselected, this attribute cannot be used by the User Application. It is the

same as removing the entry from the file.

Configuring the Directory Abstraction Layer 69

70

Name

Description

Hide

Multivalue

Read

Require

Search

View

Controls whether the Hide check box in the User Application is enabled or disabled.
The Hide check box allows users to control whether an attribute (such as a photo) is
displayed by the application.

When deselected, the Hide check box is disabled for this attribute, so the user
cannot choose to hide this attribute.

When selected, the Hide check box can be enabled in the User Application.
However, the following must also be true of the logged-in user.

+ He or she is either the owner of the attribute or a User Application
Administrator.

+ He or she has Trustee rights to update the srvprvHideAttributes attribute on the
Identity Vault.

If these requirements are not met, then the Hide check box is disabled in the
user interface even if this setting is selected (True).

TIP: When a user hides an attribute that contains an image, users who have viewed
the image might continue to see it until their browser cache is refreshed.

The Search and Hide properties are mutually exclusive. If Hide is selected (True),
Search cannot also be selected (True). If Search is selected (True), Hide cannot be
selected (True).

Specifies whether this attribute can be multivalued, for example, a phone number.
When selected, the attribute can be multivalued.

When this option is selected, the User Application can query this attribute. For most
attributes this should be selected (True), but for some attributes, like password, it
should be deselected.

When this option is selected, the attribute must be supplied.

When this option is selected, the User Application can search on this attribute.
Attributes that are used in queries by identity portlets (such as Entity Search List or
Entity Org Chart) or request and approval forms must be selected.

TIP: If an attribute used in a search is also indexed in eDirectory, the search is faster.

The Search and Hide properties are mutually exclusive. If Hide is selected (True),
Search cannot also be selected (True). If Search is selected (True), Hide cannot be
selected (True).

When this option is selected, the User Application can display this attribute. In most
cases this is selected, but for attributes like password, it should be deselected. If you
specify it in a request or approval form, view must be selected.

User Application: Design Guide

Attribute General Properties

Table 3-14 Attribute General Properties

Property Name Description

Key The unique identifier for the attribute.

Display Label The label that is displayed in the User Application.
Attribute Name The eDirectory name for this attribute.

LDAP Name The LDAP name for this attribute.

Attribute Default Value Properties

This value is used when an object is created via the Create identity portlet or through a workflow.
You can express the default value as a literal or an ECMAScript expression. You cannot use a default
value as part of a calculated attribute. If defined as an ECM AScript expression, it is resolved at
runtime. If you define both the literal and an expression, the expression takes precedence.

TIP: If you want the default value to be displayed by the Create portlet, you must define the access
property viewable as True (selected). If you want the user to be able to change the value, you must set
the editable property to True.

Attribute Ul Control Properties

Table 3-15 Attribute UI Control Properties

Property Name Description

Data Type Choose a data type from the following list:

¢ Binary

+ Boolean

* DN

* Integer

¢ LocalizedString

NOTE: Selecting the LocalizedString Data Type causes the search to be
case-sensitive in the UL.

* String

+ Time

Configuring the Directory Abstraction Layer 71

Property Name Description

Format Type Used by the User Application to format data. Format types include:

+ None

¢ AOLIM

¢ Email

+ Groupwise IM
* Image

¢ Phone Number
¢ Yahoo IM

+ Image URL

+ Date

+ DateTime

The Format Types are dependent on the data type. For example, a Time data
type can only be associated with Date and DateTime formats.

72 User Application: Design Guide

Property Name

Description

Control Type

Types include:

DNLookup: Defines that this attribute contains a DN reference. Use when you
want to:

+ Populate a list with the results of a DN search among related entities.

+ Maintain referential integrity across DN referenced attributes during
updates and deletes.

+ Use the attribute in an object selector dialog box. Object selectors are used
by certain identity portlets, such as Detail, and are also available to the
form controls you can define for provisioning request and approval forms.

The User Application uses this information to generate special user interface
elements (such as an object selector), and to perform optimized searches based
on the DNLookup definition.

For more information on defining this property, see the “Attributes and
DNLookup Properties” on page 74. For more information on the object selector
dialog box for request and approval forms, see Section 5.6.2, “Working with
Object Selectors,” on page 163.

Global List: Display this attribute as a drop-down list whose contents are defined
in a file outside of this attribute definition. Click Go to list to access the Global
List editor for the selected list.

For more information, see Section 3.3, “Working with Lists,” on page 54.

Local List: Display this attribute as a drop-down list whose contents are defined
with this attribute. To define a local list:

1. With the attribute selected, set the control type to Local List.

~ UI Control

Specify any Formatting o special controls used in displaying the attribute:

Data Type: Skring w
Format Type: | <Mones w
Contral Type: |Local List “

= Local List

+ & & & [Make List Global |
Walues Labels
waluel labell ®

2. Use the buttons to add or remove list items. Use the up-arrow and down-
arrow buttons to change the position of the item in the list.

In the Value column, type the value to write to the Identity Vault. It can
include letters, numbers, and the underscore (_) character.

3. In the Labels column, type the text you want displayed in the user
interface.

Range: Use the Range control type with Integer data types to restrict user input
to a sequential range of values. Define the range’s start and end values.

Configuring the Directory Abstraction Layer

73

74

Attributes and DNLookup Properties

When you define an attribute as a DNLookup control type, it means that:
¢ This attribute can be used in an object selector dialog box that allows users to select from a list of
possible values when searching on this attribute.

¢ When this attribute is created, populated, or deleted through the User Application, an attribute
on a related entity is updated appropriately depending on the user action (create, delete, update)
to maintain referential integrity.

¢ “DNLookups for Object Selectors” on page 74

¢ “DNLookups for Referential Integrity” on page 78
¢ “DNLookup Property Reference” on page 78

DNLookups for Object Selectors

The DNLookup Display properties for a particular attribute define the contents of the object selectors
in the User Application. Object selectors are displayed by the Identity Self-Service portlets and in
workflow request and approval forms. They provide a convenient way for users for users to search
and select objects that represent DNs (such as users or groups). The object selector displays a drop-
down list of attributes; the user can select one of the attributes and then enter search criteria for that
attribute. In this example, the user searches for groups by group description.

Figure 3-2 Sample Object Selector

[Object Lookup - Mozilla

HEs

Object Lookup ?7 8 _ 0O

Search object list: [example: a%, Lar®, 1D, *r)

Description | » “% Search

The result of the user’s selection looks like this:

User Application: Design Guide

Figure 3-3 Sample Object Selector Results

BE Object Lookup - Mozilla

Object Lookup ? 8 _

Search object list: [example: a*, Lar™, |D, *r)

Description |H :‘% Search

Select an object from the list:

Description
Improve Customer Service tazk force

Information Technology

1-2nof2

The DNLookup display properties control the contents of the object selector and the result set. The
object selector, shown above, displays this way because it was based on the group attribute of the

user entity. The group attribute is defined as a DNLookup control type as shown here:

Figure 3-4 Group DNLookup Definition

~ UI Control
Specify any Formatting or special contrals used in displaying the attribute:

Data Type: | DM

Format Type: | <Mone:=

Control Type: | DhLookup

9
9
¥

+ DNLookup Display

Select the Entity and Attributes ko display For the Lookup operation:

Lookup Entity: Group w |

Lookup Attributes

+ | Description

|:| Perform Automatic Query

This definition also controls the way identity portlets provide a selection list of groups for a user. For
example, a user might choose to do a Directory Search to find a user in a group, but the group name

is unknown. The user would select User as the object to search for and select group as the search

criteria, as follows:

Configuring the Directory Abstraction Layer

75

Figure 3-5 Search Criteria

Ta_n

Search List

Basic Search

Search for: | User |
With this criteria:
i _— — P—
v] | equals b |]@

@ My Saved Searches .;\? Advanced Search

Because the members attribute is a DNLookup for the user entity, the Lookup icon displays. If the user

selects it, then a list of possible groups displays.

76 User Application: Design Guide

Figure 3-6 Object Lookup

‘2 Object Lookup - Microsoft Internet Explorer

Object Lookup T & 0O

Search object list: [example: 3%, Lar™, 10, *r]

Dezcription v| | | ““% search

Select an object fram the list:
Description

fccounting

Executive Management

Human Resources

Improve Customer Service task farce
Information Technology

Marketing

Sales

1-7of ¥

When the user picks a group, then he or she can select a group from the list and all of the members of
that group are displayed.

NOTE: When the Perform Automatic Query property is not selected (False), the object selector is not
populated when first displayed to the user and the user must enter selection criteria. The example
above illustrates the object selector that displays when the Perform Automatic Query property is
selected (True).

Configuring the Directory Abstraction Layer 77

DNLookups for Referential Integrity

DNLookups for updates and synchronization are important because LDAP allows group
relationships to map in both directions. For example, your data might be set up so that:

¢ The User object contains a group attribute. The group attribute is multi-valued and lists all of the
groups to which a user belongs.

¢ The Group object contains a user attribute. The user attribute is multi-valued and lists all of the
users that belong to the group.

This means that you can have an attribute on the user object that shows all the groups a user belongs
to, and on the Group object you have a DN attribute that includes all the members of that group.

When the user requests an update, the User Application must honor the relationships and ensure
that the target and source attributes are synchronized. In the DNLookup, you specify both attributes
that must be synchronized. You can use this technique to provide synchronization between any
objects that are related not just group structural objects. Create this kind of DNLookup control type
by specifying the advanced DNLookup properties described in the DNLookup Relational Integrity
properties reference.

DNLookup Property Reference

Table 3-16 DNLookup Display Properties

Property Name Description

Lookup Entity The name of the entity to search. For example, suppose that
the User entity contains an attribute for Manager. To populate
that field, you'd need to know which users are Managers.

Lookup Attributes Choose one or more attributes to display when a search is
performed.
Perform Automatic Query Defines how the Lookup Attributes are displayed.

* When this option is selected, the form or portlet
performs an automatic query of the entity and presents
the results in a selectable list. This option is not
recommended if a large amount of data can be returned
because it forces the user to scroll through a large result
set.

* When this option is deselected, allows the user to
specify the search criteria for the entity query, then
presents the results in a selectable list.

Table 3-17 DNLookup Detail Properties

Property Name Description

Detail entity The key of the entity whose details you want displayed if the
user requests more information by clicking a hypertext link in
the User Application. When you define a DNLookup, the
identity portlets are able to provide a hypertext link that allows
users to display the details of the linked object.

78 User Application: Design Guide

The DNLookup Relational Integrity properties are used for synchronizing data between two objects
such as groups and group members.

Table 3-18 DNLookup Relational Integrity Properties

Property Name Description

Source Attributes to Update Name of the attribute to update. The attribute must contain a DN
reference to the Target Attributes to Update. This is required to
synchronize attributes on two different objects.

Target Attributes to Update Name of the attribute that must be updated along with the Source
Attributes to Update. This is an LDAP attribute name. This is
required to synchronize attributes on two different objects. The
attribute must contain a DN reference.

Target Auxiliary Classes Needed, if Name of the auxiliary class that contains the Target Attributes to
any Update.

3.7.3 Queries Properties

You can set the following kinds of Queries properties:

¢ “Queries General Properties” on page 79
¢ “Query Parameters Properties” on page 79

¢ “Query Search Properties” on page 80

Queries General Properties

Table 3-19 Queries General Properties

Property Name Description

Key A unique value for the query key. This value is used in the Expression Builder to
identify the query. The key is specified at the query creation time. It cannot be
modified after the query is created.

Query Entity Select an entity from the drop-down list box. The resulting LDAP search is on this
entity.
Display Label Type a string to display in the directory abstraction layer editor and Provisioning

view. This value is not visible in the Expression Builder.

Query Parameters Properties

Table 3-20 Queries Parameters Properties

Property Name Description

Parameter Keys A unique identifier for the key. You pass this key when calling the
globalQuery() method on a form.

Parameter Display Labels A label to identify the key.

Configuring the Directory Abstraction Layer 79

Query Search Properties

If left blank, the query search properties default to the search properties specified for the selected
entity. Specify the query search properties to further refine the search scope already defined for the
entity. You cannot specify predefined parameters (for example, %user-root%) in the query’s search
properties.

Table 3-21 Query Search Properties

Property Name Description

Search Root Specifies the location in the LDAP tree where the LDAP search defined by the
guery begins.

Search Scope Specifies where the search occurs in relation to the search root. Values are:

<Default>: This search scope is the same as selecting Containers and
subcontainers.

Container: The search occurs in the search root DN and all entries at the
search root level.

Container and subcontainers: The search occurs in the search root DN and
all subcontainers. This is the same as selecting <Default>.

Object: Limits the search to the object specified. This search is used to verify
the existence of the specified object.

Max Search Entries Specify the maximum number of search result entries you want returned for a
search. Specify 0 if you want to use the runtime setting. Recommendations: Set
it between 100 and 200 for greatest efficiency. Do not set it over 1000

3.7.4 Relationship Properties

80

Relationship properties include:

¢ “Relationship Access Properties” on page 80

¢ “Relationship Properties” on page 81

Relationship Access Properties

Table 3-22 Relationship Access Properties

Property Name Description

Used by Organizational Chart When selected, this relationship can be used by the Org Chart portlet.

User Application: Design Guide

Property Name

Description

Used by Management

When selected, this relationship can be used to define the provisioning

members in iManager.

For example, if Used by Management is selected for the manager-

employee relationship, then the provisioning application administrator
can use this relationship to define the members as all users that report to

the manager.

If Enable Cascading Relationship is selected, then the can include

several levels within the organization. You define the number of levels via

Maximum Levels to Cascade.

Relationship Properties

Table 3-23 Relationship Properties

Property Name

Description

Key

Display Label

Source Entity

Source Attribute

Target Entity

The read-only unique identifier for the relationship.
TIP: You specify this value in the Org Chart Portlet preference sheet.

Specify a name to display when this relationship is displayed in the User
Application. For example, this value is displayed when users click
Choose Org Chart from the Detail portlet.

Click Localize to provide the translation for the display label text.
Choose an entity from the drop-down list.

The entity that you choose becomes the parent or source object in the
organization chart hierarchy. In a Manager-Employee relationship, the
Source Entity is User. For a Group-Member relationship, the source entity
is Group.

Directory abstraction layer requirements: The entities in this list are a
subset of the entities defined in the directory abstraction layer. Source
entities must have the view access property selected (True).

Choose an attribute from the drop-down list.

This attribute is used to find matching target entities. When the value of
this attribute matches a corresponding value on an attribute of the target
entity (see Target Attribute below), then a relationship can be established.

Directory abstraction layer requirements: This list of attributes is
populated using the selected Source Entity’s attributes. It includes any
attributes that are searchable and readable.

Choose an entity for the child object in the hierarchy. In a Manager-
Employee relationship, it is user.

This entity must contain the attribute that is related to the Source
attribute.

Configuring the Directory Abstraction Layer

81

Property Name Description

Target Attribute Choose the attribute that matches the Source Attribute.

This is the target entity’s attribute used to find matching source entities.
When the value of this attribute matches a corresponding value on the
source entity (see Source Attribute above), then a relationship can be
established.

NOTE: The Org Chart portlet does not fully support dynamic groups; you cannot define a dynamic
group as the Source entity, but you can define a dynamic group as the target entity.

82 User Application: Design Guide

4.1

Configuring Provisioning Request
Definitions

A provisioning request is a user or system action that initiates one or more provisioning workflows.
These workflows can be used to grant or revoke resources or roles, or perform attestation processes.
You use the provisioning request definition editor to create and deploy provisioning requests to the
User Application driver. This section includes information about the provisioning request definitions
shipped with the system and how to create new provisioning request definitions. It include the
following sections:

¢ Section 4.1, “About Provisioning Request Definitions,” on page 83

¢ Section 4.2, “Using the Provisioning Request Definition Editor,” on page 84

¢ Section 4.3, “Provisioning and Workflow Example,” on page 102

About Provisioning Request Definitions

Provisioning request definitions are directory objects that encapsulate the business rules for granting
or revoking a corporate resource or role, and binding the corporate resource or role to a workflow.
Provisioning request definitions can also be used to launch attestation workflows. They are used in
the User Application to support:

¢ Resource requests on the Requests & Approvals tab

Resource requests allow users to request access to resources such as accounts, applications,
servers, and so forth. Novell provides a read-only resource-oriented provisioning request
definition named Resource Approval.

For information about customizing the existing definition or writing your own resource based
provisioning request definitions, see Section 6.7, “Guidelines for Creating Resource Based
Workflows,” on page 201.

¢ Role assignment requests on the Roles tab.

Role assignment requests allow users to request roles that grant them permissions to resources
and not to the resources themselves. Novell provides these two read-only role-oriented
provisioning request definitions:

¢ Role Approval: Manages role requests.

¢ SoD Conflict Approval: Manages role requests that result in Separation of Duties (SoD)
conflict overrides.

For information about customizing the existing definitions or writing your own roles based
provisioning request definitions, see Section 6.6, “Guidelines for Creating Roles Based
Workflows,” on page 192.

¢ Attestation process requests on the Compliance tab.

Configuring Provisioning Request Definitions 83

4.2

421

Attestation process requests are used by Compliance Administrators and Attestation Officers to
submit requests for attestation workflows. These workflows allow users to verify their own user
profile information, to allow authorized users to verify the violations and exceptions to SoD
constraints, or to verify role and user assignments.

Designer provides these two attestation type provisioning request definitions:

¢ Attestation Report: Manages the attestation process that allows users to verify the violations
and exceptions for a set of SoD constraints.

¢ Attestation User Profile: Manages the attestation process that allows users to confirm that
their user profiles contain accurate information.

Attestation type provisioning request definitions are not editable within Designer. You cannot
define or use custom provisioning request definitions for attestation, and they are not visible on
the Requests & Approval tab.

You use Designer to define the trustees for the attestation process requests, to deploy the
provisioning request definitions, and to localize the text users see during the approval process.
For information on localizing attestation provisioning request definition text, see Section 2.10,
“Localizing Provisioning Objects,” on page 35.

Using the Provisioning Request Definition Editor

The provisioning request definition editor allows you to create provisioning request definitions that
bind corporate resources or roles to a workflow. The provisioning request definition editor includes
the following tools:

¢ Overview tab: Used to define the basic characteristics of the provisioning request.

*

Workflow tab: Used to define the associated workflow by configuring activities and flow paths.

*

Form tab: Used to define the request and approval forms that the user interacts with in the
Requests & Approvals tab.

¢ Signature Declarations tab: Used to define the Digital Signature declarations.
For provisioning request definitions that are not based on roles, you can use a provisioning request
template to create your definitions. The templates model some common workflow design patterns.
However, if you want complete control over the behavior of your workflows, you can create your
own custom provisioning request definitions.

¢ Section 4.2.1, “Creating a Provisioning Request Definition,” on page 84

¢ Section 4.2.2, “Starting the Provisioning Request Definition Editor,” on page 85

¢ Section 4.2.3, “Creating a Provisioning Request Definition By Using a Template,” on page 87

¢ Section 4.2.4, “Creating a Custom Provisioning Request Definition,” on page 93

¢ Section 4.2.5, “Creating a Roles Based Provisioning Request Definition,” on page 94

¢ Section 4.2.6, “Modifying Settings of a Provisioning Request Definition,” on page 96

Creating a Provisioning Request Definition

This section describes how to create both provisioning requests that are based on roles and
provisioning requests that are not based on roles by using the following methods:

¢ From a template (not supported for roles based provisioning request definitions).

¢ From a copy of an existing provisioning request definition.

¢ As a custom provisioning request definition.

84 User Application: Design Guide

When possible, you should use a template or a copy of an existing definition because it saves you
time, and allows you to make targeted changes to an existing provisioning request definition.
However, if no existing provisioning request definition resembles new work that you want to do, you
can create a custom provisioning request.

The following table describes the steps for defining a provisioning request.

Table 4-1 Basic Steps for Defining a Provisioning Request

Task Action For More Information
1 Create a provisioning request definition. Depending on what you want to create,
see:

¢ Section 4.2.3, “Creating a
Provisioning Request Definition By
Using a Template,” on page 87

+ Section 4.2.4, “Creating a Custom
Provisioning Request Definition,”
on page 93.

¢ Section 4.2.5, “Creating a Roles
Based Provisioning Request
Definition,” on page 94

+ Section 4.2.6, “Modifying Settings
of a Provisioning Request
Definition,” on page 96

2 Create the request and approval forms. See Chapter 5, “Creating Forms for a
Provisioning Request Definition,” on
TIP: Creating the forms before the workflow simplifies the yaqe 107
process of mapping the form fields to the application data.
3 Create the workflow diagram by adding activities to the See Chapter 6, “Creating the Workflow
workflow diagram and connecting them with flow paths. for a Provisioning Request Definition,”
on page 173
4 Configure the activities and flow paths by specifying the = See Chapter 7, “Workflow Activity
properties, data item mappings, and e-mail notification Reference,” on page 213
settings for the actvities. Then define the semantics for the
flow paths.

4.2.2 Starting the Provisioning Request Definition Editor

1 Open the Provisioning view and double-click the Provisioning Request Definitions node.

Designer displays the provisioning request definitions tree containing nodes for the default
provisioning definition request definition categories of Accounts, Attestations, Entitlements,
Groups, Roles, and Uncategorized.

avisioning Request Definitions
E,:, Accounts
+ E,:, Attestations
+ E,:, Entitlements
E,:, Groups
+ E,:, Raoles
E,:, Uncategorized

Configuring Provisioning Request Definitions 85

86

These default categories are defined by the directory abstraction layer Provisioning Category
list. For information on managing categories, see Section 3.3, “Working with Lists,” on page 54.

The installed templates are available in the Entitlements node, and the default role provisioning

request definitions are available in the Roles node.

2 Use the Provisioning view pane to navigate the provisioning request definition categories. The
right-click menu is available from the top-level node or when you select an existing provisioning
request definition. You cannot create a provisioning request definition by selecting a category

node.

3 Double-click a provisioning request definition to open it in the editor in the right pane.

;- | Template2ParallelApproval_TA &1

Provisioning Request Definition Details

Identifier (CN): Template2ParallelApproval _TA

Display Mame: | remplate2ParallelApproval_TA |
Description: Two Step Parallel Approval (Timeout Approves)

Category: | Entilements w |
Status: |Tem|:||ahe w |
Flow Strategy: |5ingle Flow w |
Process Type: | Normal ¥ |

Notify participants by E-Mail
[restrict View
Generate Comments
[]5et Default Completion Status to Approved
Trustee rights:
TE %

Trustee DN
Global Scripks:
ar
Tvoe | Scriot ‘Wiorkflows | Stark Activity
external LIELDP-15
infine Jf TODO Auko g.,.entation, OO0 O

Qverview .~ Workflow | Forms | Signature Dedarations

User Application: Design Guide

|<

For details on using... See

Overview tab Section 4.2.6, “Modifying Settings of a Provisioning Request Definition,”
on page 96.

Workflow tab Chapter 6, “Creating the Workflow for a Provisioning Request Definition,”
on page 173.

Forms tab Chapter 5, “Creating Forms for a Provisioning Request Definition,” on
page 107.

Signature Declarations Section 6.11, “Configuring Digital Signature Support,” on page 210.

Provisioning request definitions are stored locally in the Provisioning\AppConfig\
RequestDefs directory within your workspace.

4.2.3 Creating a Provisioning Request Definition By Using a Template

1 Launch the Create A New PRD wizard in one of these ways:

¢ From the Provisioning view, right-click the Provisioning Request Definitions node and choose
New.

¢ From the Provisioning view, click a User Application or provisioning request container,
then select Insert > Provisioning Request Definition.

¢ Select File > New > Provisioning > Provisioning Request Definition. Choose Provisioning Request
Definition, then click Next.

The first page of the Create a New PRD Wizard is displayed.

§l4Create a new PRD 4|
Specify the basic information of the Provisioning Request Definition. E
Give the PRD a CM name, a display name, and a description,
Identifier (C): ||
Display Mame: |
Drescripkion: |
7) = Back fdext = I Firist I Cancel

2 Fill in the fields as follows:

Configuring Provisioning Request Definitions 87

Field Description

Identifier (CN) The CN (common name) identifier for the provisioning request definition.
The name cannot be longer than 64 characters.

Display Name The display name for the provisioning request definition. This is the name
that is displayed in the Provisioning view.

Description A description of the provisioning request definition.

3 Click Next. The next page of the wizard is displayed.

& Create a new PRD

Choose the workflow template for this Provisioning Request Definition.

[~ Create a provisioning request definition using one of the templates

Available Templates: Description:

TemplatezParallelapproval _TA .
TemplatezParallelapproval_TD
Templatezserialapproval _Ta
Templatezserialapproval _TD
Termplate3Parallelbpproval _TA
Template3Parallelapproval _TD
Termplate3serialapproval _Ta
Template3serialapproval _TD
Template4Parallelapproval _Ta
Template4Parallelapproval _TD
TemplatedSerialapproval _TaA
Template4serialapproval _TD
TemplateSParallelapproval _Ta LI

Mext = I Eimish I Cancel |

4 Select Create a provisioning request definition using one of the templates, then select the desired

template (for example, TemplateSingleApproval_TA) from the Available Templates list, then click
Next.

You use the next panel of the wizard to specify the provisioning request definition’s category
and trustees (the users, groups, or containers) who can access the provisioning request
definition after it is deployed.

88 User Application: Design Guide

@ Create a new PRD

Specify the details of the Provisioning Request Definition.

Category: | Roles

Motify participants by E-Mail
Trustee rights: R

Trustee DN
admin,navell

':':’:' Finish l [Cancel

5 Select a category from the list.

6 Select Notify participants by e-mail if you want approvers to be notified by e-mail about pending

10

approval tasks, and also want initiators to be notified by e-mail of workflow completion. If
Notify participants by e-mail is not selected, users must look at the Requests and Approvals tab in the
User Application for notifications about tasks.

Click the plus (+) icon to add a trustee.

Designer displays a panel that allows you to browse the Identity Vault to select a trustee. You
can select a user, group, or container. If you cannot connect to the Identity Vault, you can type
trustee DNs directly in the Trustee DN field.

Select the trustee, then click OK.

Designer returns you to the previous panel. If desired, add additional trustees by repeating the
previous step.

When you have finished adding trustees, click Finish.

Designer displays the Provisioning Request Definition Details panel on the Overview tab (see
Section 4.2.6, “Modifying Settings of a Provisioning Request Definition,” on page 96).

Click the Workflow tab. The Workflow view is displayed.

Configuring Provisioning Request Definitions 89

90

11

12

13

14

15

] sample &3 =5
Palette 3
h Select
& Start [} Marquee
| Flow Path
fanaard | Activities -
¥
a Single Approval ? Skark
G Approval

" approved @ deried [
‘}g Lag For approwal activity :‘M Log finish denied Branch
\ | Merge
‘ fonward >> Condition
ﬁ Mapping
‘Workflow Status
@ E-Mail

ﬁ Firish 3 Role Binding
inis
|_...| Role Request

o | Start ‘WarkFlow

f& Finish

<& | Intearation

farward
¥

zj Entitlement Provisioning Ackivity
—
forward

(= Provisioning .
Zj Entitlerment

o | Entity

i)

Cwverview | Workflow " Forms | Signature Declarations

= . _—a

The provisioning request definition template includes some default values that you must
customize for your environment. For example, the Entitlement Provisioning Activity contains
placeholder values for several data item mapping properties. You need to replace the
placeholder values with the actual values for your provisioning request.

Click the Entitlement Provisioning activity, then click the Data Item Mapping tab.

I+

¥& Finish

Qverview |varkflow Forms|
Ernail Motification | Paolicy Set | Data Flow W\Properties | =08

Source Expression | Target | Dak:
recipient dn strir
'cn=ICYALLT, cn=YalueAdder, cn=spitset,o=acme' Dir#ML-Entitlement-DN strir
1 DirML-Entitlement-action skrir
Yenter Entitlement param here} Dir#ML-Entitlernent-Par armeter strir
‘true’ DirgML-Entitlement-Multivalueslowed | bool

Double-click in the Source Expression field to display the DirXML-Entitlement-DN target field,
then click the button that appears in the field to display the ECMA Expression Builder.

See Chapter 9, “Working with ECMA Expressions,” on page 315 for information about the
ECMA Expression Builder.

Use the ECMA Expression Builder to replace the placeholder expression with an expression that
specifies the entitlement that you want to provision with this provisioning request.

Replace the placeholder expression in the Source Expression field for the DirXML-Entitlement-
Parameter.

Click the Forms tab and customize the forms for the provisioning request to meet your needs.

User Application: Design Guide

See Chapter 5, “Creating Forms for a Provisioning Request Definition,” on page 107.The
template includes predefined request and approval forms. You might want to add additional
forms, or add or remove form controls.

16 Click the Workflow tab and customize the properties of the workflow to your needs.

See Chapter 6, “Creating the Workflow for a Provisioning Request Definition,” on page 173 and
Chapter 7, “Workflow Activity Reference,” on page 213.

For more information about the preconfigured templates, see the following;:

¢ “About the Installed Templates” on page 91
¢ “About the Installed Templates and Flow Strategy” on page 93

About the Installed Templates

Identity Manager ships with a set of preconfigured provisioning request definitions and workflows.
You can use these as templates for building your own provisioning system. To set up your system,
you define new objects based on the installed templates and customize these objects to suit the needs
of your organization.

The installed templates let you determine the number of approval steps required for the request to be
fulfilled. You can configure a provisioning request to require from zero to five approval steps.

You can also specify whether you want to support sequential or parallel processing, and whether you
want to approve or deny the request if the workflow times out during the course of processing.

The following table lists the templates included with Identity Manager.

Table 4-2 Preconfigured Provisioning Request Definitions and Workflows

Template Description

Self Provision Approval Allows a provisioning request to be fulfilled without any
approvals.

One Step Approval (Timeout Approves) Requires a single approval for the provisioning request

to be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

Two Step Sequential Approval (Timeout Requires two approvals for the provisioning request to

Approves) be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.

Three Step Sequential Approval (Timeout Requires three approvals for the provisioning request

Approves) to be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.

Configuring Provisioning Request Definitions 91

92

Template

Description

Four Step Sequential Approval (Timeout
Approves)

Five Step Sequential Approval (Timeout
Approves)

One Step Approval (Timeout Denies)

Two Step Sequential Approval (Timeout Denies)

Three Step Sequential Approval (Timeout

Denies)

Four Step Sequential Approval (Timeout Denies)

Five Step Sequential Approval (Timeout Denies)

Two Step Parallel Approval (Timeout Approves)

Three Step Parallel Approval (Timeout
Approves)

Four Step Parallel Approval (Timeout Approves)

Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.

Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.

Requires a single approval for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

User Application: Design Guide

4.2.4

Template

Description

Five Step Parallel Approval (Timeout Approves)

Two Step Parallel Approval (Timeout Denies)

Three Step Parallel Approval (Timeout Denies)

Four Step Parallel Approval (Timeout Denies)

Five Step Parallel Approval (Timeout Denies)

Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports parallel processing.

Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

About the Installed Templates and Flow Strategy

By default, provisioning request definition templates use the Single Flow flow strategy. The templates
assume that the recipient is a user DN. If you change the flow strategy, you must modify the

template. If you change the flow strategy to:

¢ Flow per member: Remove the recipient reference from the request form.

+ Single flow provision members: Remove the recipient from the request form and add logic to
determine the addressee for the approval activity. The templates assume the recipient is a user
DN, so you must determine if the recipient is a user or group DN. You can use the IDVault

isGroup(String dn) method to determine if the DN is a group. If the recipient is a group DN, you
must provide logic for assigning the approval activity addressee.

Creating a Custom Provisioning Request Definition

If no existing provisioning request definition resembles the new work that you want to do, then you
need to build a custom provisioning request definition.You can still save time and effort by re-using

forms from other workflows.

Configuring Provisioning Request Definitions

93

4.2.5

NOTE: The procedure in this section does not use roles. To create a custom roles based provisioning
request definition, see Section 4.2.5, “Creating a Roles Based Provisioning Request Definition,” on
page 94

1

Create the basic information for a new provisioning request definition (see Section 4.2.3,
“Creating a Provisioning Request Definition By Using a Template,” on page 87). In step Step 4
on page 88, do not select Create a provisioning request definition using one of the templates, and do
not select a template. When you are finished, the Overview tab for the new provisioning request
is displayed.

Create the forms for the provisioning request definition. Defining forms before you create the
workflow topology ensures that data bindings can be set up automatically for each activity
when you create activities.

To create the forms, see Section 5.3, “Creating Forms,” on page 114.
Click the Workflow tab and create the workflow topology.

You create the topology of a workflow by creating and linking activities into the desired
workflow pattern, and by assigning rules to the flowpaths between activities. For information
about creating a workflow topology, see Chapter 6, “Creating the Workflow for a Provisioning
Request Definition,” on page 173.

Specify the details (properties, data item mappings, e-mail notification) for each workflow
activity.

To specify workflow activity details, see Chapter 7, “Workflow Activity Reference,” on page 213.
Configure the flowpaths between workflow activities.

To configure flowpaths, see Section 6.4, “Configuring Flow Paths,” on page 182.

Creating a Roles Based Provisioning Request Definition

Designer supplies two Roles Based provisioning request definitions that you should use as a basis for
your custom roles based provisioning request definitions. They are:

*

*

Role Approval
SoD Conflict Approval

To create a copy and customize its contents:

1 From the Provisioning view, open Roles in the Provisioning Request Definitions node.

2 Select one of the roles-based provisioning request definition (depending on which type of

approval you want to create), right-click, then select Create From.

¢ Role Approval: Choose this for role requests.

¢ SoD Conflict Approval: Choose this for SoD conflict approval requests.
Designer displays the Create a New PRD Wizard.

94 User Application: Design Guide

'qu:reate a new PRD

Specify the basic information of the Provisioning Request Definition.

Give the PRD a CM name, a display name, and a description.

Identifier (Ch):]

Display Mame: |

Drescripkion: |

(7 = Back [k = I Eimish I Cancel

3 Fill in the fields as follows:

Field Description

Identifier (CN) The CN (common name) identifier for the provisioning request definition.
The name cannot be longer than 64 characters.

Display Name The display name for the provisioning request definition. This is the name
that is displayed in the Provisioning view.

Description A description of the provisioning request definition.

4 Click Next. Designer displays the following dialog box.

@ Create a new PRD

Specify the details of the Provisioning Request Definition.

Category:

[Imatify participants by E-Mai

Trustee rights: + %

Trustee DN

':':’:' Finish] [Cancel

5 Specify Roles for the category.

Configuring Provisioning Request Definitions 95

96

4.2.6

Select Notify participants by e-mail if you want approvers to be notified by e-mail about pending
approval tasks, and also want initiators to be notified by e-mail of workflow completion. If
Notify participants by e-mail is not selected, users must look at the Roles tab in the User
Application for notifications about tasks.

(Optional) Click the plus (+) icon to add a trustee.

Designer displays a panel that allows you to browse the Identity Vault to select a trustee. You
can select an individual trustee or a group.If you cannot connect to the Identity Vault, you can
type trustee DNs directly in the Trustee DN field.

(Optional) Select the trustee, then click OK.

Designer returns you to the previous panel. Add additional trustees by repeating the previous
step.

Click Finish.

Designer displays the Provisioning Request Definition Details panel on the Overview tab (see
Section 4.2.6, “Modifying Settings of a Provisioning Request Definition,” on page 96).

For more details on defining the associated workflow, see Section 6.6, “Guidelines for Creating
Roles Based Workflows,” on page 192.

Modifying Settings of a Provisioning Request Definition

You use the Overview tab to define the basic information about the provisioning request definition
(for example, the name of the provisioning request definition, the category to which it belongs, and
who can access it).

¢ “Modifying Basic Settings” on page 97

+ “Modifying Properties of Attestation or Roles Based Provisioning Request Definitions” on

page 101

User Application: Design Guide

Modifying Basic Settings

Figure 4-1 Ouverview Tab

\5 testResource - Developer ﬂ *TemplatezParallelipproval _TD &7

Display Hame: TemplatezParalelApproval_TD

Description: Two Step Parallel Approval (Timeout Denies)
Category: Entitlements
Status: Template

Flow Strategy: | Single Flow

Process Type: Hormal

Motify participants by E-Mail

D Restrict View
Generate Comments

[]set Default Completion Skatus to Approved

Trustee rights: * 3¢

Trustee DM

Global Scripts:

i+ K
Tvoe | SCHipk | warkflows Start Activity |
external LIELDAP-15
TR i/ 000 o genereted functor (127 I R T .
>

<

Overview o Workflow | Forms | Signature Declarations

The following table describes each property that you can configure on the Overview tab.

Table 4-3 Overview Properties

Field Description

Identifier (CN) Displays the CN (common name) of the provisioning request definition. The CN cannot
be changed.

Display Name Specifies the display name of the provisioning request definition. This is the name that
is displayed to the user in Designer and ldentity Manager.

Description Specifies the description of the provisioning request definition.

Category Specifies the category to which the provisioning request definition belongs from the list

of Provisioning Categories defined in the directory abstraction layer. The Provisioning
view displays the provisioning request definitions by categories.

Configuring Provisioning Request Definitions

97

98

Field

Description

Status

Flow Strategy

Specifies the status of the provisioning request definition:

Active: Select this option to make the provisioning request definition available for use
in the User Application.

Inactive: Select this option to make the provisioning request definition temporarily
unavailable for use in the User Application. You can use this option when you want
keep the roles of the person who develops the provisioning request definition separate
from the person who activates the provisioning request definition. For example, a
developer could be responsible for marking the provisioning request definition as
Inactive, and an administrator could be responsible for changing the status to Active.

Template: Select this option if you want to use this provisioning request definition as
the basis for other provisioning request definitions. Templates are not available for use
in the User Application.

Retired: Select this option to mark the provisioning request definition as permanently
unavailable for use in the User Application (you can still change the status of the
provisioning request definition at any time). This status provides a way of keeping a
historical record of a provisioning request definition that is no longer in use.

Specifies the flow strategy for the provisioning request definition:
Single Flow: This strategy allows one workflow with one recipient.

Flow per member: This strategy allows the recipient to be a group DN. If you select
this strategy, the User Application starts a workflow instance for each member of the
group, and each workflow can be approved or denied separately. For example,
assume there is a provisioning request definition for the recipient Human Resources.
The Human Resource group has the members ablake and kchester. The User
Application passes the Human Resources DN to the provisioning start. The
provisioning interface starts two workflow instances, one for ablake and one for
kchester.

Single Flow Provision Members: This strategy allows the recipient to be a group
DN. If you select this strategy, the User Application starts a single workflow for the
group. The workflow spawns multiple provisioning steps (one for each member) within
the single workflow. The workflow is approved or denied to the group as a whole, not
for each individual member.

User Application: Design Guide

Field

Description

Process Type

Notify participants by
E-Mail

Restrict View

Generate Comments

Set Default
Completion Status to
Approved

Trustee Rights

Global Scripts

Specifies the type of provisioning request definition. Values are:
Normal: Used for typical workflow definitions that are not related to roles.

Role Approval: Specify this type if the workflow is used for roles approvals. When this
is set, the workflow is available to the Roles Configuration editor and the SoD Editor. It
ensures that the NrfRequest object data item is available in the data item mapping.

Resource Approval: Specify this type if the workflow is used for resource approvals.
When this is set, the workflow is available to the Resource Editor. It ensures that the
NrfResourceRequest object data item is available in the data item mapping.

Attestation: Used by Compliance Administrators and Attestation Officers to submit
requests for attestation workflows.

WARNING

+ If you change the process type from Role Approval or Resource Approval to
Normal, you must also remove any ECMA expressions related to the NrfRequest
object. ECMA expressions related to the NrfRequest object are only valid in role
based workflows and resource based workflows. Including these expressions in
non-roles-related workflows or non-resource-related workflows cause runtime
errors in the User Application.

* The driver must be Roles Based Provisioning 3.7 or higher.

Specifies whether approvers are notified by e-mail about pending approval tasks, and
whether initiators are notified by e-mail of workflow completion. If Notify participants by
email is not selected, then users must look at the Requests and Approvals tab in the
User Application for notifications about tasks.

For information about selecting an e-mail template and customizing e-mail template
parameters, see Section 7.15, “Finish Activity,” on page 251.

Specifies that the list of tasks that can be viewed by the user in My Requests in the
User Application is restricted to tasks initiated by the user. The default behavior (that
is, Restrict View is not selected) is that the user can see any requests that the user
initiated or for which the user is the recipient.

Specifies that the workflow engine should generate comments as the workflow
progresses. These comments can be displayed by clicking the following:

+ View Comment and Flow History in a Request Detail form in the User Application

+ View Comment History in a Task Detail form in the User Application

Specifies that the default completion status of the provisioning request is approved if
selected, or denied if not selected. This feature can be useful for provisioning requests
that do not contain a provisioning activity (an Entitlement or Entity). The value of this
parameter can be overridden by explicitly setting the completion status by using a
Provisioning activity or Workflow Status activity.

Specifies the users and groups that can use the provisioning request definition.

Specifies the global ECMA scripts that provisioning request definition imports while
working with workflows and forms. Inline or extenal scripts can be added by specifying
the type of the script. You can also specify when these scripts should be available to
you. These scripts can be availble on workflows, start activity, or forms.

Configuring Provisioning Request Definitions

99

100

Designer allows you to modify the properties of more than one provisioning request definition at a
time. The provisioning request definitions must be of the same category. You will see a different set of
properties for provisioning request definitions whose categories are Attestations or Roles. See
“Modifying Properties of Attestation or Roles Based Provisioning Request Definitions” on page 101.

1 With the Provisioning view open, select one or more provisioning request definitions, right-
click, then select Properties. A dialog box like the following displays (the properties you can
modify depend on the type of provisioning request definitions you have selected):

B Provisioning Request Definition Property Modification

Blank properties have different values for the selected Definitions, Leaving a property blank keeps the original values in each Definition,

Provisioning Request Definition Details

Cakegory:

Skatus: |Template
Process Type: |N0rmal
Mokify by E-Mail: |true
Restrick View: |False
Generate Comments: |true
Default Skatus: |denied

Trustee rights: R %b

Trustee DM

Global Scripts:
4
Tvoe | Script | ‘Workflows | Start Activity
exkernal LIBLDAP-15
inline i} TODO Auto g...entation, OO0
®

2 Modify the selected provisioning request definitions as desired by changing the value for that
property.
If you have selected multiple provisioning request definitions and one of the properties does not

contain a value, the corresponding field is blank. If you modify that field, then the value you
specify is applied to all of the selected provisioning request definitions.

3 For Trustees, delete, add, or merge the values for the selected provisioning request definitions.

A merge adds all of the trustees in the selected provisioning request definitions to all of the
selected provisioning request definitions.

4 For Global Scripts, delete, add, or modify the values for the selected provisioning request
definitions.

¢ External: The script is incorporated into the provisioning request definition by reference
using the supplied ECMA Script DN.

User Application: Design Guide

¢ Inline: The script is inserted directly into the provisioning request definition in a <script>
block. You add your JavaScript using this ECMAScript Editor. To learn more about using
the editor, click the editor’s help button. For inline scripts, the following is inserted in the

page:
<script>whatever you type</scripts>

5 Click OK to save your changes.

Modifying Properties of Attestation or Roles Based Provisioning Request
Definitions
The provisioning request definitions that support Attestations and Roles cannot be opened in the

Provisioning Request Definition editor so you cannot set their properties by using the Overview tab.
You can set several important properties, such as Trustee Rights, before deploying them.

1 With the Provisioning view open, select one (or more) of the Roles or Attestation provisioning
request definitions, right-click, then select Properties.

k4 Proyisioning Request Definition Property Modification

System Role property modifications are limited ko the setting of trustees only,

Provisioning Request Definition Details

Nokify by Email v
Reestrict Wiew: false v

Trustee rights: &+ W@ {Eb‘

Trustee DM

{63 Ok] [Cancel

2 Fill in the fields as follows:

Field Name Description

Notify by E-Mail Specifies whether approvers are notified by e-mail about pending approval tasks, and
whether initiators are notified by e-mail of workflow completion. If Notify participants
by email is not selected, then users must look at the Requests and Approvals tab in
the User Application for notifications about tasks.

For information about selecting an e-mail template and customizing e-mail template
parameters, see Section 7.15, “Finish Activity,” on page 251.

Configuring Provisioning Request Definitions 101

4.3

43.1

Field Name Description

Restrict View Specifies that the list of tasks that can be viewed by the user in My Requests in the
User Application is restricted to tasks initiated by the user. The default behavior (that
is, Restrict View is not selected) is that the user can see any requests that the user
initiated or for which the user is the recipient.

Trustee Rights Specifies the users and groups that can use the provisioning request definition.

3 For Trustees, delete, add, or merge the values for the selected provisioning request definitions.

A merge adds all of the trustees in the selected provisioning request definitions to all of the
selected provisioning request definitions.

4 For Global Scripts, delete, add, or modify the values for the selected provisioning request
definitions.

5 Click OK to save your changes.

Provisioning and Workflow Example

This section describes a common provisioning and workflow scenario. It is designed to help you
understand how the different objects that you create with the provisioning request editor are used by
the User Application.

Suppose a user needs an account on an IT system. To set up the account, the user initiates a request
through the Identity Manager User Application. This request starts a workflow, which coordinates an
approval process. When the necessary approvals have been granted, the request is fulfilled. The
process includes four basic steps:

¢ Section 4.3.1, “Step 1: Initiating the Request,” on page 102

¢ Section 4.3.2, “Step 2: Approving the Request,” on page 103

¢ Section 4.3.3, “Step 3: Fulfilling the Request,” on page 106

¢ Section 4.3.4, “Step 4: Completing the Workflow,” on page 106

Step 1. Initiating the Request

In the Identity Manager User Application, the user browses a list of resources by category and selects
one to provision. In the Identity Vault, the selected provisioned resource is associated with a
provisioning request definition. The provisioning request definition is the most prominent object in a
provisioning system. It binds a provisioned resource to a workflow and acts as the means by which
the workflow process is exposed to the end user. The provisioning request definition provides all the
information required to display the initial request form to the user and to start the flow that follows
the initial request.

In this example, the user selects the New Account resource. When the user initiates the request, the
Web application retrieves the initial request form and the description of the associated initial request
data from the Provisioning System, which gets these objects from the provisioning request definition.

When a provisioning request is initiated, the Provisioning System tracks the initiator and the
recipient. The initiator is the person who made the request. The recipient is the person for whom the
request was made. In some situations, the initiator and the recipient can be the same individual.

Each provisioning request has an operation associated with it. The operation specifies whether the
user wants to grant or revoke the resource.

102 User Application: Design Guide

4.3.2 Step 2: Approving the Request

After the user has initiated the request, the Provisioning System starts the workflow process, which

coordinates the approvals. In this example, two levels of approvals are required, one from the user’s
manager and a second from the manager’s supervisor. If approval is denied by any user in a
workflow, the flow terminates and the request is denied.

Workflows can process approvals sequentially or in parallel. In a sequential workflow, as shown in
the following figure, each approval task must be processed before the next approval task begins.

Figure 4-2 Sequential Workflow with Two Approvals

e start

famward
(3 First approval
approved denied
,ﬁ Log For appraval _1 activity
f0|rwald
& Second approval

F
rﬂ Log For approval_2 ackivity ,ﬂ Log For all denied activities

afproved denied

forward forward

:J Entitlement Provisioning Ackivity

1-*-\

farward

F& Finish

In a parallel workflow, as shown in the following figure, users can work on the approval tasks

simultaneously.

Configuring Provisioning Request Definitions

103

Figure 4-3 Parallel Workflow with Two Approvals

T start
folrward
Branch
fonward fonward

’3 First approval ’3 Second approval

approved denied appraved denied

,ﬂ Log For approval_A ackivity ,ﬂ Log for approval_B activity

fonward fonward

Merge

fonward
3> Approval Condition

b false

/

,ﬂ Log all denied activities :] Entitlarnent Prowisioning Activity

T

fonward fonward

¥4 Finish

NOTE: The display labels (First approval, Second approval, and so on) can easily be changed to suit
your application requirements. For parallel flows, you might want to specify labels that do not imply
sequential processing. For example, you might want to assign labels such as One of Three Parallel
Approvals, Two of Three Parallel Approvals, and so on.

The workflow definition is made up of the components shown in the following table:

Table 4-4 Workflow Definition Components

Process Component Description

Activities An activity is an object that represents a task. An activity can present
information to the user and respond to user interactions. It can also perform
background functions that are not visible to the user.

In a workflow diagram, the activities are represented by boxes.

In the Identity Manager User Application, the activities that handle the
approval process are referred to as tasks. An end user can see the list of
tasks in his or her queue by clicking My Tasks in the My Work group of
actions. To see which workflow activities have been processed for a
particular task, the user can select the task and click the View Comment
History button on the Task Detail form.

To see which workflow activities have been processed for a particular
provisioning request, the user can click My Requests, select the request,
and click the View Comment and Flow History button on the Request Detail
form.

For more information on the My Tasks and My Requests actions, see the
Identity Manager 3.6.1 User Application: User Guide.

104 User Application: Design Guide

Process Component Description

Flow paths Flow paths tie the activities in a workflow together. A flow path represents a
path to be followed between two activities.

An activity can have multiple incoming flow paths and multiple outgoing
flow paths. When an activity has more than one outgoing flow path, the flow
path selected often depends on the outcome of the activity. The outcome is
the end result of processing performed by the activity. For example, an
approval activity can have an outcome of approved or denied, depending
on the action taken by the user.

In a workflow diagram, the flow paths are represented by arrows.

Start activity: The workflow process begins with the execution of the Start activity. This activity
displays the initial request form to the user. After the user has provided the initial request data, it
initializes a work document using this data. The Start activity also binds several system values, such
as the initiator and recipient, so that these can be used in script expressions.

Approval activities: After the Start activity finishes, the Workflow System forwards processing to the
first Approval activity in the flow. The Approval activity sends an e-mail to the approver, notifying
this user that his or her attention is needed. When the user claims the task, the Approval activity
displays an approval form, which gives the user the ability to act on the request. In the workflow
examples shown in Section 4.3.2, “Step 2: Approving the Request,” on page 103, “First approval” and
“Second approval” are examples of Approval activities. The display labels for Approval activities can
be localized to satisfy international requirements.

An Approval activity has five possible outcomes, each represented by a different flow path exiting
the activity:

¢ Approved

+ Denied
Refused

¢ Error

*

¢ Timeout

NOTE: The Error and Timeout outcomes can occur without any action being taken by the user.

If the user approves the request, the workflow follows the approved flow path to the next activity in
the flow. If no further approvals are needed, the resource can be provisioned. If the user denies the
request, the workflow follows the denied flow path to the next activity in the flow. Alternatively, the
user can reassign the task (if he or she is an Organizational Manager or User Application
Administrator), which puts the task in another user’s queue.

The user to whom an Approval activity has been assigned is referred to as the addressee. The
addressee for an activity can be notified of the assigned task via e-mail. To perform the work
associated with the activity, the addressee can click the URL in the e-mail, find the task in the work
list (queue), and claim the task.

The addressee must respond to an Approval activity within a specified amount of time; otherwise,
the activity times out. Typically the timeout interval is expressed in hours or days to allow the user
sufficient time to respond.

When an activity times out, the workflow process might try to complete the activity again,
depending on the escalation count specified for the activity. In some situations, the workflow process
might be configured to escalate an activity that has timed out. In this case, the activity is reassigned to

Configuring Provisioning Request Definitions 105

4.3.3

4.3.4

anew addressee (the user’s manager, for example) to give this user an opportunity to finish the work
of the activity. If the last retry times out, the activity might be marked as approved or denied,
depending on how the workflow was configured.

Log activity: The Log activity is a system activity that writes messages to a log. To log information
about the state of a workflow process, the Workflow System interacts with Novell Audit. During the
course of its processing, a workflow might log information about various events that have occurred.
Users can use the Novell Audit reporting tools to look at logging data.

Branch and Merge activities: In a workflow that supports parallel processing, the Branch activity
allows two users to act on different areas of the work item in parallel. After the users have completed
their work, the Merge activity synchronizes the incoming branches in the flow.

Condition activity: During the course of execution, a workflow process might perform a test and
check the outcome to see what to do next. The Condition activity provides this capability. Condition
activities use a scripting expression to define the condition to evaluate. In the workflow examples
shown in Section 4.3.2, “Step 2: Approving the Request,” on page 103, “Approval Condition” is an
example of a Condition activity.

The Condition activity supports three possible outcomes or exit paths:

¢ True
+ False

¢ Error

Step 3: Fulfilling the Request

When a provisioning request has been approved, the Workflow System can begin the provisioning
step. At this point, control passes back to the Provisioning System.

To fulfill the provisioning request, the Provisioning System can execute an Identity Manager
entitlement or directly manipulate an Identity Vault object and its attributes. These actions are
performed by either the Entitlement activity or the Entity activity:

¢ Entitlement activity: Fulfills the provisioning request by granting or revoking an entitlement.
This activity is not usually executed unless all of the necessary approvals are given.

¢ Entity activity: Fulfills the provisioning request by directly manipulating an eDirectory object
and its attributes. This activity is not normally executed unless all of the necessary approvals are
given.

Step 4. Completing the Workflow

When all other activities have terminated, the workflow executes the Finish activity, which is the final
activity in a workflow. When all the activities in a flow have been completed and the final result of
the flow is available, the Finish activity executes. The Finish activity sends a final e-mail notification
to inform participants of the completion of the workflow.

106 User Application: Design Guide

5.1

Creating Forms for a Provisioning
Request Definition

This section provides details on creating and customizing the User Application’s request and
approval forms. Topics include:

¢ Section 5.1, “About Forms,” on page 107

¢ Section 5.2, “About the Forms Tab,” on page 110

¢ Section 5.3, “Creating Forms,” on page 114

¢ Section 5.4, “Action Reference,” on page 123

¢ Section 5.5, “Form Control Reference,” on page 125

¢ Section 5.6, “Working with Distinguished Names,” on page 163

¢ Section 5.7, “Using DAL Queries in Forms,” on page 165

¢ Section 5.8, “Printing Forms,” on page 170

¢ Section 5.9, “Providing Direct Access to a Form,” on page 171

About Forms

Forms allow the user to request a resource, approve a resource request, and work on a task. They are
available when the user chooses any of the actions in the My Work category of the User Application’s
Requests and Approvals tab. Forms are also available directly from a URL. For details on this technique,
see Section 5.9, “Providing Direct Access to a Form,” on page 171.

Figure 5-1 is an example of a resource request form. At the top of the form is a read-only area that
displays the details of the request (or approval for approval forms). In the Form Detail section at the
bottom, the user provides input to the resource request (or approval) and takes some action on it.

Creating Forms for a Provisioning Request Definition 107

108

Figure 5-1 Sample Form

dentity Manager fay, June 30, 2006 N
Welc: Alli:
bl ol ol ldentity Self-Serice Requests & dpprovals Logout Help
Mo W ork F . §
iy Tasks .Requesl Resource
* Request Resource Step 3 of 31 Confirm and complete resource request,

B ;
R alaets indicates required.

Resource: Title Change Request

g

My Settings
Enter Proxy Mode Recipient: #llizon Blake

Edit &vailabilit
s Resource Category: Accounts

Ny Provey Assignments
Description: Allows a user to request a title change, Requires manager approval.

fivy Delegate Assignments .
Form Detail

One Step Approval (Timeout Approves)

Press 'Submit' to request the entitlement.

Recipient: Allison Blake

Current Title: |"' itle |

Requested Mew Title: | |

Reason for request: *| |

You use the Forms tab of the provisioning request definition editor to define the appearance and
behavior of the Form Detail section of the User Application’s requests and approvals forms.

About Request Forms

You can create one request form for a provisioning request definition. The request form is associated
with the workflow’s Start Activity.

Figure 5-2 Sample Resource Request Form

Fricay, Ju

¥ s N

‘Welc Alli
Slcoiea ton Identity Self-Service Requests & Approvals Logout Help

Mo W ok F . §
iy Tasks | Request Resource
+ Request Resource Step 3 of 3: Confirm and complete resource request.

fivy Requests - indicates required.

Ay Settings 3 Resource: Title Change Request

Enter Proxy Mode Recipient: Allizon Blake

Edit fwailabilit
o Resource Category: Accounts

fivy Proxy Assignments
Description: Allows 3 user to request a title change. Requires manager approval.

fivy Delegate Assignments .
Faorm Detail

One Step Approval (Timeout Approves)

Press 'Submit’ to request the entitlement.

Recipient: Allizon Blake

Requested Mew Titls: | |

Reason for request: *| |

Current Title: [z

User Application: Design Guide

5.1.1

About Approval Forms

You can define multiple approval forms for a provisioning request definition, but only one form per
Approval Activity. You can specify the approval form to associate with an approval activity in the
properties for the activity. You can create an approval form via the Forms tab or from the approval
activities property sheet.

Figure 5-3 Sample Resource Approval Form

Ny Requests *-indicates required.

Moy Settings F

o —— Resource: Title Change Request Recipient: dllison Blake

Edit dvailability Requested Byt Allison Blake Task: Single Approval

Moy Provey Assignments In Queue since: 06 /30/2006 12:32:18 PAl Timeout on: D3717/2026 12:32:18 Pl

Nivy Delegate Assignments . X . X
Aszigned To ﬁ fharzo Mhacksnzie Claimed By

»

vy Team's Work
]
Team Tasks
Form Detail
Request Team Resources
Team Requests Single Approval

Please select the appropriate button to approve or reject the request.

»

Moy Team's Settings Allizon

Requested by: &llison Blake Recipient: Blak
ake

Team Proxy Assignments

Team Delegate fssignments Request Date: 063072006

Team Auailability Reason:

Current Employes Title:

Requested Titls Change:

Comment:

Wiew Comment History

About Form Control Data Binding

All of the fields you define for a form are automatically available for data binding in the Data Item
Mapping property sheet. Two bindings, or mappings, are possible for each form field: a pre-activity
mapping to initialize or pre-load a form field with data, and a post-activity mapping to move
modified form data into the workflow document called flowdata. These data-item bindings, and any
script expressions they use, execute on the application server as preparation of the form before it is
sent to the client browser for display to the user. Common uses for pre-activity data-item mappings
and their expressions that operate against the flow-data document are for moving previous approval
data into the current approval or for setting default values for fields. For more information on data
item mappings, see Section 6.2.2, “Defining the Data Item Mappings,” on page 180.

Some form controls allow you to initialize their values from data sources other than workflow data.
For example, some list controls allow you to specify the initial value as a property of the control. For
more information about defining initial values, see Section 5.5, “Form Control Reference,” on

page 125.

Creating Forms for a Provisioning Request Definition 109

5.1.2 About Forms and Events

Designer allows you to define action scripts that execute on the form control’s onLoad, onChange, or
custom events. Each form control supports an Events property where you supply the script for the
event. The scripts you define have an event-level scope and execute in the browser of the user’s client
machine.

The Events property provides access to Designer’s Event Action Expression Builder, which allows
you to create script expressions that refer to and modify form and data. Because form control event
scripts execute in the client browser, they do not have access to the flow-data document. They do
have access to directory abstraction layer queries.

Figure 5-4 Event Action Expression Builder

T4 Event Action Expression Builder

ECMASCripk Yariables Functions/Methods ECMASCript Operators
@ {Form Methods "t ECMAScript © math
o Field Methods (® Relational
o Event Methods @ Logical
o Farm Figlds ® string
o Lisks
o Queries
o Scripk Funckions
o Container Methods

[QK] [Cancel] ’CheckS';.-'ntax] [Identit‘f Yault...

The Event Action Expression Builder also provides access to the Form Action methods (shown in the
left column). This column provides access to the form action script API along with directory
abstraction layer query objects. The form action script APl is written in JavaScript so that you can add
conditions, loops, and user-defined functions. For more information about the Form Action API, see
Section 9.3.1, “Form Action Script Methods,” on page 326. To import or include a JavaScript library,
you use the Scripts tab of the Form Controls area. For more information, see Section 5.3.4, “Using the
Scripts Tab,” on page 121.

5.2 About the Forms Tab

You use the Forms tab of the provisioning request definition editor to define the appearance and
behavior of your request and approval forms.

110 User Application: Design Guide

5.2.1

Figure 5-5 Forms Tab

prs
@ Designer - CallingCard - Designer (=053
File Edit Yiew Project Tools Live PRD Window Help
B B Bive- [|) Desigrer |
8 CalingCad X =l
Form Selection Form Controls
P 4 * X & ¥
Form 1D Form Field Mame Data Type Contral Type Linebreaks
CardRequest title string Title 1
OfficeareaCode string Text 1
titlez string THe i3
Candidates dn PicklList E
title3 string Tz L
< I
Request ~ Approval | | Fiekds " Actions | Everks| Seripts |
Overview | WorkFlow | Forms -~ Signature Declarations |

The Forms tab contains a Form Selection section and a Form Controls section.

¢ Section 5.2.1, “About Form Selection,” on page 111
¢ Section 5.2.2, “About Form Controls,” on page 112

About Form Selection

Use the Form Selection section to create, delete, or preview a form, or to create a form template. Click
the Request or the Approval tab depending on the type of form you want to manipulate.

Figure 5-6 Form Selection

Form Selection

+ X [H =&

Farm ID
requeskt_Farm

Request - Approval

Creating Forms for a Provisioning Request Definition 111

The Form Selection toolbar contains these options:

Table 5-1 Form Selection Toolbar Options

Button Description

Click to launch the New Form Wizard.

%
*® Click to delete an existing form.
Click to save the form as a template. You can then base other forms on this template. Forms are
uel saved as XML documents in the project directory.
Templates are available only within the project in which you create them.
i, Click to preview the form.

If you create a provisioning request definition from an existing template, and the template has forms
associated with it, the Form Controls section displays them. You can modify the form instance by
using the Form Controls section.

5.2.2 About Form Controls

Use the Form Controls section to define or modify the form’s appearance and behavior.

¢ Fields tab: Lets you add, delete, and change the data type, control type, and layout order of the
controls on the form.

Form Controls

+ X ¢ ¥

Form Field Mame Data Type Contral Type Linebreaks
title string Title
OfficefreaCode string Text
title2 skring Title
Candidates dn PickList
title3 skring Title:

Fields -~ Actions Ewents Scripks

For information about adding controls, see Section 5.3, “Creating Forms,” on page 114. For more
information about individual form controls, see Section 5.5, “Form Control Reference,” on
page 125.

¢ Actions tab: Lets you define the actions the user can perform on the form. Use the Actions toolbar
to add, delete, and change the actions and layout order of the actions on the form.

112 User Application: Design Guide

Form Controls

g ¥ 4 § Acionslocation: |Botom -

Action Command Linebreaks
isubmitaction 1}
Cancelaction a

Figlds | Arkinms 7 Srvinks

For more information about the supported actions, see Section 5.4, “Action Reference,” on
page 123.

Scripts tab: Use the Scripts tab to define calls to external JavaScript files or to write JavaScript
scripts that are stored as part of the form definition. When you have created a script by using
this tab, it becomes available in the Action Script Expression Builder and you can call it from any
form control event. These scripts have a page-scope rather than an event-scope. For more
information about using the script tab, see Section 5.3.4, “Using the Scripts Tab,” on page 121.

Creating Forms for a Provisioning Request Definition 113

Form Controls
LIS 4

1d Tvpe URL{Tnline Script
Scripk inline

< >

Fields | Actions | Events | Scripts

+ FEvents tab

Form Controls

Ewent Marne Action Expression
onload

< >

Fields | Actions |Ewents -~ Scripts

5.3 Creating Forms

This section describes how to create new forms and add controls to them. It includes these topics:

¢ Section 5.3.1, “Creating New Forms,” on page 114

¢ Section 5.3.2, “Adding Form Controls and Actions,” on page 115

*

Section 5.3.3, “Defining Events,” on page 117

*

Section 5.3.4, “Using the Scripts Tab,” on page 121

5.3.1 Creating New Forms

1 With the provisioning request definition editor open, click the Forms tab.

2 In the Form Selection section of the page, click Add to access the New Form Wizard.

114 User Application: Design Guide

E"h New Form

Form

Form name musk be specified

Farm name

[]Create a Form using one of the templates

Form kemplates

approval_form
MoTermplateFarm

Zancel

3 Fill in the fields as follows:

Field Description

Form Name Type the name of the form as you want it to appear
in Designer.

Create a form using one of the templates If you want to base the new form on an existing

template, select this option and select one of the
forms from the Form templates list.

4 Click OK to save the form or click Cancel to exit without saving.

5.3.2 Adding Form Controls and Actions

Use the Form Controls section to define the content and layout of the form.

Creating Forms for a Provisioning Request Definition 115

116

NOTE: The Designer places form controls on the form from top to bottom and left to right. Use
Linebreaks to force spacing between controls

To add a control to a form:

1 Click Add. Designer adds a control named Field to the bottom line of the form.

If you add more than one control of the same name to the form, Designer adds a unique number
to the end of the control name.

2 Define the following properties for the control:

Field Description

Form Field Name A unique name for the field. The name is used in several different locations:
+ The Workflow tab’s Data Item Mapping dialog box.
+ The ECMA expression builder dialog box.

+ An internal XML reference in the provisioning request definition file.

Consider the naming conventions you want to use for form fields, in order to avoid
confusion in the Data Item Mapping and ECMA Expression Builder dialog boxes.
For example, the request and approval forms might both contain a field called
Reason. To make it clear which field you are working with while performing data
mappings, you can preface the field name with the name of the form where it is
used. You might name one reason field Req_Reason and the other App_Reason.

Data Type The field’s data type. The data type determines the valid control types and the type
of validation performed.

Control Type The type of visual control used to display or edit the data. The selection list is
filtered based on the selected data type.

Linebreaks Defines the number of lines you want inserted after the control.

Form field controls do not have Data Item Mappings or E-mail notifications property sheets.

3 For each control, specify its properties in the Properties tab (available via Window > Show View >
Properties). For more information, see Section 5.5, “Form Control Reference,” on page 125.

4 Click the Actions tab to define what the user can do with the form. For example, you can add
actions that allow the user to submit a form or cancel it.

A request form must have, at a minimum, a SubmitAction. Without a SubmitAction, the request
does not process. Every form should have a CancelAction. Each approval form must have at
least one action defined.

5 In the Actions page, click Add to add a new Action. Fill in the fields as follows:

User Application: Design Guide

Field Description

Actions Location Choose the location for the action buttons you add
to the form.

Bottom. Places the action buttons on the bottom of
the form. (Default.)

Top: Places the action buttons on the top of the
form.

Top and Bottom: Places the buttons at both the top
and bottom of the form.

Action Command Choose an action for the button. For more
information, see Section 5.4, “Action Reference,” on
page 123.

Linebreaks Defines the number of lines you want inserted after

the action button.

6 Save the form.

5.3.3 Defining Events

The scripts you attach to an event handler are scoped to the appropriate control, not the browser
window.

¢ “Defining an Event” on page 117

¢ “Creating Custom Events” on page 118

Defining an Event

1 Select the form control where you want to define an event and open the property sheet.

2 Navigate to the Event property and add an event. Designer adds a row with the default event
name onEvent.

Creating Forms for a Provisioning Request Definition 117

Specify event name and ackion expression values faor field: recipient
#+ K
Event Marme Action Expression
onEvent
44 >
(?) Ok] [Cancel

3 Click the Event Name field and select the onchange or onload event. For more information on
adding other events, see “Creating Custom Events” on page 118.

4 Click the Action Expression field. You can type the script directly in this field, or click the button
to access the Event Action Expression Builder.

5 Define the action script, check the syntax, then click OK. Repeat this procedure to add more
events to this control.

For more information on the onChange and onLoad events, see the events property description in
Section 5.5.4, “General Form Control Properties,” on page 128.

Creating Custom Events

You can create your own events to notify other controls of conditions or user actions on the form. You
create the event using the Events property. You can give the event any name. You must explicitly fire
the event by using the fireEvent() method and passing in the name of the event.

You might want to perform a query on the Groups container that returns only the groups that match
the values entered by a user. In the example shown in Figure 5-7, the user types a value in the name
field, When the user tabs to the next field, the contents of the drop-down list are populated from a
query launched by the namechange custom event.

118 User Application: Design Guide

Figure 5-7 User Application Runtime Custom Event Sample

©J Resource Request - Mozilla Firefox

Eile Edit Wew Go Bookmarks Tools Help

@ - r_i/ - % [| @ | N hitpifflocalhost:B080/10M/reatenFResourceR equest.da v ® e G

D Customize Links |_| Free Hotmail Ll wWindows Marketplace LI Windows Media Ll Windows L[Yahoo! Bookmarks

Novelle Identity Manager

Welcome Allison

Identity Self-Service

Requests & Approvals

Friday, December 1, 2006

Logout Help

M W ark, 2
e Request Resource
+ Request Resource Step 3 of 30 Confirm and complete resource request,
My Reqiests - indicates required.
Ay Settings P Resource: dema
Enter Proxy Mode Recipient: Allison Blake
Edit Awailabilit:
s Resource Search Criteria: Entitlements
Moy Proxy Assignments
Descrption: demo
My Delegate Assignments)
Form Detail
demo
Recipient: [Blal |
name; |i |gr0ups: Submit Cancel

_' Im_prov;[;usto_mers erviceT aslgGroup

Done

The Name field defines an Events property that fires the namechange event on an onchange event. The
definition is shown in Figure 5-8.

Creating Forms for a Provisioning Request Definition 119

Figure 5-8 Sample field. FireEvent() Method

¥4 Field Events %]

Specify event name and ackion expression values for field: name
CUID ¢
Ewent Mame Action Expression
onchange field. fireEvent("namechange")
<5 %
':':’:' [K] [Zancel

The namechange event contains an expression that executes a query called groups.

120 User Application: Design Guide

534

Figure 5-9 Custom Event Definition Example

4 Field Events

Specify event name and action expression values for field: groups

a3
i Event Mame Action Expression
| namechange IDWault. globalGuery"groups”, "groups”, {name:form.getialuel"name"i}); |
! |
| |
5 |
! |
! |
| |
5 |
| |
! |
| |
5 |
! |
! |
| |
| |
' |

< ¥ |

@ [Ok] [Cancel]

For more information on using queries, see Section 5.7, “Using DAL Queries in Forms,” on page 165.

Using the Scripts Tab

Use the Scripts tab to define a script that has a page-level scope. A page-level scope means that the
script loads at page load time and is available through the life of the form. You can supply the script
in one of the ways described in Table 5-2.

Table 5-2 Script Types

Script Type Description

external The script is incorporated into the page by reference, using the supplied URL. The script block
will look something like this: <script type="test/javascript" scr="http://
gsome.server/custom.js”></script>. The custom. js file is imported at form load.

inline The script is inserted directly into the form in a <script> block.

Because these scripts are loaded at page load, the form controls and any of their associated event
handler scripts are not in scope when the page is loaded. Avoid coding dependencies between page-
level scripts and event-level scripts; however, you can call page-level scripts from within an event-
level script.

Creating Forms for a Provisioning Request Definition 121

122

To add a link to an external JavaScript file:

1 With the Scripts tab open, click Add
2 Complete the fields as follows:

Field Description

ID Specify a meaningful name. This value displays in the Event
Action Expression Builder.

Type Select external.

URL/Inline Script

Click within the field so that the ECMAScript Editor button
displays to the right, then click the button to display the editor
as a dialog box.

Type the URL to the . js file in the Enter the URL String field,
then click Retrieve. The script is fetched and displays in read-
only mode. You can inspect the script, but you cannot change
it.

B Cuberip | s - B

I warig Seripts’

st e

When you add an external link to a form, only the link is
stored and deployed, for example:

<script src="someURL.com/script.js"/>

TIP: Designer cannot validate this external reference. You
must ensure that it is accessible at runtime.

To create an inline script:

1 With the Scripts tab open, click Add ¥ .
2 Complete the fields as follows:

Field Description

ID Specify a meaningful name. This value displays in the Event
Action Expression Builder.

Type Select inline.

User Application: Design Guide

5.4

Field

Description

URL/Inline Script

Click within the field so that the ECMAScript Editor button
displays to the right, then click the button to display the editor
as a dialog box.

B ke | it - B

s warig et

st e x

r—

You add your JavaScript by using this ECMAScript Editor. To
learn more about using the editor, click the editor’s help
button.

For inline scripts, the following is inserted in the page:

<scriptswhatever you type</scripts

Both inline and external scripts are executed at page load but before the page loads the controls. In
addition, they are also executed when specifically called on a form control event.

Action Reference

This section describes the actions you can add to forms. The actions are implemented as buttons. You
can specify a custom display label for each button.

Table 5-3 Valid Actions

Description

Action Name Form Type

ApprovalAction Approval

CancelAction Request and
Approval

Causes the Approval activity to complete and follow the approved
flow path to the next activity. When you use this action, you must set
the Hide If Read Only form property to True; otherwise the form fails
validation when you submit it.

TIP: An ApprovalAction requires the Approval Activity associated
with the form to have an approved flow path exiting the activity.

For request forms, Cancel returns the user to the Request Resource
Search Criteria form. For approval forms, Cancel returns the user to
the My Tasks list.

Creating Forms for a Provisioning Request Definition 123

Action Name Form Type

Description

CommentAction Approval forms
DenyAction Approval
RefusalAction Approval
SubmitAction Request and
Approval

Generates a button with the default label set to View Comment
History. The button launches a Comments dialog box displaying the
processing history for each activity from the workflow start to the
present time. Data displayed includes Date, Activity Name, User,
and Comment as shown in the following example.

3 Comments - Microsoft Internet Explorer E@g|

Task Comments

Date Activity User Comments
06/01/2006 09:29:48 Ay Start System Workflow Started
06/01/2006 09:29:48 Ay Start System Workflow Forwarded
06/01/2006 09:30:18 Ady Single Approval System Workflow Claimed
06/01/2006 09:30:30 Ad Single Approval Jack fiiller wes please

1-dofd

Comments are updated and persisted to the workflow database
through the UpdateAction.

NOTE: Any forms containing this action must also contain a field
named apwaComment.

Causes the Approval activity to complete and follow the denied flow
path. When you use this action, you must set the Hide If Read Only
form property to True; otherwise, the form fails validation when you

submit it.

TIP: A DenyAction requires the Approval Activity associated with the
form to have a deny flow path exiting the activity.

Causes the Approval activity to complete and follow the refused flow
path. When you use this action, you must set the Hide If Read Only
form property to True; otherwise, the form fails validation on submit.

TIP: A RefusalAction requires the Approval Activity associated with
the form to have a refusal flow path exiting the activity.

Initiates the workflow and causes the workflow to execute the
forward flow type. The workflow passes any user-entered data to the
next activity in the workflow.

124 User Application: Design Guide

5.5

Action Name

Form Type

Description

UpdateAction

Approval

Causes the Approval activity to write a user comment to the
workflow database. There is typically a text area associated with an
apwaComment form field. If the user enters text in this field and
clicks this action, it is persisted to the afcomment table in the
workflow database. The comment can be retrieved and viewed
through the CommentAction (described above). The following
example shows a text area and an update action button (labeled
UpdateAction):

Single Approval

Please select the appropriate button to approve or reject the request

Requested by: Allison Blake Recipient: Allison
Blake

secuest D2t 06 /05,/2006

Reazon:

Comment:

Wiew Comment History I[Updateaction

NOTE: The form must contain a field named apwaComment;
otherwise, the provisioning request definition fails validation.

For more information about apwaComment, see Section 5.5.3,
“Controls for User-Entered Comments,” on page 127.

The following table describes the properties you can set on actions.

Table 5-4 Action Properties

Property Name

Description

Display Label
Visible

Block On Error

Hide If Read Only

Specifies the text to display on the button.
If True, specifies whether the action is visible at runtime.

If True, specifies that the action is blocked if any of the form’s controls fail validation.
This is recommended for the SubmitAction. You should not set it to False if the action
button submits data; otherwise, invalid data can be submitted, causing unexpected
results.

Designer does not allow you to set this property to False for the ApprovalAction,
DenyAction, or RefusalAction.

If True, specifies that the action is hidden when the form is read-only. A form can be
read-only when the user opens a task without claiming it first. If your form contains the
ApprovalAction, DenyAction, or RefusalAction, this property must be set to True. If it is
set to False, you encounter a validation error and cannot deploy the form.

Form Control Reference

This section describes the controls you can add to a form.

Creating Forms for a Provisioning Request Definition 125

126

Table 5-5 Control Types and Supported Data Types

Data Types

Control Type Resource
Boolean Date Decimal DN Integer String Time

Request

CheckBoxPickList X X X X X

DatePicker X

DateTimePicker X

DNContainer X

DNDisplay X

DNLookup X

DNMaker X

DNQuery X

Global List X

Html X

Localized Label X

MVCheckbox X X X X

MVEditor X X X X

Password X

PickList X X X X

Static List X X X X

Text X X X X

Text Area X

Title X

TrueFalseCheckBox X

TrueFalseRadioButtons x

TrueFalseSelectBox X

¢ Section 5.5.1, “Data Type for Roles Based Request Forms,” on page 127

¢ Section 5.5.2, “Data Type for Resource Based Request Forms,” on page 127

¢ Section 5.5.3, “Controls for User-Entered Comments,” on page 127

¢ Section 5.5.4, “General Form Control Properties,” on page 128

¢ Section 5.5.5, “CheckBoxPickList,” on page 128
¢ Section 5.5.6, “DatePicker,” on page 130

¢ Section 5.5.7, “DateTimePicker,” on page 131

¢ Section 5.5.8, “DNContainer,” on page 132

¢ Section 5.5.9, “DNDisplay,” on page 134

User Application: Design Guide

5.5.1

5.5.2

5.5.3

¢ Section 5.5.10, “DNLookup,” on page 136

¢ Section 5.5.11, “DNMaker,” on page 141

¢ Section 5.5.12, “DNQuery,” on page 143

¢ Section 5.5.13, “Global List,” on page 144

¢ Section 5.5.14, “Localized Label,” on page 145

¢ Section 5.5.15, “Html,” on page 147

¢ Section 5.5.16, “MVCheckbox,” on page 147

¢ Section 5.5.17, “MVEditor,” on page 149

¢ Section 5.5.18, “Password,” on page 154

¢ Section 5.5.19, “PickList,” on page 154

¢ Section 5.5.20, “Static List,” on page 157

¢ Section 5.5.21, “Text,” on page 158

¢ Section 5.5.22, “Text Area,” on page 159

¢ Section 5.5.23, “Title,” on page 160

¢ Section 5.5.24, “TrueFalseCheckBox,” on page 161
¢ Section 5.5.25, “TrueFalseRadioButtons,” on page 162
¢ Section 5.5.26, “TrueFalseSelectBox,” on page 162

Data Type for Roles Based Request Forms

Designer supports a specialized form control called nrfRequestDN of data type Role Request. The
control type is Text. It is defined by default when you create a copy of the standard roles based
provisioning request definitions. It represents the Role Request object.

Data Type for Resource Based Request Forms

Designer supports a specialized form control called nrfResourceRequestDN of data type Resource
Request. The control type is Text. It is defined by default when you create a copy of the standard
resource based provisioning request definitions. It represents the Resource Request object. You can
add this control only once. nrfResourceRequestDN is the field name and it cannot be changed in the
GUL

Controls for User-Entered Comments

Designer supports a special internal control you can add to a form to allow users to add comments to
a workflow or to view previously entered comments. Comments are required on forms that use
CommentAction or UpdateAction. The comments are not part of the workflow data so you cannot
access them via the flowdata object. The comments are special data items stored in the afcomment
table of the workflow database. The comments are persisted as long as the row for the requestid in
the afprocess table exists.

To create a form that supports user comments:

1 Add a control to your form. Select Comment as the data type. The Form Field name is
automatically defined as apwaComment and the Control Type is TextArea. A single form can
contain only one comment field.

Creating Forms for a Provisioning Request Definition 127

2 Add a CommentAction or UpdateAction to the form.

For more information, see Section 5.4, “Action Reference,” on page 123.

5.5.4 General Form Control Properties

The properties in the following table are available for each control.

Table 5-6 General Properties

Property Name Description

Display label Specifies the label to display to identify the control. It is localizable.

Editable Specifies if the control is editable (True). Otherwise, it displays as read-only.
Events Specifies an event for the control. Possible values include the following:

+ OnChange: Fires when one of the following occurs:
+ Immediately after onload.
+ Another script changes the value of the control.

+ The user commits a change to the data value associated with the
control. This occurs when the user has tabbed out of the control or
otherwise caused it to lose focus. For example, this can happen when
the user tabs away from the control (for text entry based controls like
Text, TextArea, DatePicker), or when the user selects a different entry
choice for choice-based controls like PickList, MVCheckbox, and
StaticList).

+ onlLoad: The onload event for a control fires just once, when the control is
loaded into the page for the first time. It can be used to set initial values or
preselect entries; however, there is no guarantee that controls load in a
particular order.

Multivalued This is a read-only property. It specifies if the control supports multivalue
attributes (True).

Required Specifies whether the control requires user input (True).

Tooltip Specifies the text for the control’s tooltip. It is localizable.

Visible Specifies whether the control is displayed in the user interface (True).
Sort Order

List-based controls sort content alphabetically. For DN-based lists, the sort order is alphabetical based
on the Display expression property result. For all other types, the sort order is based on the display
label.

5,55 CheckBoxPickList

Use the CheckBoxPickList control to allow users to view and choose one or more values from a
dynamically generated list of choices displayed as check boxes.

When the associated data type is a DN retrieved from the Identity Vault, you can display the check
box label as the fully qualified DN or use the Display expression property to specify the attributes to
display instead.

128 User Application: Design Guide

Figure 5-10 Sample CheckBoxPickList Control

CheckBoxPickList: [azia

El Europe

Table 5-7 CheckboxPickList Properties

El Marth smerica |:| South America

Property Name

Description

Entity Key for DN expression lookup

Display expression

Allow multiple selections

Field cell style

Field CSS class name(s)

Label cell style

When you populate this control with a DN retrieved from the Identity
Vault and you want that value to display in a user-friendly fashion,
you should choose an entity from the drop-down list and specify a
set of attributes in the Display expression property.

Leave this value blank if you want to display the full DN or CN value
retrieved from the Identity Vault.

The entity you choose must have the directory abstraction layer
View property set to True and be the entity whose DN you are
retrieving from the Identity Vault.

Required when you specify an Entity Key for DN expression
Lookup. Choose the attributes to display as the check box labels.
For example, to display the user entity’s first and last name
attributes, construct an expression like this: FirstName LastName.

The attribute’s directory abstraction layer properties for View, Read,
Search, and Required must be set to True.

When this option is set to True, users can select more than one
entry.

Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Apply one or more CSS class styles to the field body. You can view
the classes that are available for your User Application portal by
logging into the User Application, navigating to Administration >
Application Configuration > Theme Administration, then clicking the
Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall
class.

Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.
Apply an HTML style attribute to the field label.

Example: color:red

Creating Forms for a Provisioning Request Definition

129

Property Name Description

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view
the classes that are available for your User Application portal by
logging into the User Application, navigating to Administration >
Application Configuration > Theme Administration, then clicking the
Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel
class.

Example: nv-color5
Separate class names with spaces.

Show 2 lists When this option is set to True, two lists are displayed, one for the
unselected values and another for the selected values.

The Allow multiple selections property must be set to True. If set to
False, Show 2 lists is ignored.

Sort entries When this option is set to True, sorts results in ascending order. For
details, see “Sort Order” on page 128.

5.5.6 DatePicker

Use this control for display and entry of a date and time. This allows users to choose a date from a
pop-up calendar or type a date in a text field. At runtime, the form automatically validates the date
by using the format for the user’s locale and time zone. If the user enters an incorrect format, the form
displays an error message. The DatePicker control’s tooltip displays the valid date format. The
default DatePicker control looks like this:

Figure 5-11 Sample DatePicker Control

DatePickerContral: 05/25/2006 10:47. 25 A E

When the Show date picker property is True, the form displays the date field along with a button.
When the user clicks the button, the form launches a calendar for the user to select the date. The
calendar pop-up looks like this:

Figure 5-12 Sample Calendar Control

'Calend... g@g|

s May 2006 ==
S TwW T F &
i1z 3 4 8 6
78 910111213
14 15 16 17 18 19 20
2122 7324 28 26 27
/29303 1 2 03
4 5 a 7 8 210

<%« 0T Ak RS

130 User Application: Design Guide

5.5.7

Table 5-8 DatePicker Control Properties

Property name

Description

Datetime indicator

Day headers

Field cell style

Field CSS class
name(s)

Field Width in pixels

Label cell style

Label CSS class
name(s)

Month names

Show date picker

When this option is set to False, the Calendar pop-up does not display the time.

A comma-separated, single-quoted list of values displayed by the Calendar pop-up to
indicate the day of the week. This value is localizable.

Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Apply one or more CSS class styles to the field body. You can view the classes that are
available for your User Application portal by logging into the User Application,
navigating to Administration > Application Configuration > Theme Administration, then
clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Use this field to configure the field’s visible width on the form. The default is 200 pixels.
Apply an HTML style attribute to the field label.

Example: color:red

Apply one or more CSS class styles to the field label. You can view the classes that are
available for your User Application portal by logging into the User Application,
navigating to Administration > Application Configuration > Theme Administration, then
clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-colorb
Separate class names with spaces.

A comma-separated, single-quoted list of values displayed by the Calendar pop-up to
indicate the month name. This value is localizable.

When this option is set to True, displays the calendar pop-up. If it is set to False, the
calendar pop-up does not display. Users must type the date in the text field by using
the proper format for their locale.

DateTimePicker

Use this control for display and entry of a date and time for a Time data type. This allows users to
choose a date and time from a pop-up calendar or type a value in a text field. At runtime, the form
automatically validates the date and time by using the format for the user’s locale and time zone. If
the user enters an incorrect format, the form displays an error message. The DateTimePicker tooltip
displays the valid date format. The default control looks like this:

Figure 5-13 Sample DateTimePicker Control

DateTimePicker:

1172006 10:38:11 AM E

Creating Forms for a Provisioning Request Definition 131

When the Show date picker property is set to True, the form displays a text field followed by a calendar
button. When the user clicks the calendar button, the form launches a calendar control for the user to
select the date and time values. The calendar pop-up looks like this:

Figure 5-14 DateTimePicker Calendar Control

'Calend... EI@E|

e May 2006 E3S
SMTW T F 5
o1z 3 4 8 6
T8 901112 13
14 15 16 17 18 19 20
21 22 23 24 2R 26 27
B293031 1 2 3
4 6 F 8 910

22« AT AM L

Table 5-9 DateTimePicker Control Properties

Property name Description

Day headers A comma-separated, single-quoted list of values displayed by the Calendar pop-up to
indicate the day of the week. This value is localizable.

Field width in pixels Use this field to configure the field’s visible width on the form. The default is 200 pixels.
isDateTime When this option is set to False, the Calendar pop-up does not display the time.

Month names A comma-separated, single-quoted list of values displayed by the Calendar pop-up to
indicate the month name. This value is localizable.

Show date picker When this option is set to True, it displays the calendar pop-up. If it is set to False, the
calendar pop-up does not display. Users must type the proper format for the locale
when they type the date in the text field.

5.5.8 DNContainer

Use this control to allow users to select a container object from within the root container that you
specify. You can use this control to limit the user to a subtree of a container. This is a specialized
version of the DNLookup control.

Figure 5-15 DNContainer Control With Root Container Specified

DMContainer:

132 User Application: Design Guide

Table 5-10 DNContainer Control Properties

Property name Description

Entity key used for object lookup Choose an entity from the drop-down list. The entity that you choose
limits the users ability to look up objects within the specified entity’s
container. If you specify an entity key and a root container, the entity key
takes precedence.

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the
classes that are available for your User Application portal by logging into
the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview button
for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field's visible width on the form. The default
is 200 pixels.
Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the
classes that are available for your User Application portal by logging into
the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview button
for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5
Separate class names with spaces.

Root container Specify a root container for lookups when users click the Object Selector
button.

Show clear button If set to True, the form displays the Reset field button

Show object history button If set to True, the form displays the Show history button.

Show object selector button If set to True, the form displays the Object Selector button.

Creating Forms for a Provisioning Request Definition 133

5.5.9

Displaying the Container Description Instead of the Container O/OU Name

Some additional steps are required to take advantage of an Identity Manager 4.0 DNContainer form
field enhancement. This enhancement allows you to display the container description instead of the
container O/OU name.

To enable the DNContainer enhancement, you need to manually update the Designer install to add
properties to the DNContainer control. Then, you need to create a DAL entity corresponding to the
container for which you want to display an attribute. Finally, you need to use the form editor to
choose the entity and attribute.

1 Locate the following file in your Designer install:

/opt/novell/idm/Designer/plugins/com.novell.core.scriptengineshell 4.0.2.0.%/
lib/UIRegistry.jar

2 Back it up first, then use a suitable jar/zip tool to modify the file within the jar:
com\novell\srvprv\impl\uictrl\UIControlRegistry.xml

3 Locate the <ctrl key="DNContainer" section and add the following properties at the end:
<prop name="display-entitydef" type="string" since="1.9">
<display-label rb-key="LAB DIS ENTITYDEF"/>
</prop>
<prop name="display-exp" type="expression" since="1.9">
<display-label rb-key="LAB DIS EXPRESSION"/>
</prop>

4 Put this file back into the JAR in its original location and start Designer.
5 In Designer, create a new DAL entry with an unused name, such as myDescriptionLookup.

6 For the base class of this DAL entry, choose Organization, and pick the attribute you want to
show (for example Description).

7 When the DAL editor is open, change the LDAP name of the class to Top. (This allows you to
view the Description for Organizations, Organizational Units, and so forth.)

8 To use the new DAL entry, open a PRD and go to a form. Add or pick a dn/DNContainer field.

9 Fill in the two new fields (Entity key for DN expression lookup, Display expression) with the values
specified above (myDescriptionLookup, Description).

10 Deploy the new DAL entry and the PRD.
11 On the User Application, clear the cache or restart the server.

12 Test the new PRD to ensure that the descriptions are shown instead of the cn in the DNContainer
control.

Make sure the containers you are going to show have a Description value; otherwise, cn is used.
Containers, by default, leave this value blank.

DNDisplay

Use this control to display a read-only DN. You populate the control from flowdata. The control can
display the full DN or a set of attributes associated with the DN depending on the properties you set.
The DNDisplay control cannot be modified by the workflow engine. For this reason, it is not
available for post activity mapping.

Figure 5-16 Sample DNDisplay

This is a DHDisplay control
Diisplay Dh: cn=kkilpatHck,ou=users,ou=idmsample-doc,o=novell

134 User Application: Design Guide

Figure 5-17 Sample DNDisplay with Display Expression Specified

This is a DHDisplay control
Drisplay DM: Kelly Kilpatrck

Table 5-11 DNDisplay Control Properties

Property name Description

Display expression Leave this value blank if you want to display the full DN or CN value.

If you want to mask the DN by displaying attributes instead, launch
the expression builder and select the desired attributes from the list.
(You must first specify an Entity key for DN expression lookup.)

For example, to show the user entity’s first and last name attributes,
construct an expression like this: FirstName LastName.

Make sure the attribute’s View, Read, Search, and Required
properties are set to True in the directory abstraction layer. See
Section 3.7.2, “Attribute Properties,” on page 69.

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or CN value
retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes instead,
choose the entity from the drop-down list and specify a set of
attributes in the Display expression property.

The entity you choose must:

+ Have the directory abstraction layer View property set to True.

+ Be the entity of the DN you are working with.

For more information, see Section 5.6, “Working with Distinguished
Names,” on page 163.

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view
the classes that are available for your User Application portal by
logging into the User Application, navigating to Administration >
Application Configuration > Theme Administration, then clicking the
Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Creating Forms for a Provisioning Request Definition 135

Property name Description

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view
the classes that are available for your User Application portal by
logging into the User Application, navigating to Administration >
Application Configuration > Theme Administration, then clicking the
Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5

Separate class names with spaces.

5.5.10 DNLookup

Use this control to allow users to search and retrieve DNs from the Identity Vault. You can initialize
the control with a DN from the flowdata. You set properties to control the entities and containers that
the user can search and the format of the DN.

Figure 5-18 Sample DNLookup Control

D Lookup: E

The buttons associated with the DNLookup control are described in Table 5-12.

136 User Application: Design Guide

Table 5-12 DNLookup Control Buttons

Button

Description

=\

Launches an object lookup dialog box. You define whether the dialog box displays
containers or objects via the Object Selector type property. The following is an example
of an object lookup:

bject Lookup, - Microsoft Internet Explorer

Object Lookup T & _ M

search object list: [example: a%, Lar®, IO, 1]

Description W “‘% Search

Select an object from the st
Description

fAcocounting

Executive Management

Human Resources

Improve Customer Service task force
Information Technology

Marketing

Sales

1-7of 7

The attributes shown in the drop-down list (Description in the above example) are
specified in the directory abstraction layer. The availability of this button is controlled by
the Show object selector property.

Show history. Allows users to view the history of objects that they have searched. They
can select from this list or clear its contents. The availability of this button is controlled
by the Show object history button property.

Reset field. Deletes the field contents. The availability of this button is controlled by the
Show clear button property.

Creating Forms for a Provisioning Request Definition 137

138

Table 5-13 DNLookup Control Properties

Property Name

Description

Display expression

Entity key for DN expression lookup

Field cell style

Field CSS class name(s)

Label cell style

This property only applies when you initialize the control from
flowdata. Leave this value blank if you want to display the full DN or
CN value.

If you want to mask the DN by displaying attributes instead, launch
the Expression Builder and select the desired attributes from the list.
(You must first specify an Entity key for DN expression lookup.)

For example, to show the user entity’s first and last name attributes,
construct an expression like this: FirstName LastName.

Make sure the attribute’s View, Read, Search, and Required
properties are set to True in the directory abstraction layer. See
Section 3.7.2, “Attribute Properties,” on page 69.

This property only applies when you initialize the control from
flowdata. Leave this value blank if you want to display the full DN or
CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes instead,
choose the entity from the drop-down list, then specify a set of
attributes in the Display expression property.

The entity you choose must:

+ Have the directory abstraction layer View property set to True.

+ Be the entity of the DN you are working with.

For more information, Section 5.6, “Working with Distinguished
Names,” on page 163.

Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Apply one or more CSS class styles to the field body. You can view
the classes that are available for your User Application portal by
logging into the User Application, navigating to Administration >
Application Configuration > Theme Administration, then clicking the
Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Apply an HTML style attribute to the field label.

Example: color:red

User Application: Design Guide

Property Name Description

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view
the classes that are available for your User Application portal by
logging into the User Application, navigating to Administration >
Application Configuration > Theme Administration, then clicking the
Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5

Separate class names with spaces.

Creating Forms for a Provisioning Request Definition 139

140

Property Name

Description

Object Selector type

Field width in pixels

Show clear button

Show object history button

Determines whether the object selector dialog box performs an
Object Lookup or a Container Lookup. The following is an example
of an Object Lookup:

[Object Lookup - Mozilla E‘Elgl

Object Lookup ? 8 _ MO

Search object list: [example: 3%, Lar™, 1D, ™r)

Firzt Mame | ;gSEarch

paramlist: Causes the object selector dialog box to perform an object
lookup. You specify the lookup criteria via the Entity key for DN
Expression lookup property.

container: Causes the object selector dialog box to display one or
more containers for selection. The containers for searching are
determined by the Search container property, which is specified in
the directory abstraction layer for the entity named in the required
Entity Key for DN Expression lookup property. For example, if the
Entity key for DN Expression lookup property is Group, the search
container is set to %group-root% by default. If no search container is
used, the search root specified during the User Application
installation is used.

Use this field to configure the field’s visible width on the form. The
default is 200 pixels.

If this option is set to True, the form displays the Reset field button.

If this option is set to True, the form displays the Show history button.

User Application: Design Guide

Property Name Description

Show object selector button If this option is set to True, the form displays the object selector
button.

5.5.11 DNMaker

Use this control to allow users to construct a DN value by specifying a naming value and choosing a
container.

Figure 5-19 Sample DNMaker Control
Dikbaker: cn= @

Table 5-14 DNMaker Control Buttons

Button Description

Launches an object selector for container searches like the one shown below.

¥ Container, Lookup - Mozilla

Container Lookup 78 - 0O

Root Directory: ou=groups, ou=idmsample-doc, o=novell

Search container list: [Example: &%, Lar®, |D, *r)

% Search

Select a container from the list:

=l groups

The container search root is defined for the entity specified in the Entity used for object
lookup property. The availability of this button is controlled by the Show object selector

property.

Show history. Allows users to view the history of objects that they have searched. They
can select from this list or clear its contents. The availability of this button is controlled
by the Show object history button property.

If the root container is specified for lookups, the Show history button is not shown even
if the property is set to True. This has been done for security reasons.

Creating Forms for a Provisioning Request Definition 141

142

Button Description

E Reset field. Deletes the field contents. The availability of this button is controlled by the
Show clear button property.

Table 5-15 DNMaker Control Properties

Property Description

Entity key used for object lookup A required field. Choose an entity from the drop-down list. This determines
the search that is launched when the user clicks the object selector
button.

If you specify an entity key and a root container, the entity key takes
precedence

Naming attribute The naming attribute used to construct the final DN. This value displays
next to the control’s display label as an extra hint to the user.

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the
classes that are available for your User Application portal by logging into
the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview button
for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.
Label cell style Apply an HTML style attribute to the field label.
Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the
classes that are available for your User Application portal by logging into
the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview button
for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5
Separate class names with spaces.

Root container Specify a root container for lookups when users click the object selector
button. If you do not specify a Root container, the User Application uses
the container for the entity in the directory abstraction layer property called
Search Container. If a search container is not specified for the specified
entity, then the Root Container DN specified during the User Application
installation is used. If you specify an entity key and a root container, the
entity key takes precedence.

Show clear button If this option is set to True, the form displays the Reset field button.

Show object history button If this option is set to True, the form displays the Show history button.

User Application: Design Guide

Property Description

Show object selector button If this option is set to True, the form displays the object selector button.

5.5.12 DNQuery

DNQuery is a specialized version of the DNLookup control. Like DNLookup, DNQuery allows users
to search and retrieve DNs from the Identity Vault; however, with the DNQuery, the object selector
content can be driven by the result of a directory abstraction layer Queries object rather than from
properties.

Table 5-16 DNQuery Control Properties

Property Name Description

DAL global query key Specifies the key of the DAL Queries object you want executed.
You can select it from the Event Action Expression Builder. For
more information about using DAL queries, see Section 5.7,
“Using DAL Queries in Forms,” on page 165. For more
information about defining DAL queries, see Section 3.4,
“Working with Queries,” on page 57.

DAL global query parameter(s) Specifies the value for the query parameters. For example, this
passes the String Sales to the Queries parameter called
groupname:

(function () {return {"groupname":"Sales"}}) ();

Display expression When you populate the control with initial data from a Data Item
Mapping value, use this property to specify the attributes to
display.

Entity key for DN expression lookup This property only applies when you initialize the control from

flowdata. Leave this value blank if you want to display the full DN
or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes instead,
choose the entity from the drop-down list, then specify a set of
attributes in the Display expression property.

The entity you choose must:

+ Have the directory abstraction layer View property set to
True.

+ Be the entity of the DN you are working with.

For more information, Section 5.6, “Working with Distinguished
Names,” on page 163.

Field cell style Apply an HTML style attribute to the field body.

Example: padding-top:5px;background-color:red

Creating Forms for a Provisioning Request Definition 143

Property Name

Description

Field CSS class name(s)

Field width in pixels

Label cell style

Label CSS class name(s)

Show clear button

Show object selector button

Apply one or more CSS class styles to the field body. You can
view the classes that are available for your User Application portal
by logging into the User Application, navigating to Administration
> Application Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall
class.

Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Use this field to configure the field’s visible width on the form. The
default is 200 pixels.

Apply an HTML style attribute to the field label.
Example: color:red

Apply one or more CSS class styles to the field label. You can
view the classes that are available for your User Application portal
by logging into the User Application, navigating to Administration
> Application Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel
class.

Example: nv-color5

Separate class names with spaces.
If set to True, the form displays the E Reset field button

If set to True, the form displays the Object Selector button.

55.13 Global List

Use this control to allow users to select a single entry from a drop-down list. The contents of the list
are defined in a directory abstraction layer global list element.

Figure 5-20 Sample Global List Control

GlobalListControl: i Click. here to zelect a value .. '
Click here to select a value ...

[de] German

[en] Englizh

[ez] Spanish

[fr] French

[it] Italian |

144 User Application: Design Guide

5.5.14

Table 5-17 Global List Properties

Property Name Description

DAL global list key Specifies the unique identifier of the global list. This
must correspond to the key specified in the directory
abstraction layer.

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.
Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

For more information about global lists, see Section 3.3, “Working with Lists,” on page 54.

Localized Label

Use this control if you want to allow the user to provide translated text for the field. This control
displays the standard icon that indicates the text can be localized.

Figure 5-21 LocalizedLabel Control

localizedLabel: B3

If the user clicks the icon, they are able to type the text for each language supported by the User
Application driver. The list of languages displayed for this control is determined by the contents of
the locale resource group called base-resgrp.

Creating Forms for a Provisioning Request Definition 145

146

Figure 5-22 LocalizedLabel Control

localizedLabel:

trueFalseRadiobuttons: . o
dae: Chfn&a&-_th.lna_::.
Chinese (Taiwan):
Field: Dutch:
FieldQ: Englizh: *
Reason forrequest. * French:
E German:
ltalian:
Japaneze:
Portuguese:
Rus=ian:
Spanish:
Swedish:
<

Table 5-18 LocalizedLabel Control Properties

Property Name

Description

Field CSS class name(s)

Label CSS class name(s)

Apply one or more CSS class styles to the field body.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Apply one or more CSS class styles to the field label.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class names with spaces.

User Application: Design Guide

55.15 Html

Use this control to add HTML fragments to the Form Detail. You can do this by specifying the HTML
fragments in the HTML content property. In addition, you can conditionally add the HTML fragment
via an event on the form control. In either case, specify the HTML through the use of an anonymous
function, such as: (function() { return "<yourTag yourAttr='your attr value' />"; })
0

For example:

(function () { return "<table bgcolor='#C0COCO0'><th colspan='3' align="'center's>Table
Header Goes Here</ths<trs><tds>Value 1.1l</td><tds>Value 1.2</tds</tr><tr><tdsValue
2.1</td><td>Value 2.2</td></tr></table>"; }) ()

Table 5-19 HTML Control Properties

Property Name Description

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Label cell style Apply an HTML style attribute to the field label.
Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5

Separate class nhames with spaces.

5,5.16 MVCheckbox

Use this control to display a set of labeled check boxes. You specify the label and its associated values
through the List item property. A sample MVCheckbox control is shown below.

Creating Forms for a Provisioning Request Definition 147

148

Figure 5-23 Sample MV Checkbox Control

MyiCheckboxContral: [] Blue [] Green [] Red [] Yellow

Table 5-20 MV Checkbox Control Properties

Property Name

Description

Field cell style

Field CSS class name(s)

Label cell style

Label CSS class name(s)

List item

Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Apply one or more CSS class styles to the field body. You can view the
classes that are available for your User Application portal by logging
into the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Apply an HTML style attribute to the field label.

Example: color:red

Apply one or more CSS class styles to the field label. You can view the
classes that are available for your User Application portal by logging
into the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5
Separate class names with spaces.

Allows you to define a set of static values that comprise the check box
labels and values. Click the List property button to launch the list value
dialog box shown here:

Ty Values for static list

Seacy kay and deplay vahass for static et chostas

+* X

Koy Labed
Red Red
ellow ellow

5 o [corcel

User Application: Design Guide

9.5.17

TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not flowdata.get().
If you use flowdata.get(), you get only the first value.

For more information on preselecting values, see the Section 9.2.3, “Form Control Examples,” on
page 324.

MVEditor

Use this control to allow users to display, edit, or add multiple values in a drop-down list box. You
can load the data dynamically from the Identity Vault, or allow users to enter the values.

The control’s appearance varies depending on the data type of the control and the properties that you
specify. For example, if the data type is a DN, you can set properties that display specific attributes
related to the DN. You can also enable an object selector button that allows users to search and select
values by setting the Entity key for DN expression lookup property.

There are also properties that let you specify a DAL Global Query to execute or specify a root DN to
drive the object picker.

Table 5-21 MVEditor with Object Selector Properties Set Control Buttons

Button Description

Launches a search dialog box called an object
selector. The object selector dialog box looks like this:

A Object Lookup - Microsoft Internet Explorer

Object Lookup T8 _ 0

Search object list: (exarple: &%, Lar®, |D, *r)

Description “% Search

Select an object from the list:
Description

fcocounting

Executive Management

Human Resources

Improve Customer Serdce task force
Infarmation Technaology

Mivarketing

Sales

1-7of?

The user can select a value from the list to populate
the control. The attribute displayed in the drop-down
list (Description in the above example) is specified in
the directory abstraction layer. You specify it in the
attribute’s UlControl property. See “Attribute Ul Control
Properties” on page 71. The availability of this button
is controlled by the Show object selector property.

Creating Forms for a Provisioning Request Definition 149

150

Button

Description

4

Show history. Allows users to view the history of
objects that they have searched. They can select from
this list or clear its contents. The availability of this
button is controlled by the Show object history button

property.

Reset field. Deletes the field contents. The availability
of this button is controlled by the Show clear button

property.

If you do not set the object lookup properties, the MVEditor displays a simple edit control.

Figure 5-24 Sample MVEditor without Object Lookup Properties Set

MYEditorControl: Jack Miller

Table 5-22 MVEditor Control Buttons

v | F [

Button Description

E| Adds an item to the end of the list.
E Deletes the selected list item.
Edits the selected list item.

TIP: When the MVEditor control’s Editable property is set to False, this control is read-only and the
form does not display any MVEditor control buttons.

Table 5-23 MVEditor Control Properties

Property Name

Description

Add data entry text field

DAL Global Query

When this option is set to True and there is a single row of
data (and the data is not a DN), the control displays a data
entry text field. The text field is displayed when the field is
empty or contains only one value. Otherwise, the drop-down
list is displayed. If more than one row of data exists, then the
drop-down list always displays.

Specify this value if you want the control populated by the
results of the Global Query that you specify. You specify the
key name. You can select it from the Event Action Expression
Builder. For more information about using queries in forms,
see Section 5.7, “Using DAL Queries in Forms,” on page 165.
For information about defining queries, see Section 3.4,
“Working with Queries,” on page 57.

User Application: Design Guide

Property Name Description

DAL Global Query Parameter(s) Specifies the value for the query parameters. For example,
this passes the String Sales to the queries parameter called
groupname.

(function () {return
{"groupname":"Sales"}}) () ;

Display expression Leave this value blank if you want to display the full DN or CN
value.

If you want to mask the DN or CN by displaying attributes
instead, launch the Expression Builder and select the desired
attributes from the list. (You must first specify an Entity key for
DN expression lookup.)

For example, to show the user entity’s first and last name
attributes, construct an expression like this: FirstName
LastName.

Make sure the attribute’s View, Read, Search, and Required
properties are set to True in the directory abstraction layer.
See Section 3.7.2, “Attribute Properties,” on page 69.

Enforce uniqueness Forces user-entered list items to be unique.

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or CN
value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes
instead, choose the entity from the drop-down list and specify
a set of attributes in the Display expression property.

The entity you choose must

+ Have the directory abstraction layer View property set to
True.

+ Be the entity whose DN you are retrieving from the
Identity Vault.

See Section 5.6, “Working with Distinguished Names,” on
page 163 for more information.

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can
view the classes that are available for your User Application
portal by logging into the User Application, navigating to
Administration > Application Configuration > Theme
Administration, then clicking the Preview button for the portal
theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall
class.

Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Creating Forms for a Provisioning Request Definition 151

152

Property Name

Description

Label cell style

Label CSS class name(s)

Field width in pixels

Ignore case

Lower bound (for numbers only)

Maximum length

Minimum length

Number of lines displayed

Numbers only

Apply an HTML style attribute to the field label.
Example: color:red

Apply one or more CSS class styles to the field label. You can
view the classes that are available for your User Application
portal by logging into the User Application, navigating to
Administration > Application Configuration > Theme
Administration, then clicking the Preview button for the portal
theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel
class.

Example: nv-color5
Separate class names with spaces.

Use this field to configure the field's visible width on the form.
The default is 200 pixels.

If this option is set to True, ignore case when enforcing
unigueness.

Minimum integer or decimal value.

Maximum number of characters for string values. The control
blocks input when this value is reached.

Minimum number of characters for string values. The control
validates that the user enters at least this number of
characters.

The number of lines displayed by the control. This is not the
number of records retrieved or displayed, but the vertical size
of the control. If you set this number to 10 and there are only 5
records to display, the control size is still 10 lines.

You can set the number of lines to 1 or to 3 or greater. You
cannot set it to 2 because it does not leave enough space for
the browser to display scroll bars. If you set it to 2, Designer
generates a warning in the Project Checker view and resets it
to 3.

If this option is set to True, only numbers can be entered.

User Application: Design Guide

Property Name

Description

Object Selector type

Resolve DN

Root Container

Show object history button

Show object selector button

Determines whether the object selector dialog box performs
an Object Lookup or a Container Lookup. The following is an
example of an Object Lookup:

B Object Lookup - Mozilla

=

Object Lookup T _ M0

Search object list: (example: a%, Lar®, 1D, *r)

First Mlame | “%Search

paramlist: Causes the object selector dialog box to perform an
object lookup. You specify the lookup criteria via the Entity key
for DN expression lookup property.

container: Causes the object selector to display one or more
containers for selection. The containers for searching are
determined by the Search container property, which is
specified in the directory abstraction layer for the entity named
in the Entity key for DN expression lookup property. For
example, if the Entity key for DN expression lookup property is
Group, the search container is set to %group-root% by default.
If no search container is used, the search root specified during
the User Application installation is used.

When set to False, the DN is displayed rather than the Display
expression. Consider using this when you expect a large
number of DNs to be returned, and you are concerned about
performance.

Specify a root container for lookups when users click the
object selector button. If you specify an entity key and a root
container, the entity key takes precedence.

When this option is set to True, displays the Object History
button next to the control.

When this option is set to True, displays the Object Selector
button next to the control.

Creating Forms for a Provisioning Request Definition

153

Property Name Description

Sort entries When this option is set to True, sorts the results in ascending
order. For details, see “Sort Order” on page 128.

Upper bound (for Numbers only) The maximum numeric value users can enter.

TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not flowdata.get().
If you use flowdata.get(), you get only the first value.

For more information about preselecting items, see Chapter 9, “Working with ECMA Expressions,”
on page 315.

55.18 Password

Use the Password control to allow users to mask all of the user’s entries with the * character.

The password control can only be submitted. It does not support any script such as getValues() or
setValues().

Table 5-24 Password Control Properties

Property Name Description

Field width in pixels Use this field to configure the field’s visible width on
the form. The default is 200 pixels.

Lower bounds (for numbers only) The lowest number allowed for decimal or integer
values.
Maximum length Maximum number of characters for string values. The

control blocks input when this value is reached.

Minimum length Minimum number of characters for string values. The
control validates that the user enters at least this
number of characters.

Number of characters allowed Specifies the number of characters a user is allowed to
enter. This is related to Field width in pixels.

Upper bound (for numbers only) The highest number allowed for decimal or integer
values.
Validation Mask (regular expression) An expression used for validating the field’s data.

Designer provides a default set of validation masks by
default. You must enable them through Windows >
Preferences > Provisioning > Validation Mask. For
more information, see Section 2.3, “Setting
Provisioning View Preferences,” on page 23.

5.5.19 PickList

Use the PickList control to allow users to view and choose one or more values from a dynamically
generated list of choices. The list items are DN or CN values retrieved from the Identity Vault. You
can display the full DN or CN or use the PickList properties to specify the attributes to display
instead.

154 User Application: Design Guide

Figure 5-25 Sample PickList Control without DN Masking

Pick Lizt without DM Masking: |:n:achunglnuzuserslnuzidmsa M~
cn=asmith,ou=users ou=idmsal

ch=hbenderou=users ou=idms %

Figure 5-26 Sample PickList Control with DN Masking

PickList with DR Masking: Angie Chung ~
April Smith
Bill Bender hd
Table 5-25 PickList Control Properties
Property Name Description
Allow multiple selections When this option is set to True, the user can select

more than one list value using their platform-specific
multi-select keys.

When this option is set to True, the control displays a
minimum of three lines regardless of the value
specified in the Number of lines displayed property. If
this value is False, the Number of lines displayed
property is used.

Display expression Leave this value blank if you want to display the full
DN or CN value.

If you want to format the DN or CN by displaying
attributes instead, launch the Expression Builder and
select the desired attributes from the list. (You must
first specify an Entity key for DN expression lookup.)

For example, to show the user entity’s first and last
name attributes, construct an expression like this:
FirstName LastName.

Make sure the attribute’s View, Read, Search, and
Required properties are set to True in the directory
abstraction layer. See Section 3.7.2, “Attribute
Properties,” on page 69.

Entity key for DN expression lookup Leave this value blank if you want to display the full
DN or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying
attributes instead, choose the entity from the drop-
down list and specify a set of attributes in the Display
expression property.

The entity you choose must:

+ Have the directory abstraction layer View
property set to True.

+ Be the entity whose DN you are retrieving from
the Identity Vault.

Creating Forms for a Provisioning Request Definition 155

156

Property Name

Description

Field cell style

Field CSS class name(s)

Field width in pixels

Label cell style

Label CSS class name(s)

Number of lines displayed

Show 2 lists

Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Apply one or more CSS class styles to the field body.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Use this field to configure the field’s visible width on
the form. The default is 200 pixels.

Apply an HTML style attribute to the field label.
Example: color:red

Apply one or more CSS class styles to the field label.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5
Separate class names with spaces.

The number of lines displayed by the control. This is
not the number of records retrieved or displayed, but
the vertical size of the control. If you set this number to
10 and there are only 5 records to display, the control
size is still 10 lines.

The number of lines displayed is related to the Allow
multiple selections setting. When Allow multiple
selections is set to True, the number of lines displayed
is always 3 (or more). When Allow multiple selections
is set to False, you can set the number of lines to 1 or
to 3 or greater. You cannot set it to 2 because it does
not leave enough space for the browser to display
scroll bars. If you set it to 2, Designer generates a
warning in the Project Checker view and resets it to 3.

When this option is set to True, two lists are displayed.
A list on the left displays the unselected values, and
the list on the right displays the selected values.

The Allow multiple selections property must be set to
True. If set to false Show 2 lists is ignored.

User Application: Design Guide

5.5.20

Property Name Description

Sort Entries When this option is set to True, sorts results in
ascending order. For details, see “Sort Order” on
page 128.

TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not flowdata.get().
If you use flowdata.get(), you get only the first value.

For more information on displaying the control with a preselected option, see Section 9.2.3, “Form
Control Examples,” on page 324.

Static List

Use this control to display a list of items in a drop-down list from which users can select a single item.
The list items are static and are stored with the provisioning request definition. The text “Click here
to select” only appears if the field is not set to Required.

Figure 5-27 Sample Static List Control

StaticlistControl: i Click here bo select & value iw
GlobalListContral: Click here to selact a value ...
Conrecticut
t aine
Pick LiztContral: Mazzachusetts

MHew Harnpghire

Table 5-26 Static List Properties

Property Name Description

Autoselect first value Allows you to configure the form to automatically select the first value
in the static list. You can select yes, no, or only if required is true.

If you select only if required is true, the form only automatically selects
the first value in the list if the value of the default Required property is
true.

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the
classes that are available for your User Application portal by logging
into the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The
default is 200 pixels.

Creating Forms for a Provisioning Request Definition 157

Property Name Description

Label cell style Apply an HTML style attribute to the field label.
Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the
classes that are available for your User Application portal by logging
into the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5
Separate class names with spaces.

List item Allows you to define a set of labels and values that comprise the static
list. Click the List property button to launch the list value dialog box
shown here:

Ty Values for static list

Seacy kay and deplay vahass for static et chostas

+* X

Koy Labed
Red Red
Yelow Yedow

£ >

5 o [corcel

Click Add to add list items. Each list item must have a unique key. The
dialog box automatically generates a unique key when you insert a
new list item. You can click the key name and change it. A blank key
(null) is valid, so it is possible to have a list item with a blank key and a
blank label. The displayed label is the one defined for the default
language.

5.5.21 Text

Use the Text control for data display or user input. User input is validated depending on the control’s
data type.
Figure 5-28 Sample Text Control

TextControl:

158 User Application: Design Guide

Table 5-27 Text Control Properties

Property Name Description

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the
classes that are available for your User Application portal by logging
into the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The
default is 200 pixels.

Label cell style Apply an HTML style attribute to the field label.
Example: color:red

Label CSS class name(s) Apply one or more CSS class styles to the field label. You can view the
classes that are available for your User Application portal by logging
into the User Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking the Preview
button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5

Separate class names with spaces.

Lower bounds (for numbers only) The lowest number allowed for decimal or integer values.

Maximum length The maximum length for string values. Blocks input when this length is
reached.

Minimum length The minimum length for string values. Validates that the user enters a

string at least this long.

Number of characters allowed Specifies the number of characters a user is allowed to enter. This is
related to Field width in pixels.

Upper bound (for numbers only) The highest number allowed for decimal or integer values.

Validation Mask (regular expression) An expression used for validating the field’s data. Designer provides a
default set of validation masks by default. You must enable them
through Windows > Preferences > Provisioning > Validation Mask.
For more information, see Section 2.3, “Setting Provisioning View
Preferences,” on page 23.

5.5.22 Text Area

Use this control to display or accept input of multi-line data. Users can select multiple lines of data
using the multi-select key combination for their platform.

Creating Forms for a Provisioning Request Definition 159

Figure 5-29 Sample Text Area Control

TexthreaContral:

Table 5-28 Text Area Control Properties

Property Name

Description

Field cell style

Field CSS class name(s)

Label cell style

Label CSS class name(s)

Number of columns displayed

Number of lines displayed

Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Apply one or more CSS class styles to the field body.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
fontExtraSmall class.

Example: nv-fontMedium nv-backgroundColor3
Separate class names with spaces.

Apply an HTML style attribute to the field label.
Example: color:red

Apply one or more CSS class styles to the field label.
You can view the classes that are available for your
User Application portal by logging into the User
Application, navigating to Administration > Application
Configuration > Theme Administration, then clicking
the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-
formFieldLabel class.

Example: nv-color5
Separate class names with spaces.

The visible width of the control; the number of
characters wide.

The number of lines to display at one time.

5523 Title

Use this read-only control to label your form or provide instructions.

160

User Application: Design Guide

5.5.24

Table 5-29 Title Control Properties

Property Name Description

Display title in signed When this option is set to False and the form is a signed form (using digital

form document signatures), the title control is not displayed.

Font-size Specify small, medium, or large.

Style class Choose a font style (such as bold) and colors from a palette.
TrueFalseCheckBox

Use this control to allow the user to select or deselect a choice. The values returned by the control are
true (selected) and false (not selected). The returned values are always strings.

NOTE: This control returns a boolean value of True or False depending on the selection made by the
user. The display values of the control can be set to a more user friendly or informative value such as
Yes/No or Accept/Reject depending on the intended use of the form; however, the underlying value

always returns either True or False. If the control is used to return anything other than True or False

or more than two values, for example (Yes/No/Maybe), by default it returns the value as False if it is

not True.

You can initialize the control from a JavaScript Boolean Object. The field.getValue () returns a
JavaScript Boolean Object.

Use setValues (["true"]) not setValues [true]), the setValues () method expects a string or an
array of string values.

Table 5-30 TrueFalseCheckBox Control Properties

Property Name Description

Field cell style Apply an HTML style attribute to the field body.
Example: padding-top:5px;background-color:red

Field CSS class name(s) Apply one or more CSS class styles to the field body. You can view the classes that
are available for your User Application portal by logging into the User Application,
navigating to Administration > Application Configuration > Theme Administration,
then clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-fontExtraSmall class.
Example: nv-fontMedium nv-backgroundColor3

Separate class names with spaces.

Field width in pixels Use this field to configure the field’s visible width on the form. The default is 200
pixels.
Label cell style Apply an HTML style attribute to the field label.

Example: color:red

Creating Forms for a Provisioning Request Definition 161

5.5.25

5.5.26

Property Name Description

Label CSS class Apply one or more CSS class styles to the field label. You can view the classes that

name(s) are available for your User Application portal by logging into the User Application,
navigating to Administration > Application Configuration > Theme Administration,
then clicking the Preview button for the portal theme you are using.

If you leave the field blank, it defaults to the nv-formFieldLabel class.
Example: nv-color5

Separate class names with spaces.

TrueFalseRadioButtons

Use this control to display a choice of True or False as a set of radio buttons.

Figure 5-30 Sample TrueFalseRadioButtons Control
TrueFalseRadicbuttons; {:‘-' False {E‘-' True

This control has no custom properties.

NOTE: This control returns a Boolean value of True or False depending on the selection made by the
user. The display values of the control can be set to a more user friendly or informative value such as
Yes/No or Accept/Reject depending on the intended use of the form; however, the underlying value
always returns either True or False. If the control is used to return anything other than True or False
or more than two values, for example (Yes/No/Maybe), by default it returns the value as False if it is
not True.

TrueFalseSelectBox

Use this control to display a choice of True or False in a drop-down list.

Figure 5-31 Sample TrueFalseSelectBox Control

TrueFalsetelectbox: i Click here to select a value .. i

Click here to s
Falze
True

NOTE: This control returns a Boolean value of True or False depending on the selection made by the
user. The display values of the control can be set to a more user friendly or informative value such as
Yes/No or Accept/Reject depending on the intended use of the form; however, the underlying value

always returns either True or False. If the control is used to return anything other than True or False

or more than two values, for example (Yes/No/Maybe), by default it returns the value as False if it is

not True.

162 User Application: Design Guide

5.6

5.6.1

5.6.2

Table 5-31 TrueFalsSelectBox Properties

Property Name Description

Field width in pixels Use this field to configure the field’s visible width on
the form. The default is 200 pixels.

Working with Distinguished Names

The following controls provide specialized support for distinguished names (DNs):

+ DNDisplay
¢+ DNLookup
¢+ DNMaker
¢+ MVEditor
¢ PickList

This section describes the specialized support, including the following:

¢ Section 5.6.1, “Formatting DNs,” on page 163
¢ Section 5.6.2, “Working with Object Selectors,” on page 163

Formatting DNs

If you have a DN value, you can display either the DN or a set of attributes related to that DN. For
example, if the control displays the DN of a user entity, you could display the user entity's First Name
and Last Name attributes instead. The controls that support this feature are DNDisplay, DNLookup,
MVEditor, and Picklist.

You define the attributes to display in the control’s Display Expression property. This display
expression resolves at runtime by replacing the attribute keys with the attribute values.

Working with Object Selectors

In some cases, you might want the user to search for and select a DN from a list of possible values.
The object selector dialog box (also called the object lookup dialog box) provides this functionality.
The contents of the object selector dialog box are controlled by the form control’s properties (see Table
5-32), and by how DAL properties are defined (see “DNLookup Control Type Definitions and Object
Selector Contents” on page 164).

The object selector only supports attributes of String or DNLookup data types whose directory
abstraction layer access properties for required and searchable are set to true.

Table 5-32 Properties for Defining the Object Selector Dialog Box

Property Description

Entity key for DN expression lookup This is the key to the directory abstraction layer entity whose DN
you want to search for or display. This is a required field.

Creating Forms for a Provisioning Request Definition 163

164

Property

Description

Object selector type

Show object selector button

paramlist: Causes the object selector dialog box to perform an
object lookup. You specify the lookup criteria via the Entity key for
DN expression lookup property.

container: Causes the object selector dialog box to display one or
more containers for selection. The containers for searching are
determined by the Search container property that is specified in
the directory abstraction layer for the entity named in the Entity
key for DN expression lookup property. For example, if the Entity
key for DN expression lookup property is Group, the search
container is set to %group-root% by default. If no entity is
specified you will get an error message about missing or bad
Container Selector properties

If this option is set to True, the object selector button shows up on
the control. Otherwise, it does not.

DNLookup Control Type Definitions and Object Selector Contents

When you specify an Entity key for DN expession lookup, the object selector’s contents are defined
by the attribute’s DNLookup control type definition (in the directory abstraction layer). For example,
if you specified the User entity as the object lookup and the manager as the attribute, the object
selector would allow the user to search on the First Name and Last Name attributes because the
object selector uses the manager’s DNLookup control type definition to determine the lookup
criteria. The DNLookup definition for the manager entity is shown in Figure 5-32.

Figure 5-32 Manager Attribute on User DNLookup Property Definition

= UI Control

specify any farmatting or special contrals used in displaving the attribuke:

Daka Type: [y}
Farmat Type: | <Monex>

Contral Tvpe: | DhLookup

+ DMLookup Display

Select the Entity and Attributes to display For the Lookup operation:

Lookup Entity:

Lookup Aktribukes

Firsk Marne

|:| Perform Automatic Query

ar | |Lask Mame

w

w

L

Manager Lookup w
v X
V| X

The resulting object selector is shown in Figure 5-33.

User Application: Design Guide

5.7

Figure 5-33 Sample Object Selector

[Object Lookup - Mozilla

Object Lookup T & _ MO

Search object list: [example: &%, Lar™, 1D, ™)

Last Mame

= Learch

You can change the attributes that are used by the object selector by changing the Lookup attributes.
To allow other attributes in the object selector:

1 Determine if the desired attribute is defined for the entity specified as the Lookup Entity. (In this
example, it is Manager Lookup.)

2 If the attribute you want is available on the lookup entity, you can just add it to the Lookup
Attributes. Make sure that it has the Search and Read properties set to True; otherwise, they
won't appear in the object selector dialog box.

3 If the attribute does not already exist for the Lookup Entity, you must do the following:

¢ Add the attribute to the Lookup Entity. For example, to display another attribute in a
manager lookup like the one above, add the attribute to the Manager Lookup entity. For
more information, see Section 3.2.3, “Adding Attributes,” on page 53.

¢ Add the attribute to the DNLookup definition.

¢ Deploy the changed definitions. In this example, you'd redeploy the Manager Lookup
entity (if you added a new attribute to its definition) and the User entity because you
changed the definition of the manager attribute.

¢ Refresh the application server’s Directory AbstractionLayerDefinitions cache.

Using DAL Queries in Forms

The Query objects defined in the directory abstraction layer let you predefine LDAP searches that
you can then execute from a workflow form. The information in this section illustrates how you can
define a query and use it in a form.

Suppose that you want to distribute calling cards to certain employees, but you only want to
distribute calling cards to employees who work at home, and whose homes are located outside of the
local office’s area code. You create a workflow form that allows the employee to:

¢ Verify that they qualify to receive a card.
¢ Submit a request for a card if they do qualify.

Creating Forms for a Provisioning Request Definition 165

166

On your form, you allow users to enter the area code of their own local office (and based on that area
code) review a list of users that qualify for a card. The runtime form is shown in Figure 5-34.

Figure 5-34 Sample Calling Card Request Form

©) Resource Request - Mozilla Firefox

Ele Edit Wiew Go Bookmarks Tools Help

My Tasks

+ Request Resource

<:§I ¥ I'_:/ - @ |_'_._| @ ‘ N http:jflocalhost: B080/IDM(create AFResourceRequest, do v‘ 0 s “Qv |
Novelle |dentity Manager Friday, Januar N
Welcome Bill |dentity Self-Senice Requests & Approvals Logout Help

Nivy W ark 3

Request Resource

Step 3 of 3: Confirm and complete resource request,

e ;
Ay Deglerts - indicates required,

»

iy Settings Resource: CallingCard

Enter Proxy Mode Recipient: Bill Brown

Bt imkabited Resource Search Criteria Accounts
Moy Prosey Assignments

Description: CallingCard
M Delegate Assignments

Form Detail

Get A Calling Card for Calls Outside Your Local Office Area Code
OfficedreaCode: [z12 |

The Calling Card is for Work At Home Employees Who Live Outside the Area Code of the Local Office
Allizon Blake (555) 555-1222 ~|

Candidates: Angie Chung [F55) 556-1208 =
Anthony Palani (555) 5551202 v

If you do not see your name in the above list you do not qualify for the calling card, please press Cancel.

Dane

The data in the Candidates Picklist control is populated from the results of a query that is defined as
shown in Figure 5-35.

User Application: Design Guide

Figure 5-35 Calling Card Queries Definition

General
Praovide a user-friendly label For the query:

~ Parameters
Define parameter references:

+ & & 8
Parameter Kevs Parameter Display Labels
| AreaCodeParam | | Area Code | ®

+ Query Conditions
Provide conditions For the query entity selected abowve:

(4P Add Condition Grouping

|¥ Remove Condition Grouping CL]
|Teleph0ne Murnber v | |ru3t skarks with % | | %AreaCodeParam s | . 4
= Search

Prowide search constraints For the query:

@ Employees Outside Local Area Code @

Kew: | EEDutsidelocaldreaCode |
Display Label: | Emplovess outside Local Area Code | ﬁ?’
Query Enkiky: |Llser V|

Search Raoak: | Cl=idmsamplz-alh, O=navell | @v
Search Scope; | <Defaulk > L |
Max Search Entries: |EI W | (0=use runkime sekting)

The query takes a single input parameter, AreaCodeParam, for the user-entered area code. The query
then searches the User entity (in the idmsample-alh container) and returns the users whose telephone

numbers do not start with the same value entered in the AreaCodeParam.

The form has an input field called OfficeAreaCode. It is the text field where the user enters the area
code of the local office. The properties for OfficeAreaCode are show in Figure 5-36.

Creating Forms for a Provisioning Request Definition

167

168

Figure 5-36 OfficeAreaCode Properties

Form Controls
$ X 4 ¥

| Form Field Name Data Type Control Type
| title string Title

| iOfficedreaCade string Text

| title2 string Title

| Candidates dn PickList

| title3 skring Title

Outline | = Properties 2

Property

Fields -~ Actions | Scripts

Display Label

Editable

Required

Wisible

Multivalued

Events

Field width in pixels

lower bound (for Numbers only)
Maximum length

Minimum length

Mumber of characters allowed
Tooltip

Upper bound (for Numbers only)
Yalidation Mask{reqular expression)

Linebreaks

——

Value
OfficeAreaCode
true
false
true
false
onchange
200

40

Notice that the Text control defines an onchange event. The onchange event fires when the user tabs
from the Text control. The onchange event fires the getCandidates custom event as shown in Figure 5-

37.

User Application: Design Guide

Figure 5-37 OnChange Event Properties

¥4 Field Events [Z|
Specify event name and action expression values For field: OfficesreaCode
+ K
Ewvent Mame Ackion Expression
onchange field.fireEvent("getCandidates")
':':’:' [Ok l [Cancel]

The getCandidates event is defined as a property on the Candidates Picklist control.

Figure 5-38 Candidates PickList Properties

Form Controls

+ X 4 ¥

| Form Field Name Data Type Control Type Linebreaks

| title string Title 1

OfficeAreaCade string Text 1

| title2 string Title 1

Candidates . [do Jpickst [+ |
Litle3 string Title 1

outline |] Properties &2

Property ‘alue
Display Label Candidates
Editable true
Required false
Visible true
Multivalued true
Entity key For DN expression lookup User
Events getCandidates
Display expression Firsthame LastName TelephoneMumber
Allow multiple selections (truejfalse) false
Field width in pixels 200
Mumber of lines displayed 3
Sort entries true
Tooltip

\Fields ~ Actions | Scripts

Creating Forms for a Provisioning Request Definition

169

170

5.8

When the event is fired, the getCandidates event performs an action expression that calls the
globalQuery() method (as shown in Figure 5-39). This method populates the value of the Candidates
PickList control with the results of the query called EEOutsideLocal AreaCode (defined in Figure 5-35
on page 167). It passes the value of the OfficeAreaCode text field as the query’s input parameter
AreaCodeParam.

Figure 5-39 GetCandidates Event

%4 Field Events 3

Specify event name and action expression values For field: Candidates

+ K

Event Mame Action Expression
getCandidates I0%aulk, glabalQuery('Candidates", "EECutsidelocaldreaCode”, {AreaCodeParan; Farm, getvaluel"OfficeAreaCods"i});

Printing Forms

You can add a Print button to a request form by using JavaScript.

TIP: Approval forms automatically contain a Print button.

To add the ability to print a request form, add the URL to the JavaScript library PrintForm. js. The
library is located in the User Application WAR at this URL: ./javascript/JUICE/form/
PrintForm.js. Two techniques for including a print button are described below:

+ To display a print preview popup when submitting a request form (after data is validated), add
the following to the form onload event:

form.interceptAction ("SubmitAction", "around",
function (invocation)

{var pf = new PrintForm("SubmitAction") ;
pf.printFormInterceptor (invocation) ;

o)

¢ To add a Print button next to one of the fields on your form, add the following script to the field’s
onload event:

var ctrl = JUICE.UICtrlUtil.getControl (field.getName()) ;

var btn = JUICE.UICtrlUtil.addButton(ctrl, "printid", "Print", "Print",
"javascript:var p = new PrintForm() ;

p.printFormAfterValidation (\"printid\") ;") ;

User Application: Design Guide

5.9 Providing Direct Access to a Form

If you want users to be able to go directly to a form, you need to make some changes within the WAR
file for the User Application and redeploy the WAR file.

1 In the WEB-INF/struts-config.xml file, specify roles="authUser" within the following
action statement:

<action path="/getAFResourceList" scope="request" name="apwalListForm"
type="com.novell.srvprv.apwa.actions.GetResourcelList" roles="authUser">

2 Also in the WEB-INF/struts-config.xml file, specify roles="guest, authUser" within the
following action statement:

<action path="/createAFResourceRequest" scope="request" name="apwaDetail"
type="com.novell.srvprv.apwa.actions.ProcessResourceRequest"
roles="guest,authUser" >

3 Also in the WEB-INF/struts-config.xml file, add the following action mapping:

<action path="/getGuestResourceList" scope="request" name="apwaListForm"
type="com.novell.srvprv.apwa.actions.GetResourcelList" roles="guest">
<forward name="success" path="tiles.guestResourceList"/>
<forward name="displaySelector" path="tiles.guestSelector"/>
</action>

4 In the WEB-INF/tiles-defs.xml file, add the following definitions:

<definition name="tiles.guestSelector" extends=".unauthenticatedLayout">
<put name="title" value="JSP_TITLE SELECTOR"/>
<put name="body" value="/jsps/tiles/selector.jsp"/>

</definition>

<definition name="tiles.guestResourcelList" extends=".unauthenticatedLayout"s>
<put name="title" Value:"JSP_TITLE_RESOURCE_LIST”/>
<put name="body" value="/jsps/tiles/resourcelList.jsp"/>

</definition>

5 Redeploy the WAR file.
The URL for accessing a form directly must use this format:

http://localhost:8080/IDMProv/
getAFResourcelList.do?apwalLeftNavIitem=JSP_MENU RESOURCE REQUEST CLASSIC&wfdn=PRDEFD
N

The parameter PRDEFDN must be replaced with the DN of the request definition. Here’s a complete
example that includes this parameter:

http://localhost:8080/IDMProv/

getAFResourcelList.do?apwaleftNavIitem=JSP_MENU RESOURCE_ REQUEST CLASSIC&wfdn=cn=Tes
tPRDEF, cn=RequestDefs, cn=AppConfig, cn=Test-Antelope, cn=TestDrivers, o=novell

Creating Forms for a Provisioning Request Definition 171

172 User Application: Design Guide

6.1

Creating the Workflow for a Provisioning

Request Definition

This section provides details on creating the workflow for a provisioning request definition. Topics

include:

¢ Section 6.1, “About the Workflow Tab,” on page 173

¢ Section 6.2, “Adding Activities to a Workflow,” on page 177

¢ Section 6.3, “Adding Flow Paths,” on page 182

¢ Section 6.4, “Configuring Flow Paths,” on page 182

¢ Section 6.5, “Guidelines for Creating Workflows,” on page 184

¢ Section 6.6, “Guidelines for Creating Roles Based Workflows,” on page 192

¢ Section 6.7, “Guidelines for Creating Resource Based Workflows,” on page 201
¢ Section 6.8, “Debugging a Workflow,” on page 207

¢ Section 6.9, “Provisioning Multiple Individuals with One Workflow Instance,” on page 208
¢ Section 6.10, “Making Distinguished Name References Portable,” on page 210
¢ Section 6.11, “Configuring Digital Signature Support,” on page 210

About the Workflow Tab

You use the Workflow tab to display the Workflow page. You use the Workflow page to define the
behavior of the workflow for the provisioning request definition. The Workflow page consists of a
canvas, a palette, and associated views.

Creating the Workflow for a Provisioning Request Definition

173

Figure 6-1 Workflow Page

] sample &3
& Start
farward
¥
G Single Approval
v approved ® deried
-

-~
f_?ﬂ Log For approval activity f_?ﬂ Log Finish denied

P— fonward
¥

j Entitlement Provisioning Activity
-
fanward

[Finish

Overviews |Workflow <~ Forms | Signature Declarations

6.1.1 Canvas

Palette 4
[% Select
i Marguee
| Flow Path
[= Activities *
@ Start
G Approval
[
Branch
Merge
-__‘,'}, Condition

g Mapping

;3 warkflow Status
@ E-Mail
2 Role Binding
l__..| Role Request
| Start WorkFlow
f}_q Finish
<& | Intearation
[.== Provisioning *
j Entitlement
uZ. Entity

The canvas provides a graphical view of the activities in the workflow. When you create a new
provisioning request definition that is not based on a template, the canvas is blank except for a Start

activity and Finish activity.

If you right-click anywhere on the canvas, a menu is displayed. The menu includes the following

commands:

Table 6-1 Workflow Menu

Item

Description

Delete

Show Activity Ids

Deletes the selected activity or flow path.

Switches the workflow editor between displaying activity names and
Activity Ids.

Use the Activity Id property to specify a meaningful value for the
Activity Id. By default, the value is ActivityNN where NN is a unique
number (associated with the order in which the activity was added to
the palette). When errors associated with activities are detected
during validation, Designer identifies the activity in which the error
occurred by activity ID. When this is the case, turn on the display of
activity IDs in order to locate the activity on the canvas.

You can specify whether activity names or activity Ids are displayed by
default by choosing Window > Preferences > Provisioning >
Workflows > Diagram Preferences > Show Activity Ids.

174 User Application: Design Guide

6.1.2

Item

Description

Show Flow Path Types

Show Properties

Show Data Item Mapping

Show E-Mail Notification

Turns the display of flow path types (for example, forward, approved,
denied) on and off. When Show Flow Path Types is turned on, a label
is displayed on each flow path indicating the flow path type.

Displays the Properties view for the selected activity. If no activity is
selected, it displays the Properties view for the Workflow itself.

Displays the Data Item Mapping view for the selected activity.

Displays the E-Mail Notification view for the selected activity.

You can use the Zoom and Scale sliders on the toolbar to make it easier to view the workflow:

¢ Zoom: Increases or decreases the magnification of the workflow display. You can make portions
of the workflow display larger and view more detail, or make the workflow display smaller and
view more of the workflow. Click the rectangle to the right of the Zoom slider to return to 100%

magnification.

Scale: Increases or decreases the spacing between items in the workflow display. For example, if

your workflow has items with many flowpaths between them, you can increase the scale to
make it easier to see individual flow paths. Click the rectangle to the right of the Scale slider to

return to 100% scale.

Palette

The palette provides icons for activities that can be dragged onto the canvas to create the workflow. It
also provides tools for manipulating the icons and for linking activities:

Figure 6-2 Workflow Palette

Palette
[Select
[:l Marquee
| Flow Path
|.=% Activities
d? Stark
‘13 Approval
&

Branch

Merge
:> Condition

SE Mapping

gg WarkFlow Status
@ E-Mail

3= Role Binding
|_=| Role Request
1!'];. Start Workflow
f}_q Finish

| | Intearakion
.=~ Provisioning

:J Entitlement
n?; Entity

Creating the Workflow for a Provisioning Request Definition 175

The palette includes the following tools:

Table 6-2 Workflow Palette

Tool Description

Select Selects individual nodes or flow paths. To select a node, click the Select tool,
then click a node.

Marquee Selects multiple nodes or flow paths. Use this tool to move items as a group. To
select multiple items, click the Marquee tool, then click in an area outside of the
items that you want to select. Hold down the mouse button and drag over the
items that you want to select, then release the mouse button.

When multiple items are selected, only the properties for the first item selected
are displayed in the Properties view (see Section 6.1.3, “Views,” on page 176
for information about Views).

Flow Path Creates flow paths between nodes. Flow paths provide connection logic for
connecting nodes. For information about connecting nodes, see Section 6.3,
“Adding Flow Paths,” on page 182.

Activities (for example, Start, Inserts the selected activity into the workflow. For information about adding

Approval, Log) activities, see Section 6.2, “Adding Activities to a Workflow,” on page 177. For
detailed descriptions of the activities, see Chapter 7, “Workflow Activity
Reference,” on page 213.

6.1.3 Views

176

The Workflow page also includes the Properties, Data Item Mapping, and E-Mail Notification views:

Figure 6-3 Workflow Views

e S—

m.nw e

You can right-click the icon for an activity to select a view from a context menu. Not all activities
utilize all views. The following table identifies the views and the activities that use them:

Table 6-3 Views for Activities

Activity Properties E-Mail Notification Data Item Mapping

Start X

Approval X X
Log
Branch

Merge

X X X X X X

Condition

User Application: Design Guide

Activity Properties E-Mail Notification Data Item Mapping

Mapping
Workflow Status
E-Malil

Role Binding
Resource Request
Role Request
Start Workflow
Finish

Rest

Integration

Entitlement

X X X X X X X X X X X X

xX X X X

Entity

6.2 Adding Activities to a Workflow

1 Click the Workflow tab. A graphical representation of the workflow for the provisioning request
definition is displayed:

P B

l

¥ Finish

Because every workflow must have a Start activity and Finish activity, these activities are added
to the canvas automatically. The Start Activity is connected to the Finish Activity with a forward
link.

2 To add an activity to the workflow, click the icon for the desired activity in the palette and drag
the icon onto the workspace.

You can insert an activity between activities that are linked by a flow path by dropping the
activity onto the flow path. For information about defining flow paths between activities, see
Section 6.3, “Adding Flow Paths,” on page 182. After you have added an activity to the
workflow, you should set the properties of the activity (see Section 6.2.1, “Setting the General
Properties of an Activity,” on page 177). For detailed information about configuring the different
types of activities, see Chapter 7, “Workflow Activity Reference,” on page 213 and Chapter 8,
“Working with Integration Activities,” on page 267.

6.2.1 Setting the General Properties of an Activity

1 Right-click the activity icon for which you want to set properties and select Show Properties from
the menu.

You can also display the Properties tab by selecting Show Properties from the PRD menu.

Creating the Workflow for a Provisioning Request Definition 177

|
v of cut
| [Ecopy
forwz
T

A

N ¥ Delete
forvafo

Select Al
v Show Activity Ids

v Show Flow Path Types
& approval
g

Show Data Ttem Mapping
/ Edit Activity Id...

= quf{pprova i

The Properties view is displayed:

2 Click in the column for a property to set the property. For information about the properties for
each activity, see Chapter 7, “Workflow Activity Reference,” on page 213.

Each activity has a default name. We strongly recommend that you replace the default names of
activities with a descriptive Activity Id that describe the specific purpose of the activity in the
workflow. This makes it easier to understand the workflow when you look at the graphical
display of the workflow. It also makes comments displayed in the User Application easier to
understand. For example, the following figures show comments in the User Application using
default IDs and descriptive IDs.

Figure 6-4 Activities in User Comments Using Default Names

Date Actieity User Comments
1/ ATL007 045354 P First approval IMProy User task assigned Lo reviewer Margo Mackenzie
OHIATLO07 DEIHIT PM First approval TMProw Usee task claimed by reviewer Margo Mackenzice
0142007 04361 P First approval 1MFrow e task approved by redewes Margo MacKenzie
000 Do 007 Dk SiY] P second approval IDaFron User task assigned TO reviewer Human Resources
O/ D007 D 5638 P Second approval InsaPron User tatk claimed by reviewer Jane Smith
1857 = |

¥ Show User Comments
[Shem Systomn Cormmen ts

Refresh | Ciose

Figure 6-5 Activities in User Comments Using Descriptive Names

Date Activity User Comments
ONOALOOT U045T P Manager Approval Wirar User task assigned Lo reviewer Margo Mackenzie
NI DATLO07 T30 1T P Manager Approval MPrey User task claimed by revimeer Margo MacKenzie
01042007 03:03:20 P Manager Approal 1MProY User task approved by reviewes Margo MacKenzie
00 D2 007 (A2) P 1R Approval iwaPrey User task assigned to reviewer Human Resources
0 e 007 0 P MR Approval Iwarrey User tatk claimed by reviewer Jane Smith
187 = |

[¥ Shaw User Comments
[Shem Systomn Cormmen ts

Refresh | Ciose

To change the Activity Id:

1 Right-click the activity icon for which you want to change the Activity Id and select Edit Activity
Id.

178 User Application: Design Guide

of Cut

[=/Copy

¥ Delete
Select Al
v Show Activity Ids
W Show Flow Path Types

Show Properties
Show Data Item Mapping

The Edit Activity Id wizard displays.

@ Edit Activity Id
Enter a value to be used for the activity id. The Activity Id must be unique and must be a valid Java identifier.

Activity Id: | approval_B

(9] Bach Mext Finish Cancel

2 Type the Activity Id name you want to use. The name can include letters, numbers, and the
underscore (_) character.

3 If the activity was not used to define any expressions, click Finish. If the activity was used in
expressions, click Next. The wizard displays the expressions where the Activity Id should be
updated with the new name.

@ Edit Activity Id
The various expressions which will be updated is fisted below

Update Updated Expressions
W] Mew_Name.gethame {locale)
I 1Dvault.get{New_Name.getAddressee(), 'user', 'Firsthame')
¥l 1DVault.get{New_Name.getAddressee(),'user', manager’)
b 'LogMew_Name'
] (approval_A.getAction(}).equals("DENIED") || (New_Name.getAction()).equals("DENIED™)
] (approval_A.getAction(}).equals("DENIED™) || (New_Name.getAction(}).equals"DENIED™)
< |

Neit [mnsh || cancel |

Creating the Workflow for a Provisioning Request Definition 179

4 Review the items displayed in the panel. For items that you do not want updated, deselect the
checkbox in the Update column.

5 Click Finish when complete.

6.2.2 Defining the Data Item Mappings

You use the Data Item Mapping view to map data from the data flow into fields in a form (pre-
activity mapping) and to map data from the form back to the data flow (post-activity mapping).

1 Right-click the activity icon for which you want to set data item mappings and select Show Data
Item Mapping from the menu.

You can also display the Data Item Mappings tab by selecting Show Data Item Mapping from the
PRD menu.

The Data Item Mapping view is displayed:

| Owervizw | Workflow Forms| |
Properties Ernail Motification | [iaka Flow | Provisioning Yiew | Palicy Set | Project Checker | =0
* pre Ackivity " Paost Ackiviby
Source Expression | Target Form Field | Data Type
approval.getMamellocals) Litle skring
subheading skring
initiakar initiakar string
recipient recipient skring
process,getTimestampl) initiatedTime date
Fowdata.get('reason’) reason skring
apwalomment string
« | ©

2 For pre-activity mapping, click in the Source Expression field for the item that you want to map,
then specify an expression. For post-activity mapping, click in the Target Expression field for the
item that you want to map, then specify an expression.

Pre-activity maps can be used for
¢ Initializing form control values.
¢ Setting default values for form controls.
¢ Populating complex form controls with data lists derived from LDAP queries.

¢ Passing data from form controls of a previous activity to a form control in the current
activity.

¢ Calling external Java classes to process data.
Post-activity maps can be used for

¢ Creating new data items in flowdata.

¢ Moving form control data from an activity into flowdata.

¢ Calling external Java classes to process data.

For detailed information about data item mapping for the different types of activities, see
Chapter 7, “Workflow Activity Reference,” on page 213.

180 User Application: Design Guide

6.2.3

The Start Activity can have hard-coded strings, system variables like process locale and
recipient, and Identity Vault expressions (created using the ECMA Expression Builder VDX
Expr Panel) in pre-activity maps.

Leave the Source Expression blank in pre-activity maps for form fields that the user is expected
to fill in. Alternatively, create a source expression to supply a default value for form fields that
the user is expected to fill in. In either case the form field needs to be defined as editable. See
Section 5.5.4, “General Form Control Properties,” on page 128 for information about setting the
properties of form fields.

Defining the E-Mail Notification Settings

You use the E-Mail Notification view to select an e-mail template, and to specify expressions to
provide values for named parameters included in the e-mail template. E-mails are sent when a new
Approval activity starts (to notify approvers that they have work to do) and when the Finish activity
completes (to notify the initiator that the workflow is done).

1 Right-click the activity icon for which you want to set properties and select Show E-Mail
Notification from the menu.

You can also display the E-Mail Notification tab by selecting Show E-Mail Notification from the
PRD menu.

The E-Mail Notification view is displayed:

o |
| Overview lWorHIow Farms | Signature Declarations| |
Properties|Data Item Mapping nail Motificatio =0
Email Template Icn=Pr0visi0ning Approval Completed Motification, cn=Default Motification Collection,cn=security j
Source | Targek
process.gethamel) Signature Declarations requestTitle
process.getRequestld() requestld
process.getTimestamp().baString() requestSubmissionTime
process,getApprovalStatus)) requestStatus
IDvaule, getlinitiator, ‘user’, 'Firsthama" + ' ' + IDVault, gek(initiator, ‘user’, ‘LastMame") initiatorFullName
ID%ault. get{recipient, 'user', 'Firsthame) + '' + IDVault, get{recipient, 'user', 'LastMarme") recipientFullilame
d | o

2 Click the E-Mail Template field, then select an e-mail template from the list of defined templates.

Editing an e-mail template: You can edit an e-mail template in Designer. To do this, select an
Identity Vault in the Modeler, then scroll to Default Notification Collection in the Outline View.
Right-click a template, then select Edit Template.

Localized e-mail templates: By default, Designer displays the default e-mail notification
templates. When you select a default template, the e-mail is in the user’s default language (if the
default is a supported language). You can set the Show all localized e-mail templates preference to
True so that Designer also allows you to select from the list of localized e-mail templates. The
localized templates have the same name as the default, but the Java language code is appended
to the name of the e-mail template. For example, cn=Provisioning Notification Activity_es,
cn=Default Notification Collection, cn=security indicates this is the Spanish language version of
this template. When you select a localized template, the e-mail is in the language of the template
regardless of the user’s default language.

3 Click in the Source field for a Target token and specify an ECMAScript expression that assigns a
value to the token.

See Chapter 7, “Workflow Activity Reference,” on page 213 for information about e-mail
notification settings.

Creating the Workflow for a Provisioning Request Definition 181

6.3 Adding Flow Paths

1 Click the Flow Path tool in the palette:

—— Palette — 2
[:S Select
bl Marquee
| J Flow Path [
A N g
i~ Activities
Create Flow Path
|~ Provisioning *

The mouse pointer turns into a flow path pointer:

%

2 Click the activity from which you want the flow path to begin, then click the activity on which
you want the flow path to end:

P Start fj[dj%ﬁ

G Approvwal

¥& Finish

The activities are connected.

3 To configure the flow path, click the Select tool in the palette, right-click the flow path, then
select Show Properties.
For information about configuring flow paths, see Section 6.4, “Configuring Flow Paths,” on
page 182.

6.4 Configuring Flow Paths

After you have added a flow path to a workflow diagram, you can specify the path type. For details
on adding flow paths to a workflow, see Section 6.3, “Adding Flow Paths,” on page 182.

To configure a flow path:

1 Click the flow path in the workflow diagram.

182 User Application: Design Guide

1% start

¥
{5 First approval

v“/

r_ﬂ Log For approval 1 ackiviky

v Q

7| Log For approval _2 activity r_\gJ Log for all denied activities

:

Second approval

RV

"h

Entitlement Provisioning Ackivity

¥ Finish

2 Set the flow type on the Properties tab by selecting one of the options in the Type drop-down list.

R o (P (P | T O

Property
Tvpe

Creating the Workflow for a Provisioning Request Definition 183

184

6.5

The flow path types are described in the following table:

Flow Type Description

forward Forwards control to the next activity in a workflow.
The forward flow path is available after all activities except:
+ Approval
+ Condition
+ Finish
approved Determines what happens when a user approves a request.
The approved flow path is valid only after the Approval activity.
denied Determines what happens when a user denies a request.
The denied flow path is valid only after the Approval activity.
refused Determines what happens when a user refuses a request.
The refused flow path is valid only after the Approval activity.

timedout Determines what happens when an Approval activity times out because the
user did not respond.

The timedout flow path is valid only after the Approval activity.

error Determines what happens when an Approval or Condition activity terminates
with an error.

The error flow path is valid only after the Approval and Condition activities.
true Determines what happens when a conditional expression evaluates to True.
The True flow path is valid only after the Condition activity.
false Determines what happens when a conditional expression evaluates to False.

The False flow path is valid only after the Condition activity.

If the Properties tab is not displayed, right-click the flow path in the workflow diagram and select
Show Properties.

Guidelines for Creating Workflows

To create well-formed workflows, you need to understand the rules for adding activities and flow
paths. In addition, you need to understand how to manipulate workflow data. See the following
topics:

¢ Section 6.5.1, “Rules for Activities,” on page 185

¢ Section 6.5.2, “Rules for Flow Paths,” on page 185

¢ Section 6.5.3, “Understanding Workflow Data,” on page 187

NOTE: You can validate a provisioning request definition before you deploy it. For more
information, see Section 2.6, “Validating Provisioning Objects,” on page 24.

User Application: Design Guide

6.5.1 Rules for Activities

When adding activities to a workflow, follow these rules:

+ A workflow must have only one Start activity and one Finish activity.

+ A workflow can have zero or more of the following activity types:

Approval activity
Log activity
Branch activity
Merge activity
Condition activity
Mapping activity
Workflow Status
E-Mail activity
Role Request activity
Role Request Binding activity
Start Workflow
Rest activity
Integration activity
Entitlement activity
Entity activity
¢ Each Branch activity must have a corresponding Merge activity.

¢ The role activities (Role Request and Role Request Binding) can only be used for workflows that
support roles.

¢ The resource activities (Resource Request and Resource Request Binding) can only be used for
workflows that support resources.

¢ To ensure that the provisioning step is performed, a workflow must have at least one
Entitlement activity or Entity activity.

6.5.2 Rules for Flow Paths

When adding flow paths to a workflow, follow these rules:
+ With the exception of the Start activity, all activities can have one or more incoming flow paths.
The Start activity cannot have any incoming flow paths.
¢ The Finish activity cannot have any outgoing flow paths.
¢ There can be only one flow path out of the Start activity. The flow path type must be forward.

¢ There can be between one and five flow paths out of the Approval activity. The valid flow path
types are approved, denied, refused, timedout, and error. At runtime, only one of the flow paths
is executed.

¢ There can be only one flow path out of the Entitlement, Entity, Log, and Merge activities. The
flow path type must be forward.

¢ There can be two or three flow paths out of the Condition activity. The valid flow path types are
true, false, and error. The true and false flow paths are required; the error flow path is optional.

¢ There can be one or more flow paths out of the Branch activity. The flow path type must be
forward for each path. At runtime, all of the flow paths execute.

Creating the Workflow for a Provisioning Request Definition 185

¢ Flows paths out of Role Binding activities must connect to the Finish activity.

¢ There can be between one and three flow paths out of the Rest activity. The valid flow path types
are forward, error, and timeout.

The following table summarizes the rules for adding flow paths into and out of an activity:

Table 6-4 Number of Flow Paths Permitted for Each Activity

Activity Inbound Paths Outbound Paths

Start 0 1 Must always be forward.

Approval lton 1 to 5 Approved, denied, refused, timedout, or error
Log lton 1 Must always be forward

Branch lton lton

Merge lton 1 Must always be forward

Condition lton 2 to 3 True and false are required; error is optional
Mapping lton 1

Workflow Status lton 1 Must always be forward

E-Mail lton 1 Must always be forward

Role Request Binding 1 1 Must always be forward and connect to Finish activity
Role Request 1 2 forward, error

Resource Request 1 1 Must always be forward and connect to Finish activity
Binding

Resource Binding 1 2 forward, error

Start Workflow 1 2 forward, error

Finish lton 0

Rest lton

Integration lton 1 to 4 Success, timedout, error, fault

Entitlement lton 1 Must always be forward

Entity lton 1 Must always be forward

The following table summarizes which activity types can be a source or target for each of the
available flow path types:

Table 6-5 Flow Path Types Allowed for Each Activity

Succes

Refuse Timedo True False Error s Fault

d ut

Activity (';O”’V"’“ dApprO"e Denied

Start Source

Approval Target Source/ Source/ Source/ Source/ Target Target Source/
Target Target Target Target Target

186 User Application: Design Guide

6.5.3

Activity gorwar Qpprove Denied Refuse ;Ij'ltmedo True False Error Succes Fault

Log Source/ Target Target Target Target Target Target Target
Target

Branch Source/ Target Target Target Target Target Target Target
Target

Merge Source/ Target Target Target Target Target Target Target
Target

Condition Target Target Target Target Target Source Source/ Source/

/Target Target Target

Mapping Source Target Target Target Target Target Target Target

Workflow Source/

Status Target

E-Mail Source/
Target

Role Source/ Target Target Target Target Target

Request Target

Binding

Role Source/ Target Target Target Target Source/

Request Target Target

Resource Source/ Target Target Target Target Target

Request Target

Binding

Resouce Source/ Target Target Target Target Source/

Request Target Target

Start Source/ Target Target Target Target Source/

Workflow Target Target

Finish Target Target Target Target Target Target Target Target

Rest Source/ Target Target Target Source/ Target Target Source/ Target Target
Target Target Target

Integratio Source/ Target Target Target Source/ Target Target Source/ Source Source

n Target Target Target

Entitteme Source/ Target Target Target Target Target Target Target

nt Target

Entity Source/ Target Target Target Target Target Target Target
Target

Understanding Workflow Data

When you're creating a workflow, you can manipulate workflow data to suit the needs of your
provisioning application.

¢ “Data Objects and Variables” on page 188

¢ “Creating New Data Items” on page 190

Creating the Workflow for a Provisioning Request Definition 187

¢ “Modifying Data Items” on page 190

+ “Working with Complex Data Item Mappings” on page 190
¢ “Moving Form Control Data to Flowdata” on page 191

¢ “Moving Flowdata to Form Controls” on page 191

¢ “About Mapping Activity Operations” on page 191

Data Objects and Variables

The workflow uses a single process object to manage information about the process. A separate
activity object is created for each activity in the workflow and form data is maintained for each
activity that provides for user interaction.

The data objects associated with each user interface control on a form (text field, drop-down list, and
so forth) can be modified immediately prior to the execution of the corresponding activity (Start
activity or Approval activity). In addition, this data can be retrieved immediately after execution of
the activity. After control has been passed to the next activity, the form control data is no longer
available. For this reason, the workflow provides a special object called flowdata that allows you to
define your own data items. You can add your own variables to this object to keep track of
information that is important to your workflow, including form data that would otherwise be lost.

The following table summarizes the categories of workflow data:

Table 6-6 Categories of Workflow Data

Data Object Lifetime Editable Creator

process Workflow No System

activities Workflow No System

activity forms Activity Yes System and workflow designer
flowdata Workflow Yes Workflow designer

NOTE: The workflow designer is the person who creates the workflow in Designer.

The following table describes the variables for each type of object:

Table 6-7 Data Variables in a Workflow

Object Variable Description
process approvalStatus The current status of the process.
category The provisioning category (for example, Entitlements)

selected by the person who initiated the request.

container dn The distinguished name of the container defined for the user
application at install time.

description The description of the provisioning request definition.

group container dn The distinguished name of the group container defined for the
user application at install time.

188 User Application: Design Guide

Object Variable Description
id The unique IDVault ID (CN) of the provisioning request
definition.
initiator The distinguished name of the person who initiated the
request.
locale The current locale.
name The workflow process name.
provisioning driver dn The distinguished name of the provisioning driver defined for
the user application at install time.
recipient The distinguished name of the intended target of the
provisioned resource.
user container dn The distinguished name of the user container defined for the
user application at install time.
requestiD The ID for the provisioning request.
timestamp The time the process was initiated.
approval- action The action taken by the user.
activity-name
addressee The current addressee for the approval activity.
name The name of the activity.
timestamp The time that the activity was queued on the work list.
user The user who is associated with the current activity.
workld The system generated unique ID of the current workflow

form-name

flowdata

custom-form-controls

custom-variables

activity.
Any user interface control you add to a form.

Any custom variables you create to hold data needed for the
workflow.

If you use one of the installed templates to create your
workflow, the flowdata object can have a variable called
reason, which contains text copied from the reason field on
the initial request form.

You can reference these objects in ECMAScript expressions. Script expressions in a workflow can at
any time refer to data items that are bound upstream in the flow. However, workflow expressions
cannot refer to data items that are created downstream (because these data items don’t exist yet) or to
data bound on other branches in a flow that supports parallel processing (because these branches
could be executing concurrently with the current activity).

Creating the Workflow for a Provisioning Request Definition

189

190

Creating New Data Items

You can create a new data item on the flowdata object by specifying a post-activity target expression
on the Data Item Mapping tab for the Start or Approval activities. If you specify a name for a new data
item in the Target Expression column, this automatically creates the variable. Any activity executed
after this activity can then access the data item.

For example, you might want to map the form field called reason to the target expression
flowdata.myReason. The variable myReason then becomes a new data item that is available to all
activities executed later in the workflow.

Modifying Data Items

You can modify a data item by specifying a pre-activity expression on the Data Item Mapping tab for
the Start or Approval activities. For example, to prepend a dollar sign to a price, you might map the
following source expression to a target form field called Price:

"s" + flowdata.get ('cost')
When the form displays to the user, the Price data appears as follows:
SXX . XX

Another example might be computing the total cost by adding the tax to the base cost. To do this, you
could map the following source expression to a target form field called TotalCost:

Number (flowdata.get ('cost')) + Number (flowdata.get('tax'))

Working with Complex Data Item Mappings

All data in the flowdata object is maintained in XML, so you can create data items in a hierarchical
fashion as well. For example, suppose you have a workflow form that allows a user to ask for access
to two internal systems, one for accounts payable and one for receivables. Suppose the form has
(among other fields) two Yes/No fields named Acct_Pay and Acct_Rec. In the post-activity data item
mappings, you might create two mappings as follows:

Table 6-8 Complex Data Item Mapping Examples

Source Form Field Target Expression
Acct_Pay flowdata.SystemAccess/AcctPay
Acct_Rec flowdata.SystemAccess/AcctRec

This would create an XML element named SystemAccess with two child elements named AcctPay
and AcctRec. One reason to structure data in this way is for clearer organization and management of
data in complex workflows containing many forms and data items. To retrieve data from these
hierarchies, the following syntax would be used:

flowdata.get ('SystemAccess/AcctPay')

For complete details on building ECMAScript expressions, see Chapter 9, “Working with ECMA
Expressions,” on page 315.

User Application: Design Guide

Moving Form Control Data to Flowdata

All form controls you create (except for DNDisplay) are automatically made available for use in pre-
activity and post-activity expressions on the Data Item Mapping tab for the activity that uses the form.
For example, suppose you want to make a user’s entry data in control ACONTROL on form AFORM
in AACTIVITY available for use in a subsequent activity. To do this, you would select AACTIVITY in
the workflow, select the Data Item Mapping tab, and click the Post Activity Mapping radio button. Next
to the source form field ACONTROL, you would then enter a target expression in the following
format:

flowdata.my ACONTROL

Any subsequent activity in the workflow would then be able to access this data by using pre-activity
source expressions such as these:

flowdata.get ('my ACONTROL')

flowdata.getObject ('my ACONTROL')

Moving Flowdata to Form Controls

You can also move flowdata values into form controls. The simplest case is moving a single text value
into a form control. In the example above, suppose ACONTROL is a simple text entry field. In this
case, to move it into another text entry field in an activity called ZACTIVITY, you would select
ZACTIVITY in the workflow, select the Data Item Mapping tab, and click the Pre Activity Mapping
radio button. Next to the target form field, you would then enter this source expression:

flowdata.my ACONTROL

To move more complex form control data (for example, a MultiValue DN control) into another form
control, you can use the getObject() expression syntax. For example, assuming ACONTROL is a
MultiValue DN control, you could use this source expression:

flowdata.getObject ('my ACONTROL')

To move data into a form control, you need to be aware of type constraints. For example, you should
not try to move text-based data into a numeric control, or a Boolean value into a DN control.

About Mapping Activity Operations

In the mapping activity, the source expressions are evaluated before they are assigned to the target
expression. If the source expression does not exist prior to the mapping activity, no value is assigned
to the target expression.

For example, if flowdata.get(“textfield”) maps to flowdata.copyoftextfield and
flowdata.get("copyoftextfield") maps to flowdata.copyoftextfield2, the value of
flowdata.copyoftextfield2 is empty at the end of the mapping activity because the value of the
flowdata.copyoftextfield is assigned only after the mapping activity.

To assign values to the target expression, you can use either of these options:

¢ Multiple mapping-activities.

+ Single mapping-activity but repeat the source expression.

Creating the Workflow for a Provisioning Request Definition 191

QI Error Log | s Project Checker Data Ikem Mapping &2 | [Problems

+ X 49
Source Expression Target Expression
Flowdaka, oehi texkfield) flowdata.copyoftextfield
Flovedata, gek"textField" Flovedata . notcopyoftextfield
m* 102M of 2540 [

When you repeat the source expression, the flowdata.get(“textfield”) maps to
flowdata.copyoftextfield and flowdata.get("textfield") maps to flowdata.copyoftextfield2.

6.6 Guidelines for Creating Roles Based Workflows

Roles based workflows must follow the same guidelines outlined in Section 6.5, “Guidelines for
Creating Workflows,” on page 184. In addition, roles based workflows have their own unique
requirements. They are described in the following sections:

¢ Section 6.6.1, “About Role Approval Workflows,” on page 192

¢ Section 6.6.2, “Writing Custom Role Workflows,” on page 194

¢ Section 6.6.3, “About Separation of Duties Approval Workflows,” on page 198

¢ Section 6.6.4, “Customizing the Standard Separation of Duties Workflow,” on page 201

6.6.1 About Role Approval Workflows

Role approval workflows are specialized workflows that provide support for role approval and
revocation on the User Application’s Roles tab. The Roles Based Provisioning Module includes a read-
only Role Approval workflow (named Role Approval) whose design pattern supports:

¢ The ability to process role approvals in either serial or quorum mode.

¢ The retrieval of approver DNs from the role object (nrfRequest). If you create a custom
workflow, the approvers must be defined in the workflow. However, this might lead to
addressee evaluation problems and less security concerning who can approve a role.

¢ The ability to display the role using localized display names.
¢ All nrfRequest object mappings for request and approval forms.
¢ Logging and reporting functions.

¢ Read-only display of request information. The role approval workflow does not allow changes
to the request. Approvers have only the ability to approve or deny the role request.

¢ An e-mail notification is sent to all approvers of role approval workflows. A completed
notification e-mail is sent upon completion of the role approval workflow. The recipient e-mail
address is used when the workflow is intended to be assigned to a user identity.

This pattern is shown in Figure 6-6 on page 193.

192 User Application: Design Guide

Figure 6-6 Default Role Approval Workflow

P start

rarg

=3

Sek up counter

rarg

=)

Localize Display

fonmard
T

2> Check For Processing Type ﬁ Increment Approver Counter

/B falxe\“’/[mw d

] true

Y
(‘3 Approve Role Request {Quorum) (‘3 Approve Riple Request (Serial)

\ / Q derinr PRIV ¢
e
v approve \A

G detis

B: Deny Assigri 2 Has More Approvers
@ falze

&& Approve Assignment OF Role

forward

P& Finish

The components of this workflow, and their responsibilities are summarized in Table 6-9.

Table 6-9 Standard Role Approval Activities

Activity Name Activity Type Description

Start Start Logical starting point for all workflows. For role
approvals it must instantiate the nrfRequest object.

Set up counter Mapping Sets up the counter for the number of approvers in
case the mode is Serial.

Localize Display Mapping Sets up the display labels for each of the associated
display names for the user’s locale.

Creating the Workflow for a Provisioning Request Definition ~ 193

Activity Name Activity Type Description

Check for Processing Condition Determines whether the approval is a quorum
Type condition by setting the Condition property to this
ECMA expression:

nrfRequest . isQuorumProcess ()

If the quorum condition exists, control proceeds to the
Approve Role Request (Quorum). If the quorum
condition does not exist, control proceeds to the
Approve Role Request (Serial).

You specify the processing type for the role approval
when you set up the Roles Catalog.

Approve Role Request Approval This is where the decision to approve or deny the

(Quorum) request is recorded as part of the workflow instance.
The quorum condition required to make the process
successful is retrieved from the nrfQuorum attribute of
the nrfRequest object.

Approve Role Request Approval This is where the decision to approve or deny the
(Serial) request is recorded as part of the data flow associated
with the workflow instance.

The workflow loops through the list of approvers found
in the nrfRequest object. The request is approved if all
approvers in the serial process approve the request.
The request is denied upon the first rejection from an
approver in the serial process

Deny Assignment of Role Role Binding Changes the deny attribute in the nrfRequest object to
true.

Approve Assignment of Role Binding Changes the approve attribute in the nrfRequest

Role object to true.

Finish Finish Logical end point of all workflows.

To use the standard Role Approval workflow in your user application, you must specify your own
users as Trustees. For information on setting the Trustees property, see Section 4.2.6, “Modifying
Settings of a Provisioning Request Definition,” on page 96.

6.6.2 Writing Custom Role Workflows

194

If the standard role approval workflow does not support your business needs, and cannot be
customized to do so, you can write your own. At a minimum, a custom role approval workflow must:

¢ Contain two Role Binding activities

One Role Binding activity must be set to approved and the other set to denied. You must link
each of the Role Binding activities to the Finish activity. If the workflow does not meet this
requirement, it is invalid, and Designer prevents you from deploying it. The Role Service driver
needs these values to set the status for the workflow and to then apply the logic to associate the
role to the identity.

¢ Contain the following control in the request form:

¢ Form Field Name: nrfRequestDN

User Application: Design Guide

¢ Data Type: Role Request

¢ Control Type: Text
¢ Instantiate the nrfRequestDN in the Pre Activity Data Item Mapping.
¢ Contain the following in the Post Activity Data Item Mapping;:

¢ Source Form Field: nrfRequestDN

¢ Target Expression: flowdata.nrfRequestDN

¢ Data Type: dn

+ Not contain the following ECMA expressions in the Data Item Mapping or Properties
definitions because they might return null:

* getApprovalDN ()
¢ getAllApproversDN ()
¢ getAllSodApproversDN ()

Because Designer and the User Application user interface do not allow entry of approvers for
custom role approval workflows, you must specify the approvers in the workflow itself.
Therefore, if you create a custom workflow based on a copy of the Role Approval or SoD
Conlflict Approval provisioning request definitions, you must remove the ECMA methods from
Data Item Mapping or Properties definitions.

In the following example, a user requests a role and the user’s manager approves it.

Creating the Workflow for a Provisioning Request Definition 195

Figure 6-7 Sample Custom Role Approval Workflow

Fe start
|

forward

¥
';i Localize Display
]

forward
¥
& Manager Approval
denied
v appio, eu:l
/ WQr
&= approve Assignment OF Role 8= Deny Assignment OF Rale
2 i

fnrwﬂ / /

\ f 2 d
\W/Drwar

P& Finish

The components of this workflow, and their responsibilities are summarized in Table 6-10.

196 User Application: Design Guide

Table 6-10 Sample Custom Workflow Components

Activity Name

Activity Type

Description

Start

Localize Display

Manager Approval

Approve Assignment of Role

Deny Assignment of Role

Finish

Start
Mapping

Approval

Role Binding

Role binding

Finish

Logical starting point of all workflows.

Sets up the display labels for the user’s locale.

This is where the decision to approve or deny

the request is recorded as part of the workflow

instance. The role request approval is needed
only by the requestor’s manager.

Changes the approve attribute in the

nrfRequest object to true.

Changes the deny attribute in the nrfRequest
object to true.

Logical end point of all workflows.

The data item mapping for the sample custom role approval workflow is defined in Table 6-11

Table 6-11 Sample Custom Role Approval Workflow Data Item Mapping

Activity Name

Property Type

Property Value

Start

Localize Display

Manager Approval

Data Item Pre Activity

Data Item Post Activity

Data Item Source and
Target mapping

Addressee Property

Data Item Pre Activity

Data Item Post Activity

Source Expression: None

Target Form Field: nrfRequestDN

Data Type: dn

Source Form Field: nrfRequestDN

Target Expression: flowdata.nrfRequest/DN

Data Type: DN

Addressee

IDVault.get (recipient, 'user', 'manager')

) Pre activity () Post Activity

Source Expression

NrfRequest.getcn()

NrfReqUest getRequester()
MrfRequest.getCateqoryLocaleString(locale)
NrfRequest get SourceDNDisplayhame{ ocale)
NrfRequest get TargetDNDisplayMame(locals)
MrfRequest.getRequestDatef)
NrfRequest.getStartDate()

MrfRequest. getEndDats;)

HrfRequest, getDescription(y
NrfRequest.getStatusLocaleString(locale)

None

Target Form Field
titls

subheading
Fequesthumber
RequssterName
Operation
SourceDN
TargetDN
RequestDate
StartDate
EndDate
Description
CurrentStatus

Data Typs
string
string
dn

dn
string
string
string
date
date
date
string
string

Creating the Workflow for a Provisioning Request Definition

197

Activity Name Property Type Property Value

Approve Assignment of Action Property approved
Role

Deny Assignment of Action Property denied
Role

Finish None

6.6.3 About Separation of Duties Approval Workflows

Separation of Duties approval workflows are specialized workflows that allows a Separation of
Duties constraint to be overridden. The Roles Based Provisioning Module includes a read-only
Separation of Duties Approval workflow (named SoD Conflict Approval) whose design pattern
supports:

¢ The ability to process SoD conflicts in either serial or quorum mode.

¢ The retrieval of SoD approver DNs from the request object (nrfRequest). If you create a custom
workflow, the approvers must be defined in the workflow; however, this might lead to
addressee evaluation problems and less security concerning who can approve an SoD.

¢ The ability to display the SoD using localized display names.

¢ All nrfRequest object mappings for request and approval forms.

¢ Logging and reporting functions.

¢ Read-only display of requests. Approvers can only approve or deny the SoD conflict.

¢ An e-mail notification is sent to all approvers per SoD conflict found for SoD workflow
approvals. A completed notification e-mail is sent upon completion of the SoD approval
workflow. The recipient e-mail address is used when the workflow is intended to be assigned to
a user identity.

This pattern is shown in Figure 6-6 on page 193.

The roles subsystem allows one Separation of Duties approval flow for the Role subsystem. If you
choose to use a custom SoD approval flow, make sure that it works for all SoD situations.

198 User Application: Design Guide

Figure 6-8 Standard SoD Approval Workflow

I Start

fonmard

= Set up 500 counters
|

farward

L Localize Display
|

fonward

1

| true fonward

£ fahi/
r

13 Approve 50D Conflict (Quorum) G approve 500 Conflick (Serial)

Check For Processing Tvpe “E Increment Approver Counker

) deri
Y approved
(%) denied v 3@ tue
&: Deny Sod Conflick 7 Has Maore Approvers
B falze
\ fomrward

‘ Has Mare Sol Conflicks

3| true” B falze

= Increment SoD Counker 4: Approve Sob Conflkck
forward Fanward
forard
ﬁ Localize Sab Mame P& Finish

Creating the Workflow for a Provisioning Request Definition 199

The components of the workflow are described in the following table:

Table 6-12 Standard SoD Constraint Exception Approval Workflow Activities

Activity Name

Activity Type

Description

Start

Localize Display

Localize SoD Name

Check for Processing Type

Approve SoD Conflict (Quorum)

Approve SoD Conflict (Serial)

Deny SoD Conflict
Approve SoD Conflict
Has More SoD Conflicts and

Increment SoD Counter

Finish

Start

Mapping

Mapping

Condition

Approval

Approval

Role Binding
Role Binding
Condition and

Mapping activity

Finish

Logical starting point of all workflows.

Sets up the display labels for each of the
associated Display Names for the user’s locale for
the SoD conflicting Role.

Sets up the display labels for each of the
associated Display Names for the user’s locale for
the SoD conflcting Role.

Determines whether the approval is a quorum
condition by setting the Condition property to this
ECMA expression:

nrfRequest . isSodQuorumProcess ()

If the quorum condition exists, control proceeds to
the Approve SoD Conflict (Quorum). If the
quorum condition does not exist, control proceeds
to the Approve SoD Conflict (Serial).

You specify the processing type for the role
approval when you set up the Roles Catalog.

This is where the decision to approve or deny the
request is recorded as part of the workflow
instance. The quorum condition required to make
the process successful is retrieved from the
nrfQuorum attribute of the nrfRequest object.

This is where the decision to approve or deny the
request is recorded as part of the data flow
associated with the workflow instance.

The workflow loops through the list of approvers
found in the nrfRequest object. The request is
approved if all approvers in the serial process
approve the request. The request is denied upon
the first rejection from an approver in the serial
process

Changes the deny attribute in the nrfRequest
object to true.

Changes the approve attribute in the nrfRequest
object to true.

Loops through the SoD requests.

Logical end point of all workflows.

200 User Application; Design Guide

6.6.4 Customizing the Standard Separation of Duties Workflow

Separation of Duties conflict approval workflows are complex. Therefore, it is not recommended that
you write a custom version. Rather, it is recommended that you add new activities to a copy of the
standard SoD approval workflow. For example, you might want to add additional logging or
messages. This example illustrates a customized workflow that includes a new logging activity.

Figure 6-9 Adding Activities to the SoD Workflow

T start

fonward

#5| Log Security Alert
fanward

Set up 50D caunkters
fonward

Localize Display
fonward

‘}> Check For Processing Type
T A,

The Log Activity properties are shown in Figure 6-10.

Figure 6-10 Log Activity Properties

Property
Mame [EJ
Audic
Author ‘IDMR.oles’
Meszage "Security alert for separation of duties conflick. Approval process correlation id is: "+ NrfReguest. getCorrelationIdi)
Comment "Security alert for separation of duties conflick. Approval process correlation id is: "+ NrfReguest, getCorrelationIdi)

SoD Conflict approval workflows must follow the same rules as the role approval workflows as
described on Section 6.6.2, “Writing Custom Role Workflows,” on page 194.

6.7 Guidelines for Creating Resource Based Workflows

Resource based workflows must follow the same guidelines outlined in Section 6.5, “Guidelines for
Creating Workflows,” on page 184. In addition, resource based workflows have the unique
requirements described in the following sections:

¢ Section 6.7.1, “About Resource Approval Workflows,” on page 202
¢ Section 6.7.2, “Writing Custom Resource Workflows,” on page 204

Creating the Workflow for a Provisioning Request Definition 201

6.7.1

About Resource Approval Workflows

Resource approval workflows are specialized workflows that provide support for resource approval
and revocation on the User Application’s Roles tab. The Roles Based Provisioning Module includes a
read-only Resource Approval workflow (named Resource Approval) whose design pattern supports:

*

*

The ability to process resource approvals in either serial or quorum mode.

The retrieval of approver DNs from the resource object (nrfResourceRequest). If you create a
custom workflow, the approvers must be defined in the workflow; however, this might lead to
addressee evaluation problems and less security concerning who can approve a resource.

The ability to display the resource using localized display names.
All nrfResourceRequest object mappings for request and approval forms.
Logging and reporting functions.

Read-only display of request information. The resource approval workflow does not allow
changes to the request. Approvers have only the ability to approve or deny the resource request.

An e-mail notification is sent to all approvers of resource approval workflows. A completed
notification e-mail is sent upon completion of the resource approval workflow. The recipient e-
mail address is used when the workflow is intended to be assigned to a user identity.

This pattern is shown in Figure 6-11 on page 202.

Figure 6-11 Default Resource Approval Workflow

&

\ @ derite ﬁI/ approy =t
¥ coorove / 0| tue
G defis e \l

I start

reard

=)

Selk up counter

onard

% Localize Display

fonmard
T

3> Check For Processing Type ﬁ Increment Approver Counker
B falze

fonwegd
] true \/

Approve Raole Request {Quorum) G Approve Riple Request (Serial)

3> Has Mare Approvers
B falze

&: Approve Assignment OF Role
__,—J
forward

foﬁV

¥ Finish

202 User Application; Design Guide

The components of this workflow, and their responsibilities are summarized in Table 6-13.

Table 6-13 Standard Resource Approval Activities

Activity Name

Activity Type

Description

Start

Set up counter

Localize Display

Check for Processing
Type

Approve Resource
Request (Quorum)

Approve Resource

Request (Serial)

Deny Assignment of
Resource

Approve Assignment of

Role

Finish

Start

Mapping

Mapping

Condition

Approval

Approval

Resource Request Binding

Resource Request Binding

Finish

Logical starting point for all workflows. For resource
approvals it must instantiate the nrfResourceRequest
object.

Sets up the counter for the number of approvers in
case the mode is Serial.

Sets up the display labels for each of the associated
display names for the user’s locale.

Determines whether the approval is a quorum
condition by setting the Condition property to this
ECMA expression:

nrfResourceRequest . isQuorumProcess ()

If the quorum condition exists, control proceeds to the
Approve Resource Request (Quorum). If the quorum
condition does not exist, control proceeds to the
Approve Resource Request (Serial).

This is where the decision to approve or deny the
request is recorded as part of the workflow instance.
The quorum condition required to make the process
successful is retrieved from the nrfQuorum attribute of
the nrfResourceRequest object.

This is where the decision to approve or deny the
request is recorded as part of the data flow associated
with the workflow instance.

The workflow loops through the list of approvers found
in the nrfResourceRequest object. The request is
approved if all approvers in the serial process approve
the request. The request is denied upon the first
rejection from an approver in the serial process

Changes the deny attribute in the
nrfResourceRequest object to true.

Changes the approve attribute in the
nrfResourceRequest object to true.

Logical end point of all workflows.

To use the standard Resource Approval workflow in your user application, you must specify your
own users as Trustees. For information on setting the Trustees property, see Section 4.2.6, “Modifying
Settings of a Provisioning Request Definition,” on page 96.

Creating the Workflow for a Provisioning Request Definition

203

6.7.2

Writing Custom Resource Workflows

If the standard resource approval workflow does not support your business needs, and cannot be
customized to do so, you can write your own. At a minimum, a custom resource approval workflow
must:

¢ Contain two Resource Request Binding activities

One Resource Request Binding activity must be set to approved and the other set to denied. You
must link each of the Resource Request Binding activities to the Finish activity. If the workflow
does not meet this requirement, it is invalid, and Designer prevents you from deploying it. The
Role and Resource Service driver needs these values to set the status for the workflow and to
then apply the logic to associate the resource to the identity.

Contain the following control in the request form:

¢ Form Field Name: nrfResourceRequestDN

+ Data Type: Resource Request

¢ Control Type: Text
Instantiate the nrfResourceRequestDN in the Pre Activity Data Item Mapping.
Contain the following in the Post Activity Data Item Mapping:

¢ Source Form Field: nrfResourceRequestDN

¢ Target Expression: flowdata.nrfResourceRequestDN

¢ Data Type: dn

Not contain the following ECMA expressions in the Data Item Mapping or Properties
definitions because they might return null:

¢ getApprovalDN ()
¢ getAllApproversDN ()
¢ getAllSodApproversDN ()

Because Designer and the User Application user interface do not allow entry of approvers for
custom resource approval workflows, you must specify the approvers in the workflow itself.
Therefore, if you create a custom workflow based on a copy of the Resource Approval
provisioning request definition, you must remove the ECMA methods from Data Item Mapping
or Properties definitions.

In the following example, a user requests a resource and the user’s manager approves it.

204 User Application; Design Guide

Figure 6-12 Sample Custom Resource Approval Workflow

Fe start
|

forward

¥
';i Localize Display
]

forward

¥
& Manager Approval

denied
v appio, eu:l

/ . ermar

&= approve Assignment OF Role 8= Deny Assignment OF Rale

L e

fnrwﬂ / /

\ f 2 d
\W/Drwar

P& Finish

The components of this workflow, and their responsibilities are summarized in Table 6-14.

Creating the Workflow for a Provisioning Request Definition

205

Table 6-14 Sample Custom Workflow Components

Activity Name Activity Type Description

Start Start Logical starting point of all workflows.

Localize Display Mapping Sets up the display labels for the user’s locale.
Manager Approval Approval This is where the decision to approve or deny

the request is recorded as part of the workflow
instance. The resource request approval is
needed only by the requestor’s manager.

Approve Assignment of Role Role Binding Changes the approve attribute in the
nrfResourceRequest object to true.

Deny Assignment of Role Role binding Changes the deny attribute in the
nrfResourceRequest object to true.

Finish Finish Logical end point of all workflows.

The data item mapping for the sample custom resource approval workflow is defined in Table 6-15

Table 6-15 Sample Custom Resource Approval Workflow Data Item Mapping

Activity Name Property Type Property Value

Start Data Item Pre Activity Source Expression: None
Target Form Field: nrfResourceRequestDN
Data Type: dn
Data Item Post Activity Source Form Field: nrfResourceRequestDN
Target Expression: flowdata.nrfResourceRequest/DN

Data Type: DN

Localize Display Data Item Source and
Target mapping =

Manager Approval Addressee Property Addressee
IDVault.get (recipient, 'user', 'manager')
Data Item Pre ACtIVIty Dpre Activity (O Post Activity

Source Expression Target Form Field Data Typs
title string

subheading string
NrfRequest.getcn() Fequesthumber dn
NrfReqUest getRequester() RequssterName dn
MrfRequest,getCategoryLocaleString{lacals) Operation string
NrfRequest get SourceDNDisplayhame{ ocale) SourceDN string
NrfRequest get TargetDNDisplayMame(locals) TargetDN string
MrfRequest getRequestDate() RequestDate date
NrfRequest.getStartDate() StartDate date
NrfRequest, gatEndDate() EndDate date

NrfRequest.getDescription() Description string
MrfRequest, getStatusLocaleString(locale) CurrentStatus string

Data Item Post Activity None

206 User Application; Design Guide

6.8

6.8.1

6.8.2

6.8.3

Activity Name Property Type Property Value

Approve Assignment of Action Property approved
Resource

Deny Assignment of Action Property denied
Resource

Finish None

Debugging a Workflow

When testing a workflow, you might need to see the values of the variables you're using in the flow.
Some options include:

¢ Section 6.8.1, “Using the Log Activity,” on page 207

¢ Section 6.8.2, “Using the Workflow Database,” on page 207

¢ Section 6.8.3, “Changing Log Levels,” on page 207

Using the Log Activity

Use the Log activity to display messages containing the variables you need to look at. After you've
configured the Log activity, you can then see the messages in the console. In the Log activity, you can
use scripting expressions in the Message property to retrieve the values you need. For example, you
might use this expression to log a message containing the value of a variable defined on the flowdata
object:

flowdata.get ('my variable')

For details on using the Log activity, see Section 7.3, “Log Activity,” on page 233.

Using the Workflow Database

Look in the workflow database to see how the data associated with the flowdata object changes as the
workflow progresses from one activity to the next. To see this data, you can look at the afdocument
table.

Changing Log Levels

During the debugging process, you can change the log levels associated with the workflow system
(com.novell.soa.af.impl), the provisioning requests component of the User Application
(com.novell.srvprv.apwa), and the evaluation of server side scripts (com.novell.soa.script). This
approach might generate more information than you need, but sometimes it can be helpful. To
change logging levels, go to the Logging page within the Administration tab of the User Application.

Creating the Workflow for a Provisioning Request Definition 207

6.9

6.9.1

Provisioning Multiple Individuals with One Workflow
Instance

You can configure a provisioning request definition so that one individual (for example, a manager)
can provision multiple individuals (for example, members of a, or a group) with one workflow. The
provisioning request definition can be configured to provision any one of the following:

¢ Multiple individual users from the default user container

¢ All members of a group from the default group container (for example, Sales, Marketing, HR,
IT)

¢ All members of any arbitrary Identity Vault container

To create this type of workflow, create the provisioning request definition as you normally would. On
the Overview panel, select Single Flow Provision Members from the Flow Strategy list.

¢ Section 6.9.1, “Basic Steps for Using the Workflow,” on page 208

¢ Section 6.9.2, “Setting up the Workflow for a Manager to Use,” on page 209

Basic Steps for Using the Workflow

This section describes the basic steps for using a workflow that utilizes the Single Flow Provision
Members flow strategy.

1 Log in to the user application as a user application administrator.

2 Click Requests and Approvals.

3 Click Request Resources.

Novells Identity Manager

Welcome Admin

My Work
+ My Tasks

»

Request Resource

Ny Requests

»

My Settings

Enter Proxy Mode
Edit &vailability

Ny Procey Azsignments

Ny Delegate Assignments

My Team's Work
Team Tasks

Regug:t Team Resources
Team Requests

My Team's Settings

»

»

Team Proxy Assignments
Team Delegate Assignments

Team Availability

4 Select the provisioning category to which the provisioning request belongs, then click OK.

208 User Application; Design Guide

Request Team Resources

Step 1 of 4: Select the category of the resource you are requesting,

Resource Search Criteria:

Accounts
Contirue | Entitlernents
Groups

You should see a workflow that is marked with an icon that contains a cluster of people:

Request Team Resources EH

Step 2 of 4: Select the resource from the list.

Resource Resource Search Criteria Description
@ Strategy_SingleFlowProvisionMembers Accounts Strategy_SingleFlowProvisionMembers
1-1af1
Back |

5 Click the name of the workflow.
A form is displayed that provides three methods of selecting multiple users to provision:
¢ Specify one or more recipients
¢ Specify a group

¢ Specify a container

Request Team Resources
step 3 of 4 Zelect a user [or users, if the resource you selected was marked "Multiple Recipients Allawed") for whom
you are requesting a resource,
Selection Typer®
& Specify Recipient
Recipient: ;l

=l RIE

i Specify Group

i Specify Container

Cantinue |
6 Specify the recipients, then click Continue.

6.9.2 Setting up the Workflow for a Manager to Use

To enable a Manager to use a workflow that uses the Single Flow Provision Members flow strategy, you
need to perform these additional setup steps:

1 Log in to iManager as an administrator.
2 In Roles and Tasks, select Provisioning Configuration.

3 Select Provisioning s.

Creating the Workflow for a Provisioning Request Definition 209

6.10

6.11

4 Set up the if it is not already set up.

5 Bind the workflow to the by defining a Provisioning Request using the Provisioning Configuration
Role and Task.

Making Distinguished Name References Portable

When you use a DN in an expression in a provisioning request definition, the expression might fail if
you deploy the provisioning request definition to an Identity Vault with a different structure. You
typically specify DNs in:

¢ Overview panel: Trustee specification.
¢ User activity: Addressee and escalation addressee.
¢ Entity activity: Entitlement reference and entity DN.

¢ Many other expressions, for example, IDVault.get(dn, class, attribute).

Some expressions, such as recipient, are portable. The following expressions, which are used by
default in the User activity, are also portable:

IDVault.get (recipient, 'user', 'manager')
IDVault.get (approval A.getAddressee(), 'user', 'manager')

To ensure that your DN expressions are portable across Identity Vaults, you can use one of the
following variables:

¢+ ROOT_CONTAINER: for example ou=idm-prov,o=novell

¢ PROVISIONING_DRIVER: for example cn=UserApplication,cn=TestDrivers,o=novell
¢ USER_CONTAINER: for example ou=users,ou=idm-prov,o=novell

¢+ GROUP_CONTAINER: for example ou=groups,ou=idm-prov,o=novell

These variables are defined during installation of the user application and are resolved at runtime by
the ECMAScript engine. You can find them in the ECMA Expression Builder under the process node.
Suppose you wanted to reference an entitlement at the following DN:

'cn=myEntitlement, cn=UserApplication, cn=TestDrivers, o=novell'
You could use the following expression to make the DN portable to any identity vault:
''cn=MyEntitlement,' + PROVISIONING DRIVER

You can use this technique for users and groups also.

NOTE: Trustees are not expressions so you cannot use this technique with Trustees.

Configuring Digital Signature Support

This section describes how to use Designer to configure provisioning request definitions to support
digital signatures.

NOTE: To support digital signatures with a provisioning request definition, your administrator must
also configure the User Application environment to support digital signatures. For details, see
“Digital Signature Configuration”.

210 User Application; Design Guide

6.11.1

To configure a provisioning request definition to support digital signatures, follow the steps outlined
in the following table.

Table 6-16 Steps for Specifying Digital Signature Support in Workflows

Step Task Description

1 Create one or more digital signature See Section 6.11.2, “Creating a Signature Declaration,” on
declarations. page 212.

2 Specify whether a digital signature is In the Workflow panel, click the Start activity and set the
required to initiate a provisioning following properties:
request.

+ Digital Signature Required: See Section 6.11.1,
“Digital Signature Workflow Properties,” on page 211.

+ Signature Declaration: Choose a signature
declaration from the drop-down list. The list is only
populated if you completed Step 1 (above).

3 Specify whether a digital signature is Each approval step can have more than one outgoing link.
required for each approval step You must specify the Digital Signature Required property
within the workflow. and the Signature Declaration properties for each approval

step and each outgoing flow path. For a description of the
property settings, see Section 6.11.1, “Digital Signature
Workflow Properties,” on page 211.

4 Determine the forms that contain a Title controls have a property called Display title in signed

title control.

form document. Determine for your application and use of
digital signatures whether this property should be set to true
or false. For more information on this property, see

Section 5.5.23, “Title,” on page 160.

¢ Section 6.11.1, “Digital Signature Workflow Properties,” on page 211

¢ Section 6.11.2, “Creating a Signature Declaration,” on page 212

Digital Signature Workflow Properties

Table 6-17 Digital Signature Settings

Setting

Description

Digital Signature Type

Specifies whether the digital signature uses data or form as
its type:

+ Data: Specifies that the XML signature serves as the
user agreement. When you select Data, the XML data
is written to the audit log.

* Form: Specifies to generate a PDF document that
includes the digital signature declaration. This
document serves as the user agreement. The user can
preview the generated PDF document before
submitting a request or approval. When you select
Form, the PDF document (encapsulated in XML) is
written to the audit log.

Creating the Workflow for a Provisioning Request Definition

211

6.11.2

212

Setting Description
Digital Signature Specifies a digital signature confirmation string that certifies
Declaration the user’s signature. See Section 6.11.2, “Creating a

Signature Declaration,” on page 212.

Creating a Signature Declaration

1 Open the Signature Declarations tab.

E’}a Designer - DAL Query ID Yault - Designer.

File Edit Yiew Project Tools Live PRD ‘Window Help

25

i M- H= =) @ e I | @) Desiarer |
Bl *DAL Query ID Vaul: X =0
Edit Signature Declarations
+ | #
Signature Declaration I0 Language Signature Declaration

Cwverview | Workflow Forms | Signature Declarations

g ¢

2 Click to add a row, then fill in the fields as follows:

Field

Description

Signature Declaration ID

Language

Signature Declaration

A unique identifier for the signature declaration. This ID is displayed in the
drop-down for the “Digital Signature Declaration” on page 212.

Choose a language and specify the signature declaration translation for that
language. The signature declaration string is also exported as part of the
Provisioning view’s Export > Export Localization to File so that you can send
the declaration to be localized as part of the rest of the User Application
display labels and strings.

The string to display in a form as the signature declaration.

3 Click Save.

User Application: Design Guide

7 Workflow Activity Reference

This section provides details on configuring the different types of workflow activities. Topics in this
section include:

¢ Section 7.1, “Start Activity,” on page 214

¢ Section 7.2, “Approval Activity,” on page 216

¢ Section 7.3, “Log Activity,” on page 233

¢ Section 7.4, “Branch Activity,” on page 234

¢ Section 7.5, “Merge Activity,” on page 235

¢ Section 7.6, “Condition Activity,” on page 236

¢ Section 7.7, “Mapping Activity,” on page 237

¢ Section 7.8, “Workflow Status,” on page 238

¢ Section 7.9, “E-Mail Activity,” on page 239

¢ Section 7.10, “Role Request Binding Activity,” on page 241

¢ Section 7.11, “Role Request Activity,” on page 241

¢ Section 7.12, “Resource Request Binding Activity,” on page 246

¢ Section 7.13, “Resource Request Activity,” on page 247

¢ Section 7.14, “Start Workflow Activity,” on page 250

¢ Section 7.15, “Finish Activity,” on page 251

¢ Section 7.16, “Rest Activity,” on page 254

¢ Section 7.17, “Integration Activity,” on page 258

¢ Section 7.18, “Entitlement Activity,” on page 260

¢ Section 7.19, “Entity Activity,” on page 262
The display names for all activities can be localized by clicking the Localize Strings button (see
Section 2.10, “Localizing Provisioning Objects,” on page 35) for the activity name property. Activity
display names are also exported as part of the Provisioning view’s Export > Export Localization to File

(see Section 2.10.3, “Exporting and Importing Data to Localize,” on page 37) so that you can send the
activity names to be localized as part of the rest of the User Application display labels and strings.

Workflow Activity Reference 213

7.1 Start Activity

The Start activity is the first activity to execute in a workflow. It begins execution when the user
makes a request to provision a resource. After the user makes the request, the Start activity displays
the initial request form to the user. On the initial request form, the user can be asked to specify a
comment that indicates the reason for the request.

You can customize the initial request form to suit your application requirements. For details on
customizing forms, see Chapter 5, “Creating Forms for a Provisioning Request Definition,” on
page 107.

Before displaying the form to the user, the Start activity performs any pre-activity data mappings
specified for the activity.

After the user submits the form, the Start activity performs any post-activity data mappings specified
for the activity. These mappings typically include copying data from form fields into the flowdata
object.

¢ Section 7.1.1, “Properties,” on page 214
¢ Section 7.1.2, “Data Item Mapping,” on page 215
¢ Section 7.1.3, “E-Mail Notification,” on page 216

7.1.1 Properties

The Start activity has the following properties:

Table 7-1 Start Activity Properties

Property Name Description

Name Provides a name for the activity.

214 User Application; Design Guide

7.1.2

Property Name Description

Display Name Override Allows you to override the provisioning request definition’s display name. This is the
name that displays in the Resource column when the user selects My Requests or
Requests . The name can be a constant or the result of an ECMA expression, and it
can be localized for each supported locale. To access the dialog boxes that let you
specify the constant or ECMA expression, the Localize Strings button in the Value
column.

@ Localization @

(@) Specify the localized string walues For the Display Name Override,
Dutch: | k -
English: ‘Resource Approval For Group ' + Flowdata, get('group’) @ -
French: 'FR.: Resource Approval For Group ' + flowdata, get{'group’)y @ -
German: k T
Ttalian: k -
Japanese: k -
Portuguese: k h
Spanish: k -
zh-cn: k -
zhrbwn k -
@

To specify a constant, click k and type the value in the field. The value is displayed
exactly as entered in this field.
To specify an ECMA expression, click [EZ and specify the expression.

TIP: If the value is an ECMA expression, any constants within the expression must
be in single quotes.

If you specify both a constant and ECMA expression, the runtime displays whichever
value was the last one entered as shown in the dialog box (above).

Digital Signature Type See Digital Signature Type in Table 6-17 on page 211.

Data Item Mapping

To bind the data items associated with the Start activity, you define pre-activity and post-activity
mappings. The pre-activity mappings initialize data in the request form with constants or values
retrieved from the flowdata object. The post-activity mappings move form data back into the
flowdata object.

Workflow Activity Reference 215

Table 7-2 Start Activity Data Item Mappings

Setting Description

Pre-Activity Allows you to specify one or more pre-activity mappings. When
this option is selected, you can double-click a cell in the Source
Expression column to specify where the initial request form gets
data for a particular target form field.

The Pre-activity Mapping expression is evaluated twice before
the form is presented, once during the initial presentation to the
form and then again prior to the post to ensure that all the
values on the form have a valid type, even those that were not
initialized. Because of this behavior, any calls made to external
systems are made twice. For example, a call that retrieves a
unique counter for a value makes two calls that allocates two
counters with the last one requested being used.

NOTE: When the Pre-Activity option is selected, the cells in the
Target Form Field column are not editable.

Post-Activity Allows you to specify one or more post-activity mappings. When
this radio button is selected, you can double-click a cell in the
Target Expression column to specify where data from a form
field should be copied after the form has been processed.

The DNDisplay control is not available for post activity
mappings.

NOTE: When the Post-Activity option is selected, the cells in
the Source Form Field column are not editable.

Source Expression Specifies a source expression for a pre-activity mapping. When
you click a cell in the Source Expression column, the ECMA
Expression Builder displays to help you define your expression.

Target Expression Specifies a target expression for a post-activity mapping. When
you click a cell in the Target Expression column, the ECMA
Expression Builder displays to help you define your expression.

For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on
page 315.

7.1.3 E-Mail Notification

Not supported with this activity.

7.2 Approval Activity

The Approval activity is a user-facing activity that displays an approval form to the user. On the
approval form, the user can approve, deny, or refuse a provisioning request. The Approval activity
can have multiple outgoing flow paths, but only one of the paths is executed at runtime.

You can customize the approval form to suit your application requirements. For details on
customizing forms, see Chapter 5, “Creating Forms for a Provisioning Request Definition,” on
page 107.

216 User Application; Design Guide

7.2.1

Before displaying the form to the user, the Approval activity performs any pre-activity data

mappings specified for the activity.

After the user submits the form, the Approval activity performs any post-activity mappings specified
for the activity. These mappings typically include copying data from form fields into the flowdata

object.

¢ Section 7.2.1, “Properties,” on page 217

¢ Section 7.2.2, “Data Item Mapping,” on page 223
¢ Section 7.2.3, “Available ECMAScript Methods,” on page 224
¢ Section 7.2.4, “E-Mail Notification,” on page 224

¢ Section 7.2.5, “Addressing an Approval Activity,” on page 226

Properties

The Approval activity has the following properties:

Table 7-3 Approval Activity Properties

Property Name

Description

Name

Addressee

Provides a name for the activity.

Specifies a dynamic expression that identifies the addressee for the
activity. The addressee is the approver of the workflow.

The addressee is determined at runtime, based on evaluation of the
expression. Designer validates that the expression is a valid ECMA
expression. It cannot validate whether the expression resolves to a valid
object (such as a role) or whether that object will exist at runtime.

For information on specifying addressees (such as specifying a role as
the approver), see “Specifying the Addressee Property” on page 226.

For more information about developing valid Addressee expressions,
and about how Addressee interacts with the Approver Type property,
see Section 7.2.5, “Addressing an Approval Activity,” on page 226.

TIP: To simplify the process of testing a new workflow, you can set the
addressee to be the recipient. This removes the need to log out of the
User Application and log in again as a manager each time you want to
test your forms. This technique is particularly useful when the workflow
involves multiple levels of approval. After the testing phase is complete,
you can change the addressee to the correct value.

For details on building ECMA expressions, see Chapter 9, “Working
with ECMA Expressions,” on page 315. For descriptions of the system
variables available in a workflow, see Section 6.5.3, “Understanding
Workflow Data,” on page 187.

Workflow Activity Reference 217

218

Property Name

Description

Reminder Start

Reminder Interval

Escalation Addressee

Specifies a dynamic expression that defines, in milliseconds, the time at
which the first reminder e-mail should be sent. The start value is an
offset from the time of the first assignment associated with the activity.
You can pick predefined expressions that represent common intervals
(for example, hour, day, week) in the ECMAScript Objects pane of the
ECMA Expression Builder.

This is part of the reminder e-mail function. If this activity is considered
important and needs to be acted on quickly, you can configure the
activity to send a reminder e-mail to the activity addressee. For
example, you can set the reminder settings to send a reminder e-mail 5
days before the activity times out, and on a daily basis until the activity
times out. To do this, specify a Reminder Start time, a Reminder
Interval, and the e-mail to be sent (see Section 7.2.4, “E-Mail
Notification,” on page 224).

For details on building ECMA expressions, see Chapter 9, “Working
with ECMA Expressions,” on page 315. For descriptions of the system
variables available in a workflow, see Section 6.5.3, “Understanding
Workflow Data,” on page 187.

Specifies a dynamic expression that defines the interval between which
reminder e-mails are sent. You can pick predefined expressions that
represent common intervals (for example, hour, day, week) in the
ECMAScript Objects pane of the ECMA Expression Builder.

Not available when the approver type is Multiple or Quorum

Specifies a dynamic expression that identifies the user who should get
this task if the timeout limit has been reached.

The escalation addressee is determined at runtime, based on how the
expression is evaluated.

For details on building ECMA expressions, see Chapter 9, “Working
with ECMA Expressions,” on page 315. For descriptions of the system
variables available in a workflow, see Section 6.5.3, “Understanding
Workflow Data,” on page 187.

User Application: Design Guide

Property Name

Description

Escalation Count

Escalation Interval

Escalation Reminder Start

Escalation Reminder Interval

Not available when the approver type is Multiple or Quorum.

Specifies the number of times to retry the activity in the event of a
timeout.

When an activity times out, the workflow process can try to complete the
activity again, depending on the escalation count specified for the
activity. With each retry, the workflow process can escalate the activity
to another user. In this case, the activity is reassigned to another user
(the user’s manager, for example) to give this user an opportunity to
finish the work of the activity. If the last retry times out, the activity can
be marked as approved, denied, refused, timedout, or in error,
depending on the final timeout action specified for the activity.

The Timeout interval (see Timeout in this table) takes precedence over
the Escalation Interval. For example, if you set the timeout to 10
minutes, and specify an Escalation Count of 3 and Escalation Interval of
5 minutes, the activity finishes after 10 minutes without attempting all of
the retries. In this example, the second retry would be canceled, and the
workflow would finish processing for the activity. At the conclusion of the
activity, the workflow engine would follow the link defined by the final
timeout action.

Not available when the approver type is Multiple or Quorum.

Specifies a dynamic expression that defines the period of time allotted
for the addressee to complete the task. The escalation interval applies
each time the activity is executed by the addressee.

The Timeout interval (see Timeout in this table) takes precedence over
the Escalation Interval. For example, if you set the timeout to 10
minutes, and specify an Escalation Count of 3 and Escalation Interval of
5 minutes, the activity will finish after 10 minutes without attempting all
of the retries. In this example, the second retry would be canceled, and
the workflow would finish processing for the activity. At the conclusion of
the activity, the workflow engine would follow the link defined by the final
timeout action.

For details on building ECMA expressions, see Chapter 9, “Working
with ECMA Expressions,” on page 315. For descriptions of the system
variables available in a workflow, see Section 6.5.3, “Understanding
Workflow Data,” on page 187.

Not available when the approver type is Multiple or Quorum.

Specifies a dynamic expression that defines the time at which the first
reminder e-mail (see Reminder Start in this table) should be sent to the
Escalation Addressee. The start value is an offset from the time of the
escalation assignment. You can pick predefined expressions that
represent common intervals (for example, hour, day, week) in the
ECMAScript Objects pane of the ECMA Expression Builder.

Not available when the approver type is Multiple or Quorum.

Specifies a dynamic expression that defines how often messages are
sent to the Escalation Addressee after the first escalation reminder is
sent. You can pick predefined expressions that represent common
intervals (for example, hour, day, week) in the ECMAScript Objects pane
of the ECMA Expression Builder.

Workflow Activity Reference 219

220

Property Name

Description

Final Timeout Action

Timeout

Timeout Units

Determines the final state of the request in the event that the workflow
times out. The choices are

* approved
¢ denied
+ refused
+ timedout

¢ error

Specifies a dynamic expression that defines the period of time allotted
for the addressee to complete the task. The timeout interval applies
each time the activity is executed by the addressee.

The Timeout setting takes precedence over the Escalation Count and
Escalation Interval values. If the Timeout setting for the activity is
reached before one or more of the escalation attempts have been tried,
the activity finishes processing without executing these escalation
attempts. For example, if you set the timeout to 10 minutes, and specify
an Escalation Count of 3 and Escalation Interval of 5 minutes, the
activity finishes after 10 minutes without attempting all of the escalation
attempts. In this example, the second escalation attempt would be
canceled, and the workflow would finish processing for the activity. At
the conclusion of the activity, the workflow engine would follow the link
defined by the final timeout action.

For details on building ECMA expressions, see Chapter 9, “Working
with ECMA Expressions,” on page 315. For descriptions of the system
variables available in a workflow, see Section 6.5.3, “Understanding
Workflow Data,” on page 187.

Determines the unit of measure used for the timeout interval. The
choices are

+ Milliseconds
* Days

* Hours

+ Minutes

+ Seconds

User Application: Design Guide

Property Name

Description

Form

Exclude Requestor

Specifies the name of the approval form to display at runtime, or lets you
define a new form. Select the name of the form you want to use or
create new form. When you choose to create a new form, the Create
New Form Wizard launches and looks similar to this.

@ Create new Form |:|@@

Form

Faorm name

bppraval_forml

Select nodes in the tree using check box marks and hit "Finish". All selected nodes will be included as string
fields in the new Farm,

= process
approvalStatus
category
description
id
initiator
locale
name
recipient
requestId
timeskamp
USER._CONTAIMER.
GROUP_COMTAINER
ROOT_CONTAINER
PROVISIONING_DRIYER.
= flowdata
reason

Edit Form upon "Finish"

()]

Finish] [Cancel

Select the data items to include in the form from the data items listed,
then click Finish. The Approval Form Wizard generates each of the
selected data items as a String type field in the new form.

An Approval activity must have a form associated with it. If no form is
specified, an error message is displayed at runtime.

Specifies whether requestors can approve their own provisioning
requests.

* True: The requestor is not allowed to approve their own
provisioning requests.

+ False: The requestor is allowed to approve their own provisioning
requests.

Workflow Activity Reference 221

Property Name Description

Approver Type Specifies the number of addresses that are allowed and the approval
pattern that is enforced for this activity. The choices are

* Normal: Action by the addressee is required to complete the
approval.

+ Group: Action by one addressee in the group is required to
complete the approval.

+ Multiple: Action by all of the addressees is required to complete
the approval.

You cannot use post activity data item mapping with the Multiple
Approver Type.

* Quorum: Action by a percentage of addressees or an absolute
number of addressees (see Quorum property in this table) is
required to complete the approval.

You cannot use post-activity data item mapping with the Quorum
Approver Type.

For information about how the Approver Type property interacts with the
Addressee property, see Section 7.2.5, “Addressing an Approval
Activity,” on page 226.

Notify by E-Mail Specifies whether this activity should send e-mail naotifications. Set to
True to notify by e-mail; otherwise, set to False.

You specify the e-mail to send using the E-Mail Notification tab (see
Section 7.2.4, “E-Mail Notification,” on page 224).

To use this feature, the Notify participants by E-Mail parameter for the
provisioning request definition must be set to True (see Table 4-3,
“Overview Properties,” on page 97).

Quorum Not available when the approver type is Normal, Group, or Multiple.

Allows you to specify a constant value or to create an ECMA expression
that specifies a percentage (for example, '75%’) of approvals that is
required before a quorum is achieved, or an absolute number (for
example, '3’) of approvals that are required before a quorum is

achieved.
Digital Signature Type See Digital Signature Type in Table 6-17 on page 211.
Priority Specifies a dynamic expression that defines the priority of the approval

activity. Valid priority values are 1, 2, or 3. You can also define an
expression to determine the priority from workflow data. For example,
flowdata.get ("Priority").

In the User Application, users can sort the list of tasks by the priority
values of the tasks.

NOTE: To enable delegation to a group DN, you can have an approver type of Group or Normal, but
the Addressee value must be an expression that returns the user DNs for each member of that group
For example, IDVault.get(groupdn, ‘sales’, “‘members’)

222 User Application; Design Guide

7.2.2 Data ltem Mapping

To bind the data items associated with the Approval activity, you define pre-activity and post-activity
mappings. The pre-activity mappings initialize data in the approval form with constants, values
retrieved from the flowdata object, system process variables, system activity variables, and data
retrieved via expression calls to the directory abstraction layer. The post-activity mappings move
form data back into the flowdata object.

Table 7-4 Approval Activity Data Item Mappings

Setting Description

Pre Activity Allows you to specify one or more pre-activity mappings. When this option
is selected, you can double-click a cell in the Source Expression column to
specify where the approval form gets data for a particular target form field.

The Pre-activity Mapping expression is evaluated twice before the form is
presented, once during the initial presentation to the form and then again
prior to the post to ensure that all the values on the form have a valid type,
even those that were not initialized. Because of this behavior, any calls
made to external systems are made twice. For example, a call that
retrieves a unique counter for a value makes two calls that allocates two
counters with the last one requested being used.

NOTE: When the Pre-Activity choice is selected, the cells in the Target
Form Field column are not editable.

Post Activity Allows you to specify one or more Post Activity mappings. When this option
is selected, you can double-click a cell in the Target Expression column to
specify where data from a form field should be copied after the form has
been processed.

You cannot use Post Activity mapping with the Multiple and Quorum
approver types (see Section 7.2.1, “Properties,” on page 217).

The DNDisplay control is not available for post activity mappings.

The form for an Approval activity includes a special internal control called
apwaComment. This control causes user comments to be written to the
workflow database. It should not have a post-activity mapping. For more
information on this control, see Section 5.5.11, “DNMaker,” on page 141.

NOTE: When the Post-Activity option is selected, the cells in the Source
Form Field column are not editable.

Source Expression Specifies a source expression for a pre-activity mapping. When you click a
cell in the Source Expression column, the ECMA Expression Builder
displays to help you define your expression.

Target Expression Specifies a target expression for a post-activity mapping. When you click a
cell in the Target Expression column, the ECMA Expression Builder
displays to help you define your expression.

For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on
page 315.

Workflow Activity Reference 223

7.2.3 Available ECMAScript Methods

The Approval activity provides several default methods to use in ECMAScript expressions,
displayed in the ECMAScript Objects pane of the ECMA Expression Builder.

Table 7-5 Available ECMAScript Methods for Approval Activities

Object Method Description

action Activity- Returns the approval action taken by
name.getAction(variable-name) the activity. Possible options are:

* approved
¢ denied
+ refused
+ timedout
¢ error
addressee Activity- Returns the name of the user who
name.getAddressee (variable- needs to approve or deny the
name) requested action.
name Activity-name.getName (locale)
timestamp Activity- Returns the date and time of the
name.getTimestamp (variable- approval action taken by the activity.
name)
user Activity- Returns the name of the owner of the
name.getUser (variable-name) work task for the activity.
workld Activity-

name.getWorkld (variable-name)

7.2.4 E-Mail Notification

224

To enable e-mail notification for the Approval activity, you need to specify the e-mail template to use,
as well as source expressions for target tokens in the e-mail body.

Table 7-6 E-mail Notification Settings for the Approval Activity

Setting Description

Notify Specifies that this e-mail notification is a notification e-mail.

Reminder Specifies that this e-mail notification is a reminder e-mail.

Retry Reminder Specifies that this e-mail notification is a retry reminder e-mail.

Show System Tokens Displays system tokens (for example, TO, CC, BCC,
REPLYTO, TO_DN, CC_DN, and BCC_DN) in the Target
column.

User Application: Design Guide

Setting Description

E-Mail Template Specifies the name of the e-mail template to use. By default,
the Approval activity uses the Provisioning Notification
template.

You can edit an e-mail template in Designer. For more
information, see “Editing an e-mail template:” on page 181.

Source/Target Specifies the source expressions for target tokens in the e-
mail body.

The list of target tokens is determined by the selected e-mail
template. You cannot add new tokens, but you can assign
values to the tokens by building your own source expressions.
At runtime, source expressions are evaluated to determine
the value of each token.

The available target tokens are listed below:

+ TO

s CC

+ BCC

+ REPLYTO
+ TO_DN

+ CC_DN
+ BCC_DN

+ recipientFullName
+ initiatorFullName
* requestTitle

+ userFirstName

If you use a provisioning request definition template to create
your workflow, each token has a default source expression.
The default expressions retrieve values from the workflow
process (the process object) or from the data abstraction layer
(IDVault object). You can modify these expressions to suit
your application requirements.

For details on building ECMA expressions, see Chapter 9,
“Working with ECMA Expressions,” on page 315.

NOTE
¢ E-mail notification is supported only when the Notify participants by E-Mail check box is selected
on the Overview tab, and the Notify by E-Mail property for the Approval activity is set to True.

¢ When you create a workflow for use with the Resource Request portlet, and you use the
“_default_" as the expression for the TO token, the addressee expression must be an IDVault
expression.

Workflow Activity Reference 225

7.2.5

¢ If you create an activity using any of the target tokens TO_DN, CC_DN, or BCC_DN, you must

*

specify a user’s DN or an expression that resolves to a user’s DN as the source expression for the
token.

If you create an activity using both the target tokens TO and TO_DN, the workflow sends out
duplicate notification emails to the target users.

Addressing an Approval Activity

To address an Approval activity, you must enter a valid expression for the Addressee property. The
Addressee is the approver for the activity. The number of approvals that are required to approve the
activity is determined by the relationship between the Addressee property and the Approver Type
property as described in “Relationship Between Addressee and Approver Type” on page 228. This
section includes the following topics:

*

*

*

*

“Specifying the Addressee Property” on page 226

“Valid Addressee Expressions” on page 228

“Relationship Between Addressee and Approver Type” on page 228
“Troubleshooting Invalid Addressees” on page 232

Specifying the Addressee Property

To build the addressee expression:

1

Click the [£%] button in the Addressee property Value column.

Mame Approwal
Addressee ID%ault. gek({recipient, 'user’,'manager’) %

Designer launches the dialog box where you can add or remove an expression. The following
dialog only displays when the Approver Type is Group, Multiple, or Quorum.

@ Provisioning Request Definition Property Modification

Specify addressee expression(s) for the approwval

S 4

Raoles
IDault getirecipient, 'user', manager”)

@ Ok l [Cancel

226 User Application: Design Guide

2 Click + to add a new addressee expression by using the Expression Builder.

® Source [CMA Txpression Buflder

o J[[comm | [chock syreas | [imtty vimit... | [Sasechcies...

You can choose one of the ECMAScript Objects to build the addressee expression, or use the
Identity Vault or Search Roles buttons to select a specific object. The Search Roles button is not
available when Approver Type is Normal.

2a To specify a Role as the Addressee, click Search Roles.

@ Role Search @

Search for Role

Select role

Search Criteria

Identifier (CH): |

|
Display Marne: | |
Description: | |
Category: | b |
Role Level: | All V|

Matching Roles

Raole:

@

2b In the dialog box, specify the CN, Display Name, Description, Role Category, and Role Level on
which you want to search.

For CN, Display Name, and Description, you can enter a wildcard (such as S*, *S) or regular
expressions (such as [A-Zoo-z]*).

You can enter a value for all of the fields or none of the fields. If you do not supply a value
in a particular field, the search returns all of the possible values for that field. If you enter
values in one or more of the fields, the values are ANDed together to create the search filter.
The search occurs on the roles defined locally. Roles matching the search criteria are
displayed in the Matching Roles selection list.

2c Select a role from the Roles selection list, then click OK. The role is added to the expression
area.

3 Click OK after you are satisfied with expression.

Workflow Activity Reference 227

228

Valid Addressee Expressions

An Addressee expression must resolve to one of the following at runtime:

¢ A valid individual addressee that can be a user DN, a group DN, or a role DN.

¢ A valid list of addressees (for example, created using a Java vector object) that can contain
multiple User DNs, multiple group DNs, or multiple role DNs, or a mixture of both.

Because the addressee is the approver, the maximum number of approvals possible equals the
number of Addressees (the number of User DNs plus the number of Group DNs or Role DNs) and
does not include or count the individual members of a Group or Roles.

NOTE: A Group DN or a Role DN is always processed to contribute a single vote (that is, when one
member of a group or role claims an activity, the rest of the members of the group or role can no
longer see or claim the activity), regardless of the Approver Type.

The following table provides examples of valid addressee expressions that you can create using the
ECMA Expression Builder.

Table 7-7 Examples of Addressee Expressions

Type of Expression Example

Individual user DN 'cn=jdoe, ou=users, ou=mysample, o=myorg'
Individual group DN 'cn=Accounting, ou=groups, ou=mysample, o=myorg'
Individual role DN 'CN=Administer

Drugs, CN=Levell0,CN=RoleDefs, CN=RoleConfig, CN=AppConfig, ' +
PROVISIONING DRIVER'

A vector of DNs (can function DNVector() { v=new java.util.Vector();

include user, group, or v.add ('CN=jdoe, ' + USER_CONTAINER); v.add('CN=Accounting,' +

role DNs GROUP_CONTAINER); v.add('CN=jsmith,' + USER_CONTAINER) ;
v.add ('CN=bsmith,' + USER_CONTAINER) ;

v.add ('CN=Administer
Drugs, CN=Levell0,CN=RoleDefs, CN=RoleConfig, CN=AppConfig, ' +
PROVISIONING_DRIVER);

return v; };

DNVector () ;

Relationship Between Addressee and Approver Type

Because the addressee is the approver, the behavior of the workflow and the total number of
affirmative approvals needed varies depending on the type of Addressee that is specified by the
Addressee expression, and the Approver Type that is selected.

¢ “Normal Approver Type” on page 229

¢ “Group Approver Type” on page 230

¢ “Multiple Approver Type” on page 230

¢ “Quorum Approver Type” on page 231

User Application: Design Guide

Normal Approver Type

The following table describes the workflow behavior when different types of addressee are used with
the Normal Approver Type.

Table 7-8 Workflow Behavior with the Normal Approver Type

Addressee Value Description

Individual User DN + Only the user can see the Approval activity in his or her task list.

+ Only one approval is needed to complete the activity as Approved.

Individual Group DN + Each member of Group can see the activity in the task list.

* When one member claims the activity, it is removed from the task lists of
others.

* Only one approval is needed to complete the activity as Approved.

Individual Role DN + Each member of the role can see the activity in the task list.

* When one role member claims the activity, it is removed from the task lists
of others.

+ Only one approval is needed to complete the activity as Approved.

Multiple User DNs Not allowed.
Multiple Group DNs Not allowed.
Multiple Role DNs Not allowed.
Mixture of Users, Groups, Not allowed.
and Roles

Group DNs and Proxy Processing

If a workflow is assigned to a Group and e-mail notification is used for the approvals, all members of
the group are sent an e-mail. If a proxy user is assigned to any members of the group, the processing
works as follows:

¢ If the approver is a single user then the e-mail notification is sent to both users (the original and
proxy users).

¢ If the approver is a group DN and one of the users in the group is assigned a proxy user, the user
who is the proxy is not notified by e-mail when a new request is placed in the task list.

If you want the proxy user to be notified by e-mail, assign the approval task to the members of
the group and set the approver type to Group Approver. For example, if you assign the approval
activity to:

IDVault.get ('cn=Marketing, ou=groups, ou=idmsample, o=novell' , 'group',
'Member')

When you set the approval type to Group, a notification is sent to each member's proxy, if the
member has a proxy. One member of the group can claim and act on the approval task which is
the same behavior as if you assigned it directly to the group DN.

Workflow Activity Reference 229

Group Approver Type

The following table describes the workflow behavior when different types of addressee are used with
the Group Approver Type.

Table 7-9 Workflow Behavior with the Group Approver Type

Addressee Value Description

Individual User DN + Only the user can see the Approval activity in his or her task list.

+ Only one approval is needed to complete the activity as Approved.

Individual Group DN + Each member of Group can see the activity in his or her task list.

+ When one member claims the activity, it is removed from task lists of
others.

+ Only one approval is needed to complete the activity as Approved.

Individual Role DN + Each member of the Role can see the activity in his or her task list.

+ When role one member claims the activity, it is removed from task lists of
others.

+ Only one approval is needed to complete the activity as Approved.

Multiple User DNs * Each user in the virtual group can see the activity in his or her task list.

+ When one user from the virtual group claims the activity, the activity is
removed from the task lists of others.

+ Only one approval is needed to complete the activity as Approved.

Multiple Group DNs + Each member in each of the groups can see the activity in his or her task
list.

+ When one user from the virtual group claims the activity, the activity is
removed from the task lists of others in all of the groups.

+ Only one approval is needed to complete the activity as Approved.

Multiple Role DNs + Each member in each of the roles can see the activity in his or her task
list.

* When one user from the one of the roles claims the activity, the activity is
removed from the task lists of others in all of the other roles.

+ Only one approval is needed to complete the activity as Approved.

Mixture of Users, Groups, and + Each user and member of each Group or Role can see the activity in his
Roles or her task list.

+ When one of the approvers claims the activity, the activity is removed
from the task lists of others.

+ Only one approval is needed to complete the activity as Approved.

Multiple Approver Type

The following table describes the workflow behavior when different types of addressee are used with
the Multiple Approver Type.

230 User Application; Design Guide

Table 7-10 Workflow Behavior with the Multiple Approver Type

Addressee Value Description

Individual User DN + Only the user can see the activity in his or her task list.

+ Only one approval is needed to complete the activity as Approved.

Individual Group DN + Each member of the group can see the activity in his or her task list.

+ When one member claims the activity, the activity is removed from the
task lists of others.

+ Only one approval is needed to complete the activity as Approved.

Individual Role DN + Each member of the role can see the activity in his or her task list.

+ When one role member claims the activity, the activity is removed from the
task lists of others in the role.

+ Only one approval is needed to complete the activity as Approved.

Multiple User DNs + Each user can see the activity in his or her task list.
+ Each user can claim the activity.
+ Approval of each user is needed to complete the activity as Approved.

* Any single denial completes the activity as Denied.

Multiple Group DNs + Each member in each of the groups can see the activity in his or her task
list.

* When one member from a group claims the activity, the activity is
removed from the task list of others in that Group.

+ Each group must supply one approval to complete the activity as
Approved.

+ Any single denial completes the activity as Denied.

Multiple Role DNs + Each member in each of the roles can see the activity in his or her task
list.

* When one member from a role claims the activity, the activity is removed
from the task list of others in that role.

+ Each role must supply one approval to complete the activity as Approved.

+ Any single denial completes the activity as Denied.

Mixture of Users, Groups, and + Each user and each member of each group or role can see the activity in
Roles his or her task list.

+ Each user can claim the activity, and one member of each group or role
can claim the activity (then others in the group or role do not see the task.)

+ Each user and one member of each group or role must approve to
complete the activity as Approved.

+ Any single denial completes the activity as Denied.

Quorum Approver Type

The following table describes the workflow behavior when different types of addressee are used with
the Quorum Approver Type.

Workflow Activity Reference 231

232

Table 7-11 Workflow Behavior with the Quorum Approver Type

Addressee Value

Description

Individual User DN

Individual Group DN

Individual Role DN

Multiple User DNs

Multiple Group DNs

Multiple Role DNs

Mixture of Users, Groups,
and Roles

*

*

Only the user can see the activity in his or her task list.

Only one approval is needed to complete the activity as Approved.

Each member of the group can see the activity in his or her task list.

When one member claims the activity, the activity is removed from the task
lists of others.

Only one approval is needed to complete the activity as Approved.

Each member of the role can see the activity in his or her task list.

When one member claims the activity, the activity is removed from the task
lists of others.

Only one approval is needed to complete the activity as Approved.

Each user can see the activity in his or her task list.
All users can claim the activity simultaneously.

An absolute number or specified percentage of Addressees must approve
to complete the activity as Approved.

Each member in each group can see the activity in his or her task list.

One member of each group can claim the task (then others in the group do
not see the task).

An absolute number or specified percentage of Addressees must approve
to complete the activity as Approved.
Each member in each role can see the activity in his or her task list.

One member of each role can claim the task (then others in the roles do
not see the task).

An absolute number or specified percentage of Addressees must approve
to complete the activity as Approved.

Each user and each member of each Group or Role can see the activity in
his or her task list.

Each user can claim the activity, and one member of each group or role
can claim the activity (then others in the group do not see the task).

An absolute number or specified percentage of Addressees must approve
to complete the activity as Approved.

Troubleshooting Invalid Addressees

If the expression specified in the Addressee property of an Approval activity evaluates to a non-
existent DN (for example, if the expression was hard-coded incorrectly, calculated incorrectly, or
submitted incorrectly by a user selection), no indication is given that the workflow is not processing

User Application: Design Guide

1.3

7.3.1

normally, when it is in fact orphaned. The application server console displays a normal forward
message, and the Comment and Flow history shows a normal “assigned” message. To avoid this
problem, we recommend that you follow these best practices:

1. Use a Condition activity before the Approval activity and validate the addressee in the
Condition activity.

2. Since the addressee could still be deleted after the addressee is validated in the Condition
activity, you should specify, for the Approval activity, a timeout interval and a link that performs
the desired action in case the workflow times out.

Log Activity

The Log activity is a system activity that writes messages to a log. To log information about the state
of a workflow process, the Workflow System interacts with Novell Audit.

NOTE: Novell Audit can be configured to send its information to Novell Sentinel for additional
logging and reporting features.

During the course of its processing, a workflow can log information about various events that have
occurred. Users can then use the Novell reporting tools to look at logged data.

Before you can use logging, you must enable logging in the user application.

NOTE: During the course of workflow execution, many system events are logged that are not
controlled by the Log activity. For example, the Workflow System writes a message to the log
whenever a workflow is started or stopped, or when it is approved, denied, or refused.

¢ Section 7.3.1, “Properties,” on page 233
¢ Section 7.3.2, “Data Item Mapping,” on page 234
¢ Section 7.3.3, “E-Mail Notification,” on page 234

Properties

The Log activity has the following properties:

Table 7-12 Log Activity Properties

Property Name Description
Name Provides a name for the activity.
Audit Specifies whether log messages should be sent. When this property is set to True,

messages are sent to all log4j channels, including Novell Audit. When this property is
set to False, no log messages are sent.

Author Defines the author for the message. By default, the author is the initiator of the
provisioning request.

Workflow Activity Reference 233

1.3.2

7.3.3

7.4

7.4.1

Property Name Description

Message Specifies an ECMA expression that defines text for the log message. Typically, this
text indicates where this Log activity is being executed within the process and provides
other information that makes the log easy to understand.

For details on building ECMA expressions, see Chapter 9, “Working with ECMA
Expressions,” on page 315. For descriptions of the system variables available in a
workflow, see Section 6.5.3, “Understanding Workflow Data,” on page 187.

Comment Specifies an ECMA expression that defines text that can be displayed in the user
comments. You might use it to record the reason for a request or a request’s
completed approval status. Some examples include:

"Reason for request: "+ flowdata.get ('reason')

or

"Process has been " +
flowdata.get(IDM_COMPLETED_APPROVAL_STATUS’)

Data Item Mapping

Not supported with this activity.

E-Mail Notification

Not supported with this activity.

Branch Activity

In a workflow that supports parallel processing, the Branch activity allows multiple users to act on
different areas of the work item in parallel. After the users have completed their work, the Merge
activity synchronizes the incoming branches in the flow.

A workflow can have multiple Branch activities, but each Branch activity must have an associated
Merge activity. All flow paths leading out of a Branch activity will execute.

The Branch activity does not support synchronization between the branches while they are
executing. Each branch must not depend on data being updated in another branch. The data
synchronization is enforced by the Merge activity. After the Merge activity completes, all of the data
set in the branches is available.

¢ Section 7.4.1, “Properties,” on page 234

¢ Section 7.4.2, “Data Item Mapping,” on page 235

¢ Section 7.4.3, “E-Mail Notification,” on page 235

Properties

The Branch activity has the following properties:

234 User Application; Design Guide

1.4.2

7.4.3

7.5

7.5.1

71.5.2

7.5.3

Table 7-13 Branch Activity Properties

Property Name

Description

Name

Provides a name for the activity.

Data Item Mapping

Not supported with this activity.

E-Mail Notification

Not supported with this activity.

Merge Activity

In a workflow that supports parallel processing, the Merge activity synchronizes the incoming
branches in the flow. The Merge activity is used in conjunction with the Branch activity, which allows
two users to act on different areas of the work item in parallel. After the users have completed their
work, the Merge activity synchronizes the incoming branches.

A workflow can have multiple Branch activities, but each Branch activity must have an associated

Merge activity.

¢ Section 7.5.1, “Properties,” on page 235

¢ Section 7.5.2, “Data Item Mapping,” on page 235

¢ Section 7.5.3, “E-Mail Notification,” on page 235

Properties

The Merge activity has the following properties:

Table 7-14 Merge Activity Properties

Property Name

Description

Name

Provides a name for the activity.

Data Item Mapping

Not supported with this activity.

E-Mail Notification

Not supported with this activity.

Workflow Activity Reference 235

7.6 Condition Activity

The Condition activity lets you add conditional logic to a workflow. This logic can be used to control
what happens when the workflow executes. In the Condition activity, you define logic as an ECMA
expression that evaluates to a Boolean value.

Each Condition activity must have two outgoing flow paths, one that handles conditions that
evaluate to True and another that handles conditions that evaluate to False. Optionally, a third flow
path can be added to handle error conditions that occur if the ECMA expression evaluation fails.

¢ Section 7.6.1, “Properties,” on page 236
¢ Section 7.6.2, “Data Item Mapping,” on page 236
¢ Section 7.6.3, “E-Mail Notification,” on page 236

7.6.1 Properties

The Condition activity has the following properties:

Table 7-15 Condition Activity Properties

Property Name Description
Name Provides a name for the activity.
Condition Expression Specifies an ECMA expression that returns True or False. The

value returned determines which flow path is followed after the
activity has finished executing.

TIP: If you need to test whether two objects are equal in a
conditional expression, you should use the == operator, rather
than the equals() method, unless you are certain that the objects
being compared are Java objects of the same type. For instance,
use this expression:

(approval A.getAction() == "DENIED")

instead of this one:

(approval A.getAction()) .equals ("DENIED")

For details on building ECMA expressions, see Chapter 9,
“Working with ECMA Expressions,” on page 315. For descriptions
of the system variables available in a workflow, see Section 6.5.3,
“Understanding Workflow Data,” on page 187.

7.6.2 Data ltem Mapping

Not supported with this activity.

7.6.3 E-Mail Notification

Not supported with this activity.

236 User Application; Design Guide

1.7

7.7.1

1.1.2

Mapping Activity

The Mapping activity allows you to add or manipulate data in a workflow. It evaluates the source
expression and saves the result in the target expression of the associated data items. You can use it as
a way to combine data from parallel-processed approval forms after their data is moved to flowdata.

For example, in a parallel approval context you might need to collect data from more than one
approval form that is dependent on each other or needs to be calculated with each other. To
accomplish this, place a Mapping activity after a Merge activity and before any activities that
consume the results (for example, Condition, Entity, Provisioning or another Approval activity).

You can also use the Mapping activity to isolate calls to external Java routines that might manipulate
data and be resource intensive, thereby not slowing down user-based Approval activities in either
their pre-activity or post-activity mapping phase.

¢ Section 7.7.1, “Properties,” on page 237
¢ Section 7.7.2, “Data Item Mapping,” on page 237
¢ Section 7.7.3, “E-mail Notification,” on page 238

Properties

The Mapping activity has the following properties:

Table 7-16 Mapping Activity Properties

Property Name Description

Name Provides a name for the activity.

Data Item Mapping

To bind the data items associated with the Mapping activity, you define pre-activity and post-activity
mappings. The pre-activity mappings initialize data in flowdata with constants, values retrieved
from the flowdata object, system process variables, system activity variables, or data retrieved via
expression calls to the directory abstraction layer. The post-activity mappings move data into the
flowdata object.

Table 7-17 Mapping Activity Data Item Mappings

Setting Description

Source Expression Specifies a source expression. When you click a cell in the
Source Expression column, the ECMA Expression Builder
displays to help you define your expression. For example,

function list() { s=new java.lang.String();
if (wi.XPath('count (flow-data/groups)') >
0) s="There was a group selected"; return
s; }; list();

Workflow Activity Reference 237

Setting Description

Target Expression Specifies a target expression. When you click a cell in the
Target Expression column, the ECMA Expression Builder
displays to help you define your expression or you can click
the Map All button. An example of a target expression is:

flowdata.testexpression

7.7.3 E-mail Notification

Not supported with this activity

7.8 Workflow Status

The Workflow Status activity lets you specify the approval status (approved or denied) for workflows
that do not contain a provisioning activity (an Entitlement or Entity).

¢ Section 7.8.1, “Properties,” on page 238
¢ Section 7.8.2, “Data Item Mapping,” on page 238
¢ Section 7.8.3, “E-Mail Notification,” on page 238

7.8.1 Properties

The Workflow Status activity has the following properties:

Table 7-18 Workflow Status Activity Properties

Property Description

Name Specifies the name of the activity.

Workflow Status Specifies the approval status as an expression: either Approved or
Denied.

7.8.2 Data Item Mapping

Not supported with this activity.

7.8.3 E-Mail Notification

Not supported with this activity.

238 User Application; Design Guide

7.9

7.9.1

7.9.2

7.9.3

E-Mail Activity

The E-Mail activity provides a way to send an e-mail to interested parties outside of an approval
process.

¢ Section 7.9.1, “Properties,” on page 239
¢ Section 7.9.2, “Data Item Mapping,” on page 239
¢ Section 7.9.3, “E-Mail Notification,” on page 239

Properties

The E-Mail activity has the following properties:

Table 7-19 E-Mail Activity Properties

Property Name Description
Name Provides a name for the activity.
Notify by E-Mail Specifies whether this activity should send e-mail notifications. Set to True to notify

by e-mail; otherwise, set to False.

You specify the e-mail to send by using the E-Mail Notification tab (see
Section 7.9.3, “E-Mail Notification,” on page 239).

To use this feature, the Notify participants by E-Mail parameter for the provisioning
request definition must be set to true (see Table 4-3, “Overview Properties,” on
page 97).

Data Item Mapping

Not supported with this activity.

E-Mail Notification

To enable e-mail notification for this activity, you need to specify the e-mail template to use, as well as
source expressions for target tokens in the e-mail body.

Table 7-20 E-Mail Notification Settings for the E-Mail Activity

Setting Description

E-Mail Template Specifies the name of the e-mail template to use. By default,
the Approval activity uses the Provisioning Notification
template.

You can edit an e-mail template in Designer. For more
information, see “Editing an e-mail template:” on page 181.

Workflow Activity Reference 239

Setting Description

Source/Target Specifies the source expressions for target tokens in the e-
mail body.

The list of target tokens is determined by the selected e-mail
template. You cannot add new tokens, but you can assign
values to the tokens by building your own source expressions.
At runtime, source expressions are evaluated to determine
the value of each token.

The available target tokens are listed below:

* TO

s CC

+ BCC

+ REPLYTO
+ TO_DN

* CC_DN
+ BCC_DN

* recipientFullName
+ initiatorFullName
* requestTitle

+ userFirstName

If you use a provisioning request definition template to create
your workflow, each token has a default source expression.
The default expressions retrieve values from the workflow
process (the process object) or from the data abstraction layer
(IDVault object). You can modify these expressions to suit
your application requirements.

For details on building ECMA expressions, see Chapter 9,
“Working with ECMA Expressions,” on page 315.

NOTE

¢ E-mail notification is supported only when the Notify participants by E-Mail check box is selected
on the Overview tab, and the Notify by E-Mail property for the activity is set to True.

¢ When you create a workflow for use with the Resource Request portlet, and you use the
“_default_” as the expression for the TO token, the addressee expression must be an IDVault
expression.

¢ If you create an activity using any of the target tokens TO_DN, CC_DN, or BCC_DN, you must
specify a user’s DN or an expression that resolves to a user’s DN as the source expression for the
token.

¢ If you create an activity using both the target tokens TO and TO_DN, the workflow sends out
duplicate notification emails to the target users.

240 User Application; Design Guide

7.10 Role Request Binding Activity

The Role Request Binding activity changes the approve or deny attribute in the nrfRequest object.
Two such activities are required in any workflow of Flow Type Role Approval or SoD Approval. One
Role Request Binding handles the approve condition from an Approval activity and the other
handles the deny condition from an Approval activity. The Role Request Binding activities must be
completed before the Finish activity or the workflow is considered invalid and cannot be deployed
by Designer.

¢ Section 7.10.1, “Properties,” on page 241

¢ Section 7.10.2, “Data Item Mapping,” on page 241

¢ Section 7.10.3, “E-Mail Notification,” on page 241

7.10.1 Properties

The Role Request Binding activity has the following properties:

Table 7-21 Role Request Binding Properties

Property Description
Name Provides a name for the activity.
Action approved: Changes the approve attribute in the nrfRequest object to true.

denied: Changes the deny attribute in the nrfRequest object to true.

7.10.2 Data Iltem Mapping

Not supported with this activity.

7.10.3 E-Mail Notification

Not supported with this activity.

7.11 Role Request Activity

The Role Request activity allows you to automate the granting or revoking of roles to users, groups,
or containers. For example, you might write a provisioning request definition that provisions all of
the resources and roles a new employee needs on their first day. Using the role request activity, you
can automate the approval of that employee for specified roles.

You can also configure the activity to respond to Separation of Duty (SoD) constraint overrides by
always approving, or allowing specific cases. You can use the activity to configure the effective and
expiration dates for the role, or use it to extend the expiration date of a role.

The Role Request activity runs within the system service security context.
There is no limit on the number of Role Request activities allowed within a workflow.
The Role Request activity fails if the requested role DN or the target DN is invalid, or does not exist.

The result of the role request is written as a system comment to the comment history.

Workflow Activity Reference 241

The Role Request activity does not support the ability to set the originator of the request. Use Simple
Object Access Protocol (SOAP) calls rather than this activity when you need this information.

¢ Section 7.11.1, “Properties,” on page 242
¢ Section 7.11.2, “Data Item Mapping,” on page 246
¢ Section 7.11.3, “E-Mail Notification,” on page 246

7.11.1 Properties

The Role Request activity has the following properties:

Table 7-22 Role Request Properties

Property Name Description

Name Required. Provides a localizable name for the activity.

Description Required. Text that describes the reason for the assignment request. This
corresponds to the Initial Request Description field of the Request Roles
Assignment tab.

Action Specifies the action the activity should perform. Select a value from the

drop-down list. The values are:

+ grant (default): Use this value if the role should be granted.
+ revoke: Use this value if the role should be revoked.

+ extend: Use this value to extend the expiration date of the specified
role. The role must already be granted, and the value that you
specify in Expiration Date must be later than the one currently
specified.

Roles Required. An expression that resolves to a list of requested roles. For
information on building this expression, see “Specifying the Roles and
Targets Properties” on page 244.

This is an example of the script to request a specific role:

'CN=Administer
Drugs, CN=Levell0,CN=RoleDefs, CN=RoleConfig, CN=AppConfi
g,' + PROVISIONING DRIVER

In this script example, the value is retrieved from flowdata:
flowdata.get ('Start/request form/role')

Target Type Required. Specifies the type of object that the requested role will be
assigned. Choose one of the values from the list. The values are:

+ user (default)
¢ group
¢ container

+ container with subtree

242 User Application; Design Guide

Property Name

Description

Effective Date

Targets

Expiration Date

Correlation ID

SoD Override Request

The date when the role assignment goes into effect. If no date is specified,
the assignment is effective immediately after it is requested. You can use
the Expression Builder convenience methods to specify this value.

ECMAScript Objects

Tomorr o
Next week
Nezk manth

a
a
a
o Nexkt year

o June 21, 2005

#- o process
'.'::l Flovedata

Required. An expression that resolves to the DN of the object for whom
the role is requested. The target can be users, groups, or containers
depending on Target Type value. The targets that you specify must
resolve to the Target Type specified.

For information on building this expression, see “Specifying the Roles and
Targets Properties” on page 244.

The following examples show a script for targets:

'cn=ablake, ou=users, ou=medical-idmsample, o=novell'
To retrieve the value from flowdata:

flowdata.get ('Start/request form/group')

The date when the role assignment expires. If not specified, the
assignment remains in effect indefinitely. You can use the Expression
Builder’s convenience methods to specify this value.

ECMAScript Objects

Today
Tomarraw
Mext week
Mext month

oo oo o

Mexk year
June 21, 2003
#- o process

l::l Flowdata

o

An optional string field. If not supplied, it defaults to the process instance
ID. This string must be less than or equal to 64 characters.

Optional field. Defines how the Role Request activity should handle a
request that causes an SoD constraint violation. Values are:

+ true: SoD override is requested for all encountered conflicts.

+ false (default): An SoD override is not requested for all
encountered conflicts. Role Request activity uses the list of SoDs in
the SoD Overrides property to determine which SoD constraints to
override.

Workflow Activity Reference 243

244

Property Name

Description

Override Justification

SoD Overrides

Optional field. Available when SoD Override Request is false. Describes
why an exception to the SoD constraint is necessary. If no value is
specified, the Description is used. This example shows how to retrieve the
value from flowdata.

flowdata.get ('Start/request form/reason')

Available when the SoD Override Request is false. It is a list of one or
more SoD constraints to override. When an SoD constraint is encountered
and the constraint is in this list, the role request activity will request the
role. It the SoD is not in this list, the role request activity will stop executing
and follow the error link.

You can use the Expression Builder’s convenience methods to build the
expression. The list contains the local list of SoDs defined for this project.
For example:

ECMASCript Objects

=l o SaD Override Request
|_| Doctor-Nurse

|_| best

- 0 process

E2 l::l Flowedata

Selecting the Doctor-Nurse SoD generates an expression like this:

'cn=Doctor-Nurse, cn=SoDDefs, cn=RoleConfig,

cn=AppConfig, ' + PROVISIONING DRIVER'

Specifying the Roles and Targets Properties

Designer provides a convenient way to build the Roles and Targets expressions using the Expression

Builder.

1 Click the [button in the property’s Value column.

Designer launches this dialog box for adding or removing expressions.

User Application: Design Guide

@ Provisioning Request Definition Property Modification

Specify addresses exprassion(s) for the apprawval

+ ¥

Rales
IDWault. getirecipient, 'user', manager”)

3 [(o] 4 H Cancel]

Click + to add a new Roles or Targets expression by using the Expression Builder.

The dialog box displayed by Designer varies depending on whether you are specifying Roles or

Targets. This dialog shows an example of the dialog box displayed to specify Roles because it
includes the Search Roles button.

® Saurce [CMA Txpression Buflier - [B%
ECHisrgt Oljects [r— FEMAR L O ading Vit Exremn.
0 rm ol ECMASerye & 0 Logenl & (8] sdertny vait
rrm— w (B meh ¥ (] ok vt
o grocs * G malntnsl
£ Ravadtitn W ey

o o) [t svoms] [iisy v, [eachmie...

You can choose one of the ECMAScript Objects to build the Roles or Targets expression, or use
the Identity Vault button to select a specific object. Click Search Roles to locate a role.

2a To choose specify a Role, click Search Roles.

Workflow Activity Reference 245

@ Role Search @

Search for Role

Select role

Search Criteria

Identifier (CM):

Display Mame:

Descripkion:

Cakegory: v
Rale Level: All v

Matching Roles

Raole:

@ Cancel

2b In the dialog box, specify the CN, Display Name, Description, Role Category, and Role Level on
which you want to search.

For CN, Display Name, and Description, you can enter a wildcard (such as S¥, *S) or regular
expressions (such as [A-Z][a-z]*).

You can enter a value for all of the fields or none of the fields. If you do not supply a value
in a particular field, the search returns all of the possible values for that field. If you enter a
value in one or more of the fields, the values are ANDed together to create the search filter.
The search occurs on the roles defined locally. Roles matching the search criteria are
displayed in the Matching Roles selection list.

2c Select a role from the Roles selection list, then click OK. The role is added to the expression
area.

3 Click OK after you are satisfied with expression. Repeat Step 2 to continue to add more
expressions.

7.11.2 Data Item Mapping

Not supported with this activity.

7.11.3 E-Mail Notification

Not supported with this activity.

7.12 Resource Request Binding Activity

The Resource Request Binding activity changes the approve or deny attribute in the
nrfResourceRequest object. Two such activities are required in any workflow of Flow Type Resource
Approval. One Resource Request Binding handles the approve condition from an Approval activity

246 User Application; Design Guide

7.12.1

1.12.2

7.12.3

7.13

and the other handles the deny condition from an Approval activity. The Resource Request Binding
activities must be directly before the Finish activity or the workflow is considered invalid and cannot
be deployed by Designer.

¢ Section 7.12.1, “Properties,” on page 247
¢ Section 7.12.2, “Data Item Mapping,” on page 247
¢ Section 7.12.3, “E-Mail Notification,” on page 247

Properties

The Resource Request Binding activity has the following properties:

Table 7-23 Resource Request Binding Properties

Property Description
Name Provides a name for the activity.
Action approved: Changes the approve attribute in the nrfResourceRequest object to true.

denied: Changes the deny attribute in the nrfResourceRequest object to true.

Data Item Mapping

Not supported with this activity.

E-Mail Notification

Not supported with this activity.

Resource Request Activity

The Resource Request activity allows you to automate the granting or revoking of resources to users.
For example, you might write a provisioning request definition that provisions all of the resources a
new employee needs on their first day. Using the resource request activity, you can automate the
approval of that employee for specified resources.

The Resource Request activity runs within the system service security context.
There is no limit on the number of Resource Request activities allowed within a workflow.

The Resource Request activity fails if the requested resource DN or the target DN is invalid, or does
not exist.

The result of the resource request is written as a system comment to the comment history.

The Resource Request activity does not support the ability to set the originator of the request. Use
SOAP calls rather than this activity when you need this information.

¢ Section 7.13.1, “Properties,” on page 248
¢ Section 7.13.2, “Data Item Mapping,” on page 250
¢ Section 7.13.3, “E-Mail Notification,” on page 250

Workflow Activity Reference 247

7.13.1 Properties

The Resource Request activity has the following properties:

Table 7-24 Role Request Properties

Property Name Description
Name Required. Provides a localizable name for the activity.
Resources Required. An expression that resolves to a list of requested resources. For

information on building this expression, see “Specifying the Roles and
Targets Properties” on page 244.

This is an example of the script to request a specific resource:

'CN=Administer
Drugs, CN=ResourceDefs, CN=ResourceConfig, CN=AppConfig, '
+ PROVISIONING DRIVER

In this script example, the value is retrieved from flowdata:
flowdata.get ('Start/request form/resource')

Description Required. Text that describes the assignment request. This corresponds
to the Initial Request Description field of the Request Resources
Assignment tab.

Action Specifies the action the activity should perform. Select a value from the
drop-down list. The values are:

+ grant (default): Use this value if the resource should be granted.
+ revoke: Use this value if the resource should be revoked.

+ extend: Use this value to extend the expiration date of the specified
resource. The resource must already be granted, and the value that
you specify in Expiration Date must be later than the one currently
specified.

Correlation 1D An optional string field. If not supplied, it defaults to the process instance
ID. This string must be less than or equal to 64 characters.

Targets Required. An expression that resolves to the DN of the object for whom
the resource is requested. The target must be an object of the User class
only. The targets that you specify must resolve to the Target Type
specified.

For information on building this expression, see “Specifying the Roles and
Targets Properties” on page 244.

The following examples show a script for targets:
'cn=ablake, ou=users, ou=medical -idmsample, o=novell'

Entitlement Params Optional. A parameter required by the entitlement driver. For example, if
the entitlement operation grants access to the Sales group, the parameter
might specify the group.

248 User Application; Design Guide

Specifying a Resource and Targets Properties

Designer provides a convenient way to build the Resource and Targets expressions by using the

Expression Builder.

1 Click the (3] button in the property’s Targets or Entitlement Params column.

Designer launches this dialog box for adding or removing expressions.

Provisioning Request Definition Property Modification

Specify target expression(s) for the resource reguest,

¥+ HK

Targets
recipient

[Ok J [Cancel

]

2 Click + to add a new Resource or Targets expression by using the Expression Builder.

M Source ECMA Expression Builder
ECMAScript Objects

Functions/Methods

ECMAScript Operakors

Yaulk Expressions

[#- o process
[# =2 Global Config Yalues
& flawdata

F =5 ECMAScript

IB-@ Logical
-3 Math

@ Relatianal
@ Skring

(8] 1dentity vault
7] Role Wault

L QK ,] [_ Cancel J [Check Syntax] [Identitv Vault...]

You can choose one of the ECMAScript Objects to build the Resource or Targets expression, or
use the Identity Vault button to select a specific resource.

3 Click OK after you are satisfied with expression. Repeat Step 2 to continue to add more

expressions.

IMPORTANT: You cannot specify values to the resource request form fields at the time of
resource request activity through Designer.

Workflow Activity Reference

249

7.13.2 Data ltem Mapping

Not supported with this activity.

7.13.3 E-Mail Notification

Not supported with this activity.

7.14

Start Workflow Activity

The Start Workflow activity allows you to invoke a workflow instance from within a provisioning
request definition. The workflows you invoke branch; they are not subflows.

You can group these related workflows by using the Correlation ID.

¢ Section 7.14.1, “Properties,” on page 250

¢ Section 7.14.2, “Data Item Mapping,” on page 251
¢ Section 7.14.3, “E-Mail Notification,” on page 251

7.14.1 Properties

The Start Workflow activity has the following properties:

250

Table 7-25 Start Workflow Properties

Property

Description

Activity Id

Name

Provisioning Request Defn
to start

Recipient

Correlation ID

Specify a unique string value that identifies the activity. Activity Ids are written to
the user application’s log file. Specifying a meaningful Activity Id makes it easier
to understand the data written to the logs. You can specify letters, numbers, and
the underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN where the NN
represents the order in which the activity was added to the workflow.

Provides a name for the activity.

An expression that resolves to the distinguished name of the provisioning
request definition to invoke. You can select the provisioning request from the
Expression Builder. The possible selections are provisioning requests whose
Status is Active and whose Process Type is Normal.

An expression that resolves to one or more user or group distinguished names.

To specify multiple values, click Recipient List (in the ECMAScript Objects panel
of the Expression Builder). This generates a pre-built function called
multirecipient(). Replace ‘Enter recipient * with the distinguished name of a user
or group as needed to include all of the recipients for the workflow.

A separate workflow process is created for each recipient that you specify.

An expression that lets you group the workflows invoked from this activity. If you
do not supply a value, the workflow engine supplies a default, which is the
request ID of the current workflow.

User Application: Design Guide

7.14.2

7.14.3

7.15

7.15.1

Data Item Mapping

To pass the data needed by the workflow you want to start, you must specify data item mappings.
The data items you must specify depend on the workflow that is to be started. The Data Item
Mapping view displays the fields required by the Provisioning Request Defn to start. Because the
Provisioning Request Defn to start is an expression, it might evaluate properly only at runtime. This
would be the case in a workflow where the user could choose a workflow to start from a form field,
and that value gets mapped to flowdata, and that flowdata expression is used in the Provisioning
Request Defn to start property. To account for this, the Data Item Mapping view changes based on
whether the workflow to start can be determined at design time. If so, then the data items to start that
workflow are shown. However, if the workflow is not known at design time, then the workflow
developer must specify them.

The Start Workflow activity has the following data item mappings:

Table 7-26 Start Workflow Data Item Mapping Properties

Setting Description

Source Expression An expression used to initialize the data items needed by the Provisioning
Request Defn to Start. When you click a cell in the Source Expression column, the
ECMA Expression Builder displays to help you define your expression.

Target Form Field A read-only field that specifies target fields for the initialization data specified in
the Source Expression. If the workflow cannot be determined at design time, this
field is editable.

Data Type Specify the data type for this data item.

Multivalued A read-only field that specifies if the workflow can accept multiple values for this
parameter. If this value is true, you can specify multiple values by using the syntax
provided in the Expression Builder. If the workflow cannot be determined at design
time, this field is not present.

E-Mail Notification

Not supported with this activity.

Finish Activity

The Finish activity marks the completion of a workflow. When the Finish activity executes, an e-mail
message is sent to notify participants that the workflow has finished.

¢ Section 7.15.1, “Properties,” on page 251
¢ Section 7.15.2, “Data Item Mapping,” on page 252
¢ Section 7.15.3, “E-mail Notification,” on page 252

Properties

The Finish activity has the following properties:

Workflow Activity Reference 251

Table 7-27 Finish Activity Properties

Property Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids
are written to the user application’s log file. Specifying a meaningful
Activity Id makes it easier to understand the data written to the logs.
You can specify letters, numbers, and the underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN
where the NN represents the order in which the activity was added
to the workflow.

Name Provides a name for the activity.

Notify by E-Mail Provides a method of triggering an e-mail notification when the
Finish activity is executed. When this property is set to True, an e-
mail notification is sent. When this property is set to False, no e-
mail notification is sent.

See Section 7.15.3, “E-mail Notification,” on page 252 for
information about setting up the e-mail notification.

7.15.2 Data ltem Mapping

Not supported with this activity.

7.15.3 E-mail Notification

To enable e-mail notification for the Finish activity, you need to specify the e-mail template to use, as
well as source expressions for target tokens in the e-mail body.

Table 7-28 E-Mail Notification Settings for the Finish Activity

Setting Description

E-Mail Template Specifies the name of the e-mail template to use. By default, the
Finish activity uses the Provisioning Approval Completed
Notification template.

You can edit an e-mail template in Designer. See “Editing an e-
mail template:” on page 181 for more information.

252 User Application; Design Guide

Setting Description

Source Specifies the source expressions for target tokens in the e-mail

body.
Target Y

The list of target tokens is determined by the selected e-mail
template. You cannot add new tokens, but you can assign values
to the predefined tokens by building your own source expressions.
At runtime, the source expressions are evaluated to determine the
value of each token.

The available target tokens for the Provisioning Approval
Completed Notification e-mail template are listed below:

+ TO

s CC

+ BCC

+ REPLYTO
+ TO_ DN
+ CC_DN
+ BCC_DN

* requestStatus

* requestSubmissionTime
* requestlD

* recipientFullName

+ initiatorFullName

+ requestTitle

If you use a provisioning request definition template to create your
workflow, each token has a default source expression. The default
expressions retrieve values from the workflow process (the
process object) or from the data abstraction layer (IDVault object).
You can modify these expressions to suit your application
requirements.

For details on building ECMA expressions, see Chapter 9,
“Working with ECMA Expressions,” on page 315.

NOTE

¢ E-mail notification is supported only when the Notify participants by E-Mail check box is selected
on the Overview tab.

¢ When you create a workflow for use with the Resource Request portlet, and you use _default_ as
the expression for the TO token, the addressee expression must be an IDVault expression.

¢ If you create an activity using any of the target tokens TO_DN, CC_DN, or BCC_DN, you must
specify a user’s DN or an expression that resolves to a user’s DN as the source expression for the
token.

¢ If you create an activity using both the target tokens TO and TO_DN, the workflow sends out
duplicate notification emails to the target users.

Workflow Activity Reference 253

7.16 Rest Activity

The Rest activity enables users to call REST endpoints or resources when processing workflow data.
The activity allows workflows to exchange data with arbitrary REST services. Data sent to a REST
service can integrate a workflow with other systems inside and outside the organization. Data
received from a REST service can provide decision support information on approval forms. You
create flowdata variables to move data between the workflow and the REST service.

¢ Section 7.16.1, “Properties,” on page 254
¢ Section 7.16.2, “Data Item Mapping,” on page 256
¢ Section 7.16.3, “E-Mail Notification,” on page 257

7.16.1 Properties

254

The Rest activity has the following properties. Note that most activity properties are ECMAScript
expressions, so ensure that you configure each property by clicking the “E” icon in the property field
to open the ECMA Expression Builder.

Table 7-29 Rest Activity Properties

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids
are written to the user application’s log file. Specifying a
meaningful Activity Id makes it easier to understand the data
written to the logs. You can specify letters, numbers, and the
underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN
where the NN represents the order in which the activity was
added to the workflow.

Name Provides a name for the activity.

Protocol Specifies the protocol the activity uses when calling the REST
server. You can specify either http or https.

NOTE: If you specify https, you must also configure the Trust
Manager property for the activity.

Host Specifies the REST server the activity calls to request or modify
data.

Port Specifies the port number the activity uses when calling the REST
server.

Path Specifies the encoded URL path the activity uses when calling the

REST server. If the path includes any reserved characters, you
must URL encode the path. For more information about URL
encoding, see http://en.wikipedia.org/wiki/Percent-encoding (http:/
/en.wikipedia.org/wiki/Percent-encoding).

In the ECMA Expression Builder, select URL Path Encoding >
URL encode the path and modify the path to include the URL path
expression to encode.

User Application: Design Guide

http://en.wikipedia.org/wiki/Percent-encoding

Property Name Description

Method Specifies the method the activity uses to retrieve data from or
modify data on the REST server. The choices are:

* get
* put
* post
+ delete

¢ head

Authorization Header Specifies the Authorization header the activity uses when calling
the REST server. In many cases, the REST server expects the
header to be in the “Basic Authentication” format. For more
information about the “Basic Authentication” format, see http://
en.wikipedia.org/wiki/Basic_authentication (http://
en.wikipedia.org/wiki/Basic_authentication).

If this is the case, in the ECMA Expression Builder, select Basic
Auth Header and modify the header to include the username and
password used to access the REST server.

Accept Header Specifies the Accept header the activity uses when receiving data
from the REST server. The Accept header tells the REST server
the format in which it should return data. The activity can receive
data in either XML or JSON format. The choices are:

+ application/json
* application/xml

Http Headers Specifies any additional HTTP headers the activity uses when
calling the REST server. Specify both header name and value
expressions, as hecessary, using guotation marks around each
expression.

Timeout Specifies a dynamic expression that defines the period of time, in
milliseconds, allotted for the Rest activity to complete. The timeout
interval applies each time the activity is executed by the
addressee.

For details on building ECMA expressions, see Chapter 9,
“Working with ECMA Expressions,” on page 315. For descriptions
of the system variables available in a workflow, see Section 6.5.3,
“Understanding Workflow Data,” on page 187.

Trust Managers If the activity uses the https protocol, this property specifies one or
more trust managers used to authenticate the connection to the
REST server. The property expression must evaluate to
TrustManager, TrustManager[], or List<TrustManagers>.

The default choices available in the ECMA Expression Builder
are:

+ Trust All Certs
* Trust Certs in default keystore

+ Trust Certs in specified keystore

Workflow Activity Reference 255

http://en.wikipedia.org/wiki/Basic_authentication
http://en.wikipedia.org/wiki/Basic_authentication

7.16.2 Data ltem Mapping

256

To bind the data items associated with the Rest activity, you define pre-activity and post-activity
mappings. The pre-activity mappings map values retrieved from the flowdata object to attributes in
the Input message for the REST server that will be accessed by the Rest activity. The post-activity
mappings map the response from the REST server back into the flowdata object.

Table 7-30 Rest Activity Data Item Mappings

Setting

Description

Pre-Activity

If the REST service you want to call requires payload data, you need
to specify pre-activity mappings. This is normally the case when you
use a PUT or POST request.

When this option is selected, you can double-click a cell in the

Source Expression column to specify where the Rest activity gets
data for a particular REST server input field. In particular, you can
set a source expression for Content Type and Content, as follows:

+ Content Type: The value of this type of expression is normally

either application/json or application/xml
depending on the data type you want to send to the server.

Content: This type of expression evaluates to a JSON- or
XML-formatted string for the expected payload. If the expected
format is JSON, look at the helper functions in the ECMA
Expression Builder, under Vault Expressions > Script Vault. In
particular, the helper function Convert object to JSON may be
useful, as it enables you to create a JSON string from an
ECMAScript object.

While you can build the JSON string using conventional
expressions, the Convert object to JSON function may be
easier and less prone to errors, especially for complex JSON
expressions. See the following example for one possible
expression using the function:

ScriptVault.JSON.stringify((function () { var
test = {}; test.val = "1"; test.arrayVal =
["one", "two"]; return test;} ()))

User Application: Design Guide

7.16.3

Setting Description

Post-Activity If the REST service returns data you want to capture, you need to
specify post-activity mappings. This is normally the case for most
requests.

When this radio button is selected, you can double-click a cell in the
Target Expression column to specify where data from a REST server
output field should be copied after the form has been processed. In
particular, you can set a source expression for Status Code, Content
Type, and Content, as follows:

+ Status Code: The value of this expression is the HTTP status
code from the REST call.

+ Content Type: The value of this type of expression is normally
either application/json or application/xml
depending on the format of the data the server returns.

+ Content: This type of expression evaluates to a JSON- or
XML-formatted string the returned data. If the format of the
returned data is JSON, look at the helper functions in the
ECMA Expression Builder, under Vault Expressions > Script
Vault. In particular, the helper function Convert object to JSON
may be useful, as it enables you to create a JSON string from
an ECMAScript object.

You can use the Map All button to map the Content field into
flowdata in the Rest activity, then use the content by extracting
fields in a subsequent activity using the Convert object to
JSON helper function. For example, in a workflow where you
have mapped the content returned from the REST call to
flowdata.processinstances, you can use the following
expression to obtain the JSON property totalSize:

(function () { var processInstances =
ScriptVault.JSON.parse (

flowdata.get ('processInstances')); var size =
processInstances.totalSize; return size;}) ();

Source Expression Specifies a source expression. When you click a cell in the Source
Expression column, the ECMA Expression Builder displays to help
you define your expression. It is recommended that you click the
Map All button to allow Designer to generate this expression for you.

Target Expression Specifies a target expression. When you click a cell in the Target
Expression column, the ECMA Expression Builder displays to help
you define your expression. It is recommended that you click the
Map All button to allow Designer to generate this expression for you.

E-Mail Notification

Not supported with this activity.

Workflow Activity Reference 257

7.17 Integration Activity

The Integration activity provides a way to use a Web service to process workflow data. For detailed
information about using the Integration activity, see Chapter 8, “Working with Integration
Activities,” on page 267.

¢ Section 7.17.1, “Properties,” on page 258
¢ Section 7.17.2, “Data Item Mapping,” on page 259
¢ Section 7.17.3, “E-Mail Notification,” on page 260

7.17.1 Properties

The Integration activity has the following properties.

Table 7-31 Integration Activity Properties

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids
are written to the user application’s log file. Specifying a
meaningful Activity Id makes it easier to understand the data
written to the logs. You can specify letters, numbers, and the
underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN
where the NN represents the order in which the activity was
added to the workflow.

Name Provides a name for the activity.

WSDL Resource Specifies a WSDL file for the Web service to be used in the
Integration activity. After it is specified, the WSDL is incorporated
into the provisioning request definition file.

When you select a WSDL file, a dialog box is displayed that you
use to select the Web service port type and operation that you
want to use in the Integration activity.

You can also specify a SOAP endpoint for the Integration activity
and configure authentication for the SOAP service. For more
information about specifying a WSDL file and configuring the
Integration activity, see Section 8.2, “Adding an Integration
Activity,” on page 267.

Timeout Specifies a dynamic expression that defines the period of time
allotted for the Integration activity to complete. The timeout
interval applies each time the activity is executed by the
addressee.

For details on building ECMA expressions, see Chapter 9,
“Working with ECMA Expressions,” on page 315. For descriptions
of the system variables available in a workflow, see Section 6.5.3,
“Understanding Workflow Data,” on page 187.

258 User Application; Design Guide

1.17.2

Property Name

Description

Retry Count

Final Timeout Action

Specifies the number of times to retry the activity in the event of a

timeout.

When an activity times out, the workflow process can try to

complete the activity again, depending on the retry count specified

for the activity. If the last retry times out, the activity can be

marked as success, fault, error, or timed out, depending on the

final timeout action specified for the activity.

Determines the final state of the request in the event that the

Integration activity times out. The choices are:

* success
* fault
¢ error

+ timedout

Data Item Mapping

To bind the data items associated with the Integration activity, you define pre-activity and post-
activity mappings. The pre-activity mappings map values retrieved from the flowdata object to

attributes in the Input message for the Web service that will be accessed by the Integration activity.
The post-activity mappings map the response from the Web service back into the flowdata object. For
more information about data item mapping for Integration activities, see Section 8.3, “Moving Data
to and from the Integration Activity,” on page 269.

Table 7-32 Integration Activity Data Item Mappings

Setting

Description

Pre-Activity

Post-Activity

Source Expression

Allows you to specify one or more pre-activity mappings.
When this option is selected, you can double-click a cell in the
Source Expression column to specify where the Integration
activity gets data for a particular Web service input field.

NOTE: When the Pre-Activity option is selected, the cells in
the Web Service Input Field column are not editable.

Allows you to specify one or more post-activity mappings.
When this radio button is selected, you can double-click a cell
in the Target Expression column to specify where data from a
Web service output field should be copied after the form has
been processed.

NOTE: When the Post-Activity option is selected, the cells in
the Web Service Output Field column are not editable.

Specifies a source expression. When you click a cell in the
Source Expression column, the ECMA Expression Builder
displays to help you define your expression. For example,
flowdata.get ('Start/RequestRate/Countryl') for
a Web service input, or flowdata.Start/RequestRate/
Countryl for a Web service output field.

Workflow Activity Reference

259

Setting Description

Web Service Input Field This column displays all of the input fields for the port type and
operation specified when the WSDL file was selected. The
fields in this column are automatically populated. If you want
to remove an input field, click Mapping, expand the nodes of
the sample document and deselect any input fields that you
want to remove.

Web Service Output Field This column displays all of the output fields for the port type
and operation specified when the WSDL file was selected.
The fields in this column are automatically populated. If you
want to remove an output field, click Mapping, expand the
nodes of the sample document and deselect any output fields
that you want to remove.

Mapping Displays a hierarchical view of the sample document for the
inputs to or outputs from the Web service. You can use this
feature to deselect input or output fields (by default, all Web
service input and output fields are selected).

7.17.3 E-Mail Notification

Not supported with this activity.

7.18 Entitlement Activity

The Entitlement activity grants or revokes an entitlement for a user or other entity type.
A workflow must have at least one Entitlement or Entity activity.

¢ Section 7.18.1, “Properties,” on page 260
¢ Section 7.18.2, “Data Item Mapping,” on page 261
¢ Section 7.18.3, “E-Mail Notification,” on page 261

7.18.1 Properties

260

The Entitlement activity has the following properties:

Table 7-33 Entitlement Activity Properties

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids are written to the
user application’s log file. Specifying a meaningful Activity Id makes it easier to
understand the data written to the logs. You can specify letters, numbers, and the
underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN where the NN
represents the order in which the activity was added to the workflow.

Name Provides a name for the activity.

User Application: Design Guide

Property Name Description

Set Workflow Status Specifies the approval status of the provisioning request. Set to True for approved;
otherwise, set to False. This method of setting workflow status overrides other
methods (for example, the Set Default Completion Status to Approved parameter
(see Table 4-3, “Overview Properties,” on page 97) or the Approval Status activity
(see Section 7.8, “Workflow Status,” on page 238).

7.18.2 Data Item Mapping

To bind the data items associated with the Entitlement activity, you define mappings for several
DirXML® attributes.

Table 7-34 Entitlement Activity Data Item Mappings

Setting Description

Source Expression Specifies a source expression for a DirXML mapping. When you click a cell in
the Source Expression column, the ECMA Expression Builder displays to help
you define your expression.

The DirXML mappings for the Entitlement are described below:

+ dnis the distinguished name for the recipient of the entitlement.

+ DirXML-Entitlement-DN is the distinguished name of the entitlement to
execute. For example, the entitlement might be identified as follows:

' CN=Groups, CN=GroupEntitlementLoopback, CN=TestDrivers,
O=novell'

You can use the ECMA Expression Builder’'s ECMAScript Variable panel
to see a list of all the entitlements in the driver. To select an entitlement,
double-click the full distinguished name of the entitlement.

+ DirXML-Entitlement-Action indicates whether the entitlement is granted or
revoked. If the operation grants the entitlement, the value must be 1; if it
revokes the entitlement, the value must be 0.

+ DirXML-Entitlement-Parameter specifies a parameter required by the
entitiement driver. For example, if the entitlement operation grants access
to the Sales group, the parameter might specify the group as follows:

"\\MYTREE\\novell\\idmsample-doc\\groups\\Sales'

+ DirXML-Entitlement-MultiValueAllowed indicates whether the entitlement
supports multiple values. If it supports multiple values, the value must be
True; otherwise, it must be False.

For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on
page 315.

7.18.3 E-Mail Notification

Not supported with this activity.

Workflow Activity Reference

261

7.19 Entity Activity

The Entity activity updates an entity in the Identity Vault. You can use this activity to create, modify,
or delete attributes on an entity. You can also use this activity to create or delete an entity (see
Section 7.19.4, “Working with Entity Activities,” on page 264).

A workflow must have at least one Entitlement or Entity activity.

¢ Section 7.19.1, “Properties,” on page 262

¢ Section 7.19.2, “Data Item Mapping,” on page 263

¢ Section 7.19.3, “E-Mail Notification,” on page 264

¢ Section 7.19.4, “Working with Entity Activities,” on page 264

7.19.1 Properties

The Entity activity has the following properties:

Table 7-35 Entity Activity Properties

Property Name Description

Activity Id Specify a unique string value that identifies the activity. Activity Ids
are written to the user application’s log file. Specifying a meaningful
Activity Id makes it easier to understand the data written to the logs.
You can specify letters, numbers, and the underscore (_) character.

If you do not specify a value, the Activity Id defaults to ActivityNN
where the NN represents the order in which the activity was added
to the workflow.

Name Provides a name for the activity.

Entity Type Specifies the target entity type: User or Group.

Operation Indicates what kind of operation will be performed on the target
entity:

+ Create/Modify
* Delete attributes/values

+ Delete entity

To create or modify attributes of an entity or to create a new entity,
select create/modify. To delete attributes of an entity, select delete.

To delete an entity, select delete object.

Set Workflow Status Specifies the approval status of the provisioning request. Set to
True for approved; otherwise, set to False. This method of setting
workflow status overrides other methods. For example, the Set
Default Completion Status to Approved parameter (see Table 4-3,
“Overview Properties,” on page 97) or the Approval Status activity
(see Section 7.8, “Workflow Status,” on page 238).

262 User Application; Design Guide

7.19.2

Data Item Mapping

To bind the data items associated with the Entity activity, you define mappings for the attributes

associated with the target entity type.

Table 7-36 Entity Activity Data Item Mappings

Setting

Description

Entity dn

Modify Type

Identifies the entity that is the target of the operation. The
default value is recipient.

To create a new object, specify a distinguished name that
does not yet exist.

TIP: The output of the DNMaker control can be used as input
for the Entity dn value. The DNMaker control constructs the
DN by allowing the user to enter the naming attribute in a text
field and presenting an interface for picking a container. After
this data has been captured in a request form, the output can
be mapped to a variable in the flowdata object. In the
definition for the Entity activity, this flowdata variable can be
accessed in the Entity dn setting with an expression such as

flowdata.get ('groupdn') ;

For details on using the DNMaker control, see Section 5.5.11,
“DNMaker,” on page 141.

Indicates how the mapping should be performed for an
attribute. The choices are

* Append Value
+ Replace Value
* Replace All Values
For many attributes, Replace Value is the only option that

makes sense; therefore, this option is selected automatically
and cannot be changed.

You must specify the Modify Type setting before specifying
the Modify Value Expression setting.

Workflow Activity Reference

263

Setting Description

Modify Value Expression Specifies a source expression for an attribute. When you click
a cell in the Modify Value Expression column, the ECMA
Expression Builder displays to help you define your
expression. The list of attributes available varies depending
on which entity type was selected on the Properties tab.

Designer automatically inserts a sample ECMAScript
expression into this field. The code provided varies depending
on the Operation property specified in Properties and the
Modify Type selected in Data Item Mapping. For example, if
you have specified Create/Modify for Operation, and Replace
All Values for Modify Type, Designer inserts an expression
that helps you to create a vector:

function list () { v=new java.util.Vector();
v.add('{Enter Item 1}'); v.add('{Enter Item
2}"); return v; }; list();

In some cases you might be able to create expressions that
work as well or better than the sample expression. For
example, instead of creating a vector for multiple attribute
values, you can create a flowdata variable (see Section 6.5.3,
“Understanding Workflow Data,” on page 187) to store
multiple attribute values, and use the getObject function to
retrieve the values of the flowdata variable (see “ECMAScript
Objects” on page 318).

NOTE: The cells in the Target Attribute column are not
editable.

7.19.3 E-Mail Notification

Not supported with this activity.

7.19.4 Working with Entity Activities

You use Entity activities to update entities in the Identity Vault. The procedures for working with
Entity activities differ slightly from the procedures for working with other activity types so this
section includes example procedures for:

¢ “Adding or Modifying an Entity” on page 264

¢ “Using an Entity Activity to Delete an Entity” on page 265

+ “Using an Entity Activity to Delete an Attribute or Value” on page 265

Adding or Modifying an Entity
1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to
insert the Entity activity into the workflow.
2 Click the Properties tab.

3 Click in the Value column of the Entity Type field, then select the Entity Type (for example, User,
Group) that you want to create or modify. If the target object that you specify in Step 6 already
exists, the target object is modified; if the target object doesn't exist, it is created.

4 Click in the Value column of the Operation field, then select Create/Modify.

264 User Application; Design Guide

5 Click the Data Item Mapping tab.

6 Click the button next to the Entity dn field to display the ECMA Expression Builder, then specify
an expression that identifies the target of the operation (for example, “recipient”).

7 Click OK to return to the Data Item Mapping view.
8 Specify expressions for other attributes as required to create the Entity.

See Section 3.2, “Working with Entities and Attributes,” on page 47 for information about
adding entities. If you are adding an entity, you must enter expressions for all required
attributes.

Using an Entity Activity to Delete an Entity

1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to
insert the Entity Activity into the workflow.

2 Click the Properties tab.

3 Click in the Value column of the Entity Type field, then select the Entity Type (for example, User,
Group) to which the entity that you want to delete belongs.

4 Click in the Value column of the Operation field, then select Delete entity.
5 Click the Data Item Mapping tab.

6 Click the button next to the Entity dn field to display the ECMA Expression Builder, then specify
an expression that identifies the Entity that you want to delete.

7 Click OK to return to the Data Item Mapping view.

Using an Entity Activity to Delete an Attribute or Value

1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to
insert the Entity activity into the workflow.

2 Click the Properties tab.

3 C(lick in the Value column of the Entity Type field, and select the Entity Type (for example, User,
Group) of the entity to which the attribute or value that you want to delete belongs.

4 Click in the Value column of the Operation field, and select Delete attribute/value.
5 Click the Data Item Mapping tab.

6 Click the button next to the Entity dn field to display the ECMA Expression Builder, then specify
an expression that identifies the entity that contains the attribute or value that you want to
delete.

7 Click OK to return to the Data Item Mapping view.

8 Click in the Delete Type field for the attribute to which you want the operation to apply, then
select the operation from the list:

¢ Select Delete Attribute for single-value attributes

¢ Select either Delete Attribute or Delete Value for multi-value attributes. Selecting Delete Value
for multi-value attributes also requires that you enter an expression to identify the value
that you want to delete.

9 To delete a value, click in the Delete Value Expression field for the attribute to which you want the
operation to apply, then specify an expression that resolves to the value of the attribute that you
want to delete.

Workflow Activity Reference 265

266 User Application; Design Guide

8.1

8.2

Working with Integration Activities

This section provides details about working with Integration activities. Topics include:

¢ Section 8.1, “About the Integration Activity,” on page 267
¢ Section 8.2, “Adding an Integration Activity,” on page 267

*

Section 8.3, “Moving Data to and from the Integration Activity,” on page 269

*

Section 8.4, “Using the Integration Activity Editor Interface,” on page 272

*

Section 8.5, “Actions,” on page 285

About the Integration Activity

The Integration activity is an activity that allows workflows to exchange data with arbitrary Web
services. Data sent to a Web service can integrate an individual workflow with other systems, inside
and outside the organization. Data received from a Web service can provide decision support
information on approval forms.

You create flowdata variables to move data from the workflow to the Web service for processing. The
Integration activity automatically creates an action model for working with a Web service based on a
WSDL document that you specify.

NOTE: The action model is a subset of the features available in the Novell Integration Manager
product (formerly known as Novell exteNd Composer).

An action model is a visual representation of a set of instructions for processing XML documents and
communicating with XML data sources. An action model performs all data mapping, data
transformation, and data transfer within an Integration activity. You can edit the action model to
manipulate data before and after the data is submitted to the Web service. You then map the data
from the Integration activity back to flowdata variables for use in the workflow.

Adding an Integration Activity

1 Create a provisioning request definition (see Chapter 4, “Configuring Provisioning Request
Definitions,” on page 83).

2 Create a workflow for the provisioning request definition (see Chapter 6, “Creating the
Workflow for a Provisioning Request Definition,” on page 173).

3 Click the Workflow tab.
4 Drag an Integration activity from the palette and place it in the desired location in the workflow.

5 Click the Properties tab.

Working with Integration Activities 267

268

% start

fanward
¥

\/ SUCCEIT
T

& Approval

v approved
T

F Entity

11

fanward
hi
¥ Finish

OvErYiEw lWorkFIow Forms | Signature Declarationsl

Mmail Iotification | Data Ikemn Mapping | Policy Set |

Propert | Value

Marne Integration 1

WSDL Resource D
Timeouk Interval a

Retries 0

Final Timeout Action

6 Type a name for the activity in the Name field.

7 Click the Value field for the WSDL Resource property, then click the browse button to display a
dialog box that you use to locate the WSDL file for the Web service that you want to access with

the Integration activity.

8 Use the dialog box to browse your file system to locate the WSDL file for the Web service that
you want to use. Click the name of the WSDL file, then click Open.

A dialog box that you use to select a port type and operation for the Web service is displayed.

E"};SEIEEI: Port Type and Operation

Select Port Type

Select Cperation

X

IsWalidEmail] I=tns:IsYalidEmailSoapIn O=tns:IsValidEmailSoapout) j

k.

Cancel |

The Select Port Type list includes a set of port types supported by the Web service. Each port type
supports operations that include the input and output messages of the operation.

This window allows you to specify the SOAP endpoint, the user ID used to access the SOAP
endpoint, and the password used to access the SOAP endpoint. These options are all
ECMAScript expressions and can be GCV values. Use the ECMA Expression Builder to

configure the expressions you want to use.

9 Select a port type from the Select Port Type list.

User Application: Design Guide

10 Select an operation from the Select Operation list.

11 If you want to specify a SOAP endpoint, specify a SOAP endpoint URL, either by selecting the
URL from the Select Soap Service Endpoint Expression list or by clicking the “E” icon and using the
ECMA Expression Builder to configure an expression that resolves to the SOAP endpoint URL.

12 Ifyou want to use basic authentication for a SOAP endpoint, complete the following steps:
12a Select SOAP Service requires Basic Authentication.

12b In the User ID Expression field, click the “E” icon and use the ECMA Expression Builder to
specify an expression that resolves to the user ID used to access the SOAP endpoint.

12c In the Password Expression field, click the “E” icon and use the ECMA Expression Builder to
specify an expression that resolves to the password used to access the SOAP endpoint.

13 Click OK.

The Integration activity creates an action model based on the WSDL document.You use the
action model at design time to test the input to the Web service, test the response from the Web
service, and map and transform data, if necessary, before returning the data to the workflow.

For many Web services, you don’t need to concern yourself with the action model. You simply
create data item mappings for the Integration activity. After the action model is created, a new
tab, Integration, is added to the provisioning request definition editor. You use this tab to access
the action model.

14 Specify the Timeout, Retry Count, and Final Timeout Action properties (see Section 7.17,
“Integration Activity,” on page 258).

15 If you want to view or edit the action model, click the Integration tab.

ey ey | ik kFloe | Forms | Signature Declarations lIntegratiDn .

8.3 Moving Data to and from the Integration Activity

1 Create form fields to allow users to provide input to the Web service accessed by the Integration
activity (see Chapter 5, “Creating Forms for a Provisioning Request Definition,” on page 107).
For example, if you are working with a Web service that provides stock quotes, you need a field
for the user to specify a stock symbol.

2 To move user input from the form to the workflow, create a flowdata variable in an activity that
precedes the Integration activity in the workflow.

See Section 6.5.3, “Understanding Workflow Data,” on page 187 for information about creating
flowdata variables.

For example, if you have created a form field called “symbol” to accept a stock symbol for input
to the Web service, you would go to the post-activity data item mapping for the activity
associated with the form that contains the symbol field, then you would map the symbol field to a
flowdata variable (for example, flowdata.symbol).

3 In the Workflow tab, right-click the icon for the Integration activity, then choose Show Data Item
Mapping.

The Data Item Mapping tab is displayed.
4 In the Data Item Mapping view, click Pre-Activity.

In the Web Service Input Field grid, you should see fields that match all of the input fields
associated with the port type and operation specified in Step 9 and Step 10 on page 269.

Working with Integration Activities 269

The integration activity automatically selects all of the input field associated with the port type
and operation. You can remove the input fields or modify properties of the input fields by
following this procedure:

4a Click Mapping.
The Sample Document dialog box is displayed.

=10l

Select the elements and attributes ko be selected, Once these are selected, XPath expressions wil
be created For these nodes and the expression column will be Filled.

Sample Document

Ok I Cancel

4b Expand the nodes of the sample document and deselect any input fields that you want to
remove.

4c If an input field is an unbounded element, right-click and select Occurs.

270 User Application: Design Guide

@ Sample Document |:| E'E'

Select the elements and attributes to be selected, Once these are selected, XPath expressions wil
be created For these nodes and the expression column will be filled.

Sarnple Document

=] skartInput
= startRequest
argi
argl

Select Al Children
Unselect &ll Children

OK l [Cancel]

4d Type the maximum number in the Enter Repeats dialog, and click OK
4e Click OK to return to the Data Item Mapping view.

5 For each Web Service Input Field, click in the Source Expression field, then click the ECMA
Expression Builder button.

Properties | Email Motification "_:-':,- Data Item Mapping X Policy Set | Dataflowl =0
& pre Ackivity post Ackivity Mapping... I
Source Expression | ‘Web Service Inpuk Field | Data Tvpe

% | GetouotesSnapIngGetQuote/symbol skring

4| | i

The ECMA Expression Builder is displayed.

6 Expand the flowdata node in the ECMAScript Objects pane of the ECMA Expression Builder, then
double-click the flowdata variable for the user input to the Web service.

Working with Integration Activities 271

S_".gSource ECMA Expression Builder 1Ol x|

ECMASCript Yariables Functions/Methods ECMASCHipt Operators WD Expt Panel
- o process [=% ECMAScript - Math -l User
E|l::l Flovadata - =2 Global Functions @ Relational Group
E|l::l Skart @ Logical User Lookup
E|l=:l RequestSymb @ Skring Task Group
: Lt '::' Symbol Task Manager Lookup

'::l Start object [l Manager Lockup

| | 1| [»]

Flowwdata. get{ Start/RequestSymbolfSymbol)

(o] 4 I Cancel Check Swntax | Identity Yaulk, ..

7 Click OK to return to the Data Item Mapping view.
8 Click Post Activity.

In the Web Service Output Field grid, you should see fields that match all of the output fields
associated with the port type and operation specified in Step 9 and Step 10 on page 269.

9 The Integration activity automatically selects all of the output fields associated with the port
type and operation. If you want to remove some of the output fields, follow these steps:

9a Click Mapping.
The Sample Document dialog box is displayed.

9b Expand the nodes of the sample document and deselect any attributes that you want to
remove.

9c Click OK to return to the Data Item Mapping view.
10 Click Map All to automatically create flowdata variables for each Web Service Output Field.

Alternatively, for each Web Service Output Field, click in the Source Expression field, then click the
ECMA Expression Builder button.

11 Expand the flowdata node in the ECMAScript Objects pane of the ECMA Expression Builder, then
double-click the flowdata variable that will receive data from the Web service.

12 Click OK to close the ECMA Expression Builder.

Now you can work in the Integration view to test and refine the interaction with the Web
service.

8.4 Using the Integration Activity Editor Interface

The Integration activity editor provides a working environment for the input, output, and actions of
the Integration activity. The Integration activity editor is composed of three views: Action Model,
WSDL Editor, and Messages.

272 User Application; Design Guide

8.4.1

Figure 8-1 Integration Activity Interface

Animation toolbar

| Output part Fault document
GG EEEE N 2 [Doriarer |l 22va
= O
Input BB | @ oupt = | 5| @ systemFaut ENENRE
Input part ® -7 sl 22 ml @ 2 sl [
1 [e] getRateRequest = [e] getRateResponse = [e] m:Faultinfo
mins xmins wrlns:m
[&] countryl (] Result [€] m:Compaonenthame
(] country? (8] m:DateTime
[8] m:MainCode
[€] m:SubCode
|e] m:Messange
Tree Sourcel Tree Source‘ Tree Sourcel
= ?‘(1/ Identity Wault_LEDA_UserApplication_Integration_XRate_Activity)
-~ 1150 Igniore NameSpaces For Input
ACtiOn model ° -f[XJ ZALL Input, createxPath{"getRateRequest™) setAttribute("xmins", "http:/ fwwm, xmethods.net/sd/CurrencyExchangeService wsdl"y
0152 fipply MameSpaces For Output as{ |, http:/fwww, xmethods. net/sd{CurrencyExchangeService.wsdl) Root Element Mame: getRateResponse
= wy
=] EXECLITE
ﬁf LG Input TO System Qutput using Log Level 5
@ w3 Interchange: CurrencyExchangeService viaService CurrencyExchangeService at Endpaint Location: "http:/fservices. xmethads . net:30/s0ap"
W Lo Output TO System Output using Lag Lewel 5
=] All other Faulks
I LOG ERROR TO System Outpt using Log Level 5 =
Integration activity Action Mol WSDL Edikor | Messages ||
editor tabs Dvervisvt | WorkFlow | Forms | Legal Disclaimers |Inkegration
= Properties 52 Email Nntificatmn|Pnlity Set ‘ Error Lﬂg‘ = O
Propett: | value
Marmne Inkeqgration
WSDL Resource Di\warklSeafangtCurrencyExchangeService wsdl
Timeout Interval 200000
Retries a
Final Timeout Action
Data Item Mapping 58 = O
% Pre Activity Post Activity Mapping...
Source Expression I Targek Data Type
Flowdata. get("Start/RequestRate/Country) getRateRequesticountryl string
flowdata, get{"Start/RequestRate /Cauntry2") getRateRequestfcauntry2 skring

¢ Section 8.4.1, “XML Views,” on page 273

¢ Section 8.4.2, “Action Model,” on page 278

¢ Section 8.4.3, “WSDL Editor,” on page 284

¢ Section 8.4.4, “Messages,” on page 284

¢ Section 8.4.5, “Regenerating Code for the Action Model,” on page 285
¢ Section 8.4.6, “Adding Actions to the Action Model,” on page 285

XML Views

The Integration activity provides a number of XML views (for example, Input and Output messages,
WSDL Editor, Messages) derived from the WSDL document. These views use a common interface.

¢ “Tree View” on page 273

¢ “Source View” on page 277

Tree View

You use the Tree view to work with a hierarchical view of an XML document. You display the Tree

view by clicking the Tree tab.

Working with Integration Activities 273

274

Figure 8-2 Tree View

Input "'_||§|||:‘:?:I

P? wml version="1.0" encoding="UTF-&"
= [8] GetQuoteSoapln

= [g] GetQuote
wrmilns http:f feava, webservice® NET/
xmins:xsd btk feava w3, orgf2001 fMLSchema
xmlns: xsi btk feavan w3, orgf 2001 fXMLSchema-instance
v Elernent 'syrbal' is optional
The value of the attribute 'tvpe' is 'string'
B svmbal sample

Tree | Source |

*

*

*

“Tree View Editing Features” on page 274
“Tree View Menu” on page 274

“Tree View Toolbar” on page 275
“Attaching a Schema or DTD” on page 275

Tree View Editing Features

The Tree view provides the following editing features:

*

*

You can edit attribute values, attribute name, namespace names and values, text, and comments.

You can insert new nodes by using the menu that is displayed when you right-click within the
Tree view. The menu allows you to insert nodes as children before or after the selected node. If
the node is an element, you can insert attributes. The submenus for Add Child, Add After, and Add
Before contain the node that can be legally added. If no schema or DTD is associated with the
document, the submenus contain New Attribute or New Element.

You can delete a node by right-clicking a node and selecting Remove.

You can drag and drop items between Tree views (for example, between views of the Input and
Output messages) to create Map actions (see Section 8.5.8, “Map,” on page 307 for information
about Map actions).

You can undo, redo, cut, copy, and paste.

Tree View Menu

When you right-click an item in the Tree view, a menu is displayed that you use to perform
operations on the XML document. The menu is context-sensitive and only displays the commands
that are appropriate for the item you clicked.

User Application: Design Guide

Table 8-1 Tree View Menu

Item

Description

Remove

Add DTD Information

Edit Namespaces
Add Attribute
Add Child

Add Before

Add After

Replace with

Removes the selected item.

Displays a dialog box that you use to add DTD information. You can edit the Root
Element Name, Public ID, and System ID.

Displays a dialog box that you use to add namespace declarations.
Displays a dialog box that you use to define a new attribute.
Displays a submenu with the following options:

Comment

Add Processing Instruction
#PCDATA

CDATA Section

New Element

Replaces the selected item with an item selected from the menu.

Tree View Toolbar

Tree view toolbars provide the following features:

Table 8-2 Tree View Toolbar

Button Description
¥ Expands all nodes in the document.
= Collapses all nodes in the document.
[S] Attaches a schema or DTD (see “Attaching a Schema or DTD” on page 275).

@

Displays online help.

Attaching a Schema or DTD

You can attach a schema or DTD to the current XML document when you are using the Tree view.

1 Click |3]in the Tree view toolbar. The Attach Schemas or DTD dialog box is displayed.

Working with Integration Activities 275

B

X
Attach Schema or DTD
Attach schema or DTD by either choosing an entry from the XML Catalog
of point ko an =ML schema or DTD in the file system
vl O ¥ML Schema DTD
=
@ (0]¢ I Caneel |

2 To choose from a list of entries in the XML catalog, choose an entry from XML Catalog Entry list.
3 To specify an XML schema on disk, click XML Schema.

[

x|
Attach Schema or DTD

Specify ®ML schema namespace URI and XML Schema file.

7 ¥ML Cakalog Entey %

Mamespace LURI: |

File:t |

I

(Z) (a4 I Cancel |

4 Type a Namespace URI, then use the browse button in the File field to select an XML schema on
disk.

5 To specify a DTD on disk, click DTD.
i

Attach Schema or DTD
specify OTD identifiers and OTD file,

Publid ID: |

Swskem ID; |

File: | _l
Iz.l_?“l

L2 64 I Zancel |

6 Type a Public ID and System ID, then use the browse button in the File field to select the DTD file
on disk.

276 User Application: Design Guide

Source View

You use the Source view to view the XML source of the document. You display the Source view by

clicking the Source tab.

Figure 8-3 Source View

<GFetiuoteloapIn>

<?xml wersion="1.0" encoding="UTF-35"7> ‘:J

<Getpuote xmwlns="http://www,.wvebhserviceX NET/ " xmlns:xsd=
<!=—Element 'sywbol' is optional-->
< !=—The walue of the attribute 'type' is 'string'-->

<eynbolx%§Aha/ symbols>
</ GetQuote
<fGetQuoteloapIn:
-
4| | »
Tree |Source

¢ “Source View Features” on page 277

¢ “Source View Menu” on page 277

Source View Features

The source view supports the following features:

¢ Syntax highlighting.

¢ Context-sensitive code-completion based on DTD or XML Schema.

¢ Validation as you type. If the XML is invalid (for example, the closing bracket is omitted from a
tag), the editor indicates the error.

¢ General text editing operations such as undo, redo, cut, copy, paste, and select all.

Source View Menu

When you right-click an item in the Source view, a menu is displayed that you use to perform
operations on the XML document.

Table 8-3 Source View Menu

Iltem Description

Undo Reverses the last action.

Redo Reverses an undo operation.

Cut Cuts the selected text to the clipboard.

Copy Copies the selected text to the clipboard.

Paste Pastes the clipboard contents at the insertion point.

Delete Deletes the selected text.

Select All Selects all of the text in the document.

Find Displays a dialog box that you use to find and replace text within the document.

Working with Integration Activities

277

8.4.2 Action Model

The action model includes the Action Model view and views for displaying message parts. The
Action Model view displays actions that operate on the contents of the message parts. The message
parts display the XML for the Web service Input and Output messages.

¢ “About the Action Model Views” on page 278

¢ “About the Input View” on page 278

¢ “About the Output View” on page 279

¢ “About the _SystemFault View” on page 279

¢ “About the Action Model Pane” on page 280

¢ “Animation” on page 281

About the Action Model Views

The action model views are used at design time to test the interaction with the Web service. You edit
actions in the Action Model view. You can enter test data to be input to the Web service in the Input
view, examine the response from the Web service in the Output view, and see any error messages
returned from the Web service in the _SystemFault view. The Integration activity has the following
message panes:

¢ Input view
¢ Output view
¢ _SystemFault view

+ Action Model view

About the Input View

The Input view displays the input message derived from the WSDL document for the Web service.
You can resize the view by dragging the right border.You can resize columns within the view by
dragging the column border. You can specify a value to use in testing the action model directly in the
Input part, in which case the value is discarded after executing the action model. You can also specify
a value using the Messages tab (see Section 8.4.4, “Messages,” on page 284), in which case the value
persists until you delete the value or you regenerate the action model (see Section 8.4.5,
“Regenerating Code for the Action Model,” on page 285).

Figure 8-4 Input View

Inpuk +—|@||:':?‘:]I

=7 il
El [e] getRateRequest
xmins

[8] countryl
[8] countryz

Tree | Source |

278 User Application; Design Guide

About the Output View

The Output view displays the output message derived from the WSDL document for the Web
service. When you execute the action model, you use the Output view to view the values returned
from the Web service.

You can resize the view by dragging the left border.You can resize columns within the view by
dragging the column border. You can specify a value directly in the Output part for modeling
purposes, in which case the value is discarded after executing the action model. You can also specify
a value by using the Messages tab (see Section 8.4.4, “Messages,” on page 284), in which case the value
persists until you delete the value.

Figure 8-5 Output View

Cukput 4 = | @ | @
=7 el
[[e] getRateResponse
zmins
[8] Resul:

Tree | Source |

About the _SystemFault View

The _SystemFault view displays any error messages produced when you execute the action model.
The XML information contained in _SystemFault is also written to a global object called ERROR.

Figure 8-6 _SystemFault View

_SwstemFault + = | [s] | @

P22 il

[[e] m:FaulkInfao
®mins:m
[8] m:ComponentMarne
[8] m:DateTime
[2] m:MainCode
[8] m:SubCode
[8] m:Message

Tree | Source |

Beneath the FaultInfo root are the following elements:

¢ DateTime contains the Date and Time at which the fault occurred.
¢ ComponentName contains the name of the component that threw the fault.

+ MainCode contains the main code number for the error.

Working with Integration Activities 279

* SubCode contains a sub-code number for the error.

¢ Message contains the error message defined when you set up a Throw Fault action (see “Throw
Fault” on page 288). If you do not specify an error message in your Throw Fault action, the
following message is displayed: "A user-defined Fault occurred!". If the error occurred
within a Try/On Fault action, and you did not specify a Fault, this element is populated with an
Exception message.

About the Action Model Pane

The Integration activity has a single action model. The action model represents the mappings,
transformations, and other actions that is performed on the Web service input and output messages.
The Action Model view is resizable. Most of your activity that takes place in the Action Model view
involves adding and editing actions.

¢ “Action Model Context Menu” on page 280
¢ “Finding and Replacing Text in the Action Model” on page 280

Action Model Context Menu

If you right-click in the action model, a menu is displayed.

Figure 8-7 Action Model Menu

Mew Ackion k
i Edit Action. ..
i Disable &ction

g Toggle Breakpoink
1 Clear all Breakpoints

of Cut

=| Copy

I Faste

H Delete...

Find/Replace...
Find Mexk

From this menu, you can add or edit actions (see Section 8.5, “Actions,” on page 285), toggle
breakpoints in the action model (see “Animation” on page 281) and perform other tasks.

Finding and Replacing Text in the Action Model
You can replace a word or string by using the Replace command on the action model menu.

1 Right-click in the action model, then select Replace.

280 User Application; Design Guide

il]
Search For:

[Replace with:

Opkions:

v Ignore case

[~ whole word

(7 (]9 I Cancel

2 Specify the search text.

3 If you want to replace the search text, click Replace with, then type a string to replace the search
string.

4 If you want to find the search text regardless of the capitalization of the text, click Ignore case.
5 If you want to find the search text in whole words only, click Whole word.
6 Click OK

The Integration activity finds the first occurrence of the search text. If the operation is a find and
replace operation, the Integration activity asks you to confirm the replacement. You can then
replace the next or all occurrences of the search text.

Animation

The action model provides animation tools that you can use to test and troubleshoot actions
interactively within the Integration activity. You can execute the action model step by step and watch
the result of each action. Not only do you see any errors as they happen, but you can verify, in real
time, that connections and data behaved as you planned.

The animation tools allow you to toggle one or more breakpoints. You can use this feature to
concentrate on a particular section of an action model. When used in conjunction with the run-to-
breakpoint tool, breakpoints allow you to quickly run through action model sections that work
properly, coming to a stop at a particular action. From there, you can step through each action in
sequence. You can also step over loops and other code blocks that would otherwise be tedious to
execute step-by-step.

The Basic Animation Tools

The animation tools are available on the Designer toolbar.

Figure 8-8 Animation Toolbar

SO @-BEE20I

Working with Integration Activities 281

282

Table 8-4 Animation Tools

Animation
Toolbar Button

Name

Description

<

BE 4

i

Execute
Execute Current
Action

Start Animation

End Animation

Step Into

Step Over

Run To
Breakpoint/End

Toggle
Breakpoint

Pause Animation

Executes the action model.

Executes the currently selected action.

Starts the animation process. Enables Step Into, Step Over, and Run to
Breakpoint/End.

Stops the animation process.

Executes the currently selected action and highlights the next
sequential action.

For a Repeat Loop action, clicking Step Into executes each action in the
loop and iterates through each loop.

For a Decision Action, Step Into processes the next action in the True or
False branch.

For the Try/On Fault action, Step Into processes the next action inside
the execute branch, and possibly the On Fault branch.

Executes the currently selected action and highlights the next
sequential action. Unlike the Step Into button, clicking this button does
not highlight and execute the details of Repeat, Decision, or Try/On
Fault actions.

Runs the animation to the next breakpoint or to the end of the action
model if there are no breakpoints.

Sets the selected action in the action model as a breakpoint. You may
set more than one breakpoint. Another way to toggle a breakpoint is to
right-click the desired action and select Toggle Breakpoint from the
menu.

Pauses the animation.

User Application: Design Guide

Starting Animation

When you first open an Integration activity, Start Animation and Toggle Breakpoint are the only enabled
buttons. When you click Start Animation, the rest of the animation buttons are enabled. If you want to
halt the animation temporarily, you can use the Pause Animation button. If you want to abort the
animation, you can do so at any time by clicking End Animation.

Although Copy, Paste, and action editing operations (including adding new actions) are all available
at animation time, we recommend that you do not edit the action model during animation. If you do,
exceptions or unpredictable behavior can occur. If you need to edit the action model, use End
Animation to stop the animation first. Then apply your edits and begin the animation again.

1 Open an Integration activity.

2 Click Start Animation button in the Designer toolbar. All of the animation buttons become active
except the Start Animation button, which is now dimmed.

3 Follow the instructions in the following sections to perform the desired Animation activity.

Toggling a Breakpoint

You use the Toggle Breakpoint tool to set a breakpoint in the action model where you want the
animation process to stop. This is helpful if you have a lengthy action model with long sections that
work properly. You can set the breakpoints for each action that is causing a problem and then step
through the action to troubleshoot it.

1 In the Action pane, select the action for which you want to set a breakpoint. This is where the
animation will stop.

2 Click Toggle Breakpoint on the Designer tool bar, or right-click the action and select Toggle
Breakpoint. A dot appears in the left border of the action model to indicate the breakpoint.

3 If desired, repeat the previous steps to select additional breakpoints.

Stepping Into an Action

Step Into runs the selected action in the action model and then moves to the next action in the
sequence. You can use the Step Into tool to step through each action in the entire action model, or you
can use it in conjunction with the Run to Breakpoint tool. Execution stops at the next breakpoint or
when the action model ends, whichever comes first.

A possible scenario for using a breakpoint would be if you have ten actions that you know work
properly but have doubts about the eleventh. You could set the eleventh action as a breakpoint,
execute the Run to Breakpoint tool, and then step through the eleventh (and subsequent) actions by
executing the Step Into tool.

1 Start the animation (see “Starting Animation” on page 283).

2 Click Step Into. The first action in the action model is selected.

3 Click Step Into again. The selected action executes and the next action is selected.

4 Continue to work through the action model by clicking Step Into after each action executes and
the subsequent action is selected.

Working with Integration Activities 283

8.4.3

8.4.4

Stepping Over an Action

You use Step Over when you don’t want to step into the details of the Repeat, Decision, or Try/On
Fault actions. You can execute an entire block of code without stepping individually through each
action.

You can use Step Over in conjunction with Run to Breakpoint. For example, you can toggle a
Breakpoint, execute Run to Breakpoint, and then use Step Over to execute the action designated as the
breakpoint. Step Over can save a great deal of time when testing lengthy action models, because you
can avoid tediously stepping through individual actions.

1 Start the animation (see “Starting Animation” on page 283).

2 Step through the action model with Step Into until you reach a loop or other line of code that
precedes an indented code block.

3 Click Step Over. The first action after the block of indented code is selected. All of the indented
code executes normally and you are taken straight to the next block of actions, without stepping
through the indented actions.

4 Continue to work through the action model by clicking Step Over as needed.

5 Continue to click Step Into and StepOuver to execute all of the actions in the action model.

Pausing Animation

You use Pause Animation to pause the execution of an action in the action model. This is especially
helpful in cases in which the action model contains lengthy loops.

1 During the execution of an action, click Pause Animation.

2 To resume the animation process, click Step Into, Step Over, or Run to Breakpoint (if a breakpoint
has been set).

Aborting Animation

You use Stop Animation to stop the animation process. After you stop the animation, you cannot
restart from the place where you left off. You must restart from the beginning of the action model.

WSDL Editor

The WSDL Editor displays the WSDL document for the Web service. You can edit the WSDL by using
the Tree view and Source view editing features (see “Tree View” on page 273and “Source View” on
page 277).

Messages

The Messages view displays the messages derived from the WSDL document for the Web service.
You can edit the messages using the Tree view and Source view editing features (see “Tree View” on
page 273 and “Source View” on page 277). You can use this feature for entering test data that is used
when you execute the action model at design time. Data that you enter in the Messages view persists
across executions of the action model.

284 User Application; Design Guide

8.4.5

8.4.6

8.5

Regenerating Code for the Action Model

When working in the WSDL Editor view, you can regenerate all code for the action model and
regenerate messages by clicking the Regenerate button. When working in the Messages view, you can
regenerate all actions in the action model. The Regenerate button is located in the Designer toolbar:

Figure 8-9 Regenerate Button

Regenerate button

File Edt Yiew Project Tools Live PRD Window Help

[i i % BB e

Adding Actions to the Action Model

Actions are the processing steps that take place within the Integration activity. A collection of actions
is referred to as an action model. An action in the action model is displayed as a line and contains an
icon for the action type along with an abbreviated definition of the action. Some actions are
subordinate to other actions. For example, you can create a Repeat action that controls loop
processing, then add actions inside the loop. The actions inside the loop are subordinate to the
Repeat action and appear indented beneath the Repeat action. Subordinate actions process as long as
the Repeat action is True.

To add an action to the action model, click the line in the action model that is one line above the
position in which you want to insert an action. Add an action by using any of following methods. The
new action is inserted below the line you selected.

¢ Drag and drop. You can add Map actions by dragging and dropping elements from the Input
view to the Output view.

¢ Copy and Paste. You can copy an action in the Action Model view and paste it somewhere else in
the view.

¢ Right-click the line in the action model that is one line above the position in which you want to
add the action, then select the desired action from the menu.

NOTE: You can reorder actions in the action model by dragging actions to a new position within the
action model.

After you have created the action model, and before you , you should test the action model. Perform
testing by using the Animation tools. With the Animation tools, you can set breakpoints, start an
animation, step into and over actions, and pause the animation. See “Animation” on page 281.

Actions

This section describes the actions that are available for use within an action model. An action is
similar to a programming statement in that it takes input in the form of parameters and performs
specific tasks. An action model is a set of instructions for processing XML documents and

Working with Integration Activities 285

8.5.1

communicating with XML data sources. An action model performs all data mapping, data
transformation, and data transfer within an Integration activity. All actions within an action model
work together.

At runtime, every action is converted to an executable form of ECMAScript and processed. At design
time, many actions accept ECMAScript expressions as parameters, adding great flexibility and
control to the action model. The Function action provides you with the most flexibility and control by
giving you access to the full functionality of the ECMAScript language.

This section contains the following topics:

¢ Section 8.5.1, “Advanced,” on page 286

¢ Section 8.5.2, “Data Exchange,” on page 291
¢ Section 8.5.3, “Repeat,” on page 296

¢ Section 8.5.4, “Comment,” on page 303

¢ Section 8.5.5, “Decision,” on page 304

¢ Section 8.5.6, “Function,” on page 305

¢ Section 8.5.7, “Log,” on page 306

¢ Section 8.5.8, “Map,” on page 307

Advanced

This section includes descriptions of the following actions:

¢ “Apply Namespaces” on page 286
¢ “Throw Fault” on page 288
¢ “Try/On Fault” on page 290

Apply Namespaces

This section includes the following topics:

¢ “About the Apply Namespaces Action” on page 286
¢ “Creating an Apply Namespaces Action” on page 287

About the Apply Namespaces Action

Ideally, an Integration activity always receives valid XML documents (that is, the documents validate
against their schema, map and transform data appropriately, and send valid XML documents).
However, this might not always the case. In other cases you might want to ignore namespaces
altogether. It is important to have some means of validating XML documents. These and many other
XML processing cases require a method of modifying or overriding the prefix and namespace
handling provided by the Integration activity.

The Apply Namespaces action provides a mechanism for managing namespaces and namespace
prefixes in effect for input and output messages within an action model. The action allows you to
consolidate namespace and prefix declarations for a Web service in one place, to override those
declared in the input and output messages, or to ignore namespaces altogether.

286 User Application; Design Guide

The Apply Namespaces action can be applied to input and output messages. You can also have

multiple Apply Namespaces actions for an individual message part, effectively changing namespaces
based on conditions specified in the action model. The namespaces declared are in effect until the end
of the action model is reached or another Apply Namespaces action is executed. In other words, only

the most recent Apply Namespaces action is in effect.

When creating a new Integration activity, an Apply Namespaces action is created automatically for

the Output message if the WSDL declares any namespaces. After component creation, you can
manually create additional Apply Namespaces actions.

Creating an Apply Namespaces Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Apply Namespaces action (the new action is inserted below the line that you selected).

2 Select New Action > Advanced > Apply Namespaces.

~iix

This action allows wou to manage the use of namespaces in any message part of a component. You can set the namespaces in effect far any 1

Apply the Following namespaces For Part: Cutput

o =

[~

Mamespace

I Prefix

1]

Options: [Ignore namespaces when part is used in an KPath expression

¥ Declare these namespaces in the part

Target document Root Elerment Marme: I GetBNQuateSoapOut

Help |

oK I Cancel |

3 Select the message (Input, Output, _SystemFault, or Project) to which you want to apply the

namespace from the Apply the following namespaces for Part list.

4 Click the plus (+) icon to add a new row, then click the Namespace column and type a namespace

URL

The table displays all the Namespace declarations for the selected message part. After creating a
new Apply Namespaces action, the table might or might not contain a list of declarations for a
selected part. The list of declarations is initially constructed from the declarations defined in the

WSDL.

Within the declaration list for a message part, prefixes must be unique. However, you can have
duplicate namespace URIs if the URIs have unique prefixes. This allows you to declare multiple
prefixes that are associated with the same namespace URI.

Working with Integration Activities

287

5 If desired, click Ignore Namespaces when document is used in an XPath expression.

Use this option when you want Map action source XPaths to find elements by their XML local
name only.

This provides for a less restrictive method of specifying Map actions (see Section 8.5.8, “Map,”
on page 307) and is useful when Map actions contain the wrong prefix or no prefix in their
Source specifications. This allows you to place the Apply Namespaces action inside a Decision
action (see Section 8.5.5, “Decision,” on page 304) that tests whether the Input message contains
prefixes or not, yet still have one set of Map actions to map the input to another part. In other
words, the Integration activity normally expects the input to contain prefixes, so you design all
your Map actions with prefix names. For the occasional input that has no prefixes, the Decision
action activates the Apply Namespaces action defined to ignore namespaces for input, allowing
the Map actions to work in either case.

6 When you want to declare a set of namespaces in the root element of an output message built by
your action model, click Declare these namespaces in the part.

This option is almost always checked for output to ensure that prefixed elements created in the
output, as a result of Map actions, resolves to the proper namespaces.

This allows a recipient of the output to validate the document properly. The Apply Namespaces
action with this option checked could also be used to add new declarations to an existing
document that already contains declarations.

The Target document Root Element Name is used to specify the name of the root element to contain
the Namespace declaration attributes. The Integration Activity automatically fills in this value
based on the information in the WSDL document and the message part specified in the Apply the
following namespaces for Part list.

7 Click OK. The new action is added to the action model.

Throw Fault

This section includes the following topics:

¢ “About the Throw Fault Action” on page 288
¢ “Adding a Throw Fault Action” on page 289

About the Throw Fault Action

You use the Throw Fault action to do the following:

¢ Write information to an XML message on failure of an action
¢ Perform any number of actions before throwing the fault
¢ Halt execution of a component
Throw Fault is only executed when a condition that you specify is true. The message part that is

written when a Throw Fault action is executed is called a Fault document, and the XML within this
message is contained in a global object called ERROR.

Throw Fault actions can be used in a number of ways:

¢ Using a Throw Fault Action by itself. You can specify a Fault Condition and an error message
within the Throw Fault Action dialog. When the action is executed, the Fault Condition is
evaluated. If the condition evaluates as True, the following occurs:

¢ Any Before Throw actions that you specify are executed. This can be very useful as a way to
leave your application in a particular state before halting execution. For example, you can
send a mail message stating that the execution did not complete.

288 User Application; Design Guide

*

¢ The contents of the error message are written to the Fault document in a node that you
specify, as well as to the global object ERROR.

+ The action model execution is halted.

Using a Throw Fault Action within a decision expression in the Decision action. You can specify
a fault condition by entering it in the decision expression of a Decision action. Then put a Throw
Fault statement in the True branch of the Decision action. Here you can either specify additional
conditions in the Throw Fault fault condition or leave it blank and simply specify the fault
document to which the fault information should be written. When the action is executed and all
your conditions are True, the Throw Fault action is executed. If the fault condition in the
Decision action or Throw Fault action is False, the next action in the action model is executed.

Using a Throw Fault inside a Try /On Fault action (see “Try/On Fault” on page 290. By putting
either of the above methods inside the execute branch of a Try /On Fault action, you prevent the
Integration activity from halting execution and have an opportunity to respond or recover from
the fault. You create your fault condition by using one of the previous two methods inside the
execute branch of a Try/On Fault action after other actions the output of which you want to test
have worked correctly. You can specify any number of unique faults so that the Integration
activity can branch into several different directions, depending on which fault occurs. When the
Throw Fault action for the given fault is triggered, instead of halting execution of the
component, control passes into the appropriate branch of the Try/On Fault action. Here you can
specify other actions to remedy or respond to the error.

Adding a Throw Fault Action

1

3

4

Right-click the line in the action model that is one line above the position in which you want to
place the Throw Fault action (the new action is inserted below the line that you selected).

Select New Action > Advanced > Throw Fault.

T.;;Throw Fault] 3]
Fault Condition:
& Throw {System-Fault:
Error Message (e.q. Fault/FaultInfo/Message):
2l -
<]
" Throw Defined Faulk
_aystemFault j k -
Help | o] I Cancel |

In the Fault Condition field, type a valid ECMAScript expression that, when True, causes the
action to throw a fault.

You can also click the ECMA Expression Builder button and build an expression (see Chapter 9,
“Working with ECMA Expressions,” on page 315).

Select Throw {System}{Fault} to write your error message to the _SystemFault document.

Working with Integration Activities 289

290

By default, the message that you type in the Error Message field is placed in the Fault/FaultInfo/
Message node of that document. Specify a different node if desired. You can also click the ECMA
Expression Builder button and build an expression.

5 Select Throw Defined Fault to select a fault document that is one of the message parts associated
with the Integration activity.

6 Click OK.

The new action is added to the action model. Place any actions that you wish to execute before
the application stops in the Before Throw Actions branch.

QuokeSoapOutiGetBMNGQuUokeResponsefGetBNQUoteR esult” J=="" THROW FALLT _SwstemFault _SystemFauIt.XPath("m:FauItInfo,l’m:IV;I
s,
------- E"’ LG "Execution stopped at "+Dated) TO System Qutput using Log Level 5 ‘j

Try/On Fault

The section includes the following topics:

¢ “About the Try/On Fault Action” on page 290
¢ “Adding a Try/On Fault Action” on page 290

About the Try/On Fault Action

The Try/On Fault action executes a set of actions when a fault occurs within the Execute branch of the
Try/On Fault action. Any number of defined faults can be specified within the Execute branch. You
can use the Try/On Fault action to trap anticipated errors and run other actions to remedy or report
on the fault. For instance, you can use Try/On Fault to respond to an XML Interchange action that
fails to find a file.

When you add a Try/On Fault action, several lines are added to the action model:

¢ The beginning of the Try action

¢ The Execute branch

¢ A branch for each Fault that you specified
¢ An All other Faults branch

When you are aware of potential faults an action can produce, you put those actions in the Execute
branch. You then put error handling actions under each On Fault branch to handle unique situations.
If a fault does occur, the actions in the On Fault branch execute.

Using the example given previously, if you anticipate a fault with the XML Interchange action, you
put the action under the Execute branch. In one On Fault branch, you might add another XML
Interchange action that attempts to read the file from an alternate location. In another On Fault
branch, you might add another XML Interchange action that looks for a file with a different
extension.

Adding a Try/On Fault Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Try/On Fault action (the new action is inserted below the line that you selected).

2 Select New Action > Advanced > Try/On Fault.

User Application: Design Guide

_ioix

Handle the Following Faults:

g e

Fault Part Name

Help | Ok I Cancel |

Use the +icon to add a new fault part to the Fault Part Name list. Use the red - icon to remove
fault parts from the list. Use the up-arrow and down-arrow icons to change the order of the
faults.

If you don't specify a fault part, corrective actions can be placed in the default All Other Faults

branch of the Try/On Fault action.
3 Click OK.

The following appears in the Action Model Viewer: the Try On Fault action icon, with an
Execute, one or more On Fault branches, and an All Other Faults branch.

4 Add any actions that might cause errors to the Execute branch.
5 In the On Fault branch, add actions that resolve the errors specified in the Execute branch.

The following illustration shows a complete Try/On Fault action in the action model.

= O
B

EXECUTE
@” LG Input TO System Qubput using Log Level 5
‘5/ W3 Inkerchange: CurrencyExchangeService viadervice CurrencyExchangeService at Endpoint Locakion: "http:/fservices, smethods, net:50/s0ap”
W LG Output TO Syskem Output using Log Level 5
=17 T4 IF Sutput, ¥Path"getR akeResponse/Result” §.kokumber) ==
=1-[2%] TRUE
L &3 AP $Inputf'1234.123 TO $OUkpUE/getR ateRespanse/Result
=[] FALSE
b @" LG "k o) \rragg] R U L O bput, ¥Path('getR ateResponsefResult”). tkokumber() TO Swskem Qutput using Log Level S
EI----E All other Faults
- @” LG ERROR TO System Qutput using Log Level 5
- 0 THROW FAULT _SystemFault

- |=%| Befare Throw Actions

8.5.2 Data Exchange

This section includes descriptions of the following actions:

¢ “WS Interchange” on page 292
¢ “XML Interchange” on page 293

Working with Integration Activities

291

WS Interchange

This section includes the following topics:

¢ “About the WS Interchange Action” on page 292
¢ “Adding a WS Interchange Action” on page 292

About the WS Interchange Action

The WS (Web Service) Interchange action is the most important action in the Integration activity and
allows the Integration activity to invoke a Web service according to calling conventions specified in a
WSDL file. The Integration activity automatically creates a WS Interchange action when it creates the
action model.

In most cases there is no need to add another WS Interchange action to the action model. However,
there might be situations in which you need to do so. The following procedure describes how to add
a WS Interchange action.

Adding a WS Interchange Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the WS Interchange action (the new action is inserted below the line that you selected).

2 Select New Action > Data Exchange > WS Interchange.

T=TE

| Messages I Connection I AML Signature I

WSDL Resource:

| CurrencyExchangeservice j
Service Marme!

I CurrencyExchangeservice j
Part:

I CurrencyExchangePort j
Operation:

I getRate! I=tns: getRateRequest O=tns:getRateResponse) j
Endpaint Location:

|"http:,l’,l’services.xmethods.net:SDIsoap" 7 -

Help | Apply I | [s]'4 I Cancel |

The WSDL Resource, Service Name, Port, and Operation fields are filled in automatically based on
the information in the WSDL specified for the Integration activity.

3 If desired, modify the information in the Endpoint Location field (usually a URL pointing at a
servlet) for the Web service that you wish to use, wrapped in quotation marks. Alternatively,
enter an ECMAScript expression that will evaluate to an Endpoint Location at runtime.

4 Click the Messages tab.

292 User Application; Design Guide

10
11
12

_ioix

Connection | £ML Signature |

Einding Style: rpc
Message | Part | Tvpe/Element | Expression |
input=getRateRequest counkry 1 %sdistring
input=getRateRequest counkry2 xsdistring
oukput=getR.ateResponse Resul: xsdifloat
Help | Apply I | [a]'¢ I Cancel |

The Message, Part, and Type/Element fields are filled in automatically based on the information in
the WSDL specified for the Integration activity.

If desired, click the Expression column for a message, then use the ECMA Expression Builder to
create an ECMAScript expression that describes the source and target for the message. Usually,
this is an expression that specifies an XPath location in an Input part or Output part.

Click the Connection tab.
You use this tab to specify connection parameters for HTTP servers that require authentication.

Type a user ID to use for the connection in the User ID field, and a password for the user in the
Password field.

The user ID and password are not actually submitted during the establishment of a connection.
They are simply defined here. The password is encrypted. You will have access to UserID and
Password variables in ECMAScript, allowing you to map the user ID and password as values
into the screen. This way, no one ever sees the passwords.

If the connection requires a client certificate, choose a client certificate by clicking the browse
button in the Client Certificate field and selecting the certificate file you want to use for this
connection.

If the connection requires a client private key, choose a client private key by clicking the browse
button in the Client Private Key field and selecting the client private key file.

Type the password for the client private key in the Private Key Password field.
Specify a connection timeout value, in seconds, in the Connection Timeout field.

Click Apply to test the WS Interchange action in real time, or click OK to close.

XML Interchange

This section includes the following topics:

*

*

“About the XML Interchange Action” on page 294
“Adding an XML Interchange Action” on page 294

Working with Integration Activities 293

294

About the XML Interchange Action

The XML Interchange action reads external XML documents into a DOM and writes data from the
DOM as XML files. There are four types of XML Interchange actions:

¢ GET

¢+ PUT

¢+ POST

¢ POST with Response
When using the GET interchange, fill in the Interchange URL Expression field with a URL that points to

the XML document that you want to bring into the Integration activity. In the Response Part field, you
select the DOM (Input, Output, _SystemFault, or Project) that is to receive the XML.

When using the PUT interchange, enter a URL that points to the location to which you want to write
the XML document in the Interchange URL Expression. In the Request Part field, you select the name of
the DOM from which you want to send data as XML.

When using the POST interchange, enter a URL that points to the location to which you want to write
the XML document in the Interchange URL Expression field. In the Request Part field, you select the
name of the DOM from which you want to send data as XML.

When using the POST with Response interchange, you supply the same parameters as for Post, with
one additional parameter. You must also specify a Response Part DOM to receive the Response XML
document from the Post with Response interchange. The difference between the two interchanges is
that Post with Response expects a response XML object back from the origin server.

Adding an XML Interchange Action
1 Right-click the line in the action model that is one line above the position in which you want to
place the XML Interchange action (the new action is inserted below the line that you selected).

2 Select New Action > Data Exchange > XML Interchange.

_ioix

Interchange Tywpe:
-

Interchange URL Expression:

HTTP Headet Params... |

Connection narme: Timeaut:
I <mone j I 0

Reguest Park:

| =

Response Part:

I 2ukpuk j
r Filker Dacurment, .

Help | Apply | ok, I Cancel |

3 Select an Interchange Type (Get, Put, Post, or Post with Response).

User Application: Design Guide

4

10

In the Interchange URL Expression field, type an expression that defines a fully qualified URL for
an XML document, using any of the following supported protocols:

¢ file
¢ FTP
¢+ HTTP
¢+ HTTPS
Depending on the Interchange Type selected, this URL is the source or the destination of the XML

file for the XML Interchange action. For example:

file:///g:/xmldata/invoicebatchl.xml
ftp://accounting:password@123.456.789.987:21/invoices/invl.xml

Because this is an ECMAScript expression, the URL string must be enclosed in quotation marks.

If you need to specify HTTP header parameters, click HTTP Header Parameters.
x
)
Parameter | value |
Content-type ek forml”

Help | (a8 | Cancel I

Click the plus (+) icon to add new header parameters, then type a Parameter name and a
corresponding Value. Common HTTP header parameters include “Content-Type,” “Content-
Length,” and “Keep-Alive.” You can add any number of Parameter-Value pairs.

Click OK to return to the XML Interchange dialog box.

In the Request Part field (which is enabled if the Interchange Type is Put, Post, or Post with
Response), select the name of the DOM from which you want to send data as XML.

In the Response Part field (which is enabled if the Interchange Type is Get or Post with Response),
select the name of the DOM tree that will receive the XML.

If you want to filter the incoming XML document to improve performance, select the check box
next to the Filter Document button, then select the Filter Document button.

Working with Integration Activities 295

8.5.3

296

11

12

13

@gDeﬁne Performance Filter ol x|

Filter elements For the document. Specify which elements to remove From each document belaw to reduce its size at runtime. Unchecked leaf
elements and [or element branches will be removed from the document and not be available For processing. You may combine usage with the
Split Document action.

Inpuk

[+ getRateResponse

Help | O I Cancel |

The document displayed is the document selected in the Response Part in the XML Interchange
dialog box.

You use this dialog box to specify the individual nodes to retain (rather than discard) from the
incoming XML document in real time to improve performance and reduce RAM overhead.

Select the nodes that you want to keep in the document.
Nodes that are not selected are discarded before parsing the DOM.

When you have selected nodes that you want to keep, click OK to return to the XML Interchange
dialog box.

Click OK.

Alternatively, you can click Apply to see the affect of the XML Interchange action without closing
the dialog box. This allows you to make repetitive edits to an XML Interchange action and
quickly see the results.

Repeat

This section includes descriptions of the following actions:

*

*

*

“Break” on page 297

“Continue” on page 297

“Declare Group” on page 298
“Repeat for Element” on page 299
“Repeat for Group” on page 301
“Repeat While” on page 302

User Application: Design Guide

Break

This section includes the following topics:

¢ “About the Break Action” on page 297
¢ “Adding a Break Action” on page 297

About the Break Action

The Break Action stops the execution of a Repeat for Element, Repeat for Group, or Repeat While
loop. The action model continues execution with the next action outside the loop.

The use of Break is appropriate when, for example, you are using a loop to search a node list for one
particular item. When the target item is found, there is no need to continue iterating. A Break can be
used to terminate the loop immediately.

NOTE: A Break action is usually used in one branch of a Decision action (within a loop). You place
the Break action in either the True or False branch of the Decision action.

Adding a Break Action
1 Within a Repeat action that you want to modify to include a Break action, select a position inside
the loop where you want to place the Break action.
Generally, this is in one leg or the other of a Decision action.
2 Select New Action > Repeat > Break.

The Break action is inserted into the action model.

Continue

This section includes the following topics:

+ “About the Continue Action” on page 297
¢+ “Adding a Continue Action” on page 297

About the Continue Action

The Continue action causes execution of the current iteration of a Repeat for Element, Repeat for
Group, or Repeat While loop to stop and execution to begin at the top of the loop, with the next
iteration. The Continue action provides a way to pass over downstream actions inside the loop while
allowing the loop to continue on to the next iteration.

A Continue action is appropriate in a situation where, for example, one item in a list should be
skipped for some reason, yet execution of the loop must continue.

NOTE: A Continue action usually occurs in one branch of a Decision action within a loop. You place
the Continue action in either the True or False branch of the Decision action, as appropriate.

Adding a Continue Action

1 Within a Repeat action that you want to modify to include a Continue action, select a position
inside the Loop actions where you want to place the Continue action.

This is usually inside one fork or the other of a Decision action.

Working with Integration Activities 297

298

2 From the Action menu, select New Action > Repeat > Continue.

A Continue action appears in the action model.

Declare Group

This section includes the following topics:

¢ “About the Declare Group Action” on page 298
¢ “Adding a Declare Group Action” on page 298

About the Declare Group Action

You use the Declare Group action to create two special lists, each in reference to a DOM. These group
lists can then be used as the basis for a loop in the Repeat for Group action. To create the lists, you
supply a Group Name and specify an XPath. The Integration activity then creates the lists as follows:

¢ A Group list is created that contains one entry for each unique value found in all the elements
that match the XPath. The Group list is referred to by the Group Name that you supply.

¢ A Detail list is created for each unique entry in the Group list that contains as many entries as
there are members in the Group. The Detail list is referred to by the group name that you supply,
post-fixed with the label (Detail).

Using Groups allows you to select a repeating element in your Input DOM and create fewer elements
based on the unique values across all siblings of that repeating element. Instead of having multiple
elements, you have one element for each unique element value in your Output DOM.

Adding a Declare Group Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Declare Group action (the new action is inserted below the line that you selected).

2 Select New Action > Repeat > Declare Group.

Declare Group |

Group Name:
|

Parent Group:
M

Group Elements:

ok_J_comsL]

3 Type a name for the group in the Group Name field.

4 If you want to create multiple group levels, select a group from the Parent Group list, which lists
groups that you have previously defined.

5 Click Add. The Add Element dialog box is displayed.

User Application: Design Guide

I x|

Part: |Input |v|

¢ O petRateRequest
D xmlns
[country
D country2

o [coma

6 Select a part name and an element.

7 Click OK.

8 Repeat Step 5 through Step 7 to add more elements to the group.

9 When you have all the elements that you want in the group, click OK.

Repeat for Element

This section includes the following topics:

¢ “About the Repeat for Element Action” on page 299
¢ “Adding a Repeat for Element Action” on page 300

About the Repeat for Element Action

The Repeat action creates looping structures within an action model. Loops give you the ability to
repeat a set of one or more actions. There are three types of loops: Repeat for Element, Repeat for
Group, and Repeat While.

XML allows multiple instances of an element in a document (analogous to multiple records in a
database table). The number of instances can vary from document to document and is defined in the
document schema (DTD or XML Schema). For example, you might receive an XML document
containing line items for an invoice on a daily basis. Each day the XML document has a different
number of line items. Not knowing how many instances of “line item” are in the XML document
poses a problem if you want to transfer these item numbers from the input XML document to an
output XML document programatically. The Repeat for Element action solves this problem.

The Repeat for Element action allows you to mark an element that occurs multiple times. The action
then sets up a processing loop that executes one or more actions for each instance of the marked
element until no more instances exist. In the previous example, the processing loop would contain a
single Map action to transfer the line item number and this action would be repeated until all line
items had been mapped.

The Repeat for Element action also uses the concept of an alias. An alias performs two functions. It is
an alternate name or shorthand for the marked repeating element, which saves you the work of re-
specifying long XPath expressions. In some cases, the repeating element might be several levels down
in the document hierarchy. When you create Map actions in the Repeat loop that transfers child
elements of the marked element, using the alias is quicker than re-typing a long XPath expression. An

Working with Integration Activities 299

alias is also an indicator to Map actions within the Repeat loop to use the next instance of the
repeating element each time the loop processes. A Map action within a Repeat for Element loop that
does not use the alias always refers to the first instance of the element in the source message.

The Repeat for Element action allows you to process more than one action within the loop. In the
simplest case, the repeat loop might only contain one Map action that transfers the value of the
current element instance from the input Part to the output Part. You can also define multiple actions
in the processing loop. For example, a Map action to transfer the current value, and a Log action that
writes to a file, creating an audit of each transfer.

Adding a Repeat for Element Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Repeat for Element action (the new action is inserted below the line that you selected).

2 Select New Action > Repeat > Repeat for Element.

_ioix

—Source

Alias:

Representing:

' ¥path: I vI " Expression:

—Targek

Alias:

I [~ Always create new output elsments

Representing:

& wPath: I vl ' Expression:

Help | Ok I Cancel |

3 Specify the Source information.
3a Type an alias name in the Source Aligs field.

A good naming convention for an alias is to use the element name with a prefix indicating
source or target and the type of repeat action, such as “S1Lineitem.”

3b Type an XPath expression, or click the ECMA Expression Builder button and build an XPath
expression for the repeating element.

4 Specify the Target information.
4a Type an alias name in the Target Alias field.

4b Select Always create new output elements if you have repeating actions that should add new
elements rather than updating existing elements.

4c Specify an XPath expression, or click the ECMA Expression Builder button and build an
XPath expression for the repeating element.

300 User Application: Design Guide

5 Click OK. The Repeat for Element loop is added to the action model.

6 Click Loop Actions in the action model to begin adding actions to be performed within the loop.

Repeat for Group

This section includes the following topics:

¢ “About the Repeat for Group Action” on page 301
¢+ “Adding a Repeat for Group Action” on page 301

About the Repeat for Group Action

The format of an XML document that you receive is not always the format that meets the
requirements of your business process. A Repeat for Group action allows you to restructure data and
establish a framework to calculate aggregates on your data. Grouping allows you to select a repeating
element in your input part and create fewer elements based on the unique values across all siblings of
that repeating element.

The Repeat for Group action sets up a processing loop based on one of two lists created by the
Declare Group action. The loop executes as many times as there are entries in the list you use (either
the Group list or Detail list). By combining a Repeat for Group with Map commands, you can create a
new XML document that has a different structure and data from the original.

Similar to the Repeat for Element action, a Repeat for Group action also uses the concept of an alias.
The values for the source group used in the Repeat for Group dialog boxes are the list names created
by the Declare Group action. The list names perform two functions. They are an alternate name or
shorthand for the XPath source of any Map actions within the loop. This saves you the work of re-
specifying long XPath expressions. The group list name, when used in place of a DOM name in a
Map action source, is also an indicator to the Map action within the Repeat loop to use the next
instance in the group list each time the loop processes. A Map action within a Repeat for Group loop
that does not use the group name always refers to the first instance of the element in the source part.

The target aliases created in the Repeat for Group action also serve two functions. They are an
alternate name or shorthand for the XPath target of any Map actions within the loop. This saves you
the work of re-specifying long XPath expressions. The target alias, when used in place of a part name,
is also an indicator to Map actions within the Repeat loop to create a new instance of the Source in the
target message part. A Map action within a Repeat for Group loop that does not use a target alias
always overwrites the first instance created in the target message part with subsequent instances
from the source group list.

Creating a Repeat for Group action consists of three tasks:

¢ Create a Declare Group action to create the group lists.
¢ Create a Repeat for Group action specifying which group list to use.

¢ Create Map actions inside the loop.

Adding a Repeat for Group Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Repeat for Group action (the new action is inserted below the line that you selected).

2 Select Action > New Action > Repeat > Repeat for Group.

Working with Integration Activities 301

302

_iBix

—Source

Where:

| |

Where:
—Targek

Alias:

Representing:

& wpath: I vI 7 Expression:

Help | OF I Cancel |

3 In the Source section, select a Group name from the Where list on which to base the Repeat for
Group action loop.

4 Optionally, type a Where clause in the Where field to filter the group list, or click the ECMA
Expression Builder icon and create a Where expression.

5 If you know the alias for the Target element, type the name in the Alias field.

6 If you do not know the alias, select either the XPath button and select an element from the list, or
select the Expression button and type an expression (or click the ECMA Expression Builder
button and build an expression).

7 Click OK.

Repeat While

This section includes the following topics:

¢ “About the Repeat While Action” on page 302
¢ “Adding a Repeat While Action” on page 303

About the Repeat While Action

The Repeat While action repeats one or more actions as long as a condition that you specify remains
True. The target alias that you create in the Repeat While action serves two functions. It is an alternate
name or shorthand for the XPath target of any Map actions within the loop. This saves you the work
of respecifying long XPath expressions. The target alias, when used in place of a DOM name in a Map
action, is also an indicator to Map actions within the Repeat loop to create a new instance of the
source in the target DOM. A Map action within a Repeat for Group loop that does not use a target
alias always overwrites the first instance created in the target DOM with subsequent instances from
the source.

NOTE: Unlike the Repeat for Element and Repeat for Group, Repeat While does not need to be based
on data in a DOM tree. The loop can operate independently of data in the DOM tree.

User Application: Design Guide

Adding a Repeat While Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Repeat While action (the new action is inserted below the line that you selected).

2 Select New Action > Repeat > Repeat While.

_ioix]

—Source

Wihilez:

Index Yariable:

—Targek

Alias:

Representing:

' ¥path: I vI " Expression:

Help | Ok I Cancel |

3 In the While field, type an expression that tests the While loop, or click the ECMA Expression
Builder button and build an expression.

4 In the Index Variable field, type a name for a variable to keep track of the condition of the loop.
5 If you know the alias for the Target element, type the name in the Alias field.

6 If you do not know the alias, select either the XPath button and select an element from the list, or
select the Expression button and type an expression (or click the ECMA Expression Builder
button and build an expression).

7 Click OK.

8.5.4 Comment

This section includes the following topics:

¢ “About the Comment Action” on page 303
¢ “Adding a Comment Action” on page 304

About the Comment Action

You can use the Comment action to document the action model and clarify the processing that takes
place. You can add comments anywhere within an action model. Comments perform no processing
of their own.

Working with Integration Activities 303

Adding a Comment Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the comment (the new action is inserted below the line that you selected).

2 Select New Action > Comment.

|
Comment Texk:
OK I Cancel

3 Type your comment.
4 Click OK.

8.5.5 Decision

This section includes the following topics:

¢ “About the Decision Action” on page 304
¢ “Adding a Decision Action” on page 304

About the Decision Action

The Decision action creates an if. . . then construct between actions or a group of actions. You use a
Decision action to select a branch, based on a condition that you supply. The condition must use an
ECMAScript comparison operator, such as ==, <, >, |, >= <=, (&), OR (| |), or <>. The expression must
resolve to a Boolean True or False statement.

Adding a Decision Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Decision action (the new action is inserted below the line that you selected).

2 Select New Action > Decision.

Lioix]
Decision Expression:
Input, ¥Pathi"GetQuateSoaplnd GetQuate/symbol" 3.toString)="ACME" ;I [E# -
=
Help | [s]'4 I Cancel |

3 Type an ECMAScript expression, or click the ECMA Expression Builder button and create a
Decision script that will evaluate to true or false at runtime.

4 Click OK.

304 User Application: Design Guide

8.5.6

A Decision action similar to the following is displayed.

E|'?'|:... IF Inpuk.xPathi"GetQuoteSoaplniGetQuate/symbaol”), toSkringd il ="ACME"

i | | TRUE
| a%| FALSE

In the action model pane, select the TRUE branch.
Add one or more actions that will execute if the expression is True.
Select the FALSE branch.

Add one or more actions to execute if the expression is False.

0 N o O

You can nest other Decision actions inside the TRUE or FALSE branches of the Decision action.

Function

¢ “About the Function Action” on page 305
¢ “Adding a Function Action” on page 305

About the Function Action

The Function action executes an ECMAScript function. To manipulate a DOM element, the script that
you call in the Function action must reference a fully qualified DOM element name in the current
Integration activity.

Custom Script functions that you create and add to an action model can act upon any XML tree
element. For example, you can create a function that changes the format of a date element. You can
create a function that performs a math function on the contents of an element. You can also perform
file system, database, or URL functions that have no interaction with a message part.

Adding a Function Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Function action (the new action is inserted below the line that you selected).

2 Select New Action > Function.

P I=
Function Expression:
Output, CreateXPath("GetQuoteSoapOutiGetQuoteR esponse/GetQuoteResult”) ﬂ @ -
[-]
Help | Apply I [a]'¢ I Cancel |

3 Type the function in the Function Expression field or click the ECMA Expression Builder button to
build an ECMAScript expression.

4 Click OK.

Working with Integration Activities 305

8.5.7 Log

¢ “About the Log Action” on page 306
¢ “Adding a Log Action” on page 306

About the Log Action

Log actions provide customizable reporting capabilities (design-time as well as runtime) for
Integration activities. You can specify log level settings to control the degree of reporting.

Some Log usage examples include the following;:

¢ Writing certain error information to the operator console when a Try On Fault condition is
reached.

¢ Using ECMAScript expressions to aid in debugging by logging information about variables or
DOM contents, the values of which are known only at runtime.

¢ Capturing specific information from each cycle of a Repeat for Element loop.

Adding a Log Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Log action (the new action is inserted below the line that you selected).

2 Select New Action > Log.

=181 x|
Log o
" System Cutput Log Lewvel: |5 3:
€ System Log

[” Clear The Log File

% Lser Log

User Log File:

| "DiiLogstiUserLog, bxt” Browse, .. |

Log Expression:
"The TRUE branch was reached” ;I @ <

=
Help | Apply | (o] 4 I Cancel I

3 Select the type of log that you want to produce from the Log to group.

The Log action writes information to locations specified in the action. There are three locations
for log output: System Output, System Log, and User Log.

306 User Application: Design Guide

8.5.8

Log Location Description

System Output Select System Output to write messages that you
specify in the Log Expression field to the operating
system console at design time, or the application
server console at runtime.

NOTE: To view messages on the operating system
console, start Designer using the Eclipse -debug
and -consoleLog startup parameters.

System Log Select System Log to write messages that you
specify in the Log Expression field to the application
server log file.

User Log Select User Log to write messages that you specify
in the Log Expression field to a file that you specify
in the User Log File field.

Use Log Level to select a priority level (1 to 10) for this Log action.

The default priority level is 5. You should assign a number from 5 to 10 to messages that you
want to appear in the log file. The priority you assign here is compared to the threshold number
(which is set to 5 internally and cannot be changed). If the priority is equal to or greater than the
threshold, the message is logged; otherwise it is not.

Check Clear the Log File if you want the data in the log file to be cleared each time the component
is executed.

If User Log is selected in the Log to group, type the path to the log file in the User Log File field, or
use Browse to specify a log file.

If you specify a file that doesn't exist, the file is created. On Windows* systems, if you type the
path, you must add an extra backslash character wherever a backslash character occurs in a path
(for example, C:\ Windows becomes C:\ \ Windows).

Create the message that you want to record to the log in the Log Expression field.

You can type a message in the field or use the ECMA Expression Builder to build an expression.

Map

This section includes the following topics:

*

*

*

*

“About the Map Action” on page 307
“Adding a Map Action” on page 309
“Advanced Mapping Options” on page 309

“Transforming Elements with the Content Editor” on page 312

About the Map Action

The Map action performs DOM-node input and output mapping. It can transfer and transform data
from one document context to another document context. A context has two parts. The first part
usually identifies a DOM and the second part identifies a location within the DOM. The basic
document context in an Integration activity is expressed as a DOM name combined with an element

Working with Integration Activities 307

308

location identified through an XPath expression. The DOM name is usually Input, Output, _System
Fault, or Project. The XPath expression identifying a location in a DOM has the path elements
delimited by “/”.

NOTE: A context in an Integration activity can also be a Group name that itself is simply an alias or
shorthand for an XPath expression.

¢ “Default Mapping Behavior” on page 308
¢ “Leaf Elements That Contain Markup” on page 308

Default Mapping Behavior

When you use the Map action to map elements and attributes within XML documents, certain default
behaviors occur. The following table lists those default behaviors.

Table 8-5 Default Mapping Behavior

Map Type Default Behavior

Leaf Element to Leaf Element Transfers only the element data .

Leaf Element to Branch Element Transfers only the element data.

Branch Element to Leaf Element Transfers the entire branch, including all child elements and

attribute data under the branch.

Branch Element to Branch Element Transfers the entire branch, including all child elements and
attribute data under the branch after removing the target's
current branch.

A particular Leaf Element in a list of Leaf Transfers the element data from the selected leaf (or element
Elements, to Element instance) to the target element.

Attribute to Attribute Transfers only the attribute data.

Element to Attribute Transfers element data to attribute data.

Attribute to Element Transfers only the attribute data.

Many of these behaviors can be altered, on an action-by-action basis, through the use of the
Advanced mapping dialog box (see “Advanced Mapping Options” on page 309).

Leaf Elements That Contain Markup

A problem can occur when an element is populated at runtime by a Java or ECMAScript operation.
The element might receive data that contains markup (strings with illegal characters, such as < and
>). If the Integration activity were to map the contents of such an element to a node in the Output
DOM, the output document would be malformed. The Integration activity resolves this issue by
mapping any data that contains markup to a new CDATA section in the target document.

NOTE: When markup is entered at design time, the behavior is different. If you type markup into a
node, and you examine the raw XML in the Source view, you'll see that markup characters typed into
a node are converted to entities. For example, a “<” character is converted to &1t;.

User Application: Design Guide

Adding a Map Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Map action (the new action is inserted below the line that you selected).

2 Select New Action > Map.

x]

—Source

& wpath: - Expression:
— Options

I advanced... I contert Editcr...
—Target

& wpath: [- Expression:

Help | Apply I Ok I Cancel |

3 In the Source section, select XPath.

4 Select a part (Input, Output, _SystemFault, or Project) from the list, then type the appropriate
XPath expression, or use the ECMA Expression Builder to locate the element that you want.

Together, the part name and XPath specify the Source context for the Map action.

5 Repeat Step 3 and Step 4 for the Target section.

6 If you want more control over mapping, select the Advanced (see “Advanced Mapping Options”
on page 309) or Content Editor (see “Transforming Elements with the Content Editor” on

page 312) options.

You can click Apply to see the effect of the Map action without closing the dialog box. This allows
you to make repetitive edits to a Map action and quickly see the results.

7 Click OK.

Advanced Mapping Options

When you select the Advanced option in the Map dialog box, the Advanced dialog box is displayed.

Options that you set in the Advanced dialog box only affect the current Map action.

Working with Integration Activities

309

310

Figure 8-10 Advanced

zl

—Copy Attributes

% For Nor-LeaF Source Mode and Descendant(s):

 Mever

 abways

—Deep Copy

W Map the Descendantis)

—Create Targek
" Only if Source exists
€ Throw Fault

% ahways

Default Value:

—Create Targek as COATA Section
% Only if Source contains markup
" Mever (Use Entity Motation)

' Always

(7) fo''s I Cancel |

The options in this dialog box give you fine control over how input part nodes are mapped to the
output part.

This section includes the following topics:

¢ “Copy Attributes” on page 310

¢ “Deep Copy” on page 311

¢ “Create Target” on page 311

¢ “Create Target as CDATA Section” on page 312

Copy Attributes

You use Copy Attributes to specify how attributes are mapped. Copy Attributes has the following
options:

User Application: Design Guide

Table 8-6 Copy Attributes Options

Option Description

For Non-leaf Root Nodes and Specifies that when a non-terminal (non-leaf) element is mapped to output,

Dependents the element (minus its attributes) and its children are mapped to output.
Attribute data for the children is included, but not for the original (parent)
element.

Never Specifies that no attribute data (whether for parent or leaf nodes) is carried

over during mapping.

Always Specifies that all attribute data, for all nodes, is mapped to output.

Deep Copy

The default Integration activity behavior is to map whole branches at a time (the target node plus all
of its children). This is referred to as a deep copy. In some cases, you might want to turn off this
behavior so that you can copy just the parent element without its children. Deselect Map the
Dependents if you want to disable deep copy.

Create Target

You use Create Target to create the destination node that you specified in the Target group in the Map
action (see “Adding a Map Action” on page 309), based on whether or not the source node is present
in the source DOM. By default the Integration activity always creates the target, whether or not the
runtime source DOM contains the nodes specified in the Source XPath for mapping.

For example, in the Map action, you might have specified a Source XPath that looks like
$Input/Root/MySourceElement
In the Target XPath, you might have specified

$Output /Root /MyParentNode/SomeOtherElement

If the incoming Input document does not have a node corresponding to Root /MySourceElement, the
Integration activity by default creates an empty Root /MyParentNode/SomeOtherElement node in
the output DOM. In some cases, this might not be what you want. Using Create Target mapping, you
can change the default behavior.

Table 8-7 Create Target

Option Description

Only if Source exists Specifies that the Map Action is skipped (no target nodes are created in the
output DOM) if the node specified in the Source XPath doesn’t exist in the input
message.

Raise Error Specifies that if the input document doesn’t contain the node specified in the

Source XPath, it is considered an error at runtime. You should plan accordingly
by wrapping your Map action in a Try/OnError block so that you can handle the
error.

Always Specifies that the target node should always be created (the default behavior).
When Always is selected, you can use the Default Value field to specify a
default data value for the target element.

Working with Integration Activities 311

Create Target as CDATA Section

You use Create Target as CDATA to control the way element data gets mapped into CDATA sections.

Table 8-8 Create Target as CDATA Section

Option Description
Only if source contains Specifies that if the source data contains XML, HTML, or other types of markup
markup in which illegal (in this context) characters are used, the data is placed,

unmodified, in a CDATA section in the target DOM. This is the default behavior.

Never Specifies that source data will not be wrapped in a CDATA section for output.
lllegal characters that occur in the source data are converted to escaped
entities, such as > for >, on the output side.

Always Specifies that whatever form the source data takes, it will get wrapped in a
CDATA section on output.

Transforming Elements with the Content Editor

You use the Content editor to change the format and content of the input element to match that
required by the output element. Using the Content Editor, you can slice the input data into small
parts, move the parts to different locations relative to one another, add new parts, omit some parts,
and apply functions to individual parts.

1 In the Action model, select two elements from different parts (for example, from the Input and
Output parts) to map.
2 Select New Action > Map.

3 In the Map action dialog box (see “Adding a Map Action” on page 309), select the Content Editor
check box, then select the Content Editor button.

|
rTransfarmation

Sample;

ABCDEFGHIJICL.MNOPQRSTMXYZ1 Left margin at start

L] (Y]

‘ Apphy ‘ | New Sample... ‘
Result:
| T T (3]
‘ Insert Text ‘ | Modify... ‘ ‘ Delete |

0K | Cancel |

4 If desired, click New Sample and type a sample string.

312 User Application: Design Guide

New Sample Text x|

Entersample:

””\ElCDEFGHIJKLMNOPQRSTUW‘-.I'}(YZ-1 23456780-1:

| 0K || Cancel |

Click OK to return to the Content Editor dialog box.

In the Sample section, move the slider that is above the sample to the position where you want
the first cut to take place, then move the slider that is below the sample to the position where
you want the end cut to take place.

The sliders determine how to take a substring from the input data.
Click Apply.

The substring is copied to the Result field as a separate object.

Repeat Step 6 and Step 7 for each part of the sample in the order that you want.

Using this method, you can build a new string out of substrings of the original input.

To change the format of an object in the Result field:

9a Select an object.

9b

9c

Click Modify.

x|
Start Cut at Character(s): Occurrence:
[| |1 |
End Cut at Character{s): Occurrence:
P | I |
Offset: Length:

o | ki |

Script Expression: (Hote: “%r' represents the region)

|"for E -

[] Constant:

o [coma

The Start Cut at Characters field displays the character in the string where the first cut will
take place. The first Occurrence field displays when the cut will take place. In the previous
illustration, the first cut will take place at the first occurrence of the letter 1. The End Cut at
Characters field displays that character in the string where the last cut will take place. The
second Occurrence field displays when the cut will take place. The Offset field displays the
number of characters from the beginning of the original string where the object will start.
The Length field displays the length of the object.

If desired, you can write an ECMAScript expression in the Script Expression field to modify
the content region.

The %t shown in the Script Expression field is a local variable representing the content
region to which you want to apply a function. For example, to apply the . toUppercCase ()
function to the content region, you would write the Script Expression: var test='%r';
test.toUpperCase().

Working with Integration Activities 313

9d To assign a constant to an object, select Constant, then type a constant string.

9e When you are finished mapping string formats with the Content Editor, click OK to save the
changes and close the Content Editor.

10 Click OK to return to the action model.

314 User Application: Design Guide

9.1

Working with ECMA Expressions

This section provides details on using the ECMA Expression Builder. Topics include:

¢ Section 9.1, “About the ECMA Expression Builder,” on page 315
¢ Section 9.2, “ECMAScript Examples,” on page 323

¢ Section 9.3, “User Application APL” on page 325

¢ Section 9.4, “Role Vault API,” on page 342

About the ECMA Expression Builder

Designer incorporates an ECMAScript interpreter and expression editor, which allows you create
script expressions that refer to and modify workflow data. For example, you can use scripting to:
¢ Create new data items needed in a workflow under the flowdata element.
¢ Perform basic string, date, math, relational, concatenation, and logical operations on data.
¢ Call standard or custom Java classes for more sophisticated data operations.
¢ Use expressions for runtime control to:
¢ Modify or override form field labels.
¢ Initialize form field data.
¢ Customize e-mail addresses and content.
¢ Set entitlement grant/revoke rights and parameters.

¢ Evaluate any past activity data to conditionally follow a workflow path by using the
Condition activity.

¢ Write different log messages that are conditionally triggered by using a single Log activity.
This section describes some of the techniques and capabilities applicable to the use of scripting.

¢ Section 9.1.1, “About ECMAScript,” on page 316

¢ Section 9.1.2, “ECMAScript Capabilities,” on page 316

¢ Section 9.1.3, “Using the ECMA Expression Builder,” on page 316

¢ Section 9.1.4, “About Java Integration,” on page 319

¢ Section 9.1.5, “About XPath Integration,” on page 320

¢ Section 9.1.6, “About Global Configuration Values Integration,” on page 322
¢ Section 9.1.7, “About Global ECMAScripts Integration,” on page 322

¢ Section 9.1.8, “Performance Considerations,” on page 322

Working with ECMA Expressions 315

9.11

9.1.2

9.13

NOTE: To define expressions for a workflow, you need to understand how workflow activities are
configured. In addition, you need to understand the various types of data that are available within a
workflow. For details on configuring workflow activities, see Chapter 7, “Workflow Activity
Reference,” on page 213. For descriptions of the system variables available in a workflow, see
Section 6.5.3, “Understanding Workflow Data,” on page 187.

About ECMAScript

ECMAScript is an object-oriented scripting language for manipulating objects in a host environment
(in this case, Designer). ECMAScript (ECMA-262 and ISO/IEC 16262) is the standards-based scripting
language underpinning both JavaScript (Netscape) and JScript (Microsoft). It is designed to
complement and extend existing functionality in a host environment such as Designer’s graphical
user interface. As a host environment, Designer provides ECMAScript access to various objects for
processing. ECMAScript in turn provides a Java-like language that can operate on those objects.

The extensibility of ECMAScript, and its powerful string-handling tools (including regular
expressions), make it an ideal language to extend the functionality of Designer.

NOTE: You can find detailed information about ECMAScript at the European Computer
Manufacturers Association (ECMA) Web site (http://www.ecma-international.org).

ECMAScript Capabilities

In addition to enabling you to incorporate finely tuned custom logic into your workflow, scripting
gives you a great deal of flexibility in manipulating data because of the various DOM-related and
XPath-related objects and methods available in the ECMAScript extensions incorporated into the
Expression Builder.

The usefulness of ECMAScript is especially apparent when dealing with in-memory DOMs. The
ECMA Expression Builder constructs XML documents as in-memory objects according to the W3C
DOM Level 2 specification. The DOM-2 specification, in turn, defines an ECMAScript binding (see
the W3C Recommendation ECMAScript Language Binding (http://www.w3.org/TR/DOM-Level-2-
Core/ecma-script-binding.html), with numerous methods and properties that provide ready access to
DOM-tree contents. The flowdata DOM is recognized by the ECMA Expression Builder, and any of
the W3C-defined ECMAScript extensions that apply to DOMs can be used.

ECMAScript also provides bridges to other expression languages such as XPath. This allows you to
use XPath syntax on a DOM to address various elements within its document structure.

Using the ECMA Expression Builder

Designer provides access to ECMAScript in various places in the User Application design tools. The
most common form of access is through the Expression Builder, which can be displayed whenever
you see this button:

LEZ)

The button is found in Designer displays, such as the Properties for a Condition activity or the Data
Item Mapping view for an Entitlement Provisioning activity. Click the button to display the ECMA
Expression Builder.

316 User Application: Design Guide

http://www.ecma-international.org
http://www.ecma-international.org
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html

Figure 9-1 ECMA Expression Builder

@ Source ECMA Expression Builder |:|E]

ECMAScript Variables FunctionsMethods ECMAScript Operators WD Expr Panel
= o Approval =2 ECMASCript ® Logical Identkity Wault
o action ® Math Foole Vault
addresses ® Relational

o
o name @ String
o timestamp
o user
o workld
= o process
approvalstatus
category
description
id
initiakor
locale
recipient
requestld
tirmeskarnp
uset conkainer dn
=2 dlobal Config
Scripks
=] (:l flowdata
8 lisk

<:l singledist

<:l list object

<:l singlelist object

o
o
o
o
o
o
o
o
o
o

o

GCY. get{'enable-password))

oK] [Cancel] [CheckSyntax] [Ident\ty Vault...

The ECMA Expression Builder provides pick lists of available objects, methods, and properties in the
top panes (all of which are resizable), with rollover tooltips to help you build ECMAScript
statements. Double-clicking any item in any pick list causes a corresponding ECMAScript statement
to appear in the edit pane in the lower portion of the window. In the figure, the process pick list has
been selected in the ECMAScript Objects pane, and the name variable has been double-clicked. The
ECMAScript expression that can access the contents of this workflow variable is inserted
automatically in the edit pane.

This section includes the following topics:
¢ “Checking Syntax” on page 317
¢ “Selecting a DN” on page 318
¢ “ECMAScript Objects” on page 318

¢ “Vault Expressions” on page 318

¢ “Using Special Characters” on page 319
Checking Syntax
The ECMA Expression Builder includes a Check Syntax button. Clicking the button causes the
ECMAScript interpreter to check the syntax of the expression. If there are problems involving

ECMAScript syntax, an error message is displayed. You can then edit the expression and validate
again as needed. Validation is optional.

Working with ECMA Expressions 317

318

NOTE: The syntax checking process does not execute your expression. It just checks syntax. Because
ECMAScript is an interpreted language, syntax checking doesn’t check any runtime-dependent
expressions, other than to see if they conform to valid ECMAScript syntax.

Selecting a DN

The ECMA Expression Builder also includes an Identity Vault button that is displayed when you are
working with activities that might require selecting a DN from the Identity Vault (for example, Start,
Approval, and Entitlement activities).

Figure 9-2 Identity Vault Button

(0] I Cancel Check Syntax | Identity Yault, ..

The Identity Vault button displays a dialog box that you use to navigate the Identity Vault to select a
DN. The Identity Vault button is dimmed (to indicate that it is unavailable) if you are not connected to
the Identity Vault.

ECMAScript Objects

This pane displays the names of objects that are relevant in the current context. For example, if you
are working in the provisioning request definition editor, you see system variables for the current
workflow process, system variables for the current activity, and flowdata variables created in the
current workflow. Double-click the name of a variable to insert that variable into your script. For
descriptions of the system variables available in a workflow, see Section 6.5.3, “Understanding
Workflow Data,” on page 187.

The ECMA Expression Builder provides two methods for reading flowdata variables.

Table 9-1 Methods for Reading Flowdata Variables

Method Description

flowdata.get (variable-name) Returns a string as the node value for a variable
(representing an XPath expression) in the workflow
document.

flowdata.getObject (variable-name) Returns an object as a node value for a variable

(representing an XPath expression) in the workflow
document. Use this method to retrieve the values of
multivalued controls.

Vault Expressions

This pane allows you to insert Entity definitions (see Section 3.2, “Working with Entities and
Attributes,” on page 47) that are defined in the Identity Vault into your scripts. Both system and user-
defined entities are available. The format of an expression to retrieve data from the Identity Vault is

IDVault.get (dn, object-type, attribute)

User Application: Design Guide

9.14

For example if you want the recipient's manager for a data item, you would open the User node in the
Vault Expressions Pane and double-click the Manager item, which inserts IDVault.get ({ enter dn
expression here }, 'user', 'manager').This expression evaluates to the string for the
manager’s DN (LDAP distinguished name).

Using Special Characters

You can use special characters in literal strings in the ECMA Expression Builder by using escape
sequences. Escape sequences begin with a backslash character (\). The following table contains
some commonly used escape sequences:

Table 9-2 Escape Sequences

Escape Sequence Character

\b Backspace

\f Form feed

\n New line

\r Carriage return
\t Horizontal tab
\ Double quote
\\ Backslash (\)

\ Apostrophe

You also can specify any Unicode character by using \u followed immediately by four hexadecimal
digits. Here are some examples:

Table 9-3 Escape Sequence Examples for Unicode Characters

Escape Sequence Character
\uOOA3 Pound symbol (£)
\u20AC Euro symbol (€)

About Java Integration

Java is integrated into the workflow process through the ECMA Expression Builder, which provides
a bridge to external Java objects. To access a Java class through the ECMA Expression Builder, the
class must be in the classpath of the workflow engine. To accomplish this, you must add the Java class
to the WEB- INF\11ib directory in the User Application WAR file (IDM.war).

Working with ECMA Expressions 319

NOTE: Unlike ECMAScript that is available in other parts of the provisioning request definition
editor, form action scripts are executed on the browser, not the server. All directory access from
within a form action script is handled by AJAX calls from the browser to the server. See Section 9.3.1,
“Form Action Script Methods,” on page 326.

¢ “Adding the Java Class to the User Application WAR” on page 320
¢ “Accessing Java from ECMAScript” on page 320

Adding the Java Class to the User Application WAR

1 Use a WAR file utility to open the IDM.war file. The IDM.war file is located in the application
server \server\IDM\ directory.

2 Copy the Java class into the WEB-INF\11ib directory.

Accessing Java from ECMAScript

To access a Java class, create a function inline in the ECMA Expression Builder. Instantiate the
function, then within the function, use ECMAScript syntax to call your Java methods. The following
example creates a vector:

function list() { v=new java.util.Vector(); v.add('{Enter Item 1}'); v.add('{Enter
Item 2}'); return v; }; list();

To access a custom Java class, you must preface the class name with “Packages”. For example:
v = new Packages.com.novell.myClass("value") ;

The ECMA Expression Builder is built on Mozilla Rhino. Rhino is an open source implementation of
JavaScript written entirely in Java. For more information about accessing Java from ECMAScript, see
Scripting Java (http://www.mozilla.org/rhino/ScriptingJava.html).

9.1.5 About XPath Integration

This section includes the following topics:

¢ “XPath in Workflows” on page 320
¢ “XPath in Integration Activities” on page 321

XPath in Workflows

A provisioning request definition workflow supports a special object called flowdata (see

Section 6.5.3, “Understanding Workflow Data,” on page 187). The flowdata object is a DOM (an XML
document constructed as an object in memory). You can use XPath syntax to navigate the structure of
the flowdata DOM, and add, modify, or delete elements and contents.

To add an object to flowdata:

Syntax Examples
flowdata, { arguments} flowdata.parent/child[1]
E::h'l.'-‘«:ﬁ{:nm xPTatn

flowdata.reason

To get an object from flowdata:

320 User Application: Design Guide

http://www.mozilla.org/rhino/ScriptingJava.html

Examples

flowdata.getObject ('parent/child[1] ")

flowdata.get ('reason')

For information about the flowdata.get() and flowdata.getObject() methods, see Table 9-1 on

page 318.

XPath in Integration Activities

When you are working with an Integration activity, the ECMAScript interpreter recognizes a custom
method called XPath(). This method allows expressions such as:

Input.XPath ("GetBNQuoteSoapIn/GetBNQuote/sISBN")

When you use the ECMA Expression Builder, this type of expression is built for you automatically
when you select nodes in ECMA Expression Builder pick lists.

The Integration activity uses the XPath addressing syntax adopted by W3C. The XPath syntax is
similar to URL address syntax but includes many subtle and powerful features for addressing and
manipulating XML. Some of the more common syntax rules are listed in the following table.

Table 9-4 XPath Syntax

XPath Syntax

Description

/

)

function()

math operator()

The single forward slash represents an absolute path to an element. For example,
/ABC selects the root element ABC.

Double slashes represent all elements in a path. //ABC selects all occurrences of
ABC. For example, //ABC/ /DEF selects all DEF elements that are children of
ABC.

The asterisk selects all elements located by the preceding path. For example,
ABC/DEF selects all elements enclosed by elements ABC/DEF. // selects all
elements.

Square brackets specify a particular element. For example /ABC [3] selects the
third element in ABC. This can also be used as a filter (similar to a Where clause
in SQL). //ABC["Table"] selects all elements that have the content “Table.”

The At sign selects elements with a specified attribute. For example, /ABC@name
selects all elements in ABC that have an attribute called name.

The vertical bar allows you to specify multiple paths. For example, //ACB| //DEF
selects all elements in ACB and in DEF.

The dollar sign allows you to reference other documents in addition to the current
one: INVOICEBATCH/INVOICE [SELLER/NAME=
$PROJECT/USERCONFIG/COMPANYNAME]

XPath has numerous functions that you can add to your XPath addresses. For
example, //* [count (*) =2] selects all elements that have two children.

XPath has numerous math operators that you can add to your XPath addresses.
For example, /ABC|position() mod 2 = 0] selects all even elements in
ABC.

Working with ECMA Expressions 321

9.1.6

9.1.7

9.1.8

You can find the complete list of operators in the W3 Recommendation XML Path Language (XPath)
(http://www.w3.org/TR/xpath.html).

About Global Configuration Values Integration

Global configuration values (GCVs) are settings that are similar to driver parameters. Global
configuration values can be specified for a driver set, as well as for an individual driver. If a driver
does not have a GCV, the driver inherits the value for that GCV from the driver set.

GCVs are integrated with the workflow process through the ECMA Expression Builder, which
provides a bridge to the GCVs from the driver and the GCV resource objects. To access a GCV
through the ECMA Expression Builder, go to the variables pane and select any GCV from the GCV
list. For GCV resource objects to be available on the variable pane, ensure that they are linked to the
User Application driver. These GCVs are available to you in all activities on the workflow and not on
the forms.

NOTE

¢ When you create a GCV of the type password-ref (Named Password), ensure that you create the
GCV on the specific driver itself and not on the driver set.

¢ If you include a password-ref GCV in a workflow, you must also create and include a separate
Boolean GCV named allow-fetch-named-passwords and set the value of that GCV to true If
you do not include the second Boolean GCV, the workflow fails with a scripting error.

About Global ECMAScripts Integration

ECMAScripts that are globally available on the User Application drivers or within the Identity Vault
libraries can be accessed through the Expression Builder. Ensure that ECMA Scripts are imported
into the provisioning request definition from the Overview page. For more information about
creating provisioning request definitions, see Chapter 4, “Configuring Provisioning Request
Definitions,” on page 83.

The global ECMAScripts are available throughout all your activities and on the forms. For making
them available, you should include them as necessary on workflow activities, start activity, and
forms.

Performance Considerations

ECMAScript is an interpreted language, which means that every line of script in an expression must
be parsed and translated to the Java equivalent before it can be executed. This adds considerable
overhead to the code and results in overall slower execution of scripts than pure Java. Before using
ECMAScript, you should think about the possible performance consequences.

The following guidelines help you to achieve optimal performance in your components and services:

¢ Consider whether a task can be accomplished by using a custom Java class (that you can call
from ECMAScript).

+ When you need the fine control offered by scripting, use ECMAScript.
Bear in mind that the key to good performance is always a good implementation (for example,

choosing the correct algorithm and attention to reuse of variables). Good code written in a slow
language often outperforms bad code written in a fast language. Writing something in Java does not

322 User Application: Design Guide

http://www.w3.org/TR/xpath.html

9.2

9.2.1

9.2.2

guarantee that it will be faster than the equivalent logic written in ECMAScript because Java has its
own overhead constraints, such as constructor call-chains (when you call a constructor for a Java
object that inherits from other objects, the constructors for all ancestral objects are also called).

ECMAScript’s core objects (String, Array, Date, etc.) have many built-in convenience methods for
data manipulation, formatting, parsing, sorting, and conversion of strings and arrays. These methods
are implemented in highly optimized Java code inside the interpreter. It is to your advantage to use
these methods whenever possible, rather than creating customized data-parsing or formatting
functions. For example, suppose you want to break a long string into substrings, based on the
occurrence of a delimiter. You could create a loop that uses the String methods indexOf() and
substring() to parse out the substrings and assign them to slots in an array. But this would be a very
inefficient technique when you could simply do the following:

var myArrayOfSubstrings = bigString.split(delimiter);

The ECMAScript String method split() breaks a string into an array of substrings based on whatever
delimiter value you supply. It executes in native Java and requires the interpreter to interpret only
one line of script. Trying to do the same thing with a loop that iteratively calls indexOf() and
substring() would involve a great deal of needless interpreter and function-call overhead, with the
accompanying performance hit.

Skillful use of built-in ECMAScript methods pays worthwhile performance dividends. If you use
scripts extensively, take time to learn about the fine points of the ECMAScript language because this
can help you eliminate performance bottlenecks.

ECMAScript Examples

This section provides examples of common operations that you can perform using ECMAScript.

¢ Section 9.2.1, “General Examples,” on page 323
¢ Section 9.2.2, “Flowdata Examples,” on page 323
¢ Section 9.2.3, “Form Control Examples,” on page 324

¢ Section 9.2.4, “Error Handling,” on page 325

General Examples

To create a function in the ECMA Expression Builder, create the function inline:

function abc() { var v1 = "" ; for (i = 0; i < 9 ; i++) vl += "$"; return vl; } ;
abc () ;

Flowdata Examples

This section presents scripting examples that show the use of the flowdata object.

¢ “Getting the Value of a Flowdata Variable” on page 324
¢ “Creating an XML Element with Child Element and Adding it to the Flowdata” on page 324

Working with ECMA Expressions 323

9.2.3

Getting the Value of a Flowdata Variable

Suppose you entered information about an approval status into the flowdata by creating an XML
element named start_reason with a child element named approval_reason and an attribute named
ApprovalStatus. Use the following expression in a pre-activity map to retrieve the value of the
ApprovalStatus attribute:

flowdata.get ('start reason/approval reason/@ApprovalStatus')

You can enter this expression by expanding the flowdata nodes in the ECMAScript Objects pane of the
ECMA Expression Builder and double-clicking the ApprovalStatus attribute.

Creating an XML Element with Child Element and Adding it to the Flowdata

You can add information to the flowdata so that it can be used by a downstream activity. Use the
following expression in a post-activity map:

flowdata.start reason/approval reason/@ApprovalStatus

Form Control Examples

This section presents several examples of scripting with form controls.

¢ “Retrieving the Value of a Form Field” on page 324

¢ “Getting an Individual Value from a Multivalued Control” on page 324
¢ “Populating a List or Check Box Item” on page 324

¢ “Comparing DNs” on page 325

Retrieving the Value of a Form Field

Suppose you have a form field named ApprovalStatus. To get the value of this field, use the following
expression in a pre-activity map:

process.getApprovalStatus ()

You can enter this expression by opening the process node in the ECMAScript Objects pane of the
ECMA Expression Builder and double-clicking approvalStatus.

Getting an Individual Value from a Multivalued Control

To get an individual value from a multivalued control (for example, a check box named colors), you
first need to get the control into the flowdata. In the post-activity mapping for an upstream activity,
use the following;:

flowdata.colors

To get a value from colors (for example, the first value), use the following expression on a
downstream activity:

flowdata.getObject ('colors([1] ")

Populating a List or Check Box Item

To populate list controls (for example, PickList or MVEditor) or the MVCheckbox control by using
script, use an expression like this in the pre-activity mapping:

324 User Application: Design Guide

9.24

9.3

function list() {var l=new java.util.Vector();l.add('Blue');l.add('Red');
1.add(‘Green’); return 1;} list();

Comparing DNs
To compare DNs to find out if they are equal, use an expression like this:

if (IDVault.DNcompare (flowdata.get ('Activity3/CardRequest/Candidate'),recipient
)) true; else false ;

This comparison is case-insensitive. For example, the following DNs, when compared with
DNCompare, returns True:

CN=jdoe, ou=users, ou=idmsample, o=acme
cn=JDOE, ou=users, ou=idmsample, o=acme

Error Handling

The approach to handling errors differs between pre-activity and post-activity maps. For post-
activity maps, you can use an error flow path from an Approval or Condition activity to catch errors
that occur during post-activity mapping. This approach doesn’t work for pre-activity maps because
any errors that occur in the process of getting data happen before the form is displayed to the user.
When this occurs, an error message similar to the following appears in place of form controls in the
bottom portion of forms displayed to the user:

XXXX FAILED to generate form due to: No data items are available!

In this scenario, you can use a try-catch statement in a source expression for a field in a pre-activity
map:

function getTheData ()

var theData;

try {
theData = IDVault.get('cn=jsmith,ou=users,ou=idmsamplel,o=acme' , 'user',
'FirstName') + ' ' + IDVault.get ('cn=jsmith,ou=users,ou=idmsamplel,oc=acme' ,
'user', 'LastName');
catch (error) { theData = 'Error retrieving data.'; }

return theData;

getTheData () ;

User Application API

This section includes information on the following topics:

¢ Section 9.3.1, “Form Action Script Methods,” on page 326
¢ Section 9.3.2, “IDVault Functions,” on page 336
¢ Section 9.3.3, “nrfRequest Properties and Methods,” on page 337

Working with ECMA Expressions 325

9.3.1 Form Action Script Methods

Unlike the ECMAScript that runs in other components of the workflow, form script executes on the
Web browser, not the server. All directory access from within form script is handled by AJAX calls
from the browser to the server.

This section lists all form action methods and properties supported by the ECMA Expression Builder.

¢ “Form” on page 326

¢ “Field” on page 331

¢ “Event” on page 333

¢ “Lists” on page 334

¢ “Queries” on page 334

¢ “Container” on page 335

Form

Lets you work with Form methods.

+ “focus(fieldname)” on page 326

+ “select(fieldname)” on page 327

¢ “activate(fieldname)” on page 327

+ “setRequired(fieldname, is-required)” on page 327
¢ “InterceptAction(actionname, order, function)” on page 327
¢ “getLocale()” on page 327

+ “getRBMessage()” on page 328

¢ “stringToDate()” on page 328

+ “dateToString()” on page 328

¢ “isValidDate(date)” on page 328

¢ “isValidDate(date,include-time)” on page 328

¢ “alert(string)” on page 328

+ “showMsg(string)” on page 328

¢ “showWarning(string)” on page 329

¢ “showError(string)” on page 329

¢ “showFatal(string)” on page 330

¢ “enable(fieldname)” on page 330

+ “disable(fieldname)” on page 330

+ “getValue(fieldname)” on page 330

¢ “getValues(fieldname)” on page 330

+ “setValues(fieldname)” on page 331

focus(fieldname)

form. focus (fieldname)

326 User Application: Design Guide

Sets the focus to the specified field. For list-based or choice-based controls, sets the focus to either the
selected choice or when no selection is made, it sets the focus to the first choice. If a fieldname
parameter is passed and that field is list or choice based, it sets the focus on the choices
corresponding to the values parameter. If the value is an array, only the first value is used to
determine on which check box or radio button to set focus. If the specified field is invisible or
disabled, this method has no effect.

select(fieldname)

form.select (fieldname)

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, this method sets the focus to the selected choice or if no selection was
made, to the first choice. If a values parameter is passed and the field is list-based or choice-based it
sets the focus on the choices corresponding to the fieldname parameter. This method has no effect on
disabled or invisible fields.

activate(fieldname)

form.activate (fieldname)

A combination of setFocus() and select().

setRequired(fieldname, is-required)
form.setRequired("fieldname", is-required)

Sets the field to required if is-required is True; otherwise, the field is optional. A field that is required
blocks the form submission if the field is empty.

InterceptAction(actionname, order, function)

form.interceptAction("actionname", "order", "function")

Allows you to intercept the script attached to an action button. The function passed in is executed
based on the order parameter.

Valid actionname values are SubmitAction and CancelAction.

The choices for actionname for an approval form are: ApprovalAction, RefusalAction, DenyAction,
UpdateAction, CancelAction and CommentAction.

Valid values for the advice parameter are:
Before: The function is called before the script attached to the button executes.
after: The function is called after the script attached to the button executes.

around: The function is passed a parameter that allows you to decide whether to execute the script
attached to the button The following example shows the submit action intercepted. The form is only
submitted if the user replies Yes.

window.inv=function (invocation) { if (confirm("Are you sure you want to submit
?2")) { var result = invocation.proceed(); return result; }; };

form.interceptAction ("SubmitAction", "around", window.inv) ;

getLocale()

form.getLocale ()

Working with ECMA Expressions 327

328

Returns the current locale. Can be used as input for all methods that support a locale parameter.

getRBMessage()

form.getRBMessage (key)
form.getRBMessage (key, valuel[s])
form.getRBMessage (key, value([s], bundle)

This method tries to find an entry with key in the resource bundle with ID bld. The resourcebundle
Java class should extend the java.util.ListResourceBundle.Parameter. The parameter can be used to
pass in replacements for parameters ({0}, {1}, etc) in message "msg"; for example:

var msg = frm.getRBMessage ("mykey", ["valueO", "valuel"], "mybundle");

stringToDate()

form.stringToDate (date)
form.stringToDate (date, include-time)

Converts a date string to a Date. The format must correspond to the dateform for the current locale,
as used in the DatePicker. The value of a DatePicker control can be converted with this method.
Example:

form.showMsg ("Date="+form.stringToDate (d, true)) ;

dateToString()

form.dateToString (date)
form.dateToString(date, include-time)

Converts a date to a string that can be stored in the DatePicker, for example:

var d = form.dateToString(new Date (), true);

form.setValues ("hireDate", d);

isValidDate(date)

form.isValidDate (date)

Use this to validate the correct format for a date string.

isValidDate(date,include-time)

form.isValidDate (date, include-time)

Use this to validate the correct format for a date string.

alert(string)

form.alert ("msg")

Displays a message in an alert box.

showMsg(string)

form.showMsg (msg, param, bId)

User Application: Design Guide

Adds a message to the status portion of the form. The msg string parameter can either contain the
text of the message itself or it can contain a key pointing to an entry in the resource bundle bld. This
method always tries to find an entry with the key msg in the resource bundle with the id bld.The
param parameter can be used to pass in replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg().

Example:

form.showMsg ("my message" {0},{1}", ["valueO","valuel"]);

showWarning(string)

form.showWarning (msg, param, bId)

Adds a warning to the status portion of the form.

The msg string parameter can either contain the text of the warning itself or it can contain a key
pointing to an entry in the resource bundle bld. This method always tries to find an entry with the
key msg in the resource bundle with the id bld. The param parameter can be used to pass in
replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg() .

Example:

form.showWarning ("my warning" {0}, {1}", ["valueO","valuel"]);

showError(string)
showError(msg, param, bld);
Adds an error message to the status portion of the form.

The msg string parameter can either contain the text of the error itself or it can contain a key pointing
to an entry in the resource bundle bld. This method always tries to find an entry with the key msg in
the resource bundle with the id bld. The param parameter can be used to pass in replacements for
stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg() .

Both normal and fatal errors block form submission. The distinction between a normal error and a
fatal error is that normal errors get reset just before form validation occurs (because of a form
submission). Fatal errors are remembered and therefore block the form submission unless you
restart. A normal error only blocks submission if it is generated during the validation phase. If you
add normal errors during onload or custom events, they are lost when the form is submitted.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg().

Example:

form.showError ("my error" {0},{1}", ["valueO","valuel"]);

Working with ECMA Expressions 329

showFatal(string)
form.showFatal("my fatal" {0},{1}", ["value0","valuel"]);
Adds a fatal error message to the status portion of the form.

The msg string parameter can either contain the text of the fatal error itself or it can contain a key
pointing to an entry in the resource bundle bld. This method always tries to find an entry with the
key msg in the resource bundle with the id bld. The param parameter can be used to pass in
replacements for stakeholders ({0}, {1}, etc) in msg.

Both normal and fatal errors block form submission. The distinction between a normal error and a
fatal error is that normal errors get reset just before form validation occurs (because of a form
submission). Fatal errors are remembered and therefore block the form submission unless you
restart. A normal error only blocks submission if it is generated during the validation phase. If you
add normal errors during onload or custom events, they are lost when the form is submitted.

NOTE: If you want to add debugging messages to your script, it is better practice to use

form.showDebugMsg().
Example:
form.showFatal ("my fatal" {0}, {1}", ["valueO","valuel"]);

enable(fieldname)
form.enable ("fieldname")
Enables a field on a form.
disable(fieldname)

form.disable ("fieldname")

Disables a field on a form.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field
is validated when submitting the form or when calling the field.validate() method.

getValue(fieldname)

form.getValue ("fieldname")

Returns the first value for the field. The type returned is always string, independent of the data type
of the field. If the field does not have a value, the method returns an empty string if text can be
entered into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the
control is choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls,
this method always returns the DN and never the display expression.

getValues(fieldname)

form.getValues ("fieldname")

Returns a string array containing the values. If no values are found, the array is empty (size = 0). For
DN type controls, this method always returns the DN and never the display expression.

330 User Application: Design Guide

setValues(fieldname)

form.setValues ("fieldname", data-values, display values, KeepOldvValues)

Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are
deleted unless the KeepOldValues parameter equals True. For non-list-based controls, the display
values parameter is ignored.

Field

Lets you work with Field methods.

¢ “activate()” on page 331

¢ “disable()” on page 331

¢ “enable()” on page 331

+ “fireEvent()” on page 332

+ “focus()” on page 332

¢ “getLabel()” on page 332

¢ “getName()” on page 332

¢ “getValue()” on page 332

+ “hide()” on page 332

¢ “getValues()” on page 332

¢ “show()” on page 332

+ “select()” on page 333

+ “setRequired()” on page 333
¢ “setValues(fieldname)” on page 333

¢ “validate()” on page 333

activate()

field.activate (valuel[s])

This method is a combination of field.focus() and field.select().

disable()

field.disable()
Disable the field.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field
is validated when submitting the form or when calling the field.

enable()

field.enable()
Enable the field.

Working with ECMA Expressions 331

332

fireEvent()

field.fireEvent ("eventname")
Fires a custom event. Passes the name of the custom event that is fired. To get the values of the event
that is fired, use form.getValues(event.getOrigin()).

focus()

field.focus (valuel[s])

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, this method sets the focus to the selected choice if no selection was
done to the first choice. If a values parameter is passed and if the field is list-based or choice-based,
this method sets the focus on the choices corresponding to the values parameter. If the values
parameter is an array, only the first value is used to determine the check box or radio button to set
focus. This method has no effect on disabled or invisible fields.

getLabel()

field.getLabel ()

Gets the label associated with the field. If no label is found, this method returns the name of the field.

getName()

field.getName ()

Gets the name of the field.

getValue()

field.getValue ()

Returns the first value for the field. The type returned is always a string, independent of the data type
of the field. If the field does not have a value, the method returns an empty string if text can be
entered into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the
control is choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls,
this method always returns the DN and never the display expression.

hide()

field.hide()
Hides this field.

getValues()

form.getValues ()

Returns a string array containing the requested values. If no values are found, the array is empty (size
= 0). For DN type controls, this method always returns the DN and never the display expression.
show()

field.show ()
Shows this field.

User Application: Design Guide

select()

field.select (valuels])

If no values parameter is passed in, this method sets the focus to the underlying text field. For list-
based or choice-based controls, it sets the focus to either the selected choice or if no selection was
made, it sets the focus to the first choice. If a values parameter is passed and if the field is list-based or
choice-based, it sets the focus on the choices corresponding to the values parameter. If the value
parameter is an array, only the first value is used to determine which check box or radio button to set
focus on. This method has no effect on disabled or invisible fields.

setRequired()

field.setRequired (is-required)

Sets the field to required if isRequired is True or optional otherwise. A field that is required blocks the
form submission if it is empty.

setValues(fieldname)

field.setValues (data-values, display-values, KeepOldvValues)

Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are
deleted unless the KeepOldValues parameter equals True. For non-list-based controls, the display
values parameter is ignored.

If you want to set or change the initial value of a field, you should do so in an onload event.

NOTE: This method triggers the onchange event for the field.

Examples:
field.setValues ("cn=jdoe, ou=users, ou=mysample,o=novell"); // for a DNLookup

field.setValues (["jdoe@novell.com", "test@novell.com"]) // for an MVEditor
field.setValues (["W","B"], ["White", "Black"],true); // for a StaticList

validate()

field.validate ()

Triggers browser validation for the field. To validate the data entered in this field as soon as the user
navigates to another field, call this method in the onchange event. Returns True if validation errors
were detected; otherwise, returns False.

Event

Lets you work with events. This section includes the following methods:
¢ “getEventName()” on page 334
¢ “getOrigin()” on page 334
¢ “getValue()” on page 334
¢ “getValues()” on page 334

Working with ECMA Expressions 333

334

getEventName()

event .getEventName ()

Returns the name of the event.

getOrigin()
event.getOrigin ()

Returns the name of the field from which the event was triggered.

getValue()
event .getValue ()
Returns a string that contains the first value in the event.

You should not use the value that is returned by this method, because it is possible that a user might
have modified the data in the field after the event was triggered. Instead, you should use the value
returned by the form.getValue method. For example, form.getValue(event.GetOrigin()). This
ensures that you get the current value of the field. If you select event.getValue() from the pick list in
the ECMA Expression Builder, form.getValue(event.GetOrigin()) is inserted.

getValues()
event .getValues ()
Returns an array of strings that contains all values in the event.

You should not use the value that is returned by this method, because it is possible that a user might
have modified the data in the field since the event was triggered. Instead, you should use the value
returned by the form.getValues method. For example, form.getValue(event.GetOrigin()). This
ensures that you get the current value of the field. If you select event.getValues() from the pick list in
the ECMA Expression Builder, form.getValues(event.GetOrigin()) is inserted.

Lists

Lets you work with lists.

globalList(fieldname, key, locale)

IDVault.globallList ("fieldname", "key", "locale")

Retrieves a global list from the directory abstraction layer, identified by the key of the global list. If
the field name is specified, the result of the query is used to refresh the content of the field. To retrieve
a list without storing the result in a field, use a null value for the fieldname parameter.

The locale is optional. If locale is not specified, the locale in the HTTP request is used.
Example:

IDVault.globalList ("dallist", "departments", "en");

Queries

Lets you work with queries.

User Application: Design Guide

globalQuery(fieldname, key, param)

globalQuery (fieldname, key, param)

Executes the predefined directory abstraction layer query key (see “Queries General Properties” on
page 79). If the field name is specified, the result of the query is used to refresh the content of the
field. To retrieve a list without storing the result in a field, use a null value for the fieldname
parameter.

The param parameter is used as input to the query. The parameter has the form
{parnamel:value,parname2:value}, in which the value can be an individual value or an array. The
first column of the result list (always a DN) is used for the data value, and the second column is used
for the display label.

Example:

IDVault.globalQuery ("canchangepwd", "getsites"); // query without a parameter
IDVault.globalQuery ("building", "getbuildings", {site:form.getValue("site")}); //
query with one parameter

IDVault.globalQuery ("room", "getrooms", {site:form.getValue("site"),
building:form.getValue ("building")}); // query with two parameters

Container

Lets you work with containers.

containers(fieldname, rootdn, Search scope, Show DN)

IDVault.containers("test", rootdn, SearchScope, ShowDN)

Gets a list of containers, with the scope equal to “subtree” or the same level. The method returns an
array with two entries, the first an array with the resulting DNs; the second entry an array with the
display labels.

Table 9-5 Container Parameters

Parameter Description

fieldname If the field name is specified, the result of the query is used to refresh the content of the
field. To retrieve a list without storing the result in a field, use a null value for the fieldname
parameter.

rootdn If the rootdn parameter is empty, the root container for the default entity is used.

scope If the scope parameter is empty, one-level is used. Valid choices for scope are “0”

(onelevel) and “s” (subtree).

showdn If the parameter showDN is true, the full DN is used for the display label. Otherwise the
naming part (for example, ou, dc) is displayed.

Example:

IDVault.containers ("assetProp2", null, "o", true); // set the entries in a
StaticList to all containers directly under the root DN of the default entity

Working with ECMA Expressions 335

9.3.2

IDVault Functions

This section lists functions that are used with IDVault data.
¢ “DNCompare” on page 336
+ “get()” on page 336

¢ “execService()” on page 336

DNCompare

DNcompare (String dnl, String dn2)

Performs a case-insensitive comparison of DNs from the Identity Vault. Returns True if the DNs are
the same.

A DN encapsulates a distinguished name (an LDAP name with context). The syntax of the DNs must
conform to that specified in RFC 2253, which describes the String representation of DNs. The
following DN are all valid for use with DNCompare (and would return True if compared):

cn=jdoe, ou=users,ou=idmsample, o=acme

CN=jdoe, ou=users, ou=idmsample, o=acme

cn=JDOE, ou=users, ou=idmsample, o=acme

For more information about RFC 2253, see RFC 2353 (http://www.ietf.org/rfc/rfc2253.txt).
Example:

if (IDVault.DNcompare (flowdata.get ('Activity3/CardRequest/Candidate'),recipient
)) true; else false ;

get()

get ()

get (fieldname)

get (fieldname, dn)

get (fieldname,dn, entity-type)

get (fieldname,dn, entity-type,attribute)

This corresponds to the IDVault.get() function of the workflow script engine. Retrieves the values of
the attribute for the given entity. The result is an array of values. If the field parameter is specified the
result of the query result is used to refresh the content of the field. If not, the result is up to the form
developer to use the result of the query. Example:

IDVault.get ("assetProp",dn, "user", "LastName") ;

execService()

IDVault.execService (service)
IDVault.execService (service, param)
IDVault.execService (service, param, locale)

Executes an AJAX service and the result is used to refresh the content of the field. The service must be
registered in the Ul control registry. The first column of the result list result is used for the display
value, the second one for the data value. Example :

336 User Application: Design Guide

http://www.ietf.org/rfc/rfc2253.txt

9.3.3

var r=IDVault.execService ("dnlookup2",params) ;
var res=r?r(["_data"] ["raw"] [dn] ["value"] :"error encountered";

field.setValues ("IDVault.execService (\"dnlookup2\") :"+res);

nrfRequest Properties and Methods

This section lists functions used with the nrfRequest object in Roles Based provisioning request
definitions. It includes:

¢ “Role Request Properties” on page 337
+ “Role Request Is Methods” on page 338
¢ “Role Request Get Methods” on page 339

Role Request Properties

Table 9-6 Role Request Properties

Property Code Description

NEW_REQUEST 0 Set by the User Application on a newly
created nrfRequest object.

SOD_APPROVAL_START_PENDING 2 The Role Service driver attempts to start
the SoD workflow again. This is used for
requests in the
SOD_APPROVAL_START_SUSPENDED
mode.

SOD_APPROVAL_START_SUSPENDED 3 Occurs when the Role Service driver is not
able to start an SoD workflow. A driver
task then resets these requests to
SOD_WORKFLOW_START_PENDING to
retry the starting of the workflow.

SOD_EXCEPTION_APPROVAL_PENDING 5 Set by the Role Service driver after
successfully initiating an SoD exception
workflow.

SOD_EXCEPTION_APPROVED 10 Set by the SoD exception workflow when

the exception is approved.

APPROVAL_START_PENDING 12 The Role Service driver attempts to start
the workflow. The request must be in
APPROVAL_START_SUSPENDED
mode.

APPROVAL_START_SUSPENDED 13 Occurs when the Role Service driver is not
able to start the approval workflow. A
driver task then resets these requests to
APPROVAL_START_PENDING to try to
start the workflow again.

APPROVAL_PENDING 15 Set by the Role Service driver after
successful role assignment workflow.

APPROVED 20 Set by the role assignment workflow when
the exception is approved.

Working with ECMA Expressions 337

338

Property Code Description

ACTIVATION_TIME_PENDING 25 Set by the Role Service driver after
obtaining all necessary approvals and the
activation time has not yet been reached.

PROVISION 30 Set by the Role Service driver after all the
necessary approvals have been approved
and the role activation time has been
reached.

PROVISIONED 50 Set by the Role Service driver after a role
has been provisioned.

PROVISIONING_ERROR 80 Set by the Role Service driver when an
error occurred during provisioning/
deprovisioning

SOD_EXCEPTION_DENIED 90 Set by the SoD exception workflow when
the exception is denied.

DENIED 95 Set by the role assignment workflow when
the exception is approved.

CLEANUP 100 Set when nrfRequest workflow should be
cleaned up (deleted). This is intended to
be triggered by a batch process some
configurable amount of time after the
request has either been fulfilled or denied.

Role Request Is Methods

¢ “isAddOperation” on page 338

¢ “isRemoveOperation” on page 338

¢ “isTargetDNaUserDN” on page 338

+ “isTargetDNaRoleDN” on page 339

¢ “isTargetDNaContainerDN” on page 339
¢ “isTargetDNaGroupDN” on page 339

isSAddOperation

Returns True if this is an add operaton. Occurs when the AddedDN is not null.
public boolean isAddOperation() throws ActivityException
iISRemoveOperation

Returns True if this is a remove operation. Occurs when the RemovedDN is not null.
public boolean isRemoveOperation() throws ActivityException
isTargetDNaUserDN

Retursn True if the target DN is a user DN.

public boolean isTargetDNaUserDN() throws ActivityException

User Application: Design Guide

isTargetDNaRoleDN
Returns True if the target DN is a role DN

public boolean isTargetDNaRoleDN() throws ActivityException

isTargetDNaContainerDN
Returns True if the target DN is a container DN

public boolean isTargetDNaContainerDN() throws ActivityException

isTargetDNaGroupDN
Returns True if this is target DN is a group DN.

public boolean isTargetDNaGroupDN () throws ActivityException

Role Request Get Methods

¢ “getCN” on page 339

+ “getCategoryLocaleString” on page 339

+ “getCompleted WFEmailAddress” on page 340
¢ “getCorrelationld” on page 340

¢ “getDecisionDate” on page 340

¢ “getDescription” on page 340

¢ “getEndDate” on page 340

+ “getEntityKey” on page 340

+ “getLocale” on page 340

¢ “getOperation” on page 340

+ “getRequestDate” on page 340

+ “getRequester” on page 340

+ “getStatusLocaleString” on page 341

¢ “getStartDate” on page 341

¢ “getStatusValue” on page 341

¢ “getSourceDN” on page 341

¢ “getSourceDNDisplayName” on page 341
¢ “getTargetDN” on page 341

+ “getTargetDNDisplayName” on page 341
+ “getCategoryValue” on page 341

getCN
Returns the CN.

public String getCn() throws ActivityException

getCategoryLocaleString

Returns the category type localized string.

Working with ECMA Expressions

339

public String getCategoryLocaleString() throws ActivityException

getCompletedWFEmailAddress

Gets the completed work flow e-mail address. This is a convenience method for the NrfRequest
ECMA script object.

public String getCompletedWFEmailAddress ()

getCorrelationld

Returns the Correlation ID.

public String getCorrelationId() throws ActivityException
getDecisionDate

Returns the decision date.

public Date getDecisionDate() throws ActivityException
getDescription

Returns the description.

public String getDescription() throws ActivityException

getEndDate

Returns the end date.

public Date getEndDate () throws ActivityException
getEntityKey

Returns the entity key.

public String getEntityKey ()

getLocale

Returns the preferred locale.

public Locale getLocale()

getOperation

Returns either the Add operation or the Remove operation.

public String getOperation() throws ActivityException

getRequestDate
Returns the request date.

public Date getRequestDate() throws ActivityException

getRequester

Returns the requester.

340 User Application: Design Guide

public String getRequester () throws ActivityException

getStatusLocaleString
Returns the status localized string.

public String getStatusLocaleString() throws ActivityException

getStartDate
Returns the start date.

public Date getStartDate() throws ActivityException

getStatusValue
Returns the status int value.

public int getStatusValue() throws ActivityException

getSourceDN
Returns the source DN.

public String getSourceDN() throws ActivityException

getSourceDNDisplayName
Returns the source DN display name. This is a Role DN.

public String getSourceDNDisplayName () throws ActivityException

getTargetDN
Returns the target DN affected by this operation.

public String getTargetDN() throws ActivityException

getTargetDNDisplayName
Returns the Target DN display name. If it is:

¢ [If itis a user, it returns first name + last name.
¢ Ifitis a group, it returns the description.
¢ Ifitis arole, it returns the description.

+ Ifitis a container, it returns the target DN.
public String getTargetDNDisplayName ()
getCategoryValue
Returns the category type int value.

public int getCategoryValue() throws ActivityException

Working with ECMA Expressions

341

9.4

94.1

Role Vault API

This section describes the Role Vault API.

¢ Section 9.4.1, “About the Role Vault API,” on page 342
¢ Section 9.4.2, “Role Script API Reference,” on page 348
¢ Section 9.4.3, “Role Vault Bean API Reference,” on page 354

About the Role Vault API

The Role Vault API allows you to programmatically access role assignments. It includes a set of
methods for reporting on role assignments by container, user, group, or role, and for determining
whether a user is in a particular role. You might use this API in conjunction with the Role Request
activity to write your own workflow that can:

¢ Display the current role assignments for a particular user on a form.

¢ Allow the user to request a new role assignment.

¢ Verify whether the requested roles have any Separation of Duty (SoD) constraints then perform
custom branching based on the existing SoD constraints. If the conflicts are allowed, you could
invoke the Role Request activity to complete the assignment. Or, you can build in logic before
allowing the user to make a role assignment request.

This section includes the following topics:

¢ “Accessing the API” on page 342

¢ “Locale Handling” on page 344

¢ “Security Context” on page 344

+ “Working with the Role Script AP1” on page 345

Accessing the API

The Role Vault API is available from both forms and provisioning requests. The method signatures
and return values are the same regardless of where they are used.You access the API by using the
Expression Builder.

¢ In a workflow, you can access the Role Vault API from an activity (such as the Role Request
Activity) through the Vault Expressions panel of the Expression Builder.

342 User Application: Design Guide

“ault Expressions

b (] Identity Vault
< (8] Role \Vault
= [4 Container
icl getContainersToRoleAssignments
= & Group
cl getGroupsToRoleAssignments
= BH Role
@ getRoleApprovers
[getRoleAssignmentCause
getRolelnfo
getRoleOwners
@ getRolesToContainerAssignments
icl getRolesToGroupAssignments
[# getRolesToRoleAssignments
[getRolesTolserAssignments
] getRolesUserin
v % soD
@ getSodinfo
] getSodViolations
v & User
ol getUsersinRole
] getUsersodviolations
[# getUsersToRoleAssignments
@ isUserAppAdmin
@ isUserAttestationManager
@ isUserComplianceAdmin
[isUserinRole
@ isUserProvAdmin
@ isUserRoleAdmin
[isUserRoleAuditor

Working with ECMA Expressions 343

¢ From a form, you access the Role Script API by creating an event on the form and launching the
Expression Builder from the event’s action expression property. The supported script
expressions are available under the Vaults Node in the ECMAScript Objects pane.

ECMASCript Yariables

+ a
+- 8 Field Methods
+- 8 Event Methods
+- o Farm Fields
= o Yaulks
+- o Identity Waulk
+- B Lisks
+- 8 Queries
+- 8 Container Methods
= 8 Role Yault
=8 User
o getUsersInRole(roleDN)
o getlsersToRoleAssignmentsiroleDr), direct)
o getlUsersodyiolations(userDn)
o jsUserInRolefroleDM, userDM)
o jslserRaoleAdmin{userDM)
o jsUserRoleManager {userDn)
o jsUserRoleSecOficar{userDM)
o jslserRoleAuditor{userDN)
o jsUserComplianceadminiuserDi)
o jsUserAttestationOfficer{userD)
o jsUserAppadmin{userDM)
o islserProvadmin{userDH)
o jsUserInApplicationRolefuserDi)

=l o Group

o gebGroupsToRoledssignments{raleDM)
= 2 Container

o getContainersToRoleAssignments{roleDM)
= 8 Raole
getRoleInfolraleDN, locale)
getRolesserIn{userDi)
getRolesToRoledssignmentsiroleDh)
gebGroupsToRoleAssignments{groupDi)
getRolesToContainerAssignments{containerDM)
getRolesToUserAssignmentsiuserDi)
getRolesssignment CauselidentityvDn, roleDn)

Do o oo oo

=8 Sob
o getSodInfoisodDM, locale)
o getSodviolations({sodDn)
o Scripk Functions

Locale Handling

Some methods take a locale as a parameter. If you do not specify a locale, the User Application uses
one of the following:

¢ The authenticated user’s preferred locale when run from a form.

¢ The User Application’s default locale when run in a workflow.

Security Context

The Role Vault methods run in the following security context:

¢ On a form, the security context is that of the currently logged in user.

¢ On a workflow, the security context is the LDAP administrator’s security context. Because this
might return more data than an end user typically has access to, be careful how you display it.

344 User Application: Design Guide

Working with the Role Script API

The Role Script API methods typically return one of four Role Vault Beans objects (IdentityBeans,
RoleAssignmentBeans, RoleBeans, and SodBeans), or one of four Role Vault Bean objects
(IdentityBean, RoleAssignmentBean, RoleBean, and SodBean). A Bean object is a specific entry in the
Role Subsystem; for example, IdentityBean can represent a specific user in the Identity Vault. A Beans
object is a collection or array of Bean objects; for example, IdentityBeans might contain one or more
user objects represented as individual Bean objects. You iterate through the Beans, extracting each
Bean and working with it as a specific object. The Beans classes implement the Java Iterable interface,
so they allow you to obtain member values directly out of the list of Bean objects as arrays.

¢ “Getting the Role” on page 345
¢ “Retrieving SoD Violations” on page 346

Getting the Role

This example shows how to use the Beans methods to return a list of member values for the Bean.
The expression is used to address the Approval activity to all the user DNs that are assigned to the
role. The components of this workflow and their responsibilities are summarized in Table 9-7,
“Sample Workflow for Roles,” on page 345.

Figure 9-3 Sample Workflow for Roles

& Start

farward

Map Role Approver DM
farward

"3 Doctor Approval
-~
@ v approved
s 5,

f_\gj Lag denial :ﬂa Set Approved Status
s

fonward
-

’.‘ﬁJ Log approval
s

Table 9-7 Sample Workflow for Roles

Activity Activity Type Description

Start Start Logical starting point for all workflows.
Map Role Approver Mapping The data item mapping source expression
DN

'cn=Doctor-
east, cn=Level30,cn=RoleDefs, cn=RoleConfig, cn=AppConf
ig, ' + PROVISIONING DRIVER

is mapped to the target:

flowdata.roledn

Working with ECMA Expressions 345

Activity Activity Type Description

Doctor Approval Approval This is where the Role Script API is used to define the addressee for
the approval activity. The Addressee property uses this expression:

java.util.Arrays.asList (RoleVault.getUsersToRoleAssi
gnments (flowdata.get ('roledn'),
true) .getTargetDns())

* The expression

RoleVault.getUsersToRoleAssignments (flowdata.get
(‘roledn’), true)

returns the RoleAssignmentBeans

* The method call

getTargetDns ()

is the RoleAssignmentBeans method that used to return an array
of user DN strings.

+ To convert the array to a list so it can be used by the workflow,
use the

java.util.Arrays.asList (...)

Log Denial/Log Log Used to write messages to the log to indicate the result of the request
Denial (approved or denied).
Finish Finish Logical end point of all workflows

Retrieving SoD Violations

This example shows the methods to use to either array-like methods or a list iterator to walk through
the individual RoleAssignmentBean objects contained in the RoleAssignmentBeans object. These
methods are common to all of the Beans classes.

Figure 9-4 Sample Workflow for Retrieving SoDs

& start
farward
Map SO0 DMs
farward
T

'?J Log getSodviolations - use list

e

farward
T

\/_'ﬂ Log getSodviolations - use index

farward
T

ﬂ Log getSodviolations - ampy

b

farward
T

[Finish

346 User Application: Design Guide

Table 9-8 Sample Workflow for Retrieving SoDs

Activity

Activity Name Type

Description

Start Start Logical starting point for all workflows.
Map SoD Dns Mapping

Log getSodViolations - Logging lllustrates how to use an iterator to walk thru the list of identityBean
) objects contained in the IdentityBeans returned by the RoleVault method
Use List getSodViolations().

function 'Iug\ﬁu'lat‘\uns() {
var dn = fTowdata.get(doctor-nurse’);
var identityBeans = Rolevault. getSud\n;ﬂat‘\uns(dn)
var buffer = new Packages. Java 1ang stringeuffer v1ﬂ1at1ﬂns for role " +dn + ": [");
if (identityBeans. swze%
buffer. append(’ [no vw'\atwns exist]’);
1 else {
iterator = identityBeans.iterator();
while (1teratur hasnext()) {
var 1dent1tyBean = iterator.next();
buffer.append('[");
buffer.append('dn="+ jdentityBean.geton(});
buffer.append(’, pe=" + identityBean. getType())
buffer. append(’] Tg

buffer.append(']');
return buffer;

'I‘ugv*i olations()

The size() method is used to determine if any violations were returned.

identitybeans.size()==0

To return an iterator to walk the list, use this method:
iterator=identityBeans.iterator ()

Log getSodViolations - Logging lllustrates how to use the index to access the array ldentityBean

use index members returned from IdentityBeans using the Role Vault method
getSodViolations(). This is similar to the list processing above, except
that it uses the a For loop and a reference by index.

function logviolations(){
var dn = flowdata.get(doctor-nurse’);
var 1der\t1tyBeans = rRolevaulr. getsndvm'\atmr\s(dn)
var buffer = new Packages. Java lang.stringsuffer ("violations for sod " + dn + ": [');
if (identityBeans.size = 0) {
buffer.append(’ [no violations exist]’);

1 else {

for (i = 0; 1 < identityBeans.size(); i++) {

var 1dent1tyBean = identityBeans. get('\)
buffer.append('[');

buffer.append(’ dn—' + identityBean.geton());
buffer.append(’, pe=" + identityBean. getType())
buffer.append(’] T¥

T

¥
buffer.append(']");
return buffer;

I3
logviolations ()

To loop through all the members in the array:

for (i = 0; 1 < identityBeans.size();
i++)

To get the bean at position i in the array:
identityBean = identityBeans.get (i) ;

All beans support a getBean method that takes a dn string as the input
paramter and returns the bean if there is one contained in the array for
that dn.

All Beans classes support a getBean() that takes a DN string as the
input parameter. It returns the bean if the array contains one for that DN.

Finish Finish Logical end point for all workflows.

Working with ECMA Expressions 347

9.4.2

Role Script APl Reference

The Role Script API includes the methods available in the ECMA Expression Builder. These are the
methods available for forms and workflows. The methods are grouped for convenience as follows:
¢ “Container and Group Methods” on page 348
¢ “Role Methods” on page 348
¢ “SoD Methods” on page 349
¢ “User Methods” on page 350
¢ “Hidden Methods” on page 351

Container and Group Methods

+ “getContainersToRoleAssignments” on page 348

¢ “getGroupsToRoleAssignments” on page 348

getContainersToRoleAssignments

RoleVault.getContainersToRoleAssignments (roleDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The
RoleAssignmentBean objects include the container DN(s) assigned to the specified roleDN.

getGroupsToRoleAssignments

RoleVault.getGroupsToRoleAssignments (roleDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The
RoleAssignmentBean objects include the Group DN assigned to the specified roleDN.

Role Methods

+ “getRoleAssignmentCause” on page 348

+ “getRoleInfo” on page 349

+ “getRolesToContainerAssignments” on page 349
+ “getRolesToGroupAssignments” on page 349

¢ “getRolesToRoleAssignments” on page 349

+ “getRolesToUserAssignments” on page 349

+ “getRolesUserIn” on page 349

+ “getRoleOwners” on page 349

+ “getRoleApprovers” on page 349

getRoleAssignmentCause

RoleVault.getRoleAssignmentCause (identityDn, roleDn)

Returns an IdentityBeans object that contains a list of IdentityBean objects. The IdentityBeans object
shows the cause hierarchy for the role assignment for the specified identitybn and roleDn. For
explicit assignments, it includes the DN of the user who made the request.

348 User Application: Design Guide

getRolelnfo

RoleVault.getRoleInfo(roleDN, locale)

A role lookup method that returns a RoleBean.

getRolesToContainerAssignments

RoleVault.getRolesToContainerAssignments (containerDN)

Returns a RoleAssignmentBeans object that contains a list RoleAssignmentBean. The
RoleAssignmentBean objects contain the role DNs assigned to the specified containerDN.

getRolesToGroupAssignments

RoleVault.getRolesToGroupAssignments (groupDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. They
include the role DNs for the specified groupDN.

getRolesToRoleAssignments

RoleVault.getRolesToRoleAssignments (roleDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The
RoleAssignmentBean objects include the child role DNs assigned to the specified roleDN.

getRolesToUserAssignments

RoleVault.getRolesToUserAssignments (userDN)

Returns a RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. These
beans include the role DN(s) assigned to the specified userDN.

getRolesUserIn

RoleVault.getRolesUserIn (userDN)

Return a list of role DNs where the specified userDN is a member.

getRoleOwners

RoleVault.getRoleOwners (roleDN)

Returns the IdentityBeans object that contains a list of IdentityBean objects. The IdentityBeans object
shows the owners of the specified role DN.

getRoleApprovers

RoleVault.getRoleApprovers (roleDN)

Returns the IdentityBeans object that contains a list of IdentityBean objects. The IdentityBeans object
shows the approvers of the specified role DN.

SoD Methods

¢ “getSodInfo” on page 350
+ “getSodViolations” on page 350

Working with ECMA Expressions 349

getSodinfo

RoleVault.getSodInfo (sodDN, locale)

Returns a SodBean.

getSodViolations

RoleVault.getSodViolations (sodDn)

Returns an IdentityBeans object that contains a list of IdentityBean objects. They represent the users,
groups, containers, and roles in violation of the specified sodDN.

User Methods

+ “getUsersInRole” on page 350

+ “getUsersToRoleAssignments” on page 350
¢ “isUserAppAdmin” on page 350

¢ “isUserAttestationManager” on page 350

¢ “isUserComplianceAdmin” on page 350

+ “isUserInRole” on page 351

¢ “isUserProvAdmin” on page 351

¢ “isUserRoleAdmin” on page 351

getUsersinRole

RoleVault.getUsersInRole (roleDN)

Returns a list of user DNs who are members of the specified roleDn.

getUsersToRoleAssignments

RoleVault.getUsersToRoleAssignments (roleDN, direct)

Returns RoleAssignmentBeans object that contains a list of RoleAssignmentBean objects. The beans
include the user DNs assigned to the specified roleDN. Specifying the direct argument means that
only explicitly assigned to roles should be returned.

isUserAppAdmin

RoleVault.isUserAppAdmin (userDN)

Returns True if the current user is a Global Administrator.

isUserAttestationManager

RoleVault.isUserAttestationManager (userDN)

Returns True if the current user is an Attestation Officer.

isUserComplianceAdmin

RoleVault.isUserComplianceAdmin (userDN)

Returns True if the current user a Compliance Administrator.

350 User Application: Design Guide

isUserInRole

RoleVault.isUserInRole (roleDN, userDN)
Returns True if role is currently assigned to the specified user. The role can be assigned either

explicitly or implicitly.

isUserProvAdmin

RoleVault.isUserProvAdmin (userDN)

Returns True if the current user is a Provisioning Administrator.

isUserRoleAdmin

RoleVault.isUserRoleAdmin (userDN)

Returns True if the current user is a Role Administrator.

Hidden Methods

The following methods are part of the Role Vault API, but helper methods are not provided in the
Expresion Builder in Designer. You must manually type the method. The Expresion Builder supports
the following methods:

+ “findRoles” on page 351

¢ “findSods” on page 352

¢ “findSodsByRoles” on page 353

¢ “findSodsByRoles” on page 353

¢ “findSodsByRoles” on page 353

+ “getContainerSodViolations” on page 353

+ “getGroupSodViolations” on page 353

+ “getRoleSodViolations” on page 353

findRoles

RoleVault.findRoles (String attributeKey, String relationalOp, String filterValue,
int rolelLevel, String locale)

Working with ECMA Expressions 351

352

Parameter Description

attributeKey

relationalOp Valid values are: less, not-less, less-or-equal,
not-less-or-equal, greater, not-greater, greater-or-
equal, not-greater-or-equal, not-equals, equals,
contains, not-contains, ends-with, not-ends-with,
starts-with, not-starts-with

filtervValue

roleLevel optional.

locale optional.

Returns a RoleBeans object. You can use then access a list of roleBeans based on the attributeKey and
its relation to the filterValue. Use the relationalOp such as STARTWITH or CONTAINS. When
roleLevel is specified, additional scoping is performed based on the roleLevel.

findSods

RoleVault.findSods (String attributeKey, String relationalOp, String filterValue,
String locale)

Returns a SodBeans object that contains a list of sodBeans based on the attributeKey relation to the
filterValue based on the relationalOp.

Table 9-9 Enter Table Title Here

Parameter Description

attributeKey
relationalOp Valid values are

less

not-less
less-or-equal
greater
not-greater
greater-or-equal
not-equals
equals
contains
not-contains
ends-with
not-ends-with
starts-with
not-starts-with

filtervalue

locale Optional.

User Application: Design Guide

findSodsByRoles

findSodsByRoles (String roleDNs, String locale)

Returns a SodBeans object containing SodBean objects for the specified role DNs. Locale is an
optional parameter.

findSodsByRoles

findSodsByRoles (/*arraylist*/roledns, String locale)

Returns a SodBeans object containing a list of SodBean objects that include any of the specified
roledns. Locale is optional.

findSodsByRoles

findSodsByRoles (String rolel, String role2, String locale)

Returns a SodBeans object containing a list of SodBean objects that have a conflict between the two
roles specified. Locale is optional.

getContainerSodViolations

getContainerSodViolations (String containerdn)

Returns a SodBeans object containing a list of SodBean objects where the specified container has roles
assigned in violation of existing SoD contraints.

getGroupSodViolations

getGroupSodViolations (String groupdn)

Returns a SodBeans object that contains a list of sodBeans where the specified group has roles
assigned in violation of existing SoD contraints.

getRoleSodViolations

getRoleSodViolations (String roledn)

Returns a SodBeans object that contains a list of SodBean objects where the specified roleDN has roles
assigned in violation of existing SoD contraints.

Example:

Working with ECMA Expressions 353

function logViclations() {

var dn = ‘cn=Doctor,cn=Level20,cn=RoleDefs.cn=RoleConfig,cn=AppConfig,
cn=MyDriver,cn=TestDrivers,o=navell’;

var sodBeanList = RoleVault.getRoleSodViolations(dn);

var buffer = new Packages.java.lang.StringBuffer{Violations for role " + dn + [);

if { sodBeanList size() ==0)

{ buffer.append([no viclations exist]’);
} else { iterator = sodBeanList.iterator();
while (iterator.hasMext()) {

sodBean = iterator.nest);
buffer append(T);
buffer.append(dn="+ sodBean.getSodDn(});
buffer append(, role1="+ sodBean getRole10n());
buffer_append(. role2=" + sodBean.getRole2Dn());
buffer.append(, name="+ sodBean.getMame());
buffer append(, description="+ sodBean_getDescription());
buffer append(] ");
}

}
buffer.append(T);
| return buffer;
¥

logViolations()

9.4.3 Role Vault Bean APl Reference

There are four Bean classes that represent the data returned by the Role Vault API. They are
IdentityBean, RoleAssignmentBean, RoleBean, and SodBean. In many cases, multiple instances of
these beans are returned. If a list is used to return multiple beans, you need to iterate through the list
to retrieve the required data. Methods that are invoked from the form script that return multiple
beans return a list of bean objects. To make it easier to manipulate data from a script, four other Beans
classes are provided. They are IdentityBeans, RoleAssignmentBeans, RoleBeans, and SodBeans.
These classes make it easier to retrieve data from individual bean classes without iterating through a
list.

¢ “IdentityBean” on page 354

¢ “IdentityBeans” on page 355

¢ “RoleAssignmentBean” on page 356

¢ “RoleAssignmentBeans” on page 356

¢+ “RoleBean” on page 357

¢ “RoleBeans” on page 358

¢ “SodBean” on page 360

¢ “SodBeans” on page 361

IdentityBean

The IdentityBean class includes methods for retrieving a DN and an identity type. It includes the
following methods:

¢ “getDn” on page 354
+ “getType” on page 355
getDn

public java.lang.String getDn ()

Returns the DN of the identity.

354 User Application: Design Guide

getType

public java.lang.String getType ()

Returns the type of the identity. Valid types are:

¢ C: Container
¢ G: Group

+ R:Role

¢ U: User

IdentityBeans

The IdentityBeans class includes methods for manipulating one or more IdentityBeans objects or a
list of IdentityBeans objects. It includes the following methods:

¢ “getDns” on page 355

+ “getTypes” on page 355

+ “getldentityBean” on page 355

¢ “size()” on page 355

+ “getBean()” on page 355
getDns

public String[] getDns()
Returns a String Array of DNs.

getTypes

public String[lgetTypes ()
Returns a String Array of identity types. Values are:

¢ U: Indicates User
¢ G: Indicates Group
¢ C: Indicates Container
¢ R:Indicates Role
getldentityBean
public IdentityBean getIdentityBean (Stringdn) ;
Returns the Identity Bean with the specified DN.
size()
public int size()

Returns the number of Identity Beans.

getBean()

public IdentityBean getBean (int n)

Working with ECMA Expressions 355

n is the index of the required bean.

Returns the IdentityBean at the specified index.

RoleAssignmentBean

The RoleAssignmentBean class includes methods for manipulating a single RoleAssignmentBean.
The methods include:

+ “getEffectiveTime” on page 356

¢ “getExpirationTime” on page 356
¢ “getTargetDn” on page 356

¢ “getType” on page 356

getEffectiveTime

public long getEffectiveTime ()

Returns the role’s effective time. (java.util.Date.getTime()).

getExpirationTime

public long getExpirationTime ()

Returns the role’s expiration time.

getTargetDn

public java.lang.String getTargetDn()

Returns the DN. The type of DN is based on the context of the method returning the bean. It can be a
DN for a user, group, container, or role.

getType

public java.lang.String getType ()

Returns the role’s assignment type. Values can be:

¢ G: Assignment was made through membership in a group.
¢ C: The assignment was made through membership in a container.
¢ E: The assignment was explicit.

¢ R: The assignment was inherited through the role hierarchy.

RoleAssignmentBeans

The RoleAssignmentBeans class includes methods for manipulating one or more
RoleAssignmentBeans objects as well as a list of RoleAssignmentBeans.

+ “getEffectiveTimes” on page 357

+ “getExpirationTimes” on page 357

¢ “getTargetDns” on page 357

¢ “getTypes()” on page 357

¢ “getRoleAssignmentBean” on page 357

356 User Application: Design Guide

¢ “size” on page 357
¢ “getBean” on page 357
getEffectiveTimes

public Long[] getEffectiveTimes ()

Returns the role’s effective time.

getExpirationTimes

public long[] getExpirationTimes ()

Returns the role’s expiration times.

getTargetDns

public String[] getTargetDns ()

Returns target DNs. This could be a user, group, container, or role DNs based on the context of the
method that returns the bean.

getTypes()

public String[] getTypes|()

Returns the assignment types. Values are:

¢ G: Assignment was derived from group membership.
¢ C: Assignment was derived from Container.

¢ E: Assignment was explicit.

¢ R: Assignment was through role hierarchy.

getRoleAssignmentBean

public RoleAssignmentBean getRoleAssignmentBean (String targetDN)

Returns the role assignment bean with the corresponding DN.

size
public int size()

Returns the number of role assignment beans.

getBean

public RoleAssignmentBean getBean (int n)

Returns the Role assignment bean at the specified index.

RoleBean

The RoleBean class includes methods for manipulating a single RoleBean. The methods include:

¢ “getDescription” on page 358
¢ “getName” on page 358

Working with ECMA Expressions 357

¢ “getRoleDn” on page 358

¢ “getRoleLevel” on page 358

+ “getRoleOwner” on page 358

+ “getRoleApprover” on page 358

getDescription

public java.lang.String getDescription()

Returns the localized role description.

getName

public java.lang.String getName ()

Returns the localized role name.

getRoleDn

public java.lang.String getRoleDn (String roleDN)

Returns the role’s DN.

getRoleLevel

public long getRoleLevel ()

Returns the role level.

getRoleOwner

public java.lang.String getRoleOwner (String roleDN)

Returns the role’s owner.

getRoleApprover

public java.lang.String getRoleApprover (String roleDN)

Returns the role’s approver.

RoleBeans

The RoleBeans class includes methods for manipulating one or more RoleBeans as well as a list of
RoleBeans. Methods include:

¢ “getDescription” on page 359

¢ “getNames” on page 359

¢ “getRoleDns” on page 359

¢+ “getRoleLevels” on page 359

+ “getRoleBean” on page 359

¢ “size” on page 359

+ “getBean” on page 359

+ “findRoles” on page 359

358 User Application: Design Guide

getDescription

public String[]lgetDescriptions ()

Returns the localized role description.

getNames

public String[] getNames ()

Returns the localized role names.

getRoleDns

public String[] getRoleDns ()
Returns the role DNs.

getRoleLevels

public long[] getRoleLevels()

Returns the role levels

getRoleBean

public RoleBean getRoleBean (String roleDN)

Returns the RoleBean with the specified role DN.

size
public int size()

Returns the number of RoleBeans in the list.

getBean

public RoleBean getBean(int n)

Returns the RoleBean at the specified index (n).

findRoles

Returns the roles based on filter values. It has four methods. These methods must be mentioned
separately because different parameters are passed in each of these methods.

+ findRoles

public RoleBeans findRoles (String attributeKey, String relationalOp, String

value, String locale, int roleLevel)

Returns the roles based on filter values.
+ findRoles

public RoleBeans findRoles (String attributeKey, String relationalOp, String

value, int roleLevel)

Returns the roles based on filter values.
+ findRoles

Working with ECMA Expressions

359

public RoleBeans findRoles (String attributeKey, String relationalOp, String
value, String locale)

Returns the roles based on filter values.
+ findRoles

public RoleBeans findRoles (String attributeKey, String relationalOp, String
value)

Returns the roles based on filter values.

SodBean

The SodBean class includes methods for manipulating a single SodBean. The methods include:

¢ “getDescription” on page 360

¢ “getName” on page 360

+ “getRole1Dn” on page 360

+ “getRole2Dn” on page 360

¢ “getSodDn” on page 360
getDescription

public java.lang.String getDescription()

Returns the SoD’s localized description.
getName

public java.lang.String getName ()
Returns the SoD’s localized name.

getRolelDn

public java.lang.String getRolelDn /()

Returns a role included in the SoD conflict. No special considerations are made between RolelDn
and Role2Dn.

getRole2Dn

public java.lang.String getRole2Dn ()

Returns a role included in the SoD conflict. No special consideration is made between Role1Dn and
Role2Dn.

getSodDn

public java.lang.String getSodDn ()
Returns the SoD DN.

360 User Application: Design Guide

SodBeans

The SodBeans class includes methods for manipulating one or more SoDBeans objects along with a

list of SodBeans. Methods include:

¢ “getDescriptions” on page 361

¢ “getNames” on page 361

+ “getRole1Dns” on page 361

¢ “getRole2Dns” on page 361

¢ “getSodDns” on page 361

+ “getSodBean” on page 361

¢ “size” on page 362

+ “getBean” on page 362

¢ “findSodsByRoles” on page 362

¢ “findSods” on page 362

+ “getGroupSodViolations” on page 363
+ “getRoleSodViolations” on page 363

+ “getContainerSodViolations” on page 363

getDescriptions

public String [] getDescriptions()

Returns the localized description of the SoD.

getNames

public String [] getNames ()

Returns the localized names of the SoD.

getRolelDns

public String[] getRolelDns ()

Returns the first role in the SoD conflict. No special consideration is made for Role1Dn and Role2Dn.

getRole2Dns

public String[] getRole2Dns ()
Returns the second role in the SoD conflict.
getSodDns

public String[] getSodDns ()

Returns SoD DNs.

getSodBean

public SodBean getSodBean (String sodDn)

Returns the SodBean with the specified SodDn.

Working with ECMA Expressions

361

size
public int size()

Returns the number of SodBeans.

getBean

public SodBean getBean (int n)

Returns the SodBean at the specified index (n)

findSodsByRoles

findSodsByRoles has six methods. These methods must be mentioned separately because different
parameters are passed in each of these methods.

¢ findSodsByRoles
public SodBeans findSodsByRoles (List<String> roleDns, String locale)
Returns the SoDs based on a list of role DNs.
¢ findSodsByRoles
public SodBeans findSodsByRoles (List<String> roleDns)
Returns the SoDs based on a list of role DNs by using the default application locale.
+ findSodsByRoles

public SodBeans findSodsByRoles (String targetRoleDn, String sourceRoleDn,
String locale)

Returns the SoDs based on source and target DNs.
¢ findSodsByRoles
public SodBeans findSodsByRoles (String targetRoleDn, String sourceRoleDn)
Returns the SoDs based on source and target DNs.
¢ findSodsByRoles
public SodBeans findSodsByRoles (String[] roleDns)
Returns the SoDs based on an array of role DNs.
¢ findSodsByRoles
public SodBeans findSodsByRoles (String[] roleDns, String locale)

Returns the SoDs based on an array of role DNs.

findSods

findSods has two methods. These methods must be mentioned separately because different
parameters are passed in each of these methods.

+ findSods

public SodBeans findSods (String attributeKey, String relationalOp, String
value, String locale)

Returns the SoDs based on the DAL attribute filter.
+ findSods

362 User Application: Design Guide

public SodBeans findSods (String attributeKey, String relationalOp, String
value)

Returns the SoDs based on the DAL attribute filter.

getGroupSodViolations

SodBeans getGroupSodViolations (String groupDn)

Returns the SoD violations for a specified group.

getRoleSodViolations

SodBeans getRoleSodViolations (String roleDn)

Returns the SoD violations for a specified role.

getContainerSodViolations

SodBeans getContainerSodViolations (String containerDn

Returns the SoD violations for a specified container.

Working with ECMA Expressions 363

364 User Application: Design Guide

Configuring Provisioning Teams

The Requests & Approvals tab in the Identity Manager User Application includes a group of actions
called My Team’s Work. The My Team’s Work actions allow you to work with team member tasks and
requests in a workflow. This section describes how to create a team and define its characteristics
(such as members, manager, and request rights).

¢ Section 10.1, “About Teams,” on page 365
¢ Section 10.2, “Managing Teams,” on page 367

10.1 About Teams

A team identifies a group of users and determines who can manage provisioning requests and
approval tasks associated with this team. The team definition consists of a list of team managers,
team members, and team options, as described below:

¢ The team managers are those users who can administer requests and tasks for the team. Team
managers can also be given permission to set proxies and delegates for team members. Team
managers can be users or groups.

¢ The team members are those users who are allowed to participate on the team. Team members can
be users, groups, or containers within the directory. Alternatively, they can be derived through
directory relationships. For example, the list of members could be derived by the manager-
employee relationship within the organization. In this case, the team members would be all
users that report to the team manager.

NOTE: The Provisioning Application Administrator can configure the directory abstraction
layer to support cascading relationships so that multiple levels within an organization can be
included within a team. The number of levels to include is configurable by the administrator.

¢ The team options determine the provisioning request scope, which specifies whether the team
managers can act on an individual provisioning request, one or more categories of requests, or
all requests. The team options also determine whether team managers can set proxies for team
members or set the availability of team members for the purpose of delegation.

NOTE: The User Application supports only a single level for proxy assignments. Proxy
assignments are not propagated to multiple levels.

The Provisioning Application Administrator can perform all team management functions.

The teams you define are stored locally in the Designer project’s
Provisioning\AppConfig\TeamDefs directory. The filenames are derived from the object key with
the .teamor .rbpmTeam (for RBPM 3.7 or higher) extension.

Configuring Provisioning Teams 365

10.1.1

Although a team can sometimes refer to a group in the Identity Vault, a team is not the same thing as
a group. When you define a group in the Identity Vault, you identify a set of users that have
something in common. However, the group does not automatically have the capabilities of a team
within the User Application. To take advantage of the team capabilities within the User Application,
you must define a team that points to the group.

¢ Section 10.1.1, “About Team Requests,” on page 366

¢ Section 10.1.2, “Using a Team to Manage Direct Reports,” on page 367

About Team Requests

A team request object specifies the requests that a team can work on. The request rights specify the
actions that team managers can perform on the provisioning requests and tasks.

The team definition has a one-to-many relationship with team request objects. This means that each
team must have at least one team request object defined for it, but it can have more. Each team
request object is associated with only one team definition.When you configure the team request
object, you configure the task scope and permissions for the team manager.

The task scope options define the manager’s ability to act on tasks:

+ Where a team member is an addressee

¢ Where a team member is a recipient

WARNING: For security reasons, the recipient task scope option is disabled by default. Giving a
team manager the ability to act on tasks where the recipient of the request is a team member can
raise several security issues. First, the manager is then able to view data included on any of the
forms that are displayed during the course of workflow execution, regardless of his or her
trustee rights. Second, depending on the permission options (see below), a team manager could
circumvent the approval process by claiming or approving the task, or by reassigning it to
someone else.

The permissions options define the team manager’s ability to:

¢ Initiate a provisioning request on behalf of a team member.

¢ Retract a provisioning request on behalf of a team member.

¢ Make a team member a delegate for other team members’ provisioning requests.

¢ Claim a task for a team member who is a recipient or addressee (based on the task scope).

¢ Reassign a task for a team member who is a recipient or addressee (based on the task scope).

If both of the task scope options are disabled, the team manager cannot view or act on any active
requests. Therefore, you must enable at least one of the Permissions options for the team manager.

NOTE: The User Application supports only a single level for delegate assignments. Delegate
assignments are not propagated to multiple levels.

The trustee rights defined for a provisioning request apply to team managers who want to initiate a
request on behalf of their team members. If the team manager does not have the trustee rights to a
provisioning request definition, the team manager cannot make the request because the User
Application does not display the provisioning request.

366 User Application: Design Guide

10.1.2

10.2

10.2.1

Using a Team to Manage Direct Reports

You can define a team that allows managers throughout an organization to control the provisioning
environment for their direct reports. If defined properly, a single team definition can be used to allow
all managers to control the activities of their direct reports. This means that you do not need to define
a separate team for each reporting relationship.

A team that supports direct reports within an organization has the following basic requirements:

¢ The members of the team are defined by the Manager-Employee relationship.

¢ The managers of the team are defined by a dynamic group that searches subcontainers, using a a
search filter that retrieves only the managers.

After the team has been defined, the User Application allows all managers to use the team
management actions within the navigation menu. This gives the managers the ability to control the
provisioning activities that their direct reports can perform.

For details on how to define a team to manage direct reports, see Section 10.2.3, “Creating a Team to
Manage Direct Reports,” on page 371.

Managing Teams

This section includes information about the following topics:

¢ Section 10.2.1, “Creating a Team,” on page 367
¢ Section 10.2.2, “Deleting a Provisioning Team,” on page 370

¢ Section 10.2.3, “Creating a Team to Manage Direct Reports,” on page 371

Creating a Team

To create a new provisioning team:

1 Launch the New Team Wizard in any of these ways:
From Designer’s menus:
¢ Select File > New > Provisioning Team, then click Next.
From the Provisioning view:
Right-click Provisioning Teams, then select New.

The New Provisioning Teams dialog box displays. When the dialog box is launched from the
File menu, it contains fields that are not displayed when it is launched from the Provisioning
view.

Configuring Provisioning Teams 367

368

° New Provisioning Team

MNew Provisioning Team

Specify the new team,

Identifier (CH): | Mew Team

Display Mame: | Mew Team

Descripkion: team For provisioning
Dornain: Provisioning L
Provisioning

@ Finish l [Cancel

2 Fill in the fields as follows:

Field

Description

Identity Manager Project and Provisioning
Application

Identifier

Display Label

Description

Domain

Select the correct Identity Manager project and
Provisioning Application.

NOTE: This field displays when you create queries
from the File menu.

Type a common name (CN) for the team.

Type the name of the provisioning team. This is the
name displayed in Designer and also in the User
Application runtime. The label is localizable in the
Team editor.

Provide a description of the provisioning team.

Provide the domain for the team. It could be Roles,
Resources, or Provisioning.

User Application: Design Guide

3 Click Finish. The Team panel of the Provisioning Team editor displays.

Provisioning Team
Identifier {CM): testRoleTeam55chb85afb2b94b1081dd69664cTc41fd
Display Mame: | testRoleTeam

Description: “est Role

Domain: Ruole

* Managers
= K

Managers

[[Iranagers are members of team
 Members

") DAL Relationship

() Identity Wault Objects
}{{

Members

Tean | Permissions

4 Type a description.
5 To define the team’s members, do one of the following:
¢ Click DAL Relationship, then select the relationship that represents the team’s membership.

* Click All Users to select all users as members of this team.

Members can be users, groups, containers, organizational units (OU), or organizations (O).
Specifying an O or OU can impact the User Application’s runtime performance. The
manager needs to search for the member using a select-pick list to reduce the performance
impact.

6 Click Permissions. The Team Permissions Configuration page displays.

Configuring Provisioning Teams 369

10.2.2

+ Team Permissions Configuration

The data below is read-only. To configure the data, please use the User Application web dient.

Chiject Type Authorized Objects Permission
Role Compliance Administrator Assign Role To User
Rale Carpliance Administrakar Assign Raole ko Group And ...
Rale Campliance Administratar Revake Role From User
Rale Compliance Administrator Revake Role From Group ...
Rale Compliance Administrator Wiew Role
Rale Report Administrakor Revake Role From User
Role adb Create Role
Role adb Assign Role To User
Ruole adb Assign Role ko Group And ...
Revolke Role From User
Role adb Revoke Role From Group ...
Role adb Wi Role
Selection Description
Object Type Specifies the type of authorized object.
Authorized Objects Specifies the name of the authorized object.
Permission Specifies the permissions that the team has on that object.

7 Click Save.

The Team Permissions Configuration page is read-only. The object information is populated
from the User Application.

You must save the Provisioning Team for it to be available to the User Application. See Section 2.7,
“Deploying Provisioning Objects,” on page 27. A provisioning team creates one object
(stvprvRbpmTeam) in the User Application driver Appconfig Teams node. The srvprvRbpmTeam
contains the provisioning teams object.

IMPORTANT: The team and the team request objects represented a team in the User Application
versions prior to 3.7. The team request object contained the request that could be accessed by the
team. User Application 3.7 and 4.0 teams store the permissions on individual requests or request
containers eliminating the need for two objects. For more information on team authorization, refer to
“Team Configuration” in the User Application: Administration Guide.

Deleting a Provisioning Team

You delete the Provisioning Team object from the Provisioning view by right-clicking the team, then
selecting Delete. The Delete confirmation dialog box lets you specify whether to delete the object
locally only, or from the Identity Vault during the next deploy of the parent object.

370 User Application: Design Guide

10.2.3 Creating a Team to Manage Direct Reports

For information on creating the team, refer to “Team Configuration” in the User Application:
Administration Guide.

For more information on saving and deploying the team, see Section 2.7, “Deploying Provisioning
Objects,” on page 27.

Configuring Provisioning Teams 371

372 User Application: Design Guide

11.1

11.2

Configuring Roles

This section describes how to use the Roles Based Provisioning Module tools to configure the
contents of the Roles tab of the User Application.

¢ Section 11.1, “About the Roles Based Provisioning Module,” on page 373

¢ Section 11.2, “About the Role Catalog,” on page 373

¢ Section 11.3, “About the Role Editor,” on page 374

¢ Section 11.4, “About the Separation of Duties Editor,” on page 388

¢ Section 11.5, “About the Role Configuration Editor,” on page 392

¢ Section 11.6, “Importing Roles Defined in CSV Files,” on page 395

About the Roles Based Provisioning Module

The Identity Manager User Application’s Roles Based Provisioning Module provides an easy way to
assign people to privileges in target systems through their role membership. The module allows you
to easily ensure that employees have access to the resources they need.

A role defines a set of privileges related to one or more target systems or applications. When you
assign a user to a role, the user is granted all the entitlements associated with the role (with any
parameter values as specified in the Role editor). When a user is removed from a role, all entitlements
granted when the user was assigned to the role are revoked. Only the entitlements granted through
the role are revoked; entitlements the user has been granted through other means are not revoked.

About the Role Catalog

The Role Catalog uses the Identity Vault to store role definitions that the User Application uses to
determine:

¢ The set of roles that it can display or modify.

¢ The separation of duties (SoD) constraints between roles.

¢ The provisioning request definition to execute for role membership requests.

¢ The provisioning request definition to execute for SoD constraint exceptions.
The User Application ships with:

¢ Two roles based provisioning request definitions.
¢ A Roles Category list.
¢ Default role levels.

¢ Default mid-level system roles.

Configuring Roles 373

11.3

11.3.1

You use the Roles Based Provisioning tools to create new Role Catalog objects and customize existing
ones for your own business needs. The Role Catalog node of the Provisioning view provides access to
the Identity Manager Roles Based Provisioning Module design and configuration tools.

You can use the Role Catalog node to import, export, deploy, validate, compare, and localize the roles
definitions, separation of duties constraints, and the Roles Configuration object as a group or
individually. It also provides access to each of the Roles Based Provisioning Module tools.

When you use any of the editors available through the Role Catalog, you modify a set of local XML
files. The local files are created when you add a Role Service driver to the Identity Manager project.
The files are created in the workspace in the project’s Provisioning\AppConfig\RoleConfig folder.

Table 11-1 Local Roles Directories

Directory Name Description

RoleDefs Contains a folder for each role level. These folders can contain additional
hierarchy levels, depending on how you set up your roles. If you add
categories or additional levels, they are reflected in the folder structure. The
folders contain the definitions for the roles within that level, and the file
extensions correspond to the level. For example, the files in the level10 folder
have .levell0 as the extension.

SoDDefs Contains the files that define the separation of duties constraints. Files have
the . sod extension.

The Roles Configuration object definition file resides at the root of the RoleConfig folder. There can
be only one such file, and its name is configuration.roleconfig.

The Role Catalog is deployed in the User Application driver’s AppConfig.RoleConfig file.

About the Role Editor

The Role editor allows you to create and configure the roles you want to assign and manipulate in the
Roles tab of the User Application. You use the editor to define the role details.

¢ Section 11.3.1, “Understanding Role Hierarchy,” on page 374

¢ Section 11.3.2, “Using the Role Editor,” on page 375

¢ Section 11.3.3, “Role Properties Reference,” on page 386

Understanding Role Hierarchy

The Roles Based Provisioning module uses a role hierarchy to simplify the model for assigning users
to roles (and thus permissions to users). The role hierarchy allows you to assign roles in a more
efficient way. For example, rather than assigning a user to twenty roles, you can do it by assigning
role levels.

¢ “About Role Levels” on page 375
¢ “About Role Containers” on page 375

374 User Application: Design Guide

11.3.2

About Role Levels

Role levels define role hierarchy. Roles defined at the highest level (called Business Roles) define
operations that have business meaning within the organization. Mid-level roles (called IT Roles)
supports technology functions. Roles defined at the lowest level of the hierarchy (called Permission
Roles) define lower-level privileges.

A higher-level role automatically includes privileges from the lower-level roles that it contains. For
example, a Business Role automatically includes privileges from the IT Roles that it contains.
Similarly, an IT Role automatically includes privileges from the Permission Roles that it contains.

Role relationships are not permitted between peer roles within the hierarchy. In addition, lower-level
roles cannot contain higher-level roles.

You can modify the label used for each role level in the User Application by defining localized strings
for the level’s Name and Description in the role configuration editor.

About Role Containers

A role container is an organizational unit within the User Application driver. The User Application
allows you to assign a role to a container. When you to assign a role to a container, the users in the
container are assigned to the role. This type of role assignment is called an indirect assignment. Roles
explicitly assigned to a user from within the User Application are called direct assignments.

Role containers reside under role levels. The User Application shows only the role containers that
reside under the role level that you choose. You can create a role either directly in a role level, or in a
container within the role level. Specifying the role container is optional.

NOTE: Designer does not allow you to create roles with the same name under different containers,
although the role container that you specify while creating roles might be different for different roles.

You can use the Role editor to create role containers (see “Creating a Role Container” on page 384).

Using the Role Editor

¢ “Creating New Roles” on page 375

¢ “Specifying a Role Hierarchy” on page 380

¢ “Specifying Entitlements” on page 381

+ “Specifying Resource Associations” on page 383
¢ “Creating a Role Container” on page 384

¢ “Specifying Role Approvals” on page 385

Creating New Roles

1 Open the Create a Role Wizard in one of these ways:
¢ From the Provisioning view, open Role Catalog, right-click Roles, then select New.
¢ Right-click a role container, then select New.
¢ Select File > New > Provisioning > Role.

The Create a Role Wizard displays:

Configuring Roles 375

376

@ Create a Role @

Create a Role

Identity Managet Project: |HajenProject_2

Provisioning &pplication: | RolesUserapplication

+ &

Trustees

Truskee rights:

Supply & CM, Display Mame, a Role Conkainer, and at least one Category,

Identifier {Ch):

Display Mame:

Drescripkion:

Rale Container: Business Raole
Available Categories:

Categary:

Selected Categories:
Default

Cancel

2 Fill in the fields as follows (* indicates a required field):

Field

Description

Identity Manager Project and
Provisioning Application*

Identifier (CN)*

Display Name*

Description

The name of the Identity Manager project and the provisioning
application where you want to create the role.

NOTE: These two fields display when you launch the wizard
from the File menu.

The unique identifier for the role.

The text displayed as the Role Name field in the User
Application. You can translate this text into any of the
languages supported by the User Application. For more
information, see Section 2.10, “Localizing Provisioning
Objects,” on page 35.

The text displayed as the Role Description field in the User
Application. You can translate this text into any of the
languages supported by the User Applications. For more
information, see Section 2.10, “Localizing Provisioning
Objects,” on page 35.

User Application: Design Guide

Field Description

Role Container The root location of the roles objects within the User
Application driver. It defaults to Business Role.

To specify a Role Container:

1. Click Search to open the container selection dialog box.

@ Role Container

Select Role Container

Select a Role Container ko create this new role in,

[Business Rals
[1T Role
[Permission Raole

@ oK H Cancel]

2. Select a container or subcontainer from the list.
3. Click OK.

Category* Allows you to categorize roles. Categories are used for filtering
role lists in the User Application. The category names are
defined in the directory abstraction layer Role Category list.

Trustee Rights Specifies the users, groups, or containers that can read,
compare, and browse the roles. (Read, compare, and browse
are the default privileges.)

3 Click Finish. Designer creates the role locally and opens the Role editor.

[Role Manager 2
Identifier (CM): roleManager {System)

Dicplay Mame: | Rols Managsr

Drescription: A delegated administrator who can perform only allowed actions For & subset of objects within the Role domain,

Role Level: IT Role

+ Categories
Select one of more categories:

Selected Categories: Available Categories:
System Roles Default

~ Trustees
Specify users and groups that can view and request role:

+ K

Trustees

List of Trustees

~ Uwners
Specify owners of rale:

L
<

Overview | Associations | Approval

Configuring Roles 377

4 Fill in the remaining fields in the Overview tab as described in Table 11-4, “Role Overview
Properties,” on page 386.

5 Click Approval.

For more information on completing the Contained Roles section, see “Specifying a Role
Hierarchy” on page 380. For more information on how to use the Entitlements section, see
“Specifying Entitlements” on page 381.

5 Rale Manager 52

w Approval Details
Select the type of approval required when assigning this role:

OMone (®standard) Custom

 Standard
Specify role approval details:
Approval Type: () Serial () Quarum
Approvers: %
Approvers

COrverview |Associations | Approval

378 User Application: Design Guide

6 In the Approval section, choose Approval Details.

[SsampleRole 3 =

Select the type of approval required when assigning this role:

Mone @ Standard Custom

- Standard
Specify role approval details:

Approval Type: @ Serial Quorum
100

Approvers: &+ X
Approvers

ablake.users.idmsample-jboss3.novell

Overview Associations Approval

You are prompted for different values, depending your selection. See Table 11-3, “Role Approval
Properties,” on page 385 for information about each type.

7 Save the role.

For information on deploying a role, see Section 2.7, “Deploying Provisioning Objects,” on
page 27.

Configuring Roles 379

Specifying a Role Hierarchy

You specify a role hierarchy by defining the roles that contain other roles (called Role Relationships
in the User Application).

To define a role hierarchy for a new or existing role:

1 Navigate to the Associations tab of the Role editor.
2 In the Contained Roles section, click + to add a lower-level role to the current role.

The current role must be a mid-level (IT Role) or top-level role (Business Role), because the
lowest level role (Permission Role) cannot contain other roles. The Role Search dialog box
displays:

@ Role Search @

Search for Roles

Select roles that can be contained by this role,

Search Criteria

Identifier (CH: | |

Display Mame:

Description:

Cakegory: W
Role Level: Al Lower Levels v

Matching Roles

Available Roles: Selected Roles:

@ Cancel

3 To use the Role Search dialog box:

3a Specify the CN, Display Name, Description, Category, and Role Level on which you want to
search.

For CN, Display Name, and Description, you can enter a wildcard (such as S¥, *S), or
regular expressions (such as [A-Z][a-z]¥).

You can enter a value for all of the fields or none of the fields. If you do not supply a value
in a particular field, the search returns all of the possible values for that field. If you enter
values in one or more of the fields, the values are ANDed together to create the search filter.
The search occurs on the roles defined locally, not the roles deployed to the driver.

Role Level values are All Lower Levels, Level 10, and Level 20 depending on the level of the
currently selected role.

3b Click Search. Roles matching the search criteria are displayed in the Matching Roles section
within the Awvailable roles list.

3¢ Double-click the role or select the role and click =*.
3d Click OK when you are done adding roles.

380 User Application: Design Guide

Designer closes the search dialog box and displays the roles you selected in the Contained

Roles section.

NOTE: The ability to add entitlements to a role will be deprecated in future. You should
add entitlements to a resource by using the User Application Web client.

Specifying Entitlements

1 In the Entitlements section, click + to add an entitlement for this role. The Entitlement Search

dialog box displays:

. Entitlements

!

Entitlements

Seatch for entitlaments

Entitlement Search
Specify the criteria For vour search:

Diriver: GroupEntitiementLoopback,
Identifier {CM):
Display Marne:

Descripkion:

Entitlement Selection

Entitlement: Identity Yault Groups
Descripkion: Groups in Identity vaulk
Type: Query

Mulki-value: No

Parameter Value; Accounting

Select an entitlernent and specify its parameter walue:

w {J§.‘?

Ok

1 [Cancel

]

2 To complete the Entitlement search:

2a Choose the driver that contains the entitlement you want.

2b Specify the CN, Display Name, and Description on which you want to search.

You can enter a wildcard (such as S*, *S) or a regular expression (such as [A-Z][a-z]¥), then

click Search.

You can enter a value for all of the fields or none of the fields. If you do not supply a value
in a particular field, the search returns all of the possible values for that field. If you enter
values in one or more of the fields, the values are ANDed together to create the search filter.

The search occurs locally. Entitlements contained by the selected driver that match the
search criteria are displayed in the Entitlements Selection section.

The search is complete when the Entitlement field displays <Select an Entitlement>.

3 To complete the Entitlement selection:

3a Choose the entitlement from the Entitlement drop-down list.

The Description, Type, and Multi-Value fields are read-only. These values are obtained from

the Entitlement definition.

3b Choose the parameter value.

Configuring Roles

381

382

Type

Parameter Value Options

None
User-defined

Admin-defined

Query

No parameter value needed.
Specify your own value.

Select from the available parameter values provided in the drop-down list.
These values are retrieved from the local Entitlement definition.

Select from the available parameter values provided in the drop-down list.
Designer connects to your Identity Vault to retrieve a cached list of available
parameter values. These values were obtained by a prior run of the query
defined in the Entitlement section.

If Designer is unsuccessful in retrieving these values, it displays a dialog box
reporting the problem. You can either resolve these issues before attempting to
create this entitlement reference again or simply enter your own value in the
Parameter Value field. There are two buttons to help you retrieve your query
parameter values:

&7 Refresh cached query result. Click this button if you want Designer to
attempt to connect to the Identity Vault and retrieve the query parameter values.
This is most useful if Designer was not able to connect to the Identity Vault on
the first attempt.

:Run query in Identity Vault. Click this button if you want Designer to run the
query in the Identity Vault and return the refreshed results.

3c Click OK to save the definition. Designer displays the definition in the Entitlements table.
Query parameter values are translated to the query’s full CN when displayed in the table.

The entitlements defined for the role are triggered when the role is granted. However, if the
entitlement is invalid, the role assignment still succeeds, but a message about the entitlement failure
is written to the role service Audit log.

User Application: Design Guide

Specifying Resource Associations

The Resource Associations table is read-only. It is populated through the User Application Web
client.

5 sampleRole 2 =8

+ Contained Roles
Specify roles contained by role:

+ X
Role Level
Purchasing Permission Role

~ Entitlements
Add or remove entittements associated with this role

The ability to add entitlements to a role will be deprecated. It is recommended that entitlements be added to a resource using the User Application web client.

%

Entitlement Driver Type Multi-value Parameter Value

~ Resources
The resources assoclated with this role:

The data below is read-only. To cenfigure the data, please use the User Application web client.

Resource Association Description Association Values

Air Travel Resource Permit travel privileges.

Building Pass Resource Allow access to company office buildings.

Group Membership Resource Give membership to specified groups \METACARPALSTREE\novellidmsample-jbossSigroupsiHR
Health Benefits Resource Provide employee health benefits

Parking Permission Resource Allow access to specified parking lots Cambridge:Main Street

Overview Associations | Approval

Table 11-2 Specifying Resource Associations

Field Description

Resource Name Name of the resource associated with the role.

Association Description Description of the reason for associating the resource with the role.
Association Values Values applied to the resource when the role is assigned.

The information present in the Role editor is updated for all the roles when the Role Catalog is
imported from eDirectory. You can only detect new resource associations but not the resource
associations that have been removed in the User Application.

Configuring Roles 383

Ensure that the deleted resource associations are removed from the Resources list.

1 Before performing a Live Import from the Role Catalog, go to the Navigator View and navigate
to the \MyProject\Model\Provisioning\AppConfig\RoleConfig\ResourceAssociations
folder.

2 Remove all the files in the folder except the ResourceAssociations.digest file.

3 From the Provisioning View, select the Role Catalog object and run the Live Import to import all
the resource associations again and to provide you the updated correct information.

Creating a Role Container

1 From the Provisioning view, open the Role Catalog, navigate to a Role-level container, right-click
it, then select New Role Sub-Container. The New Role Container dialog box displays:

@ New Role Container E@@

New Role Container

Specify the name of the new container

Marme (CM):

@ Cancel

2 Type the name of the container, then click OK.

The container name the object’s CN. It is not a display label so it is not localizable. Because the
name is a CN and is not localizable, it displays as <name-string> (CN).

Designer creates the subcontainer locally. On deploy, the container is created in the role-level
container of the RoleDefs.RoleConfig. AppConfig node of the User Application driver specified
by this project.

384 User Application: Design Guide

Specifying Role Approvals
Navigate to the Approval tab from the Role editor.

5 Role Manager 52

~ Approval Details
Select the type of approval required when assigning this role:

OMone (@) Standard () Custom

 Standard

Specify role approval details:
Approval Type: () Serial O Quorum
Approvers: R

Approvers

Overview | Associations | Approval

Select the type of approval required when assigning a role.

Table 11-3 Role Approval Properties

Field Description

No Approval Select this option if the role does not require approval when requested.

Standard Approval Select this option if the role requires approval when requested, and you want the approval
to execute the standard provisioning request definition that ships with the Roles Based
Provisioning module. You must select the type of approval (serial or quorum) and the valid
approvers.

Serial: Select this option if you want the role to be approved by the approvers the
Approvers list. The approvers are processed sequentially in the order they appear in the
list.

Quorum: Select this option if you want the role to be approved in parallel and to be
complete when the percentage of approvers specified is reached.

For example, if you wanted to require that 25 percent of approvers in the list approve the
condition, you would specify Quorum and specify a number; the value is assumed to be a
percentage.

Configuring Roles 385

Field Description

Approvers An approver can be a user, group, or role. To add approvers:

1. Click +.

If you are connected to the Identity Vault, the Browse Identity Vault dialog box

automatically displays.

2. Navigate the Identity Vault to locate your approvers.

To locate roles, navigate to the User Application driver’s
AppConfig.RoleConfig.RoleDefs container.

3. Select the approver, then click OK.

If Designer is not able to connect to the Identity Vault, you can add the approver manually
by clicking in the row and typing the approver’s distinguished name, for example,
admin.novell. Only deployed roles can be specified.

Custom Approval Approval process definition: Select a provisioning request definition to execute when the
role is requested. The approvals displayed in this list have Process type of Role Approval.

11.3.3 Role Properties Reference

Table 11-4 Role Overview Properties

Section Field

Description

Role Identifier

Display Name

Description

Role Level

Categories Available
Categories

Selected
Categories

Role Trustees
Trustees

The unique identifier for the role.

The text displayed in the Roles tab of the User
Application as the Role Name. You can translate this
text into any of the languages supported by the User
Application. For more information, see Section 2.10,
“Localizing Provisioning Objects,” on page 35.

The text displayed in the Roles tab of the User
Application as the Role Description. You can translate
this text into any of the languages supported by the
User Application. For more information, see

Section 2.10, “Localizing Provisioning Objects,” on
page 35.

Defines the role’s level in the role hierarchy. Level 30
roles are top-level roles. Level 20 roles are mid-level
roles. Level 10 roles are the lowest-level roles. Higher-
level roles include privileges from lower-level roles.

Lists the categories that are available for the new role to
be associated with. The items in this list are populated
from the Role Category list in the directory abstraction
layer.

Lists the categories that the new role is associated with.
Use the Add Category and Remove Category buttons to
associate the current role with one or more categories.

Specifies the users, groups, or containers that can read,
compare, and browse the roles. (Read, compare, and
browse are the default privileges.)

386 User Application: Design Guide

Section Field

Description

Role Owners A user who is designated as the owner of the role

Owners

definition. When you generate reports against the Role
Catalog, you can filter these reports based on the role
owner. The role owner does not automatically have the
authorization to administer changes to a role definition.
In some cases, the owner must ask a role administrator
to perform any administration actions on the role.

Table 11-5 Role Approval Properties

Section

Field Description

Contained Roles

Entitlements

Approval Options

Contained Roles One or more roles of a lower level than the
one being defined.

Entitlements One or more Identity Vault objects that
represent a resource in a connected system.

No Approval Select this option if the role does not require
approval when requested.

Standard Approval Select this option if the role requires approval
when requested, and you want the approval
to execute the standard provisioning request
definition that ships with the Roles Based
Provisioning module. You must select the
type of approval (serial or quorum) and the
valid approvers.

Approvers An approver can be a user, group, or role.

Custom Approval Approval process definition: Select a
provisioning request definition to execute
when the role is requested. The approvals
displayed in this list have Process type of

Role Approval.
Table 11-6 Role Association Properties
Section Field Description
Resources Resource Name Name of the resource associated with the
role.

Association Description of the reason for associating
Description the resource with the role.
Association Values Values applied to the resource when the

role is assigned.

Configuring Roles 387

11.4 About the Separation of Duties Editor

The Separation of Duties (SoD) editor allows you to:

¢ Define a separation of duties constraint (or rule).

¢ Define how to process requests for exceptions to the constraint.

Each SoD constraint represents a rule that makes two roles mutually exclusive. If a user is in one role,
he or she cannot be in the second role, unless there is an exception allowed for that constraint. You
can define whether exceptions to the constraint are always allowed or are only allowed through an
approval flow.

¢ Section 11.4.1, “Using the Separation of Duties Editor,” on page 388

¢ Section 11.4.2, “Separation of Duties Constraints Properties,” on page 389

11.4.1 Using the Separation of Duties Editor

To create a new separation of duties constraint:

1 Open the Separation of Duties Wizard in one of these ways:

¢ From the Provisioning view, open Role Catalog, right-click Separation of Duties, then select
New.

¢ Select File > New > Provisioning > Separation of Duties.
The SoD Wizard displays:

. Create a Separation of Duties @

Separation of Duties
Supply the M and Display Mame.

Identity Manager Project: |Hajen_3 L
Provisioning Application: | Userapplication A
Identifier (CM):

Display Marme:

Descripkion:

Cancel

2 Fill in the fields as follows:

* Indicates the field is required.

388 User Application: Design Guide

Field

Description

Identity Manager Project and
Provisioning Application*

Identifier (CN)*

Display Name*

Description

The name of the Identity Manager project and the provisioning
application where you want to create the SoD.

NOTE: These two fields display only when you launch the wizard
from the File menu.

The unique identifier for the SoD.

The text used when the SoD name displays in the User Application.

You can translate this text into any of the languages supported by
the User Application. For more information, see Section 2.10,
“Localizing Provisioning Objects,” on page 35.

The text displayed as the SoD Description in the User Application.

You can translate this text into any of the languages supported by
the User Application. For more information, see Section 2.10,
“Localizing Provisioning Objects,” on page 35

3 Click Finish.

Designer creates the SoD constraint and launches the SoD editor.

la¢l Roles_Project - Developer

Separation of Duties Constraint
Identifier (CN): Doctor-Nurse

Display Mame: | Doctor-Murse
Descripkion: Doctor-Murse

~ Roles
Specify the roles that are in conflict:

Conflicting Role:

Zanflicting Role!

~ SoD Approval Definition
Specify how ko handle SoD exceptions:

Approval Required: ®ves ONo

Sob Approwal Definition:
Approval Type:

Use Default spprovers: (8 ves (O Mo

~ Default Approvers

5

Approvers

The list of indivicuals that can spprove or deny an 50D exception:

4 Fill in the fields as described in Table 11-8, “Roles Configuration Properties,” on page 393.

5 Save and deploy the constraint definition.

Separation of Duties Constraints Properties

Table 11-7 describes the fields on the SoD property page.

¢ “Using the Separation of Duties Properties” on page 390

¢ “Using the Role Search Dialog Box” on page 391

Configuring Roles

389

Using the Separation of Duties Properties

Table 11-7 Separation of Duties Properties

Section Field Description

Separation of Identifier (CN) Read-only. Unique ID for the SoD.

Duties

Constraints Display Label The text displayed as the SoD Constraint Name in the User Application.

You can translate this text into any of the languages supported by the
User Application. For more information, see Section 2.10, “Localizing
Provisioning Objects,” on page 35.

Description The text displayed as the SoD Constraint Description field in the User
Application. You can translate this text into any of the languages
supported by the User Application. For more information, see
Section 2.10, “Localizing Provisioning Objects,” on page 35.

Roles Conflicting Role The name of the role for which you want to define a constraint.

Click Browse to locate a specific role from the available roles. See
“Using the Role Search Dialog Box” on page 391.

A role defines a set of privileges related to one or more target systems
or applications.

Conflicting Role The name of the role in conflict. Click Browse to locate an existing role
from the available roles. This search excludes the role already
selected.

Sod Approval Approval Required Select Yes if you want to launch a workflow when a user requests an
Definition exception to the SoD constraint.

Select No if the user can request an exception to the SoD constraint
and no approval is required. In this case, the exception is never denied.

SoD Approval Displays the read-only name of the provisioning request definition that

Definition executes when a user requests an SoD constraint exception. The value
is derived from the Roles Configuration object. It is only executed when
the Approval Type is SoD allowed with workflow.

Approval Type A read-only field that displays the processing type for the provisioning
request definition displayed above. This value is derived from the Roles
Configuration object.

Use Default Select Yes to use the default approvers defined in the Roles
Approvers Configuration object. Does not enable the Approvers selection list in
this property page.

IMPORTANT: When you choose this option, you must define the
approvers in the role configuration editor. If you do not specify
approvers, you are able to deploy the SoD, but users encounter a
runtime error because there are no approvers defined.

Select No to enable the Approvers selection list in this property page.

If you change the selection from Yes to No and then perform a
Compare, the objects are considered equal. After you specify
Approvers, the comparison is no longer equal.

390 User Application: Design Guide

Section Field Description

Approvers or Approvers An approver can be a user, group, or role. To add approvers:
Default 1. Click +.
Approvers

If you are connected to the Identity Vault, the Browse Identity
Vault dialog box automatically displays.

2. Navigate the Identity Vault to locate your approvers.

To locate roles, navigate to the User Application driver’s
AppConfig.RoleConfig.RoleDefs container.

3. Select the approver, then click OK.

If Designer is not able to connect to the Identity Vault, you can add the
approver manually by clicking in the row and typing the approver’s
distinguished name, for example, admin.novell. Only deployed roles
can be specified.

Using the Role Search Dialog Box

The Role Search dialog box displays when you click Browse in the Roles section of the SoD editor. The
dialog box helps you locate the existing roles for which you can create SoD constraints.

1 In the dialog box, specify the CN, Display Name, Description, Role Category, and Role Level on
which you want to search.

For CN, Display Name, and Description, you can enter a wildcard (such as S*, *S) or regular
expressions (such as [A-Z][a-z]*).

You can enter a value for all of the fields or none of the fields. If you do not supply a value in a
particular field, the search returns all of the possible values for that field. If you enter a value in
one or more of the fields, the values are ANDed together to create the search filter. The search
occurs on the roles defined locally. Roles matching the search criteria are displayed in the
Matching Roles selection list.

@ Search for Role El

Role Selection based on entered values

Enter Criteria for the Search.

Identifier {CMN):

Display Marne:

Descripkion:

Category: w
Rale Level: All Levels v

Matching Roles

2 Select a role from the Roles selection list, then click OK to return to the SoD property page.

Configuring Roles 391

3 Click OK.

Clicking OK closes the Search for Role dialog box and populates the role in the SoD properties
page. When no roles are available for the specified search criteria, the OK button is disabled.

11.5 About the Role Configuration Editor

The role configuration editor is a graphical tool for defining administrative settings for the Roles
Configuration object. The Roles Configuration object resides in the Role Catalog
(nrfConfigurationobject), and it contains basic settings for an instance of the Role subsystem. There is
only one configuration object per Role Catalog, and it resides at the root of the RoleConfig folder.
The Roles Configuration object is a protected object, so the menu items Cut and Delete are disabled.
You can copy and paste this object from another project; a paste operation overwrites the existing
object.

To start the role configuration editor:

1 Expand the Provisioning view, then navigate to and open the Role Catalog.
2 Double-click the Role Configuration node.

Designer displays the role configuration editor.

7 Role Configuration 3

[¥]

Role and Resource Subsystem Configuration

Set a removal grace period for the time between removal of a role and the initiation of related entitlement removal processes

Grace Period for Role Assignment Removal (seconds): [d (0 indicates immediate)

+ Role Levels

Specify the display name and description of the role levels:

Role Levels Display Name Description £

392

Permission Role
20 IT Role

30 Business Role

- Standard Approvals

Permission Role
IT Role

Business Role

Provisioning request definitions for approval of role and resource assignments and SoD exceptions:

Role Approval Definition:
Resource Grant Approval Definition:

Resource Revoke Approval Definition:

SoD Approval Definition: [SoD Conflict Approval

~ Entitlement Query Settings
Specify the timeout interval and refresh rate for entitiement queries:
Default Query Timeout (minutes): | 10
Default Refresh Rate (minutes): | 1440
= Separation of Duties (SoD) Settings

Specify approval details:

Default SoD Approval Type: @ Serial Quorum
Quorum (Percentage): 1
Default SoD Approvers:

L

Approvers

3 Fill in the fields as described in Table 11-8.

User Application: Design Guide

11.5.1

Role Configuration Editor Properties

The properties you set in the role configuration editor are described in Table 11-8.

Table 11-8 Roles Configuration Properties

Category Field Description

General Grace Period for Role Specifies the amount of time, in seconds, before a role
Assignment Removal assignment is removed from the Role Catalog.
(seconds)

The value is 0 by default. A grace period of zero means
that when someone is removed from a role assignment,
the removal happens immediately and the subsequent
revocation of entitlements is initiated immediately.

You might use the grace period to delay the removal from
a role of an account that would subsequently be re-
added (for example if a person was being moved
between containers). An entitlement can disable an
account (this is the default) rather than removing it.

Role Levels Role Levels Read-only level that defines the role hierarchy. The
hierarchy rules are:

+ Level 30 roles are higher-level roles in the
hierarchy.

+ Level 20 and Level 10 roles are lower-level roles.

¢ Level 30 roles include permissions from lower-level
roles.

+ Lower-level roles have permissions that are
included in higher-level roles.

Display Name Specifies the text to display in the User Application Roles
tab for each role level. By default, they are Permission
Role (Level 10), IT Role (Level 20), and Business Role
(Level 30). You can translate this text into any of the
languages supported by the User Application. For more
information, see Section 2.10, “Localizing Provisioning
Objects,” on page 35.

The User Application caches this value in the
RoleSystem cache holder. For your changes to Role
Level Display Name to be visible in the User Application,
you must flush the RoleSystem cache after you deploy
the Role Configuration object.

Description Specifies the text to display in the User Application Roles
tab for each Role Level Description. You can translate
this text into any of the languages supported by the User
Application. For more information, see Section 2.10,
“Localizing Provisioning Objects,” on page 35.

The User Application caches this value in the
RoleSystem cache holder. For your changes to Role
Level Description to be visible in the User Application,
you must flush the RoleSystem cache after you deploy
the Role Configuration object.

Configuring Roles 393

394

Category Field

Description

Separation of Duties Approval Type
(SoD) Settings

Approvers

Standard Approvals Role Approval Definition

SoD Approval Definition

Resource Grant Approval
Definition

Resource Revoke Approval
Definition

Entitlement Query
Settings

Default Query Timeout
(minutes)

Default Refresh Rate
(minutes)

Select Serial if you want the SoD to be approved
sequentially by the approvers in the order they appear in
the approvers list.

Select Quorum if you want the SoD to be approved in
parallel and to be complete when the percentage of users
specified is reached.

For example, if you wanted to require that 25 percent of
approvers in the list approve the condition, you would
specify Quorum and specify a number; the value is
assumed to be a percentage.

The actual list of individuals, users, groups, or roles that
can approve or deny an SoD exception/override. This list
can be overridden in the definition of an SoD constraint in
the SoD editor. You can use the following buttons to
manage the Approvers list:

o Click to add an approver. Adds the name to the
bottom of the list.

*

Click to delete the selected approver.

*

(2] Click to access the Identity Vault to search for
an approver to add.

*

¥ Click to move an approver lower on the list.

*

4+ Click to move an approver higher on the list.

Read-only name of the provisioning request definition
that runs for a role approval request for this driver.

Read-only name of the provisioning request definition
that runs for a SoD exception approval for this driver.

Read-only name of the provisioning request definition
that runs for a resource grant approval request for this
driver.

Read-only name of the provisioning request definition
that runs for a resource revoke approval request for this
driver.

The Roles Based Provisioning Module periodically
gueries the external entitlement system to refresh the
details of the entitlements that are displayed in the
Resource Catalog.

You can limit the time that the system waits for the query
result by using the Default Query Timeout option.

For the entitlement queries, you can set the time that the
system waits for the query result by using the Default
Refresh Rate option.

User Application: Design Guide

11.6

11.6.1

Importing Roles Defined in CSV Files

The Role Catalog provides a wizard for importing roles defined in a comma-separated values (CSV)
file. For example, if you define the set of roles you want to implement by using a spreadsheet, you
can export the definitions of those roles to a CSV file format, then use the Import Roles Wizard to add
the roles to the Role Catalog.

¢ Section 11.6.1, “Setting Up the File to Import,” on page 395

¢ Section 11.6.2, “Required CSV File Format,” on page 398

¢ Section 11.6.3, “Using the Wizard to Import Roles,” on page 398

¢ Section 11.6.4, “Error Handling,” on page 400

Setting Up the File to Import

When you create a file to use as input to the Import Roles wizard, you must follow the column layout
defined in Table 11-9. In addition, you must also follow the CSV file format described in
Section 11.6.2, “Required CSV File Format,” on page 398.

Table 11-9 Import Record Format

Column

Number Field Name Description

1 role level Required field. Valid role levels are: 10, 20, and 30.

+ 10: Permission Role
+ 20:IT Role

+ 30: Business Role

If an invalid role level is specified, the wizard writes the role
record to the error file. It does not create the role.

For example:
30

2 sub-container Optional field. The name of the subcontainer relative to the
role level. The wizard creates any subcontainers that do not
exist. There is no limit on the number of subcontainers, but
five levels is the recommended maximum depth.

For example:
"System\OTB"

3 id Required field. The role’s identifier (CN). This name must be
unique within the role level. If the CSV file contains multiple
rows with the same ID, the wizard imports and creates a
record for the first one it encounters. It then writes any
subsequent records with the same ID to the error file.

For example:

"Doctor"

Configuring Roles 395

396

Column

Number Field Name

Description

4 localized display names

5 localized descriptions

6 categories

7 owners

Optional field. The the translated string used to display the
role name. Accepts zero or more values. The value must be
in this format:

"java-locale-code~string"

The ~ delimits the locale and its localized string. The | symbol
delimits each set of locale data.

For example:

"en~Doctor|it~Dottore|fr~Docteur"

If you do not want to localize display names, you can supply
a single string. The wizard uses this string as the value for
the default Designer locale upon import. If no value is present
when you attempt to deploy the associated role, Designer
generates a validation error.

Optional field. The translated string used to display the role
description. Accepts a list of zero or more values. The value
must be in this format:

"java-locale-code~string"

The ~ delimits the locale and its localized string. The | symbol
delimits each set of locale data.

For example:

"en~Doctor |it~Dottore|fr~Docteur"

If you do not want to localize descriptions, you can supply a
single string. The wizard uses this string as the value for the
default Designer locale upon import. If no value is present
when you attempt to deploy the associated role, Designer
generates a validation error.

Required field. This value should map to a valid category key
based on the Role Category list defined in the directory
abstraction layer. Accepts a list of zero or more values.

If you do not specify a value, the wizard inserts the role
category key default.

If the value is invalid (it does not exist in the directory
abstraction layer), the wizard still includes it in the newly
created role; however, Designer’s validation requires that this
be fixed before the role can be deployed.

For example:
"system|doctor |nurse"

Optional field. Represents the distinguished name of the
owner of the role. Accepts a list of zero or more values.

For example:

"admin.novell |ablake.users.medical-
idmsample.novell”

User Application: Design Guide

Column

Number Field Name Description
8 trustees Optional field. Represents the distinguished name of the
trustees of the role. Accepts a list of zero or more values.
For example:
"admin.novell |ablake.users.medical-
idmsample.novell”
9 contained roles Optional field. The role level and common name (CN) of the
child or contained roles. Accepts zero or more values.
For example:
"10~Administer Drugs|10~Fill Prescriptions"
10 entitlements Optional field. DN and parameter values of the role’s
entitlements. Accepts zero or more values.
For example:
"Groups .GroupEntitlementLoopback.TestDrivers
.novell~Medical
Operations|Groups.GroupEntitlementLoopback.T
estDrivers.novell~Pharmacy”
11 approval workflow Optional field. Specifies the name of the provisioning request
common name and its quorum value. Valid values include:
+ None: Provide the empty string ““.
+ Standard: Supply key word Standard followed by the
quorum value. For example:
"Standard~50"
¢ Custom: Enter the provisioning request definition CN.
For example:
"MyCustomPrdCN"
Specify Quorum values as follows:
+ Serial: Specify a quorum value of 0.
* Quorum percentage: Specify a value between 1-100.
12 approvers Optional field. Represents the distinguished name (DN) of the

approvers when the approval workflow value is Standard.
The order of the approvers in this field is important if the
quorum value is serial. Accepts zero or more values.

For example:

"admin.novell |ablake.users.medical-
idmsample.novell”

If the approval workflow is not Standard and you specify a list
of approvers, the wizard writes the record to the error file
because approvers are not valid.

Configuring Roles 397

11.6.2

11.6.3

398

General Field Formatting Rules

*

*

*

Multi-value properties: Use the | symbol as the delimiter between values.

DN properties: Specify in dot notation. Designer validates these properties on deploy to ensure
that the values correspond to existing Identity Vault objects.

Character set encoding must be UTF-8

Required CSV File Format

When you create your spreadsheet to use as input to the Import Roles Wizard, keep in mind that the
wizard expects a specific format. It expects a twelve-column document with the columns defined in
the order described in Table 11-9 on page 395. The wizard also expects the input file to follow the
CSV format rules defined in RFC4180. This format is briefly summarized below:

*

*

*

Each role record is on a separate line.
Each field in a role record is separated by a comma and is quoted.
Each line is delimited by a line break (CRLF)

The first line of the file can be a header line, but this is optional. The wizard allows you to
identify whether the file contains a header line.

If your file contains a header line, it must contain the role record’s field names. The header line
field count must correspond to the field count of each line in the file.

Quotes on numbers are not required.

A role record example:

20[n
", "Doctor", "en~Doctor|it~Dottore|fr~Docteur", "en~Doctor |it~Dottore|fr~Docteur"
,"doctor",, "admin.novell |ablake.users.medical-

idmsample.novell", , "Groups.GroupEntitlementLoopback.TestDrivers.novell~Medical

Operations|Groups.GroupEntitlementLoopback.TestDrivers.novell~Pharmacy",,

Quotes and nested quotes: You can use single quotes within a text field (such as Display name).
Use double quotes to enclose a column.

NOTE: For optional fields, the line must include an empty string

"

as a placeholder.

Using the Wizard to Import Roles

1 Open the Provisioning view of the Designer project where you want to import the roles.

2 Right-click a Role Catalog, the Roles node, or a role level (such as Business Role), then select Import

from CSV.
Designer launches the wizard.

If you select a role level, the wizard imports only the roles for that level and ignores the other
roles in the file.

User Application: Design Guide

@ Import Roles

Import Roles
Specify the location of the CSY File,

Role C5¥ File: | |

[11gnore header row

Erowse, .,

Cancel

3 Fill in the fields as follows:

Field Name

Description

Role CSV File

Ignore header row

Specify the name and location of the CSV file you want to
import.

If the file you specify contains a header row, then select Ignore
header row in CSV file.

4 Click Finish.

The wizard reads the CSV file and adds all of the roles that meet the criteria for import. If the
wizard encounters an error (see Error Handling for a list of possible errors), the wizard writes
the role record to an error file.The wizard creates the error file in the same location as the Role
CSV file to import, and it names the file the same name as the Role CSV file with the _errors

appended to the name.

Only the errors identified in Error Handling are severe enough to prevent the wizard from
creating the role. If the wizard encounters other types of errors, it adds the role, but you must
make corrections before the role can be deployed. For example, if the category specified in the
role is not yet added to the directory abstraction layer role category list, the role can be added,
but Designer displays the role with an informational message as shown in Figure 11-1.

Configuring Roles 399

Figure 11-1 Role Imported with Invalid Category Specified

Avalable Categaries: Selected Categories:
Default nurse <Category Mok Found:=
Sywstem Roles

=

L]

Roles that are created with errors like this cannot be deployed until the errors are corrected. The
Project Checker notifies you of the errors if you attempt to deploy the roles or if you validate the
roles objects.

TIP: If the role has no category, the wizard adds the Default category. If the category supplied
does not exist, then it causes the error shown in Figure 11-1 on page 400.

11.6.4 Error Handling

Table 11-10 on page 400 describes the cases where a role cannot be imported. When the wizard
encounters these errors, it generates an error file and writes the complete role record to the file. It
maintains the role’s original column order except that it inserts a new column as the first column in
the record. This column includes the error code. You can modify the associated role to fix the error
directly within the error file, delete the error code column, then specify this error file as input to the
wizard.

Table 11-10 CSV Import Wizard Error Codes

Error Code Description

INVALID LEVEL The row contains a container level that is not valid. This can occur
if the level is missing or is not one of these values: 10, 20, or 30.

To fix this problem, change the level to 10, 20, or 30.

ROLE_ID _NOT UNIQUE A role with the specified ID in that level already exists. To fix this
problem change the ID or the role level.

INVALID SUBCONTAINER NAME The subcontainer name can contain only: alphanumeric
characters, digits, underscore, and spaces. To fix this problem,
update the subcontainer name to follow these rules.

INVALID ID NAME The role ID contains invalid characters. To fix this problem, edit the
name to follow the rules for valid characters: alphabetic
characters, digits, underscores, and spaces.

INVALID ROLE CN

400 User Application: Design Guide

Configuring Resources

This section describes how to use the Resource editor to configure resources and entitlements.

¢ Section 12.1, “About Resources,” on page 401
¢ Section 12.2, “About the Resource Editor,” on page 401
¢ Section 12.3, “Importing Resources Defined in CSV Files,” on page 408

12.1 About Resources

A resource is any digital entity such as a user account, computer, or database that a business user
needs to be able to access. The User Application provides a convenient way for end users to request
the resources they need. In addition, it provides tools that administrators can use to define resources.
Each resource is mapped to an entitlement. A resource definition can have no more than one
entitlement bound to it. A resource definition can be bound to the same entitlement more than once,
with different entitlement parameters for each resource.

12.2 About the Resource Editor

¢ Section 12.2.1, “Using the Resource Editor,” on page 401
¢ Section 12.2.2, “Resource Property Reference,” on page 407

12.2.1 Using the Resource Editor

¢ “Creating Resources” on page 401

¢ “Specifying Entitlements” on page 403
+ “Specifying Request Form” on page 405
+ “Specifying Approvals” on page 405

Creating Resources

1 Open the Create Resource Wizard in one of these ways:
¢ From the Provisioning view, open Role Catalog, right-click Resources, then select New.
¢ Select File > New > Provisioning > Resource.

The Create Resource Wizard displays:

Configuring Resources 401

a Create Resource |z| @ @

Create a Resource

Identity Manager Project: |Picasso_1

Provisioning Application: |Picasso_UserAppIicaﬁon

Selected Categories:

Identifier (CN): |
Display Mame: |
Description: |

Available Categories:

Default

System Resources
Category:

LEID 4

Trustees
Trustee rights:

Cancel

2 Fill in the fields as follows (*indicates a required field).

Field

Description

Identity Manager Project and
Provisioning Application *

Identifier (CN)*

Display Name*

Description

Category*

The name of the Designer project and the provisioning application
where you want to create the resources.

NOTE: These two fields display when you launch the wizard from
the File menu.

The unique identifier for the resource.

The text displayed as the Resource Name field in the User
Application. You can translate this text into any of the languages
supported by the User Application. For more information, see
Section 2.10, “Localizing Provisioning Objects,” on page 35

The text displayed as the Resource Description in the User
Application. You can translate this text into any of the languages
supported by the User Application. For more information, see
Section 2.10, “Localizing Provisioning Objects,” on page 35.

Allows you to categorize resources. Used for filtering resource lists
in the User Application. The category names are defined in the
directory abstraction layer Resource Category list.

402 User Application: Design Guide

Field Description

Trustee Rights Specifies the users, groups, or containers that can read, compare,

and browse the resources. (Read, compare, and browse are the
default privileges.)

3 Click Finish. Designer creates the resource locally and opens the Resource editor.

Use the General tab to modify the values you entered in the wizard, and to specify a Resource
Owner. For more information on the General properties, see Table 12-2 on page 407.

@ Designer

Flle Edit Project Live Resource Tools Window Help
o-B { (S @ B B B
5 Project | 5 Outine 5 = B || 5l *Test - Developer @ibj = =8
=@
b Resource
4 bi
w1 BE Categories Tdentifier (M b
(B Trustees Display Name: | 21 &
w8y Owners
. Description:
[Entitlemert eserpren: by =
i8] Request Form &
#- €% Approval Info =l
» Categories
» Trustees
~ Owners
Specify owners of resource:
+ &
Cuners
—— | General| Entitement | Request Form | Agproval
Elero.. (Bpai., | pro.. 2 $Dat.,] =
. 4 Project Checker | @ Error Log | 1 Templates - | Ex =¥ =8
B B
& workspace Log
=l el Test
=[] userapplication Jrvpe Fiter text
Message | Plug-in Date

e5M of 2540 [

Specifying Entitlements

Navigate to the Entitlement tab. The Entitlement page is in read-only mode. It shows entitlements
associated with a resource.

Configuring Resources 403

404

Designer - TestPlcassoJu

File Edit Navigate Search Project Live Resource Tools Run Window Help
riv @ 4 B Q-
= Project | 5T Outline 83 ¢ Provisioning %= Navigator
~ @ Group Memberships
< Group Memberships
b §=Categories
b (& Trustees
b (% Owners
~ = Entitlement
4 Name = Groups.GroupEntitiementLoopback.TestDrivers.novell
< Description = Groups.GroupEntitlementLoopback. TestDrivers.novell
4 Value = \METACARPALSTI

dmsample-mysql ps\Physician
b @Request Form

4 String Field Example : String

< Integer Field Example : Integer

% List Field Example : List

4 Static String Field Example : String

b €% Approval Info

= Properties 32 # Dataflow (B Policy Set =0

e

= B8 Group Memberships &3

hips.rsrc - Deslgner,

|8 D@\gner‘

b TestPicassoJuned - Developer =0

&~ | @~ EEhd

Entitlement
The IDM entitlement associated with the resource:

The data below is read-only. To configure the data, please use the User Application web client.

Entitlement Name: Groups.GroupEntitlementLoopback. TestDrivers.novell

Groups.GroupEntitlementLoopback. TestDrivers.novell
Entitlement Description:

Entitlement Value: \METACARPALSTREE\novelltidmsample-mysql\groups\Physician

General Entitlement Request Form Approval

83M of 274M]

Field

Description

Entitlement Name

The description of the entitlement if the entitlement has been imported

and is known to the Designer Identity Vault. Otherwise, it is simply the
entitlement DN.

Entitlement Description

Information about the entitlement description. It could also be the

entitlement DN.

Entitlement Value

The entitlement value can be static or dynamic.

+ Ifitis static, the value displayed is the one chosen by the resource
administrator when the resource was created.

+ |If it is dynamic, the Entitlement Value is set at the request time
under the specified Request Form field.

User Application: Design Guide

Specifying Request Form

Navigate to the Request Form tab. The Request Form page is in read-only mode. The information is
displayed in the Request Form fields when a Resource is requested.

Designer - TestPIcassoJunes) \ppC C 1 p.rsic - Designer

File Edit Navigate Search Project Live Resource Tools Run Window Help
ri- @ L e BB || e e @ i [l Designer]
= Project| 5= Outline 5 ¥ Provisioning| & Navigator = 0| @ Group Memberships | & TestPicassoJuned - Developer 2} Dynamic Group Membership £3 =0
= & Dynamic Group Membership Request Form
< Dynamic Group Membership The request form s used to gather data when a resource is requested.
b 8= Categories
b I Trustees The data below is readon\y. To com‘\gure the data, p\ease use the UserAppHcauon web client.
. jowners Form Fields: Field Propemes'
< |%]Entitlement %
< Name = Groups.GroupEntitlementLoopback . TestDrivers.novell 1D EntitlementParamkey
*0 plioy) = Sroup] : aptaccTestiien nouel - — Label: Membership In Group
4+ Value = %EntitlementParamKey% . e —
- @Request Form E!mdlng: dynamic
% Membership in Group : EntitlementRef Data Type: T
<4 String Field Example : String) —
b <» Approval Info Data Value:
List ID:
Entitiement DN: c¢n=Groups ,cn=GroupEntitlementLoopback cn=TestDrivers
Is Multi-Value: false
Is Hide: false
I Properties 22 $" Dalaflow | (2 Policy Set = U/ eaea [Eritanent] Recest Foitn | Approval
- amorzram @
Table 12-1 Form Field Properties
Field Description
ID The system-generated ID for the field.
Label The display label to be used on the field.
Binding + Static, if the value is assigned at design time.
+ Dynamic, if the value is assigned at request time.
Data Type Can be a String, Integer, Boolean, List, or EntitlementRef type.
Data Value The binding value can be static or dynamic.
+ |Ifitis static, it uses the value specified by the Resource Administrator.
* Ifitis dynamic, the value is specified at request time.
List ID If the Data Type is List, then a List ID is specified.
Entitlement DN If the Data Type is EntitlementRef, then an Entitlement DN is specified.
Is Multi-Value Boolean. True, if users can specify more than one value for this field, else
False.
Is Hide Boolean. True, if the value is hidden during the request time.
Specifying Approvals
1 Navigate to the Approvals tab.
Configuring Resources 405

406

@ Designer

Fle Edit Project Live Resource Tools Window Help

G-E@&
5 Project | 5 Outine 5
= @ bj
& bi

B Catenories
B Trustees
w8y Owners
-2 Entitlement
[Request Form
#- €% Approval Info

(G @ B B
= O |4 *Test -Developer | @ibj £

Approval
Define the approval workflow used to grant and revoke a resource request:

I~ Gllow role approval to overide resource approval

Grant “_Revoke

Seleck the bype of spproval required For assigning a grant resource:
® fomne (Standard ¢ Custom

General |Entitlement |Request Form | Approval

Elero.. (e, §pro.. | P pat., [T O

=l el Test
=[] userapplication

e5M of 2540 [

4 Project Checker | @ Error Log | 1 Templates

BB«
&7 |l workapacs Log

=]

Jtype Fiker text

Message | Plug-in

Date

2 Select Allow role approval to override resource approval when you want the requesting system (such

as role provisioning) to override approvals of the resource provisioning.

3 Click the Grant or Revoke tab, then select the type of grant or revoke for the resource.

¢ None: Select this option when no approval is required for a resource grant or revoke request.
Continue with Step 5.

¢ Standard: Select this option if the resource requires approval for a grant or revoke request,
and you want the approval to execute the standard provisioning request definition that

ships with the Roles Based Provisioning Module. Continue with Step 4.

¢ Custom: Select this option when you want to specify a custom provisioning request
definition for granting or revoking resources. You are prompted to select a provisioning
request definition from the dropdown list. The list is populated with approvals whose
Process Type is Resource. Continue with Step 5.

4 For Standard Approval types, fill in the fields as follows:

User Application: Design Guide

Field Description

Approval Type Serial: Select this option if you want the resource grant or revoke request to be
approved by the approvers listed in the Approvers list. The approvers are
processed sequentially in the order they appear in the list.

Quorum: Select this option if you want the resource grant or revoke request to
be approved in parallel and to be complete when the percentage of approvers
specified is reached. For example, if you wanted to require that 25 percent of
approvers in the list approve the condition, you would specify Quorum and
specify a number; the value is assumed to be a percentage.

Approvers An approver can be a user, group, or role. To add approvers:

1. Click +.

If you are connected to the Identity Vault, the Browse Identity Vault dialog
box automatically displays.

2. Navigate the Identity Vault to choose your approvers.

To locate roles, navigate to the User Application driver’s
AppConfig.RoleConfig.ResourceDefs container.

3. Select the approver, then click OK.

If Designer is not able to connect to the Identity Vault, you can add the approver
manually by clicking in the row and typing the approver’s distinguished name, for
example, admin.novell. Only deployed roles can be specified.

5 Save the Resource definition.

12.2.2 Resource Property Reference

Table 12-2 Resource Overview Properties

Property

Description

Identifier (CN)

Display Name

Description

Categories

Trustees

The unique identifier for the resource.

The text displayed as the Resource Name field in the User
Application. You can translate this text into any of the
languages supported by the User Application. For more
information, see Section 2.10, “Localizing Provisioning
Objects,” on page 35

The text displayed as the Resource Description in the User
Application. You can translate this text into any of the
languages supported by the User Application. For more
information, see Section 2.10, “Localizing Provisioning
Objects,” on page 35.

Allows you to categorize resources. Used for filtering
resource lists in the User Application. The category hames
are defined in the directory abstraction layer Resource
Category list.

Specifies the users, groups, or containers that can read,
compare, and browse the resources. (Read, compare, and
browse are the default privileges.)

Configuring Resources

Property Description

Owners A user who is designated as the owner of the resource
definition. The resource owner does not automatically have
the authorization to administer changes to a resource
definition.

12.3 Importing Resources Defined in CSV Files

The Resource Catalog provides a wizard for importing resources defined in a comma-separated
values (CSV) file. For example, if you define the set of resources you want to implement by using a
spreadsheet, you can export the definitions of those resources to a CSV file format, then use the
Import Resources wizard to add the resources to the Resource Catalog.

¢ Section 12.3.1, “Setting Up the File to Import,” on page 408

¢ Section 12.3.2, “Required CSV File Format,” on page 411

¢ Section 12.3.3, “Using the Wizard to Import Roles from a CSV File,” on page 412

¢ Section 12.3.4, “Error Handling,” on page 413

12.3.1 Setting Up the File to Import

When you create a file to use as input to the Import Resources Wizard, you must follow the column
layout defined in Table 12-3. In addition, you must also follow the CSV file format described in
Section 12.3.2, “Required CSV File Format,” on page 411.

Table 12-3 Import Record Format

Column . o
Number Field Name Description
1 id Required field. The resource’s identifier (CN). This name

must be unique . If the CSV file contains multiple rows with
the same ID, the wizard imports and creates a record for the
first one it encounters. It then writes any subsequent
records with the same ID to the error file.

For example:

"Doctozr"

408 User Application: Design Guide

Column

Number Field Name Description

2 localized display names Optional field. The translated string used to display the
resource name. Accepts zero or more values. The value
must be in this format:

"java-locale-code~string"

The ~ delimits the locale and its localized string. The |
symbol delimits each set of locale data.

For example:

"en~Doctor |it~Dottore | fr~Docteur"

If you do not want to localize display names, you can supply
a single string. The wizard uses this string as the value for
the default Designer locale upon import. If no value is
present when you attempt to deploy the associated
resource, Designer generates a validation error.

3 localized descriptions Optional field. The translated string used to display the
resource description. Accepts a list of zero or more values.
The value must be in this format:

"java-locale-code~string"

The ~ delimits the locale and its localized string. The |
symbol delimits each set of locale data.

For example:

"en~Doctor |it~Dottore|fr~Docteur"

If you do not want to localize descriptions, you can supply a
single string. The wizard uses this string as the value for the
default Designer locale upon import. If no value is present
when you attempt to deploy the associated resource,
Designer generates a validation error.

4 categories Required field. This value should map to a valid category
key based on the resource Category list defined in the
directory abstraction layer. Accepts a list of zero or more
values.

If you do not specify a value, the wizard inserts the resource
category key default.

If the value is invalid (it does not exist in the directory
abstraction layer), the wizard still includes it in the newly
created resource; however, Designer’s validation requires
that this be fixed before the resource can be deployed.

5 owners Optional field. Represents the distinguished name of the
owner of the resource. Accepts a list of zero or more values.

For example:

"admin.novell|ablake.users.medical-
idmsample.novell”

Configuring Resources 409

410

Column

Number Field Name

Description

6 trustees

7 Grant Approvers

8 Grant Approvers Workflow

9 Revoke Approvers

Optional field. Represents the distinguished name of the
trustees of the resource. Accepts a list of zero or more
values.

For example:

"admin.novell|ablake.users.medical-
idmsample.novell”

Optional field. Represents the distinguished name (DN) of
the approvers when the approval workflow value is
Standard. The order of the approvers in this field is
important if the quorum value is serial. Accepts zero or more
values.

For example:

"admin.novell |ablake.users.medical-
idmsample.novell”

If the approval workflow is not Standard and you specify a
list of approvers, the wizard writes the record to the error file
because approvers are not valid.

Optional field. Specifies the name of the provisioning
request common name and its quorum value. Valid values
include:

+ None: Provide the empty string " ".

¢ Standard: Supply key word Standard followed by the
quorum value. For example:

"Standard~50"

+ Custom: Enter the provisioning request definition CN.
For example:

"MyCustomPrdCN"

Specify Quorum values as follows:

+ Serial: Specify a quorum value of 0.

¢ Quorum percentage: Specify a value between 1-100.

Optional field. Represents the distinguished name (DN) of
the approvers when the approval workflow value is
Standard. The order of the approvers in this field is
important if the quorum value is serial. Accepts zero or more
values.

For example:

"admin.novell |ablake.users.medical-
idmsample.novell”

If the approval workflow is not Standard and you specify a
list of approvers, the wizard writes the record to the error file
because approvers are not valid.

User Application: Design Guide

12.3.2

Column
Number

Field Name Description

10

11

Revoke Approvers Workflow Optional field. Specifies the name of the provisioning
request common name and its quorum value. Valid values
include:

+ None: Provide the empty string " "

¢ Standard: Supply the keyword Standard followed by
the quorum value. For example:

"Standard~50"

¢ Custom: Enter the provisioning request definition CN.

For example:

"MyCustomPrdCN"
Specify Quorum values as follows:
+ Serial: Specify a quorum value of 0.

+ Quorum percentage: Specify a value between 1-100.

Role Approval overrides Boolean field for Role Approval to override Resource
Resource Approval Approval. It takes True or False.

General Field Formatting Rules

¢ Multi-value properties: Use the | symbol as the delimiter between values.

+ DN properties: Specify in dot notation. Designer validates these properties on deploy to ensure
that the values correspond to existing Identity Vault objects.

¢ Character set encoding must be UTF-8.

Required CSV File Format

When you create your spreadsheet to use as input to the Import Resources Wizard, keep in mind that
the wizard expects a specific format. It expects a twelve-column document with the columns defined
in the order described in Table 12-3. The wizard also expects the input file to follow the CSV format

rules defined in RFC4180. This format is briefly summarized below:

¢ Each Resource record is on a separate line.

¢ Each field in a Resource record is separated by a comma and is quoted.
¢ Each line is delimited by a line break (CRLF).

¢ The first line of the file can be a header line, but this is optional. The wizard allows you to
identify whether the file contains a header line.

¢ If your file contains a header line, then it must contain the Resource record’s field names. The
header line field count must correspond to the field count of each line in the file.

¢ Quotes on numbers are not required.

¢ A resource record example:

Configuring Resources

411

Doctor, en~Doctor, en~Doctor | it~Dottore | fr~Docteur, ,admin.novell | ablake.users.me
dical-idmsample.novell,admin.novell |ablake.users.medical-
idmsample.novell,admin.novell | ablake.users.medical-

idmsample.novell, Standard~50,admin.novell |ablake.users.medical-
idmsample.novell, MyCustomPrdCN, true

¢ Quotes and nested quotes: You can use single quotes within a text field (such as Display name).
Use double quotes to enclose a column.

"on

NOTE: For optional fields, the line must include an empty string " " as a placeholder.

12.3.3 Using the Wizard to Import Roles from a CSV File

412

1 Open the Provisioning view of the Designer project where you want to import the roles.
Select the Resources node, right-click then select Import from CSV.

Designer launches the wizard.

@® Import Resources

Import Resources

Specify the location of the CSY file.

Resource CSY File | | [E-rn:uwse...]

[ignare header row

@ Cancel

2 Fill in the fields as follows:

Field Name Description

Role CSV File Specify the name and location of the CSV file you want to
import.

Ignore header row If the file you specify contains a header row, select Ignore

header row in CSV file.

3 Click Finish.

User Application: Design Guide

12.3.4

The wizard reads the CSV file and adds all the resources that meet the criteria for import. If the
wizard encounters an error (see Error Handling for a list of possible errors), the wizard writes the
role record to an error file.The wizard creates the error file in the same location as the Role CSV file to
import, and it names the file the same name as the Resource CSV file with the _errors appended to
the name.

Only the errors identified in Error Handling are severe enough to prevent the wizard from creating
the resource. If the wizard encounters other types of errors, it adds the resource, but you must make
corrections before the resource can be deployed. For example, if the category specified in the role is
not yet added to the directory abstraction layer role category list, the resource can be added, but
Designer displays the resource with an informational message.

Resource that are created with errors like this cannot be deployed until the errors are corrected. The
Project Checker notifies you of the errors if you attempt to deploy the resource or if you validate the
resource objects.

Error Handling

Table 12-4 describes the cases where a resource cannot be imported. When the wizard encounters
these errors, it generates an error file and writes the complete resource record to the file. It maintains
the resource original column order except that it inserts a new column as the first column in the
record. This column includes the error code. You can modify the associated resource to fix the error
directly within the error file, delete the error code column, then specify this error file as input to the
wizard.

Table 12-4 CSV Import Wizard Error Codes

Error Code Description
RESOURCE_ID_NOT_UNIQUE A resource with the specified ID already exists.
INVALID_ID_NAME The resource ID contains invalid characters. To fix this problem, edit

the name to follow the rules for valid characters: alphabetic characters,
digits, underscores, and spaces.

INVALID_RESOURCE_CN The role ID contains invalid characters.

Configuring Resources 413

414 User Application: Design Guide

Al

ECMAScript Core Reference

This section provides details on using the ECMA Expression Builder.

¢ Section A.1, “ECMAScript Operators,” on page 415

¢ Section A.2, “Functions/Methods,” on page 418
¢ Section A.3, “DOM Methods,” on page 418
¢ Section A.4, “ECMAScript Core,” on page 443

ECMAScript Operators

The following tables provide descriptions of the operators supported by the ECMA Expression

Builder.

¢ Table A-1, “Math,” on page 415

Table A-2, “Assignment,” on page 415
Table A-3, “Other,” on page 416

Table A-4, “Relational,” on page 417
Table A-5, “Logical,” on page 417
Table A-6, “String,” on page 417

*

*

*

*

*

Table A-1 Math

Operator Description

+ Add Returns the sum of two numerical values (either literals or
variables).

- Subtract Subtracts one humber from another.

* Multiply Returns the product of two numerical values (either literals or
variables).

/ Divide Divides one number by another.

Table A-2 Assignment

Operator

Description

= Assignment

Assigns the value of the right operand to the left operand.

ECMAScript Core Reference

415

Operator

Description

+= Add to this

-= Subtract from this

*= Multiply to this

/= Divide this to

%= Modulus

&= Apply bitwise AND to this

|= Apply bitwise OR to this

<<= Apply bitwise left shift to this

>>= Apply bitwise signed right shift to
this

>>>= Apply bitwise unsigned right shift
to this

Adds the left and right operands and assigns the result to the
left operand. For example, a += b is the sameasa=a +b.

Subtracts the right operand from the left operand and assigns
the result to the left operand. For example, a -= b is the same as
a=a-bh.

Multiplies the two operands and assigns the result to the left
operand. For example, a *= b is the sameasa=a*h.

Divides the left operand by the right operand and assigns the
result to the left operand. For example, a /= b is the same as a =
alb.

Divides the left operand by the right operand and assigns the
remainder to the left operand. For example, a %= b is the same
asa=a%hb.

Performs bitwise AND on operands and assigns the result to the
left operand. For example, a &= b isthe sameasa=a &b.

Performs bhitwise OR on operands and assigns the result to the
left operand. For example, a |= b isthe same asa=a|b.

Performs bitwise left shift on operands and assigns the result to
the left operand. For example, a <<= b is the same as a = a <<
b.

Performs bitwise right shift on operands and assigns the result
to the left operand. For example, a >>=b is the same asa=a
>> b.

Performs bitwise unsigned right shift on operands and assigns
the result to the left operand. For example, a >>>= b is the same
asa=a>>>h.

Table A-3 Other

Operator

Description

% Modulus

++ Autoincrement

-- Autodecrement

~ Bitwise NOT

& Bitwise AND

| Bitwise OR

A Bitwise XOR

Divides the left operand by the right operand and returns the
integer remainder.

Increments the operand by one (can be used before or after the
operand).

Decrements the operand by one (can be used before or after
the operand).

Inverts the bits of its operand.

Returns a 1 in each bit position for which the corresponding bits
of both operands are ones.

Returns a 1 in each bit position for which the corresponding bits
of either or both operands are ones.

Returns a 1 in each bit position for which the corresponding bits
of either but not both operands are ones.

User Application: Design Guide

Operator

Description

<< Bitwise left shift

>> Signed bitwise right shift

>>> Unsigned bitwise right shift

Shifts the digits of the binary representation of the first operand
to the left by the number of places specified by the second
operand. The spaces created to the right are filled in by zeros,
and any digits shifted to the left are discarded.

Shifts the digits of the binary representation of the first operand
to the right by the number of places specified by the second
operand, discarding any digits shifted to the right. The copies of
the leftmost bit are added on from the left, preserving the sign of
the number.

Shifts the binary representation of the first operand to the right
by the number of places specified by the second operand. Bits
shifted to the right are discarded and zeroes are added to the
left.

Table A-4 Relational

Operator Description

== Equal Assigns the value of the right operand to the left operand.

I= Not Equal Returns a Boolean True if the operands are not equal.

< Less than Returns True if the left operand is less than the right operand.

> Greater than

<= Less than or equal

>= Greater than or equal

Returns True if the left operand is greater than the right
operand.

Returns True if the left operand is less than or equal to the right
operand.

Returns True if the left operand is greater than or equal to the
right operand.

Table A-5 Logical

Operator Description

&& AND Returns a Boolean true if both operands are true; otherwise,
returns False.

[| OR Returns True if either operand is true. Returns false when both
operands are False.

INOT Returns False if its single operand can be converted to true (or

if it is a non-Boolean value). Returns True if its operand can be
converted to False.

Table A-6 String

Operator

Description

+ Concatenate

Concatenates two string operands, returning a string that is the
union of the two operand strings.

ECMAScript Core Reference 417

A.2 Functions/Methods

For a description of the functions and methods available in the ECMA Expression Builder, see
Section 9.3, “User Application APL"” on page 325.

A.3 DOM Methods

This section lists all DOM-related methods and properties supported by the ECMA Expression
Builder, including not only DOM-1 and DOM-2 extensions (defined by the relevant W3C standards),
but also Designer’s own ECMAScript extensions. Extension methods are specifically noted as such in
the text. DOM methods are displayed in the ECMA Expression Builder when you are working with
expressions in the Integration activity.

This section includes the following topics:

¢ Section A.3.1, “Node,” on page 418

¢ Section A.3.2, “Document,” on page 423

¢ Section A.3.3, “Element,” on page 428

¢ Section A.3.4, “Attribute,” on page 434

¢ Section A.3.5, “CharacterData,” on page 435

¢ Section A.3.6, “NodeList,” on page 436

¢ Section A.3.7, “NamedNodeMap,” on page 438
¢ Section A.3.8, “Text,” on page 440

¢ Section A.3.9, “DocumentType,” on page 440

¢ Section A.3.10, “DOMImplementation,” on page 441
¢ Section A.3.11, “Notation,” on page 442

¢ Section A.3.12, “Entity,” on page 443

¢ Section A.3.13, “Processinglnstruction,” on page 443

A.3.1 Node

418

Lets you work with nodes. This section includes the following topics:

¢ “attributes” on page 419

¢ “childNodes” on page 419

¢ “firstChild” on page 419

¢ “lastChild” on page 419

¢ “nextSibling” on page 419

¢ “nodeName” on page 419

¢ “nodeType” on page 420

¢ “nodeValue” on page 420

¢ “ownerDocument” on page 420

¢ “parentNode” on page 420

User Application: Design Guide

¢ “previousSibling” on page 420

¢ “XML” on page 420

¢ “appendChild(newChild)” on page 420

¢ “cloneNode(deep)” on page 420

¢ “createXPath(XPathType asPattern)” on page 421
¢ “hasChildNodes()” on page 421

+ “insertBefore(newChild, refChild)” on page 421
¢ “removeChild(oldChild)” on page 421

¢ “replaceChild(newChild, oldChild)” on page 421
¢ “getXML()” on page 421

¢ “ownerDocument” on page 421

¢ “namespaceURI” on page 422

+ “prefix” on page 422

¢ “localName” on page 422

¢ “normalize()” on page 422

¢ “hasAttributes()” on page 422

¢ “isSupported(feature, version)” on page 422

attributes

W3C DOM Level 1 Node property. This property returns a NamedNodeMap object of the attributes
for the Node.

childNodes

W3C DOM Level 1 Node property. This property returns a NodeList object consisting of the
immediate children of the Node.

firstChild

W3C DOM Level 1 Node property. This property returns the first child node of a Node object.

lastChild

W3C DOM Level 1 Node property. This property returns the last child node of a Node object.

nextSibling

W3C DOM Level 1 Node property. This property returns the next sibling node for a Node object.

nodeName

W3C DOM Level 1 Node property. This property returns the node name as a String object.

ECMAScript Core Reference 419

420

nodeType

W3C DOM Level 1 Node property. This property returns the node type as a short in with one of the
following values:

1 = Element

2 = Attribute

3 =Text

4 = CDATASection

5 = EntityReference

6 = Entity

7 = ProcessinglInstruction
8 = Comment

9 = Document

10 = DocumentType

11 = DocumentFragment
12 = Notation

nodeValue

W3C DOM Level 1 Node property. This property returns the node text data as a String.

ownerDocument

W3C DOM Level 1 Node property. This property returns a Document object.

parentNode

W3C DOM Level 1 Node property. This property returns the parent node object for a Node object.

previousSibling

W3C DOM Level 1 Node property. This property returns the previous sibling node for a Node object.

XML

Designer extension property. This property returns a string representing the DOM. Useful in Log
actions for debugging components (for example, Input.XML).

appendChild(newChild)

Node appendChild (newChild)

W3C DOM Level 1 Node method. Appends a node as the last child for a Node. The newChild
parameter is of type Node.

cloneNode(deep)

Node cloneNode (deep)

User Application: Design Guide

W3C DOM Level 1 Node method. Creates an unattached Node object. The deep parameter is of type
Boolean.

createXPath(XPathType asPattern)

Object createXPath (XPathType asPattern)

ECMAScript extension method. Creates the XPath pattern. The XPath Type asPattern parameter
supports only abbreviated XPath notation and explicit ordinals. XPath functions are not supported.

hasChildNodes()

boolean hasChildNodes ()
W3C DOM Level 1 Node method. Returns a Boolean indicating whether the node has children.

insertBefore(newChild, refChild)

Node insertBefore (newChild, refChild)

W3C DOM Level 1 Node method. Inserts a node object into the parent node before the refChild node.
The newChild parameter is of type Node. The refChild parameter is of type Node.

removeChild(oldChild)

Node removeChild (oldChild)

W3C DOM Level 1 Node method. Removes a node from a parent and returns an unattached node.
The oldChild parameter is of type Node.

replaceChild(newChild, oldChild)

Node replaceChild(newChild, oldChild)

W3C DOM Level 1 Node method. Replaces one node with another node. The newChild parameter is
of type Node. The oldChild parameter is of type Node.

getXML()

String getXML ()

ECMAScript extension method. This property returns a string representing the DOM. Useful in Log
actions for debugging components. Example:

Input.XPath ("root/child") .getXML ()

ownerDocument

W3C DOM Level 2 modified Node property. Returns the Document object associated with this node.
This is also the Document object used to create new nodes. Example:

someNodeObject .ownerDocument

ECMAScript Core Reference 421

namespaceURI

W3C DOM Level 2 Node property. Returns the namespace URI of this node, or null if the namespace
URI is not specified. Example:

someNodeObject .namespaceURI

prefix

W3C DOM Level 2 Node property. Returns the namespace prefix of this node, or null if the
namespace prefix is not specified. Example:

someNodeObject .prefix

localName

W3C DOM Level 2 Node property. Returns the local part of the qualified name of this node. Example:

someNodeObject .localName

normalize()

void normalize ()

W3C DOM Level 2 modified Node method. Puts all Text nodes in the full depth of the subtree
underneath this Node, including attribute nodes, into a “normal” form in which only structure
separates Text nodes, (for example, elements, comments, processing instructions, CDATA sections,
and entity references). In other words, there are neither adjacent Text nodes nor empty Text nodes.

hasAttributes()

boolean hasAttributes()

W3C DOM Level 2 Node method. Returns True if the node has any attributes; otherwise, returns
False. Example:

Temp.XPath ("A/B/C") .item(0) .hasAttributes ()

iIsSupported(feature, version)

boolean isSupported(feature, version)

W3C DOM Level 2 Node method. Returns True if the specified feature is supported on this node;
otherwise, returns False.

422 User Application: Design Guide

Table A-7 Parameters of the IsSupported Method

Parameter Features

feature Core
XML
HTML
Views
Stylesheets
CSss
CSS2
Events
UlEvents
MouseEvents
MutationEvents
HTMLEvents
Range
Transversal

version Specifies the version number of the feature to test. In Level 2, version 1, this is
the string “2.0". If the version is not specified, supporting any version of the
feature causes the method to return True.

Example:

aNodeObject.isSupported ("Core","2.0")

A.3.2 Document

Lets you work with documents. This section includes the following topics:

¢ “doctype” on page 424

¢ “documentElement” on page 424

¢ “implementation” on page 424

+ “text” on page 424

¢ “createAttribute(name)” on page 424

+ “createCDATASection(data)” on page 424

¢ “createComment(data)” on page 424

¢ “createDocumentFragment()” on page 425

¢ “createElement(tagName)” on page 425

¢ “createEntityReference(name)” on page 425

¢ “createProcessingInstruction(target,data)” on page 425
¢ “createTextNode(data)” on page 425

¢ “getElementsByTagName(tagName)” on page 425

¢ “reset()” on page 425

+ “setDTD(Node RootElementName, Object PublicName, Object URL)” on page 425
+ “setValue(Object aValue)” on page 426

¢ “toString()” on page 426

ECMAScript Core Reference 423

424

¢ “XPath(String asPattern)” on page 426

¢ “importNode(sourceNode, deep)” on page 426

¢ “createElementNS(namespaceURI, qualifiedName)” on page 426

¢ “createAttributeNS(namespaceURI, qualifiedName)” on page 427

+ “getElementsByTagNameNS(namespaceURI, localName)” on page 427
+ “getElementByld(elementld)” on page 428

+ “setSkipNameSpaces(abFlag)” on page 428

+ “setEncoding(encoding)” on page 428

doctype

W3C DOM Level 1 Document property. This property returns a DocumentType object reflecting the
DTD for the document. A Document also has all the properties and methods of Node.

documentElement

W3C DOM Level 1 Document property. This property returns an Element object (the root element). A
Document also has all the properties and methods of Node.

implementation

W3C DOM Level 1 Document property. This property returns a DOMImplementation object. A
Document also has all the properties and methods of Node.

text

Designer extension property. This property returns a concatenated string of all the text nodes
(content) under it.

createAttribute(name)

Attr createAttribute (name)

W3C DOM Level 1 Document method. Returns an unattached Attr object. The name parameter is of
type String. A Document also has all the properties and methods of Node.

createCDATASection(data)

CDATASection createCDATASection (data)

W3C DOM Level 1 Document method. Returns an unattached CDATASection object. The data
parameter is of type String. A Document also has all the properties and methods of Node.

createComment(data)

Comment createComment (data)

W3C DOM Level 1 Document method. Returns an unattached Comment object. The data parameter
is of type String. A Document also has all the properties and methods of Node.

User Application: Design Guide

createDocumentFragment()

DocumentFragment createDocumentFragment ()

W3C DOM Level 1 Document method. Returns an unattached DocumentFragment. A Document also
has all the properties and methods of Node.

createElement(tagName)

Element createElement (tagName)

W3C DOM Level 1 Document method. Creates an unattached Element. The tagName parameter is of
type String. A Document also has all the properties and methods of Node.

createEntityReference(name)

EntityReference createEntityReference (name)

W3C DOM Level 1 Document method. Creates an unattached EntityReference. The name parameter
is of type String. A Document also has all the properties and methods of Node.

createProcessinglinstruction(target,data)

ProcessingInstruction createProcessingInstruction (target,data)

W3C DOM Level 1 Document method. Returns an unattached ProcessingInstruction object. The
target and data parameters are of type String. A Document also has all the properties and methods of
Node.

createTextNode(data)

Text createTextNode (data)

W3C DOM Level 1 Document method. Creates an unattached Text object. The data parameter is of
type String. A Document also has all the properties and methods of Node.

getElementsByTagName(tagName)

NodeList getElementsByTagName (tagName)

W3C DOM Level 1 Document method. Returns a NodeList object consisting of the tagname element
nodes. The tagName parameter is of type String. A Document also has all the properties and methods
of Node.

reset()

void reset ()

W3C DOM Level 1 Document method. Clears the document.

setDTD(Node RootElementName, Object PublicName, Object URL)

setDTD (Node RootElementName, Object PublicName, Object URL)

ECMAScript extension method. Sets the DTD file for the document.

ECMAScript Core Reference 425

426

setValue(Object aValue)

setValue (Object aValue)

ECMAScript extension method. Sets the Value of a document from the passed objects. If the passed
object is another document, then it copies child nodes (elements and attributes). If the passed object is
text, the text is parsed to create a DOM.

toString()

String toString()

ECMAScript extension method. Converts a DOM document to an XML formatted string.
Example:

Input.XPath("root/child") .item(0) .toString()

XPath(String asPattern)

NodeList XPath(XPathType asPattern)

ECMAScript extension method. XPathTypes can be of type NodeList, String, Number, or Boolean.
Usually used to return a Nodelist matching the XPath pattern. Use brackets to select a particular node
from the list. For example, Input.XPath ("INVOICE/LINEITEM[1]") or Input.XPath ("INVOICE/
LINEITEM[last ()]"). Use the @ symbol to select a node by attribute. For example,

Input.XPath ("INVOICE/LINEITEM [emyattr] ") To select by attribute value:

Input.XPath ("INVOICE/LINEITEM [@myattr="abc']").

importNode(sourceNode, deep)

Node importNode (sourceNode, deep)

W3C DOM Level 2 Document method. Imports a node from a document to the current document.
Creates a new copy of the sourceNode. The sourceNode is not altered. A Document also has all the
properties and methods of Node.

Table A-8 Parameters for the ImportNode Method

Parameter Description
sourceNode The node to import.
deep A Boolean. If True, recursively import the subtree under the specified node. If False,

import only the node itself.

Example:

Temp . importNode (Input.XPath ("A/B[2]"), false)

createElementNS(namespaceURI, qualifiedName)

Element createElementNS (namespaceURI, qualifiedName)

W3C DOM Level 2 Document method. Creates an Element of the given qualifiedName and
namespaceURI. A Document also has all the properties and methods of Node.

User Application: Design Guide

Table A-9 Parameters for the createElementNS Method

Parameter Description
namespaceURI A string representing the namespace URI that you want to create for the element.
qualifiedName A string representing the name to create for the element. qualifiedName =

namespaceprefix + : + localName

Example:

Temp.createElementNS ("someURI", "nsprefix:PRICE")

createAttributeNS(namespaceURI, qualifiedName)

Attr createAttributeNS (namespaceURI, qualifiedName)

W3C DOM Level 2 Document method. Creates an Attribute of the given qualifiedName and
namespaceURI. A Document also has all the properties and methods of Node.

Table A-10 Parameters for the createAttributeNS Method

Parameter Description
namespaceURI A string representing the namespace URI that you want to create for the attribute.
qualifiedName A string representing the name to create for the attribute. qualifiedName =

namespaceprefix + : + localName

Example:

Temp.createAttributeNS ("someURI", "nsprefix:PRICE")

getElementsByTagNameNS(namespaceURI, localName)

NodeList getElementsByTagNameNS (namespaceURI, localName)

W3C DOM Level 2 Document method. Returns a NodeList of all the Elements with a given
localName and namespace URI, in the order in which they are encountered in a preorder traversal of
the Document tree. A Document also has all the properties and methods of Node.

Table A-11 Parameters for the getElementsByTagnameNS Method

Parameter Description

namespaceURI A string of the elements on which to match. The special value “*” matches all
namespaces.

qualifiedName A string of the elements on which to match. The special value “*” matches all local
names.

Example:

Temp.getElementsByTagNameNS ("someURI", "someName")

ECMAScript Core Reference 427

getElementByld(elementid)

Element getElementById(elementId)

W3C DOM Level 2 Document method. Returns the Element for which the ID is given by elementId.
If no such element exists, returns null. Behavior is not defined if more than one element has this ID. A
Document also has all the properties and methods of Node.

Example;

Temp.getElementById ("someId")

setSkipNameSpaces(abFlag)

void setSkipNameSpaces (boolean flag)

Can be used to turn off usage of namespaces and match nodes without any prefixes, behaving like a
wildcard match.

setEncoding(encoding)

void setEncoding(String encoding)

Sets the character set encoding for the document.

A.3.3 Element

Lets you work with elements. This section includes the following topics:

¢ “tagName” on page 429

¢ “text” on page 429

¢ “booleanValue()” on page 429

¢ “countOfElement(String propertyName)” on page 429
¢ “doubleValue()” on page 429

* “exists(String propertyName)” on page 429

+ “getAttribute(name)” on page 429

¢ “getAttributeNode(name)” on page 430

+ “getElementsByTagName(name)” on page 430
+ “getIndex()” on page 430

¢ “getParent()” on page 430

¢ “normalize()” on page 430

¢ “removeAttribute(name)” on page 430

¢ “removeAttributeNode(oldAttr)” on page 430
+ “setAttribute(name,value)” on page 430

+ “setAttributeNode(newAttr)” on page 431

¢ “setIndex(int ailndex)” on page 431

¢ “setText(String asText)” on page 431

+ “setValue(Object aValue)” on page 431

¢ “toNumber()” on page 431

428 User Application: Design Guide

¢ “toString()” on page 431

¢ “XPath(XPathType asPattern)” on page 431

¢ “getAttributeNS(namespaceURI, localName)” on page 431

+ “setAttributeNS(namespaceURI, qualifiedName, value)” on page 432
¢ “removeAttributeNS(namespaceURI, localName)” on page 432

+ “getAttributeNodeNS(namespaceURI, localName)” on page 433

+ “setAttributeNodeNS(newAttr)” on page 433

+ “getElementsByTagNameNS(namespaceURI, localName)” on page 433
¢ “hasAttribute(name)” on page 434

¢ “hasAttributeNS(namespaceURI, localName)” on page 434

tagName

W3C DOM Level 1 Element property. This property returns a String object containing the element
name. An Element also has all the properties and methods of Node.

text

Designer extension property. This property returns the concatenated text of all the text nodes under
it.

booleanValue()

boolean booleanValue ()

ECMAScript extension method. Returns the Boolean value (True or False) of this object, if possible.

countOfElement(String propertyName)

Number countOfElement (String propertyName)

ECMAScript extension method. Returns a count of the named child.

doubleValue()

double doubleValue ()

ECMAScript extension method. Returns a double value for this object if possible.

exists(String propertyName)

Boolean exists (String propertyName)

ECMAScript extension method. Checks for the existence of the named child.

getAttribute(name)

String getAttribute (name)

W3C DOM Level 1 Element method. Returns a String consisting of the attribute value. The name
parameter is of type String. An Element also has all the properties and methods of Node.

ECMAScript Core Reference 429

430

getAttributeNode(name)

Attr getAttributeNode (name)

W3C DOM Level 1 Element method. Returns an Attr. The name parameter is of type String. An
Element also has all the properties and methods of Node.

getElementsByTagName(name)

NodeList getElementsByTagName (name)

W3C DOM Level 1 Element method. Returns a NodeList of all elements with a specified name. The
name parameter is of type String. An Element also has all the properties and methods of Node.

getindex()

int getIndex()

ECMAScript extension method. Returns the current index.

getParent()

Node getParent ()

ECMAScript extension method. Returns the parent element.

normalize()

void normalize ()

W3C DOM Level 1 Element method. Returns a void. An Element also has all the properties and
methods of Node.

removeAttribute(name)

void removeAttribute (name)

W3C DOM Level 1 Element method. Removes an attribute from an element. The name parameter is of
type String. An Element also has all the properties and methods of Node.

removeAttributeNode(oldAttr)

Attr removeAttributeNode (oldAttr)

W3C DOM Level 1 Element method. Removes an attribute from an element and returns an
unattached Attr. The oldAttr parameter is of type Attr. An Element also has all the properties and
methods of Node.

setAttribute(name,value)

void setAttribute (name, value)

W3C DOM Level 1 Element method. Sets the value of an attribute node for an element. The name
parameter is of type String. The value parameter is of type String. An Element also has all the
properties and methods of Node.

User Application: Design Guide

setAttributeNode(newAttr)

Attr setAttributeNode (newAttr)

W3C DOM Level 1 Element method. Attaches an attribute node to an element. The newAttr
parameter is of type Attr. An Element also has all the properties and methods of Node.

setindex(int ailndex)

setIndex (int ailndex)

ECMAScript extension method. Sets the iterator index value for this element.

setText(String asText)

setText (String asText)

ECMAScript extension method. Sets the text node associated with this element.

setValue(Object aValue)

setValue (Object aValue)

ECMAScript extension method. Sets the value of an element from the passed object. If the passed
object is another element, then it also copies child nodes (elements and attributes).

toNumber()

Number toNumber ()

ECMAScript extension method. Gets the text node and converts it to a number.

toString()

String toString()

ECMAScript extension method. Gets the text node associated with this element.

XPath(XPathType asPattern)

NodeList XPath(XPathType asPattern)

ECMAScript extension method. The XPathType parameter can be of type NodeList, String, Number,
or Boolean. Usually used to return a Nodelist matching the XPath pattern. Use brackets to select a
particular node from the list. For example, Input .XPath ("INVOICE/LINEITEM[1] ") or
Input.XPath ("INVOICE/LINEITEM[last ()] "). Use the @ symbol to select a node by attribute. For
example, Input.XPath ("INVOICE/LINEITEM [@myattr]"). To select by attribute value:
Input.XPath ("INVOICE/LINEITEM [@myattr="abc']").

getAttributeNS(namespaceURI, localName)

string getAttributeNS (namespaceURI, localName)

W3C DOM Level 2 Element method. Returns the Attr value as a string. An Element also has all the
properties and methods of Node.

ECMAScript Core Reference 431

432

Table A-12 Parameters for the getAttributeNS Method

Parameter Description

namespaceURI Specifies a string representing the namespace URI of the target Attr.
localName Specifies a string of the localName of the target Attr.

Example:

Temp.XPath ("A/B[0]") .getAttributeNS ("someURI", "someAttr")

setAttributeNS(namespaceURI, qualifiedName, value)

void setAttributeNS (namespaceURI, qualifiedName, value)

W3C DOM Level 2 Element method. Adds a new attribute. If an attribute with the same
namespaceURI and localName is already present in the element, its prefix is changed to be the prefix
part of the qualifiedName parameter, and its value is changed to be the value parameter. An Element
also has all the properties and methods of Node.

Table A-13 Parameters for the setAttributeNS Method

Parameter Description
namespaceURI The namespace URI of the attribute to create or alter.
qualifiedName Specifies the qualified name of the attribute to create or alter.

TIP: qualifiedName = namespaceprefix + : + localName

value Specifies the value to set in string form.
Example:
Temp.XPath ("A/B[0]") .setAttributeNS ("someURI", "someAttrName", "someAttrvalue")

removeAttributeNS(namespaceURI, localName)

void removeAttributeNS (namespaceURI, localName)

W3C DOM Level 2 Element method. Removes an attribute by local name and namespace URI. If the
removed attribute has a default value, it is immediately replaced. The replacing attribute has the
same namespace URI and local name, as well as the original prefix. An Element also has all the
properties and methods of Node.

Table A-14 Parameters for the removeAttributeNS Method

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute to remove.
localName Specifies the name of the attribute to remove.
Example:

Temp.XPath ("A/B[0]") .removeAttributeNS ("someURI", "someAttrName")

User Application: Design Guide

getAttributeNodeNS(namespaceURI, localName)

Attr getAttributeNodeNS (namespaceURI, localName)

W3C DOM Level 2 Element method. Retrieves an attribute node by local name and namespace URIL
An Element also has all the properties and methods of Node.

Table A-15 Parameters for the getAttributeNodeNS Method

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute to retrieve.
localName Specifies the name of the attribute to retrieve.
Example:

Temp.XPath ("A/B[0]") .getAttributeNodeNS ("someURI", "someAttr"

setAttributeNodeNS(newAttr)

Attr setAttributeNodeNS (newAttr)

W3C DOM Level 2 Element method. Adds a new attribute. If an attribute with the same local name
and namespace URI is already present in the element, it is replaced by the new attribute. If the
newAttr attribute replaces an existing attribute with the same local name and namespace URI, the
replaced Attr node is returned, otherwise null is returned. The newAttr parameter is a new attribute
object. An Element also has all the properties and methods of Node.

Example:

Temp.XPath ("A/B[0]") .setAttributeNodeNS (newAttr)

getElementsByTagNameNS(namespaceURI, localName)

NodeList getElementsByTagNameNS (namespaceURI, localName)

W3C DOM Level 2 Element method. Returns a NodeList of all the descendant Elements with a given
local name and namespace URI in the order in which they are encountered in a preorder traversal of
this Element tree. An Element also has all the properties and methods of Node.

Table A-16 Parameters for the getElementsByTagNameNS Method

Parameter Description

namespaceURI Specifies the namespaceURI of the elements on which to match. The
special value “*” matches all namespaces.

localName Specifies the localName of the elements on which to match. The special
value “*” matches all local names.

Example:

Temp.XPath ("A/B[0] ") .getElementsByTagNameNS ("someURI", "someName")

ECMAScript Core Reference 433

A.3.4

hasAttribute(name)

boolean hasAttribute ()

W3C DOM Level 2 Element method. Returns True when an attribute with a given name is specified
for this element or has a default value. Otherwise, returns False. The parameter name is a string that
specifies the attribute name for which to look. An Element also has all the properties and methods of
Node.

Example:

Temp.XPath ("A/B[0]") .hasAttribute ("someName")

hasAttributeNS(namespaceURI, localName)

boolean hasAttributeNS (namespaceURI, localName)

W3C DOM Level 2 Element method. Returns True when an attribute with a given local name and
namespace URI is specified on this element or has a default value. Otherwise, returns False. An
Element also has all the properties and methods of Node.

Table A-17 Parameters for the hasAttributeNS Method

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute for which to look.
localName Specifies the localName of the attribute for which to look.
Example:

Temp.XPath ("A/B[0]") .hasAttributeNS ("someURI", "someName")

Attribute

Lets you work with attributes. This section includes the following topics:

¢ “name” on page 434

+ “specified” on page 435

* “text” on page 435

¢ “value” on page 435

+ “setValue(Object aValue)” on page 435
¢ “toString()” on page 435

¢ “ownerElement” on page 435

name

W3C DOM Level 1 attribute property. This property returns a String object indicating the tag name of
the attribute. An attribute also has all the properties and methods of Node.

434 User Application: Design Guide

A.3.5

specified

W3C DOM Level 1 Attr property. This property returns a Boolean. An attribute also has all the
properties and methods of Node.

text

Designer extension property. This property returns the text value of the attribute.

value

W3C DOM Level 1 Attr property. This property returns a String object representing the text value of
the attribute. An attribute also has all the properties and methods of Node.

setValue(Object aValue)

setValue (Object aValue)

Designer extension method. Sets the value of an attribute from the passed object.

toString()

String toString()

ECMAScript extension method. Gets the text node associated with the attribute.

ownerElement

W3C DOM Level 2 Attr property. Returns the Element node to which this attribute is attached.
Returns null if this attribute is not in use. An Attr also has all the properties and methods of Node.

Example:

attributeObject.ownerElement

CharacterData

Lets you work with character data. This section includes the following topics:

¢ “data” on page 435

¢ “length” on page 436

¢ “appendData(arg)” on page 436

¢ “insertData(offset, arg)” on page 436

¢ “deleteData(offset, count)” on page 436

¢ “replaceData(offset, count, arg)” on page 436

¢ “substringData(offset, count)” on page 436

data

W3C DOM Level 1 CharacterData property. This property is of type String and represents the
contents of the CharacterData object. CharacterData also has all the properties and methods of Node.

ECMAScript Core Reference 435

A.3.6

length

W3C DOM Level 1 CharacterData property. This property represents the length of the CharacterData
object. CharacterData also has all the properties and methods of Node.

appendData(arg)

void appendData (arg)

W3C DOM Level 1 CharacterData method. Appends text to the CharacterData object. The arg
parameter is of type String. CharacterData also has all the properties and methods of Node.

insertData(offset, arg)

void insertData (offset, arg)

W3C DOM Level 1 CharacterData method. Inserts text in the CharacterData object. The offset
parameter is of type unsigned long. The arg parameter is of type String. CharacterData also has all
the properties and methods of Node.

deleteData(offset, count)

void deleteData (offset, count)

W3C DOM Level 1 CharacterData method. Deletes text in the CharacterData object. The offset and
count parameters are of type unsigned long. CharacterData also has all the properties and methods
of Node.

replaceData(offset, count, arg)

void replaceData (offset, count, arg)

W3C DOM Level 1 CharacterData method. Replaces text in the CharacterData object. The offset and
count parameters are of type unsigned long. The arg parameter is of type String. CharacterData also
has all the properties and methods of Node.

substringData(offset, count)

String substringData (offset, count)

W3C DOM Level 1 CharacterData method. Returns a substring of the CharacterData object. The
offset and count parameters are of type unsigned long. CharacterData also has all the properties and
methods of Node.

NodeList

Lets you work with node lists. This section includes the following topics:
¢ “length” on page 437
¢ “avg('[NodeList])” on page 437
¢ “count('[NodeList]')” on page 437
¢ “item(index)” on page 437

+ “min('[NodeList]')” on page 437

436 User Application: Design Guide

¢ “max(['NodeList]')” on page 438

¢ “sum('[NodeList]')” on page 438

¢ “where(XPathType asPattern)” on page 438
¢ “toNumber()” on page 438

length

W3C DOM Level 1 NodeList property. This property returns the number of nodes in a NodeList
object.

avg('[NodeList]')

Number avg (' [NodeList]"')

ECMAScript aggregate extension method. Returns a number equal to the average value in the
NodeList. The NodeList parameter is of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped for nested calls.

Example:

Input.XPath ("rootElem/childElem") .avg ()

count('[NodeList])

Number count (' [NodeList]')

ECMAScript aggregate extension method. Returns a number equal to a count of the nodes in the
NodeList that have data. Nodes without data, or nodes with only child elements are not counted. To
count all nodes, use the .length property on a nodeList object. The optional NodeList parameter is of
type XPath. If no parameter is supplied (the usual case), then the current NodeList/GroupName is
used. The function argument should be in single quotes, and must be escaped for nested calls.

Example:

Input.XPath("rootElem/childElem") . count ()

item(index)

Node item(index)

W3C DOM Level 1 NodeList method. Returns the indicated Node from the NodeList. The index
parameter is of type unsigned long. The Index is 0-based.

min('[NodeList]')
Number min (' [NodeList]"')

ECMAScript aggregate extension method. Returns a number equal to the lowest value in the
NodeList. The NodeList parameter is of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped for nested calls.

Example:

Input.XPath ("rootElem/childElem") .min ()

ECMAScript Core Reference 437

max(['NodeList]')

Number max (' [NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the highest value in the
NodeList. The NodeList parameter of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped for nested calls.

Example:

Input.XPath ("rootElem/childElem") .max ()

sum(‘[NodeList])
Number sum(' [NodeList]"')

ECMAScript aggregate extension method. Returns a number equal to the sum of the values in
NodeList. The NodeList parameter is of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped for nested calls.

Example:

Input.XPath("rootElem/childElem") . sum()

where(XPathType asPattern)

NodeList where (String asPattern)

ECMAScript extension method. Gets a NodeList of nodes matching the XPath pattern.

toNumber()

toNumber ()

Converts the data of the first instance in the NodeList to an ECMAScript Number object. Any
alphabetic characters or embedded spaces in data return NaN. Leading and trailing spaces are
permitted.

Example:

var myNum = Input.XPath("Invoice/Amount") .toNumber ()

A.3.7 NamedNodeMap

Lets you work with named node maps. This section includes the following topics:
¢ “length” on page 439
¢ “getNamedItem(name)” on page 439
¢ “getNamedltemNS(namespaceURI, localName)” on page 439
¢ “jtem(index)” on page 439
¢ “removeNamedItem(name)” on page 439

¢ “removeNamedItemNS(namespaceURI, localName)” on page 439

438 User Application: Design Guide

+ “setNamedItem(arg)” on page 440
+ “setNamedltemNS(Node arg)” on page 440

length

length W3C DOM Level 1 NamedNodeMap property. This property returns the number of nodes in a
NamedNodeMap.

getNamedItem(name)

Node getNamedItem (name)

W3C DOM Level 1 NamedNodeMap method. Returns all selected Nodes of the indicated name. The
name parameter is of type String.

getNamedltemNS(namespaceURI, localName)

Node getNamedItemNS (namespaceURI, localName)

W3C DOM Level 2 NamedNodeMap method. Returns a node specified by local name and
namespace URIL

Table A-18 Parameters for the NamedNodeMap Method

Parameter Description

namespaceURI Specifies the namespaceURI of the node to retrieve.

localName Specifies the localName of the node to retrieve.

Example:

Temp.XPath ("A/B") .item(0) .getAttributes () .getNamedItemNS ("someURI", "anAttrName")
item(index)

Node item(index)

W3C DOM Level 1 NamedNodeMap method. Returns the indicated Node from the
NamedNodeMap. The index parameter is of type unsigned long. The index is 0-based.

removeNamedltem(name)

Node removeNamedItem (name)

W3C DOM Level 1 NamedNodeMap method. Removes the indicated node from the
NamedNodeMap and returns an unattached node. The name parameter is of type String.

removeNamedltemNS(namespaceURI, localName)

Node removeNamedItemNS (namespaceURI, localName)

W3C DOM Level 2 NamedNodeMap method. Removes and returns the node specified by
namespace URI and local name.

ECMAScript Core Reference 439

Table A-19 Parameters for the removeNamedltemNS Method

Parameter Description

namespaceURI Specifies the namespaceURI of the node to remove.
localName Specifies the localName of the node to remove.
Example:

Temp.XPath ("A/B") .item(0) .getAttributes () .removeNamedItemNS ("someURI",
"anAttrName")

setNamedltem(arg)

Node setNamedItem(arg)

W3C DOM Level 1 NamedNodeMap method. Returns a Node. The arg parameter is of type Node.

setNamedltemNS(Node arg)

Node setNamedItemNS (arg)

W3C DOM Level 2 NamedNodeMap method. If the new Node replaces an existing node, the
replaced Node is returned, otherwise null is returned.

Example:

var item = Temp.XPath("A/B").item(0) ;

item.getAttributes () .setNamedItemNS (aNodeObject)

A.3.8 Text

Lets you work with text.

splitText(offset)

Text splitText (offset)

W3C DOM Level 1 Element method. Removes the text up to the offset and creates an unattached text
node with the removed text. The offset parameter is of type unsigned long. A Text also has all the
properties and methods of CharacterData.

A.3.9 DocumentType

Lets you work with document types. This section includes the following topics:

¢ “name” on page 441

+ “entities” on page 441

¢ “internalSubset” on page 441
¢ “notations” on page 441

¢ “publicld” on page 441

+ “systemld” on page 441

440 User Application: Design Guide

A.3.10

name

W3C DOM Level 1 DocumentType property. This property returns a String representing the
document type name.

entities

W3C DOM Level 1 DocumentType property. This property returns a NamedNodeMap of the entities
defined in the document.

internalSubset

W3C DOM Level 2 DocumentType property. This property returns a String representing the internal
subset as a string.

notations

W3C DOM Level 1 DocumentType property. This property returns a NamedNodeMap of the
notations defined in the document.

publicld

W3C DOM Level 2 DocumentType property. This property returns a String representing the public
identifier of the external subset.

systemld
W3C DOM Level 2 DocumentType property. This property returns a String representing the system

identifier of the external subset.

DOMImplementation

Lets you work with DOM implementations. This section includes the following topics:

¢ “createDocument(namespaceURI, qualifiedName, doctype)” on page 441
¢ “createDocumentType(qualifiedName, publicID, systemID)” on page 442

¢ “hasFeature(feature, version)” on page 442

createDocument(namespaceURI, qualifiedName, doctype)

Document createDocument (namespaceURI, qualifiedName, doctype)

W3C DOM Level 2 DOMImplementation method. Creates an XML Document object of the specified
type with its document element.

ECMAScript Core Reference 441

A3.11

Table A-20 Parameters for the DOMImplementation Method

Parameter Description
namespaceURI Specifies the namespaceURI of the document element to create.
qualifiedName Specifies the qualified name of the document element to create.

qualifiedName = namespaceprefix + : + localName

doctypei Specifies the type of document to create, or null.

createDocumentType(qualifiedName, publiclD, systemID)

DocumentType createDocumentType (qualifiedName, publicID, systemID)

W3C DOM Level 2 DOMImplementation method. Creates an empty DocumentType node.
Parameters: qualifiedName is a string of the name of the document type to create. publicID is the
external subset public identifier. systemID is the external subset system identifier. Note:
qualifiedName = namespaceprefix + : + localName

Table A-21 Parameters for the createDocumentType Method

Parameter Description

qualifiedName Specifies the qualified name of the document element to create.
qualifiedName = namespaceprefix + : + localName

publiclD Specifies the external subset public identifier.

systemID Specifies the external subset system identifier.

hasFeature(feature, version)

boolean hasFeature (feature, version)

W3C DOM Level 1 DOMImplementation method. Returns a Boolean. The feature parameter is of
type String. The version parameter is of type String.

Notation

Lets you work with notation. This section includes the following topics:

¢ “publicld” on page 442
¢ “systemld” on page 442

publicld

W3C DOM Level 2 This property returns a String representing the public identifier of the external
subset.

systemld

W3C DOM Level 2 property. This property returns a String representing the system identifier of the
external subset.

442 User Application: Design Guide

A.3.12 Entity

Lets you work with entities. This section includes the following topics:

¢ “publicld” on page 443
¢ “systemld” on page 443

¢ “notationName” on page 443

publicld

W3C DOM Level 2 property. This property returns a String representing the public identifier of the
external subset.

systemld

W3C DOM Level 2 property. This property returns a String representing the system identifier of the
external subset.

notationName
W3C DOM Level 1 Entity property. This property is of type String. An Entity also has all the
properties and methods of Node.

A.3.13 Processinglnstruction

Lets you work with processing instructions. This section includes the following topics:

¢ “target” on page 443
¢ “data” on page 443

target

W3C DOM Level 1 ProcessinglInstruction property. This property is a String representation of the
target part of a Processing Instruction.

data

W3C DOM Level 1 ProcessinglInstruction property. This property is a String representation of the
data part of a Processing Instruction.

A.4 ECMAScript Core

This section lists all ECMAScript core methods and properties supported by the ECMA Expression
Builder. This section includes the following topics:

¢ Section A.4.1, “Array Object,” on page 444

¢ Section A.4.2, “Boolean Object,” on page 445
¢ Section A.4.3, “Date Object,” on page 445

¢ Section A.4.4, “Function Object,” on page 452

ECMAScript Core Reference 443

A4l

¢ Section A.4.5, “Global,” on page 452

Section A.4.6, “Math Object,” on page 454
Section A.4.7, “Number Object,” on page 459
¢ Section A.4.8, “Object,” on page 461

*

*

¢ Section A.4.9, “String Object,” on page 461

Array Object

Lets you work with arrays. This section includes the following topics:
¢ “Array(item0, item1, .. .)” on page 444
¢ “join(separator)” on page 444
¢ “length” on page 444
¢ “reverse()” on page 444
¢ “sort(comparefn)” on page 444

¢ “toString()” on page 445

Array(item0, item1, ...

Array ()

Constructor

join(separator)
Array join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated
by occurrences of the separator. If no separator is provided, a single comma is used as the separator.

length

Array length. The length property of this Array object

reverse()

reverse ()

The elements of the array are rearranged so as to reverse their order. The operation is done in-place,
meaning that the original array is modified.

sort(comparefn)

Array sort ()

The elements of this array are sorted. The sort is not necessarily stable. If comparefn is supplied, it
should be a function that accepts two arguments x and y and returns a negative value if x <y, zero if
X =Yy, or a positive value if x >y.

444 User Application: Design Guide

A.4.2

A.4.3

toString()

Array toString()

The elements of this object are converted to strings, and these strings are then concatenated,
separated by comma characters. The result is the same as if the built-in join method were invoked for
this object with no argument.

Boolean Object

There is seldom a need to use the object version of Boolean in place of True/False literal values. This
object is provided for completeness. It is specified in ECMA-262.

This section includes the following topics:

¢ “Boolean()” on page 445
¢ “toString()” on page 445
¢ “valueOf()” on page 445

Boolean()

Boolean([true/false])

Constructor. Optionally takes either True or False as an argument.

toString()

Boolean toString()

If this Boolean value is True, then the string “true” is returned. Otherwise, this Boolean value must be
false, and the string “false” is returned.

valueOf()

Boolean valueOf ()

Returns this Boolean value.

Date Object

Lets you work with dates and times. This section includes the following topics:

¢ “Date()” on page 446

¢ “getDate()” on page 447

¢ “getDay()” on page 447

¢ “getFullYear()” on page 447

¢ “getHours()” on page 447

+ “getMilliseconds()” on page 447
¢ “getMinutes()” on page 447

+ “getMonth()” on page 447

+ “getSeconds()” on page 447

ECMAScript Core Reference 445

¢ “getTime()” on page 447

¢ “getTimezoneOffset()” on page 448

¢ “getUTCDate()” on page 448

¢ “getUTCDay()” on page 448

¢ “getUTCFullYear()” on page 448

+ “getUTCHours()” on page 448

¢ “getUTCMilliseconds()” on page 448

¢ “getUTCMinutes()” on page 448

¢ “getUTCSeconds()” on page 448

+ “getYear()” on page 449

¢ “parse(string)” on page 449

¢ “setDate(date)” on page 449

¢ “setFullYear(year[,mon[,date]])” on page 449
+ “setHours(hour[,min[,sec[,ms]]])” on page 449
+ “setMilliseconds(ms)” on page 449

¢ “setMinutes(min[,sec[,ms]])” on page 449

¢ “setMonth(mon[,date])” on page 449

¢ “setSeconds(sec [, ms])” on page 450

+ “setTime(time)” on page 450

¢ “setUTCDate(date)” on page 450

¢ “setUTCFullYear(year[,mon[,date]])” on page 450
+ “setUTCHours(min[,sec[,ms]])” on page 450
+ “setUTCMilliseconds(ms)” on page 450

¢ “setUTCMinutes(min[,sec[,ms]])” on page 450
¢ “setUTCMonth(mon[,date])” on page 451

¢ “setUTCSeconds(sec [, ms |)” on page 451

+ “setYear(year)” on page 451

¢ “toLocaleString()” on page 451

¢+ “toString()” on page 451

¢ “toUTCString()” on page 451

¢ “UTC()” on page 451

+ “valueOf()” on page 451

Date()

Date ()

The constructor of the Date can have various signatures. The date constructor format can accept up to
seven parameters, in the following format: new Date(year,month,date hrs,mins,secs,ms). This date
must be a java.util.Date object and not an ECMAScript Date object if you intend to use it with the
Identity Manager User Application workflow system.

446 User Application: Design Guide

getDate()

getDate ()

Returns DateFromTime(LocalTime(t)).

getDay()

getDay ()

Returns WeekDay(LocalTime(t)). The days of week are numbered from 0-6. The number 0 represents
Sunday and 6 represents Saturday.

getFullYear()

getFullYear ()

Returns YearFromTime(Local Time(t)).

getHours()

getHours ()

Returns HourFromTime(LocalTime(t)).

getMilliseconds()

getMilliseconds ()

Returns msFromTime(LocalTime(t)).

getMinutes()

getMinutes ()

Returns MinFromTime(LocalTime(t)).

getMonth()

getMonth ()

Returns MonthFromTime(LocalTime(t)). The months are returned as an integer value from 0-11. The
number 0 represents January and 11 represents December.

getSeconds()

getSeconds ()

Returns SecFromTime(LocalTime(t)).

getTime()

getTime ()

ECMAScript Core Reference 447

Returns a number, which is this time value. The number value is a millisecond representation of the
specified Date object.

getTimezoneOffset()

getTimezoneOffset ()

Returns (t * LocalTime(t)) / msPerMinute. The difference is in minutes between (GMT) and local time.

getUTCDate()

getUTCDate ()

Returns DateFromTime(t).

getUTCDay()

getUTCDay ()

Returns WeekDay(t). The days of week are numbered from 0-6. The number 0 represents Sunday and
6 represents Saturday.

getUTCFullYear()

getUTCFullYear ()

Returns YearFromTime(t). There is no getYearUTC method, so it must be used to obtain a year from a
UTC Date object.

getUTCHours()

getUTCHours ()

Returns HourFromTime(t).

getUTCMilliseconds()

getUTCMilliseconds ()

Returns msFromTime(t).

getUTCMinutes()

getUTCMinutes ()

Returns MinFromTime(t).

getUTCSeconds()

getUTCSeconds ()

Returns SecFromTime(t).

448 User Application: Design Guide

getYear()

getYear ()

Returns YearFromTime(LocalTime(t)) —1900. The function getFullYear() is preferred for nearly all
purposes because it avoids the year 2000 problem.

parse(string)

parse (string)

Applies the ToString operator to its argument and interprets the resulting string as a date; it returns a
number, the number which is a UTC time value corresponding to the date. The string is interpreted
as a local time, a UTC time, or a time in some other time zone, depending on the contents of the
string.

setDate(date)

setDate (date)

Sets the day of the month, using an integer from 1 to 31, for the supplied date according to local time.

setFullYear(year[,mon[,date]])

setFullYear (year[,mon[,date]])

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value]
property of this value.

setHours(hour[,min[,sec[,ms]]])

setHours (hour[,min[,sec[,ms]]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this
value. When entering a value for hours, an hour value greater than 23 is added to the existing hour
value, not set.

setMilliseconds(ms)

setMilliseconds (ms)

Computes UTC from argument and sets the [Value] property of this value to
TimeClip(calculatedUTCtime). Returns the value of the [Value] property of this value.

setMinutes(min[,sec[,ms]])

setMinutes (min[,sec[,ms]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this
value.

setMonth(mon[,date])

setMonth (mon [, date])

ECMAScript Core Reference 449

450

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value]
property of this value. If the [Value] property of this exceeds 11, the [Value] property for this is added
to the existing month, not set.

setSeconds(sec [,ms])

setSeconds (sec [, ms])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this
value.

setTime(time)

setTime (time)

Sets the [Value] property of this value to TimeClip(time). Returns the value of the [Value] property of
this value. The [Value] property of this is a millisecond value that is converted by the TimeClip(time)
method.

setUTCDate(date)

setUTCDate (date)

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] property
of this value. If the [Value] property of this exceeds 30 or 31, the [Value] of this is added to the existing
date value, not set.

setUTCFullYear(year[,mon[,date]])

setUTCFullYear (year[,mon[,datel])

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] property
of this value.

setUTCHours(min[,sec[,ms]])

setUTCHours (min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this value.
When entering a value for hours, an hour value greater than 23 is added to the existing hour value,
not set.

setUTCMilliseconds(ms)

setUTCMilliseconds (ms)

Sets the [Value] property of this value to time and returns the value of the [Value] property of this
value.

setUTCMinutes(min[,sec[,ms]])

setUTCMinutes (min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this value.

User Application: Design Guide

setUTCMonth(mon[,date])

setUTCMonth (mon [, date])

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] property
of this value. If the [Value] property of this exceeds 11, the [Value] property for this is added to the
existing month, not set.

setUTCSeconds(sec [, ms])

setUTCSeconds (sec [, ms])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this value.

setYear(year)

setYear (year)

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value]
property of this value.

toLocaleString()

toLocaleString()

Returns a string value. The contents of the string are implementation-dependent, but are intended to
represent the Date in a convenient, human-readable form appropriate to the geographic or cultural
locale.

toString()

toString()

Returns this string value. The contents of the string are implementation-dependent, but are intended
to represent the Date in a convenient, human-readable form in the current time zone.

toUTCString()

toUTCString ()

Returns a string value. The contents of the string are implementation-dependent, but are intended to
represent the Date in a convenient, human-readable form in UTC.

uTC)

UTC ()

Can accept a number of different arguments. The UTC function differs from the Date constructor in
two ways: it returns a time value as a number, rather than creating a Date object, and it interprets the
arguments in UTC rather than as local time.

valueOf()

valueOf ()

ECMAScript Core Reference 451

A.44

A.45

Returns a number, which is this time value. The valueOf() function is not generic, so it generates a
runtime error if the object is not a Date object.

Function Object

Used to work with the Function Object. This section includes the following topics:

¢ “Function(pl, p2, ..., pn, body)” on page 452
¢ “length” on page 452
¢ “toString()” on page 452

Function(pl, p2, ..., pn, body)

Function Constructor. The last argument specifies the body (executable code) of a function; any
preceding arguments specify formal parameters.

length

The value of the length property is usually an integer that indicates the “typical” number of
arguments expected by the function. However, the language permits the function to be invoked with
some other number of arguments. The behavior of a function when invoked on a number of
arguments other than the number specified by its length property depends on the function.

toString()

String toString()

An implementation-dependent representation of the function is returned. This representation has the
syntax of a FunctionDeclaration. The use and placement of whitespace, line terminators, and
semicolons within the representation string is implementation-dependent.

Global

ECMAScript provides certain “top-level” methods and properties, so-called because they are
available from any context: They are not parented by any particular object.

This section includes the following topics:
+ “escape(string)” on page 453
+ “eval(x)” on page 453
¢ “Infinity” on page 453
¢ “isFinite(number)” on page 453
¢ “isNaN(value)” on page 453
¢ “NaN” on page 453
¢ “parseFloat(string)” on page 453
¢ “parselnt(string, radix)” on page 454

¢ “unescape(string)” on page 454

452 User Application: Design Guide

escape(string)

String escape ()

The escape function computes a new, URL-legal version of a string in which certain URL-illegal
characters have been replaced by hexadecimal escape sequences.

eval(x)

eval ()

When the eval function is called with one argument x, the following steps are taken:

If x is not a string value, return x.
Parse x as an ECMAScript Program. If the parse fails, generate a runtime error.
Evaluate the program from Step 2.

If Result(3) is “normal” completion after value “V”, return the value V.

O L=

Return undefined.

Infinity

A special primitive value representing positive infinity.

isFinite(number)

isFinite()

Applies Number() to its argument, then returns false if the result is NaN (Not a Number), +*, or **;
otherwise, returns True.

isNaN(value)

isNan ()

Returns True if the argument evaluates to NaN (Not a Number); otherwise, returns False

NOTE: Any form of logical comparison of NaN against anything else, including itself, returns false.
Use isNaN() to determine whether a variable (or a return value, etc.) is equal to NaN.

NaN

The primitive value NaN represents the set of IEEE standard Not-a-Number values.

parseFloat(string)

number parseFloat ()

Produces a floating-point number by interpretation of the contents of the string argument. If the
string cannot be converted to a number, the special value NaN (see “NaN" on page 453) is returned.

ECMAScript Core Reference 453

parselnt(string, radix)

number parselnt ()

Produces an integer value dictated by interpretation of the contents of the string argument, according
to the specified radix.

unescape(string)

String unescape ()

Computes a new version of a string value in which escape sequences that might be introduced by the
escape function are replaced with the character they represent.

A.4.6 Math Object

All of the Math object’s properties and methods are static, which means you should prepend “Math”
to the property or method name in your code. For example, use “Math.PL,” not simply “PL.”

This section includes the following topics:

¢ “E” on page 455

¢ “LN10” on page 455

¢ “LN2” on page 455

¢+ “LOG2E” on page 455
¢+ “LOGI10E” on page 455
¢ “PI” on page 455

¢ “SQRT1.2” on page 455
¢ “SQRT2” on page 455

¢ “abs(x)” on page 455

¢ “acos(x)” on page 456

¢ “asin(x)” on page 456

+ “atan(x)” on page 456

¢ “atan2(x,y)” on page 456
+ “ceil(x)” on page 456

¢ “cos(x)” on page 457

+ “exp(x)” on page 457

¢ “floor(x)” on page 457
¢+ “log(x)” on page 457

¢ “max(x,y)” on page 457
¢ “min(x,y)” on page 458
*+ “pow(x,y)” on page 458
¢ “random()” on page 458
¢ “round(x)” on page 458
¢ “sin(x)” on page 458

454 User Application: Design Guide

¢ “sqrt(x)” on page 459
¢ “tan(x)” on page 459

E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634. The value of Math.LOG2E is approximately the reciprocal of the
value of Math.LN2.

LOGI10E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518. The value of Math.LOG10E is approximately the reciprocal of
the value of Math.LN10.

P

The number value for *, the ratio of the circumference of a circle to its diameter, which is
approximately 3.14159265358979323846.

SQRT1.2

The number value for the square root of 1/2, which is approximately 0.7071067811865476. The value
of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

abs(x)

Number abs (x)

Returns the absolute value of the argument x; in general, the result has the same magnitude as the
argument but has a positive sign. The input value x can be any number value.

Example:

ECMAScript Core Reference 455

456

Math.abs (-123.23940) = 123.23940

acos(x)

Number acos (x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges from +0 to +PI(3.14159...) radians. The input value x must be a
number between -1.0 and 1.0.

Example:

PI/4 = 0.785 Math.acos(0.785) = 0.6681001997570769

asin(x)
Number asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is
expressed in radians and ranges from -PI/2 to +P1/2. The input value x must be a number between -1.0
and 1.0.

Example:

PI/4 = 0.785 Math.asin(0.785) = 0.9026961270378197

atan(x)

Number atan (x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result
is expressed in radians and ranges from -PI/2 to +PI/2. The input value x can be any number.

Example:

3PI/4 = 2.355 Math.atan(2.355) = 1.169240427545485

atan2(x,y)

Number atan2 (x,y)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the
arguments y and x, where the signs of the arguments are used to determine the quadrant of the
result. It is intentional and traditional for the two-argument arc tangent function that the argument
named y be first and the argument named x be second. The result is expressed in radians and ranges
from -PI to +PI. The input value x is the x-coordinate of the point. The input value y is the y-
coordinate of the point.

Example:

PI/2 = 1.57 Math.atan2(1.57,-1.57) = 2.356194490192345

ceil(x)

Number ceil (x)

User Application: Design Guide

Returns the smallest (closest to -infinity) number value that is not less than the argument and is equal
to a mathematical integer. If the argument is already an integer, the result is the argument itself. The
input value x can be any numeric value or expression. The Math.ceil(x) function property is the same
as -Math.floor(-x). Example:

Example:

Math.ceil (123.78457) = 123

cos(x)

Number cos (x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument
must be expressed in radians.

exp(x)
Number exp (x)

Returns an implementation-dependent approximation to the exponential function of the argument (e
raised to the power of the argument, where e is the base of the natural logarithms). The input value x
can be any numeric value or expression greater than 0.

Example:

Math.exp(10) = 22026.465794806718

floor(x)

Number floor (x)

Returns the greatest (closest to +infinity) number value that is not greater than the argument and is
equal to a mathematical integer. If the argument is already an integer, the result is the argument itself.
The input value x can be any numeric value or expression.

Example:

Math.floor (654.895869) =654

log(x)
Number log (x)

Returns an implementation-dependent approximation to the natural logarithm of the argument. The
input value x can be any numeric value or expression greater than 0.

Example:

Math.log(2) = 0.6931471805599453

max(x,y)

Number max (x,Vy)

Returns the larger of the two arguments. The input values x and y can be any numeric values or
expressions.

Example:

ECMAScript Core Reference 457

458

Math.max (12.345,12.3456)= 12.3456

min(x,y)

Number min (x,Vy)

Returns the smaller of the two arguments. The input values x and y can be any numeric values or
expressions.

Example:

Math.min(-12.457,-12.567)= -12.567

pow(x.y)

Number pow (x,Vy)

Returns an implementation-dependent approximation to the result of raising x to the power of y. The
input value x must be the number raised to a power. The input value y must be the power to which x
is raised.

Example:

Math.pow(2,4) = 16

random()

Number random ()

Takes no arguments and returns a pseudo-random number between 0 and 1. The number value has
approximately uniform distribution over that range, using an implementation-dependent algorithm
or strategy. This function takes no arguments.

Example:

Math.random()=0.9545176397178535

round(x)

Number round (x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If
two integer number values are equally close to the argument, then the result is the number value that
is closer to +infinity. If the argument is already an integer, the result is the argument itself. The input
value x can be any number.

Example:

Math.round(13.53) = 14

sin(x)

Number sin(x)

Returns an implementation-dependent approximation to the sine of the argument. The argument is
expressed in radians. The input value x must be an angle measured in radians.

User Application: Design Guide

A4

sqrt(x)
Number sqgrt (x)

Returns an implementation-dependent approximation to the square root of the argument. The input
value x must be any numeric value or expression greater than or equal to 0. If the input value x is less
than zero, the string “NaN" is returned. (NaN stands for Not a Number.)

Example:

Math.sqgrt (25) = 5

tan(x)

Number tan (x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument
is expressed in radians. The input value x must be an angle measured in radians.

Number Object

Lets you work with numeric values. The Number object is an object wrapper for primitive numeric
values.

This section includes the following topics:

¢+ “MAX_VALUE” on page 459

¢+ “MIN_VALUE” on page 459

¢ “NaN” on page 460

¢+ “NEGATIVE_INFINITY” on page 460
¢ “Number()” on page 460

¢ “POSITIVE_INFINITY” on page 460
¢ “toString(radix)” on page 460

¢ “valueOf()” on page 460

MAX_VALUE

The largest positive finite value of the number type (approximately 1.7976931348623157e308).
Example:

Number .MAX VALUE

MIN_VALUE

The smallest positive nonzero value of the number type (approximately 5e-324).
Example:

Number .MIN VALUE

ECMAScript Core Reference 459

460

NaN

The primitive value NaN represents the set of IEEE Standard Not-a-Number values.
Example:

Number .NaN

NEGATIVE_INFINITY

The value of negative infinity.
Example:

Number .NEGATIVE INFINITY

Number()

Number ()

The constructor of Number has two forms: Number(value) and Number().

POSITIVE_INFINITY

The value of positive infinity.
Example:

Number.POSITIVE INFINITY

toString(radix)

toString()

If the radix is the number 10 or is not supplied, then this number value is given as an argument to the
ToString operator; the resulting string value is returned. If the radix is supplied and is an integer from
2 to 36, but not 10, the result is a string, the choice of which is implementation-dependent. The
toString function is not generic; it generates a runtime error if this value is not a Number object.
Therefore, it cannot be transferred to other kinds of objects for use as a method.

valueOf()

valueOf ()

Returns this number value. The valueOf function is not generic; it generates a runtime error if its
value is not a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a
method.

User Application: Design Guide

A.4.8

A4.9

Object

Used to work with objects. Object is the primitive JavaScript object type. All ECMAScript objects are
descended from object. That is, all ECMAScript objects have the methods defined for object.

This section includes the following topics:
+ “Object()” on page 461
¢ “toString()” on page 461
¢ “valueOf()” on page 461

Object()

Constructor for object.

toString()

Object toString()

When the toString method is called on an arbitrary object, the following steps are taken:

1. Get the [[Class]] property of this object.
2. Compute a string value by concatenating the three strings “[object “, Result(1), and “]”.
3. Return Result(2).

valueOf()

Object wvalueOf ()

The valueOf method for an object usually returns the object; however, if the object is a wrapper for a
host object, as might be created by the Object constructor, the contained host object should be
returned.

String Object
Used to work with String Objects. This section includes the following topics:
¢ “String(x)” on page 462
¢ “charAt(pos)” on page 462
¢ “charCodeAt(pos)” on page 462
¢ “fromCharCode(char0, charl, . ..)” on page 462
+ “indexOf(searchString, pos)” on page 462
¢ “lastIndexOf(searchString, pos)” on page 462
¢ “length” on page 463
¢ “match(RegExp)” on page 463
+ “replace(RegExp, String)” on page 463
+ “search(RegExp)” on page 463
¢ “split(separator)” on page 463
¢ “substring(start, end)” on page 463

ECMAScript Core Reference 461

462

+ “toLowerCase()” on page 463
¢ “toString()” on page 463
+ “toUpperCase()” on page 464
+ “valueOf()” on page 464

String(x)

String (x)

The constructor of the string.

charAt(pos)

charAt (pos)

Returns a string containing the character at position pos in the string resulting from converting this
object to a string. If there is no character at that position, the result is the empty string. The result is a
string value, not a string object.

charCodeAt(pos)

charCodeAt (pos)

Returns a number (a nonnegative integer less than 2"16) representing the Unicode code point
encoding of the character at position pos in the string resulting from converting this object to a string.
If there is no character at that position, the result is NaN.

fromCharCode(char0, charl, .. .)

fromCharCode (char0, charl, . . .)

Returns a string value containing as many characters as the number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character,
and so on, from left to right. An argument is converted to a character by applying the operation
ToUint16 and regarding the resulting 16-bit integer as the Unicode code point encoding of a
character. If no arguments are supplied, the result is the empty string.

indexOf(searchString, pos)

indexOf (searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at
one or more positions that are at or to the right of the specified position, then the index of the leftmost
such position is returned; otherwise, -1 is returned. If position is undefined or not supplied, 0 is
assumed, in order to search all of the string.

lastindexOf(searchString, pos)

lastIndexOf (searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at
one or more positions that are at or to the left of the specified position, then the index of the rightmost
such position is returned; otherwise, -1 is returned. If position is undefined or not supplied, the
length of the string value is assumed, in order to search all of the string.

User Application: Design Guide

length

Returns the length of the String.

match(RegExp)

String match (RegExp)

Takes a regular expression object as argument. It returns an array of matches; otherwise, returns null.

replace(RegExp, String)

String replace (RegExp, String)

Takes a regular expression and a replacement string. It returns the original string with replacements
accomplished.

search(RegExp)

String search (RegExp)

Takes a regular expression as the sole arg and returns the offset of the first substring that matches, or
-1 on no match.

split(separator)

split (separator)

Returns an Array object, into which substrings of the result of converting this object to a string have
been stored. The substrings are determined by searching from left to right for occurrences of the
given separator; these occurrences are not part of any substring in the returned array, but serve to
divide the string value. The separator may be a string of any length.

substring(start, end)

substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character position
start and running to the position end of the string. If the second parameter is not present, the end
position is considered the end of the string. The result is a string value, not a string object.

toLowerCase()

toLowerCase ()

Returns a string equal in length to the length of the result of converting this object to a string. The
result is a string value, not a string object. Every character of the result is equal to the corresponding
character of the string, unless that character has a Unicode 2.0 lowercase equivalent, in which case the
lowercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used, which
does not depend on implementation or locale.

toString()

toString()

ECMAScript Core Reference 463

464

Returns this string value. When concerned with the placement and use of whitespace line terminators
and semicolons within the representation, the string value is implementation-dependent.

toUpperCase()

toUpperCase ()

Returns a string equal in length to the length of the result of converting this object to a string. The
result is a string value, not a string object. Every character of the result is equal to the corresponding
character of the string, unless that character has a Unicode 2.0 uppercase equivalent, in which case
the uppercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used,
which does not depend on implementation or locale.

valueOf()

valueOf ()

Returns this string value. The valueOf() function is not generic, so it generates a runtime error if the
object is not a String object.

User Application: Design Guide

	User Application: Design Guide
	About This Guide
	1 Introduction to the User Application Design Tools
	1.1 About the Provisioning View
	1.2 About the Directory Abstraction Layer Editor
	1.3 About the Provisioning Request Definition Editor
	1.4 About the ECMA Expression Builder
	1.5 About the Provisioning Team Editor
	1.6 About the Roles Catalog
	1.7 Documenting a Project
	1.7.1 Provisioning Locales
	1.7.2 Directory Abstraction Layer
	1.7.3 Provisioning Request Definitons
	1.7.4 Provisioning Teams
	1.7.5 Role Catalog

	2 Working with the Provisioning View
	2.1 Setting Up a Provisioning Project
	2.1.1 Creating a User Application Driver
	2.1.2 Creating a Role Service Driver
	2.1.3 Modifying the Role Service Driver Properties
	2.1.4 About E-Mail Notification Templates

	2.2 Accessing the Provisioning View
	2.3 Setting Provisioning View Preferences
	2.4 Importing Provisioning Objects
	2.4.1 Importing from a Driver Configuration File
	2.4.2 Importing from an Identity Vault

	2.5 Exporting Provisioning Objects
	2.6 Validating Provisioning Objects
	2.6.1 Directory Abstraction Layer Objects
	2.6.2 Provisioning Request Definitions
	2.6.3 Provisioning Teams
	2.6.4 Role Configuration Objects
	2.6.5 Roles
	2.6.6 Resources
	2.6.7 User Application Driver Locales

	2.7 Deploying Provisioning Objects
	2.7.1 Deploying Provisioning Objects
	2.7.2 Testing the Deployed Changes

	2.8 Comparing Provisioning Objects
	2.9 Specifying Locales and Localization Resource Groups
	2.9.1 Specifying the Default Locale
	2.9.2 Defining the User Application’s Supported Locales
	2.9.3 Creating a Custom Localization Resource Group

	2.10 Localizing Provisioning Objects
	2.10.1 Using Designer to Localize
	2.10.2 Supported Languages
	2.10.3 Exporting and Importing Data to Localize

	3 Configuring the Directory Abstraction Layer
	3.1 About the Directory Abstraction Layer
	3.1.1 Analyzing the User Application’s Data Needs
	3.1.2 About the Directory Abstraction Layer Editor
	3.1.3 About Directory Abstraction Layer Editor Files

	3.2 Working with Entities and Attributes
	3.2.1 About Entities and Attributes
	3.2.2 Adding Entities
	3.2.3 Adding Attributes
	3.2.4 Updating the Schema Elements List

	3.3 Working with Lists
	3.4 Working with Queries
	3.5 Working with Relationships
	3.6 Working with Configuration Settings
	3.7 Directory Abstraction Layer Property Reference
	3.7.1 Entity Properties
	3.7.2 Attribute Properties
	3.7.3 Queries Properties
	3.7.4 Relationship Properties

	4 Configuring Provisioning Request Definitions
	4.1 About Provisioning Request Definitions
	4.2 Using the Provisioning Request Definition Editor
	4.2.1 Creating a Provisioning Request Definition
	4.2.2 Starting the Provisioning Request Definition Editor
	4.2.3 Creating a Provisioning Request Definition By Using a Template
	4.2.4 Creating a Custom Provisioning Request Definition
	4.2.5 Creating a Roles Based Provisioning Request Definition
	4.2.6 Modifying Settings of a Provisioning Request Definition

	4.3 Provisioning and Workflow Example
	4.3.1 Step 1: Initiating the Request
	4.3.2 Step 2: Approving the Request
	4.3.3 Step 3: Fulfilling the Request
	4.3.4 Step 4: Completing the Workflow

	5 Creating Forms for a Provisioning Request Definition
	5.1 About Forms
	5.1.1 About Form Control Data Binding
	5.1.2 About Forms and Events

	5.2 About the Forms Tab
	5.2.1 About Form Selection
	5.2.2 About Form Controls

	5.3 Creating Forms
	5.3.1 Creating New Forms
	5.3.2 Adding Form Controls and Actions
	5.3.3 Defining Events
	5.3.4 Using the Scripts Tab

	5.4 Action Reference
	5.5 Form Control Reference
	5.5.1 Data Type for Roles Based Request Forms
	5.5.2 Data Type for Resource Based Request Forms
	5.5.3 Controls for User-Entered Comments
	5.5.4 General Form Control Properties
	5.5.5 CheckBoxPickList
	5.5.6 DatePicker
	5.5.7 DateTimePicker
	5.5.8 DNContainer
	5.5.9 DNDisplay
	5.5.10 DNLookup
	5.5.11 DNMaker
	5.5.12 DNQuery
	5.5.13 Global List
	5.5.14 Localized Label
	5.5.15 Html
	5.5.16 MVCheckbox
	5.5.17 MVEditor
	5.5.18 Password
	5.5.19 PickList
	5.5.20 Static List
	5.5.21 Text
	5.5.22 Text Area
	5.5.23 Title
	5.5.24 TrueFalseCheckBox
	5.5.25 TrueFalseRadioButtons
	5.5.26 TrueFalseSelectBox

	5.6 Working with Distinguished Names
	5.6.1 Formatting DNs
	5.6.2 Working with Object Selectors

	5.7 Using DAL Queries in Forms
	5.8 Printing Forms
	5.9 Providing Direct Access to a Form

	6 Creating the Workflow for a Provisioning Request Definition
	6.1 About the Workflow Tab
	6.1.1 Canvas
	6.1.2 Palette
	6.1.3 Views

	6.2 Adding Activities to a Workflow
	6.2.1 Setting the General Properties of an Activity
	6.2.2 Defining the Data Item Mappings
	6.2.3 Defining the E-Mail Notification Settings

	6.3 Adding Flow Paths
	6.4 Configuring Flow Paths
	6.5 Guidelines for Creating Workflows
	6.5.1 Rules for Activities
	6.5.2 Rules for Flow Paths
	6.5.3 Understanding Workflow Data

	6.6 Guidelines for Creating Roles Based Workflows
	6.6.1 About Role Approval Workflows
	6.6.2 Writing Custom Role Workflows
	6.6.3 About Separation of Duties Approval Workflows
	6.6.4 Customizing the Standard Separation of Duties Workflow

	6.7 Guidelines for Creating Resource Based Workflows
	6.7.1 About Resource Approval Workflows
	6.7.2 Writing Custom Resource Workflows

	6.8 Debugging a Workflow
	6.8.1 Using the Log Activity
	6.8.2 Using the Workflow Database
	6.8.3 Changing Log Levels

	6.9 Provisioning Multiple Individuals with One Workflow Instance
	6.9.1 Basic Steps for Using the Workflow
	6.9.2 Setting up the Workflow for a Manager to Use

	6.10 Making Distinguished Name References Portable
	6.11 Configuring Digital Signature Support
	6.11.1 Digital Signature Workflow Properties
	6.11.2 Creating a Signature Declaration

	7 Workflow Activity Reference
	7.1 Start Activity
	7.1.1 Properties
	7.1.2 Data Item Mapping
	7.1.3 E-Mail Notification

	7.2 Approval Activity
	7.2.1 Properties
	7.2.2 Data Item Mapping
	7.2.3 Available ECMAScript Methods
	7.2.4 E-Mail Notification
	7.2.5 Addressing an Approval Activity

	7.3 Log Activity
	7.3.1 Properties
	7.3.2 Data Item Mapping
	7.3.3 E-Mail Notification

	7.4 Branch Activity
	7.4.1 Properties
	7.4.2 Data Item Mapping
	7.4.3 E-Mail Notification

	7.5 Merge Activity
	7.5.1 Properties
	7.5.2 Data Item Mapping
	7.5.3 E-Mail Notification

	7.6 Condition Activity
	7.6.1 Properties
	7.6.2 Data Item Mapping
	7.6.3 E-Mail Notification

	7.7 Mapping Activity
	7.7.1 Properties
	7.7.2 Data Item Mapping
	7.7.3 E-mail Notification

	7.8 Workflow Status
	7.8.1 Properties
	7.8.2 Data Item Mapping
	7.8.3 E-Mail Notification

	7.9 E-Mail Activity
	7.9.1 Properties
	7.9.2 Data Item Mapping
	7.9.3 E-Mail Notification

	7.10 Role Request Binding Activity
	7.10.1 Properties
	7.10.2 Data Item Mapping
	7.10.3 E-Mail Notification

	7.11 Role Request Activity
	7.11.1 Properties
	7.11.2 Data Item Mapping
	7.11.3 E-Mail Notification

	7.12 Resource Request Binding Activity
	7.12.1 Properties
	7.12.2 Data Item Mapping
	7.12.3 E-Mail Notification

	7.13 Resource Request Activity
	7.13.1 Properties
	7.13.2 Data Item Mapping
	7.13.3 E-Mail Notification

	7.14 Start Workflow Activity
	7.14.1 Properties
	7.14.2 Data Item Mapping
	7.14.3 E-Mail Notification

	7.15 Finish Activity
	7.15.1 Properties
	7.15.2 Data Item Mapping
	7.15.3 E-mail Notification

	7.16 Rest Activity
	7.16.1 Properties
	7.16.2 Data Item Mapping
	7.16.3 E-Mail Notification

	7.17 Integration Activity
	7.17.1 Properties
	7.17.2 Data Item Mapping
	7.17.3 E-Mail Notification

	7.18 Entitlement Activity
	7.18.1 Properties
	7.18.2 Data Item Mapping
	7.18.3 E-Mail Notification

	7.19 Entity Activity
	7.19.1 Properties
	7.19.2 Data Item Mapping
	7.19.3 E-Mail Notification
	7.19.4 Working with Entity Activities

	8 Working with Integration Activities
	8.1 About the Integration Activity
	8.2 Adding an Integration Activity
	8.3 Moving Data to and from the Integration Activity
	8.4 Using the Integration Activity Editor Interface
	8.4.1 XML Views
	8.4.2 Action Model
	8.4.3 WSDL Editor
	8.4.4 Messages
	8.4.5 Regenerating Code for the Action Model
	8.4.6 Adding Actions to the Action Model

	8.5 Actions
	8.5.1 Advanced
	8.5.2 Data Exchange
	8.5.3 Repeat
	8.5.4 Comment
	8.5.5 Decision
	8.5.6 Function
	8.5.7 Log
	8.5.8 Map

	9 Working with ECMA Expressions
	9.1 About the ECMA Expression Builder
	9.1.1 About ECMAScript
	9.1.2 ECMAScript Capabilities
	9.1.3 Using the ECMA Expression Builder
	9.1.4 About Java Integration
	9.1.5 About XPath Integration
	9.1.6 About Global Configuration Values Integration
	9.1.7 About Global ECMAScripts Integration
	9.1.8 Performance Considerations

	9.2 ECMAScript Examples
	9.2.1 General Examples
	9.2.2 Flowdata Examples
	9.2.3 Form Control Examples
	9.2.4 Error Handling

	9.3 User Application API
	9.3.1 Form Action Script Methods
	9.3.2 IDVault Functions
	9.3.3 nrfRequest Properties and Methods

	9.4 Role Vault API
	9.4.1 About the Role Vault API
	9.4.2 Role Script API Reference
	9.4.3 Role Vault Bean API Reference

	10 Configuring Provisioning Teams
	10.1 About Teams
	10.1.1 About Team Requests
	10.1.2 Using a Team to Manage Direct Reports

	10.2 Managing Teams
	10.2.1 Creating a Team
	10.2.2 Deleting a Provisioning Team
	10.2.3 Creating a Team to Manage Direct Reports

	11 Configuring Roles
	11.1 About the Roles Based Provisioning Module
	11.2 About the Role Catalog
	11.3 About the Role Editor
	11.3.1 Understanding Role Hierarchy
	11.3.2 Using the Role Editor
	11.3.3 Role Properties Reference

	11.4 About the Separation of Duties Editor
	11.4.1 Using the Separation of Duties Editor
	11.4.2 Separation of Duties Constraints Properties

	11.5 About the Role Configuration Editor
	11.5.1 Role Configuration Editor Properties

	11.6 Importing Roles Defined in CSV Files
	11.6.1 Setting Up the File to Import
	11.6.2 Required CSV File Format
	11.6.3 Using the Wizard to Import Roles
	11.6.4 Error Handling

	12 Configuring Resources
	12.1 About Resources
	12.2 About the Resource Editor
	12.2.1 Using the Resource Editor
	12.2.2 Resource Property Reference

	12.3 Importing Resources Defined in CSV Files
	12.3.1 Setting Up the File to Import
	12.3.2 Required CSV File Format
	12.3.3 Using the Wizard to Import Roles from a CSV File
	12.3.4 Error Handling

	A ECMAScript Core Reference
	A.1 ECMAScript Operators
	A.2 Functions/Methods
	A.3 DOM Methods
	A.3.1 Node
	A.3.2 Document
	A.3.3 Element
	A.3.4 Attribute
	A.3.5 CharacterData
	A.3.6 NodeList
	A.3.7 NamedNodeMap
	A.3.8 Text
	A.3.9 DocumentType
	A.3.10 DOMImplementation
	A.3.11 Notation
	A.3.12 Entity
	A.3.13 ProcessingInstruction

	A.4 ECMAScript Core
	A.4.1 Array Object
	A.4.2 Boolean Object
	A.4.3 Date Object
	A.4.4 Function Object
	A.4.5 Global
	A.4.6 Math Object
	A.4.7 Number Object
	A.4.8 Object
	A.4.9 String Object

