
Pervasive.SQL 2000i

SQL Engine Reference
Reference for Using SQL with Pervasive.SQL 2000 Service Pack 3

Pervasive Software, Inc.
12365 Riata Trace Parkway

Building II
Austin, TX 78727 USA

Telephone: +1 512 231 6000 or 800 287 4383
Fax: +1 512 231 6010

E-Mail: info@pervasive.com
Web: http://www.pervasive.com

 Copyright 2001 Pervasive Software Inc. All rights reserved. Reproduction,
photocopying, or transmittal of this publication, or portions of this publication, is
prohibited without the express prior written consent of the publisher.

This product includes software developed by Powerdog Industries.
 Copyright 1994 Powerdog Industries. All rights reserved.

The ODBC Driver Manager for NetWare (ODBC.NLM) included in this product is
based on the GNU iODBC software Copyright 1995 by Ke Jin
<kejin@empress.com> and was modified by Simba Technologies Inc. in June 1999.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

A copy of the GNU Lesser General Public License is included in your installation of
Pervasive.SQL 2000 at \pvsw\doc\lesser.htm. If you cannot find this license, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA. You may contact Pervasive Software Inc. using the contact information on
the back cover of this manual.

SQL Engine Reference
March 2001
100-003673-004

d i s c l a i m e r PERVASIVE SOFTWARE INC. LICENSES THE SOFTWARE AND
DOCUMENTATION PRODUCT TO YOU OR YOUR COMPANY SOLELY ON AN “AS
IS” BASIS AND SOLELY IN ACCORDANCE WITH THE TERMS AND CONDITIONS
OF THE ACCOMPANYING LICENSE AGREEMENT. PERVASIVE SOFTWARE INC.
MAKES NO OTHER WARRANTIES WHATSOEVER, EITHER EXPRESS OR IMPLIED,
REGARDING THE SOFTWARE OR THE CONTENT OF THE DOCUMENTATION;
PERVASIVE SOFTWARE INC. HEREBY EXPRESSLY STATES AND YOU OR YOUR
COMPANY ACKNOWLEDGES THAT PERVASIVE SOFTWARE INC. DOES NOT
MAKE ANY WARRANTIES, INCLUDING, FOR EXAMPLE, WITH RESPECT TO
MERCHANTABILITY, TITLE, OR FITNESS FOR ANY PARTICULAR PURPOSE OR
ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, AMONG OTHERS.

t r a d e m a r k s Btrieve, Tango, Client/Server in a Box, and the Pervasive Software logo are registered
trademarks of Pervasive Software Inc.
Built on Pervasive, Built on Pervasive Software, Extranet in a Box, Pervasive.SQL, Jtrieve, Plug n’ Play
Databases, SmartScout, Solution Network, Ultra-light Z-DBA, Z-DBA, ZDBA, UltraLight,
MicroKernel Database Engine, and MicroKernel Database Architecture are trademarks of Pervasive
Software Inc.

Microsoft, MS-DOS, Windows, Windows NT, Win32, Win32s, and Visual Basic are registered
trademarks of Microsoft Corporation.

Windows 95 is a trademark of Microsoft Corporation.

NetWare and Novell are registered trademarks of Novell, Inc.

NetWare Loadable Module, NLM, Novell DOS, Transaction Tracking System, and TTS are
trademarks of Novell, Inc.

All other company and product names are the trademarks or registered trademarks of their
respective companies.

iii

Contents
About This Manual . xi

Who Should Read this Manual . xii
Manual Organization . xiii
Conventions . xiv
For More Information . xv

1 SQL Overview . 1-1
An Overview of the Structured Query Language (SQL)

Data Definition Statements . 1-3
Creating, Modifying, and Deleting Tables . 1-3
Creating and Deleting Indexes . 1-4
Creating and Deleting Triggers . 1-4
Creating and Deleting Stored Procedures . 1-5

Data Manipulation Statements . 1-6
Retrieving Data . 1-6
Modifying Data. . 1-7
Defining Transactions . 1-7
Creating and Deleting Views . 1-8
Executing Stored Procedures . 1-8
Executing Triggers . 1-8

Data Control Statements . 1-9
Enabling and Disabling Security . 1-9
Creating and Deleting Users and Groups . 1-10
Granting and Revoking Rights . 1-10

Database Names. . 1-11

2 ODBC Engine Reference. 2-1
A Reference to Pervasive.SQL Supported Syntax

Pervasive ODBC Engine Interface Limits . 2-2
Data Source Name Connection String Keywords . 2-3
ODBC API Conformance . 2-5

Exceptions to ODBC API Conformance . 2-7
SQL Grammar Conformance . 2-11

Delimited Identifiers in SQL Statements . 2-13
Global Variables . 2-13

SQL Grammar Elements . 2-16
ADD . 2-17
ALL . 2-18
ALTER TABLE . 2-19
ANY . 2-30

iv

Contents

AS . 2-31
BEGIN [ATOMIC] . 2-32
CALL . 2-33
CASCADE . 2-34
CASE . 2-35
CLOSE . 2-36
COMMIT . 2-37
CREATE GROUP . 2-39
CREATE INDEX . 2-40
CREATE PROCEDURE . 2-42
CREATE TABLE . 2-50
CREATE TRIGGER . 2-59
CREATE VIEW . 2-62
DECLARE . 2-64
DECLARE CURSOR . 2-65
DELETE (positioned) . 2-66
DELETE . 2-67
DISTINCT . 2-68
DROP GROUP . 2-69
DROP INDEX . 2-70
DROP PROCEDURE . 2-71
DROP TABLE . 2-72
DROP TRIGGER . 2-73
DROP VIEW . 2-74
END . 2-75
EXISTS . 2-76
FETCH . 2-77
FOREIGN KEY . 2-78
GRANT . 2-80
GROUP BY. 2-85
HAVING . 2-87
IF . 2-88
IN . 2-89
INSERT . 2-90
JOIN . 2-94
LEAVE . 2-101
LOOP. 2-102
NOT . 2-103
OPEN. 2-104
PRIMARY KEY . 2-105
PUBLIC . 2-107
PRINT . 2-108
RELEASE SAVEPOINT . 2-109
RESTRICT . 2-111
REVOKE . 2-112

v

Contents

ROLLBACK . 2-114
SAVEPOINT . 2-115
SELECT (with into) . 2-117
SELECT . 2-118
SET SECURITY . 2-129
SET TRUENULLCREATE . 2-130
SET VARIABLE . 2-131
SIGNAL . 2-132
SQLSTATE . 2-133
START TRANSACTION . 2-134
UNION . 2-136
UNIQUE . 2-138
UPDATE . 2-139
UPDATE (positioned) . 2-144
WHILE . 2-146
Grammar Element Definitions . 2-147
Scalar Functions . 2-156

Other Characteristics . 2-168
Creating Indexes . 2-168
Closing an Open Table. . 2-168
Concurrency . 2-168
Comma as Decimal Separator. . 2-169
OEM to ANSI Support. . 2-171

A Data Types . A-1
Pervasive.SQL Supported Data Types

Pervasive.SQL Supported Data Types . A-2
Supported Data Types . A-3

Btrieve Data Types . A-12

B SQL Reserved Words . B-1
Supported Pervasive.SQL Reserved Words

List of Reserved Words . B-2

C SQL API Mapping to ODBC . C-1
Summary of SQL API Mappings

SQL API to ODBC Mapping Tables . C-2

D System Tables . D-1
Pervasive.SQL System Tables Reference

Installing System Tables and Data Dictionary Files . D-3
X$File . D-4
X$Field. . D-5

vi

Contents

X$Index . D-8
X$Attrib. D-11
X$View . D-13
X$Proc . D-14
X$User . D-15
X$Rights . D-17
X$Relate. D-19
X$Trigger . D-21
X$Depend . D-23

vii

Tables

1-1 SQL Statement Types and Related Tasks . 1-2
1-2 Data Definition Statements - Tables . 1-3
1-3 Data Definition Statements - Indexes . 1-4
1-4 Data Definition Statements - Triggers . 1-4
1-5 Data Definition Statements - Trigger Control . 1-4
1-6 Data Definition Statements - Stored Procedure 1-5
1-7 Data Definition Statements - Stored Procedure Control 1-5
1-8 Data Manipulation Statements - Retrieving Data 1-6
1-9 Data Manipulation Statements - Retrieving Data Options 1-7
1-10 Data Manipulation Statements - Modifying Data 1-7
1-11 Data Manipulation Statements - Views . 1-8
1-12 Data Manipulation Statements- Stored Procedures 1-8
1-13 Data Control Statements - Security. 1-9
1-14 Data Control Statements - Groups and Users . 1-10
1-15 Data Control Statements - Rights. 1-10

2-1 Valid Connection Strings for Client DSNs . 2-4
2-2 Valid Connection Strings for Engine DSNs . 2-4
2-3 Interface-supported ODBC API Functions . 2-5
2-4 Options for SQLSetStmtOption and SQLGetStmtOption 2-8
2-5 Options for SQLSetConnectOption and SQLGetConnectOption 2-9
2-6 SQL Grammar Conformance . 2-11
2-7 Emp Table . 2-96
2-8 Dept Table . 2-96
2-9 Addr Table . 2-96
2-10 Loc Table . 2-96
2-11 Two-way Left Outer Join . 2-97
2-12 Three-way Radiating Left Outer Join . 2-98
2-13 Three-way Chaining Left Outer Join . 2-99
2-14 Three-way Radiating Left Outer Join, Less Optimized 2-99
2-15 Addr Table . 2-127
2-16 Loc Table . 2-127
2-17 SELECT Statement with Cartesian JOIN . 2-128
2-18 String Functions . 2-156
2-19 Numeric Functions . 2-159
2-20 Time and Date Functions . 2-162
2-21 System Functions. 2-165
2-22 Logical Functions . 2-165
2-23 Conversion Function . 2-167

viii

Tables

A-1 Pervasive.SQL Data Types . A-2
A-2 Fully Supported Data Types . A-3
A-3 Partially Supported Data Types . A-5
A-4 Legacy Data Types. . A-6
A-5 Pervasive.SQL to ODBC Data Type Mapping. . A-6
A-6 Data Type Valid Lengths and Value Ranges. . A-8
A-7 Infinity Representation . A-11
A-8 Btrieve Extended Key Types and Codes . A-12
A-9 INTEGER Key Type. . A-18
A-10 Rightmost Digit with Embedded Sign . A-19
A-11 TIMESTAMP Data Type . A-21

B-1 SQL Reserved Words and Symbols . B-2

C-1 Connection and Session Control APIs. . C-2
C-2 Preparing and Executing SQL Request APIs . C-3
C-3 Data Retrieval APIs . C-8
C-4 Statement Termination APIs . C-8
C-5 Database and Driver Information APIs . C-8
C-6 Metadata Information APIs . C-8
C-7 Transaction APIs . C-9
C-8 Deprecated Scalable SQL APIs . C-9

D-1 System Tables . D-1
D-2 X$File System Table Structure . D-4
D-3 X$File System Table Index Definitions . D-4
D-4 X$Field System Table Structure . D-5
D-5 X$Field System Table Index Definitions . D-7
D-6 X$Index System Table Structure . D-8
D-7 X$Index System Table Index Definitions . D-8
D-8 X$Index System Table Index Definitions . D-9
D-9 X$Attrib System Table Structure. . D-11
D-10 X$Attrib System Table Index Definitions . D-11
D-11 X$View System Table Structure . D-13
D-12 X$View System Table Index Definitions . D-13
D-13 X$Proc System Table Structure . D-14
D-14 X$Proc System Table Index Definitions . D-14
D-15 X$User System Table Structure . D-15
D-16 Xu$Flags System Table Bit Position Definitions D-16
D-17 X$User System Table Index Definitions . D-16
D-18 X$Rights System Table Structure . D-17
D-19 Xr$Rights System Table Bit Position Definitions D-18
D-20 X$Rights System Table Index Definitions . D-18
D-21 X$Relate System Table Structure. . D-19
D-22 X$Relate System Table Index Definitions . D-20

ix

Tables

D-23 X$Trigger System Table Structure . D-21
D-24 X$Trigger System Table Index Definitions. D-22
D-25 X$Depend System Table Structure . D-23
D-26 X$Depend System Table Index Definitions . D-23

x

Tables

xi

About This Manual

This manual contains the reference material you need for
understanding the language functionality and limitations of
Pervasive.SQL 2000i.

xii

About This Manual

Who Should Read this Manual

This manual provides information for using Pervasive.SQL 2000i.

This manual assumes you have a general understanding of ODBC
architecture and ODBC driver components, and have access to the
Microsoft ODBC Software Development Kit.

This document also assumes you have a working understanding of
modern database principles and terminology, the C language, and
your development environment (compiler and linker).

Pervasive Software would appreciate your comments and
suggestions about this manual. As a user of our documentation, you
are in a unique position to provide ideas that can have a direct
impact on future releases of this and other manuals. If you have
comments or suggestions for the product documentation, post your
request at http://www.pervasive.com/devtalk or send e-mail to
docs@pervasive.com.

xiii

Manual Organization

Manual Organization

This reference includes the following chapters:

! Chapter 1 — “SQL Overview”

This chapter describes the types of SQL statements you can
create using Pervasive.SQL 2000.

! Chapter 2 — “ODBC Engine Reference”

This chapter describes the Pervasive.SQL 2000 Engine’s
capabilities, characteristics, and conformance to the SQL
grammar and ODBC API standards.

! Appendix A — “Data Types”

This appendix contains tables of supported Data Types.

! Appendix B — “SQL Reserved Words”

This appendix contains the list of supported SQL Keyword.

! Appendix C — “SQL API Mapping to ODBC”

This appendix contains tables of Scalable SQL and ODBC
functions.

! Appendix D — “System Tables”

This appendix describes the system tables that comprise the
relational data dictionary.

The manual also contains an index.

xiv

About This Manual

Conventions

Unless otherwise noted, command syntax, code, and examples use
the following conventions:

Note Unless otherwise noted, all references in this book to the
Pervasive.SQL product refer to the current version, Pervasive.SQL
2000i.

Case Commands and reserved words typically appear in uppercase
letters. Unless the manual states otherwise, you can enter
these items using uppercase, lowercase, or both. For
example, you can type MYPROG, myprog, or MYprog.

[] Square brackets enclose optional information, as in
[log_name]. If information is not enclosed in square brackets,
it is required.

| A vertical bar indicates a choice of information to enter, as in
[file name | @file name].

< > Angle brackets enclose multiple choices for a required item, as
in /D=<5|6|7>.

variable Words appearing in italics are variables that you must replace
with appropriate values, as in file name.

... An ellipsis following information indicates you can repeat the
information more than one time, as in [parameter ...].

::= The symbol ::= means one item is defined in terms of another.
For example, a::=b means the item a is defined in terms of b.

* An asterisk is used as a wildcard symbol to indicate a series
of APIs with the same prefix.

xv

For More Information

For More Information

For complete information on the ODBC 2.5 specification, see the
Microsoft ODBC Programmer’s Reference.

xvi

About This Manual

1-1

c h a p t e r

1SQL Overview

An Overview of the Structured Query Language (SQL)

Structured Query Language (SQL) is a database language consisting
of English-like statements you can use to perform database
operations. Both the American National Standards Institute (ANSI)
and IBM have defined standards for SQL. (The IBM standard is the
Systems Application Architecture [SAA].) The Pervasive.SQL
product implements most of the features of both ANSI SQL and IBM
SAA SQL and provides additional extensions that neither standard
specifies.

Pervasive.SQL allows you to create different types of SQL statements.
The following table lists the types of SQL statements you can create
and the tasks you can accomplish using each type of statement:

1-2

SQL Overview

Table 1-1 SQL Statement Types and Related Tasks

The rest of this chapter briefly describes the SQL statements used in
each statement category. For detailed information about each
statement, refer to “ODBC Engine Reference” on page 2-1

The following are the statement category overview sections found in
this chapter:

! “Data Definition Statements” on page 1-3

! “Data Manipulation Statements” on page 1-6

! “Data Control Statements” on page 1-9

! “Database Names” on page 1-11

SQL Statement Type Tasks

Data Definition Create, modify, and delete tables.
Create and delete indexes.
Create and delete stored SQL
procedures.
Create and delete triggers.

Data Manipulation Retrieve, insert, update, and delete data
in tables.
Define transactions.
Define and delete views.
Execute stored SQL procedures.
Execute triggers.

Data Control Enable and disable security for a
dictionary.
Create and delete users and groups.
Grant and revoke table access rights.

1-3

Data Definition Statements

Data Definition Statements

Data definition statements let you specify the characteristics of your
database. When you execute data definition statements,
Pervasive.SQL stores the description of your database in a data
dictionary. You must define your database in the dictionary before
you can store or retrieve information.

Pervasive.SQL allows you to construct data definition statements to
do the following:

! Create, modify, and delete tables.

! Create and delete indexes.

! Create and delete triggers.

! Create and delete stored procedures.

The following sections briefly describe the SQL statements
associated with each of these tasks. For general information about
defining the characteristics of your database, refer to the
Pervasive.SQL Programmer’s Guide, available in the Pervasive.SQL
Software Developer Kit (SDK).

Creating,
Modifying, and
Deleting Tables

You can create, modify, and delete tables from a database by
constructing statements using the following statements:

Table 1-2 Data Definition Statements - Tables

CREATE
TABLE

Defines a table and optionally creates the corresponding data
file.

ALTER TABLE Changes a table definition. With an ALTER TABLE statement,
you can perform such actions as add a column to the table
definition, remove a column from the table definition, change a
column’s data type or length (or other characteristics), and add
or remove a primary key or a foreign key and associate the table
definition with an different data file.

DROP TABLE Deletes a table from the data dictionary and optionally deletes
the associated data file from the disk.

1-4

SQL Overview

Creating and
Deleting
Indexes

You can create and delete indexes from a database by constructing
statements using the following statements:

Table 1-3 Data Definition Statements - Indexes

Creating and
Deleting
Triggers

You can create and delete triggers from a database by constructing
statements using the following statements:

Table 1-4 Data Definition Statements - Triggers

Pervasive.SQL provides additional SQL control statements, which
you can only use in the body of a trigger. You can use the following
statements in triggers:

Table 1-5 Data Definition Statements - Trigger Control

CREATE INDEX Defines a new index (a named index) for an existing table.

DROP INDEX Deletes a named index.

CREATE TRIGGER Defines a trigger for an existing table.

DROP TRIGGER Deletes a trigger.

BEFORE Defines the trigger execution before the INSERT,
UPDATE, or DELETE operation.

AFTER Defines the trigger execution after the INSERT, UPDATE,
or DELETE operation.

1-5

Data Definition Statements

Creating and
Deleting Stored
Procedures

A stored procedure consists of statements you can precompile and
save in the dictionary. To create and delete stored procedures,
construct statements using the following:

Table 1-6 Data Definition Statements - Stored Procedure

Pervasive.SQL provides additional SQL control statements, which
you can only use in the body of a stored procedure. You can use the
following statements in stored procedures:

Table 1-7 Data Definition Statements - Stored Procedure Control

CREATE
PROCEDURE

Stores a new procedure in the data dictionary.

DROP
PROCEDURE

Deletes a stored procedure from the data dictionary.

IF...THEN...ELSE Provides conditional execution based on the truth value of
a condition.

LEAVE Continues execution by leaving a block or loop statement.

LOOP Repeats the execution of a block of statements.

WHILE Repeats the execution of a block of statements while a
specified condition is true.

1-6

SQL Overview

Data Manipulation Statements

Data manipulation statements let you access and modify the
contents of your database. Pervasive.SQL allows you to construct
data manipulation statements to do the following:

! Retrieve data from tables.

! Modify data in tables.

! Define transactions.

! Create and delete views.

! Execute stored procedures.

! Execute triggers.

The following sections briefly describe the SQL statements
associated with each of these tasks.

Retrieving Data All statements you use to retrieve information from a database are
based on the SELECT statement.

Table 1-8 Data Manipulation Statements - Retrieving Data

When you create a SELECT statement, you can use various clauses to
specify different options. (See the entry for the SELECT statement in
“ODBC Engine Reference” on page 2-1 for detailed information
about each type of clause.) The types of clauses you use in a SELECT
statement are as follows:

SELECT Retrieves data from one or more tables in the database.

1-7

Data Manipulation Statements

Table 1-9 Data Manipulation Statements - Retrieving Data Options

In addition, you can use the UNION keyword to obtain a single
result table from multiple SELECT queries.

Modifying Data You can add, change, or delete data from tables and views by issuing
statements such as the following:

Table 1-10 Data Manipulation Statements - Modifying Data

When you create a DELETE or UPDATE statement, you can use a
WHERE clause to define search criteria that restrict the data upon
which the statement acts.

Defining
Transactions

To update the data in a database, you can issue SQL statements
individually or you can define transactions (logical units of related
statements). By defining transactions, you can ensure that either all
the statements in a unit of work are executed successfully or none are
executed. You can use transactions to group statements to ensure the
logical integrity of your database.

Pervasive.SQL supports the ODBC API SQLTransact. See the
Microsoft ODBC Programmer’s Reference for more information.

FROM Specifies the tables or views from which to retrieve data.

WHERE Defines search criteria that qualify the data a SELECT statement
retrieves.

GROUP
BY

Combines sets of rows according to the criteria you specify and
allows you to determine aggregate values for one or more columns in
a group.

HAVING Allows you to limit a view by specifying criteria that the aggregate
values of a group must meet.

ORDER
BY

Determines the order in which Pervasive.SQL returns selected rows.

INSERT Adds rows to one or more tables or a view.

UPDATE Changes data in a table or a view.

DELETE Deletes rows from a table or a view.

1-8

SQL Overview

Creating and
Deleting Views

You can create and delete views by constructing statements using the
following statements:

Table 1-11 Data Manipulation Statements - Views

Executing
Stored
Procedures

A stored procedure consists of statements you can precompile and
save in the dictionary. To execute stored procedures, construct
statements using the following:

Table 1-12 Data Manipulation Statements- Stored Procedures

Executing
Triggers

A trigger consists of statements you can precompile and save in the
dictionary. Triggers are executed automatically by the engine when
the specified conditions occur.

CREATE VIEW Defines a database view and stores the definition in the
dictionary.

DROP VIEW Deletes a view from the data dictionary.

CALL Recalls a previously compiled procedure and executes it.

1-9

Data Control Statements

Data Control Statements

Data control statements let you define security for your database.
When you create a dictionary, no security is defined for it until you
explicitly enable security for that dictionary. Pervasive.SQL allows
you to construct data control statements to do the following:

! Enable and disable security.

! Create and delete users and groups.

! Grant and revoke rights.

Note If your Btrieve data files are secured using Btrieve owner names,
the Relational Engine will honor them when performing ODBC
operations (for example, Read Only access will be permitted with a
type 1 or 3 owner name, no access with a type 0 or 2 owner name) if
your database is not secured using Relational security. If your database
is secured using Relational security, the Relational Engine will enforce
access to the database solely based on the defined database user access
rights when performing ODBC operations. These rights must be
granted with the owner name specified.

The following sections briefly describe the SQL statements
associated with each of these tasks.

Enabling and
Disabling
Security

You can enable or disable security for a database by issuing
statements using the following statement:

Table 1-13 Data Control Statements - Security

SET
SECURITY

Enables or disables security for the database and sets the Master
password.

1-10

SQL Overview

Creating and
Deleting Users
and Groups

You can create or delete users and user groups for the database by
constructing statements using the following statements:

Table 1-14 Data Control Statements - Groups and Users

Granting and
Revoking
Rights

You can assign or remove rights from users or groups by issuing
statements using the following:

Table 1-15 Data Control Statements - Rights

CREATE GROUP Creates a new group of users.

DROP GROUP Deletes a group of users.

GRANT LOGIN TO Creates users and passwords, or adds users to groups.

REVOKE LOGIN
FROM

Removes a user from the dictionary.

GRANT (access rights) Grants a specific type of rights to a user or a group.
The rights you can grant with a GRANT (access
rights) statement are All, Insert, Delete, Alter, Select,
Update, and References.

GRANT CREATETAB TO Grants the right to create tables to a user or a group.

REVOKE (access rights) Revokes access rights from a user or a group.

REVOKE CREATETAB
FROM

Revokes the right to create tables from a user or a
group.

1-11

Database Names

Database Names

A database name is a name you associate with the location of a
dictionary and its data files; it is also the table qualifier. Database
names are stored in the database names configuration file
(DBNAMES.CFG). If you add a primary key, foreign key, or trigger
to a table, the database name is also written to the data file associated
with the table. Bound named databases also force the database name
to be written to the data file for every table in the database. (For more
information about bound databases, refer to the Pervasive.SQL
Programmer’s Guide.)

Database names must follow these conventions:

! Begin with a letter.

! Cannot contain blanks.

! Cannot be a reserved keyword.

! Must not exceed 20 characters.

! Database names are not case-sensitive.

1-12

SQL Overview

2-1

c h a p t e r

2ODBC Engine Reference

A Reference to Pervasive.SQL Supported Syntax

This chapter contains information regarding the limits and
conformance of the Pervasive.SQL 2000i ODBC interface:

! “Pervasive ODBC Engine Interface Limits” on page 2-2

! “Data Source Name Connection String Keywords” on page 2-3

! “ODBC API Conformance” on page 2-5

! “SQL Grammar Conformance” on page 2-11

! “SQL Grammar Elements” on page 2-16

! “Grammar Element Definitions” on page 2-147

! “Scalar Functions” on page 2-156

! “Other Characteristics” on page 2-168

For detailed information on the ODBC API, SQL grammar, and
scalar functions, refer to the Microsoft ODBC Programmer’s
Reference.

2-2

ODBC Engine Reference

Pervasive ODBC Engine Interface Limits

The following limits apply to the Pervasive ODBC Engine Interface:

! Number of rows: 2 billion

! Number of SELECT list columns in a query: 1600

! Number of columns in a table: 1536

! Number of columns in a database: the total number of columns,
constraints, and indexes in a database must be less than or equal
to 65,535. Because a column with the NOT NULL constraint
requires an additional field identifier for the constraint itself, the
maximum number of NOT NULL columns (assuming no other
columns, indexes, or constraints exist) is 32,767.

! Maximum size of a column: 2 GB

! Number of connections: limited by memory

! SQL statement length: 64 KB

! Maximum size of a single term (quoted literal string) in an SQL
statement: 14,997, excluding null terminator and quotations
(15,000 total)

! Number of statements per connection: limited by memory

! Table name length: 20 characters

! Column name length: 20 characters

! Index name length: 20 characters

! User name length: 30 characters

! Number of columns allowed in a trigger: 300

! Number of arguments in a parameter list for a stored procedure:
300

! Number of joined tables per query: limited by memory

! Length of DBQ entry in the odbc.ini: 20 characters (name of
database)

! Maximum of 300 ANDed predicates. For example, this statement
uses two ANDed predicates: SELECT * FROM person WHERE
First_Name = 'Janis' AND Last_Name = 'Nipart' AND

Perm_Street = '1301 K Street NW.'

! A character in a character string literal may be any ANSI
character between 1 and 255 decimal. A single quote (') must be
represented as two consecutive single quotes ('').

2-3

Data Source Name Connection String Keywords

Data Source Name Connection String Keywords

A connection string used to connect to a DSN may include any
number of driver-defined keywords. Using these keywords, the
driver has enough information to connect to the data source. The
driver (for example, the Pervasive ODBC Engine Interface or
Pervasive ODBC Client Interface) defines which keywords are
required to connect to the data source.

Connection strings serve the same purpose in Pervasive.SQL 2000i as
they did in previous versions. They are used to identify which data
source to connect to. The difference now lies in the driver-defined
keywords listed in the connection string. Pervasive.SQL 7 used a
different set of keywords to identify a data source.

2-4

ODBC Engine Reference

Listed below are the keywords used in Pervasive.SQL 2000i
connection strings.

Table 2-1 Valid Connection Strings for Client DSNs

DSN Name of the data source as returned by
SQLDataSources or the data sources dialog box of
SQLDriverConnect.

DRIVER The description of the driver as returned by SQLDrivers
function. For a Client DSN, it is "Pervasive ODBC Client
Interface".

ServerName The address of the server or host name and the port
number where the data resides.

ServerDSN The name of an Engine data source referenced by this
DSN.

TransportHint Specifies the transport protocols to check for the
ServerName. The list of transport protocols is specified
in the order in which they should be searched.

PWD The password corresponding to the user ID.

ArrayFetchOn Enable array fetching. Array fetching is used to improve
performance of data fetching between the client and the
server. The default setting is to enable array fetching.

ArrayBufferSize Size of the array buffer. Values between 1 and 64KB are
acceptable. The default setting is 8KB.

UID A user login ID.

Table 2-2 Valid Connection Strings for Engine DSNs

DSN Name of the data source as returned by
SQLDataSources or the data sources dialog box of
SQLDriverConnect.

DRIVER The description of the driver as returned by SQLDrivers
function. For an Engine DSN, it is "Pervasive ODBC
Engine Interface".

DBQ A database name.

UID A user login ID.

PWD The password corresponding to the user ID.

2-5

ODBC API Conformance

ODBC API Conformance

The Pervasive ODBC Engine Interface fully conforms to the ODBC
v2.5 specifications for core grammar API and Level 1 API, and
supports most of the Level 2 function calls. The following table lists
the ODBC API functions supported by the Pervasive ODBC Engine
Interface and the ODBC Conformance level.

Note The ODBC API functions that are supported in the Pervasive-
Oracle Interoperability Environment are described in a separate white
paper that is available on the Pervasive home page http://
www.pervasive.com

Table 2-3 Interface-supported ODBC API Functions

ODBC Function ODBC Conformance Level

SQLAllocConnect Core

SQLAllocEnv Core

SQLAllocStmt Core

SQLBindCol Core

SQLBindParameter Level 1

SQLBrowseConnect Level 2

SQLCancel Core

SQLColAttributes Core

SQLColumns Level 1

SQLColumnPrivileges Level 2

SQLConnect Core

SQLDataSources Level 2

SQLDescribeCol Core

SQLDescribeParam Level 2

SQLDisconnect Core

2-6

ODBC Engine Reference

SQLDriverConnect Level 1

SQLDrivers Level 2

SQLError Core

SQLExecDirect Core

SQLExecute Core

SQLExtendedFetch Level 2

SQLFetch Core

SQLForeignKeys Level 2

SQLFreeConnect Core

SQLFreeEnv Core

SQLFreeStmt Core

SQLGetConnectOption Level 1

SQLGetCursorName Core

SQLGetData Level 1

SQLGetFunctions Level 1

SQLGetInfo Level 1

SQLGetStmtOption Level 1

SQLGetTypeInfo Level 1

SQLMoreResults Level 2

SQLNativeSql Level 2

SQLNumResultCols Core

SQLNumParams Level 2

SQLParamData Level 1

SQLPrepare Core

SQLPrimaryKeys Level 2

Table 2-3 Interface-supported ODBC API Functions

ODBC Function ODBC Conformance Level

2-7

ODBC API Conformance

Exceptions to
ODBC API
Conformance

The following section contains details on the exceptions to ODBC
API conformance as specified in Table 2-3 on page 2-5.

SQLMoreResults

The Pervasive ODBC Engine Interface always returns
SQL_NO_DATA_FOUND for this function. The Pervasive ODBC Engine
Interface supports this function, with its return value, due to
requirements of Microsoft Access.

SQLProcedures Level 2

SQLProcedureColumns Level 2

SQLPutData Level 1

SQLRowCount Core

SQLSetConnectOption Level 1

SQLSetCursorName Core

SQLSetPos Level 2

SQLSetStmtOption Level 1

SQLSpecialColumns Level 1

SQLStatistics Level 1

SQLTables Level 1

SQLTablePrivileges Level 2

SQLTransact Core

Table 2-3 Interface-supported ODBC API Functions

ODBC Function ODBC Conformance Level

2-8

ODBC Engine Reference

SQLSetStmtOption / SQLGetStmtOption

The following table lists the options the Pervasive ODBC Engine
Interface supports for SQLSetStmtOption and SQLGetStmtOption:

Table 2-4 Options for SQLSetStmtOption and SQLGetStmtOption

fOption
(numerical value)

vParam Comments

SQL_MAX_ROWS(1) Supported according to the
Microsoft ODBC
Programmer’s Reference.

SQL_NOSCAN(2) Supported according to the
Microsoft ODBC
Programmer’s Reference

SQL_MAX_LENGTH(3) Supported according to the
Microsoft ODBC
Programmer’s Reference

SQL_ASYNC_ENABLE(4) Supported according to the
Microsoft ODBC
Programmer’s Reference

SQL_CURSOR_TYPE(6) Supported according to the
Microsoft ODBC
Programmer’s Reference

SQL_CONCURRENCY(7) Supported according to the
Microsoft ODBC
Programmer’s Reference

SQL_ROWSET_SIZE(9) Supported according to the
Microsoft ODBC
Programmer’s Reference

2-9

ODBC API Conformance

SQLSetConnectOption and SQLGetConnectOption

The following table lists the options the Pervasive ODBC Engine
Interface supports for SQLSetConnectOption and
SQLGetConnectOption:

1151 in the format:
Tablename,Password
(no space between
the Tablename and
the Password)

A Pervasive ODBC Engine
Interface extension:
appends password for table
to an internal list in
Pervasive ODBC Engine
Interface so that the user
does not have to be
prompted for the password.

1153 0 (default) turns off
table locking;
1 turns on table
locking.

A Pervasive ODBC Engine
Interface extension: When
vParam is set to 1, all tables
used by the hStmt are
exclusively locked when a
select, update, insert,
delete, or create index
statement is executed on the
hStmt. The tables remain
locked until the hStmt is
dropped (by calling
SQLFreeStmt with the
SQL_DROP option) or the
option is set to DEFLOCK
and the hStmt is re-
executed. Locked tables can
only be used by the locking
hStmt; they cannot be used
by any other hStmts.

Table 2-5 Options for SQLSetConnectOption and SQLGetConnectOption

fOption
(numerical value)

Comments

SQL_ACCESS_MODE(101) Supported according to the Microsoft
ODBC Programmer’s Reference.

SQL_AUTO(102) Supported according to the Microsoft
ODBC Programmer’s Reference.

Table 2-4 Options for SQLSetStmtOption and SQLGetStmtOption

fOption
(numerical value)

vParam Comments

2-10

ODBC Engine Reference

SQLGetTypeInfo

SQLGetTypeInfo generates a list of native data type names
(type_name) specified by the Pervasive ODBC Engine Interface. For
example, SQL_CHAR is mapped to CHARACTER. Use the names which
are returned from this function for the data type names for columns
in a CREATE TABLE or ALTER TABLE statement or for parameters
for procedures or declared variables in procedures and triggers.

SQLSpecialColumns

The Pervasive ODBC Engine Interface uses unique indexes as the
optimal set of columns that uniquely identifies a row in the table.
When a new row is inserted, the Pervasive ODBC Engine Interface
does not return the values for autoincrement columns.

2-11

SQL Grammar Conformance

SQL Grammar Conformance

The ODBC v2.5 specification provides three levels of SQL grammar
conformance: Minimum, Core, and Extended. Each higher level
provides more fully-implemented data definition and data
manipulation language support. The Pervasive ODBC Engine
Interface fully supports the minimum SQL grammar, as well as many
core and extended grammar statements. The Pervasive ODBC
Engine Interface support for SQL grammar is summarized in the
following table.

Table 2-6 SQL Grammar Conformance

SQL Grammar Statement Minimum Core Extended

ALTER TABLE ✔

CREATE GROUP ✔

CREATE INDEX ✔

CREATE PROCEDURE ✔

CREATE TABLE ✔

CREATE TRIGGER ✔

CREATE VIEW ✔

DELETE (positional) ✔

DELETE (searched) ✔

DROP GROUP ✔

DROP INDEX ✔

DROP PROCEDURE ✔

DROP TABLE ✔

DROP TRIGGER ✔

DROP VIEW ✔

2-12

ODBC Engine Reference

GRANT ✔

INSERT ✔

JOIN LEFT OUTER (Select) ✔

REVOKE ✔

SELECT (with into) ✔

- approximate-numeric-literal ✔

- between-predicate ✔

- correlation-name ✔

- date arithmetic ✔

- date-literal ✔

- exact-numeric-literal ✔

- extended predicates ✔

- in-predicate ✔

- set-function ✔

- time-literal ✔

- timestamp-literal ✔

Subqueries ✔

UNION ✔

SET SECURITY ✔

UPDATE (positional) ✔

UPDATE (searched) ✔

Table 2-6 SQL Grammar Conformance

SQL Grammar Statement Minimum Core Extended

2-13

SQL Grammar Conformance

Delimited
Identifiers in
SQL
Statements

Column names and table names can occur as delimited identifiers if
they contain non-ODBC standard characters. The delimiter
character for delimited identifiers is a double-quote. For example:

SELECT "last-name" FROM "non-standard-tbl"

Global
Variables

Pervasive.SQL 2000i supports the following global variables:

! @@IDENTITY

! @@ROWCOUNT

Either variable can be prefaced with two at signs (@@) or an at sign
and a colon (@:). For example, @@IDENTITY and @:IDENTITY are
equivalent.

@@IDENTITY and @@ROWCOUNT are global variables per
connection. Each database connection has its own @@IDENTITY
and @@ROWCOUNT values.

@@IDENTITY

This variable returns the value of the most recently inserted
IDENTITY column value (IDENTITY or SMALLIDENTITY). The
value is a signed integer value. The initial value is NULL.

This variable can only refer to a single column. If the target table
includes more than one IDENTITY column, the value of this
variable refers to the IDENTITY column that is the table’s primary
key. If no such column exists, then the value of this variable refers to
the first IDENTITY column in the table.

If the most recent insert was to a table without an IDENTITY
column, then the value of @@IDENTITY is set to NULL.

Examples

SELECT @@IDENTITY

Returns NULL if no records have been inserted in the current
connection, otherwise returns the IDENTITY column value of the
most recently inserted row.

SELECT * FROM T1 WHERE @:IDENTITY = 12

Returns the most recently inserted row if it has an IDENTITY
column value of 12. Otherwise, returns no rows.

INSERT INTO T1(C2) VALUES (@@IDENTITY)

2-14

ODBC Engine Reference

Inserts the IDENTITY value of the last row inserted into column C2
of the new row.

UPDATE T1 SET T1.C1 = (SELECT @@IDENTITY) WHERE T1.C1 =
@@IDENTITY + 10

Updates column C1 with the IDENTITY value of the last row
inserted, if the value of C1 is 10 greater than the IDENTITY column
value of the last row inserted.

UPDATE T1 SET T1.C1 = (SELECT NULL FROM T2 WHERE T2.C1 =
@@IDENTITY)

Updates column C1 with the value NULL if the value of C1 equals
the IDENTITY column value of the last row inserted.

The example below creates a stored procedure and calls it. The
procedure sets variable V1 equal to the sum of the input value and
the IDENTITY column value of the last row updated. The procedure
then deletes rows from the table anywhere column C1 equals V1. The
procedure then prints a message stating how many rows were
deleted.

CREATE PROCEDURE TEST (IN :P1 INTEGER);

BEGIN

DECLARE :V1 INTERGER;

SET :V1 = :P1 + @@IDENTITY;

DELETE FROM T1 WHERE T1.C1 = :V1;

IF (@@ROWCOUNT = 0) THEN

PRINT 'No row deleted';

ELSE

PRINT CONVERT(@@ROWCOUNT, SQL_CHAR) +

' rows deleted';

END IF;

END;

CALL TEST (@@IDENTITY)

@@ROWCOUNT

This variable returns the number of rows that were affected by the
most recent operation in the current connection. The value is an
unsigned integer. The initial value is zero.

2-15

SQL Grammar Conformance

Grammar

Same as the grammar for @@IDENTITY.

Examples

SELECT @@ROWCOUNT

Returns zero if no records were affected by the previous operation in
the current connection, otherwise returns the number of rows
affected by the previous operation.

CREATE TABLE T1 (C1 INTEGER, C2 INTEGER)

INSERT INTO T1 (C1, C2) VALUES (100,200)

INSERT INTO T1(C2) VALUES (100, @@ROWCOUNT)

SELECT * FROM T1

SELECT @@ROWCOUNT FROM T1

Results:

C1 C2
---- ----
100 200
100 1

2

The first SELECT generates two rows and shows that the value of
@@ROWCOUNT was 1 when it was used to insert a row. The second
SELECT returns 2 as the value of @@ROWCOUNT, that is, after the
first SELECT returned two rows.

Also see the example for @@IDENTITY.

2-16

ODBC Engine Reference

SQL Grammar Elements

The following pages in this section describe the complete grammar
for all supported SQL grammar elements.

Note You can use the SQL Data Manager provided with the Pervasive
Control Center to test most of the SQL examples. Exceptions are noted
in the discussion of the grammar elements. Type the SQL statements
directly in the query pane. If you wish to enter more than one SQL
statement, separate each statement using the pound sign (#). You can
change this delimiter character to a semi-colon by selecting Tools |
Properties from the menu.

2-17

SQL Grammar Elements

ADD

Remarks Use the ADD clause within the ALTER TABLE statement to specify
one or more column definitions, column constraints, or table
constraints to be added.

See Also “ALTER TABLE” on page 2-19

2-18

ODBC Engine Reference

ALL

Remarks When you specify the ALL keyword before a subquery,
Pervasive.SQL 2000i performs the subquery and uses the result to
evaluate the condition in the outer query. If all the rows the subquery
returns meet the outer query's condition for a particular row,
Pervasive.SQL 2000i includes that row in the final result table of the
statement.

Generally, you can use the EXISTS or NOT EXISTS keyword instead
of the ALL keyword.

Examples The following SELECT statement compares the ID column from the
Person table to the ID columns in the result table of the subquery:

SELECT p.ID, p.Last_Name

FROM Person p

WHERE p.ID <> ALL

SELECT f.ID FROM Faculty f WHERE f.Dept_Name =
'Chemistry');

If the ID value from Person does not equal to any of the ID values in
the subquery result table, Pervasive.SQL includes the row from
Person in the final result table of the statement.

See Also “GRANT” on page 2-80

“SELECT (with into)” on page 2-117

“SELECT” on page 2-118

“UNION” on page 2-136

2-19

SQL Grammar Elements

ALTER TABLE

The ALTER TABLE statement modifies a table definition.

Syntax ALTER TABLE table-name [IN DICTIONARY]
[USING 'path_name'] [WITH REPLACE] alter-option-list

table-name ::=user-defined-name

alter-option-list ::=alter-option

|(alter-option [, alter-option}...)

alter-option ::= ADD [COLUMN] column-definition

| ADD table-constraint-definition

| DROP [COLUMN] column-name

| DROP CONSTRAINT constraint-name

| DROP PRIMARY KEY

| MODIFY [COLUMN] column-definition

| ALTER [COLUMN] column-definition

column-definition ::= column-name data-type [DEFAULT default-value] [
column-constraint [column-constraint]... [CASE | COLLATE
collation-name]

column-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale])]

precision ::= integer

scale ::= integer

default-value ::= literal

literal ::= 'string'

| number

| { d 'date-literal' }

| { t 'time-literal' }

| { ts 'timestamp-literal' }

column-constraint ::= [CONSTRAINT constraint-name] col-constraint

constraint-name ::= user-defined-name

2-20

ODBC Engine Reference

col-constraint ::= NOT NULL

| UNIQUE

| PRIMARY KEY

| REFERENCES table-name [(column-name)] [referential-actions]

referential-actions ::= referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action ::= ON DELETE CASCADE

| ON DELETE RESTRICT

collation-name ::= 'string' | user-defined-name

table-constraint-definition ::= [CONSTRAINT constraint-name] table-

constraint

table-constraint ::= UNIQUE (column-name [, column-name]...)

| PRIMARY KEY (column-name [, column-name]...)

| FOREIGN KEY (column-name [, column-name])

REFERENCES table-name

[(column-name [, column-name]...)]

[referential-actions]

Remarks Refer to CREATE TABLE for information pertaining to primary and
foreign keys and referential integrity.

IN DICTIONARY

The purpose of using this keyword is to notify the SQL Relational
Database Engine (SRDE) that you wish to make modifications to the
DDFs, while leaving the underlying physical data unchanged. IN
DICTIONARY is a very powerful and advanced feature. It should
only be used by system administrators or when absolutely necessary.
Normally, the SRDE keeps DDFs and data files totally synchronized,
but this feature allows users the flexibility to force table dictionary
definitions to match an existing data file. This can be useful when
you want to create a definition in the dictionary to match an existing
data file, or when you want to use a USING clause to change the data
file path name for a table.

You cannot use this keyword on a bound database.

2-21

SQL Grammar Elements

IN DICTIONARY is allowed on CREATE and DROP TABLE, in
addition to ALTER TABLE. IN DICTIONARY affects dictionary
entries only, no matter what CREATE/ALTER options are specified.
Since Pervasive.SQL 2000i allows multiple options (any combination
of ADD, DROP, ADD CONSTRAINT, and so on), IN DICTIONARY
is honored under all circumstances to guarantee only the DDFs are
affected by the schema changes.

Tables that exist in the DDFs only (the data file does not exist) are
called detached entries. These tables are inaccessible via queries or
other operations that attempt to open the physical underlying file.
For this reason, IN DICTIONARY was added to DROP TABLE,
because it is now possible to create detached entries using CREATE
TABLE. Note that errors such as “Table not found” are generated by
attempts to access these detached entries. One can verify whether a
table really exists by using SQLTables or directly querying the
Xf$Name column of X$File:

SELECT * FROM X$File WHERE Xf$Name = 'table_name'

It is possible for a detached table to cause confusion, so the IN
DICTIONARY feature must be used with extreme care. It is crucial
that it should be used to force table definitions to match physical
files, not to detach them. Consider the following examples, assuming
that the file test123.btr does not exist. (USING is explained below, in
the next subtopic.)

CREATE TABLE t1 USING 't1.btr' (c1 INT)
ALTER TABLE t1 IN DICTIONARY USING 'test123.btr'

Or, combining both statements:

CREATE TABLE t1 IN DICTIONARY USING 'test123.btr' (c1
INT)

If you then attempt to SELECT from t1, you receive an error that the
table was not found. Confusion can arise, because you just created
the table—how can it not be found? Likewise, if you attempt to
DROP the table without specifying IN DICTIONARY, you receive
the same error. These errors are generated because there is no data
file associated with the table.

2-22

ODBC Engine Reference

USING

The USING keyword allows you to associate a CREATE TABLE or
ALTER TABLE action with a particular data file.

Because Pervasive.SQL requires a Named Database to connect, the
path_name provided must always be a simple file name or relative
path and file name. Paths are always relative to the first Data Path
specified for the Named Database to which you are connected.

The path/file name passed is partially validated when SQLPrepare is
called. The following rules must be followed when specifying the
path name:

! The text must be enclosed in single quotes, as shown in the
grammar definition.

! Text must be 1 to 64 characters in length, such that the entry as
specified fits in Xf$Loc in X$File. The entry is stored in Xf$Loc
exactly as typed (trailing spaces are truncated and ignored).

! The path must be a simple, relative path. Paths that reference a
server or volume are not allowed. For NetWare, a volume-based
path (such as SYS:/path/testfile.btr) is not considered a simple,
relative path.

! Relative paths containing a period (‘.’ - current directory) ,
double-period (‘..’ - parent directory), slash ‘\’, or any
combination of the three are allowed. The path must contain a
file name representing the SQL table name (path_name cannot
end in a slash ‘\’ or a directory name). All file names, including
those specified with relative paths, are relative to the first Data
Path as defined in the Named Database configuration.

! Root-based relative paths are also allowed. For example,
assuming that the first data path is D:\PVSW\DEMODATA, the
SRDE interprets the path name in the following statement as
D:\TEMP\TEST123.BTR.

CREATE TABLE t1 USING '\temp\test123.btr' (c1 int)

! Slash (‘\’) characters in relative paths may be specified either
UNIX style (‘/’) or in the customary backslash notation (‘\’),
depending on your preference. You may use a mixture of the two
types, if desired. This is a convenience feature since you may
know the directory structure scheme, but not necessarily know
(or care) what type of server you are connected to. The path is
stored in X$File exactly as typed. The SRDE engine converts the
slash characters to the appropriate platform type when utilizing

2-23

SQL Grammar Elements

the path to open the file. Also, since data files share binary
compatibility between all supported platforms, this means that
as long as the directory structure is the same between platforms
(and path-based file names are specified as relative paths), the
database files and DDFs can be moved from one platform to
another with no modifications. This makes for a much simpler
cross-platform deployment with a standardized database
schema.

! If specifying a relative path, the directory structure in the USING
clause must first exist. The SRDE does not create directories to
satisfy the path specified in the USING clause.

Include a USING clause to specify the physical location and name of
an existing data file to associate with an existing table. A USING
clause also allows you to create a new data file at a particular location
using an existing dictionary definition. (The string supplied in the
USING clause is stored in the Xf$Loc column of the dictionary file
X$File.) The original data file must be available when you create the
new file since some of the file information must be obtained from the
original.

In the DEMODATA sample database, the Person table is associated
with the file PERSON.MKD. If you create a new file named
PERSON2.MKD, the statement in the following example changes
the dictionary definition of the Person table so that the table is
associated with the new file.

ALTER TABLE Person IN DICTIONARY USING 'person2.mkd'

You must use either a simple file name or a relative path in the
USING clause. If you specify a relative path, Pervasive.SQL interprets
it relative to the first data file path associated with the database name.

The USING clause can be specified in addition to any other standard
ALTER TABLE option. This means columns can be manipulated in
the same statement that specifies the USING path.

If you specify a data file name that differs from the data file name
currently used to store the table data, the SRDE creates the new file
and copies all of the data from the existing file into the new file. For
example, suppose person.mkd is the current data file that holds the
data for table Person. You then alter table Person using data file
person2.mkd, as shown in the statement above. The contents of
person.mkd are copied into person2.mkd. Person2.mkd then
becomes the data file associated with table Person and database

2-24

ODBC Engine Reference

operations affect person2.mkd. Person.mkd is not deleted, but it is
not associated with the database any more.

The reason for copying the data is because Pervasive.SQL allows all
other ALTER TABLE options at the same time as USING. The new
data file created needs to be fully populated with the existing table’s
data. The file structure is not simply copied, but instead the entire
contents are moved over, similar to a Btrieve BUTIL -CREATE and
BUTIL -COPY. This can be helpful for rebuilding an SQL table, or
compressing a file that once contained a large number of records but
now contains only a few.

Note ALTER TABLE USING copies the contents of the existing data
file into the newly specified data file, leaving the old data file intact but
unlinked.

WITH REPLACE

Whenever WITH REPLACE is specified with the USING keyword,
Pervasive.SQL automatically overwrites any existing file name with
the specified file name. The existing file is always overwritten as long
as the operating system allows it.

WITH REPLACE affects only the data file, it never affects the DDFs.

The following rules apply when using WITH REPLACE:

! WITH REPLACE can only be used with USING.

! When used with IN DICTIONARY, WITH REPLACE is ignored
because IN DICTIONARY specifies that only the DDFs are
affected.

Note No data is lost or discarded if WITH REPLACE is used with
ALTER TABLE. The newly created data file, even if overwriting an
existing file, still contains all data from the previous file. You cannot
lose data by issuing an ALTER TABLE command.

Include WITH REPLACE in a USING clause to instruct
Pervasive.SQL to replace an existing file (the file must reside at the
location you specified in the USING clause). If you include WITH
REPLACE, Pervasive.SQL creates a new file and copies all the data
from the existing file into it. If you do not include WITH REPLACE
and a file exists at the specified location, Pervasive.SQL returns a

2-25

SQL Grammar Elements

status code and does not create the new file. The status code is SRDE
error -4940, Btrieve error 59.

MODIFY COLUMN and ALTER COLUMN

The ability to modify the nullability or data type of a column is
subject to the following restrictions:

! The target column cannot have a PRIMARY/FOREIGN KEY
constraint defined on it.

! If converting the old type to the new type causes an overflow
(arithmetic or size), the ALTER TABLE operation is aborted.

! If a nullable column contains NULL values, the column cannot
be changed to a non-nullable column.

If you must change the data type of a key column, you can do so by
dropping the key, changing the data type, and re-adding the key.
Keep in mind that you must ensure that all associated key columns
remain synchronized. For example, if you have a primary key in table
T1 that is referenced by foreign keys in tables T2 and T3, you must
first drop the foreign keys. Then you can drop the primary key. Then
you need to change all three columns to the same data type. Finally,
you must re-add the primary key and then the foreign keys.

The ANSI standard includes the ALTER keyword. Pervasive.SQL
allows both keywords (ALTER and MODIFY) in the ALTER TABLE
statement:

ALTER TABLE T1 MODIFY C1 INTEGER
ALTER TABLE T1 ALTER C1 INTEGER
ALTER TABLE T1 MODIFY COLUMN C1 INTEGER
ALTER TABLE T1 ALTER COLUMN C1 INTEGER

Pervasive.SQL allows altering a column to a smaller length if the
actual data does not overflow the new, smaller length of the column.
This behavior is similar to that of Microsoft SQL Server.

You can add, drop, or modify multiple columns on a single ALTER
TABLE statement. Although it simplifies operations, this behavior is
not considered ANSI-compliant. The following is a sample multi-
column ALTER statement.

ALTER TABLE T1 (ALTER C2 INT, ADD D1 CHAR(20), DROP C4,
ALTER C5 LONGVARCHAR, ADD D2 LONGVARCHAR NOT NULL)

You can convert all legacy data types (Pervasive.SQL v7 or earlier) to
data types that are natively supported by Pervasive.SQL 2000i. But

2-26

ODBC Engine Reference

the new data types cannot be converted backwards to legacy data
types.

To add a LONGVARCHAR/LONGVARBINARY column to a legacy
table that contains a NOTE/LVAR column, the NOTE/LVAR column
first has to be converted to a LONGVARCHAR or
LONGVARBINARY column. After converting the NOTE/LVAR
column to LONGVARCHAR/LONGVARBINARY, you can add more
LONGVARCHAR/LONGVARBINARY columns to the table. Note
that the legacy engine does not work with this legacy table because
the legacy engine can work with only one variable length column per
table.

Examples The following statement adds the Emergency_Phone column to the
Person table

ALTER TABLE person ADD Emergency_Phone NUMERIC(10,0)

The following statement adds two integer columns col1 and col2 to
the Class table.

ALTER TABLE class(ADD col1 INT, ADD col2 INT)

!!!

To drop a column from a table definition, specify the name of the
column in a DROP clause. The following statement drops the
emergency phone column from the Person table.

ALTER TABLE person DROP Emergency_Phone

The following statement drops col1 and col2 from the Class table.

ALTER TABLE class(DROP col1, DROP col2)

The following statement drops the constraint c1 in the Faculty table.

ALTER TABLE Faculty(DROP CONSTRAINT c1)

!!!

This example adds an integer column col3 and drops column col2 to
the Class table

ALTER TABLE class(ADD col3 INT, DROP col2)

!!!

The following example creates a primary key named c1 on the ID
field in the Faculty table. Note that you cannot create a primary key

2-27

SQL Grammar Elements

on a Nullable column. Doing so generates the error, "Nullable
columns are not allowed in primary keys".

ALTER TABLE Faculty(ADD CONSTRAINT c1 PRIMARY KEY(ID))

The following example creates a primary key PK_ID in the Faculty
table.

ALTER TABLE Faculty(ADD PRIMARY KEY(ID))

!!!

The following example adds the constraint UNIQUE to the columns
col1 and col2.

ALTER TABLE Class(ADD UNIQUE(col1,col2))

!!!

The following example drops the primary key in the Faculty table.
Because a table can have only one primary key, you cannot add a
primary key to a table that already has a primary key defined. To
change the primary key of a table, delete the existing key then add the
new primary key.

ALTER TABLE Faculty(DROP PRIMARY KEY)

Before you can drop a primary key from a parent table, you must
drop any corresponding foreign keys from dependent tables.

!!!

The following example adds a new foreign key to the Class table. The
Faculty column is defined as an index that does not include NULL
values. You cannot create a foreign key on a Nullable column.

ALTER TABLE Class ADD CONSTRAINT Teacher FOREIGN KEY
(Faculty_ID) REFERENCES Faculty (ID) ON DELETE RESTRICT

In this example, the restrict rule for deletions prevents someone
from removing a faculty member from the database without first
either changing or deleting all of that faculty’s classes.

If you add a foreign key to a table that already contains data, use the
Referential Integrity (RI) test to find any data that does not conform
to the new referential constraint. The RI test is run from the Check
Database wizard in the Pervasive Control Center (PCC).

The following statement shows how to drop the foreign key added in
this example. Pervasive.SQL drops the foreign key from the
dependent table and eliminates the referential constraints between
the dependent table and the parent table.

2-28

ODBC Engine Reference

ALTER TABLE Class DROP CONSTRAINT Teacher

!!!

The following example adds a foreign key to the Class table without
using the CONSTRAINT clause.

ALTER TABLE Class ADD FOREIGN KEY (Faculty_ID)
REFERENCES Faculty (ID) ON DELETE RESTRICT

This creates foreign key FK_Faculty_ID. To drop the foreign key,
specify the CONSTRAINT keyword:

ALTER TABLE Class DROP CONSTRAINT FK_Faculty_ID

!!!

The following example illustrates multiple adding and dropping of
constraints and columns in a table. This statement drops column
salary, adds a column col1 of type integer, and drops constraint c1 in
the Faculty table.

ALTER TABLE Faculty(DROP salary, ADD col1 INT, DROP
CONSTRAINT c1)

!!!

The following examples illustrate altering the data type of multiple
columns.

ALTER TABLE T1 (ALTER C2 INT, ADD D1 CHAR(20), DROP C4,
ALTER C5 LONGVARCHAR, ADD D2 LONGVARCHAR NOT NULL)

ALTER TABLE T2 (ALTER C1 CHAR(50), DROP CONSTRAINT
MY_KEY, DROP PRIMARY KEY, ADD MYCOLUMN INT)

The following examples illustrate how the column default and
alternate collating sequence can be set or dropped with the ALTER or
MODIFY column options.

CREATE TABLE T1 (c1 INT DEFAULT 10, c2 CHAR(10))

ALTER TABLE T1 ALTER c1 INT DEFAULT 20
— resets column c1 default to 20

ALTER TABLE T1 ALTER c1 INT
— drops column c1 default

ALTER TABLE T1 ALTER c2 CHAR(10)
COLLATE 'c:\pvsw\samples\upper.alt'
— sets alternate collating sequence on column c2

ALTER TABLE T1 ALTER c2 CHAR(10)
— drops alternate collating sequence on column c2

2-29

SQL Grammar Elements

Upper.alt treats upper and lower case letters the same for sorting. For
example, if a database has values abc, ABC, DEF, and Def, inserted in
that ordered, the sorting with upper.alt returns as abc, ABC, DEF,
and Def. (The values abc and ABC, and the values DEF and Def are
considered duplicates and are returned in the order in which they
were inserted.) Normal ASCII sorting sequences upper case letters
before lower case, such that the sorting would return as ABC, DEF,
Def, abc.

2-30

ODBC Engine Reference

ANY

Remarks The ANY keyword works similarly to the ALL keyword except that
Pervasive.SQL 2000i includes the compared row in the result table if
the condition is true for any row in the subquery result table.

Examples The following statement compares the ID column from Person to the
ID columns in the result table of the subquery. If the ID value from
Person is equal to any of the ID values in the subquery result table,
Pervasive.SQL includes the row from Person in the result table of the
SELECT statement.

SELECT p.ID, p.Last_Name

FROM Person p

WHERE p.ID = ANY

(SELECT f.ID FROM Faculty f WHERE f.Dept_Name =
'Chemistry');

See Also “SELECT” on page 2-118

2-31

SQL Grammar Elements

AS

Remarks Include an AS clause to assign a name to a select term or to a table
name. You can use this name elsewhere in the statement to reference
the select term. When you use the AS clause on a non-aggregate
column, you can reference the name in WHERE, ORDER BY,
GROUP BY, and HAVING clauses. When you use the AS clause on
an aggregate column, you can reference the name only in an ORDER
BY clause.

The name you define must be unique in the SELECT list.

Examples The AS clause in the following statement instructs Pervasive.SQL to
assign the name Total to the select term SUM (Amount_Paid) and
order the results by the total for each student:

SELECT Student_ID, SUM (Amount_Paid) AS Total

FROM Billing

GROUP BY Student_ID

ORDER BY Total

When you use the AS clause on a table name in a FROM clause, you
can reference the name in a WHERE, ORDER BY, GROUP BY, and
HAVING clause.

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_Id

FROM Person AS p, class AS c

WHERE p.Id = c.Faculty_Id

ORDER BY c.Faculty_Id

You can rewrite this query without using the AS clause in the FROM
clause as follows.

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_Id

FROM Person p, class c

WHERE p.Id = c.Faculty_Id

ORDER BY c.Faculty_Id

See Also “SELECT” on page 2-118

2-32

ODBC Engine Reference

BEGIN [ATOMIC]

Remarks It is often convenient to group individual statements so that they can
be treated as a single unit. The BEGIN and END statements are used
in compound statements to group the statements into a unit. You can
use a compound statement only in the body of a stored procedure or
in a trigger declaration.

ATOMIC specifies that the set of statements within the unit either all
succeed or all fail. If one condition within the BEGIN ATOMIC . . .
END unit is not met, no records are affected. If the condition should
affect more than one row, all rows (or none) are affected. For any
record to be affected, all the conditions within a BEGIN
ATOMIC . . . END unit must return true.

Examples In the following example, two UPDATEs are grouped as an ATOMIC
unit. The Perm_State column in the Person table is updated only if
all of the other conditions are true. That is, a record for Bill Andrew
exists with 'TX' as the Perm_State, and a record for Yvette Lopez
exists with 'OR' as the Perm_State. If any of these conditions are not
true, neither record is updated. Assume the BEGIN . . . END unit is
within a procedure.

BEGIN ATOMIC

UPDATE Person SET Perm_State = 'MA' WHERE Perm_State
= 'TX' AND First_Name = 'Bill' AND Last_Name =
'Andrew';

UPDATE Person SET Perm_State = 'WA' WHERE Perm_State
= 'OR' AND First_Name = 'Yvette' AND Last_Name =
'Lopez';

END;

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-33

SQL Grammar Elements

CALL

Remarks Use the CALL statement to invoke a previously created stored
procedure.

Examples The following example calls a procedure without parameters:

CALL NoParms() or CALL NoParms

The following examples call a procedure with parameters:

CALL Parms(vParm1, vParm2)

CALL CheckMax(N.Class_ID)

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-34

ODBC Engine Reference

CASCADE

Remarks If you specify CASCADE when creating a Foreign Key, Pervasive.SQL
uses the DELETE CASCADE rule. When a user deletes a row in the
parent table, Pervasive.SQL 2000i deletes the corresponding rows in
the dependent table.

See Also “ALTER TABLE” on page 2-19

“CREATE TABLE” on page 2-50

2-35

SQL Grammar Elements

CASE

Remarks The CASE keyword causes Pervasive.SQL to ignore case when
evaluating restriction clauses involving a string column.

For example, suppose if you have a column called Name that is
defined with the CASE attribute. If you insert two rows with Name =
‘Smith’ and Name = ‘SMITH,’ a query with a restriction specifying
Name = ‘smith’ correctly returns both rows.

Examples The following example shows how you add a column to the Student
table with the CASE keyword.

ALTER TABLE Student ADD Name char(64) CASE

The following example shows how to modify a column with the
CASE keyword.

ALTER TABLE Student MODIFY Name char(64) CASE

See Also “ALTER TABLE” on page 2-19

“SELECT” on page 2-118

2-36

ODBC Engine Reference

CLOSE

Remarks The CLOSE statement closes an open SQL cursor.

The cursor that the cursor name specifies must be open.

This statement is allowed only inside of a stored procedure or a
trigger, since cursors and variables are only allowed inside of stored
procedures and triggers.

Examples The following example closes the cursor BTUCursor.

CLOSE BTUCursor;

See Also “OPEN” on page 2-104

“CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-37

SQL Grammar Elements

COMMIT

The COMMIT statement signals the end of a logical transaction and
converts temporary data into permanent data. The logical
transaction begins with START TRANSACTION. COMMIT must
always be paired with START TRANSACTION. START
TRANSACTION must always be paired with a COMMIT or a
ROLLBACK.

Syntax COMMIT [WORK]

Remarks COMMIT (and START TRANSACTION) is supported only within
stored procedures. You cannot use COMMIT or START
TRANSACTION within the SQL Data Manager. (The SQL Data
Manager sets AUTOCOMMIT to “on.”)

Any committed statements within a stored procedure are controlled
by the outermost transaction of the calling ODBC application. This
means that, depending on the AUTOCOMMIT mode specified on
SQLSetConnectOption, calling the stored procedure externally from
an ODBC application performs one of two actions. It either commits
automatically (AUTOCOMMIT on, the default) or waits for you to
call SQLTransact with SQL_COMMIT or SQL_ROLLBACK (when
AUTOCOMMIT is set to off).

You may call multiple START TRANSACTION statements to start
the nested transactions, but the outermost COMMIT controls
whether any nested committed blocks are committed or rolled back.
For example, if transactions are nested five levels, then five
COMMIT statements are needed to commit all of the transactions.
COMMIT does not release any lock until the outermost transaction
is committed.

COMMIT and COMMIT WORK perform the same functionality.

Examples The following example, within a stored procedure, begins a
transaction which updates the Amount_Owed column in the Billing
table. This work is committed; another transaction updates the
Amount_Paid column and sets it to zero. The final COMMIT
WORK statement ends the second transaction.

2-38

ODBC Engine Reference

Statements are delimited with a semi-colon inside stored procedures
and triggers.

START TRANSACTION;

UPDATE Billing B

SET Amount_Owed = Amount_Owed - Amount_Paid

WHERE Student_ID IN

(SELECT DISTINCT E.Student_ID

FROM Enrolls E, Billing B

WHERE E.Student_ID = B.Student_ID);

COMMIT WORK;

START TRANSACTION;

UPDATE Billing B

SET Amount_Paid = 0

WHERE Student_ID IN

(SELECT DISTINCT E.Student_ID

FROM Enrolls E, Billing B

WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;

See Also “CREATE PROCEDURE” on page 2-42

“ROLLBACK” on page 2-114

“START TRANSACTION” on page 2-134

2-39

SQL Grammar Elements

CREATE GROUP

The CREATE GROUP statement creates one or more security
groups.

Syntax CREATE GROUP group-name [, group-name]...

group-name ::= user-defined-name

Examples The following example creates a group named pervasive.

CREATE GROUP pervasive

The next example uses a list to create several groups at once.

CREATE GROUP pervasive_dev, pervasive_marketing

See Also “DROP GROUP” on page 2-69

“GRANT” on page 2-80

“REVOKE” on page 2-112

“SET SECURITY” on page 2-129

2-40

ODBC Engine Reference

CREATE INDEX

Use the CREATE INDEX statement to create a named index for a
specified table.

Syntax CREATE [UNIQUE | NOT MODIFIABLE] INDEX index-name
ON table-name [index-definition]

index-definition ::= (index-segment-definition [, index-segment-definition
]...)

index-segment-definition ::= column-name [ASC | DESC]

index-name ::= user-defined-name

Remarks The maximum column size for varchar columns is 254 bytes if the
column does not allow Null values and 253 bytes if the column is
nullable.

The maximum column size for char columns is 255 bytes if the
column does not allow Null values and 254 bytes if the column is
nullable.

The maximum Btrieve key size is 255. When a column is nullable and
indexed a segmented key is created with 1 byte for the null indicator
and a maximum 254 bytes from the column indexed. Varchar
columns differ from char columns in that either the length byte
(Btrieve lstring) or a zero terminating byte (Btrieve zstring) are
reserved, reducing the effective storage by 1 byte.

Pervasive.SQL 2000i nullable columns: For data files with 4096 byte
page size, you are limited to 119 index segments per file. Because
each indexed nullable column with true null support requires an
index consisting of 2 segments, you cannot have more than 59
indexed nullable columns in a table (or indexed nullable true null
fields in a Btrieve file). This limit is smaller for smaller page sizes.
Any file created with Pervasive.SQL 2000i, with file create mode set
to 7.x, and TRUENULLCREATE set to the default value of On, has
true null support. Files created using an earlier file format, or with
Pervasive.SQL 7, or with TRUENULLCREATE set to Off, do not have
true null support and do not have this limitation.

A UNIQUE segment key guarantees that the combination of the
segments for a particular row are unique in the file. It does not
guarantee or require that each individual segment is unique.

2-41

SQL Grammar Elements

Note All data types can be indexed except for the following:
BIT
LONGVARBINARY
LONGVARCHAR
BLOB
CLOB

Examples The following example creates an index named Dept based on
Dept_name in the Faculty table.

CREATE INDEX Dept on Faculty(Dept_Name)

!!!

The following example creates a non-modifiable segmented index in
the Person table.

CREATE NOT MODIFIABLE INDEX X_Person on Person(ID,
Last_Name)

See Also “DROP INDEX” on page 2-70

2-42

ODBC Engine Reference

CREATE PROCEDURE

The CREATE PROCEDURE statement creates a new stored
procedure. Stored procedures are SQL statements that are pre-
defined and saved in the database dictionary.

Syntax CREATE PROCEDURE procedure-name
([parameter [, parameter]...])

RETURNS (result [, result]...)]

[WITH DEFAULT HANDLER]
as-or-semicolon

proc-stmt

procedure-name ::= user-defined-name

parameter ::= parameter-type-name data-type [DEFAULT proc-expr | =
proc-expr]

| SQLSTATE

parameter-type-name ::= parameter-name

| parameter-type parameter-name

| parameter-name parameter-type

parameter-type ::= IN | OUT | INOUT | IN_OUT

parameter-name ::= [:] user-defined-name

proc-expr ::= same as normal expression but does not allow IF expression,
or ODBC-style scalar functions

result ::= user-defined-name data-type

as-or-semicolon ::= AS | ;

proc-stmt ::= [label-name :] BEGIN [ATOMIC] [proc-stmt [
; proc-stmt]...] END [label-name]

| CALL procedure-name (proc-expr [, proc-expr]...)

| CLOSE cursor-name

| DECLARE cursor-name CURSOR FOR select-statement [FOR
UPDATE | FOR READ ONLY]

| DECLARE variable-name data-type [DEFAULT proc-expr | = proc-

expr]

| DELETE WHERE CURRENT OF cursor-name

| delete-statement

2-43

SQL Grammar Elements

| FETCH [fetch-orientation [FROM]] cursor-name [INTO
variable-name [, variable-name]]

| IF proc-search-condition THEN proc-stmt [; proc-stmt]... [
ELSE proc-stmt [; proc-stmt]...] END IF

| insert-statement

| LEAVE label-name

| [label-name :] LOOP proc-stmt [; proc-stmt]... END
LOOP [label-name]

| OPEN cursor-name

| PRINT proc-expr [, 'string']
— applies only to Windows-based platforms

| RETURN [proc-expr]

| transaction-statement

| select-statement-with-into

| select-statement

| SET variable-name = proc-expr

| SIGNAL [ABORT] sqlstate-value

| START TRANSACTION

| update-statement

| UPDATE SET column-name = proc-expr [, column-name = proc-

expr]... WHERE CURRENT OF cursor-name

| [label-name :] WHILE proc-search-condition DO [proc-stmt [;
proc-stmt]]... END WHILE [label-name]

transaction-statement ::= commit-statement

| rollback-statement

| release-statement

commit-statement ::= see COMMIT statement

rollback-statement ::= see ROLLBACK statement

release-statement ::= see RELEASE SAVEPOINT statement

label-name ::= user-defined-name

cursor-name ::= user-defined-name

variable-name ::= user-defined-name

2-44

ODBC Engine Reference

proc-search-condition ::= same as normal search-condition, but does not
allow any expression that includes a subquery.

fetch-orientation ::= | NEXT

sqlstate-value ::= 'string'

Remarks To execute stored procedures, use the CALL statement.

Note that, in a procedure, the name of a variable and the name of a
parameter must begin with a colon (:), both in the definition and use
of the variable or parameter.

Statements are delimited with a semi-colon inside stored procedures
and triggers.

The WITH DEFAULT HANDLER clause, when present, causes the
procedure to continue execution when an error occurs. The default
behavior (without this clause) is to abort the procedure with
SQLSTATE set to the error state generated by the statement.

The use of a StmtLabel at the beginning (and optionally at the end)
of an IF statement is an extension to ANSI SQL 3.

The PRINT statement applies only to Windows-based platforms. It
is ignored on other operating system platforms.

Examples The following example creates stored procedure Enrollstudent,
which inserts a record into the Enrolls table, given the Student ID
and the Class ID.

CREATE PROCEDURE Enrollstudent(IN :Stud_id INTEGER, IN
:Class_Id INTEGER, IN :GPA REAL);

BEGIN

INSERT INTO Enrolls VALUES(:Stud_id, :Class_id,
:GPA);

END;

CALL Enrollstudent(1023456781, 146, 3.2)

SELECT * FROM Enrolls WHERE Student_id = 1023456781

The CALL and SELECT statements, respectively, call the procedure
by passing arguments, then display the row that was added.

!!!

2-45

SQL Grammar Elements

The following procedure reads the Class table, using the classId
parameter passed in by the caller and validates that the course
enrollment is not already at its limit before updating the Enrolls
table.

CREATE PROCEDURE Checkmax(in :classid integer);

BEGIN

DECLARE :numenrolled integer;

DECLARE :maxenrolled integer;

SELECT COUNT(*) INTO :numenrolled FROM Enrolls
WHERE class_ID = :classid;

SELECT Max_size INTO :maxenrolled FROM Class WHERE
id = :classid;

IF (:numenrolled > :maxenrolled) THEN

PRINT 'Enrollment Failed. Number of students
enrolled reached maximum allowed for this
class' ;

ELSE

PRINT 'Enrollment Successful.';

END IF;
END;
CALL Checkmax(101)

Note that COUNT(expression) counts all non-NULL values for an
expression across a predicate. COUNT(*) counts all values,
including NULL values.

!!!

The following is an example of using the OUT parameter when
creating stored procedures. Calling this procedure returns the
number of students into the variable :outval that satisfies the
WHERE clause.

CREATE PROCEDURE PROCOUT (out :outval INTEGER)
AS BEGIN
SELECT COUNT(*) INTO :outval FROM Enrolls WHERE Class_Id

= 101;
END;

!!!

2-46

ODBC Engine Reference

The following is an example of using the INOUT parameter when
creating stored procedures. Calling this procedure requires an
INPUT parameter :IOVAL and returns the value of the output in the
variable :IOVAL. The procedure sets the value of this variable based
on the input and the IF condition.

CREATE PROCEDURE ProcIODate (INOUT :ioval DATE)
AS BEGIN

IF :ioval = '1982-03-03'

THEN

SET :ioval ='1982-05-05';

ELSE

SET :ioval = '1982-03-03';

END IF;
END;

!!!

The following example illustrates using the RETURNS clause in a
procedure. This sample returns all of the data from the Class table
where the Start Date is equal to the date passed in on the CALL
statement.

CREATE PROCEDURE DateReturnProc(IN :pdate DATE)

RETURNS(

ID INTEGER,

Name CHAR(7),

Section CHAR(3),

Max_Size USMALLINT,

Start_Date DATE,

Start_Time TIME,

Finish_Time TIME,

Building_Name CHAR(25),

Room_Number UINTEGER,

Faculty_ID UBIGINT

);

BEGIN

SELECT * FROM class WHERE Start_Date = :pdate;

END;

CALL DateReturnProc('2001-06-05')

2-47

SQL Grammar Elements

!!!

The following example shows the use of the WHERE CURRENT OF
clause, which applies to positioned deletes.

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS

BEGIN

 DECLARE c1 CURSOR FOR SELECT name FROM course

 WHERE name = :CourseName FOR UPDATE;

 OPEN c1;

 FETCH NEXT FROM c1 INTO :CourseName;

 DELETE WHERE CURRENT OF c1;

 CLOSE c1;

END;

CALL MyProc('HIS 305')

(Note that if you use a SELECT inside of a WHERE clause of a
DELETE, it is a searched DELETE not a positioned DELETE.)

!!!

The following is an example of using ATOMIC, which groups a set of
statements so that either all succeed or all fail. ATOMIC can be used
only within the body of a stored procedure or trigger.

The first procedure does not specify ATOMIC, the second does.

CREATE TABLE t1 (c1 INTEGER)

CREATE UNIQUE INDEX t1i1 ON t1 (c1)

CREATE PROCEDURE p1 ();

BEGIN

INSERT INTO t1 VALUES (1);

INSERT INTO t1 VALUES (1);

END;

CREATE PROCEDURE p2 ();

BEGIN ATOMIC

INSERT INTO t1 VALUES (2);

INSERT INTO t1 VALUES (2);

END;

CALL p1()
CALL p2()
SELECT * FROM t1

2-48

ODBC Engine Reference

Both procedures return an error because they attempt to insert
duplicate values into a unique index.

The result is that t1 contains only one record because the first
INSERT statement in procedure p1 succeeds even though the second
fails. Likewise, the first INSERT statement in procedure p2 succeeds
but the second fails. However, since ATOMIC is in procedure p2, all
of the work done inside procedure p2 is rolled back when the error is
encountered.

Using Stored
Procedures

As an example, CALL foo(a, b, c) executes the stored procedure “foo”
with parameters a, b, and c. Any of the parameters may be a dynamic
parameter (such as ‘?’), which is necessary for retrieving the values of
output and inout parameters. For example: CALL foo {(?, ?, ‘TX’)}.
The curly braces are optional in your source code.

This is how stored procedures work in the current version of
Pervasive.SQL.

! Triggers (CREATE TRIGGER, DROP TRIGGER) are
supported. This support includes tracking dependencies that the
trigger has on tables, and procedures, in the database.

! CONTAINS, NOT CONTAINS, BEGINS WITH are not
supported.

! There is no support for dynamic SQL statement construction.

! LOOP: post conditional loops are not supported
(REPEAT...UNTIL).

! ELSEIF: The conditional format uses IF ... THEN ... ELSE. There
is no ELSEIF support.

! CASE: There is no support for CASE in stored procedures.

General Stored
Procedure Engine
Limitations

You should be aware of the following limitations before using stored
procedures.

! There is no qualifier support in CREATE PROCEDURE or
CREATE TRIGGER.

! Maximum length of a stored procedure variable name is 128
characters.

! Maximum length of a stored procedure name is 30 characters.

! Only partial syntactical validation occurs at CREATE
PROCEDURE or CREATE TRIGGER time. Column names are
not validated until run time.

2-49

SQL Grammar Elements

! There is currently no support for using subqueries everywhere
expressions are used. For example, set :arg = SELECT
MIN(sal) FROM emp is not supported. However, you could
rewrite this query as SELECT min(sal) INTO :arg FROM emp.

! Only default handler error support.

Limits to SQL
Variables and
Parameters

! Variable names must be preceded with a colon (:). This allows
Pervasive.SQL 2000i Stored Procedure parser to differentiate
between variables and column names.

! Variable names are case insensitive.

! No session variables are supported. Variables are local to the
procedure.

Limits to Cursors ! Positioned UPDATE does not accept tablename.

Limits when using
Long Data

! When you pass long data as arguments to an imbedded
procedure, (that is, a procedure calling another procedure), the
data is truncated to 65500 bytes.

! Long data arguments to and from procedures are limited to a
total of 2 MB. (See MAXLEN_LONGPROCDATA define in
spm.c)

Internally long data may be copied between cursors with no limit on
data length. If a long data column is fetched from one statement and
inserted into another, no limit is imposed. If, however, more than
one destination is required for a single long data variable, only the
first destination table receives multiple calls to PutData. The
remaining columns are truncated to the first 65500 bytes. This is a
limitation of the ODBC GetData mechanism.

See Also “DROP PROCEDURE” on page 2-71

2-50

ODBC Engine Reference

CREATE TABLE

The CREATE TABLE statement creates a new table in a database.

CREATE TABLE contains functionality that goes beyond minimal or
core SQL conformance. CREATE TABLE supports Referential
Integrity features. Pervasive.SQL conforms closely to SQL 92 with
the exception of ColIDList support.

Syntax CREATE TABLE table-name [IN DICTIONARY]
[USING 'path_name'] [WITH REPLACE]
(table-element [, table-element]...)

table-name ::=user-defined-name

table-element ::= column-definition | table-constraint-definition

olumn-definition ::= column-name data-type [DEFAULT default-value] [
column-constraint [column-constraint]... [CASE | COLLATE
collation-name]

column-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale])]

precision ::= integer

scale ::= integer

default-value ::= literal

literal ::= 'string'

| number

| { d 'date-literal' }

| { t 'time-literal' }

| { ts 'timestamp-literal' }

column-constraint ::= [CONSTRAINT constraint-name] col-constraint

constraint-name ::= user-defined-name

col-constraint ::= NOT NULL

| UNIQUE

| PRIMARY KEY

| REFERENCES table-name [(column-name)] [referential-actions]

2-51

SQL Grammar Elements

table-constraint-definition ::= [CONSTRAINT constraint-name] table-constraint

table-constraint ::= UNIQUE (column-name [, column-name]...)

| PRIMARY KEY (column-name [, column-name]...)

| FOREIGN KEY (column-name [, column-name])
 REFERENCES table-name

 [(column-name [, column-name]...)]
 [referential-actions]

column-constraint ::= [CONSTRAINT constraint-name] col-constraint

constraint-name ::= user-defined-name

col-constraint ::= NOT NULL

| UNIQUE

| PRIMARY KEY

| REFERENCES table-name [(column-name)] [referential-actions]

referential-actions ::= referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action ::= ON DELETE CASCADE

| ON DELETE RESTRICT

Remarks Indexes must be created with the CREATE INDEX statement.

Foreign key constraint names must be unique in the dictionary. All
other constraint names must be unique within the table in which
they reside and must not have the same name as a column.

If the primary key name is omitted, the name of the first column in
the key, prefixed by "PK_" is used as the name of the constraint.

If a reference column is not listed, the reference becomes, by default,
the primary key of the table referenced. If a PK is unavailable, a "Key
not found" error returns. You can avoid this situation by
enumerating the target column.

If the foreign key name is omitted, the name of the first column in
the key, prefixed by "FK_" is used as the name of the constraint. This
is different behavior from previous versions of Pervasive.SQL.

2-52

ODBC Engine Reference

If the UNIQUE key constraint name is omitted, the name of the first
column in the constraint, prefixed by "UK_" is used as the name of
the constraint.

If the NOT NULL key name is omitted, the name of the first column
in the key, prefixed by "NN_" is used as the name of the constraint.

The maximum length of a constraint name is 20 characters.
Pervasive.SQL use the left most 20 characters of the name after the
prefix, if any, has been prepended.

A foreign key may reference the primary key of the same table
(known as a self-referencing key).

If CREATE TABLE succeeds, the data file name for the created table
is xxx.mkd, where xxx is the specified table name. If the table already
exists, it is not replaced, and error -1303, “Table already exists” is
signalled. The user must drop the table before replacing it.

Delete Rule

You can include an ON DELETE clause to define the delete rule
Pervasive.SQL enforces for an attempt to delete the parent row to
which a foreign key value refers. The delete rules you can choose are
as follows:

! If you specify CASCADE, Pervasive.SQL uses the delete cascade
rule. When a user deletes a row in the parent table, Scalable SQL
deletes the corresponding row in the dependent table.

! If you specify RESTRICT, Pervasive.SQL enforces the delete
restrict rule. A user cannot delete a row in the parent table if a
foreign key value refers to it.

If you do not specify a delete rule, Pervasive.SQL applies the restrict
rule by default.

Update Rule

Pervasive.SQL enforces the update restrict rule. This rule prevents the
addition of a row containing a foreign key value if the parent table
does not contain the corresponding primary key value. This rule is
enforced whether or not you use the optional ON UPDATE clause,
which allows you to specify the update rule explicitly.

2-53

SQL Grammar Elements

IN DICTIONARY

See the discussion of IN DICTIONARY for“ALTER TABLE” on page
2-19.

USING

The USING keyword allows you to associate a CREATE TABLE or
ALTER TABLE action with a particular data file.

Because Pervasive.SQL requires a Named Database to connect, the
path_name provided must always be a simple file name or relative
path and file name. Paths are always relative to the first Data Path
specified for the Named Database to which you are connected.

The path/file name passed is partially validated when SQLPrepare is
called. The following rules must be followed when specifying the
path name:

! The text must be enclosed in single quotes, as shown in the
grammar definition.

! Text must be 1 to 64 characters in length, such that the entry as
specified fits in Xf$Loc in X$File. The entry is stored in Xf$Loc
exactly as typed (trailing spaces are truncated and ignored).

! The path must be a simple, relative path. Paths that reference a
server or volume are not allowed. For NetWare, a volume-based
path (such as SYS:/path/testfile.btr) is not considered a simple,
relative path.

! Relative paths containing a period (‘.’ - current directory) ,
double-period (‘..’ - parent directory), slash ‘\’, or any
combination of the three are allowed. The path must contain a
file name representing the SQL table name (path_name cannot
end in a slash ‘\’ or a directory name). All file names, including
those specified with relative paths, are relative to the first Data
Path as defined in the Named Database configuration.

! Root-based relative paths are also allowed. For example,
assuming that the first data path is D:\PVSW\DEMODATA, the
SRDE interprets the path name in the following statement as
D:\TEMP\TEST123.BTR.

CREATE TABLE t1 USING '\temp\test123.btr' (c1 int)

! Slash (‘\’) characters in relative paths may be specified either
UNIX style (‘/’) or in the customary backslash notation (‘\’),
depending on your preference. You may use a mixture of the two
types, if desired. This is a convenience feature since you may

2-54

ODBC Engine Reference

know the directory structure scheme, but not necessarily know
(or care) what type of server you are connected to. The path is
stored in X$File exactly as typed. The SRDE engine converts the
slash characters to the appropriate platform type when utilizing
the path to open the file. Also, since data files share binary
compatibility between all supported platforms, this means that
as long as the directory structure is the same between platforms
(and path-based file names are specified as relative paths), the
database files and DDFs can be moved from one platform to
another with no modifications. This makes for a much simpler
cross-platform deployment with a standardized database
schema.

! If specifying a relative path, the directory structure in the USING
clause must first exist. The SRDE does not create directories to
satisfy the path specified in the USING clause.

Include a USING clause to specify the physical location of the data
file associated with the table. This is necessary when you are creating
a table definition for an existing data file, or when you want to
specify explicitly the name or physical location of a new data file.

If you do not include a USING clause, Pervasive.SQL generates a
unique file name (based on the table name with the extension
.MKD) and creates the data file in the first directory specified in the
data file path associated with the database name.

If the USING clause points to an existing data file, the SRDE creates
the table in the DDFs and returns SQL_SUCCESS_WITH_INFO.
The informational message returned indicates that the dictionary
entry now points to an existing data file. If you want CREATE
TABLE to return only SQL_SUCCESS, specify IN DICTIONARY on
the CREATE statement. If WITH REPLACE is specified (see below),
then any existing data file with the same name is destroyed and
overwritten with a newly created file.

Note Pervasive.SQL returns a successful status code if you specify an
existing data file.

WITH REPLACE

Whenever WITH REPLACE is specified with the USING keyword,
Pervasive.SQL automatically overwrites any existing file name with

2-55

SQL Grammar Elements

the specified file name. The existing file is always overwritten as long
as the operating system allows it.

WITH REPLACE affects only the data file, it never affects the DDFs.

The following rules apply when using WITH REPLACE:

! WITH REPLACE can only be used with USING.

! When used with IN DICTIONARY, WITH REPLACE is ignored
because IN DICTIONARY specifies that only the DDFs are
affected.

Note No data is lost or discarded if WITH REPLACE is used with
ALTER TABLE. The newly created data file, even if overwriting an
existing file, still contains all data from the previous file. You cannot
lose data by issuing an ALTER TABLE command.

If you include WITH REPLACE in your CREATE TABLE statement,
Pervasive.SQL creates a new data file to replace the existing file (if the
file exists at the location you specified in the USING clause).
Pervasive.SQL discards any data stored in the original file with the
same name. If you do not include WITH REPLACE and a file exists
at the specified location, Pervasive.SQL returns a status code and
does not create a new file.

WITH REPLACE affects only the data file; it does not affect the table
definition in the dictionary.

Examples The following example creates a table named Billing with columns
Student_ID, Transaction_Number, Log, Amount_Owed,
Amount_Paid, Registrar_ID and Comments, using the specified
data types.

CREATE TABLE Billing

(Student_ID UBIGINT,

Transaction_Number USMALLINT,

Log TIMESTAMP,

Amount_Owed DECIMAL(6,2),

Amount_Paid DECIMAL(6,2),

Registrar_ID DECIMAL(10,0),

Comments LONGVARCHAR)

2-56

ODBC Engine Reference

!!!

The following example creates a table named Faculty in the database
with columns ID, Dept_Name, Designation, Salary, Building_Name,
Room_Number, Rsch_Grant_Amount, and a primary key based on
column ID.

CREATE TABLE Faculty

 (ID UBIGINT,

 Dept_Name CHAR(20) CASE,

 Designation CHAR(10) CASE,

 Salary CURRENCY,

 Building_Name CHAR(25) CASE,

 Room_Number UINTEGER,

 Rsch_Grant_Amount DOUBLE,
PRIMARY KEY (ID))

The following example is similar to the one just discussed, except the
ID column, which is the primary key, is designated as UNIQUE.

CREATE TABLE organizations

(ID UBIGINT UNIQUE,

Name LONGVARCHAR,

Advisor CHAR(30),

Number_of_people INTEGER,

Date_started DATE,

Time_started TIME,

Date_modified TIMESTAMP,

Total_funds DOUBLE,

Budget DECIMAL(2,2),

Avg_funds REAL,

President VARCHAR(20) CASE,

Number_of_executives SMALLINT,

Number_of_meetings TINYINT,

Office UTINYINT,

Active BIT,
PRIMARY KEY(ID))

!!!

In the next example, assume that you need a table called
StudentAddress to contain students’ addresses. You need to alter the
Student table’s id column to be a primary key and then create a

2-57

SQL Grammar Elements

StudentAddress table. (The Student table is part of the DEMODATA
sample database.) Four ways are shown how to create the
StudentAddress table.

First, make the id column of table Student a primary key.

ALTER TABLE Student ADD PRIMARY KEY (id)

This next statement creates a StudentAddress table to have a foreign
key referencing the id column of table Student with the DELETE
CASCADE rule. This means that whenever a row is deleted from the
Student table (Student is the parent table in this case), all rows in the
StudentAddress table with that same id are also deleted.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES
Student (id) ON DELETE CASCADE, addr CHAR(128))

This next statement creates a StudentAddress table to have a foreign
key referencing the id column of table Student with the DELETE
RESTRICT rule. This means that whenever a row is deleted from the
Student table and there are rows in the StudentAddress table with
that same id, an error occurs. You need to explicitly delete all the
rows in StudentAddress with that id before the row in the Student
table, the parent table, can be deleted.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES
Student (id) ON DELETE RESTRICT, addr CHAR(128))

This next statement creates a StudentAddress table to have a foreign
key referencing the id column of table Student with the UPDATE
RESTRICT rule. This means that if a row is added to the
StudentAddress table that has an id that does not occur in the
Student table, an error occurs. In other words, you must have a
parent row before you can have foreign keys referring to that row.
This is the default behavior of Pervasive.SQL. Moreover,
Pervasive.SQL does not support any other UPDATE rules. Thus,
whether this rule is stated explicitly or not makes no difference.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES
Student (id) ON UPDATE RESTRICT, addr CHAR(128))

This next statement creates a StudentAddress table to have a foreign
key referencing the id column of table Student with the DELETE
RESTRICT and UPDATE RESTRICT rules. The Pervasive.SQL
parser accepts this syntax with RI rules. However, as stated above, the
UPDATE RESTRICT rule is redundant since Pervasive.SQL does not
behave any other way with respect to UPDATE rules.

2-58

ODBC Engine Reference

CREATE TABLE StudentAddress (id UBIGINT REFERENCES
Student (id) ON DELETE RESTRICT, addr CHAR(128))

!!!

This next example shows how to use an alternate collating sequence
(ACS) when you create a table. The ACS file used is the sample one
provided with Pervasive.SQL.

CREATE TABLE t5 (c1 CHAR(20) COLLATE
'c:\pvsw\samples\upper.alt')

Upper.alt treats upper and lower case letters the same for sorting. For
example, if a database has values abc, ABC, DEF, and Def, inserted in
that ordered, the sorting with upper.alt returns as abc, ABC, DEF,
and Def. (The values abc and ABC, and the values DEF and Def are
considered duplicates and are returned in the order in which they
were inserted.) Normal ASCII sorting sequences upper case letters
before lower case, such that the sorting would return as ABC, DEF,
Def, abc.

See Also “DROP TABLE” on page 2-72

2-59

SQL Grammar Elements

CREATE TRIGGER

The CREATE TRIGGER statement creates a new trigger in a
database. Triggers are a type of stored procedure that are
automatically executed when data in a table is modified with an
INSERT, UPDATE, or DELETE.

Unlike a regular stored procedure, a trigger cannot be executed
directly nor can it have parameters. Triggers do not return a result set
nor can they be defined on views.

Syntax CREATE TRIGGER trigger-name before-or-after ins-upd-del ON table-name

[ORDER number]

[REFERENCING referencing-alias] FOR EACH ROW

[WHEN proc-search-condition] proc-stmt

trigger-name ::= user-defined-name

before-or-after ::= BEFORE | AFTER

ins-upd-del ::= INSERT | UPDATE | DELETE

referencing-alias ::= OLD [AS] correlation-name [NEW [AS]
correlation-name]

| NEW [AS] correlation-name [OLD [AS] correlation-name]

correlation-name ::= user-defined-name

Remarks This function is an extension to SQL grammar as documented in the
Microsoft ODBC Programmer’s Reference and implements a subset of
the SQL 3/PSM (Persistent Stored Modules) specification.

Note In a trigger, the name of a variable must begin with a colon (:).

OLD (OLD correlation-name) and NEW (NEW correlation-name) can be used
used inside triggers, not in a regular stored procedure.

In a DELETE or UPDATE trigger, "OLD" or a OLD correlation-name
must be prepended to a column name to reference a column in the
row of data prior to the update or delete operation.

2-60

ODBC Engine Reference

In an INSERT or UPDATE trigger, "NEW" or a NEW correlation-name
must be prepended to a column name to reference a column in the
row about to be inserted or updated.

Trigger names must be unique in the dictionary.

Triggers are executed either before or after an UPDATE, INSERT, or
DELETE statement is executed, depending on the type of trigger.

Examples The following example creates a trigger that records any new values
inserted into the Tuition table into TuitionIDTable.

CREATE TABLE Tuitionidtable (PRIMARY KEY(id), id
UBIGINT)

CREATE TRIGGER InsTrig

BEFORE INSERT ON Tuition

REFERENCING NEW AS Indata

FOR EACH ROW

INSERT INTO Tuitionidtable VALUES(Indata.ID);

An UPDATE on Tutition calls the trigger.

!!!

The following example shows how to keep two tables, A and B,
synchronized with triggers. Both tables have the same structure.

CREATE TABLE A (col1 INTEGER, col2 CHAR(10))
CREATE TABLE B (col1 INTEGER, col2 CHAR(10))

CREATE TRIGGER MyInsert

AFTER INSERT ON A FOR EACH ROW

INSERT INTO B VALUES (NEW.col1, NEW.col2);

CREATE TRIGGER MyDelete

AFTER DELETE ON A FOR EACH ROW

DELETE FROM B WHERE B.col1 = OLD.col1 AND B.col2 =
OLD.col2;

CREATE TRIGGER MyUpdate

AFTER UPDATE ON A FOR EACH ROW

UPDATE B SET col1 = NEW.col1, col2 = NEW.col2 WHERE
B.col1 = OLD.col1 AND B.col2 = OLD.col2;

2-61

SQL Grammar Elements

Note that OLD and NEW in the example keep the tables
synchronized only if table A is altered with non-positional SQL
statements. If the ODBC SQLSetPos API or a positioned update or
delete is used, then the tables stay synchronized only if table A does
not contain any duplicate records. An SQL statement cannot be
constructed to alter one record but leave another duplicate record
unaltered.

See Also “DROP TRIGGER” on page 2-73

2-62

ODBC Engine Reference

CREATE VIEW

Use the CREATE VIEW statement to define a stored view on the
database.

Syntax CREATE VIEW view-name [(column-name [, column-name]...)]
AS query-specification

view-name ::= user-defined-name

Remarks A view is a database object that stores a query and behaves like a
table. A view contains a set of columns and rows. Data accessed
through a view is stored in one or more tables; the tables are
referenced by SELECT statements. Data returned by a view is
produced dynamically every time the view is referenced.

The maximum length of a view name is 20 characters. The
maximum number of columns in a view is 256. There is a 64KB limit
on view definitions.

A grouped view is one that contains the GROUP BY clause and/or an
aggregate function in the SELECT list. Grouped views are not
allowed in the FROM clause of a SELECT statement with a join (that
is, with multiple tables). Grouped views are not allowed in the
FROM clause of a SELECT statement with a GROUP BY.

Grouped views may not be used in a subquery.

The WHERE clause against a grouped view is a HAVING clause, and
appended to the HAVING clauses of the grouped view.

View definitions cannot contain UNION operators. The operator
UNION cannot be applied to any SQL statement that references one
or more views.

View definitions cannot contain procedures, nor can they contain an
ORDER BY.

Examples The following statement creates a view named vw_Person, which
creates a phone list of all the people enrolled in a university. This
view lists the last names, first names and telephone numbers with a
heading for each column. The Person table is part of the
DEMODATA sample database.

CREATE VIEW vw_Person (lastn,firstn,phone) AS SELECT
Last_Name, First_Name,Phone FROM Person

2-63

SQL Grammar Elements

In a subsequent query on the view, you may use the column headings
in your SELECT statement, as shown in the next example.

SELECT lastn, firstn FROM vw_Person

See Also “DROP VIEW” on page 2-74

2-64

ODBC Engine Reference

DECLARE

Remarks Use the DECLARE statement to define an SQL variable.

In Pervasive.SQL 2000i, this statement is allowed only inside of a
stored procedure or a trigger, since cursors and variables are allowed
only inside of stored procedures and triggers.

The name of a variable must begin with a colon (:), both in the
definition and use of the variable or parameter.

A variable must be declared before it can set to a value.

Examples The following examples declare the variables :Counter and
:CurrentCapacity.

DECLARE :counter INTEGER = 0;

DECLARE :CurrentCapacity INTEGER = 0;

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

“SET VARIABLE” on page 2-131

2-65

SQL Grammar Elements

DECLARE CURSOR

The DECLARE CURSOR statement defines an SQL cursor.

Syntax DECLARE cursor-name CURSOR FOR select-statement

 [FOR UPDATE | FOR READ ONLY]

Remarks In Pervasive.SQL 2000i, this statement is only allowed inside of a
stored procedure or a trigger, since cursors and variables are only
allowed inside of stored procedures and triggers.

The default behavior for cursors is read-only. Therefore, you must
use FOR UPDATE to explicitly designate an update (write or delete).

Examples The following example creates a cursor that selects values from the
Degree, Residency, and Cost_Per_Credit columns in the Tuition
table and orders them by ID number.

DECLARE BTUCursor CURSOR

FOR SELECT Degree, Residency, Cost_Per_Credit

FROM Tuition

ORDER BY ID;

!!!

The following example uses FOR UPDATE to ensure a delete.

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS

BEGIN

 DECLARE c1 CURSOR FOR SELECT name FROM course

 WHERE name = :CourseName FOR UPDATE;

 OPEN c1;

 FETCH NEXT FROM c1 INTO :CourseName;

 DELETE WHERE CURRENT OF c1;

 CLOSE c1;

END;

CALL MyProc('HIS 305')

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-66

ODBC Engine Reference

DELETE (positioned)

Use the positioned DELETE statement to remove the current row of
a view associated with an SQL cursor.

Syntax DELETE WHERE CURRENT OF cursor-name

Remarks This statement is allowed in stored procedures, triggers, and at the
session level.

Note Even though positioned DELETE is allowed at the session level,
the DECLARE CURSOR statement is not. Use the
SQLGetCursorName() API to obtain the cursor name of the active
result set.

Examples The following sequence of statements provide the setting for the
positioned DELETE statement. The required statements for the
positioned DELETE statement are DECLARE CURSOR, OPEN
CURSOR, and FETCH FROM cursorname.

The Modern European History class has been dropped from the
schedule, so this example deletes the row for Modern European
History (HIS 305) from the Course table in the sample database:

CREATE PROCEDURE DropClass();

DECLARE :CourseName CHAR(7);

DECLARE c1 CURSOR

FOR SELECT name

FROM COURSE

WHERE name = :CourseName;

BEGIN

SET :CourseName = 'HIS 305';

OPEN c1;

FETCH NEXT FROM c1 INTO :CourseName;

DELETE WHERE CURRENT OF c1;
END;

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-67

SQL Grammar Elements

DELETE

This statement deletes specified rows from a database table.

Syntax DELETE FROM table-name [alias-name]
[WHERE search-condition]

Remarks INSERT, UPDATE, and DELETE statements behave in an atomic
manner. That is, if an insert, update, or delete of more than one row
fails, then all insertions, updates, or deletes of previous rows by the
same statement are rolled back.

Examples The following statements deletes the row for first name Ellen from
the person table in the sample database.

DELETE FROM person WHERE First_Name = 'Ellen'

The following statement deletes the row for Modern European
History (HIS 305) from the course table in the sample database:

DELETE FROM Course WHERE Name = 'HIS 305'

2-68

ODBC Engine Reference

DISTINCT

Remarks Include the DISTINCT keyword in your SELECT statement to direct
Pervasive.SQL to remove duplicate values from the result. By using
DISTINCT, you can retrieve all unique rows that match the SELECT
statement's specifications.

The following rules apply to using the DISTINCT keyword:

You can use DISTINCT in any statement that includes subqueries.

The DISTINCT keyword is ignored if the selection list contains an
aggregate; the aggregate guarantees that no duplicate rows result.

The following usage of DISTINCT is not allowed:

SELECT DISTINCT column1, DISTINCT column2

Examples The following statement retrieves all the unique courses taught by
Professor Beir (who has a Faculty ID of 111191115):

SELECT DISTINCT c.Name

FROM Course c, class cl

WHERE c.name = cl.name AND cl.faculty_id =
'111191115'

See Also “SELECT” on page 2-118

2-69

SQL Grammar Elements

DROP GROUP

This statement drops one or more groups in a secured database.

Syntax DROP GROUP group-name [, group-name]...

Remarks Separate multiple group names with a comma.

Examples The following example drops the group pervasive.

DROP GROUP pervasive

The following example uses a list to drop groups.

DROP GROUP pervasive_dev, pervasive_marketing

See Also “CREATE GROUP” on page 2-39

2-70

ODBC Engine Reference

DROP INDEX

This statement drops a specific index from a designated table.

Syntax DROP INDEX [table-name .] index-name

Examples The following statement drops the named index from the Faculty
table.

DROP INDEX Faculty.Dept

See Also “CREATE INDEX” on page 2-40

2-71

SQL Grammar Elements

DROP PROCEDURE

This statement removes one or more stored procedures from the
current database.

Syntax DROP PROCEDURE procedure-name

Examples The following statement drops the stored procedure myproc from
the dictionary:

DROP PROCEDURE myproc

See Also “CREATE PROCEDURE” on page 2-42

2-72

ODBC Engine Reference

DROP TABLE

This statement removes a table from a designated database.

Syntax DROP TABLE table-name [IN DICTIONARY]

Remarks CASCADE and RESTRICT are not supported.

If any triggers depend on the table, the table is not dropped.

If a transaction is in progress and refers to the table, then an error is
signalled and the table is not dropped.

The drop of table fails if other tables depend on the table to be
dropped.

If a primary key exists, it is dropped. The user need not drop the
primary key before dropping the table. If the primary key of the table
is referenced by a constraint belonging to another table, then the
table is not dropped and an error is signalled.

If the table has any foreign keys, then those foreign keys are dropped.

If the table has any other constraints (for example, NOT NULL,
CHECK, UNIQUE, or NOT MODIFIABLE), then those constraints
are dropped when the table is dropped.

IN DICTIONARY

See the discussion of IN DICTIONARY for“ALTER TABLE” on page
2-19.

Examples The following statement drops the class table definition from the
dictionary.

DROP TABLE Class

See Also “ALTER TABLE” on page 2-19

“CREATE TABLE” on page 2-50

2-73

SQL Grammar Elements

DROP TRIGGER

This statement removes a trigger from the current database.

Syntax DROP TRIGGER trigger-name

Examples The following example drops the trigger named InsTrig.

DROP TRIGGER InsTrig

See Also “CREATE TRIGGER” on page 2-59

2-74

ODBC Engine Reference

DROP VIEW

This statement removes a specified view from the database.

Syntax DROP VIEW view-name

Remarks [CASCADE | RESTRICT] is not supported.

Examples The following statement drops the vw_person view definition from
the dictionary.

DROP VIEW vw_person

See Also “CREATE VIEW” on page 2-62

2-75

SQL Grammar Elements

END

Remarks See the discussion for BEGIN [ATOMIC] on page 2-32.

2-76

ODBC Engine Reference

EXISTS

Remarks Use the EXISTS keyword to test whether rows exist in the result of
the subquery. For every row the outer query evaluates, Pervasive.SQL
2000i tests for the existence of a related row from the subquery.
Pervasive.SQL 2000i includes in the statement's result table each row
from the outer query that corresponds to a related row from the
subquery.

Examples For example, the following statement returns a list containing only
persons who have a 4.0 grade point average:

SELECT * FROM Person p WHERE EXISTS

(SELECT * FROM Enrolls e WHERE e.Student_ID = p.id

AND Grade = 4.0)

See Also “SELECT” on page 2-118

2-77

SQL Grammar Elements

FETCH

Remarks A FETCH statement positions an SQL cursor on a specified row of a
table and retrieves values from that row by placing them into the
variables in the target list.

Examples The FETCH statement in this example retrieves values from cursor
c1 into the CourseName variable. The Positioned UPDATE
statement in this example updates the row for Modern European
History (HIS 305) in the Course table in the DEMODATA sample
database:

CREATE PROCEDURE UpdateClass();

BEGIN

DECLARE :CourseName CHAR(7);

DECLARE :OldName CHAR(7);

DECLARE c1 CURSOR FOR SELECT name FROM course WHERE
name = :CourseName;

OPEN c1;

SET :CourseName = 'HIS 305';

FETCH NEXT FROM c1 INTO :OldName;

UPDATE SET name = 'HIS 306' WHERE CURRENT OF c1;
END;

See Also “CREATE PROCEDURE” on page 2-42

2-78

ODBC Engine Reference

FOREIGN KEY

Remarks Include the FOREIGN KEY keywords in the ADD clause to add a
foreign key to a table definition.

If you add a foreign key to a table that already contains data, use the
Pervasive Control Center utility to find any data that does not
conform to the new referential constraint. See the Pervasive.SQL
User’s Guide for information about this utility.

Note You must be logged in to the database using a database name
before you can add a foreign key or conduct any other referential
integrity (RI) operation. Also, when security is enabled, you must have
the Reference right on the table to which the foreign key refers before
you can add the key.

Include a FOREIGN KEY clause in your CREATE TABLE statement
to define a foreign key on a dependent table. In addition to specifying
a list of columns for the key, you can define a name for the key.

The columns in the foreign key column may be nullable; however,
you should ensure that pseudo-null columns do not exist in a
MicroKernel index that does not index pseudo-null values.

The foreign key name must be unique in the dictionary. If you omit
the foreign key name, Pervasive.SQL uses the name of the first
column in the key as the foreign key name. This can cause a duplicate
foreign key name error if your dictionary already contains a foreign
key with that name.

When you specify a foreign key, Pervasive.SQL creates an index on
the columns that make up the key. This index has the same attributes
as the index on the corresponding primary key except that it allows
duplicate values. To assign other attributes to the index, create it
explicitly using a CREATE INDEX statement. Then, define the
foreign key with an ALTER TABLE statement. When you create the
index, ensure that it does not allow null values and that its case and
collating sequence attributes match those of the index on the
corresponding primary key column.

The columns in a foreign key must be the same data types and
lengths and in the same order as the referenced columns in the
primary key. The only exception is that you can use an integer
column in the foreign key to refer to an IDENTITY or

2-79

SQL Grammar Elements

SMALLIDENTITY column in the primary key. In this case, the two
columns must be the same length.

Pervasive.SQL checks for anomalies in the foreign keys before it
creates the table. If it finds conditions that violate previously defined
referential integrity (RI) constraints, it generates a status code and
does not create the table.

When you define a foreign key, you must include a REFERENCES
clause indicating the name of the table that contains the
corresponding primary key. The primary key in the parent table
must already be defined. In addition, if security is enabled on the
database, you must have the Reference right on the table that
contains the primary key.

You cannot create a self-referencing foreign key with the CREATE
TABLE statement. Use an ALTER TABLE statement to create a
foreign key that references the primary key in the same table.

Also, you cannot create a primary key and a foreign key on the same
set of columns in a single statement. Therefore, if the primary key of
the table you are creating is also a foreign key on another table, you
must use an ALTER TABLE statement to create the foreign key.

Examples The following statement adds a new foreign key to the Class table.
(The Faculty column is defined as an index that does not include null
values.)

ALTER TABLE Class ADD CONSTRAINT Teacher FOREIGN KEY
(Faculty_ID)
REFERENCES Faculty ON DELETE RESTRICT

In this example, the restrict rule for deletions prevents someone
from removing a faculty member from the database without first
either changing or deleting all of that faculty's classes.

See Also “ALTER TABLE” on page 2-19

“CREATE TABLE” on page 2-50

2-80

ODBC Engine Reference

GRANT

This statement creates new user IDs and gives permissions to specific
users in a secured database.

Syntax GRANT CREATETAB TO public-or-user-or-group-name [, user-or-group-

name]...

GRANT LOGIN TO user-password [, user-password]... [IN GROUP
group-name]

GRANT table-privilege ON [TABLE] table-name [owner-name]
TO user-or-group-name [, user-or-group-name]...

table-privilege ::= ALL

| SELECT [(column-name [, column-name]...)]

| UPDATE [(column-name [, column-name]...)]

| INSERT [(column-name [, column-name]...)]

| DELETE

| ALTER

| REFERENCES

user-password ::= user-name [:] password

public-or-user-or-group-name ::= PUBLIC | user-or-group-name

user-or-group-name ::= user-name | group-name

user-name ::= user-defined-name

owner-name :: = user-defined-name

Remarks CREATETAB and LOGIN arguments are extensions to the core SQL
grammar.

Although an optional column list is in the syntax for the INSERT,
ALTER, and REFERENCES privileges, the Pervasive.SQL Engine
signals a "not supported" error if any GRANT INSERT, GRANT
ALTER, or GRANT REFERENCES statement contains a column list.

Note ANSI SQL 3 permits column lists for INSERT, ALTER,
REFERENCES, SELECT and UPDATE.

2-81

SQL Grammar Elements

Users and Groups

Relational security is based on the existence of a default user named
“Master” who has full access to the database when security is first
turned on. Initially, no password is required for the Master user.

Caution If you turn on security, be sure to specify a password with a
significant length, at least five characters. Do not leave the password
field blank because doing so creates a major security risk for your
database.

The Master user can create groups and other users and define sets of
data access privileges for these groups and users.

If you want to grant the same level of access to all users and avoid
having to set up individual groups and users, you can grant the
desired level of access to PUBLIC. The default user PUBLIC
represents any user connecting with or without a password.

Note If you wish to use groups, you must set up the groups before
creating users. You cannot add a user to a group after you have already
created the user.

You can use the Users node in PCC to perform these tasks. You can
also use GRANT and REVOKE statements to perform these tasks.

User name and password must be enclosed in double quotes if they
contain spaces or other non-alphanumeric characters.

See Pervasive.SQL User’s Guide for further information about users
and groups.

Owner Name

An owner name is a password required to gain access to a Btrieve file.
There is no relation between an owner name and any system user
name or database user name. You should think of an owner name as
a simple file password.

If you have a Btrieve owner name set on a file that is a table in a secure
ODBC database, the Master user of the ODBC database must use the
owner name in any GRANT statement to grant privileges on the
given table to any user, including the Master user.

2-82

ODBC Engine Reference

After the GRANT statement containing the owner name has been
issued for a given user, that user can access the specified table by
logging into the database, without specifying the owner name each
time.

If a user tries to access a table through ODBC that has a Btrieve
owner name, the access will not be allowed unless the Master user has
granted privileges on the table to the user, with the correct owner
name in the GRANT statement.

If a table has an owner name with the Read-Only attribute, the
Master user automatically has SELECT rights on this table without
specifically granting himself/herself the SELECT rights with the
owner name.

Examples A GRANT ALL statement grants the INSERT, UPDATE, ALTER,
SELECT, DELETE and REFERENCES rights to the specified user or
group. In addition, the user or group is granted the CREATE TABLE
right for the dictionary.

The following statement grants all these privileges to dannyd for
table Class.

GRANT ALL ON Class TO dannyd

This statement grants the ALTER privilege to user debieq.

GRANT ALTER ON Class TO debieq

The following statement gives INSERT privileges to keithv and
miked on table Class.

GRANT INSERT ON Class TO keithv, miked

!!!

The following statement grants INSERT privileges on two columns,
First_name and Last_name, in the person table to users keithv and
brendanb

GRANT INSERT(First_name,last_name) ON Person to
keithv,brendanb

!!!

The following example grants CREATE TABLE rights to users
aideenw and punitas

GRANT CREATETAB TO aideenw, punitas

2-83

SQL Grammar Elements

!!!

This next statement grants login rights to a user named ravi and
specifies his password as “password.”

GRANT LOGIN TO ravi:password

The user name and password refer to Pervasive.SQL databases and
are not related to user names and passwords set at level of the
operating system. Pervasive.SQL user names, groups, and passwords
are set through the Pervasive Control Center (PCC).

The following example grants login rights to users named dannyd
and travisk and specifies their passwords as 'password' and 1234567
respectively.

GRANT LOGIN TO dannyd:password,travisk:1234567

If there are spaces in a name you may use double quotes as in the
following example. This statement grants login rights to user named
Jerry Gentry and Punita and specifies their password as sun and
moon respectively

GRANT LOGIN TO 'Jerry Gentry' :sun, Punita:moon

The following example grants the login rights to a user named Jerry
Gentry with password 123456 and a user named travisk with
password abcdef. It also adds them to the group pervasive_dev

GRANT LOGIN TO 'Jerry Gentry' :123456, travisk:abcdef IN
GROUP pervasive_dev

!!!

To grant privileges on a table that has a Btrieve owner name, the
Master user has to supply the correct owner name in the GRANT
statement.

The following example grants the SELECT rights to the Master user
on table T1 that has a Btrieve owner name of “abcd.”

GRANT SELECT ON T1 'abcd' TO Master

The Master user has all rights on a table that does not have an owner
name. You can set an owner name on a table with the Maintenance
utility. The Btrieve owner name is case sensitive.

2-84

ODBC Engine Reference

See Also “REVOKE” on page 2-112

“SET SECURITY” on page 2-129

“CREATE GROUP” on page 2-39

“DROP GROUP” on page 2-69

2-85

SQL Grammar Elements

GROUP BY

Remarks In addition to the GROUP BY syntax in a SELECT statement as
specified in the Microsoft ODBC Programmer’s Reference, the
Pervasive.SQL Engine supports an extended GROUP BY syntax that
can include vendor strings.

A GROUP BY query returns a result set which contains one row of
the select list for every group encountered. (See the Microsoft ODBC
Programmer’s Reference for the syntax of a select list.)

Examples The following example uses the course table to produce a list of
unique departments:

SELECT Dept_Name FROM Course GROUP BY Dept_Name

In the next example, the result set contains a list of unique
departments and the number of courses in each department:

SELECT Dept_Name, COUNT(*) FROM Course GROUP BY
Dept_Name

Note that COUNT(expression) counts all non-NULL values for an
expression across a predicate. COUNT(*) counts all values,
including NULL values.

!!!

The rows operated on by the set function are those rows remaining
after the WHERE search condition is applied. In this example, only
those rows in the faculty table that have Salary > 80000 are counted:

SELECT COUNT(*) FROM Faculty WHERE Salary > 80000 GROUP
BY Dept_Name

!!!

The following example shows an extended GROUP BY that includes
vendor strings.

SELECT(--(*vendor(Microsoft), product(ODBC) fn
left(at1.col2, 1) *)--) FROM at1 GROUP BY (--
(*vendor(Microsoft), product(ODBC) fn left(at1.col2, 1)
*)--) ORDER BY (--(*vendor(Microsoft), product(ODBC) fn
left(at1.col2, 1) *)--) DESC

2-86

ODBC Engine Reference

See Also “SELECT” on page 2-118

“GRANT” on page 2-80

“REVOKE” on page 2-112

2-87

SQL Grammar Elements

HAVING

Remarks Use a HAVING clause in conjunction with a GROUP BY clause
within SELECT statements to limit your view to groups whose
aggregate values meet specific criteria.

The expressions in a HAVING clause may contain constants, set
functions or an exact replica of one of the expressions in the GROUP
BY expression list.

The Pervasive.SQL Engine does not support HAVING without
GROUP BY.

Examples The following example returns department names where the count
of course names is greater than 5.

SELECT Dept_Name, COUNT(*) FROM Course GROUP BY
Dept_Name HAVING COUNT(*) > 5

Note that COUNT(expression) counts all non-NULL values for an
expression across a predicate. COUNT(*) counts all values,
including NULL values.

!!!

The next example returns department name that matches
Accounting and has a number of courses greater than 5.

SELECT Dept_Name, COUNT(*) FROM Course GROUP BY
Dept_Name HAVING COUNT(*) > 5 AND Dept_Name =
'Accounting'

See Also “SELECT” on page 2-118

2-88

ODBC Engine Reference

IF

Remarks IF statements provide conditional execution based on the value of a
condition. The IF . . . THEN . . . [ELSE . . .] construct controls flow
based on which of two statement blocks will be executed.

You may use IF statements in the body of both stored procedures and
triggers.

Examples The following example uses the IF statement to set the variable
Negative to either 1 or 0, depending on whether the value of vInteger
is positive or negative.

IF (:vInteger < 0) THEN

SET :Negative = '1';

ELSE

SET :Negative = '0';

END IF;

!!!

The following example uses the IF statement to test the loop for a
defined condition (SQLSTATE = '02000'). If it meets this condition,
then the WHILE loop is terminated.

FETCH_LOOP:

WHILE (:counter < :NumRooms) DO

FETCH NEXT FROM cRooms INTO :CurrentCapacity;

IF (SQLSTATE = '02000') THEN

LEAVE FETCH_LOOP;

END IF;

SET :counter = :counter + 1;

SET :TotalCapacity = :TotalCapacity +

:CurrentCapacity;

END WHILE;

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-89

SQL Grammar Elements

IN

Remarks Use the IN operator to test whether the result of the outer query is
included in the result of the subquery. The result table for the
statement includes only rows the outer query returns that have a
related row from the subquery.

Examples The following example lists the names of all students who have taken
Chemistry 408:

SELECT p.First_Name + ' ' + p.Last_Name

FROM Person p, Enrolls e

WHERE (p.id = e.student_id)

AND (e.class_id IN

(SELECT c.ID FROM Class c WHERE c.Name = 'CHE
408'))

Pervasive.SQL first evaluates the subquery to retrieve the ID for
Chemistry 408 from the Class table. It then performs the outer query,
restricting the results to only those students who have an entry in the
Enrolls table for that course.

Often, you can perform IN queries more efficiently using either the
EXISTS keyword or a simple join condition with a restriction clause.
Unless the purpose of the query is to determine the existence of a
value in a subset of the database, it is more efficient to use the simple
join condition because Pervasive.SQL optimizes joins more
efficiently than it does subqueries.

See Also “SELECT” on page 2-118

2-90

ODBC Engine Reference

INSERT

This statement inserts column values into one or more tables.

Syntax INSERT INTO table-name [alias-name]

[(column-name [, column-name]...)]

insert-values

insert-values ::= values-clause

| query-specification

values-clause ::= VALUES (expression [, expression]...)

Remarks INSERT, UPDATE, and DELETE statements behave in an atomic
manner. That is, if an insert, update, or delete of more than one row
fails, then all insertions, updates, or deletes of previous rows by the
same statement are rolled back.

All data types for data created prior to Pervasive.SQL 2000 (legacy
data) report back as nullable. This means that you can INSERT
NULL into any legacy column type without pseudo-NULL
conversion. The following data types are treated as pseudo-NULL by
default:

(Normally, when you convert a legacy column to pseudo-NULL, you
lose one of the binary values, forfeiting it so that you can query the
column for NULL. These data types, however, because of their
design, have a different, unique internal value for NULL in addition
to their normal data range. With these data types, no binary values
are lost if they are converted to NULL so there is no harm
considering them as pseudo-NULL by default.)

The rest of the data types are considered “legacy nullable,” meaning
that NULL may be inserted into them. When values are queried,
however, the non-NULL binary equivalent is returned. This same
binary equivalent must be used in WHERE clauses to retrieve
specific values.

Date Decimal Money Numeric

NumericSA NumericSTS Timestamp

2-91

SQL Grammar Elements

The binary equivalents are:

! 0 for Binary types

! Empty string from string and BLOB types (legacy types LVAR
and NOTE)

CURTIME,
CURDATE and
NOW variables

Pervasive.SQL 2000i allows you to use the variables CURTIME,
CURDATE and NOW in INSERT statements to insert the current
date, time and timestamp values.

Examples The following statement adds data to the Course table by directly
specifying the values in three VALUES clauses:

INSERT INTO Course(Name, Description, Credit_Hours)

VALUES ('CHE 308', 'Organic Chemistry II', 4)

INSERT INTO Course(Name, Description, Credit_Hours)

VALUES ('ENG 409', 'Creative Writing II', 3)

INSERT INTO Course(Name, Description, Credit_Hours)

VALUES ('MAT 307', 'Probability II', 4)

!!!

The following INSERT statement uses a SELECT clause to retrieve
from the Student table the ID numbers of students who have taken
classes.

The statement then inserts the ID numbers into the Billing table.

INSERT INTO Billing (Student_ID)

SELECT ID

FROM Student

WHERE Cumulative_Hours > 0

!!!

The following example illustrates the use of the CURTIME,
CURDATE and NOW variables to insert the current date, time and
timestamp values inside an INSERT statement.

CREATE TABLE Timetbl (c1 TIME, c2 DATE, c3 TIMESTAMP)

INSERT INTO Timetbl(c1, c2, c3) VALUES(CURTIME,
CURDATE, NOW)

!!!

2-92

ODBC Engine Reference

The following example shows what occurs when you use INSERT for
IDENTITY columns and columns with default values.

CREATE TABLE (id IDENTITY, c1 INTEGER DEFAULT 100)

INSERT INTO (id) VALUES (0)

INSERT INTO t VALUES (0,1)

INSERT INTO t VALUES (10,10)

INSERT INTO t VALUES (0,2)

INSERT INTO t (c1) VALUES (3)

SELECT * FROM t

The SELECT shows the table contains the following rows:

1, 100
2, 1
10, 10
11, 2
12, 3

The first row illustrates that if “0” is specified in the VALUES clause
for an IDENTITY column, then the value inserted is “1” if the table
is empty.

The first row also illustrates that if no value is specified in the
VALUES clause for a column with a default value, then the specified
default value is inserted.

The second row illustrates that if “0” is specified in the VALUES
clause for an IDENTITY column, then the value inserted is one
greater than the largest value in the IDENTITY column.

The second row also illustrates that if a value is specified in the
VALUES clause for a column with a default value, then the specified
value overrides the default value.

The third row illustrates that if a value other than “0” is specified in
the VALUES clause for an IDENTITY column, then that value is
inserted. If a row already exists that contains the specified value for
the IDENTITY column, then the message “The record has a key field
containing a duplicate value(Btrieve Error 5)” is returned and the
INSERT fails.

2-93

SQL Grammar Elements

The fourth rows shows again that if “0” is specified in the VALUES
clause for an IDENTITY column, then the value inserted is one
greater than the largest value in the IDENTITY column. This is true
even if “gaps” exist between the values (that is, the absence of one or
more rows with IDENTITY column values less than the largest
value).

The fifth row illustrates that if no value is specified in the VALUES
clause for an IDENTITY column, then the value inserted is one
greater than the largest value in the IDENTITY column.

See Also “CREATE TABLE” on page 2-50

“SELECT” on page 2-118

2-94

ODBC Engine Reference

JOIN

You can specify a single table or view, multiple tables, or a single view
and multiple tables. When you specify more than one table, the
tables are said to be joined.

Syntax join-definition ::= table-reference [INNER] JOIN table-reference ON search-

condition

| table-reference CROSS JOIN table-reference

| outer-join-definition

outer-join-definition ::= table-reference outer-join-type JOIN table-reference

ON search-condition

outer-join-type ::= LEFT [OUTER]| RIGHT [OUTER] | FULL
[OUTER]

The following example illustrates a two-table outer join:

SELECT * FROM Person LEFT OUTER JOIN Faculty ON Person.ID
= Faculty.ID

The following example shows an outer join embedded in a vendor
string. The “OJ” can be either upper or lower case.

SELECT t1.deptno, ename FROM {OJ emp t2 LEFT OUTER JOIN
dept t1 ON t2.deptno=t1.deptno}

The Pervasive ODBC Engine Interface supports two-table outer
joins as specified in the Microsoft ODBC Programmer’s Reference.

In addition to simple two-table outer joins, the Pervasive ODBC
Engine Interface supports n-way nested outer joins.

The outer join may or may not be embedded in a vendor string. If a
vendor string is used, Pervasive ODBC Engine Interface strips it off
and parses the actual outer join text.

2-95

SQL Grammar Elements

LEFT OUTER

The Pervasive.SQL Engine has implemented LEFT OUTER JOIN
using SQL92 (SQL2) as a model. The syntax is a subset of the entire
SQL92 syntax which includes cross joins, right outer joins, full outer
joins, and inner joins. The TableRefList below occurs after the FROM
keyword in a SELECT statement and before any subsequent
WHERE, HAVING, and other clauses. Note the recursive nature of
TableRef and LeftOuterJoin—a TableRef can be a left outer join that
can include TableRefs which, in turn, can be left outer joins and so
forth.

TableRefList :

TableRef [, TableRefList]

| TableRef

| OuterJoinVendorString [, TableRefList]

TableRef :

TableName [CorrelationName]

| LeftOuterJoin

| (LeftOuterJoin)

LeftOuterJoin :

TableRef LEFT OUTER JOIN TableRef ON SearchCond

The search condition (SearchCond) contains join conditions which
in their usual form are LT.ColumnName = RT.ColumnName, where
LT is left table, RT is right table, and ColumnName represents some
column within a given domain. Each predicate in the search
condition must contain some non-literal expression.

The implementation of left outer join goes beyond the syntax in the
Microsoft ODBC Programmer’s Reference.

Vendor Strings

The syntax in the previous section includes but goes beyond the
ODBC syntax in the Microsoft ODBC Programmer’s Reference.
Furthermore, the vendor string escape sequence at the beginning
and end of the left outer join does not change the core syntax of the
outer join.

The Pervasive.SQL Engine accepts outer join syntax without the
vendor strings. However, for applications that want to comply with
ODBC across multiple databases, the vendor string construction
should be used. Because ODBC vendor string outer joins do not

2-96

ODBC Engine Reference

support more than two tables, it may be necessary to use the syntax
shown following Table 2-10 on page 2-96 .

Examples The following four tables are used in the examples in this section.

The following example shows a simple two-way Left Outer Join:

Table 2-7 Emp Table

FirstName LastName DeptID EmpID

Franky Avalon D103 E1

Gordon Lightfoot D102 E2

Lawrence Welk D101 E3

Bruce Cockburn D102 E4

Table 2-8 Dept Table

DeptID LocID Name

D101 L1 TV

D102 L2 Folk

Table 2-9 Addr Table

EmpID Street

E1 101 Mem Lane

E2 14 Young St.

Table 2-10 Loc Table

LocID Name

L1 PlanetX

L2 PlanetY

2-97

SQL Grammar Elements

SELECT * FROM Emp LEFT OUTER JOIN Dept ON Emp.DeptID =
Dept.DeptID

This two-way outer join produces the following result set:

Notice the NULL entry for Franky Avalon in the table. That is
because no DeptID of D103 was found in the Dept table. In a
standard (INNER) join, Franky Avalon would have been dropped
from the result set altogether.

Algorithm

The algorithm that the Pervasive.SQL 2000i Engine uses for the
previous example is this:
taking the left table, traverse the right table, and for every case where
the ON condition is TRUE for the current right table row, return a
result set row composed of the appropriate right table row appended
to the current left-table row.

If there is no right table row where the ON condition is TRUE, (it is
FALSE for all right table rows given the current left table row), create
a row instance of the right table with all column values NULL.

That result set, combined with the current left-table row for each
row, is indexed in the returned result set. The algorithm is repeated
for every left table row to build the complete result set. In the simple
two-way left outer join shown previously, Emp is the left table and
Dept is the right table.

Table 2-11 Two-way Left Outer Join

Emp Dept

FirstName LastName DeptID EmpID DeptID LocID Name

Franky Avalon D103 E1 NULL NULL NULL

Gordon Lightfoot D102 E2 D102 L2 Folk

Lawrence Welk D101 E3 D101 L1 TV

Bruce Cockburn D102 E4 D102 L2 Folk

2-98

ODBC Engine Reference

Note Although irrelevant to the algorithm, the appending of the left
table to the right table assumes proper projection as specified in the
select list of the query. This projection ranges from all columns (for
example, SELECT * FROM . . .) to only one column in the result set
(for example, SELECT FirstName FROM . . .).

!!!

With radiating left outer joins, all other tables are joined onto one
central table. In the following example of a three-way radiating left
outer join, Emp is the central table and all joins radiate from that
table.

SELECT * FROM (Emp LEFT OUTER JOIN Dept ON Emp.DeptID =
Dept.DeptID) LEFT OUTER JOIN Addr ON Emp.EmpID =
Addr.EmpID

!!!

In a chaining left outer join, one table is joined to another, and that
table, in turn, is joined to another. The following example illustrates
a three-way chaining left outer join:

Table 2-12 Three-way Radiating Left Outer Join

Emp Dept Addr

First
Name

Last
Name

Dept
ID

Emp
ID

Dept
ID

Loc
ID

Name Emp
ID

Street

Franky Avalon D103 E1 NULL NULL NULL E1 101 Mem
Lane

Gordon Lightfoot D102 E2 D102 L2 Folk E2 14 Young
St

Lawren
ce

Welk D101 E3 D101 L1 TV NULL NULL

Bruce Cockburn D102 E4 D101 L1 TV NULL NULL

2-99

SQL Grammar Elements

SELECT * FROM (Emp LEFT OUTER JOIN Dept ON Emp.DeptID =
Dept.DeptID) LEFT OUTER JOIN Loc ON Dept.LocID =
Loc.LocID

This join could also be expressed as:

SELECT * FROM Emp LEFT OUTER JOIN (Dept LEFT OUTER JOIN
Loc ON Dept.LocID = Loc.LocID) ON Emp.DeptID =
Dept.DeptID

We recommend the first syntax because it lends itself to both the
radiating and chaining joins. This second syntax cannot be used for
radiating joins because nested left outer join ON conditions cannot
reference columns in tables outside their nesting. In other words, in
the following query, the reference to Emp.EmpID is illegal:

SELECT * FROM Emp LEFT OUTER JOIN (Dept LEFT OUTER JOIN
Addr ON Emp.EmpID = Addr.EmpID) ON Emp.DeptID =
Dept.DeptID

!!!

The following example shows a three-way radiating left outer join,
less optimized:

SELECT * FROM Emp E1 LEFT OUTER JOIN Dept ON E1.DeptID =
Dept.DeptID, Emp E2 LEFT OUTER JOIN Addr ON E2.EmpID =
Addr.EmpID WHERE E1.EmpID = E2.EmpID

Table 2-13 Three-way Chaining Left Outer Join

Emp Dept Loc

First Name Last Name Dept ID Emp ID Dept ID Loc ID Name Loc ID Name

Franky Avalon D103 E1 NULL NULL NULL NULL NULL

Gordon Lightfoot D102 E2 D102 L2 Folk L2 PlanetY

Lawrence Welk D101 E3 D101 L1 TV L1 PlanetX

Bruce Cockburn D102 E4 D101 L1 TV L1 PlanetX

Table 2-14 Three-way Radiating Left Outer Join, Less Optimized

Emp Dept Addr

First Name Last Name Dept ID Emp
ID

Dept ID Loc ID Name Emp ID Street

Franky Avalon D103 E1 NULL NULL NULL E1 101 Mem
Lane

2-100

ODBC Engine Reference

This query returns the same results as shown in Table 2-13, assuming
there are no NULL values for EmpID in Emp and EmpID is a unique
valued column. This query, however, is not optimized as well as the
one show for Table 2-13 and can be much slower.

See Also “SELECT” on page 2-118

Gordon Lightfoot D102 E2 D102 L2 Folk E2 14 Young St

Lawrence Welk D101 E3 D101 L1 TV NULL NULL

Bruce Cockburn D102 E4 D101 L1 TV NULL NULL

Table 2-14 Three-way Radiating Left Outer Join, Less Optimized

Emp Dept Addr

2-101

SQL Grammar Elements

LEAVE

Remarks A LEAVE statement continues execution by leaving a block or loop
statement. You can use LEAVE statements in the body of a stored
procedure or a trigger.

Examples The following example increments the variable vInteger by 1 until it
reaches a value of 11, when the loop is ended with a LEAVE
statement.

TestLoop:

LOOP

IF (:vInteger > 10) THEN

LEAVE TestLoop;

END IF;

SET :vInteger = :vInteger + 1;

END LOOP;

See Also “IF” on page 2-88

“LOOP” on page 2-102

2-102

ODBC Engine Reference

LOOP

Remarks A LOOP statement repeats the execution of a block of statements.

This statement is only allowed in stored procedures and triggers.

Pervasive.SQL does not support post-conditional loops
(REPEAT...UNTIL).

Examples The following example increments the variable vInteger by 1 until it
reaches a value of 11, when the loop is ended.

TestLoop:

LOOP

IF (:vInteger > 10) THEN

LEAVE TestLoop;

END IF;

SET :vInteger = :vInteger + 1;

END LOOP;

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

“IF” on page 2-88

2-103

SQL Grammar Elements

NOT

Remarks Using the NOT keyword with the EXISTS keyword allows you to test
whether rows do not exist in the result of the subquery. For every row
the outer query evaluates, Pervasive.SQL tests for the existence of a
related row from the subquery. Pervasive.SQL excludes from the
statement's result table each row from the outer query that
corresponds to a related row from the subquery.

Including the NOT keyword along with the IN operator allows you
to test whether the result of the outer query is not included in the
result of the subquery. The result table for the statement includes
only rows the outer query returns that do not have a related row from
the subquery.

Examples The following statement returns a list of students who are not
enrolled in any classes:

SELECT * FROM Person p WHERE NOT EXISTS

(SELECT * FROM Student s WHERE s.id = p.id

AND Cumulative_Hours = 0)

See Also “SELECT” on page 2-118

2-104

ODBC Engine Reference

OPEN

Remarks The OPEN (cursor) statement opens a cursor. A cursor must be
defined before it can be opened.

This statement is allowed only inside of a stored procedure or a
trigger, since cursors and variables are only allowed inside of stored
procedures and triggers.

Examples The following example opens the declared cursor BTUCursor.

DECLARE BTUCursor CURSOR

FOR SELECT Degree, Residency, Cost_Per_Credit

FROM Tuition

ORDER BY ID;

OPEN BTUCursor;

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

“DECLARE CURSOR” on page 2-65

2-105

SQL Grammar Elements

PRIMARY KEY

Remarks Include PRIMARY KEY in the ADD clause to add a primary key to
a table definition.

Before adding the primary key, you must ensure that the columns in
the primary key column list are defined as a unique index that does
not include null values. If such an index does not exist, create one
with the CREATE INDEX statement.

Because a table can have only one primary key, you cannot add a
primary key to a table that already has a primary key defined. To
change the primary key of a table, delete the existing key using a
DROP clause in an ALTER TABLE statement and add the new
primary key.

Note You must be logged in to the database using a database name
before you can add a primary key or conduct any other referential
integrity (RI) operation.

Include a PRIMARY KEY clause with the CREATE TABLE statement
to define the key.

To define referential constraints on your database, you must include
a PRIMARY KEY clause to specify the primary key on the parent
table. The primary key can consist of one column or multiple
columns but can only be defined on columns that are not null. The
columns you specify must also appear in the column Definitions list
of the CREATE TABLE statement.

You must define the columns that make up a primary key as a unique
index that does not include null values. When you specify a primary
key, Pervasive.SQL creates an index with the specified attributes on
the defined group of columns.

2-106

ODBC Engine Reference

Examples The following statement defines a primary key on a table called
Faculty. (The ID column is defined as a unique index that does not
include null values.)

ALTER TABLE Faculty ADD PRIMARY KEY (ID)

See Also “ALTER TABLE” on page 2-19

“CREATE TABLE” on page 2-50

2-107

SQL Grammar Elements

PUBLIC

Remarks You can include the PUBLIC keyword in the FROM clause to revoke
the Create Table right from all the users to whom the right was not
explicitly assigned.

Include a FROM clause to specify the group or user from whom you
are revoking rights. You can specify a single name or a list of names,
or you can include the PUBLIC keyword to revoke access rights from
all users whose rights are not explicitly assigned.

Examples To assign access rights to all users in the dictionary, include the
PUBLIC keyword to grant the rights to the PUBLIC group, as in the
following example:

GRANT SELECT ON Course TO PUBLIC

This statement assigns the Select right on the Course table to all users
defined in the dictionary. If you later revoke the Select right from the
PUBLIC group, only users who are granted the Select right explicitly
can access the table.

The following statement includes the PUBLIC keyword to grant the
Create Table right to all the users defined in the dictionary:

GRANT CREATETAB TO PUBLIC

See Also “GRANT” on page 2-80

“REVOKE” on page 2-112

2-108

ODBC Engine Reference

PRINT

Remarks Use PRINT to print variable values or constants. The PRINT
statement applies only to Windows-based platforms. It is ignored on
other operating system platforms.

You can use PRINT only within stored procedures.

Examples The following example prints the value of the variable :myvar.

PRINT(:myvar);

PRINT 'MYVAR = ' + :myvar;

!!!

The following example prints a text string followed by a numeric
value. You must convert a number value to a text string to print the
value.

PRINT 'Students enrolled in History 101: ' +
convert(:int_val, SQL_CHAR);

See Also “CREATE PROCEDURE” on page 2-42

2-109

SQL Grammar Elements

RELEASE SAVEPOINT

Use the RELEASE SAVEPOINT statement to delete a savepoint.

Syntax RELEASE SAVEPOINT savepoint-name

savepoint-name ::= user-defined-name

Remarks RELEASE, ROLLBACK, and SAVEPOINT and are supported at the
session level (outside of stored procedures) only if AUTOCOMMIT
is off. Otherwise, RELEASE, ROLLBACK, and SAVEPOINT must be
used within a stored procedure.

Any committed statements within a stored procedure are controlled
by the outermost transaction of the calling ODBC application. This
means that, depending on the AUTOCOMMIT mode specified on
SQLSetConnectOption, calling the stored procedure externally from
an ODBC application performs one of two actions. It either commits
automatically (AUTOCOMMIT on, the default) or waits for you to
call SQLTransact with SQL_COMMIT or SQL_ROLLBACK (when
AUTOCOMMIT is set to off).

Examples The following example sets a SAVEPOINT then checks a condition
to determine whether to ROLLBACK or to RELEASE the
SAVEPOINT.

CREATE PROCEDURE Enroll_student(IN :student ubigint, IN
:classnum INTEGER);
BEGIN

DECLARE :CurrentEnrollment INTEGER;

DECLARE :MaxEnrollment INTEGER;

SAVEPOINT SP1;

INSERT INTO Enrolls VALUES (:student, :classnum,
0.0);

SELECT COUNT(*) INTO :CurrentEnrollment FROM
Enrolls WHERE class_id = :classnum;

SELECT Max_size INTO :MaxEnrollment FROM Class
WHERE ID = :classnum;

2-110

ODBC Engine Reference

IF :CurrentEnrollment >= :MaxEnrollment

THEN

ROLLBACK TO SAVEPOINT SP1;

ELSE

RELEASE SAVEPOINT SP1;

END IF;
END;

Note that COUNT(expression) counts all non-NULL values for an
expression across a predicate. COUNT(*) counts all values,
including NULL values.

See Also “CREATE PROCEDURE” on page 2-42

“ROLLBACK” on page 2-114

“SAVEPOINT” on page 2-115

2-111

SQL Grammar Elements

RESTRICT

Remarks If you specify RESTRICT, Pervasive.SQL enforces the DELETE
RESTRICT rule. A user cannot delete a row in the parent table if a
foreign key value refers to it.

If you do not specify a delete rule, Pervasive.SQL applies the
RESTRICT rule by default.

See Also “ALTER TABLE” on page 2-19

2-112

ODBC Engine Reference

REVOKE

REVOKE deletes user IDs and removes permissions to specific users
in a secured database.

Syntax REVOKE CREATETAB FROM public-or-user-group-name [, public-or-user-

group-name]...

REVOKE LOGIN FROM user-name [, user-name]...

REVOKE table-privilege ON table-name

FROM user-or-group-name [, user-or-group-name]...

table-privilege ::= ALL

| SELECT [(column-name [, column-name]...)]

| UPDATE [(column-name [, column-name]...)]

| INSERT [(column-name [, column-name]...)]

| DELETE

| ALTER

| REFERENCES

public-or-user-group-name ::= PUBLIC | user-group-name

user-group-name ::= user-name | group-name

group-name ::= user-defined-name

user-name ::= user-defined-name

Examples The following statement revokes all these privileges from dannyd for
table Class.

REVOKE ALL ON Class FROM 'dannyd'

The following statement revokes all privileges from dannyd and
travisk for table Class.

REVOKE ALL ON Class FROM 'dannyd', travisk

!!!

This statement revokes DELETE privileges from dannyd and travisk
for table Class.

REVOKE DELETE ON Class FROM dannyd, travisk

2-113

SQL Grammar Elements

!!!

The following example revokes INSERT rights from keithv and
miked for table Class.

REVOKE INSERT ON Class FROM keithv, miked

The following example revokes INSERT rights from keithv and
brendanb for table Person and columns First_name and Last_name.

REVOKE INSERT(First_name,Last_name) ON Person FROM
keithv, brendanb

!!!

The following statement revokes ALTER rights from dannyd from
table Class.

REVOKE ALTER ON Class FROM dannyd

!!!

The following example revokes SELECT rights from dannyd and
travisk on table Class.

REVOKE SELECT ON Class FROM dannyd, travisk

The following statement revokes SELECT rights from dannyd and
travisk in table Person for columns First_name and Last_name.

REVOKE SELECT(First_name, Last_name) ON Person FROM
dannyd, travisk

!!!

The following example revokes UPDATE rights from dannyd and
travisk for table Person.

REVOKE UPDATE ON Person ON dannyd, travisk

See Also “GRANT” on page 2-80

2-114

ODBC Engine Reference

ROLLBACK

ROLLBACK returns the database to the state it was in before the
current transaction began. This statement releases the locks acquired
since the last SAVEPOINT or START TRANSACTION.

Syntax ROLLBACK [WORK] [TO SAVEPOINT savepoint-name]

Remarks ROLLBACK, SAVEPOINT, and RELEASE are supported at the
session level (outside of stored procedures) only if AUTOCOMMIT
is off. Otherwise, ROLLBACK, SAVEPOINT, and RELEASE must be
used within a stored procedure.

Any committed statements within a stored procedure are controlled
by the outermost transaction of the calling ODBC application. This
means that, depending on the AUTOCOMMIT mode specified on
SQLSetConnectOption, calling the stored procedure externally from
an ODBC application performs one of two actions. It either commits
automatically (AUTOCOMMIT on, the default) or waits for you to
call SQLTransact with SQL_COMMIT or SQL_ROLLBACK (when
AUTOCOMMIT is set to off).

In the case of nested transactions, ROLLBACK rolls back to the
nearest START TRANSACTION. For example, if transactions are
nested five levels, then five ROLLBACK statements are needed to
undo all of the transactions. A transaction is either committed or
rolled back, but not both. That is, you cannot roll back a committed
transaction.

Examples The following statement undoes the changes made to the database
since the beginning of a transaction.

ROLLBACK WORK

The following statement undoes the changes made to the database
since the last savepoint.

ROLLBACK TO SAVEPOINT SP1

See Also “COMMIT” on page 2-37

“RELEASE SAVEPOINT” on page 2-109

“SAVEPOINT” on page 2-115

2-115

SQL Grammar Elements

SAVEPOINT

SAVEPOINT defines a point in a transaction to which you can roll
back.

Syntax SAVEPOINT savepoint-name

savepoint-name ::= user-defined-name

Remarks ROLLBACK, SAVEPOINT, and RELEASE are supported at the
session level (outside of stored procedures) only if AUTOCOMMIT
is off. Otherwise, ROLLBACK, SAVEPOINT, and RELEASE must be
used within a stored procedure.

Any committed statements within a stored procedure are controlled
by the outermost transaction of the calling ODBC application. This
means that, depending on the AUTOCOMMIT mode specified on
SQLSetConnectOption, calling the stored procedure externally from
an ODBC application performs one of two actions. It either commits
automatically (AUTOCOMMIT on, the default) or waits for you to
call SQLTransact with SQL_COMMIT or SQL_ROLLBACK (when
AUTOCOMMIT is set to off).

A SAVEPOINT applies only to the procedure in which it is defined.
That is, you cannot reference a SAVEPOINT defined in another
procedure.

Examples The following example sets a SAVEPOINT then checks a condition
to determine whether to ROLLBACK or to RELEASE the
SAVEPOINT.

CREATE PROCEDURE Enroll_student(IN :student ubigint, IN
:classnum INTEGER);
BEGIN

DECLARE :CurrentEnrollment INTEGER;

DECLARE :MaxEnrollment INTEGER;

SAVEPOINT SP1;

INSERT INTO Enrolls VALUES (:student, :classnum,
0.0);

SELECT COUNT(*) INTO :CurrentEnrollment FROM
Enrolls WHERE class_id = :classnum;

SELECT Max_size INTO :MaxEnrollment FROM Class
WHERE ID = :classnum;

IF :CurrentEnrollment >= :MaxEnrollment

2-116

ODBC Engine Reference

THEN

ROLLBACK TO SAVEPOINT SP1;

ELSE

RELEASE SAVEPOINT SP1;

END IF;
END;

Note that COUNT(expression) counts all non-NULL values for an
expression across a predicate. COUNT(*) counts all values,
including NULL values.

See Also “COMMIT” on page 2-37

“CREATE PROCEDURE” on page 2-42

“RELEASE SAVEPOINT” on page 2-109

“ROLLBACK” on page 2-114

2-117

SQL Grammar Elements

SELECT (with into)

The SELECT (with INTO) statement allows you to select column
values from a specified table to insert into variable names within
stored procedures.

Syntax SELECT [ALL | DISTINCT] select-list INTO variable-name [,
variable-name]...

 FROM table-reference [, table-reference]... [WHERE search-condition]
 [GROUP BY expression [, expression]...[HAVING search-condition

]]

Remarks The SELECT with the INTO clause is only allowed within stored
procedures.

Examples The following example assigns into variables :x, :y the values of
first_name an last_name in the Person table where first name is Bill.

SELECT first_name, last_name INTO :x, :y FROM person
WHERE first_name = 'Bill'

See Also “CREATE PROCEDURE” on page 2-42

2-118

ODBC Engine Reference

SELECT

Retrieves specified information from a database. A SELECT
statement creates a temporary view.

Syntax query-specification [[UNION [ALL] query-specification]...
[ORDER BY order-by-expression [, order-by-expression]...]

order-by-expression ::= expression [CASE | COLLATE collation-name] [
ASC | DESC]

query-specification ::= (query-specification)

| SELECT [ALL | DISTINCT] select-list

 FROM table-reference [, table-reference]...

 [WHERE search-condition]

 [GROUP BY expression [, expression]...

[HAVING search-condition]]

select-list ::= * | select-item [, select-item]...

select-item ::= expression [[AS] alias-name] | table-name . *

table-reference ::= { OJ outer-join-definition }

| table-name [[AS] alias-name]

| join-definition

| (join-definition)

join-definition ::= table-reference [INNER] JOIN table-reference ON search-

condition

| table-reference CROSS JOIN table-reference

| outer-join-definition

outer-join-definition ::= table-reference outer-join-type JOIN table-reference

ON search-condition

outer-join-type ::= LEFT [OUTER]| RIGHT [OUTER] | FULL
[OUTER]

search-condition ::= search-condition AND search-condition

| search-condition OR search-condition

| NOT search-condition

| (search-condition)

| predicate

2-119

SQL Grammar Elements

predicate ::= expression [NOT] BETWEEN expression AND expression

| expression comparison-operator expression-or-subquery

| expression [NOT] IN (query-specification)

| expression [NOT] IN (value [, value]...)

| expression [NOT] LIKE value

| expression IS [NOT] NULL

| expression comparison-operator ANY (query-specification)

| expression comparison-operator ALL (query-specification)

| expression comparison-operator SOME (query-specification)

| EXISTS (query-specification)

comparison-operator ::= < | > | <= | >= | = | <>

expression-or-subquery ::= expression | (query-specification)

value ::= literal | USER | ?

expression ::= expression - expression

| expression + expression

| expression * expression

| expression / expression

| (expression)

| -expression

| +expression

| column-name

| ?

| literal

| set-function

| scalar-function

| { fn scalar-function }

| USER

| IF (search-condition , expression , expression)

| SQLSTATE

| : user-defined-name

|@:IDENTITY

|@:ROWCOUNT

|@@IDENTITY

|@@ROWCOUNT

2-120

ODBC Engine Reference

set-function ::= COUNT (*)

| COUNT ([DISTINCT | ALL] expression)

| SUM ([DISTINCT | ALL] expression)

| AVG ([DISTINCT | ALL] expression)

| MIN ([DISTINCT | ALL] expression)

| MAX ([DISTINCT | ALL] expression)

scalar-function ::= see “Scalar Functions” on page 2-156

Remarks In addition to supporting a GROUP BY on a column-list, as
specified in the Microsoft ODBC Programmer’s Reference, Pervasive
ODBC Engine Interface has extended the syntax to support a
GROUP BY on an expression-list or on any expression in a GROUP
BY expression-list. See “GROUP BY” on page 2-85 for more
information on GROUP BY extensions. HAVING is not supported
without GROUP BY.

Result sets and stored views generated by executing SELECT
statements with any of the following characteristics are read-only
(they cannot be updated). That is, a positioned UPDATE, a
positioned DELETE and an SQLSetPos call to add, alter or delete
data is no allowed on the result set or stored view:

! SQL_CONCUR_READ_ONLY was specified as the
SQL_CONCURRENCY type via SQLSetStmtOption

! The selection-list contains an aggregate:
SELECT SUM(c1) FROM t1

! The selection-list specifies DISTINCT:
SELECT DISTINCT c1 FROM t1

! The view contains a GROUP BY clause:
SELECT SUM(c1), c2 FROM t1 GROUP BY c2

! The view is a join (references multiple tables):
SELECT * FROM t1, t2

! The view uses the UNION operator and UNION ALL is not
specified or all SELECT statements do not reference the same
table:
SELECT c1 FROM t1 UNION SELECT c1 FROM t1

SELECT c1 FROM t1 UNION ALL SELECT c1 FROM t2

" Note that stored views do not allow the UNION operator.

2-121

SQL Grammar Elements

! The view contains a subquery that references a table other than
the table in the outer query:
SELECT c1 FROM t1 WHERE c1 IN (SELECT c1 FROM t2)

Examples This simple SELECT statement retrieves all the data from the Faculty
table.

SELECT * FROM Faculty

This statement retrieves the data from the person and the faculty
table where the id column in the person table is the same as the id
column in the faculty table.

SELECT Person.id, Faculty.salary FROM Person, Faculty
WHERE Person.id = Faculty.id

!!!

The following example retrieves student_id and sum of the
amount_paid where it is greater than or equal to 100 from the billing
table. It then groups the records by student_id.

SELECT Student_ID, SUM(Amount_Paid)

FROM Billing

GROUP BY Student_ID

HAVING SUM(Amount_Paid) >=100.00

If the expression is a positive integer literal, then that literal is
interpreted as the number of the column in the result set and
ordering is done on that column. No ordering is allowed on set
functions or an expression that contains a set function.

Subqueries The following types of subqueries are supported: comparison,
quantified, in, exists, and correlated. ORDER BY clauses are not
allowed in a subquery clause.

Correlated subquery predicates in the HAVING clause which
contain references to grouped columns are not supported.

approximate-
numeric-literal

Examples SELECT * FROM results WHERE quotient =-4.5E-2

INSERT INTO results (quotient) VALUES (+5E7)

2-122

ODBC Engine Reference

between-predicate

Remarks The syntax expression1 BETWEEN expression2 and expression3
returns TRUE if expression1 >= expression2 and expression1<=
expression3. FALSE is returned if expression1 >= expression3, or is
expression1 <= expression2.

Expression2 and expression3 may be dynamic parameters (for
example, SELECT * FROM emp WHERE emp_id BETWEEN ? AND ?)

Examples The next example retrieves the first names from the person table
whose ID fall between 10000 and 20000.

SELECT First_name FROM Person WHERE ID BETWEEN 10000 AND
20000

correlation-name

Remarks Both table and column correlation names are supported.

Examples The following example selects data from both the person table and
the faculty table using the aliases T1 and T2 to differentiate between
the two tables.

SELECT * FROM Person T1, Faculty T2 WHERE T1.id = T2.id

The correlation name for a table name can also be specified in using
the FROM clause, as seen in the following example.

SELECT a.Name, b.Capacity FROM Class a, Room b

WHERE a.Room_Number = b.Number

exact-numeric-
literal

Examples SELECT car_num, price FROM cars WHERE car_num =49042 AND
price=49999.99

in-predicate

Examples This selects the records from table Person table where the first names
are Bill and Roosevelt.

SELECT * FROM Person WHERE First_name IN ('Roosevelt',
'Bill')

2-123

SQL Grammar Elements

set-function

Examples The following example selects the minimum salary from the Faculty
table.

SELECT MIN(salary) FROM Faculty

MIN(expression), MAX(expression), SUM(expression),
AVG(expression), COUNT(*), and COUNT(expression) are
supported.

COUNT(expression) counts all non-NULL values for an expression
across a predicate. COUNT(*) counts all values, including NULL
values.

The following example counts all the rows in q where a+b does not
equal NULL.

SELECT COUNT(a+b) FROM q

date-literal

Remarks Date constants may be expressed in SQL statements as a character
string or embedded in a vendor string. SQL_CHAR and the vendor
string representation are treated as a value of type SQL_DATE. This
becomes important when conversions are attempted.

The Pervasive ODBC Engine Interface partially supports extended
SQL grammar, as outlined in this function.

Examples The next two statements return all the classes whose start date is
after 1995-06-05.

SELECT * FROM Class WHERE Start_Date > '1995-06-05'

SELECT * FROM Class WHERE Start_Date > {d '1995-06-05'}

The Pervasive ODBC Engine Interface supports the following date
literal format: 'YYYY-MM-DD'.

Dates may be in the range of year 0 to 9999.

time-literal

Examples The following two statements retrieve records from the class table
where the start time for the classes is 14:00:00.

2-124

ODBC Engine Reference

SELECT * FROM Class WHERE Start_time = '14:00:00'

SELECT * FROM Class WHERE Start_time = {t '14:00:00'}

The Pervasive ODBC Engine Interface supports the following time
literal format: 'HH:MM:SS'.

Time constants may be expressed in SQL statements as a character
string or embedded in a vendor string. Character string
representation is treated as a string of type SQL_CHAR and the vendor
string representation as a value of type SQL_TIME.

The Pervasive ODBC Engine Interface partially supports extended
SQL grammar, as outlined in this function.

timestamp-literal

Remarks Timestamp constants may be expressed in SQL statements as a
character string or embedded in a vendor string. The Pervasive
ODBC Engine Interface treats the character string representation as
a string of type SQL_CHAR and the vendor string representation as a
value of type SQL_TIMESTAMP. The Pervasive ODBC Engine Interface
partially supports extended SQL grammar, as outlined in this
function.

Examples The next two statements retrieve records from the Billing table where
the start day and time for the log is 1996-03-28 at 17:40:49.

SELECT * FROM Billing WHERE log = '1996-03-28 17:40:49'

SELECT * FROM Billing WHERE log = {ts '1996-03-28
17:40:49'}

The Pervasive ODBC Engine Interface supports the following time
literal format: 'YYYY-MM-DD HH:MM:SS'

2-125

SQL Grammar Elements

date arithmetic

Examples SELECT * FROM person P, Class C WHERE p.Date_Of_Birth <
' 1973-09-05' AND c.Start_date >{d '1995-05-08'} + 30

The Pervasive ODBC Engine Interface supports adding or
subtracting an integer from a date where the integer is the number of
days to add or subtract, and the date is embedded in a vendor string.
(This is equivalent to executing a convert on the date).

The Pervasive ODBC Engine Interface also supports subtracting one
date from another to yield a number of days.

IF

Remarks The IF system scalar function provides conditional execution based
on the truth value of a condition

Examples This expression prints the column header as “Prime1” and amount
owed as 2000 where the value of the column amount_owed is 2000
or it prints a 0 if the value of the amount_owed column is not equal
to 2000.

SELECT Student_ID, Amount_Owed,

IF (Amount_Owed = 2000, Amount_Owed, Convert(0,
SQL_DECIMAL)) "Prime1"

FROM Billing

From table Class, the following example prints the value in the
Section column if the section is equal to 001, else it prints “xxx”
under column header Prime1

Under column header Prime2, it prints the value in the Section
column if the value of the section column is equal to 002, or else it
prints “yyy.”

SELECT ID, Name, Section,

IF (Section = '001', Section, 'xxx') "Prime1",

IF (Section = '002', Section, 'yyy') "Prime2"

FROM Class

You can combine header Prime1 and header Prime2 by using nested
IF functions. Under column header Prime, the following query
prints the value of the Section column if the value of the Section
column is equal to 001 or 002. Otherwise, it print “xxx.”

2-126

ODBC Engine Reference

SELECT ID, Name, Section,

IF (Section = '001', Section, IF(Section = '002',
Section, 'xxx')) Prime

FROM Class

left outer join

Remarks The following example shows how to access the “Person” and
“Student” tables from the DEMODATA database to obtain the Last
Name, First Initial of the First Name and GPA of students. With the
LEFT OUTER JOIN, all rows in the “Person” table are fetched (the
table to the left of LEFT OUTER JOIN). Since not all people have
GPA’s, some of the columns have NULL values for the results. This
is how outer join works, returning non-matching rows from either
table.

Examples SELECT Last_Name,Left(First_Name,1) AS
First_Initial,Cumulative_GPA AS GPA FROM "Person"

LEFT OUTER JOIN "Student" ON Person.ID=Student.ID

ORDER BY Cumulative_GPA DESC, Last_Name

Assume that you want to know everyone with perfectly rounded
GPA’s and have them all ordered by the length of their last name.
Using the MOD statement and the LENGTH scalar function, you
can achieve this by adding the following to the query:

WHERE MOD(Cumulative_GPA,1)=0 ORDER BY
LENGTH(Last_Name)

right outer join

Remarks The difference between LEFT and RIGHT OUTER JOIN is that all
non matching rows show up for the table defined to the right of
RIGHT OUTER JOIN. Change the query for LEFT OUTER JOIN to
include a RIGHT OUTER JOIN instead. The difference is that the all
non-matching rows from the right table, in this case “Student,” show
up even if no GPA is present. However, since all rows in the
“Student” table have GPA’s, all rows are fetched.

2-127

SQL Grammar Elements

Examples SELECT Last_Name,Left(First_Name,1) AS
First_Initial,Cumulative_GPA AS GPA FROM "Person"

RIGHT OUTER JOIN "Student" ON Person.ID=Student.ID

ORDER BY Cumulative_GPA DESC, Last_Name

Cartesian join

Remarks A Cartesian join is the matrix of all possible combinations of the
rows from each of the tables. The number of rows in the Cartesian
product equals the number of rows in the first table times the
number of rows in the second table.

Examples Assume you have the following tables in your database:

The following performs a Cartesian JOIN on these tables:

SELECT * FROM Addr,Loc

Table 2-15 Addr Table

EmpID Street

E1 101 Mem Lane

E2 14 Young St.

Table 2-16 Loc Table

LocID Name

L1 PlanetX

L2 PlanetY

2-128

ODBC Engine Reference

This results in the following:

DISTINCT

Remarks You can use DISTINCT with SUM, AVG, COUNT, MIN, and MAX
(but it does not change results with MIN and MAX). DISTINCT
eliminates duplicate values before calculating the sum, average or
count.

Examples Suppose you want to know the salaries for different departments
including the minimum, maximum and salary, and you want to
remove duplicate salaries. The following statement would do this,
excluding the computer science department:

SELECT dept_name, MIN(salary), MAX(salary), AVG(DISTINCT
salary) FROM faculty WHERE dept_name<>'computer_science'
GROUP BY dept_name

If you wanted to include duplicate salaries, you would use:

SELECT dept_name, MIN(salary), MAX(salary), AVG(salary)
FROM faculty WHERE dept_name<>'computer_science' GROUP
BY dept_name

See Also “Global Variables” on page 2-13

“JOIN” on page 2-94

Table 2-17 SELECT Statement with Cartesian JOIN

EmpID Street LocID Name

E1 101 Mem Lane L1 PlanetX

E1 101 Mem Lane L2 PlanetY

E2 14 Young St L1 PlanetX

E2 14 Young St L2 PlanetY

2-129

SQL Grammar Elements

SET SECURITY

The SET SECURITY statement allows you to enable and disable
security for the database to which you are currently logged in.

Syntax SET SECURITY = password

SET SECURITY = NULL

Examples The following example sets the password as ‘password’.

SET SECURITY = 'password'

The following example sets the password as 123456.

SET SECURITY = '123456'

!!!

The following example disables security.

SET SECURITY = NULL

Remarks You must be logged in as Master to set security. You can then assign
a password by using the SET SECURITY statement. There is no
password required to log in as Master initially.

When using SET SECURITY, user name and password are case
sensitive.

Only one Master user connection to the database is allowed to set
security. You can set security from the Pervasive Control Center
(PCC).

Note The SET SECURITY statement cannot be executed within the
SQL Data Manager. An error results if you try. For a database with no
security, the SQL Data Manager locks the dictionary files, which
prevents you from setting the password. For a secure database, the SQL
Data Manager opens a second connection to the database files, which
prevents you from disabling security.

See Also “GRANT” on page 2-80

“REVOKE” on page 2-112

2-130

ODBC Engine Reference

SET TRUENULLCREATE

The SET TRUENULLCREATE statement turns on or off true NULLs
when you create new tables.

Syntax SET TRUENULLCREATE = < ON | OFF >

Remarks Pervasive.SQL 2000i allows you to set the default format for creation
of tables with regard to NULL support. Normally, the product
creates new tables using the true NULL data record format, which
adds a NULL indicator byte to the beginning of every field. By
turning off this engine setting using an SQL statement, you can
create new tables that use the legacy NULL data record format that
was used in Pervasive.SQL 7.

The creation mode remains in effect until it is changed by issuing the
statement again, or until the connection is disconnected. Because
this setting is maintained on a per-connection basis, separate
database connections can maintain different creation modes, even
within the same application. Every connection starts with the setting
in default mode, where new tables are created with true NULL
support.

This feature does not affect existing tables or available column data
types. All tables are created using Pervasive.SQL data types. For
example, old data types such as NOTE or LVAR are not available for
use regardless of which type of NULL support is selected.

Also see the discussion about nullable data types under “INSERT”
on page 2-90.

This setting can only be toggled using SQL, it cannot be set using the
Pervasive Control Center (PCC).

Examples To toggle the setting and specify that new tables should be created
with legacy NULL support, use this SQL statement:

SET TRUENULLCREATE=OFF

To toggle the setting and return the engine to the default, which is
table creation with true NULL support, use this SQL statement:

SET TRUENULLCREATE=ON

2-131

SQL Grammar Elements

SET VARIABLE

SET assigns a value to a declared variable.

Syntax SET variable-name = proc-expr

Remarks You must declare variables before you can set them. SET is allowed
only in stored procedures and triggers.

Examples The following examples assigns a value of 10 to var1.

SET:var1 = 10;

See Also “CREATE PROCEDURE” on page 2-42

“DECLARE” on page 2-64

2-132

ODBC Engine Reference

SIGNAL

Remarks The SIGNAL statement allows you to signal an exception condition
or a completion condition other than successful completion.

Signalling an SQLSTATE value causes SQLSTATE to be set to a
specific value. This value is then returned to the user, or made
available to the calling procedure (through the SQLSTATE value).
This value is available to the application calling the procedure.

SIGNAL is available only inside a stored procedure.

Examples The following example prints the initial SQLSTATE value “00000,”
then prints “SQLSTATE exception caught” after the signal is raised.
The final SQLSTATE value printed is “W9001.”

CREATE PROCEDURE GenerateSignal();

BEGIN

SIGNAL 'W9001';

END;

CREATE PROCEDURE TestSignal() WITH DEFAULT HANDLER;

BEGIN

PRINT SQLSTATE;

CALL GenerateSignal();

IF SQLSTATE <> '00000' THEN

PRINT 'SQLSTATE exception caught';

END IF;

PRINT SQLSTATE;

END;

See Also “CREATE PROCEDURE” on page 2-42

2-133

SQL Grammar Elements

SQLSTATE

Remarks The SQLSTATE value corresponds to a success, warning, or
exception condition. The complete list of SQLSTATE values defined
by ODBC can be found in the Microsoft ODBC SDK
documentation.

When a handler executes, the statements within it affect the
SQLSTATE value in the same way as statements in the main body of
the compound statement. However, a handler that is intended to take
specific action for a specific condition can optionally leave that
condition unaffected, by re-assigning that condition at its
conclusion. This does not cause the handler to be invoked again; that
would cause a loop. Instead, Pervasive.SQL treats the exception
condition as an unhandled exception condition, and execution
stops.

See Also “CREATE PROCEDURE” on page 2-42

“SELECT” on page 2-118

“SIGNAL” on page 2-132

2-134

ODBC Engine Reference

START TRANSACTION

START TRANSACTION signals the start of a logical transaction.
START TRANSACTION must always be paired with a COMMIT or
a ROLLBACK.

Syntax START TRANSACTION

Remarks START TRANSACTION is supported only within stored
procedures. You cannot use START TRANSACTION within the SQL
Data Manager. (The SQL Data Manager sets AUTOCOMMIT to
“on.”)

Examples The following example, within a stored procedure, begins a
transaction which updates the Amount_Owed column in the Billing
table. This work is committed; another transaction updates the
Amount_Paid column and sets it to zero. The final COMMIT
WORK statement ends the second transaction.

Statements are delimited with a semi-colon inside stored procedures
and triggers.

START TRANSACTION;

UPDATE Billing B

SET Amount_Owed = Amount_Owed - Amount_Paid

WHERE Student_ID IN

(SELECT DISTINCT E.Student_ID

FROM Enrolls E, Billing B

WHERE E.Student_ID = B.Student_ID);

COMMIT WORK;

START TRANSACTION;

UPDATE Billing B

SET Amount_Paid = 0

WHERE Student_ID IN

(SELECT DISTINCT E.Student_ID

FROM Enrolls E, Billing B

WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;

2-135

SQL Grammar Elements

See Also “COMMIT” on page 2-37

“CREATE PROCEDURE” on page 2-42

“ROLLBACK” on page 2-114

2-136

ODBC Engine Reference

UNION

Remarks SELECT statements that use UNION or UNION ALL allow you to
obtain a single result table from multiple SELECT queries. UNION
queries are suitable for combining similar information contained in
more than one data source.

UNION eliminates duplicate rows. UNION ALL preserves duplicate
rows. Using the UNION ALL option is recommended unless you
require duplicate rows to be removed.

With UNION, the Pervasive.SQL Engine orders the entire result set
which, for large tables, can take several minutes. UNION ALL
eliminates the need for the sort.

The Pervasive.SQL Engine does not support LONGVARBINARY
columns in UNION statements. LONGVARCHAR is limited to
65500 bytes in UNION statements. The operator UNION cannot be
applied to any SQL statement that references one or more views.

The two query specifications involved in a union must be
compatible. Each query must have the same number of columns and
the columns must be of compatible data types.

Examples The following example lists the ID numbers of each student whose
last name begins with 'M' or who has a 4.0 grade point average. The
result table does not include duplicate rows.

SELECT Person.ID FROM Person WHERE Last_name LIKE 'M%'
UNION SELECT Student.ID FROM Student WHERE
Cumulative_GPA = 4.0

The next example lists the column id in the person table and the
faculty table including duplicate rows.

SELECT person.id FROM person UNION ALL SELECT faculty.id
from faculty

The next example lists the ID numbers of each student whose last
name begins with 'M' or who has a 4.0 grade point average. The
result table does not include duplicate rows and orders the result set
by the first column

SELECT Person.ID FROM Person WHERE Last_name LIKE 'M%'
UNION SELECT Student.ID FROM Student WHERE
Cumulative_GPA = 4.0 ORDER BY 1

2-137

SQL Grammar Elements

It is common to use the NULL scalar function to allow a UNION
select list to have a different number of entries than the parent select
list. To do this, you must use the CONVERT function to force the
NULL to the correct type.

CREATE TABLE t1 (c1 INTEGER, c2 INTEGER)

INSERT INTO t1 VALUES (1,1)

CREATE TABLE t2 (c1 INTEGER)

INSERT INTO t2 VALUES (2)

SELECT c1, c2 FROM t1
UNION SELECT c1, CONVERT(NULL(),sql_integer)FROM t2

See Also “SELECT” on page 2-118

2-138

ODBC Engine Reference

UNIQUE

Remarks To specify that the index not allow duplicate values, include the
UNIQUE keyword. If the column or columns that make up the index
contains duplicate values when you execute the CREATE INDEX
statement with the UNIQUE keyword, Pervasive.SQL returns Status
Code 5 and does not create the index.

Note You should not include the UNIQUE keyword in the list of
index attributes following the column name you specify; the preferred
syntax is CREATE UNIQUE INDEX.

See Also “ALTER TABLE” on page 2-19

“CREATE INDEX” on page 2-40

“CREATE TABLE” on page 2-50

2-139

SQL Grammar Elements

UPDATE

The UPDATE statement allows you to modify column values in a
database.

Syntax UPDATE table-name [alias-name]

SET column-name = < expression | subquery >

[, column-name = < expression | subquery >]...

[WHERE search-condition]

Remarks INSERT, UPDATE, and DELETE statements behave in an atomic
manner. That is, if an insert, update, or delete of more than one row
fails, then all insertions, updates, or deletes of previous rows by the
same statement are rolled back.

In the SET clause of an UPDATE statement, you may specify a sub-
query. This feature allows you to update information in a table based
on information in another table or another part of the same table.

The UPDATE statement can update only a single table at a time.
UPDATE can relate to other tables via a subquery in the SET clause.
This can be a correlated subquery that depends in part on the
contents of the table being updated, or it can be a non-correlated
subquery that depends only on another table.

Correlated Subquery

UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1
= T1.C1)

Non-correlated Subquery

UPDATE T1 SET T1.C2 = (SELECT SUM(T2.C2) FROM T2 WHERE
T2.C1 = 10)

The same logic is used to process pure SELECT statements and
subqueries, so the subquery can consist of any valid SELECT
statement. There are no special rules for subqueries.

If SELECT within an UPDATE returns no rows, then the UPDATE
inserts NULL. If the given column(s) is/are not nullable, then the
UPDATE fails. If select returns more than one row, then UPDATE
fails.

2-140

ODBC Engine Reference

An UPDATE statement does not allow the use of join tables in the
statement. Instead, use a correlated subquery in the SET clause as
follows:

UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1
= T1.C1)

All data types for data created prior to Pervasive.SQL 2000 (legacy
data) report back as nullable. This means that you can UPDATE
NULL into any legacy column type without pseudo-NULL
conversion. The following data types are treated as pseudo-NULL by
default:

(Normally, when you convert a legacy column to pseudo-NULL, you
lose one of the binary values, forfeiting it so that you can query the
column for NULL. These data types, however, because of their
design, have a different, unique internal value for NULL in addition
to their normal data range. With these data types, no binary values
are lost if they are converted to NULL so there is no harm
considering them as pseudo-NULL by default.)

The rest of the data types are considered “legacy nullable,” meaning
that NULL may be updated into them. When values are queried,
however, the non-NULL binary equivalent is returned. This same
binary equivalent must be used in WHERE clauses to retrieve
specific values.

The binary equivalents are:

! 0 for Binary types

! Empty string from string and BLOB types (legacy types LVAR
and NOTE)

Examples The following examples updates the record in the faculty table and
sets salary as 95000 for ID 103657107.

UPDATE Faculty SET salary = 95000.00 WHERE ID = 103657107

!!!

Date Decimal Money Numeric

NumericSA NumericSTS Timestamp

2-141

SQL Grammar Elements

The following example changes the credit hours for Economics 305
in the course table from 3 to 4.

UPDATE Course SET Credit_Hours = 4 WHERE Name = 'ECO 305'

!!!

The following example updates the address for a person in the
Person table:

UPDATE Person p

SET p.Street = '123 Lamar',

p.zip = '78758',

p.phone = 5123334444

WHERE p.ID = 131542520

Subquery Example A

Two tables are created and rows are inserted. The first table, t5, is
updated with a column value from the second table, t6, in each row
where table t5 has the value 2 for column c1. Because there is more
than one row in table t6 containing a value of 3 for column c2, the
first UPDATE fails because more than one row is returned by the
subquery. This result occurs even though the result value is the same
in both cases. As shown in the second UPDATE, using the
DISTINCT keyword in the subquery eliminates the duplicate results
and allows the statement to succeed.

CREATE TABLE t5 (c1 INT, c2 INT)
CREATE TABLE t6 (c1 INT, c2 INT)
INSERT INTO t5(c1, c2) VALUES (1,3)
INSERT INTO t5(c1, c2) VALUES (2,4)

INSERT INTO t6(c1, c2) VALUES (2,3)
INSERT INTO t6(c1, c2) VALUES (1,2)
INSERT INTO t6(c1, c2) VALUES (3,3)
SELECT * FROM t5

Results:

c1 c2
---------- -----
1 3
2 4

UPDATE t5 SET t5.c1=(SELECT c2 FROM t6 WHERE c2=3) WHERE
t5.c1=2 — Note that the query fails

UPDATE t5 SET t5.c1=(SELECT DISTINCT c2 FROM t6 WHERE
c2=3) WHERE t5.c1=2 — Note that the query succeeds

2-142

ODBC Engine Reference

SELECT * FROM t5

Results:

c1 c2
---------- -----
1 3
3 4

Subquery Example B

Two tables are created and a variety of valid syntax examples are
demonstrated. Note the cases where UPDATE fails because the
subquery returns more than one row. Also note that UPDATE
succeeds and NULL is inserted if the subquery returns no rows
(where NULL values are allowed).

CREATE TABLE T1 (C1 INT, C2 INT)
CREATE TABLE T2 (C1 INT, C2 INT)

INSERT INTO T1 VALUES (1, 0)
INSERT INTO T1 VALUES (2, 0)
INSERT INTO T1 VALUES (3, 0)
INSERT INTO T2 VALUES (1, 100)
INSERT INTO T2 VALUES (2, 200)

UPDATE T1 SET T1.C2 = (SELECT SUM(T2.C2) FROM T2)
UPDATE T1 SET T1.C2 = 0
UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1

= T1.C1)

UPDATE T1 SET T1.C2 = @@IDENTITY
UPDATE T1 SET T1.C2 = @@ROWCOUNT
UPDATE T1 SET T1.C2 = (SELECT @@IDENTITY)
UPDATE T1 SET T1.C2 = (SELECT @@ROWCOUNT)

UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2) — update fails
INSERT INTO T2 VALUES (1, 150)
INSERT INTO T2 VALUES (2, 250)
UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1

= T1.C1) — update fails
UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1

= 5) — Note that the update succeeds, NULL is inserted for all rows of T1.C2
UPDATE T1 SET T1.C2 = (SELECT SUM(T2.C2) FROM T2 WHERE

T2.C1 = T1.C1)

2-143

SQL Grammar Elements

See Also “ALTER TABLE” on page 2-19

“CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

“GRANT” on page 2-80

2-144

ODBC Engine Reference

UPDATE (positioned)

The positioned UPDATE statement updates the current row of a
rowset associated with an SQL cursor.

Syntax UPDATE [table-name] SET column-name = proc-expr [, column-name =
proc-expr]...

 WHERE CURRENT OF cursor-name

Remarks This statement is allowed in stored procedures, triggers, and at the
session level.

Note Even though positioned UPDATE is allowed at the session level,
the DECLARE CURSOR statement is not. Use the
SQLGetCursorName() API to obtain the cursor name of the active
result set.

The table-name may be specified in the positioned UPDATE
statement only when used at the session level. Table-name cannot be
specified with a stored procedure or trigger.

Examples The following sequence of statements provide the setting for the
positioned UPDATE statement. The required statements for a
positioned UPDATE are DECLARE CURSOR, OPEN CURSOR,
and FETCH FROM cursorname.

The positioned UPDATE statement in this example updates the
name of the course HIS 305 to HIS 306.

CREATE PROCEDURE UpdateClass();

BEGIN[alias-name][alias-name]

DECLARE :CourseName CHAR(7);

DECLARE :OldName CHAR(7);

DECLARE c1 CURSOR FOR SELECT name FROM course WHERE
name = :CourseName;

OPEN c1;

SET :CourseName = 'HIS 305';

FETCH NEXT FROM c1 INTO :OldName;

UPDATE SET name = 'HIS 306' WHERE CURRENT OF c1;
END;

2-145

SQL Grammar Elements

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-146

ODBC Engine Reference

WHILE

Use a WHILE statement is used to control flow. It allows code to be
executed repeatedly as long as a certain condition is true.

Syntax [label-name :] WHILE proc-search-condition

 DO [proc-stmt [; proc-stmt]]... END WHILE [label-name]

Remarks A WHILE statement can have a beginning label (the statement is
referred to as a labeled WHILE statement).

Examples The following example increments the variable vInteger by 1 until it
reaches a value of 10, when the loop ends.

WHILE (:vInteger < 10) DO

SET :vInteger = vInteger + 1;

END WHILE

See Also “CREATE PROCEDURE” on page 2-42

“CREATE TRIGGER” on page 2-59

2-147

SQL Grammar Elements

Grammar Element Definitions

The following is an alphabetical summary of the element definitions
used in the grammar syntax section:

alter-option-list ::=alter-option

|(alter-option [, alter-option}...)

alter-option ::= ADD [COLUMN] column-definition

| ADD table-constraint-definition

| DROP [COLUMN] column-name

| DROP CONSTRAINT constraint-name

| DROP PRIMARY KEY

as-or-semicolon ::= AS | ;

before-or-after ::= BEFORE | AFTER

call-arguments ::= positional-argument [, positional-argument]...

col-constraint ::= NOT NULL

| UNIQUE

| PRIMARY KEY

| REFERENCES table-name [(column-name)] [referential-actions]

collation-name ::= 'string' | user-defined-name

column-constraint ::= [CONSTRAINT constraint-name] col-constraint

column-definition ::= column-name data-type [DEFAULT default-value] [
column-constraint [column-constraint]... [CASE | COLLATE
collation-name]

column-name ::= user-defined-name

commit-statement ::= see COMMIT statement

comparison-operator ::= < | > | <= | >= | = | <>

constraint-name ::= user-defined-name

correlation-name ::= user-defined-name

cursor-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale])]

2-148

ODBC Engine Reference

data-type-name ::= see list in Appendix A

default-value ::= literal

expression ::= expression - expression

| expression + expression

| expression * expression

| expression / expression

| (expression)

| -expression

| +expression

| column-name

| ?

| literal

| set-function

| scalar-function

| { fn scalar-function }

| USER

| IF (search-condition , expression , expression)

| SQLSTATE

| : user-defined-name

expression-or-subquery ::= expression | (query-specification)

fetch-orientation ::= | NEXT

group-name ::= user-defined-name

index-definition ::= (index-segment-definition [, index-segment-definition
]...)

index-segment-definition ::= column-name [ASC | DESC]

index-name ::= user-defined-name

ins-upd-del ::= INSERT | UPDATE | DELETE

insert-values ::= values-clause

| query-specification

2-149

SQL Grammar Elements

join-definition ::= table-reference [INNER] JOIN table-reference ON search-

condition

| table-reference CROSS JOIN table-reference

| outer-join-definition

label-name ::= user-defined-name

literal ::= 'string'

| number

| { d 'date-literal' }

| { t 'time-literal' }

| { ts 'timestamp-literal' }

order-by-expression ::= expression [CASE | COLLATE collation-name] [
ASC | DESC]

outer-join-definition ::= table-reference outer-join-type JOIN table-reference

ON search-condition

outer-join-type ::= LEFT [OUTER]| RIGHT [OUTER] | FULL
[OUTER]

parameter ::= parameter-type-name data-type [DEFAULT proc-expr | =
proc-expr]

| SQLSTATE

parameter-type-name ::= parameter-name

| parameter-type parameter-name

| parameter-name parameter-type

parameter-type ::= IN | OUT | INOUT | IN_OUT

parameter-name ::= [:] user-defined-name

password ::= user-defined-name | 'string'

positional-argument ::= expression

precision ::= integer

2-150

ODBC Engine Reference

predicate ::= expression [NOT] BETWEEN expression AND expression

| expression comparison-operator expression-or-subquery

| expression [NOT] IN (query-specification)

| expression [NOT] IN (value [, value]...)

| expression [NOT] LIKE value

| expression IS [NOT] NULL

| expression comparison-operator ANY (query-specification)

| expression comparison-operator ALL (query-specification)

| expression comparison-operator SOME (query-specification)

| EXISTS (query-specification)

proc-expr ::= same as normal expression but does not
allow IF expression, or ODBC-style scalar
functions

proc-search-condition ::= same as normal search-condition,
but does not allow any expression that includes
a subquery.

proc-stmt ::= [label-name :] BEGIN [ATOMIC] [proc-stmt
[; proc-stmt]...] END [label-name]

| CALL procedure-name (proc-expr [, proc-expr]...)

| CLOSE cursor-name

| DECLARE cursor-name CURSOR FOR select-statement [FOR
UPDATE | FOR READ ONLY]

| DECLARE variable-name data-type [DEFAULT proc-expr | = proc-

expr]

| DELETE WHERE CURRENT OF cursor-name

| delete-statement

| FETCH [fetch-orientation [FROM]] cursor-name [INTO
variable-name [, variable-name]]

| IF proc-search-condition THEN proc-stmt [; proc-stmt]... [
ELSE proc-stmt [; proc-stmt]...] END IF

| insert-statement

| LEAVE label-name

| [label-name :] LOOP proc-stmt [; proc-stmt]... END
LOOP [label-name]

| OPEN cursor-name

| PRINT proc-expr [, 'string']

| RETURN [proc-expr]

| transaction-statement

2-151

SQL Grammar Elements

| select-statement-with-into

| select-statement

| SET variable-name = proc-expr

| SIGNAL [ABORT] sqlstate-value

| START TRANSACTION

| update-statement

| UPDATE SET column-name = proc-expr [, column-name = proc-

expr]... WHERE CURRENT OF cursor-name

| [label-name :] WHILE proc-search-condition DO [proc-stmt [;
proc-stmt]]... END WHILE [label-name]

procedure-name ::= user-defined-name

public-or-user-group-name ::= PUBLIC | user-group-name

query-specification [[UNION [ALL] query-specification]...
[ORDER BY order-by-expression [, order-by-expression]...]

query-specification ::= (query-specification)

| SELECT [ALL | DISTINCT] select-list [table-expression]

referencing-alias ::= OLD [AS] correlation-name [NEW [AS]
correlation-name]

| NEW [AS] correlation-name [OLD [AS] correlation-name]

referential-actions ::= referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action ::= ON DELETE CASCADE

| ON DELETE RESTRICT

release-statement ::= see RELEASE statement

result ::= user-defined-name data-type

rollback-statement ::= see ROLLBACK WORK statement

savepoint-name ::= user-defined-name

scalar-function ::= see Scalar Function list

scale ::= integer

2-152

ODBC Engine Reference

search-condition ::= search-condition AND search-condition

| search-condition OR search-condition

| NOT search-condition

| (search-condition)

| predicate

select-item ::= expression [[AS] alias-name] | table-name . *

select-list ::= * | select-item [, select-item]...

set-function ::= COUNT (*)

| COUNT ([DISTINCT | ALL] expression)

| SUM ([DISTINCT | ALL] expression)

| AVG ([DISTINCT | ALL] expression)

| MIN ([DISTINCT | ALL] expression)

| MAX ([DISTINCT | ALL] expression)

sqlstate-value ::= 'string'

table-constraint-definition ::= [CONSTRAINT constraint-name] table-

constraint

table-constraint ::= UNIQUE (column-name [, column-name]...)

| PRIMARY KEY (column-name [, column-name]...)

| FOREIGN KEY (column-name [, column-name])

REFERENCES table-name

[(column-name [, column-name]...)]

[referential-actions]

table-element ::= column-definition

| table-constraint-definition

table-expression ::=

FROM table-reference [, table-reference]...

[WHERE search-condition]

[GROUP BY expression [, expression]...

[HAVING search-condition]

table-name ::=user-defined-name

2-153

SQL Grammar Elements

table-privilege ::= ALL

| SELECT [(column-name [, column-name]...)]

| UPDATE [(column-name [, column-name]...)]

| INSERT [(column-name [, column-name]...)]

| DELETE

| ALTER

| REFERENCES

table-reference ::= { OJ outer-join-definition }

| table-name [[AS] alias-name]

| join-definition

| (join-definition)

transaction-statement ::= commit-statement

| rollback-statement

| release-statement

trigger-name ::= user-defined-name

user-password ::= user-name [:] password

user-group-name ::= user-name | group-name

user-name ::= user-defined-name

value ::= literal | USER | ?

value-list ::= (value [, value]...)

values-clause ::= VALUES (expression [, expression]...)

variable-name ::= user-defined-name

view-name ::= user-defined-name

2-154

ODBC Engine Reference

SQL Statement
List

SqlStatementList is defined as:

SqlStatementList

Statement ';' | SqlStatementList ';'
Statement ::= StatementLabel ':' Statement
|BEGIN ... END block
|CALL Statement
|CLOSE CURSOR Statement
|COMMIT Statement
|DECLARE CURSOR Statement
|DECLARE Variable Statement
|DELETE Statement
|FETCH Statement
|IF Statement
|INSERT Statement
|LEAVE Statement
|LOOP Statement
|OPEN Statement
|PRINT Statement
|RELEASE SAVEPOINT Statement
|RETURN Statement
|ROLLBACK Statement
|SAVEPOINT Statement
|SELECT Statement
|SET Statement
|SIGNAL Statement
|START TRANSACTION Statement
|UPDATE Statement
|WHILE Statement

Predicate A predicate is defined as:

Expression CompareOperator Expression
|Expression [NOT] BETWEEN Expression AND Expression

|Expression [NOT] LIKE StringLiteral

|Expression IS [NOT] NULL
|NOT Predicate
|Predicate AND Predicate

|Predicate OR Predicate
|'(' Predicate ')'CompareOperator ::= '=' | '>=' | '>' | '<=' |

'<' | '<>'
|[NOT] IN value-list

2-155

SQL Grammar Elements

Expression An expression is defined as:

Number
|StringLiteral
|ColumnName
|VariableName
|NULL
|CONVERT '(' Expression ',' DataType ')'
|'-' Expression
|Expression '+' Expression
|Expression '-' Expression
|Expression '*' Expression
|Expression '/' Expression
|FunctionName '(' [ExpressionList] ')'
|'(' Expression')'
|'{' D StringLiteral '}'
|'{' T StringLiteral '}'
|'{' TS StringLiteral '}'
|@:IDENTITY
|@:ROWCOUNT
|@@IDENTITY
|@@ROWCOUNT

An expression list is defined as:

ExpressionList ::= Expression [, Expression ...]

2-156

ODBC Engine Reference

Scalar Functions

The Pervasive ODBC Engine Interface supports ODBC scalar
functions which may be included in an SQL statement as a primary
expression.

This section lists the scalar functions supported by the Pervasive
ODBC Engine Interface.

String Functions String functions are used to process and manipulate columns that
consist of text information, such as CHAR or LONGVARCHAR data
types.

Arguments denoted as string can be the name of column, a string
literal, or the result of another scalar function..

Table 2-18 String Functions

Function Description

ASCII (string) Returns the ASCII value of the left most
character of string

BIT_LENGTH (string) Returns the length in bits of string

CHAR (code) Returns the ASCII character corresponding
to ASCII value code. The argument must be
an integer value.

CHAR_LENGTH (string) Returns the number of characters in string.

CHARACTER_LENGTH (string) Same as CHAR_LENGTH.

CONCAT (string1, string2) Returns a string that results from combining
string1 and string2.

LCASE or LOWER (string) Converts all upper case characters in string
to lower case.

LEFT (string, count) Returns the left most count of characters in
string. The value of count is an integer.

LENGTH (string) Returns the number of characters in string.
Trailing blanks and the string termination
character are not returned.

2-157

SQL Grammar Elements

LOCATE (string1, string2 [, start]) Returns the starting position of the first
occurrence of string1 within string2. The
search within string2 begins at the first
character position unless you specify a
starting position (start). The search begins at
the starting position you specify. The first
character position in string2 is 1. The string1
is not found, the function returns the value
zero.

LTRIM (string) Returns the characters of string with leading
blanks removed.

OCTET_LENGTH (string) Returns the length in bytes of string.

POSITION (string1, string2) Returns the position of string1 in string2. If
string1 does not exist in string2, a zero is
returned.

REPLACE (string1, string2, string3) Searches string1 for occurrences of string2
and replaces each with string3. Returns the
result. If no occurrences are found, string1 is
returned.

REPLICATE (string, count) Returns a character string composed of
string repeated count times. The value of count
is an integer.

RIGHT (string, count) Returns the right most count of characters in
string. The value of count is an integer.

RTRIM (string) Returns the characters of string with trailing
blanks removed.

SPACE (count) Returns a character string consisting of count
spaces.

STUFF (string1, start, length, string2) Returns a character string where length
characters in string1 beginning at position
start have been replaced by string2. The
values of start and length are integers.

SUBSTRING (string1, start, length) Returns a character string derived from
string1 beginning at the character position
specified by start for length characters.

UCASE or UPPER (string) Converts all lower case characters in string
to upper case.

Table 2-18 String Functions

Function Description

2-158

ODBC Engine Reference

Queries containing a WHERE clause with scalar functions RTRIM
or LEFT can be optimized. For example, consider the following
query:

SELECT * FROM T1, T2 WHERE T1.C1 = LEFT(T2.C1, 2)

In this case, both sides of the predicate are optimized if T1.C1 and
T2.C2 are index columns. The predicate is the complete search
condition following the WHERE keyword. Depending on the size of
the tables involved in the join, the optimizer chooses the appropriate
table to process first.

RTRIM and LEFT cannot be optimized if they are contained in a
complex expression on either side of the predicate.

Examples The following example creates a new table with an integer and a
character column. It inserts 4 rows with values for the character
column only, then updates the integer column of those rows with the
ASCII character code for each character.

CREATE TABLE numchars(num INTEGER,chr CHAR(1) CASE)

INSERT INTO numchars (chr) VALUES('a')

INSERT INTO numchars (chr) VALUES('b')

INSERT INTO numchars (chr) VALUES('A')

INSERT INTO numchars (chr) VALUES('B')

UPDATE numchars SET num=ASCII(chr)

SELECT * FROM numchars

Results of SELECT:

num chr
---------- ---
97 a
98 b
65 A
66 B

SELECT num FROM numchars WHERE num=ASCII('a')

Results of SELECT:

num

97

The following example concatenates the first and last names in the
Person table and results in "RooseveltBora".

2-159

SQL Grammar Elements

SELECT CONCAT(First_name, Last_name) FROM Person WHERE
First_name = 'Roosevelt'

The next example changes the case of the first name to lowercase and
then to upper case, results in "roosevelt", "ROOSEVELT".

 SELECT LCASE(First_name),UCASE(First_name) FROM Person
WHERE First_name = 'Roosevelt'

The following example results in first name trimmed to three
characters beginning from left, the length as 9 and locate results 0 .
This query results in "Roo", 9, 0

SELECT LEFT(First_name, 3),LENGTH(First_name),
LOCATE(First_name, 'a') FROM Person WHERE First_name =
'Roosevelt'

The following example illustrates use of LTRIM and RTRIM
functions on strings, results in "Roosevelt", "Roosevelt", "elt".

SELECT LTRIM(First_name),RTRIM(First_name),
RIGHT(First_name,3) FROM Person WHERE First_name =
'Roosevelt'

This substring lists up to three characters starting with the second
character in the first name as “oos.”

SELECT SUBSTRING(First_name,2, 3) FROM Person WHERE
First_name = 'Roosevelt'

SELECT ID,first_name FROM Person WHERE LCASE(First_name)
= 'bruce'

Numeric Functions Numeric functions are used to process and manipulate columns that
consist of strictly numeric information, such as decimal and integer
values.

Table 2-19 Numeric Functions

Function Description

ABS (numeric_exp) Returns the absolute value of
numeric_exp.

ACOS (float_exp) Returns the arc cosine of float_exp as an
angle, expressed in radians.

ASIN (float_exp) Returns the arc sine of float_exp as an
angle, expressed in radians.

ATAN (float_exp) Returns the arc tangent of float_exp as an
angle, expressed in radians.

2-160

ODBC Engine Reference

ATAN2 (float_exp1, float_exp2) Returns the arc tangent of the x and y
coordinates, specified by float_exp1 and
float_exp2, respectively, as an angle,
expressed in radians.

CEILING (numeric_exp) Returns the smallest integer greater
than or equal to numeric_exp.

COS (float_exp) Returns the cosine of float_exp, where
float_exp is an angle expressed in
radians.

COT (float_exp) Returns the cotangent of float_exp, where
float_exp is an angle expressed in
radians.

DEGREES (numeric_exp) Returns the number of degrees
corresponding to numeric_exp radians.

EXP (float_exp) Returns the exponential value of
float_exp.

FLOOR (numeric_exp) Returns the largest integer less than or
equal to numeric_exp.

LOG (float_exp) Returns the natural logarithm of
float_exp.

LOG10 (float_exp) Returns the base 10 logarithm of
float_exp.

MOD (integer_exp1, integer_exp2) Returns the remainder (modulus) of
integer_exp1 divided by integer_exp2.

PI () Returns the constant value Pi as a
floating point value.

POWER (numeric_exp, integer_exp) Returns the value of numeric_exp to the
power of integer_exp.

RADIANS (numeric_exp) Returns the number of radians
equivalent to numeric_exp degrees.

RAND (integer_exp) Returns a random floating-point value
using integer_exp as the optional seed
value.

Table 2-19 Numeric Functions

Function Description

2-161

SQL Grammar Elements

Examples The following example lists the Modulus of the number and capacity
columns in a table named room.

SELECT MOD(Number, Capacity) FROM Room

The following example selects all salaries from a table named Faculty
that are evenly divisible by 100.

SELECT Salary FROM Faculty WHERE MOD(Salary, 100) = 0

ROUND (numeric_exp, integer_exp) Returns numeric_exp rounded to
integer_exp places right of the decimal
point. If integer_exp is negative,
numeric_exp is rounded to |integer_exp|
(absolute value of integer_exp) places to
the left of the decimal point.

SIGN (numeric_exp) Returns an indicator of the sign of
numeric_exp. If numeric_exp is less than
zero, -1 is returned. If numeric_exp equals
zero, 0 is returned. If numeric_exp is
greater than zero, 1 is returned.

SIN (float_exp) Returns the sine of float_exp, where
float_exp is an angle expressed in
radians.

SQRT (float_exp) Returns the square root of float_exp.

TAN (float_exp) Returns the tangent of float_exp, where
float_exp is an angle expressed in
radians.

TRUNCATE (numeric_exp, integer_exp) Returns numeric_exp truncated to
integer_exp places right of the decimal
point. If integer_exp is negative,
numeric_exp is truncated to |integer_exp|
(absolute value) places to the left of the
decimal point.

Table 2-19 Numeric Functions

Function Description

2-162

ODBC Engine Reference

Time and Date
Functions

Date and time functions can be used to generate, process, and
manipulate data that consists of date or time data types, such as
DATE and TIME.

Table 2-20 Time and Date Functions

Function Description

 CURDATE () Returns the current date as a data value.

CURRENT_DATE () Returns the current date. In INSERT
statements, use the CURDATE variable
in the values clause to insert the current
date into a table.

CURTIME () Returns the current local time.

CURRENT_TIME () Returns the current time. In INSERT
statements, use the CURTIME variable
in the values clause to insert the current
time into a table.

DAYNAME (date_exp) Returns a character string containing the
data source-specific name of the day (for
example, Sunday through Saturday or
Sun. through Sat. for a data source that
uses English, or Sonntag through
Samstag for a data source that uses
German) for the day portion of date_exp.

DAYOFMONTH (date_exp) Returns the day of the month in
date_exp as an integer in the range of 1
to 31.

DAYOFYEAR (date_exp) Returns the day of the year based on the
year field in date_exp as an integer value
in the range of 1-366.

EXTRACT (extract_field, extract_source) Returns the extract_field portion of the
extract_source. The extract_source
argument is a date, time or interval
expression.

The permitted values of extract_field are:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND

These values are returned from the
target expression.

2-163

SQL Grammar Elements

HOUR (time_exp) Returns the hour as an integer in the
rage of 0 to 23.

MINUTE (time_exp) Returns the minute as an integer in the
range 0 to 59.

MONTH (date_exp) Returns the month as an integer in the
range of 1 to 12.

MONTHNAME (date_exp) Returns a character string containing the
data source-specific name of the month
(for example, September through
December or Sept. through Dec. for a
data source that uses English, or
Settembre through Dicembre for a data
source that uses Italian) for the month
portion of date_exp.

NOW () Returns the current date and time as a
timestamp value.

QUARTER (date_exp) Returns the quarter in date_exp as an
integer value in the range of 1- 4, where
1 represents January 1 through March
31.

SECOND (time_exp) Returns the second as an integer in the
range of 0 to 59.

TIMESTAMPADD (interval, integer_exp,
timestamp_exp)

Returns the timestamp calculated by
adding integer_exp intervals of type
interval to timestamp_exp.

The allowed values for interval are:

SQL_TSI_YEAR
SQL_TSI_QUARTER
SQL_TSI_MONTH
SQL_TSI_WEEK
SQL_TSI_DAY
SQL_TSI_HOUR
SQL_TSI_MINUTE
SQL_TSI_SECOND

TIMESTAMPDIFF (interval,
timestamp_exp1, timestamp_exp2)

Returns the integer number of intervals
of type interval by which timestamp_exp2 is
greater than timestamp_exp1.

The values allowed for interval are the
same as for TIMESTAMPADD

Table 2-20 Time and Date Functions

Function Description

2-164

ODBC Engine Reference

Examples The following example illustrates the use of hour.

SELECT c.Name,c.Credit_Hours FROM Course c WHERE c.Name
= ANY (SELECT cl.Name FROM Class cl WHERE c.Name =
cl.Name AND c.Credit_Hours >(HOUR (Finish_Time -
Start_Time) + 1))

The following is an example of minute.

SELECT MINUTE(log) FROM billing

The following example illustrates the use of second.

SELECT SECOND(log) FROM billing

SELECT log FROM billing WHERE SECOND(log) = 31

The following example illustrates the use of now.

SELECT NOW() - log FROM billing

The following is a complex example that uses month, day, year, hour
and minute.

SELECT Name, Section, MONTH(Start_Date),
DAY(Start_Date), YEAR(Start_Date), HOUR(Start_Time),
MINUTE(Start_Time) FROM Class

The following example illustrates use of curdate.

SELECT ID, Name, Section FROM Class WHERE (Start_Date -
CURDATE()) <= 2 AND (Start_Date - CURDATE()) >= 0

The next example gives the day of the month and day of the week of
the start date of class from the class table.

SELECT DAYOFMONTH(Start_date), DAYOFWEEK(Start_date)
FROM Class

SELECT * FROM person WHERE YEAR(Date_Of_Birth) < 1970

WEEK (date_exp) Returns the week of the year based on
the week field in date_exp as an integer in
the range of 1 to 53.

YEAR (date_exp) Returns the year as an integer value.
The range depends on the data source.

Table 2-20 Time and Date Functions

Function Description

2-165

SQL Grammar Elements

System Functions System functions provide information at a system level.

Examples The following examples show how to obtain the name of the current
user and database:

SELECT USER()

SELECT DATABASE()

If you want to obtain this information for every record in a table, use
the following (the example uses the Person table in DEMODATA):

SELECT USER() FROM person

SELECT DATABASE() FROM person

SELECT USER(), DATABASE() FROM person

Logical Functions Logical functions are used to manipulate data based on certain
conditions.

Table 2-21 System Functions

Function Description

DATABASE () Returns the current database name.

USER () Returns the login name of the current
user.

Table 2-22 Logical Functions

Function Description

IF (predicate, expression1,
expression2)

Returns expression1 if predicate is true;
otherwise, returns expression2.

NULL () Sets a column as NULL values.

 IFNULL (exp, value) If exp is NULL, value is returned. If exp is
not null, exp is returned. The possible
data type or types of value must be
compatible with the data type of exp.

NULLIF (exp1, exp2) NULLIF returns exp1 if the two
expressions are not equivalent. If the
expressions are equivalent, NULLIF
returns a NULL value.

2-166

ODBC Engine Reference

Examples The system scalar functions IF and NULL are SQL extensions.

IF allows you to enter different values depending on whether the
condition is true or false. For example, if you want to display a
column with logical values as “true” or “false” instead of a binary
representation, you would use the following SQL statement:

SELECT IF(logicalcol=1, 'True', 'False')

The system scalar function NULL allows you to set a column as null
values. The syntax is:

NULL()

For example, the following SQL statement retrieves null values:

SELECT NULL() FROM person

The following statements demonstrate the IFNULL and NULLIF
scalar functions.You use these functions when you want to do certain
value substitution based on the presence or absence of NULLs and
on equality.

CREATE TABLE Demo (col1 CHAR(3))

INSERT INTO Demo VALUES ('abc')

INSERT INTO Demo VALUES (NULL)

INSERT INTO Demo VALUES ('xyz')

Since the second row contains the NULL value, 'foo' is substituted
in its place.

SELECT IFNULL(col1, 'foo') FROM Demo

This results in three rows fetched from one column:

"abc"
"foo"
"xyz"
3 rows fetched from 1 column.

The first row contains ‘abc,’ which matches the second argument of
the following NULLIF call.

SELECT NULLIF(col1, 'abc') FROM Demo

A NULL is returned in its place:

<Null>
<Null>
"xyz"
3 rows fetched from 1 column.

2-167

SQL Grammar Elements

Conversion
Function

The conversion function converts an expression to a data type.

Examples SELECT CONVERT(id , SQL_CHAR), CONVERT('1995-06-05',
SQL_DATE),CONVERT('10:10:10', SQL_TIME),
CONVERT('1990-10-10 10:10:10',
SQL_TIMESTAMP),CONVERT('1990-10-10', SQL_TIMESTAMP)
FROM Faculty

SELECT Name FROM Class WHERE Start_date > CONVERT ('1995-
05-07', SQL_DATE) + 31

Table 2-23 Conversion Function

Function Description

 CONVERT (exp, type) Converts exp to the type indicated. The
possible types are:

SQL_BIGINT
SQL_BINARY
SQL_BIT
SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIME
SQL_TIMESTAMP
SQL_TINYINT
SQL_VARBINARY
SQL_VARCHAR
SQL_LONGVARBINARY

2-168

ODBC Engine Reference

Other Characteristics

Creating
Indexes

The maximum column size for varchar columns is 254 bytes if the
column does not allow Null values and 253 bytes if the column is
nullable.

The maximum column size for char columns is 255 bytes if the
column does not allow Null values and 254 bytes if the column is
nullable.

The maximum Btrieve key size is 255. When a column is nullable and
indexed a segmented key is created with 1 byte for the null indicator
and a maximum 254 bytes from the column indexed. Varchar
columns differ from char columns in that either length byte (Btrieve
lstring) or a zero terminating byte (Btrieve zstring) are reserved,
reducing the effective storage by 1 byte.

Closing an
Open Table

Calling SQLFreeStmt with the SQL_CLOSE option changes the
SQLSTATE but does not close the open tables used by the hStmt. To
close the tables currently used by hStmt, SQLFreeStmt must be called
with the SQL_DROP option.

In the following example, the Emp and Dept tables remain open:

SQLPrepare(hStmt, "SELECT * FROM Emp, Dept", SQL_NTS)

SQLExecute(hStmt)

SQLFetch until SQL_No_Data_Found

SQLFreeStmt(hStmt, SQL_CLOSE)

When SQLPrepare is subsequently called on the hStmt, the tables used
in the previous statement are closed. For example, when the
following call is made, both the Emp and Dept tables are closed by
the Pervasive ODBC Engine Interface:

SQLPrepare(hStmt, "SELECT * FROM Customer",SQL_NTS)

The following call would then close the table Customer:

SQLFreeStmt(hStmt, SQL_DROP)

Concurrency The timeliness of data, dynamic or snapshot, is determined by
whether or not execution of a query results in a sort. Queries with
DISTINCT, GROUP BY, or ORDER BY result in a temporary sort by

2-169

Other Characteristics

Pervasive ODBC Engine Interface, unless an index exists that satisfies
the required ordering.

For those queries which do not result in a temporary sort by
Pervasive ODBC Engine Interface, the data fetched is from the data
files. For those queries that result in a temporary sort by Pervasive
ODBC Engine Interface, the data fetched is from a temporary table.
The temporary table is built from the required data in the original
data file at SQLExecute time.

Note For some sort operations (for example, SELECT statements
where long data columns are included in the select-list, or SELECT
statements with GROUP BY), Pervasive ODBC Engine Interface may
use bookmarks which Pervasive ODBC Engine Interface assumes are
persistent within a SELECT statement. The situation may arise
whereby another application updates or deletes the row that a
bookmark references.

To avoid this situation, an application may set an exclusive lock on the
table being sorted through a call to SQLSetStmtOption, with fOption
= 1153 and vParam = 1.

Comma as
Decimal
Separator

Many locales, especially in Europe, use a comma to separate whole
numbers from fractional numbers within a floating point numeric
field. For example, these locales would use 1,5 instead of 1.5 to
represent the number one-and-one-half.

Starting with Pervasive.SQL 2000i, the engine can support both the
period “.” and the comma “,” as decimal separators. The database
engine uses the decimal separator that is defined by the regional
settings for the operating system.

Note When the decimal separator is not a period, numbers appearing
in SQL statements must be enclosed in quotes.

Client/Server Considerations

Support for the comma as decimal separator is based on the locale
setting in the operating system. Both the client operating system and
the server operating system have a locale setting. The expected
behavior varies according to both settings.

2-170

ODBC Engine Reference

! If either the server or client locale setting uses the comma as
decimal separator, then the SRDE accepts both period-separated
values and quoted comma-separated values.

! If neither the server nor the client locale setting uses the comma
decimal separator, then the SRDE does not accept comma-
separated values.

Changing the Locale Setting

Decimal separator information can only be retrieved or changed for
a Win32 machine (Windows 95/98/NT/2000).

The decimal setting for NetWare and Unix cannot be configured,
and it is set to a period. If you have a NetWare or Unix server engine
and you want to use the comma as decimal separator, you must
ensure that all your client computers are set to a locale that uses the
decimal separator.

➤ To view or change your locale setting

1 From the Start menu, choose Settings | Control Panel.

2 In the Control Panel window, double-click Regional Settings.

3 On the Regional Settings tab, select the desired country.

4 You must stop and restart the Pervasive.SQL services.

Examples

Example A - Server locale uses the comma for decimal
separator

Client’s locale uses comma “,” as decimal separator:

CREATE TABLE t1 (c1 DECIMAL(10,3), c2 DOUBLE)

INSERT INTO t1 VALUES (10.123, 1.232)

INSERT INTO t1 VALUES ('10,123', '1.232')

SELECT * FROM t1 WHERE c1 = 10.123

SELECT * FROM t1 FROM c1 = '10,123'

The above two select statements, if executed from the client,
return:

10,123, 1,232

10,123, 1,232

2-171

Other Characteristics

Client’s locale uses period “.” as decimal separator:

CREATE TABLE t1 (c1 DECIMAL(10,3), c2 DOUBLE)

INSERT INTO t1 VALUES (10.123, 1.232)

INSERT INTO t1 VALUES ('10,123', '1.232')

SELECT * FROM t1 WHERE c1 = 10.123

SELECT * FROM t1 WHERE c1 = '10,123'

The above two SELECT statements, if executed from the client,
return:

10.123, 1.232

10.123, 1.232

Example B - Server locale uses the period for decimal separator

Client’s locale uses comma “,” as DECIMAL separator:

Same as client using comma “,” in Example A.

Client’s locale uses period “.” as DECIMAL separator:

CREATE TABLE t1 (c1 DECIMAL(10,3), c2 DOUBLE)

INSERT INTO t1 VALUES (10.123, 1.232)

INSERT INTO t1 VALUES ('10,123', '1,232')
-- error in assignment

SELECT * FROM t1 WHERE c1 = 10.123

SELECT * FROM t1 WHERE c1 = '10,123'
-- error in assignment

The first SELECT statement above, if executed from the client,
returns:

10.123, 1.232

OEM to ANSI
Support

Applications can now store or retrieve character data in the OEM
character set using Pervasive.SQL, while allowing the data to be
manipulated and displayed using the ANSI Windows character set.
The Pervasive ODBC driver translation DLL can perform all
necessary translations between the two character sets. This feature
can be turned on or off for each DSN. To access the switch, click
Options... on the Pervasive ODBC DSN Setup dialog box.

2-172

ODBC Engine Reference

The Pervasive Control Center (PCC) and the SQL Data Manager
(SQLDM) are not fully OEM-character aware if you use extended
ASCII characters for column or table names. However, any character
data that is passed to and from the database is correctly translated
between the OEM and ANSI character sets.

If your application connects to the data source using
SQLDriverConnect, you can also specify the translation DLL using
the connection string option
TRANSLATIONDLL=path_and_DLL_name. The translation DLL
name for Pervasive is W32BTXLT.DLL.

NOTE: The OEM to ANSI translation option is available only for
client or local engine DSNs.

A-1

A p p e n d i x

AData Types

Pervasive.SQL Supported Data Types

The following table shows the ODBC SQL data types that Pervasive
ODBC Engine Interface supports. The application developer can use
SQLGetTypeInfo to determine which of these ODBC SQL data types
are supported by a Pervasive ODBC Engine Interface. (See the
Microsoft ODBC Programmer’s Reference for further details on
SQLGetTypeInfo.)

A-2

Data Types

Pervasive.SQL Supported Data Types

Table A-1 Pervasive.SQL Data Types

Pervasive.SQL
Data Type

 ODBC Data Type
(ODBC type number)

Precision/
Size

Create
Parameters

Unsigned Pervasive-
Oracle

BIT SQL_BIT (-7) 1 <none> N/A Yes

TINYINT SQL_TINYINT (-6) 3 <none> No Yes

UTINYINT SQL_TINYINT (-6) 3 <none> Yes Yes

LONGVARBINARY SQL_LONGVARBINARY (-4) 2147483648 <none> N/A Yes

BINARY SQL_BINARY (-2) 255 max length N/A Yes

LONGVARCHAR SQL_LONGVARCHAR (-1) 2147483648 <none> N/A Yes

CHAR SQL_CHAR (1) 255 length N/A Yes

NUMERIC SQL_DECIMAL (3) 15 precision,scale No No

DECIMAL SQL_DECIMAL (3) 64 precision,scale No Yes

INTEGER SQL_INTEGER (4) 10 <none> No Yes

UINTEGER SQL_INTEGER (4) 10 <none> Yes Yes

IDENTITY SQL_INTEGER (4) 10 <none> No No

SMALLINT SQL_SMALLINT (5) 5 <none> No Yes

USMALLINT SQL_SMALLINT (5) 5 <none> Yes Yes

SMALLIDENTITY SQL_SMALLINT (5) 5 <none> No No

FLOAT SQL_FLOAT 7 <none> No Yes

REAL SQL_REAL (7) 7 <none> No Yes

DOUBLE SQL_DOUBLE (8) 15 <none> No Yes

DATE SQL_DATE (9) 10 <none> N/A Yes

TIME SQL_TIME (10) 8 <none> N/A Yes

TIMESTAMP SQL_TIMESTAMP (11) 19 <none> N/A Yes

VARCHAR SQL_VARCHAR (12) 254 length N/A Yes

A-3

Pervasive.SQL Supported Data Types

Supported Data
Types

The table below also shows the mapping that the Pervasive ODBC
Engine Interface performs between Btrieve data types and ODBC
data types. The Pervasive ODBC Engine Interface converts these data
types to an ODBC default type, unless another data type conversion
is specified by the user when SQLGetData or SQLBindCol is called.
(For a discussion of data type conversions, see Appendix D of the
Microsoft ODBC Programmer’s Reference.) An explanation of the
columns in the table appears below the table.

The data types in the left column of Table A-2 can be created with a
CREATE TABLE statement.

Table A-2 Fully Supported Data Types

Pervasive.SQL Data Types Btrieve Data Types

BINARY CHAR1

BIT BIT

TINYINT INTEGER(1)

UTINYINT USIGNEDINT(1)

LONGVARBINARY BLOB2

LONGVARCHAR CLOB2

CHAR CHAR

DECIMAL (64,64) DECIMAL

INTEGER INTEGER(4)

UINTEGER USIGNEDINT(4)

USMALLINT USIGNEDINT(2)

SMALLINT INTEGER(2)

REAL FLOAT(4)

DOUBLE FLOAT(8)

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

VARCHAR ZSTRING

A-4

Data Types

1 Indexed binary columns are created as Btrieve CHAR keys but are
configured in the DDF to hold and retrieve BINARY data. The
ODBC type is SQL_BINARY.

2 Fully supported LONGVARCHAR and LONGVARBINARY data
types map to column definitions BLOB, CLOB. A BLOB and CLOB
are both created as an 8-byte fixed column containing a 4-byte length
and 4-byte offset.

Pervasive.SQL now supports multiple LONGVARCHAR and
LONGVARBINARY columns per table. The data is stored according
to the offset in the variable length portion of the record. The variable
length portion of data can vary from the column order of the data
depending on how the data is manipulated. Consider the following
example.

CREATE TABLE BlobDataTest
(

Nbr UINT, // Fixed record (Type 14)

Clob1 LONGVARCHAR, // Fixed record (Type 21)

Clob2 LONGVARCHAR, // Fixed record (Type 21)

Blob1 LONGVARBINARY, // Fixed record (Type 21)
)

On disk, the physical record would normally look like this:

[Fixed Data (Nbr, Clob1header, Clob2header,
Blob1header)][ClobData1][ClobData2][BlobData1]

Now alter column Nbr to a LONGVARCHAR column:

ALTER TABLE BlobDataTest ALTER Nbr LONGVARCHAR

On disk, the physical record now looks like this:

[Fixed Data (Nbrheader, Clob1header, Clob2header,
Blob1header)][ClobData1][ClobData2][BlobData1]
[NbrClobData]

As you can see, the variable length portion of the data is not in the
column order for the existing data.

For newly inserted records, however, the variable length portion of
the data is in the column order for the existing data.

[Fixed Data (Nbrheader, Clob1header, Clob2header,
Blob1header)][NbrClobData][ClobData1][ClobData2]
[BlobData1]

A-5

Pervasive.SQL Supported Data Types

Notes on CHAR, VARCHAR, and LONGVARCHAR

! CHAR columns are padded with blanks to "fill" the columns

! VARCHAR/LONGVARCHAR are not padded with blanks to
"fill" the columns. The significant data is terminated with a
NULL character.

! In all cases the trailing blanks are NOT significant in comparison
operations (LIKE and =). However, in the LIKE case, if a space
is explicitly entered in the query (like 'abc %'), the space before
the wildcard does matter. In this example you are looking for
'abc<space><any other character>'

Notes on BINARY and LONGVARBINARY

! BINARY columns are padded with binary zeros to "fill" the
columns

! LONGVARBINARY are NOT padded with blanks to "fill" the
columns.

! Current engine does not compare BINARY/LONGVARBINARY.
If you try, you get "Cannot compare a binary data type." error
message.

Pervasive.SQL supports creating these columns, with the following
limitations:

! BIGINT, UBIGINT data is available for read and write but get
data and put data operations cannot bind default values for
SQL_BIGINT or SQL_NUMERIC. These Data Types currently
map to SQL_DECIMAL.

Table A-3 Partially Supported Data Types

NEW Data Types LEGACY Data Types

BIGINT INTEGER(8)

UBIGINT UNSIGNEDINT(8)

CURRENCY CURRENCY

NUMERIC NUMERIC

IDENTITY AUTOINC (4)

SMALLIDENTITY AUTOINC (2)

A-6

Data Types

! CURRENCY is supported as a create table parameter but it is
mapped to ODBC SQL_DECIMAL.

! NUMERIC will be supported as a create table parameter but it is
mapped to ODBC SQL_DECIMAL.

! SMALLIDENTITY, IDENTITY are mapped to ODBC
SQL_SMALLINT and SQL_INTEGER.

The above items in the right column can not be created with
Pervasive.SQL grammar. To create these legacy data types please use
the SQL Data Manager.

This table outlines the relationship between existing Pervasive.SQL
data types and ODBC (SQL) data types. The following table lists the

Table A-4 Legacy Data Types

Exposed Data Types Legacy Data Types

BIT LOGICAL(1)

TINYINT LOGICAL(2)

LONGVARCHAR LVAR

LONGVARCHAR NOTE

DECIMAL NUMERICSA

DECIMAL NUMERICSTS

DECIMAL MONEY

REAL BFLOAT(4)

DOUBLE BFLOAT(8)

VARCHAR LSTRING

Table A-5 Pervasive.SQL to ODBC Data Type Mapping

Pervasive.SQL
7.0 Data Type

Type Code Valid
Length

ODBC Type

AUTOINC 15 2 SQL_SMALLINT

4 SQL_INTEGER

BFLOAT 9 4 SQL_REAL

8 SQL_DOUBLE

A-7

Pervasive.SQL Supported Data Types

BIT 16 1 SQL_BIT

CHARACTER 0 1-255 SQL_CHAR

CURRENCY 19 8 SQL_DECIMAL

DATE 3 4 SQL_DATE

DECIMAL 5 1-10 SQL_DECIMAL

FLOAT 2 4 SQL_REAL

8 SQL_DOUBLE

INTEGER 1 1 SQL_TINYINT

2 SQL_SMALLINT

4 SQL_INTEGER

8 SQL_DECIMAL

LOGICAL 7 1 SQL_BIT

2 SQL_SMALLINT

LSTRING 10 2 - 255 SQL_VARCHAR

LVAR 13 5 - 32Kb SQL_LONGVARCHAR

MONEY 6 1 - 10 SQL_DECIMAL

NOTE 12 5 - 32Kb SQL_LONGVARCHAR

NUMERIC 8 1 - 15 SQL_DECIMAL

NUMERICSA 18 1 - 15 SQL_DECIMAL

NUMERICSTS 17 2 - 15 SQL_DECIMAL

STRING 0 1-255 SQL_CHAR

TIME 4 4 SQL_TIME

TIMESTAMP 20 8 SQL_TIMESTAMP

UNSIGNED 14 1 SQL_TINYINT

2 SQL_SMALLINT

Table A-5 Pervasive.SQL to ODBC Data Type Mapping

Pervasive.SQL
7.0 Data Type

Type Code Valid
Length

ODBC Type

A-8

Data Types

valid length and valid value range for each Pervasive.SQL data type.
"N/A means "not applicable.".

4 SQL_INTEGER

8 SQL_DECIMAL

ZSTRING 11 2 - 255 SQL_VARCHAR

Table A-5 Pervasive.SQL to ODBC Data Type Mapping

Pervasive.SQL
7.0 Data Type

Type Code Valid
Length

ODBC Type

Table A-6 Data Type Valid Lengths and Value Ranges

Pervasive.SQL
Data Type Name

 ODBC Data Type
(ODBC type number)

Valid Value Range Valid
Length

BIT SQL_BIT (-7) 0 or 1 1

TINYINT SQL_TINYINT (-6) -128 - 127 1

UTINYINT SQL_TINYINT (-6) 0 - 255 1

LONGVARBINARY SQL_LONGVARBINARY (-4) 2147483647 n/a

BINARY SQL_BINARY (-2) N/A 1 - 255

LONGVARCHAR SQL_LONGVARCHAR (-1) 2147483647 n/a

CHAR SQL_CHAR (1) N/A 1 - 255

NUMERIC SQL_DECIMAL (3) -9223372036854775808 –
9223372036854775807

1 - 15

BIGINT SQL_DECIMAL 9.223372036855e+18 8

UBIGINT SQL_DECIMAL 1.844674407371e+19 8

DECIMAL SQL_DECIMAL (3) Depends on the length and
number of decimal places.

1 - 64

INTEGER SQL_INTEGER (4) -2147483648 –
2147483647

4

UINTEGER SQL_INTEGER (4) 0 – 4294967295 4

IDENTITY SQL_INTEGER (4) 1 – 2147483647 4

SMALLINT SQL_SMALLINT (5) -32768 – +32767 2

USMALLINT SQL_SMALLINT (5) 0 – 65535 2

A-9

Pervasive.SQL Supported Data Types

Limitations on LONGVARCHAR and LONGVARBINARY

! The LIKE predicate operates on the first 65500 characters of the
column data.

! All other predicates operate on the first 256 characters of the
column data.

! SELECT statements with GROUP BY, DISTINCT, and ORDER
BY return all the data but only order on the first 256 characters
of the column data.

! In a single call to SQLGetData, the maximum number of
characters returned by Pervasive ODBC Engine Interface for a
LONGVARCHAR or LONGVARBINARY columns is 65500.
Multiple calls must be made to SQLGetData to retrieve column
data over 65500 characters.

! Though the maximum amount of data that can be inserted into
a LONGVARCHAR/LONGVARBINARY column is 2GB, using a
literal in an INSERT statement reduces this amount to 1000
characters. You can insert more than 1000 characters by using a
parameterized insert.

SMALLIDENTITY SQL_SMALLINT (5) 1 – 32767 2

FLOAT SQL_FLOAT -1.79769313486232e+308 -
1.79769313486232e+308

8

REAL SQL_REAL (7) -3.402823e+038 -
3.402823e+038

4

DOUBLE SQL_DOUBLE (8) -1.79769313486232e+308 -
1.79769313486232e+308

8

DATE SQL_DATE (9) 01-01-0001 – 12-31-9999 n/a

TIME SQL_TIME (10) 00:00:00:00 - 23:59:59:99 n/a

TIMESTAMP SQL_TIMESTAMP (11) 0001-01-01
00:00:00.0000000 –
9999-12-31
23:59:59.9999999 UTC

n/a

VARCHAR SQL_VARCHAR (12) N/A n/a

Table A-6 Data Type Valid Lengths and Value Ranges

Pervasive.SQL
Data Type Name

 ODBC Data Type
(ODBC type number)

Valid Value Range Valid
Length

A-10

Data Types

Comparison of Floats

Pervasive ODBC Engine Interface compares floating point numbers
in comparison predicates using an almost equals algorithm. For
example, 12.203 = 12.20300000000001, and 12.203 is >=
12.20300000000001. The epsilon value defined as DBL EPSILON is
(.2204460492503131e-016). This feature works for large numbers,
but > and < will not be detected for small numbers; small numbers
will be detected as equal.

Note If you require precision to many decimal places, use the Decimal
data type instead of the Real or Float data type.

Here is the comparison routine that Pervasive ODBC Engine
Interface uses for the SQL_DOUBLE data type (which maps to the C
double type). For the SQL_REAL data type (which maps to the C float
type), Pervasive ODBC Engine Interface uses FLT_EPSILON, which is
(.2204460492503131e-016).

SHORT sCnvDblCmp(
DOUBLE d1,
DOUBLE d2)
{
if (d1 == d2)
 return 0;
if (d1 > d2)
 {
 if (d1 > d2 + DBL_EPSILON)
 return(1);
 }
else
 {
 if (d2 > d1 + DBL_EPSILON)
 return(-1);
 }

return(0);
}

Representation of Infinity

When Pervasive ODBC Engine Interface is required by an
application to represent infinity, it can do so in either a 4-byte (C
float type) or 8-byte (C double type) form, and in either a

A-11

Pervasive.SQL Supported Data Types

hexadecimal or character representation, as shown in the following
table:

Table A-7 Infinity Representation

Value Float
Hexadecimal

Float
Character

Double
Hexadecimal

Double
Character

Maximum
Positive

0x7FEFFFFFFFFFFFFF

Maximum
Negative

0xFFEFFFFFFFFFFFFF

Infinity
Positive

0x7F800000 1E999 0x7FF0000000000000 1E999

Infinity
Negative

0xFF800000 -1E999 0xFFF0000000000000 -1E999

A-12

Data Types

Btrieve Data Types

For historical reasons, the two standard data types, STRING and
UNSIGNED BINARY, are also offered as extended data types.

Internally, the MicroKernel compares string keys on a byte-by-byte
basis, from left to right. The MicroKernel sorts string keys according
to their ASCII value, however, you can define string keys to be case
insensitive or to use an alternate collating sequence (ACS).

The MicroKernel compares unsigned binary keys one word at a time.
It compares these keys from right to left because the Intel 8086 family
of processors reverses the high and low bytes in an integer.

If a particular data type is available in more than one size (for
example, both 4- and 8-byte FLOAT values are allowed), the Key
Length parameter (used in the creation of a new key) defines the size
that will be expected for all values of that particular key. Any attempt
to define a key using a Key Length that is not allowed results in a
Status 29 (Invalid Key Length).

Table A-8 lists the extended key types and their associated codes.

Table A-8 Btrieve Extended Key Types and Codes

Type Code Type Code

CHAR 0 LSTRING 10

INTEGER 1 ZSTRING 11

FLOAT 2 UNSIGNED BINARY 14

DATE 3 AUTOINCREMENT 15

TIME 4 NUMERICSTS 17

DECIMAL 5 NUMERICSA 18

MONEY 6 CURRENCY 19

LOGICAL 7 TIMESTAMP 20

NUMERIC 8 WSTRING 25

BFLOAT 9 WZSTRING 26

A-13

Btrieve Data Types

The following sections, arranged alphabetically by key type, describe
the extended key types and their internal storage formats.

AUTOINCREMENT

The AUTOINCREMENT key type is a signed Intel integer that can
be either two or four bytes long. Internally, AUTOINCREMENT
keys are stored in Intel binary integer format, with the high-order
and low-order bytes reversed within a word. The MicroKernel sorts
AUTOINCREMENT keys by their absolute (positive) values,
comparing the values stored in different records a word at a time
from right to left. AUTOINCREMENT keys may be used to
automatically assign the next highest value when a record is inserted
into a file.

The following restrictions apply to AUTOINCREMENT keys:

! An AUTOINCREMENT key must be defined as unique.

! An AUTOINCREMENT key cannot be segmented. However, an
AUTOINCREMENT key can be included as an integer segment
of another key, as long as the AUTOINCREMENT key has been
defined as a separate, single key first, and the
AUTOINCREMENT key number is lower than the segmented
key number.

! An AUTOINCREMENT key cannot overlap another key.

! All AUTOINCREMENT keys must be ascending.

The MicroKernel treats AUTOINCREMENT key values as follows
when you insert records into a file:

! If you specify a value of binary 0 for the AUTOINCREMENT
key, the MicroKernel assigns a value to the key based on the
following criteria:

" If you are inserting the first record in the file, the
MicroKernel assigns the value of 1 to the
AUTOINCREMENT key.

" If records already exist in the file, the MicroKernel assigns
the key a value that is one number higher than the highest
existing absolute value in the file.

A-14

Data Types

! If you specify a nonzero value for the AUTOINCREMENT key,
the MicroKernel inserts the record into the file and uses the
specified value as the key value. If a record containing that value
already exists in the file, the MicroKernel returns an error status
code, and does not insert the record.

When you delete a record containing an AUTOINCREMENT key,
the MicroKernel completely removes the record from the file. The
MicroKernel does not reuse the deleted key value unless you specify
that value when you insert another record into the file, or unless you
deleted the record with the highest value..

As mentioned previously, the MicroKernel always sorts
AUTOINCREMENT keys by their absolute values. For example, you
can do the following:

" Specify a negative value for an AUTOINCREMENT key
when you insert a record.

" Update a record and negate the value for the
AUTOINCREMENT key.

In any case, the MicroKernel sorts the key according to its absolute
value. This allows you to use negation to flag records without altering
the record’s position in the index. In addition, when you perform a
Get operation and specify a negative value in the key buffer, the
MicroKernel treats the absolute value as the key. Also, if a given value
is already used, the negative that value cannot be inserted since it is
considered a duplicate.

You can initialize the value of a field in all or some records to zero and
later add an index of type AUTOINCREMENT. This feature allows
you to prepare for an AUTOINCREMENT key without actually
building the index until it is needed.

When you add the index, the MicroKernel changes the zero values in
each field appropriately, beginning its numbering with a value equal
to the greatest value currently defined in the field, plus one. If
nonzero values exist in the field, the MicroKernel does not alter
them. However, the MicroKernel returns an error status code if
nonzero duplicate values exist in the field.

A-15

Btrieve Data Types

BFLOAT

The BFLOAT key type is a single or double-precision real number. A
single-precision real number is stored with a 23-bit mantissa, an 8-
bit exponent biased by 128, and a sign bit. The internal layout for a
4-byte float is as follows:

The representation of a double-precision real number is the same as
that for a single-precision real number, except that the mantissa is 55
bits instead of 23 bits. The least significant 32 bits are stored in bytes
0 through 3.

The BFLOAT type is commonly used in legacy BASIC applications.
Microsoft refers to this data type as MBF (Microsoft Binary Format),
and no longer supports this type in the Visual Basic environment.

CHAR

Note In previous versions of Pervasive.SQL, this data type was referred
to as STRING

The CHAR key type is a sequence of characters ordered from left to
right. Each character is represented in ASCII format in a single byte,
except when the MicroKernel is determining whether a key value is
null.

CURRENCY

The CURRENCY key type represents an 8-byte signed quantity,
sorted and stored in Intel binary integer format; therefore, its
internal representation is the same as an 8-byte INTEGER data type.
The CURRENCY data type has an implied four digit scale of decimal
places, which represents the fractional component of the currency
data value.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

8-bit exponent

Sign

23-bit mantissa

A-16

Data Types

DATE

The DATE key type is stored internally as a 4-byte value. The day and
the month are each stored in 1-byte binary format. The year is a 2-
byte binary number that represents the entire year value. The
MicroKernel places the day into the first byte, the month into the
second byte, and the year into a two-byte word following the month.

An example of C structure used for date fields would be:

TYPE dateField {

char day;

char month;

integer year;

}

The year portion of a date field is expected to be set to the integer
representation of the entire year. For example, 2,001 for the year
2001.

DECIMAL

The DECIMAL key type is stored internally as a packed decimal
number with two decimal digits per byte. The internal
representation for an n-byte DECIMAL field is as follows:

The sign nibble is either 0xF or 0xC for positive numbers and 0xD for
negative numbers. The decimal point is implied; no decimal point is
stored in the DECIMAL field. Your application is responsible for
tracking the location of the decimal point for the value in a

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

byte 0 byte 1 byte n-1

digit
2n-1

sign
nibble

digit
1

digit
2

digit
3

digit
4

. . .

. . .

. . .

A-17

Btrieve Data Types

DECIMAL field. All the values for a DECIMAL key type must have
the same number of decimal places in order for the MicroKernel to
collate the key correctly. The DECIMAL type is commonly used in
COBOL applications.

An eight-byte decimal can hold 15 digits plus the sign. A ten-byte
decimal can hold 19 digits plus the sign. The decimal value is
expected to be left-padded with zeros.

FLOAT

The FLOAT key type is consistent with the IEEE standard for single
and double-precision real numbers. The internal format for a 4-byte
FLOAT consists of a 23-bit mantissa, an 8-bit exponent biased by
127, and a sign bit, as follows:

A FLOAT key with 8 bytes has a 52-bit mantissa, an 11-bit exponent
biased by 1023, and a sign bit. The internal format is as follows:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

8-bit exponent

Sign

23-bit mantissa

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

32-bit mantissa

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

11-bit exponent

Sign

20-bit mantissa

bytes 3-0:

bytes 7-4:

A-18

Data Types

INTEGER

The INTEGER key type is a signed whole number and can contain
any number of digits. Internally, INTEGER fields are stored in Intel
binary integer format, with the high-order and low-order bytes
reversed within a word. The MicroKernel evaluates the key from
right to left. The sign must be stored in the high bit of the rightmost
byte. The INTEGER type is supported by most development
environments.

LOGICAL

The LOGICAL key type is stored as a 1 or 2-byte value. The
MicroKernel collates LOGICAL key types as strings. Doing so allows
your application to determine the stored values that represent true or
false.

LSTRING

The LSTRING key type has the same characteristics as a regular
STRING type, except that the first byte of the string contains the
binary representation of the string’s length. The LSTRING key type
is limited to a maximum size of 255 bytes. The length stored in byte
0 of an LSTRING key determines the number of significant bytes.
The MicroKernel ignores any values beyond the specified length of
the string when sorting values. The LSTRING type is commonly
used in Pascal applications.

MONEY

The MONEY key type has the same internal representation as the
DECIMAL type, with an implied two decimal places.

Table A-9 INTEGER Key Type

Length in Bytes Value Ranges

1 0 – 255

2 -32768 – 32767

4 -2147483648 – 2147483647

8 -9223372036854775808 – 9223372036854775807

A-19

Btrieve Data Types

NUMERIC

NUMERIC values are stored as ASCII strings, right justified with
leading zeros. Each digit occupies one byte internally. The rightmost
byte of the number includes an embedded sign with an EBCDIC
value. Table A-10 indicates how the rightmost digit is represented
when it contains an embedded sign for positive and negative
numbers.

For positive numbers, the rightmost digit can be represented by 1
through 0 instead of A through {. The MicroKernel processes
positive numbers represented either way. The NUMERIC type is
commonly used in COBOL applications.

NUMERICSA

The NUMERICSA key type (sometimes called NUMERIC SIGNED
ASCII) is a COBOL data type that is the same as the NUMERIC data
type, except that the embedded sign has an ASCII value instead of an
EBCDIC value.

Table A-10 Rightmost Digit with Embedded Sign

Digit Positive Negative

1 A J

2 B K

3 C L

4 D M

5 E N

6 F O

7 G P

8 H Q

9 I R

0 { }

A-20

Data Types

NUMERICSTS

The NUMERICSTS key type (sometimes called SIGN TRAILING
SEPARATE) is a COBOL data type that has values resembling those
of the NUMERIC data type. NUMERICSTS values are stored as
ASCII strings and right justified with leading zeros. However, the
rightmost byte of a NUMERICSTS string is either “+” (ASCII 0x2B)
or “-” (ASCII 0x2D). This differs from NUMERIC values that embed
the sign in the rightmost byte along with the value of that byte.

TIME

The TIME key type is stored internally as a 4-byte value. Hundredths
of a second, second, minute, and hour values are each stored in 1-
byte binary format. The MicroKernel places the hundredths of a
second value into the first byte, followed respectively by the second,
minute, and hour values.

TIMESTAMP

The TIMESTAMP data type represents a time and date value. In SQL
applications, use this data type to stamp a record with the time and
date of the last update to the record. TIMESTAMP values are stored
in 8-byte unsigned values representing septa seconds (10-7 second)
since January 1, 0001 in a Gregorian calendar.

A-21

Btrieve Data Types

TIMESTAMP is intended to cover time and data values made up of
the following components: year, month, day, hour, minute, and
second. The following table indicates the valid values of each of these
components:

UNSIGNED BINARY

The MicroKernel sorts UNSIGNED BINARY keys as unsigned
INTEGER keys. An UNSIGNED BINARY key could contain any
even number of bytes. The MicroKernel compares UNSIGNED
BINARY keys from right to left.

An UNSIGNED BINARY key is sorted in the same manner as an
INTEGER key. The differences between an UNSIGNED BINARY key
and an INTEGER key are that an INTEGER has a sign bit, while an
UNSIGNED BINARY type does not, and an UNSIGNED BINARY
key can be longer than 4 bytes.

WSTRING

WSTRING is a Unicode string that is not null-terminated. The
length of the string is determined by the field length.

WZSTRING

WZSTRING is a Unicode string that is double null-terminated. The
length of this string is determined by the position of the Unicode
NULL (two null bytes) within the field. This corresponds to the
ZSTRING type supported in Btrieve.

Table A-11 TIMESTAMP Data Type

YEAR 0001 to 9999

MONTH 01 to 12

DAY 01 to 31, constrained by the value of MONTH and YEAR in the
Gregorian calendar.

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59

A-22

Data Types

ZSTRING

The ZSTRING key type corresponds to a C string. It has the same
characteristics as a regular string type except that a ZSTRING type is
terminated by a binary 0. The MicroKernel ignores any values
beyond the first binary 0 it encounters in the ZSTRING, except when
the MicroKernel is determining whether a key value is null.

B-1

A p p e n d i x

BSQL Reserved Words

Supported Pervasive.SQL Reserved Words

Reserved words have one or more specific meaning and are
recognized as having such in SQL. For example, SELECT is a
reserved word and has special meaning as a statement. It is
important to remember that reserved words should not be used as
variable or dictionary names.

This appendix contains the following topic:

! “List of Reserved Words” on page B-2

B-2

SQL Reserved Words

List of Reserved Words

Table B-1 SQL Reserved Words and Symbols

; :

ABORT ACTION ADD AFTER

ALL ALTER AND ANY

AS ASC ATOMIC AUTHORIZATION

AVG BEFORE BEGIN BETWEEN

BY CALL CASCADE CASE

CHECK CLOSE COBOL COLLATE

COLUMN COMMIT COMMITTED CONSTRAINT

CONVERT COUNT CREATE CREATETAB

CROSS CS CURRENT CURSOR

D DECLARE DEFAULT DELETE

DESC DIAGNOSTICS DISTINCT DO

DROP EACH ELSE END

ESCAPE EX EXISTS FETCH

FOR FOREIGN FROM FULL

GRANT GROUP HANDLER HAVING

IF IN INDEX INNER

INOUT INSERT INTERNAL INTO

IS ISOLATION JOIN KEY

LANGUAGE LEAVE LEFT LEVEL

LIKE LOGIN LOOP MAX

MIN MODIFIABLE MODULE NEW

NEXT NO NOT NULL

OF OLD ON ONLY

B-3

List of Reserved Words

OPEN OPTION OR ORDER

OUT OUTER PRIMARY PRINT

PRIVLEGES PROCEDURE PUBLIC READ

REFERENCES REFERENCING RELEASE REPEAT

REPEATABLE RESTRICT RETURN RETURNS

REVOKE RIGHT ROLLBACK ROQ

SAVEPOINT SCHEMA SECURITY SELECT

SERIALIZABLE SET SIGNAL SIZE

SQLSTATE SSP_EXPRE SSP_PRED START

SUM SVBEGIN SVEND TABLE

THEN TO TRANSACTION TRIGGER

TS UNCOMMITTED UNION UNIQUE

UNTIL UPDATE USER USING

VALUES VIEW WHEN WHERE

WHILE WITH WORK WRITE

Table B-1 SQL Reserved Words and Symbols

B-4

SQL Reserved Words

C-1

A p p e n d i x

CSQL API Mapping to ODBC

Summary of SQL API Mappings

This appendix contains tables of Pervasive.SQL and ODBC
functions. The tables represent the following categories of functions:

! “Connection and Session Control APIs” on page C-2

! “Preparing and Executing SQL Request APIs” on page C-3

! “Data Retrieval APIs” on page C-8

! “Statement Termination APIs” on page C-8

! “Database and Driver Information APIs” on page C-8

! “Metadata Information APIs” on page C-8

! “Transaction APIs” on page C-9

! “Deprecated Scalable SQL APIs” on page C-9

C-2

SQL API Mapping to ODBC

SQL API to ODBC Mapping Tables

Table C-1 Connection and Session Control APIs

Deprecated Scalable SQL API Recommended ODBC API

XQLLogin 1. SQLAllocHandle or
SQLAllocEnv for environment
handles.

2. SQLSetEnvAttr (Optional) to set
driver attributes.

3. SQLAllocHandle or
SQLAllocConnect for a
connection handle.

4. SQLSetConnectAttr (Optional)
to set connection attributes.

5. SQLConnect or
SQLBrowseConnect or
SQLDriverConnect to make a
connection.

 XQLLogout 1. SQLDisconnect to break a
connection.

2. SQLFreeHandle or
SQLFreeConnect to release
connection handle.

3. SQLFreeHandle or
SQLFreeEnv to release an
environment handle.

XGetSessionID You will have a session ID once you are
connected to your database. This is the
Connection handle, allocated and
connected during login.

XPutSessionID You will not need to put session because
all connections you make are available
concurrently.

C-3

SQL API to ODBC Mapping Tables

Table C-2 Preparing and Executing SQL Request APIs

Deprecated Scalable SQL API Recommended ODBC API

XQLCursor 1. SQLAllocHandle or
SQLAllocStmt to allocate a
statement handle.

2. SQLSetCursorName may be
used to associate a name with
the cursor handle.

XQLCompile SQLExecDirect or SQLExecute

XQLSubst SQLPrepare, SQLBindParameter,
SQLParamOptions, SQLPutData

XQLExec SQLExecDirect or SQLExecute

xAccess 1. Grants privileges: no direct
ODBC API, but available
through the GRANT statement.

2. Revokes privileges: no direct
ODBC API, but available
through the REVOKE statement.

3. Fetch privileges:
SQLTablePrivileges and
SQLColumnPrivileges are the
associated ODBC APIs. The
Master user also has the option
of using a SELECT statement to
retrieve the privileges that each
user has.

C-4

SQL API Mapping to ODBC

xChar 1. Define NULL values for Scalable
SQL data types: no ODBC API
and not available through SQL.
This is applicable for legacy
databases and applications,
where the application made use
of some value other than the
default NULL values. That is,
legacy NULL behavior.

2. Retrieve the blank replacement
char, or one of the null values: no
ODBC API, and not available
through SQL. Null values are
applicable for legacy databases
and applications, where the
application made use of some
non-default value. Blank
replacement char is no longer
applicable since dictionary
names with balnks can be
accessed by putting double
quotes around them.

Table C-2 Preparing and Executing SQL Request APIs

Deprecated Scalable SQL API Recommended ODBC API

C-5

SQL API to ODBC Mapping Tables

xDD 1. Create a dictionary: no ODBC
API, and not available through
SQL. With Pervasive.SQL
2000, we eliminated support for
standalone dictionaries.
Dictionaries can only be
accessed through named
databases. The ability to create
a named database
programatically is available
through the Distributed Tuning
Interface (DTI), which is
documented in the
Pervasive.SQL Software
Development Kit. The DTI allows
creating named databases AND
the dictionary files.

2. Remove an existing dictionary:
no ODBC API, and not available
through SQL. DTI will also
allows deleting a named
database AND the dictionary
files, and then the named
database can be re-added. This
causes a delete of the dictionary
files only.

3. Replace an existing dictionary:
No ODBC API, not available
through SQL. You can delete the
named database and the
dictionary files, and then
recreate both, causing a
replacement of the dictionary.

Table C-2 Preparing and Executing SQL Request APIs

Deprecated Scalable SQL API Recommended ODBC API

C-6

SQL API Mapping to ODBC

xDDAttr 1. Masks and Headings (Add,
Modify, Remove, Fetch): no
ODBC API, and not available
through SQL. Through the
ODBC API, data is transferred in
common formats, and even
conversions from one data type
to another are well defined
behaviorally. This means that
masks and headings are no
longer necessary, or
appropriate.

2. Other attributes (Add, Modify,
Remove, Fetch): no ODBC API,
and not available through SQL.
The existing attributes are
enforced with Pervasive.SQL,
but they cannot be changed or
removed. New default values
can be defined with SQL, but no
check constraints (or character
lists, value lists, range lists, etc.)
can be defined.

Table C-2 Preparing and Executing SQL Request APIs

Deprecated Scalable SQL API Recommended ODBC API

C-7

SQL API to ODBC Mapping Tables

xRemove 1. This API is partially supported
through the ODBC Cursor
Library support for SQLSetPos,
SQLExtendedFetch, and ODBC
named cursors. Using DELETE
... WHERE CURRENT OF
<cursor name>, an application
can remove the current record
based on the positioning within a
cursor.

xUser 1. Add a user/group: no ODBC
API, available through the
GRANT LOGIN or CREATE
GROUP statement in SQL.

2. Drop a user/group: no ODBC
API, available through the
REVOKE LOGIN or DROP
GROUP statement in SQL.

3. Retrieve a list of users: the
Master user can query the
"X$User" system table to find all
users, what group each is in (if
any), whether the user is a group
instead of a user, and whether
the user/group has the create
table privilege.

4. Grant/Revoke the "create table"
privilege: no ODBC API,
available through the GRANT/
REVOKE CREATETAB
statements.

Table C-2 Preparing and Executing SQL Request APIs

Deprecated Scalable SQL API Recommended ODBC API

C-8

SQL API Mapping to ODBC

Table C-3 Data Retrieval APIs

Scalable SQL ODBC

XQLFetch SQLFetch, SQLExtendedFetch, or
SQLGetData

XQLDescribe SQLDescribeCol, SQLColAttributes or
SQLColAttribute

XQLStatus SQLError

xFetch SQLFetch or SQLExtendedFetch

xStatus SQLError

Table C-4 Statement Termination APIs

Scalable SQL ODBC

xReset SQLFreeStmt, SQLCancel, SQLTransact

XQLFree SQLFreeHandle

Table C-5 Database and Driver Information APIs

Scalable SQL ODBC

SQLVersion SQLGetInfo

Table C-6 Metadata Information APIs

Scalable SQL ODBC

xDDField SQLColAttribute

xDDFile SQLTables

xDDIndex SQLStatistics

C-9

SQL API to ODBC Mapping Tables

Table C-7 Transaction APIs

Scalable SQL ODBC

Start Transaction SQLSetConnectAttr

Commit SQLTransAct

Rollback SQLTransAct

Table C-8 Deprecated Scalable SQL APIs

Scalable SQL

xInsert

xPassword

xUpdate

XShareSessionID

XQLFormat

XQLMask

XQLConvert

SQLGetCountDatabaseNames

SQLGetCountRemoteDatabaseNames

SQLGetRemoteDatabaseNames

SQLUnloadDBnames

XQLValidate

C-10

SQL API Mapping to ODBC

D-1

A p p e n d i x

DSystem Tables

Pervasive.SQL System Tables Reference

This appendix describes the Pervasive.SQL system tables. For each
system table, the following table indicates the name of the associated
file and briefly describes the system table’s contents.

Note Some data in the system tables cannot be displayed. For example,
information about stored views and procedures, other than their
names, is available only to Pervasive.SQL. In addition, some data (such
as user passwords) displays in encrypted form.

Table D-1 System Tables

System Table Dictionary File Contents

X$File FILE.DDF Names and locations of the tables in your
database.

X$Field FIELD.DDF Column and named index definitions.

X$Index INDEX.DDF Index definitions.

X$Attrib ATTRIB.DDF Column attributes definitions.

X$View VIEW.DDF View definitions.

X$Proc PROC.DDF Stored procedure definitions.

X$User USER.DDF User names, group names, and
passwords.

X$Rights RIGHTS.DDF User and group access rights definitions.

X$Relate RELATE.DDF Referential integrity (RI) information.

D-2

System Tables

When you issue a CREATE DICTIONARY statement, Pervasive.SQL
creates the X$File, X$Field, and X$Index system tables and the
associated dictionary files. Pervasive.SQL creates the other system
tables as follows:

! X$Attrib—When you define column attributes, Pervasive.SQL
creates this table and stores the definitions.

! X$View—When you define views, Pervasive.SQL creates this
table and stores the definitions.

! X$Proc—When you define stored procedures, Pervasive.SQL
creates this table and stores the definitions.

! X$User and X$Rights—When you set up data security on the
database, Pervasive.SQL creates these two tables. In X$User,
Pervasive.SQL stores information about user names, group
names, and passwords. In X$Rights, Pervasive.SQL stores
information about the access rights assigned to users and
groups. When you disable security, Pervasive.SQL deletes these
two tables.

! X$Relate—When you define RI constraints for the database,
Pervasive.SQL creates this table and stores information about
foreign key references.

! X$Trigger and X$Depend—When you define triggers for tables
in the database, Pervasive.SQL creates these two tables. In
X$Trigger, Pervasive.SQL stores information about the triggers.
In X$Depend, Pervasive.SQL stores information about the
trigger dependencies.

Because the system tables are part of the database, you can query
them to retrieve information about the database. However, to update
the system tables, you must use data definition statements. You
cannot update them with data manipulation statements as you
would standard data tables; this may corrupt the dictionary.

X$Trigger TRIGGER.DDF Trigger information.

X$Depend DEPEND.DDF Trigger dependencies such as tables,
views, and procedures.

Table D-1 System Tables continued

System Table Dictionary File Contents

D-3

Installing System Tables and Data Dictionary Files

Installing System Tables and Data Dictionary Files

The system tables included with Pervasive.SQL contain the data
dictionary files for the sample database. When you install
Pervasive.SQL, you can copy this data dictionary to the appropriate
device on your system and log in to the sample database. After
logging in, you can create a new data dictionary in another directory
of your choice. Alternatively, you can create a new data dictionary
using the Configuration utility in the Pervasive Control Center
(PCC) to define a bound or unbound named database.

D-4

System Tables

X$File

The X$File system table is associated with the file FILE.DDF. For
each table defined in the database, X$File contains the table name,
the location of the associated table, and a unique internal ID number
that Pervasive.SQL assigns. The structure of X$File is as follows:

Two indexes are defined for the X$File table.

Note Index Number corresponds to the value stored in the
Xi$Number column in the X$Index system table. Segment Number
corresponds to the value stored in the Xi$Part column in the X$Index
system table.

Table D-2 X$File System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xf$Id USMALLINT 2 N/A Internal ID Pervasive.SQL
assigns.

Xf$Name CHAR 20 Yes Table name.

Xf$Loc CHAR 64 No File location (pathname).

Xf$Flags UTINYINT 1 N/A File flags. If bit 4=1, the file is
a dictionary file. If bit 4=0,
the file is user-defined. If bit
6=1, the table supports true
nullable columns.

Xf$Reserved CHAR 10 No Reserved.

Table D-3 X$File System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xf$Id No N/A No

1 0 Xf$Name No Yes No

D-5

X$Field

X$Field

The X$Field system table is associated with the file FIELD.DDF.
X$Field contains information about all the columns and named
indexes defined in the database. The structure of X$Field is as
follows:

Table D-4 X$Field System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xe$Id USMALLINT 2 N/A Internal ID Pervasive.SQL
assigns, unique for each
field in the database.

Xe$File USMALLINT 2 N/A ID of table to which this
column or named index
belongs. It corresponds to
Xf$Id in X$File.

Xe$Name CHAR 20 Yes Column name or index
name.

Xe$DataType UTINYINT 1 N/A Control field - Column data
type (range 0–26). If value
is 227, it represents a
constraint name. If value is
255, it represents an index
name.

Xe$Offset USMALLINT 2 N/A Column offset in table;
index number if named
index. Offsets are zero-
relative.

Xe$Size USMALLINT 2 N/A Column size, representing
the internal storage, in
bytes, required for the field.

D-6

System Tables

The column Xe$File corresponds to the column Xf$Id in the X$File
system table and is the link between the tables and the columns they
contain. So, for example, the following query shows you all of the
field definitions in order for the Billing table.

SELECT "X$Field".*

FROM X$File,X$Field

WHERE Xf$Id=Xe$File AND Xf$Name = ‘Billing’

ORDER BY Xe$Offset

The integer values in column Xe$DataType are codes that represent
the Pervasive.SQL data types. See “Data Types” on page A-1 for the
codes.

Xe$Dec UTINYINT 1 N/A Column decimal place (for
DECIMAL, NUMERIC,
NUMERICSA,
NUMERICSTS, MONEY, or
CURRENCY types).
Relative bit positions for
contiguous bit columns.
Fractional seconds for
TIMESTAMP data type.

Xe$Flags USMALLINT 2 N/A Flags word. Bit 0 is the
case flag for string data
types. If bit 0 = 1, the field is
case insensitive. If bit 2 = 1,
the field allows null values.
If bit 12 = 1, the field is
interpreted as binary.

Table D-4 X$Field System Table Structure

Column
Name

Type Size Case
Insensitive

Description

D-7

X$Field

Five indexes are defined for the X$Field table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Table D-5 X$Field System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xe$Id No N/A No

1 0 Xe$File Yes N/A No

2 0 Xe$Name Yes Yes No

3 0 Xe$File No N/A Yes

3 1 Xe$Name No Yes No

4 0 Xe$File Yes N/A Yes

4 1 Xe$Offset Yes N/A Yes

4 2 Xe$Dec Yes N/A No

D-8

System Tables

X$Index

The X$Index system table is associated with the file INDEX.DDF.
X$Index contains information about all the indexes defined on the
tables in the database. The structure of X$Index is as follows:

The Xi$File column corresponds to the Xf$Id column in the X$File
system table. The Xi$Field column corresponds to the Xe$Id column
in the X$Field system table. Thus, an index segment entry is linked
to a file and to a field.

The Xi$Flags column contains integer values that define the index
attributes. The following table describes how Pervasive.SQL
interprets each bit position when the bit has the binary value of 1. Bit
position 0 is the rightmost bit in the integer.

Table D-6 X$Index System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xi$File USMALLINT 2 N/A Unique ID of the table to
which the index belongs. It
corresponds to Xf$Id in
X$File.

Xi$Field USMALLINT 2 N/A Unique ID of the index
column. It corresponds to
Xe$Id in X$Field.

Xi$Number USMALLINT 2 N/A Index number (range 0–119).

Xi$Part USMALLINT 2 N/A Segment number (range 0–
119).

Xi$Flags USMALLINT 2 N/A Index attribute flags.

Table D-7 X$Index System Table Index Definitions

Bit
Position

Decimal
Equivalent

Description

0 1 Index allows duplicates.

1 2 Index is modifiable.

2 4 Indicates an alternate collating sequence.

D-9

X$Index

The value in the Xi$Flags column for a particular index is the sum of
the decimal values that correspond to that index’s attributes. Three
indexes are defined for the X$Index table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

3 8 Null values are not indexed (refers to Btrieve NULLs,
not SQL true NULLS).

4 16 Another segment is concatenated to this one in the
index.

5 32 Index is case-insensitive.

6 64 Index is collated in descending order.

7 128 Index is a named index.

8 256 Index is a Btrieve extended key type.

13 8192 Index is a foreign key.

14 16384 Index is a primary key referenced by some foreign
key.

Table D-8 X$Index System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xi$File Yes N/A No

1 0 Xi$Field Yes N/A No

2 0 Xi$File No N/A Yes

2 1 Xi$Number No N/A Yes

2 2 Xi$Part No N/A No

Table D-7 X$Index System Table Index Definitions

Bit
Position

Decimal
Equivalent

Description

D-10

System Tables

To see the information about the index segments defined for the
Billing table, for example, issue the following query:

SELECT Xe$Name,Xe$Offset, "X$Index".*

FROM X$File,X$Index,X$Field

WHERE Xf$Id=Xi$File and Xi$Field=Xe$Id and Xf$Name =
‘Billing’

ORDER BY Xi$Number,Xi$Part

D-11

X$Attrib

X$Attrib

The X$Attrib system table is associated with the file ATTRIB.DDF.
X$Attrib contains information about the column attributes of each
column in the database; there is an entry for each column attribute
you define. The structure of X$Attrib is as follows:

When you define multiple attributes for a single column, the
X$Attrib system table contains multiple entries for that column
ID—one for each attribute you define. If you do not define column
attributes for a particular column, that column has no entry in the
X$Attrib table. The text in the Xa$Attrs column appears exactly as
you define it with Pervasive.SQL. One index is defined for the
X$Attrib table, as follows:

Table D-9 X$Attrib System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xa$Id USMALLINT 2 N/A Corresponds to Xe$Id in
X$Field.

Xa$Type CHAR 1 No C for character, D for
default, H for heading, M
for mask, O for column
collation, R for range, or V
for value.

Xa$ASize USMALLINT 2 N/A Length of text in
Xa$Attrib.

Xa$Attrs LONGVARCHAR
(NOTE)

<=20
48

N/A Text that defines the
column attribute.

Table D-10 X$Attrib System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xa$Id No N/A Yes

0 1 Xa$Type No No No

D-12

System Tables

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Note Attribute type C, H, M, R and V are legacy validation types valid
only in a Pervasive.SQL 7 or Scalable SQL environment. Pervasive.SQL
2000i uses only the D (default) and O (column collation) attributes.

D-13

X$View

X$View

The X$View system table is associated with the file VIEW.DDF.
X$View contains view definitions, including information about
joined tables and the restriction conditions that define views. You
can query the X$View table to retrieve the names of the views that are
defined in the dictionary.

The first column of the X$View table contains the view name; the
second and third columns describe the information found in the
LVAR column, Xv$Misc. The structure of X$View is as follows:

Two indexes are defined for the X$View table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Table D-11 X$View System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xv$Name CHAR 20 Yes View name.

Xv$Ver UTINYINT 1 N/A Version ID.

Xv$Id UTINYINT 1 N/A Sequence number.

Xv$Misc LONGVARCHAR
(LVAR)

<=2000 N/A Pervasive.SQL internal
definitions.

Table D-12 X$View System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xv$Name Yes Yes No

1 0 Xv$Name No Yes Yes

1 1 Xv$Ver No N/A Yes

1 2 Xv$Id No N/A No

D-14

System Tables

X$Proc

The X$Proc system table is associated with the file PROC.DDF.
X$Proc contains the compiled structure information for every stored
procedure defined. The structure of X$Proc is as follows:

Note Stored procedures and external procedures were supported in
versions prior versions of Pervasive.SQL. Only stored procedures are
supported in Pervasive.SQL 2000i.

One index is defined for the X$Proc table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Table D-13 X$Proc System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xp$Name CHAR 30 Yes Stored procedure name.

Xp$Ver UTINYINT 1 N/A Version ID.

Xp$Id USMALLINT 2 N/A 0-based Sequence
Number.

Xp$Flags UTINYINT 1 N/A 1 for stored statement, 2
for stored procedure or 3
for external procedure.

Xp$Misc LONGVARCHAR
(LVAR)

990 N/A Internal representation of
stored procedure.

Table D-14 X$Proc System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xp$Name No Yes Yes

0 1 Xp$Id No N/A No

D-15

X$User

X$User

The X$User system table is associated with the file USER.DDF.
X$User contains the name and password of each user and the name
of each user group. Pervasive.SQL uses this table only when you
enable the security option. The structure of X$User is as follows:

Note For any row in the X$User system table that describes a group,
the column value for Xu$Password is NULL.

Table D-15 X$User System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xu$Id USMALLINT 2 N/A Internal ID assigned to the
user or group.

Xu$Name CHAR 30 Yes User or group name.

Xu$Password CHAR 9 No User password (encrypted)

Xu$Flags USMALLINT 2 N/A User or group flags.

D-16

System Tables

The Xu$Flags column contains integer values whose rightmost 8 bits
define the user or group attributes. The following table describes
how Pervasive.SQL interprets each bit position when the bit has the
binary value of 1. Bit position 0 is the rightmost bit in the integer.

The value in the Xu$Flags column for a particular user or group is
the sum of the decimal values corresponding to the attributes that
apply to the user or group.

Two indexes are defined for the X$User table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Table D-16 Xu$Flags System Table Bit Position Definitions

Bit
Position

Decimal
Equivalent

Description

0 1 Reserved.

1 2 Reserved.

2 4 Reserved.

3 8 Reserved.

4 16 Reserved.

5 32 Reserved.

6 64 Name is a group name.

7 128 User or group has the right to define tables in the
dictionary.

Table D-17 X$User System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xu$Id Yes N/A No

1 0 Xu$Name No Yes No

D-17

X$Rights

X$Rights

The X$Rights system table is associated with the file RIGHTS.DDF.
X$Rights contains access rights information for each user.
Pervasive.SQL uses this table only when you enable the security
option. The structure of X$Rights is as follows:

The Xr$User column corresponds to the Xu$Id column in the
X$User table. The Xr$Table column corresponds to the Xf$Id
column in the X$File table. The Xr$Column column corresponds to
the Xe$Id column in the X$Field table.

Note For any row in the system table that describes table rights, the
value for Xr$Column is null.

The Xr$Rights column contains integer values whose rightmost 8
bits define the users’ access rights. The following table describes how
Pervasive.SQL interprets the value. Values from this table may be
combined into a single Xr$Rights value.

Table D-18 X$Rights System Table Structure

Column
Name

Type Size Case
Insensitive

Description

Xr$User USMALLINT 2 N/A User ID

Xr$Table USMALLINT 2 N/A Table ID

Xr$Column USMALLINT 2 N/A Column ID

Xr$Rights UTINYINT 1 N/A Table or column rights flag

D-18

System Tables

A decimal equivalent of 0 implies no rights.

The value in the Xr$Rights column for a particular user is the bit-
wise or of the hex values corresponding to the access rights that apply
to the user.

Three indexes are defined for the X$Rights table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Table D-19 Xr$Rights System Table Bit Position Definitions

Hex Value Decimal
Equivalent

Description

1 1 Reorganization in progress.

0x90 144 References rights to table.

0xA0 160 Alter Table rights.

0x40 64 Select rights to table or column.

0x82 130 Update rights to table or column.

0x84 132 Insert rights to table or column.

0x88 136 Delete rights to table or column.

Table D-20 X$Rights System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xr$User Yes N/A No

1 0 Xr$User No N/A Yes

1 1 Xr$Table No N/A Yes

1 2 Xr$Column No N/A No

2 0 Xr$Table Yes N/A Yes

2 1 Xr$Column Yes N/A No

D-19

X$Relate

X$Relate

The X$Relate system table is associated with the file RELATE.DDF.
X$Relate contains information about the referential integrity (RI)
constraints defined on the database. X$Relate is automatically
created when the first foreign key is created, since this results in a
relationship being defined.

The structure of X$Relate is as follows:

Table D-21 X$Relate System Table Structure

Column Name Type Size Case
Insensitive

Description

Xr$PId USMALLINT 2 N/A Primary table ID.

Xr$PIndex USMALLINT 2 N/A Index number of primary
key in primary table.

Xr$FId USMALLINT 2 N/A Dependent table ID.

Xr$FIndex USMALLINT 2 N/A Index number of foreign
key in dependent table.

Xr$Name CHAR 20 Yes Foreign key name.

Xr$UpdateRule UTINYINT 1 N/A 1 for restrict.

Xr$DeleteRule UTINYINT 1 N/A 1 for restrict, 2 for
cascade.

Xr$Reserved CHAR 30 No Reserved.

D-20

System Tables

Five indexes are defined for the X$Relate table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Table D-22 X$Relate System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xr$PId Yes N/A No

1 0 Xr$FId Yes N/A No

2 0 Xr$Name No Yes No

3 0 Xr$Pld No N/A Yes

3 1 Xr$Name No Yes No

4 0 Xr$Fld No N/A Yes

4 1 Xr$Name No Yes No

D-21

X$Trigger

X$Trigger

The X$Trigger system table is associated with the file
TRIGGER.DDF. X$Trigger contains information about the triggers
defined for the database. The structure of X$Trigger is as follows:

A given trigger may require multiple entries in Trigger.DDF. Each
entry has the same triggern name in the Xt$Name field, and is used
in the order specified by the Xt$Sequence field.

Table D-23 X$Trigger System Table Structure

Column Name Type Size Case
Insensitive

Description

Xt$Name CHAR 30 Yes Trigger name.

Xt$Version USMALLINT 2 N/A Trigger version.
A 4 indicates
Scalable SQL
v4.

Xt$File USMALLINT 2 N/A File on which
trigger is
defined.
Corresponds to
Xf$Id in X$File.

Xt$Event UNSIGNED 1 N/A 0 for INSERT, 1
for DELETE, 2
for UPDATE.

Xt$ActionTime UTINYINT 1 N/A 0 for BEFORE, 1
for AFTER.

Xt$ForEach UTINYINT 1 N/A 0 for ROW
(default), 1 for
STATEMENT.

Xt$Order USMALLINT 2 N/A Order of
execution of
trigger.

Xt$Sequence USMALLINT 2 N/A 0-based
sequence
number.

Xt$Misc LONGVARCHAR
(LVAR)

<=4054 N/A Internal
representation of
trigger.

D-22

System Tables

Three indexes are defined for the X$Trigger table, as follows:

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Table D-24 X$Trigger System Table Index Definitions

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xt$Name No Yes Yes

0 1 Xt$Sequence No N/A No

1 0 Xt$File No N/A Yes

1 1 Xt$Name No Yes No

2 0 Xt$File Yes N/A Yes

2 1 Xt$Event Yes N/A Yes

2 2 Xt$ActionTime Yes N/A Yes

2 3 Xt$ForEach Yes N/A Yes

2 4 Xt$Order Yes N/A Yes

2 5 Xt$Sequence Yes N/A No

D-23

X$Depend

X$Depend

The X$Depend system table is associated with the file
DEPEND.DDF. X$Depend contains information about trigger
dependencies such as tables, views, and procedures. The structure of
X$Depend is as follows:

Two indexes are defined for the X$Depend table, as follows:

Table D-25 X$Depend System Table Structure

Column Name Type Size Case
Insensitive

Description

Xd$Trigger CHAR 30 Yes Name of trigger. It
corresponds to
Xt$Name in X$Trigger.

Xd$DependType UNSIGNED 1 N/A 1 for Table, 2 for View,
3 for Procedure.

Xd$DependName CHAR 30 Yes Name of dependency
with which the trigger
is associated. It
corresponds to either
Xf$Name in X$File,
Xv$Name in X$View,
or Xp$Name in
X$Proc.

Table D-26 X$Depend System Table Index Definitions

Index
Number

Segment
Number

Column Name Dupli-
cates

Case
Insensitive

Segmented

0 0 Xd$Trigger No Yes Yes

0 1 Xd$DependType No N/A Yes

0 2 Xd$DependName No Yes No

1 0 Xd$DependType Yes N/A Yes

1 1 Xd$DependName Yes Yes No

D-24

System Tables

Index Number corresponds to the value stored in the Xi$Number
column in the X$Index system table. Segment Number corresponds
to the value stored in the Xi$Part column in the X$Index system
table.

Index 1

Index

Symbols
@@IDENTITY global variable 2-13

Example of 2-13
@@ROWCOUNT global variable 2-14

Example of 2-15

A
ADD

grammar supported 2-17
ALL

grammar supported 2-18
ALTER TABLE

grammar supported 2-19
IN DICTIONARY keyword 2-20
USING keyword 2-22
WITH REPLACE keyword 2-24

ANDed predicate

maximum in SQL statement 2-2
ANY

grammar supported 2-30
API functions

ODBC supported 2-5
APIs

connection and session control C-2
Data retrieval C-8
SQL request C-3

Approximate-numeric-literal

grammar supported 2-121
Arguments

number in a parameter list for stored procedures
2-2

AS

grammar supported 2-31
ATTRIB.DDF D-1

attributes ignored by Pervasive.SQL 2000i D-11
AUTOINCREMENT data type A-13

B
BEGIN

grammar supported 2-32
Between-predicate

grammar supported 2-122
BFLOAT data type A-15
BINARY

notes about A-5
Bound databases

IN DICTIONARY not permitted 2-20
Btrieve data types A-12
Btrieve Owner Names

in secured databases 1-9

C
CALL

calling a stored procedure 2-48
grammar supported 2-33

CASCADE

grammar supported 2-34
ON DELETE 2-52

CASE

grammar supported 2-35
Changing

System Tables D-2
CHAR

notes about A-5
Character translation

OEM to ANSI 2-171
Clauses

ON DELETE 2-52
ON UPDATE 2-52

CLOSE

grammar supported 2-36
Closing

open tables 2-168
Codes, data type A-12
Columns

attributes

system table (X$Attrib) D-11
limit 2-2
maximum in a database 2-2
maximum in a table 2-2
maximum name length 2-2
maximum number in a select list 2-2

2 Index

maximum size of 2-2
number allowed in a trigger 2-2
system table (X$Field) D-5

Comma

as decimal separator 2-169
COMMIT

grammar supported 2-37
Concurrency 2-168
Connection and session control

APIs C-2
Connection strings

TRANSLATIONDLL 2-172
Connection strings, DSN 2-3
Connections

maximum 2-2
Conversion functions supported 2-167
Correlated subquery 2-139
Correlation-name

grammar supported 2-122
COUNT(), COUNT(*) functions

differences 2-45, 2-85
CREATE GROUP

grammar supported 2-39
CREATE INDEX

grammar supported 2-40
limitations 2-40

CREATE PROCEDURE

grammar supported 2-42
CREATE TABLE

grammar supported 2-50
IN DICTIONARY keyword 2-53
USING keyword 2-53
WITH REPLACE keyword 2-54

CREATE TRIGGER

grammar supported 2-59
CREATE VIEW

grammar supported 2-62
Creating

groups 1-10
stored procedures 2-48
tables with legacy null support 2-130
users and groups 2-81
views 1-8

CURDATE 2-162
CURRENCY data type A-15
Current Date

adding to an INSERT statement 2-91
Current Time

adding to an INSERT statement 2-91
Cursors

limits 2-49
CURTIME 2-162

D
Data

retrieval C-8
Data control statements 1-9
Data definition statements 1-3
Data dictionaries

list of system tables D-1
Data files

binary compatible cross-platform 2-23, 2-54
replacing existing 2-24, 2-54
system table (X$File) D-4

Data Manipulation

statements 1-6
Data Source Name connection string keyword 2-3
Data Source Name connection string keywords

clients 2-4
engine 2-4

Data Types

Btrieve A-12
conversion A-3
lengths and ranges A-8
supported A-3

Data types

AUTOINCREMENT A-13
BFLOAT A-15
codes A-12
CURRENCY A-15
DATE A-16
DECIMAL A-16
extended A-12
FLOAT A-17
INTEGER A-18
LOGICAL A-18
LSTRING A-18
MONEY A-18
NUMERIC A-19
NUMERICSA A-19
NUMERICSTS A-20
STRING A-15

Index 3

Supported A-2
that cannot be indexed 2-41
TIME A-20
TIMESTAMP A-20
UNSIGNED BINARY A-21
WSTRING A-21
WZSTRING A-21
ZSTRING A-22

Database

maximum number of columns 2-2
Database names

valid characters 1-11
Date

adding in INSERT statements 2-91
Date arithmetic

grammar supported 2-125
DATE data type A-16
Date functions supported 2-162
Date-literal

grammar supported 2-123
DBQ entry in odbc.ini

length of 2-2
DECIMAL data type A-16
Decimal separator

comma as 2-169
DECLARE

grammar supported 2-64
DECLARE CURSOR

grammar supported 2-65
DELETE

grammar supported 2-66, 2-67
Delete

rule 2-52
cascade 2-52
restrict 2-52

Deleting

Views 1-8
Delimited identifiers

in SQL Statements 2-13
Delimiter

SQL statement in PCC 2-16
DEPEND.DDF D-2
Disabling security 1-9
DISTINCT 2-128

grammar supported 2-68
in subquery 2-141

DROP INDEX

grammar supported 2-70
DROP PROCEDURE

grammar supported 2-71
DROP TABLE

grammar supported 2-72
IN DICTIONARY keyword 2-72

DROP TRIGGER

grammar supported 2-73
DROP VIEW

grammar supported 2-74
DSN connection strings 2-3

E
Enabling security 1-9
END

grammar supported 2-75
Exact-numeric-literal

grammar supported 2-122
EXISTS

grammar supported 2-76
Expression

in stored procedures 2-155
Extended data types A-12

F
FETCH

grammar supported 2-77
Fetching

data C-8
FIELD.DDF D-1
FILE.DDF D-1
FLOAT data type A-17
FOREIGN KEY

cannot ALTER column 2-25
grammar supported 2-78

Functions

conversion 2-167
date 2-162
logical 2-165
numeric 2-159
string 2-156
system 2-165
time 2-162

4 Index

G
Global variables 2-13

@@IDENTITY 2-13
@@ROWCOUNT 2-14

Grammar Element Definitions 2-147
GRANT

grammar supported 2-80
Granting

rights 1-10
GROUP BY

grammar supported 2-85
with a HAVING clause 2-87

Grouped views 2-62
Groups

creating 1-10

H
HAVING

in a GROUP BY expression 2-87

I
IDENTITY global variable. See @@IDENTITY

IF

grammar supported 2-88
IF (with SELECT)

grammar supported 2-125
IN

grammar supported 2-89
IN DICTIONARY keyword 2-20, 2-53, 2-72

not permitted on bound databases 2-20
Index

maximum indexed nullable columns 2-40
Index names

maximum length of 2-2
INDEX.DDF D-1
Indexes

creating 1-4
data types that cannot be indexed 2-41
dropping named 1-4
system tables

X$Field D-5
X$Index D-8

Infinity

representation A-10
In-predicate

grammar supported 2-122
INSERT

grammar supported 2-90
Inserting

current time, current date and timestamp 2-91
INTEGER data type A-18
Invalid row-count in subquery

returned if SELECT within UPDATE returns

multiple rows 2-139

J
JOIN

grammar supported 2-94
Joined tables

maximum 2-2
Joins

Cartesian 2-127
LEFT OUTER 2-126
RIGHT OUTER 2-126
two-way LEFT OUTER JOIN 2-97

L
LEAVE

grammar supported 2-101
LEFT OUTER JOIN

and vendor strings 2-95
syntax 2-95

Length

maximum for column name 2-2
of path name in USING 2-22, 2-53

LIKE predicates

on LONGVARBINARY A-9
on LONGVARCHAR A-9

Limitations

columns 2-2
of LONGVARBINARY A-9
of LONGVARBINARY in INSERT statements A-

9
of LONGVARCHAR A-9
of LONGVARCHAR in INSERT statements A-9
of LONGVARCHAR in UNION statements 2-

136
Limits

cursors 2-49
maximum ANDed predicates in SQL statement

2-2

Index 5

maximum size of quoted string in SQL statement
2-2

of Pervasive ODBC Engine interface 2-2
SQL variables and parameters 2-49
stored procedures 2-48

arguments in a parameter list 2-2
procedure name 2-48
variable name 2-48

triggers

number of columns 2-2
when using long data 2-49

Locale-specific behavior

comma as decimal separator 2-169
LOGICAL data type A-18
Logical functions supported 2-165
Long data

limits when using 2-49
LONGVARBINARY

limitation A-9
limitations in INSERT statements A-9
notes about A-5
using SQLGetData A-9

LONGVARCHAR

limitations A-9
limitations in INSERT statements A-9
limitations in UNION statements 2-136
notes about A-5
using SQLGetData A-9

LOOP

grammar supported 2-102
LSTRING data type A-18

M
Master user 2-81
Maximum

column name length 2-2
maximum length of view name 2-62
Modifying data

statements for 1-7
MONEY data type A-18

N
Name length

maximum

for columns 2-2
Named Database

and file names 2-22, 2-53
Non-correlated subquery 2-139
NOT

grammar supported 2-103
NULL

cannot make column nullable 2-25
inserted by UPDATE if subquery returns no rows

2-139
NULL support

setting 2-130
Null support

creating tables with legacy 2-130
Nullable columns

maximum number of indexed 2-40
NUMERIC data type A-19
Numeric functions supported 2-159
NUMERICSA data type A-19
NUMERICSTS data type A-20

O
ODBC

security 2-81
ODBC API conformance 2-5

exceptions to 2-7
ODBC API functions

supported 2-5
ODBC.ini

DBQ entry length 2-2
OEM to ANSI

character translation 2-171
connection string 2-172

ONLY

grammar supported 2-104
Owner name 2-81

P
Padding

in BINARY columns A-5
in CHAR columns A-5
in LONGVARBINARY columns A-5
in LONGVARCHAR columns A-5
in VARCHAR columns A-5

Parameter List

number of arguments for stored procedures 2-2
Password

for Master user 2-81

6 Index

table 2-9
Path name

length in USING 2-22, 2-53
Permissions

granting 1-10
revoking 1-10

Pervasive Control Center

OEM characters and 2-172
Pervasive ODBC Engine interface

data types supported A-3
limits of 2-2
SQL conformance 2-11

Pervasive.SQL 7

status code 59 2-54
Predicate

in stored procedures 2-154
PRIMARY KEY

cannot ALTER column 2-25
grammar supported 2-105

PRINT

grammar supported 2-108
PROC.DDF D-1
Procedures

creating 2-48
PUBLIC

grammar supported 2-107

Q
Quote mark, representing single 2-2
Quoted string in SQL statement

maximum size 2-2

R
Real Infinity

representation A-10
Referential integrity (RI)

delete rules 2-52
update rules 2-52
X$Relate system table D-19

Regional settings

comma as decimal separator 2-169
RELATE.DDF D-1
Relational security 2-81
RELEASE SAVEPOINT

grammar supported 2-109
Replacing data files 2-24, 2-54

Reserved words B-1
RESTRICT

grammar supported 2-111
ON DELETE 2-52

Retrieving data C-8
about 1-6

RETURNS

example of in CREATE PROCEDURE 2-46
REVOKE

grammar supported 2-112
Revoking rights 1-10
Rights

granting 1-10
revoking 1-10

RIGHTS.DDF D-1
ROLLBACK WORK

grammar supported 2-114
ROWCOUNT global variable. See @@ROWCOUNT

Rows

limits 2-2

S
SAVEPOINT

grammar supported 2-115
Scalar functions 2-156

conversion 2-167
date 2-162
numeric 2-159
string 2-156
system 2-165
time 2-162

Secured databases

with Btrieve Owner Names 1-9
Security

enabling and disabling 1-9
owner name 2-81
password of Master user 2-81
relational 2-81
setting 2-129
system tables

rights (X$Rights) D-17
users (X$User) D-15

SELECT

grammar supported 2-118
maximum number of columns 2-2

SELECT (with INTO)

Index 7

grammar supported 2-117
Set Function

grammar supported in SELECT statements 2-
123

SET SECURITY

grammar supported 2-129
SET TRUENULLSUPPOT

grammar supported 2-130
SET VARIABLE

grammar supported 2-131
SIGNAL

grammar supported 2-132
Single quote, representing 2-2
Sort order in keys

string A-12
Spacing

in BINARY columns A-5
in CHAR columns A-5
in LONGVARBINARY columns A-5
in LONGVARCHAR columns A-5
in VARCHAR columns A-5

SQL

description and purpose 1-1
extensions to standards B-1
request C-3
reserved words B-1
security 2-81
statement delimiter

changing in PCC 2-16
system tables. See System tables

SQL Data Manager

OEM characters and 2-172
SQL Grammar Elements 2-16
SQL Relational Database Engine. See SRDE

SQL Statement List 2-154
SQL Statements

data control 1-9
data definition 1-3
data manipulation 1-6
delimited identifiers 2-13
maximum length 2-2
maximum size of quoted string in 2-2
types of 1-1

SQL Variables

limits 2-49
parameters 2-49

SQLAllocConnect 2-5
SQLAllocEnv 2-5
SQLAllocStmt 2-5
SQLBindCol 2-5
SQLBindParameter 2-5
SQLBrowseConnect 2-5
SQLCancel 2-5
SQLColAttributes 2-5
SQLColumnPrivileges 2-5
SQLColumns 2-5
SQLConnect 2-5
SQLDataSources 2-5
SQLDescribeCol 2-5
SQLDescribeParam 2-5
SQLDisconnect 2-5
SQLDriverConnect 2-6
SQLDrivers 2-6
SQLError 2-6
SQLExecDirect 2-6
SQLExecute 2-6
SQLExtendedFetch 2-6
SQLFetch 2-6
SQLForeignKeys 2-6
SQLFreeConnect 2-6
SQLFreeEnv 2-6
SQLFreeStmt 2-6, 2-168
SQLGetConnectOption 2-6, 2-9
SQLGetCursorName 2-6
SQLGetData 2-6

with LONGVARBINARY A-9
with LONGVARCHAR A-9

SQLGetFunctions 2-6
SQLGetInfo 2-6
SQLGetStmtOption 2-6, 2-8
SQLGetTypeInfo 2-6, 2-10
SQLMoreResults 2-6, 2-7
SQLNativeSql 2-6
SQLNumParams 2-6
SQLNumResultCols 2-6
SQLParamData 2-6
SQLPrepare 2-6
SQLPrimaryKeys 2-6
SQLProcedureColumns 2-7
SQLProcedures 2-7
SQLPutData 2-7
SQLRowCount 2-7

8 Index

SQLSetConnectOption 2-7, 2-9
SQLSetCursorName 2-7
SQLSetPos 2-7
SQLSetStmtOption 2-7, 2-8
SQLSpecialColumns 2-7, 2-10
SQLSTATE

grammar supported 2-133
SQLStatistics 2-7
SQLTablePrivileges 2-7
SQLTables 2-7
SQLTransact 2-7
SRDE 2-20
Standard data types A-12
START TRANSACTION

grammar supported 2-134
Statement delimiter, changing 2-16
Statements

data manipulation 1-6
Statements per connection

maximum 2-2
Status Code 59 2-54
Stored Procedures

calling 1-8
creating 1-5
dropping 1-5, 2-71
executing 1-8
expressions 2-155
limits 2-48
number of arguments in a parameter list 2-2
predicates 2-154
system table (X$Proc) D-14
Using 2-48

String

Maximum size of quoted string in SQL statement
2-2

STRING data type A-15
String functions supported 2-156
Structured Query Language. See SQL

Subqueries

grammar supported 2-121
Subquery

correlated 2-139
eliminating duplicate rows with DISTINCT 2-

141
non-correlated 2-139

Supported data types A-2

Supported ODBC APIs

in Pervasive.SQL 2000 2-5
System functions supported 2-165
System tables D-1

updating D-2
X$Attrib D-11
X$Depend D-23
X$Field D-5
X$File D-4
X$Index D-8
X$Proc D-14
X$Relate D-19
X$Rights D-17
X$Trigger D-21
X$User D-15
X$View D-13

T
Table

locking 2-9
maximum number of columns 2-2
maximum number of rows 2-2
password 2-9

Table names

maximum length of 2-2
Tables

closing in an SQL statement 2-168
creating 1-3
creating with legacy null support 2-130
deleting 1-3
modifying 1-3
system D-1
updating System D-2

Time

adding in INSERT statements 2-91
TIME data type A-20
Time functions supported 2-162
Time-literal

grammar supported 2-123
Timestamp

adding to an INSERT statement 2-91
TIMESTAMP data type A-20
Timestamp-literal

grammar supported 2-124
Transactions

defining 1-7

Index 9

TRANSLATIONDLL connection string 2-172
TRIGGER.DDF D-2
Triggers

calling 1-8
creating 1-4
dependencies

system table (X$Depend) D-23
dropping 1-4
executing 1-8
number of columns allowed 2-2
system table (X$Trigger) D-21

TRUENULLCREATE 2-130

U
Unicode data types A-21
Unicode key types A-12
UNION

grammar supported 2-136
limitations 2-136

UNIQUE

grammar supported 2-138
UNSIGNED BINARY data type A-21
UPDATE

fails if subquery returns multiple rows 2-139
grammar supported 2-139

Update

rule 2-52
UPDATE (positioned)

grammar supported 2-144
Updating

system tables D-2
User

Master 2-81
User name

maximum length 2-2
USER.DDF D-1
Users and user groups. See Security

USING keyword 2-22, 2-53
length of path name 2-22, 2-53

V
Valid Value Range

data types A-8
VARCHAR

notes about A-5
Variable

for adding current date 2-91
for adding current time 2-91
for adding timestamp 2-91

Variables

CURDATE 2-162
CURTIME 2-162
Global. See Global variables

Vendor Strings

embedded 2-94
in LEFT OUTER JOIN statements 2-95

VIEW.DDF D-1
Views

creating

about 1-8
database 2-62
deleting 1-8
grouped 2-62
system table (X$View) D-13

W
W32BTXLT 2-172
WHILE

grammar supported 2-146
WITH REPLACE keyword 2-24, 2-54
Words

reserved B-1
WSTRING data type (Unicode) A-21
WZSTRING data type (Unicode) A-21

X
X$Attrib D-1
X$Attrib system table D-11

attributes ignored by Pervasive.SQL 2000i D-12
X$Depend D-2
X$Depend system table D-23
X$Field D-1
X$Field system table D-5
X$File D-1
X$File system table D-4
X$Index D-1
X$Index system table D-8
X$Proc D-1
X$Proc system table D-14
X$Relate D-1
X$Relate system table D-19
X$Rights D-1

10 Index

X$Rights system table D-17
X$Trigger D-2
X$Trigger system table D-21
X$User D-1
X$User system table D-15
X$View D-1
X$View system table D-13

Z
ZSTRING data type A-22

	Contents
	About This Manual xi
	1 SQL Overview 1-1
	2 ODBC Engine Reference 2-1
	A Data Types A-1
	B SQL Reserved Words B-1
	C SQL API Mapping to ODBC C-1
	D System Tables D-1

	About This Manual
	Who Should Read this Manual
	Manual Organization
	Conventions
	For More Information

	SQL Overview
	Data Definition Statements
	Creating, Modifying, and Deleting Tables
	Creating and Deleting Indexes
	Creating and Deleting Triggers
	Creating and Deleting Stored Procedures

	Data Manipulation Statements
	Retrieving Data
	Modifying Data
	Defining Transactions
	Creating and Deleting Views
	Executing Stored Procedures
	Executing Triggers

	Data Control Statements
	Enabling and Disabling Security
	Creating and Deleting Users and Groups
	Granting and Revoking Rights

	Database Names

	ODBC Engine Reference
	Pervasive ODBC Engine Interface Limits
	Data Source Name Connection String Keywords
	ODBC API Conformance
	Exceptions to ODBC API Conformance

	SQL Grammar Conformance
	Delimited Identifiers in SQL Statements
	Global Variables

	SQL Grammar Elements
	Other Characteristics
	Creating Indexes
	Closing an Open Table
	Concurrency
	Comma as Decimal Separator
	OEM to ANSI Support

	Data Types
	Pervasive.SQL Supported Data Types
	Supported Data Types

	Btrieve Data Types

	SQL Reserved Words
	List of Reserved Words

	SQL API Mapping to ODBC
	SQL API to ODBC Mapping Tables

	System Tables
	Installing System Tables and Data Dictionary Files
	X$File
	X$Field
	X$Index
	X$Attrib
	X$View
	X$Proc
	X$User
	X$Rights
	X$Relate
	X$Trigger
	X$Depend

	Index

