AUTHORIZED DOCUMENTATION

XPOZ 6.1 Reference Guide

Novell
Identity Manager Resource Kit

1.2
August 17, 2009

www.novell.com

Legal Notices

Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.,
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008-2009 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc., has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Contents

About This Guide 7

1 What Is XPOZ? 9
1.1 ENGINE .o 10

1.2 TestModules e 10

1.3 XPOZ SCriptS . . oottt 11

2 Installing XPOZ 13
2.1 PrerequISItesttt 13
2.2 Installing XPOZ on Linux/UNIX 13
2.3 Installing XPOZ on WINAOWSottt e e 13

3 Upgrading XPOZ 15
3.1 What's New ... 15
3.1.1 Results System e 15

3.1.2 Added New Modules 15

3.1.3 XPOZ Function Documentation. 16

3.2 Upgrading XPOZ 16

4 XPOZ Scripting Language 17
4.1 Basic Variable Data Types.o 17
4.2 Complex Variable Data Typeot 18
4.3 Private Variables 18
4.4 SystemVariables 18
4.5 String Concatenation 19
46 Special Script Codes: Embedding Hex Codes and Unicode 19
4.7 Special Script Codes: Comments it e 20
4.8 Log Files. 20
4.9 Mandatory Variables e 20
410 Environment Scripts. 21
411 XPOZ Test FUNCiONS. o e 21
4.12 Case Sensitivity in XPOZ Scriptingt 22
413 XPOZ Script Flow Constructs 22
4.13.1 Branchand Loop Constructs. e 23

5 Executing XPOZ Tests 27
5.1 XPOZ CoNSOleot 27
5.2 XPOZ GUI . .o 27
5.3 RCOMDD .o 29

6 Configuring the Results to Display 31
6.1 Configuring XPOZ to Display the Results 31

Contents 5

6

6.2 Creating and Managing the Results Objects

6.4 Web Page Layout
A XPOZ Grammar
B eDirectory Parameter Fields by Syntax

C XPOZ Specific Error Codes

Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

6.3 Enabling the Resultsin Each Script.

39

43

About This Guide

This is a reference guide to provide the information required to use the XPOZ test harness. XPOZ is
the tool used to run tests for the Resource Kit.

¢ Chapter 1, “What Is XPOZ?,” on page 9

¢ Chapter 2, “Installing XPOZ,” on page 13

¢ Chapter 3, “Upgrading XPOZ,” on page 15

¢ Chapter 4, “XPOZ Scripting Language,” on page 17

¢ Chapter 5, “Executing XPOZ Tests,” on page 27

¢ Chapter 6, “Configuring the Results to Display,” on page 31

¢ Appendix A, “XPOZ Grammar,” on page 35

¢ Appendix C, “XPOZ Specific Error Codes,” on page 43

¢ Appendix B, “eDirectory Parameter Fields by Syntax,” on page 39

Audience

This guide is intended for administrators who want to test their Identity Manager solution.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of the XPOZ Reference Guide, visit the Novell Compliance
Management Platform Documentation Web site (http://www.novell.com/documentation/ncmp10/).

Additional Documentation

For documentation on Identity Manager, see the Identity Manager Documentation Web site (http://
www.novell.com/documentation/idm36/index.html).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™ etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.

About This Guide

http://www.novell.com/documentation/ncmp10/
http://www.novell.com/documentation/ncmp10/
http://www.novell.com/documentation/idm36/index.html

8 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

What Is XPOZ?

XPOZ, pronounced expose, is a script interpreter that provides access to a number of applications
through their exported API interfaces. Originally it was developed as a test tool for Novell®
Directory Services® and now has been expanded to provide a test harness for Identity Manager.
XPOZ provides a solid foundation from which to build test modules. It can be extended by using
native files (.d11, .nlm, .so) or Java* files (. jar or .class) to create test modules.

Using XPOZ for testing gives the following benefits:

¢ Faster turnaround time than compiled tests, because it is script driven.

¢ Scripts are easier to write than compiled tests.

+ Better reuse of scripts.

+ Easily supports new functionality without affecting existing tests and scripts.

+ Minimal test tool memory footprint by only loading the test modules needed for a specific test.

XPOZ contains three major components: the engine, test modules, and scripts. The engine processes
the XPOZ scripts and then passes that information into the test modules to perform the required task.

Figure 1-1 XPOZ Architecture

User N ¢ Execution)
Interface Interface \@/
Scanner ’
"""" Parser Symbol Table
Test Module | y | XPOZ
Interface Flow Control Scripts ‘\

\v

— Test Module 1

Output Logs

— Test Module 2 ﬁ

— Test Module 3

¢ Section 1.1, “Engine,” on page 10
¢ Section 1.2, “Test Modules,” on page 10
¢ Section 1.3, “XPOZ Scripts,” on page 11

What Is XPOZ? 9

1.1 Engine

The XPOZ scripts are accessed through the user interface or through the execution interface to the
engine. The engine processes the XPOZ scripts to the next function or action, which it then passes
into the test modules that perform the action.

Figure 1-2 XPOZ Engine Components

: User e N
i Interface

Execution @
Interfface /

Symbol Table

Test Module e N
Interface 9 Flow Control

The engine is composed of seven separate items.

1.

Scanner: Built upon the Purdue Compiler Construction Tool Set (PCCTS) architecture, this
module tokenizes the scripts.

2. Parser: Built upon the PCCTS compiler architecture, this module interprets the tokens.

. Flow Control: Determines the execution sequence of the test operations. Includes branching

and looping constructs.

Symbol Table: Holds script-defined variables of multiple data types. Allows for multiple
levels of variable scope.

User Interface: Script invocation point. Includes both command line and graphic (GUI)
utilities.

Test Module Interface: Natively compiled extensions that provide script-callable functions
that dynamically load test modules as needed by the script.

Remote Execution Interface: Allows remote execution of certain functions on remote
systems. It requires the rcmdserver process to be running on the remote system.

1.2 Test Modules

Use test modules to execute the XPOZ scripts test. For example, if you need to test a move, create
test module to represent a move of a user object in Lotus Notes*. Modules can simplify interactions
with different systems.

The test modules are written in Java or C languages.

10 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Figure 1-3 XPOZ Test Modules

— Test Module 1

— Test Module 2

— Test Module 3

1.3 XPOZ Scripts

You create XPOZ scripts to perform actions within different systems, allowing the script writer to
generate administrative tasks in a testing environment. In an Identity Manager environment, scripts
allows you to verify an add in Active Directory to an Identity Vault, or to any other connected
system. For more information about the XPOZ scripts, see Chapter 4, “XPOZ Scripting Language,”

on page 17.

Figure 1-4 XPOZ Scripts

XPOzZ

Scripts

What Is XPOZ? 11

12 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Installing XPOZ

You can install XPOZ on either Linux or Windows*.

¢ Section 2.1, “Prerequisites,” on page 13
¢ Section 2.2, “Installing XPOZ on Linux/UNIX,” on page 13
¢ Section 2.3, “Installing XPOZ on Windows,” on page 13

2.1 Prerequisites

The only prerequisite is to have NICI (Novell International Cryptographic Infrastructure) installed.
You must verify that NICI is installed on the machine before installing XPOZ. If you don’t have
NICI installed, follow the instructions in the NICI Administration Guide (http://www.novell.com/
documentation/nici27x/pdfdoc/nici_admin_guide/nici_admin_guide.pdf) to install NICI.

To verify that NICI is installed on Windows:

1 Access the Control Panel.
2 Select Add or Remove Programs.

3 Verify there is an entry for NICI, then close the Add or Remote Programs window and the
Control Panel.

To verify NICI is installed on Linux/UNIX:

1 Loginas root.

2 Enter rpm -ga | grep -i nici

2.2 Installing XPOZ on Linux/UNIX

1 Download the xpozv6l install.zip file that contains the installation files for XPOZ from
the Novell Resource Kit 1.2 Download Web site (http://download.novell.com/index.jsp).

2 Extract the file to access the installation files.
3 Loginas root.
4 Change to the directory that contains the installation file, then enter:
./xpoz install linux.bin
5 Press Enter until the end of the license agreement, then enter Y to accept the license agreement.
6 Enter the installation location.
The default location is /usr/novell/xpoz.

7 Review the installation location, then press Enter to start the installation.

2.3 Installing XPOZ on Windows

1 Download the xpozv6l install.zip file that contains the installation files for XPOZ from
the Novell Resource Kit 1.2 Download Web site (http://download.novell.com/index.jsp).

Installing XPOZ

13

http://www.novell.com/documentation/nici27x/pdfdoc/nici_admin_guide/nici_admin_guide.pdf
http://download.novell.com/index.jsp
http://download.novell.com/index.jsp

2 Change into the directory that contains the installation files, then double-click
xpoz_install windows.exe to start the installation.

3 Use the following information to complete the installation:

+ Install Location: Specify the installation location for XPOZ. The default location is
c:\Program Files\Novell\XPOZ.

14 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Upgrading XPOZ

¢ Section 3.1, “What’s New,” on page 15
¢ Section 3.2, “Upgrading XPOZ,” on page 16

3.1 What’s New

¢ Section 3.1.1, “Results System,” on page 15
¢ Section 3.1.2, “Added New Modules,” on page 15

¢ Section 3.1.3, “XPOZ Function Documentation,” on page 16

3.1.1 Results System

XPOZ 6.1 has a results system to display the test results in a Web page. For more information, see
Chapter 6, “Configuring the Results to Display,” on page 31.

3.1.2 Added New Modules

XPOZ 6.1 has the following new modules to increase the functionality of XPOZ:

+ NICI

+ SAP

+ GroupWise

¢ Telnet

¢ NT (Domain and Registry calls)

¢ Exchange 5.5 (DAPI)

+ PKI

¢ JVM Module (provides the ability to call into java modules)
+ Notes

¢+ ODBC (Windows only)
There are also additional functions to existing modules, including:

¢ GetPlatformInformation

¢+ XMLWriteParsedData

¢ NCPVRCacheUtil

¢ NCPVRQueueEvent

¢ NCPVRGetDriverStats

¢+ NCPVRResetDriverStats

¢+ NCPVRGetDirXMLVersion
¢+ NCPVRGetPasswordsState

Upgrading XPOZ

15

¢+ NCPVRGetReciprocal AttrMap
¢+ LDAPNMASGetPasswordStatus

3.1.3 XPOZ Function Documentation

The changes to the XPOZ function documentation are:

¢ Updated and modified all of the XPOZ function documentation for consistency.

¢ Modified the documentation to provide conditional tags.

The XPOZ function documentation is available at the Resource Kit Product Download Web site
(http://download.novell.com/index.jsp).

3.2 Upgrading XPOZ

To upgrade XPOZ, follow the installation procedure. There is no separate upgrade procedure. For
the installation procedure, see Chapter 2, “Installing XPOZ,” on page 13.

16 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

http://download.novell.com/index.jsp

XPOZ Scripting Language

The XPOZ scripting language is comparable to the C language, although not exactly equivalent to it.
XPOZ scripts contain the calls to XPOZ test functions. There are three elements found in the XPOZ
scripts: variable declarations and assignments, flow control constructs, and test function calls.

Script files can call other script files. Upon completion of a script file, execution passes back to the
calling script file, if one exists. Otherwise, the test terminates.

Variable scope is defined to be at the script and block level. All variables declared inside a curly
brace block are thrown away upon the exit of the block. Any variables defined at the script level are
thrown away when the script file exits. Specifically, this means that a variable x defined in scriptl is
visible during execution of scriptl along with all other script files that scriptl calls. Variable x goes
out of scope (effectively is removed from the symbol table) when script]l completes. It is permissible
to redefine variable x at a subordinate level (that is, in script2, which is invoked by script1). In this
case, during the scope of script2, the local variable x is used instead of the variable defined in
scriptl. Within a given script, a variable name can be defined only once.

*

*

Section 4.1, “Basic Variable Data Types,” on page 17

Section 4.2, “Complex Variable Data Type,” on page 18
Section 4.3, “Private Variables,” on page 18

Section 4.4, “System Variables,” on page 18

Section 4.5, “String Concatenation,” on page 19

Section 4.6, “Special Script Codes: Embedding Hex Codes and Unicode,” on page 19
Section 4.7, “Special Script Codes: Comments,” on page 20
Section 4.8, “Log Files,” on page 20

Section 4.9, “Mandatory Variables,” on page 20

Section 4.10, “Environment Scripts,” on page 21

Section 4.11, “XPOZ Test Functions,” on page 21

Section 4.12, “Case Sensitivity in XPOZ Scripting,” on page 22
Section 4.13, “XPOZ Script Flow Constructs,” on page 22

4.1 Basic Variable Data Types

XPOZ incorporates a set of foundational data types for variables. They are:

*

*

int

unsigned int
long

unsigned long
string

char

boolean

XPOZ Scripting Language

17

A variable can have any alphanumeric name, if it begins with an alphabetic character or an
underscore. All XPOZ commands, including variable declarations and assignments, are separated by
semicolons.

Some examples of variables are:

int 1i=0;

string thisIsAString = “A long string value goes here”;
uint x=490000;

char middleInitial = 'B';
boolean someFlag=false;

4.2 Complex Variable Data Type

XPOZ allows single dimension arrays for any of the fundamental data types. These arrays can be
accessed by using an index into the array, as is done in the C language. Square brackets [] denote an
array. Arrays are O-relative.

Some examples are:
int ageArray([] = { 35, 24, 80, 11, 7 };

if (ageArrayl[4] == T7) {}

4.3 Private Variables

The use of private before any variable declaration hides the value within the GUI. However,
private variables can be accessed and displayed through the test modules, so they don’t guarantee
security for data.

4.4 System Variables

XPOZ defines a set of system variables. These have special meaning and can be used to enhance a
test's interpretation and usability.

Table 4-1 XPOZ System Variables

Variable Type Description

Title1 string Text to be printed in the GUI upper dialog first field. Default: NULL.
Title2 string Text to be printed in the GUI lower dialog first field. Default: NULL.
ScriptFile string Filename of the currently executing script.

ScriptDir string File system directory from which to initiate a script. Default: “.”
LogFile string Name of the current log file.

LogDir string File system directory in which to place LogFile.

RetryDelay int Number of seconds to wait before retrying a failed function call.

Ignored if RetryMax is <=0. Default: 0

RetryMax int Number of times to retry a failed function call before failing the test.
Default: 0

18 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Variable Type Description

RetryMaxFlag int 0: (default) Does not prompt the user on failed function calls, 1:
Prompt user on failed function calls.

LogToFileFlag boolean False: Do not log to the output file. True: Log to output file. Default:
True.

LogToScreenFlag boolean False: Do not log to the screen. True: Log to screen. Default: True.

TestCase string Marker to delineate the beginning of a new test case. The value is

used as the name of the test case. Default: NULL.

TestCaseEnd string Marker to delineate the end of a test case. Default: NULL. The start of
a new TestCase automatically implies the end of the previous
TestCase.

TestDeflD string Name of the test definition associated with this script.

TestName string Name of the test. Placed in the upper status bar. Default: NULL. When

the results are turned on, this tag starts the script execution.

NotYetimplemented int Specifies that the next test case defined is not fully implemented. This
prevents an incomplete test from counting as either a pass or fail
within a script.

LogOnRetryFlag boolean False: Do not log retries to the display True: Log retries to the display.
In the GUI, the retry counts are recorded in the lower status area. This
flag attempts to clean up the display output area of the GUI. Default:

False.
ReleaseName string Data is printed in upper dialog second field. Default: NULL.
rcmdSingleThreaded int Causes all calls made to RCMD to run on same thread. Default: 0

4.5 String Concatenation

XPOZ allows a shortcut way of appending strings. The + character is interpreted to instruct that two
strings be concatenated together. The strings can be literals or other string variable names.

Some examples are:

string strl = “This is a test “ + “of concatenating strings “ + “together”;
string str2 = strl + “ - second appendage”;

4.6 Special Script Codes: Embedding Hex Codes
and Unicode

XPOZ allows integer values to be entered as hex codes. This is done by prepending 0x to the hex
code. For example, 0x20 is equivalent to the integer 32. The script assignment looks like this:

int privileges = 0x20;

XPOZ also provides for using Unicode* strings in scripts. This is done by having the first two
characters of the string be Ox. Everything following the 0x must be valid Unicode characters, with
the low-order byte first. A script assignment looks like this:

inputStr = "0x43004e003d00fe34f0fefff9a7£ff£fe792e00";

XPOZ Scripting Language

19

20

4.7 Special Script Codes: Comments

XPOZ provides two methods of denoting comments: single-line and multi-line. The single-line
comment is noted by a double forward slash (//). The rest of the line is considered a comment and is
ignored by the interpreter.

A multi-line comment begins with a forward slash-asterisk (/*) and ends with an asterisk-forward
slash (*/). Everything between the two markers is considered part of the comment and is ignored by
the interpreter.

Single-line comments can be embedded within multi-line comments.

4.8 Log Files

All script output is sent to the screen, if enabled, and is potentially sent to a log file. Proper usage of
the LogFile, LogDir, and LogToFile variables determines if and when output is sent to a log file. For
the Results Tracking System, if the file specified to be used already exists, the filename is modified
based on the Test Definition.

The file format for XPOZ log files is HTML. This allows for easy browsing via a Web browser. All
coloration notations are maintained with this approach.

The log file name (variable LogFile) can be changed from within a script. This is occasionally
beneficial when it makes sense to isolate and report on a subset of the script separately from the rest
of the script.

4.9 Mandatory Variables

XPOZ provides a special function that checks to assure that certain variables are defined prior to test
execution. If all specified variables are not found in the symbol table, execution pauses with a
message informing the user which variables must be included for test execution to progress. This
stops a test from proceeding for possibly hours into a script before finding out that a required
variable is missing.

The format for this function has one repeatable parameter: variable. The value for each variable
parameter is a name-description pair. In the following example, SRV1 is a required variable, and its
description is fully qualified First Server Name.

CheckMandatoryVariables (

Variable = {"BootStrapAddress", "Address of a server with port in the
tree."},

Variable = {"SRV1", "Fully-qualified First Server Name"},

Variable = {"SRvV2", "Fully-qualified Second Server Name"},

Variable = {"SRV1 Platform", "Platform of first server"},

Variable = {"SRV2 Platform", "Platform of second server"},

Variable = {"Admin", "Fully-qualified Admin Object Name"},

Variable = {"AdminPassword", "Password for admin object"});
Private

Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

4.10 Environment Scripts

As noted previously, XPOZ scripts can invoke other XPOZ scripts. The difference between an .xpoz
and a .env script is that the .env script does not generate a new execution level. Otherwise, these
environment scripts behave like regular XPOZ scripts and are used to define the environment
needed to run the rest of the script.

Often, the .env file can be thought of as a test wrapper. It sets up a test environment, places values
on variables used by multiple test scripts, and then invokes a series of test scripts. Using .env files
in this manner allows for easy combination of test script files without setting up the test environment
for each test script.

4.11 XPOZ Test Functions

The real test work is accomplished in test functions. The scripts call these functions with certain
parameters and expected values. The functions contain the code that links to external libraries to
accomplish an objective. Within the test function is the check for whether the expected result was
achieved or not. This allows the script to check for both positive and negative results. Often, an
XPOZ test function is a wrapper for a third-party library function, adding to it the ability to check
results along with the chance of retrying the function call for a loosely consistent database.

A loosely consistent database is one where synchronization is involved, so it is possible that a check
is made prior to completing synchronization. In these cases, the check should be repeated for a
predetermined number of times before failing the test.

The script format for an XPOZ test function is:
<test function name>(set of parameter name-parameter value set entities);

You can also include the optional <return code> at the front of the test function. The return code is
always an integer and can be checked by the XPOZ script and subsequently used to determine script
flow control.

All XPOZ test functions use a common parameter called ExpResult. The ExpResult parameter is a
multivalued entity that describes what the result from the test is expected to be. Often a test function
can return any one of a set of values and still be considered successful. For example, if a script calls
a function to add an object, a successful answer would either be “object added” or “object already
exists”. The ExpResult parameter allows you to specify all acceptable results. If any of them is
found, the call is considered a success.

Additional values for the ExpResult parameter include:

+ “OK”

+ “BAD”

+ “GREATER THAN ZERO”
* “Y”

+ “YES”

+ “ZERO OR_GREATER”

+ “TRUE_OR_FALSE”

+ “PASS THROUGH”

XPOZ Scripting Language

21

The documentation for the XPOZ functions is available for download on the Resource Kit download
page.

4.12 Case Sensitivity in XPOZ Scripting

Script variables in XPOZ are case sensitive. Parameter names in test functions are not case sensitive,
with one exception. If a parameter name in a different uppercase/lowercase configuration is
equivalent to an XPOZ variable, the parameter name case is significant.

4.13 XPOZ Script Flow Constructs

Declarations instantiate variables for use within a script. They consist of a data type, a variable
name, and an optional assignment operator and variable value. Examples include:

int iterator = 0;
int iteratorA = 0;
char middleInitial
string companyName

lbl ,.
“Acme, Inc.”;

White space between operators and other tokens (for example, variable names, and values) is
optional, but suggested for script readability.

A statement is either a single expression, or a block of statements. A single expression generally
follows the C-language constructs, and allows the following operators:

Table 4-2 XPOZ Single Expression

C-Language Construct Operators
assignment =, 4=, -=, *= =
logical AND &&
exclusive OR A

equality == |=
additive + -

unary (pre/post) ++ -

not !

logical OR I

bitwise OR |

bitwise AND &

relational <, <=, > >=
multiplicative *

unary (post) ++, -

A block of statements encapsulates a set of statements with curly braces ({, }). Most often a block of
statements is used in branch and loop constructs.

Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

4.13.1 Branch and Loop Constructs

¢ “Branch Constructs” on page 23

+ “Loop Constructs” on page 23

Branch Constructs

XPOZ allows two branch constructs: if-then-else and switch-case. The switch-case construct uses
the break command to exit once it executes a desired branch.
¢ “If-Then-Else Statement Format” on page 23

+ “Switch-Case Statement Format” on page 23

If-Then-Else Statement Format
The else portion is optional:

if (boolean statement) {
statement block

}
[else {
statement block

H]

Switch-Case Statement Format

switch (integer variable) {
case <integer value>: statement block; [break;]

case <integer value>: statement block; [break;]
default: statement block [break;]

Loop Constructs

XPOZ allows the following loop constructs: for, do-while, and while. The continue and break
commands are allowed within loop constructs. The continue command ends the current iteration of
the loop and proceeds with the following iteration. The break command ends the loop construct
completely and continues with the next statement.

¢ “For Statement Format” on page 23

¢ “Do-While Statement Format” on page 24

+ “While Statement Format” on page 24

¢ “Return and Exit Commands” on page 24

¢ “Sample Script” on page 24

For Statement Format
for([variable initialization]; boolean statement; [variable modification,])

{
statement block

XPOZ Scripting Language

23

24

Do-While Statement Format

do {
statement block
} while (boolean statement);

While Statement Format

while (boolean statement) {
statement block

}

A complete description of the XPOZ grammar (in BNF format) is included in Appendix A, “XPOZ
Grammar,” on page 35.

Return and Exit Commands

The return and exit commands can be used anywhere in a script. The return command ends the
current script and returns to the calling script. The exit command ends the entire test.

Sample Script

The following is a short XPOZ script sample showing how an XPOZ script is called from another
XPOZ script. Also, variable scope is shown.

FILE 1.xpoz

// Ak kkhkrkkkhkrxhkkhkkkhkhkhxkkxkx*k

// Declaring local variables
// Ak khkkkhkhkhkkhkhkkhhkhkkhkrhkhkxkkkx%x
string strl = “This is FILE 1 string one”;
int inc;
for (inc=0; 1inc<5; inc++) {
PrintToScreen (String = inc + “\n”);
}
PrintToScreen (String = strl + “\n”);
PrintToScreen (String str2 + “\n”);
//END OF FILE 1

FILE 2.xpoz

// hkhkhkkhkrhkhkrhkkhkhkkkhkhkxkhkkxk*k

// Declaring local variables

// kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkhkhkkx*

string strl = “This is FILE 2 string one - longer”;
string str2 = “This is FILE 2 string two”;

string str3 = “This is FILE 2 string three”;

string str4 = “This is FILE 2 string four”;

string str5 = “This is FILE 2 string five”;

length = Length(String = strl);
PrintToScreen(String = "[" + length + "] " + strl + "\n");

//Calling FILE 1l.xpoz from FILE 2.xpoz
SubFile (FILE = "FILE 1l.xpoz");
//END OF FILE_Z

The output of executing FILE 2.xpoz is:

Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

[34] This is FILE 2 string one - longer
0
1
2
3
4

This is FILE 1 string one
This is FILE 2 string two

XPOZ Scripting Language 25

26 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Executing XPOZ Tests

After XPOZ is installed and you have created XPOZ scripts, you can run them to test the
functionality of the drivers. There are multiple interfaces that allow you to run the scripts once they
are implemented.

¢ Section 5.1, “XPOZ Console,” on page 27
¢ Section 5.2, “XPOZ GUL,” on page 27
¢ Section 5.3, “RCMD,” on page 29

5.1 XPOZ Console

The XPOZ Console is a command line utility. Architecturally it is identical to the XPOZ GUI;
however, the GUI is more flexible and powerful than the XPOZ Console. On Linux, the console
view can be executed remotely via Telnet or ssh.

To run the XPOZ Console, enter:
XPOZConsole scriptfile [localEnvironmentFileName]

Linux is case sensitive and Windows is not. The scriptfile is the name of the XPOZ script that
you want to execute. The localEnvironmentFileName allows you to pass in an environment file if it
is needed; otherwise, it defaults to XxPOz_ ENV. txt.

5.2 XPOZ GUI

The XPOZ GUI is a graphical utility that executes the XPOZ scripts. With it you can change
variables during script execution and view their results, press buttons to manipulate execution, and
have symbol table access.

To run the XPOZ GUI utility from the default location, use the following command:

+ Windows: c:\Program Files\Novell\XPOZGui.exe

* Linux: /usr/novell/XP0OZGui

Executing XPOZ Tests

27

Figure 5-1 XPOZ GUI

e XPOZ w6.1 (Build 20080521 =

Fie Actons Tools Help

A VI RAEBANO @ aE

Elapsed: 00:00:00 Passzed: 0 Failed: 0 MYl 0

Expected: Actual: Last: (0x0000) 0

Table 5-1 describes the different features of the XPOZ GUI tool. The browsers allow you to view
specific information to see why a script failed.

Table 5-1 XPOZ GUI Features

Feature Description

Open Script File Browse to and select the XPOZ script file to execute.

Open Log File The feature is not implemented.

Play Executes the XPOZ script.

Pause Pauses or resumes the XPOZ script file execution.

Stop Stops the execution of the XPOZ script file.

FFWD Retry If errors occur during the execution of the XPOZ script, it skips the current

delay before recalling the function.
FFWD Retry Count Makes one more retry of the script before continuing with the execution.
| Environment Browser Browse to and modify an environment variable.

n Symbol Table Browser Browse to and modify a symbol defined in the symbol table.

28 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Feature

Description

| * Object Browser
E Schema Browser
i Options Browser

Execute Script
Command

Script Information Dialog
|E"—E| Results Admin
|""’—5| Turn Results Off

:| Turn Results On
|’% Turn Defect Tracking Off

[:

Turn Defect Tracking On

‘H Select Results System

Browse to a specific eDirectory™ object. The Object Browser lists each
eDirectory tree you are authenticated to.

Browse to the eDirectory schema. The Schema Browser lists each
eDirectory tree you are authenticated to.

Modify common environment variables, such as log to screen or
retrydelay.

Inserts additional script commands into the XPOZ script that is running.

Lists the information about the script being executed.

Allows you to access and reuse the results of the XPOZ script.
Turns off the results. The results are no longer recorded.
Turns on the results. The results are recorded.

The feature is not implemented.

The feature is not implemented.

Allows you to select the type of results tracking system. Currently the only

supported system is Results Tracking System v1 (RTS).

5.3 RCMD

RCMD is the execution interface that allows remote execution of certain functions on remote

systems. The remdserver process must be running on the remote system for this to work. Use the

following convention to enable remote calls:

[\\remoteaddress\]<funcname> (parms) ;

If the remoteaddress is the string 1ocalhost, then execution is only made locally.

Executing XPOZ Tests

29

30 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Configuring the Results to Display

With XPOZ, you can store results from a test script into an LDAP object. XPOZ also contains a web
interface that categorizes and displays the results. This allows for easy access to the results, and you
can use the results for progress reports and trending.

¢ Section 6.1, “Configuring XPOZ to Display the Results,” on page 31

¢ Section 6.2, “Creating and Managing the Results Objects,” on page 31

¢ Section 6.3, “Enabling the Results in Each Script,” on page 33

¢ Section 6.4, “Web Page Layout,” on page 33

6.1 Configuring XPOZ to Display the Results

1 Verify that you have a Web server with PHP 4 module installed and running.
2 Make sure you have access to an eDirectory™ tree.

This can be the same server that is running the Metadirectory engine, or a new tree for results
purposes. The results system uses LDAP, so any LDAP server should work with the results.
However, the results have only been tested against the LDAP server on eDirectory. If you do
use a different LDAP server, the XPOZ scripts must be converted to work against this LDAP
server.

3 After XPOZ is installed, run the RTSObjects-Schema.xpoz XPOZ script to extend the
schema before you run any tests.

4 Unzip the rts.zip file into the htdocs (or equivalent) directory on the Web server.
5 Add the following information for the results object in the rts.cfqg file:

¢ IP address: The IP address of the LDAP server.

¢ Port: The cleartext LDAP port.

+ Password: The password for the user as specified by User ID.

+ Base Container: The container used in the XPOZ script in Step 3.

¢ User ID: The DN of a user with read/write rights to the base container that is used in the
XPOZ script in Step 3.

6.2 Creating and Managing the Results Objects

The results are stored as objects in an LDAP directory. These objects are used to sort, categorize, or
define the test objects that are created. These objects, in conjunction with the test run objects,
generate the results pages. The different objects that must be created are:

¢ Test Definition: A base test that corresponds to the TestDetID tag within a script.

¢ Category Selector: A title bar in the Web page used to separate test definitions within a
selection definition so that they are organized. For example, your category selectors could be
platforms (AIX, Solaris, Windows, or Linux) or components (Notes driver or Active Directory
driver).

¢ Selection Definition: A list of all of the tests that are to be run against a given build.

Configuring the Results to Display

31

32

To create the results objects:

1 In the XPOZ GUL click the Results Admin icon 2.
2 Specify a name for the test, then click Create.

RTS Administration Browser

This creates a test definition and must be done for each unique test.
3 Click the Category Selector tab.
4 Specify a name for the category, then click Create.

RTS Administration Browser

This creates a category selector and must be done for each unique separator.
5 Click the Selection Definition tab.

RTS Administration Browser

6 Specify a selection name. This is the definition that this test run is placed under.

7 Specify a test description. This is the description that is seen from the Web view.

Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

8 Select a test definition from the drop-down list. This is the test that runs when this definition
runs.

9 Select a test category image from the drop-down list, then click Create.
This creates or modifies a selection definition and adds the specified test.

10 Repeat steps 7 through 9 to add additional tests to the same definition.

6.3 Enabling the Results in Each Script

For a test to start results tracking, you must specify the TestName tag at the beginning of the test.
The value of the TestDefID tag corresponds to a test definition that is created on the results system.
If you do not specify a TestDefID tag, you see all of the tests listed under this test definition.

You must also turn on results to send the information to the Web server.

1 In the XPOZ GUI, click the Select Results System icon ‘ﬂlE' .
2 Select Results Tracking System vi, then click OK.
3 Click the Turn Results On/Off icon E*—E| to turn on results.

After the results are turned on and the script is executed, the information is placed in the LDAP
directory. The Web server queries the directory to populate the Web page with the results
information.

6.4 Web Page Layout

The Web page layout in Figure 6-1 is divided into multiple sections to make the results accessible
and easy to read.

Figure 6-1 XPOZ Results Web Page Layout

T XPOZTesting

Testing Results Seafang SP1 - Antelope 20070717 Results
SRl LT IL—_—_
Resourcekitll Test Run Pass Fail NYI
=) Seafang SP1 - Antelope Avaya Driver - TestPBX, AIX 5.2 0% o 0 0
20070918 Delimited Text Driver - AIX 5.2 T00% b 0 0 aix2cl
20070828 DirXML 3.5.1 Engine - AIX 5.2, eDirectory 8.7.3], 1422 6 77 aix2c2
20070726 Dir¥ML 3.5.1 Engine - AIX 5.2, eDirectory 8.8] 1473 5 77 aix2c3
20070717 DIrXML Remote Loader - ATX 5.2 0% 0 0 0 aix2cl
20070612 g%j;ﬁl‘g{_‘{nﬁf‘a‘;cﬁg“’er =AL:5.3 (ePrectary E— 34.2% 374 80 0 aix2c3
2007002 Entitlements Driver - AIX 5.2, eDirectory 8.7.3 — i — /7 0 0 aixzc2
20070522 IDBC Driver - Oracle 5i, AIX 5.2 0% o 0 0
20070516 IMS Driver - AIX 5.2/Windows 2003, Sonig MQ 7.0 S [/, W 448 0 62 aix2cl
XPOZv60 LDAP Driver - Sun One 5.2, AIX 5.2 1], . 727 0 0 aix2c2
eDirectory Debug Lotus Notes Driver - Lotus Notes 6.0, AIX 5.2 28.6% 251 i 0 aix2c2
Soanan SAP User Driver - AIX 5.2 0% 0 0 0
SOAP Driver - AIX 5.2, DSML — (1] S— 370 1 22 aix2cl
WaorkOrder Driver - AIX 5.2] T 60 3 0 aix2cl
AIX 5_2 Subtotals: 5369 76 238

+ Display Group: A high-level category that contains builds for a given project. In the left frame
of Figure 6-1, the display groups are Caribou, ResourceKit11, Seafang SP1 - Antelope,
XPOZv60, and eDirectory Debug. In your environment, the display groups could be eDirectory
8.8 deployment or Identity Manager 3.5.1 regression. Selecting the display group gives an
overview of all the builds.

Configuring the Results to Display

33

¢ Build: Groups all of the tests that are run for a given project. There are multiple groups per
display group. In Figure 6-1, the builds are the different dates for the Seafang SP1 - Antelope
builds. The results for the selected display group are displayed in the table on the right.

¢ Test Run: Each line under a given build is a unique test run. The build level displays a high-
level view of the statistics for each test as well as statistics within a category selector. In Figure
6-1 the category selector is AIX 5 2. The line is a link for more detailed information about
each specific test that has been run.

34 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

XPOZ Grammar

The following is the actual XPOZ grammar in PCCTS format with actions and token definitions
removed. Its form is BNF-like and demonstrates the recursive-descent nature of the parser. Items in
all uppercase represent the token to be matched. Other identifiers in lowercase or mixed case
correspond to a rule elsewhere in the grammar. Groups of tokens/rules enclosed in >{}= represent
optional components. Groups enclosed in >()= followed by a >+= indicate >one or more= of those
groups and a >*= following a group represents zero or more of the groups.

declaration:
{PRIVATE} DATATYPE IDENTIFIER { arraynotation } { ASSIGN initialize }
(COMMA IDENTIFIER { arraynotation } { ASSIGN initialize })* SEMICOLON ;

block:
LBRACE { combo_list } RBRACE;

combo:
(declaration | statement);

combo_list:

(combo)+ ;
statement:
(expression SEMICOLON
block

IF LPAREN expression RPAREN combo { ELSE combo }
WHILE LPARENexpression RPAREN combo
DO combo WHILE LPAREN expression RPAREN SEMICOLON

| FOR LPAREN {expression } SEMICOLON { expression } SEMICOLON { expression }
RPAREN combo

| SWITCH expression

LBRACE (CASE expression COLON { combo list })* { DEFAULT COLON {

combo list } } RBRACE

| CONTINUE SEMICOLON
BREAK SEMICOLON
RETURN { expression } SEMICOLON
EXIT SEMICOLON
SEMICOLON

\

\

\

\

);
expression:

assignment expression (COMMA assignment expression)* ;

assignment expression:
logical OR expression { OPERAND assignment expression };

logical OR expression:
logical AND expression (LOGICAL OR logical AND expression)* ;

logical AND expression:
bitwise OR expression (LOGICAL AND bitwise OR expression)* ;

bitwise OR expression:
exclusive OR expression (BITWISE OR exclusive OR expression)* ;

exclusive OR expression:
bitwise AND expression (BITWISE XOR bitwise AND expression)* ;

XPOZ Grammar

35

bitwise AND expresion:
equality expression (BITWISE AND equality expression)* ;

equality expression:
relational expression (EQUALITY relational expression)* ;

relational expression:
additive expression (RELATIONAL additive expression)* ;

additive expression:
multiplicative expression (ADDITIVE multiplicative expression)* ;

multiplicative expression:
unary expression (MULTIPLICITIVE unary expression)* ;

unary expression:
(PLUS unary expression
| MINUS unary expression
| NOT unary expression
| INCREMENT unary expression
| DECREMENT unary expression
| primary expression (INCREMENT | DECREMENT | //Nothing)
)

’

primary expression:
(LITERAL STRING DELIM
| LITERAL CHARACTER DELIM
| number
| identifier { LPAREN { argument list } RPAREN }
| LPAREN expression RPAREN
| boolean
)

’

argument list:
argument ((COMMA argument)* | SEMICOLON (argument SEMICOLON)*) ;

argument:
IDENTIFIER ASSIGN initialize;

identifier:
IDENTIFIER { arraynotation };

initialize:
(element set | assignment expression) ;

element set:
LBRACE set member (COMMA set member)* RBRACE;

set member:
(element set | logical OR expression);

number:

(OCT_NUM

| HEX NUM

| INT NUM
| U OCT NUM
| U INT NUM
| U HEX NUM
| L OCT NUM
| L HEX NUM
| L INT NUM
) -

’

36 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

arraynotation:
LBRACK (assignment expression) RBRACK ;

boolean:
(TRUETOKEN | FALSETOKEN) ;

start:
(declaration | statement)* (XPOZEOF | .);

XPOZ Grammar 37

38 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

eDirectory Parameter Fields by
Syntax

Some eDirectory™ syntaxes have multiple fields. XPOZ recognizes each syntax and expects certain
fields for each syntax. The field order is significant. The fields required for each syntax are listed
below:

SYN BACKLINK:
string remotelID
string objName

SYN_BOOLEAN:
int value (1=TRUE and O=FALSE)

SYN CE_STRING:
string str

SYN CI LIST:
int strTot (number of strings that follow)
string String (occurs strTot times)

SYN CI STRING:
string str

SYN CLASS NAME:
string name

SYN COUNTER:
int value

SYN EMAIL ADDRESS:
int type
string address

SYN DIST NAME:
string name

SYN FAX NUMBER:
string phoneNumber
int numberOfBit
string bitString

SYN HOLD:
string objName
int amount

SYN INTEGER:
int value

SYN INTERVAL:
int value

SYN NET ADDRESS:
int addressType
int addressLength
string address (in hex)

eDirectory Parameter Fields by Syntax 39

SYN NU_ STRING:
string str

SYN OBJECT ACL:
string protectedAttrName
string subjectName
int privileges

SYN_OCTET_LIST:
int strTot (number of string that follow)
string str (occurs strTot times)

SYN OCTECT STRING:
int length
string str (‘alpha’ed hex, for example "AA")

SYN PATH:
int nameSpaceType
string volName
string path

SYN POSTAL ADDRESS:
int strTot (number of addStr (6 max) that follow)
string addStr

SYN PR STRING:
string str

SYN REPLICA POINTER:

string SrvrName

int replType

int replNumber

int count

NOTE: The following occur Count times, in "Type;Addr; Type;Addr" order. This
represents the "Hint" portion of the replica pointer.

int networkType

int netAddress

SYN STREAM:

int length (default 0)

string data (default NULL)

NOTE: While proper use of stream attributes does not require a value to be
specificed, it is allowed here so that improper use can be tested.

SYN TEL NUMBER:
string String

SYN TIME:
int month
int day
int year 1900, etc
int hour
int minute
int second

SYN TIMESTAMP:
uint wholeSecond
uint eventID

40 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

SYN TYPED NAME:
string objName
int level
int interval

SYN UNKNOWN :
string attrName
int syntaxID
string value

eDirectory Parameter Fields by Syntax

4

42 |dentity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

XPOZ Specific Error Codes

The following table shows the error codes defined by XPOZ. The text name of the error code should

be used in the scripts instead of the error number.

Table C-1 XPOZ Error Codes

Error Number

Text Name

-2000
0

COMMON_ERR_BASE -1
COMMON_ERR_BASE -2
COMMON_ERR_BASE -3
COMMON_ERR_BASE -4
COMMON_ERR_BASE -5
COMMON_ERR_BASE -6
COMMON_ERR_BASE -7
COMMON_ERR_BASE -8
COMMON_ERR_BASE -9
COMMON_ERR_BASE -10
COMMON_ERR_BASE -11
COMMON_ERR_BASE -12
COMMON_ERR_BASE -13
COMMON_ERR_BASE -14
COMMON_ERR_BASE -15
COMMON_ERR_BASE -16
COMMON_ERR_BASE -17
COMMON_ERR_BASE -18
COMMON_ERR_BASE -19
COMMON_ERR_BASE -20
COMMON_ERR_BASE -21
COMMON_ERR_BASE -22
COMMON_ERR_BASE -23
COMMON_ERR_BASE -24

COMMON_ERR_BASE
ERR_NOERROR
ERR_NOMEM
ERR_DUPSYM
ERR_INVALID_LEVEL
ERR_NOT_FOUND
ERR_SYS_ERROR
ERR_BAD_TAG
ERR_TAG_NOT_FOUND
ERR_NO_VALUES
ERR_EXPIRED_TIME
ERR_SYNTAX_ERROR
ERR_FAILED_TEST
ERR_NOT_INITIALIZED
ERR_SYMBOL_NOT_FOUND
ERR_ILLEGAL_ASSIGN
ERR_TYPE_MISMATCH
ERROR_INVALID_TYPE
ERR_BAD_UNICODE
ERR_FREEMEM
ERR_SIZE_MISMATCH
ERR_USER_ABORT
ERR_FAILED_MATCH
ERR_MODLOAD_FAIL
ERR_IMPFILE_INVALID
ERR_ADDMOD_FAILURE

XPOZ Specific Error Codes

43

Error Number

Text Name

COMMON_ERR_BASE -25
COMMON_ERR_BASE -26
COMMON_ERR_BASE -27
COMMON_ERR_BASE -28
COMMON_ERR_BASE -29
COMMON_ERR_BASE -30
COMMON_ERR_BASE -31
COMMON_ERR_BASE -32
COMMON_ERR_BASE -33
COMMON_ERR_BASE -34
COMMON_ERR_BASE -35
COMMON_ERR_BASE -36
COMMON_ERR_BASE -37
COMMON_ERR_BASE -38
COMMON_ERR_BASE -39
COMMON_ERR_BASE -40
COMMON_ERR_BASE -41
COMMON_ERR_BASE -42
COMMON_ERR_BASE -43
COMMON_ERR_BASE -44
COMMON_ERR_BASE -45
COMMON_ERR_BASE -46
COMMON_ERR_BASE -47
COMMON_ERR_BASE -48
COMMON_ERR_BASE -49
COMMON_ERR_BASE -50
COMMON_ERR_BASE -51
COMMON_ERR_BASE -52
COMMON_ERR_BASE -53
COMMON_ERR_BASE -54
COMMON_ERR_BASE -55
COMMON_ERR_BASE -56

ERR_MOD_NOT_FOUND
ERR_IMP_SYMBOL
ERR_UNIMP_SYMBOL
ERR_IN_USE
ERR_FUNCTION_INVALID
ERR_MODUNLOAD_FAIL
ERR_INVALID_TREE
ERR_MAX_CX_REACHED
ERR_XPOZCONN_TIMEOUT
ERR_REC_NOT_FOUND
ERR_FAILED_CONVERSION
ERR_FUNCTION_NOT_FOUND
ERR_FX_NOT REGISTERED
ERR_INVALID_SYMNAME
ERR_INVALID_SUBSCRIPT
ERR_INDEX_OUT_OF_RANGE
ERR_FAILED_CREATE_SOCK
ERR_UNKNOWN_HOST
ERR_MISMATCHED_TILDE
ERR_OBSOLETE_FUNCTION
ERR_INVALID_RETURN_TYPE
ERR_FAILED_CONNECT
ERR_APPTEST_ERROR
ERR_INVALID_CONN
ERR_BAD_OCTET
ERR_SOCKET_ERROR
ERR_I0_ERROR
ERR_TREEWALK_ERROR
ERR_RESOLVE_ERROR
ERR_INSUFFICIENT BUF
ERR_INVALID_FILE_MODE
ERR_OPENING_A_FILE

Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Error Number

Text Name

COMMON_ERR_BASE -57
COMMON_ERR_BASE -58
COMMON_ERR_BASE -59
COMMON_ERR_BASE -60
COMMON_ERR_BASE -61
COMMON_ERR_BASE -62
COMMON_ERR_BASE -63
COMMON_ERR_BASE -64
COMMON_ERR_BASE -65
COMMON_ERR_BASE -66
COMMON_ERR_BASE -67
COMMON_ERR_BASE -68
COMMON_ERR_BASE -69
COMMON_ERR_BASE -70
COMMON_ERR_BASE -71
COMMON_ERR_BASE -72
COMMON_ERR_BASE -73
COMMON_ERR_BASE -74
COMMON_ERR_BASE -75
COMMON_ERR_BASE -76
COMMON_ERR_BASE -77
COMMON_ERR_BASE -78
COMMON_ERR_BASE -79
COMMON_ERR_BASE -80
COMMON_ERR_BASE -81
COMMON_ERR_BASE -82
COMMON_ERR_BASE -83
COMMON_ERR_BASE -84
COMMON_ERR_BASE -85
COMMON_ERR_BASE -86
COMMON_ERR_BASE -87
COMMON_ERR_BASE -88

ERR_NOT_YET_IMPLEMENTED
ERR_BUF_TOO SMALL
ERR_UNKNOWN_CMD
ERR_ARG_NOT_FOUND
ERR_INVALID_ADDRESS
ERR_INVALID_IPX_ADDRESS
ERR_INVALID_IP_ ADDRESS
ERR_SHUTDOWN_NOW
ERR_INSUFFICIENT_ARGS
ERR_CHECKSUM_MISMATCH
ERR_UNKNOWN_VERB
ERR_INVALID_SUBFUNCTION
ERR_UNKNOWN_FUNCTION
ERR_BAD_REQUEST
ERR_INVALID_FILEHANDLE
ERR_UNSUPPORTED_VER
ERR_EOF
ERR_CLASS_NOT_INITIALIZED
ERR_TOO_MANY_ADDRS
ERR_FILE_SIZE
ERR_NAMESVC_NOT_INIT
ERR_INVALID_DIRHANDLE
ERR_INVALID_HOST_FORMAT
ERR_BAD_HOST NAME
ERR_FILE_SKIPPED
ERR_TOO_MANY_THREAD_IDS
ERR_NO_PACKETS
ERR_CMDLINE_ARG_INVALID
ERR_TRY_AGAIN
ERR_REMOTE_ONLY_CMD
ERR_INVALID_STATE
ERR_OUT_OF BOUNDS

XPOZ Specific Error Codes

45

Error Number

Text Name

COMMON_ERR_BASE -90
COMMON_ERR_BASE-91

-2100
ERRNO_BASE -1
ERRNO_BASE -2
ERRNO_BASE -3
ERRNO_BASE -4
ERRNO_BASE -5
ERRNO_BASE -6
ERRNO_BASE -7
ERRNO_BASE -8
ERRNO_BASE -9
ERRNO_BASE -10
ERRNO_BASE -11
ERRNO_BASE -12
ERRNO_BASE -13
ERRNO_BASE -14
ERRNO_BASE -15
ERRNO_BASE -16
ERRNO_BASE -17
ERRNO_BASE -18
ERRNO_BASE -19
ERRNO_BASE -20
ERRNO_BASE -21
ERRNO_BASE -22
ERRNO_BASE -23
ERRNO_BASE -24
ERRNO_BASE -25
ERRNO_BASE -26
ERRNO_BASE -27
ERRNO_BASE -28
ERRNO_BASE -29

ERR_NOT_SORTED
ERR_LOCKED

ERRNO_BASE
ERR_NOENTRY
ERR_ARGLIST TOOBIG
ERR_EXEC_FORMAT
ERR_BAD_FILEHANDLE
ERR_NO_MEMORY
ERR_ACCESSDENIED
ERR_FILE_EXISTS
ERR_CROSSDEVICE_LINK
ERR_INVALID_ARG
ERR_FILETABLE_OVERFLOW
ERR_TOOMANY_OPEN_FILES
ERR_NO_SPACE
ERR_ARG_TOOLARGE
ERR_RESULT TOOLARGE
ERR_RESOURCE_DEADLOCK
ERR_RESOURCE_INUSE
ERR_SERVER_MEMORY_ERROR
ERR_NOSERVER
ERR_WRONG_OBJECT
ERR_TRANS_RESTARTED
ERR_RESOURCE_UNAVAILABLE
ERR_BAD_HANDLE
ERR_NO_SCREEN
ERR_RES_UNAVAILABLE
ERR_NO_SUCH_DEVICE
ERR_BAD_MESSAGE
ERR_BAD_ADDRESS

ERR_IO

ERR_NO_DATA

46 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Error Number

Text Name

ERRNO_BASE -30
ERRNO_BASE -31
ERRNO_BASE -32
ERRNO_BASE -33
ERRNO_BASE -34
ERRNO_BASE -35
ERRNO_BASE -36
ERRNO_BASE -37
ERRNO_BASE -38
ERRNO_BASE -39
ERRNO_BASE -40
ERRNO_BASE -41
ERRNO_BASE -42
ERRNO_BASE -43
ERRNO_BASE -44
ERRNO_BASE -45
ERRNO_BASE -46
ERRNO_BASE -47
ERRNO_BASE -48
ERRNO_BASE -49
ERRNO_BASE -50
ERRNO_BASE -51
ERRNO_BASE -52
ERRNO_BASE -53
ERRNO_BASE -54
ERRNO_BASE -55
ERRNO_BASE -56
ERRNO_BASE -57
ERRNO_BASE -58
ERRNO_BASE -59
ERRNO_BASE -60
ERRNO_BASE -61

ERR_STREAM_UNAVAILABLE
ERR_FATAL_PROTOCOL_ERROR
ERR_BROKEN_PIPE
ERR_ILLEGAL_SEEK
ERR_IOCTL_TIMEOUT
ERR_EWOULDBLOCK
ERR_EINPROGESS
ERR_EALREADY
ERR_ENOTASOCK
ERR_EDESTADDREQ
ERR_EMSGSIZE
ERR_EPROTOTYPE
ERR_ENOPROTOOPT
ERR_EPROTONOSUPPORT
ERR_ESOCKTNOSUPPORT
ERR_EOPNOTSUPP
ERR_EPFNSUPPORT
ERR_EAFNOSUPPORT
ERR_EADDRINUSE
ERR_EADDRNOTAVAIL
ERR_ENETDOWN
ERR_ENETUNREACH
ERR_ENETRESET
ERR_ECONNABORTED
ERR_ECONNRESET
ERR_ENOBUFS
ERR_EISCONN
ERR_ENOTCONN
ERR_ESHUTDOWN
ERR_ETOOMANYREFS
ERR_ETIMEDOUT
ERR_ECONNREFUSED

XPOZ Specific Error Codes

47

Error Number Text Name
ERRNO_BASE -62 ERR_EBUSY
ERRNO_BASE -63 ERR_EINTR
ERRNO_BASE -64 ERR_EISDIR

ERRNO_BASE -65
ERRNO_BASE -66
ERRNO_BASE -67
ERRNO_BASE -68
ERRNO_BASE -69
ERRNO_BASE -70
ERRNO_BASE -71
ERRNO_BASE -72
ERRNO_BASE -73
ERRNO_BASE -74
ERRNO_BASE -75
ERRNO_BASE -76
ERRNO_BASE -77
ERRNO_BASE -78
ERRNO_BASE -79
ERRNO_BASE -80
ERRNO_BASE -81
ERRNO_BASE -82
ERRNO_BASE -83
ERRNO_BASE -84
ERRNO_BASE -85
ERRNO_BASE -86
ERRNO_BASE -87
ERRNO_BASE -88
ERRNO_BASE -89
-2200

ERR_EXTBASE -1
ERR_EXTBASE -2
ERR_EXTBASE -3

ERR_ENAMETOOLONG
ERR_ENOSYS
ERR_ENOTDIR
ERR_ENOTEMPTY
ERR_EPERM
ERR_ECHILD
ERR_EFBIG
ERR_EMLINK
ERR_ENODEV
ERR_ENOLCK
ERR_ENOTTY
ERR_EFTYPE
ERR_EROFS
ERR_ESRCH
ERR_ECANCELED
ERR_ENOTSUP
ERR_ECANCELLED
ERR_ENLMDATA
ERR_EILSEQ
ERR_EINCONSIS
ERR_EDOSTEXTEOL
ERR_ENONEXTANT
ERR_ENOCONTEXT
ERR_ODBCCONNECT
ERR_SOCKET
ERR_EXTBASE
ERR_FTPFAILED
ERR_CWD_FAILED
ERR_FAILED_DATACONN

Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

Error Number

Text Name

ERR_EXTBASE -4
ERR_EXTBASE -5
ERR_EXTBASE -6
ERR_EXTBASE -7
ERR_EXTBASE -8
ERR_EXTBASE -9
ERR_EXTBASE -10
ERR_EXTBASE -11
ERR_EXTBASE -12
ERR_EXTBASE -13
ERR_EXTBASE -14
ERR_EXTBASE -15
ERR_EXTBASE -16
ERR_EXTBASE -17
ERR_EXTBASE -18
ERR_EXTBASE -19

ERR_INVALID_SIZE

ERR_FAILED REMOTE_REQUEST

ERR_FAILED_DELETE

ERR_DIR_ALREADY_EXISTS

ERR_NOREPLY
ERR_NOFILES
ERR_FAILED_AUTH
ERR_INVALID_PASS
ERR_COPY_FAILED
ERR_CONN_FAILED
ERR_MKD_FAILED
ERR_RMD_FAILED
ERR_RENAME_FAILED
ERR_DELETE_FAILED
ERR_SEND_FAILED
ERR_NO_RESPONSE

XPOZ Specific Error Codes

49

50 Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1

	Identity Manager Resource Kit 1.2 Reference Guide for XPOZ 6.1
	About This Guide
	1 What Is XPOZ?
	1.1 Engine
	1.2 Test Modules
	1.3 XPOZ Scripts

	2 Installing XPOZ
	2.1 Prerequisites
	2.2 Installing XPOZ on Linux/UNIX
	2.3 Installing XPOZ on Windows

	3 Upgrading XPOZ
	3.1 What’s New
	3.1.1 Results System
	3.1.2 Added New Modules
	3.1.3 XPOZ Function Documentation

	3.2 Upgrading XPOZ

	4 XPOZ Scripting Language
	4.1 Basic Variable Data Types
	4.2 Complex Variable Data Type
	4.3 Private Variables
	4.4 System Variables
	4.5 String Concatenation
	4.6 Special Script Codes: Embedding Hex Codes and Unicode
	4.7 Special Script Codes: Comments
	4.8 Log Files
	4.9 Mandatory Variables
	4.10 Environment Scripts
	4.11 XPOZ Test Functions
	4.12 Case Sensitivity in XPOZ Scripting
	4.13 XPOZ Script Flow Constructs
	4.13.1 Branch and Loop Constructs

	5 Executing XPOZ Tests
	5.1 XPOZ Console
	5.2 XPOZ GUI
	5.3 RCMD

	6 Configuring the Results to Display
	6.1 Configuring XPOZ to Display the Results
	6.2 Creating and Managing the Results Objects
	6.3 Enabling the Results in Each Script
	6.4 Web Page Layout

	A XPOZ Grammar
	B eDirectory Parameter Fields by Syntax
	C XPOZ Specific Error Codes

