
NetIQ® Privileged User Manager
Command Control Perl Scripting Guide

June 2013

Legal Notice

THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT ARE FURNISHED UNDER AND ARE
SUBJECT TO THE TERMS OF A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT. EXCEPT AS EXPRESSLY
SET FORTH IN SUCH LICENSE AGREEMENT OR NON-DISCLOSURE AGREEMENT, NETIQ CORPORATION PROVIDES
THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW DISCLAIMERS OF
EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS; THEREFORE, THIS STATEMENT MAY NOT APPLY
TO YOU.
For purposes of clarity, any module, adapter or other similar material ("Module") is licensed under the terms and conditions of
the End User License Agreement for the applicable version of the NetIQ product or software to which it relates or
interoperates with, and by accessing, copying or using a Module you agree to be bound by such terms. If you do not agree to
the terms of the End User License Agreement you are not authorized to use, access or copy a Module and you must destroy all
copies of the Module and contact NetIQ for further instructions.
This document and the software described in this document may not be lent, sold, or given away without the prior written
permission of NetIQ Corporation, except as otherwise permitted by law. Except as expressly set forth in such license
agreement or non-disclosure agreement, no part of this document or the software described in this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, or otherwise,
without the prior written consent of NetIQ Corporation. Some companies, names, and data in this document are used for
illustration purposes and may not represent real companies, individuals, or data.
This document could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein. These changes may be incorporated in new editions of this document. NetIQ Corporation may make
improvements in or changes to the software described in this document at any time.
U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), in accordance with 48 C.F.R. 227.7202-4
(for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101 and 12.212 (for non-DOD acquisitions), the government’s
rights in the software and documentation, including its rights to use, modify, reproduce, release, perform, display or disclose
the software or documentation, will be subject in all respects to the commercial license rights and restrictions provided in the
license agreement.

© 2013 NetIQ Corporation and its affiliates. All Rights Reserved.
For information about NetIQ trademarks, see https://www.netiq.com/company/legal

NPUM Command Control
Perl Scripting Guide

Table of Contents

NetIQ® Privileged User Manager...1
Command Control Perl Scripting Guide..1
Privileged User Manager Command Control Perl Scripting..4

3 of 19

Privileged User Manager Command Control Perl Scripting

Command Control Perl scripting provides a powerful method of extending the commands the
way in which the Command Control Manager authorizes commands.

Command Control Rules are matched in order against the user, the command and the host
that submits the command. Perl scripts can be used to extend the command control rules by:

• Interrogating external security databases
• Calling other Perl functions

1 Metadata Structure

When you run a command in the Command Control Agent, data about the user environment
and the command is collated. This data is known as the metadata. The metadata is sent to
the Command Control Manager which makes the authorization based on the information
provided. The Command Control Manager then updates the metadata, authenticates, and
sends it back to the Command Control Agent. The Command Control Agent then contacts
the Remote Execution service on the remote host to execute the command. This metadata
can be audited, and can be queried/modified by the external Perl scripts linked to the
Command Control Rules.

The metadata is encoded into a linked 'node' object. Each node has a name which can have
siblings, children and attributes of its own. There is no limit on the number of siblings,
children, or nodes with the same name. The structure is designed to complement the XML
specification so that communications with external applications can be made using an
extensible, industry standard protocol.

An example of the linked node structure:

Node structure
Node

Node

Node

Node

Node

Node

child

child
next

next

Node information
Node: Name: foobar

name=arg1, type=string value=”hello"Attributes:

Content:

name=arg2, type=int value=10

content is free format string

Nodes have methods to facilitate setting, changing and retrieving the data from the nodes.

1.1 Creating Nodes

All Privileged User Manager modules have a global object called a 'context', which contains
state information about that module, and provides services to the module. External Perl
scripts are passed to this object as $ctx, and it is the context that creates nodes.

The following method creates a node with the name 'mynode':

my $node=$ctx->create_node(‘mynode’);

To add a newly created node to an existing node use:

my $new_node=$ctx->create_node(‘mynewnode’);
$parent_node->add($new_node);

Nodes are generally created as an offspring of an existing node directly:

my $new_node=$node->add_node(‘mynewnode’);

1.2 Naming Nodes

Although nodes can be created without names, it is preferred to have a name attached to a
node.

To retrieve the current node name use:

my $n = $node->name();

To set the name:

$node->name(‘mynewname’);

1.3 Accessing and Changing Nodes

Each node may have a sibling (effectively the next node in the list) and an offspring (which in
itself may have siblings and offspring).

There are a number of methods available to retrieve nodes from the list. Generally, a node
with a specific name is required. To search for a specified node use:

my $n = $nodes->child('foo');

This will find the first offspring with the name 'foo'. However you can retrieve all nodes with a
specific name:

my @nlist = $nodes->children('foo');

foreach my $node (@nlist) {
 print $node->name();

}

To retrieve all child nodes use:

my @nlist = $nodes->children();

To delete a child node use:

my $n = $meta->child('foo');
$meta->del($n);

1.4 Accessing and Changing Node Attributes

Each node has a number of attributes associated with the node which have a simple name,
type and value.

To retrieve a named attribute use:

my $n = $meta->child('foo');
my $a = $n->arg('bar');

To add a new attribute to a node use:

my $n = $meta->child('foo');
$n->add_arg('bar','foo');

However, to modify an existing attribute (or to add one if missing), use:

my $n = $meta->child('foo');
$n->arg('bar','foo');

1.5 Node Content

Each node can have a 'content'. This allows for a large amount of text to be associated with
the node (It is recommended to use the contents instead of an attribute for large amounts of
text).

To retrieve a node’s content use:

my $c = $node->content();

To set the node’s content use:

$node->content('This is the node content text');

2 Command Control Metadata

Following sections provide description of the existing Metadata node that is passed to the
External Scripts. The Metadata node is accessed using the global object, $meta.

2.1 Metadata Structure

2.1.1 Passwd Node

The passwd node is the Submit Users entry from the Submit Host’s security database. This
is for reference only and is not used for authorization purposes by the Command Control
Manager.

Metadata

Passwd

Node: Name: Passwd

Attributes:

Content: Empty

shell="/bin/bash"
home="/root"
gecos="root"
username="root"
gid=0
uid=0

2.1.2 Groups Node

The Groups node details all the groups that the Submit User is a member on the Submit
Host. These groups can be used within Command Contorl User Groups to control access to
rules.

Metadata

Groups

Group 1

Group 2

Node: Name: Groups

Attributes:

Content: Empty

items=3

Group ...
Node: Name: Group

Attributes:

Content: Empty

name=”foobar”
gid=1

Although, Privileged User Manager can natively check whether a user is in a particular group
on the submit host, the following example shows that you can execute the same with Perl.

Example:
To check if a user is in a particular group on the submit host:

my @grps=$meta->child('Group')->children('Groups');
foreach my $check (@grps) {

if($check->arg('name') eq 'staff') {

return(1);
}

}

return(0);

2.1.3 Command Node

The Command node describes the command that the Command Control Agent is running for
authorization process. Once the Command Control Manager has matched the command
and executed the External Perl script, this attribute can be overwritten, and will be
substituted when the remote host executes the command.

Metadata

Command

Node: Name: Command

Attributes:

Content: Empty

cmd=”ls -F /”

Example:
To remove UNIX meta-characters from the command (such as back-quote, less-than,
greater-than, ampersand, and so on.)

my $cmd=$meta->child('Command')->arg('cmd');

$cmd =~ s/\140.*$//g;
$cmd =~ s/([^\\])[\>\<\|].*$/$1/g;
$cmd =~ s/([\;\&]).*$/$1/g;
$meta->child('Command')->arg('cmd',$cmd);
return 1;

Example:
To specify which files a user can vi without the individual commands for the rule:

my @FileList = ('/tmp/file1', '/tmp/file2');
my $command = $meta->child('Command')->arg('cmd');
my @key = split(/\s/, $command);
my $fname=$key[1];

if((grep(/$fname/, @FileList)) == 0) {
 unauthorize($meta);
} else {
 $command =~ s/^vi /^usvi/g;

 $meta->child('Command')->arg('cmd',$command);
}

return 0

2.1.4 Environment Node

The Environment node details the full environment that is passed from the Command
Control Agent. All the environment arguments listed will be replicated on the remote host
when the command is executed. When adding or removing environment attributes, make
sure that the script updates the 'items' attribute with the correct number of environment
attributes.

Metadata

Environment

Node: Name: Environment

Attributes:

Content: Empty

arg-1=”TERM=vt100"
arg-2=”DISPLAY=:0"
arg-n …
items=”10"

Example:
To delete all unwanted environment variables:

my @keeplist = ('TERM', 'DISPLAY');
my $newlist = $ctx->create_node('Environment');
my $enode = $meta->children('Environment');
my $i=0;

foreach my $arg ($enode->arg_values()) {
 my @key = split(/=/, $arg);

 if((grep(/$key[0]/, @keeplist)) != 0) {
 $newlist->arg('arg-' . $i,$arg);
 $i=$i+1;
 }
}

$newlist->arg_int('items',$i);

$meta->del($enode);
$meta->add($newlist);
return 0;

2.1.5 Localtime Node

The Localtime node details the local time (including Timezone and Daylight Saving Time) on
the submit host. This is the time that is used in the Command Control Manager rule to check
access time.

Note, that once the Command Control Manager starts executing the External Perl script, this
node has already been matched, and is no longer used. It also has an attribute that details
the machines offset from GMT in seconds.

Metadata

Locatime

Node: Name: Localtime

Attributes:

Content: Empty

seconds=1124107258
microseconds=999999
gmt_off=3600

2.1.6 Current Working Directory Node

The Current Working Directory node has one attribute with the Command Control Agent’s
current working directory when the command was issued. This working directory is used on
the remote host to execute the command (if it exists).

Metadata

Cwd

Node: Name: Cwd

Attributes:

Content: Empty

path=”/usr/home/foo”

2.1.7 Exec Node

The Exec node details the Execute Host and the User that the Command Control Agent
requested. These attributes are the ones that are used to match the rule. runHost is then
used by the Command Control Agent to resolve the remote host IP address. runAs is used
to search the remote user on the remote host to run the command. Changing these
attributes will directly change the host or user where the command is running.

Metadata

Exec

Node: Name: Exec

Attributes:

Content: Empty

runHost=”thatHost”
runAs=”root”

Example:
To change the runHost and runAs directly, and then continue to try to match against the list
of rules:

$meta->child('Exec')->arg('runAs','root');
$meta->child('Exec')->arg('runHost','foobar');
return 1;

2.1.8 Process Node

The Process node contains the details of the current pcksh/cpcksh
 privileges, and is used for reference and not for authorization process.

Metadata

Process

Node: Name: Process

Attributes:

Content: Empty

egid="0"
gid="0"
euid="0"
uid="0"
tty="/dev/pts/3"
pgid="-1"
ppid="8541"
pid="8544"
umask="022"

2.1.9 Job Node

The Job node details how the remote command should run. A login process will create a
remote terminal, and will execute /etc/profile, etc, in the same way a login shell would. A
background process will not allocate a remote terminal, and will not wait for the process to
complete. The ttyin/ttyout specifies whether the process has a controlling terminal.

Metadata

Job

Node: Name: Job

Attributes:

Content: Empty

job_login="0"
job_bg="0"
job_ttyout="1"
job_ttyin="1"

2.1.10 Tty Node

The Tty node holds all the information about the terminal setup for the submit users login
shell. For example, the keys that map to character-delete, line-kill and interrupt are all
detailed in this node. This node is not involved in the authorization of a command, but is
used at the remote host to emulate the user’s terminal.

Metadata

Tty

Node: Name: Tty

Attributes:

Content: Empty

tty_parodd="0"
ws_ypixel="0"
ws_xpixel="0"
...
ws_col="80"
ws_row="24"

2.1.11 Authorized Node

This node exists to say whether a command is authorized or not. Two functions have been
created to authorize or to unauthorize the command (commands are already authorized
when they enter the External script because they have already matched the rule).

Metadata

Authorized

Node: Name: Authorized

Attributes:

Content: Empty

value=”yes”

2.1.12 User Message Node

The User Message node is the text string that is displayed when the submit user tries to run
a command. It is displayed even if the command is not authorized. The node is used to
change the message if the command was not authorized. Note that the message is stored
in the content of the node.

Metadata

UserMessage

Node: Name: UserMessage

Attributes:

Content: This is a private
system…

Example:
To change the User Message node use:

my $um = $meta->child('UserMessage');
if(! $um) {

$um=$meta->add_node('UserMessage');
}
$um->content('My new user message');

2.1.13 Session Capture Node

The Session Capture node states whether the command input/output should be captured.

Metadata

SessionCapture

Node: Name: SessionCapture

Attributes:

Content: Empty

value=yes

Example:
To turn session capture off for a specific user:

if($meta->child('Exec')->arg('runAs') eq 'foobar'){
$meta->child('SessionCapture')->arg('value','no');

}

return 0;

2.2 External Script Return Codes

External scripts can be defined to be either conditional or action scripts.

A conditional script will be associated with the matching clause on a rule and can either
return 1 for match or 0 for no match.

Action scripts are used to perform manipulation of the metadata or to perform actions once a
rule has matched. When an action script returns, it can return one of six values which inform
the Command Control Manager whether it should continue processing rules, and whether
the rule should be marked as applicable.

Return code 1
Next: Continue processing subsequent scripts and rules. (Most simple External scripts
should return 1.)

Return code 0
Stop: Stop processing all scripts and rules and return result to client.

Return code -1
Next Sibling: Stop processing this role and sub roles, and continue with the next sibling rule.

Return code -2
Return to Parent: Stop processing this role and sub roles, and continue processing the
parent rule.

Return code -3
Stop if authorised: Stop processing all scripts and rules if the current status is authorised.

Return code -4
Stop if unauthorised: Stop processing all scripts and rules if the current status is
unauthorised.

2.3 Module Context and Remote Information

External scripts have access to the Command Control Manager’s Context object, which
allows communication with remote hosts to interrogate it before authorizing a command.

Communication between Privileged User Manager modules is executed using a
request/response protocol. The context creates a request object:

my $req = $ctx->create_request($ctx->lookup_service('hostname'));

Various attributes are then set on the request:

 $req->module('sysinfo');
 $req->method('dirList');

Then it is sent, and a response retrieved:

my $resp = $ctx->remote_request($req);

The response will have the data requested, or will have an error number and error text
attached.

3 Metadata Table of Contents

Section Variable Description
Passwd shell='/bin/bash' The /etc/password entry of the

submit user
home='/root'
gecos='root'
passwd='x'
username='root'
gid='0'
uid='0'

Groups items='3' A list of the groups that the
submit user is a member of

name='wheel' gid='10' Group name and GID
name='bin gid='1'
name='root' gid='0'

Command cmd='ls -l' The full command

Host name='shuttle' The submit host

Environment items='7' The complete user environment
variable list

arg-6='LOGNAME=root'
arg-5='TERM=xterm'
arg-4='HOME=/root'
arg-3='USER=root'
arg-2='SHELL=/bin/bash'
arg-1
='PATH=/sbin:/bin:/usr/sbin:
/usr/bin'
arg-0='PS1=# '

Localtime gmt_offset='0' The localtime that the process
is running in (including the
current offset from GMT)

microseconds='374088'
seconds='1134738518' (seconds from 1/1/1970)

Cwd path='/tmp' The current working directory of
the process

Options print_motd='1' Print the MOTD if it is a logon
process

print_last_login='1' Print the 'last logged on'
message if a logon process

loglevel='0' N/A
groupID='+J64hG/Jlpsu' A unique session for Session

Capture

Exec runHost='shuttle' The Execute host

Section Variable Description
runAs='root' The Execute user

Logon pid='16465' The process ID of the users
logon shell (man who)

from='asia' Where the user logged on from
when='1134738215' Time when user logged on

(seconds from 1/1/1970)

Process umask='18' Process umask
egid='0' Process Effective UID
gid='0' Process Group ID
euid='0' Process Effective GID
uid='0' Process UID
tty='/dev/pts/5' Tty of the process
pgid='16629' Process Group
ppid='16628' Parent Process ID
pid='16629' Process ID

Job job_login='0' Perform proper user logon at
remote end

job_bg='0' Perform job in background
job_ttyout='1' Terminal attached to output
job_ttyin='1' Terminal attached to input

Authorized value='yes' Was the job authorized

SessionCapture value='yes' Is the session captured

UserMessage 'message' Optional user message
displayed before running
command

Tty tty_parodd='0' User terminal setup (see man
'stty')

tty_parenb='0'
tty_cs8='1'
tty_cs7='1'
tty_onlret='0'
tty_onocr='0'
tty_ocrnl='0'
tty_onlcr='1'
tty_olcuc='0'
tty_opost='1'
tty_pendin='0'
tty_choke='1'
tty_echoctl='1'
tty_iexten='1'
tty_tostop='0'
tty_noflsh='0'
tty_echonl='0'
tty_echok='1'
tty_echoe='1'

Section Variable Description
tty_echo='1'
tty_xcase='0'
tty_icanon='1'
tty_isig='1'
tty_imaxbel='0'
tty_ixoff='0'
tty_ixany='0'
tty_ixon='1'
tty_iuclc='0'
tty_icrnl='1'
tty_igncr='0'
tty_inlcr='0'
tty_istrip='0'
tty_inpck='0'
tty_parmrk='0'
tty_ignpar='0'
tty_vdiscard='15'
tty_vlnext='22'
tty_vwerase='23'
tty_vreprint='18'
tty_vsusp='26'
tty_vstop='19'
tty_vstart='17'
tty_veol2='0'
tty_veol='0'
tty_veof='4'
tty_vkill='21'
tty_verase='8'
tty_vquit='28'
tty_vintr='3'
tty_vtime='0'
tty_vmin='0'
tty_ibaud='9600'
tty_obaud='9600'
ws_ypixel='0'
ws_xpixel='0'
ws_col='80' Terminal number of columns
ws_row='24' Terminal number of rows

For debugging a Rule an easy way to display the contents of the Metadata is to write a
simple script to display the metadata in the log. Each time a request is processed the script
will write the metadata into the unifid.log file.

Example:
$ctx->log_info($ctx->node2xml($meta));

	Privileged User Manager Command Control Perl Scripting
	1 Metadata Structure
	1.1 Creating Nodes
	1.2 Naming Nodes
	1.3 Accessing and Changing Nodes
	1.4 Accessing and Changing Node Attributes
	1.5 Node Content

	2 Command Control Metadata
	2.1 Metadata Structure
	2.2 External Script Return Codes
	2.3 Module Context and Remote Information

	3 Metadata Table of Contents

