
Novell®

novdocx (en) 13 M
ay 2009

AUTHORIZED DOCUMENTATION
PlateSpin Orchestrate 2.0 Developer Guide and Reference
www.novell.com

PlateSpin® Orchestrate

2.0.2
July 9, 2009
Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008-2009 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

novdocx (en) 13 M
ay 2009
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

Contents

novdocx (en) 13 M
ay 2009
About This Guide 11

1 Getting Started With Development 15
1.1 What You Should Know . 15

1.1.1 Prerequisite Knowledge. 15
1.1.2 Setting Up Your Development Environment . 16

1.2 Prerequisites for the Development Environment . 16

2 Advanced Job Development Concepts 19
2.1 JDL Job Scripts . 19

2.1.1 Principles of Job Operation . 20
2.2 Understanding TLS Encryption . 21
2.3 Understanding Job Examples . 21

2.3.1 provisionBuildTestResource.job . 21
2.3.2 Workflow Job Example . 23

3 The PlateSpin Orchestrate Datagrid 25
3.1 Defining the Datagrid . 25

3.1.1 PlateSpin Orchestrate Datagrid Filepaths . 25
3.1.2 Distributing Files . 26
3.1.3 Simultaneous Multicasting to Multiple Receivers. 26
3.1.4 PlateSpin Orchestrate Datagrid Commands . 27

3.2 Datagrid Communications . 27
3.2.1 Multicast Example . 28
3.2.2 Grid Performance Factors . 28
3.2.3 Plan for Datagrid Expansion . 29

3.3 datagrid.copy Example. 29

4 Using PlateSpin Orchestrate Jobs 31
4.1 Resource Discovery . 31

4.1.1 Provisioning Jobs. 31
4.1.2 Resource Discovery Jobs . 31

4.2 Resource Selection . 32
4.3 Workload Management . 33
4.4 Policy Management . 34
4.5 Auditing and Accounting Jobs . 35
4.6 BuildTest Job Examples. 35

4.6.1 buildTest.policy Example . 36
4.6.2 buildTest.jdl Example. 37
4.6.3 Packaging Job Files. 40
4.6.4 Deploying Packaged Job Files . 40
4.6.5 Running Your Jobs . 41
4.6.6 Monitoring Job Results . 41
4.6.7 Debugging Jobs. 42
Contents 5

6 PlateS

novdocx (en) 13 M
ay 2009
5 Policy Elements 45
5.1 Constraints . 45
5.2 Facts . 45
5.3 Computed Facts. 45

6 Using the PlateSpin Orchestrate Client SDK 47
6.1 SDK Requirements . 47
6.2 Creating an SDK Client . 47

7 Job Architecture 49
7.1 Understanding JDL . 49
7.2 JDL Package . 50

7.2.1 .sched Files . 51
7.3 Job Class . 51

7.3.1 Job State Transition Events. 51
7.3.2 Handling Custom Events . 52

7.4 Job Invocation . 53
7.5 Deploying Jobs. 53

7.5.1 Using the PlateSpin Orchestrate Development Client . 54
7.5.2 Using the zosadmin Command Line Tool . 54

7.6 Starting PlateSpin Orchestrate Jobs . 55
7.7 Working with Facts and Constraints. 55

7.7.1 Grid Objects and Facts . 55
7.7.2 Defining Job Elements. 56
7.7.3 Job Arguments and Parameter Lists . 57

7.8 Using Facts in Job Scripts . 58
7.8.1 Fact Values . 58
7.8.2 Fact Operations in the Joblet Class. 59
7.8.3 Using the Policy Debugger to View Facts . 59

7.9 Using Other Grid Objects . 59
7.10 Communicating Through Job Events . 60

7.10.1 Sending and Receiving Events . 60
7.10.2 Synchronization . 61

7.11 Executing Local Programs . 61
7.11.1 Output Handling. 62
7.11.2 Local Users . 62
7.11.3 Safety and Failure Handling . 63

7.12 Logging and Debugging . 63
7.12.1 Creating a Job Memo . 63
7.12.2 Tracing. 65

7.13 Improving Job and Joblet Robustness . 65
7.14 Using an Event Notification in a Job . 66

7.14.1 Receiving Event Notifications in a Running Job . 66
7.14.2 Event Types. 68

8 Job Scheduling 71
8.1 The PlateSpin Orchestrate Job Scheduler Interface . 71
8.2 Schedule and Trigger Files . 72

8.2.1 Schedule File Examples . 72
8.2.2 Trigger File XML Examples . 73

8.3 Scheduling with Constraints . 75
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
9 Virtual Machine Job Development 77
9.1 VM Job Best Practices . 77

9.1.1 Plan Robust Application Starts and Stops . 77
9.1.2 Managing VM Systems . 78
9.1.3 Managing VM Images . 78
9.1.4 Managing VM Hypervisors. 78
9.1.5 VM Job Considerations . 78

9.2 Virtual Machine Management . 79
9.3 VM Life Cycle Management . 80
9.4 Manual Management of a VM Lifecycle . 80

9.4.1 Manually Using the zos Command Line . 81
9.4.2 Automatically Using the Development Client Job Scheduler 81
9.4.3 Provision Job JDL . 81

9.5 Provisioning Virtual Machines . 82
9.5.1 Provisioning VMs Using Jobs . 84
9.5.2 VM Placement Policy. 86
9.5.3 Provisioning Example . 87

9.6 Automatically Provisioning a VM . 87
9.7 Defining Values for Grid Objects . 88

9.7.1 PlateSpin Orchestrate Grid Objects. 89
9.7.2 Repository Objects and Facts . 90
9.7.3 VmHost Objects and Facts . 96
9.7.4 VM Resource Objects and Other Base Resource Facts . 101
9.7.5 Physical Resource Objects and Additional Facts . 108

10 Complete Job Examples 111
10.1 Accessing Job Examples . 111
10.2 Installation and Getting Started . 111
10.3 PlateSpin Orchestrate Sample Job Summary . 112
10.4 Parallel Computing Examples . 113

demoIterator.job . 114
quickie.job . 121

10.5 General Purpose Jobs . 125
dgtest.job . 126
failover.job . 136
instclients.job . 143
notepad.job . 150
sweeper.job . 155
whoami.job . 162

10.6 Miscellaneous Code-Only Jobs . 167
factJunction.job . 168
jobargs.job . 177

A PlateSpin Orchestrate Client SDK 187
A.1 Constraint Package . 187

A.1.1 AndConstraint . 187
A.1.2 BetweenConstraint . 188
A.1.3 BinaryConstraint . 188
A.1.4 Constraint . 188
A.1.5 ContainerConstraint . 188
A.1.6 ContainsConstraint . 188
A.1.7 DefinedConstraint . 188
A.1.8 EqConstraint . 189
A.1.9 GeConstraint . 189
Contents 7

8 PlateS

novdocx (en) 13 M
ay 2009
A.1.10 GtConstraint. 189
A.1.11 IfConstraint . 189
A.1.12 LeConstraint . 189
A.1.13 LtConstraint . 189
A.1.14 NeConstraint . 189
A.1.15 NotConstraint . 190
A.1.16 OperatorConstraint . 190
A.1.17 OrConstraint . 190
A.1.18 TypedConstraint . 190
A.1.19 UndefinedConstraint . 190
A.1.20 ConstraintException. 190

A.2 Datagrid Package. 191
A.2.1 GridFile . 191
A.2.2 GridFileFilter . 191
A.2.3 GridFileNameFilter. 191
A.2.4 DGLogger . 191
A.2.5 DataGridException. 191
A.2.6 DataGridNotAvailableException . 192
A.2.7 GridFile.CancelException . 192

A.3 Grid Package . 192
A.3.1 AgentListener. 193
A.3.2 ClientAgent . 193
A.3.3 Credential . 193
A.3.4 Fact . 193
A.3.5 FactSet . 194
A.3.6 GridObjectInfo . 194
A.3.7 ID . 194
A.3.8 JobInfo . 194
A.3.9 Message . 194
A.3.10 Message.Ack . 194
A.3.11 Message.AuthFailure. 194
A.3.12 Message.ClientResponseMessage . 195
A.3.13 Message.ConnectionID . 195
A.3.14 Message.Event . 195
A.3.15 Message.GetGridObjects . 195
A.3.16 Message.GridObjects . 195
A.3.17 Message.JobAccepted . 195
A.3.18 Message.JobError . 195
A.3.19 Message.JobFinished . 196
A.3.20 Message.JobIdEvent . 196
A.3.21 Message.JobInfo . 196
A.3.22 Message.Jobs . 196
A.3.23 Message.JobStarted . 196
A.3.24 Message.JobStatus . 196
A.3.25 Message.LoginFailed. 196
A.3.26 Message.LoginSuccess. 197
A.3.27 Message.LogoutAck . 197
A.3.28 Message.RunningJobs . 197
A.3.29 Message.ServerStatus . 197
A.3.30 Node . 197
A.3.31 Priority . 197
A.3.32 WorkflowInfo . 197
A.3.33 ClientOutOfDateException. 198
A.3.34 FactException . 198
A.3.35 GridAuthenticationException . 198
A.3.36 GridAuthorizationException . 198
A.3.37 GridConfigurationException. 198
A.3.38 GridDeploymentException . 198
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
A.3.39 GridException . 198
A.3.40 GridObjectNotFoundException . 199

A.4 TLS Package . 199
A.4.1 TlsCallbacks . 199
A.4.2 PemCertificate . 199
A.4.3 TlsConfiguration. 199

A.5 Toolkit Package . 199
A.5.1 ClientAgentFactory . 200
A.5.2 ConstraintFactory . 200
A.5.3 CredentialFactory . 200

B PlateSpin Orchestrate Job Classes and JDL Syntax 201
B.1 Job Class . 201
B.2 Joblet Class . 201
B.3 Utility Classes. 201
B.4 Built-in JDL Functions and Variables . 201

B.4.1 getMatrix() . 202
B.4.2 system(cmd) . 202
B.4.3 Grid Object TYPE_* Variables. 202
B.4.4 The __agent__ Variable . 202
B.4.5 The __jobname__ Variable . 202
B.4.6 The __mode__ Variable . 203

B.5 Job State Field Values . 203
B.6 Repository Information String Values. 204
B.7 Joblet State Values . 204
B.8 Resource Information Values. 205
B.9 JDL Class Definitions . 205

AndConstraint() . 207
BinaryConstraint. 208
BuildSpec . 209
CharRange. 210
ComputedFact . 211
ComputedFactContext . 212
Constraint . 213
ContainerConstraint . 214
ContainsConstraint. 215
DataGrid. 216
DefinedConstraint . 217
EqConstraint . 218
Exec . 219
ExecError . 220
FileRange. 221
GeConstraint . 222
GridObjectInfo . 223
GroupInfo . 224
GtConstraint . 225
Job . 226
JobInfo . 227
Joblet . 228
JobletInfo . 229
JobletParameterSpace. 230
LeConstraint . 231
LtConstraint . 232
MatchContext . 233
MatchResult . 234
MatrixInfo . 235
Contents 9

10 PlateS

novdocx (en) 13 M
ay 2009
MigrateSpec . 236
NeConstraint . 237
NotConstraint . 238
OrConstraint . 239
ParameterSpace . 240
PolicyInfo . 241
ProvisionSpec . 242
RepositoryInfo . 243
ResourceInfo . 244
RunJobSpec. 245
ScheduleSpec . 246
Timer . 247
UndefinedConstraint . 248
UserInfo . 249
VMHostInfo . 250
VmSpec . 251

C Understanding Resource Metrics Facts 253
C.1 Resource Facts . 253
C.2 Interpreting the Units of Metrics Fact Values . 254

D Documentation Updates 257
D.1 July 9, 2009 . 257
D.2 June 17, 2009 (2.0.2 Release) . 257
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
About This Guide

This Job Developer Guide and Reference is a component of the documentation library for
PlateSpin® Orchestrate from Novell®. While PlateSpin Orchestrate provides the broad framework
and networking tools to manage complex virtual machines and high performance computing
resources in a datacenter, this guide explains how to develop grid application jobs and polices that
form the basis of PlateSpin Orchestrate functionality. This guide provides developer information to
create and run custom PlateSpin Orchestrate jobs. It also helps provides the basis to build, debug,
and maintain policies using PlateSpin Orchestrate.

This guide contains the following sections:

Chapter 1, “Getting Started With Development,” on page 15
Chapter 2, “Advanced Job Development Concepts,” on page 19
Chapter 3, “The PlateSpin Orchestrate Datagrid,” on page 25
Chapter 4, “Using PlateSpin Orchestrate Jobs,” on page 31
Chapter 5, “Policy Elements,” on page 45
Chapter 6, “Using the PlateSpin Orchestrate Client SDK,” on page 47
Chapter 7, “Job Architecture,” on page 49
Chapter 8, “Job Scheduling,” on page 71
Chapter 9, “Virtual Machine Job Development,” on page 77
Chapter 10, “Complete Job Examples,” on page 111
Appendix A, “PlateSpin Orchestrate Client SDK,” on page 187
Appendix B, “PlateSpin Orchestrate Job Classes and JDL Syntax,” on page 201
Appendix C, “Understanding Resource Metrics Facts,” on page 253
Appendix D, “Documentation Updates,” on page 257

Audience

The developer has control of a self-contained development system where he or she creates jobs and
policies and tests them in a laboratory environment. When the jobs are tested and proven to function
as intended, the developer delivers them to the PlateSpin Orchestrate administrator.

Prerequisite Skills

As data center managers or IT or operations administrators, it is assumed that users of the product
have the following background:

General understanding of network operating environments and systems architecture.
Knowledge of basic Linux* shell commands and text editors.

Documentation Updates

For the most recent version of this Job Developer Guide and Reference, visit the PlateSpin
Orchestrate 2.0 Web site (http://www.novell.com/documentation/pso_orchestrate20/).
About This Guide 11

http://www.novell.com/documentation/pso_orchestrate20/
http://www.novell.com/documentation/pso_orchestrate20/

12 PlateS

novdocx (en) 13 M
ay 2009
Additional Product Documentation

In addition to this Job Developer Guide and Reference, PlateSpin Orchestrate 2.0 includes the
following additional guides that contain valuable information about the product:

PlateSpin Orchestrate 2.0 Getting Started Reference
PlateSpin Orchestrate 2.0 Upgrade Guide
PlateSpin Orchestrate 2.0 High Availability Configuration Guide
PlateSpin Orchestrate 2.0 Administrator Reference
PlateSpin Orchestrate 2.0 VM Client Guide and Reference
PlateSpin Orchestrate 2.0 Virtual Machine Management Guide
PlateSpin Orchestrate 2.0 Development Client Reference
PlateSpin Orchestrate 2.0 Command Line Reference
PlateSpin Orchestrate 2.0 Server Portal Reference

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.

Other typographical conventions used in this guide include the following:

Convention Description

Italics Indicates variables, new terms and concepts, and book titles. For example, a job is
a piece of work that describes how an application can be run in Grid Management
on multiple computers.

Boldface Used for advisory terms such as Note, Tip, Important, Caution, and Warning.

Keycaps Used to indicate keys on the keyboard that you press to implement an action. If
you must press two or more keys simultaneously, keycaps are joined with a
hyphen. For example,

Ctrl-C. Indicates that you must press two or more keys to implement an action.

Simultaneous keystrokes (in which you press down the first key while you type the
second character) are joined with a hyphen; for example, press Stop-a.

Consecutive keystrokes (in which you press down the first key, then type the
second character) are joined with a plus sign; for example, press F4+q.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Fixed-width Used to indicate various types of items. These include:

Commands that you enter directly, code examples, user type-ins in body text, and
options. For example,

cd mydir

System.out.println("Hello World");

Enter abc123 in the Password box, then click Next.

-keep option

Jobs and policy keywords and identifiers. For example,

<run>

</run>

File and directory names. For example,

/usr/local/bin

Note: UNIX path names are used throughout and are indicated with a forward
slash (/). If you are using the Windows platform, substitute backslashes (\) for the
forward slashes (/).

Fixed-width italic

and

<Fixed-width italic>

Indicates variables in commands and code. For example,

zos login <servername> [--user=] [--passwd=] [--port=]

Note: Angle brackets (< >) are used to indicate variables in directory paths and
command options.

| (pipe) Used as a separator in menu commands that you select in a graphical user
interface (GUI), and to separate choices in a syntax line. For example,

File|New

{a|b|c}

[a|b|c]

{ } (braces) Indicates a set of required choices in a syntax line. For example,

{a|b|c}

means you must choose a, b, or c.

[] (brackets) Indicates optional items in a syntax line. For example,

[a|b|c]

means you can choose a, b, c, or nothing.

< > (angle brackets) Used for XML content elements and tags, and to indicate variables in directory
paths and command options. For example,

<template>

<DIR>

-class <class>

Convention Description
About This Guide 13

14 PlateS

novdocx (en) 13 M
ay 2009
Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html (http://
www.novell.com/documentation/feedback.html) and enter your comments there.

Novell Support

Novell offers a support program designed to assist with technical support and consulting needs. The
Novell support team can help with installing and using the Novell product, developing and
debugging code, maintaining the deployed applications, providing onsite consulting services, and
delivering enterprise-level support.

. . . (horizontal
ellipses)

Used to indicate that portions of a code example have been omitted to simplify the
discussion, and to indicate that an argument can be repeated several times in a
command line. For example,

zosadmin [options|optfile.xmlc ...] docfile

plain text Used for URLs, generic references to objects, and all items that do not require
special typography. For example,

http://www.novell.com/documentation/index.html

The presentation object is in the presentation layer.

ALL CAPS Used for SQL statements and HTML elements. For example,

CREATE statement

<INPUT>

lowercase Used for XML elements. For example,

<onevent>

Note: XML is case-sensitive. If an existing XML element uses mixed-case or
uppercase, it is shown in that case. Otherwise, XML elements are in lowercase.

PlateSpin
Orchestrate Server
root directory

Where the PlateSpin Orchestrate Server is installed. The PlateSpin Orchestrate
executables and libraries are in a directory. This directory is referred to as the
PlateSpin Orchestrate Server root directory or <PlateSpin Orchestrate
Server_root>.

Paths UNIX path names are used throughout and are indicated with a forward slash (/). If
you are using the Windows platform, substitute backslashes (\) for the forward
slashes (/). For example,

UNIX: /usr/local/bin

Windows: \usr\local\bin

URLs URLs are indicated in plain text and are generally fully qualified. For example,

http://www.novell.com/documentation/index.html

Screen shots Most screen shots reflect the Microsoft Windows look and feel.

Convention Description
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/feedback.html

1
novdocx (en) 13 M

ay 2009
1Getting Started With Development

This Developer Guide for PlateSpin® Orchestrate from Novell® is intended for individuals acting as
PlateSpin Orchestrate job developers. This document discusses the tools and technology required to
create discrete programming scripts—called “jobs”—that control nearly every aspect of the
PlateSpin Orchestrate product.The guide also explains how to create, debug, and maintain policies
that can be associated with jobs running on the PlateSpin Orchestrate Server.

As a job developer, you need your own self-contained, standalone system with full access to your
network environment. As a job developer, you might eventually assume all system roles: job creator,
job deployer, system administrator, tester, etc. For more information about jobs, see “Jobs” in the
PlateSpin Orchestrate 2.0 Getting Started Reference.

This section includes the following information:

Section 1.1, “What You Should Know,” on page 15
Section 1.2, “Prerequisites for the Development Environment,” on page 16

1.1 What You Should Know
This section includes the following information:

Section 1.1.1, “Prerequisite Knowledge,” on page 15
Section 1.1.2, “Setting Up Your Development Environment,” on page 16

1.1.1 Prerequisite Knowledge
This guide assumes you have the following background:

Sound understanding of networks, operating environments, and system architectures.
Familiarity with the Python development language. For more information, see the following
online references:

Python Development Environment (PyDEV): The PyDEV plug-in (http://
pydev.sourceforge.net/) enables developers to use Eclipse* for Python and Jython
development. The plug-in makes Eclipse a more robust Python IDE and comes with tools
for code completion, syntax highlighting, syntax analysis, refactoring, debugging, etc.
Python Reference Manual: This reference (http://python.org/doc/2.1/ref/ref.html)
describes the exact syntax and semantics but does not describe the Python Library
Reference, (http://python.org/doc/2.1/lib/lib.html) which is distributed with the language
and assists in development.
Python Tutorial: This online tutorial (http://python.org/doc/2.1/ref/ref.html)helps
developers get started with Python.

Sound understanding of the PlateSpin Orchestrate Job Development Language (JDL).
JDL incorporates compact Python scripts to create job definitions to manage nearly every
aspect of the PlateSpin Orchestrate grid. For more information, see Appendix B, “PlateSpin
Orchestrate Job Classes and JDL Syntax,” on page 201.
Knowledge of basic UNIX shell commands or the Windows command prompt, and text editors.
Getting Started With Development 15

http://pydev.sourceforge.net/
http://python.org/doc/2.1/ref/ref.html
http://python.org/doc/2.1/lib/lib.html
http://python.org/doc/2.1/lib/lib.html
http://python.org/doc/2.1/ref/ref.html

16 PlateS

novdocx (en) 13 M
ay 2009
An understanding of parallel computing and how applications are run on PlateSpin Orchestrate
infrastructure.
Familiarity with on-line PlateSpin Orchestrate API Javadoc as you build custom client
applications. For more information see Appendix A, “PlateSpin Orchestrate Client SDK,” on
page 187.
Developer must assume both PlateSpin Orchestrate administrative and end-user roles while
testing and debugging jobs.

1.1.2 Setting Up Your Development Environment
To set up a development environment for creating, deploying, and testing jobs, we recommend the
following procedure:

1 Initially set up a simple, easy-to-manage server, agent, and client on a single machine. Even on
a single machine, you can simulate multiple servers by starting extra agents (see “Installing the
Orchestrate Agent Only” in the PlateSpin Orchestrate 2.0 Installation and Configuration
Guide.

2 As you get closer to a production environment, your setup might evolve to handle more
complex system demands, such as any of the following:

An Orchestrate Server instance deployed on one computer.
An Orchestrate Agent installed on every managed server.
An Orchestrate Development Client installed on your desktop machine.
From your desktop machine, you can build jobs/policies, and then remotely deploy them
using zosadmin command line tool. You can then remotely modify the jobs and other grid
object through the PlateSpin Orchestrate Development Client.

3 Use a version control system, such as Subversion*, to organize and track development changes.
4 Put the job version number inside the deployed file. This will help you keep your job versions

organized.
5 Create make or Ant scripts for bundling and deploying your jobs.

By leveraging the flexibility of the PlateSpin Orchestrate environment, you should not have to write
jobs targeted specifically for one hypervisor technology (Xen*, VMware*, etc.).

1.2 Prerequisites for the Development
Environment

Install the Java* Development Kit (https://sdlc3d.sun.com/ECom/
EComActionServlet;jsessionid=DCA955A842E56492B469230CC680B2E1), version 1.5 or
later, to create jobs and to compile a Java SDK client in the PlateSpin Orchestrate environment.
The PlateSpin Orchestrate installer ships with a Java Runtime Environment (JRE) suitable for
running PlateSpin Orchestrate jobs.
Components to write Python-based Job Description Language (JDL) scripts:

Eclipse version 3.2.1 or later. (http://www.eclipse.org/).
pin Orchestrate 2.0 Developer Guide and Reference

https://sdlc3d.sun.com/ECom/EComActionServlet;jsessionid=DCA955A842E56492B469230CC680B2E1
http://www.eclipse.org/

novdocx (en) 13 M
ay 2009
Development Environment: Set up your environment according to the guidelines outlined in
“Planning the Orchestrate Server Installation” in the PlateSpin Orchestrate 2.0 Installation and
Configuration Guide. In general, the installed PlateSpin Orchestrate Server requires 2
(minimum for 100 or fewer managed resources) to 4 gigabytes (recommended for more than
100 managed resources) of RAM.
Network Capabilities: For Virtual Machine Management, you need a high-speed Gigabit
Ethernet. For more information about network requirements, see “Orchestrate VM Client” and
“VM Hosts” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.
Initial Configuration: After you install and configure PlateSpin Orchestrate, start in the agent
and user auto registration mode as described in “First Use of Basic PlateSpin Orchestrate
Components” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide. As a
first-time connection, the server creates an account for you as you set up a self-contained
system.

IMPORTANT: Because auto registration mode does not provide high security, make sure you
prevent unauthorized access to your network from your work station during development. As
you migrate to a production environment, make sure that this mode is deactivated.
Getting Started With Development 17

18 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

2
novdocx (en) 13 M

ay 2009
2Advanced Job Development
Concepts

This section provides advanced conceptual information to help you create your own PlateSpin®
Orchestrate jobs:

Section 2.1, “JDL Job Scripts,” on page 19
Section 2.2, “Understanding TLS Encryption,” on page 21
Section 2.3, “Understanding Job Examples,” on page 21

2.1 JDL Job Scripts
The PlateSpin Orchestrate job definition language (JDL) is an extended and embedded
implementation of Python. The PlateSpin Orchestrate system provides additional constructs to
control and access the following:

Interaction with the infrastructure under management (requesting resources, querying load,
etc.)
Distributed variable space with job, user and system-wide scoping
Extensible event callbacks mechanism
Job logging
Datagrid for efficient movement of files across the infrastructure.
Automatic distribution of parallel operations
Failover logic

For more information about the PlateSpin Orchestrate JDL script editor, see Section 7.2, “JDL
Package,” on page 50.

The JDL language allows for the scripted construction of logic that can be modified by external
parameters and constraints (through one or more associated policies) at the time the job instance is
executed. Development of a job with the JDL (Python) language is very straightforward. For a
listing of the job, joblet, and utility classes, see Appendix B, “PlateSpin Orchestrate Job Classes and
JDL Syntax,” on page 201.

A simple “hello world” Python script example that runs a given number of times (numTests) in
parallel (subject to resource availability and policy) is shown below:

class exampleJob(Job):
 def job_started_event(self):
 print 'Hello world started: got job_started_event'
 # Launch the joblets
 numJoblets = self.getFact("jobargs.numTests")
 pspace = ParameterSpace()
 i = 1
 while i <= numJoblets:
 pspace.appendRow({'name':'test'+str(i)})
 i += 1
Advanced Job Development Concepts 19

20 PlateS

novdocx (en) 13 M
ay 2009
 self.schedule(exampleJoblet, pspace, {})

class exampleJoblet(Joblet):
 def joblet_started_event(self):
 print "Hello from resource%s" % self.getFact("resource.id")

This example script contains two sections:

The class that extends the job and runs on the server.
The class that extends the joblet that will run on any resource employed by this job.

Because the resources are not requested explicitly, they are allocated based on the resource
constraints associated with this job. If none are specified, all resources match. The exampleJoblet
class would typically execute some process or test based on unique parameters.

2.1.1 Principles of Job Operation
Whenever a job is run on the PlateSpin Orchestrate system it undergoes state transition, as illustrated
in Figure 2-1 on page 20. In all, there are 11 states. The following four states are important in
understanding how constraints are applied on a job’s life cycle through policies:

Accept: Used to prevent work from starting; enforces a hard quota on the jobs.

Start: Used to queue up work requests; limits the quantity of jobs or the load on a resource.

Resource: Used to select specific resources.

Stop: Used to abort jobs; provides special timeout or overrun conditions.

Figure 2-1 Constraint-Based Job State Transition

For more information about job life cycle, see Section 7.3.1, “Job State Transition Events,” on
page 51.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
2.2 Understanding TLS Encryption
Understanding Transport Layer Security (TLS) encryption is particularly important if you reinstall
the server and have an old server certificate in either your agent or client user profile similar to ssh
shared keys. If you have an old certificate, you need to either manually replace it or delete it and
allow the client or agent to download the new one from the server using one of the following
procedures:

For the Agent: The TLS certificate is in <agentdir>/tls/server.pem. Deleting this
certificate will cause the agent, by default, to log a minor warning message and download a
new one the next time it tries to connect to the server. This is technically not secure, since the
server could be an impersonator. If security is required for this small window of time, then the
real server’s <serverdir>/<instancedir>/tls/cert.pem can be copied to the above
server.pem file.
For the Client: The easiest way to update the certificate from the command line tools is to
simply answer “yes” both times when prompted about the out-of date certificate. This is, again,
not 100% secure, but is suitable for most situations. For absolute security, hand copy the
server’s cert.pem (see above) to ~/.novell/zos/client/tls/<serverIPAddr:Port>.pem.
For Java SDK clients: Follow the manual copy technique above to replace the certificate. If
the local network is fairly trustworthy, you can also delete the above ~/.novell/.../*.pem
files, which will cause the client to auto-download a new certificate.

2.3 Understanding Job Examples
The following simple examples demonstrate how you can use JDL scripting to manage specific
functionality:

Section 2.3.1, “provisionBuildTestResource.job,” on page 21
Section 2.3.2, “Workflow Job Example,” on page 23

To learn about other job examples that are packaged with PlateSpin Orchestrate, see Chapter 10,
“Complete Job Examples,” on page 111.

2.3.1 provisionBuildTestResource.job
The following job example illustrates simple scripting to ensure that each of three desired OS
platforms might be available in the grid and, if not, it tries to provision them (provided that a VM
image matching the OS type exists). The resource Constraint object is created programmatically, so
there is no need for external policies.

1 class provisionBuildTestResource(Job):
2
3 def job_started_event(self):
4 oslist = ["Windows XP", "Windows 2000", "Windows 2003 Server"]
5 for os in oslist:
6 constraint = EqConstraint()
7 constraint.setFact("resource.os.name")
8 constraint.setValue(os)
9 resources = getMatrix().getGridObjects("resource",constraint)
10 if len(resources) == 0:
11 print "No resources were found to match constraint. \
12 os:%s" % (os)
Advanced Job Development Concepts 21

22 PlateS

novdocx (en) 13 M
ay 2009
13 else:
14 #
15 # Find an offline vm instance or template.
16 #
17 instance = None
18 for resource in resources:
19 if resource.getFact("resource.type") != "Fixed Physical"
and \
20 resource.getFact("resource.online") == False:
21 # Found a vm or template. provision it for job.
22 print "Submitting provisioning request for vm %s." %
(resource)
23 instance = resource.provision()
24 print "Provisioning successfully submitted."
25 break
26 if instance == None:
27 print "No offline vms or templates found for os: %s" %
(os)

It is not necessary to always script resource provisioning. Automatic resource provisioning (“on
demand”) is one of the built-in functions of the Orchestrate Server. For example, a job requiring a
Windows 2003 Server resource that cannot be satisfied with online resources only needs to have the
appropriate facts set in the Orchestrate Development Client; that is, job.provision.maxcount is
enabled.

This fact could also be set through association with a policy. If it is set up this way, PlateSpin
Orchestrate detects that a job is in need of a resource and automatically takes the necessary
provisioning steps, including reservation of the provisioned resource.

All provisioned virtual machines and the status of the various hosts are visible in the following view
of the Orchestrate Development Client.

Figure 2-2 The PlateSpin Orchestrate Development Client Showing Virtual Machine Management
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
2.3.2 Workflow Job Example
This brief example illustrates a job that does not require resources but simply acts as a coordinator
(workflow) for the buildTest and provision jobs discussed in Section 4.6, “BuildTest Job Examples,”
on page 35.

1 class Workflow(Job):
2 def job_started_event(self):
3 self.runJob("provisionBuildTestResource", {})
4 self.runJob("buildTest", { "testlist" : "/QA/testlists/production",
5 "buildId": "2006-updateQ1" })

The job starts in line 1 with the job_started_event, which initiates provisionBuildTestResource.job
(page 21) to ensure all the necessary resources are available, and then starts the buildTest.jdl
Example (page 37). This workflow job does not complete until the two subjobs are complete, as
defined in lines 3 and 4.

If so desired, this workflow could monitor the progress of subjobs by simply defining new event
handler methods (by convention, using the _event suffix). The system defines many standard
events. Every message received by the job executes the corresponding event handler method and can
also contain a payload (a Python dictionary).
Advanced Job Development Concepts 23

24 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

3
novdocx (en) 13 M

ay 2009
3The PlateSpin Orchestrate
Datagrid

This section explains concepts related to the datagrid of the PlateSpin® Orchestrate Server datagrid
and specifies many of the objects and facts that are managed in the grid environment:

Section 3.1, “Defining the Datagrid,” on page 25
Section 3.2, “Datagrid Communications,” on page 27
Section 3.3, “datagrid.copy Example,” on page 29

3.1 Defining the Datagrid
Within the PlateSpin Orchestrate environment, the datagrid has three primary functions:

Section 3.1.1, “PlateSpin Orchestrate Datagrid Filepaths,” on page 25
Section 3.1.2, “Distributing Files,” on page 26
Section 3.1.3, “Simultaneous Multicasting to Multiple Receivers,” on page 26

3.1.1 PlateSpin Orchestrate Datagrid Filepaths
The PlateSpin Orchestrate datagrid provides a file naming convention that is used in JDL code and
by the PlateSpin Orchestrate CLI for accessing files in the datagrid. The naming convention is in the
form of a URL. For more information, see “Jobs”in the PlateSpin Orchestrate 2.0 Administrator
Reference.

The datagrid defines the root of the namespace as grid://, with further divisions under the root as
illustrated in the figure below:

Figure 3-1 File Structure of Data Nodes in a Datagrid
The PlateSpin Orchestrate Datagrid 25

26 PlateS

novdocx (en) 13 M
ay 2009
The grid URL naming convention is the form grid://<gridID>/<file path>. Including the
gridID is optional and its absence means the host default grid. When writing jobs and configuring a
datagrid, you can use the symbol ^ as a shortcut to the <jobid> directory either standalone,
indicating the current job, or followed by the jobid number to identify a particular job.Likewise, the
symbol ! can be used as a shortcut to the deployed jobs’ home directory either standalone, indicating
the current jobs’ type, or followed by the deployed jobs’ name. The symbol ~ is also a shortcut to the
user’s home directory in the datagrid, either by itself, indicating the current user, or followed by the
desired user ID to identify a particular user.

The following examples show address locations in the datagrid using the zos command line tool.
These examples assume you have logged in using zos login to the Orchestrate Server you are
using:

“Directory Listing of the Datagrid Root Example” on page 26
“Directory Listing of the Jobs Subdirectory Example” on page 26

Directory Listing of the Datagrid Root Example

$ zos dir grid:///
 <DIR> Jun-26-2007 9:42 installs
 <DIR> Jun-26-2007 9:42 jobs
 <DIR> Jun-26-2007 14:26 users
 <DIR> Jun-26-2007 9:42 vms
 <DIR> Jun-26-2007 10:09 warehouse

Directory Listing of the Jobs Subdirectory Example

$ zos dir grid:///jobs
 <DIR> Jun-26-2007 9:42 cpuInfo
 <DIR> Jun-26-2007 9:42 findApps
 <DIR> Jun-26-2007 9:42 osInfo
 <DIR> Jun-26-2007 9:42 vcenter
 <DIR> Jun-26-2007 9:42 vmHostVncConfig
 <DIR> Jun-26-2007 9:42 vmprep
 <DIR> Jun-26-2007 9:42 vmserver
 <DIR> Jun-26-2007 9:42 vmserverDiscovery
 <DIR> Jun-26-2007 9:42 xen30
 <DIR> Jun-26-2007 9:42 xenDiscovery
 <DIR> Jun-26-2007 9:42 xenVerifier

3.1.2 Distributing Files
The PlateSpin Orchestrate datagrid provides a way to distribute files in the absence of a distributed
file system. This is an integrated service of PlateSpin Orchestrate that performs system-wide file
delivery and management.

3.1.3 Simultaneous Multicasting to Multiple Receivers
The datagrid provides a multicast distribution mechanism that can efficiently distribute large files
simultaneously to multiple receivers. This is useful even when a distributed file system is present.
For more information, see Section 3.2, “Datagrid Communications,” on page 27.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
3.1.4 PlateSpin Orchestrate Datagrid Commands
The following datagrid commands can be used when creating job files. To see where these
commands are applied in the PlateSpin Orchestrate Development Client, see “Typical Use of the
Grid”.

3.2 Datagrid Communications
There is no set limit to the number of receivers (nodes) that can participate in the datagrid or in a
multicast operation. Indeed, multicast is rarely more efficient when the number of receivers is small.
Any type of file or file hierarchy can be distributed via the datagrid.

The datagrid uses both a TCP/IP and IP multicast protocols for file transfer. Unicast transfers (the
default) are reliable because of the use of the reliable TCP protocol. Unicast file transfers use the
same server/node communication socket that is used for other job coordination datagrid packets are
simply wrapped in a generic DataGrid message. Multicast transfers use the persistent socket
connection to setup a new multicast port for each transfer.

After the multicast port is opened, data packets are received directly. The socket communication is
then used to coordinate packet resends.Typically, a receiver will loose intermittent packets (because
of the use of IP multicast, data collisions, etc.). After the file is transferred, all receivers will respond
with a bit map of missed packets. The logically ANDing of this mask is used to initiate a resend of
commonly missed packets. This process will repeat a few times (with less data to resend on each
iteration). Finally, any receiver will still have incomplete data until all the missing pieces are sent in
a reliable unicast fashion.

The data transmission for a multicast datagrid transmission is always initiated by the Orchestrate
Server. Currently this is the same server that is running the grid.

With the exception of multicast file transfers, all datagrid traffic goes over the existing connection
between the agent/client and the server. This is done transparently to the end user or developer. As
long as the agent is connected and/or the user is logged in to the grid, the datagrid operations
function.

Command Description

cat Displays the contents of a datagrid file.

copy Copies files and directories to and from the datagrid.

delete Deletes files and directories in the datagrid.

dir Lists files and directories in the datagrid.

head Displays the first of a datagrid file.

log Displays the log for the specified job.

mkdir Makes a new directory in the datagrid.

move Moves files and directories in the datagrid.

tail Displays the end of a datagrid file.
The PlateSpin Orchestrate Datagrid 27

28 PlateS

novdocx (en) 13 M
ay 2009
3.2.1 Multicast Example
Multicast transfers are currently only supported through JDL code on the agents. In JDL, after you
get the Datagrid object, you can enable and configure multicasting like this:

 dg.setMulticast(true)

Additional multicast tuneables can be set on the object as well, such as the following example:

 dg.setMulticastRate(20000000)

This would set the maximum data rate on the transfer to 20 million bytes/sec. There are a number of
other options as well. Refer to the JDL reference for complete information.

The actual multicast copy is initiated when a sufficient number of JDL joblets on different nodes
issue the JDL command:

 dg.copy(...)

to actually copy the requested file locally. See the setMulticastMin and setMulticastQuorum
options to change the minimum receiver count and other thresholds for multicasting.

For example, to set up a multicast from a joblet, where the data rate is 30 million bytes/sec, and a
minimum of five receivers must request multicast within 30 seconds, but if 30 receivers connect,
then start right away, use the following JDL:

 dg = DataGrid()
 dg.setMulticast(true)
 dg.setMulticastRate(30000000)
 dg.setMulticastMin(5)
 dg.setMulticastQuorum(30)
 dg.setMulticastWait(30000)
 dg.copy('grid:///vms/huge-image.dsk', 'image.dsk')

In the above example, if at least five agents running the joblet request the file within the same 30
second period, then a multicast is started to all agents that have requested multicast before the
transfer is started. Agents requesting after the cutoff have to wait for the next round. Also, if fewer
than 5 agents request the file, then each agent will simply fall back to plain old unicast file copy.

Furthermore, if more than 30 agents connect before 30 seconds is up, then the transfer begins
immediately after the 30th request. This is useful for situations where you know how many agents
will request the file and want to start as soon as all of them are ready.

3.2.2 Grid Performance Factors
The multicast system performance is dependent on the following factors:

Network Load: As the load increases, there is more packet loss, which results in more retries.
Number of Nodes: The more nodes (receivers) there are, the greater the efficiency of the
multicast system.
File Size: The larger the file size, the better. Unless there are a large number of nodes, files less
than 2 Mb are probably too small.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Tuning: The datagrid facility has the ability to throttle network bandwidth. Best performance
has been found at about maximum bandwidth divided by 2. Using more bandwidth leads to
more collisions. Also the number of simultaneous multicasts can be limited. Finally the
minimum receiver size, receiver wait time and quorum receiver size can all be tuned.

Access to the datagrid is typically performed via the CLI tool or JDL code within a job. There is also
a Java API in the Client SDK (on which the CLI is implemented). See “ClientAgent” on page 193.

3.2.3 Plan for Datagrid Expansion
When planning your datagrid, you need to consider where you want the Orchestrate Server to store
its data. Much of the server data is the contents of the datagrid, including ever-expanding job logs.
Every job log can become quite large and quickly exceed its storage constraints.

In addition, every deployed job with its job package—JDL scripts, policy information, and all other
associated executables and binary files—is stored in the datagrid. Consequently, if your datagrid is
going to grow very large, store it in a directory other than /opt.

3.3 datagrid.copy Example
This example fetches the specified source file to the destination. A recursive copy is then attempted
if setRecursive(True) is set. The default is a single file copy. A multicast also is attempted if
setMulticast(True) is set. The default is to do a unicast copy.The following example copies a
file from the datagrid to a resource, then read the lines of the file:

1 datagrid = DataGrid()
2 datagrid.copy("grid:///images/myFile","myLocalFile")
3 text = open("myLocalFile").readlines()

This is an example to recursively copy a directory and its sub directories from the datagrid to a
resource:

4 datagrid = DataGrid()
5 datagrid.setRecursive(True)
6 datagrid.copy("grid:///testStore/testFiles","/home/tester/
myLocalFiles")

Here’s an example to copy down a file from the job deployment area to a resource and then read the
lines of the file:

7 datagrid = DataGrid()
8 datagrid.copy("grid:///!myJob/myFile","myLocalFile")
9 text = open("myLocalFile").readlines()

Here are the same examples without using the shortcut characters. This shows the job “myJob” is
under the “jobs” directory under the Datagrid root:

10 datagrid = DataGrid()
11 datagrid.copy("grid:///jobs/myJob/myFile","myLocalFile")
12 text = open("myLocalFile").readlines()
The PlateSpin Orchestrate Datagrid 29

30 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

4
novdocx (en) 13 M

ay 2009
4Using PlateSpin Orchestrate Jobs

This section discusses the core job types that can be run by the PlateSpin® Orchestrate Server on
grid objects. It also discusses the principles you need to know to run jobs.

Section 4.1, “Resource Discovery,” on page 31
Section 4.2, “Resource Selection,” on page 32
Section 4.3, “Workload Management,” on page 33
Section 4.4, “Policy Management,” on page 34
Section 4.5, “Auditing and Accounting Jobs,” on page 35
Section 4.6, “BuildTest Job Examples,” on page 35

4.1 Resource Discovery
Resource discovery jobs inspect a resource’s environment to set resource facts stored with the
resource grid object. These jobs automatically discover the resource attributes (fully extensible facts
relating to such things as CPU, memory, storage, bandwidth, load, software inventory) of the
resources being managed by the PlateSpin Orchestrate Server. These resource attributes are called
“facts.” These facts are used during PlateSpin Orchestrate runtime from within a policy or constraint
to select resources that have certain identifiable attributes.

For more information, see “Walkthrough: Observing Discovery Jobs” in the PlateSpin Orchestrate
2.0 Installation and Configuration Guide, and “Discovering Registered VM Hosts” in the PlateSpin
Orchestrate 2.0 VM Client Guide and Reference.

4.1.1 Provisioning Jobs
The provisioning jobs included in PlateSpin Orchestrate are used for interacting with VM hosts and
repositories for VM life cycle management and for cloning, moving VMs, and other management
tasks. These jobs are called “Provisioning Adapters” and are members of the job group called
“provisionAdapters.”

With respect to resource discovery, the provisioning jobs are used to discover VM hosts (those
resources running a VM technology such as Xen or VmWare) and VM image repositories, as well as
VM images residing in those repositories.

For more information, see Section 9.2, “Virtual Machine Management,” on page 79 in this guide.

4.1.2 Resource Discovery Jobs
Some of the commonly used resource discovery jobs include:

“cpuInfo.job” on page 32
“demoInfo.job” on page 32
“findApps.job” on page 32
“osInfo.job” on page 32
Using PlateSpin Orchestrate Jobs 31

32 PlateS

novdocx (en) 13 M
ay 2009
cpuInfo.job

Gets CPU information of a resource.

demoInfo.job

Generates the CPU, operating system, and application information for testing.

findApps.job

Finds and reports what applications are installed on the datagrid.

osInfo.job

Gets the operating system of a grid resource. On Linux, it reads the /proc/cpuinfo; on Windows,
it reads the registry; on UNIX, it executes uname.

 resource.cpu.mhz (integer) e.g., "800" (in Mhz)
 resource.cpy.vendor (string) e.g. "GenuineIntel"
 resource.cpu.model (string) e.g. "Pentium III"
 resource.cpu.family (string) e.g. "i686"

4.2 Resource Selection
PlateSpin Orchestrate lets you create jobs that meet the infrastructure scheduling and resource
management requirements of your data center, as illustrated in the following figure.

Figure 4-1 Multi-Dimensional Resource Scheduling Broker

There are many combinations of constraints and scheduling demands on the system that can be
managed by the highly flexible PlateSpin Orchestrate resource broker. As shown in the figure below,
many object types are managed by the resource broker. Resource objects are discovered (see
Section 4.1, “Resource Discovery,” on page 31). Other object types such as users and jobs can also
be managed. All of these object types have “facts” that define their specific attributes and
operational characteristics. PlateSpin Orchestrate compares these facts to requirements set by the
administrator for a specific data center task. These comparisons are called “constraints.”

A policy is an XML file that specifies (among other things) constraints and fact values. Policies
govern how jobs are dynamically scheduled based on various job constraints. These job constraints
are represented in the following figure.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Figure 4-2 Policy-Based Resource Management Relying on Various Constraints

Figure 4-3 Policy-Based Job Management

See Chapter 8, “Job Scheduling,” on page 71 for examples of scheduling jobs. See also Section 7.7,
“Working with Facts and Constraints,” on page 55.

The Resource Broker function of the Orchestrate Server allocates or “dynamically schedules”
resources based on the runtime requirements of a job (for example, the necessary CPU type, OS
type, and so on) rather than allocating a specific machine in the data center to run a job. These
requirements are defined inside a job policy and are called “resource constraints.” In simpler terms,
in order to run a given job, the Resource Broker looks at the resource constraints defined in a job and
then allocates an available resource that can satisfy those constraints.

4.3 Workload Management
The Orchestrate Server uses a Provisioning Manager to allocate (assign) and preempt (reassign)
resources.
Using PlateSpin Orchestrate Jobs 33

34 PlateS

novdocx (en) 13 M
ay 2009
The Provisioning Manager preempts a resource by monitoring the job queue that is waiting for
allocation. The manager then compares the job’s relative priority to jobs already consuming
resources. Higher priority jobs can preempt lower priority jobs.

Figure 4-4 Workload Management

Depending on the tasks that applications might require, the Orchestrate Server submits the required
jobs to one or more of the connected managed resources to perform specific tasks.

For more information about how job scheduling and provisioning works, see the following sections:

Chapter 8, “Job Scheduling,” on page 71
Section 9.6, “Automatically Provisioning a VM,” on page 87
Examples: dgtest.job (page 126) and factJunction.job (page 168).

4.4 Policy Management
Policies are XML-based files that aggregate the resource facts and constraints that are used to
control resources.

Policies are used to enforce quotas, job queuing, resource restrictions, permissions, etc. They can be
associated with various grid objects (jobs, users, resources, etc.). The policy example below shows a
constraint that limits the number of running jobs to a defined value, while exempting certain users
from this limit. Jobs started that exceed the limit are queued until the running jobs count decreases
and the constraint passes:

<policy>
 <constraint type="start" reason="too busy">
 <or>
 <lt fact="job.instances.active" value="5" />
 <eq fact="user.name" value="canary" />
 </or>
 </constraint>
</policy>

Policies can be based on goals, entitlements, quotas, and other factors, all of which are controlled by
jobs.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Figure 4-5 Policy Types and Examples

For more information about policies, see Section 7.7, “Working with Facts and Constraints,” on
page 55.

4.5 Auditing and Accounting Jobs
You can create PlateSpin Orchestrate jobs that perform reporting, auditing, and costing functions
inside your data center. Your jobs can aggregate cost accounting for assigned resources and perform
resource audit trails.

4.6 BuildTest Job Examples
There are many available facts that you can use in creating your jobs. If you find that you need
specific kinds of information about a resource or a job, such as the load average of a user or the ID
of a job or joblet, chances are that it is already available.

If a fact is not listed, you can create your own facts by creating a <fact> element in the job policy.
You can also create a fact directly in the JDL job code.

If you want to remember something from one loop to the next or make something available to other
objects in the grid, you can set a fact with your own self-defined name.

This section shows an example of a relatively simple working job that performs a set (100) of
regression tests on three different platform types. A number of assumptions have been made to
simplify this example:

Each regression test is atomic and has no dependencies.
Every resource is preconfigured to run the tests. Typically, the configuration setup is included
as part of the job.
Using PlateSpin Orchestrate Jobs 35

36 PlateS

novdocx (en) 13 M
ay 2009
The tests are expressed as line entries in a file. PlateSpin Orchestrate has multiple methods to
specify parameters. This (/QA/testlists/nightly.dat) is just one example:
dir c:/windows
dir c:/windows/system32
dir c:/notexist
dir c:/tmp
dir c:/cygwin

To demonstrate the possible functionality for this example, here are some policies that might apply
to this example:

Only users running tests can use resources owned by their group.
To conserve resources, terminate the test after 50 failures.
Because the system under test requires a license, prevent more than three of these regression
tests from running at one time.
To prevent a job backlog, limit the number of queued jobs in the system.
To allow the regression test run to tolerate resource failures (for example, unexpected network
disconnections, unexpected reboots, and so on), enable automatic failover without affecting the
regression run.

The section includes the following information:

Section 4.6.1, “buildTest.policy Example,” on page 36
Section 4.6.2, “buildTest.jdl Example,” on page 37
Section 4.6.3, “Packaging Job Files,” on page 40
Section 4.6.4, “Deploying Packaged Job Files,” on page 40
Section 4.6.5, “Running Your Jobs,” on page 41
Section 4.6.6, “Monitoring Job Results,” on page 41
Section 4.6.7, “Debugging Jobs,” on page 42

4.6.1 buildTest.policy Example
Policies are typically spread over different objects, entities, and groups on the system. However, to
simplify the concept, we have combined all policies into this one example that is directly associated
with the job.

The arguments available to the job are specified in the in the <jobargs> section (lines 1-11). When
the job is run, job arguments are made available as facts to the job instance. The default values of
these arguments can be overridden when the job is invoked.

1 <policy>
2 <jobargs>
3 <fact name="buildId"
4 type="String"
5 value="02-24-06 1705"
6 description="Build Id to show in memo field" />
7 <fact name="testlist" type="String"
9 value="/QA/testlists/nightly.dat"
10 description="Path to testlist to use in tests" />
11 </jobargs>
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
The <job> section (lines 12-25) defines facts that are associated with the job. These facts are used in
other policies or by the JDL logic itself. Typically, these facts are aggregated from inherited policies.

12 <job>
13 <fact name="max_queue_size"
14 type="Integer"
15 value="10"
16 description="Limit of queued jobs. Any above this limit are not
accepted." />
17 <fact name="max_licenses"
18 type="Integer"
19 value="5"
20 description="License count to limit number of jobs to run
simultaneously. Any above this limit are queued." />
21 <fact name="max_test_failures"
22 type="Integer"
23 value="50"
24 description="To decide to end the job if the number of failures
exceeds a limit" />
25 </job>

The <accept> (line 26), <start> (line 31), and <continue> (line 40) constraints control the job
life cycle and implement the policy outlined in the example. In addition, allowances are made for
“privileged users” (lines 28 and 33) to bypass the accept and start constraints.

26 <constraint type="accept" reason="Maximum number of queued jobs has been
reached">
27 <or>
28 <defined fact="user.privileged_user" />
28 <lt fact="job.instances.queued" factvalue="job.max_queue_size" />
29 </or>
30 </constraint>
31 <constraint type="start">
32 <or>
33 <defined fact="user.privileged_user" />
34 <lt fact="job.instances.active" factvalue="job.max_licenses" />
35 </or>
36 </constraint>

The <resource> constraint (lines 37 and 38) ensures that only resources that are members of the
buildtest group are used by this job.

37 <constraint type="resource">
38 <contains fact="resource.groups" value="buildtest" reason="No
resources are in the buildtest group" />
39 </constraint>
40 <constraint type="continue" >
41 <lt fact="jobinstance.test_failures"
factvalue="job.max_test_failures" reason="Reached test failure limit" />
42 </constraint>
</policy>

4.6.2 buildTest.jdl Example
The following example shows how additional resource constraints representing the three test
platform types are specified in XML format. These also could have been specified in PlateSpin
Orchestrate Development Client.
Using PlateSpin Orchestrate Jobs 37

38 PlateS

novdocx (en) 13 M
ay 2009
Setting Resource Constraints

The annotated JDL code represents the job definition, consisting of base Python v2.1 (and libraries)
as well as a large number of added PlateSpin Orchestrate operations that allow interaction with the
Orchestrate Server:

1 import sys,os,time

2 winxp_platform = "<eq fact=\"resource.os.name\" value=\"Windows XP\" />"
3 win2k_platform = "<eq fact=\"resource.os.name\" value=\"Windows 2000\" />"
4 win2003_platform = "<eq fact=\"resource.os.name\" value=\"Windows 2003
Server\" />"

Lines 2-4 specify the resource constraints representing the three test platform types (Windows XP,
Windows 2000, and Windows 2003) in XML format.

The job_started_event in line 6 is the first event delivered to the job on the server.The logic in
this method performs some setup and defines the parameter space used to iterate over the tests.

5 class BuildTest(Job):

6 def job_started_event(self):
7 self.total_counts = {"failed":0,"passed":0,"run":0}
8 self.setFact("jobinstance.test_failures",0)

9 self.testlist_fn = self.getFact("jobargs.testlist")
10 self.buildId = self.getFact("jobargs.buildId")
11 self.form_memo(self.total_counts)

12 # Form range of tests based on a testlist file
13 filerange = FileRange(self.testlist_fn)

Parameter spaces (lines 14-16) can be multidimensional but, in this example, they schedule three
units of work (joblets), one for each platform type, each with a parameter space of the range of lines
in the (optionally) supplied test file (lines 21, 24 and 27).

14 # Form ParameterSpace defining Joblet Splitting
15 pspace = ParameterSpace()
16 pspace.appendDimension("cmd",filerange)

17 # Form JobletSet defining execution on resources
18 jobletset = JobletSet()
19 jobletset.setCount(1)
20 jobletset.setJobletClass(BuildTestJoblet)

Within each platform test, a joblet is scheduled for each test line item on each different platform.

21 # Launch tests on Windows XP
22 jobletset.setConstraint(winxp_platform)
23 self.schedule(jobletset)

24 # Launch tests on Windows 2000
25 jobletset.setConstraint(win2k_platform)
26 self.schedule(jobletset)

27 # Launch tests on Windows 2003
28 jobletset.setConstraint(win2003_platform)
29 self.schedule(jobletset)
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
The test_results_event in line 32 is a message handler that is called whenever the joblets send
test results.

30 # Event invoked when a Joblet has completed running tests.
31 #
32 def test_results_event(self,params):
33 self.form_memo(params)

Creating a Memo Field

In line 37, the form_memo method is called to form an informational string to display the running
totals for this test. These totals are displayed in the memo field for the job (visible in the Orchestrate
Development Client, and Web interface tools). The memo field is accessed through setting the String
fact jobinstance.memo in line 55.

34 #
35 # Update the totals and write totals to memo field.
36 #
37 def form_memo(self,params):
38 # total_counts will be empty at start
39 m = "Build Test BuildId %s " % (self.buildId)
40 i = 0
41 for key in self.total_counts.keys():
42 if params.has_key(key):
43 total = self.total_counts[key]
44 count = params[key]
45 total += count
46 printable_key = str(key).capitalize()
47 if i > 0:
48 m += ", "
48 else:
49 if len(m) > 0:
50 m+= ", "
51 m += printable_key + ": %d" % (total)
52 i += 1
53 self.total_counts[key] = total
54 self.setFact("jobinstance.test_failures",self.total_counts["failed"])
55 self.setFact("jobinstance.memo",m)

Joblet Definition

As previously discussed, a joblet is the logic that is executed on a remote resource employed by a
job, as defined in lines 56-80, below. The joblet_started_event in line 60 mirrors the
job_started_event (line 6) but runs on a different resource than the server.

The portion of the parameter space allocated to this joblet in line 65-66 represents some portion of
the total test (parameter) space. The exact breakdown of this is under full control of the
administrator/job. Essentially, the size of the “work chunk” in line 67 is a compromise between
overhead and retry convenience.

In this example, each element of the parameter space (a test) in line 76 is executed and the exit code
is used to determine pass or failure. (The exit code is often insufficient and additional logic must be
added to analyze generated files, copy results, or to perform other tasks.) A message is then sent
back to the job prior to completion with the result counts.
Using PlateSpin Orchestrate Jobs 39

40 PlateS

novdocx (en) 13 M
ay 2009
56 #
57 # Define test execution on a resource.
58 #59 class BuildTestJoblet(Joblet):
60 def joblet_started_event(self):
61 passed = 0
62 failed = 0
63 run = 0
64 # Iterate over parameter space assigned to this Joblet
65 pspace = self.getParameterSpace()
66 while pspace.hasNext():
67 chunk = pspace.next()
68 cmd = chunk["cmd"].strip()
69 rslt = self.run_cmd(cmd)
70 print "rslt=%d cmd=%s" % (rslt,cmd)
71 if rslt == 0:
72 passed +=1
73 else:
74 failed +=1
75 run += 1
76
self.sendEvent("test_results_event",{"passed":passed,"failed":failed,"run":ru
n})
77 def run_cmd(self,cmd):
78 e = Exec()
79 e.setCommand(cmd)
80 return e.execute()

4.6.3 Packaging Job Files
A job package might consist of the following elements:

Job description language (JDL) code (the Python-based script containing the bits to control
jobs).
One or more policy XML files, which apply constraints and other job facts to control jobs.
Constraints and facts are discussed Constraints (page 45) and Facts (page 45).
Any other associated executables or data files that the job requires. For example, the
cracker.jdl sample job includes a set of Java code that discovers the user password in every
configured agent before the Java class is run.
Or, many discovery jobs that measure performance of Web servers or monitor any other
applications can include resource discovery utilities that enable resource discovery.

Section 7.2, “JDL Package,” on page 50 provides more information about job elements.

4.6.4 Deploying Packaged Job Files
After jobs are created, you deploy .jdl or multi-element .job files to the Orchestrate Server by
using any of the following methods:

Copying job files into the “hot” Orchestrate Server deployment directory. See “Deploying a
Sample System Job” in the PlateSpin Orchestrate 2.0 Development Client Reference.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Using the Orchestrate Development Client.
Using the PlateSpin Orchestrate command line (CLI) tools. This process is discussed in “The
zos Command Line Tool” in the PlateSpin Orchestrate 2.0 Command Line Reference and in
“The zosadmin Command Line Tool” in the PlateSpin Orchestrate 2.0 Command Line
Reference.

4.6.5 Running Your Jobs
After your jobs are deployed, you can execute them by using the following methods:

Command Line Interface: Nearly all PlateSpin Orchestrate functionality, including deploying
and running jobs, can be performed using the command line tool, as shown in the following
example:

zos run buildTest [testlist=mylist]
JobID: paul.buildTest.14

More detailed CLI information is available in the zos command line tool.
Server Portal: After PlateSpin Orchestrate is installed, you can use the PlateSpin Orchestrate
Server Portal to run jobs. This process is discussed in the PlateSpin Orchestrate 2.0 Server
Portal Reference.
Custom Client: The PlateSpin Orchestrate toolkit provides an SDK that provides a custom
client that can invoke your custom jobs. This process is discussed in Appendix A, “PlateSpin
Orchestrate Client SDK,” on page 187.
Built-in Job Scheduler: The Orchestrate Server uses a built-in Job Scheduler to run deployed
jobs. This tool is discussed in Chapter 8, “Job Scheduling,” on page 71 and in “The PlateSpin
Orchestrate Job Scheduler”in the PlateSpin Orchestrate 2.0 Development Client Reference.
From Other Jobs: As part of a job workflow, jobs can be invoked from within other jobs. You
integrate these processes within your job scripts as described in the Chapter 8, “Job
Scheduling,” on page 71.

4.6.6 Monitoring Job Results
PlateSpin Orchestrate lets you monitor jobs by using the same methods outlined in Section 4.6.5,
“Running Your Jobs,” on page 41.

Monitoring Jobs from the Command Line

The following example shows the status of the job ray.buildtest.18 using different monitoring
interfaces:

zos status -e ray.buildtest.18

Job Status for ray.buildtest.18

 State: Completed (0 this job)
 Resource Count: 0
 Percent Complete: 100%
 Queue Pos: 1 of 1 (initial pos=1)
 Child Job Count: 0 (0 this job)
Using PlateSpin Orchestrate Jobs 41

42 PlateS

novdocx (en) 13 M
ay 2009
 Instance Name: Buildtest
 Job Type: buildtest
 Memo: Build Test BuildID 02-02-09 1705 , failed: 1, Run: 5,
 Passed: 4
 Priority: medium
 Arguments: <none>

 Submit Time: 02/02/2009 01:46:12
 Delayed Start: n/a
 Start Time: 02/02/2009 01:46:12
 End Time: 01/01/1009 01:46:14
 Elapsed Time: 0:00:01
 Queue Time: 0:00:00
 Pause Time: 0:00:00

 Total CPU Time: 0:00:00 (0:00:00 this job)
 Total GCycles: 0:00:00 (0:00:00 this job)
 Total Cost: $0.0002 ($0.0002 this job)
 Burn Rate: $0.0003/hr (0.0003/hr this job)

The bottom section of the status report shows that you can also monitor job costing metrics, which
are quite minimal in this example. More sophisticated job monitoring is possible.

Monitoring Jobs from the Server Portal

You can use the status page of the Server Portal to monitor jobs. In this example, the job memo field
is displayed.

Figure 4-6 Server Portal Job Monitoring Example

4.6.7 Debugging Jobs
The following view of the Development Client shows how you can determine that the buildTest
job was not able to find or match any resources because resources were not added to the buildtest
group as required by the policy.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Figure 4-7 Debugging Jobs Using the Orchestrate Development Client

The policy debugger shows the blocking constraint, and the tooltip gives the reason. If you drag and
drop to add resources to the required group, the job continues quickly with no restart.
Using PlateSpin Orchestrate Jobs 43

44 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

5
novdocx (en) 13 M

ay 2009
5Policy Elements

PlateSpin® Orchestrate policy elements are represented in XML. A policy can be deployed to the
server and associated with any grid object. The policy element is the root element for policies.
Policies contain constraints and fact definitions for grid objects:

Section 5.1, “Constraints,” on page 45
Section 5.2, “Facts,” on page 45
Section 5.3, “Computed Facts,” on page 45

5.1 Constraints
The constraint element defines the selection of grid objects such as resources. The required type
attribute defines the selection type. Supported types are:

resource
provision
allocation
accept
start
continue
vmhost
repository

Constraints can also be constructed in JDL and in the Java Client SDK. A JDL constructed
constraint can be used for grid search and for scheduling. A Java Client SDK constructed constraint
can only be used for grid object search. See also Section 7.7, “Working with Facts and Constraints,”
on page 55.

5.2 Facts
The XML fact element defines a fact to be stored in the grid object’s fact namespace. The name,
type and value of the fact are specified as attributes. For list or array fact types, the element tag
defines list or array members. For dictionary fact types, the dict tag defines dictionary members.

See the example, /allTypes.policy. This example policy has an XML representation for all the
fact types.

Facts can also be created and modified in JDL and in the Java Client SDK.

5.3 Computed Facts
Computed facts are used when you want to calculate the value for a fact. Although computed facts
are not jobs, they use the same JDL syntax.

To create a new computed fact outside of the Orchestrate Development Client, you can create a file
with a .cfact extension with the JDL to compute the fact value.
Policy Elements 45

46 PlateS

novdocx (en) 13 M
ay 2009
After the new computed fact is created, you deploy it using the same procedures required for jobs
(using either the zosadmin command line tool or the Orchestrate Development Client).

The following example shows a computed fact that returns the number of active job instances for a
specific job for the current job instance. This fact can be used in an accept or start constraint to limit
how many jobs a user can run in the system. The constraint is added to the job policy in which to
have the limit. In this example, the start constraint uses this fact to limit the number of active jobs for
a user to one:

"""
 <constraint type="start" >
 <lt fact="cfact.activejobs"
 value="1"
 reason="You are only allowed to have 1 job running at a time" />
 </constraint>

Change JOB_TO_CHECK to define which job is to be limited.
"""
JOB_TO_CHECK="quickie"

class activejobs(ComputedFact):

 def compute(self):

 j = self.getContext()
 if j == None:
 # This means computed Fact is executed in a non running

 # job context. e.g., the ZOC fact browser
 print "no job instance"
 return 0
 else:
 # Computed fact is executing in a job context
 user = j.getFact("user.id")
 activejobs = self.getMatrix().getActiveJobs()
 count = 0
 for j in activejobs:
 jobname = j.getFact("job.id")

 # Don't include queued in count !
 state = j.getFact("jobinstance.state.string")
 if jobname == JOB_TO_CHECK \
 and j.getFact("user.id") == user \
 and (state == "Running" or state == "Starting"):
 count+=1

 jobid = j.getFact("jobinstance.id")
 print "jobid=%s count=%d" % (jobid,count)
 return count

For another computed fact example, see activejobs.cfact (located in the examples/
activejobs.cfact directory).
pin Orchestrate 2.0 Developer Guide and Reference

6
novdocx (en) 13 M

ay 2009
6Using the PlateSpin Orchestrate
Client SDK

PlateSpin® Orchestrate from Novell® includes a Java* Client SDK in which you can write Java
applications to remotely manage jobs. The zos command line tool is written using the Client SDK,
as described in Appendix A, “PlateSpin Orchestrate Client SDK,” on page 187. This SDK
application can perform the following operations:

Login and logout to an Orchestrate Server.
Manage the life cycle of a job (run/cancel).
Monitor running jobs (get job status).
Communicate to a running job using events.
Receive events from a running job.
Search for grid objects using constraints.
Retrieve and modify grid object facts.
Datagrid operations (such as copying files to the server and downloading files from the server).

6.1 SDK Requirements
Before you can run the PlateSpin Orchestrate Client SDK, you must perform the following tasks:

1. Install the PlateSpin Orchestrate Client package. For instructions, see “Installing and
Configuring All PlateSpin Orchestrate Components Together” and “Walkthrough: Launching
the PlateSpin Orchestrate Development Client” in the PlateSpin Orchestrate 2.0 Installation
and Configuration Guide.

2. Install JDK 1.4.x or 1.5.x.
3. Examine the two example PlateSpin Orchestrate SDK client applications that are included in

the examples directory:
extranetDemo: Provides a sophisticated example of launching multiple jobs and listening
and sending events to running jobs.
cracker: Demonstrates a simple example how to launch a job and listen for events sent
from the job to the client application..

6.2 Creating an SDK Client
Use the following procedure to create an SDK client in conjunction with the sample Java code (see
Section A.3.2, “ClientAgent,” on page 193):

1 Create ClientAgent instance:
 // example zos server host is "myserver"

 ClientAgent clientAgent = ClientAgentFactory.newClientAgent("myserver");
Using the PlateSpin Orchestrate Client SDK 47

48 PlateS

novdocx (en) 13 M
ay 2009
2 Use the following user and password example to log in to the Orchestrate Server (see
“Walkthrough: Logging In to the PlateSpin Orchestrate Server” in the PlateSpin Orchestrate
2.0 Installation and Configuration Guide):
 Credential credential =
CredentialFactory.newPasswordCredential(username,password);

 clientAgent.login(credential);

3 Run the server operations. In this case, it is the quickie.jdl example job (which must have
been previously deployed) with no job arguments:
 String jobID = clientAgent.runJob("quickie",null)

4 (Optional) Listen for server events using the AgentListener interface:
 clientAgent.addAgentListener(this);

4a Register with the PlateSpin Orchestrate Server to receive job events for the job you
started.
clientAgent.getMessages(jobID);

5 Log out of the server:
 clientAgent.logout()
pin Orchestrate 2.0 Developer Guide and Reference

7
novdocx (en) 13 M

ay 2009
7Job Architecture

The PlateSpin® Orchestrate Job Scheduler is a sophisticated scheduling engine that maintains high
performance network efficiency and quality user service when running jobs on the grid. Such
efficiencies are managed through a set of grid component facts that operate in conjunction with job
constraints. Facts and constraints operate together like a filter system to maintain both the
administrator’s goal of high quality of service and the user’s goal to run fast, inexpensive jobs.

This section explains the following job architectural concepts:

Section 7.1, “Understanding JDL,” on page 49
Section 7.2, “JDL Package,” on page 50
Section 7.3, “Job Class,” on page 51
Section 7.4, “Job Invocation,” on page 53
Section 7.5, “Deploying Jobs,” on page 53
Section 7.6, “Starting PlateSpin Orchestrate Jobs,” on page 55
Section 7.7, “Working with Facts and Constraints,” on page 55
Section 7.8, “Using Facts in Job Scripts,” on page 58
Section 7.9, “Using Other Grid Objects,” on page 59
Section 7.10, “Communicating Through Job Events,” on page 60
Section 7.11, “Executing Local Programs,” on page 61
Section 7.12, “Logging and Debugging,” on page 63
Section 7.13, “Improving Job and Joblet Robustness,” on page 65
Section 7.14, “Using an Event Notification in a Job,” on page 66

7.1 Understanding JDL
The PlateSpin Orchestrate Grid Management system uses an embedded Python-based language for
describing jobs (called the Job Definition Language or JDL). This scripting language is used to
control the job flow, request resources, handle events and generally interact with the Grid server as
jobs proceed.

Jobs run in an environment that expects facts (information) to exist about available resources. These
facts are either set up manually through configuration or automatically discovered via discovery
jobs. Both the end-user jobs and the discovery jobs have the same structure and language. The only
difference is in how they are scheduled.

The job JDL controls the complete life cycle of the job. JDL is a scripting language, so it does not
provide compile-time type checking. There are no checks for infinite loops, although various
precautions are available to protect against runaway jobs, including job and joblet timeouts,
maximum resource consumption, quotas, and limited low-priority JDL thread execution.

As noted, the JDL language is based on the industry standard Python language, which was chosen
because of its widespread use for test script writing in QA departments, its performance, its
readability of code, and ease to learn.
Job Architecture 49

50 PlateS

novdocx (en) 13 M
ay 2009
The Python language has all the familiar looping and conditional operations as well as some
powerful operations. There are various books on the language including O’Reilly’s Python in a
Nutshell and Learning Python. Online resources are available at http://www.python.org (http://
www.python.org)

Within the Orchestrate Server and grid jobs, JDL not only adds a suite of new commands but also
provides an event-oriented programming environment. A job is notified of every state change or
activity by calling an appropriately named event handler method.

A job only defines handlers for events it is interested in. In addition to built-in events (such as,
joblet_started_event, job_completed_event, job_cancelled_event, and
job_started_event) it can define handlers for custom events caused by incoming messages. For
example, if a job (Job (page 226) class) defines a method as follows:

 def my_custom_event(self, job, params):
 print \u201cGot a my_custom event carrying ", params)

And the joblet (Joblet (page 228) class) sends an event/message as follows:

 self.sendEvent(“my_custom_evemt”, {“arg1”:”one”})

NOTE: The event being sent has to be the same name as the defined method receiving the event.

The following line is added to the job log:

 Got a my_custom event carrying arg1=”one”

JDL can also define timer events (periodic and one-time) with similar event handlers.

Each event handler can run in a separate thread for parallel execution or can be synchronized to a
single thread. A separate thread results in better performance, but also incurs the development
expense of ensuring that shared data structures are thread safe.

7.2 JDL Package
The job package consists of the following elements:

Job Description Language (JDL) code, consisting of a Python-based script containing the bits
to control jobs.
An optional policy XML file, which applies constraints and other job facts to control jobs.
Any other associated executables or data files that the job requires.

The cracker.jdl sample job, for example, includes a set of Java code that discovers the user
password in every configured agent before the Java class is run. Or, many discovery jobs, which
measure performance of Web servers or monitor any other applications, might include resource
discovery utilities that enable resource discovery.

Jobs include all of the code, policy, and data elements necessary to execute specific, predetermined
tasks administered either through the PlateSpin Orchestrate Development Client user interface or
from the command line. Because each job has specific, predefined elements, jobs can be scripted
and delivered to any agent, which ultimately can lead to automating almost any datacenter task.
pin Orchestrate 2.0 Developer Guide and Reference

http://www.python.org

novdocx (en) 13 M
ay 2009
7.2.1 .sched Files
Job packages also can contain optional XML .sched files that describe the scheduling requirements
for any job. This file defines when the job is run.

For example, jobs might be run whenever an agent starts up, which is defined in the .sched file.
The discovery job “osInfo.job” on page 32 has a schedule XML file that specifies to always run a
specified job whenever a specific resource is started and becomes available.

7.3 Job Class
The Job class is a representation of a running job instance. This class defines functions for
interacting with the server, including handling notification of job state transitions, child job
submission, managing joblets and for receiving and sending events from resources and from clients.
A job writer defines a subclass of the job class and uses the methods available on the job class for
scheduling joblets and event processing.

For more information about the methods this class uses, see Section 7.3.1, “Job State Transition
Events,” on page 51.

The following example demonstrates a job that schedules a single joblet to run on one resource:

 class Simple(Job):
 def job_started_event(self):
 self.schedule(SimpleJoblet)

 class SimpleJoblet(Joblet):
 def joblet_started_event(self):
 print "Hello from Joblet"

For the above example, the class Simple is instantiated on the server when a job is run either by
client tools or by the job scheduler. When a job transitions to the started state, the method
job_started_event is invoked. Here the job_started_event invokes the base class method
schedule() to create a single joblet and schedule the joblet to run on a resource. The
SimpleJoblet class is instantiated and run on a resource. A resource is a physical or virtual
machine on which the Orchestrator Agent is installed and running and where the Joblet code is
executed.

7.3.1 Job State Transition Events
Each job has a set of events that are invoked at the state transitions of a job. On the starting state of a
job, the job_started_event is always invoked.

The following is a list of job events that are invoked upon job state transitions:

 job_started_event
 job_completed_event
 job_cancelled_event
 job_failed_event
 job_paused_event
 job_resumed_event

The following is a list of job events that are invoked upon child job state transitions:
Job Architecture 51

52 PlateS

novdocx (en) 13 M
ay 2009
 child_job_started_event
 child_job_completed_event
 child_job_cancelled_event
 child_job_failed_event

The following is a list of provisioner events that are invoked upon provisioner state transitions:

 provisioner_completed_event
 provisioner_cancelled_event
 provisioner_failed_event

The following is a list of joblet events that are invoked as the joblet state transitions:

 joblet_started_event
 joblet_completed_event
 joblet_failed_event
 joblet_cancelled_event
 joblet_retry_event

NOTE: Only the job_started_event is required; other events are optional.

7.3.2 Handling Custom Events
A job writer can also handle and invoke custom events within a job. Events can come from clients,
other jobs, and from joblets.

The following example defines an event handler named mycustom_event in a job:

 class Simple(Job):
 def job_started_event(self):
 ...

 def mycustom_event(self,params):
 dir = params["directory_to_list"]
 self.schedule(MyJoblet,{ "dir" : dir })

In this example, the event retrieves a element from the params dictionary that is supplied to every
custom event. The dictionary is optionally filled by the caller of the event.

The following example invokes the custom event named mycustom_event from the PlateSpin
Orchestrate client command line tool:

 zos event <jobid_of_running_job> mycustom_event directory_to_list="/tmp"

In this example, a message is sent from the client tool to the job running on the server.The following
example invokes the same custom event from a joblet:

 class SimpleJoblet(Joblet):
 def joblet_started_event(self):
 ...
 self.sendEvent("mycustom_event", {"directory_to_list":"/tmp"})

In this example, a message is sent from the joblet running on a resource to the job running on the
server. The running job has access to a factset which is the aggregation of the job instance factset
(jobinstance.*), the deployed job factset (job.*, jobargs.*), the User factset (user.*), the Matrix
factset (matrix.*) and any jobargs or policy facts supplied at the time the job is started.

Fact values are retrieved using the GridObjectInfo (page 223) functions that the job class inherits.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
The following example retrieves the value of the job instance fact state.string from the jobinstance
namespace:

 class Simple(Job):
 def job_started_event(self):
 jobstate = self.getFact("jobinstance.state.string")
 print "job state=%s" % (jobstate)

For further details about each of the events above, see Section B.1, “Job Class,” on page 201.

The following example uses the joblet_started_event to determine the resource a Joblet is
running on. If you implement the joblet_started_event job method, your job is notified when a
Joblet has started execution:

1 class test(Job):
2 def job_started_event(self):
3 self.schedule(TestJoblet)
4
5 def joblet_started_event(self,jobletNum,resourceId):
6 print "joblet %d is running on %s" % (jobletNum, resourceId)
7
8 class TestJoblet(Joblet):
9 def joblet_started_event(self):
10 import time
11 time.sleep(10)

In lines 5 and 6, the joblet_started_event is notified when the instance of TestJoblet is
executing on a resource.

7.4 Job Invocation
Jobs can be started using either the zos command line tool, scheduling through a .sched file, or
manually through the PlateSpin Orchestrate Development Client. Internally, when a job is invoked,
an XML file is created. It can be deployed immediately or it can be scheduled for later deployment,
depending upon the requirements of the job.

Jobs also can be started within a job. For example, you might have a job that contains JDL code to
run a secondary job. Jobs also can be started through the Web portal.

Rather than running jobs immediately, there are many benefits to using the Job Scheduling Manager:

Higher priority jobs can be run first and jump ahead in the scheduling priority band.
Jobs can be run on the least costly node resources when accelerated performance is not as
critical.
Jobs can be run on specific types of hardware.
User classes can be defined to indicate different priority levels for running jobs.

7.5 Deploying Jobs
A job must be deployed to the Orchestrate Server before it can be run. Deployment to the server is
done in either of the following ways:

Section 7.5.1, “Using the PlateSpin Orchestrate Development Client,” on page 54
Section 7.5.2, “Using the zosadmin Command Line Tool,” on page 54
Job Architecture 53

54 PlateS

novdocx (en) 13 M
ay 2009
7.5.1 Using the PlateSpin Orchestrate Development Client
1 In the Actions menu, click Deploy Job.
2 For additional deployment details, see “Walkthrough: Deploying a Sample Job” in the

PlateSpin Orchestrate 2.0 Installation and Configuration Guide.

7.5.2 Using the zosadmin Command Line Tool
From the CLI, you can deploy a component file (.job, .jdl, .sar) or refer to a directory
containing job components.

.job files are Java jar archives containing .jdl, .policy, .sched and any other files required by
your job. A .sar file is a Java jar archive for containing multiple jobs and policies.

1 To deploy a .job file from the command line, enter the following command:
>zosadmin deploy <myjob>.job

2 To deploy a job from a directory where the directory /jobs/myjob contains .jdl, .policy,
.sched, and any other files required by your job, enter the following command:
>zosadmin deploy /jobs/myjob

Deploying from a directory is useful if you want to explode an existing job or .sar file and
redeploy the job components without putting the job back together as a .job or .sar file.

3 Copy the job file into the “hot” deploy directory by entering the following command:
>cp <install dir>/examples/whoami.job <install dir>/deploy

As part of an iterative process, you can re-deploy a job from a file or a directory again after specified
local changes are made to the job file. You can also undeploy a job out of the system if you are done
with it. Use zosadmin redeploy and zosadmin undeploy to re-deploy and undeploy jobs,
respectively.

A typical approach to designing, deploying, and running a job is as follows:

1. Identify and outline the job tasks you want the Orchestrate Server to perform.
2. Use the preconfigured JDL files for specific tasks listed in Appendix B, “PlateSpin Orchestrate

Job Classes and JDL Syntax,” on page 201.
3. To configure jobs, edit the JDL file with an external text editor.
4. Repackage the job as a .jar file.

NOTE: The job could also be packaged and sent as an “exploded” file.

5. Run the zos CLI administration tool to redeploy the packaged job into the Orchestrate Server.
6. Run the job using the zos command line tool.
7. Monitor the results of the job in the PlateSpin Orchestrate Development Client.

Another method to deploy jobs is to edit JDL files through the Orchestrate Development Client.The
development client has a text editor that enables you to make changes directly in the JDL file as it is
stored on the server ready to deploy. After changes are made and the file is saved using the
Orchestrate Development Client, you simply re-run the job without redeploying it. The procedure is
useful when you need to fix typos in the JDL file or have minor changes to make in the job
functionality.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
NOTE: Redeploying a job overwrites any job that has been previously saved on the Orchestrate
Server. The Orchestrate Development Client has a Save File menu option if you want to preserve
JDL modifications you made using the Orchestrate Development Client.

There is no way “undo” a change to a .jdl file after the JDL editor in the Orchestrate Development
Client has saved the file, nor is there a method for rolling back to a previously deployed version. We
recommend that you use an external source code control system such as CVS or SVN for version
control.

7.6 Starting PlateSpin Orchestrate Jobs
Jobs can be started by using any of the following options:

Running jobs from the zos command line (see “The zos Command Line Tool” in the PlateSpin
Orchestrate 2.0 Command Line Reference).
Running jobs from the PlateSpin Orchestrate Job Scheduler (see “The PlateSpin Orchestrate
Job Scheduler” in the PlateSpin Orchestrate 2.0 Development Client Reference).
Running jobs from Web applications (see “Using the PlateSpin Orchestrate Server Portal” in
the PlateSpin Orchestrate 2.0 Server Portal Reference).
Running jobs from within jobs (see “Using Facts in Job Scripts” on page 58).

7.7 Working with Facts and Constraints
You can incorporate facts and constraints into the custom jobs you create to manage your data center
resources using PlateSpin Orchestrate. You should already be familiar with the concepts related to
controlling jobs using job facts and constraints. For more information, see the following JDL links:

Job (page 226)
Joblet (page 228)

This section contains the following topics:

Section 7.7.1, “Grid Objects and Facts,” on page 55
Section 7.7.2, “Defining Job Elements,” on page 56
Section 7.7.3, “Job Arguments and Parameter Lists,” on page 57

7.7.1 Grid Objects and Facts
Every resource and service discovered in an PlateSpin Orchestrate-enabled network is identified and
abstracted as an object. Within the PlateSpin Orchestrate management framework, objects are stored
within an addressable database called a grid. Every grid object has an associated set of facts and
constraints that define the properties and characteristics of either physical or virtual resources.
Essentially, by building, deploying, and running jobs on the Orchestrate Server, you can individually
change the functionality of any and all system resources by managing an object’s facts and
constraints.

The components that have facts include resources, users, jobs, repositories, and vmhosts. The grid
server assigns default values to each of the component facts, although they can be changed at
anytime by the administrator (unless they are read-only).
Job Architecture 55

56 PlateS

novdocx (en) 13 M
ay 2009
However, the developer wants certain constraints to be used for a job and might specify these in the
policy. These comprise a set of logical clauses and operators that are compared with the respective
component’s fact values when the job is run by the Job Scheduling Manager.

Remember, all properties appear in the job context, which is an environment where constraints are
evaluated. These constraints provide a multilevel filter for a job in order to ensure the best quality of
service the grid can provide.

7.7.2 Defining Job Elements
When you deploy a job, you can include an XML policy file that defines constraints and facts.
Because every job is a grid object with its own associated set of facts (job.id, etc.), it already has a
set of predefined facts, so jobs can also be controlled by changing job arguments at run time.

As a job writer, you define the set of job arguments in the job args fact space. Your goal in writing
a job is to define the specific elements a job user is permitted to change. These job argument facts
are defined in the job XML policy for every given job.

The job argument fact values are passed to a job when the job is run. Consequently, the Orchestrate
Server run command passes in the job arguments. Similarly, for the job scheduler, you can define
which job arguments you want to schedule or run a job. You can also specify job arguments when
using the Server Portal.

For example, in the following quickie.job example, the number of joblets allowed to run and the
amount of sleep time between running joblets are set by the arguments numJoblets and sleeptime
as defined in the policy file for the job. If no job arguments are defined, the client cannot affect the
job:

...
 # Launch the joblets
 numJoblets = self.getFact("jobargs.numJoblets")
 print 'Launching ', numJoblets, ' joblets'

 self.schedule(quickieJoblet, numJoblets)

class quickieJoblet(Joblet):

 def joblet_started_event(self):
 sleeptime = self.getFact("jobargs.sleeptime")
time.sleep(sleeptime)

To view the complete example, see quickie.job (page 121).

As noted, when running a job, you can pass in a policy file, which is another method the client can
use to control job behavior. Policy files can pass in additional constraints to the job, such as how a
resource might be selected or how the job runs. The policy file is an XML file defined with the
.policy extension.

For example, as shown below, you can pass in a policy for the job named quickie, with an
additional constraint to limit the chosen resources to those with a Linux OS. Suppose a policy file
name linux.policy in the directory named /mypolicies with this content:

<constraint type="resource"> <eq fact="resource.os.family" value="linux" /
></constraint>

To start the quickie job using the additional policy, you would enter the following command:
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
>zos run quickie --policyfile=/mypolicies/linux.policy

Creating Constraints Outside of the Constraint Evaluation

When you create constraints, it is sometimes useful to access facts on a Grid object that is not in the
context of the constraint evaluation. An example scenario would be to sequence the running of jobs
triggered by the Job Scheduler.

In this example, you need to make job2 run only when all instances of job1 are complete. To do
this, you could add the following start constraint to the job2 definition:

<constraint type="start">
 <eq fact="job[job1].instances.active" value="0"/>
</constraint>

Here, the job in the context is job2, however the facts on job1 (instances.active) can still be
accessed. The general form of the fact name is:

<grid_object_type>[<grid_object_name>].rest.of.fact.space

PlateSpin Orchestrate supports specific Grid object access for the following grid objects

Users
Jobs
Resources
VMHosts
Repositories

Currently, explicit group access is not supported.

7.7.3 Job Arguments and Parameter Lists
Part of a job’s static definition might include job arguments. A job argument defines what values can
be passed in when a job is invoked. This allows the developer to statically define and control how a
job behaves, while the administrator can modify policy values.

You define job arguments in an XML policy file named with the same base name as the job. The
example job cracker.jdl, for example, has an associated policy file named cracker.policy. The
cracker.policy file contains entries for the <jobargs> namespace, as shown in the following
partial example from cracker.policy.

 <jobargs>
 <fact name="cryptpw"
 type="String"
 description="Password of abc"
 value="4B3lzcNG/Yx7E"
 />
 <fact name="joblets"
 type="Integer"
 description="joblets to run"
 value="100"
 />
 </jobargs>
Job Architecture 57

58 PlateS

novdocx (en) 13 M
ay 2009
The above policy defines two facts in the jobargs namespace for the cracker job. One is a String
fact named cryptpw with a default value. The second jobargs fact is an integer named joblets.
Both of these facts have default values so they do not require been set on job invocation. If the
default value was omitted, then job would require that the two facts be set on job invocation. The job
will not start unless all required job argument facts are supplied at job invocation. The default values
of job argument facts can be overridden at job invocation. Job arguments are passed to a job when
the job is invoked. This is done in one of the following ways:

From the Orchestrate Server run command from the CLI, as shown in the following example:

>zos run cracker cryptpw="dkslsl"

From within a JDL job script when invoking a child job, as shown in the following job JDL
fragment:
self.runjob("cracker", { "cryptpw" : "asdfa" })

From the Job Scheduler, either with the Orchestrate Development Client or by a .sched file.

7.8 Using Facts in Job Scripts
This section contains the following information:

Section 7.8.1, “Fact Values,” on page 58
Section 7.8.2, “Fact Operations in the Joblet Class,” on page 59
Section 7.8.3, “Using the Policy Debugger to View Facts,” on page 59

7.8.1 Fact Values
Facts can be retrieved, compared against, and written to (if not read-only) from within jobs. Every
grid object has a set of accessor and setter JDL functions. For example, to retrieve the cryptpw job
argument fact in the job example listed in “Job Arguments and Parameter Lists” on page 57, you
would write the following JDL code:

1 def job_started_event(self):
2 pw = self.getFact("jobargs.cryptpw")

In line 2, the function getFact() retrieves the value of the job argument fact. getFact() is
invoked on the job instance Grid object.

The following set of JDL grid object functions retrieve facts:

getFact()
factExists()
getFactLastModified()
getFactNames()

The following set of JDL grid object functions modify fact values (if they are not read-only) and
remove facts (if they are not deleteable):

setFact
setDateFact
setTimeFact
setArrayFact
setBooleanArrayFact
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
setDateArrayFact
setIntegerArrayFact
setTimeArrayFact
setStringArrayFact
deleteFact

For more complete information on these fact values, see GridObjectInfo (page 223).

7.8.2 Fact Operations in the Joblet Class
Each Joblet is also a Grid object with its own set of well known facts. These facts are listed in
Section B.2, “Joblet Class,” on page 201. An instance of the Joblet class runs on the resource. The
Joblet instance on the resource has access to the fact set of the resource where it is running. The
resource fact set has no meaning outside of this execution context, because the Joblet can be
scheduled to run on any of the resources that match the resource and allocation constraints.

For example, using the cracker job example shown in Section 7.7.3, “Job Arguments and
Parameter Lists,” on page 57, you would write the following JDL code to retrieve the cryptpw job
argument fact, the OS family fact for the resource, the Job instanceID fact, and the joblet number:

1 class CrackerJoblet(Joblet):
2 def joblet_started_event(self):
3 pw = self.getFact("jobargs.cryptpw")
4 osfamily = self.getFact("resource.os.family")
5 jobid = self.getFact("jobinstance.id")
6 jobletnum = self.getFact("joblet.number")

In line 3, the function getFact() retrieves the value of the job argument fact. getFact() is
invoked on the joblet instance grid object. In line 4, the resource.os.family fact is retrieved for
the resource where the Joblet is being executed. This varies, depending on which resource the Joblet
is scheduled to run on. In line 5, the IDfact for the job instance is retrieved. This changes for every
job instance. In line 6, the joblet index number for this joblet instance is returned. The index is 0
based.

7.8.3 Using the Policy Debugger to View Facts
The Policy Debugger page of the PlateSpin Orchestrate Development Client provides a table view
of all facts in a running or completed job instance. This view includes the Job instance facts
(jobinstance.* namespace) and the facts from the job context.After you select the Policy
Debugger tab in the Job Monitor view, the right side panel displays this fact table. For more
information, see “The Policy Debugger” in the PlateSpin Orchestrate 2.0 Development Client
Reference.

7.9 Using Other Grid Objects
Grid objects can be created and retrieved using jobs. This is done when facts from other objects are
needed for job decision processing or when joblets are executed on a resource.

The MatrixInfo (page 235) Grid object represents the system and from the MatrixInfo object, you
can retrieve other grid objects in the system. For example, to retrieve the resource grid object named
webserver and a fact named resource.id from this object, you would enter the following JDL
code:
Job Architecture 59

60 PlateS

novdocx (en) 13 M
ay 2009
 webserver = getMatrix().getGridObject(TYPE_RESOURCE,"webserver")
 id = webserver.getFact("resource.id")

In Line 1, the ResourceInfo Grid object for webserver is retrieved. The getMatrix() built-in
function retrieves the MatrixInfo object instance. getGridObject() is a method on the
MatrixInfo class. In Line 2, the fact value for the resource fact resource.id is retrieved.

The MatrixInfo Grid object also provides functions for creating other Grid objects. For more
complete information about these functions, see MatrixInfo (page 235).

The MatrixInfo object can be used in both Job and Joblet classes. In the Joblet class,
MatrixInfo cannot create new Grid objects. If your job is required to create Grid objects, you must
use MatrixInfo in the Job class.

7.10 Communicating Through Job Events
JDL events are how the server communicates job state transitions to your job. The required
job_started_event is always invoked when the job transitions to the starting state.

Likewise, all the other state transitions have JDL equivalents that can be optionally implemented in
your job. For example, the joblet_completed_event is invoked when a joblet has transitioned to
completed. You could implement joblet_completed_event to launch another job or joblet or
send a custom event to a Client, another job, or another joblet.

You can also use your own custom events for communicating between Client, job, child jobs and
joblets.

Every partition of a job (client, job, joblet, child jobs) can communicate directly or indirectly with
any other partition of a job by using Events. Events are messages that are communicated to each of
the job partitions. For example, a joblet running on a resource can send an event to the job portion
running on the server to communicate the completion of a stage of operation.

A job can send an event to a Java Client signalling a stage completion or just to send a log message
to display in a client GUI.

Every event carries a dictionary as a payload. You can put any key/values you want to fulfill the
requirements of your communication. The dictionary can be empty.

For more information about events are invoked at the state transitions of a job, see Job (page 226)
and Section B.7, “Joblet State Values,” on page 204.

7.10.1 Sending and Receiving Events
To send an event from a joblet to a job running on a server, you would input the following:

1 The portion in the joblet JDL to send the event:
self.sendEvent("myevent", { "message": "hello from joblet" })

2 The portion in job JDL to receive the event:
def myevent(self,params):
 print "hello from myevent. params=",params

To send an event from a job running on the server to a client, you would input the following:
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
self.sendClientEvent("notifyClient", { "log" : "Web server installation
completed" })

In your Java client, you must implement AgentListener and check for an Event message.

For testing, you can use the zos run ... --listen option to print events from the server.For
additional details about the sendEvent() and sendClientEvent() methods in the Job (page 226)
and Joblet (page 228) documentation.

7.10.2 Synchronization
By default, no synchronization occurs on job events. However, synchronization is necessary when
you update the same grid objects from multiple events.

In that case, you must put a synchronization wrapper around the critical section you want to protect.
The following JDL script is how this is done:

1 import synchronize
2 def objects_discovered_event(self, params):
3 print "hello"
4 objects_discovered_event =
synchronize.make_synchronized(objects_discovered_event)

Line 1 specifies to use the synchronization wrapper, which requires you to import the synchronize
package.

Lines 2 and 3 provide the normal definition to an event in your job, while line 4 wraps the function
definition with a synchronized wrapper.

7.11 Executing Local Programs
Running local programs is one of the main reasons for scheduling joblets on resources. Although
you are not allowed to run local programs on the server side job portion of JDL, there are two ways
to run local programs in a joblet:

1 Use the built-in system() function.
This function is used for simple executions requiring no output or process handling. It simply
runs the supplied string as a shell command on the resource and writes stdout and stderr to
the job log.

2 Use the Exec JDL class.
The Exec class provides flexibility in how to invoke executables, to process the output, and to
manage the process once running. There is provision for controlling stdin, stdout, and
stderr values. stdout and stderr can be redirected to a file, to the job log, or to a stream
object.
Exec provides control of how the local program is run. You can choose to run as the agent user
or the job user. The default is to run as the job user, but fallback to agent user if the job user
does not exist on the resource.
For more information, see Exec (page 219).
Job Architecture 61

62 PlateS

novdocx (en) 13 M
ay 2009
7.11.1 Output Handling
The Exec (page 219) function provides controls for specifying how to handle stdout out stderr.
By default, Exec discards the output.

The following example runs a program that directs stdout and stderr to the job log:

 e = Exec()
 e.setShellCommand(cmd)
 e.writeStdoutToLog()
 e.writeStderrToLog()
 e.execute()

The following example runs a program that directs stdout and stderr to files and opens the
stdout file if there is no error in execution:

 e = Exec()
 e.setCommand("ps -aef")
 e.setStdoutFile("/tmp/ps.out")
 e.setStderrFile("/tmp/ps.err")
 result = e.execute()
 if result == 0:
 output = open("/tmp/ps.out").read()
 print output

7.11.2 Local Users
You can choose to run local programs and have file operations done as the agent user or the job user.
The default is to run as the job user, but fallback to agent user if the job user does not exist on the
resource. These controls are specified on the job. The job.joblet.runtype fact specifies how file and
executable operations run in the joblet in behalf of the job user, or not.

The choices for job.joblet.runtype are defined in the following table:

Table 7-1 Job Run Type Values

Option Description

RunAsJobUserFallingBackToNodeUser Default. This means if the job user exists as a user on the
resource, then executable and file operations is done on
behalf of that user. By falling back, this means that if the job
user does not exist, the agent will still execute the joblet
executable and file operation as the agent user. If the
executable or file operation still has a permission failure, then
the agent user is not allowed to run the local program or do
the file operation.

RunOnlyAsJobUser This means resource can only run the executable or file
operation as the job user and will fail immediately if the job
user does not exist on the resource. You want to use this
mode of operation if you wish to strictly enforce execution and
file ownership. You must have your resource setup with NIS or
other naming scheme so that your users will exist on the
resource.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
There is also a fact on the resource grid object that can override the job.joblet.runtype fact. The

fact resource.agent.config.exec.asagentuseronly on the resource grid object can overwrite
the job.joblet.runtype fact.

This ability to run as the job user is supported by the enhanced exec feature of the Orchestrate
Agent. A resource might not support PlateSpin Orchestrate enhanced execution of running as job
users. If the capability is not supported, the fact resource.agent.config.exec.enhancedused is
False. This fact is provided so you can create a resource or allocation constraint to exclude such a
resource if your grid mixes resource with/without the enhanced exec support and your job requires
enhanced exec capabilities.

7.11.3 Safety and Failure Handling
An exception in JDL will fail the job. By default, an exception in the joblet will fail the joblet. The
job.joblet.* facts provide controls on how many times a failure will fail the joblet. For more
information, see Section 7.13, “Improving Job and Joblet Robustness,” on page 65.

 try :
 < JDL >
 except:
 exc_type, exc_value, exc_traceback = sys.exc_info()
 print "Exception:", exc_type, exc_value

JDL also provides the fail() function on the Job and Joblet class for failing a job and joblet. The
fail() function takes an optional reason message.

You would use fail() when you detect an error condition and wish to end the job or joblet
immediately. Usage of the joblet fail() fails the currently running instance of the joblet. The actual
failed state of the joblet occurs when the maximum number of retries has been reached.

7.12 Logging and Debugging
The following sections show some examples how jobs can be logged and debugged:

Section 7.12.1, “Creating a Job Memo,” on page 63
Section 7.12.2, “Tracing,” on page 65

7.12.1 Creating a Job Memo
The following job example shows logExample.jdl output inthe JDL editor of the Orchestrate
Development Client.

RunOnlyAsNodeUser This means the resource will only run executables and do file
operations as the agent user.

Option Description
Job Architecture 63

64 PlateS

novdocx (en) 13 M
ay 2009
Figure 7-1 Example Job Displayed in the JDL Editor of the Development Client

In the job section of this example (lines 7-17), the fact jobinstance.memo (line 14) is set by the job
instance.The job log text is emitted on line 11. Both of those are visible in the following example.

Figure 7-2 Example Displaying the jobinstance.memo Fact and Job Log Text in the Jobs Monitor View of the
Development Client

In the joblet section of this example (lines 24-29), the fact named joblet.memo (line 27) is set by
the joblet instance and consists of a brief memo for each joblet. This is typically used for providing
detailed explanations, such as the name of the executable being run.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
The name of the joblet is specified by the fact named joblet.instancename (line 28). This is
typically a simple word displayed in the Development Client joblet column view. The following
example shows the joblet facts joblet.memo and joblet.instancename in the Development
Client.

Figure 7-3 Example of Joblet Facts Displayed in the Development Client

7.12.2 Tracing
There are two facts on the job grid object to turn tracing on or off. The tracing fact writes a message
to the job log when a job and/or joblet event is entered and exited.The facts are job.tracing and
job.joblet.tracing. You can turn these on using the Orchestrate Development Client or you can
use the zos run command tool.

7.13 Improving Job and Joblet Robustness
The job and joblet grid objects provide several facts for controlling the robustness of job and joblet
operation.

The default setting of these facts is to fail the job on first error, since failures are typical during the
development phase. Depending on your job requirements, you adjust the retry maximum on the fact
to enable your joblets either to failover or to retry.

The fact job.joblet.maxretry defaults to 0, which means the joblet is not retried. On first failure,
the joblet is considered failed. This, in turn, fails the job. However, after you have written and tested
your job, you should introduce fault tolerance to the joblet.

For example, suppose you know that your resource application might occasionally timeout due to
network or other resource problems. Therefore, you might want to introduce the following behavior
by setting facts appropriately:

On timeout of 60 seconds, retry the joblet.
Retry a maximum of two times. This may cause a retry on another resource matching your
resource and allocation constraints.
On the third timeout, fail the joblet.
Job Architecture 65

66 PlateS

novdocx (en) 13 M
ay 2009
To configure this setup, you use the following facts in either the job policy (using the Orchestrate
Development Client to edit the facts directly) or within the job itself:

 job.joblet.timeout set to 60 job.joblet.maxretry set to 2

In addition to timeout, there are different kinds of joblet failures for which you can set the maximum
retry. There are forced (job errors) and unforced connection errors. For example, an error condition
detected by the JDL code (forced) might require more retries than a network error, which might
cause resource disconnections. In the connection failure case, you might want to lower the retry
limit because you probably do not want a badly setup resource with connection problems to keep
retrying and getting work.

7.14 Using an Event Notification in a Job
Jobs can be notified of a PlateSpin Orchestrate event in two ways.

A running Job can subscribe to receive PlateSpin Orchestrate event notifications. (See
Section 7.14.1, “Receiving Event Notifications in a Running Job,” on page 66)
A Job can be scheduled to start upon an Event notification.
For more information about job scheduling, see Chapter 8, “Job Scheduling,” on page 71 or
“The PlateSpin Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.0 Development
Client Reference.

7.14.1 Receiving Event Notifications in a Running Job
“Subscribe” on page 66
“Unsubscribe” on page 67
“Callback Method Signature” on page 67
“How an Event Notification Can Start a Job” on page 67

Subscribe

For a job to receive notifications, a job subscribes to an event and must remain running for the
notification to occur.

How to subscribe to an event is accomplished using the subscribeToEvent() Job method, shown
below:

 def subscribeToEvent(<event Name>, <Job callback method>)

In this method, <event name> is the string name of the event being subscribed to; <Job callback
method> is the reference to a Job method. Joblets and globals are not supported.

Example: The following is an example of the subscribeToEvent() method.

 self.subscribeToEvent("vmhost" ,self.eventHandler)

In this example, vmhost is the name of the event and self.eventHandler is a reference to the
callback method.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Unsubscribe

To unsubscribe, use the unscribeFromEvent() Job method. For the subscribe example shown
above, the following is how to unsubscribe.

 self.unsubscribeFromEvent("vmhost",self.eventHandler)

Callback Method Signature

 def <Job callback method>(self, context):

The callback method must be a Job method. The context argument is a dictionary containing name/
value pairs. The dictionary contents passed to the callback vary depending on the event type.

Example: The following is an example of the callback method.

 def eventHandler(self,context):

In this method, context is the required dictionary argument passed to every callback. The contents
of the dictionary vary depending on event type (for details, see Section 7.14.2, “Event Types,” on
page 68).

How an Event Notification Can Start a Job

You can create a schedule using the Job Scheduler or deploy a .sched file to start a job on an event
notification. For more information, see Chapter 8, “Job Scheduling,” on page 71 or “The PlateSpin
Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.0 Development Client Reference.

The job to be started must match a required job argument signature where the job must define at
least one job argument.

The required job argument must be called “context” and be of type Dictionary. The contents of the
dictionary vary depending on event type (refer to "Event Types " below for details).

The contents of EventResponse.jdl is an example of a job and policy that can be scheduled on an
event notification:

1class EventResponse(Job):
2
3 def job_started_event(self):
4 context = self.getFact("jobargs.context")
5
6 print "Context:"
7 keys = context.keys()
8 keys.sort()
9 for k in keys:
10 v = context[k]
11 print " key(%s) type(%s) value(%s)" % (k,type(v),str(v))

Line 4: This line pulls out the job argument for the event context.

Lines 6-11: These lines print out the contents of the context dictionary.

The contents of EventResponse.policy are shown below:
Job Architecture 67

68 PlateS

novdocx (en) 13 M
ay 2009
1<policy>
2 <jobargs>
3 <fact name="context" type="Dictionary"
4 description="Dictionary containing the context for the event " />
5 </jobargs>
6</policy>

Lines 3-4: These lines define the required job argument containing the Event context. The running
job receives the job argument named context with the dictionary completed by the PlateSpin
Orchestrate Event Manager with the context that matches the trigger rules.

7.14.2 Event Types
“Event Objects” on page 68
“Built-in Events” on page 69

Event Objects

Event objects are defined in an XML document and deployed to a server and managed using the
Orchestrate Development Client. In the Development Client, these objects are shown in the tree
view.

The callback method context argument dictionary contains every grid object type and a value or list
of values. The dictionary depends on the event XML definition and the matching grid objects of the
<trigger> rule.

The following example event file (vmhost.event) shows the contents of the dictionary that will be
passed as either a jobarg to a job to be scheduled to start, or as a argument to an event callback for a
running job.

1<event>
2
3 <context>
4 <vmhost />
5 <user>zosSystem</user>
6 </context>
7
8 <trigger>
9 <gt fact="vmhost.resource.loadaverage" value="2" />
10 </trigger>
11
12</event>

Lines 3-6: Define the context for the Event object.

Line 4: Defines the match for the trigger rule that iterates over all vmhosts.

Line 5: Defines the context, and contains the user grid object named zosSystem.

Assuming that there are 10 vmhosts named "vmhost1, vmhost2, ... vmhost10, but only the first
three vmhosts match the trigger rule, the context includse a list of the matching vmhosts. In this
case, the context dictionary contains the following:
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
 {
1 "vmhost" : ["vmhost1", "vmhost2", "vmhost3"],
2 "user" : "zosSystem",
3 "repository" : "" ,
4 "resource" : "",
5 "job" : ""
 }

Line 1: List of the matching VM Hosts that passed the <trigger> rule.

Line 2: The user object that is defined in the <context> XML. In this case, zosSystem.

Lines 3-5: These grid objects are not defined in the context. Their value is empty.

In this example, the dictionary is passed as a job argument to a scheduled job that triggers on the
event or is passed to a callback method in a running job that has subscribed to the event.

Built-in Events

Built-in events occur when a managed object comes online or offline or when that object has a
health status change. For built-in events, the dictionary contains the name of the grid object type.
The value is the name of the grid object.

The PlateSpin Orchestrate built-in events are named as follows:

RESOURCE_ONLINE

RESOURCE_NEEDS_UPGRADE

USER_ONLINE

RESOURCE_HEALTH

USER_HEALTH

VMHOST_HEALTH

REPOSITORY_HEALTH

For example, when the resource xen1 comes online, the built-in event called RESOURCE_ONLINE is
invoked. Any scheduled jobs are started and any running jobs that have subscribed are invoked. The
context dictionary contains the following:

 {
 "resource" : "xen1"
 }

The dictionary shown above is passed as a job argument to a scheduled job that triggers on the event
or that is passed to a callback method in a running job that has subscribed to the event.
Job Architecture 69

70 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

8
novdocx (en) 13 M

ay 2009
8Job Scheduling

PlateSpin® Orchestrate from Novell® schedules jobs either start manually using the Job Scheduler
or to start programatically using the Job Description Language (JDL). This section contains the
following topics:

Section 8.1, “The PlateSpin Orchestrate Job Scheduler Interface,” on page 71
Section 8.2, “Schedule and Trigger Files,” on page 72
Section 8.3, “Scheduling with Constraints,” on page 75

8.1 The PlateSpin Orchestrate Job Scheduler
Interface
After PlateSpin Orchestrate is enabled with a license, users have access to a built-in job Scheduler.
This GUI interface allows jobs to be started periodically based upon user scheduling or when
various system or user-defined events occur.

The following figure illustrates the Job Scheduler, with seven jobs staged in the main Scheduler
panel.

Figure 8-1 The PlateSpin Orchestrate Scheduler GUI

Jobs are individually submitted and managed using the Job Scheduler as discussed in “The
PlateSpin Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.0 Development Client
Reference and in “Using the PlateSpin Orchestrate Server Portal” in the PlateSpin Orchestrate 2.0
Server Portal Reference.
Job Scheduling 71

72 PlateS

novdocx (en) 13 M
ay 2009
8.2 Schedule and Trigger Files
In addition to using the Job Scheduler GUI, developers can also write XML files to schedule and
trigger jobs to run when triggered by specific events. These files are designated using the .sched
and .trig extensions. and can be included as part of the job archive file (.job) or deployed
separately.

Everything that you do manually in the Job Scheduler can be automated by creating a .sched or
.trig XML script as part of a job. The XML files enable you to package system and job scheduling
logic without using the GUI. This includes setting up cron triggers (for example, running a job at
specified intervals) and other triggers that respond to built-in system events, such as resource
startup, user startup (that is, login), or user-defined events that trigger on a rule.

For example, the osInfo discovery job, which probes a resource for its operating system
information, is packaged with a schedule file, as shown in the “Schedule File Examples” on page 72.
See also Section 8.2.2, “Trigger File XML Examples,” on page 73.

This section includes the following information:

Section 8.2.1, “Schedule File Examples,” on page 72
Section 8.2.2, “Trigger File XML Examples,” on page 73

8.2.1 Schedule File Examples
A schedule file (.sched) can be packaged either within a .job archive alongside the .jdl file or
independently deployed using the zosadmin command line utility. Because the XML file defines the
job schedule programatically outside of the Orchestrate Development Client, packaging these scripts
into jobs is typically a developer task.

This section includes the following information:

“Schedule File Example: osInfo.sched” on page 72
“Schedule File Example: Multiple Triggers” on page 73

Schedule File Example: osInfo.sched

The osinfo.sched file is packaged with the osInfo discovery job, which is deployed as part of the
base server. Its purpose is to trigger a run of the osInfo job on a resource when the resource comes
on line as it logs into the server.

The following shows the syntax of the schedule file that wraps the job:

1 <schedule name="osInfo" description="Discover OS info on resources."
active="true">
2 <runjob job="osInfo" user="zosSystem" priority="high" />
3 <triggers>
4 <trigger name="RESOURCE_ONLINE" />
5 </triggers>
6 </schedule>

Line 1: Defines a new schedule named osinfo, which is used to schedule a run of the job osInfo.
If the job (in this case, osinfo) is not deployed, the deployment returns a “Job is not deployed”
error.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Line 2: Instructs the schedule to run the named job (osinfo) by the named user (zosSystem) using
a defined priority (high). If the user (in this case, zosSystem) does not exist, the deployment returns
a “...” error.

NOTE: Only the PlateSpin Orchestrate users belonging to the administrator group can assign
priorities higher than medium. Assigning a higher priority than specified by the
user.priority.max fact defaults to a priority equal to user.priority.max when the job runs.

Line 3-5: Defines the triggers (in this case only one trigger, an event, RESOURCE_ONLINE) that
initiates the job.

Schedule File Example: Multiple Triggers

A schedule can include one or more triggers. The following example shows the syntax of a schedule
file that has two cron triggers for scheduling a job:

1 <schedule name="ReportTwice" active="true">
2 <runjob job="jobargs" user="JohnD" priority="medium" />
3 <triggers>
4 <trigger name="DailyReportTrigger" />
5 <trigger name="NightlyReportTrigger" />
6 </triggers>
7 </schedule>

Line 1: Defines the schedule name, deployed condition, and description (if any).

Line 2: Instructs the schedule to run the named job (jobargs) by the named user (JohnD) using a
defined priority (medium).

Lines 3-6: Defines the triggers (in this case two occurring time triggers) that initiate the job.

8.2.2 Trigger File XML Examples
Trigger files define when a job and how often schedule fires. This can happen when a defined event
occurs, when a defined amount of time passes, or when a given point in time is reached. so that one
or more triggers can be associated with a job schedule (.sched). You can create these triggers
yourself in XML format and deploy them, or you can edit and choose them in the Job Scheduler,
which automatically deploys them. This section includes examples to show you the syntax of
different trigger files.

“XML Example: Event Trigger” on page 73
“XML Example: Interval Time Trigger” on page 74
“XML Example: Cron Expression Trigger” on page 74

 XML Example: Event Trigger

An event trigger starts a job when a defined event occurs. Several built-in event triggers (such as
events that occur when a managed object comes online or offline or has a health status change) are
available in the Trigger chooser of the Job Scheduler along with any user-defined Events:

RESOURCE_ONLINE

RESOURCE_OFFLINE

USER_ONLINE
Job Scheduling 73

74 PlateS

novdocx (en) 13 M
ay 2009
USER_OFFLINE

RESOURCE_HEALTH

USER_HEALTH

VMHOST_HEALTH

REPOSITORY_HEALTH

When deployed as triggers in a schedule, built-in events do not generate a .trig file, as other
triggers do.

You can also associate an Event object with a job schedule (see “Event Triggers” in “The PlateSpin
Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.0 Development Client Reference). You
can define an Event object in an XML document, deploy it to a server, and then manage it with the
PlateSpin Orchestrate Development Client.

The following example, PowerOutage.trig shows the XML format for a trigger that references an
event object.

1 <trigger name="PowerOutage" description="Fires when UPS starts at power
outage">
2 <event value="UPS_interrupt"/>
3 </trigger>

Line 1: Defines the trigger name and description.

Line 2: Defines the event object chosen for the trigger.

For more information about events, see Section 7.14, “Using an Event Notification in a Job,” on
page 66.

XML Example: Interval Time Trigger

The following example, EveryMin1Hr.trig shows the XML format for a trigger that uses the
system clock to define (in seconds) how soon the schedule is to start, how often the schedule is to
repeat, and how many times the schedule is to be repeated:

1 <trigger name="EveryMin1Hr" description="Fires every minute for one hour">
2 <interval startin="600" interval="60" repeat="60"/>
3 </trigger>

Line 1: Defines the trigger name and description.

Lines 2-3: Defines how soon the schedule is to start, how often the schedule is to repeat, and how
many times the schedule is to be repeated

XML Example: Cron Expression Trigger

The following example, NoonDaily.trig shows the XML format for a trigger that uses a Quartz
Cron expression to precisely define when an event is to fire.

1 <trigger name="NoonDaily" description="Fires every day at noon">
2 <cron value="0 0 12 * * ?"/>
3 </trigger>

Line 1: Defines the trigger name and description.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Lines 2-3: Defines the cron expression to be used by the schedule. Cron expressions are used to
precisely define the future point in time when the schedule is to fires. For more information, see
“Understanding Cron Syntax in the Job Scheduler” in “The PlateSpin Orchestrate Job Scheduler” in
the PlateSpin Orchestrate 2.0 Development Client Reference.

8.3 Scheduling with Constraints
The constraint specification of the policies is comprised of a set of logical clauses and operators that
compare property names and values. The grid server defines most of these properties, but they can
also be arbitrarily extended by the user/developer.

All properties appear in the job context, which is an environment where constraints are evaluated.
Compound clauses can be created by logical concatenation of earlier clauses. A rich set of
constraints can thus be written in the policies to describe the needs of a particular job. However, this
is only part of the picture.

Constraints can also be set by an administrator via deployed policies, and additional constraints can
be specified by jobs to further restrict a particular job instance. The figure below shows the complete
process employed by the Orchestrate Server to constrain and schedule jobs.

When a user issues a work request, the user facts (user.* facts) and job facts (job.* facts) are added
to the job context. The server also makes all available resource facts (resource.* facts) visible by
reference. This set of properties creates an environment in which constraints can be executed. The
scheduler applies a logic ANDing of job constraints (specified in the policies), grid policy
constraints (set on the server), optionally additional user defined constraints specified on job
submission, and optional constraints specified by the resources.

This procedure results in a list of matching resources. The PlateSpin Orchestrate solution returns
three lists:

Available resources
Pre-emptable resources (nodes running lower priority jobs that could be suspended)
Resources that could be “stolen” (nodes running lower-priority jobs that could be killed)

These lists are then passed to the resource allocation logic where, given the possible resources, the
ordered list of desired resources is returned together with information on the minimum acceptable
allocation. The scheduler uses this information to appropriate resources for all jobs within the same
priority group. Because the scheduler is continually re-evaluating the allocation of resources, the job
policies forms part of the schedulers real-time algorithm, thus providing an extremely versatile and
powerful scheduling mechanism.
Job Scheduling 75

76 PlateS

novdocx (en) 13 M
ay 2009
Figure 8-2 Job Scheduling Priority

Although job scheduling might appear complex, it is very easy to use for an end user. For example,
a job developer might write just a few lines of policy code to describe a job to require a node with a
x86 machine, greater than 512 MB of memory, and a resource allocation strategy of minimizing
execution time. Below is an example.

 <constraint type=”resource”>
 <and>
 <eq fact="cpu.architecture" value="x86" />
 <gt fact="memory.physical.total" value="512" />
 </and>
 </constraint>
pin Orchestrate 2.0 Developer Guide and Reference

9
novdocx (en) 13 M

ay 2009
9Virtual Machine Job Development

This section explains the following concepts related to developing virtual machine (VM)
management jobs with PlateSpin® Orchestrate:

Section 9.1, “VM Job Best Practices,” on page 77
Section 9.2, “Virtual Machine Management,” on page 79
Section 9.3, “VM Life Cycle Management,” on page 80
Section 9.4, “Manual Management of a VM Lifecycle,” on page 80
Section 9.5, “Provisioning Virtual Machines,” on page 82
Section 9.6, “Automatically Provisioning a VM,” on page 87
Section 9.7, “Defining Values for Grid Objects,” on page 88

9.1 VM Job Best Practices
This section discusses some of VM job architecture best practices to help you understand and get
started developing VM jobs:

Section 9.1.1, “Plan Robust Application Starts and Stops,” on page 77
Section 9.1.2, “Managing VM Systems,” on page 78
Section 9.1.3, “Managing VM Images,” on page 78
Section 9.1.4, “Managing VM Hypervisors,” on page 78
Section 9.1.5, “VM Job Considerations,” on page 78

9.1.1 Plan Robust Application Starts and Stops
An application is required for a service, and a VM is provisioned on its behalf. As part of the
provisioning process, the VM’s OS typically must be prepared for specific work; for example, NAS
mounts, configuration, and other tasks. The application might also need customizing, such as
configuring file transfer profiles, client/server relationships, and other tasks.

Then, the application is started and its “identity” (IP address, instance name, and other identifying
characteristics) might need to be transferred to other application instances in the service, or a load
balancer).

If the Orchestrate Server loses the job/joblet communication state machine, such as when a server
failover or job timeout occurs, all of the state information must be able to be recovered from “facts”
that are associated with the server. This kind of job should also work in a disaster recovery mode, so
it should be implemented in jobs regularly when relevant services from Data Center A must be
started in Data Center B in a DR case. These jobs require special precautions.
Virtual Machine Job Development 77

78 PlateS

novdocx (en) 13 M
ay 2009
9.1.2 Managing VM Systems
A series of VMs must typically be provisioned in order to run system-wide maintenance tasks.
Because there might not be enough resources to bring up every VM simultaneously, you might
consider running discovery jobs to limit how many resources (RAM, cores, etc.) that can be used at
any given time. Then, you should consider running a task that writes a consolidated audit trail.

9.1.3 Managing VM Images
Similar to how the job installagent searches for virtual machine grid objects using specified
Constraints and runs a VM operation (installAgent) on the VMs that are returned, a PlateSpin
Orchestrate image must be modified when the VM is not running. Preferably, this should occur
without having to provision the VM itself.

9.1.4 Managing VM Hypervisors
The management engine (“hypervisor”) underlying the host server must be “managed” while a VM
is running. For example, VM memory or CPU parameters must be adjusted on behalf of a
monitoring job or a Development Client action.

9.1.5 VM Job Considerations
In some instances, some managed resources might host VMs that do not contain an Orchestrate
Agent. Such VMs can only be controlled by administrators interacting directly with them.

Long-running VMs can be modified or migrated while the job managing the VM is not actively
interacting with it. If you have one joblet running on the container and one inside the VM, that
relationship might have to be re-established.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
9.2 Virtual Machine Management
The PlateSpin Orchestrate provisioning manager provides the ability to manage the use of virtual
machines, as shown in the following figure:

Figure 9-1 VM Management

For more information about managing virtual machines, see the PlateSpin Orchestrate 2.0 VM
Client Guide and Reference.

While PlateSpin Orchestrate enables you manage many aspects of your virtual environment, as a
developer, you can create custom jobs that do the following tasks:

Create and clone VMs: These jobs Creates virtual machine images to be stored or deployed.
They also create templates for building images to be stored or deployed (see “VM Instance:” on
page 83 and “VM Template:” on page 83).
Discover resources that can be used as VM hosts.
Provision, migrate, and move VMs: Virtual machine images can be moved from one physical
machine to another.
Provide checkpoints, restoration, and re-synchronization of VMs: Snapshots of the virtual
machine image can be taken and used to restore the environment if needed. For more
information, refer to the documentation for your hypervisor or contact technical support
organization for that hypervisor.
Monitor VM operations: Jobs can start, shut down, suspend and restart VMs.
Manage on, off, suspend, and restart operations.
Virtual Machine Job Development 79

80 PlateS

novdocx (en) 13 M
ay 2009
9.3 VM Life Cycle Management
The life cycle of a VM includes its creation, testing, modifications, use in your environment, and
removal when it's no longer needed.

For example, in setting up your VM environment, you might want to first create basic VMs from
which you can create templates. Then, to enable the most efficient use of your current hardware
capabilities, you can use those templates to create the many different specialized VMs that you need
to perform the various jobs. You can create and manage VM-related jobs through the Development
Client interface.

Life cycle functions are performed one at a time per given VM in order to prevent conflicts in using
the VM. Life cycle events include:

Creating a VM
Starting and stopping a VM
Pausing and resuming a VM
Suspending and provisioning a VM
Installing the Orchestrate Agent on a VM
Creating a template from a VM
Using the VM (starting, stopping, pausing, suspending, restarting, and shutting down)
Running jobs for the VM
Editing a VM
Editing a template
Moving a stopped VM to another host server
Migrating a running VM to another host server
Resynchronizing a VM to ensure that the state of the VM displayed in the Development Client
is accurate
Cloning a VM

9.4 Manual Management of a VM Lifecycle
The example provided in this section is a general purpose job that only provisions a resource.

You might use a job like this, for example, each day at 5:00 p.m. when your accounting department
requires extra SAP servers to be available. As a developer, you would create a job that provisions the
required VMs, then use the PlateSpin Orchestrate Scheduler to schedule the job to run every day at
the time specified.

In this example, the provision job retrieves the members of a resource group (which are VMs) and
invokes the provision action on the VM objects. For an example of a provision job JDL, see
Section 9.4.3, “Provision Job JDL,” on page 81.

To setup to create the provision.job, use the following procedure:

1 Create your VMs and follow the discovery process in the Development Client so that the VMs
are contained in the PlateSpin Orchestrate inventory.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
2 In the Development Client, create a Resource Group called sap and add the required VMs as
members of the group.

3 Given the .jdl and .policy below you would create a .job file (jar them):
>jar cvf provision.job provision.jdl provision.policy

4 Deploy the provision.job file to the Orchestrate Server using either the Development Client
or the zosadmin command line.

To run the job, use either of the following procedures:

Section 9.4.1, “Manually Using the zos Command Line,” on page 81
Section 9.4.2, “Automatically Using the Development Client Job Scheduler,” on page 81

9.4.1 Manually Using the zos Command Line
1 At the command line, enter:

>zos login <zos server>
>zos run provision VmGroup="sap"

For more complete details about entering CLI commands, see “The zos Command Line Tool” in the
PlateSpin Orchestrate 2.0 Command Line Reference.

9.4.2 Automatically Using the Development Client Job
Scheduler

1 In the Development Client, create a New schedule.
2 Fill in the job name (provision), user, priority.
3 For the jobarg VmGroup, enter sap.
4 Create a Trigger for the time you want this job to run.
5 Save the Schedule and enable it by clicking Resume.

You can manually force scheduling by clicking Test Schedule Now.

For more complete details about using the Job Scheduler, see “The PlateSpin Orchestrate Job
Scheduler” in the PlateSpin Orchestrate 2.0 Development Client Reference. You can also refer to
Section 9.6, “Automatically Provisioning a VM,” on page 87 in this guide.

9.4.3 Provision Job JDL
"""Job that retrieves the members of a supplied resource group and invokes the
provision action on all members. For more details about this class, see Job
(page 226). See also ProvisionSpec (page 242).

The members must be VMs.

"""
class provision(Job):

 def job_started_event(self):

 # Retrieves the value of a job argument supplied in
Virtual Machine Job Development 81

82 PlateS

novdocx (en) 13 M
ay 2009
 # the 'zos run' or scheduled run.
 VmGroup = self.getFact("jobargs.VmGroup")

 #
 # Retrieves the resource group grid object of the supplied name.
 # The job Fails if the group name does not exist.
 #
 group = getMatrix().getGroup(TYPE_RESOURCE,VmGroup)
 if group == None:
 self.fail("No such group '%s'." % (VmGroup))

 #
 # Gets a list of group members and invokes a provision action on each
one.
 #
 members = group.getMembers()
 for vm in members:
 vm.provision()
 print "Provision action requested for VM '%s'" %
(vm.getFact("resource.id"))

Job Policy:
<!--
 The policy definition for the provision example job.

 This specifies the job argument VmGroup' which is required
-->
<policy>

 <jobargs>

 <fact name="VmGroup"
 type="String"
 description="Name of a VM resource group whose members will be
provisioned"
 />

 </jobargs>

</policy>

9.5 Provisioning Virtual Machines
VM provisioning adapters run just like regular jobs on PlateSpin Orchestrate. The system can detect
a local store on each VM host and if a local disk might contain VM images. The provisioner puts in
a request for a VM host. However, before a VM is brought to life, the system pre-reserves that VM
for exclusive use.

That reservation prevents a VM from being stolen by any other job that’s waiting for a resource that
might match this particular VM. The constraints specified to find a suitable host evaluates machine
architectures, CPU, bit width, available virtual memory, or other administrator configured
constraints, such as the number of virtual machine slots.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
This process provides heterogeneous virtual machine management using the following virtual
machine adapters (also called “provisioning adapters”):

Xen Adapter: For more information, see XenSource* (http://www.xensource.com/).
Virtual Center 1.3.x or later, and Virtual Center 2.0.1 or later: For more information, see
VMware (http://www.vmware.com).
Hyper-V: For more information, see Microsoft* Windows Server 2008 Virtualization with
Hyper-V (http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx).
VMware Server 1.x: For more information, see VMware (http://www.vmware.com).
ESX 3.0.x and 3.5.x: For more information, see VMware (http://www.vmware.com).

NOTE: Novell considers the PlateSpin Orchestrate provisioning technology used in conjunction
with VMware ESX or VMware Server as experimental because it has not yet been fully tested.

For more information, see PlateSpin Orchestrate 2.0 Virtual Machine Management
Guide“Provisioning a Virtual Machine” in the PlateSpin Orchestrate 2.0 Virtual Machine
Management Guide.

There are two types of VMs that can be provisioned:

VM Instance: A VM instance is a VM that is “state-full.” This means there can only ever be
one VM that can be provisioned, moved around the infrastructure, and then shut down, yet
maintains its state.
VM Template: A VM template represents an image that can be cloned. After it is finished its
services, it is shut down and destroyed.
It can be thought of as a “golden master.” The number of times a golden master or template can
be provisioned or cloned is controlled though constraints that you specify when you create a
provisioning job.
Virtual Machine Job Development 83

http://www.xensource.com/
http://www.vmware.com
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx
http://www.vmware.com
http://www.vmware.com

84 PlateS

novdocx (en) 13 M
ay 2009
The following graphic is a representation of the provisioning adapters and the way they function to
communicate joblets to VMs:

Figure 9-2 VM Management Provisioning Communications

NOTE: The Xen VM Monitor can support more than just SUSE Linux Enterprise (SLE) 10 (which
uses Xen 3.0.4) and Red Hat Enterprise Linux (RHEL) 5 (which uses Xen 3.0.3) VMs. For a
complete list of supported guest operating systems, see the Xen Web site (http://www.xen.org/).

NOTE: Novell considers the PlateSpin Orchestrate provisioning technology used in conjunction
with VMware ESX as experimental because it has not yet been fully tested.

The following sections provide more information on provision of VMs:

Section 9.5.1, “Provisioning VMs Using Jobs,” on page 84
Section 9.5.2, “VM Placement Policy,” on page 86
Section 9.5.3, “Provisioning Example,” on page 87

9.5.1 Provisioning VMs Using Jobs
The following actions can be performed by jobs:

Provision (schedule or manually provision a set of VMs at a certain time of day).
Move
Clone (clone a VM, an online VM, or a template)
Migrate
Destroy
pin Orchestrate 2.0 Developer Guide and Reference

http://www.xen.org/

novdocx (en) 13 M
ay 2009
Restart
Check status
Create a template to instance
Create an instance to template
Affiliate with a host
Make it a stand-alone VM
Create checkpoints
Restore
Delete
Cancel Action.

You might want to provision a set of VMs at a certain time of day before the need arises. You also
might create a job to shut down all VMs or a constrained group of VMs. You can perform these tasks
programatically (using a job), manually (through the Development Client), or automatically on
demand.

When performing tasks automatically, a job might make a request for an unavailable resource,
which triggers a job to look for a suitable VM image and host. If located, the image is provisioned
and the instance is initially reserved for calling a job to invoke the required logic to select, place, and
use the newly provisioned resource.

For an example of this job, see sweeper.job (page 155).

VM operations are available on the ResourceInfo (page 244) grid object, and VmHost operations are
available on the VMHostInfo (page 250) grid object. In addition, as shown in Section 9.5.3,
“Provisioning Example,” on page 87, three provisioner events are fired when a provision action has
completed, failed, or cancelled.

The API is equivalent to the actions available within the Development Client. The selection and
placement of the VM host is governed by policies, priorities, queues, and ranking, similar to the
processes used selecting resources.

Provisioning adapters on the Orchestrate Server abstract the VM. These adapters are special
provisioning jobs that perform operations for each integration with different VM technologies. The
following figure shows the VM host management interface that is using the Development Client.
Virtual Machine Job Development 85

86 PlateS

novdocx (en) 13 M
ay 2009
Figure 9-3 VM Hosts Management

9.5.2 VM Placement Policy
To provision virtual machines, a suitable host must be found. The following shows an example of a
VM placement policy:

<policy>
 <constraint type="vmhost">
 <and>
 <eq fact="vmhost.enabled" value="true"
 reason="VmHost is not enabled" />
 <eq fact="vmhost.online" value="true"
 reason="VmHost is not online" />
 <eq fact="vmhost.shuttingdown" value="false"
 reason="VmHost is shutting down" />
 <lt fact="vmhost.vm.count" factvalue="vmhost.maxvmslots"
 reason="VmHost has reached maximum vmslots" />
 <ge fact="vmhost.virtualmemory.available"
 factvalue="resource.vmimage.virtualmemory"
 reason="VmHost has insufficient virtual memory for guest VM" />
 <contains fact="vmhost.vm.availableids"
 factvalue="resource.id"
 reason="VmImage is not available on this VmHost" />
 </and>
 </constraint>
</policy>
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
9.5.3 Provisioning Example
This job example provisions a virtual machine and monitors whether provisioning completed
successfully. The VM name is “webserver” and the job requires a VM to be discovered before it is
run. After the provision has started, one of the three provisioner events is called.

1 class provision(Job):
2
3 def job_started_event(self):
4 vm = getMatrix().getGridObject(TYPE_RESOURCE,"webserver")
5 vm.provision()
6 self.setFact("job.autoterminate",False)
7
8 def provisioner_completed_event(self,params):
9 print "provision completed successfully"
10 self.setFact("job.autoterminate",True)
11
12 def provisioner_failed_event(self,params):
13 print "provision failed"
14 self.setFact("job.autoterminate",True)
15
16 def provisioner_cancelled_event(self,params):
17 print "provision cancelled"
18 self.setFact("job.autoterminate",True)

See additional provisioning examples in Section 9.4, “Manual Management of a VM Lifecycle,” on
page 80 and Section 9.6, “Automatically Provisioning a VM,” on page 87.

9.6 Automatically Provisioning a VM
If you write jobs to automatically provision virtual machines, you set the following facts in the job
policy:

 resoure.provision.maxcount
 resource.provision.maxpending
 resource.provision.hostselection
 resource.provision.maxnodefailures
 resource.provision.rankby

These are the job facts to enable and configure the usage of virtual machines for resource allocation.
These facts can be set in a job’s policy.

For example, setting the provision.maxcount to greater than 0 allows for virtual machines to be
included in resource allocation:

 <job>
 <fact name="provision.maxcount" type="Integer" value="1" />
 <fact name="provision.maxpending" type="Integer" value="1" />
 </job>
Virtual Machine Job Development 87

88 PlateS

novdocx (en) 13 M
ay 2009
The following figure shows the job’s Development Client settings to use VMs:

Figure 9-4 Job Settings for VM Provisioning

When using automatic provisioning, the provisioned resource is reserved for the job requesting the
resource. This prevents another job requiring resources from obtaining the provisioned resource.

When the job that reserved the resource has finished its work (joblet has completed) on the
provisioned resource, then the reservation is relaxed allowing other jobs to use the provisioned
resource.

Using JDL, the reservation can be specified to reserve by JobID and also user. This is done using the
ProvisionSpec (page 242) class.

9.7 Defining Values for Grid Objects
The following sections describe the PlateSpin Orchestrate Server grid objects and facts that are
required for provisioning of PlateSpin Orchestrate resource objects. This section highlights the facts
that are expected to be set from a virtual machine discovery.

Section 9.7.1, “PlateSpin Orchestrate Grid Objects,” on page 89
Section 9.7.2, “Repository Objects and Facts,” on page 90
Section 9.7.3, “VmHost Objects and Facts,” on page 96
Section 9.7.4, “VM Resource Objects and Other Base Resource Facts,” on page 101
Section 9.7.5, “Physical Resource Objects and Additional Facts,” on page 108
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
9.7.1 PlateSpin Orchestrate Grid Objects
The following table explains the abbreviated codes used to define the PlateSpin Orchestrate grid
objects and facts listed in the following sections:

Table 9-1 PlateSpin Orchestrate Grid Object Definitions

Value Description

Automatic The fact should be automatically set after the successful discovery of virtual
resources (VmHosts and VMs).

Boolean The fact is a Boolean value.

Default The specified default value of the fact is set.

Dictionary The fact is selected from a specified dictionary listing.

Dynamic The fact is dynamically generated.

Enumerate The fact is a specified enumerated value.

Example When available, provides an example how a fact might be applied to an object.

Integer The fact is an integer value.

Real The fact is a real number.

String The fact is a string value.

Datagrid Facts relate to datagrid object types.

Local Facts relate to local object types.

NAS Facts relate to Network Attached Storage (NAS) object types.

SAN Facts relate to Storage Area Network (SAN) object types.

Virtual Facts relate to virtual object types.
Virtual Machine Job Development 89

90 PlateS

novdocx (en) 13 M
ay 2009
9.7.2 Repository Objects and Facts
Facts marked with an X designate that they should be automatically set after the successful
discovery of virtual resources (VmHosts and VMs). Unless marked with the ° symbol, all of the
following repository objects and facts must be set for the particular provisioning adapter to function.
Facts marked with °° indicate the fact is required under certain conditions.

Table 9-2 Repository Objects and Facts

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions

repository.capacity The maximum amount
of storage space
available to virtual
machines (in
megabytes). The value -
1 means unlimited.

Integer Local: Note: Not auto discovered, but
set to a default value of -1 (unlimited
size). The Administrator should alter this
value.

This fact is not currently applicable to
SAN because you cannot move file-
based disks into a SAN.

SAN: Note: Not auto discovered, but set
to a default value of -1 (unlimited size).
The Administrator should alter this
value.

nas: Note: Not auto discovered, but set
to a default value of -1 (unlimited size).
The Administrator should alter this
value.

datagrid: Note: Not auto discovered,
but set to a default value of -1 (unlimited
size). The Administrator should alter this
value.

virtual: Note: Not auto discovered, but
set to a default value of -1 (unlimited
size). The Administrator should alter this
value.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
repository.searchpath The relative path from
the location to search for
VM configuration files,
which implicitly includes
repository.image.
preferredpath.

String [] Local: X. [etc/xen/vm, myimages]

NOTE: The path is relative to
repository.location or the leading '/' is
ignored.

SAN: o.

nas: X. [“my_vms”, “saved_vms”] or [""]
Specifiesto search the whole mount.

NOTE: The path is either relative to
repository.location; the leading '/'
ignored.

datagrid: N/A

virtual: N/A

repository.description The description of the
repository.

String Local: o Default empty.

SAN: o.

nas: o.

datagrid: o Default empty.

virtual: o Default empty.

repository.efficency The efficiency coefficient
used to calculate the
cost of moving VM disk
images to and from the
repository. This value is
multiplied by the disk
image size in Mb to
determine a score.
Thus, thus 0 means no
cost and is very
efficient).

Real Local: Defaults to 1, which normalizes
the transfer efficiency for moving VM
disks.

SAN: oDefaults to 1, which normalizes
the transfer efficiency for moving VM
disks. Not currently applicable because
file-based disks cannot be moved into a
SAN.

nas: Defaults to 1, which normalizes the
transfer efficiency for moving VM disks.

datagrid: Defaults to 1, which
normalizes the transfer efficiency for
moving VM disks.

virtual: Defaults to 1, which normalizes
the transfer efficiency for moving VM
disks.

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 91

92 PlateS

novdocx (en) 13 M
ay 2009
repository.enabled True if the Repository is
enabled, meaning that
new VM instances can
be provisioned.

Boolean Local: Defaults to true.

SAN: Defaults to true.

nas: Defaults to true.

datagrid: Defaults to true.

virtual: Defaults to true.

repository.freespace The amount of storage
space available to new
virtual machines (in
megabytes). The value -
1 means unlimited.

Integer Local: Dynamic: (capacity—used
space) or -1 if capacity is unlimited.

SAN: Dynamic: (capacity—used
space) or -1 if capacity is unlimited.

nas: Dynamic: (capacity—used space)
or -1 if capacity is unlimited.

datagrid: Dynamic: (capacity—used
space) or -1 if capacity is unlimited.

virtual: Dynamic: (capacity—used
space) or -1 if capacity is unlimited.

repository.groups The groups this
Repository is a member
of.

String[] Local: X

SAN: X

nas: X

virtual: X

repository.id The repository’s unique
name.

String Local: X

SAN: X

nas: X

datagrid: X. Currently one datagrid
repository is supported.

virtual: X

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
repository.preferredpath The relative path from
the location to search
and place VM files for
movement and cloning.

String Local: X. "var/lib/xen/images"

NOTE: The path is relative to
repository.location; the leading '/' is
ignored.

SAN:

nas: X. "my_vms"

NOTE: The path is relative to
repository.location; the leading '/' is
ignored.

datagrid: N/A

virtual: N/A

repository.location The Repository's
physical location.

String Local: X. "/" or /var/xen/images.

SAN: o.

nas: X. /u or /mnt/myshareddisk.

NOTE: This is the “mount point,” which
is assumed to be the same mount point
on every host that has a connection to
this NAS.

datagrid: oX. grid:///vms

virtual: N/A

repository.provisioner.jobs The names of the
provisioning adapter
jobs that can manage
VMs on this repository.

String [] Local: X. ["xen30"]

SAN:

nas: X. ["xen30"]

datagrid: X. ["xen30"]

virtual: X. ["vcenter"]

repository.san.type The type of SAN
(Adapter specific, “iscsi”,
or “fibrechannel” or '' if
not applicable.

String
(enum)

Local: N/A, empty.

SAN: Administrator must set to “iqn”,
“npiv“, or “emc.”

nas: N/A, empty.

datagrid: N/A, empty.

virtual: N/A, empty.

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 93

94 PlateS

novdocx (en) 13 M
ay 2009
repository.san.vendor The vendor of the SAN.
Controls which storage
bind logic to run (e.g.
LUN masking, etc.).

String Local: N/A, empty.

SAN: Administrator must set to “iscsi”
or “fibrechannel.”

nas: N/A, empty.

datagrid: N/A, empty.

virtual: N/A, empty.

repository.type The type of repository:

Local; e.g. a local
disk.

nas; e.g. a NFS
mount.

san , datagrid: A
PlateSpin
Orchestrate built in
datagrid backed
store.

virtual: An
externally
managed VM; e.g.
VMWare Virtual
Center.

String
(enum)

Local: X. Local

SAN:

nas:

datagrid: X. Datagrid

virtual: X. Virtual

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
repository.usedspace The amount of storage
space used for virtual
machines.

Integer Local: Dynamic: Sum of disk space
used by contained VMs. Only includes
disks that are stored as local files (not
partitions).

SAN: Dynamic: Sum of disk space
used by contained VMs. Only includes
disks that are stored as local files (not
partitions).

Not currently applicable to SAN
because you cannot move file-based
disks into SAN.

nas: Dynamic: Sum of disk space used
by contained VMs. Only includes disks
that are stored as local files (not
partitions).

datagrid: Dynamic: Sum of disk space
used by contained VMs. Only includes
disks that are stored as local files (not
partitions).

virtual: Dynamic: Sum of disk space
used by contained VMs. Only includes
disks that are stored as local files (not
partitions).

repository.vmhosts The list of VM hosts
capable of using this
repository (aggregated
from the individual VM
host fact).

String [] Local: X

SAN:

nas: X

datagrid: X

virtual: X

repository.vmimages The list of VM images
stored in this repository
(aggregated from
individual VM fact).

String [] Local: X

SAN:

nas: X

datagrid: X

virtual: X

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 95

96 PlateS

novdocx (en) 13 M
ay 2009
9.7.3 VmHost Objects and Facts
Unless marked with a “°” symbol, all of the following VmHost objects and facts must be set for the
particular provisioning adapter to function.The “X”mark designates that the fact should be
automatically set after the successful discovery of virtual resources (VmHosts and VMs).

Table 9-3 VmHost Objects and Facts

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions

vmhost.accountinggroup The default vmhost
(resource) group
which is adjusted for
VM statistics.

String xen30: X. All.

vmserver: X. All.

vcenter: X. All.

vmhost.enabled True if the VM host is
enabled, which
enables new VM
instances to be
provisioned.

Boolean xen30: X. True.

vmserver: X. True.

vcenter: X. True.

vmhost.groups The groups this VM
host is a member of.
Alias for
'vmhost.resource.grou
p.

String [] xen30: X.

vmserver: X.

vcenter: X.

vmhost.id The VM host's unique
name.

String xen30: X. <physical host id>_xen30

vmserver: X. <physical host
id>_vmserver

vcenter: X. <physical host
id>_vcenter

vmhost.loadindex.slots The loading index; the
ratio of active hosted
VMs to the specified
maximum.

Dynamic
Real

xen30: X.

vmserver: X.

vcenter: X.

vmhost.loadindex.virtualmem
ory

The loading index; the
ratio of consumed
memory to the
specifed maximum.

Dynamic
Real

xen30: X.

vmserver: X.

vcenter: X.

vmhost.location The VM host's
physical location.

String xen30: oDefaults to empty string.

vmserver: oDefaults to empty string.

vcenter: X. Virtual center's 'locator' to
the Vmhost; e.g., "/vcenter/eng/esx1".
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
vmhost.maxvmslots The maximum
number of hosted VM
instances.

Integer xen30: Defaults to 3. Should be reset
by Administrator.

vmserver: Defaults to 3. Should be
reset by Administrator.

vcenter: Defaults to 3. Should be
reset by Administrator.

vmhost.memory.available The amount of
memory available to
new virtual machines.

Dynamic
Integer

xen30: X. Calculated to be
'vmhost.memory.max; the memory
consumed by running VMs.

vmserver: X. Calculated to be
'vmhost.memory.max; the memory
consumed by running VMs.

vcenter: X. Calculated to be
'vmhost.memory.max; the memory
consumed by running VMs.

vmhost.memory.max The maximum amount
of memory available
to virtual machines (in
megabytes).

Integer xen30: X. Discovered.

vmserver: X. Discovered.

vcenter: X. Discovered.

vmhost.migration True if the VM host
can support VM
migration; also subject
to provision adapter
capabilities.

Boolean xen30: X. Defaults to false. Not
discovered. Administrator should
enable as appropriate to indicate that
the VmHost supports migration.

vmserver: X. Defaults to false. Not
discovered. Should not be set to true
since vmserver/gsx does not support
migration.

vcenter: X. Discovered.

vmhost.provisioner.job The name of the
provisioning adapter
job that manages VM
discovery on this host.

String xen30: X. xen30.

vmserver: X. vmserver.

vcenter: X. vcenter.

vmhost.provisioner.password The password
required for
provisioning on the
VM host. This fact is
used by the
provisioning adapter.

String xen30: o.

vmserver: o. If set, this fact is passed
to the vmserver CLI tools to
authenticate. Not necessary if
Orchestrate Agent is run as root.

vcenter: o.

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 97

98 PlateS

novdocx (en) 13 M
ay 2009
vmhost.provisioner.username The username
required for
provisioning on the
VM host. This fact is
used by the
provisioning adapter.

String xen30: o.

vmserver: If set, is passed to
vmserver CLI tools to authenticate.
Not necessary if Orchestrate Agent is
run as root.

vcenter: o.

vmhost.repositories This list of repositories
(VM disk stores) is
visible to this VM host.

String [] xen30: X. Discovery only adds the
local repository and the datagrid on
the first creation of the vmhost.
Administrator is required to add SAN/
NAS repositories or remove local if
desired.

vmserver: X. Discovery only adds
the local repository and the datagrid
on the first creation of the vmhost.
Administrator is required to add SAN/
NAS repositories or remove local if
desired.

vcenter: X. Automatically set to
VirtualCenter.

NOTE: This is the only sensible
setting.

vmhost.resource The name of the
resource that houses
this VM host
container.

xen30: o.

vmserver: X.

vcenter: X.

vmhost.shuttingdown True if the VM host is
attempting to shut
down and does not
need to be
provisioned.

Dynamic
Boolean

xen30: Initially False, then set to True
when the administrator specifies to
shut down a host.

vmserver: Initially False, then set to
True when the administrator specifies
to shut down a host.

vcenter: Initially False, then set to
True when the administrator specifies
to shut down a host.

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
vmhost.vm.available.groups The list of resource
groups containing
VMs that are allowed
to run on this host.

String [] xen30: X. Automatically set to
VMs_<provisioning_adapter>; e.g.,
any VM of compatible type can be
provisioned. The
VMs_<provisioning_adapter> group
is automatically created by discovery.
The administrator can refine this by
creating new groups and editing if
further restrictions are required.

vmserver: X. Automatically set to
VMs_<provisioning_adapter>; e.g.,
any VM of compatible type can be
provisioned. The
VMs_<provisioning_adapter> group
is automatically created by discovery.
The administrator can refine this by
creating new groups and editing if
further restrictions are required.

vcenter: X. Discovery attempts to
map Virtual Center grouping to
PlateSpin Orchestrate resources
groups and sets this fact accordingly.
This also includes a special
"template_vcenter" group to map to
Virtual Center 1.3.x "templates".

vmhost.vm.count The current number of
active VM instances.

Dynamic
Integer

xen30: X.

vmserver: X.

vcenter: X.

vmhost.vm.instanceids The list of active VM
instances.

Dynamic
String[]

xen30: X.

vmserver: X.

vcenter: X.

vmhost.vm.templatecounts A dictionary of running
instance counts for
each running VM
template.

Dynamic
Dictionar
y

xen30: X.

vmserver: X.

vcenter: X.

vmhost.xen.bits xen30 only. Legal
values are 32 and 64.

Integer xen30: X. 64.

vmserver: oNot defined.

vcenter: oNot defined.

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 99

100 PlateS

novdocx (en) 13 M
ay 2009
vmhost.xen.hvm xen30 only. Boolean xen30: X. True.

vmserver: oNot defined.

vcenter: oNot defined.

vmhost.xen.version xen30 only:
Major.Minor version of
the Xen hypervisor.

Real xen30: X. 3.00

vmserver: oNot defined.

vcenter: oNot defined.

vmhost.vcenter.hostname vcenter only. The
hostname of the
resource containing
this VM container.

NOTE: Deprecated.
Use
'vmhost.resource.host
name instead.

String xen30: oNot defined.

vmserver: oNot defined.

vcenter: X. esx1.

vmhost.vcenter.networks vcenter only. List of
network interfaces on
the physical host.

List xen30: oNot defined.

vmserver: oNot defined.

vcenter: VM network.

vmhost.vcenter.grouppath vcenter only: Part of
the Virtual Center
“locator” URL.

List xen30: oNot defined.

vmserver: oNot defined.

vcenter: X. /vcenter/eng1.

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
9.7.4 VM Resource Objects and Other Base Resource Facts
The following virtual machine resource objects and additional base resource facts marked with the
“•” symbol must be set for the particular provisioning adapter to function. Facts marked with “••”
indicate the fact is required under certain conditions. The “X” character designates that the fact
should be automatically set after the successful discovery of virtual resources (VmHosts and VMs).

Table 9-4 Resource Objects (VM only) and Additional Facts to Base Resource Facts

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions

resource.provision.automatic Signifies that this
resource was
cloned/
provisioned
automatically and
thus is shut down/
destroyed
automatically as
well.

Dynamic
Boolean

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.autoprep.* Fact namespace
used to convey
configuration
information
actually used to
"personalize" this
VM instance.

<various> xen30: o X. Can be set when
rediscovering the state or as a
result of a migration or provision
action.

vmserver: o X. Can be set when
rediscovering the state or as a
result of a migration or provision
action.

vcenter: o X. Can be set when
rediscovering the state or as a
result of a migration or provision
action.

resource.provision.currentaction The current
management
action in progress
on this
provisionable
resource.c.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.hostwait The time
(seconds) this
resource has been
waiting / waited for
a suitable host.

Dynamic
Integer

xen30: o .

vmserver: o .

vcenter: o .
Virtual Machine Job Development 101

102 PlateS

novdocx (en) 13 M
ay 2009
resource.provision.jobid The current or last
job ID that
performed a
provisioning action
on this resource.
Useful for viewing
the job log.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.resync Specifies that the
provisioned
resource's state
needs to be re-
synced with the
underlying
provisioning
technology at the
next opportunity.

Dynamic
Boolean

xen30: oX. Can be set on
discovery when the Orchestrate
state machine mismatches the VM
state. This initiates a future VM
state recovery action ("Check
Status"). May be set for delayed
re-discovery by administrator or
JDL logic.

vmserver: oX. Can be set on
discovery when the Orchestrate
state machine mismatches the VM
state. This initiates a future VM
state recovery action ("Check
Status"). May be set for delayed
re-discovery by administrator or
JDL logic.

vcenter: oX. Can be set on
discovery when the Orchestrate
state machine mismatches the VM
state. This initiates a future VM
state recovery action ("Check
Status"). May be set for delayed
re-discovery by administrator or
JDL logic.

resource.provision.state The current state
of this provisioned
instance (down,
suspended, up,
paused) or
unknown if an
admin action is
currently being
performed.

Dynamic
String
(enum)

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.status The current
descriptive status
of the provisioned
resource.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
resource.provision.template The ID of the
template resource
that this instance
was created from
(if applicable).

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.time.request The time when the
last provision (or
other
administrative
action) request
was made.

Dynamic
Date

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.time.shutdown The time when the
resource was last
shut down.

Dynamic
Date

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.time.start The time when the
resource was last
successfully
provisioned.

Dynamic
Date

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.vmhost The ID of the host
currently housing
this provisioned
resource.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provisionable True if the
resources is a
provisionable
type.

Dynamic
Boolean

xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.autoprep.* Fact namespace
used to convey
configuration
information
actually used to
"personalize" this
VM instance.

<various> xen30: o X.

vmserver: o .

vcenter: o .

resource.provisioner.count The total count of
operational
instances and
provisions in
progress"

Dynamic
Integer

xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.debug Controls the
debug log level in
the provisioner.

Boolean xen30: o .

vmserver: o .

vcenter: o .

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions
Virtual Machine Job Development 103

104 PlateS

novdocx (en) 13 M
ay 2009
resource.provisioner.host.maxwait The maximum
time to wait for a
suitable host
before timing out
(in seconds, '<0' to
wait indefinitely).

Integer xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.host.preferred
wait

The time after
which some
VMhost
constraints is lifted
to increase the
available pool by,
for example,
considering
moving the disk
image (in
seconds, <0 to
wait indefinitely).

Integer xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.instances The list of id's of
the instances of
this template
resource (if
applicable).

String[] xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.job The name of the
provisioning job
that manages the
life cycle of this
resource.

String xen30: X. xen30

vmserver: X. vmserver

vcenter: X. vcenter

resource.provisioner.maxinstances The maximum
allowed number of
instances of this
provisionable
resource
(applicable only to
templates).

Integer xen30: X. Defaults to 1.
Administrator should reset for VM
templates to allow multiple clones.

vmserver: X. Defaults to 1.
Administrator should reset for VM
templates to allow multiple clones.

vcenter: X. Defaults to 1.
Administrator should reset for VM
templates to allow multiple clones.

resource.provisioner.recommended
host

The host on which
the image for this
resource is
associated; e.g.,
was suspended or
is the preferred
host for quick
startup.

String xen30: o X.

vmserver: o X.

vcenter: o X.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
resource.vcenter.grouppath Locator for the
Virtual Center
group that the VM
resides in.

String xen30: o Not defined.

vmserver: o Not defined.

vcenter: X. /vcenter/eng

resource.vcenter.guestOS VMWare's name
for the guest OS.

String xen30: o Not defined.

vmserver: o Not defined.

vcenter: X. winNetEnterprise.

resource.vcenter.imagepath Locator for the VM
in Virtual Center.

String xen30: o Not defined.

vmserver: o Not defined.

vcenter: X. /vcenter/eng/
windows2003ent.

resource.vm.basepath The file system
location of the VM
files either
absolute or
relative to the
'repository.location
' fact.

String xen30: X. Example: "var/lib/xen/
images/sles10".

vmserver: X. For example, "/var/
lib/vmware/Virtual-Machines/
sles9".

Location in the repository of the
directory containing VM disks,
configuration file and other related
files.

vcenter: o N/A.

resource.vm.configfile The location of the
VM's configuration
file inside of the
default repository
(resource.provisio
ner.repository).

String xen30: X. /etc/xen/vm/sles10.

vmserver: o Not currently used.

vcenter: o N/A.

resource.vm.cpu.architecture The required cpu
architecture e.g.
x86, x86_64,
sparc.

String xen30: o X.

vmserver: o .

vcenter: o .

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions
Virtual Machine Job Development 105

106 PlateS

novdocx (en) 13 M
ay 2009
resource.vm.cpu.weight The CPU weight
for this VM. A
value of '1.0'
represents normal
weighting; setting
another VM to a
weight of '2.0'
would mean it
would get twice as
much cpu as this
VM.

Real xen30: o .

vmserver: o .

vcenter: o .

resource.vm.files Files that make up
this VM. The
dictionary key
(String) represents
the file type
(adapter specific),
the value is the file
path either
absolute or
relative to
'repository.location
' of the
'resource.vm.repo
sitory'.

Dictionary xen30: X. { "mof": /var/lib/xen/
images/sles10/mof" ,
"suspendcheckpoint": "/var/lib/
xend/domain/checkpoint",
"config": "/var/lib/xen/images/
sles10/config.xen' }.

vmserver: o X { "config": "/var/lib/
vmware/Virtual Machines/sles10/
sles10.vmx' }.

vcenter: o N/A.

resource.vm.maxinstancespervmho
st

The maximum
allowed number of
instances of this
VM image per
vmhost.

Integer xen30: Defaults to 1.
Administrator should increase if
more than one instance of the
same VM template is allowed to
be run on one host.

resource.vm.memory The configured
virtual memory
requirement of this
VM image
(megabytes).

Integer xen30: X.

vmserver: X.

vcenter: X.

resource.vm.preventmove Set by the
administrator to
prevent relocation
of a VM (disk
moves) even if
possible.

Boolean
Default:
False

resource.vm.type The required
system type of a
virtual machine (
'full' or 'para').

String xen30: X.

vmserver: X.

vcenter: X.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
resource.vm.uuid The UUID of a
virtual machine
(vendor/adapter
specific).

String xen30: X. {vm uuid}

vmserver: Not currently used.

vcenter: Not currently used.

resource.vm.vcpu.number The number of
virtual CPUs for
this VM.

Integer xen30: o X.

vmserver: o .

vcenter: o .

resource.vm.vdisks The specification
of virtual disks that
make up this VM.
The dictionary
keys are name
(String), repository
(String), location
(String), size
(Integer), fixed
(Boolean).

List of
Diction-
aries

xen30: X. [{ "location":"/var/lib/
xen/images/sles10/disk1",
"moveable":True,"repository":"vm
host1" ... }].

vmserver: o Not currently used.

vcenter: o N/A.

resource.vm.vdisksize The total size of all
the moveable
virtual desks for
this VM image
(megabytes).

Integer xen30: X.

vmserver: X.

vcenter: X.

resource.vm.vendor The vendor of a
virtual machine.

String xen30: o X.

vmserver: o X.

vcenter: o X.

resource.vm.version The version
number for this
VM.

Integer xen30: X.

vmserver: o N/A.

vcenter: o N/A.

resource.vm.vmhost.rankby The ranking
specification used
to select suitable
vm hosts. Element
syntax is <fact>/
<order> where
order is either a
(ascending) or d
(descending).

String[] xen30: Defaults to
vmhost.vm.placement.score/a,
vmhost.loadindex.slots/a.

vmserver: Defaults to
vmhost.vm.placement.score/a,
vmhost.loadindex.slots/a.

vcenter: Defaults to
vmhost.vm.placement.score/a,
vmhost.loadindex.slots/a.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions
Virtual Machine Job Development 107

108 PlateS

novdocx (en) 13 M
ay 2009
9.7.5 Physical Resource Objects and Additional Facts
The following physical resource objects and additional base resource facts marked with the “•”
symbol must be set for the particular provisioning adapter to function. The physical resources have
the potential of creating VmHost containers.

resource.vnc.ip The host IP
address for a VNC
session running
on the resource.

NOTE:

Technically, this
fact is available on
all resources both
VMs and physical.

String xen30: o X. 192.168.0.4

vmserver: Not used.

vcenter: o .

resource.vnc.port The port number
for a VNC session
running on the
resource.

NOTE:

Technically, this
fact is available on
all resources both
VMs and physical.

Integer xen30: o X. 5900

vmserver: Not used.

vcenter: o .

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain
conditions
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Facts marked with “••” indicate the fact is required under certain conditions. The “X” character
designates that the fact should be automatically set after the successful discovery of virtual resources
(VmHosts and VMs).

Table 9-5 Resource Object (Physical that have the potential for VmHost containers) / Additional Facts (additional
to base resource set)

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions

resource.vcenter.client vcenter only: Marks
resources and Virtual
Center web services
client capable.

.

Boolean xen30: o Not defined.

vmserver: o Not defined.

vcenter: Administrator must set through
association of 'vcenter_client.policy' with
appropriate resources.

resource.vmserver.cmdp
ath

vmserver only: Path to
VMWare CLI tools.

String xen30: o Not defined.

vmserver: X. For example, "/usr/bin/
vmware-cmd"

vcenter: o Not defined.

resource.vmserver.localr
epositories

vmserver only: Paths to
VM storage directories.

List xen30: o Not defined.

vmserver: For example, "/var/lib/
vmware/virtual machines"

vcenter: o Not defined.

resource.vmserver.vmru
npath

vmserver only: Full path
to vmrun CLI tool.

String xen30: o Not defined.

vmserver: X. For example, "/usr/bin/
vmrun".

vcenter: o Not defined.

resource.xen xen30 only: Xen
enabled.

Boolean xen30: X. True.

vmserver: o Not defined.

vcenter: o Not defined.

resource.xen.bits xen30 only: (legal values
are 32 and 64)

String xen30: X. 64 bit.

vmserver: o Not defined.

vcenter: o Not defined.

resource.xen.hvm xen30 only: Boolean xen30: X. True.

vmserver: o Not defined.

vcenter: o Not defined.
Virtual Machine Job Development 109

110 PlateS

novdocx (en) 13 M
ay 2009
resource.xen.version xen30 only: Major.Minor
version of the Xen
hypervisor.

.

Real xen30: X. 3.00.

vmserver: o Not defined.

vcenter: o Not defined.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
pin Orchestrate 2.0 Developer Guide and Reference

10
novdocx (en) 13 M

ay 2009
10Complete Job Examples

This section describes specific Job examples that can be deployed using the PlateSpin® Orchestrate
Server from Novell®. The following sections demonstrate some practical ways to use PlateSpin
Orchestrate and should help you better understand how to write your own jobs:

Section 10.1, “Accessing Job Examples,” on page 111
Section 10.2, “Installation and Getting Started,” on page 111
Section 10.3, “PlateSpin Orchestrate Sample Job Summary,” on page 112
Section 10.4, “Parallel Computing Examples,” on page 113
Section 10.5, “General Purpose Jobs,” on page 125
Section 10.6, “Miscellaneous Code-Only Jobs,” on page 167

10.1 Accessing Job Examples
The basic examples delivered with PlateSpin Orchestrate are located in either of two possible
installation directories depending on the type of installation. For server installations, look here:

/opt/novell/zenworks/zos/server/examples/

For client installation, look here:

/opt/novell/zenworks/zos/client/examples/

When you unjar or unzip examples from the from the <path>/examples/<example>.job file or
view jobs using the details panel and the JDL and Policy tabs in PlateSpin Orchestrate Development
Client, you should see the .jdl and .policy files.

Policy files specify how the job arguments and static attributes are defined. Or, you can use the zos
jobinfo command to simply display job arguments and their default values.

All of the examples can be opened and modified using a standard code editor, then redeployed and
examined using the procedure explained in “Walkthrough: Deploying a Sample Job” in the
PlateSpin Orchestrate 2.0 Installation and Configuration Guide.

10.2 Installation and Getting Started
To run the PlateSpin Orchestrate described in this section, use the following guidelines:

Install and configure PlateSpin Orchestrate properly (see “Installing and Configuring All
PlateSpin Orchestrate Components Together” in the PlateSpin Orchestrate 2.0 Installation and
Configuration Guide.
Unless otherwise indicated, install at least one agent on a managed resource and have it running
(see “Installing the PlateSpin Orchestrate Agent on Other Supported Operating Systems” in the
PlateSpin Orchestrate 2.0 Installation and Configuration Guide).
Before running zosadmin or zos commands, you must log into the Orchestrate Server.
Complete Job Examples 111

112 PlateS

novdocx (en) 13 M
ay 2009
The zosadmin command is required for administrating jobs. This includes deploying and
undeploying a job to the server. The zos command is for job control, including starting a job
and viewing a job’s log. As you learn about the PlateSpin Orchestrate job samples, you will use
the zosadmin command for deploying a sample job and the zos command for running the
sample.

For an explanation of the zosadmin commands, see “The zosadmin Command Line Tool”
in the PlateSpin Orchestrate 2.0 Command Line Reference.
> zosadmin login --user zosadmin
Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

For an explanation of zos commands, see “The zos Command Line Tool” in the PlateSpin
Orchestrate 2.0 Command Line Reference.
> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

You could create a user (see “Walkthrough: Creating a User Account” in the PlateSpin
Orchestrate 2.0 Installation and Configuration Guide) but zos login --user=vmmanger
works with the account created by default during installation. The password for this user was
also created during the installation; that is, when either config or guiconfig was run. If you
are not the person who created this password during configuration, you will need to contact the
individual who did so to get the password.

10.3 PlateSpin Orchestrate Sample Job
Summary
The following table provides a high-level explanation of the PlateSpin Orchestrate job examples that
are delivered with PlateSpin Orchestrate and the job developer concepts you might want to
understand:

Table 10-1 PlateSpin Orchestrate Job Development Examples

Example Name Job Function Capabilities

demoIterator.job (page 114) Using policy constraints and job arguments to restrict joblet
execution to specific resources.

Scheduling joblets using a ParameterSpace.

Provides an example of executing a command on a resource.

dgtest.job (page 126) Downloading files stored on grid management servers to networked
nodes.

factJunction.job (page 168) Retrieving information about objects in the grid relative to another
object.

failover.job (page 136) Managing how joblets failover to enhance the robutsness of your
jobs.

instclients.job (page 143) Installing an PlateSpin Orchestrate client on multiple machines.

Provides an example of executing a command on a resource.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
10.4 Parallel Computing Examples
The following examples demonstrate high performance or parallel computing concepts:

“demoIterator.job” on page 114
“quickie.job” on page 121

jobargs.job (page 177) Understanding the various argument types that jobs can accept
(integer, real, Boolean, string, time, date, list, dictionary, and array,
which can contain the types integer, real, Boolean, time, date, and
String).

notepad.job (page 150) Understanding how to launch specific applications on specified
resources.

quickie.job (page 121) Understanding how jobs can start multiple instances of a joblet on
one or more resources.

sweeper.job (page 155) Understanding how poll all resources on the grid.an ordered
serialized scheduling of the joblets

whoami.job (page 162) Sending a command to the operating system’s default command
interpreter. On Microsoft Windows, this is cmd.exe. On POSIX
systems, this is /bin/sh.

Example Name Job Function Capabilities
Complete Job Examples 113

114 PlateS

novdocx (en) 13 M
ay 2009
demoIterator.job
Reference implementation for a simple test iterator. Several concepts are demonstrated: 1) Using
policy constraints and job arguments to restrict joblet execution to a specific resource, 2) Scheduling
joblets using a ParameterSpace, and 3) An example of executing a command on a resource.

Usage
> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail demoIterator
Jobname/Parameters Attributes
------------------ ----------
demoIterator Desc: This example job is a reference for a simple test
 iterator. It is useful for demonstrating how policies
 and job args can be used to target the job to a
particular resource.

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 100

 cmd Desc: Simple command to execute
 Type: String Default:

 os Desc: Regular expression match for Operating System
Type: String
 Default: .*

 cpu Desc: Regular expression match for CPU architecture
Type: String
 Default: .*

Description
The files that make up the DemoIterator job include:

demoIterator # Total: 156 lines
|-- demoIterator.jdl # 79 lines
`-- demoIterator.policy # 77 lines

demoIterator.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: demoIterator.jdl,v 1.4 2008/03/05 20:05:48 ray Exp $
13 # --

14
15 import time, random
16
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
30
31
32 class demoIteratorJob(Job):
33
34 def job_started_event(self):
35 print 'job_started_event'
36 self.completed = 0
37
38 # Launch the joblets
39 numJoblets = self.getFact("jobargs.numJoblets")
40 print 'Launching ', numJoblets, ' joblets'
41
42 pspace = ParameterSpace()
43 i = 1
44 while i <= numJoblets:
45 pspace.appendRow({'name':'joblet'+str(i)})
46 i += 1
47 pspace.maxJobletSize = 1
48 self.schedule(demoIteratorJoblet,pspace,{})
49
50 def joblet_completed_event(self, jobletnumber, node):
51 self.completed += 1
52 self.setFact("jobinstance.memo", "Tests run: %s" %
(self.completed))
53
54
55 class demoIteratorJoblet(Joblet):
56
57 def joblet_started_event(self):
58 print "Hi from joblet ", self.getFact("joblet.number")
59 time.sleep(random.random() * 15)
60
61 cmd = self.getFact("jobargs.cmd")
Complete Job Examples 115

116 PlateS

novdocx (en) 13 M
ay 2009
62 if len(cmd) > 0:
63 system(cmd)
64
65
66
67 # Example of more sophisticated exec
68 # e.g. e.signal("SIGUSR1")
69 """
70 e = Exec()
71 e.setCommand(cmd)
72 #e.setStdoutFile("cmd.out")
73 e.writeStdoutToLog()
74 e.writeStderrToLog()
75 #try:
76 e.execute()
77 #except:
78 #self.retry("retryable example error")
79 """

demoIterator.policy

 1 <!--
 2
*==
=
 3 * Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: demoIterator.policy,v 1.2 2008/02/27 20:49:34 john Exp $
14
*==
=
15 -->
16
17 <policy>
18 <constraint type="accept" reason="Too busy for more work. Try again
later!">
19 <or>
20 <lt fact="job.instances.queued" value="4" />
21 <contains fact="user.groups" value="superuser" />
22 </or>
23 </constraint>
24
25 <constraint type="start" reason="Waiting on queue">
26 <or>
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
27 <lt fact="job.instances.active" value="2" />
28 <contains fact="user.groups" value="superuser" />
29 </or>
30 </constraint>
31
32 <jobargs>
33 <fact name="numJoblets"
34 type="Integer"
35 description="joblets to run"
36 value="100"
37 visible="true" />
38
39 <fact name="cmd"
40 type="String"
41 description="Simple command to execute"
42 value="" />
43
44 <fact name="os"
45 type="String"
46 description="Regular expression match for Operating System"
47 value=".*" />
48
49 <fact name="cpu"
50 type="String"
51 description="Regular expression match for CPU architecture"
52 value=".*" />
53 </jobargs>
54
55 <constraint type="resource" reason="Does not match">
56 <and>
57 <eq fact="resource.os.family" factvalue="jobargs.os" match="regexp"
/>
58 <eq fact="resource.cpu.architecture" factvalue="jobargs.cpu"
match="regexp"/>
59
60 <or>
61 <and>
62 <defined fact="env.VENDOR" />
63 <eq fact="resource.os.vendor" factvalue="env.VENDOR"
match="regexp" />
64 </and>
65 <undefined fact="env.VENDOR" />
66 </or>
67 </and>
68 </constraint>
69
70 <job>
71 <fact name="description"
72 type="String"
73 value="This example job is a reference for a simple test
iterator. It is useful for demonstrating how policies and job args can be used
to target the job to a particular resource." />
74 </job>
75
76 </policy>
77
Complete Job Examples 117

118 PlateS

novdocx (en) 13 M
ay 2009
Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

ParameterSpace
Defines a parameter space to be used by the scheduler to create a Joblet set. A parameter space
might consist of rows of columns or a list of columns that is expanded and can be turned into a
cross product.

Job Details
The following sections describe the DemoIterator job:

“zosadmin deploy” on page 118
“job_started_event” on page 119
“joblet_started_event” on page 119

zosadmin deploy

The deployment for the DemoIterator job is performed by lines 20-29 of demoIterator.jdl
(page 114). When jobs are deployed into the grid, they can optionally be organized for grouping. In
this case, the demoIterator job is added to the group named examples, and can be displayed in the
PlateSpin Orchestrate Development Client in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the “PlateSpin Orchestrate 2.0 Installation and Configuration Guide.”
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
job_started_event

When the DemoIterator job receives a job_started_event, it creates a ParameterSpace JDL class and
adds the number of rows as indicated by the value of the argument numJoblets (see lines 42-46 in
demoIterator.jdl (page 114)). A ParameterSpace object is like a spreadsheet, containing rows and
columns of information that might all be given to one joblet or sliced up across many joblets at
schedule time. In this case, the ParameterSpace is told that maxJobletSize is 1 (see line 47), meaning
a joblet instance is created for each row in the ParameterSpace during job scheduling (see line 48).

Not shown in this example is the fact that a joblet can get access to this “spreadsheet” of information
by calling self.getParameterSpace(), and calling hasNext() and next() to enumerate through
each row of information. To learn more about putting information in a ParameterSpace object from a
job and obtaining that information from the JobletParameterSpace object from a joblet, see
ParameterSpace (page 240).

The resource that runs the joblet is determined from the resource constraint specified in lines 18-30
and 55-68 of demoIterator.policy (page 116), and from the values specified for the parameters os
and cpu supplied on the command line. If these parameters are not specified on the command line,
the default value for both is the regular expression .*, which means to include everything.

The constraints at lines 18-30 in demoIterator.policy (page 116) define the work load for the
resources. In this case, resources do not accept jobs if there are already four jobs queued up, and are
not to run jobs if there are two or more jobs currently in progress.

To learn more about setting start, resource, or accept constraints in a policy file, see “Defining
Job Elements” on page 56.

joblet_started_event

As the DemoIterator joblet is executed on a particular resource, it receives a
joblet_started_event. When this happens, the DemoIterator joblet simply sleeps for a random
amount of time to stagger the execution of the joblets and then sends a command to the operating
system, if one was supplied as a job argument. The command is executed on the target operating
system using the built-in function system(), which is an alternative to using the more feature-rich
class Exec.

For more information on sending commands to the operating system using the Exec class, see Exec .

After the joblet is finished running, a joblet_completed_event is sent to demoIteratorJob, which
increments the variable completed, and posts the updated value to the job fact jobinstance.memo
(see lines 50-52 in demoIterator.jdl (page 114)). You can see the text for the memo displayed on the
Job Log tab in the list of running jobs in the PlateSpin Orchestrate Development Client.

For more information, see “Starting and Stopping the PlateSpin Orchestrate Development Client” in
the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.

Configure and Run
Execute the following commands to deploy and run demoIterator.job:

1 Deploy demoIterator.job into the grid:
> zosadmin deploy demoIterator.job

2 Display the list of deployed jobs:
Complete Job Examples 119

120 PlateS

novdocx (en) 13 M
ay 2009
> zos joblist

demoIterator should appear in this list.
3 Run the job on the first available resource without regard to OS or CPU, and use the default

value for number of joblets, which is 100:
> zos run demoIterator

4 Run 10 joblets on Intel Windows resources, and launch the Notepad* application on each one:
> zos run demoIterator numJoblets=10 cmd=notepad os=Windows cpu=i386

NOTE: If a resource with the matching OS is not available, the job remains in the “waiting” state.

Here is an example that runs the pwd command on three joblets on the Linux operating system:

> zos run demoIterator numJoblets=3 cmd=pwd os=linux
JobID: zenuser.demoIterator.417

zos log zenuser.demoIterator.417
job_started_event
Launching 3 joblets
[freeze] Hi from joblet 1
[freeze] /var/opt/novell/zenworks/zos/agent/node.default/freeze/
zenuser.demoIterator.417.1
[skate] Hi from joblet 0
[skate] /var/opt/novell/zenworks/zos/agent/node.default/skate/
zenuser.demoIterator.417.0
[melt] Hi from joblet 2
[melt] /var/opt/novell/zenworks/zos/agent/node.default/melt/
zenuser.demoIterator.417.2

See Also
Setting Constraints Using Policies (see Section 4.4, “Policy Management,” on page 34 and
Chapter 5, “Policy Elements,” on page 45).
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
quickie.job (page 121) demonstrates how a job starts up multiple instances of a joblet on one or
more resources. The Joblet class defines how a joblet is executed on a resource.
Setting default parameter values using policies
Configuring constraints in a policy file
Naming conventions for policy facts (see Section 3.1.1, “PlateSpin Orchestrate Datagrid
Filepaths,” on page 25)
Facts provided by the PlateSpin Orchestrate system that can be referenced within a JDL file
Using the zos command line tool (see “The zos Command Line Tool” in the PlateSpin
Orchestrate 2.0 Command Line Reference.
Running commands using the Exec class
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
quickie.job
Demonstrates a job starting up multiple instances of a joblet on one or more resources. Because this
job simply launches and returns immediately, it can also be useful for testing network latency.

Usage
> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail quickie
Jobname/Parameters Attributes
------------------ ----------
quickie Desc: This example job does absolutely nothing. It just
 returns immediately. For testing network latency.

 sleeptime Desc: time to sleep (in seconds)
 Type: Integer
 Default: 0

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 100

Description
The files that make up the Quickie job include:

quickie # Total: 88 lines
|-- quickie.jdl # 48 lines
`-- quickie.policy # 40 lines

quickie.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: quickie.jdl,v 1.3 2008/02/27 20:51:13 john Exp $
13 # --

14
Complete Job Examples 121

122 PlateS

novdocx (en) 13 M
ay 2009
15 import time
16
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
30
31
32 class quickieJob(Job):
33
34 def job_started_event(self):
35
36 # Launch the joblets
37 numJoblets = self.getFact("jobargs.numJoblets")
38 print 'Launching ', numJoblets, ' joblets'
39
40 self.schedule(quickieJoblet, numJoblets)
41
42
43 class quickieJoblet(Joblet):
44
45 def joblet_started_event(self):
46 self.setFact("joblet.memo", "quickie's memo - joblet started")
47 sleeptime = self.getFact("jobargs.sleeptime")
48 time.sleep(sleeptime)

quickie.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=

pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
13 * $Id: quickie.policy,v 1.2 2008/02/27 20:51:13 john Exp $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20 <fact name="numJoblets"
21 type="Integer"
22 description="joblets to run"
23 value="100"
24 visible="true" />
25
26 <fact name="sleeptime"
27 type="Integer"
28 description="time to sleep (in seconds)"
29 value="0"
30 visible="true" />
31 </jobargs>
32
33 <job>
34 <fact name="description"
35 type="String"
36 value="This example job does absolutely nothing. It just
returns immediately. For testing network latency." />
37 </job>
38
39 </policy>
40

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.
Complete Job Examples 123

124 PlateS

novdocx (en) 13 M
ay 2009
Job Details
The Quickie job can be broken down into the following separate operations:

“zosadmin deploy” on page 124
“job_started_event” on page 124
“joblet_started_event” on page 124

zosadmin deploy

The job is first deployed into the grid, as shown in lines 20-29 of quickie.jdl (page 121). When jobs
are deployed into the grid, they can optionally be organized for grouping. In this example, the
Quickie job is added to the group named examples and displays in the PlateSpin Orchestrate
Development Client in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.

job_started_event

As shown in line 37 of quickie.jdl (page 121), scheduling one or more instances of the Quickie
joblet to run immediately is the second operation performed by the Quickie job. When the Quickie
job class receives a job_started_event() notification, it schedules the number of QuickieJoblet
instances as indicated by the value of the setting numJoblets, whose value might have been
supplied on the command line or from the quickie.policy file (see line 20-24 in quickie.policy
(page 122)).

joblet_started_event

The final operation performed by the Quickie job is for the joblet to sleep an amount of time as
specified by the value of the setting sleeptime (see line 48 in quickie.jdl (page 121)), and then exit.

Configure and Run
1 Deploy quickie.job into the grid:

> zosadmin deploy quickie.job

2 Display the list of deployed jobs:
> zos joblist

quickie should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and sleeptime:

> zos run quickie

4 Run the job on one or more resources using supplied values for numJoblets and sleeptime:
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
> zos run quickie numJoblets=10 sleeptime=3
JobID: zenuser.quickie.418

> zos status zenuser.quickie.418
Completed

> zos log zenuser.quickie.418
Launching 10 joblets

Ten joblets will be run simultaneously, depending on the number of resources available in the
grid and how many simultaneous jobs each resource is configured to run. After the job runs,
each quickie joblet instance simply starts up, sleeps for 3 seconds, and then exits.

See Also
Setting Constraints Using Policies (see Section 4.4, “Policy Management,” on page 34 and
Chapter 5, “Policy Elements,” on page 45.).
Adding jobs to groups during deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
Scheduling multiple instances of a joblet

10.5 General Purpose Jobs
The following examples demonstrate general purpose job concepts:

“dgtest.job” on page 126
“failover.job” on page 136
“instclients.job” on page 143
“notepad.job” on page 150
“sweeper.job” on page 155
“whoami.job” on page 162
Complete Job Examples 125

126 PlateS

novdocx (en) 13 M
ay 2009
dgtest.job
This job demonstrates downloading a file from the datagrid.

Usage
> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail dgtest
Jobname/Parameters Attributes
------------------ ----------
dgtest Desc: This job demonstrates downloading from the Datagrid

 multicast Desc: Whether to download using multicast or unicast
 Type: Boolean
 Default: false

 filename Desc: The filename to download from the Datagrid
 Type: String
 Default: None! Value must be specified

Description
Demonstrates usage of the datagrid to download a file stored on the PlateSpin Orchestrate Server to
a node. For additional background information, see Section 3.1, “Defining the Datagrid,” on
page 25.

Because it typically grows quite large, the physical location of the PlateSpin Orchestrate root
directory is important. Use the following procedure to determine the location of the datagrid in the
Orchestrate Development Client:

1 Select the grid id on the left in the PlateSpin Orchestrate Explorer window >
2 Click the Constraints/Facts tab.

The read-only fact name (matrix.datagrid.root) is located here by default:
/var/opt/novell/zenworks/zos/server

The top level directory name is dataGrid.
Contents of the PlateSpin Orchestrate can be seen with the command:
> zos dir grid:///
 <DIR> Dec-6-2007 6:55 installs
 <DIR> Dec-6-2007 6:55 jobs
 <DIR> Dec-6-2007 22:01 users
 <DIR> Dec-6-2007 6:55 vms
 <DIR> Dec-6-2007 6:56 warehouse

Job Files

The files that make up the Dgtest job include:
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
dgtest # Total: 238 lines
|-- dgtest.jdl # 172 lines
`-- dgtest.policy # 66 lines

dgtest.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 11 # ---

 12 # $Id: dgtest.jdl,v 1.4 2008/03/05 20:05:43 ray Exp $
 13 # ---

 14
 15 """
 16 Example usage of DataGrid to download a file stored on the Server to a
node.
 17
 18 Setup:
 19 Before running the job, you must:
 20 (1) Create a dgtest resource group using the management console.
 21 (2) Copy a suitable file into the Server DataGrid
 22 (3) Modify the dgtest policy with the filename to download
 23 (to not use the default test file).
 24
 25 For example, use the following command to copy the file 'suse-10-fla
t.vmdk'
 26 into the deployment area for the job 'dgtest'
 27 >zos mkdir grid:///images
 28
 29 >zos copy suse-10-flat.vmdk grid:///images/
 30
 31 To verify the file is there:
 32 >zos dir grid:///images
 33
 34
 35 To start the job after the above setup steps are complete:
 36 >zos run dgtest filename=suse-10-flat.vmdk
 37
 38 """
 39 import os,time
 40
 41 #
 42 # Add to the 'examples' group on deployment
 43 #
Complete Job Examples 127

128 PlateS

novdocx (en) 13 M
ay 2009
 44 if __mode__ == "deploy":
 45 try:
 46 jobgroupname = "examples"
 47 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
 48 if jobgroup == None:
 49 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
 50 jobgroup.addMember(__jobname__)
 51 except:
 52 exc_type, exc_value, exc_traceback = sys.exc_info()
 53 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgr
oupname, exc_type, exc_value)
 54
 55
 56 class test(Job):
 57
 58 def job_started_event(self):
 59 filename = self.getFact("jobargs.filename")
 60 print "Starting Datagrid Test Job."
 61 print "Filename: %s" % (filename)
 62
 63 rg = None
 64 try:
 65 rg = getMatrix().getGroup("resource","dgtest")
 66 except:
 67 # no such group
 68 pass
 69
 70 if rg == None:
 71 self.fail("The resource group 'dgtest' was not found. It is
required for this job.")
 72 return
 73
 74 members = rg.getMembers()
 75 count = 0
 76 for resource in members:
 77 if resource.getFact("resource.online") == True and \
 78 resource.getFact("resource.enabled") == True:
 79 count += 1
 80
 81 memo = "Scheduling Datagrid Test on %d Joblets" % (count)
 82 self.setFact("jobinstance.memo",memo)
 83 print memo
 84 self.schedule(testnode,count)
 85
 86
 87 class testnode(Joblet):
 88
 89 def joblet_started_event(self):
 90 jobletnum = self.getFact("joblet.number")
 91 print "Running datagrid test joblet #%d" % (jobletnum)
 92 filename = self.getFact("jobargs.filename")
 93 multicast = self.getFact("jobargs.multicast")
 94
 95 # Test download a file from server job directory
 96 dg_url = "grid:///images/" + filename
 97
 98 # Create an intance of the JDL DataGrid object
 99 # This object is used to manage DataGrid operations
100 dg = DataGrid()
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
101
102 # Set to always force a download.
103 dg.setCache(False)
104
105 # Set whether to use multicast or unicast
106 # If set to True, then the following 4 multicast
107 # options are applicable
108 dg.setMulticast(multicast)
109
110 # how long to wait for a quorom (milliseconds)
111 #dg.setMulticastWait(10000)
112
113 # Number of receivers that constitute a quorum
114 #dg.setMulticastQuorum(4)
115
116 # Requested data rate in bytes per second. 0 means use default
117 #dg.setMulticastRate(0)
118
119 # Min number of receivers
120 #dg.setMulticastMin(1)
121
122 if multicast:
123 mode = "multicast"
124 else:
125 mode = "unicast"
126
127 memo = "Starting %s download of file: %s" % (mode,dg_url)
128 self.setFact("joblet.memo",memo)
129 print memo
130
131 # Destination defaults to Node's Joblet dir.
132 # Change this path to go to any other local filesystem.
133 # e.g. to store in /tmp:
134 # dest = "/tmp/" + filename
135 dest = filename
136 try:
137 dg.copy(dg_url,dest)
138 except:
139 exc_type, exc_value, exc_traceback = sys.exc_info()
140 retryUnicast = False
141 if multicast == True:
142 # If node's OS and/or NIC does not fully support multi
cast,
143 # then the node will timeout waiting for broadcasts.
144 # Note the error and fallback to unicast
145 if exc_type != None and len(str(exc_type)) > 0:
146 msg = str(exc_type)
147 index = msg.find("Multicast receive timed out")
148 retryUnicast = index != -1
149
150 if retryUnicast:
151 memo = "Multicast timeout. Fallback to unicast"
152 self.setFact("joblet.memo",memo)
153 print memo
154 dg.setMulticast(False)
155 dg.copy(dg_url,dest)
156 else:
157 raise exc_type,exc_value
158
Complete Job Examples 129

130 PlateS

novdocx (en) 13 M
ay 2009
159 if os.path.exists(dest):
160 print dg_url + " downloaded successfully."
161
162 # Show directory listing of downloaded file to job log
163 if self.getFact("resource.os.family") == "windows":
164 cmd = "dir %s" % (dest)
165 else:
166 cmd = "ls -lsart %s" % (dest)
167
168 system(cmd)
169 else:
170 raise RuntimeError, "Datagrid copy() failed"
171
172 print "Datagrid test completed"

dgtest.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: dgtest.policy,v 1.2 2008/02/27 20:49:29 john Exp $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <!--
22 Name of file that is stored in the Datagrid area to
23 download to the resource.
24
25 A value for this fact the 'zos run' is assigned when
26 using the 'zos run' command.
27 -->
28 <fact name="filename"
29 type="String"
30 description="The filename to download from the Datagrid"
31 />
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
32
33 <fact name="multicast"
34 type="Boolean"
35 description="Whether to download using multicast or unicast"
36 value="false" />
37
38 </jobargs>
39
40 <job>
41 <fact name="description"
42 type="String"
43 value="This job demonstrates downloading from the Datagrid"
/>
44
45 <!-- limit to one per host -->
46 <fact name="joblet.maxperresource"
47 type="Integer"
48 value="1" />
49 </job>
50
51
52 <!--
53 This job will only run on resources in the "dgtest" resource group.
54
55 You must create a Resource Group named 'dgtest' using the
management
56 console and populate the new group with resources that you wish to
have
57 participate in the datagrid test.
58 -->
59 <constraint type="resource" reason="No resources are in the dgtest
group" >
60
61 <contains fact="resource.groups" value="dgtest"
62 reason="Resource is not in the dgtest group" />
63
64 </constraint>
65
66 </policy>

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.
Complete Job Examples 131

132 PlateS

novdocx (en) 13 M
ay 2009
GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

test
Class test (line 56 in dgtest.jdl (page 127) is derived from the Job class.

testnode
Class testnode (line 87 in dgtest.jdl (page 127) is derived from the Joblet (page 228) class.

Job Details
dgtest.job can be broken down into the following parts:

“Policy” on page 132
“zosadmin deploy” on page 132
“job_started_event” on page 133
“joblet_started_event” on page 133

Policy

In addition to describing the filename and multicast jobargs and the default settings for
multicast (lines 19-38) in the dgtest.policy (page 130) file, there is the <job/> section (lines 40-
49), which describes static facts (Section 5.2, “Facts,” on page 45).You must assign the filename
argument when executing this example. This is only the name of the file in the “images” area of
PlateSpin Orchestrate. For example, for grid:///images/disk.img, just assign disk.img to the
argument. This file must be in the PlateSpin Orchestrate file system for fetching and delivering to
remote nodes used in this example.

To populate the PlateSpin Orchestrate, use the zos copy command. For example, for a file named
suse-9-flat.vmd in the current directory, use the following command:

> zos mkdir grid:///images
> zos copy suse-9-flat.vmd grid:///images/

The multicast jobarg is a Boolean, defaulted to false so that unicast is used for transport. Set this
value to true to use multicast transport for delivery of the file.

The policy also describes a resource.groups constraint. (For more information, see “Constraints”
on page 45). This requires a resource group named dgtest (lines 52-64 in dgtest.policy (page 130))
and that group should have member nodes. Consequently, you must create this resource group using
the Orchestrate Server Development Client and assign it some nodes to run this example
successfully.

zosadmin deploy

When the Orchestrate Server deploys a job for the first time (see Section 7.5, “Deploying Jobs,” on
page 53), the job JDL files are executed in a special deploy mode. Looking at dgtest.jdl (page 127),
you might notice that when the job is deployed (line 44), either through the Orchestrate
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Development Client or the zosadmin deploy command, that it attempts to find the examples
jobgroup (lines 46-47), create it if missing (lines 48-49), and add the dgtest job to the group (line
50).

If this deployment fails for some reason, an exception is thrown (line 51), which prints (line 53) the
job name, group name, exception type, and value.

job_started_event

In dgtest.jdl (page 127), the test class (line 56) defines only the required job_started_event (line
58) method. This method runs on the Orchestration server when the job is run to launch the joblets.

When job_started_event is executed, it gets the name of the file assigned to the
jobargs.filename variable and prints useful tracing information (lines 59-61). It then tries to find
the resource group named dgtest. If the resource group does not exist, the member fail string is
set to inform the user and returns without scheduling the joblet(s) (lines 63-72).

After finding the dgtest group, the job gets the member list and determines how many nodes are
online and enabled. The total count is stored in lines 74-79. After setting the memo line in the
Orchestrate Development Client (81-82), the job schedules count number of testnode joblets (line
84).

joblet_started_event

In dgtest.jdl (page 127), the testnode class (line 87) defines only the required joblet_started_event
(line 89) method. This method runs on the Orchestrate Agent nodes when scheduled by a Job
(page 226) class.

The joblet_started_event prints some trace information (lines 90-91), gets the name of the file to
transfer (line 92) and the mode of transfer (line 93), and creates the grid URL for the file (line 96).

A DataGrid (page 216) is instantiated (line 100), set not to cache (line 103), and set to use the
multicast jobarg (line 108). The next four settings control multicast behavior are commented out
(lines 111, 114, 117, and 120).

The joblet prints a memo line for the Orchestrate Development Client (lines 122-128), sets the
location for the file on the local node (line 135), and tries to transfer the file from the datagrid (line
137).

If the datagrid copy at line 137 fails for some reason, we have a retry mechanism in the exception
handler (lines 138-157). The information for why the exception occurred is fetched (line 139).

The variable retryUnicast (line 140) is set False and will only be set True if the failed download
attempt was using multicast transport and the exception type has the string "Multicast receive timed
out" (lines 140-148). If the timed out string is not found, the triad assigns the retryUnicast a
value of -1. With this logic, either multicast timeout or not, a unicast attempt is made if multicast
fails.

If you get to line 150 from a failed multicast copy, a memo for the Orchestrate Development Client
is set and printed to the log (151-152), setMulticast is set to false (154), and another copy from
the datagrid is attempted.

If we get to line 150 from a failed unicast copy, an exception is raised (line 157) and we’re done.
Complete Job Examples 133

134 PlateS

novdocx (en) 13 M
ay 2009
Configure and Run
> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.323

Looks like it ran successfully; let’s see what the log says:

> zos log zenuser.dgtest.323
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Job 'zenuser.dgtest.323' terminated because of failure. Reason: The resource
group 'dgtest' was not found. It is required for this job.

There is no resource group. Using the Orchestration Development Client create the resource group
dgtest:

> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.324

> zos log zenuser.dgtest.324
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Scheduling Datagrid Test on 0 Joblets

NOTE: No joblets were scheduled because we have no active nodes in the group.

Using the Orchestrat Development Client, populate the dgtest group with nodes that are both
online and anabled:

> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.325

> zos log zenuser.dgtest.325
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Scheduling Datagrid Test on 2 Joblets
[freeze] Running datagrid test joblet #0
[freeze] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[freeze] Traceback (innermost last):
[freeze] File "dgtest.jdl", line 170, in joblet_started_event
[freeze] copy() failed: DataGrid file "/images/suse-9-flat.vmd" does not
exist.
Job 'zenuser.dgtest.325' terminated because of failure. Reason: Job failed
because of too many joblet failures (job.joblet.maxfailures = 0)
[melt] Running datagrid test joblet #1
[melt] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[melt] Traceback (innermost last):
[melt] File "dgtest.jdl", line 170, in joblet_started_event
[melt] copy() failed: DataGrid file "/images/suse-9-flat.vmd" does not exist.

Because the path and the file in the DataGrid are missing, we need to create and populate them:

> zos mkdir grid:///images
Directory created.

> zos copy suse-9-flat.vmd grid:///images/
suse-9-flat.vmd copied.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.326

> zos log zenuser.dgtest.326
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Scheduling Datagrid Test on 2 Joblets
[melt] Running datagrid test joblet #1
[melt] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[melt] grid:///images/suse-9-flat.vmd downloaded successfully.
[melt] 16732 -rw-r--r-- 1 root root 17108462 Dec 21 21:32 suse-9-flat.vmd
[melt] Datagrid test completed
[freeze] Running datagrid test joblet #0
[freeze] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[freeze] grid:///images/suse-9-flat.vmd downloaded successfully.
[freeze] 16732 -rw-r--r-- 1 root root 17108462 Dec 21 21:31 suse-9-flat.vmd
[freeze] Datagrid test completed

Finally, the file is deployed from the datagrid and copied successfully. However, you will not find it
if you look for it on the agent after the joblet is finished. By default, the file is deployed only for the
joblet’s lifetime into a directory for the joblet, like the following:

/var/opt/novell/zenworks/zos/agent/node.default/melt/zenuser.dgtest.326.0

So, for a more permanent demonstration, see lines 132-134 in dgtest.jdl (page 127). Uncomment
line 134 and comment out line 135 to store your file in the /tmp directory and have it continue to
exist on the agent after the joblet executes completely.
Complete Job Examples 135

136 PlateS

novdocx (en) 13 M
ay 2009
failover.job
A test job that demonstrates handling of joblet failover.

Usage
> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail failover
Jobname/Parameters Attributes
------------------ ----------
failover Desc: This test jobs can be used to demonstrate joblet
 failover handling.

 sleeptime Desc: specify the execute length of joblet before failure in
 seconds
 Type: Integer
 Default: 7

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 1

Description
Schedules one joblet, which fails, then re-instantiates in a repeating cycle until a specified retry limit
is reached and the Orchestration Server does not create another instance. This example demonstrates
how the orchestration server can be made more robust, as described in Section 7.13, “Improving Job
and Joblet Robustness,” on page 65.

The files that make up the Failover job include:

failover # Total: 94 lines
|-- failover.jdl # 64 lines
`-- failover.policy # 30 lines

failover.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009

12 # $Id: failover.jdl,v 1.3 2008/02/27 20:50:00 john Exp $
13 # --

14
15 # Test job to illustrate joblet failover and max retry limits
16 #
17 # Job args:
18 # numJoblets - specify number of Joblets to run
19 # sleeptime -- specify the execute length of joblet before failure in
seconds
20 #
21
22 import sys,os,time
23
24 #
25 # Add to the 'examples' group on deployment
26 #
27 if __mode__ == "deploy":
28 try:
29 jobgroupname = "examples"
30 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
31 if jobgroup == None:
32 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
33 jobgroup.addMember(__jobname__)
34 except:
35 exc_type, exc_value, exc_traceback = sys.exc_info()
36 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
37
38
39 class failover(Job):
40
41 def job_started_event(self):
42 numJoblets = self.getFact("jobargs.numJoblets")
43 print 'Launching ', numJoblets, ' joblets'
44 self.schedule(failoverjoblet,numJoblets)
45
46
47 class failoverjoblet(Joblet):
48
49 def joblet_started_event(self):
50 print "------------------ joblet_started_event"
51 print "node=%s joblet=%d" % (self.getFact("resource.id"),
self.getFact("joblet.number"))
52 print "self.getFact(joblet.retrynumber)=%d" %
(self.getFact("joblet.retrynumber"))
53 print "self.getFact(job.joblet.maxretry)=%d" %
(self.getFact("job.joblet.maxretry"))
54
55 sleeptime = self.getFact("jobargs.sleeptime")
56 print "sleeping for %d seconds" % (sleeptime)
57 time.sleep(sleeptime)
58
59 # This will cause joblet failure and thus retry
60 raise RuntimeError, "Artifical error in joblet. node=%s" %
Complete Job Examples 137

138 PlateS

novdocx (en) 13 M
ay 2009
(self.getFact("resource.id"))
61
62
63
64

failover.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: failover.policy,v 1.2 2008/02/27 20:50:00 john Exp $
14
*==
=
15 -->
16
17 <policy>
18 <jobargs>
19 <fact name="sleeptime" description="specify the execute length of
joblet before failure in seconds" value="7" type="Integer" />
20 <fact name="numJoblets" description="joblets to run" value="1"
type="Integer" />
21 </jobargs>
22
23 <job>
24 <fact name="description" value="This test jobs can be used to
demonstrate joblet failover handling." type="String" />
25
26 <!-- Number of times to retry joblet on failure -->
27 <fact name="joblet.maxretry" type="Integer" value="3" />
28 </job>
29 </policy>
30
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Classes and Methods

Definitions:

Class failover in line 25 of failover.jdl (page 136) is derived from the Job (page 226) class; and the
class failoverjoblet in line 33 of failover.jdl (page 136) is derived from the Joblet (page 228) class.

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

failover
Class failover (line 39 in dgtest.jdl (page 127) is derived from the Job class.

failoverjoblet
Class failoverjoblet (line 47 in dgtest.jdl (page 127) is derived from the Joblet (page 228) class.

Job Details
The following sections describe the Failover job:

“zosadmin deploy” on page 139
“job_started Event” on page 140
“job_started Event” on page 140

zosadmin deploy

In failover.policy (page 138), in addition to describing the jobargs and default settings for
sleeptime and numJoblets (lines 18-21), the <job/> section (lines 23-28) describes static facts
(see Section 5.2, “Facts,” on page 45). Note that the joblet.maxretry attribute in line 27 has a
default setting of 0 but is set here to 3. This attribute can also be modified in the failover.jdl
(page 136) file by inserting a line between line 41 and 42, as shown in the following example:

 41 def job_started_event(self):
 ++ self.setFact("job.joblet.maxretries", 3)
 42 numJoblets = self.getFact("jobargs.numJoblets")
Complete Job Examples 139

140 PlateS

novdocx (en) 13 M
ay 2009
job_started Event

After the Orchestrate Server deploys a job for the first time (see Section 7.5, “Deploying Jobs,” on
page 53), the job JDL files are executed in a special “deploy” mode. When the job is deployed (line
27, failover.jdl (page 136), it attempts to find the examples jobgroup (lines 29-30), creates it if is
missing (lines 31-32), and adds the failover job to the group (line 33).

Jobs can be deployed using either the Orchestrate Development Client or the zosadmin deploy
command. If the deployment fails for some reason, an exception is thrown (line 34), which prints the
job name (line 36), group name, exception type, and value.

job_started Event

In failover.jdl (page 136), the failover class (line 39) defines only the required job_started_event
(line 41) method. This method runs on the Orchestrate Server when the job is run to launch the
joblets.

On execution, the job_started_event simply gets the number of joblets to create (numJoblets in
line 42), then schedules that specified number of instances (line 44) of the failoverjoblet
class.failoverjoblet. The failoverjoblet class (lines 47-60) defines only the required
joblet_started_event (line 49) method.

When executed on an agent node, the joblet_started_event prints some helpful information for
tracking execution (lines 50-53). The first output is where the joblet is running and which instance is
running (line 51). The current joblet retry number (line 52) is displayed, followed by the job’s static
joblet.maxretry (line 53) that was specified in the policy file.

The joblet then sleeps for jobargs.sleeptime seconds (lines 55-57) and on waking raises an
exception of type RuntimeError (line 60).

This is the point of this example. After a RuntimeError exception is thrown, the zos server attempts
to run the same instance of the joblet again if job.joblet.maxretry (default is 0) is less than or
equal to joblet.retrynumber.

Configure and Run
You must be logged into the Orchestrate Server before you run zosadmin or zos commands.

1 Deploy failover.job into the grid:
> zosadmin deploy failover.job
JobID: zenuser.failover.269

The job appears to have run successfully, now take a look at the log and see the joblet failure
and being relaunched until finally the "maxretry" count is exceeded and the job exits with a
failure status:

2 Display the list of deployed jobs:
> zos joblist

failover should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and sleeptime,

specified in the failover.policy file:
> zos run failover sleeptime=1 numJoblets=2
JobID: zenuser.failover.269
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
The job appears to have run successfully, now take a look at the log and see the joblet failure and
being relaunched until finally the maxretry count is exceeded and the job exits with a failure status:

> zos log zenuser.failover.269Launching 2 joblets
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=1
[melt] self.getFact(joblet.retrynumber)=0
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 60, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=0
[freeze] self.getFact(joblet.retrynumber)=0
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 60, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=0
[melt] self.getFact(joblet.retrynumber)=1
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 60, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=1
[freeze] self.getFact(joblet.retrynumber)=1
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 60, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=1
[melt] self.getFact(joblet.retrynumber)=2
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 60, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=0
[freeze] self.getFact(joblet.retrynumber)=2
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 60, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze

See Also
Setting Constraints Using Policies (Section 4.4, “Policy Management,” on page 34 and
Chapter 5, “Policy Elements,” on page 45).
Complete Job Examples 141

142 PlateS

novdocx (en) 13 M
ay 2009
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
Executing Commands Using Exec (page 219)
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
instclients.job
Installs the PlateSpin Orchestrate client applications to the specified resource machine. Note that
while most of the other examples are deployed by default, this example is not.

Detail
The following concepts are demonstrated:

Using constraints to restrict joblet execution to a specific resource.
Adding files to a job’s directory in the datagrid, and retrieving them during joblet execution.
Using the Exec class to send a command to the operating system. The system command is
invoked directly without using the system command interpreter (either cmd.exe or /bin/sh).

Usage
> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy instclients.job
instclients successfully deployed

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail instclients
Jobname/Parameters Attributes
------------------ ----------
instclients Desc: This job installs the ZOS clients on a resource

 host Desc: The host name of resource to install on
 Type: String
 Default: None! Value must be specified

Description
The files that make up the instclients job include:

instclients # Total: 138 lines
|-- instclients.jdl # 97 lines
`-- instclients.policy # 41 lines

instclients.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
Complete Job Examples 143

144 PlateS

novdocx (en) 13 M
ay 2009
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: instclients.jdl,v 1.4 2008/03/05 20:05:54 ray Exp $
13 # --

14
15 """
16
17 Run install clients on a resource
18
19 Setup:
20 Before running the job, you must copy installers into DataGrid of
21 server.
22
23 >zos copy zosclients_windows_1_3_0_with_jre.exe grid:///\!instclients/
24
25 """
26 import os,time
27
28 #
29 # Add to the 'examples' group on deployment
30 #
31 if __mode__ == "deploy":
32 try:
33 jobgroupname = "examples"
34 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
35 if jobgroup == None:
36 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
37 jobgroup.addMember(__jobname__)
38 except:
39 exc_type, exc_value, exc_traceback = sys.exc_info()
40 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
41
42
43 class InstClients(Job):
44
45 def job_started_event(self):
46 print "Scheduling joblet"
47 self.schedule(InstClientsJoblet)
48
49
50 class InstClientsJoblet(Joblet):
51
52 def joblet_started_event(self):
53 print "Launching Installer"
54 windowsInstaller = "zosclients_windows_1_3_0_with_jre.exe"
55 linuxInstaller = "zosclients_linux_1_3_0_with_jre.sh"
56 if self.getFact("resource.os.family") == "windows":
57 print "Downloading Windows install"
58 dg = DataGrid()
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
59 dg.copy("grid:///!instclients/" +
windowsInstaller,windowsInstaller)
60
61 print "Starting install"
62 cmd = self.getcwd() + "/" + windowsInstaller + " -q "
63 e = Exec()
64 e.setCommand(cmd)
65 e.setRunAsJobUser(False)
66 e.writeStdoutToLog()
67 e.writeStderrToLog()
68 result = e.execute()
69 else:
70 print "Downloading Linux install"
71 dg = DataGrid()
72 dg.copy("grid:///!instclients/" +
linuxInstaller,linuxInstaller)
73
74 print "Starting install"
75 cmd = "chmod +x " + self.getcwd() + "/" + linuxInstaller
76 print "cmd=%s" % (cmd)
77 e = Exec()
78 e.setCommand(cmd)
79 e.setRunAsJobUser(False)
80 e.writeStdoutToLog()
81 e.writeStderrToLog()
82 result = e.execute()
83
84 cmd = self.getcwd() + "/" + linuxInstaller + " -q"
85 print "cmd=%s" % (cmd)
86 e = Exec()
87 e.setRunAsJobUser(False)
88 e.setCommand(cmd)
89 e.writeStdoutToLog()
90 e.writeStderrToLog()
91 result = e.execute()
92
93 if result == 0:
94 print "Install complete"
95 else:
96 print "result=%d" % (result)
97

instclients.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
Complete Job Examples 145

146 PlateS

novdocx (en) 13 M
ay 2009
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: instclients.policy,v 1.2 2008/02/27 20:50:26 john Exp $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <fact name="host"
22 type="String"
23 description="The host name of resource to install on"
24 />
25
26 </jobargs>
27
28 <job>
29 <fact name="description"
30 type="String"
31 value="This job installs the ZOS clients on a resource" />
32 </job>
33
34 <constraint type="resource" >
35
36 <eq fact="resource.id" factvalue="jobargs.host" />
37
38 </constraint>
39
40 </policy>
41

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

DataGrid
Provides a way to interact with the datagrid. Operations include copying files from the datagrid
down to the resource for joblet usage and uploading files from a resource to the datagrid.

Job Details
The following sections describe the instclients job:

“zosadmin deploy” on page 147
“job_started_event” on page 147
“joblet_started_event” on page 147

zosadmin deploy

When jobs are deployed into the grid, they can optionally be placed in groups for organization and
easy reference. In this case, the instclients job will be added to the group named Examples (lines 31-
40), and will show up in the PlateSpin Orchestrate Development Client in the Explorer view at the
location:

 /ZOS/YOUR_GRID/Jobs/examples.

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.

job_started_event

When the instclients job receives a job_started_event, it schedules a single instance of the Instclients
joblet to be run (see line 45 of instclients.jdl (page 143)). The resource that runs the joblet is
determined from the resource constraint specified in instclients.policy (page 145), lines 21-24, and
from the value for the parameter host supplied on the command line.

joblet_started_event

After the Instclients joblet is executed on a particular resource, it receives a joblet_started_event.
When this happens, the Instclients joblet decides which Orchestrate Client installation file to
download, and the commands to execute on the operating system by checking the value of
resource.os.family (see line 56 of instclients.jdl (page 143)). The resource.os.family fact
does not exist in the instclients.policy file, but is instead provided by the PlateSpin Orchestrate
system.

After deciding which operating system the joblet is being run on, the Instclients joblet uses the
DataGrid class to download the appropriate client installation file to the current working directory of
the running joblet (see lines 58-59 and 71-72 in instclients.jdl (page 143)). The URL grid://
!instclients/ points to a directory reserved for the joblet in the datagrid on the server.
Complete Job Examples 147

148 PlateS

novdocx (en) 13 M
ay 2009
After the client installation file has been downloaded from the server, the Instclients joblet uses
the Exec class to begin the installation (see lines 63-68 and 86-91 in instclients.jdl (page 143)). As
indicated by lines 66, 67, 80, 81, 89 and 90, all standard out and standard err are written to the job’s
log file.

To view the log file for the Instclients job after it has been run, you can execute the command

zos log instclients

For more information about using zos, see Section 7.5.2, “Using the zosadmin Command Line
Tool,” on page 54. See the Exec class in PlateSpin Orchestrate Job Classes and JDL Syntax for more
information on running commands.

NOTE: The Instclients job uses the Exec class twice when running on a Linux resource. The
first command changes the mode of the installation file to be an executable, and the second runs the
installation file.

Configure and Run
Execute the following commands to deploy and run instclients.job:

1 Copy client installation files into the directory reserved for the Instclients joblet in the
datagrid of the Orchestrate Server:
zos copy zosclients_linux_1_3_0_with_jre.sh grid:///\!instclients/

NOTE: Replace “linux” with windows, linux, solaris, etc. for your given operating system, and
replace 1_3_0 with your version of the product.

This command copies the file zosclients_linux_1_3_0_with_jre.sh into the datagrid job
directory for instclients.
For more information about using PlateSpin Orchestrate Development Client to copy files, type
zos copy -help.

NOTE: Replace windows with linux, solaris, etc. for your given operating system.

2 Deploy instclients.job into the grid by entering:
zosadmin deploy instclients.job

3 Display the list of deployed jobs by entering:
zos joblist

instclients should appear in this list.
4 Run the job on the resource with the given host:

zos run instclients host=my_resource_host

Installs the Orchestrate clients onto the resource with the host: my_resource_host.

See Also
Setting Constraints Using Policies (Section 4.4, “Policy Management,” on page 34 and
Chapter 5, “Policy Elements,” on page 45).
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Scheduling multiple instances of a joblet
Setting default parameter values using policies
Configuring constraints in a policy file
Naming conventions for policy facts (Section 3.1.1, “PlateSpin Orchestrate Datagrid
Filepaths,” on page 25.Section 3.1.1, “PlateSpin Orchestrate Datagrid Filepaths,” on page 25)
Facts provided by the PlateSpin Orchestrate system that can be referenced within a JDL file
Using the PlateSpin Orchestrate Development Client (“How Do I Interact with PlateSpin
Orchestrate?”)
Running commands using the Exec class.
Complete Job Examples 149

150 PlateS

novdocx (en) 13 M
ay 2009
notepad.job
Launches the Notepad application on a Windows resource.

Usage
> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail notepad
Jobname/Parameters Attributes
------------------ ----------
notepad Desc: No description available.

Description
The files that make up the Notepad job include:

notepad # Total: 86 lines
|-- notepad.jdl # 54 lines
`-- notepad.policy # 32 lines

notepad.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: notepad.jdl,v 1.3 2008/02/27 20:50:47 john Exp $
13 # --

14
15 """
16
17 Run Notepad Application on windows resoure
18
19 """
20 import os,time
21
22 #
23 # Add to the 'examples' group on deployment
24 #
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
25 if __mode__ == "deploy":
26 try:
27 jobgroupname = "examples"
28 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
29 if jobgroup == None:
30 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
31 jobgroup.addMember(__jobname__)
32 except:
33 exc_type, exc_value, exc_traceback = sys.exc_info()
34 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
35
36
37 class Notepad(Job):
38
39 def job_started_event(self):
40 print "Scheduling joblet"
41 self.schedule(NotepadJoblet)
42
43
44 class NotepadJoblet(Joblet):
45
46 def joblet_started_event(self):
47 print "Starting Notepad"
48 cmd = "notepad"
49 e = Exec()
50 e.setCommand(cmd)
51 e.writeStdoutToLog()
52 e.writeStderrToLog()
53 result = e.execute()
54

notepad.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: notepad.policy,v 1.2 2008/02/27 20:50:47 john Exp $
14
*==
=

Complete Job Examples 151

152 PlateS

novdocx (en) 13 M
ay 2009
15 -->
16
17 <policy>
18
19 <constraint type="accept" >
20
21 <gt fact="jobinstance.matchingresources" value="0" reason="No
Windows's resources are available to run Notepad" />
22
23 </constraint>
24
25 <constraint type="resource" >
26
27 <eq fact="resource.os.family" value="windows" reason="Notepad
only runs on Windows OS" />
28
29 </constraint>
30
31 </policy>
32

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

Job Details
The Notepad job is broken down into three separate operations:

“zosadmin deploy” on page 153
“job_started_event” on page 153
“joblet_started_event” on page 153
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
zosadmin deploy

In notepad.jdl (page 150), lines 25-34 places the job into the “examples” job group. After jobs are
deployed into the grid, they can optionally be placed in groups for organization and easy reference.
In this case, the Notepad job is added to the group named Examples and appears in the PlateSpin
Orchestrate Development Client in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.

job_started_event

Scheduling the Notepad joblet to run immediately is the second operation performed by the Notepad
job in line 41 of notepad.jdl (page 150). When the Notepad job class receives a
job_started_event() notification, it simply schedules the NotepadJoblet class to be run on any
target device that meets the restrictions identified in the notepad.policy file.

As specified in lines 21 and 27 of notepad.policy (page 151), there must be at least one Windows
machine available in the grid for the Notepad job to run. The accept constraint in lines 19-23
prevents the Notepad job from being accepted for running if there are no Windows resources
available.

The resource constraint in lines 25-29 constrain the Orchestrate Job Scheduler to choose a
resource that is running a Windows OS only.

For more information on setting constraints using policies, see Section 4.4, “Policy Management,”
on page 34 and Chapter 5, “Policy Elements,” on page 45.

joblet_started_event

As specified in lines 49-53 in notepad.jdl (page 150), the joblet executing a command on the target
machine is the last operation performed by the Notepad job.

In this example, after the joblet_started_event() method of the NotepadJoblet class gets
called, the PlateSpin Orchestrate API class named Exec is used to run the command notepad on is
captured and written to the log file for the Notepad job.

Configure and Run
Execute the following commands to deploy and run notepad.job:

1 Deploy notepad.job into the grid:
> zosadmin deploy notepad.job

2 Display the list of deployed jobs:
> zos joblist

notepad should appear in this list.
3 Run the job on the first available Windows resource.

> zos run notepad
Complete Job Examples 153

154 PlateS

novdocx (en) 13 M
ay 2009
You should now see the Windows Notepad application appear on the screen of the target
Windows system. You will see the following error if there are no Windows resources.
No Windows resources available to run Notepad

See Also
Setting Constraints Using Policies see Section 4.4, “Policy Management,” on page 34 and
Chapter 5, “Policy Elements,” on page 45.
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
Executing Commands Using Exec (page 219)
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
sweeper.job
This example job illustrates how to schedule a "sweep," which is an ordered, serialized scheduling
of the joblets across all matching resources.

Usage
> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail sweeper
Jobname/Parameters Attributes
------------------ ----------
sweeper Desc: This example job ilustrates how to schedule a 'sweep'
 accross all matching resources.

 sleeptime Desc: time to sleep (in seconds)
 Type: Integer
 Default: 1

Options

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

sleeptime
Specifies the time in seconds that the job remains dormant before running (default 1).

Description
The files that make up the Sweeper job include:
Complete Job Examples 155

156 PlateS

novdocx (en) 13 M
ay 2009
sweeper # Total: 140 lines
|-- sweeper.jdl # 66 lines
`-- sweeper.policy # 74 lines

The ScheduleSpec (page 246) utility class is also related to this example.

sweeper.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: sweeper.jdl,v 1.3 2008/02/27 20:51:24 john Exp $
13 # --

14
15 import time
16
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
30
31
32 class sweeperJob(Job):
33
34 def job_started_event(self):
35 self.setFact("jobinstance.memo", self.getFact("job.description"))
36
37 sp = ScheduleSpec()
38
39 # Optionally a constraint can be specified to further limit
matching
40 # resources from the job's default 'resource' constraint. Could
also
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
41 # compose an object Constraint.
42 # For example, uncomment to restrict to resource group 'sweeper'
43 #sp.setConstraint("<contains fact='resource.groups'
value='sweeper' />")
44
45 # Specify the joblet to run on each resource
46 sp.setJobletClass(sweeperJoblet)
47
48 # Specify the sweep across active nodes
49 sp.setUseNodeSet(sp.ACTIVE_NODE_SET)
50
51 # Schedule a sweep (creates preassigned joblets)
52 self.scheduleSweep(sp)
53
54 # Now the ScheduleSpec contains the number of joblets created
55 print 'Launched', sp.getCount(), 'joblets'
56
57
58 class sweeperJoblet(Joblet):
59
60 def joblet_started_event(self):
61 msg = "run on resource %s" % (self.getFact("resource.id"))
62 self.setFact("joblet.memo", msg)
63 print "Sweep", msg
64 sleeptime = self.getFact("jobargs.sleeptime")
65 time.sleep(sleeptime)
66

sweeper.policy

 1 <!--
 2
*==
=
 3 * Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: sweeper.policy,v 1.2 2008/02/27 20:51:24 john Exp $
14
*==
=
15 -->
16
17 <policy>
18
Complete Job Examples 157

158 PlateS

novdocx (en) 13 M
ay 2009
19 <jobargs>
20 <!--
21 - Defines and sets the length of time the joblet should pretend
22 - it is doing something important
23 -->
24 <fact name="sleeptime"
25 type="Integer"
26 description="time to sleep (in seconds)"
27 value="1"
28 visible="true" />
29 </jobargs>
30
31
32 <job>
33 <!--
34 - Give the job a description for GUI's
35 -->
36 <fact name="description"
37 type="String"
38 value="This example job ilustrates how to schedule a 'sweep'
accross all matching resources." />
39
40 <!--
41 - This activates a built in throttle to limit the number of
42 - resources this job will run on at a time
43 -->
44 <fact name="maxresources"
45 type="Integer"
46 value="3" />
47
48 <!--
49 - Rank resources from least loaded to the highest loaded. The
50 - idea is to run the joblets on the least loaded node first
51 - and hopefully by the time we get to the higher loaded
machines
52 - their load may have gone down
53 -->
54 <!--
55 <fact name="resources.rankby">
56 <array>
57 <string>resource.loadaverage/a</string>
58 </array>
59 </fact>
60 -->
61
62 <!--
63 - Alternative ranking that is easier to see:
64 - decending alphabetic of node name
65 -->
66 <fact name="resources.rankby">
67 <array>
68 <string>resource.id/d</string>
69 </array>
70 </fact>
71 </job>
72
73 </policy>
74
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Classes and Methods
The class sweeperJob (see line 32, sweeper.jdl (page 156)) is derived from the Job Class.

The class sweeperJoblet (see line 58, sweeper.jdl (page 156)) is derived from the Joblet Class.

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

Job Details
The sweeper.job can be broken down into four separate parts:

“Policy” on page 159
“zosadmin deploy” on page 159
“job_started_event” on page 159
“joblet_started_event” on page 160

Policy

In addition to specifying the jobarg and default settings for sleeptime in lines 24-28,
sweeper.policy (page 157)), there also is the <job/> section in lines 32-71, which describes static
facts (see “Facts” on page 45).

The resources.rankby array has two notable setting in this example:

resource.loadaverage: This is the first string assignment (lines 55-59), which is commented
out, that causes joblets to run on the least loaded nodes first.This is the default value and the
default launch order for scheduleSweep.
resource.id: This is the second string assignment (lines 66-70), which is actually used, and
assigns the string to the rank by array so that joblets run on nodes in reverse alphabetical order.

zosadmin deploy

When the Orchestrate Server deploys a job for the first time (see Section 7.5, “Deploying Jobs,” on
page 53), the job JDL files are executed in a special deploy mode. When sweeper.jdl is run in this
way (either via the Development Client or the zosadmin deploy command), lines 20-29 are
executed. This attempts to locate the examples jobgroup (lines 22-23), creates the group if it is not
found (lines 24-25), and adds the sweeper job to the group (line 26).

If the deployment fails for any reason, then an exception is thrown (line 27), which prints the job
name, group name, exception type and value (line 29).

job_started_event

The sweeperJob class (line 32) defines only the required job_started_event (line 34) method.
This method runs on the Orchestrate Server when the job is run to launch the joblets.
Complete Job Examples 159

160 PlateS

novdocx (en) 13 M
ay 2009
When executed, job_started_event displays a message on the memo line of the Job Log tab
within the Jobs view in the Orchestrate Development Client (line 35), via jobinstance.memo (see
Section 7.12.1, “Creating a Job Memo,” on page 63).

Jumping ahead for a moment, instead of calling self.schedule() as most the other examples do to
instantiate joblets, sweeperJob calls self.scheduleSweep() (line 52). scheduleSweep requires an
instance of ScheduleSpec (page 246), so one is created (line 37).

The ScheduleSpec method setConstraint can be used to constrain the available resources to a
particular group, as shown with a comment (line 43). If this setConstraint line is uncommented,
joblets will only run on members of the sweeper resource.group instead of using the default
resource group all.

NOTE: The sweeper group must already be created and have computing nodes assigned to it (see
“Walkthrough: Creating a Resource Account” in the PlateSpin Orchestrate 2.0 Installation and
Configuration Guide). This constraint would also be ANDed to any existing constraint, including
any aggregated policies.

The sweeperJoblet is set to be scheduled (line 52), and setUseNodeSet(intnodeSet) is assigned (line
49) the value sp.ACTIVE_NODE_SET. So, the joblet set is constructed after applying resource
constraints to the active/online resources. This in contrast to the other possible value of
sp.PROVISIONABLE_NODE_SET, where constraints are applied to all provisionable resources.

joblet_started_event

The sweeperJoblet class (lines 58-65) defines only the required joblet_started_event (line 60)
method. After this method is executed, it displays a message on the memo line of the Joblet tab
within the Jobs view in the Orchestrate Development Client (lines 61-62). It also prints a similar log
message (line 63), and then just sleeps for jobargs.sleeptime seconds (lines 64-65) before
completion.

Configure and Run
Execute the following commands to deploy and run sweeper.job:

1 Deploy notepad.job into the grid:
> zosadmin deploy sweeper.job

2 Display the list of deployed jobs:
> zos joblist

sweeper should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and resource,

specified in the sweeper.policy file:
> zos run sweeper sleeptime=30
JobID: zenuser.sweeper.420

> zos status zenuser.sweeper.420
Completed
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
> zos log zenuser.sweeper.420
Launched 3 joblets
[melt] Sweep run on resource melt
[freeze] Sweep run on resource freeze
[skate] Sweep run on resource skate

See Also
Setting Constraints Using Policies, see Section 4.4, “Policy Management,” on page 34 and
Chapter 5, “Policy Elements,” on page 45.
Complete Job Examples 161

162 PlateS

novdocx (en) 13 M
ay 2009
whoami.job
Demonstrates using the Exec class to send a command to the operating system’s default command
interpreter. On Microsoft Windows, this is cmd.exe. On POSIX systems, this is /bin/sh.

Usage
> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

~> zos jobinfo --detail whoami
Jobname/Parameters Attributes
------------------ ----------
whoami Desc: This is a demo example of enhanced exec

 numJoblets Desc: The number of joblets to schedule
 Type: Integer
 Default: 1

 resource Desc: The resource id to run on
 Type: String
 Default: .*

Description
The files that make up the Whoami job include:

whoami # Total: 118 lines
|-- whoami.jdl # 69 lines
`-- whoami.policy # 49 lines

whoami.jdl

 1 # --

 2 # Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: whoami.jdl,v 1.3 2008/02/27 20:51:34 john Exp $
13 # --

14
15 """
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
16
17 Demonstrate running setuid exec.
18
19 """
20 import os,time
21
22 #
23 # Add to the 'examples' group on deployment
24 #
25 if __mode__ == "deploy":
26 try:
27 jobgroupname = "examples"
28 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
29 if jobgroup == None:
30 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
31 jobgroup.addMember(__jobname__)
32 except:
33 exc_type, exc_value, exc_traceback = sys.exc_info()
34 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
35
36
37 class Whoami(Job):
38
39 def job_started_event(self):
40 # Launch the joblets
41 numJoblets = self.getFact("jobargs.numJoblets")
42 user = self.getFact("user.id")
43 print "Launching %d joblets for user '%s'" % (numJoblets,user)
44 self.schedule(WhoamiJoblet,numJoblets)
45
46
47 class WhoamiJoblet(Joblet):
48
49 def joblet_started_event(self):
50 if self.getFact("resource.os.family") == "windows":
51 cmd = "echo %USERNAME%"
52 elif self.getFact("resource.os.family") == "solaris":
53 cmd = "echo $USER"
54 else:
55 cmd = "whoami"
56 print "cmd=%s" % (cmd)
57
58 # example using built-in system()
59 #result = system(cmd)
60
61 # example using Exec class
62 e = Exec()
63 e.setShellCommand(cmd)
64 e.writeStdoutToLog()
65 e.writeStderrToLog()
66 result = e.execute()
67
68 print "result=%d" % (result)
69
Complete Job Examples 163

164 PlateS

novdocx (en) 13 M
ay 2009
whoami.policy

 1 <!--
 2
*==
=
 3 * Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: whoami.policy,v 1.2 2008/02/27 20:51:34 john Exp $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <fact name="numJoblets"
22 type="Integer"
23 description="The number of joblets to schedule"
24 value="1" />
25
26 <fact name="resource"
27 type="String"
28 description="The resource id to run on"
29 value=".*" />
30
31 </jobargs>
32
33 <job>
34 <fact name="description"
35 type="String"
36 value="This is a demo example of enhanced exec" />
37
38 <!-- only allow one run resource at a time so that multiple re
sources can be visited -->
39 <fact name="joblet.maxperresource"
40 type="Integer"
41 value="1" />
42 </job>
43
44 <constraint type="resource" >
45 <eq fact="resource.id" factvalue="jobargs.resource" match="regex p"
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
/>
46 </constraint>
47
48 </policy>
49

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

Job Details
The following sections describe the Whoami job:

“zosadmin deploy” on page 165
“job_started_event” on page 166
“joblet_started_event” on page 166

zosadmin deploy

When jobs are deployed into the grid, they can optionally be placed in groups for organization and
easy reference. In this case, the Whoami job is added to the group named “examples” (see lines 25-
34 of whoami.jdl) and is displayed in the PlateSpin Orchestrate Development Client in the
Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples.

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.
Complete Job Examples 165

166 PlateS

novdocx (en) 13 M
ay 2009
job_started_event

When the Whoami job receives a job_started_event, it schedules one or more instances of the
Whoami joblet to be run (see line 44 in whoami.jdl (page 162)). The number of WhoamiJoblet
instances is indicated by the value of the numJoblets fact, whose value might have been supplied
on the command-line, or referenced from what’s been supplied in the whoami.policy file by default
(see lines 21-24 in whoami.policy (page 164)).

In addition to supplying a default value for numJoblets, the whoami.policy file also supplies a
default value for the ID of the resource on which the joblet runs. The default value is .*, which
means all resources are included (see lines 26-29 in whoami.policy (page 164)).

Note that the setting for resource is not used in the JDL code but is used to affect which resources on
which the joblet run. This occurs because a constraint is specified in whoami.policy that restricts
the resources that can run this joblet to the current value of the resource fact (see line 45 in
whoami.jdl (page 162)).

maxperresource is another job setting that affects scheduling of the Whoami joblet. The system
uses maxperresource to determine how many instances of the joblet can run simultaneously on the
same resource. In this case, only one instance of the Whoami job can be run on a machine at a time,
as specified in lines 39-42 in whoami.policy (page 164).

When facts are referenced in the JDL file, they are prepended with jobargs. or job. However,
when supplied on the command line, this prefix is omitted. JDL files must use an explicit naming
convention when it references facts from the different sections of the policy files. For more
information on naming conventions for policy facts, see Section 3.1.1, “PlateSpin Orchestrate
Datagrid Filepaths,” on page 25.

joblet_started_event

When the Whoami joblet is executed on a particular resource it receives a joblet_started_event.
After this happens, the Whoami joblet decides which command to use to get the current username
by checking the value of resource.os.family (see lines 50-55 in whoami.jdl (page 162)). This
setting is not set in the whoami.policy, but instead is available from the PlateSpin Orchestrate
system.

After the command to get the current username has been decided, the PlateSpin Orchestrate API
class named Exec is used to execute the command on the resource where the joblet is running (see
lines 62-66 in whoami.jdl (page 162)).

By passing the command to the Exec setShellCommand method, the command will be executed by
the operating system’s default command interpreter. On Microsoft Windows this cmd.exe. On
POSIX systems, this is /bin/sh. As indicated by lines 64-65 in whoami.jdl (page 162), all standard
out and standard errors are written to the job’s log file.

To view the log file for the whoami job after it has been run, execute the command > zos log
whoami.

For more information about using the zos command line, see “The zosadmin Command Line Tool”
in the PlateSpin Orchestrate 2.0 Command Line Reference. For more information on running
commands using the Exec class, see Exec (page 219).
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Configure and Run
Execute the following commands to deploy and run whoami.job:

1 Deploy notepad.job into the grid:
> zosadmin deploy whoami.job

2 Display the list of deployed jobs:
> zos joblist

whoami should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and resource,

specified in the whoami.policy file:
> zos run whoami

4 Run the job on one or more resources using supplied values for numJoblets and resource:
> zos run whoami numJoblets=10 resource=my_resource_.*

Run 10 joblets simultaneously, but only on resources beginning with the name "my_resource_".

NOTE: The value for "resource" is specified using regular expression syntax.

See Also
Setting Constraints Using Policies (Section 4.4, “Policy Management,” on page 34 and
Chapter 5, “Policy Elements,” on page 45).
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
Scheduling multiple instances of a joblet
Setting default parameter values using policies
Configuring constraints in a policy file
Naming conventions for policy facts (Section 3.1.1, “PlateSpin Orchestrate Datagrid
Filepaths,” on page 25.Section 3.1.1, “PlateSpin Orchestrate Datagrid Filepaths,” on page 25)
Facts provided by the PlateSpin Orchestrate system that can be referenced within a JDL file
Using PlateSpin Orchestrate (“How Do I Interact with PlateSpin Orchestrate?”)
Running commands using the Exec class.

10.6 Miscellaneous Code-Only Jobs
The following examples demonstrate useful, miscellaneous code-only job concepts:

“factJunction.job” on page 168
“jobargs.job” on page 177
Complete Job Examples 167

168 PlateS

novdocx (en) 13 M
ay 2009
factJunction.job
Demonstrates using fact junctions to retrieve information about objects in the grid relative to another
object.

Detail
Each object in the grid has a set of facts which can be read and modified. Some of these facts are
special in the sense that their value contains the name of another object that must exist in the grid.
These special facts are called fact junctions.

Fact junctions provide a way to reference the facts of one object, using another object as a starting
point. For example, all jobs in the grid have a fact named job.accountinggroup. The value for
job.accountinggroup must be the name of a job group currently existing in the grid (the default
being the group named all). The following JDL code prints the ID of the accounting group for the
job named myJob without using fact junctions:

job = getMatrix().getGridObject(TYPE_JOB, “myJob”)
groupName = job.getFact(“job.accountinggroup”)
group = getMatrix().getGridObject(TYPE_JOBGROUP, groupName)
print “Group ID: “ + group.getFact(“group.id”)

Using fact junctions, you can obtain the ID of the accounting group without having to retrieve a
reference to the group object first, as follows:

job = getMatrix().getGridObject(TYPE_JOB, “myJob”)
print “Group ID: “ + job.getFact(“job.accountinggroup.id”)

Notice the job myJob does not have a fact named job.accountinggroup.id. However, it does have a
fact named “job.accountinggroup”, which contains the name of an existing job group. This job
group has the fact “group.id”, and using fact junctions you can obtain the value of this fact without
explicitly reading it off of the job group object itself.

Usage
> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy factJunction.job
factJunction successfully deployed

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail factJunction
Jobname/Parameters Attributes
------------------ ----------
factJunction Desc: This is a test job to exercise fact junctions.

No parameters defined for this job.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Description
The files that make up the factJunction job include:

factJunction # Total: 205 lines
|-- factJunction.jdl # 179 lines
`-- factJunction.policy # 26 lines

factJunction.jdl

 1 # ---

 2 # Copyright 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 11 # ---

 12 # $Id: factJunction.jdl,v 1.3 2008/02/27 20:49:39 john Exp $
 13 # ---

 14
 15 #
 16 # This is a test job, but also illustrates all the implemented fact
junctions.
 17 # A fact junction is a way to access facts on a 'referenced' object.
 18 # E.g. vmhost.resource.*** redirects from the vmhost object through the
 19 # juction onto the underlying physical resource object.
 20 #
 21 # To setup for test, copy job into the 'provisionAdapter' job group.
 22 #
 23
 24 #
 25 # Add to the 'examples' group on deployment
 26 #
 27 if __mode__ == "deploy":
 28 try:
 29 jobgroupname = "examples"
 30 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
 31 if jobgroup == None:
 32 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
 33 jobgroup.addMember(__jobname__)
 34 except:
 35 exc_type, exc_value, exc_traceback = sys.exc_info()
 36 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
 37
 38
 39 class factJunctionJob(Job):
Complete Job Examples 169

170 PlateS

novdocx (en) 13 M
ay 2009
 40
 41 def job_started_event(self):
 42 m = getMatrix()
 43 nptt = "<Not Possible To Test>"
 44
 45 # Setup test environment
 46 user = m.getGridObject(TYPE_USER, "test")
 47 if (user == None):
 48 user = m.createGridObject(TYPE_USER, "test")
 49 user.setArrayFact("user.privilegedjobgroups", ["all"])
 50
 51 repository = m.getGridObject(TYPE_REPOSITORY, "test")
 52 if (repository == None):
 53 repository = m.createGridObject(TYPE_REPOSITORY, "test")
 54 repository.setArrayFact("repository.provisioner.jobs",
["factJunction"])
 55
 56 node = m.getGridObject(TYPE_RESOURCE, "test")
 57 if (node == None):
 58 node = m.createGridObject(TYPE_RESOURCE, "test")
 59
 60 vm = m.getGridObject(TYPE_RESOURCE, "vmtest")
 61 if (vm == None):
 62 vm = m.createResource("vmtest", ResourceInfo.TYPE_VM_INSTANCE)
 63 vm.setFact("resource.provisioner.job", "factJunction")
 64 vm.setFact("resource.vm.repository", "test")
 65 vm.setFact("resource.provisioner.recommendedhost", "test_test")
 66
 67 vmt = m.getGridObject(TYPE_RESOURCE, "vmttest")
 68 if (vmt == None):
 69 vmt = m.createResource("vmttest",
ResourceInfo.TYPE_VM_TEMPLATE)
 70 vmt.setFact("resource.provisioner.job", "factJunction")
 71 vmt.setFact("resource.vm.repository", "test")
 72
 73 try:
 74 vmhost = node.getVmHost("test")
 75 except:
 76 vmhost = node.createVmHost("test")
 77 vmhost.setFact("vmhost.provisioner.job", "factJunction")
 78 vmhost.setArrayFact("vmhost.repositories", ["test"])
 79 vmhost.setArrayFact("vmhost.vm.available.groups", ["all"])
 80
 81 job = m.getGridObject(TYPE_JOB, "factJunction")
 82
 83 # Test junctions
 84
 85 print
 86 print "Testing User fact junctions (3):"
 87 r = user.getFact("user.accountinggroup.id")
 88 print "1. user.accountinggroup.id = %s" % r
 89 # Array junctions
 90 r = user.getFact("user.privilegedjobgroups[all].id")
 91 print "2. user.privilegedjobgroups[all].id = %s" % r
 92 r = user.getFact("user.groups[all].jobcount")
 93 print "3. user.groups[all].jobcount = %s" % r
 94
 95
 96 print
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
 97 print "Testing Job fact junctions (3):"
 98 r = job.getFact("job.accountinggroup.id")
 99 print "1. job.accountinggroup.id = %s" % r
100 r = job.getFact("job.resourcegroup.id")
101 print "2. job.resourcegroup.id = %s" % r
102 # Array junctions
103 r = job.getFact("job.groups[all].jobinstances.total")
104 print "3. job.groups[all].jobinstances.total = %s" % r
105
106
107 print
108 print "Testing VmHost fact junctions (7):"
109 r = vmhost.getFact("vmhost.resource.id")
110 print "1. vmhost.resource.id = %s" % r
111 r = vmhost.getFact("vmhost.accountinggroup.id")
112 print "2. vmhost.accountinggroup.id = %s" % r
113 r = vmhost.getFact("vmhost.provisioner.job.id")
114 print "3. vmhost.provisioner.job.id = %s" % r
115 # Array junctions
116 r = vmhost.getFact("vmhost.groups[all].vmcount")
117 print "4. vmhost.groups[all].vmcount = %s" % r
118 r = vmhost.getFact("vmhost.repositories[test].id")
119 print "5. vmhost.repositories[test].id = %s" % r
120 r = vmhost.getFact("vmhost.vm.available.groups[all].id")
121 print "6. vmhost.vm.available.groups[all].id = %s" % r
122 #r = vmhost.getFact("vmhost.vm.instanceids[vmtest].id")
123 r = nptt
124 print "7. vmhost.vm.instanceids.[vmtest].id = %s" % r
125
126
127 print
128 print "Testing Resource fact junctions (9):"
129 r = vm.getFact("resource.provisioner.job.id")
130 print "1. resource.provisioner.job.id = %s" % r
131 r = vm.getFact("resource.vm.repository.id")
132 print "2. resource.vm.repository.id = %s" % r
133 r = vm.getFact("resource.provisioner.recommendedhost.id")
134 print "3. resource.provisioner.recommendedhost.id = %s" % r
135 #r = vm.getFact("resource.provision.vmhost.id")
136 r = nptt
137 print "4. resource.provision.vmhost.id = %s" % r
138 #r = vm.getFact("resource.provision.template.id")
139 r = nptt
140 print "5. resource.provision.template.id = %s" % r
141 # Array junctions
142 r = vm.getFact("resource.groups[all].loadaverage")
143 print "6. resource.groups[all].loadaverage = %s" % r
144 r = node.getFact("resource.vmhosts[test_test].id")
145 print "7. resource.vmhosts[test_test].id = %s" % r
146 r = node.getFact("resource.repositories[test].id")
147 print "8. resource.repositories[test].id = %s" % r
148 #r = vmt.getFact("resource.provisioner.instances[vmttest_2].id")
149 r = nptt
150 print "9. resource.provisioner.instances[vmtest_2].id = %s" % r
151
152
153 print
154 print "Testing Repository fact junctions (4):"
155 r = repository.getFact("repository.groups[all].id")
Complete Job Examples 171

172 PlateS

novdocx (en) 13 M
ay 2009
156 print "1. repository.groups[all].id = %s" % r
157 r = repository.getFact("repository.vmimages[vmtest].id")
158 print "2. repository.vmimages[vmtest].id = %s" % r
159 r = repository.getFact("repository.vmhosts[test_test].id")
160 print "3. repository.vmhosts[test_test].id = %s" % r
161 r =
repository.getFact("repository.provisioner.jobs[factJunction].id")
162 print "4. repository.provisioner.jobs[factJunction].id = %s" % r
163
164
165 print
166 print "Testing multiple junctions (1):"
167 r =
repository.getFact("repository.vmhosts[test_test].resource.repositories[test]
.vmhosts[test_test].groups[all].id")
168 print "1.
repository.vmhosts[test_test].resource.repositories[test].vmhosts[test_test].
groups[all].id = %s" % r
169
170 # Now make sure they are all accessable by the joblet...
171 #self.schedule(factJunctionJoblet, {})
172
173
174 class factJunctionJoblet(Joblet):
175
176 def joblet_started_event(self):
177 # TODO
178 time.sleep(sleeptime)
179

factJunction.policy

The description fact displays the commands x, y, z ...

 1 <!--
 2
*==
=
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: factJunction.policy,v 1.2 2008/02/27 20:49:39 john Exp $
14
*==
=

pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
15 -->
16
17 <policy>
18
19 <job>
20 <fact name="description"
21 type="String"
22 value="This is a test job to exercise fact junctions." />
23 </job>
24
25 </policy>
26

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

UserInfo
A representation of a User grid object. This class provides accessors and setters for User facts.

RepositoryInfo
A representation of a Repository grid object. This class provides accessors and setters for
Repository facts. To script the creation of Repository objects, see MatrixInfo (page 235).

ResourceInfo
A representation of a Resource Grid Object. This class inherits the base fact operations from
GridObjectInfo and adds the provisioning operations for provisionable resources such as
virtual machines. See MatrixInfo (page 235) for how to script creation of Resource objects.

JobInfo
A representation of a deployed Job. The factset available on the JobInfo class is the aggregation
of the Job's policy and policies on the groups the Job is a member of. This includes the job.*
and jobargs.* fact namespaces.
Complete Job Examples 173

174 PlateS

novdocx (en) 13 M
ay 2009
Job Details
The FactJunction job performs its work by handling the following events:

“zosadmin deploy” on page 174
“job_started_event” on page 174
“joblet_started_event” on page 174

zosadmin deploy

Deploying FactJunction job is performed by lines 27-36 of factJunction.jdl. When jobs are deployed
into the grid, they can optionally be placed in groups for organization and easy reference. In this
case, the FactJunction job will be added to the group named “examples”, and will show up in the
PlateSpin Orchestrate Development Client in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.

job_started_event

When the FactJunction job receives a job_started_event, it gets a reference to the MatrixInfo
object (line 42), which allows it to obtain references to other objects in the grid, such as Users,
Resources, Jobs, etc. (see lines 46, 51, 56, 60, 67 and 81 in “factJunction.jdl” on page 169). If these
objects don't exist in the grid, they are immediately created so they can be used later on (see lines 48,
53, 58, 62, 69 and 76).

After references exist for the various objects in the grid, values for other objects are printed out
using the fact junctions that exist on each object (see lines 83-168 in factJunction.jdl (page 169)).

There are several instances where the factJunction job uses “array notation” to handle fact junctions
that contain multiple values (see lines 90, 92, 103, 116, 120, 122, 124, 142, 144, 146, 156, 158, 160
and 167 in factJunction.jdl (page 169)). As previously explained, fact junctions are special facts
because their value contains the name of another object that must exist in the grid. However, fact
junctions don't always contain a single name. Some fact junctions allow for an array of names to be
specified. For example, the value for the fact “job.groups” is supplied as a String array.

In this case, the fact junction can be refined using array notation, which allows for the selection of
one of the values. For example, the following code retrieves the ID of the group named “myGroup”,
which is one of the groups the given job is a member of:

job.getFact(“job.groups[myGroup].id”)

joblet_started_event

The FactJunction job only illustrates using fact junctions to retrieve information about objects in the
grid. Therefore, no work is performed on the resource by the FactJunction joblet.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Configure and Run
To run this example, you must have PlateSpin Orchestrate installed and configured properly. No
agents on separate resources are required. You also must be logged into your Orchestrate server
before you run zosadmin or zos commands.

Execute the following commands to deploy and run factJunction.job:

1 Deploy factJunction.job into the grid:
> zosadmin deploy factJunction.job

2 Display the list of deployed jobs:
> zos joblist

factJunction should appear in this list.
3 Run the FactJunction job, and view the results:

> zos run factJunction
JobID: zenuser.factJunction.421
> zos log factJunction
> zos status zenuser.factJunction.421
Completed

> zos log factJunction

4 Testing User fact junctions:
1. user.accountinggroup.id = all

2. user.privilegedjobgroups[all].id = all

3. user.groups[all].jobcount = 147

5 Testing Job fact junctions:
1. job.accountinggroup.id = all

2. job.resourcegroup.id = all

3. job.groups[all].jobinstances.total = 1

6 Testing VmHost fact junctions:
1. vmhost.resource.id = test

2. vmhost.accountinggroup.id = all

3. vmhost.provisioner.job.id = factJunction

4. vmhost.groups[all].vmcount = 0

5. vmhost.repositories[test].id = test

6. vmhost.vm.available.groups[all].id = all

7. vmhost.vm.instanceids.[vmtest].id = <Not Possible To Test>

7 Testing Resource fact junctions:
1. resource.provisioner.job.id = factJunction

2. resource.vm.repository.id = test

3. resource.provisioner.recommendedhost.id = test_test

4. resource.provision.vmhost.id = <Not Possible To Test

5. resource.provision.template.id = <Not Possible To Test>
Complete Job Examples 175

176 PlateS

novdocx (en) 13 M
ay 2009
6. resource.groups[all].loadaverage = 0.03666666666666667

7. resource.vmhosts[test_test].id = test_test

8. resource.repositories[test].id = test

9. resource.provisioner.instances[vmtest_2].id = <Not Possible To Test>

8 Testing Repository fact junctions:
1. repository.groups[all].id = all

2. repository.vmimages[vmtest].id = vmtest

3. repository.vmhosts[test_test].id = test_test

4. repository.provisioner.jobs[factJunction].id = factJunction

9 Testing multiple junctions
1. repository.vmhosts[test_test].resource.repositories[test].vmhosts[test_t

est].groups[all].id = all

See Also
Adding jobs to groups during deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
View the list of fact junctions available for each object type in a PlateSpin Orchestrate grid
Using array notation to refine multi-valued fact junctions
Using PlateSpin Orchestrate (“How Do I Interact with PlateSpin Orchestrate?”)
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
jobargs.job
Demonstrates the usage of the various argument types that jobs can accept. These types are integer,
Real, Boolean, String, Time, Date, List, Dictionary, and Array (which can contain the types Integer,
Real, Boolean, Time, Date, String). For more information about how to define job arguments, and
specify their values on the command line, see Section 7.7, “Working with Facts and Constraints,” on
page 55.

Usage
> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy jobargs.job
jobargs successfully deployed

> zos login --user zenuser Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail jobargs
Jobname/Parameters Attributes
------------------ ----------
jobargs Desc: This example job tests all fact types.

 TimeArgReq Desc: Required Time arg test
 Type: Time
 Default: None! Value must be specified

 IntegerArg Desc: Integer arg test
 Type: Integer
 Default: 1

 DateArg Desc: Date arg test
 Type: Date
 Default: Wed Apr 05 09:00:00 EDT 2006

 RealArgReq Desc: Required Real arg test
 Type: Real
 Default: None! Value must be specified

 IntegerArrayArg Desc: Integer[] arg test
 Type: Integer[]
 Default: [100,200,300]

 RealArrayArg Desc: Real[] arg test
 Type: Real[]
 Default: [1.23,3.456,7.0]

 DictArg Desc: Dictionary arg test
 Type: Dictionary
 Default: {name=moe, dob=Fri Jan 02 00:00:00 EST 1970,
 age=35}

 DateArrayArg Desc: Date[] arg test
Complete Job Examples 177

178 PlateS

novdocx (en) 13 M
ay 2009
 Type: Date[]
 Default: [Wed Jul 08 22:00:00 EDT 2009,Thu Jan 02 00:01:00
 EST 2003]

 StringArgReq Desc: Required String arg test
 Type: String
 Default: None! Value must be specified

 TimeArrayArg Desc: Time[] arg test
 Type: Time[]
 Default: [79200000,60000]

 StringArrayArg Desc: String[] arg test
 Type: String[]
 Default: [abc,def,ghi jkl]

 TimeArg Desc: Time arg test
 Type: Time
 Default: 32400000

 BooleanArgReq Desc: Required Boolean arg test
 Type: Boolean
 Default: None! Value must be specified

 BooleanArg Desc: Boolean arg test
 Type: Boolean
 Default: true

 IntegerArgReq Desc: Required Integer arg test
 Type: Integer
 Default: None! Value must be specified

 StringArg Desc: String arg test
 Type: String
 Default: Hello World

 BooleanArrayArg Desc: Boolean[] arg test
 Type: Boolean[]
 Default: [true,false,true]

 RealArg Desc: Real arg test
 Type: Real
 Default: 3.1415

 ListArg Desc: List arg test
 Type: List
 Default: [abc, d, efghij]

 DateArgReq Desc: Required Date arg test
 Type: Date
 Default: None! Value must be specified

Description
The files that make up the Jobargs job include:
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
jobargs.job # Total: 254 lines
|-- jobargs.jdl # 77 lines
`-- jobargs.policy # 177 lines

jobargs.jdl

 1 # --

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: jobargs.jdl,v 1.3 2008/02/27 20:50:31 john Exp $
13 # --

14
15 """
16 Example job showing all available job argument types.
17
18 Example cmd line to run job:
19 zos run jobargs TimeArgReq="12:01:02" RealArgReq="3.14" IntegerArgR
eq="123" StringArgReq="foo" BooleanArgReq="true" ListArg="hi,mom"
20 """
21
22 import time
23
24 #
25 # Add to the 'examples' group on deployment
26 #
27 if __mode__ == "deploy":
28 try:
29 jobgroupname = "examples"
30 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
31 if jobgroup == None:
32 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
33 jobgroup.addMember(__jobname__)
34 except:
35 exc_type, exc_value, exc_traceback = sys.exc_info()
36 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgr
oupname, exc_type, exc_value)
37
38
39 class jobargs(Job):
40
41 def job_started_event(self):
42
43 jobid = self.getFact("jobinstance.id")
Complete Job Examples 179

180 PlateS

novdocx (en) 13 M
ay 2009
44 print "*****Dumping %s JobInstance jobargs facts*****" % (jobi d)
45 keys = self.getFactNames()
46 keys.sort()
47 for s in keys:
48 if s.startswith("jobargs"):
49 v = self.getFact(s)
50 ty = type(v)
51
52 if str(ty).endswith("Dictionary"):
53 self.dump_dict(s,v)
54 else:
55 if s.endswith("TimeArg") or s.endswith("TimeArgReq "):
56 v = time.ctime(v/1000)
57
58 print "%s %s %s" % (s,type(v),str(v))
59 print "*****End %s dump*****" % (jobid)
60
61 #self.schedule(jobargsJoblet)
62
63 def dump_dict(self,name,dict):
64 print "Dict: %s" % (name)
65 keys = dict.keys()
66 for k in keys:
67 v = dict[k]
68 ty = type(v)
69 if k == "dob":
70 v = time.ctime(v/1000)
71 print " %s %s %s" % (k,ty,str(v))
72
73
74 class jobargsJoblet(Joblet):

jobargs.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 12
*==
=
 13 * $Id: jobargs.policy,v 1.2 2008/02/27 20:50:31 john Exp $
 14
*==
=

pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
 15 -->
 16
 17 <policy>
 18
 19 <jobargs>
 20
 21 <!-- Optional job args -->
 22 <fact name="OptionalDateArg"
 23 description="Optional Date Arg"
 24 type="Date"
 25 value="1/2/06 12:01 PM"/>
 26
 27 <fact name="OptionalTimeArg"
 28 description="Optional Time Arg"
 29 type="Time"
 30 value="12:01 PM"/>
 31
 32 <fact name="OptionalRealArg"
 33 description="Optional Real Arg"
 34 type="Real"
 35 value="3.14" />
 36
 37 <fact name="OptionalIntegerArg"
 38 description="Optional Integer Arg"
 39 type="Integer"
 40 value="123" />
 41
 42 <fact name="OptionalStringArg"
 43 description="Optional String Arg"
 44 type="String"
 45 value="foo" />
 46
 47 <fact name="OptionalString2ArgAsTag"
 48 description="Optional String Arg as tag">
 49 <string>bar</string>
 50 </fact>
 51
 52 <fact name="OptionalString3ArgAsCDATA"
 53 description="Optional String Arg as CDATA">
 54 <string>
 55 <![CDATA[this text is part of
 56 a multi-line cdata section containing
 57 xml <html>test</html>
 58 <eq fact="foo.bar" value="qwerty" />
 59 cool!
 60]]>
 61 </string>
 62 </fact>
 63
 64 <fact name="OptionalBooleanArg"
 65 description="Optional Boolean Arg"
 66 type="Boolean"
 67 value="true" />
 68
 69 <fact name="OptionalListArg">
 70 <list>
 71 <listelement value="hi" type="String" />
 72 <listelement value="mom" />
 73 <listelement value="42" type="Integer" />
Complete Job Examples 181

182 PlateS

novdocx (en) 13 M
ay 2009
 74 </list>
 75 </fact>
 76
 77 <fact name="OptionalDictArg">
 78 <dictionary>
 79 <dictelement key="name" type="String" value="joe" />
 80 <dictelement key="date" type="Date" value="4/15/06" />
 81 <dictelement key="time" type="Time" value="3:30 AM" />
 82 <dictelement key="age" type="Integer" value="12" />
 83 </dictionary>
 84 </fact>
 85
 86 <fact name="OptionalDateArray">
 87 <array>
 88 <date>1/2/06 12:01 PM</date>
 89 <date>1/3/06 12:02 PM</date>
 90 <date>1/4/06</date>
 91 </array>
 92 </fact>
 93 <fact name="OptionalTimeArray">
 94 <array>
 95 <time>12:01 PM</time>
 96 <time>12:02 PM</time>
 97 </array>
 98 </fact>
 99 <fact name="OptionalRealArray">
100 <array>
101 <real>1.1</real>
102 <real>2.2</real>
103 </array>
104 </fact>
105 <fact name="OptionalIntegerArray">
106 <array>
107 <integer>1</integer>
108 <integer>2</integer>
109 </array>
110 </fact>
111 <fact name="OptionalStringArray">
112 <array>
113 <string>string1</string>
114 <string>string2</string>
115 </array>
116 </fact>
117 <!-- Arrays of dictionary or list not currently supported
118 <fact name="OptionalDictionaryArray">
119 <array>
120 <dictionary>
121 <dictelement key="name" type="String" value="joe" />
122 </dictionary>
123 </array>
124 </fact>
125 -->
126
127 <!-- Required job args -->
128 <fact name="RequiredDateArg" type="Date" />
129 <fact name="RequiredTimeArg" type="Time" />
130 <fact name="RequiredRealArg" type="Real" />
131 <fact name="RequiredIntegerArg" type="Integer" />
132 <fact name="RequiredStringArg" type="String" />
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
133 <fact name="RequiredBooleanArg" type="Boolean" />
134 <!-- XXX Ooops, not currently supported without value!
135 <fact name="RequiredListArg" type="list" />
136 <fact name="RequiredDictArg" type="dictionary" />
137 <fact name="RequiredStringArray" type="string">
138 <array />
139 </fact>
140 -->
141
142 <!-- Invisible job args -->
143 <fact name="InvisibleDateArg" type="Date" value="1/2/06 12:01 PM"
visible="False" />
144 <fact name="InvisibleTimeArg" type="Time" value="12:01 PM"
visible="False" />
145 <fact name="InvisibleRealArg" type="Real" value="3.14"
visible="False" />
146 <fact name="InvisibleIntegerArg" type="Integer" value="123"
visible="False" />
147 <fact name="InvisibleStringArg" type="String" value="foo"
visible="False" />
148 <fact name="InvisibleString2Arg" visible="False" >
149 <string>bar</string>
150 </fact>
151 <fact name="InvisibleBooleanArg" type="Boolean" value="true"
visible="False" />
152 <fact name="InvisibleListArg" visible="False">
153 <list>
154 <listelement value="hi" type="String" />
155 <listelement value="mom" />
156 <listelement value="42" type="integer" />
157 </list>
158 </fact>
159 <fact name="InvisibleDictArg" visible="False">
160 <dictionary>
161 <dictelement key="name" type="String" value="joe" />
162 <dictelement key="date" type="Date" value="4/15/06" />
163 <dictelement key="time" type="Time" value="3:30 AM" />
164 <dictelement key="age" type="Integer" value="12" />
165 </dictionary>
166 </fact>
167
168 </jobargs>
169
170 <job>
171 <fact name="description"
172 type="String"
173 value="This example job tests all fact types." />
174 </job>
175
176 </policy>
177
Complete Job Examples 183

184 PlateS

novdocx (en) 13 M
ay 2009
Schedule File (optional)

jobargs.sched

1 <schedule name="jobargs" description="Run jobargs" active="true">
2 <runjob job="jobargs" user="labuser" priority="medium" />
3 <triggers>
4 <trigger name="trigger1" />
5 <trigger name="trigger2" />
6 </triggers>
7 </schedule>

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Job Details
The Jobargs job performs its work by handling the following events:

“zosadmin deploy” on page 184
“job_started_event” on page 185
“joblet_started_event” on page 185

zosadmin deploy

In jobargs.jdl (page 179), lines 27-36 deploy the job into the grid. After jobs are deployed into the
grid, they can optionally be placed in groups for organization and easy reference. In this case, the
jobargs job will be added to the group named “examples”, and will show up in the PlateSpin
Orchestrate Development Client in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.0 Installation and Configuration Guide.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
job_started_event

After the Jobargs job receives a job_started_event, it gets a list of all the facts available to it, as
shown in line 45 of jobargs.jdl (page 179). This list is sorted, filtered according to whether or not it’s
a jobarg fact, and then enumerated (lines 46-58). Each jobarg fact is printed in a “name type value”
format. When the complex Dictionary type is encountered (line 52), a separate method is used to
print the values for all the key-value pairs (lines 63-71).

The list of optional and required arguments for this Jobargs example are available as facts within the
<jobargs> section (see lines 19-168 in jobargs.policy (page 180)).

For more information about defining job arguments and their types, see Chapter 5, “Policy
Elements,” on page 45 and Section 4.4, “Policy Management,” on page 34.

joblet_started_event

The Jobargs job only illustrates passing job arguments to a job. Therefore, no work is performed on
the resource by the jobargsJoblet.

Configure and Run
To run this example, you must have PlateSpin Orchestrate installed and configured properly. No
agents on separate resources are required. You also must be logged into your Orchestrate Server
before you run zosadmin or zos commands.

Execute the following commands to deploy and run jobargs.job:

1 Deploy jobargs.job into the grid:
> zosadmin deploy jobarg.job

NOTE: Run zosadmin login to log in for zos administration.

2 Display the list of deployed jobs:
> zos joblist

jobargs should appear in this list.

NOTE: Run zos login to run zos client jobs.

3 Display the list of optional and required arguments for this job:
> zos jobinfo jobargs

4 Run the jobargs job and view the results.

NOTE: You must supply values for TimeArgReq, RealArgReq, StringArgReq,
BooleanArgReq, IntegerArgReq, and DateArgReq as follows (see jobargs.policy (page 180)
for the full list of arguments that can be specified):

> zos run jobargs TimeArgReq=12:01:02 RealArgReq=3.14 StringArgReq=Hello
BooleanArgReq=True IntegerArgReq=42 DateArgReq="04/05/07 7:45 AM"

> zos log jobargs
Complete Job Examples 185

186 PlateS

novdocx (en) 13 M
ay 2009
See Also
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 168)).
Defining job arguments and their types
Using PlateSpin Orchestrate (“How Do I Interact with PlateSpin Orchestrate?”)
pin Orchestrate 2.0 Developer Guide and Reference

A
novdocx (en) 13 M

ay 2009
APlateSpin Orchestrate Client SDK

This section provides the reference information for the Java* classes used by the PlateSpin®
Orchestrate Client SDK

Section A.1, “Constraint Package,” on page 187
Section A.2, “Datagrid Package,” on page 191
Section A.3, “Grid Package,” on page 192
Section A.4, “TLS Package,” on page 199
Section A.5, “Toolkit Package,” on page 199

A.1 Constraint Package
The following Java files form the interfaces and exceptions for the PlateSpin Orchestrate constraint
grid structure:

Section A.1.1, “AndConstraint,” on page 187
Section A.1.2, “BetweenConstraint,” on page 188
Section A.1.3, “BinaryConstraint,” on page 188
Section A.1.4, “Constraint,” on page 188
Section A.1.5, “ContainerConstraint,” on page 188
Section A.1.6, “ContainsConstraint,” on page 188
Section A.1.7, “DefinedConstraint,” on page 188
Section A.1.8, “EqConstraint,” on page 189
Section A.1.9, “GeConstraint,” on page 189
Section A.1.10, “GtConstraint,” on page 189
Section A.1.11, “IfConstraint,” on page 189
Section A.1.12, “LeConstraint,” on page 189
Section A.1.13, “LtConstraint,” on page 189
Section A.1.14, “NeConstraint,” on page 189
Section A.1.15, “NotConstraint,” on page 190
Section A.1.16, “OperatorConstraint,” on page 190
Section A.1.17, “OrConstraint,” on page 190
Section A.1.18, “TypedConstraint,” on page 190
Section A.1.19, “UndefinedConstraint,” on page 190
Section A.1.20, “ConstraintException,” on page 190

A.1.1 AndConstraint
Perform a logical and-ing of all child constraints.This is a no-op if this constraint contains no
children.
PlateSpin Orchestrate Client SDK 187

188 PlateS

novdocx (en) 13 M
ay 2009
For complete documentation of the class, see AndConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
AndConstraint.html).

A.1.2 BetweenConstraint
Binary Operator Constraints that have both a left and right side.

For complete documentation of the class, see BetweenConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
BetweenConstraint.html).

A.1.3 BinaryConstraint
Binary Operator Constraints that have both a left and right side.

For complete documentation of the class, see BinaryConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
BinaryConstraint.html).

A.1.4 Constraint
Basic Constraint interface that allows traversal and evaluation of a constraint tree.

For complete documentation of the class, see Constraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/Constraint.html).

A.1.5 ContainerConstraint
Container constraints that perform logical aggregation operations on contained constraints.

For complete documentation of the class, see ContainerConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
ContainerConstraint.html).

A.1.6 ContainsConstraint
Performs a simple set operation that returns true is the right side of the operation is found in the
value set of the left side.

For complete documentation of the class, see ContainsConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
ContainsConstraint.html).

A.1.7 DefinedConstraint
Evaluates to true only if the left side fact is defined in the match context.

For complete documentation of the class, see DefinedConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
DefinedConstraint.html).
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/AndConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/BetweenConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/BinaryConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/Constraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/ContainerConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/ContainsConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/DefinedConstraint.html

novdocx (en) 13 M
ay 2009
A.1.8 EqConstraint
Performs a equality constraint operation.

For complete documentation of the class, see EqConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/EqConstraint.html).

A.1.9 GeConstraint
Performs a ‘greater than or equal to’ constraint operation.

For complete documentation of the class, see GeConstraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/GeConstraint.html).

A.1.10 GtConstraint
Performs a 'greater than' constraint operation.

For complete documentation of the class, see GtConstraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/GtConstraint.html).

A.1.11 IfConstraint
Perform a conditional if,then,else block.

For complete documentation of the class, see IfConstraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/IfConstraint.html).

A.1.12 LeConstraint
Performs a ‘less than or equal to’ constraint operation.

For complete documentation of the class, see LeConstraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/LeConstraint.html).

A.1.13 LtConstraint
Performs a ‘less than’ constraint operation.

For complete documentation of the class, see LtConstraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/LtConstraint.html).

A.1.14 NeConstraint
Performs a not equal constraint operation.

For complete documentation of the class, see NeConstraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/NeConstraint.html).
PlateSpin Orchestrate Client SDK 189

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/EqConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/GeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/GtConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/IfConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/LeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/LtConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/NeConstraint.html

190 PlateS

novdocx (en) 13 M
ay 2009
A.1.15 NotConstraint
Perform a logical not operation of all the child constraints.

For complete documentation of the class, see NotConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
NotConstraint.html).

A.1.16 OperatorConstraint
Operator constraints that perform comparison operation on facts.

For complete documentation of the class, see OperatorConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
OperatorConstraint.html).

A.1.17 OrConstraint
Perform a logical or-ing operation of all the child constraints.

For complete documentation of the class, see OrConstraint (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/OrConstraint.html).

A.1.18 TypedConstraint
Typed constraint must only be used as the outermost wrapper when it is necessary to override the
default constraint type of ‘resource’.

For complete documentation of the class, see TypedConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
TypedConstraint.html).

A.1.19 UndefinedConstraint
Evaluates to true only if the left side fact is not defined in the match context.

For complete documentation of the class, see UndefinedConstraint (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
UndefinedConstraint.html).

A.1.20 ConstraintException
For exceptions that occur in parsing or executing constraints.

For complete documentation of the class, see Constraint exception (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/
ConstraintException.html).
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/NotConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/OperatorConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/OrConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/TypedConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/UndefinedConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/constraint/ConstraintException.html

novdocx (en) 13 M
ay 2009
A.2 Datagrid Package
The following Java files form the classes, interfaces, and exceptions for the PlateSpin Orchestrate
datagrid structure:

Section A.2.1, “GridFile,” on page 191
Section A.2.2, “GridFileFilter,” on page 191
Section A.2.3, “GridFileNameFilter,” on page 191
Section A.2.4, “DGLogger,” on page 191
Section A.2.5, “DataGridException,” on page 191
Section A.2.6, “DataGridNotAvailableException,” on page 192
Section A.2.7, “GridFile.CancelException,” on page 192

A.2.1 GridFile
Specifies the PlateSpin Orchestrate datagrid interface for individual files and directories.

For complete documentation of the class, see GridFile (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/GridFile.html).

A.2.2 GridFileFilter
Filter for accepting/rejecting file names in a directory list.

For complete documentation of the class, see GridFileFilter (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/GridFileFilter.html).

A.2.3 GridFileNameFilter
Filter for accepting/rejecting file names in a directory list.

For complete documentation of the class, see GridFileNameFilter (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/
GridFileNameFilter.html).

A.2.4 DGLogger
Definitions of the DataGrid Logger options used for multicast.

For complete documentation of the class, see DGLogger (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/DGLogger.html).

A.2.5 DataGridException
General exception class for datagrid errors.

For complete documentation of the class, see DataGridException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/
DataGridException.html).
PlateSpin Orchestrate Client SDK 191

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/GridFile.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/GridFileFilter.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/GridFileNameFilter.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/DGLogger.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/DataGridException.html

192 PlateS

novdocx (en) 13 M
ay 2009
A.2.6 DataGridNotAvailableException
Exception thrown if the datagrid cannot be reached due to a network error.

For complete documentation of the class, see DataGridNotAvailableException (http://
www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/
DataGridNotAvailableException.html).

A.2.7 GridFile.CancelException
Exception thrown by cancelled requests.

For complete documentation of the class, see GridFile.CancelException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/
GridFile.CancelException.html).

A.3 Grid Package
The Java classes included in the Grid package form the basis of the PlateSpin Orchestrate
infrastructure. For complete documentation of each class, click on the links to access the online
documentation Javadoc.

Section A.3.1, “AgentListener,” on page 193
Section A.3.2, “ClientAgent,” on page 193
Section A.3.3, “Credential,” on page 193
Section A.3.4, “Fact,” on page 193
Section A.3.5, “FactSet,” on page 194
Section A.3.6, “GridObjectInfo,” on page 194
Section A.3.7, “ID,” on page 194
Section A.3.8, “JobInfo,” on page 194
Section A.3.9, “Message,” on page 194
Section A.3.10, “Message.Ack,” on page 194
Section A.3.11, “Message.AuthFailure,” on page 194
Section A.3.12, “Message.ClientResponseMessage,” on page 195
Section A.3.13, “Message.ConnectionID,” on page 195
Section A.3.14, “Message.Event,” on page 195
Section A.3.15, “Message.GetGridObjects,” on page 195
Section A.3.16, “Message.GridObjects,” on page 195
Section A.3.17, “Message.JobAccepted,” on page 195
Section A.3.18, “Message.JobError,” on page 195
Section A.3.19, “Message.JobFinished,” on page 196
Section A.3.20, “Message.JobIdEvent,” on page 196
Section A.3.21, “Message.JobInfo,” on page 196
Section A.3.22, “Message.Jobs,” on page 196
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/DataGridNotAvailableException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/dataGrid/GridFile.CancelException.html

novdocx (en) 13 M
ay 2009
Section A.3.23, “Message.JobStarted,” on page 196
Section A.3.24, “Message.JobStatus,” on page 196
Section A.3.25, “Message.LoginFailed,” on page 196
Section A.3.26, “Message.LoginSuccess,” on page 197
Section A.3.27, “Message.LogoutAck,” on page 197
Section A.3.28, “Message.RunningJobs,” on page 197
Section A.3.29, “Message.ServerStatus,” on page 197
Section A.3.30, “Node,” on page 197
Section A.3.31, “Priority,” on page 197
Section A.3.32, “WorkflowInfo,” on page 197
Section A.3.33, “ClientOutOfDateException,” on page 198
Section A.3.34, “FactException,” on page 198
Section A.3.35, “GridAuthenticationException,” on page 198
Section A.3.36, “GridAuthorizationException,” on page 198
Section A.3.37, “GridConfigurationException,” on page 198
Section A.3.38, “GridDeploymentException,” on page 198
Section A.3.39, “GridException,” on page 198
Section A.3.40, “GridObjectNotFoundException,” on page 199

A.3.1 AgentListener
Provides the interface necessary for processing messages sent from the Orchestrate Server.

For complete documentation, see AgentListener (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/AgentListener.html).

A.3.2 ClientAgent
API for client communication with server for job and datagrid operations.

For complete documentation, see ClientAgent (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/ClientAgent.html).

A.3.3 Credential
A credential used for identity on the PlateSpin Orchestrate system.

For complete documentation, see Credential (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Credential.html).

A.3.4 Fact
The Fact object.
PlateSpin Orchestrate Client SDK 193

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/AgentListener.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/ClientAgent.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Credential.html

194 PlateS

novdocx (en) 13 M
ay 2009
For complete documentation, see Fact (http://www.novell.com/documentation/pso_orchestrate20/
resources/javadoc/com/novell/zos/grid/Fact.html).

A.3.5 FactSet
Definition of a set of facts.

For complete documentation, see FactSet (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/FactSet.html).

A.3.6 GridObjectInfo
Client interface to any Grid object.

For complete documentation, see GridObjectInfo (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridObjectInfo.html).

A.3.7 ID
A unique identifier for an engine or a facility or Grid object.

For complete documentation, see ID (http://www.novell.com/documentation/pso_orchestrate20/
resources/javadoc/com/novell/zos/grid/ID.html).

A.3.8 JobInfo
A client representation of a deployed job.

For complete documentation, see JobInfo (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/JobInfo.html).

A.3.9 Message
A base interface for all the messages in the system.

For complete documentation, see Message (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.html).

A.3.10 Message.Ack
A general acknowledgement of “action” message.

For complete documentation, see Message.Ack (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.Ack.html).

A.3.11 Message.AuthFailure
Authentication failure messages indicates that processing of a client message will not occur because
client credentials are invalid.

For complete documentation, see Message.AuthFailure (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.AuthFailure.html).
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Fact.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/FactSet.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridObjectInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/ID.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/JobInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.Ack.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.AuthFailure.html

novdocx (en) 13 M
ay 2009
A.3.12 Message.ClientResponseMessage
Message All messages that can optionally carry an error string back to the client extend this.

For complete documentation, see Message.ClientResponseMessage (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/
Message.ClientResponseMessage.html).

A.3.13 Message.ConnectionID
All messages that can optionally carry an error string back to the client extend this.

For complete documentation, see Message.ConnectionID (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.ConnectionID.html).

A.3.14 Message.Event
An Event is used to signal clients and workflows.

For complete documentation, see Message.Event (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.Event.html).

A.3.15 Message.GetGridObjects
Client request to retrieve an (optionally ordered) set of grid objects that match a search criteria
(constraint).

For complete documentation, see Message.GetGridObjects (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.GetGridObjects.html).

A.3.16 Message.GridObjects
Server response to client request to retrieve grid a grid object set.

For complete documentation, see Message.GridObjects (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.GridObjects.html).

A.3.17 Message.JobAccepted
A JobAccepted message is sent in response to a RunJob message when a job is successfully
accepted into the system.

For complete documentation, see Message.JobAccepted (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobAccepted.html).

A.3.18 Message.JobError
A JobError message is sent when an unrecoverable error occurs in a job.

For complete documentation, see Message.JobError (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobError.html).
PlateSpin Orchestrate Client SDK 195

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.ClientResponseMessage.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.ConnectionID.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.Event.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.GetGridObjects.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.GridObjects.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobAccepted.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobError.html

196 PlateS

novdocx (en) 13 M
ay 2009
A.3.19 Message.JobFinished
A JobFinished message is sent when processing of a job completes.

For complete documentation, see Message.JobFinished (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobFinished.html).

A.3.20 Message.JobIdEvent
Base Event interface for retrieving JobID used for jobid messages.

For complete documentation, see Message.JobIdEvent (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobIdEvent.html).

A.3.21 Message.JobInfo
A JobInfo message contains information describing a deployed job.

For complete documentation, see Message.JobInfo (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobInfo.html).

A.3.22 Message.Jobs
A Jobs message contains a list of deployed job names.

For complete documentation, see Message.Jobs (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.Jobs.html).

A.3.23 Message.JobStarted
A JobStarted message is sent when a job is successfully started.

For complete documentation, see Message.JobStarted (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobStarted.html).

A.3.24 Message.JobStatus
A JobStatus message contains the state of the specified job.

For complete documentation, see Message.JobStatus (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobStatus.html).

A.3.25 Message.LoginFailed
Response message for an unsuccessful login

For complete documentation, see Message.LoginFailed (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.LoginFailed.html).
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobFinished.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobIdEvent.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.Jobs.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobStarted.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.JobStatus.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.LoginFailed.html

novdocx (en) 13 M
ay 2009
A.3.26 Message.LoginSuccess
Response message for a successful login.

For complete documentation, see Message.LoginSuccess (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.LoginSuccess.html).

A.3.27 Message.LogoutAck
A LogoutAck indicates success or failure of logout operation.

For complete documentation, see Message.LogoutAck (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.LogoutAck.html).

A.3.28 Message.RunningJobs
A RunningJobs message contains the list of running jobs.

For complete documentation, see Message.RunningJobs (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.RunningJobs.html).

A.3.29 Message.ServerStatus
A ServerStatus message.

For complete documentation, see Message.ServerStatus (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.ServerStatus.html).

A.3.30 Node
Internal interface for Node (Resource) Grid object.

For complete documentation, see Node (http://www.novell.com/documentation/pso_orchestrate20/
resources/javadoc/com/novell/zos/grid/Node.html).

A.3.31 Priority
Priority information.

For complete documentation, see Priority (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Priority.html).

A.3.32 WorkflowInfo
A WorkflowInfo can represent either a snapshot of a running instance or an historical record of an
instance.

For complete documentation, see WorkflowInfo (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/WorkflowInfo.html).
PlateSpin Orchestrate Client SDK 197

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.LoginSuccess.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.LogoutAck.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.RunningJobs.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Message.ServerStatus.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Node.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/Priority.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/WorkflowInfo.html

198 PlateS

novdocx (en) 13 M
ay 2009
A.3.33 ClientOutOfDateException
Grid exception indicating the client is not compatible with the server.

For complete documentation, see ClientOutOfDateException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/
ClientOutOfDateException.html).

A.3.34 FactException
For exceptions that occur in accessing or setting facts.

For complete documentation, see FactException (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/FactException.html).

A.3.35 GridAuthenticationException
Thrown when authentication is denied by a PlateSpin Orchestrate Server.

For complete documentation, see GridAuthenticationException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/
GridAuthenticationException.html).

A.3.36 GridAuthorizationException
Thrown when credentials are insufficient for the desired grid operation.

For complete documentation, see GridAuthorizationException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/
GridAuthorizationException.html).

A.3.37 GridConfigurationException
Grid exception thrown to indicate a Grid configuration error.

For complete documentation, see GridConfigurationException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/
GridConfigurationException.html).

A.3.38 GridDeploymentException
Thrown when credentials are insufficient for the desired grid operation.

For complete documentation, see GridDeploymentException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/
GridDeploymentException.html).

A.3.39 GridException
The base exception for all Grid exceptions.
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/ClientOutOfDateException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/FactException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridAuthenticationException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridAuthorizationException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridConfigurationException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridDeploymentException.html

novdocx (en) 13 M
ay 2009
For complete documentation, see GridException (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridException.html).

A.3.40 GridObjectNotFoundException
Thrown when a grid object lookup does not find the requested object.

For complete documentation, see GridObjectNotFoundException (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/
GridObjectNotFoundException.html).

A.4 TLS Package
Interface and classes used for secure authentication to Orchestrate Server:

Section A.4.1, “TlsCallbacks,” on page 199
Section A.4.2, “PemCertificate,” on page 199
Section A.4.3, “TlsConfiguration,” on page 199

A.4.1 TlsCallbacks
Callback interface for TLS certificate exceptions.

For complete documentation of the class, see TlsCallback (http://www.novell.com/documentation/
pso_orchestrate20/resources/javadoc/com/novell/zos/tls/TlsCallbacks.html).

A.4.2 PemCertificate
PEM Certificate wrapper for X.509 certificates.

For complete documentation of the class, see PemCertificate (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/tls/PemCertificate.html).

A.4.3 TlsConfiguration
TLS Configuration parameters for Orchestrate Clients.

For complete documentation of the class, see TlsConfiguration (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/tls/TlsConfiguration.html).

A.5 Toolkit Package
The Client agent, Constraint, and Credentials factory patterns used by the PlateSpin Orchestrate
Server:

Section A.5.1, “ClientAgentFactory,” on page 200
Section A.5.2, “ConstraintFactory,” on page 200
Section A.5.3, “CredentialFactory,” on page 200
PlateSpin Orchestrate Client SDK 199

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/grid/GridObjectNotFoundException.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/tls/TlsCallbacks.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/tls/PemCertificate.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/tls/TlsConfiguration.html

200 PlateS

novdocx (en) 13 M
ay 2009
A.5.1 ClientAgentFactory
Factory pattern used to create new clients for connection to a PlateSpin Orchestrate Server.

For complete documentation of the class, see ClientAgentFactory (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/toolkit/
ClientAgentFactory.html).

A.5.2 ConstraintFactory
Factory pattern used to create constraint objects which may be combined into larger constraint
hierarchies for use in searches or other constraint based matching.

For complete documentation of the class, see ConstraintFactory (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/toolkit/
ConstraintFactory.html).

A.5.3 CredentialFactory
Factory pattern used to create a credential used for connection to a PlateSpin Orchestrate Server.

For complete documentation of the class, see CredentialFactory (http://www.novell.com/
documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/toolkit/
CredentialFactory.html).
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/toolkit/ClientAgentFactory.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/toolkit/ConstraintFactory.html
http://www.novell.com/documentation/pso_orchestrate20/resources/javadoc/com/novell/zos/toolkit/CredentialFactory.html

B
novdocx (en) 13 M

ay 2009
BPlateSpin Orchestrate Job
Classes and JDL Syntax

Section B.1, “Job Class,” on page 201
Section B.2, “Joblet Class,” on page 201
Section B.3, “Utility Classes,” on page 201
Section B.4, “Built-in JDL Functions and Variables,” on page 201
Section B.5, “Job State Field Values,” on page 203
Section B.6, “Repository Information String Values,” on page 204
Section B.7, “Joblet State Values,” on page 204
Section B.8, “Resource Information Values,” on page 205
Section B.9, “JDL Class Definitions,” on page 205

B.1 Job Class
To review the detailed JDL structure of the joblet class, see Job (page 226).

B.2 Joblet Class
To review the detailed JDL structure of the joblet class, see Joblet (page 228).

B.3 Utility Classes
The following are some of the main utility JDL classes you can use to customize your PlateSpin®
Orchestrate jobs:

DataGrid (page 216)
Exec (page 219)
MatrixInfo (page 235)
ResourceInfo (page 244)
RunJobSpec (page 245)
ScheduleSpec (page 246)

B.4 Built-in JDL Functions and Variables
The information in this section defines the built-in PlateSpin Orchestrate JDL functions and
variables.

Section B.4.1, “getMatrix(),” on page 202
Section B.4.2, “system(cmd),” on page 202
Section B.4.3, “Grid Object TYPE_* Variables,” on page 202
PlateSpin Orchestrate Job Classes and JDL Syntax 201

202 PlateS

novdocx (en) 13 M
ay 2009
Section B.4.4, “The __agent__ Variable,” on page 202
Section B.4.5, “The __jobname__ Variable,” on page 202
Section B.4.6, “The __mode__ Variable,” on page 203

B.4.1 getMatrix()
This function returns the matrix grid object. For more information, see MatrixInfo (page 235).

Purpose: The matrix object is used to retrieve other grid objects in the system.

B.4.2 system(cmd)
This executes a system command in a shell on the resource. The command is passed to the operating
system’s default command interpreter. On Microsoft Windows systems this is cmd.exe, while on
POSIX systems, this is /bin/sh. Stdout and stderr are directed to the job log. No access to stdin is
provided.

Returns: Returns an exit code result of the command execution.

B.4.3 Grid Object TYPE_* Variables
The list of variables are constants for grid object type. For more information, see MatrixInfo
(page 235).

Variable Names:

TYPE_USER
TYPE_JOB
TYPE_RESOURCE
TYPE_VMHOST
TYPE_REPOSITORY
TYPE_USERGROUP
TYPE_JOBGROUP
TYPE_RESOURCEGROUP
TYPE_REPOSITORYGROUP

Type: String.

Purpose: Use these in JDL functions for retrieving and creating grid objects.

B.4.4 The __agent__ Variable
Variable Name: __agent__

Type: Boolean.

Purpose: Defines whether the JDL is executing on the agent.

B.4.5 The __jobname__ Variable
Variable Name: __jobname__

Type: String.
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
Purpose: Defines the name of the deployed job.

B.4.6 The __mode__ Variable
Variable Name: __mode__

Type: String.

Purpose: Defines the execution mode.

Values:

parse - JDL is being parsed.

deploy - JDL is being deployed.

undeploy - JDL is being undeployed.

runtime - JDL is being executed.

B.5 Job State Field Values
Here are the job state field values for the Job (page 226) class:

Constant Value Description

int CANCELLED_STATE 9 Cancelled end state.

int CANCELLING_STATE 6 Cancelling. Transitions to: Cancelled.

int COMPLETED_STATE 8 Completed end state.

int COMPLETING_STATE 5 Completing. Transitions to: Completing.

int FAILED_STATE 10 Failed end state.

int FAILING_STATE 7 Failing. Transitions to: Failed.

int PAUSED_STATE 4 Paused. Transitions to: Running/Completing/
Failing/Cancelling.

int QUEUED_STATE 1 Queued. Transitions to: Starting/Failing/
Cancelling.

int RUNNING_STATE 3 Running. Transitions to: Paused/Completing/
Failing/Cancelling.

int STARTING_STATE 2 Starting. Transitions to: Running/Failing/
Cancelling.

int SUBMITTED_STATE 0 Submitted. Transitions to: Queued/Failing.

String TERMINATION_TYPE_ADMIN “Admin" Indicates Job was cancelled by the admin and
only applies if Job is in CANCELLED_STATE.
Value is obtained from
jobinstance.terminationtype fact.
PlateSpin Orchestrate Job Classes and JDL Syntax 203

204 PlateS

novdocx (en) 13 M
ay 2009
B.6 Repository Information String Values

B.7 Joblet State Values
The following values are defined for the various states that the joblet can be in:

String TERMINATION_TYPE_JOB “Job” Indicates Job was cancelled due to exceeding
the job timeout value and only applies if Job is in
CANCELLED_STATE. The value is obtained
from jobinstance.terminationtype fact.

String TERMINATION_TYPE_TIMEOUT “Timeout” Indicates Job was cancelled due to exceeding
the job timeout value and only applies if Job is in
CANCELLED_STATE. Value is obtained from
jobinstance.terminationtype fact.

String TERMINATION_TYPE_USER “User” Indicate Job was cancelled by client user and
only applies if Job is in CANCELLED_STATE.
The value is obtained from
jobinstance.terminationtype fact.

Constant Value Description

SAN_TYPE_FibreChannel Fibre Channel Specifies a fibre channel SAN repository.

SAN_TYPE_ISCSI iSCSI Specifies an iSCSI SAN repository.

SAN_VENDOR_IQN iqn Specifies an IQN SAN repository.

SAN_VENDOR_NPIV npiv Specifies a N_Port ID Virtualization SAN repository.

TYPE_DATAGRID datagrid Specifies a datagrid repository.

TYPE_LOCAL local Specifies a local repository.

TYPE_NAS NAS Specifies a NAS repository.

TYPE_SAN SAN Specifies a SAN repository.

TYPE_VIRTUAL virtual Specifies a virtual repository.

TYPE_WAREHOUSE warehouse Specifies a warehouse repository.

Constant Value Description

INITIAL_STATE 0 Joblet initial state.

WAITING_STATE 1 Joblet waiting for a resource

WAITING_RETRY_STATE 2 Joblet waiting for a resource for retry.

CONTRACTED_STATE 3 Joblet waiting for a resource for retry.

STARTED_STATE 4 Joblet started on a resource.

Constant Value Description
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
See Joblet (page 228).

B.8 Resource Information Values
Use the following values to specify the

For full class descriptions, see ResourceInfo (page 244).

B.9 JDL Class Definitions
The following PlateSpin Orchestrate JDL classes can be implemented in the custom jobs that you
create. Because JDL is implemented in Java, we have provided direct links to detailed Javadoc for
each of the “Pythonized” JDL classes below:

“AndConstraint()” on page 207
“BinaryConstraint” on page 208
“BuildSpec” on page 209
“CharRange” on page 210
“ComputedFact” on page 211
“ComputedFactContext” on page 212
“Constraint” on page 213
“ContainerConstraint” on page 214

PRE_CANCEL_STATE 5 Joblet starting cancellation.

CANCELLING_STATE 6 Joblet cancelling.

POST_CANCEL_STATE 7 Joblet finishing cancellation.

COMPLETING_STATE 8 Joblet completing state.

FAILING_STATE 9 Joblet failing state.

FAILED_STATE 11 Joblet failed end state.

CANCELLED_STATE 12 Joblet cancelled end state.

COMPLETED_STATE 13 Joblet completed end state.

Constant Value
Type Resource Description

TYPE_BM_INSTANCE String Blade server.

TYPE_BM_TEMPLATE String Blade server template.

TYPE_FIXED_PHYSICAL String Fixed physical server.

TYPE_VM_INSTANCE String VM server.

TYPE_VM_TEMPLATE String VM template.

Constant Value Description
PlateSpin Orchestrate Job Classes and JDL Syntax 205

206 PlateS

novdocx (en) 13 M
ay 2009
“ContainsConstraint” on page 215
“DataGrid” on page 216
“DefinedConstraint” on page 217
“EqConstraint” on page 218
“Exec” on page 219
“ExecError” on page 220
“FileRange” on page 221
“GeConstraint” on page 222
“GridObjectInfo” on page 223
“GroupInfo” on page 224
“GtConstraint” on page 225
“Job” on page 226
“JobInfo” on page 227
“Joblet” on page 228
“JobletInfo” on page 229
“JobletParameterSpace” on page 230
“LeConstraint” on page 231
“LtConstraint” on page 232
“MatchContext” on page 233
“MatchResult” on page 234
“MatrixInfo” on page 235
“MigrateSpec” on page 236
“NeConstraint” on page 237
“NotConstraint” on page 238
“OrConstraint” on page 239
“ParameterSpace” on page 240
“PolicyInfo” on page 241
“ProvisionSpec” on page 242
“RepositoryInfo” on page 243
“ResourceInfo” on page 244
“RunJobSpec” on page 245
“ScheduleSpec” on page 246
“Timer” on page 247
“UndefinedConstraint” on page 248
“UserInfo” on page 249
“VMHostInfo” on page 250
“VmSpec” on page 251
pin Orchestrate 2.0 Developer Guide and Reference

novdocx (en) 13 M
ay 2009
AndConstraint()
Representation of the And Constraint. Perform a logical ANDing of all child constraints. If this
constraint contains no children, no operation is performed. Constraints are added to this constraint
using add().

See Also
ContainerConstraint (page 214)
Javadoc: AndConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/AndConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 207

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/AndConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/AndConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/AndConstraint.html

208 PlateS

novdocx (en) 13 M
ay 2009
BinaryConstraint
Representation of a Constraint operating on the left and right operands. This is a base class and is
not directly constructed.

See Also
Subclasses: ContainsConstraint (page 215), EqConstraint (page 218), GeConstraint (page 222),
GtConstraint (page 225), LeConstraint (page 231), LtConstraint (page 232), NeConstraint
(page 237).
Javadoc: BinaryConstraint (http://www.novell.com/documentation/pso_orchestrate20/
resources/jdldoc/com/novell/zos/jdl/BinaryConstraint.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/BinaryConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/BinaryConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/BinaryConstraint.html

novdocx (en) 13 M
ay 2009
BuildSpec
Defines the attributes for building a new VM. An instance of this class is passed to
resource.build().

See Also
Javadoc: BuildSpec (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/BuildSpec.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 209

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/BuildSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/BuildSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/BuildSpec.html

210 PlateS

novdocx (en) 13 M
ay 2009
CharRange
Define lexical character string range of values for ParameterSpace scheduling.

See Also
Javadoc: CharRange (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/CharRange.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/CharRange.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/CharRange.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/CharRange.html

novdocx (en) 13 M
ay 2009
ComputedFact
Defines the base class for creating custom computed facts. Computed facts provide the ability to
create custom calculations that extend the built-in factsets for a grid object. The computed fact can
be in constraints. User defined computed facts are required to subclass this class. In order to use
ComputedFact, you must deploy a subclass of ComputedFact and then create a linked fact
referencing the deployed ComputedFact. The linked fact is then used in constraints.

See Also
ComputedFactContext (page 212)
Javadoc: ComputedFact (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/ComputedFact.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 211

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ComputedFact.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ComputedFact.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ComputedFact.html

212 PlateS

novdocx (en) 13 M
ay 2009
ComputedFactContext
Provides access to the evaluation context. See Example below.

Description
The context contains the grid objects that the constraint engine uses to evaluate constraints.If they
are available in the current context, the ComputedFactContext provides access to the current job
instance, deployed job, user, resource, VM host, and repository grid objects.

The VM host and repository grid objects are only in the context for the evaluation of the
provisioning constraints such as vmHost. The job and job instance objects are only in the context for
a resource or allocation constraint evaluation.

See Also
ComputedFact (page 211)
Javadoc: ComputedFactContext (http://www.novell.com/documentation/pso_orchestrate20/
resources/jdldoc/com/novell/zos/jdl/ComputedFactContext.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ComputedFactContext.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ComputedFactContext.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ComputedFactContext.html

novdocx (en) 13 M
ay 2009
Constraint
Defines the base class for all constraint classes.

See Also
BinaryConstraint (page 208), ContainerConstraint (page 214), DefinedConstraint (page 217),
UndefinedConstraint (page 248).
Javadoc: Constraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/Constraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 213

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Constraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Constraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Constraint.html

214 PlateS

novdocx (en) 13 M
ay 2009
ContainerConstraint
Representation of a Constraint that contains other Constraints. This is a base class and is not directly
constructed.

See Also
Subclasses: AndConstraint() (page 207), NotConstraint (page 238), OrConstraint (page 239)
Javadoc: ContainerConstraint (http://www.novell.com/documentation/pso_orchestrate20/
resources/jdldoc/com/novell/zos/jdl/ContainerConstraint.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ContainerConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ContainerConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ContainerConstraint.html

novdocx (en) 13 M
ay 2009
ContainsConstraint
Representation of the Contains Constraint. Evaluates to true only if the left side fact is defined in the
match context. If the left side is not defined, this will evaluate to False. Contains is typically used to
check membership of a value in a group fact.

See Also
Javadoc: ContainsConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/ContainsConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 215

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ContainsConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ContainsConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ContainsConstraint.html

216 PlateS

novdocx (en) 13 M
ay 2009
DataGrid
General interface to the datagrid. See Chapter 3, “The PlateSpin Orchestrate Datagrid,” on page 25.

See Also
GridObjectInfo (page 223)
Javadoc: DataGrid (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/DataGrid.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/DataGrid.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/DataGrid.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/DataGrid.html

novdocx (en) 13 M
ay 2009
DefinedConstraint
Representation of the Defined Constraint. Evaluates to true only if the left side fact is defined in the
match context. If the left side is not defined, this will evaluate to False. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Constraint (page 213), ContainerConstraint (page 214), and ContainsConstraint (page 215)
Javadoc: DefinedConstraint (http://www.novell.com/documentation/pso_orchestrate20/
resources/jdldoc/com/novell/zos/jdl/DefinedConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 217

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/DefinedConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/DefinedConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/DefinedConstraint.html

218 PlateS

novdocx (en) 13 M
ay 2009
EqConstraint
Representation of the Equals Constraint. This constraint can be used independently or added to a
And, Or, Not constraint to combine with other constraints. Extends BinaryConstraint (page 208).

See Also
BinaryConstraint (page 208)
Javadoc: EqConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/EqConstraint.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/EqConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/EqConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/EqConstraint.html

novdocx (en) 13 M
ay 2009
Exec
The Exec class is used to manage command line execution on resources. This class defines options
for input, output and error stream handling, and process management including signaling, error and
timeout control.

Description
A command’s standard output and error can be redirected to a file, to a stream, to write to the job
log, or be discarded. By default, the output is discarded. A command’s standard input can be
directed from a file or a stream can be written to. By default, the input is not used.

By default, command line execution is done in behalf of the job user. Exec instances are only
allowed during the running of the Joblet class on a resource. The built-in function system() can also
be used for simple execution of command lines.

See Also
BinaryConstraint (page 208) and ExecError (page 220)
Javadoc: Exec (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/Exec.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 219

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Exec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Exec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Exec.html

220 PlateS

novdocx (en) 13 M
ay 2009
ExecError
ExecError is raised for errors in executing a command line using the Exec (page 219) class or
system(). Normal raising of this error causes the joblet to fail. Put this Error in an try except block to
handle the error.

See Also
Exec (page 219)
Javadoc: ExecError (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/ExecError.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ExecError.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ExecError.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ExecError.html

novdocx (en) 13 M
ay 2009
FileRange
Define a range of values for a ParameterSpace (page 240) based on the lines of a text file. An
instance of this class is used as a dimension in a ParameterSpace definition.The file name must
either refer to a file that is readable from the server and resources (on a shared file system) or must
be a DataGrid (page 216) file URL.

See Also
DataGrid (page 216) and ParameterSpace (page 240)
Javadoc: FileRange (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/FileRange.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 221

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/FileRange.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/FileRange.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/FileRange.html

222 PlateS

novdocx (en) 13 M
ay 2009
GeConstraint
Representation of the Greater than or Equals constraint. Performs a ‘greater than or equal to’
constraint operation. Missing arguments will always result in this constraint evaluating to false. The
standard lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints. Extends
BinaryConstraint (page 208).

See Also
Constraint (page 213) and BinaryConstraint (page 208).
Javadoc: GeConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/GeConstraint.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GeConstraint.html

novdocx (en) 13 M
ay 2009
GridObjectInfo
The GridObjectInfo class is the base class representation of all grid objects in the system. This
provides accessors and setters to a grid object’s fact set.

See Also
Javadoc: GridObjectInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/GridObjectInfo.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 223

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GridObjectInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GridObjectInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GridObjectInfo.html

224 PlateS

novdocx (en) 13 M
ay 2009
GroupInfo
he GroupInfo class is a representation of Group grid objects. Operations include retrieving the group
member lists and adding/removing from the group member lists, and retrieving and setting facts on
the group. Extends GridObjectInfo (page 223).

See Also
GridObjectInfo (page 223)
Javadoc: GroupInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/GroupInfo.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GroupInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GroupInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GroupInfo.html

novdocx (en) 13 M
ay 2009
GtConstraint
Representation of the Greater than Constraint. Performs a ‘greater than’ constraint operation.
Missing arguments will always result in this constraint evaluating to false. The standard
lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Constraint (page 213)
Javadoc: GtConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/GtConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 225

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GtConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GtConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/GtConstraint.html

226 PlateS

novdocx (en) 13 M
ay 2009
Job
The Job class represents a running job instance. This class defines functions for interacting with the
server including handling notification of job state transitions, child job submission, managing
joblets and for receiving and sending events from resources and from clients. A job writer defines a
subclass of the Job class and uses the methods available on the Job class for scheduling joblets and
event processing.

See Also
JobInfo (page 227), Joblet (page 228), JobletInfo (page 229), JobletParameterSpace (page 230)
Javadoc: Job (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/
novell/zos/jdl/Job.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Job.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Job.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Job.html

novdocx (en) 13 M
ay 2009
JobInfo
The JobInfo class is a representation of a deployed job. The factset available on the JobInfo class is
the aggregation of the job's policy and policies on the groups the job is a member of. This includes
the "job.*" and "jobargs.*" fact namespaces.

See Also
Job (page 226)
Javadoc: JobInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/JobInfo.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 227

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobInfo.html

228 PlateS

novdocx (en) 13 M
ay 2009
Joblet
Defines the attributes for creating a virtual machine. An instance of this class is passed to
resource.createInstance(), resource.createTemplate(), resource.clone().

See Also
Job, JobInfo
Javadoc: Joblet (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/Joblet.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Joblet.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Joblet.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Joblet.html

novdocx (en) 13 M
ay 2009
JobletInfo
JobletInfo is a representation of the joblet grid object created when a job calls schedule() to create
joblets. This class provides access to a joblet's factset and operations on a joblet such as cancellation
and sending events to a joblet that is running on a resource. The separate Joblet class defines
execution on a resource.

See Also
Javadoc: JobletInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/JobletInfo.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 229

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobletInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobletInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobletInfo.html

230 PlateS

novdocx (en) 13 M
ay 2009
JobletParameterSpace
JobletParameterSpace is a slice of the ParameterSpace allocated to a joblet. As the scheduler defines
slices of the parameter space for a given schedule(), JobletParameterSpace instances are created for
each joblet. This slice of the parameter space is delivered to the resource on joblet execution. The
JobletParameterSpace can also be retrieved from the joblet object.

See Also
Javadoc: JobletParameterSpace (http://www.novell.com/documentation/pso_orchestrate20/
resources/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html

novdocx (en) 13 M
ay 2009
LeConstraint
Representation of the Less than or equals Constraint. Performs a 'less than or equal to' constraint
operation. Missing arguments will always result in this constraint evaluating to false. The standard
lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Javadoc: LeConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/LeConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 231

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/LeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/LeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/LeConstraint.html

232 PlateS

novdocx (en) 13 M
ay 2009
LtConstraint
Representation of the Less than Constraint. Performs a "less than" constraint operation. Missing
arguments always result in this constraint evaluating to false. The standard lexographical ordering of
values is used to determine result. This constraint can be used independently or added to a And, Or,
Not constraint to combine with other constraints.

See Also
Javadoc: LtConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/LtConstraint.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/LtConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/LtConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/LtConstraint.html

novdocx (en) 13 M
ay 2009
MatchContext
The MatchContext defines a context for evaluating a constraint. An instance of this class is supplied
to match() for evaluating constraints. The MatchContext provides a way to setup an evaluation
context that the constraint engine is using to evaluate constraints. The MatchContext is filled out
with the context that is required for evaluating your constraints. This includes assigning a deployed
Job, User, Resource, VM Host and Repository Grid objects.

See Also
Javadoc: MatchContext (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/MatchContext.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 233

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatchContext.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatchContext.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatchContext.html

234 PlateS

novdocx (en) 13 M
ay 2009
MatchResult
The MatchResult class defines results of a Constraint match(). Instance of MatchResult is
returned from match() operations. From the MatchResult you can retrieve a list of the IDs of the
matching Grid objects and the non-matching Grid objects.

See Also
Javadoc: MatchResult (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/MatchResult.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatchResult.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatchResult.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatchResult.html

novdocx (en) 13 M
ay 2009
MatrixInfo
The MatrixInfo class is a representation of the matrix grid object (see GridObjectInfo (page 223)).
This provides operations for retrieving and creating grid objects in the system. MatrixInfo is
retrieved using the built-in getMatrix() function. Write capability is dependent on the context in
which getMatrix() is called. For example, in a joblet process on a resource, creating new grid
objects is not supported.

See Also
Javadoc: MatrixInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/MatrixInfo.html)
Section B.4, “Built-in JDL Functions and Variables,” on page 201.
PlateSpin Orchestrate Job Classes and JDL Syntax 235

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatrixInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatrixInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MatrixInfo.html

236 PlateS

novdocx (en) 13 M
ay 2009
MigrateSpec
The MigrateSpec class defines the options for the migrate action. An instance of this class is passed
to the resource.migrate() method.

Example
The following is an example of using MigrateSpec to define a migrate action for a Virtual Machine
named "sles10" to a VM Host named "host2:"

 vm = getMatrix().getGridObject(TYPE_RESOURCE,"sles10")
 spec = MigrateSpec()
 spec.setHost('host2')
 vm.migrate(spec)

See Also
Javadoc: MigrateSpec (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/MigrateSpec.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MigrateSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MigrateSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/MigrateSpec.html

novdocx (en) 13 M
ay 2009
NeConstraint
Representation of the Not Equals Constraint. Performs a not equal constraint operation. Missing
arguments will always result in this constraint evaluating to false. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Javadoc: NeConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/NeConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 237

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/NeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/NeConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/NeConstraint.html

238 PlateS

novdocx (en) 13 M
ay 2009
NotConstraint
Representation of a Not Constraint Object. Performs a logical not operation of all the child
constraints. This is a no-op if this constraint contains no children. Constraints are added to this
constraint using add().

See Also
See Constraint (page 213) and ContainerConstraint (page 214).
Javadoc: NotConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/NotConstraint.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/NotConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/NotConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/NotConstraint.html

novdocx (en) 13 M
ay 2009
OrConstraint
Representation of Or Constraint Object. Perform a logical or-ing operation of all the child
constraints. This is a no-op if this constraint contains no children. Constraints are added to this
constraint using add().

See Also
See Constraint (page 213) and ContainerConstraint (page 214).
Javadoc: OrConstraint (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/OrConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 239

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/OrConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/OrConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/OrConstraint.html

240 PlateS

novdocx (en) 13 M
ay 2009
ParameterSpace
Defines a parameter space to be used by the scheduler to create a joblet set. A parameter space may
consist of rows of columns or a list of columns that is expanded and can be turned into a cross
product. Use appendRow to create a rowMajor parameter space or appendCol to define a column
expansion. You cannot use both appendRow() and appendCol() in the same ParameterSpace.
Once the scheduler defines a slice of the parameter space for a given joblet, the scheduler creates
JobletParameterSpace instances for each joblet. This slice of the parameter space is delivered to
the resource.

See Also
Javadoc: ParameterSpace (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/ParameterSpace.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ParameterSpace.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ParameterSpace.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ParameterSpace.html

novdocx (en) 13 M
ay 2009
PolicyInfo
Representation of a Policy Object. This class allows for associating and unassociation of Grid
objects using this policy

See Also
Javadoc: PolicyInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/PolicyInfo.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 241

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/PolicyInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/PolicyInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/PolicyInfo.html

242 PlateS

novdocx (en) 13 M
ay 2009
ProvisionSpec
Defines the attributes for starting a provision. An instance of this class is passed to
self.provision(). Defining a provision to reserve a provisioned resource "nightly" for a user is
an instance of when this function might be used: spec = ProvisionSpec()
spec.setReserveForUser('nightly') self.provision(spec)

See Also
Javadoc: ProvisionSpec (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/ProvisionSpec.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ProvisionSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ProvisionSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ProvisionSpec.html

novdocx (en) 13 M
ay 2009
RepositoryInfo
RepositoryInfo is a representation of a repository grid object. This class provides accessors and
setters for Repository facts. See MatrixInfo (page 235) for how to script creation of Repository
objects.

See Also
See GridObjectInfo (page 223) and MatrixInfo (page 235).
Javadoc: RepositoryInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/RepositoryInfo.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 243

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/RepositoryInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/RepositoryInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/RepositoryInfo.html

244 PlateS

novdocx (en) 13 M
ay 2009
ResourceInfo
ResourceInfo is a representation of a resource grid object. This class inherits the base fact operations
from GridObjectInfo (page 223) and adds the provisioning operations for provisionable resources
such as VMs. See MatrixInfo (page 235) for how to script creation of Resource objects.

See Also
GridObjectInfo (page 223) and MatrixInfo (page 235).
Javadoc: ResourceInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/ResourceInfo.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ResourceInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ResourceInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ResourceInfo.html

novdocx (en) 13 M
ay 2009
RunJobSpec
Defines the attributes for starting a child job. An instance of this class is passed to self.runJob().

See Also
Javadoc: RunJobSpec (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/RunJobSpec.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 245

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/RunJobSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/RunJobSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/RunJobSpec.html

246 PlateS

novdocx (en) 13 M
ay 2009
ScheduleSpec
Defines one or more joblets to be scheduled and run on resources. A ScheduleSpec instance is
passed to the job’s schedule(). schedule() creates the joblets and schedules joblets to run on
resources.

See Also
Joblet (page 228)
Javadoc: ScheduleSpec (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/ScheduleSpec.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ScheduleSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ScheduleSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/ScheduleSpec.html

novdocx (en) 13 M
ay 2009
Timer
Timer schedules a callback to a job or joblet method. Timers can schedule a one time or a repeated
callback on an interval basis. Any Timers created in a job or joblet are shut down on job or joblet
completion.

See Also
Javadoc: Timer (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/
novell/zos/jdl/Timer.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 247

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Timer.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Timer.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/Timer.html

248 PlateS

novdocx (en) 13 M
ay 2009
UndefinedConstraint
Representation of the Undefined Constraint. Evaluates to true only if the left side fact is not defined
in the match context. If the left side is not defined, this will evaluate to false. This constraint can be
used independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Constraint (page 213)
Javadoc: UndefinedConstraint (http://www.novell.com/documentation/pso_orchestrate20/
resources/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html

novdocx (en) 13 M
ay 2009
UserInfo
UserInfo is a representation of a user grid object. This class provides accessors and setters for User
facts.

See Also
Javadoc: UserInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/
novell/zos/jdl/UserInfo.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 249

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/UserInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/UserInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/UserInfo.html

250 PlateS

novdocx (en) 13 M
ay 2009
VMHostInfo
The VmHostInfo class is a representation of a virtual machine host grid object. This class provides
accessors and setters to the VM host facts and operations to control the state of the VM host object.

See Also
VmSpec (page 251)
Javadoc: VMHostInfo (http://www.novell.com/documentation/pso_orchestrate20/resources/
jdldoc/com/novell/zos/jdl/VMHostInfo.html)
pin Orchestrate 2.0 Developer Guide and Reference

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/VMHostInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/VMHostInfo.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/VMHostInfo.html

novdocx (en) 13 M
ay 2009
VmSpec
Defines the attributes for creating a virtual machine. An instance of this class is passed to
resource.createInstance(), resource.createTemplate(), resource.clone().

Example
Example of using VmSpec for creating a clone on a named host from a template resource:

 template = getMatrix().getGridObject(TYPE_RESOURCE,"myTemplate")
 spec = VmSpec()
 spec.setNewName("newvm")
 spec.setHost('vmhost-qa')
 template.clone(spec)

If the host and repository is not set, the default is to use the source resource object's repository as the
destination repository.

See Also
VMHostInfo (page 250)
Javadoc: VmSpec (http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/
com/novell/zos/jdl/VmSpec.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 251

http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/VmSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/VmSpec.html
http://www.novell.com/documentation/pso_orchestrate20/resources/jdldoc/com/novell/zos/jdl/VmSpec.html

252 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

C
novdocx (en) 13 M

ay 2009
CUnderstanding Resource Metrics
Facts

When you install the PlateSpin® Orchestrate Agent on a machine, you can optionally install the
Orchestrate Monitoring Agent along with it. The Monitoring Agent uses the Ganglia Monitoring
Daemon (gmond) to automatically collect metrics and send them to the Orchestrate Monitoring
Server. You can use the following command to check the status of an installed Monitoring Agent:

/etc/init.d/novell-gmond status

If the daemon is operating normally, it returns a running status.

When you install and configure the Orchestrate Monitoring Agent (gmond), it is set by default to
report metrics on port 8649, which is also detected by the Orchestrate Agent. When communication
is established, the gmond daemon sends out metrics data, which are then gathered by the Orchestrate
Agent and set as fact values associated with the resource where the daemon is running. You can
verify the connection with the following command:

telnet localhost 8649

If gmond is running and communicating properly, an XML document listing the reported metrics is
displayed.

This section includes information about the resource metrics facts that are gathered, the unit
conversion performed by Orchestrate on the Ganglia-provided values, and how you can use these
facts to help you manage the resources in the grid.

Section C.1, “Resource Facts,” on page 253
Section C.2, “Interpreting the Units of Metrics Fact Values,” on page 254

C.1 Resource Facts
The Orchestrate Agent uses the metrics collected by gmond to create fact values for a given
resource. These facts are therefore externally generated and are not among the default facts reported
by the PlateSpin Orchestrate Agent. The agent updates these externally generated fact values every
30 seconds. All of these fact values have a resource.metrics. prefix.

For example, gmond collects a metrics value called load_one. The Orchestrate Agent sets this
value as the resource.metrics.load_one fact.

To see a list of these facts in the Orchestrate Development Client,

1 In the Explorer panel, select a resource.
2 In the Workspace panel, select Constraints/Facts.

The names of the resource metrics facts are displayed in bold font because they were added as new
facts to the default fact list. The following sample is a list of the default Ganglia-generated metrics
facts with data type and an example value:
Understanding Resource Metrics Facts 253

254 PlateS

novdocx (en) 13 M
ay 2009
<fact name="resource.metrics.boottime" value="1239122234.0000" type="Real" />
<fact name="resource.metrics.bytes_in" value="208.8800" type="Real" />
<fact name="resource.metrics.bytes_out" value="68.9700" type="Real" />
<fact name="resource.metrics.cpu_aidle" value="76.9000" type="Real" />
<fact name="resource.metrics.cpu_idle" value="95.2000" type="Real" />
<fact name="resource.metrics.cpu_nice" value="0.0000" type="Real" />
<fact name="resource.metrics.cpu_num" value="2" type="Integer" />
<fact name="resource.metrics.cpu_speed" value="1596" type="Integer" />
<fact name="resource.metrics.cpu_system" value="0.3000" type="Real" />
<fact name="resource.metrics.cpu_user" value="4.0000" type="Real" />
<fact name="resource.metrics.cpu_wio" value="0.4000" type="Real" />
<fact name="resource.metrics.disk_free" value="27090" type="Integer" />
<fact name="resource.metrics.disk_total" value="48213" type="Integer" />
<fact name="resource.metrics.gexec" value="OFF" type="String" />
<fact name="resource.metrics.load_fifteen" value="0.2000" type="Real" />
<fact name="resource.metrics.load_five" value="0.4100" type="Real" />
<fact name="resource.metrics.load_one" value="1.1900" type="Real" />
<fact name="resource.metrics.machine_type" value="x86" type="String" />
<fact name="resource.metrics.mem_buffers" value="299" type="Integer" />
<fact name="resource.metrics.mem_cached" value="761" type="Integer" />
<fact name="resource.metrics.mem_free" value="65" type="Integer" />
<fact name="resource.metrics.mem_shared" value="0" type="Integer" />
<fact name="resource.metrics.mem_total" value="1989" type="Integer" />
<fact name="resource.metrics.os_name" value="Linux" type="String" />
<fact name="resource.metrics.os_release" value="2.6.27.19-5-pae" type="String"
/>
<fact name="resource.metrics.part_max_used" value="70.8000" type="Real" />
<fact name="resource.metrics.part_max_used.units" value="" type="String" />
<fact name="resource.metrics.pkts_in" value="0.4500" type="Real" />
<fact name="resource.metrics.pkts_out" value="0.6300" type="Real" />
<fact name="resource.metrics.proc_run" value="0" type="Integer" />
<fact name="resource.metrics.proc_total" value="411" type="Integer" />
<fact name="resource.metrics.swap_free" value="2039" type="Integer" />
<fact name="resource.metrics.swap_total" value="2047" type="Integer" />
<fact name="resource.metrics.vm_type" value="" type="String" />
<fact name="resource.metrics.vm_type.units" value="" type="String" />

These are the metrics reported in Orchestrate systems that use the gmond.conf created when
Orchestrate Monitoring Agent was installed and configured. The open source gmond might include
other metrics that can be monitored. You can modify the default Orchestrate gmond configuration
file to report these metrics after it is initially installed and configured. For information about
modifying the file, see the gmond.conf man page (http://linux.die.net/man/5/gmond.conf).

By using the XML constraint language, you can utilize these resource metrics facts as you would
use any other fact in PlateSpin Orchestrate. For example, you could create an Event that sets
thresholds for the amount of incoming network packets. When that threshold is exceeded, a
Scheduled Job could be triggered or a notification e-mail sent. For more information, see
Section 7.14, “Using an Event Notification in a Job,” on page 66.

C.2 Interpreting the Units of Metrics Fact Values
The Orchestrate Agent converts most of the Ganglia metrics values to PlateSpin Orchestrate
standard units. This allows fact values to be compared in constraints without the need to perform
conversions explicitly. In cases where units are not known or cannot be converted, a separate fact
with a .units suffix is included. For example:

<fact name="resource.metrics.bytes_in" value="bytes/sec" type="String" />
pin Orchestrate 2.0 Developer Guide and Reference

http://linux.die.net/man/5/gmond.conf

novdocx (en) 13 M
ay 2009
The following table lists the resource.metrics facts and the units of measure used for each fact
value:

Table C-1 Resource

Resource Metric Fact With Reported Value Orchestrate Measurement Unit of the Value

boottime 32-bit seconds timestamp

bytes_in byte rate measured in bytes per second

bytes_out byte rate measured in bytes per second

cpu_aidle percentage

cpu_idle percentage

cpu_nice percentage

cpu_num number of CPUs

cpu_speed megahertz as an integer

cpu_system percentage

cpu_user percentage

cpu__wio percentage

disk_total total in binary megabytes

disk_free total in binary megabytes

gexec simple string

load_fifteen real number

load_five real number

load_one real number

machine_type simple string

mem_buffers memory in megabytes (integer)

mem_cached memory in megabytes (integer)

mem_free memory in megabytes (integer)

mem_shared memory in megabytes (integer)

mem_total memory in megabytes (integer)

os_name simple string

os_release simple string

pkts_in packet rate in packets per second

pkts_out packet rate in packets per second

proc_run processes run (integer)

proc_total total processes (integer)
Understanding Resource Metrics Facts 255

256 PlateS

novdocx (en) 13 M
ay 2009
swap_free memory in megabytes (integer)

swap_total memory in megabytes (integer)

Resource Metric Fact With Reported Value Orchestrate Measurement Unit of the Value
pin Orchestrate 2.0 Developer Guide and Reference

D
novdocx (en) 13 M

ay 2009
DDocumentation Updates

This section contains information about documentation content changes that were made in this
PlateSpin Orchestrate Developer Guide and Reference after the initial release of PlateSpin
Orchestrate 2.0. The changes are listed according to the date they were published.

The documentation for this product is provided on the Web in two formats: HTML and PDF. The
HTML and PDF documentation are both kept up-to-date with the changes listed in this section.

If you need to know whether a copy of the PDF documentation that you are using is the most recent,
the PDF document includes a publication date on the title page.

The documentation was updated on the following dates:

Section D.1, “July 9, 2009,” on page 257
Section D.2, “June 17, 2009 (2.0.2 Release),” on page 257

D.1 July 9, 2009
Updates were made to the following sections:

D.2 June 17, 2009 (2.0.2 Release)
Updates were made to the following sections:

Location Update

Section 9.5, “Provisioning Virtual
Machines,” on page 82

Moved two items to the end of the (first) bullet list, then indicated
in a note there that VMware Server and VMware ESX
Hypervisors employ a provisioning technology considered to be
“experimental” by Novell.

Added a similar note following Figure 9-2 on page 84.

Location Update

Appendix B, “PlateSpin Orchestrate
Job Classes and JDL Syntax,” on
page 201

Added two new classes, MatchContext (page 233) and
MatchResult (page 234).

Appendix C, “Understanding
Resource Metrics Facts,” on
page 253

New information in a new appendix.
Documentation Updates 257

258 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Developer Guide and Reference

	PlateSpin Orchestrate 2.0 Developer Guide and Reference
	About This Guide
	1 Getting Started With Development
	1.1 What You Should Know
	1.1.1 Prerequisite Knowledge
	1.1.2 Setting Up Your Development Environment

	1.2 Prerequisites for the Development Environment

	2 Advanced Job Development Concepts
	2.1 JDL Job Scripts
	2.1.1 Principles of Job Operation

	2.2 Understanding TLS Encryption
	2.3 Understanding Job Examples
	2.3.1 provisionBuildTestResource.job
	2.3.2 Workflow Job Example

	3 The PlateSpin Orchestrate Datagrid
	3.1 Defining the Datagrid
	3.1.1 PlateSpin Orchestrate Datagrid Filepaths
	3.1.2 Distributing Files
	3.1.3 Simultaneous Multicasting to Multiple Receivers
	3.1.4 PlateSpin Orchestrate Datagrid Commands

	3.2 Datagrid Communications
	3.2.1 Multicast Example
	3.2.2 Grid Performance Factors
	3.2.3 Plan for Datagrid Expansion

	3.3 datagrid.copy Example

	4 Using PlateSpin Orchestrate Jobs
	4.1 Resource Discovery
	4.1.1 Provisioning Jobs
	4.1.2 Resource Discovery Jobs

	4.2 Resource Selection
	4.3 Workload Management
	4.4 Policy Management
	4.5 Auditing and Accounting Jobs
	4.6 BuildTest Job Examples
	4.6.1 buildTest.policy Example
	4.6.2 buildTest.jdl Example
	4.6.3 Packaging Job Files
	4.6.4 Deploying Packaged Job Files
	4.6.5 Running Your Jobs
	4.6.6 Monitoring Job Results
	4.6.7 Debugging Jobs

	5 Policy Elements
	5.1 Constraints
	5.2 Facts
	5.3 Computed Facts

	6 Using the PlateSpin Orchestrate Client SDK
	6.1 SDK Requirements
	6.2 Creating an SDK Client

	7 Job Architecture
	7.1 Understanding JDL
	7.2 JDL Package
	7.2.1 .sched Files

	7.3 Job Class
	7.3.1 Job State Transition Events
	7.3.2 Handling Custom Events

	7.4 Job Invocation
	7.5 Deploying Jobs
	7.5.1 Using the PlateSpin Orchestrate Development Client
	7.5.2 Using the zosadmin Command Line Tool

	7.6 Starting PlateSpin Orchestrate Jobs
	7.7 Working with Facts and Constraints
	7.7.1 Grid Objects and Facts
	7.7.2 Defining Job Elements
	7.7.3 Job Arguments and Parameter Lists

	7.8 Using Facts in Job Scripts
	7.8.1 Fact Values
	7.8.2 Fact Operations in the Joblet Class
	7.8.3 Using the Policy Debugger to View Facts

	7.9 Using Other Grid Objects
	7.10 Communicating Through Job Events
	7.10.1 Sending and Receiving Events
	7.10.2 Synchronization

	7.11 Executing Local Programs
	7.11.1 Output Handling
	7.11.2 Local Users
	7.11.3 Safety and Failure Handling

	7.12 Logging and Debugging
	7.12.1 Creating a Job Memo
	7.12.2 Tracing

	7.13 Improving Job and Joblet Robustness
	7.14 Using an Event Notification in a Job
	7.14.1 Receiving Event Notifications in a Running Job
	7.14.2 Event Types

	8 Job Scheduling
	8.1 The PlateSpin Orchestrate Job Scheduler Interface
	8.2 Schedule and Trigger Files
	8.2.1 Schedule File Examples
	8.2.2 Trigger File XML Examples

	8.3 Scheduling with Constraints

	9 Virtual Machine Job Development
	9.1 VM Job Best Practices
	9.1.1 Plan Robust Application Starts and Stops
	9.1.2 Managing VM Systems
	9.1.3 Managing VM Images
	9.1.4 Managing VM Hypervisors
	9.1.5 VM Job Considerations

	9.2 Virtual Machine Management
	9.3 VM Life Cycle Management
	9.4 Manual Management of a VM Lifecycle
	9.4.1 Manually Using the zos Command Line
	9.4.2 Automatically Using the Development Client Job Scheduler
	9.4.3 Provision Job JDL

	9.5 Provisioning Virtual Machines
	9.5.1 Provisioning VMs Using Jobs
	9.5.2 VM Placement Policy
	9.5.3 Provisioning Example

	9.6 Automatically Provisioning a VM
	9.7 Defining Values for Grid Objects
	9.7.1 PlateSpin Orchestrate Grid Objects
	9.7.2 Repository Objects and Facts
	9.7.3 VmHost Objects and Facts
	9.7.4 VM Resource Objects and Other Base Resource Facts
	9.7.5 Physical Resource Objects and Additional Facts

	10 Complete Job Examples
	10.1 Accessing Job Examples
	10.2 Installation and Getting Started
	10.3 PlateSpin Orchestrate Sample Job Summary
	10.4 Parallel Computing Examples
	demoIterator.jobReference implementation for a simple test iterator. Several concepts are demonstrated: 1) Using policy constraints and job arguments to restrict joblet execution to a specific resource, 2) Scheduling joblets using a ParameterSpace, and
	quickie.jobDemonstrates a job starting up multiple instances of a joblet on one or more resources. Because this job simply launches and returns immediately, it can also be useful for testing network latency.

	10.5 General Purpose Jobs
	dgtest.jobThis job demonstrates downloading a file from the datagrid.
	failover.jobA test job that demonstrates handling of joblet failover.
	instclients.jobInstalls the PlateSpin Orchestrate client applications to the specified resource machine. Note that while most of the other examples are deployed by default, this example is not.
	notepad.jobLaunches the Notepad application on a Windows resource.
	sweeper.jobThis example job illustrates how to schedule a "sweep," which is an ordered, serialized scheduling of the joblets across all matching resources.
	whoami.job

	10.6 Miscellaneous Code-Only Jobs
	factJunction.jobDemonstrates using fact junctions to retrieve information about objects in the grid relative to another object.
	jobargs.job

	A PlateSpin Orchestrate Client SDK
	A.1 Constraint Package
	A.1.1 AndConstraint
	A.1.2 BetweenConstraint
	A.1.3 BinaryConstraint
	A.1.4 Constraint
	A.1.5 ContainerConstraint
	A.1.6 ContainsConstraint
	A.1.7 DefinedConstraint
	A.1.8 EqConstraint
	A.1.9 GeConstraint
	A.1.10 GtConstraint
	A.1.11 IfConstraint
	A.1.12 LeConstraint
	A.1.13 LtConstraint
	A.1.14 NeConstraint
	A.1.15 NotConstraint
	A.1.16 OperatorConstraint
	A.1.17 OrConstraint
	A.1.18 TypedConstraint
	A.1.19 UndefinedConstraint
	A.1.20 ConstraintException

	A.2 Datagrid Package
	A.2.1 GridFile
	A.2.2 GridFileFilter
	A.2.3 GridFileNameFilter
	A.2.4 DGLogger
	A.2.5 DataGridException
	A.2.6 DataGridNotAvailableException
	A.2.7 GridFile.CancelException

	A.3 Grid Package
	A.3.1 AgentListener
	A.3.2 ClientAgent
	A.3.3 Credential
	A.3.4 Fact
	A.3.5 FactSet
	A.3.6 GridObjectInfo
	A.3.7 ID
	A.3.8 JobInfo
	A.3.9 Message
	A.3.10 Message.Ack
	A.3.11 Message.AuthFailure
	A.3.12 Message.ClientResponseMessage
	A.3.13 Message.ConnectionID
	A.3.14 Message.Event
	A.3.15 Message.GetGridObjects
	A.3.16 Message.GridObjects
	A.3.17 Message.JobAccepted
	A.3.18 Message.JobError
	A.3.19 Message.JobFinished
	A.3.20 Message.JobIdEvent
	A.3.21 Message.JobInfo
	A.3.22 Message.Jobs
	A.3.23 Message.JobStarted
	A.3.24 Message.JobStatus
	A.3.25 Message.LoginFailed
	A.3.26 Message.LoginSuccess
	A.3.27 Message.LogoutAck
	A.3.28 Message.RunningJobs
	A.3.29 Message.ServerStatus
	A.3.30 Node
	A.3.31 Priority
	A.3.32 WorkflowInfo
	A.3.33 ClientOutOfDateException
	A.3.34 FactException
	A.3.35 GridAuthenticationException
	A.3.36 GridAuthorizationException
	A.3.37 GridConfigurationException
	A.3.38 GridDeploymentException
	A.3.39 GridException
	A.3.40 GridObjectNotFoundException

	A.4 TLS Package
	A.4.1 TlsCallbacks
	A.4.2 PemCertificate
	A.4.3 TlsConfiguration

	A.5 Toolkit Package
	A.5.1 ClientAgentFactory
	A.5.2 ConstraintFactory
	A.5.3 CredentialFactory

	B PlateSpin Orchestrate Job Classes and JDL Syntax
	B.1 Job Class
	B.2 Joblet Class
	B.3 Utility Classes
	B.4 Built-in JDL Functions and Variables
	B.4.1 getMatrix()
	B.4.2 system(cmd)
	B.4.3 Grid Object TYPE_* Variables
	B.4.4 The __agent__ Variable
	B.4.5 The __jobname__ Variable
	B.4.6 The __mode__ Variable

	B.5 Job State Field Values
	B.6 Repository Information String Values
	B.7 Joblet State Values
	B.8 Resource Information Values
	B.9 JDL Class Definitions
	AndConstraint()
	BinaryConstraintRepresentation of a Constraint operating on the left and right operands. This is a base class and is not directly constructed.
	BuildSpec
	CharRangeDefine lexical character string range of values for ParameterSpace scheduling.
	ComputedFact
	ComputedFactContextProvides access to the evaluation context. See Example below.
	ConstraintDefines the base class for all constraint classes.
	ContainerConstraintRepresentation of a Constraint that contains other Constraints. This is a base class and is not directly constructed.
	ContainsConstraintRepresentation of the Contains Constraint. Evaluates to true only if the left side fact is defined in the match context. If the left side is not defined, this will evaluate to False. Contains is typically used to check membership of a
	DataGrid
	DefinedConstraintRepresentation of the Defined Constraint. Evaluates to true only if the left side fact is defined in the match context. If the left side is not defined, this will evaluate to False. This constraint can be used independently or added to
	EqConstraint
	ExecThe Exec class is used to manage command line execution on resources. This class defines options for input, output and error stream handling, and process management including signaling, error and timeout control.
	ExecError
	FileRange
	GeConstraint
	GridObjectInfo
	GroupInfo
	GtConstraintRepresentation of the Greater than Constraint. Performs a ‘greater than’ constraint operation. Missing arguments will always result in this constraint evaluating to false. The standard lexographical ordering of values is used to determin
	Job
	JobInfoThe JobInfo class is a representation of a deployed job. The factset available on the JobInfo class is the aggregation of the job's policy and policies on the groups the job is a member of. This includes the "job.*" and "jobargs.*" fact namespace
	JobletDefines the attributes for creating a virtual machine. An instance of this class is passed to resource.createInstance(), resource.createTemplate(), resource.clone().
	JobletInfoJobletInfo is a representation of the joblet grid object created when a job calls schedule() to create joblets. This class provides access to a joblet's factset and operations on a joblet such as cancellation and sending events to a joblet tha
	JobletParameterSpaceJobletParameterSpace is a slice of the ParameterSpace allocated to a joblet. As the scheduler defines slices of the parameter space for a given schedule(), JobletParameterSpace instances are created for each joblet. This slice of the
	LeConstraintRepresentation of the Less than or equals Constraint. Performs a 'less than or equal to' constraint operation. Missing arguments will always result in this constraint evaluating to false. The standard lexographical ordering of values is used
	LtConstraintRepresentation of the Less than Constraint. Performs a "less than" constraint operation. Missing arguments always result in this constraint evaluating to false. The standard lexographical ordering of values is used to determine result. This
	MatchContext
	MatchResult
	MatrixInfo
	MigrateSpec
	NeConstraintRepresentation of the Not Equals Constraint. Performs a not equal constraint operation. Missing arguments will always result in this constraint evaluating to false. This constraint can be used independently or added to a And, Or, Not constra
	NotConstraint
	OrConstraint
	ParameterSpace
	PolicyInfoRepresentation of a Policy Object. This class allows for associating and unassociation of Grid objects using this policy
	ProvisionSpec
	RepositoryInfo
	ResourceInfo
	RunJobSpec
	ScheduleSpec
	TimerTimer schedules a callback to a job or joblet method. Timers can schedule a one time or a repeated callback on an interval basis. Any Timers created in a job or joblet are shut down on job or joblet completion.
	UndefinedConstraint
	UserInfoUserInfo is a representation of a user grid object. This class provides accessors and setters for User facts.
	VMHostInfo
	VmSpec

	C Understanding Resource Metrics Facts
	C.1 Resource Facts
	C.2 Interpreting the Units of Metrics Fact Values

	D Documentation Updates
	D.1 July 9, 2009
	D.2 June 17, 2009 (2.0.2 Release)

