
ZENworks 23.3
Endpoint Security

Scripting Reference
August 2023

Legal Notice
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

© Copyright 2008 - 2023 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as may be set
forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.
2

https://www.microfocus.com/about/legal/

Contents
About This Guide 5

1 Script Development 7
Supported Scripting Languages . 7
Execution Context . 8
Defining Event Triggers . 8
Namespaces . 9
Storage Interface. 9

Variables . 9
Temporary Storage Methods . 10
Persistent Storage Methods . 11
JScript Example . 12
VBScript Example. 13

Script Management Interface . 14
Script Information and Helper Methods . 14
Version Methods . 15
Trigger Event Methods . 16
Script Run Methods . 19
Program Launch/Execute Methods . 20
Display Methods . 23
Prompt Methods . 26
Safe Arrays . 29
Object Match Lists . 30

Effective Policy Interface . 31
PolicyInformation Object . 31
Effective Policies Methods . 32

Location Interface . 33
Definitions . 33
Data Types . 34
Security Location Methods . 35
Mobile (Unknown) Location Methods . 38
Assigned Location Methods . 38
Network Location Methods . 39
JScript Example . 40
VBScript Example. 40

Communication Hardware Policy Interface . 40
Data Types . 41
Enforced Policy Methods . 41
Hardware Enforcement Methods. 41
Adapter Connection Methods . 42
JScript Example . 43
VBScript Example. 44

WiFi Policy Interface . 45
Data Types . 45
Adhoc WiFi Networks Methods . 46
Block WiFi Connections . 46
Minimum Security Level Methods . 47
Contents 3

4 Con
Minimum Signal Strength Methods . 48
Storage Device Control Policy Interface . 49

Data Types . 49
AutoPlay Methods . 50
Volumes Methods . 51

2 Script Testing 53
Enabling Script Testing in the Endpoint Security Agent . 53
Testing an Unpublished Script . 53
Testing a Published Scripting Policy. 55
Tracing a Script’s Execution . 56
tents

About This Guide

This ZENworks Endpoint Security Scripting Reference provides information to help you create and
test scripts to be used in Scripting policies.

Audience
This guide is written for the ZENworks Endpoint Security Management administrators.

Feedback
We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Additional Documentation
ZENworks Endpoint Security Management is supported by other documentation (in both PDF and
HTML formats) that you can use to learn about and implement the product. For additional
documentation, see the ZENworks documentation website (https://www.novell.com/
documentation/zenworks-2020).
About This Guide 5

https://www.novell.com/documentation/zenworks-2020

6 About This Guide

1 1Script Development

The following sections provide information to help you develop the script content for use in Scripting
policies (see “Scripting Policy” in the ZENworks Endpoint Security Policies Reference). For information
about testing a script, see Script Testing.

 “Supported Scripting Languages” on page 7
 “Execution Context” on page 8
 “Defining Event Triggers” on page 8
 “Namespaces” on page 9
 “Storage Interface” on page 9
 “Script Management Interface” on page 14
 “Effective Policy Interface” on page 31
 “Location Interface” on page 33
 “Communication Hardware Policy Interface” on page 40
 “WiFi Policy Interface” on page 45
 “Storage Device Control Policy Interface” on page 49

Supported Scripting Languages
The Endpoint Security Agent uses the Microsoft Windows Script Host (WSH) to run scripts on a
device. All scripts are subject to WSH restrictions. Script content can be authored in either JScript or
VBScript language; using multiple languages (JScript and VBScript together) in the same script is not
supported.

Standard WSH coding methods are supported, with the following exceptions:

1. WScript.Echo is not supported because return values cannot be sent back to a parent window
that is unavailable. Use the Action.DisplayMessage methods instead (see Display Methods).

2. Access Shell Objects. Use the following modified nomenclature/call:

[JScript]
 Use:
 var WshShell = new ActiveXObject("WScript.Shell");
 Instead of:
 var WshShell = WScript.CreateObject ("WScript.Shell");

[VBScript]
 Use:
 Dim WshShell
 Set WshShell = CreateObject("WScript.Shell")
 Instead of:
 Dim WshShell
 Set WshShell = WScript.CreateObject("WScript.Shell")
Script Development 7

https://www.novell.com/documentation/zenworks-23.3/pdfdoc/zen_es_policies/zen_es_policies.pdf#btxkmmo

Execution Context
Scripts execute in either the System context or the User context. The execution context is defined in
the Scripting policy through the Run As setting.

The script context, along with the operating system, determines the rights provided to the script and
the functions it can perform. For example:

 On Windows Vista and newer Windows operating systems, a script running in the System
context (Session 0) cannot display messages on its own. To display messages, the script must
use the Action.DisplayMessage methods or another mechanism.

 Scripts running in the User context execute with the right of the user session.
 Scripts running in the System context have the same rights as Windows services.

Defining Event Triggers
Triggers are events that cause the Endpoint Security Agent to determine when and if a script should
be executed. These events can either be internal agent events or external events monitored by the
agent. A script is run when one of the triggers is fired, the script is not already running, and the
scripting context (system or user) is available.

Triggers are defined in the Scripting policy. You cannot use a script to change the triggers, but you
can use a script to discover the trigger that initiated a script. For information, see Trigger Event
Methods.

A brief description of each trigger is provided below. For more information, see “Scripting Policy” in
the ZENworks Endpoint Security Policies Reference.

 Immediate: Executes the script immediately on load of the script.
 Location Change: Executes the script when entering or leaving a location. Trigger can be applied

to all location changes or specific location changes only.
 Network Change: Executes the script when a network environment that is used for location

determination changes, even if the network change does not cause a location change.
 Network Connect: Executes the script when the wired adapter, wireless adapter, or modem

detects a new connection.
 Network Disconnect: Executes the script with the wired adapter, wireless adapter, or modem

loses a connection.
 Policy Change: Executes the script when the effective policy is updated.
 Timer: Executes the script every n minutes after the initial enforcement of the policy. The

interval includes a one-minute boundary, meaning that the script is run within a minute (plus or
minus) of the end of the interval.
8 Script Development

https://www.novell.com/documentation/zenworks-23.3/pdfdoc/zen_es_policies/zen_es_policies.pdf#btxkmmo

Namespaces
The Endpoint Security Agent provides three namespaces for a script to allow it to control or access
the agent. The namespaces are as follows:

 Query: Provides methods to get the current state of the agent. For example, Query methods
could provide information about the device’s network environment, security location, and
enforced policies.

 Action: Provides methods to change the behavior of the agent or interact with the user. For
example, Action methods could display a message or message prompt, start or stop another
script, or change the security location.

 Storage: Provides methods for the script to store variables for the current session (temporary)
or across sessions (persistent) For example, stored variables could be used to hold the last
execution time or to transfer data between script executions.

All methods begin with one of the three namespaces. For example:

 string Query.ScriptName
 int Action.TriggerScript(string script, string reason)
 string Storage.GetNameValue(string name)

Storage Interface
The Storage interface provides a way to save variable data. Variables can be saved in temporary
storage or persistent storage.

Variables
Scripting variables can be used to store information for use in the current Endpoint Security Agent
session (temporary variables) or for use across sessions (persistent variables).

As you use variables, be aware of the following naming conventions:

 Variable names can contain any printable character.
 Variable names are not explicitly limited in size.
 A global variable is defined by prepending a forward slash (/) to the variable name. Global

variables are available to other scripts. For example: Storage.NameValueExists(“/
boolWarnedOnPreviousLoop”).

 Any variable that does not start with a forward slash (/) is a local variable. Local variables are
available only to the script that created them.

 Variables are stored in either temporary storage or persistent storage (for details, see Storage
Interface). Variable names are unique to each storage system. If a script uses the same name for
a variable in both the temporary and persistent storage, the values are independent of each
other despite the name being the same.
Script Development 9

Temporary Storage Methods
Temporary storage allows a variable to be retained for the current Endpoint Security Agent session
only. The variable is lost when the agent shuts down.

All variables are considered local to the script unless the variable name follows the naming
conventions for a global variable. Local variables use the script’s identifier to ensure uniqueness. If
the script identifier is changed, the script no longer has access to its local variables.

bool Storage.NameValueExists(string name)

string Storage.GetNameValue(string name)

int Storage.SetNameValue(string name, string value)

int Storage.ClearNameValue(string name)

Description: Determines if a temporary variable already exists.

Parameters: name — variable name being requested

Returns: True if the variable is found in the store. False if not.

Description: Gets the value associated with a temporary variable.

Parameters: name — variable name being requested

Returns: The value being stored. If the value does not exist, an empty string is returned.

Description: Sets the value for a temporary variable.

Parameters: name — variable name in which to store the value

value — value to store

Returns: 0 on success. Any other number on failure.

Description: Clears the value for a temporary variable.

Parameters: name — name of variable to clear

Returns: 0 on success. Any other number on failure.
10 Script Development

Persistent Storage Methods
Persistent storage allows a variable to be retained across Endpoint Security Agent restarts; the
variable can only be cleared by script or by using the Agent Status feature in the Endpoint Security
Agent’s About box.

All variables are considered local to the script unless the variable name follows the naming
conventions for a global variable. Local variables use the script’s identifier to ensure uniqueness. If
the script identifier is changed, the script no longer has access to its local variables.

bool Storage.PersistValueExists(string name)

string Storage.GetPersistValue(string name)

int Storage.SetPersistValue(string name, string value)

int Storage.ClearPersistValue(string name)

Description: Determines if a persistent variable already exists.

Parameters: name — variable name being requested

Returns: True if the variable is found in the store. False if not.

Description: Gets the value associated with a persistent variable.

Parameters: name — variable name being requested

Returns: The value being stored. If the value does not exist, an empty string is returned.

Description: Sets the value for a persistent variable.

Parameters: name — variable name in which to store the value

value — value to store

Returns: 0 on success. Any other number on failure.

Description: Clears the value for a persistent variable.

Parameters: name — name of variable to clear

Returns: 0 on success. Any other number on failure.
Script Development 11

JScript Example
var ret;
var curValue = 0;
if (Storage.NameValueExists("testval"))
 curValue = Storage.GetNameValue("testval");
curValue++;
ret = Storage.SetNameValue("testval", curValue);
Action.Trace("NameValue = " + curValue);
Action.DisplayMessage("Storage", "Name Value: " + curValue, "Info", 3);
Action.Sleep(3000);

curValue = 0;
if (Storage.NameValueExists("/testval"))
 curValue = Storage.GetNameValue("/testval");
curValue++;
ret = Storage.SetNameValue("/testval", curValue);
Action.Trace("Shared NameValue = " + curValue);
Action.DisplayMessage("Shared Storage", "Name Value: " + curValue, "Info",
 3);
Action.Sleep(3000);

curValue = 0;
if (Storage.PersistStringExists("testval"))
 curValue = Storage.GetPersistString("testval");
curValue++;
ret = Storage.SetPersistString("testval", curValue);
Action.Trace("Persist String = " + curValue);
Action.DisplayMessage("Storage", "Persist String: " + curValue, "Info", 3)
;
Action.Sleep(3000);

curValue = 0;
if (Storage.PersistStringExists("/testval"))
 curValue = Storage.GetPersistString("/testval");
curValue++;
ret = Storage.SetPersistString("/testval", curValue);
Action.Trace("Shared Prersist String = " + curValue);
Action.DisplayMessage("Shared Storage", "Persist String: " + curValue, "In
fo", 3);
Action.Sleep(3000);
12 Script Development

VBScript Example
dim ret
dim curValue
curValue = 0

If Storage.NameValueExists("testval") then
 curValue = Storage.GetNameValue("testval")
End If
curValue = curValue + 1
ret = Storage.SetNameValue("testval", curValue)
Action.Trace "NameValue = " & curValue
msg = "Name Value: " & curValue

Action.DisplayMessage "Storage", msg, "Info", 3
Action.Sleep 3000

curValue = 0
If Storage.NameValueExists("/testval") then
 curValue = Storage.GetNameValue("/testval")
End If

curValue = curValue + 1
ret = Storage.SetNameValue("/testval", curValue)
Action.Trace "Shared NameValue = " & curValue
Action.DisplayMessage "Shared Storage", "Name Value: " & curValue, "Info",
 3
Action.Sleep 3000

curValue = 0
If Storage.PersistStringExists("testval") then
 curValue = Storage.GetPersistString("testval")
End If
curValue = curValue + 1
ret = Storage.SetPersistString("testval", curValue)
Action.Trace "Persist String = " & curValue
Action.DisplayMessage "Storage", "Persist String: " & curValue, "Info", 3
Action.Sleep 3000

curValue = 0
If Storage.PersistStringExists("/testval") then
 curValue = Storage.GetPersistString("/testval")
End If
curValue = curValue + 1
ret = Storage.SetPersistString("/testval", curValue)
Action.Trace "Shared Prersist String = " & curValue
Action.DisplayMessage "Shared Storage", "Persist String: " & curValue, "In
fo", 3
Action.Sleep 3000
Script Development 13

Script Management Interface
The Script Management interface provides methods for getting script information, launching other
scripts and programs, and displaying informational messages and prompts to users. The methods are
organized into the following sections:

Script Information and Helper Methods
The Script Information and Helper methods get information about a script (name, ID, and execution
context) and provide general script helping functions such as creating a new unique ID for use in the
script, generating trace messages for the script, and pausing the script for a specified amount of
time.

string Query.ScriptName

string Query.ScriptId

string Query.ScriptContext

string Query.UniqueID

void Action.Trace(string msg)

Description: Gets the name of the script. The name is derived from the Scripting policy name.

Description: Gets the script identifier. The identifier is derived from the Scripting policy ID.

Description: Gets the context (user or system) in which the script is running.

Description: Generates a unique identifier for use by the script.

Description: Sends trace messages to the user or service logs (depending on whether the script is
running in the user context or system context). Each trace message has its script id
concatenated to the message.

The trace messages can also be viewed in the Script Tracing dialog of the Endpoint
Security Agent About box.

Parameters: msg — The message string to log.
14 Script Development

void Action.Sleep (int millisec)

JScript Example
Action.Trace("");
Action.Trace(" ******** Script Information ********* ");
Action.Trace("UniqueID: " + Query.UniqueID);
Action.Trace("Script Name: " + Query.ScriptName);
Action.Trace("Script ID: " + Query.ScriptID);
Action.Trace("Script Context: " + Query.ScriptContext);

VBScript Example
Action.Trace ""
Action.Trace " ******** Script Information ********* "
Action.Trace "UniqueID: " & Query.UniqueID
Action.Trace "Script Name: " & Query.ScriptName
Action.Trace "Script ID: " & Query.ScriptID
Action.Trace "Script Context: " & Query.ScriptContext

Version Methods
The Version methods get information about the version of a namespace (Query, Action, Storage) or
of the Endpoint Security Agent.

int Query.Version(string category, string component)

Description: Causes the script to sleep for a specified period of time.

Parameters: millisec — The number of milliseconds the script sleeps before proceeding. The
implementation wakes up on a regular interval to check if the script needs to be
terminated early due to a policy change or agent restart. Control is returned only after
the number of milliseconds has expired.

Description: Gets the version of the specified namespace or of the Endpoint Security Agent.

Parameters: category — One of the following four identifiers: query, action, storage,
client.

component — The requested version component. The four identifiers are: major,
minor, revision, build.

Returns: An integer value for the requested component. If an invalid component is requested, -
1 is returned.
Script Development 15

JScript Example
Action.Trace("");
Action.Trace(" ******** Version Information ********* ");
Action.Trace("");
Action.Trace("Client: " + Query.Version("Client", "Major") + "." + Query.V
ersion("Client", "Minor") + "." + Query.Version("Client", "Revision") + ".
" + Query.Version("Client", "Build"));
Action.Trace("Query: " + Query.Version("Query", "Major") + "." + Query.Ver
sion("Query", "Minor") + "." + Query.Version("Query", "Revision") + "." +
Query.Version("Query", "Build"));
Action.Trace("Action: " + Query.Version("Action", "Major") + "." + Query.V
ersion("Action", "Minor") + "." + Query.Version("Action", "Revision") + ".
" + Query.Version("Action", "Build"));
Action.Trace("Storage: " + Query.Version("Storage", "Major") + "." + Query
.Version("Storage", "Minor") + "." + Query.Version("Storage", "Revision")
+ "." + Query.Version("Storage", "Build"));

VBScript Example
Function DisplayVersion (name)
 dim major
 dim minor
 dim revision
 dim build

 major = Query.Version(name, "Major")
 minor = Query.Version(name, "Minor")
 revision = Query.Version(name, "Revision")
 build = Query.Version(name, "Build")
 Action.Trace name & ": " & major & "." & minor & "." & revision & "."
& build
End Function

Action.Trace ""
Action.Trace " ******** Version Information ********* "
Action.Trace ""
DisplayVersion("Client")
DisplayVersion("Query")
DisplayVersion("Action")
DisplayVersion("Storage")

Trigger Event Methods
The Trigger Event methods get information about the event that caused the script to execute.

Trigger Reasons
The following table lists the reasons a script is triggered. Each trigger reason includes one or more
indexes that are available for the trigger. The indexes listed for each trigger are guaranteed to be
available. Other indexes, and even other reasons, might be available depending on the version of the
Endpoint Security Agent.
16 Script Development

string Query.TriggerParameter(string index)

Trigger Reason Index Description

Location change reason The trigger reason value. For a location change, the value is
always location.

switch_from_id The ID of the switched-from location.

switch_from The name of the switched-from location.

switch_to_id The ID of the switched-to location.

switch_to The name of the switched-to location

change_reason Reason for the location change that triggered the script; for
reasons, see Data Types

Network
environment change

reason The trigger reason value. For a network environment change,
the value is always network_environment.

Network connect reason The trigger reason value. For a network connection, the value is
always network_connect.

device_id The device ID of the adapter that detected the connection

Network disconnect reason The trigger reason value. For a network disconnection, the
value is always network_disconnect.

device_id The device ID of the adapter that detected the disconnect

Immediate reason The trigger reason value. For an immediate trigger, the value is
always immediate.

caller (Optional) The name of the script that initiated the trigger.

caller_ID (Optional) The ID of the script that initiated the trigger,

caller_reason (Optional) The reason the script initiated the trigger.

Timer reason The trigger reason value. For a time trigger, the value is always
timer.

interval The time interval (in minutes) that triggered the script

Description: Gets the value of the requested index.

Parameters: index — One of the index names listed in Trigger Reasons. For example, location or
switch_from.

Returns: The value of the requested index value. For example, if reason is the index, the value
might be location or network_connect. If switch_from is the index, the
value might be work or office.

If an index is out of range or invalid, an empty string is returned.
Script Development 17

int Query.TriggerParameterCount

string Query.TriggerParameterName(int index)

string Query.TriggerParameterValue(int index)

JScript Example
Action.Trace("");
Action.Trace(" ******** Trigger Reasons ********* ");
Action.Trace("");
Action.Trace("Reason = " + Query.TriggerParameter("reason"));
Action.Trace("Parameter Count = " + Query.TriggerParameterCount);
for(var idx = 0; idx < Query.TriggerParameterCount; idx++)
{
 Action.Trace("Parameter: " + Query.TriggerParameterName(idx) + " -
> " + Query.TriggerParameterValue(idx));
}

Action.Trace("Invalid trigger parm return: " + Query.TriggerParameter("-
1"));

Description: Gets the number of indexes for the trigger. For example, if Location change is the
trigger, 6 or more indexes can be available.

Returns: The number of indexes.

Description: Gets the name of the requested index.

Parameters: index — The number of the index being requested. Index names are listed in Trigger
Reasons. Index numbers are not listed because they can change from one script run
to another. For example, the reason index might be 0 during one run and 4 during
another.

Returns: The name of the requested index. For example, switch_from_ID, deviceID, or
reason.

Description Gets the value of the requested index.

Parameters: index — The number of the index being requested. Index names are listed in Trigger
Reasons. Index numbers are not listed because they can change from one script run
to another. For example, the reason index might be 0 during one run and 4 during
another.

Returns: The value of the requested index. For example, if switch_from is the requested
index (based on its index number, not name), the value might be work or office.
18 Script Development

VBScript Example
Action.Trace ""
Action.Trace " ******** Trigger Reasons ********* "
Action.Trace ""
Action.Trace "Reason = " & Query.TriggerParameter("reason")
Action.Trace "Parameter Count = " & Query.TriggerParameterCount
For idx = 0 to (Query.TriggerParameterCount - 1)
 Action.Trace "Parameter: " & Query.TriggerParameterName(idx) & " -
> " & Query.TriggerParameterValue(idx)
Next

Action.Trace "Invalid trigger parm return: " & Query.TriggerParameter("-
1")

Script Run Methods
The Script Run methods trigger or terminate another script in the system.

int Action.TriggerScript(string script, string reason)

Description: Triggers another script in the system.

Parameters: script — The name or ID of the script being requested to run.

reason — Passed along as part of the trigger parameter. The script that is called has
the value stored as the caller_reason trigger parameter.

Returns: The following are common return values. Other values are also possible:

 0 — The script was found and the trigger will be attempted.
 50 — The action is not supported; could be returned because the script is

attempting to trigger itself.
 1168 — The script was not found in the system.
 Other non-zero values — The script failed to run.
Script Development 19

int Action.TerminateScript(string script, string reason)

Program Launch/Execute Methods
The Launch/Execute methods provide ways to launch and execute programs. A launch method runs
the program but does not wait for the program to finish and return an exit code. An execute method
runs the program and waits for it to finish and return an exit code, or for the execution timeout to
expire.

A launched or executed program runs in the same context (user or system) as the script, unless the
script overrides the context by passing a new context.

Be aware that some Windows operating systems may not allow GUI applications to display in the
system context.

Description: Terminates another script in the system by name or id. This does not unload the
script.

Parameters: script — The name or ID of the script being requested to run.

reason — Passed along as part of the trigger parameter. The script that is called has
the value stored as the caller_reason trigger parameter.

Returns: The following are common return values. Other values are also possible:

 0 — The script was found and the trigger will be attempted.
 50 — The action is not supported; could be returned because the script is

attempting to terminate itself.
 1168 — The script was not found in the system.
 Other non-zero values — The script failed to run.
20 Script Development

int Action.Launch(string context, bool hide, string command, string
parameters)

int Action.Execute(string context, bool hide, string command, string
parameters)

Description: Starts a program in the requested context. The script continues without waiting for
the program to return an exit code.

Parameters: context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If true, the command shell used to launch the program is not displayed. If
false, the command shell is displayed.

command — The command to execute. If the command starts with http: or www.,
the link is launched using the default web browser.

parameters — Parameters to be passed to the command.

Returns: The following are common return values. Other values are also possible:

 0 — Success
 31 — General failure. The launching of the program failed due to a file not

found, the command failing, or other similar reason.
 1359 — The launch context (user or system) is not available.

Description: Starts a program in the requested context. The script pauses until the program returns
an exit code.

Parameters: context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If true, the command shell used to execute the program is not displayed. If
false, the command shell is displayed.

command — The command to execute. If the command starts with http: or www.,
the link is launched using the default web browser.

parameters — Parameters to be passed to the command.

Returns: In addition to the exit code of the executed program, the following errors can be
returned:

 31 — General failure. Execution failed due to a file not found, the command
failing, or other similar reasons.

 1359 — The execute context (user or system) is not available.
Script Development 21

int Action.ExecuteWithTimeout(string context, bool hide, string
command, string parameters int timeout)

JScript Example
var ret;

ret = Action.Launch("user", false, "notepad", "");
Action.Trace("User: Launch notepad: " + ret);

ret = Action.Execute("user", false, "notepad", "");
Action.Trace("User: Execute notepad: " + ret);

ret = Action.ExecuteWithTimeout("user", false, "notepad", "", 5);
Action.Trace("User: Execute with Timeout, notepad: " + ret);

Description: Starts a program in the requested context. The script pauses until the program returns
an exit code or until the timeout is reached.

Parameters: context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If true, the command shell used to execute the program is not displayed. If
false, the command shell is displayed.

command — The command to execute. If the command starts with http: or www.,
the link is launched using the default web browser.

parameters — Parameters to be passed to the command.

timeout — Number of seconds to wait for an exit code from the program.

Returns: In addition to the exit code of the executed program, the following errors can be
returned:

 31 — General failure. Execution failed due to a file not found, the command
failing, or other similar reasons.

 121 — The command was successfully executed but did not complete before
the timeout was reached.

 1359 — The execute context (user or system) is not available.
22 Script Development

VBScript Example
dim ret

ret = Action.Launch("user", false, "notepad", "")
Action.Trace("User: Launch notepad: " & ret)

ret = Action.Execute("user", false, "notepad", "")
Action.Trace("User: Execute notepad: " & ret)

ret = Action.ExecuteWithTimeout("user", false, "notepad", "", 5)
Action.Trace("User: Execute with Timeout, notepad: " & ret)

Display Methods
The Display methods enable a message to be displayed to a user. The methods are valid only if the
script is running in a user session.

The displayed message includes an OK button to dismiss the message. You can also set a timeout to
automatically dismiss the message. The message does not pause the script; it continues to run while
the message displays.

Display messages are intended for providing information to the user. If you need to display a
message that requires the user to make a choice (such as OK or Cancel), you should use a message
prompt. See Prompt Methods.

void Action.DisplayMessage(string title, string message, string icon, int
timeout)

Description: If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

Parameters: title — String displayed in the title bar.

message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: error, app, hand, info, quest,
warn, exclamation (or !), stop, asterisk (or *), default. Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.
Script Development 23

void Action.DisplayMessageWithLink(string title, string message, string
icon, int timeout, string linkName, string linkCommand, string
linkParameters)

void Action.DisplayMessageById(string id, string title, string message,
string icon, int timeout)

Description: If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

Parameters: title — String displayed in the title bar.

message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: error, app, hand, info, quest,
warn, exclamation (or !), stop, asterisk (or *), default. Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

linkName — The name of the link to be display on the dialog box.

linkCommand — The command to be executed when the link is clicked.

linkParameters — Parameters to be passed as part of the execution command.

Description: If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

Parameters: id — Provides that ability for message suppression. If a message with the same id is
already being displayed to the user, this message is dropped.

title — String displayed in the title bar.

message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: error, app, hand, info, quest,
warn, exclamation (or !), stop, asterisk (or *), default. Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.
24 Script Development

void Action.DisplayMessageByIdWithLink(string id, string title, string
message, string icon, int timeout, string linkName, string linkCommand,
string linkParameters)

JScript Example
Action.DisplayMessage("Display Message", "Error icon", "Error", 2);
Action.Sleep(2000);

Action.DisplayMessageWithLink("Display Message With Link", "Error icon", "
Error", 2, "novell", "www.novell.com", "");
Action.Sleep(2000);

Action.DisplayMessageById("2", "Display Message By Id", "Should See", "app
", 5);
Action.Sleep(2000);
Action.DisplayMessageById("2", "Display Message By Id", "Should not see",
"error", 2);
Action.Sleep(3000);

Action.DisplayMessageByIdWithLink("8", "Display Message By Id With Link",
"Should See", "app", 5, "novell", "www.novell.com", "");
Action.Sleep(2000);
Action.DisplayMessageByIdWithLink("8", "Display Message By Id With Link",
"Should not see", "error", 2, "novell", "www.novell.com", "");

Description: If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

Parameters: id — Provides that ability for message suppression. If a message with the same id is
already being displayed to the user, this message is dropped.

title — String displayed in the title bar.

message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: error, app, hand, info, quest,
warn, exclamation (or !), stop, asterisk (or *), default. Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

linkName — The name of the link to be display on the dialog box.

linkCommand — The command to be executed when the link is clicked.

linkParameters — Parameters to be passed as part of the execution command.
Script Development 25

VBScript Example
Action.DisplayMessage "Display Message", "Error icon", "Error", 2
Action.Sleep 2000

Action.DisplayMessageWithLink "Display Message With Link", "Error icon", "
Error", 2, "novell", "www.novell.com", ""
Action.Sleep 2000

Action.DisplayMessageById "2", "Display Message By Id", "Should See", "app
", 5
Action.Sleep 2000
Action.DisplayMessageById "2", "Display Message By Id", "Should not see",
"error", 2
Action.Sleep 3000

Action.DisplayMessageByIdWithLink "8", "Display Message By Id With Link",
"Should See", "app", 5, "novell", "www.novell.com", ""
Action.Sleep 2000
Action.DisplayMessageByIdWithLink "8", "Display Message By Id With Link",
"Should not see", "error", 2, "novell", "www.novell.com", ""

Prompt Methods
The Prompt methods enable a message prompt to be displayed to a user. The methods are valid only
if the script is running in a user session.

The prompt can include different response buttons, such as OK/Cancel or Abort/Retry/Ignore. You
can also set a timeout to automatically close the prompt if the user doesn’t respond.

Message prompts are intended for prompting the user to make a choice. If you only need to display
information to the user, you should use a display message. See Display Methods.

string Action.Prompt(string title, string message, string icon, int timeout,
string buttons)

Description: If a primary user process is running, displays a custom message prompt to the user. If
no primary user process is available, the message prompt is dropped.
26 Script Development

string Action.PromptWithLink(string title, string message, string icon, int
timeout, string buttons, string linkName, string linkCommand, string
linkParameters)

Parameters: title — String displayed in the title bar.

message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: error, app, hand, info, quest,
warn, exclamation (or !), stop, asterisk (or *), default. Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

buttons — The buttons to display. Valid inputs are: ok, okCancel,
abortRetryIgnore, yesNoCancel, yesNo, retryCancel. Inputs are not case-
sensitive.

Returns: One of the following:

 “” — Empty string. The primary process is unavailable, no input received.
 closed — Dialog box closed without input.
 timeout — Dialog box timed out.
 ok — OK button selected.
 cancel — Cancel button selected.
 abort — Abort button selected.
 retry — Retry button selected.
 ignore — Ignore button selected.
 yes — Yes button selected.
 no — No button selected.
 cancel — Cancel button selected.

Description: If a primary user process is running, displays a custom message prompt to the user. If
no primary user process is available, the message prompt is dropped.
Script Development 27

JScript Example
var ret;
ret = Action.Prompt("Prompt - Ok", "Hit ok", "Error", 0, "ok");
Action.Trace("Ok Result: " + ret);
ret = Action.Prompt("Prompt - OkCancel", "Hit ok", "", 0, "okCancel");
Action.Trace("Ok Result: " + ret);
ret = Action.Prompt("Prompt - Retry/
Cancel", "Allow to timeout", "", 5, "retryCancel");
Action.Trace("timeout Result: " + ret);

ret = Action.PromptWithLink("Prompt - Retry/
Cancel", "With link", "", 3, "retryCancel", "Novell", "www.novell.com", ""
);
Action.Trace("with link results: " + ret);

Parameters: title — String displayed in the title bar.

message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: error, app, hand, info, quest,
warn, exclamation (or !), stop, asterisk (or *), default. Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

buttons — The buttons to display. Valid inputs are: ok, okCancel,
abortRetryIgnore, yesNoCancel, yesNo, retryCancel. Inputs are not case-
sensitive.

linkName — The name of the link to be display on the dialog box.

linkCommand — The command to be executed when the link is clicked.

linkParameters — Parameters to be passed as part of the execution command.

Returns: One of the following:

 “” — Empty string. The primary process is unavailable, no input received.
 closed — Dialog box closed without input.
 timeout — Dialog box timed out.
 ok — OK button selected.
 cancel — Cancel button selected.
 abort — Abort button selected.
 retry — Retry button selected.
 ignore — Ignore button selected.
 yes — Yes button selected.
 no — No button selected.
 cancel — Cancel button selected.
28 Script Development

VBScript Example
dim ret
ret = Action.Prompt("Prompt - Ok", "Hit ok", "Error", 0, "ok")
Action.Trace("Ok Result: " & ret)
ret = Action.Prompt("Prompt - OkCancel", "Hit ok", "", 0, "okCancel")
Action.Trace("Ok Result: " & ret)
ret = Action.Prompt("Prompt - Retry/
Cancel", "Allow to timeout", "", 5, "retryCancel")
Action.Trace("timeout Result: " & ret)

ret = Action.PromptWithLink("Prompt - Retry/
Cancel", "With link", "", 3, "retryCancel", "Novell", "www.novell.com", ""
)
Action.Trace("with link results: " & ret)

Safe Arrays
A safe array indexes a list of objects. Safe arrays are native to VBScript and provide a way to
enumerate all elements in the array. Safe arrays are not native to JScript; they must be converted
using the native VBArray function provided by WScript.

Functions that return a safe array value end in Array (for example, EffectivePolicyArray). The
followng VBScript and JScript examples use EffectivePolicyArray as a safe array.

JScript Example
Action.Trace(" ******** Array Access ****** ");
var a = new VBArray(Query.EffectivePolicyArray());
ret = a.toArray();
for (var i = 0; i < ret.length; i++) {
 var pol = ret[i];
 Action.Trace(" ******** Policy Information ********* ");
 Action.Trace("ID: " + pol.Id);
 Action.Trace("Version: " + pol.Version);
 Action.Trace("Name: " + pol.Name);
 Action.Trace("Type: " + pol.PolicyType);
 Action.Trace("Session: " + pol.Session);
}

Script Development 29

VBScript Example
Dim obj, idx, max, pol
obj = Query.EffectivePolicyArray
Action.Trace VarType(obj)
Action.Trace IsArray(obj)
For Each pol in obj
 Action.Trace " ******** Policy Information ********* "
 Action.Trace "ID: " & pol.Id
 Action.Trace "Version: " & pol.Version
 Action.Trace "Name: " & pol.Name
 Action.Trace "Type: " & pol.PolicyType
 Action.Trace "Session: " & pol.Session
Next

Object Match Lists
Because JScript does not support the native importing of safe arrays, and does not support an array
enumerator, ZENworks Endpoint Security Management provides an object called Object Match List
to allow for index enumeration of a list to both VBScript and JScript. Functions that return this type
of object end in List (for example, EffectivePolicyList). The object provides the following functions
and properties for access to the objects in the container.

int Count

object Item(int idx)

object Find(string value)

Description: Returns the number of objects in the container.

Description: Returns a particular object from the container based on the index given. If the index is
outside the count of container, a null/empty object is returned. The order of objects
in the container is not guaranteed.

Description: Returns an object that matches the value provided. If no matches are found in the
container, a null/empty object is returned.
30 Script Development

JScript Example
Action.Trace(" ******** List Access ****** ");
var ret = Query.EffectivePolicyList;
for(var i = 0; i < ret.Count; i++)
{
 var pol = ret.Item(i);
 Action.Trace(" ******** Policy Information ********* ");
 Action.Trace("ID: " + pol.Id);
 Action.Trace("Version: " + pol.Version);
 Action.Trace("Name: " + pol.Name);
 Action.Trace("Type: " + pol.PolicyType);
 Action.Trace("Session: " + pol.Session);
}

VBScript Example
set obj = Query.EffectivePolicyList
max = obj.Count
For idx = 0 to (max - 1)
 Action.Trace " ******** Policy Information ********* "
 set pol = obj.Item(idx)
 Action.Trace "ID: " & pol.Id
 Action.Trace "Version: " & pol.Version
 Action.Trace "Name: " & pol.Name
 Action.Trace "Type: " & pol.PolicyType
 Action.Trace "Session: " & pol.Session
Next

Effective Policy Interface
The Endpoint Security Agent evaluates many policies and types to determine which ones will be
enforced by a device. Policies that are currently being enforced make up the Effective Policy List.

PolicyInformation Object
The PolicyInformation object provides information about an individual policy in the system. It can be
returned by the EffectivePolicyList and EffectivePolicyArray functions.
Script Development 31

Effective Policies Methods
The Effective Policies methods get information about a device’s currently effective policies.

SafeArray Query.EffectivePolicyArray()

ObjectMatchList Query.EffectivePolicyList

Data Types: string Id — A unique identifier for the policy in the system.

string Version — The version of the policy being used.

string Name — The name of the policy.

string PolicyType — One of the following policy types. Available policy types vary
depending on the Endpoint Security Agent version.

 script
 applicationControl
 hardware
 firewall
 locationAssignment
 locationRelation
 networkEnvironment
 security
 storageEncryption
 storageDeviceControl
 usb
 vpn
 wifi
 fde

string Session — The session (user, device, zone) that provided the policy.

Functions: bool Match(string value)
Returns true if the value provided matches the ID or Name value for the policy.

Description: Returns an array of PolicyInformation objects, one for each effective policy being
enforced. The list can be empty when there are no published policies. See the
example in Safe Arrays.

Description: Returns an array of PolicyInformation objects, one for each effective policy being
enforced. The list can be empty when there are no published policies. See the
example in Object Match Lists.
32 Script Development

JScript Example
Action.Trace(" ******** List Access ****** ");
var ret = Query.EffectivePolicyList;
for(var i = 0; i < ret.Count; i++)
{
 var pol = ret.Item(i);
 Action.Trace(" ******** Policy Information ********* ");
 Action.Trace("ID: " + pol.Id);
 Action.Trace("Version: " + pol.Version);
 Action.Trace("Name: " + pol.Name);
 Action.Trace("Type: " + pol.PolicyType);
 Action.Trace("Session: " + pol.Session);
}

VBScript Example
set obj = Query.EffectivePolicyList
max = obj.Count
For idx = 0 to (max - 1)
 Action.Trace " ******** Policy Information ********* "
 set pol = obj.Item(idx)
 Action.Trace "ID: " & pol.Id
 Action.Trace "Version: " + pol.Version
 Action.Trace "Name: " + pol.Name
 Action.Trace "Type: " + pol.PolicyType
 Action.Trace "Session: " + pol.Session
Next

Location Interface
The Location interface provides methods for getting information about a device’s location and for
manipulating the location.

Definitions
ZENworks Endpoint Security Management provides two different lists of locations: a Network
Location List and an Assigned Location List. Using these two lists, information about four types of
locations is tracked: a Network location, an Assigned location, a Mobile location, and a Security
location. A brief description is provided for both of the lists and each location:

 Network Location List: Contains all locations defined in the ZENworks Management Zone.
These locations may be associated with a set of network environments. The list always contains
at least one location that is marked as the Mobile (Unknown) location that is used when the
current environment does not match any defined network environments.

 Assigned Location List: Contains only the locations that the device is allowed to apply as
Security locations. Normally, this list is provided via the Location Assignment policy. This list
always contains at least one location that is marked as the Mobile (Unknown) location. The
Mobile location is used when the current environment does not match any locations included in
the Assigned Location List.
Script Development 33

 Network Location: The location, taken from the Network Location List, that the current
network environment best matches.

 Assigned Location: The location, taken from the Assigned Location List, that the current
network environment best matches.

 Security Location: The location, from the Assigned Location List, that determine which of the
security policies are being enforced. Normally, this is the same as the Assigned location.
However, scripting or other rules (such as the VPN policy) can force the Security location to
change.

 Mobile Location: The location, from the Assigned Location List, that has been designated as the
default Assigned location if the current network environment does not match any location
definitions. This is frequently referred to as the Unknown location.

Data Types

LocationAssignment
The LocationAssignment object provides information about the current location. It is returned when
working with a location from the Assigned Location List.

LocationNetwork
The LocationNetwork object provides information about the current location. It is returned when
working with a location from the Network Location List.

Data Types: string Id — A unique identifier for the location in the system.

string Name — The name of the location.

DateTime DateModified — The last time the location definition was modified.

int Order — The order of precedence between two locations being compared for
network environment match.

bool Mobile — True if the location is the Unknown location.

bool AllowsManualChange — True if the user is allowed to change into or out of this
location.

bool ShowInMenu — True if the user should see this location listed in the choice of
locations menus.

Functions: bool Match(string value)
Returns true if the value provided matches the ID or Name value for the location.
34 Script Development

LocationChange
The LocationChange object provides information about the last location change and why the current
location change is being enforced. It is returned when changing the current Security location or can
be asked for directly.

Security Location Methods
The Security Location methods deal with the security location, retrieving the current security
location, and setting a new location from the script. The Manual location change methods perform
the same functions as if the user initiated a request for the location change and follow the same

Data Types: string Id — A unique identifier for the location in the system.

string Name — The name of the location.

DateTime DateModified — The last time the location definition was modified.

int Order — The order of precedence between two locations being compared for
network environment match.

bool Mobile — True if the location is the Unknown location.

Functions: bool Match(string value)
Returns true if the value provided matches the ID or Name value for the location.

Data Types: string Reason — One of the following:

 none — No change has occurred yet.
 policy — A policy update caused the location change.
 manual — The location change was manually initiated (for example, by the

user).
 network — A network environment change caused a match with the new

location.
 rule — A rule, such as a VPN rule or a script, requested the location change.
 permanent — A rule requested a permanent location change. The location

change remains in effect until another permanent change is requested or the
current request is cancelled.

string Producer — The Endpoint Security Agent component that requested the
location change. This value can be empty.

string RuleId — The ID of the rule that made the location change request. This value
an be empty.

string RuleName — The name of the rule that made the location change request. This
value an be empty.

int Level — The level that the request was made.

LocationAssignment SecurityLocation — Information about the current Security
location resulting from the location change.
Script Development 35

restriction as those put on the user. When the current security location does not allow manual
changes, the script or the user is not able to switch into or out of the location. If the destination
location does not allow manual changes, the request is ignored because the location change cannot
be switched into by a manual change.

The Rule location change methods allow the script to change from any location to another without
restrictions. When a user initiates a manual change, it fails if a location is involved that does not
allow manual changes. However, when a script uses the Rule location change (or an internal VPN/
Network Environment rule), the location change is allowed regardless of the manual change
settings.

The Permanent location change methods allow the script to block changes by internal rules (VPN/
Network Environments) and other scripts running in the system. This is done by disabling the
location decider code in the Endpoint Security Agent and requiring other scripts/rules to provide the
equivalent or higher level before the location can be changed. The internal “VPN” rule in the system
uses this method to control location changes when the internet is present. The level it sets is 100.

The final component is the ability to re-enable the location decider. This is controlled by the level
setting of the request.

LocationAssignment Query.SecurityLocation

LocationChange Action.ManualLocationChange(string toLocation)

LocationChange Action.ManualLocationChangeWithSource(string
fromLocation, string toLocation)

Description: Gets the current Security location.

Description: Switches to the toLocation if a permanent location has not been set and policy
permits.

Parameters: toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns: Returns the LocationChange object so the caller can see if the request was honored.

Description: If the current location is the fromLocation, switches to the toLocation if a permanent
location has not been set and policy permits.

Parameters: fromLocation — The name or ID of the location being switched from. The request is
ignored if the fromLocation is not the current location, or if policy does not allow
manual location changes.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns: Returns the LocationChange object so the caller can see if the request was honored.
36 Script Development

LocationChange Action.RuleLocationChange(string toLocation)

LocationChange Action.RuleLocationChangeWithSource(string
fromLocation, string toLocation)

LocationChange Action.PermanentLocationChange(string toLocation, int
level)

Description: Switches to the toLocation if a permanent location has not been set.

Parameters: toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns: Returns the LocationChange object so the caller can see if the request was honored.

Description: If the current location is the fromLocation, switches to the toLocation if a permanent
location has not been set.

Parameters: fromLocation — The name or ID of the location being switched from. The request is
ignored if the fromLocation is not the current location, or if policy does not allow
manual location changes.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns: Returns the LocationChange object so the caller can see if the request was honored.

Description: Switches to the toLocation and turns off the location decider.

Parameters: toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy.

level — The request is permitted only if the current change level is less than or equal
to this level.

Returns: Returns the LocationChange object so the caller can see if the request was honored.
Script Development 37

LocationChange Action.PermanentLocationChangeWithSource(string
fromLocation, string toLocation, int level)

LocationChange Action.ReenableLocationDecider(int level)

Mobile (Unknown) Location Methods
The Mobile location is often referred to as the Default location or Unknown location. This location is
used when no other assigned location matches the current network environment and no rule has
overridden the location decider’s decisions.

LocationAssignment Query.MobileLocation

Assigned Location Methods
The Endpoint Security Agent is provided a list of locations that it is allowed to use as Security
locations. This list is passed to the agent via the Location Assignment policy. The location decider
uses this list to determine the best matching location based on the current network environment.

Description: If the current location is the fromLocation, switches to the toLocation and turns off
the location decider.

Parameters: fromLocation — The name or ID of the location being switched from. The request is
ignored if the fromLocation is not the current location.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy.

level — The request is permitted only if the current change level is less than or equal
to this level.

Returns: Returns the LocationChange object so the caller can see if the request was honored.

Description: Re-enables the location decider.The location decider waits for a location change event
(network environment change, manual change, script, etc.) to occur before making
any changes. If you want to change to the current location immediately, you should
get the current Assigned location (LocationAssignment Query.AssignedLocation) and
assign it as the current Security location (LocationChange
Action.PermanentLocationChange(string toLocation, int level) before re-enabling the
location decider.

Parameters: level — The request is permitted only if the current change level is less than or equal
to this level.

Returns: Returns the LocationChange object so the caller can see if the request was honored.

Description: Gets the current Mobile location.

Returns: The LocationAssignment object with the current Mobile location information.
38 Script Development

That location is called the Assigned location. Scripts cannot change Assigned Locations list or the
Assigned location, but they can use it for determining actions and deciding which locations the script
may wish to set as the current Security location.

LocationAssignment Query.AssignedLocation

ObjectMatchList Query.AssignedLocationList

SafeArray Query.AssignedLocationArray()

Network Location Methods
The Endpoint Security Agent receives the list of all locations defined in the ZENworks Management
Zone. From this Network Location List, the location decider determines the best location based on
the network environment. This is referred to as the Network location. Currently, the ZENworks Agent
can use this location to determine closest servers and to determine whether or not certain actions
(such as bundle downloads) are allowed. A script cannot change the Network location, but it can use
the Network location to determine actions, just like the ZENworks Agent.

LocationAssignment Query.NetworkLocation

ObjectMatchList Query.NetworkLocationList

Description: Gets the current Assigned location.

Returns: The LocationAssignment object with the current Assigned location information.

Description: Gets the list of Assigned locations available to the device.

Returns: An ObjectMatchList that contains the Assigned locations.

Description: Gets the list of Assigned locations available to the device.

Returns: A VB SafeArray that contains the Assigned locations.

Description: Gets the current Network location.

Description: Gets the list of Network locations available to the device.

Returns: An ObjectMatchList that contains the Network locations.
Script Development 39

SafeArray Query.NetworkLocationArray()

JScript Example
function DisplayAssignedLocation(loc)
{
 Action.Trace("Location = " + loc.Name);
 Action.Trace("Id = " + loc.Id);
 Action.Trace("Date Modified = " + loc.DateModified);
 Action.Trace("Order: " + loc.Order);
 Action.Trace("Mobile: " + loc.Mobile);
 Action.Trace("Allow Manual Change: " + loc.AllowsManualChange);
 Action.Trace("Show in menu: " + loc.ShowInMenu);
}

Action.Trace("");
Action.Trace(" ******** Security Location ********* ");
Action.Trace("");
DisplayAssignedLocation(Query.SecurityLocation);

VBScript Example
Function DisplayAssignedLocation (loc)
Action.Trace "Location = " & loc.Name
Action.Trace "Id = " & loc.Id
Action.Trace "Date Modified = " & loc.DateModified
Action.Trace "Order: " & loc.Order
Action.Trace "Mobile: " & loc.Mobile
Action.Trace "Allow Manual Change: " & loc.AllowsManualChange
Action.Trace "Show in menu: " & loc.ShowInMenu
End Function

Action.Trace ""
Action.Trace " ******** Security Location ********* "
Action.Trace ""
DisplayAssignedLocation Query.SecurityLocation

Communication Hardware Policy Interface
The Communication Hardware Policy interface provides methods for getting and setting the
enforcement for the policy-supported hardware types.

Description: Returns the list of Network locations available to the device; returned as a Visual
Basic SafeArray.

Returns: A VB SafeArray that contains the Network locations.
40 Script Development

Data Types

Enforced Policy Methods
The Enforced Policy methods provide information about whether or not the enforced policy has
disabled a specific hardware type.

bool Query.IsHardwareDisabled(string hardwareType)

Hardware Enforcement Methods
The Hardware Enforcement methods get and set the enforcment for a specific hardware type.

Hardware
Types:

firewire — IEEE1394 attached devices

irda — infrared attached devices

bluetooth — bluetooth attached devices

ports — serial or com ports

modem — modem and dialup adapters

wireless — wireless network adapters

wired — wired network adapters

bridge — network adapter bridges

any — any of the hardware types

Enforcement
Types:

disable — Disable the setting and enforce immediately.

enable — Enable the setting and enforce immediately.

blockConnections — Block connections made by the device; typically applies to
wireless network adapters and modems.

blockConnectionsWhenWired — Block connections made by the device only if there is
a wired connection.

disableWhenWired — Disable the device when a wired connection is detected.

inherit — Immediately apply enforcement as defined by the current policy/location.
Used to clear the script setting.

Description: Determines if the enforcement for the specified hardware type is set to disabled.

Parameters: hardwareType — One of the hardware types listed in Data Types.

Returns: True if the hardware type is disabled by the Endpoint Security Agent. False if the
agent will allow the hardware type to be enabled and any hardware disabled by the
agent should be re-enabled.
Script Development 41

string Query.GetHardwareEnforcement(string hardwareType)

string Query.GetHardwarePolicyEnforcement(string hardwareType)

string Query.GetHardwareScriptEnforcement(string hardwareType)

int Action.SetHardwareEnforcement(string hardwareType, string
enforcement)

Adapter Connection Methods
The Adaptor Connection methods provide information about whether a specific adapter type has
any connections.

Description: Gets the effective enforcement for the specified hardware type.The effective
enforcement is determined by resolving any conflicts between the policy
enforcement type and the script enforcement type. The script enforcement type
overrides the policy enforcement type; if the script enforcement type is inherit,
the policy enforcement type is used.

Parameters: hardwareType — One of the hardware types listed in Data Types.

Returns: One of the enforcement types listed in Data Types.

Description: Gets the enforcement, as set by the policy, for the specified hardware type.

Parameters: hardwareType — One of the hardware types listed in Data Types.

Returns: One of the enforcement types listed in Data Types.

Description: Gets the enforcement, as set by script, for the specified hardware type.

Parameters: hardwareType — One of the hardware types listed in Data Types.

Returns: One of the enforcement types listed in Data Types.

Description: Sets the enforcement for a specific hardware type.

Parameters: hardwareType — One of the hardware types listed in Data Types.

enforcement — One of the enforcement types listed in Data Types. These values
override the effective policy for the hardware type. If the hardware type does not
support the enforcement type (such as block, block_when_wired, or
disable_when_wired), enforcement is set to disable.
42 Script Development

bool Query.IsAdapterTypeConnected(string adapterType)

JScript Example
function DisplayHardwareEnforcement()
{
 Action.Trace("firewire: " + Query.GetHardwareEnforcement("firewire"));
 Action.Trace("wireless: " + Query.GetHardwareEnforcement("bridge"));
}

function SetHardwareEnforcement(enf)
{
 Action.Trace("firewire: " + Action.SetHardwareEnforcement("firewire",
enf));
 Action.Trace("wireless: " + Action.SetHardwareEnforcement("wireless",
enf));
}

function IsHardwareDisabled()
{
 Action.Trace("firewire: " + Query.IsHardwareDisabled("firewire"));
 Action.Trace("wireless: " + Query.IsHardwareDisabled("wireless"));
}

Action.Trace("");
Action.Trace("Adapter Type Connected:");
Action.Trace("\twireless: " + Query.IsAdapterTypeConnected("wireless"));
Action.Trace("\tany: " + Query.IsAdapterTypeConnected("any"));
Action.Trace("");
Action.Trace("GetHardwareEnforcement:");
DisplayHardwareEnforcement();
Action.Trace("");
Action.Trace("GetHardwarePolicyEnforcement:");
Action.Trace("firewire: " + Query.GetHardwarePolicyEnforcement("firewire")
);
Action.Trace("wireless: " + Query.GetHardwarePolicyEnforcement("wireless")
);
Action.Trace("");
Action.Trace("GetHardwareScriptEnforcement:");
Action.Trace("firewire: " + Query.GetHardwareScriptEnforcement("firewire")
);

Description: Determines if a specific adapter has any connections.

Parameters: adapterType — One of the following: wired, wireless, modem, any.

Returns: True if an adapter of the requested type currently has a connection. False if there
are no adapters of the requested type with a connection.
Script Development 43

Action.Trace("wireless: " + Query.GetHardwareScriptEnforcement("wireless")
);
Action.Trace("");
Action.Trace("GetHardwareEnforcement: DisableWhenWired");
DisplayHardwareEnforcement();
Action.Trace("");
Action.Sleep(1000);
 Action.Trace("IsHardwareDisabled: DisableWhenWired");
IsHardwareDisabled();
ret = Action.Prompt("Prompt", "Check for hardware disable when wired", "?"
, 0, "ok");
Action.Trace("");
Action.Trace("SetHardwareEnforcement: Inherit");
SetHardwareEnforcement("inherit");

VBScript Example
Function DisplayHardwareEnforcement()
 Action.Trace("firewire: " & Query.GetHardwareEnforcement("firewire"))
 Action.Trace("wireless: " & Query.GetHardwareEnforcement("wireless"))
 End Function

Function SetHardwareEnforcement(enf)
 Action.Trace("firewire: " & Action.SetHardwareEnforcement("firewire",
enf))
 Action.Trace("wireless: " & Action.SetHardwareEnforcement("wireless",
enf))
End Function

Function IsHardwareDisabled()
 Action.Trace("firewire: " & Query.IsHardwareDisabled("firewire"))
 Action.Trace("wireless: " & Query.IsHardwareDisabled("wireless"))
End Function

Action.Trace("")
Action.Trace("Adapter Type Connected:")
Action.Trace("wireless: " & Query.IsAdapterTypeConnected("wireless"))
Action.Trace("any: " & Query.IsAdapterTypeConnected("any"))
Action.Trace("")
Action.Trace("GetHardwareEnforcement:")
DisplayHardwareEnforcement()
Action.Trace("")
Action.Trace("GetHardwarePolicyEnforcement:")
Action.Trace("firewire: " & Query.GetHardwarePolicyEnforcement("firewire")
)
Action.Trace("wireless: " & Query.GetHardwarePolicyEnforcement("wireless")
)
Action.Trace("")
Action.Trace("GetHardwareScriptEnforcement:")
Action.Trace("firewire: " & Query.GetHardwareScriptEnforcement("firewire")
)
Action.Trace("wireless: " & Query.GetHardwareScriptEnforcement("wireless")
)

44 Script Development

Action.Trace("")
Action.Trace("SetHardwareEnforcement: DisableWhenWired")
SetHardwareEnforcement("disable_when_wired")
Action.Trace("")
Action.Trace("GetHardwareEnforcement: DisableWhenWired")
DisplayHardwareEnforcement()
Action.Trace("")
Action.Sleep(1000)
 Action.Trace("IsHardwareDisabled: DisableWhenWired")
IsHardwareDisabled();
ret = Action.Prompt("Prompt", "Check for hardware disable when wired", "?"
, 0, "ok")
Action.Trace("SetHardwareEnforcement: Inherit")
SetHardwareEnforcement("inherit")

WiFi Policy Interface
The WiFi Policy interface provides methods for getting and setting the enforcement for adhoc
networks, WiFi connections, and wireless access point security level.

Data Types

Enforcement
Types:

disable — Disable the setting and enforce immediately.

enable — Enable the setting and enforce immediately.

inherit — Immediately apply enforcement as defined by the current policy. Used to
clear the script setting.

Signal Strength: not_set — No policy is set; filter is ignored.

very_low

low

good

very_good

excellent

inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

Security Level: inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

unsecured

secure — Any security level.

wep

wpa

wpa2
Script Development 45

Adhoc WiFi Networks Methods
The Adhoc WiFi Networks methods get and set the enforcement for adhoc wireless networks.

string Query.GetAdHoc

string Query.GetAdHocPolicy

string Query.GetAdHocScript

int Action.SetAdHoc(string enforcement)

Block WiFi Connections
The Block WiFi Connections methods get and set the enforcement for WiFi connections.

Description: Gets the effective enforcement for adhoc WiFi networks.The effective enforcement is
determined by resolving any conflicts between the policy enforcement type and the
script enforcement type. The script enforcement type overrides the policy
enforcement type; if the script enforcement type is inherit, the policy enforcement
type is used.

Returns: Enabled if the device can connect to an adhoc wireless network or can be an adhoc
network provider. Disabled if the device cannot connect to an adhoc network or
cannot be a provider.

Description: Gets the enforcement, as set by policy, for adhoc wireless networks.

Returns: Enabled if the device can connect to an adhoc wireless network or be an adhoc
network provider. Disabled if the device cannot connect or be a provider.

Description: Gets the enforcement, as set by script, for adhoc wireless networks.

Returns: Enabled if the device can connect to an adhoc wireless network or be an adhoc
network provider. Disabled if the device cannot connect or be a provider.

Description: Sets the enforcement for adhoc wireless networks.

Parameters: enforcement — One of the enforcement types listed in Data Types.
46 Script Development

string Query.GetBlockWiFiConnection

string Query.GetBlockWiFiConnectionPolicy

string Query.GetBlockWiFiConnectionScript

int Action.SetBlockWiFiConnection(string enforcement)

Minimum Security Level Methods
Minimum security level is used to filter out wireless networks that do not meet the minimum level.
Devices cannot see or connect to the removed wireless networks. The security level is inclusive from
inherit to wpa2, as listed in Data Types. For example if wpa is chosen, networks that support wpa
and wpa2 security pass the filter, but unsecured networks and wep networks are filtered out.

The Minimum Security Level methods get and set the minimum security level requirement for a
wireless network.

Description: Gets the effective enforcement for blocking connections to a WiFi network.The
effective enforcement is determined by resolving any conflicts between the policy
enforcement type and the script enforcement type. The script enforcement type
overrides the policy enforcement type; if the script enforcement type is inherit,
the policy enforcement type is used.

Returns: Enabled if WiFi connections are blocked. Disabled if WiFi connections are
allowed. If disabled, connections are based on availability and filter restrictions.

Description: Gets the enforcement, as set by policy, for blocking connections to a WiFi network. If
disabled, connections are based on availability and filter restrictions.

Returns: Enabled if WiFi connections are blocked. Disabled if WiFi connections are
allowed.If disabled, connections are based on availability and filter restrictions.

Description: Gets the enforcement, as set by script, for blocking connections to a WiFi network.

Returns: Enabled if WiFi connections are blocked. Disabled if WiFi connections are
allowed. If disabled, connections are based on availability and filter restrictions.

Description: Sets the enforcement for blocking WiFi connections.

Parameters: enforcement — One of the enforcement types listed in Data Types.
Script Development 47

string Query.GetMinWiFiSecurityLevel

string Query.GetMinWiFiSecurityLevelPolicy

string Query.GetMinWiFiSecurityLevelScript

int Action.SetMinWiFiSecurityLevelEnforcement(string enforcement)

Minimum Signal Strength Methods
Minimum signal strength level is used to filter out wireless access points that do not meet the
minimum signal strength. Devices cannot see or connect to the removed access point. The signal
strength is inclusive from inherit to not_set, as listed in Data Types. For example if very_good
is chosen, access points that have very_good and excellent signal strength pass the filter, but
access points with very_low, low, and good signal strengths are filtered out.

The Minimum Signal Strength methods get and set the minimum signal strength requirement for
wireless access points.

Description: Gets the effective enforcement for the minimum security level. The effective
enforcement is determined by resolving any conflicts between the policy
enforcement type and the script enforcement type. The script enforcement type
overrides the policy enforcement type; if the script enforcement type is inherit,
the policy enforcement type is used.

Returns: One of the security levels listed in Data Types.

Description: Gets the minimum security level, as set by policy.

Returns: One of the security levels listed in Data Types.

Description: Gets the minimum security level, as set by script.

Returns: One of the security levels listed in Data Types.

Description: Sets the enforcement for minimum security level.

Parameters: enforcement — One of the enforcement types listed in Data Types.
48 Script Development

string Query.GetMinWiFiSignalStrength

string Query.GetMinWiFiSignalStrengthPolicy

string Query.GetMinWiFiSignalStrengthScript

int Action.SetMinWiFiSignalStrengthEnforcement(string enforcement)

Storage Device Control Policy Interface
The Storage Device Control Policy interface provides methods for getting and setting the
enforcement for different volume types (fixed, optical, removable, and floppy), and for getting and
setting the enforcement for the AutoPlay and AutoRun features.

Data Types

Description: Gets the effective enforcement for the minimum signal strength. The effective
enforcement is determined by resolving any conflicts between the policy
enforcement type and the script enforcement type. The script enforcement type
overrides the policy enforcement type; if the script enforcement type is inherit,
the policy enforcement type is used.

Returns: One of the signal strengths listed in Data Types.

Description: Gets the minimum security level, as set by policy.

Returns: One of the signal strengths listed in Data Types.

Description: Gets the minimum security level, as set by script.

Returns: One of the signal strengths listed in Data Types.

Description: Sets the enforcement for minimum security level.

Parameters: enforcement — One of the enforcement types listed in Data Types.

Volume Types: unknown — Volume drive type cannot be determined.

fixed — Local hard drive located on a removable system bus.

optical — CD-ROM and DVD drives.

removable — Volumes on a removable bus or volumes marked as removable by the
system.

floppy — Floppy disk drives.
Script Development 49

AutoPlay Methods
The AutoPlay methods get and set the enforcement for the AutoPlay and AutoRun features.

string Query.GetAutoPlayEnforcement

string Query.GetAutoPlayPolicyEnforcement

string Query.GetAutoPlayScriptEnforcement

Volume Access: inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

disable — Block all access to the volume. Disable in Device Manager.

deny — Block read and write access to the volume, but leave volume enabled in
Device Manager.

read_only — Allow the volume to be read from, but block write operations.

read_write — Allow full access to the volume.

Auto-Play
Access:

inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

allow — Allow Windows to initiate an auto-play (or auto-run) request when mounting
a volume.

block_auto_play — Do not allow Windows to initiate an auto-play (or auto-run)
request when mounting a volume.

block_auto_run — Do not allow Windows to initiate an auto-run request when
mounting a volume; auto-play requests are allowed.

Enforcement
Type:

disable — Disable the setting and enforce immediately.

enable — Enable the setting and enforce immediately.

inherit — Immediately apply enforcement as defined by the current policy. Used to
clear the script setting.

Description: Gets the enforcement for auto-play.

Returns: One of the enforcement types listed in Data Types.

Description: Gets the auto-play enforcement type, as set by policy.

Returns: One of the enforcement types listed in Data Types.

Description: Gets the auto-play enforcement type, as set by script.

Returns: One of the enforcement types listed in Data Types.
50 Script Development

int Action.SetAutoPlayEnforcement(string enforcement)

Volumes Methods
The Volumes methods get and set the enforcement for fixed, optical, removable, and floppy
volumes.

string Query.GetVolumeEnforcement(string volumeType)

string Query.GetVolumePolicyEnforcement(string volumeType)

string Query.GetVolumeSciptEnforcement(string volumeType)

Description: Sets the enforcement for auto-play.

Parameters: enforcement — One of the enforcement types listed in Data Types.

Description: Gets the effective enforcement for volumes of the specified type. The effective
enforcement is determined by resolving any conflicts between the policy
enforcement type and the script enforcement type. The script enforcement type
overrides the policy enforcement type; if the script enforcement type is inherit,
the policy enforcement type is used.

Parameters: volumeType — One of the volume types listed in Data Types.

Returns: One of the enforcement types listed in Data Types.

Description: Gets the enforcement for volumes of the specified type, as set by policy.

Parameters: volumeType — One of the volume types listed in Data Types.

Returns: One of the enforcement types listed in Data Types.

Description: Gets the enforcement for volumes of the specified type, as set by script.

Parameters: volumeType — One of the volume types listed in Data Types.

Returns: One of the enforcement types listed in Data Types.
Script Development 51

int
Action.SetVolumeEnforcement(string volumeType, string enforcement)

Description: Sets the enforcement for volumes of the specified type.

Parameters: volumeType — One of the volume types listed in Data Types except for fixed. You
cannot set an enforcement type for a fixed volume.

enforcement — One of the enforcement types listed in Data Types.
52 Script Development

2 2Script Testing

You can use the Endpoint Security Agent to test scripts. You can test an unpublished script as part of
the script development process, or you can test a published Scripting policy in order to troubleshoot
problems.

The following sections provide information to help you test scripts. The sections do not include
information about creating scripts; for that information, see Appendix 1, “Script Development,” on
page 7.

 “Enabling Script Testing in the Endpoint Security Agent” on page 53
 “Testing an Unpublished Script” on page 53
 “Testing a Published Scripting Policy” on page 55
 “Tracing a Script’s Execution” on page 56

Enabling Script Testing in the Endpoint Security Agent
To access the script testing features in the Endpoint Security Agent, you must provide an override
password. The override password is configured in ZENworks Control Center as one of the ZENworks
Agent configuration settings (ZENworks Control Center > Configuration > Management Zone Settings
> Device Management > ZENworks Agent). For information about setting the override password, see
“ZENworks Agent Settings”in the ZENworks Agent Reference.

Testing an Unpublished Script
The following steps explain how to test a script that is not yet published in a Scripting policy. If you
want to test a script that has already been published to a device as a Scripting policy, see Testing a
Published Scripting Policy.

1 Make sure that the script testing features of the Endpoint Security Agent are enabled for the
device where you plan to test the script. For details, see Enabling Script Testing in the Endpoint
Security Agent.

2 On the device, right-click the ZENworks icon in the notification area, and select Technician
Application.

3 Click Endpoint Security in the ZENworks Agent navigation menu.
4 In the Endpoint Security Agent Actions section, click About to display the About dialog box.
5 Click Diagnostics.
6 Click Scripting to display the override password prompt.
7 Specify the override password, then click OK to display the ZENworks Endpoint Security Agent

Scripting Development Environment dialog box.
Script Testing 53

https://www.novell.com/documentation/zenworks-23.3/pdfdoc/zen_sys_adaptive_agent/zen_sys_adaptive_agent.pdf#bebfrq5

8 In the Source field, click Browse, select the script you want to test, then click Open.
The script source, language, name, and identifier are displayed.

9 In the Context field, select the context in which you want the script to run.
10 In the Triggers section, select the execution triggers to test.

Location Change: Triggers script when any location change occurs.
Network Change: Triggers script when any network environment change occurs.
Network Connect: Triggers script when any network (wireless, wired, modem/dialup)
connection occurs.
Network Disconnect: Triggers script when any network (wireless, wired, modem/dialup)
disconnect occurs.
Policy Change: Triggers script when any Security policy change is received.
Run Now: Triggers script immediately upon loading of the script.
Timer: Triggers script at the specified interval.

11 Click Load to load the script and the triggers.
If the Run Now trigger is selected, the script is executed immediately. Otherwise, it is executed
as designated by the selected triggers.

12 When you are done testing the script, click Unload to remove the script from memory and keep
it from executing anymore.
54 Script Testing

Testing a Published Scripting Policy
The following steps explain how to test a Scripting policy that is already published to a device. This is
useful if you need to diagnose problems with the script. To test an unpublished script that you are
developing, see Testing an Unpublished Script.

1 Make sure that the script testing features of the Endpoint Security Agent are enabled for the
device where you plan to test the Scripting policy. For details, see Enabling Script Testing in the
Endpoint Security Agent.

2 On the device, right-click the ZENworks icon in the notification area, and select Technician
Application.

3 Click Endpoint Security in the ZENworks Agent navigation menu.
4 In the Endpoint Security Agent Actions section, click About to display the About dialog box.
5 Click Agent Status to display the override password prompt.
6 Specify the override password, then click OK to display the ZENworks Endpoint Security Agent

Status dialog box.

7 Click the Scripting tab.
8 In the Scripts table, locate the Scripting policy you want to test, then use the following links

located in the Commands column to test the script:
 Trigger: Runs the script.
 Terminate: Stops the script.
 Trace: Opens the ZENworks Endpoint Security Agent Script Tracing dialog so that you can

trigger the script and view the trace messages that are generated.
Script Testing 55

 View: Opens the ZENworks Endpoint Security Agent Scripting Development Environment
dialog box so that you can see the script triggers and execution context. You can use the
options in the Development Environment dialog box to trigger and trace the script.

Tracing a Script’s Execution
To help you diagnose the problems with scripts that are not doing what you expect them to do, you
can view trace messages during the execution of the script.

1 Follow the steps in Testing an Unpublished Script to load an unpublished script.
or
Follow the steps in Testing a Published Scripting Policy to load a published Scripting policy.

2 Click Trace to display the ZENworks Endpoint Security Agent Script Tracing dialog box.
3 Select Include System Messages if you want to include output for all actions.

If you do not include system messages, only messages generated by Action.Trace
commands in the script are output. For more information about using Action.Trace
commands, see void Action.Trace(string msg).

4 Click Trigger to execute the script.
56 Script Testing

	ZENworks Endpoint Security Scripting Reference
	About This Guide
	1 Script Development
	Supported Scripting Languages
	Execution Context
	Defining Event Triggers
	Namespaces
	Storage Interface
	Variables
	Temporary Storage Methods
	Persistent Storage Methods
	JScript Example
	VBScript Example

	Script Management Interface
	Script Information and Helper Methods
	Version Methods
	Trigger Event Methods
	Script Run Methods
	Program Launch/Execute Methods
	Display Methods
	Prompt Methods
	Safe Arrays
	Object Match Lists

	Effective Policy Interface
	PolicyInformation Object
	Effective Policies Methods

	Location Interface
	Definitions
	Data Types
	Security Location Methods
	Mobile (Unknown) Location Methods
	Assigned Location Methods
	Network Location Methods
	JScript Example
	VBScript Example

	Communication Hardware Policy Interface
	Data Types
	Enforced Policy Methods
	Hardware Enforcement Methods
	Adapter Connection Methods
	JScript Example
	VBScript Example

	WiFi Policy Interface
	Data Types
	Adhoc WiFi Networks Methods
	Block WiFi Connections
	Minimum Security Level Methods
	Minimum Signal Strength Methods

	Storage Device Control Policy Interface
	Data Types
	AutoPlay Methods
	Volumes Methods

	2 Script Testing
	Enabling Script Testing in the Endpoint Security Agent
	Testing an Unpublished Script
	Testing a Published Scripting Policy
	Tracing a Script’s Execution

