
Kafka Reference Guide

Overview
Apache Kafka is a distributed publish-subscribe messaging system that enables passing of messages from one 
system to another, while handling large volumes of data. Kafka can be enabled on a single Linux or Appliance 
Primary Server or can be run as a cluster on one or more Linux or Appliance servers that can span multiple data 
centers. Each server in the cluster is called a broker. Kafka is run as a cluster to ensure high availability of its 
services by replicating Kafka topics or messages to multiple Kafka brokers. Kafka requires ZooKeeper to co-
ordinate between the servers within the Kafka cluster. For more information on ZooKeeper, see Managing 
ZooKeeper in the ZENworks Primary Server and Satellite Reference

In ZENworks, Apache Kafka is required for the following components:

 Vertica: For more information, see ZENworks Vertica Guide
 Antimalware: For more information, see ZENworks Endpoint Security Antimalware Reference

You can enable Apache Kafka either through the ZENworks Control Center or by using the ZMAN utility. 

Kafka Change Data Capture Workflow
The following diagram is a graphical representation of the Kafka workflow:
Kafka Reference Guide 1

https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_vertica_reference/zen_vertica_reference.pdf#bookinfo
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_es_antimalware/zen_es_antimalware.pdf#bookinfo
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#t4f1y6qam0rr
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#t4f1y6qam0rr
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bookinfo


A description of each component in this architecture is as follows:

 Kafka Cluster: A group of servers or nodes that are connected to each other to achieve a common 
objective is a cluster. Each of the servers or nodes in the cluster, will have one instance of Kafka broker 
running. 

 Kafka Broker: One or more servers that are added in a Kafka cluster are called brokers. 
 Apache ZooKeeper: Kafka uses ZooKeeper to manage and co-ordinate between brokers. It notifies Kafka 

Producers and Consumers of any broker failures.
 Kafka Producers: The processes that publish messages to Kafka brokers. In this case, Kafka connectors are 

created as soon as Kafka is enabled. These connectors are created for each table in the RDBMS database 
and is responsible for identifying changes in these tables and publishing them to Kafka.

 Kafka Consumers: A service that reads data from Kafka brokers. In this case, the ZENworks loader stream 
processors subscribes to data from Kafka and passes this information to the Vertica or the Antimalware 
database.

The Kafka workflow is as follows:

1. The Kafka connectors (Kafka producer) identifies changes in the respective RDBMS database tables. 
2. These changes are published to a topic within a Kafka broker. Kafka maintains messages as categories and 

these categories are called topics. To modify the interval at which the Kafka connector identifies changes 
in the RDBMS tables and publishes this data to Kafka, you can update the connector-configs.xml file 
(available at etc/opt/microfocus/zenworks) and run the zman srkccn command to re-configure 
the connectors. For more information on this command, see Maintaining Kafka Connect.
The topics are further broken down into partitions for speed and scalability. These partitions are 
replicated across multiple brokers, which is used for fault tolerance. The replicas are created based on the 
replication count specified while enabling the Kafka cluster. Each message within a partition is maintained 
in a sequential order, which is identified as an offset, also known as a position.

3. The ZENworks loader stream processors (consumers) subscribe to a topic, Kafka offers the current offset 
of the topic to the consumer and saves the offset in the ZooKeeper cluster.

4. The ZENworks loader stream processor receives the message and processes it to the Vertica or the 
Antimalware database and the Kafka broker receives an acknowledgment of the processed message.

Kafka also uses a Schema Registry, which is a separate entity that producers and consumers talk to, for sending 
and retrieving schemas that describe the data models for the messages.

For more information on the Kafka Architecture, see the Confluent docs.

Enabling Kafka on a Single Server
This section explains the procedure to enable Kafka in the zone and to configure a single server with the Kafka 
service. You can enable Kafka on a single server in either of the following ways:

 Using ZENworks Control Center
 Using the ZMAN Utility
2 Kafka Reference Guide

https://docs.confluent.io/current/index.html


Prerequisites
Before enabling Kafka in the zone, you need to make a note of the following requirement:

 As Kafka requires client authentication to be enabled in the certificate, if you are using an external CA 
certificate, ensure that client authentication is enabled.

 Ensure that you have already added a Linux or an Appliance server to the zone.
 You need to first configure the Kafka cluster and then add a Kafka broker to the zone. Before adding a 

Kafka broker, ensure that the following prerequisites are met: 
 The Kafka cluster should already be configured. 
 The broker or server that is to be added to the cluster should not already be added to the cluster.
 The server should be accessible and should have a specific host name. If a server has multiple host 

names, then the command to add the Kafka broker might fail. 
 As Kafka requires Client Authentication to be enabled in the certificate, if you are using an external 

CA certificate, ensure that Client Authentication is enabled in the Extended Key Usage (EKU) 
parameter of the server certificate.

Using ZENworks Control Center
1 In ZENworks Control Center (ZCC), navigate to Configuration > Performance Upgrade.
2 Click Enable Kafka. 
3 Select a Linux Primary Server or an Appliance server in which Kafka should be enabled.

The Kafka service will be enabled and the first broker will be added to the Kafka cluster. To add more brokers to 
the cluster, see Adding Servers to the Kafka Cluster.

Using the ZMAN Utility
1 Configure the Kafka Cluster: Execute the following command:

zman server-role-kafka-configure-cluster (zman srkcc)

While running this command, you need to specify the replication count. If the values for the remaining 
parameters are not specified, then the default values are considered. The parameters are:
 -c --replication count: This ensures that messages remain available when a server in the cluster 

fails.Specify the number of copies to be maintained for each topic. For a single node cluster, this 
count can be set as 1.
Kafka Reference Guide 3



 -l --logRetentionBytes: Specify the maximum permissible size of the log, beyond which, the existing 
data is overwritten with the new data. By default the log size is unlimited. 

 -t --zkSessionTimeout: Specify the ZooKeeper session timeout (in milliseconds), which is the 
maximum time that the server waits to establish a connection to ZooKeeper. If the server fails to 
signal a heartbeat to ZooKeeper within this specified time period, then the server is considered to be 
dead. A heartbeat request helps identify if the server is still connected to the Kafka cluster. The 
default value is 30000 milliseconds.

 -r --retainDetectedLogsDuration: Specify the maximum time to retain deleted logs. The default value 
is 86400000 milliseconds (1 day).

 -p --logCleanupPolicy: Specify the default cleanup policy for segments that exceed the maximum 
permissible retention window. The possible values are Delete and Compact. The default value is 
Delete. The Delete policy will remove old segments when the retention time or size limit has reached. 
The Compact policy will enable log compaction on the topic, which ensures that Kafka will always 
retain at least the last known value for each message key within the log of data for a single topic 
partition. 

 -s --schemaregistryport: Specify the port on which the Schema Registry is running. The default value 
is 8081.

 -k --kafkaport: Specify the port on which Kafka listens. The default value is 9093.
 -x --connectport: Specify the port on which Kafka connect listens. The default value is 8083.

For example, zman server-role-kafka-configure-cluster -c=1
2 Add Kafka brokers: Before adding a broker, ensure that you have read the Prerequisites. Execute the 

following command:

zman server-role-kafka-add-broker (zman srkab)

This command adds brokers or servers to the configured Kafka cluster. 

NOTE: If you are using an external CA certificate, for Kafka to work as expected, ensure that Client 
Authentication is enabled in the Extended Key Usage (EKU) parameter of the server certificate or else an 
error message is displayed. However, if you want to continue to use the existing certificate, execute the 
command again, using the i=true parameter. Kafka might work with the existing certificate. 

The parameters to be specified are: 
 --servers: Specify the appliance server on which Kafka should be enabled. Specify the DNS, GUID or 

path of the server object (server, server folder or server group) relative to /Devices/Servers.
4 Kafka Reference Guide



 -i --ignorewarning message (optional): As Kafka requires client authentication to be enabled in the 
certificate, if you are using an external CA certificate, ensure that client authentication is enabled. 
However, if you want to ignore the error message and continue with the existing certificate, then 
execute the command again with the option i set as true. 

For example: zman server-role-kafka-add-broker --servers=server1.microfocus.com
When this command is executed for a server, the Kafka, Kafka connect and Schema Registry services are 
enabled and started on the specified server.
For more information on debugging Kafka configuration issues, see Debugging Issues and Log Locations.
You can view the status of the Kafka Cluster configuration by navigating to Configuration > Performance 
Upgrade. For more information on monitoring the Kafka cluster, see Monitoring the Status of the Kafka 
Cluster.

Adding Servers to the Kafka Cluster
Prerequisites
The prerequisites to be followed before adding servers to the Kafka cluster, are:

 Ensure that the hardware and software configuration of the servers that are to be added are the same as 
the configuration of the existing server within that cluster.

 Although there is no limit to the number of servers to be added in a cluster, ZENworks recommends a 
cluster size of 3 servers for Kafka.

 For Kafka, before adding servers, the Kafka cluster should already be enabled. For more information, see .
 The broker or server that is to be added to the Kafka cluster should not already be added to the cluster.
 The server should be accessible and should have a specific host name. 

Procedure
1 Add Brokers: Execute the following command to add brokers or servers to the configured Kafka cluster.

zman server-role-kafka-add-broker (zman srkab)
 The parameters to be specified are: 
 --servers: Specify a comma separated list of appliance servers on which Kafka should be enabled. You 

can specify the DNS, GUID or path of the server object (server, server folder or server group) relative 
to /Devices/Servers.

 -i --ignorewarning message (optional): As Kafka requires client authentication to be enabled in the 
certificate, if you are using an external CA certificate, ensure that client authentication is enabled and 
execute the command again with the option i set as true. Option i enables you to ignore the 
warning message and proceed with the execution of the command.
For example: zman server-role-kafka-add-broker --
servers=server1.microfocus.com,server2.microfocus.com

IMPORTANT: When a broker is being added to the zone, tasks to remove or re-configure servers cannot 
be performed on other servers. 
Kafka Reference Guide 5



When this command is executed for a server, the Kafka, Kafka connect and Schema Registry services are 
enabled and started on the specified server. The server is added to the cluster. When a broker is added in 
the cluster, ZENworks re-configures other existing brokers in the cluster. When re-configuration fails in 
one these brokers, you need to run the zman command (zman srkrcb) to re-configure the broker. For 
more information on this command, see Managing the Kafka Cluster.

2 Update the Kafka Cluster: Execute the following command to modify the existing cluster parameters such 
as the replication count. 

zman server-role-kafka-update-cluster (zman srkuc)
The parameters are: 
 -c --replication count: This ensures that messages remain available when a server in the cluster 

fails.Specify the number of copies to be maintained for each topic. For a three node cluster, this 
count can be set as 3, which indicates that a replica of the topic will be created on each server.

 -l --logRetentionBytes: Specify the maximum permissible size of the log, beyond which, the existing 
data is overwritten with the new data. By default the log size is unlimited. 

 -t --zkSessionTimeout: Specify the ZooKeeper session timeout (in milliseconds), which is the 
maximum time that the server waits to establish a connection to ZooKeeper. If the server fails to 
signal a heartbeat to ZooKeeper within this specified time period, then the server is considered to be 
dead. A heartbeat request helps identify if the server is still connected to the Kafka cluster. The 
default value is 30000 milliseconds.

 -r --retainDetectedLogsDuration: Specify the maximum time to retain deleted logs. The default value 
is 86400000 milliseconds (1 day).

 -p --logCleanupPolicy: Specify the default cleanup policy for segments that exceed the maximum 
permissible retention window. The possible values are Delete and Compact. The default value is 
Delete. The Delete policy will remove old segments when the retention time or size limit has reached. 
The Compact policy will enable log compaction on the topic, which ensures that Kafka will always 
retain at least the last known value for each message key within the log of data for a single topic 
partition. 

 -s --schemaregistryport: Specify the port on which the schema registry is running. The default value 
is 8081.

 -k --kafkaport: Specify the port on which Kafka listens. The default value is 9093.
 -x --connectport: Specify the port on which Kafka connect listens. The default value is 8083.

For example: zman server-role-kafka-update-cluster -c=3
To remove a broker from the cluster or to re-configure a broker, see Managing the Kafka Cluster.

Managing the Kafka Cluster
The topics covered in this section are:

 “Maintaining Kafka Brokers” on page 6
 “Maintaining Kafka Connect” on page 7

Maintaining Kafka Brokers
 Removing brokers from the Kafka cluster:  Execute the following command to remove a broker from the 

Kafka cluster:
6 Kafka Reference Guide



zman server-role-kafka-remove-broker (zman srkrb)
This command lets you remove Kafka brokers from an existing cluster. Specify the DNS, GUID or path of 
the server object (server, server folder or server group) relative to /Devices/Servers.

For example: zman server-role-kafka-remove-broker --
servers=server1.microfocus.com

 Re-configuring Kafka broker:  Execute the following command to re-configure the Kafka broker:

zman server-role-kafka-reconfig-broker (zman srkrcb)
Specify the DNS, GUID or path of the server object (server, server folder or server group) relative to /
Devices/Servers, while executing this command. When a broker is added to Kafka cluster, the remaining 
servers are re-configured by ZENworks. However, if re-configuration fails for a specific server, then run this 
command for that server. This command is also used for Disaster Recovery scenarios. For more 
information, see ZENworks Disaster Recovery Reference
For example: zman server-role-kafka-reconfig-broker --
servers=server1.microfocus.com

 Viewing list of Kafka brokers: Execute the following command to view the list of Kafka brokers. 

zman server-role-kafka-list-cluster (zman srklc)

Maintaining Kafka Connect
When Kafka is enabled, Kafka connectors are created that is associated with each table in the RDBMS 
database. If any of these connectors are not running, then you might have to restart these connectors or re-
configure the connectors.

To view the status of these connectors, navigate to the Diagnostic page in ZCC and view the status in the Data 
Sync Status section. 

 Restart Kafka Connectors: Execute the following command:

zman server-role-kafka-restart-connectors (zman srkrcn)
Specify a comma separated list of connectors. This command can be used when any of the Kafka 
connectors displayed in the Diagnostics page in ZCC, is not running. 

For example: zman server-role-kafka-restart-connectors -
c=zenconnectorzBundlefolderrights,zenconnectorzbundlerights

 Reconfigure Kafka Connectors: Execute the following command to reconfigure connectors based on the 
properties mentioned in the connector-configs.xml. This file is available at etc/opt/microfocus/
zenworks. 

zman server-role-kafka-reconfigure-connectors (zman srkccn)
The connector-configs.xml file lets you modify properties such as the interval at which the Kafka 
connector identifies changes in the RDBMS tables or the interval at which updated data is published to 
Kafka. Specify a comma separated list of connectors.
For example: zman server-role-kafka-reconfigure-connectors -
c=zenconnectorzBundlefolderrights,zenconnectorzbundlerights

 Re-create Kafka Connectors: Execute the following command to re-create connectors.

zman server-role-kafka-recreate-connectors (zman srkrcc)
Kafka Reference Guide 7

https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bookinfo


You can execute this command if you have migrated your primary database to another RDBMS database.
For example: zman server-role-kafka-recreate-connectors -f

 Retrieve Kafka configuration details: Execute the following command to retrieve the Kafka configuration 
details:

zman server-role-kafka-get-connector-config (zman srkgcc)
For example: zman server-role-kafka-get-connector-config -
c=zenconnectorzBundlefolderrights

 Retrieve list of Kafka connectors: Execute the following command to retrieve a list of Kafka connectors:

zman server-role-kafka-list-connectors (zman srklcn)

Monitoring the Status of the Kafka Cluster
You can view the overall configuration status of Kafka in the Performance Upgrade page in ZCC. For more 
information, see Viewing the Configuration Status. However, if you want to continuously monitor the status of 
the Kafka Cluster, see Monitoring Diagnostics.

Viewing the Configuration Status
To view the configuration status of Kafka, you can navigate to the Getting Started page in ZCC. To navigate to 
this page, click Configuration > Performance Upgrade. 

Each task on this page, includes an icon that indicates the following status:

 : the component is successfully configured.
 : the component is ready to be configured.

 : an error has occurred while configuring the component. 

Monitoring Diagnostics
To monitor the overall health of the Kafka clusters, you need to navigate to the Diagnostics page in ZCC. To 
navigate to the diagnostics page in ZCC, click Diagnostics in the left pane of ZCC.

The statuses displayed are as follows:

 Up: indicates that all servers are up.

 Down: if at least one server is down in the zone, then based on the replication count the relevant status is 
displayed. For example, the status is displayed as down if at least one server is down in a three node cluster 
with replication count being 1.

 Warning: if at least one server is down in the zone, then based on the replication factor the relevant status 
is displayed. For example, the status is displayed as warning if at least one server is down in a three node 
cluster with replication factor being 2.

For the Kafka Cluster, the status of the Kafka Brokers, Kafka Connect and the Schema registry are also 
displayed.
8 Kafka Reference Guide



For debugging issues related to the Kafka cluster, see Debugging Issues and Log Locations

NOTE: If client authentication is not enabled for external CA certificates, then the Data Sync Status and Kafka 
Cluster status will display correct values only if the Diagnostics page is accessed from a server in which the 
Kafka role is enabled. 

Debugging Issues and Log Locations
Configuration Issues
For any issue related to adding a Kafka broker, you can refer to either one of the logs on the server on which 
the Kafka role is to be enabled: 

 /var/opt/microfocus/log/zenworks/zeus.log
 /var/opt/microfocus/log/zenworks/zman.log

General Debugging
Kafka Broker Issues: If the status of Kafka broker in the Diagnostics page is Not Running, then check whether 
the port 9093 of the server is not being used by any other component. You can also check the Kafka logs within 
the server.logs file available at /var/opt/microfocus/log/zenworks/kafka-logs.

Schema Registry Issues: If the status of Schema Registry in the Diagnostics page is Not Running, then check 
schema-registry.log available at /var/opt/microfocus/log/zenworks/kafka-logs.

Kafka Connect Issues: If the status of Kafka Connect in the Diagnostics page is Not Running, then check 
whether the port 8083 of the server is not being used by any other component. You can also check the kafka-
connect.log available at /var/opt/microfocus/log/zenworks/kafka-logs.

If due to some reason any of the Kafka connectors displayed in the Data Sync section of the Diagnostics page, 
have failed, then you need to reconfigure the Kafka connector and restart the Kafka-connect service. To 
reconfigure the connector run the following command:

zman server-role-kafka-reconfigure-connectors -c <name of the connector>
You can also retrieve the names of all the connectors in the command line utility by running the zman 
server-role-kafka-list-connectors command. After reconfiguring the Kafka connector, restart the 
Kafka-connect service by running the following command:

systemctl restart microfocus-zenkafka-connect.service
Also, if the RDBMS is down for more than an hour, the Kafka connectors will not be able to sync data between 
Vertica and the RDBMS. You need to restart the Kafka.connect service by running the command: 

systemctl restart microfocus-zenkafka-connect.service
Kafka Reference Guide 9



Disaster Recovery and Preparedness
In the event of a failure of the Primary Server in which Kafka is enabled, you need to replace the device hosting 
the Primary Server with a new device that has the same identity, that is the same host name and IP address as 
that of the old device. For more information, see Replacing an Existing Primary Server with a New Primary 
Server in the ZENworks Disaster Recovery Reference.

If the replication count is 1, then before decommissioning the last server that has a Kafka role enabled in it, run 
the zman server-role-kafka-add-broker (zman srkab) to add a new broker and then proceed with 
the decommissioning of the existing server. 

However, if you have already decommissioned the server, ensure that you bring up a server with the same 
hostname by backing up and restoring the Kafka data. For more information, see Replacing an Existing Primary 
Server with a New Primary Server in the ZENworks Disaster Recovery Reference. 

Changing the Kafka role from the first Primary Server to the second Primary 
Server
Perform the following steps only if the first Primary Server is up and running. In case of a failure of the first 
Primar Server, see Replacing an Existing Primary Server with a New Primary Server in the ZENworks Disaster 
Recovery Reference.

1. Add the second Primary Server to the Kafka cluster: Run the command zman srkab --
servers=<GUID, path of the server object relative to /Devices/Servers, or the 
DNS of the second Primary Server> in the command line utility. 

2. Remove the first Primary Server: Run the command zman srkrb --servers= <GUID, path of 
the server object relative to /Devices/Servers, or the DNS of the first Primary 
Server> in the command line utility.

Troubleshooting

Addition of another server to the Kafka cluster fails after the only server that 
was part of the Kafka cluster is decommissioned

Explanation: Consider a scenario, where the replication count is 1 and the only server (broker) that was 
added to the Kafka cluster is decommissioned. On executing the command zman 
server-role-kafka-add-broker (zman srkab) to add another server (broker) in 
the zone, the operation to add the broker to the Kafka cluster fails. The error messages 
Schema registry started – false and Some of the processes have failed to start. Marking 
queue as failed are displayed in the zenworks loader-messages.log.

Action: Refer to the following steps to clean up both the ZooKeeper and Kafka data directory:

For ZooKeeper:

1. Stop all the ZENworks services on the Primary Server on which the ZooKeeper role is 
enabled. For more information, see Stopping the ZENworks Services.

2. Remove the zookeeper.properties file from the path 
%ZENSERVER_HOME%\microfocus\ZENworks\conf (on Windows) or /etc/opt/
microfocus/ZENworks/conf (on Linux). 
10 Kafka Reference Guide

https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bj3xt3x
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bj3xt3x
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bookinfo
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bj3xt3x
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bj3xt3x
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bookinfo
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bj3xt3x
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bookinfo
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bookinfo
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bb2m6ex


3. Remove the ZooKeeper data directory from the path 
%ZENSERVER_HOME%\microfocus\ZENworks\work\zookeeper (on Windows) 
or /var/opt/microfocus/ZENworks/zookeeper (on Linux).

4. Restart all the ZENworks services. For more information, see Starting the ZENworks 
Services.

For Kafka:

1. Stop all the ZENworks services on the server on which the zman command to add the 
Kafka broker was executed but failed. For more information, see Stopping the 
ZENworks Services.

2. Remove the Kafka data directory from the path /var/opt/microfocus/
zenworks/kafka-data.

3. Restart all the ZENworks services. For more information, see Starting the ZENworks 
Services.

NOTE: If the replication count is 1, then before decommissioning the last server that has a 
Kafka role enabled in it, run the zman server-role-kafka-add-broker (zman 
srkab) to add a new broker and then proceed with the decommissioning of the existing 
server. 

However, if you have already decommissioned the server, ensure that you bring up a 
server with the same hostname by backing up and restoring the Kafka data. For more 
information, see Replacing an Existing Primary Server with a New Primary Server in the 
ZENworks Disaster Recovery Reference. 

An error is displayed when adding a Kafka node
Explanation: When you try to add a Kafka node, an error was displayed. This issue occurs because the 

node’s containers from the previous instance still exists.

Action: Run the following command to remove all the containers:

docker container --prune

At least one Kafka connector has failed
Explanation: If for any reason any of the Kafka connectors have failed, which is displayed in the 

Connector Status panel of the Diagnostics page in ZCC, then the failed connectors will not 
be able to sync data from their associated RDBMS tables to Vertica.

Action: You should enable debug logging for the zone if not already enabled. In ZCC, navigate to 
Configuration > Device Management > Local Device Logging. Select the Errors, Warnings, 
Info, Debug option from the Log message to a local file if severity drop-down list and click 
Apply.

Navigate to the ZENworks Diagnostics page and expand the Connector Status panel. Next, 
open the services-messages.log file of the server where you have logged in and 
search for the Schema being registered is incompatible with an earlier schema error. The 
error message is available in the Trace section under Status. Here is an example:
Kafka Reference Guide 11

https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bb2m6ew
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bb2m6ew
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bb2m6ex
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bb2m6ex
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bb2m6ew
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_servers/zen_sys_servers.pdf#bb2m6ew
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bj3xt3x
https://www.novell.com/documentation/zenworks-2020-23.3/pdfdoc/zen_sys_disaster_recovery/zen_sys_disaster_recovery.pdf#bookinfo


"ZENconnector-ZVDEVICE":{

   "status":{

      "name":"ZENconnector-ZVDEVICE",

      "connector":{

         "state":"RUNNING",

         "worker_id":"zoneoraclapp3ps.epm.blr.novell.com:8083"

      },

      "tasks":"(("{

         "id":0,

         "state":"FAILED",

         "worker_id":"zoneoraclapp3ps.epm.blr.novell.com:8083",

         "trace":"...  Schema being registered is incompatible with an earlier schema ...",

         "type":"source"

      }

   }

If the error is logged in the services-messages.log file, then run the command zman 
server-role-kafka-reconfigure-connectors -c <name of the connector> 
to reconfigure the failed Kafka connector.

Specify the <name of the connector> in the command. You can obtain the name of 
the failed connector from the services-messages.logfile. 

If the Schema being registered is incompatible with an earlier schema error message is not 
logged in the services-messages.log file, you can ignore the connector status as the 
application will try to reconfigure the failed connector during the next recovery attempt.

After reconfiguring the Kafka connectors, you need to restart the Kafka-connect service by 
running the following command:

systemctl restart microfocus-zenkafka-connect.service

Glossary
This section provides a description of some of the terminologies that you will come across in this document. 

 Kafka Cluster: A group of servers or nodes that are connected to each other to achieve a common 
objective is a cluster. Each of the servers or nodes in the cluster, will have one instance of Kafka broker 
running.

 Kafka Broker: One or more servers that are added in a Kafka cluster are called Brokers. These are typically 
message brokers that act as mediators between two systems, ensuring that messages are delivered to the 
correct systems.
12 Kafka Reference Guide



 Kafka Topics: Kafka stores streams of records in categories called Topics. These topics are further broken 
down into partitions that can be stored across multiple servers and disks. Topics in Kafka are always multi-
subscriber; that is, a topic can have zero, one, or many consumers that subscribe to the data written to it.

 Kafka Partitions: Kafka topics are further broken down into partitions that enables topics to be replicated 
across multiple brokers for fault tolerance.

 Kafka Producers: The processes that publish messages to one or more Kafka topics are called Producers. 
In this case, the producer is the RDBMS system.

 Kafka Consumers: The processes that consumes messages from the Kafka topics are called consumers. In 
this case, the consumer is Vertica.

 Kafka Replicas: A replica or a copy of a partition is essentially used to prevent loss of data.
 Kafka Leader: A node that handles all read and write requests for a partition is called a leader.
 Kafka Follower: A node that replicates the leader are called followers. If the leader fails, one of the 

followers will automatically become a leader.
 Kafka Connect: Kafka Connect is a tool included with Kafka that imports and exports data to Kafka. It is an 

extensible tool that runs connectors, which implement the custom logic for interacting with an external 
system. For example, a connector to an RDBMS system captures every change in data made in a table.

 Kafka Schema Registry: Kafka producers write data to Kafka topics and Kafka consumers read data from 
Kafka topics. Schema Registry helps ensure that producers write data with a schema that can be read by 
consumers, even as producers and consumers evolve their schemas.

 Heartbeat Requests:  ZooKeeper sends heartbeat requests to determine whether the Kafka broker is 
alive.

 Offset:  A Kafka topic receives messages across a set of partitions and each partition maintains these 
messages in a sequential order, which is identified as an offset, also known as a position. 

Legal Notice
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, 
U.S. Government rights, patent policy, and FIPS compliance, see  (https://www.microfocus.com/en-us/legal).

© Copyright 2008 - 2023 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as 
may be set forth in the express warranty statements accompanying such products and services. Nothing herein 
should be construed as constituting an additional warranty. Open Text shall not be liable for technical or 
editorial errors or omissions contained herein. The information contained herein is subject to change without 
notice.
Kafka Reference Guide 13


	Kafka Reference Guide
	Overview
	Kafka Change Data Capture Workflow

	Enabling Kafka on a Single Server
	Prerequisites
	Using ZENworks Control Center
	Using the ZMAN Utility

	Adding Servers to the Kafka Cluster
	Prerequisites
	Procedure

	Managing the Kafka Cluster
	Maintaining Kafka Brokers
	Maintaining Kafka Connect

	Monitoring the Status of the Kafka Cluster
	Viewing the Configuration Status
	Monitoring Diagnostics

	Debugging Issues and Log Locations
	Configuration Issues
	General Debugging

	Disaster Recovery and Preparedness
	Changing the Kafka role from the first Primary Server to the second Primary Server

	Troubleshooting
	Addition of another server to the Kafka cluster fails after the only server that was part of the Kafka cluster is decommissioned
	An error is displayed when adding a Kafka node
	At least one Kafka connector has failed

	Glossary
	Legal Notice


