
Service Desk 24.1
ZENworks Service Desk Developer

Resources
January 2024

Legal Notices
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/en-us/legal.

© Copyright 2008 - 2024 Open Text

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Open Text”) are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.
2

https://www.microfocus.com/en-us/legal

Contents
About This Guide 7

1 ZENworks Service Desk Developer Resources 9
1.1 Rest APIs . 9

1.1.1 Add note to the request – Technician Portal . 9
1.1.2 Bulk Request Update (Close, Reopen and Delete) – Technician Portal 12
1.1.3 Add Attachment to the Request/Note – Technician Portal . 13

1.2 Developer . 14
1.2.1 Integrations . 15
1.2.2 Connectors . 15

1.3 About API . 15
1.3.1 Version. 15

1.4 Authenticate API . 16
1.4.1 Connect . 16
1.4.2 Disconnect. 17
1.4.3 getLdapSources. 18

1.5 Customer API . 18
1.5.1 Create Customer. 19
1.5.2 Find Customer. 20
1.5.3 Delete Customer . 21
1.5.4 Undelete Customer . 22
1.5.5 Get Customer Information . 22
1.5.6 Get Country information . 23
1.5.7 Get State Information. 23
1.5.8 Find Country . 24
1.5.9 Update Customer . 24
1.5.10 Update Location . 25
1.5.11 Get Geo Location . 25

1.6 Item API . 26
1.6.1 Create Item . 27
1.6.2 Delete Items . 27
1.6.3 Undelete Items . 28
1.6.4 Update Items. 28
1.6.5 Get Items. 29
1.6.6 Get All Items . 30
1.6.7 Get Specific Item. 30
1.6.8 Customer Items. 31
1.6.9 Org Unit Items. 32
1.6.10 Add Item Owner . 32
1.6.11 Remove Item Owner . 33
1.6.12 Get Item Owner . 33
1.6.13 Get Fields For Item . 34
1.6.14 Get Fields For Item Type . 34
1.6.15 Get Fields For Related Item . 35
1.6.16 Create Manufacturer . 35
1.6.17 Add Item Note. 36
1.6.18 Update Item Description . 36
Contents 3

1.6.19 Update Item Cost . 37
1.6.20 Get Item Categories . 37
1.6.21 Get Item Type For Category . 38
1.6.22 Create Item Type . 38
1.6.23 Get Item Type . 39
1.6.24 Get Item Type . 39
1.6.25 Get Item Relationship Type . 40
1.6.26 Create Item Relationships . 40
1.6.27 Delete Item Relationships . 41
1.6.28 Get Item Relationships . 41
1.6.29 Get Incident Teams . 42
1.6.30 Get Problem Teams . 42
1.6.31 Get Change Teams . 42
1.6.32 Get Service Request Teams . 43

1.7 Request API . 43
1.7.1 Create Incident / Change Request / Service Request . 44
1.7.2 Create Incident / Change Request / Service Request (for a Customer) 45
1.7.3 Get Classifications. 46
1.7.4 Get Subject . 47
1.7.5 Get Description . 48
1.7.6 Get Request Count By Status . 48
1.7.7 Get Requests By Status. 48
1.7.8 Get Request Detail . 49
1.7.9 Get Public Notes . 51
1.7.10 Get Notes . 51
1.7.11 Get Notes Detail . 51
1.7.12 Get Note Content . 52
1.7.13 Update Request . 52
1.7.14 Find Incident / Change Request / Service Request . 53
1.7.15 Add Note To Request . 54
1.7.16 Close Request . 54
1.7.17 Get Response Templates . 55
1.7.18 Get Response Templates Content . 55
1.7.19 Get My Filters . 56
1.7.20 Get My Task Count . 56
1.7.21 Get My Tasks . 57
1.7.22 Get Attachments. 58
1.7.23 Get Incident States . 59
1.7.24 Get Problem States. 59
1.7.25 Get Change States. 59
1.7.26 Get Service Request States . 60
1.7.27 Get Next States . 60

1.8 Organization API . 61
1.8.1 Create Org Unit . 61
1.8.2 Get Org Unit Details . 62
1.8.3 Update Org Unit Details . 62
1.8.4 Rename Org Unit . 63
1.8.5 Find Org Unit . 63
1.8.6 Delete Org Unit . 64

1.9 Purchase Order API . 64
1.9.1 Create Purchase Order . 65
1.9.2 Create Lease Purchase Order. 65
1.9.3 Deliver Purchase Order . 66
1.9.4 Get Fields For Purchase Order . 66
1.9.5 Delete Purchase Order . 67
4

1.10 Localizing Service Desk ITSM . 67
1.10.1 Getting Started . 68
1.10.2 Customizing Strings . 68
1.10.3 Simple Messages . 68
1.10.4 Compound Messages . 69
1.10.5 Locales . 69

1.11 SOA Guide . 70
1.12 PHP Web Services . 71
1.13 Java Web Services . 75
1.14 VB.NET and Service Desk ITSM. 78
1.15 Nagios CMDB Closed Loop Integration . 80

1.15.1 Introduction . 80
1.15.2 Operational Workflow . 81
1.15.3 Setup . 81
1.15.4 Creating the Request in Service Desk . 82
1.15.5 Configuring the Service Desk CMDB . 83
1.15.6 Re-activating the Event Handler . 83

1.16 ZSD Extensions . 84
1.16.1 Building the Extension . 84
1.16.2 WorkflowListener Arguments . 85
1.16.3 LifecycleListener Arguments . 86
1.16.4 Implementing a Listener . 87
1.16.5 Making the Extension Available to ZSD. 89
1.16.6 Configuring ZSD to Use the Extension. 89

1.17 ZSD Store Extensions . 89
1.17.1 Building the Extension . 89
1.17.2 ExternalStoreExtension Arguments. 90
1.17.3 Implementing the Store Extension . 91
1.17.4 Making the Store Extension Available to ZSD. 91
1.17.5 Configuring ZSD to Use the Extension. 92
5

6

About This Guide

This document includes ZENworks Service Desk developer resources.

Audience
This guide is intended for developers.

Feedback
We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Additional Documentation
ZENworks Service Desk is supported by other documentation that you can use to learn about and
implement the product. For additional documentation, see the ZENworks Service Desk
documentation site.
About This Guide 7

https://www.novell.com/documentation/zenworks-service-desk/
https://www.novell.com/documentation/zenworks-service-desk/

8 About This Guide

1 1ZENworks Service Desk Developer
Resources

This appendix contains some useful ZENworks Service Desk developer resources.

 Section 1.1, “Rest APIs,” on page 9
 Section 1.2, “Developer,” on page 14
 Section 1.3, “About API,” on page 15
 Section 1.4, “Authenticate API,” on page 16
 Section 1.5, “Customer API,” on page 18
 Section 1.6, “Item API,” on page 26
 Section 1.7, “Request API,” on page 43
 Section 1.8, “Organization API,” on page 61
 Section 1.9, “Purchase Order API,” on page 64
 Section 1.10, “Localizing Service Desk ITSM,” on page 67
 Section 1.11, “SOA Guide,” on page 70
 Section 1.12, “PHP Web Services,” on page 71
 Section 1.13, “Java Web Services,” on page 75
 Section 1.14, “VB.NET and Service Desk ITSM,” on page 78
 Section 1.15, “Nagios CMDB Closed Loop Integration,” on page 80
 Section 1.16, “ZSD Extensions,” on page 84
 Section 1.17, “ZSD Store Extensions,” on page 89

1.1 Rest APIs
The REST APIs can be accessed using the following URL:

 https://<zenworks_service_desk_server>/servicedesk-apidocs/

Where zenworks_service_desk_server is ZENworks Service Desk server IP or hostname.

1.1.1 Add note to the request – Technician Portal
[POST] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/notes
ZENworks Service Desk Developer Resources 9

Request parameters
Content-Type: multipart/form-data
Body:
noteData: "{
"noteTime":5,
"noteText":"Test note from rest call",
"hidden": false,
"customers": true,
"customerCcs": true,
"technicians": true,
"technicianCcs": true,
"vendors": false,
"addToRelatedIncidents": false,
"addTimeToRelatedIncidents": false,
"createKnowledge": false,
"needInfo": false,
"includeDirectLink": true,
"action":"ADDNOTE",
"existingAttachmentIds": [10,20],
"selectedTechnicianIds": [21,34],
"customerCcAddresses":"user1@zsd.com, user2@zsd.com",
"technicianCcAddresses":"user10@zsd.com, user21@zsd.com",
"parentId": 10
}"

NOTE: For adding attachments, you can provide any name for file and select the required file, but if
additional file information (like private visibility and description) has to be provided, then use the
same name for this data also. For more information, refer to the attached screenshots.

All available actions:
ADDNOTE, SOLUTION, PROPOSE, DRAFT, DELETEDRAFT

Get applicable actions for the request
[GET] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/requestActions

“addNote” - true (for ADDNOTE)

[GET] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/noteprivileges

"isDraft" - true (for DELETEDRAFT)
 "showSolutionButton" - true (for SOLUTION)
 "showProposeButton" - true (for PROPOSE)

NOTE: Some parameters in the add note service are eligible if the respective value is true in the
following service:

[GET] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/noteprivileges

For example : “createKnowledge” can be set in addnote service if “showCreateKnowledge” is true in
the noteprivilege service.
10 ZENworks Service Desk Developer Resources

Examples
ZENworks Service Desk Developer Resources 11

1.1.2 Bulk Request Update (Close, Reopen and Delete) – Technician
Portal
[PUT] https://<zsdserver>/LiveTime/services/v1/user/requests/bulkUpdate

Query Parameters
"currentPage" : String (Allowed values - mytask, incident, service,
change, problem)
"filterId" : int
"includeAll" : Boolean
"includedExcludedIds" : List<Integer>

Request Parameters
Content-Type: multipart/form-data
Body:
data: "{
"action":"CLOSE",
"searchCriteria" : {
 "slaBreachedOnly": false,
 "escalatedOnly": false,
 "awaitingInfoOnly": false,
 "awaitingMyApprovalOnly": false,
 "searchTerm" : "test",
 "requestFilterInfo" : {
"type": "incident", (incident/service/change/problem)
"scope": "My Tasks", (My Tasks, My Team Tasks)
"incidentId": "100003",
"groupName": "test",
"loggedBy": "User1",
"technicians": [12, 15],
"teams": [2, 8],
12 ZENworks Service Desk Developer Resources

"workflowId": 7,
"statusSearchType": 0, (Allowed values: 0/1/2/3)
"statusTypes": [12,14],
"problemtypeId": 10,
"customClassString": "test",
"priorityTypes": [1, 2],
"solId": 1,
"waId": 2,
"firstName": "first name",
"lastName": "last name",
"email": "user1@gmail.com",
"orgUnit": "My Company",
"clientRoom": "10",
"clientCity": "bangalore",
"incidentLocation": "Chennai",
},
"requestAdditionalSearchInfo" : {
 "incidentId": 100120,
 "item": "test item",
 "itemType": "Software",
 "itemStatus": "Available",
 "team": "Incident team",
 "workflow": "Incident workflow"
}
}
}"

All Available Actions
CLOSE, REOPEN and DELETE.

NOTE: 1.If “includeAll “ is false then action will be performed on the requests provided in the
“includedExcludedIds “. (The other request search parameters will not be considered)

2. If “includeAll “ is true, then the action will be performed on the requests depends on the search
criterias provided. In this case the request ids provided in the “includedExcludedIds” will be
excluded from the results.

3. If any request is not eligible for the provided action, that request will be skipped.

1.1.3 Add Attachment to the Request/Note – Technician Portal
[POST] https://<zsdserver>/LiveTime/services/v1/user/requests/100002/attachments
ZENworks Service Desk Developer Resources 13

Request Parameters
Content-Type: multipart/form-data
Body:
 "file1": Selected File,
"file1": {
 "privatevisibility": true,
 "description": "Request Attachment 1"
},
 "file2": Selected File,
"file2": {
"privatevisibility": false,
 "description": "Request Attachment 2"
}

NOTE: For adding attachments, you can provide any name for file and select the required file, but if
additional file information (like private visibility and description) has to be provided, then use the
same name for this data also. For more information, refer to the above example and the following
screenshot.

1.2 Developer
 Section 1.2.1, “Integrations,” on page 15
 Section 1.2.2, “Connectors,” on page 15
14 ZENworks Service Desk Developer Resources

1.2.1 Integrations
Service Desk provides a rich experience for developers to extend the functionality and integrate with
other 3rd party systems. We are continually adding new examples and modules that users can
download directly as well as within the product itself.

The SOAP API reference shows how to communicate directly with service desk.There are many
different ways to extend service desk depending upon your needs. The most obvious way is through
Web Services, but there are many other layers that maybe more appropriate and involve no coding
at all.

1.2.2 Connectors
service desk AMIE engine (Asset Management Integration Engine) provides a unique mechanism to
connect to any third party Asset Management system.By default service desk provides many built-in
connectors. This is expanding every release. One of the unique properties of connectors built using
AMIE is that they readily adapt to schema changes on the foreign host so in most cases there is no
need to change them between upgrades.

Users have the ability to create their own mapping files and we provide some great examples on
how to do this step by step in AMIE Part I and AMIE Part II.

1.3 About API
1.3.1 Version

Syntax
version()

Description
This API returns the current version of Service Desk that is running.

Parameters
None

Return Value
The following values are returned by this API:

1. Version: Contains the full version string.
2. Release: Contains the release number.
3. Vendor: Contains the OEM vendor name of the solution.
4. serverTzName: Is the server time zone name.
5. serverTzOffset: Is the GMT offset of the time zone.
ZENworks Service Desk Developer Resources 15

1.4 Authenticate API
 Section 1.4.1, “Connect,” on page 16
 Section 1.4.2, “Disconnect,” on page 17
 Section 1.4.3, “getLdapSources,” on page 18

1.4.1 Connect

Syntax
connect (String username, String password)

connect (String sourceId, String username, String password)

Description
This API logs you into the system. You must be logged in before you can call most other functions.

All web services calls, including Connect, observe the session time out constraints defined at the
container and application levels. In order to maintain the session flags, the ‘maintainSession’ flag
must be set to true on the org.apache.axis.client.Service object using the service. If managing
session state manually, the http headers must be preserved for all subsequent interactions. Failure
to maintain the headers will result in errors stating that the current session is not logged in.

Parameters
The following are the input parameters for this API:

1. username: A unique username for this account.
2. password: A unique password for this account.
3. sourceId: The sourceId of the LDAP or AD source. Use getLdapSources() to return a list of all

known authentication servers. If using PHP or a language that does not use method overloading
use “-1″ as the sourceId to simulate null.

Return Value
The following functions should be called to get return values for this API:

1. To get the value of the ‘success’ field, use get("success"). The value returned in the
‘success’ field will be a string representation of a boolean (‘true or false’) indicating whether or
not the login attempt was successful. If the login attempt fails for any reason the ‘success’ field
is ‘false’.

2. To get the value of the ‘message’ field, use get("message"). The value returned in the
‘message’ field will be a text message that explains the response. If the login attempt fails for
any reason the ‘message’ field will explain why the failure occurred
16 ZENworks Service Desk Developer Resources

Example
$baseService = "http://www.myhost.com/LiveTime/WebObjects/LiveTime.woa/ws/
";
$objClient = new SoapClient($baseService . "Authenticate?wsdl",
array('trace' => true));
$results = $objClient->connect($username, $password);
//This will return an Associative Array
$success = $results['success'];
if ($success=="false") {
 echo $results['message'] . "n";
 exit();
}
echo "Login Successfuln";

1.4.2 Disconnect

Syntax
disconnect()

Description
This API logs you out of the system.

Parameters
None

Return Value
This API returns a HashMap containing two fields: success and message.

The values returned in the two fields of the HashMap are:

1. The value returned in the success field will be a string representation of a boolean (‘true’ or
‘false’) indicating whether or not the attempt to log out was successful.

2. The value returned in the message field will be a text message that explains the response. If the
request fails for any reason (i.e. the ‘success’ field is ‘false’), the ‘message’ field will explain why
the failure occurred. Otherwise, you will see Logged Out displayed.

Example
function logout() {
ZENworks Service Desk Developer Resources 17

 global $objClient;
 global $baseService;
 $objClient->SoapClient($baseService . "Authenticate?wsdl",
array('trace' => true));
 $results = $objClient->disconnect();
 //This will return an Associative Array
 $success = $results['success'];
 if ($success=="false") {
 echo $results['message'] . "n";
 exit();
 }
 echo "Logout Successfuln";
 exit();
}

1.4.3 getLdapSources

Syntax
getLdapSources()

Description
This API returns a list of all LDAP sources when using the new multi-source authentication services in
Service Desk.

Parameters
None

1.5 Customer API
 Section 1.5.1, “Create Customer,” on page 19
 Section 1.5.2, “Find Customer,” on page 20
 Section 1.5.3, “Delete Customer,” on page 21
 Section 1.5.4, “Undelete Customer,” on page 22
 Section 1.5.5, “Get Customer Information,” on page 22
 Section 1.5.6, “Get Country information,” on page 23
 Section 1.5.7, “Get State Information,” on page 23
18 ZENworks Service Desk Developer Resources

 Section 1.5.8, “Find Country,” on page 24
 Section 1.5.9, “Update Customer,” on page 24
 Section 1.5.10, “Update Location,” on page 25
 Section 1.5.11, “Get Geo Location,” on page 25

1.5.1 Create Customer

Syntax
createCustomer (String username, String emailAddress, String firstname, String lastname, HashMap
fieldValues)

Description
This API is used to create new customers in Service Desk.

If the Create Account option is enabled in the application’s setup, this function does not require the
User to be logged in.

Parameters
The following are the input parameters for this API:

1. username: A new user name for this account.
2. emailAddress: Email address for this user.
3. firstname: First name of the user.
4. lastname: Last name of the user.
5. fieldValues: HashMap of the field values to populate this new account with.

NOTE: All four input parameters are mandatory and have to be unique. Omitting any of these will
result in a failure message explaining the cause.

Return Value
This API returns a HashMap containing two fields: success and message.

The values returned in the two fields of the HashMap are:

1. The value returned in the success field will be a string representation of a boolean (true or false)
indicating whether or not the Customer creation attempt was successful.

2. The value returned in the message field will be a String representation of the new Customer’s ID
number.

NOTE: Make a note of the returned customer number for subsequent web service requests.
ZENworks Service Desk Developer Resources 19

1.5.2 Find Customer

Syntax
findCustomer (String emailAddress)

findCustomer (String firstname, String lastname)

findCustomer (String emailAddress, String firstname, String lastname)

findCustomer (String username, String emailAddress, String firstname, String lastname, HashMap
customFields)

Description
This API is used to search for a Customer.

Parameters
The following are the input parameters for this API:

1. Username: User name for this search. It can be either an LDAP user name or a System user
name, which uses Service Desk’s built-in authentication.

2. emailAddress: Email address for this search.
3. firstname: First name of user to search for.
4. lastname: Last name of user to search for.
5. customFields: HashMap of field values to locate this customer.

Return Value
This API returns a HashMap which contains a list of HashMap for each entry. The key of the first map
is the Customer ID of the returned user, the HashMap for that entry contains four string fields
representing the Customer’s Last Name, Org Unit, Primary E-mail Address and First Name. A null is
permitted when using multiple parameter based functions.

Example
function findUser($username,$email,$first,$last) {
 global $objClient;
 global $baseService;
 //switch to the customer api
 $objClient->SoapClient($baseService . "Customer?wsdl", array('trace' =>
true));
 echo "Searching for " . $username . $email . $first . $last . "n";
 # Call findCustomer, using an email address and echo out response
20 ZENworks Service Desk Developer Resources

 # username, email, first, last
 $results = $objClient->findCustomer($username,$email,$first,$last);
 $success = $results['success'];
 if ($success=="false") {
 echo $results['message'] . "n";
 return;
 }
 # if we have results lets show them
 # returns an array of arrays
 foreach(array_values($results) as $ess) {
 print_r($ess);
 }}

1.5.3 Delete Customer

Syntax
deleteCustomerById (String customerId)

deleteCustomerByUsername (String username)

Description
This API is used to delete a Customer. The Customer ID or User name is required and the account will
be locked out if the request is successful.

Parameters
The following are the input parameters for this API:

1. customerId: The unique customer ID of the account.
2. username: The unique user name of the account.

Return Value
This API returns a HashMap containing the success flag and a message if the request was
unsuccessful.
ZENworks Service Desk Developer Resources 21

1.5.4 Undelete Customer

Syntax
undeleteCustomerById (String customerId)

undeleteCustomerByUsername (String username)

Description
This API is used to undelete a customer. The Customer ID or user name is required and the account
will be re- activated if the request is successful.

Parameters
The following are the input parameters for this API:

1. customerId: The unique customer ID of the account.
2. username: The unique user name of the account.

Return Value
This API returns a HashMap containing the success flag and a message if the request was
unsuccessful.

1.5.5 Get Customer Information

Syntax
getFieldsForCustomer (String customerId)

Description
This API is used to get the Customer details to the logged in user, based on the supplied Customer ID.

Parameters
The following are the input parameters for this API:

1. customerId: The unique customer ID of the account.

Return Value
The returned HashMap contains fields that the system knows about the user like First Name, Last
Name, Username and contact information.

Note that phone2 refers to the mobile/cell phone number in the LiveTime user interface, and
phone3 refers to the fax number as defined in the GUI.
22 ZENworks Service Desk Developer Resources

Custom Fields are defined in the administration area of Service desk. When retrieving these fields,
they will be returned with the label defined in the custom field, but when calling update methods,
these must be passed using the underlying variable name, being custom1 through custom5.

1.5.6 Get Country information

Syntax
getCountries ()

Description
This API is used to return a list of all the Countries.

Parameters
None

Return Value
This API returns a HashMap which contains another HashMap for each entry. The key of the first
map is the Country ID of the returned Country, the Map for that entry contains two string fields
representing the Country Name and Top Level Domain (TLD).

1.5.7 Get State Information

Syntax
getStatesForCountry (String countryId)

Description
This API is used to search for states or provinces of a Country.

Parameters
The following are the input parameters for this API:

1. countryId: The unique country ID.

Return Value
This API returns a HashMap containing the State ID and the State Name for each State of the
searching Country.
ZENworks Service Desk Developer Resources 23

1.5.8 Find Country

Syntax
findCountry (String countryName, String tld)

Description
This API is used to search for a Country, based on either the Country Name or Top Level Domain.

Parameters
The following are the input parameters for this API:

1. countryName: The unique country name for the search.
2. tld: The unique Top Level Domain used for the search.

Return Value
This API returns a HashMap containing another HashMap for the Country. The key of the first map is
the Country ID of the returned Country, the Map for that entry contains two string fields
representing the Country Name and Top Level Domain.

1.5.9 Update Customer

Syntax
updateCustomerById (String customerId, HashMap values)

updateCustomerByUsername (String username, HashMap values)

Description
This API allows logged in users to update Customer information.

Parameters
The following are the input parameters for this API:

1. customerId: The unique customer ID for the account.
2. username: The unique user name for the account.
3. values: The HashMap of values to set for this customer.
24 ZENworks Service Desk Developer Resources

Return Value
The fields returned from the ‘get’ equivalent (firstname, lastname, email, address, city, state, etc)
can all be inserted into the HashMap that is sent to LiveTime to set new values for those fields.

The returned HashMap will contain success and message values.

The values HashMap is a map of Strings to Strings. Valid keys for Customer web services are the
same as those returned in the getFieldsForCustomer method, specifically: firstName, lastName,
userName, password, email, orgUnit, address, addressTwo, city, state, country, postalCode, phone,
phone2, phone3, webAccess, aliases, emailNotify.

All values should be strings, webAccess and emailNotify should be a 1 or a 0 expressed as a String,
and aliases can be a comma-separated list.

1.5.10 Update Location

Syntax
updateLocation (String latitude, String longitude)

Description
This API allows logged in users to update their geographical coordinates by specifying latitude and
longitude values.

Parameters
The following are the input parameters for this API:

1. latitude: The geographical latitude coordinate of the logged in account.
2. longitude: The geographical longitude coordinate of the logged in account.

Return Value
None

1.5.11 Get Geo Location

Syntax
getGeoLocation (String customerId)

Description
This API retrieves the geo location for the given customer ID.
ZENworks Service Desk Developer Resources 25

Parameters
The following are the input parameters for this API:

1. customerId: The unique customer Id for the account.

Return Value
None

1.6 Item API
 Section 1.6.1, “Create Item,” on page 27
 Section 1.6.2, “Delete Items,” on page 27
 Section 1.6.3, “Undelete Items,” on page 28
 Section 1.6.4, “Update Items,” on page 28
 Section 1.6.5, “Get Items,” on page 29
 Section 1.6.6, “Get All Items,” on page 30
 Section 1.6.7, “Get Specific Item,” on page 30
 Section 1.6.8, “Customer Items,” on page 31
 Section 1.6.9, “Org Unit Items,” on page 32
 Section 1.6.10, “Add Item Owner,” on page 32
 Section 1.6.11, “Remove Item Owner,” on page 33
 Section 1.6.12, “Get Item Owner,” on page 33
 Section 1.6.13, “Get Fields For Item,” on page 34
 Section 1.6.14, “Get Fields For Item Type,” on page 34
 Section 1.6.15, “Get Fields For Related Item,” on page 35
 Section 1.6.16, “Create Manufacturer,” on page 35
 Section 1.6.17, “Add Item Note,” on page 36
 Section 1.6.18, “Update Item Description,” on page 36
 Section 1.6.19, “Update Item Cost,” on page 37
 Section 1.6.20, “Get Item Categories,” on page 37
 Section 1.6.21, “Get Item Type For Category,” on page 38
 Section 1.6.22, “Create Item Type,” on page 38
 Section 1.6.23, “Get Item Type,” on page 39
 Section 1.6.24, “Get Item Type,” on page 39
 Section 1.6.25, “Get Item Relationship Type,” on page 40
 Section 1.6.26, “Create Item Relationships,” on page 40
 Section 1.6.27, “Delete Item Relationships,” on page 41
 Section 1.6.28, “Get Item Relationships,” on page 41
26 ZENworks Service Desk Developer Resources

 Section 1.6.29, “Get Incident Teams,” on page 42
 Section 1.6.30, “Get Problem Teams,” on page 42
 Section 1.6.31, “Get Change Teams,” on page 42
 Section 1.6.32, “Get Service Request Teams,” on page 43

1.6.1 Create Item

Syntax
createItem (String itemTypeId, HashMap fieldValues)

createItem (String itemTypeId, String ownerCustomerId, HashMap fieldValues)

Description
This API enters a new Configuration Item (CI). Enter the Item Type ID, a Customer ID, and a set of
Item Type field values.

The fieldValues HashMap is a Map of Strings to Strings. The keys represent Service desk data fields
called custom1 through to custom20. These map to the category field definitions within the CMS.
Other keys include itemNumber which allow the item to be created with a given item number
(provided the Edit Item Numbers admin privilege is enabled).

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.

Return Value
This API returns a HashMap containing the Configuration Item ID and a success or failure message.

1.6.2 Delete Items

Syntax
deleteItem (String itemNumber)

Description
This API flags an Item as deleted so that it is no longer available for new requests.
ZENworks Service Desk Developer Resources 27

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.

Return Value
None

1.6.3 Undelete Items

Syntax
undeleteItem (String itemNumber)

Description
This API re-instates a previously deleted Item so that it is available for all future requests.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.

Return Value
None

1.6.4 Update Items

Syntax
updateItem (String itemNumber, HashMap fieldValues)

Description
This API updates the Item with new field values from the supplied hash map.

The fieldValues HashMap is a map of Strings to Strings. The keys represent Service desk data fields
called custom1 through to custom20. Other keys include itemstatus and itemNumber for changes to
the item status and item number fields respectively. These map to the Category field definitions
within the CMDB.
28 ZENworks Service Desk Developer Resources

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.
2. fieldValues: A HashMap of field values for this Item.

Return Value
None

1.6.5 Get Items

Syntax
getItems ()

getItems (String customerId)

getItems (String customerId, String pageNdx)

getItems (String customerId, String itemNumber, HashMap fieldValues)

Description
This API returns a list of the item numbers that are either global or owned by the logged in Customer
(or the Customer specified if using the customerId function). The response is in the form of a
HashMap that uses the list of Item Numbers as field names. Each field has as its value a String
containing the name of the Item Type that the Item represents.

In the event that no Items are found for the logged in Customer, only the ‘message’ field will be
present and will contain a text message explaining that no Items were found.

Parameters
The following are the input parameters for this API:

1. customerId: The unique Customer Id.
2. itemNumber: The unique Item Number to retrieve. If this value is set, then fieldValues will be

ignored.
3. fieldValues: A hash map of field names and values used to search for an appropriate CI. This will

be ignored if the Item Number has already been set.

Return Value
The return value of this API is a HashMap containing a list of string values detailing the Item
Number(s) and description(s). This returns the first 100 items. Use getItems(customerId, pageNdx)
to page through larger result sets.
ZENworks Service Desk Developer Resources 29

1.6.6 Get All Items

Syntax
getAllItems (String pageNdx)

Description
This API returns a list of Item Numbers for all the Items in the system. A page index is required to
specify the page required. Each page contains 100 entries, ordered by Item Number.

Parameters
The following are the input parameters for this API:

1. pageNdx: The page index returns 100 entries ordered by Item Number.

Return Value
The return value of this API is a HashMap that uses the list of Item Numbers as field names. Each
field has as its value a String containing the name of the Item Type that the Item represents.

1.6.7 Get Specific Item

Syntax
getSpecificItem (String itemNumber)

Description
This API returns the Item Type of the specified item number. This API provide a quick means to verify
that a certain Item Number is defined in the system, without requiring heavy data exchange of Item
attributes.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.

Return Value
None
30 ZENworks Service Desk Developer Resources

1.6.8 Customer Items

Syntax
customerItems (String customerId, String pagesize, String pagenumber, String sortNdx)

customerItems (String pagesize, String pagenumber, String sortNdx)

Description
This API returns a list of the item numbers that are either owned by the customer or are global.

The response is in the form of a HashMap that uses the list of item numbers as field names. Each
field has as its value a String containing the name of the Item Type that the Item represents.

In the argument (customerId) enter the ID of a Customer, this is assigned to the Customer when it is
created via the createCustomer function.

Parameters
The following are the input parameters for this API:

1. customerId: A unique customer ID.
2. pagesize: The maximum number of items that can be returned per query.
3. pagenumber: In situations where there are more items than can fit on a pagesize, this number

specifies the next set of items to be retrieved.
4. sortNdx: The index of the column to sort on. The possible values for the parameter are:

a. 1: Item Number
b. 2: Item Category
c. 3: Item Type
d. 7: Item Status
e. 8: Purchase Date
f. 9: Incident Team

g. In Service Manager, you can also specify:
i. 10: Problem Team

ii. 11: Change Team
iii. 12: Service Request Team

Return Value
This API returns a HashMap containing a list of string values detailing the Item Number(s) and
description(s), being the corresponding Item Types.

In the event that no Items are found for the Customer, only the message field will be present and will
contain a text message explaining that no Items were found.
ZENworks Service Desk Developer Resources 31

1.6.9 Org Unit Items

Syntax
orgUnitItems (String orgUnitId, String pagesize, String pagenumber, String sortNdx)

orgUnitItems (String pagesize, String pagenumber, String sortNdx)

Description
This API is used to search for Items owned by the logged in User’s Org Unit or the Org Unit ID
specified.

Parameters
The following are the input parameters for this API:

1. orgUnitId: A unique Org Unit ID.
2. pagesize: The maximum number of items that can be returned per query. The page size must be

between 10 and 100.
3. pagenumber: In situations where there are more items than can fit on a pagesize, this number

specifies the next set of items to be retrieved. The page number must be at least 0.
4. sortNdx: The index of the column to sort on. The possible values for the parameter are:

a. 1: Item Number
b. 2: Item Category
c. 3: Item Type
d. 7: Item Status
e. 8: Purchase Date
f. 9: Incident Team

g. In Service Manager, you can also specify:
i. 11: Problem Team

ii. 12: Change Team

Return Value
This API returns a HashMap containing of HashMaps. The keys of the first map are the Item
Numbers. Each Item Number has its own HashMap representing the values that represent Item
attributes as name-value pairs.

1.6.10 Add Item Owner

Syntax
addItemOwner (String itemNumber, String username)
32 ZENworks Service Desk Developer Resources

Description
This API adds a new Customer from an Item with the specified item number.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.
2. username The user name of the user who wants to add the item owner.

Return Value
None

1.6.11 Remove Item Owner

Syntax
removeItemOwner (String itemNumber, String username)

Description
This API removes an existing Customer from an Item with the specified item number.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.
2. username The user name of the user who wants to remove the item owner.

Return Value
None

1.6.12 Get Item Owner

Syntax
getItemOwners (String itemNumber)

Description
This API returns a list of all the owners of an item with the specified item number.
ZENworks Service Desk Developer Resources 33

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.

Return Value
This API returns a HashMap which contains another HashMap for each entry. The key of the first
map is the Customer ID of the returned user, the HashMap for that entry contains four string fields
representing the Customer’s Last Name, Org Unit, Primary E-mail Address and First Name. Global
items will return a success response message.

1.6.13 Get Fields For Item

Syntax
getFieldsForItem (String itemNumber)

Description
This API returns a list of all Configuration Item fields for the specified item number.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.

Return Value
This API returns two HashMaps, the first containing a list of CI field Ids, and the second containing
the field values include the field name, whether the field is required, the data type, the field’s
default value (if specified), and the field options if any are available.

1.6.14 Get Fields For Item Type

Syntax
getFieldsForItemType (String itemTypeId)

Description
This API returns a list of all Configuration Item fields for the specified Item Type ID.
34 ZENworks Service Desk Developer Resources

Parameters
The following are the input parameters for this API:

1. itemTypeId: The unique Item type id.

Return Value
This API returns two HashMaps, the first containing a list of CI field Ids, and the second containing
the field values include the field name, whether the field is required, the data type, the field’s
default value (if specified), and the field options if any are available.

1.6.15 Get Fields For Related Item

Syntax
getFieldsForRelatedItem (String itemNumber)

Description
This API returns information on all relationships for the specified item number.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item number.

Return Value
This API returns a HashMap containing of HashMaps, the outer keyed on the Item Numbers – the
HashMap for each Item contains data such as the related Item Number, Criticality, Type and how it’s
related to the Item with the given itemNumber.

1.6.16 Create Manufacturer

Syntax
createManufacturer (String name)

Description
This API creates a Manufacturer with the given name.
ZENworks Service Desk Developer Resources 35

Parameters
The following are the input parameters for this API:

1. name: The unique name of the Manufacturer to be created.

Return Value
None

1.6.17 Add Item Note

Syntax
addItemNote(String itemNumber, String note)

Description
This API adds a new note to an item with the give itemNumber.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item Number of the Item to be retrieved.
2. note: The note contents

Return Value
None

1.6.18 Update Item Description

Syntax
updateItemDescription(String itemNumber, String desc)

Description
This API updates the description of an item with the given itemNumber. If the item does not have
any description then it will add description to the item.
36 ZENworks Service Desk Developer Resources

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item Number of the Item to be retrieved.
2. desc: The description of the contents

Return Value
None

1.6.19 Update Item Cost

Syntax
updateItemCost(String itemNumber, String cost)

Description
This API updates the cost of an item with the given itemNumber. If the item does not have any cost
then it will add cost to the item.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item Number of the Item to be retrieved.
2. cost: The cost of the item to be updated

Return Value
None

1.6.20 Get Item Categories

Syntax
getItemCategories ()

Description
This API returns a list of all the Configuration Item (CI) Categories defined in the system.

Parameters
None
ZENworks Service Desk Developer Resources 37

Return Value
This API returns a HashMap containing a list of string values including the Category ID and the
corresponding string value.

1.6.21 Get Item Type For Category

Syntax
getItemTypesForCategory (String categoryId)

Description
This API returns a list of all the Item Types that exist in the system for the specified Category ID.

Parameters
The following are the input parameters for this API:

1. categoryId: The unique category Id for which item type has to be retrieved.

Return Value
This API returns a HashMap containing a list of string values including the Item Type ID and the
corresponding string value.

1.6.22 Create Item Type

Syntax
createItemType (String itemTypeName, String incidentTeamID, String problemTeamID, String
changeTeamID, String requestTeamID, String manufacturerName, String categoryID)

Description
This API creates an ItemType (product) based on the name, the provided support teams, the
manufacturer (which will be created if it doesn’t exist) and the Category ID which is returned by
getItemCategories().

Parameters
The following are the input parameters for this API:

1. itemTypeName: A name for the Item Type
2. incidentTeamID: The default Incident Team Id for this Item Type
3. problemTeamID: The default Problem Team Id for this Item Type
4. changeTeamID: The default Change Team Id for this Item Type
38 ZENworks Service Desk Developer Resources

5. requestTeamID: The default Service Request Team Id for this Item Type
6. manufacturerName:The name of Manufacturer (created if not available)
7. categoryId: The default categoryId to associate the new Item Type

Return Value
None

1.6.23 Get Item Type

Syntax
getItemType (String itemTypeId)

Description
This API returns item type details of the specified item type id. This API exists as a quick means to
determine what category an item type is defined as.

Parameters
The following are the input parameters for this API:

1. itemTypeId: The unique item type Id for which details have to be retrieved.

Return Value
This API returns value is a HashMap containing the item type name and the category name.

1.6.24 Get Item Type

Syntax
getItemType (String itemTypeId)

Description
This API returns item type details of the specified item type id. This API exists as a quick means to
determine what category an item type is defined as.

Parameters
The following are the input parameters for this API:

1. itemTypeId: The unique item type Id for which details have to be retrieved.
ZENworks Service Desk Developer Resources 39

Return Value
This API returns value is a HashMap containing the item type name and the category name.

1.6.25 Get Item Relationship Type

Syntax
getItemRelationshipTypes()

Description
This API returns all the relationships, along with their class and a marker to denote inherited
ownership.

Parameters
None

Return Value
The return value format is *RelationName [RelationClass] (the asterix will not be present if
ownership is not inherited). The Key to the HashMap is the relationTypeId, which needs to be passed
into the createItemRelationship() function (below).

1.6.26 Create Item Relationships

Syntax
createItemRelationship(String fromItemId, String toItemId, String relationTypeId)

Description
This API is used to create a new relationship if it does not exist.

Parameters
The following are the input parameters for this API:

1. fromItemId: The unique Id of the source Item to create a relationship with parent
2. toItemId: The unique Id of the child Item to create the relationship
3. relationTypeId: The Id returned by getItemRelationshipTypes() function signifying the type of

relationship to create
40 ZENworks Service Desk Developer Resources

Return Value
None

1.6.27 Delete Item Relationships

Syntax
deleteItemRelationship (String fromItemId, String toItemId, String relationTypeId)

Description
This API is used to delete the relationship.

Parameters
The following are the input parameters for this API:

1. fromItemId: The unique Id of the source Item
2. toItemId: The unique Id of the child Item
3. relationTypeId: The Id returned by getItemRelationshipTypes() function signifying the type of

relationship

Return Value
None

1.6.28 Get Item Relationships

Syntax
getItemRelationships (String itemNumber)

Description
This API returns all the related items for the given itemNumber.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique item number to identify the relationships for.

Return Value
This API returns a HashMap containing the Item Number of the related Item and a Relationship ID.
ZENworks Service Desk Developer Resources 41

1.6.29 Get Incident Teams

Syntax
getIncidentTeams()

Description
This API returns the Teams for the Incident process (1000).

Parameters
None

Return Value
None

1.6.30 Get Problem Teams

Syntax
getProblemTeams()

Description
This API returns the Teams for the Problem process (2000).

Parameters
None

Return Value
None

1.6.31 Get Change Teams

Syntax
getChangeTeams()

Description
This API returns the Teams for the Change process (3000).
42 ZENworks Service Desk Developer Resources

Parameters
None

Return Value
None

1.6.32 Get Service Request Teams

Syntax
getServiceRequestTeams()

Description
This API returns the Teams for the Service Request process (7000).

Parameters
None

Return Value
None

1.7 Request API
 Section 1.7.1, “Create Incident / Change Request / Service Request,” on page 44
 Section 1.7.2, “Create Incident / Change Request / Service Request (for a Customer),” on

page 45
 Section 1.7.3, “Get Classifications,” on page 46
 Section 1.7.4, “Get Subject,” on page 47
 Section 1.7.5, “Get Description,” on page 48
 Section 1.7.6, “Get Request Count By Status,” on page 48
 Section 1.7.7, “Get Requests By Status,” on page 48
 Section 1.7.8, “Get Request Detail,” on page 49
 Section 1.7.9, “Get Public Notes,” on page 51
 Section 1.7.10, “Get Notes,” on page 51
 Section 1.7.11, “Get Notes Detail,” on page 51
 Section 1.7.12, “Get Note Content,” on page 52
 Section 1.7.13, “Update Request,” on page 52
 Section 1.7.14, “Find Incident / Change Request / Service Request,” on page 53
ZENworks Service Desk Developer Resources 43

 Section 1.7.15, “Add Note To Request,” on page 54
 Section 1.7.16, “Close Request,” on page 54
 Section 1.7.17, “Get Response Templates,” on page 55
 Section 1.7.18, “Get Response Templates Content,” on page 55
 Section 1.7.19, “Get My Filters,” on page 56
 Section 1.7.20, “Get My Task Count,” on page 56
 Section 1.7.21, “Get My Tasks,” on page 57
 Section 1.7.22, “Get Attachments,” on page 58
 Section 1.7.23, “Get Incident States,” on page 59
 Section 1.7.24, “Get Problem States,” on page 59
 Section 1.7.25, “Get Change States,” on page 59
 Section 1.7.26, “Get Service Request States,” on page 60
 Section 1.7.27, “Get Next States,” on page 60

1.7.1 Create Incident / Change Request / Service Request

Syntax
createIncident (String itemNumber, String classificationId, String subject, String description,
HashMap customFieldValues)

createChangeRequest (String itemNumber, String classificationId, String subject, String description,
HashMap customFieldValues)

createServiceRequest (String itemNumber, String classificationId, String subject, String description,
HashMap customFieldValues)

Description
This API is used to create an Incident, Change Request or Service Request for the logged in User.
Simply supply the function with the number of the Item you wish to raise an Incident, Change or
Service Request against, the ID of the Classification the Incident falls under and a text description of
the problem.

If custom fields are enabled for the Request type being created, these values need to be passed into
the customFieldValues HashMap, with keys custom1 through to custom5.

The Item Number and Classification must exist in this function’s derived lists for the Request to be
successfully created.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique Item Number used for the basis of this request.
44 ZENworks Service Desk Developer Resources

2. classificationId: The Item classification Id to use for this request. Use getClassifications(String
itemNumber) for a list of classifications available for this item.

3. subject: The subject line of this new request.
4. description: The description of this request.
5. customFieldValues: A HashMap of values with keys custom1 through custom5.

NOTE: All three arguments (‘itemNumber,’ ‘classificationNumber’ and ‘Description’) are required.
Omitting any of the three will result in failure and a message explaining the circumstances.

Return Value
This API returns a HashMap containing two fields: success and message.

The value returned in the success field will be a string representation of a boolean (true or false)
indicating whether or not the Request’s creation attempt was successful.

If a Request was successfully created (that is the success field is true), the value returned i the
message field will be a String representation of the new Request’s ID number.

If the process fails for any reason (that is. the success field is false), the message field will contain a
text message explaining why the failure occurred.

1.7.2 Create Incident / Change Request / Service Request (for a
Customer)

Syntax
createIncidentCustomer (String customerId, String itemNumber, String classificationId, String
subject, String description, HashMap customFieldValues)

createIncidentDates(String customerId, String itemNumber, String classificationId, String subject,
String description, HashMap customFieldValues, String reportDate, String closeDate, String
closingTechId)

createChangeRequestCustomer (String customerId, String itemNumber, String classificationId, String
subject, String description, HashMap customFieldValues)

createServiceRequestCustomer (String customerId, String itemNumber, String classificationId, String
subject, String description, HashMap customFieldValues)

Description
This API is used to create an Incident, Change Request or Service Request for a Customer created
from the createCustomer() function. Provide the Customer ID, the Item Number you wish to raise
the Request against, the ID of the Classification the Request falls under and a text description of the
problem.

If custom fields are enabled for the Request type being created, these values need to be passed into
the customFieldValues HashMap, with keys custom1 through to custom5.
ZENworks Service Desk Developer Resources 45

The Item Number and Classification must exist in this function’s derived lists for the Request to be
successfully created.

Parameters
The following are the input parameters for this API:

1. customerId: The unique Customer Id to create the request against.
2. itemNumber: The unique Item Number used for the basis of this request.
3. classificationId: The Item classification Id to use for this request. Use getClassifications(String

itemNumber) for a list of classifications available for this item.
4. subject: The subject line of this new request.
5. description: The description of this request.
6. customFieldValues: A HashMap of values with keys custom1 through custom5.
7. reportDate: The date the request will be initially recorded. Date must be formatted as yyyy-mm-

dd hh:mm.
8. closeDate: The date the request should be recorded as closed. Date must be formatted as yyyy-

mm-dd hh:mm.
9. closingTechId: The id of the technician that closed the request. The closingTechId if set will be

used in conjunction with the closeDate to set the technician to credit for the closure.

NOTE: All four arguments (‘customerId’, ‘itemNumber,’ ‘classificationNumber’ and ‘Description’) are
required.

reportDate and closeDate must be formatted as ‘yyyy-mm-dd hh:mm’ strings to be correctly parsed
and will set the dates the request was logged and closed, setting the appropriate times against the
SLA. This can be combined with adding incident notes to import legacy data into the system.

Return Value
This API returns a HashMap containing two fields: success and message.

The value returned in the success field will be a string representation of a boolean (true or false)
indicating whether or not the Request’s creation attempt was successful.

If a Request was successfully created (that is the success field is true), the value returned i the
message field will be a String representation of the new Incidents’s ID number.

If the process fails for any reason (that is. the success field is false), the message field will contain a
text message explaining why the failure occurred.

1.7.3 Get Classifications

Syntax
getClassifications (String itemNumber)
46 ZENworks Service Desk Developer Resources

Description
This API returns a list of all the classifications that exist in the system for the selected item type.

Parameters
The following are the input parameters for this API:

1. itemNumber: The unique ItemNumber to retrieve classifications from.

Return Value
This API returns a HashMap that contains the list of Classification IDs as field names. Each field has a
String value containing the name of the Classification. In Service Desk, Classifications are grouped
into a hierarchical tree. The list returned by ‘getClassifications’ will be ordered according to the
hierarchical tree as it would appear in the application.

In the event that no Classifications are found, only the ‘message’ field will be present and will
contain a text message explaining that no Classifications were found.

Once you have the names of the fields (iter.next() – Classification ID numbers in the above example)
you can then use them to look up the names of the Classifications associated with them in the
HashMap.

1.7.4 Get Subject

Syntax
getSubject (String requestId)

Description
This API returns a HashMap containing the ‘subject’ for the provided Request ID.

Parameters
The following are the input parameters for this API:

1. requestId: The unique id of the request to retrieve subject from.

Return Value
None
ZENworks Service Desk Developer Resources 47

1.7.5 Get Description

Syntax
getDescription (String requestId)

Description
This API returns a HashMap containing the ‘description’ for the provided Request ID.

Parameters
The following are the input parameters for this API:

1. requestId: The unique of the request to retrieve description from.

Return Value
None

1.7.6 Get Request Count By Status

Syntax
getRequestCountByStatus (String statusId)

Description
This API returns a HashMap containing the ‘requestCount’ for the provided Status ID.

Parameters
The following are the input parameters for this API:

1. statusId: The id of the status to retrieve the request count for. This is the a synonym for the
workflow status.

Return Value
None

1.7.7 Get Requests By Status

Syntax
getRequestsByStatus (String statusId, String pageNo)
48 ZENworks Service Desk Developer Resources

Description
This API returns a HashMap containing the ‘requestId’ as a key and the description as the value, for
all Requests in a Status with the given statusId. The returned HashMap also contains the success flag
to deal with Requests that can’t be processed for various reasons, along with a message to state the
reason.

Parameters
The following are the input parameters for this API:

1. statusId: The id of the status to return requests against.
2. pageNo: The page number to retrieve. These are returned 100 requests at a time.

Return Value
None

1.7.8 Get Request Detail

Syntax
getRequestDetail (String requestId)

Description
This API returns a HashMap containing various fields that make up the request. The returned
HashMap also contains the success flag to deal with requests that can’t be processed for various
reasons, along with a message to state the reason.

Parameters
The following are the input parameters for this API:

1. requestId: The unique request Id of the request to return details from.

Return Value
The API returns a HashMap contains a success flag and the values for the keys of the given fields:

Key Description

customer Customers full name

customerId Customer ID

customerPhone Customers contact phone number.

orgUnit Organizational Unit display name
ZENworks Service Desk Developer Resources 49

orgUnitId Organizational Unit ID

item Configuration Item name

itemId Configuration Item ID

itemNumber Configuration Item Number as displayed to users.

itemStatus Configuration Item status.

itemCriticality Configuration Item criticality.

status Request status

statusId Request status ID

statusEntry If the request is at an entry state of the workflow

statusExit If the request is at an exit state of the workflow

statusIsApproval If the request is in an approval status state on the
workflow

classification Request classification

classificationId Request classification ID

impact Request impact

impactId Request impact ID

urgency Request urgency

urgencyId Request urgency ID

priorityType Request priority

priorityTypeId Request priority ID

technician Assigned Technician

team Assigned Team

teamId Assigned Team ID

dateCreated Request creation date (MM/dd/yyyy HH:mm)

dateClosed Request closed date (MM/dd/yyyy HH:mm)

dateDue Request due date (MM/dd/yyyy HH:mm)

lastUpdated Date request was last updated (MM/dd/yyyy HH:mm)

type Process type

workflow The current workflow

workflowId The current workflow Id

editable If the request is editable by the current user based on
team membership and other permissions

Key Description
50 ZENworks Service Desk Developer Resources

1.7.9 Get Public Notes

Syntax
getPublicNotes (String requestId)

Description
This API returns a list of all the public Notes for a given requestId. The returned HashMap contains
the Note ID and Note Date.

Parameters
The following are the input parameters for this API:

1. requestId: The unique Request Id from which to retrieve notes.

Return Value
None

1.7.10 Get Notes

Syntax
getNotes (String requestId)

Description
This API returns a list of all the Notes for a given requestId. The returned HashMap contains the Note
ID and Note Date.

Parameters
The following are the input parameters for this API:

1. requestId: The unique Request Id from which to retrieve notes.

Return Value
None

1.7.11 Get Notes Detail

Syntax
getNotesDetail (String requestId, int pageSize, int pageNumber)
ZENworks Service Desk Developer Resources 51

Description
This API returns a list of all the Notes for a given requestId. The page size and page number can also
be specified. The returned HashMap contains the Note ID, Note Date, Private Note Flag, Author and
the Note Content.

Parameters
The following are the input parameters for this API:

1. requestId: The unique Request Id from which to retrieve notes.
2. pageSize: The number of elements to return for each page.
3. pageNumber: The page number to retrieve with given pageSize.

Return Value
None

1.7.12 Get Note Content

Syntax
getNoteContent (String requestId, String noteId)

Description
This API returns the content of the Note for the provided Request ID and Note ID.

Parameters
The following are the input parameters for this API:

1. requestId: The unique Request Id from which to retrieve note content.
2. noteId: The note id to retrieve.

Return Value
None

1.7.13 Update Request

Syntax
updateRequest (String requestId, HashMap fieldValues)
52 ZENworks Service Desk Developer Resources

Description
This API is used to update a request of any type (Incident, Change Request or Service Request).

Parameters
The following are the input parameters for this API:

1. requestId: The Request Id to be updated
2. fieldValues: The Map of Strings to Strings. Valid keys are: customerId, itemId, statusId,

classificationId, impactId, urgencyId, custom1, custom2, custom3, custom4 and custom5. (Since
6.1) typeCustom1, typeCustom2, typeCustom3, typeCustom4 and typeCustom5.

Return Value
This API returns a HashMap containing a success flag to deal with Requests that can not be
processed for various reasons, along with a message to state the reason.

1.7.14 Find Incident / Change Request / Service Request

Syntax
findIncident (String itemNumber, String classificationId, HashMap fieldValues)

findChangeRequest (String itemNumber, String classificationId, HashMap fieldValues)

findServiceRequest (String itemNumber, String classificationId, HashMap fieldValues)

Description
This API is used to find an Incident, Change Request or Service Request. Simply supply the function
with the parameters desired to search against and process the resultant list of requests that are
returned. The ‘fieldValues’ parameter can take all the arguments that are used in the
updateRequestDetail method above.

Parameters
The following are the input parameters for this API:

1. itemNumber: Find and Incident based upon on a unique item number
2. classificationId: Find an incident based on this classification Id.
3. fieldValues: A haspmap of fieldValues that can be searched. Takes the same keys as

updateRequestDetail.

Return Value
This API returns a HashMap containing the success flag and a message.
ZENworks Service Desk Developer Resources 53

1.7.15 Add Note To Request

Syntax
addNoteToRequest (String requestId, String note)

addNoteToRequest (String requestId, String note, String privateNdx)

addNoteToRequest (String requestId, String note, String privateNdx, String timeMins)

Description
This API is used to add a note to a request by members of the assigned team, or the customer of the
request. If the privateNdx flag is specified, the value should either be set to 1 or 0, to define the note
as being private or public respectively. Time can be assigned to this note for timesheet reporting by
using the associated method and adding the time in minutes.

Parameters
The following are the input parameters for this API:

1. requestId: The requestId to add the note to.
2. note: The note contents.
3. priateNdx: A flag to define the note as being private (1) or public (0).
4. timeMins: The time in minutes to add to this note for timesheet reporting and billing.

Return Value
This API returns a HashMap containing the success flag to deal with requests that can’t be processed
for various reasons, along with a message to state the reason. If privateNdx is not specified, added
notes will be visible to the public.

1.7.16 Close Request

Syntax
closeRequest (String requestId, String reason)

Description
This API is used to set the Request to the default closed state of the assigned Workflow and add the
supplied reason as the solution (if defined), and the target Request is an Incident or Service Request.
54 ZENworks Service Desk Developer Resources

Parameters
The following are the input parameters for this API:

1. requestId: The request Id to be closed.
2. reason: The reason for closing this request.

Return Value
This API returns a HashMap containing the success flag and a reason field.

1.7.17 Get Response Templates

Syntax
getResponseTemplates (String requestId)

Description
This API returns a list of valid response templates for this request.

Parameters
The following are the input parameters for this API:

1. requestId: The request Id to retrieve the response templates for.

Return Value
This API returns the responseId as the key and the template Title as the value in the response. Use
getResponseTemplateContent to retrieve the actual content of a response based on a returned ID
from this call.

1.7.18 Get Response Templates Content

Syntax
getResponseTemplateContent (String responseId)

Description
This API returns the actual contents of a response template by ID.
ZENworks Service Desk Developer Resources 55

Parameters
The following are the input parameters for this API:

1. responseId: The response Id of the template to retrieve.

Return Value
Use getResponseTemplates to get a list of valid ID’s you can use for this call. Note that the text will be
HTML formatted if the text was styled using the rich text editor.

1.7.19 Get My Filters

Syntax
getMyFilters ()

Description
This API returns a list of Filters by Id and name for the current logged in user.

Parameters
None

Return Value
This API returns a HashMap containing the filter Id as the key and filter name as the value.

1.7.20 Get My Task Count

Syntax
getMyTaskCount ()

getMyTaskCount (int filterId)

Description
This API retrieves the number of currently active and assigned tasks to the current logged in user. If a
filterId is passed in then it will return the number of requests with the given filter applied.

Parameters
The following are the input parameters for this API:

1. filterId: The unique filter Id to use to return the number of requests available with that filter.
56 ZENworks Service Desk Developer Resources

Return Value
This API returns a HashMap containing a success flag and the number of tasks.

1.7.21 Get My Tasks

Syntax
getMyTasks (int pageSize, int pageNumber, List fields, HashMap sortMap)

getMyTasks (int filterId, int pageSize, int pageNumber, List fields, HashMap sortMap)

Description
This API retrieves a list of tasks based on the data sent to the web-service function. The returned
HashMap contains a success flag and the values for the keys of the given fields.

Requests will be sorted by their ID in ascending order if no sortMap is defined. The sortMap accepts
all the above fields as keys. Acceptable values include:

1. ASC – perform an ascending sort on the field
2. DESC- perform a descending sort on the field

Key Description

customer Customers full name

orgUnit Organizational Unit display name

item Item number

status Status name

classification Classification

impact Impact name

urgency Urgency name

priorityType Priority name

team Team name

type Process type

status status name

dateCreated Request creation date (MM/dd/yyyy HH:mm)

dateClosed Request closed date (MM/dd/yyyy HH:mm)

dateDue Request due date (MM/dd/yyyy HH:mm)

lastUpdated Date request was last updated (MM/dd/yyyy HH:mm)

subject Request subject
ZENworks Service Desk Developer Resources 57

Parameters
The following are the input parameters for this API:

1. filterId: The filterId to apply when returning the tasks.
2. pageSize: The maximum number of tasks that can be returned per query
3. pageNumber In situations where there are more tasks than can fit on a page size, this number

specifies the next set of tasks to be retrieved.
4. fields Specifies the field data whose values will be retrieved from the task.
5. sortMap Specifies the fields on which to sort the retrieved tasks.

Return Value
This API returns a HashMap containing a success flag and the number of tasks.

1.7.22 Get Attachments

Syntax
getAttachments (String requestId)

Description
This API retrieves a list of attachments for the defined requestId as a Name/URL as a key/value pair.
As long as the session is valid you can then stream the file directly to the client using the specified
URL.

Parameters
The following are the input parameters for this API:

1. requestId: The request Id for which attachments have to be got.

Return Value
None

description Request description

custom1…custom5 Request custom fields

typeCustom1…typeCustom5 Item type custom fields

Key Description
58 ZENworks Service Desk Developer Resources

1.7.23 Get Incident States

Syntax
getIncidentStates ()

Description
This API returns all Workflow States allowed for Incidents in a HashMap, keyed on ID and name
formatted as ‘workflow – state name’.

Parameters
None

Return Value
None

1.7.24 Get Problem States

Syntax
getProblemStates ()

Description
This API returns all Workflow States allowed for Problems in a HashMap, keyed on ID and name
formatted as ‘workflow – state name’.

Parameters
None

Return Value
None

1.7.25 Get Change States

Syntax
getChangeRequestStates ()
ZENworks Service Desk Developer Resources 59

Description
This API returns all Workflow States allowed for Change Requests in a HashMap, keyed on ID and
name formatted as ‘workflow – state name’.

Parameters
None

Return Value
None

1.7.26 Get Service Request States

Syntax
getServiceRequestStates ()

Description
This API returns all Workflow States allowed for Service Requests in a HashMap, keyed on ID and
name formatted as ‘workflow – state name’.

Parameters
None

Return Value
None

1.7.27 Get Next States

Syntax
getNextStates (String requestId)

Description
This API returns the next available Workflow States allowed for the identified request in a HashMap,
keyed on ID and name formatted as ‘state name’.
60 ZENworks Service Desk Developer Resources

Parameters
The following are the input parameters for this API:

1. requestId: The request Id for which attachments have to be got.

Return Value
None

1.8 Organization API
Organizational Units are defined as a two tier structure, reflecting a company-department structure.
The following API’s require the user to pass the Org Unit Name they are editing, along with the
parent Org Unit. An empty string can be provided when a top level (Company) Org Unit is being
created and/or edited.

 Section 1.8.1, “Create Org Unit,” on page 61
 Section 1.8.2, “Get Org Unit Details,” on page 62
 Section 1.8.3, “Update Org Unit Details,” on page 62
 Section 1.8.4, “Rename Org Unit,” on page 63
 Section 1.8.5, “Find Org Unit,” on page 63
 Section 1.8.6, “Delete Org Unit,” on page 64

1.8.1 Create Org Unit

Syntax
createOrgUnit (String name, String parent, HashMap fieldValues)

Description
This API is used to create an Organizational Unit. The Org Unit Name, the parent Org Unit Name and
a map of field values are the inputs.

If the Org Unit being created is a company, pass an empty string as the parent field. If creating a
department (or child org unit) the parent must already exist or an error message will be returned.

The complete list of fields that can be supplied reflect the fields returned from the get method
below – but names and contact information are the general values, along with any custom fields that
may be defined.

Parameters
The following are the input parameters for this API:

1. name: The name of the Org unit to be created.
ZENworks Service Desk Developer Resources 61

2. parent: The name of the parent if present.
3. fieldValues: The map of field values.

Return Value
This API returns a Map containing the success field and a message field if the method call failed.

1.8.2 Get Org Unit Details

Syntax
getOrgUnitDetails (String name, String parent)

getOrgUnitDetails (String orgUnitId)

Description
This API is used to get details of an Organizational Unit. The Org Unit id or Org Unit Name and a map
of field values are the inputs.

Parameters
The following are the input parameters for this API:

1. name: The name of the Org unit.
2. parent: The name of the parent of the Org Unit if there are any.
3. orgUnitId: The Org Unit Id to retrieve details from.

Return Value
This API returns a HashMap of name value pairs representing the fields of the company or
department. The valid keys for organization web services are: address, addressTwo, city, state,
country, zip, phone, url, primaryContact.

The returned map will also contain a success field. If there was a problem with the execution there
will be a message field to explain what the issue was.

1.8.3 Update Org Unit Details

Syntax
updateOrgUnit (String name, String parent, HashMap fieldValues)

Description
This API updates the organizational unit and a parameter map containing the fields to update and
the new values for those fields.
62 ZENworks Service Desk Developer Resources

Parameters
The following are the input parameters for this API:

1. name: The name of the Org unit
2. parent: The name of the parent of the Org Unit if there are any
3. fieldValues: The map of the field values.

Return Value
This API returns a HashMap containing the success field and a message field if the method call failed.

1.8.4 Rename Org Unit

Syntax
renameOrgUnit (String name, String parent, String newName)

Description
This API renames the organizational unit with the new name. The two strings name and parent are
used to identify the organizational unit where a parent value of an empty string defines a company,
or content in both fields defining a department.

Parameters
The following are the input parameters for this API:

1. name: The name of the Org unit
2. parent: The name of the parent of the Org Unit if there are any
3. newname: The new name of the Org unit.

Return Value
This API returns a HashMap containing the success field and a message field if the method call failed.

1.8.5 Find Org Unit

Syntax
findOrgUnit (String name, String parent, HashMap fieldValues)
ZENworks Service Desk Developer Resources 63

Description
This API is used to search for an org unit. Valid keys for the map include ‘name’ and ‘parent’ along
with all the parameters defined in the org unit details method: address, addressTwo, city, state,
country, zip, phone, url, primaryContact.

Parameters
The following are the input parameters for this API:

1. name: The name of the Org unit
2. parent: The name of the parent of the Org Unit if there are any
3. fieldValues: The map of the field values.

Return Value
This API returns a HashMap containing the ID’s and the display strings of the org units that match the
criteria along with the success field and a message field if the method call failed.

1.8.6 Delete Org Unit

Syntax
deleteOrgUnit (String orgUnitId)

Description
This API flags an Org Unit as deleted.

Parameters
The following are the input parameters for this API:

1. orgUnitId: The Org unit id to be deleted.

Return Value
None

1.9 Purchase Order API
 Section 1.9.1, “Create Purchase Order,” on page 65
 Section 1.9.2, “Create Lease Purchase Order,” on page 65
 Section 1.9.3, “Deliver Purchase Order,” on page 66
 Section 1.9.4, “Get Fields For Purchase Order,” on page 66
 Section 1.9.5, “Delete Purchase Order,” on page 67
64 ZENworks Service Desk Developer Resources

1.9.1 Create Purchase Order

Syntax
createPurchaseOrder (String vendorName, String originatorId, String deliverToId, HashMap
fieldValues, HashMap lineItems)

Description
This API is used to create a new purchase order in the financial module.

Parameters
The following are the input parameters for this API:

1. vendorName: The name of the vendor to create purchase order against.
2. originatorId: The Id of the client originating the purchase order.
3. deliverToId: The Id of the client receiving the order.
4. fieldValues: The map of field values which takes key custom1…custom5 and their associated

values
5. lineItems: The map of field values which takes keys and values, itemtype (id), partnumber,

quantity (optional, defaults to 1), price.

Return Value
None

1.9.2 Create Lease Purchase Order

Syntax
createcreateLeasePurchaseOrder PurchaseOrder (String vendorName, String originatorId, String
deliverToId, HashMap fieldValues, HashMap lineItems, String leaseDurationId)

Description
This API is used to create a new lease purchase order in the financial module.

Parameters
The following are the input parameters for this API:

1. vendorName: The name of the vendor to create purchase order against.
2. originatorId: The Id of the client originating the purchase order.
3. deliverToId: The Id of the client receiving the order.
ZENworks Service Desk Developer Resources 65

4. fieldValues: The map of field values which takes key custom1…custom5 and their associated
values

5. lineItems: The map of field values which takes keys and values, itemtype (id), partnumber,
quantity (optional, defaults to 1), price, leaseDurationId.

Return Value
None

1.9.3 Deliver Purchase Order

Syntax
deliverPurchaseOrder (String poNumber)

Description
This API is used to confirm delivery of a purchase order in the system.

Parameters
The following are the input parameters for this API:

1. poNumber: The number of the purchase order.

Return Value
None

1.9.4 Get Fields For Purchase Order

Syntax
getFieldsForPurchaseOrder (String poNumber)

Description
This API returns the fields of a purchase order in the system.

Parameters
The following are the input parameters for this API:

1. poNumber: The number of the purchase order.
66 ZENworks Service Desk Developer Resources

Return Value
None

1.9.5 Delete Purchase Order

Syntax
deletePurchaseOrder (String poNumber)

Description
This API is used to delete a purchase order.

Parameters
The following are the input parameters for this API:

1. poNumber: The number of the purchase order.

Return Value
None

1.10 Localizing Service Desk ITSM
Internationalization is the process of designing an application so that it can be adapted to various
languages and regions without engineering changes. Sometimes the term internationalization is
abbreviated as i18n, because there are 18 letters between the first i and the last n.

The Service Desk product suite is an internationalized program that has the following characteristics:

 With the addition of localized data, the same executable can run worldwide.
 Textual elements, such as status messages and the GUI component labels, are not hard coded in

the program. Instead they are stored outside the source code and retrieved dynamically.
 Support for new languages does not require re-compilation.
 Culturally-dependent data, such as dates and currencies, appear in formats that conform to the

end user’s region and language.
 Service Desk can be localized quickly.

Localization is the process of adapting software for a specific region or language by adding locale-
specific components and translating text. The term localization is often abbreviated as l10n, because
there are 10 letters between the l and the n.
ZENworks Service Desk Developer Resources 67

The Service Desk internationalized framework is very intuitive and flexible, allowing Users to localize
it for a particular language and character encoding scheme.

 Section 1.10.1, “Getting Started,” on page 68
 Section 1.10.2, “Customizing Strings,” on page 68
 Section 1.10.3, “Simple Messages,” on page 68
 Section 1.10.4, “Compound Messages,” on page 69
 Section 1.10.5, “Locales,” on page 69

1.10.1 Getting Started
The primary task of Users performing localization of the Service Desk application is to translate the
user interface elements in the external text file – LiveTime.properties.

The following steps guide you through the localization process. We will assume a French localization
for this example, which uses the ISO-8859-1 character set.

1 Ensure you have the appropriate character set installed on your Desktop’s Operating System.
The localization file and rendering will both require the character set to be available for data
entry and data presentation.

2 Ensure your RDBMS has been created using the appropriate character set, usually UTF-8. This is
required so that French data entry can be successfully saved and retrieved from the database.

3 Specify the correct character set encoding for Service Desk. Edit the ‘Properties’ file (/
CONTAINER_APPS_PATH>/LiveTime/WEB-INF/LiveTime.woa/Contents/Resources folder) and
specify the character set to use for presentation to the end user. This character set will be sent
to the end users to control presentation in both the user interface and outbound email.

1.10.2 Customizing Strings
The LiveTime.properties file (/CONTAINER_APPS_PATH>/LiveTime/WEB-INF/LiveTime.woa/
Contents/Resources folder) stores the externalized user interface content. This file is stored in plain
text. The names of the localized files do follow a standard. In our example of French,
livetime_fr.properties was the resultant file name. The fr component of this name comes from iso
639-1. The default (English) is encoded using the ISO-8859-1 character set. You can create
alternative versions of this file in any text editor, that allows the file to be saved in the necessary
character set.

The first step in creating a local version of this file is to save a copy of it representing the appropriate
language. Being a French translation, there is no need to worry about the file encoding, so simply
save a copy of the file called livetime_fr.properties.

1.10.3 Simple Messages
The copy of this file consists of a collection of name-value pairs, each are broken up into clusters
representing user interface components. For example:

ClassName.greetings=Hello
ClassName.farewell=Goodbye
68 ZENworks Service Desk Developer Resources

ClassName.inquiry=How are you?
The name or key section (ClassName.greetings) of these strings is of little relevance to the end user.
They are simply markers inside the application representing where each string goes.

The value component of these pairs (Hello) represents the corresponding user interface value. The
(French) translator can safely edit these values and they will appear within Service Desk.

ClassName.greetings=Bonjour.
ClassName.farewell=Au revoir.
ClassName.inquiry=Comment allez-vous?

1.10.4 Compound Messages
Compound messages contain variable data – that is data that Service Desk will substitute into the
message at run time. For example, given the message Hello Sunshine, the string Sunshine may vary.
This message is difficult to translate because the position of the string in the sentence is not the
same in all languages, or the value may need to be generated by Service Desk based on some
business logic.

Where this substitution is necessary, the localized strings will have a set of braces containing an id
number (a substitution variable). These blocks will be replaced at run time by Service Desk and are
identified by their presence. The localized version of a given String must contain the same number of
substitution variables.

For example:

ClassName.helloSunshine=hello {0}
This will render as hello sunshine?, however we could modify this message to read sunshine, hello
by doing this:

ClassName.helloSunshine={0}, hello

1.10.5 Locales
The LiveTimeLocales.xml file (/CONTAINER_APPS_PATH>/LiveTime/WEB-INF/LiveTime.woa/
Contents/Resources folder) defines the language code and charset used in order to process the
strings defined in the external properties file.

Typically, this will be the charset used when saving the external properties file. By default the
following language locale is selected:

<LOCALE language="en" country="" charset="ISO-8859-1"/>
To enable our French external properties file to behave correctly, we will need to uncomment the
following line:

<LOCALE language="fr" country="" charset="UTF-8"/>
This will enable the application to use both English and French based on the user's browser and
operating system settings. For convenience, many values are already supplied in this file, you need to
uncomment the necessary entry.
ZENworks Service Desk Developer Resources 69

If an entry for your locale language doesn’t exist, then you can define it in this file by supplying the
language code, country code, and charset, as illustrated in the above examples.

Instructions for setting browser locales is outside the scope of this document as each browser/OS
combo handles this differently.

1.11 SOA Guide
A Service-oriented architecture (SOA) is software built using loosely coupled software services to
support the requirements of business processes and software users. Network resources in a SOA
environment are made available as independent services that can be accessed irrespective of the
underlying platform implementation.

More importantly, SOA architecture enables the creation of applications that are built by combining
loosely coupled and interoperable services. These services inter-operate based on a formal
definition (or contract, e.g., WSDL) that is independent of the underlying platform and programming
language, and the interface definition hides the implementation of the language- specific service.
SOA-based systems can therefore be independent of development technologies and platforms (such
as Java, .NET etc), and can be made to interact between platforms.

SOA can support integration and consolidation of activities within complex enterprise systems, but
does not specify or provide a methodology or framework for documenting capabilities or services.

Service Desk’s Web Services Interface enables third party applications to interact directly with the
Service Desk application in a secure and controlled fashion. The interface is based on the SOAP
standard for Web Services. For more information about SOAP Web Services, please see W3C.

SOAP Messages are essentially well formed XML blocks sent using http.

All examples herein are given in Java using the Apache Axis web services library. You can also do your
own parsing using XML but that is out of scope for this document. Names throughout this document
are exclusive of any suffixes that will be added to names by Web Services Frameworks. The
framework will append the word ‘Request’ to any message sent to the Service Desk Web Services
Interface. Similarly, the word ‘Response’ will be appended to any message name returned to the
Customer.

The easiest way to use Web Services is through an API that will wrap the XML parsing and calling for
you. Most major Web Services from Google, Amazon and eBay operate this way. Several APIs exist
for SOAP but the most prevalent is Axis from the Apache Group. If you are not familiar with the Axis
API, please see the Axis User’s Guide. The Axis API Reference is also a useful guide if you are
interested.

Versions of Axis are available for both Java and C++. Web Services in the Service Desk application
conform to the SOAP specification, so there is no reason why you could not use the XML directly
from the server and parse it directly. This will require the description document that explains the
object types returned and provides other useful information. Use of the Web Services API via direct
XML parsing is outside the scope of this document.

While Axis is not required – the examples use Axis as it is one of the most common web services
API’s in use. Successful customer implementations have also been achieved using the XFire and CXF
API’s, .NET and Perl.
70 ZENworks Service Desk Developer Resources

Session management is equally as important when using web services as it is when using Service
Desk via the user interface. It is up to the user (or the client API) to maintain the http headers
returned from the authentication message so that state information is retained.

1.12 PHP Web Services
PHP is available as both a command line tool and web programming language and provides excellent
services for communicating using standard SOAP protocols. This article describes how to use a PHP
command line script to communicate directly with Service Desk.

With the widespread popularity of PHP for web programming, many people have expressed interest
in writing scripts to communicate with Service Desk’s Web Services rather than using more complex
languages like Java.

Many script languages now have plugins for working with Web Services. In this example we are going
to discuss PHP. Equally, you can achieve the same thing using languages like Perl.

In order to communicate with Service Desk’s web services you should have a thorough knowledge of
SOAP and also Service Desk’s Web Services API’s. Service Desk has a developers guide which details
each of the API calls and how to use them. What follows are scripts you can use to handle some of
the more difficult parts of communication. Notably session management.

The following code assumes that PHP is installed and running with the PHP SOAP extension. You will
note how the cookie is used to manage session state. Feel free to use these functions in your own
scripts to facilitate rapid prototyping of your own solutions to communicate directly with Service
Desk.

<?php
 /*
 LiveTime example PHP command line script for web services
 Requires the PHP SOAP extension to operate
 */

 $hostAddress = "www.host.com";
 $baseProduct = "LiveTime";
 $baseAddress = "/" . $baseProduct . "/WebObjects/" . $baseProduct .
".woa/ws/";
 $baseService = "http://" . $hostAddress . $baseAddress;

 function login($username,$password) {
 global $objClient;
 /*
 Setting "trace" will allow us to view the request that we are
making, after we have made it.
ZENworks Service Desk Developer Resources 71

 */
 # Connect to LiveTime Authenticate?wsdl
 # Use only technicians or supervisors
 $results = $objClient->connect($username, $password);

 //This will return an Associative Array
 $success = $results['success'];
 if ($success=="false") {
 echo $results['message'] . "n";
 exit();
 }
 echo "Login Successfuln";
 createSession();
 }

 function logout() {
 global $objClient;
 global $baseService;

 $objClient->SoapClient($baseService . "Authenticate?wsdl",
array('trace' => true));

 $results = $objClient->disconnect();
 //This will return an Associative Array
 $success = $results['success'];
 if ($success=="false") {
 echo $results['message'] . "n";
 exit();
 }
 echo "Logout Successfuln";
 exit();
 }

72 ZENworks Service Desk Developer Resources

 function createSession() {
 global $objClient;
 #
 # Retrieve the Last Response Header from the LiveTime server

 $responseHeader = $objClient->__getLastResponseHeaders();

 $sessionPos=strpos($responseHeader, "JSESSIONID=");

 if ($sessionPos === false) {
 echo "No session id was found. Exiting.n";
 exit();
 }
 //cookie will always be 32 bytes
 $cookie = substr($responseHeader,$sessionPos + 11,32);

 #
 # Set the Cookie name for the next request
 $objClient->__setCookie("JSESSIONID", $cookie);
 }

 function findUser($username,$email,$first,$last) {
 global $objClient;
 global $baseService;

 //switch to the customer api
 $objClient->SoapClient($baseService . "Customer?wsdl",
array('trace' => true));

 echo "Searching for " . $username . $email . $first . $last . "n";
 #
 # Call findCustomer, using an email address and echo out response
 # username, email, first, last
ZENworks Service Desk Developer Resources 73

 $results = $objClient->findCustomer($username,$email,$first,$last);
 $success = $results['success'];
 if ($success=="false") {
 echo $results['message'] . "n";
 return;
 }
 #if we have results lets show them
 #returns an array of arrays
 foreach(array_values($results) as $ess) {
 print_r($ess);
 }
 }
 //construct the soap client to create a connection and then login
 $objClient = new SoapClient($baseService . "Authenticate?wsdl",
array('trace' => true));
 //if using AD or LDAP you need to enter the Fully Qualified AD/LDAP
Domain
 //super@domain.mycompany.com
 login("super","super");
 findUser("","cbrown","","");
 //we are all done
 logout();
?>
In the example function above we first login using the connect method of Service Desk’s
Authenticate wsdl and this subsequently calls the createSession function. To maintain session we
grab the JSESSIONID from the response header and then extract the 32 byte cookie. We can now use
this cookie in subsequent web service calls to Service Desk. The complete sample code is available
for download. Do not forget to logout after completing all the tasks in your code.

Once you have developed your first few scripts you will see that it is possible to do anything you like
with the data you obtain from Service Desk. This can be used for coordinating information from
multiple data stores or live population of the CMDB from custom systems.
74 ZENworks Service Desk Developer Resources

1.13 Java Web Services
Java is the default language for Service Desk. There are many ways to program web services using
Java, as there is a rich infrastructure already present in the language. The high transactional rate and
scalability of the language makes it perfect for more complex Web Services applications, fault
tolerance and communication with other applications.

We have provided a link to the complete source code of a more complex application. Our Web
Services are based on Apache Axis 1.x in these examples for the greatest compatibility with existing
applications.

In order to communicate with Service Desk’s web services you should have a thorough knowledge of
SOAP and also Service Desk’s Web Services API’s. Service Desk has a User guide which details each of
the API calls and how to use them. What follows are scripts you can use to handle some of the more
difficult parts of communication. Notably session management.

package com.livetime.sample;
import com.livetime.ws.cust.Customer_PortType;
import com.livetime.ws.cust.Customer_Service;
import com.livetime.ws.cust.Customer_ServiceLocator;
public class CreateCustomer extends BaseClient {
 /* Customer Service URL */
 public static final String customerServiceURL = "http://10.0.1.11/
LiveTime/WebObjects/LiveTime.woa/ws/Customer";

 /* Constructor - doesn't need to do anything coz this is just a sample */
 public CreateCustomer() {

 }

 private boolean createCustomer() {
 java.net.URL custURL = null;

 try {
 // Service endpoint
 custURL = new java.net.URL(customerServiceURL);

 // Get handle to the service
ZENworks Service Desk Developer Resources 75

 Customer_Service service = new Customer_ServiceLocator();
 Customer_PortType port = service.getCustomer(custURL);

 // Call BaseClient method to populate persistent headers
 populateHeaders((javax.xml.rpc.Stub)port);

 // create properties you want to set for this person - properties you
may want to set here:

 // custom1 (String 255), custom2(String 255), custom3(String 255),
custom4(String 255), custom5(String 255),
 // aliases (comma separated list of email addresses), orgunit (String
- case insensitive match to a LiveTime org unit),
 // phone(String 32), phone2(String 32), phone3(String 32),
address(String 128), addressTwo(String 128), postalCode(String 32),
city(String 64),
 // country (Integer as String - must be id from getCountries() call),
state(Integer as String - must be id from getStatesForCountry(String
countryId) call)

 java.util.HashMap<String, String> properties = new
java.util.HashMap<String, String>();
 properties.put("phone", "+1 949 777 5800");
 properties.put("phone2", "+61 3 9620 7588");

 // So this is generally reusable without scrubbing database each time,
we add a random number after the username & email
 // wouldn't do this in the real world obviously - but I'll mention it
in case someone tries :p
 String suffix = Integer.toString((new Double(Math.random() *
1000000)).intValue());

 // username, email, first name, last name, properties (above)
 java.util.HashMap response = port.createCustomer("bob_" + suffix,
"bob_" + suffix + "@mycompany.com", "Bob", "Nelson", properties);

 // Just output stuff from here on
76 ZENworks Service Desk Developer Resources

 String successString = response.get("success").toString();
 boolean successful = Boolean.parseBoolean(successString);

 if(!successful) {
 System.out.println("Customer Creation failed: " + response);
 }
 else {
 System.out.println("Customer Creation succeeded: " + response);
 }

 return successful;
 }
 catch(Exception ex) {
 ex.printStackTrace();
 return false;
 }
 }

 // Entry point for execution
 public static void main(String[] args) {
 // create instance of this class
 CreateCustomer createCustomer = new CreateCustomer();
 // try and connect, if successful, create customer and logoug
 if(createCustomer.connect()) {
 // create the customer
 createCustomer.createCustomer();
 // logout
 createCustomer.disconnect();
 }
 }
}

ZENworks Service Desk Developer Resources 77

1.14 VB.NET and Service Desk ITSM
This article describes how to use a VB.NET script to communicate directly with Service Desk via Web
Services. When using .NET, the address of all the service names, needs to be prefixed with an _, to
utilize the newer .NET interfaces.

The service’s endpoint address will be the following:

http://HOST_NAME/LiveTime/WebObjects/LiveTime.woa/ws/_SERVICE

As such, the XML Descriptor of the service (WSDL) can be found here:

http://HOST_NAME/LiveTime/WebObjects/LiveTime.woa/ws/_SERVICE?wsdl

The methods for adding web services differs slightly between versions but the general steps are the
same. Using Visual Basic Express 2010, to add these into a solution, go to Project > Add Service
Reference, Select Advanced and then Add Web Reference. (A common mistake is to omit those last 2
buttons, which are required in the 2010 version). This can be repeated for each service URL required.

The web services commands that rely on authentication, require that the user logs in first using the
Connect command and then subsequent commands need to be part of the same session which was
instigated by a successful Connect command. This is done by ensuring the JSESSIONID cookie that is
set up when the Connect succeeds is then passed back to the server with each command required.

Here is a Windows Form example written in Visual Basic 2010 using .NET 4.0 as the reference basis,
although this should work with earlier versions too. Using the initial form that is generated, a button
was placed on the form to call that example code. It illustrates logging in, storing the JSESSIONID
cookie, adding that cookie to the next command before sending the next command.

Imports System.Net
Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Dim _Uri As New Uri("http://demo.livetime.com/LiveTimeOpen")
'This should match the address of the web services references added to the
solution
 Dim _InitialCookieContainer As New CookieContainer
 Dim _CookieContainer As New CookieContainer
 Dim _Cookie As New Cookie
 Dim _LoginSuccess As Boolean = False
 'Login
 Dim LTAuth As New LTAuthenticate._Authenticate 'LTAuthenticate is
the name given to the Authenticate web service of LiveTime in the solution
 Dim _auth_response() As LTAuthenticate.WsNameValuePair
 LTAuth.CookieContainer = _InitialCookieContainer
 _auth_response = LTAuth.connect("super", "super") 'Login details
78 ZENworks Service Desk Developer Resources

 For Each _response In _auth_response
 If _response.key = "success" And _response.value = "true" Then
 _LoginSuccess = True
 End If
 Next
 'If successfully logged in, store the JSESSIONID for subsequent use.
 'Alteranatively, all the initial cookies can be referenced without
extracting just the required JSESSIONID one but this example shows what is
required in LiveTime.
 If _LoginSuccess Then
 _Cookie =
_InitialCookieContainer.GetCookies(_Uri).Item("JSESSIONID")
 _CookieContainer.Add(_Cookie) 'Setup a separate CookieContainer
with just the required JSESSIONID cookie for subsequent requests
 Else
 MessageBox.Show("Login Failed")
 Application.Exit()
 End If
 'Example to find customers
 Dim LTCust As New LTCustomer._Customer 'LTCustomer is the name
given to the Customer web service of LiveTime in the solution
 LTCust.CookieContainer = _CookieContainer 'The Customer commands
are to use the CookieContainer created above - Alternatively, in this case,
it could also use the initial one here, as mentioned above.
 Dim _cust_response() As LTCustomer.WsNameValuePair
 _cust_response = LTCust.findCustomer("", "", "") 'Calling
findCustomer with email, first name, last name
 'Parse the result to a message box, displaying 4 at a time
 Dim _pair As LTCustomer.WsNameValuePair
 Dim _total_response As String = ""
 Dim _count As Integer
 _count = 0
 For Each _response In _cust_response
 If TypeOf (_response.value) Is String Then
 If _response.key = "message" Then
 _total_response = _response.value
ZENworks Service Desk Developer Resources 79

 End If
 ElseIf Not (_response.key = "success") Then
 _total_response = _total_response + _response.key + " : " +
vbNewLine
 _count = _count + 1
 For Each _pair In _response.value
 _total_response = _total_response + _pair.key.ToString
+ " : " + _pair.value.ToString + vbNewLine
 Next
 _total_response = _total_response + vbNewLine
 End If
 If _count >= 4 Then
 MsgBox(_total_response)
 _total_response = ""
 _count = 0
 End If
 Next
 If _count <> 0 Then
 MsgBox(_total_response)
 End If
 End Sub
End Class
If using another language (eg. C#) or type of .net application, the same principles apply so the Visual
Basic Windows Form example can be used as a guide.

1.15 Nagios CMDB Closed Loop Integration
1.15.1 Introduction

Nagios is a popular event management application. The scriptable commands and plug-ins, is very
customizable for performing any action when a monitor alert is triggered. This document will
demonstrate how to communicate directly with Service Desk’s CMDB and update CI’s in real time
with bi-directional feeds back to Nagios and Service Desk.

When a check fails and the monitor alerts, one common result can be that an incident is created
whilst the failing service is investigated. With the event-handler capability of Nagios and Service
Desk’s inbound web services, this is simple to setup.
80 ZENworks Service Desk Developer Resources

Additionally, with Service Desk’s outbound web services and run book automation the event-handler
can be paused and re-instated after the incident has been dealt with. This makes it easy to have the
Nagios alert create just one request and then only create new ones once the issue with the service
has been resolved. This is especially useful for services that are intermittently working/failing and
alerting on the Nagios monitors.

Furthermore, if the CMDB in Service Desk is configured correctly, it can be possible to identify the
item in question and take the item offline in Service Desk, restoring the item after the incident has
been resolved.

1.15.2 Operational Workflow
1 Service fails and alerts in Nagios.
2 The Nagios event handler calls a PHP script. In the command Line Configuration the PHP run the

following script:
/usr/local/nagiosxi/scripts/lt_nagios_create_request.php $SERVICESTATE$
$SERVICESTATETYPE$ $SERVICEATTEMPT$ $HOSTNAME$ $SERVICEDESC$)
The PHP file will be generated automatically. If the file is already available, then the existing file
will be replaced.

3 The PHP script parses the host and service names from Nagios and utilizing Service Desk’s
inbound web services, it determines the item in the CMDB in question. If the Item for the
service is not found that is related to the host, then it falls back then it falls back to the default
item configured in the script.

4 An incident is raised against the item established in step 3.
5 If an exact item match is found in step 3, the item’s status is taken offline.
6 If the incident is successfully created, to prevent further requests being created, the event

handler is disabled for the alert in Nagios via a web request with the host and service parsed in
step 3.

7 The Nagios check that triggered this is recorded as the first note on the incident.
8 Once the issue is resolved, the incident is moved into a status which has an outbound web

services script attached to it.
9 Outbound script reads the first note on the incident to establish the Nagios check involved and

re-enables the event handler on Nagios for this, via a web request.
10 It also updates the item on incident back to it’s available status, if an item was identified in step

3.

1.15.3 Setup
For the purposes of this document, the Nagios Virtual Machine was used. This is available for
download from the Nagios website. If Nagios is already setup and running, then skip to the last step
of these instructions as ensuring php-soap is installed is the most important step here.

Once running, the admin pages are at: http://host/nagiosxi/

The user pages are at: http://host/nagios/
ZENworks Service Desk Developer Resources 81

To avoid having to rely on accessing the console output of the virtual machine, the firewall needs
opening up to allow local users access. To do this, for all ports, on a 192.168.1.0/24 based network
(for example), one would login as root using the default password of nagiosxi and run:

iptables -I INPUT -p tcp -s 192.168.1.0/24 -j ACCEPT
iptables-save
service iptables save
Some checks then need to be added via the admin pages. For the example in this document, we add
an FTP check to a Windows server named Windows 101.

If the auto discovery wizard is to be used to quickly get some checks added, where you pick which
machines you want to check after it completes, traceroute needs to be installed first.

To do this login as root and run:

yum install traceroute
To get files to/from the virtual machine, one method my be to use scp, and to do that, you would
need to first run:

yum install openssh-clients
Finally, PHP is already installed on the virtual machine but for web services commands to run, php-
soap also needs to be installed. This is done by running:

yum install php-soap

1.15.4 Creating the Request in Service Desk
A web services script is created to do this, and this is copied to the Nagios server. There is a scripts
folder already setup on Nagios so in our example we copied the script as:

/usr/local/nagiosxi/scripts/lt_nagios_create_request.php
In Nagios go to the admin, Configure > Core Configuration Manager. Select Commands drop down >
Commands > Add new.

Enter these values:

1. Command: lt-create-request
2. Command Line: /usr/local/nagiosxi/scripts/lt_nagios_create_request.php $SERVICESTATE$

$SERVICESTATETYPE$ $SERVICEATTEMPT$ $HOSTNAME$ $SERVICEDESC$
3. Command Type: Misc
4. Active: Ensure this check box is selected.

Click Save.

To complete this addition, click Apply Configuration.

Next, Under Monitoring, Click Services.

Find the service that needs to create a request on alert (in our example, the Config Name is
‘Windows 101′ and the Service Name is ‘FTP’) and click tools icon to edit it.
82 ZENworks Service Desk Developer Resources

Under the Check Settings tab, use the drop down for Event handler to select lt-create-request and
set the enabled option to on.

Click to save those settings and then click Apply Configuration to complete this modification.

1.15.5 Configuring the Service Desk CMDB
For the correct item to be used, there are a number of ways to do this, but in our example PHP
script, we set it up so the host is an item in Service Desk, and the Nagios Service being tested is also
an item in Service Desk.

For instance, you might have a server numbered ‘Windows 101′ as the host with and FTP service
running on it, which for this we have assigned an item numbered ‘FTP101′, which is of the type ‘FTP’.
The items are then setup in a relationship so that the ‘FTP101′ is installed on ‘Windows 101′.

The number of the actual service item doesn’t matter but in our example the number of the host
item does, if items are not to be assigned to the default item.

The example script first attempts to locate the item numbered the same as the host, ‘Windows 101′
and then looks for a related item of the type matching the service being checked, ‘FTP’. It finds the
item ‘FTP101′ so it picks that item for the new incident.

If it didn’t find an FTP type of item related to the host, it would just raise it would just raise it against
the default item.

The script will also update the item status to an Offline one but only if it finds an exact match to the
service. If not, it will not update it. This is purely in the example script so obviously can be configured
as required.

Also, the example script is not strict on the relationship type, for the purposes of demonstrating this.
It could be further amended to only look at services installed on the host, as opposed to those also
used by the host, if other relationships existed in the CMDB in question. This could readily be added
to the script.

1.15.6 Re-activating the Event Handler
Service Desk’s outbound web services can be used to call a script to reactivate the event handler in
Service Desk once the request has reached a status where the service issues have been resolved.

Additionally, the script can call back to Service Desk’s inbound web services to update the item’s
status as online, if an exact item was identified and placed into an offline state in the original script
that created the request.

As a Java application, the scripts behind Service Desk’s outbound web services need to be in Java.

For the best performance, the script that performs these actions should ideally be coded in Java.
However, for the purposes of this demonstration, it is also possible to code enough java to call
another command, which can then be coded in any language. In our case, we are going to call a PHP
script as we can then reuse some of the code used in the initial script too.

The script sends, as command line arguments, the status change involved (ie. if the status was
Entered or Exited), the request number and the item number on the request. The PHP command
then reads these and performs the required actions.
ZENworks Service Desk Developer Resources 83

To install the provided code for this, jump to step 3 below and copy the included jar file over to the
location specified. However, if making changes to the script, the following needs to be done:

1 To amend the code, copy this file to the folder with the java file in: {LiveTime Install Folder}/
LiveTime.woa/Contents/Resources/Java/livetime-listen.jar

2 After all required changes have been made, the following commands need to be entered:
javac lt_nagios_resolved.java
jar cf lt_nagios_resolved.jar lt_nagios_resolved.class -classpath livetime-listen.jar

3 The resulting lt_nagios_resolved.jar file then needs to be coped to the following location on the
Service Desk server: {LiveTime Install Folder}/LiveTime/WEB-INF/lib/

After this, the Service Desk application server, needs to be restarted for this to be picked up.

By default, the java code is calling ‘php /root/lt_nagios_resolved.php’. As such, php and php-soap
need to be installed on the Service Desk server, along with copying lt_nagios_resolved.php to the /
root/ folder.

Note that the PHP script is set to change the status of the service to ‘Available’ in line with the online
status provided by default for items of the Service category in Service Desk. This can be modified
according to what is in use.

In fact, the script could be further developed to look for ‘Available’ and if that wasn’t present, try
‘Online’, etc, if multiple item category types were used. Obviously that is up to the user to add such
coding.

Finally, to call this java code, the workflow used for dealing with the alert requires a status that is
linked to the class in the jar file created above. To do this, ‘Outbound Web Services’ needs to be
enabled under Setup > Privileges > System and the status in question is then updated so that it’s
Listener Class is: lt_nagios_resolved.

1.16 ZSD Extensions
ZENworks Service Desk (ZSD) has the ability to add customized extensions to request workflow state
transitions and item lifecycle state transitions. In order to implement custom functionality on these
state transitions, there are several steps a user must follow:

 Section 1.16.1, “Building the Extension,” on page 84
 Section 1.16.2, “WorkflowListener Arguments,” on page 85
 Section 1.16.3, “LifecycleListener Arguments,” on page 86
 Section 1.16.4, “Implementing a Listener,” on page 87
 Section 1.16.5, “Making the Extension Available to ZSD,” on page 89
 Section 1.16.6, “Configuring ZSD to Use the Extension,” on page 89

1.16.1 Building the Extension
Two java interfaces are provided, in a standalone jar file ‘livetime-listen.jar’, which can be found in:

{ZSD Installation Folder}/LiveTime.woa/Contents/Resources/Java/
This jar file contains two interfaces, each of which has two methods:
84 ZENworks Service Desk Developer Resources

WorkflowListener
public Map<String, String> stateEntered(Map<String, Object>argsMap) throws Exception
public Map<String, String> stateExited(Map<String, Object>argsMap) throws Exception
LifecycleListener
public Map<String, String> stateEntered(Map<String, Object>argsMap) throws Exception
public Map<String, String> stateExited(Map<String, Object>argsMap) throws Exception

Naturally the WorkflowListener is used for integrating with the Request Workflow, whilst the
LifecycleListener is used for integrating with the Item Lifecycle.

The task for the developer is to create a java class that implements the appropriate interface to
achieve the integration objective. The two methods exist to provide flexibility to the developer
implementing the integration, by allowing them to perform tasks based on a state being ‘exited’ and
then a state being ‘entered’.

The implementing class is required to return a Map for all methods. Non-implemented interfaces
can return null, and this will be treated as a no-op internally. Methods that provide functionality
should return a map which will be parsed for two parameters:

 ‘success’ : ‘true’ or ‘false’
 ‘message’ : Description to be stored against the history of the request or item

Each method is passed a Map of parameters that relate to the request or item being updated.
ZSDZSD will pass a String for all values, the method takes for future extensions that may require the
use of Objects. Implementations should check the object is a String prior to casting to future-proof
the implementation.

1.16.2 WorkflowListener Arguments
The parameter Map passed in to the WorkflowListener interface methods consists of:

Parameter Description

triggerStatusId The ID of the status that has triggered the listener
event:

 statusExited: originalStatus
 statusEntered: newStatus

triggerStatusName The name of the status that triggered the listener
event

requestId The ID of the request being updated

 1000 = Incident
 2000 = Problem
 3000 = Change Request
 7000 = Service Request
 9000 = Deployment Task
ZENworks Service Desk Developer Resources 85

As this is a first iteration of the call-out interface, these parameters have been deemed sufficient to
allow a developer to perform non-trivial tasks like update an external system that may require
request updates.

1.16.3 LifecycleListener Arguments
The parameter Map passed in to the LifecycleListener interface methods consists of:

requestType The type of request being updated

 1000 = Incident
 2000 = Problem
 3000 = Change Request
 7000 = Service Request
 9000 = Deployment Task

statusId The current state of the request:

 statusExited: newStatus
 statusEntered: same as triggerStatus

statusName The name of the state defined by statusId above

classificationId The ID of the classification assigned to the request

customerId The ID of the customer assigned to the request

customerFirstName The first name of the customer assigned to the
request

customerLastName The last name of the customer assigned to the
request

customerEmail The email address of the customer assigned to the
request

orgUnitId The ID of the Org Unit associated with the request

orgUnitName The name of the Org Unit associated with the request

itemNumber The item number of the CI associated with the
request

Parameter Description

Parameter Description

triggerStatusId The ID of the status that has triggered the listener
event:

 statusExited: originalStatus
 statusEntered: newStatus

triggerStatusName The name of the status that triggered the listener
event
86 ZENworks Service Desk Developer Resources

These are the initial parameters deemed appropriate to allow a developer to perform non-trivial
tasks like (for example) to feed state changes into a monitoring tool to reset an alert trigger.

1.16.4 Implementing a Listener
This requires some Java knowledge, to either define the entire functionality, using these entry
points, or to create a JNI wrapper to page out to code written in an alternate language, although this
does have platform implications. A JNI (Java Native Interface) implementation is outside the scope of
this document, and the following sample focuses on a Java Implementation.

The user needs to create a class, for example ‘MyWorkflowListener’ which implements the
WorkflowListener Interface, or MyLifecycleListener, which implements the LifecycleListener
interface. These methods then need to be made to perform some work. A non-trivial example would
be one where the listener calls a web service to an external system. Consider the following usage
scenario.

A company has (for whatever reason) two ZSD instances, and they are needing to, on occasion feed
updates to the secondary system on request state changes. ZSD has an inbound web services
interface, and now, an outgoing interface for communicating changes to third parties.

The SOAP WSDL’s can be used to generate Java classes to make calls into the secondary system,
which can now be called from the outgoing interface. Generating the SOAP equivalent java classes,
and calling them from a WorkflowListener might yield a listener class that looks something like the
following.

itemNumber The Item Number assigned to the CI

itemStatusId The current state of the request:

 statusExited: newStatus
 statusEntered: same as triggerStatus

itemStatusName The name of the state defined by statusId above

itemtypeId The Item Type ID

itemtypeName The name of the Item Type the Item is an instance of

categoryId The Category ID

categoryName The name of the Category the Item Type belongs to

Parameter Description
ZENworks Service Desk Developer Resources 87

package com.livetime.sample;
import com.livetime.ws.listen.WorkflowListener;
import java.util.Map;
public class WorkflowListenerImpl implements WorkflowListener
{
public WorkflowListenerImpl() {}
public Map<String, String> statusEntered(Map<String, Object>argsMap) throws Exception
{BaseRequest baseRequest = new BaseRequest();
String requestId = (String)argsMap.get("requestId");
String statusName = (String)argsMap.get("triggerStatusName");
Map temp = new HashMap();
temp.put("subject", "Request Created via Outbound WebServices Call");
temp.put("description", "Request #" + requestId + " has entered status " + statusName);
return baseRequest.createRequest(temp);
}
public Map<String, String> statusExited(Map<String, String>argsMap) throws Exception
{
BaseRequest baseRequest = new BaseRequest();
String requestId = (String)argsMap.get("requestId");
String statusName = (String)argsMap.get("triggerStatusName");
Map temp = new HashMap();
temp.put("subject", "Request Created via Outbound WebServices Call");
temp.put("description", "Request #" + requestId + " has exited status " + statusName);
return baseRequest.createRequest(temp);
}
}

With the createRequest method in the class BaseRequest looking like this:

public Map<String, String> createRequest(Map<String, String>
properties)
{
// try and connect, if successful, create request and logout
 if(connect()) {
java.net.URL requestURL = null;
HashMap response = new HashMap();
try {
// Service endpoint
requestURL = new
java.net.URL(props.getRequestServiceURL());
// Get handle to the service
Request_Service service = new
Request_ServiceLocator();
Request_PortType port = service.getRequest(requestURL);
// Call BaseClient method to populate persistent
headers populateHeaders((javax.xml.rpc.Stub)port);
String subject = (String)properties.get("subject");
String description = (String)properties.get("description");
response = port.createIncident(props.getTargetItemNumber(),
props.getTargetClassificationId(), subject,
description, new HashMap());
}
catch(Exception ex)
{
return buildErrorMessage("An error occurred whilst creating");
}
if(disconnect())
{
return response;
}
else {
return buildErrorMessage("An error occurred whilst disconnecting");
}
}
else {
return buildErrorMessage("An error occurred whilst connecting");
}
}

In this example, the listener simply creates a new request in the second system, stating the nature of
the change, but this highlights some of the possibilities of outbound functionality.
88 ZENworks Service Desk Developer Resources

NOTE: This example has been heavily truncated to illustrate the key functionality.

1.16.5 Making the Extension Available to ZSD
This is a rather simple process for users with an install on their own infrastructure.

In order for the class to be accessible to ZSD, the compiled code needs to be on the ZSD classpath. In
this case, this means the compiled jar, along with any associated components, need to be copied into
the lib folder of the ZSD installation ({ZSD Path}/WEB-INF/lib), and the ZSD instance needs to be
restarted, so these resources are picked up by the classloader.

1.16.6 Configuring ZSD to Use the Extension
At this point a new class (or classes) exist and have been loaded, now ZSD simply needs to be
configured to use them. This is a two part process. Firstly the option needs to be enabled by a system
administrator to enable outbound web services. This option can be found in the Administrator
portal, under Setup > Privileges > System (Outbound Web Services).

Once set to ‘On’ and saved, a new field appears in both the Workflow State and Lifecycle State
Editors respectively. The ‘Listener Class’ can now be populated per workflow (or lifecycle) state,
allowing each state to call the same, or different implementations as necessary. This allows different
workflows to behave per the designers’ requirements.

1.17 ZSD Store Extensions
ZENworks Service Desk (ZSD) has the ability to add the customized store extensions for the auto
assignment of store item. In order to implement custom functionality on the assignment state
follow:

1.17.1 Building the Extension
Java interface provided in a standalone jar file livetime-listen.jar, and it is available at:

{ZSD Installation Folder}/LiveTime.woa/Contents/Resources/Java/

The livetime-listen.jar file contains the ExternalStoreExtension interface, with the
following method:

public Map<String, String> statusEntered(Map<String, Object> argsMap) throws
Exception;

The developer task is to create a java class that implements above interface to achieve the
integration objective.

The implementing class is required to return a Map. Method that provide functionality should return
a map which will be parsed for the following parameters:

 success: ‘true’ or ‘false’
 message: Description to be stored against the history and note of the store request.
ZENworks Service Desk Developer Resources 89

The method is passed a Map of parameters that relate to the store request being updated. ZSD will
pass a string for all the values, this method takes for future extensions that might require the use of
objects. Implementations should check whether the object is a String prior to casting to future-proof
the implementation.

1.17.2 ExternalStoreExtension Arguments
The parameter Map passed in to the ExternalStoreExtension interface method consists:

As this is the first iteration of the call-out interface, these parameters have been deemed sufficient
to allow a developer to perform tasks such as update an external system that might require request
updates.

Parameter Description

triggerStatusId ID of the status that has triggered the extension:

 statusEntered: newStatus
triggerStatusName Name of the status that triggered the extension.

requestId ID of the request being updated.

requestType Type of the request being updated.

 7000 = Service Request

statusId Current state of the request same as assignment
state.

statusName Name of the state defined by statusId above.

classificationId ID of the classification assigned to the request.

customerId ID of the customer assigned to the request.

customerFirstName The first name of the customer assigned to the
request.

customerLastName The last name of the customer assigned to the
request.

customerEmail Email address of the customer assigned to the
request.

orgUnitId ID of the Org Unit associated with the request.

orgUnitName Name of the Org Unit associated with the request.

itemNumber Item number of the CI associated with the request.
90 ZENworks Service Desk Developer Resources

1.17.3 Implementing the Store Extension
Requires Java knowledge, to either define the entire functionality, using these entry points, or to
create a Java Native Interface (JNI) wrapper to page out to code written in an alternate language,
although this does have platform implications. A JNI implementation is outside the scope of this
document, and the following sample focuses on a Java Implementation.

The user needs to create a class, for example ‘MyStoreExtensionImpl’ which implements the
ExternalStoreExtension interface. Implemented method then needs to be made to perform
some work. For example, the extension calls a web service to an external system. Consider the
following usage scenario:

package com.microfocus;
import java.util.HashMap;
import java.util.Map;
import com.novell.store.extension.external.ExternalStoreExtension;
public class BusinessCardExtensionImpl implements ExternalStoreExtension
{
 /**
 * This method will be called at the entry of the state, i.e if workflow has state
hierarchy like state1-> Assignment State-> State2 then this will be called on transition
of state1 to Assignment State
 * @param argsMap
 * @return a map. This map must contain 2 entries.
 * key=message value=A user friendly message summarizing the result of action
performed by this extension.
 * key=success value=true|false in String. this denotes the status of the
extension process.
 * @throws Exception
 */
 @Override
 public Map<String, String> statusEntered(Map<String, Object> arg0)
 throws Exception {
 boolean success = doSomething(); // Your actual business logic goes here.
 Map<String, String> response = new HashMap<>(); //This message will be added as part
of the Note and Audit Trail. E.g

 if(success)
 response.put("message", "Order for Business card has been successfully
placed.");
 else
 response.put("message", "Order for Business card has been failed.");

 response.put("success", String.valueOf(success));

 return response;
 }
 private boolean doSomething() {
 //
 //Do Something. Invoke external services handling order for business cards.
 //
 boolean success = true;
 return success;
 }
}

1.17.4 Making the Store Extension Available to ZSD
In order for the class to be accessible to ZSD, the compiled code needs to be on the ZSD classpath. In
this case, the compiled jar, along with any associated components, need to be copied into the lib
folder of the ZSD installation ({ZSD Path}/WEB-INF/lib), and the ZSD instance needs to be
restarted, so these resources are picked up by the classloader.
ZENworks Service Desk Developer Resources 91

1.17.5 Configuring ZSD to Use the Extension
At this point a new class or classes exist and have been loaded, now ZSD needs to be configured to
use them.

 Enable the Store feature. For information, see Enabling Store.
 Create the Store Extension. For information, see Creating a Store Extension.
 Assign the extension to applicable Item Category or Item Type.
92 ZENworks Service Desk Developer Resources

https://www.novell.com/documentation/servicedesk-74/service_desk_store/data/service_desk_store.html#t40zq24ekune
https://www.novell.com/documentation/servicedesk-74/service_desk_store/data/service_desk_store.html#t40zrw13tqrn

	ZENworks Service Desk Developer Resources
	About This Guide
	1 ZENworks Service Desk Developer Resources
	1.1 Rest APIs
	1.1.1 Add note to the request – Technician Portal
	1.1.2 Bulk Request Update (Close, Reopen and Delete) – Technician Portal
	1.1.3 Add Attachment to the Request/Note – Technician Portal

	1.2 Developer
	1.2.1 Integrations
	1.2.2 Connectors

	1.3 About API
	1.3.1 Version

	1.4 Authenticate API
	1.4.1 Connect
	1.4.2 Disconnect
	1.4.3 getLdapSources

	1.5 Customer API
	1.5.1 Create Customer
	1.5.2 Find Customer
	1.5.3 Delete Customer
	1.5.4 Undelete Customer
	1.5.5 Get Customer Information
	1.5.6 Get Country information
	1.5.7 Get State Information
	1.5.8 Find Country
	1.5.9 Update Customer
	1.5.10 Update Location
	1.5.11 Get Geo Location

	1.6 Item API
	1.6.1 Create Item
	1.6.2 Delete Items
	1.6.3 Undelete Items
	1.6.4 Update Items
	1.6.5 Get Items
	1.6.6 Get All Items
	1.6.7 Get Specific Item
	1.6.8 Customer Items
	1.6.9 Org Unit Items
	1.6.10 Add Item Owner
	1.6.11 Remove Item Owner
	1.6.12 Get Item Owner
	1.6.13 Get Fields For Item
	1.6.14 Get Fields For Item Type
	1.6.15 Get Fields For Related Item
	1.6.16 Create Manufacturer
	1.6.17 Add Item Note
	1.6.18 Update Item Description
	1.6.19 Update Item Cost
	1.6.20 Get Item Categories
	1.6.21 Get Item Type For Category
	1.6.22 Create Item Type
	1.6.23 Get Item Type
	1.6.24 Get Item Type
	1.6.25 Get Item Relationship Type
	1.6.26 Create Item Relationships
	1.6.27 Delete Item Relationships
	1.6.28 Get Item Relationships
	1.6.29 Get Incident Teams
	1.6.30 Get Problem Teams
	1.6.31 Get Change Teams
	1.6.32 Get Service Request Teams

	1.7 Request API
	1.7.1 Create Incident / Change Request / Service Request
	1.7.2 Create Incident / Change Request / Service Request (for a Customer)
	1.7.3 Get Classifications
	1.7.4 Get Subject
	1.7.5 Get Description
	1.7.6 Get Request Count By Status
	1.7.7 Get Requests By Status
	1.7.8 Get Request Detail
	1.7.9 Get Public Notes
	1.7.10 Get Notes
	1.7.11 Get Notes Detail
	1.7.12 Get Note Content
	1.7.13 Update Request
	1.7.14 Find Incident / Change Request / Service Request
	1.7.15 Add Note To Request
	1.7.16 Close Request
	1.7.17 Get Response Templates
	1.7.18 Get Response Templates Content
	1.7.19 Get My Filters
	1.7.20 Get My Task Count
	1.7.21 Get My Tasks
	1.7.22 Get Attachments
	1.7.23 Get Incident States
	1.7.24 Get Problem States
	1.7.25 Get Change States
	1.7.26 Get Service Request States
	1.7.27 Get Next States

	1.8 Organization API
	1.8.1 Create Org Unit
	1.8.2 Get Org Unit Details
	1.8.3 Update Org Unit Details
	1.8.4 Rename Org Unit
	1.8.5 Find Org Unit
	1.8.6 Delete Org Unit

	1.9 Purchase Order API
	1.9.1 Create Purchase Order
	1.9.2 Create Lease Purchase Order
	1.9.3 Deliver Purchase Order
	1.9.4 Get Fields For Purchase Order
	1.9.5 Delete Purchase Order

	1.10 Localizing Service Desk ITSM
	1.10.1 Getting Started
	1.10.2 Customizing Strings
	1.10.3 Simple Messages
	1.10.4 Compound Messages
	1.10.5 Locales

	1.11 SOA Guide
	1.12 PHP Web Services
	1.13 Java Web Services
	1.14 VB.NET and Service Desk ITSM
	1.15 Nagios CMDB Closed Loop Integration
	1.15.1 Introduction
	1.15.2 Operational Workflow
	1.15.3 Setup
	1.15.4 Creating the Request in Service Desk
	1.15.5 Configuring the Service Desk CMDB
	1.15.6 Re-activating the Event Handler

	1.16 ZSD Extensions
	1.16.1 Building the Extension
	1.16.2 WorkflowListener Arguments
	1.16.3 LifecycleListener Arguments
	1.16.4 Implementing a Listener
	1.16.5 Making the Extension Available to ZSD
	1.16.6 Configuring ZSD to Use the Extension

	1.17 ZSD Store Extensions
	1.17.1 Building the Extension
	1.17.2 ExternalStoreExtension Arguments
	1.17.3 Implementing the Store Extension
	1.17.4 Making the Store Extension Available to ZSD
	1.17.5 Configuring ZSD to Use the Extension

