
TeamWorks 18.1
Using the Real-time WebSocket APIs

April 2018

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

Copyright © 2018 Micro Focus Software Inc. All Rights Reserved.

https://www.microfocus.com/about/legal

Contents
About This Guide 5

1 Introduction 7

2 Using the Real-time API 9
2.1 Establishing a connection . 9

2.1.1 Formatting Preferences . 9
2.2 Real-time event streams . 10

2.2.1 Session stream . 10
2.2.2 User stream . 11
2.2.3 Room stream . 12
2.2.4 Room badge stream . 13
2.2.5 System stream. 14

2.3 RPC . 15
2.3.1 Request Messages . 15
2.3.2 Response Messages . 16
2.3.3 Methods . 16
Contents 3

4

About This Guide

 Chapter 1, “Introduction,” on page 7
 Chapter 2, “Using the Real-time API,” on page 9

Audience
This guide is intended for GroupWise TeamWorks developers.

Feedback
We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the comment on this topic link at the bottom of each page of
the online documentation.

Documentation Updates
For the most recent version of the this guide, visit the TeamWorks API Documentation on (http://
wwwtest.provo.novell.com/documentation/teamworks-18).
About This Guide 5

http://wwwtest.provo.novell.com/documentation/teamworks-18

6 About This Guide

1 1Introduction

The TeamWorks Real-time API is a WebSocket-based API that allows clients to receive information
about updates in the system as they occur. It also has limited RPC capabilites.
Introduction 7

8 Introduction

2 2Using the Real-time API

 Section 2.1, “Establishing a connection,” on page 9
 Section 2.2, “Real-time event streams,” on page 10
 Section 2.3, “RPC,” on page 15

2.1 Establishing a connection
The WebSocket URL for the Real-time API is:

wss://server_IP_or_DNS:8443/ssf/websocket/default
In order to establish a WebSocket connection, the WebSocket protocol specifies that the client is to
connect to the server and send an HTTP Upgrade request. The TeamWorks Real-time API requires
that this HTTP upgrade request include Basic Authentication information in order to authenticate the
user.

Most WebSocket client libraries hide the details of this Upgrade request, only require the WebSocket
URL, and let you supply custom headers. For example, the following code establishes a WebSocket
connection using the Python websocket-client library (https://pypi.python.org/pypi/websocket-client):

import base64
import websocket
auth = 'testuser:testpasswd'
headers = ['Authorization: Basic %s' % base64.b64encode(auth)]
ws = websocket.WebSocketApp(
 'wss://amethyst.provo.novell.com:8443/ssf/websocket/default',
 header = headers)
Once the connection is successfully established and authenticated, the client will receive a hello
event message from the server.

2.1.1 Formatting Preferences
Each WebSocket connection has formatting preferences that control how certain messages that the
server sends are formatted. The client can control these preferences with the
set_format_preferences RPC method.

Currently, the only supported formatting preference is mention_format, which can be either readable
(default) or raw. This preference controls how references to users (mentions) in topics and comments
are formatted. Raw mentions are in the format @[{object-type}:{object-id}:{display-text}],
while readable mentions are @{display-text}.

Raw Example
{
 “@type”: “topic”,
 "id": "123",
 “body”: “Hi, @[user:97:John Doe]”
}

Using the Real-time API 9

For more information about RPC requests, see “RPC” on page 15.

Readable Example
{
 “@type”: “topic”,
 "id": "123",
 “body”: “Hi, @John Doe”
}

2.2 Real-time event streams
Event streams are a continuous feed of updates (events) related to a particular entity in the system.
By subscribing to streams, real-time API clients will receive these events as they occur.

An event message contains information about the type of event, the stream it belongs to and the
affected entity. For example:

{
 "message_type": "event",
 "event_type": "topic_created",
 "event_stream": {
 "type": "room",
 "id": "254"
 },
 "entity": {
 // ... Topic object ...
 }
}
For more information about the entity objects (Room, Topic, Comment, etc.), see the Data Types
section of the REST API documentation.

2.2.1 Session stream
The session stream is a source for events related to the client’s WebSocket session. The client is
automatically subscribed to the session stream.

Session events

Event Type Entity Object Type Description

hello None The client session has been
successfully established
10 Using the Real-time API

https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/data.html
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/data.html
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/

2.2.2 User stream
The user stream is a source for events related to a particular user. When a client connects to the real-
time API, it is automatically subscribed to the authenticated user’s stream.

User events

stream_unsubscribed EventStream The client session has been
unsubscribed from the stream.
Sessions are unsubscribed from
streams in the following situations:

 The client sends an
unsubscribe_from_stream
RPC request.

 The room is deleted.

 The user loses access to the
room because the room was
changed to a private room.

 The user loses access to the
room because the user was
removed as a member of the
private room.

 User access to the real-time
API has been disabled for
system maintenance.

Event Type Entity Object Type Description

Event Type Entity Object Type Description

favorite_room_added Room A room had been added to the user’s
favorite rooms list.

Rooms are added in each of the
following situations:

 The user marks the room as a
favorite.

 The user creates a room.

 The user is added as a member
of a room.
Using the Real-time API 11

2.2.3 Room stream
A room stream is a source for events related to a particular room. The client is not automatically
subscribed to any room streams. In a typical TeamWorks client application, the client will subscribe to
a room stream when the user enters that room in the UI. This allows the client to update the UI
immediately when changes occur in the room, for example, when new topics or comments are added.
When the user leaves the room and goes to another place in the client application, the client will
unsubscribe from the room stream because it no longer needs to know about updates in that room in
real-time.

Subscribing to a room stream
To subscribe to a room stream, the client sends a subscribe_to_stream RPC request message via the
WebSocket:

favorite_room_removed RoomReference A room has been removed from the
user’s favorite rooms list. Rooms are
removed in the following situations:

 The user unfavorites a room.

 A favorite room is deleted.

 The user is removed as a
member of a private room.

 A favorite room is no longer
visible to the user because it
was changed to a private room.

notification Notification The user has received a notification.

notifications_refresh_required None One or more of the user's
notifications have been removed
because the room, topic, or comment
they reference has been deleted.

The client should refresh any data it
has dealing with the user's
notifications.

room_visited UserRoomDetails The user has visited the room, and
the user's last visit date has been
updated for the room.

The last visit date determines which
topics and comments in the room are
considered to be new.

Event Type Entity Object Type Description
12 Using the Real-time API

{
 "message_type": "rpc_request",
 "method": "subscribe_to_stream",
 "request_id": "12345abcde",
 "entity": {
 "@type": "stream",
 "type": "room",
 "id": "236"
 }
}
For more information about RPC requests, see “RPC” on page 15.

Room events

2.2.4 Room badge stream
A room badge stream is a source for "summary" events related to a particular room. It provides a
limited set of events that allow clients to track when messages are added to a room.

Like room streams, the client is not automatically subscribed to any room badge streams. In a typical
TeamWorks client application, the client will subscribe to each badge stream in the user's favorite
rooms list. This way, the client can present the favorite rooms list with information indicating whether
or not the room has new content since the last time the user visited the room (room badging).

Subscribing to a room badge stream
To subscribe to a room stream, the client sends a "subscribe_to_stream" RPC request message via
the WebSocket:

Event Type Entity Object Type Description

comment_created Comment Someone has commented on a
topic in the room.

comment_deleted CommentReference A comment in the room has been
deleted.

comment_updated Comment A comment in the room has been
updated.

member_added RoomMembership A user has been added as a
member of the room.

member_removed RoomMembership A user has been removed as a
member of the room.

room_deleted RoomReference The room has been deleted.

room_updated Room The room has been updated.

topic_created Topic A new topic has been created in the
room.

topic_deleted TopicReference A topic has been deleted.

topic_updated Topic A topic has been updated.
Using the Real-time API 13

{
 "message_type": "rpc_request",
 "method": "subscribe_to_stream",
 "request_id": "12345abcde",
 "entity": {
 "@type": "stream",
 "type": "room_badge",
 "id": "236"
 }
}
For more information about RPC requests, seeSection 2.3, “RPC,” on page 15.

Room events

2.2.5 System stream
The system stream is a source for events related to the TeamWorks system. The client is
automatically subscribed to the system stream.

System events

Event Type Entity Object Type Description

member_added RoomMembership A user has been added as a
member of the room.

member_removed RoomMembership A user has been removed as a
member of the room.

message_posted PostedMessage A new message (topic or comment)
has been posted to the room.

room_deleted RoomReference The room has been deleted.

room_updated Room The room has been updated.

Event Type Entity Object Type Description

api_available None Access to the Real-time API has
been reenabled. The client can
resubscribe to room streams and
receive real-time events again.

api_unavailable None Access to the Real-time API has
been disabled due to system
maintenance. When access is
disabled, the websocket session is
unsubscribed from all room and
room badge streams and all RPC
requests will fail with an
API_UNAVAILABLE error. Once
access is reenabled, the server will
send an api-available event.
14 Using the Real-time API

2.3 RPC
The TeamWorks Real-time API supports RPC requests. Some of these RPC methods deal with
managing the WebSocket session and others make changes in the TeamWorks system.

The RPC methods that make changes to the TeamWorks system are also available in the REST API.
For example, both APIs provide the ability to comment on a topic. Because each REST request has
overhead when establishing a connection and authenticating the user, the Real-time API is more
efficient. However, the Real-time API does not duplicate all functionality available through REST. It
only supports actions where the resulting efficiency and immediacy significantly improve the user
experience.

Making an RPC request involves sending an RPC request message to the server. The server will
process the request asynchronously and send an RPC response message sometime later. If a client
sends multiple requests, the server makes no guarantee about the order of the response messages.
The client must keep track of pending requests in order to match response messages with the original
request message.

To help the client do this, the request and response messages include a request_id field. The server
includes in the response whatever ID the client provided in the request message. As a best practice,
the client should generate a unique ID for each request. These IDs need only be unique for the client
session. Something as simple as a number sequence, i.e. 1, 2, 3, etc., is sufficient.

NOTE: If the request message is not well-formed JSON, or if it specifies an invalid value for an
enumerated type (such as EventStream type), the server will be unable to parse the message. When
this occurs, the server is not able to read the request_id or method fields and therefore does not
include those fields in the response message.

2.3.1 Request Messages
{
 "message_type": "rpc_request",
 "method": "create_topic",
 "request_id": "12345abcde",
 "entity": {
 "@type": "topic",
 "room":{
 "id": "456"
 },
 "body": "Hi, everyone, here’s a new topic to discuss."
 }
}

Using the Real-time API 15

2.3.2 Response Messages
{
 "message_type": "rpc_request",
 "method": "create_topic",
 "request_id": "12345abcde",
 "status": {
 "status_code": 200
 }
 "entity": {
 "@type": "topic",
 "room":{
 "id": "456"
 },
 "body": "Hi, everyone, here's a new topic to discuss."
 }
}

Status
The status object in the response message indicates whether the operation completely successfully.
It contains a numeric status code, which is patterned after HTTP status codes.

Typical status codes are:

 200 (Success)
 400 (Bad request)
 403 (Forbidden)
 404 (Not found)
 409 (Conflict)
 500 (Internal server error)
 503 (Service Unavailable)

NOTE: For status_code numbers greater than or equal to 300, the status object will also include
additional information, for example:

"status": {
 "status_code": 404,
 "error": {
 "code": "ROOM_NOT_FOUND",
 "message": "No room exists with ID 234"
 }
}

For more information about possible error codes, see {list of error codes shared between the REST
and real-time APIs in the doc} (https://www.novell.com/documentation/??).

2.3.3 Methods
The following table shows the supported RPC methods. For more information about request and
response entities, see the Data Types section of the REST API documentation.
16 Using the Real-time API

https://www.novell.com/documentation/??
https://www.novell.com/documentation/??
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/data.html
https://www.novell.com/documentation/beta/appliance-apis/esn-rest-api/

Method Request Entity Object Response Entity
Object

Description

create_comment Comment Comment Add a comment to a
topic or comment

create_topic Topic Topic Post a new topic to a
room.

delete_comment Comment or String
(comment HRef)

CommentReference Delete a comment

delete_topic Topic or String
(topic HRef)

TopicReference Delete a topic

get_format_preferences None FormatPreferences Retrieve message
formatting preferences

ping None None Ping the server to test
the validity of the web
socket session

set_format_preferences FormatPreferences FormatPreferences Update message
formatting preferences

subscribe_to_stream EventStream EventStream Subscribe to the
specified stream

update_comment Comment Comment Update a comment

update_topic Topic Topic Update a topic

unsubscribe_from_stream EventStream EventStream Unsubscribe from the
specified stream
Using the Real-time API 17

18 Using the Real-time API

	TeamWorks 18.1: Using the WebSocket APIs
	About This Guide
	1 Introduction
	2 Using the Real-time API
	2.1 Establishing a connection
	2.1.1 Formatting Preferences

	2.2 Real-time event streams
	2.2.1 Session stream
	2.2.2 User stream
	2.2.3 Room stream
	2.2.4 Room badge stream
	2.2.5 System stream

	2.3 RPC
	2.3.1 Request Messages
	2.3.2 Response Messages
	2.3.3 Methods

