
Micro Focus VibeTM 4.0.4
Developer Guide

August 2018

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

Copyright © 2018 Micro Focus

https://www.microfocus.com/about/legal/

Contents
About This Manual 9

1 Vibe Developer Overview 11

Understanding the Differences between Extensions and Remote Applications . 11
Vibe Terminology. 12

2 Web Services Overview 13

Web Services Implementation . 13
Java Web Services. 13
Sample Clients . 14

Authentication . 15
HTTP Basic Authentication Access (ssr) . 15
Web Services Security Access (ssf). 16

Server Endpoints . 16
Categories of Operations . 17
Client Stubs. 17
Managing Data . 18

Working with Java Objects . 18
Adding Folders and the Binder Configuration Identifier . 19
Attaching Files . 21
Fetching Attachments. 21
Adding Calendar Entries . 21
Binder Pages and search_getWorkspaceTreeAsXML . 22

Extending Vibe Web Services. 23

3 Creating JavaServer Pages (JSPs) 25

Overview of JSP Support . 26
Directory Structure . 26
Applicable Pages . 27
JSPs and the Vibe Designers. 27
Indexing Issues . 30
JSPs and Vibe Data Access. 31
Text Display in the HTML Editor . 32
Standard Styles . 32

Examples of Custom Entries. 32
A JSP That Defines Only One Data Element . 33
A JSP-Defined Entry (W-4 Form) . 36

Examples of Complex, HTML Data Types . 51
Radio Buttons. 52
Check Boxes . 52
Select Boxes . 53

4 Creating and Packaging Extensions for Deployment 57

Understanding the Differences between Extensions and Remote Applications . 57
Creating an Extension. 57
Packaging an Extension . 58

Examples of the Archive Format . 58
Contents 3

4 Con
Extension Metadata . 59
Deploying an Extension . 60

Deploying an Extension from the Vibe Interface . 60
Deploying an Extension from the Vibe Server . 60

Updating an Extension . 60
Locating an Extension in the Vibe Directory Structure . 60
Retaining an Extension When Updating Your Vibe Software . 61

5 Creating Remote Applications 63

Understanding the Differences between Extensions and Remote Applications . 63
Remote Application Overview . 64

Processing Flow for a Remote Accessory . 65
Processing Flow for a Remote Form . 66
Setting Access Control for Remote Applications . 67
Reviewing Supporting Source Code . 68

Creating a Remote Application . 69
Reviewing the Class File . 69
Reviewing the Servlet-Definition File . 70
Reviewing the JSP File . 71

Related Sections. 71
Registering a Remote Application . 71
Configuring an Accessory to Show a Remote Application . 71
Controlling the Access of Remote Applications . 72

A Web Services Operations 73

admin_destroyApplicationScopedToken. 76
admin_getApplicationScopedToken . 77
binder_addBinder . 78
binder_copyBinder . 79
binder_deleteBinder . 80
binder_deleteTag . 81
binder_getBinder . 82
binder_getBinderByPathName . 83
binder_getFileVersions . 84
binder_getFolders . 85
binder_getSubscription . 86
binder_getTags . 87
binder_getTeamMembers . 88
binder_getTrashEntries. 89
binder_indexBinder . 90
binder_indexTree . 91
binder_modifyBinder . 92
binder_moveBinder . 93
binder_preDeleteBinder . 94
binder_removeFile . 95
binder_restoreBinder . 96
binder_setDefinitions . 97
binder_setFunctionMembership . 98
binder_setFunctionMembershipInherited . 99
binder_setOwner . 100
binder_setSubscription . 101
binder_setTag . 102
binder_setTeamMembers . 103
tents

binder_testAccess . 104
binder_uploadFile . 105
definition_getDefinitionAsXML . 106
definition_getDefinitionByName . 107
definition_getDefinitions . 108
definition_getLocalDefinitionByName . 109
definition_getLocalDefinitions . 110
folder_addEntry . 111
folder_addEntryWorkflow . 112
folder_addMicroBlog . 113
folder_addReply . 114
folder_copyEntry . 115
folder_deleteEntry . 116
folder_deleteEntryTag . 117
folder_deleteEntryWorkflow . 118
folder_getEntries . 119
folder_getEntry . 120
folder_getEntryByFileName . 121
folder_getEntryTags . 122
folder_getFileVersions . 123
folder_getSubscription . 124
folder_modifyEntry . 125
folder_modifyWorkflowState . 126
folder_moveEntry . 127
folder_preDeleteEntry . 128
folder_removeFile . 129
folder_reserveEntry . 130
folder_restoreEntry . 131
folder_setEntryTag . 132
folder_setRating . 133
folder_setSubscription . 134
folder_setWorkflowResponse . 135
folder_synchronizeMirroredFolder . 136
folder_unreserveEntry . 137
folder_uploadFile . 138
folder_uploadFileStaged . 139
ical_uploadCalendarEntriesWithXML . 141
ldap_synchAll . 142
ldap_synchUser . 143
license_getExternalUsers . 144
license_getRegisteredUsers . 145
license_updateLicense . 146
migration_addBinder . 147
migration_addBinderWithXML . 148
migration_addEntryWorkflow . 150
migration_addFolderEntry . 151
migration_addFolderEntryWithXML . 152
migration_addReply . 154
migration_addReplyWithXML . 155
migration_uploadFolderFile . 157
migration_uploadFolderFileStaged . 159
profile_addGroup . 161
profile_addGroupMember . 162
Contents 5

6 Con
profile_addUser . 163
profile_addUserWorkspace . 164
profile_deletePrincipal . 165
profile_getFileVersions . 166
profile_getGroup . 167
profile_getGroupByName . 168
profile_getGroupMembers . 169
profile_getPrincipals . 170
profile_getUser . 171
profile_getUserByName . 172
profile_getUsers . 173
profile_getUserTeams. 174
profile_modifyGroup . 175
profile_modifyUser . 176
profile_removeFile . 177
profile_removeGroupMember . 178
profile_uploadFile . 179
search_getFolderEntries. 180
search_getTeams . 181
search_getWorkspaceTreeAsXML . 182
search_search . 183
template_addBinder . 185
template_getTemplates . 186
zone_addZone . 187
zone_deleteZone . 188
zone_modifyZone . 189

B Deprecated Web Services Operations 191

addFolder . 193
addFolderEntry . 194
addReply. 196
addUserWorkspace . 198
getAllPrincipalsAsXML . 199
getDefinitionAsXML . 200
getDefinitionConfigAsXML . 201
getDefinitionListAsXML. 202
getFolderEntriesAsXML . 203
getFolderEntryAsXML. 204
getPrincipalAsXML . 205
getTeamMembersAsXML . 206
getTeamsAsXML . 207
getWorkspaceTreeAsXML . 208
indexFolder . 210
migrateBinder . 211
migrateEntryWorkflow. 213
migrateFolderEntry . 215
migrateFolderFile . 217
migrateFolderFileStaged. 219
migrateReply. 221
modifyFolderEntry. 223
setDefinitions . 224
setFunctionMembership . 225
tents

setFunctionMembershipInherited . 227
setOwner. 228
setTeamMembers . 229
synchronizeMirroredFolder . 230
uploadCalendarEntries . 231
uploadFolderFile . 232

C Migrating from Forum to Kablink Teaming 235

Sequence of Migration Operations . 235
Migration Overwrite Operations . 236
Migrating Users. 236
Migrating Files. 236
Migrating Custom Commands and Workflow . 237
Contents 7

8

About This Manual

The Micro Focus Vibe 4.0.4 Developer Guide presents ways to extend the functionality of Micro
Focus Vibe. The guide is divided into the following sections:

 Chapter 1, “Vibe Developer Overview,” on page 11

 Chapter 2, “Web Services Overview,” on page 13

 Chapter 3, “Creating JavaServer Pages (JSPs),” on page 25

 Chapter 4, “Creating and Packaging Extensions for Deployment,” on page 57

 Chapter 5, “Creating Remote Applications,” on page 63

 Appendix A, “Web Services Operations,” on page 73

 Appendix B, “Deprecated Web Services Operations,” on page 191

 Appendix C, “Migrating from Forum to Kablink Teaming,” on page 235

Audience

This guide is intended for programmers who want to write extensions for Vibe.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this manual, visit the Micro Focus Vibe 4 Documentation Web site
(http://www.novell.com/documentation/vibe4).

Additional Documentation

You can find more information in the Micro Focus Vibe documentation, which is accessible from the
Micro Focus Vibe 4 Documentation Web site (http://www.novell.com/documentation/vibe4).

To access the Micro Focus Vibe User Guide from within Vibe, click the Settings icon, then click Help.
About This Manual 9

http://www.novell.com/documentation/vibe4
http://www.novell.com/documentation/vibe4

10 About This Manual

1 1Vibe Developer Overview

You can add custom development to Micro Focus Vibe by creating either an extension or a remote
application.

 “Understanding the Differences between Extensions and Remote Applications” on page 11

 “Vibe Terminology” on page 12

Understanding the Differences between Extensions
and Remote Applications

Extensions and remote applications can be used to accomplish many of the same functions;
however, the way in which they are created and how they are implemented can differ dramatically.

Following are the basic differences between extensions and remote applications:

 Extensions: You can extend the Vibe software through the use of JSP, HTML, CSS, and many
other types of files that are commonly used when designing a Web page.

For more information about how to create extensions for Vibe, see Chapter 4, “Creating and
Packaging Extensions for Deployment,” on page 57.

 Remote Applications: You can customize the Vibe software by creating remote applications.
You can create remote applications using SOAP (Web services).

For more information about how to create a remote application for Vibe, see Chapter 5,
“Creating Remote Applications,” on page 63.

Before you create a Vibe extension or remote application, consider how you want to create it (such as
what coding language you want to use), as well as the environment in which you want your extension
or remote application to run (such as in an external Web application or Web server).

Table 1-1 depicts important technical differences between extensions and remote applications.

Table 1-1 Technical Differences between Extensions and Remote Applications

Extension Remote Application

Web Container Tomcat only Any container (for example, Tomcat,
Apache, IIS)

Coding Language Java and JSP only Any language (for example, PHP,
Ruby, .NET)

Web Application Must run inside the Vibe Web application Runs outside of the Vibe Web
application

Server Runs on the same server as Vibe Can either run on the same server as
Vibe (but on a separate Web
application), or on an external server
Vibe Developer Overview 11

Vibe Terminology
The following Micro Focus Vibe definitions that can assist you when adding custom development to
the Vibe software:

 binder: A place such as a workspace or folder.

 binder configuration ID: A number that identifies the template used to create and configure a
new workplace or folder. This number represents a set of information that Vibe uses to establish
configuration settings, such as the default view, allowable views, allowable workflow, and
workflow associations.

 binder ID: A unique number that identifies a specific workspace or folder.

 data item name: A tag value that maps an HTML form element to a value stored in the Vibe
database.

 definition ID: A unique 32-character hexadecimal identifier that maps to a definition for a
specific type of entry. (You modify and create definitions by using the designers in the
administration portlet.) You need to specify this value when creating a new entry in a folder.

 endpoint: The URL that you use to connect your client application to the Vibe server.

 page: A level in the workspace hierarchy that represents a subset of binders. Most often used to
group personal workspaces into sets that are convenient for display in the user interface. “Binder
Pages and search_getWorkspaceTreeAsXML” on page 22 provides additional information about
this hierarchical level.

 principal: A registered user or a group.

 principal ID: A unique number that identifies a specific user or group.
12 Vibe Developer Overview

2 2Web Services Overview

Much of the information in this section references Teaming, which is the product name for the Vibe
product for versions prior to Vibe 4. This information applies to Vibe 4 as well as earlier versions of
the product.

You can use Web services when creating remote applications for Micro Focus Vibe. For more
information about creating remote applications, see Chapter 5, “Creating Remote Applications,” on
page 63.

Micro Focus offers a set of operations that you can use in client programs to exchange information
with a server that is running an installation of Novell Teaming 2.0 or later.

In addition to the overview information in this chapter, see Appendix A, “Web Services Operations,”
on page 73, for reference information about the latest operations for the new interface. For reference
information about earlier Web Services operations that have been superseded by the current release,
see Appendix B, “Deprecated Web Services Operations,” on page 191.

 “Web Services Implementation” on page 13

 “Authentication” on page 15

 “Server Endpoints” on page 16

 “Categories of Operations” on page 17

 “Client Stubs” on page 17

 “Managing Data” on page 18

 “Extending Vibe Web Services” on page 23

Web Services Implementation
 “Java Web Services” on page 13

 “Sample Clients” on page 14

Java Web Services

Vibe implements Java Web services, which provide a set of operations that client programs can use
to exchange information with Vibe. The alphabetized reference section in this documentation
provides syntax for these operations (Appendix B, “Deprecated Web Services Operations,” on
page 191).

You can view a list of available operations online:

http://localhost:8080/ssf/ws

The latest operations are listed under the TeamingServiceV1 header, and the deprecated operations
are listed under the Facade header.

You can also access the Vibe Web Services Description Language (WSDL) file:

http://localhost:8080/ssf/ws/TeamingServiceV1?wsdl
Web Services Overview 13

In the previous two examples, replace the localhost specification with the host and port for your
Vibe installation.

NOTE: Vibe does not currently publish its WSDL file with Universal Description, Discovery, and
Integration (UDDI) or the Web Services Inspection Language (WSIL). Use the alphabetized reference
section in this manual (Appendix A, “Web Services Operations,” on page 73) or the URL-generated
WSDL file to understand the Vibe operation interface. For reference information about earlier Web
Services operations that have been superseded by the current release, see Appendix B, “Deprecated
Web Services Operations,” on page 191.

When you make calls to Vibe Web services, there are two ways that you can implement lower-level
Simple Object Access Protocol (SOAP) calls:

 Unzip client-side routines on the system running your application. These routines are Java
classes and other files that produce a stub. Your application can use an interface with these stub
routines, which make the SOAP calls to and from the server. See “Client Stubs” on page 17, for
more information about implementing these client-side routines on your application’s system.

 Have your application perform the SOAP calls by using, for example, routines from the Apache
Axis toolkit.

Vibe Web services accepts and provides data by using Java objects and methods defined in the Vibe
source code. See the Open Source Community page (https://sourceforge.net/p/kablink/code/HEAD/
tree/). Although this section provides tips for locating object and method definitions, you might want to
apply a tool such as Javadoc to the sources, so that you have reference pages to assist you in
working with the Vibe objects and methods.

The primary method of learning to use Vibe Web services is by reviewing sample clients and their
source code, which are provided in the Vibe sources.

Sample Clients

Vibe provides sample clients in its product code base that can assist you in learning how to use its
Web services. The sample clients are located within the source code (https://svn.code.sf.net/p/
kablink/code/branches/4.0.1/ssf/samples/wsclient/):

/ssf/samples/wsclient

The following sample clients are provided. They are listed in the order of how helpful they are in
learning how to make Web service calls:

 teamingservice-client-with-stub.bat (Teaming 2.0+): Uses client-side routines to implement a
Windows batch file for simple operations. This is the recommended method. Using this batch file
requires the installation of the client-side routines.

 teamingservice-client-with-call.bat (Teaming 2.0+): Uses the Axis Call object when making
Web service calls, as a way to implement a Windows batch file for simple operations.

 facade-client.bat (V1+): Uses the deprecated Web services interface.

 wsExport.bat and wsImport.bat (Teaming 2.0+): Takes data from a portion of the workspace
and folder hierarchy and reproduces it on another file system. These tools are not a complete
import and export facility, because they do not retain the workflow states, access-control
settings, and history of the original objects.

You can find the source files for the sample clients here:

/ssf/samples/wsclient/src/org/kablink/teaming/samples/wsclient
14 Web Services Overview

https://svn.code.sf.net/p/kablink/code/branches/4.0.1/ssf/samples/wsclient/
https://sourceforge.net/p/kablink/code/HEAD/tree/

The TeamingServiceClientWithCall.java file extends the WSClientBase.java file, which is also
located in the /ssf/samples/wsclient/src/org/kablink/teaming/samples/wsclient directory.

Enabling the .bat clients (Windows systems only)

Before executing the sample .bat programs on a Windows system, you need to do some work in
your build to enable them.

1 Execute the build Ant target in /ssf/samples/wsclient/build.xml by entering ant from the
command line.

To use one of the batch files:

1 Use a command line window to cd to the /ssf/samples/wsclient directory.

2 Type the filename for the batch file you want to execute.

To see a list of legal commands and arguments for one of the teamingservice or facade batch
files, type only the filename of the batch file, then press the Return key.

3 On the same line, just after the name of the batch file, type a command name and desired
arguments.

4 Press the Return key.

If the command executes successfully, Vibe displays the return value in the command line window.

Authentication
Before determining how to connect your client application to the server, it is important to decide on
the authentication method that you want to use. Vibe and its Web services support two types of
authentication:

 “HTTP Basic Authentication Access (ssr)” on page 15

 “Web Services Security Access (ssf)” on page 16

HTTP Basic Authentication Access (ssr)

For basic authentication, use calls from your client application to pass a username and password as
you establish an HTTP session. Then, perform SOAP calls or calls using the client-side routines. If
you want to use basic authentication, you muse use the /ssr/secure/ws endpoint when connecting
to the server.

HTTP Basic Authentication is the existing transport authentication to authenticate the Web services
client. HTTP Basic Authentication uses a username and password to authenticate a service client to
a secure endpoint. To use this authentication mechanism, use /ssr/secure/ws endpoint. To enable
this service on the Vibe side, select the Enable Basic Authentication (recommended) check box
during product installation.

See “Server Endpoints” on page 16, for more information about connecting to the server.
Web Services Overview 15

Web Services Security Access (ssf)

For WSS authentication, you need to place the authentication information (username and password)
in the SOAP calls. If you want to use this method of authentication, use the /ssf/ws endpoint to
connect to the server.

Web Services Security (WSS) is a standard protocol from Oasis that provides a means for applying
security to Web services. Unlike security mechanisms that rely on the use of transport layer services,
WSS provides authentication at the message layer by using a SOAP header. To use this
authentication mechanism, use /ssf/ws endpoint. The deprecated Web services operation is
accessed only through this mechanism. This service is enabled on the Vibe side by selecting the
Enable WSS Authentication (recommended) check box during product installation.

If you choose to use WSS authentication instead of HTTP basic authentication:

 Use the teamingservices-client-with-call.bat client and its sources to see an example of
this type of authentication.

 You must use the /ssf/ws endpoint (see “Server Endpoints” on page 16, for more information).

 You must use password-text methods.

Password-digest is still supported in Teaming 2.0 and earlier but support is dropped with
Teaming 2.1. We strongly recommended that you use only the password-text method.

On the client side of the Web services transaction, the client code uses password-text to provide a
username and password to the Web services framework, and the framework passes the password as
plain text.

On the server side, the security framework allows Vibe to retrieve the clear-text password from the
operation by using an application programming interface (API) call. Vibe applies its internal password
encryptor and compares the result with the password stored in the database for the user when the
password is retrieved.

Although it is easy to code, this method is not secure, because the password is transmitted in plain
text. Systems requiring a higher level of security should connect to Vibe over SSL.

To use this service with the teamingservice-client-with-call.bat, edit the script and set the
value of the -Dauthmethod switch to wss_text.

See “Server Endpoints” on page 16, for more information about connecting to the server.

Server Endpoints
An endpoint is the URL that you use to connect your client application to the Vibe server. Depending
on the authentication method you want to use and other factors, you must choose one of the following
five endpoints to specify in your client application:

 /ssf/ws/TeamingServiceV1: Use this endpoint if you want to use WSS authentication with the
latest Web services operations. See “Authentication” on page 15.

 /ssf/ws/Facade: Use this endpoint if you want to use the deprecated Web services operation.
This endpoint requires WSS authentication.

 /ssr/secure/ws/TeamingServiceV1: Use this endpoint only if you are using HTTP Basic
Authentication with the latest Web services operations.

 /ssr/token/ws/TeamingServiceV1: Use this endpoint when you are making a Web services call
as a remote application.
16 Web Services Overview

 /ssr/ws/TeamingServiceV1: Use this endpoint when you want to access Vibe as an anonymous
user (not specifying any username or password).

Categories of Operations
To assist you in locating the operation you need to perform, the name of each operation is prefaced
with its category name. For example, one category is called folder, and one operation within that
category is folder_getEntry.

The following categories of Web services operations are available:

 binder: Operations that are specific to workspaces, common to workspaces and folders, or that
are to be applied to the workspace tree beginning at a specific node in the tree.

 definition: Operations for obtaining and using definitions. Definitions are created by using the
designers within the Vibe UI.

 folder: Operations that affect only folders and their contents (entries and comments).

 ical: The operation that adds a calendar entry.

 ldap: Operations that work with LDAP data.

 license: Operations used for license compliance.

 migration: Operations that assist migration from the SiteScape Forum product to Vibe. See
“Migrating from SiteScape Forum or Other Collaboration Software” in “Upgrade” in the Micro
Focus Vibe 4.0.5 Installation Guide.

 profile: Operations affecting users and groups.

 search: Operations that assist in locating information based on criteria other than the defined
type.

 template: Operations that create workspaces and folders, or that get lists of available templates.
(To create a completely configured folder, use template_addBinder and not
binder_addBinder.)

 zone: Operations that work with different Vibe starting points within the same installation. Each
starting point contains its own unique workspace hierarchy.

Client Stubs
A stub is a proxy on the client. The stub code performs SOAP calls to the server. Vibe provides
pregenerated Java stub classes that are included in the Kablink Vibe Web Services Java client
library. To obtain the Kablink Vibe Web Services Java client library, see “Working with Java Objects”
on page 18.

The following example is the deleteFolderEntry method defined in the sample Java class
TeamingServiceClientWithStub.java file. The TeamingServiceClientWithStub.java file makes
SOAP calls to Vibe through the use of the pregenerated Java stub classes. This method uses the
folder_deleteEntry Web services operation to delete an entry from Vibe. This code assumes that your
client is running on the same machine that is running the Vibe server (localhost). It uses the Basic
Authentication mechanism for authentication.
Web Services Overview 17

 private static final String TEAMING_SERVICE_ADDRESS_BASIC = "http://
localhost:8080/ssr/secure/ws/TeamingServiceV1";

 private static final String USERNAME = "admin";
 private static final String PASSWORD = "test";
 .
 .
 .
 public static void deleteFolderEntry(long entryId) throws Exception {
 TeamingServiceSoapServiceLocator locator = new
TeamingServiceSoapServiceLocator();
 locator.setTeamingServiceEndpointAddress(TEAMING_SERVICE_ADDRESS_BASIC);
 TeamingServiceSoapBindingStub stub = (TeamingServiceSoapBindingStub)
locator.getTeamingService();
 WebServiceClientUtil.setUserCredentialBasicAuth(stub, USERNAME, PASSWORD);

 stub.folder_deleteEntry(null, entryId);

 System.out.println("ID of the deleted entry: " + entryId);
 }

Managing Data
Some operations are less intuitive than others for messages. This section provides additional
information for those operations and includes the following subsections:

 “Working with Java Objects” on page 18

 “Adding Folders and the Binder Configuration Identifier” on page 19

 “Attaching Files” on page 21

 “Fetching Attachments” on page 21

 “Adding Calendar Entries” on page 21

 “Binder Pages and search_getWorkspaceTreeAsXML” on page 22

Working with Java Objects

The Web services operations often pass and return data within model objects as defined within the
Kablink Vibe software. This is beneficial because it cuts down on the amount of code required to
prepare, send, receive, and interpret data. For example, parsing XML strings requires more coding.
For users who develop Web services client applications in Java, Kablink Vibe provides a client-side
library that they can use directly for added convenience. Users who develop Web services client
applications in a language other than Java must rely on their own tools for understanding and coding
the Kablink Vibe Web interfaces that have been defined and exposed by the corresponding WSDL.

Regardless of the language and tools that are used to develop Web services applications, it is helpful
to familiarize yourself with some of the Vibe source code in order to understand the model objects
and methods that are used to pass parameters and receive returned data.

To obtain the Kablink Vibe Web Services Java client library, download the Kablink Vibe product
distribution tar/zip file from the Kablink Web site, and expand file in a directory. This product
distribution tar/zip file contains teaming-2.*.*-wsclient.zip. This file contains:

 The Axis-generated Java source and class files for the client side stubs and model classes.

kablink-teaming-wsclient.jar
18 Web Services Overview

 Search utility classes that aid in building search queries.

kablink-teaming-util-search.jar

 All third-party libraries needed on the client side to run generated stubs.

The kablink-teaming-wsclient.jar file contains the Java source that defines model objects that
are passed between the Web services client and the Vibe server as either input arguments to or
return values from various Web service operations. These model classes are located in the org/
kablink/teaming/client/ws/model Java package. A significant number of the model classes build
upon the base class DefinableEntity. The TeamingServiceSoapBindingStub.java class is the
main stub class that application programs need to interact with in order to invoke various Web service
operations.

To access Java sample programs that use the Kablink Vibe Web Services Java client library,
download the Vibe source code from the Open Community Source page (https://sourceforge.net/p/
kablink/code/HEAD/tree/) and examine the source code and scripts located in the /ssf/samples/
wsclient directory. For example, the TeamingServiceClientWithStub.java class in /ssf/
samples/wsclient/src/org/kablink/teaming/samples/wsclient demonstrates how to use the
supplied stub and model classes to invoke Vibe Web services operations with minimum coding effort.

The kablink-teaming-wsclient.jar is also found with in the source tree in the /ssf/ws-client
directory. To implement a client-side application of your own, all of the necessary libraries must be
defined as being in your class path. When the sample program is run in /ssf/samples/wsclient,
the accompanying build.xml Ant build script performs this function for you. It can be viewed as a
template.

The names of the Web services operations use categories to organize the operations so they are
easier for you to locate and understand. In general, the categories describe an item within Vibe that is
the focus of the operation, such as folder, entry, binder, or attachments.

Adding Folders and the Binder Configuration Identifier

When you add a fully configured folder such as template_addBinder (page 185), you need to specify
a binder configuration identifier, which identifies the template used to configure a folder of a particular
type. For example, the blog-folder template specifies settings used to configure a new blog folder.

To review the blog-folder template:

1 Log in to Vibe as the Vibe administrator.

2 Click the Administration icon in the upper-right corner of the page.

The Administration page is displayed.

3 Under Management, click Workspace and Folder Templates.

4 In the Standard Templates section, click Blog.

5 Click Manage This Target > Configure.

The Configure Default Settings page is displayed.
Web Services Overview 19

https://sourceforge.net/p/kablink/code/HEAD/tree/

The following configuration settings are available in the template:

 Definition inheritance

 Allowed Views

 Default View

 Default Entry Types

 Workflow Associations

 Allowed Workflows

At the time of this writing, Vibe does not provide a message that you can use to retrieve the binder
configuration identifier for a particular type of folder. Use the following procedure to obtain the binder
configuration identifier for the folder you want to create:

1 View any workspace or folder.

2 Click Manage > Add folder.

3 While viewing the Add new folder page, use your browser to view the HTML source code for the
page.

4 Search for the type of folder you want to create (for example, discussion, blog, or calendar).
20 Web Services Overview

5 In the input HTML tag that creates the radio button for that type of folder, note the
name""binderConfigI"d and value"=nnn" pair of tag elements.

The number specified by the value element is the binder configuration identifier of the folder you
want to create.

The following figure shows an example of the binder configuration information for a blog folder, as
found in the HTML source for the Add new folder page:

Figure 2-1 The Binder Configuration Identifier in Source Code

Attaching Files

In Micro Focus Vibe, attachments are files that are associated with an entry. An entry can have more
than one attached file.

For Web services, an attachment is a file exchanged in conjunction with an operation being passed
between the client and server. Vibe recognizes only the first file attachment to an operation being sent
to the server and ignores all other attachments.

To attach more than one file to an entry in Vibe, you must use one of the upload operations multiple
times. For example, to attach 17 files to an entry in Vibe, you must use folder_uploadFile 17 times.
Your client source code establishes where in the file system it finds or places files used as
attachments to messages.

The folder_uploadFile operation requires that you pass a data item name. This identifier maps to
the value specified in the name attribute of the input HTML tag used to upload the file; this value is
also used in a hidden HTML tag that communicates values between the HTML form and the Vibe
database.

To upload a file into the standard form element used to contain attachments, specify ss_attachFile
as the data item name. If you are uploading files into a custom form element, create an instance of
that custom entry, use an operation to get the name of the hidden field, then use the name when
attaching files to the entry you actually want to affect.

Fetching Attachments

When you use folder_getEntry to obtain information about an entry, you use a Boolean parameter
to indicate if you want the entry’s attachments. If you specify that you do want the attachments, your
client establishes where on its system it places the attached files.

Adding Calendar Entries

When you pass the ical_uploadCalendarEntriesWithXML operation to the server, the Web
services framework uses an XML formatted string of iCal data passed as the second parameter to the
operation (<doc><entry>iCal data</entry></doc>).
Web Services Overview 21

Binder Pages and search_getWorkspaceTreeAsXML

When you use search_getWorkspaceTreeAsXML to obtain information about the hierarchical
workspace tree, Micro Focus Vibe returns XML formatted information about nodes in the tree, within
the levels of the hierarchy you specify. Each node in the tree is a binder, which is typically a place (a
workspace or folder). Sometimes, the XML element returned for a node is called a page.

The following graphic shows the workspace tree, which is expanded to show five levels of the
workspace hierarchy:

Figure 2-2 Workspace Hierarchy Levels as Seen in the UI

In the graphic, each of the workspaces and folders are nodes in the workspace tree. The Workspaces
workspace is the only binder at level 1. Level 2 binders include Global workspaces, Personal
workspaces, and Team workspaces. The only binder shown at level 3 is the Corporate web site
binder. Level 4 binders include folders and the December 2008 redesign workspace. The Calendar
binder is located at level 5. If a binder has a plus sign next to it (for example, both the Global
workspaces and Personal workspaces binders are preceded by plus signs), it means that there are
hierarchy levels of binders that are not displayed in the UI.

If you use search_getWorkspaceTreeAsXML to get one level of the tree starting at the Workspaces
node, Vibe returns information about Global workspaces, Personal workspaces, and Team
workspaces.

As mentioned, some nodes in the tree are pages:

Figure 2-3 Pages as They Appear in the UI

The /ssf/web/docroot/WEB-INF/classes/config/ssf.properties file contains a property called
wsTree.maxBucketSize, which, by default, is set to 25. This means that the maximum number of
sub-workspaces allowed is 25. If a folder or workspace has more subplaces, Vibe creates virtual
buckets called pages. Each line in Figure 2-3 corresponds to a page. The Personal workspaces
workspace has two pages.
22 Web Services Overview

When you use search_getWorkspaceTreeAsXML to retrieve information about nodes in the
workspace tree, it can return more than one hierarchical level as you specify, unless it encounters a
page. To expand the tree beyond a page, you must call search_getWorkspaceTreeAsXML again,
pass the binder identifier of the page, and pass the number of levels beyond the page you want to
retrieve.

Consider the following:

Figure 2-4 A Page Containing Sub-Workspaces

The wong//zeeman page contains workspaces. The workspaces listed (Wong, Charles (cwong), and
Zeeman, Skip szeeman)) are one level beyond the page.

When you receive page information as a node in the workspace tree, you receive page and tuple
attributes. For example, page"""2 and pageTuple"=charles_wong (cwong)//skip_zeeman
(szeeman)". To obtain information about the contents of this page, you need to specify the identifier
of the page’s parent, the number of hierarchy levels you want expanded, and a concatenation of the
page number and tuple values, as shown in this example:

search_getWorkspaceTreeAsXML 24 3 "2//charles_wong//skip_zeeman"

This code begins at binder number 24, accesses page number 2, and returns two hierarchical levels
of data for all users between Charles Wong and Skip Zeeman.

Given the structure of the Vibe pages and how Web services returns tree data, it is easiest to retrieve
page data in this way. However, if you choose, you can actually retrieve paged tree data regardless of
page number. To do this, specify any page number (Vibe actually ignores it), and specify a tuple in the
correct order in which it appears in the tree, even if the set of users crosses pages. Vibe returns
hierarchical information for all users in between the tuple values. However, if the number of returned
nodes exceeds the value specified in the wsTree.maxBucketSize property (by default, 25 users),
Vibe pages the data.

Finally, if you want to see all tree information without any page specifications, specify -1 as the value
of the hierarchy levels you want returned.

Extending Vibe Web Services
Because Kablink Vibe is open source software, you have the source code that implements our Web
services, and you can extend it. However, we invite you to operate within the spirit of an open source
community by participating in the Kablink Vibe online community (https://sourceforge.net/p/kablink/
code/HEAD/tree/), sharing your code with others, and working with the Micro Focus engineers to
Web Services Overview 23

https://sourceforge.net/p/kablink/code/HEAD/tree/

incorporate your Web services extensions into the base product. In this way, you make the product
and community stronger, and you avoid doing work that might need to be redone in future versions of
Kablink Vibe because of engineering changes.

Of course, whether you participate in the community or upgrade to future versions of the software is
up to you. Regardless of your decision, Kablink Vibe includes an example that provides a structure
that enables users of all versions of our software to extend our Web services in the most optimal way,
minimizing work that you might need to do to maintain the extensions for every upgrade.

Kablink Vibe includes an extended Web services example, which adds the folder_getFolderTitle
operation to the base Vibe web services, and also adds the getFolderTitle command to the
teamingservice-client-with-call.bat sample client. The source code for the extension is
located in this directory and in its subdirectories:

/ssf/samples/extendedws

This directory contains the readme.txt file, which provides simple directions for establishing the
extension.
24 Web Services Overview

3 3Creating JavaServer Pages (JSPs)

Much of the information in this section references Teaming, which is the product name for the Vibe
product for versions prior to Vibe 4. This information applies to Vibe 4 as well as earlier versions of
the product.

You can use JavaServer Page (JSP) files when creating extensions for Vibe. For more information
about creating extensions, see Chapter 4, “Creating and Packaging Extensions for Deployment,” on
page 57.

 “Overview of JSP Support” on page 26

 “Examples of Custom Entries” on page 32

 “Examples of Complex, HTML Data Types” on page 51

JavaServer Pages (http://en.wikipedia.org/wiki/JavaServer_Pages)

JavaServer Pages technology (http://java.sun.com/products/jsp/)

NOTE: The method of specifying separate JSP files for the form, view, and mail was the primary
method of applying JSP applications for versions of Micro Focus Vibe prior to 2.0, and this method is
still supported in Teaming 2.0 and later. However, Teaming 2.0 and later added support for specifying
a single JSP file for the form and then inheriting the JSP in the view. Also, Teaming 2.0 and later
supports replacing standard items (such as the title or description) with JSP files.

This topic describes the application of JSP customizations in Micro Focus Vibe.

Using form and view designers, you can add standard HTML or Vibe elements (for example, a text
box or form elements to upload attachments) to standard entries. As another option, you can create
new types of entries (for example, a paid-time-off-request entry, a resume-processing entry, a
document-review entry, and so on). When you limit a folder to a custom task, then you created a
dedicated application.

Using Vibe as an application-development platform is powerful. However, given the tools described in
this guide so far, you may have noticed some limitations. For example, when you use the designers to
create custom entries, you are allowed some control over the position of the custom elements on the
page, but many formatting decisions are left to the Vibe software. If your application requires a level
of formatting control that is difficult or impossible to achieve using the designers, you can use JSPs to
enhance your customization.

This topic includes these sections:

 “Overview of JSP Support” on page 26

 “Examples of Custom Entries” on page 32

 “Examples of Complex, HTML Data Types” on page 51

NOTE: Although it includes examples of JSP tagging, it is beyond the scope of this topic to teach
general tagging syntax and use cases for JavaServer Pages.
Creating JavaServer Pages (JSPs) 25

http://en.wikipedia.org/wiki/JavaServer_Pages
http://java.sun.com/products/jsp/

Overview of JSP Support
This section explains the relationship between the Micro Focus Vibe UI and the content of the JSP
files, and provides other information to assist in your use of JSP customizations. If you prefer to learn
by doing, you may want to skip this section and review the examples (see “Examples of Custom
Entries” on page 32).

This section includes these subsections:

 “Directory Structure” on page 26

 “Applicable Pages” on page 27

 “JSPs and the Vibe Designers” on page 27

 “Indexing Issues” on page 30

 “JSPs and Vibe Data Access” on page 31

 “Text Display in the HTML Editor” on page 32

 “Standard Styles” on page 32

Directory Structure

In the Micro Focus Vibe implementation of JSP-based customizations, you specify the JSP files using
the designers, which are located in the administration portlet.

The designer interface expects to find the JSP files relative to this location within the server directory
structure:

/WEB-INF/jsp/custom_jsps

Vibe ships sample JSP customizations in this directory:

/WEB-INF/jsp/custom_jsps/samples

By default, Vibe includes in this directory three files that you can use to practice applying a small JSP
customization to a single element within a page:

custom_jsp.html
custom_jsp_form.html
custom_jsp_view.html
custom_jsp_mail.html

A section that follows describes how to apply this sample customization and what it looks like in the
Vibe user interface (UI). For more information, see “A JSP That Defines Only One Data Element” on
page 33.

Because the /custom_jsps directory contains JSP files for all customizations in the installation,
Micro Focus strongly recommends that you create subdirectories for each customization. For more
information, see “Enabling Custom JSPs to Be Used on Your Vibe Site” in the Micro Focus Vibe 4.0.5
Administration Guide.

For example, a section that follows shows sample JSPs that produce almost the entire bodies of the
form and view pages for an entry, as it implements a W-4-form application. (A W-4 form is a
government form in the U.S.A. that is used to withhold federal taxes from an employee’s paycheck.)
For example, the sample W-4 application places its JSP files in this subdirectory:

.../custom_jsps/samples/w4
26 Creating JavaServer Pages (JSPs)

See “A JSP-Defined Entry (W-4 Form)” on page 36, for more information about the sample W-4 JSP
customization.

Applicable Pages

You can apply JSP customizations to several types of Micro Focus Vibe pages:

 Form: This is the page used to create a workspace, folder, entry, or comment.

 View: This is the page that displays the content of the created workspace, folder, entry, or
comment.

 Landing Page: This is the page that displays the summarized content of the workspace or
folder.

For information on how to reference a JSP file from a landing page, see “Adding a Custom JSP”
in “Creating and Managing Landing Pages” in the Micro Focus Vibe 4.0.5 Advanced User Guide.

JSPs and the Vibe Designers

Using the Vibe designers, you can remove or add elements of a binder (workspace or folder) or an
entry. Using these tools, you can include one or more JSP files to customize content.

For example, after accessing the form and view designers in the administration portlet, you can edit
the definition for a discussion entry:

Figure 3-1 Using a Designer to Edit the Definition for a Discussion Entry

Expand the Entry form definition line so that you see the Form line:

Figure 3-2 Expand the Form Definition
Creating JavaServer Pages (JSPs) 27

After clicking Form, click Add in the tools box on the right side of the designer, and notice the Custom
JSP link in the Layout options section:

Figure 3-3 Locate the Link that Adds the Custom JSP File

Click Custom JSP, and, in the form, provide a caption (which is often used as the displayed title next
to the page element), an internal-use name, and the JSP files that implement this customization. The
following graphic shows the form used to specify JSP files, and provides the caption Highlighted text:

Figure 3-4 Completed Form for a JSP Customization

NOTE: Be sure to add the path to the filenames specified in the previous graphic. For example, the
correct path for the form customization is samples/custom_jsp_form.jsp.

This example uses the sample JSP files provided in the /WEB-INF/jsp/custom_jsps directory.

After submitting the form, the JSP customization appears in the definition for the discussion-entry
form, which allows you to position it, remove standard elements, and so on. Notice the Custom JSP -
Highlighted text JSP element positioned just below the standard Description element:
28 Creating JavaServer Pages (JSPs)

Figure 3-5 The JSP Element Within the Definition

Because you provided the file specifications for the form, view, and mail when you added the JSP
form element, Vibe remembers this new element and you can locate it within the designer tools using
its caption.

For example, after adding a custom form element, you usually want to add the corresponding custom
view element. To do so, click the plus sign (+) next to the Entry view definition line to see the
elements contained within the view page:

Figure 3-6 Expand the View Definition

Then, click the Entry view definition text to display tools, and then click Add in the tools box located
on the right side of the designer. Because Vibe recorded the creation of the Highlighted text JSP
customization, Highlighted text now appears in the Standard form elements section of the tools box.
For example, notice the Highlighted text line toward the bottom of the list in this graphic:

Figure 3-7 The Custom Form Element is Available to the View Definition
Creating JavaServer Pages (JSPs) 29

Figure 3-8

To add the custom_jsp_view.jsp file to the view definition, click Highlighted text in the Standard
form elements section of the tools box, and then click OK. Vibe adds the custom element to the view
definition, and then you can reposition it within the definition as you desire. The following graphic
shows the Entry data item - Highlighted text element just under the Description - Description
element:

Figure 3-9 Positioning the Custom Element

See “A JSP That Defines Only One Data Element” on page 33, for more information about how this
customization appears in the UI.

Indexing Issues

When you use one JSP to define one page element, Vibe uses the internal-use data name that you
assigned to the JSP in the designer to identify the data as well. In the example in the previous section
(see “JSPs and the Vibe Designers” on page 27), the internal-use data name was highlightedText,
and it applied to both the JSP file and the actual text collected by the custom text box.

When you use a JSP to define more than one page element, Vibe recognizes the JSPs to the extent
that users can create and view a customized entry, but its tools do not recognize the multiple, distinct
pieces of custom data within the JSP. As an additional step, you must use the designer to add form
elements that match the unique elements found within the JSP file. After you complete this task, Vibe
tools then recognize each distinct piece of custom data defined within the JSP. For example, users
can now use the advanced search form to search based on exact values provided in those custom
elements.

For more information about this additional task that must be performed when adding more than one
custom element to the form using a JSP file, see “Identifying Multiple Data Items Defined in One JSP
File” on page 48.
30 Creating JavaServer Pages (JSPs)

JSPs and Vibe Data Access

To enable all of the definition elements and building blocks for your custom JSP, include this line at
the top of your JSP file:

<%@ include file="/WEB-INF/jsp/definition_elements/init.jsp" %>

Because JSP customizations within Micro Focus Vibe are applied to a section of larger web pages,
do not specify the html, head, or body HTML tags in your JSP file.

When using custom JSPs, you can customize binders and entries. Binders include all types of
workspaces and include folders. Entries include entries as well as comments. Because customization
of entries is most common, the rest of this section discusses data accessible when customizing an
entry.

To access entry data, you access the properties of the ssDefinitionEntry object. For example, this
tag from a Vibe JSP file tests for the existence of the entry title:

<c:if test="${empty ssDefinitionEntry.title}">

Here is a list of some of the object attributes that you can access from your custom JSPs:

ssDefinitionEntry.title
ssDefinitionEntry.description
ssDefinitionEntry.fileAttachments
ssDefinitionEntry.creation.principal.title
ssDefinitionEntry.creation.date
ssDefinitionEntry.modification.principal.title
ssDefinitionEntry.modification.date

The identifier principal corresponds to the user who created or modified the entry.

Vibe provides Java beans that enable a JSP file to access the caption and the internal data name
specified for the JSP file using designer tools:

property_name
property_caption

Use these beans when you are using one JSP file to add one custom element. In this scenario, the
name and caption specifications for the JSP file are also applied to the custom data. (When using a
JSP file to add more than one element, you specify the name and id HTML elements explicitly. For
more information, see “A JSP-Defined Entry (W-4 Form)” on page 36.)

When accessing the value of properties other than the name and caption, use the
customAttributes method. For example, the following example shows a tag from a form JSP:

<input type="text" id="${property_name}" name="${property_name}"
value="${ssDefinitionEntry.customAttributes[property_name].value}"/>

The tag both provides an HTML-tag identifier (id) and name (name) for the custom form element, and
uses the customAttributes method to retrieve the value of the custom element (if it exists).
Examples in a subsequent section demonstrate the use of beans and the customAttributes
method, when customizing part of a standard entry form, view, or mail message (see “A JSP That
Defines Only One Data Element” on page 33).

The description of properties, beans, and methods in this section is not exhaustive. To learn about
other types of data available to you while using JSP files to create customizations, review the Vibe
JSP files, which are found here:

/WEB-INF/jsp/definition_elements
Creating JavaServer Pages (JSPs) 31

For example, when searching this folder for occurrences of the ssDefinitionEntry object, you can
locate this code, which is found in the popular_view.jsp file:

<c:if test="${!empty ssDefinitionEntry.totalReplyCount}">

The totalReplyCount property provides an integer that tells you the number of comments for the
current entry.

Text Display in the HTML Editor

Unlike most property data, description data almost always requires additional processing within the
JSP file. Remember that users create the description text using an HTML editor and that users can
place coded items within the text (for example, inline graphics or the double-bracket notation
([[text]]) often used in wiki entries to create a link to another entry).

Consider the following tagging from the /WEB-INF/jsp/definition_elements/
view_entry_data_description.jsp file:

<ssf:markup type="view" entity="${ssDefinitionEntry}"><c:out
 value="${ssDefinitionEntry.description.text}" escapeXml="false"/></
ssf:markup>

The ssf:markup tag takes raw text, but processes the information so that it includes properly coded
HTML for inline graphics and links to other entries. The escapeXml element of the ssf:markup tag
provides an escape for HTML tags. In other words, the false setting for escapeXml in the last
example indicates that the system should escape the angle bracket characters (<tag-text>). In this
way, HTML tags are included and properly processed by the browser.

Standard Styles

When creating JSP customizations, you are free to style your page elements as needed. However, if
you would like to use the standard styles used by the Vibe product, you can find their definitions here:

/WEB-INF/jsp/common/ssf_css.jsp

As you explore the standard JSPs that ship with the product in the /WEB-INF/jsp/
definition_elements directory, note the name of the standard style, and view its CSS definition in
the ssf_css.jsp file.

Examples of Custom Entries
This section provides examples of the two common approaches when using JSPs to customize an
entry. Using the first approach, you use a JSP file to customize selected elements within the page
segment; then, you can use the Micro Focus Vibe designers to customize the remaining, non-JSP
elements. Using the second approach, you use JSP files to define almost the entire page segment;
you can use the designers to include desirable Vibe tools (such as the ability to subscribe to the entry,
the send-mail feature, workflow, attachments, and comments), if desired.

This section contains these subsections:

 “A JSP That Defines Only One Data Element” on page 33

 “A JSP-Defined Entry (W-4 Form)” on page 36
32 Creating JavaServer Pages (JSPs)

A JSP That Defines Only One Data Element

Micro Focus Vibe provides sample JSP files for you to apply as a way of learning about JSP
customizations. These files create a custom text box on the form, and, after a user enters text and
submits the form, these files display the text on the view page and in the mail message (sent using
the Send mail tool in the footer tool bar).

This section contains these subsections:

 “Understanding the Form Customization” on page 33

 “Understanding the View Customization” on page 35

Understanding the Form Customization

Let’s review the code in the /WEB-INF/jsp/custom_jsps/custom_jsp_form.jsp file. First, the file
includes a tag that enables definition elements and building blocks for your JSP:

<%@ include file="/WEB-INF/jsp/definition_elements/init.jsp" %>

Because it is defining a page segment within a larger web page, the JSP does not include html,
head,or body HTML tags.

Next, the sample JSP file for the form includes bolded text that makes the new element very
noticeable on the form:

<div style="padding:10px 0px 10px 0px;">
This is a custom jsp form element

If the caption property is not empty, then the code uses its contents as a title for the custom element:

<c:if test="${!empty property_caption}">
 ${property_caption}

</c:if>

Finally, the custom JSP file for the form displays the text box. It also displays the current value of the
element (if it exists), which is applicable when a user modifies an existing entry. Consider the last
portion of code in the custom JSP file for the form:

<input type="text" id="${property_name}" name="${property_name}"
 value="${ssDefinitionEntry.customAttributes[property_name].value}"/>
</div>

When the system performs a get for the customAttribites method, it uses the value of the
property_name bean as a parameter. This action results in the specification of the appropriate
custom attribute. Then, this code obtains the value property for that custom attribute, displaying it
within the text box, if it exists. If it does not exist, the text box is empty.

To use this custom JSP in an entry, you use the designers in the administrative portlet. This section
describes how you can add the custom-text customization to a standard discussion entry.

In the administration portlet, access the designer for entries, access the discussion entry, and click
Form:
Creating JavaServer Pages (JSPs) 33

Figure 3-10 Accessing the Form for a Discussion Entry

To add the custom JSP to the form, click Add in the tools presented in the tools box on the right side
of the page, and then click Custom JSP in the Layout options section:

Figure 3-11 Adding a Custom JSP to the Form

Complete the form located in the tools box:

Figure 3-12 Complete the Form for the Custom JSP

NOTE: Be sure to add the path to the filenames specified in the previous graphic. For example, the
correct path for the form customization is samples/custom_jsp_form.jsp.

In the previous graphic, the caption for the custom text box is Highlighted text. The form in the
previous graphic also specifies all three custom JSP files: three separate file specifications for the
form, the view, and the mail message.

After you submit the form, position the custom element within the entry definition. The rest of this
section assumes a position just below the description.

When a user adds a new entry for a discussion folder, the person sees this custom portion of the
form:
34 Creating JavaServer Pages (JSPs)

Figure 3-13 The Custom Element on the Form

Assuming that the user entered Here is some text in the Highlighted text box, then submitting the
form results in the user seeing this in the completed entry:

Figure 3-14 The Custom Element in the View

The next section shows the JSP tagging that displays the custom element shown in the previous
graphic.

Understanding the View Customization

First, the view JSP includes a tag that enables definition elements and building blocks for your JSP:

<%@ include file="/WEB-INF/jsp/definition_elements/init.jsp" %>

Then, the view JSP file uses the same code that the form JSP used to display the caption for the
custom element, if it exists:

<div style="padding:10px 0px 10px 0px;">
<c:if test="${!empty property_caption}">
 ${property_caption}

</c:if>

Finally, the view JSP uses this code to provide a cyan background color and to display the custom
data, if it exists:
Creating JavaServer Pages (JSPs) 35

<div style="background-
color:cyan;">${ssDefinitionEntry.customAttributes[property_name].value}</div>
</div>

A JSP-Defined Entry (W-4 Form)

Some custom entries require formatting that is either difficult or impossible to achieve using a
separate JSP file for every custom element. For example, there may be an HTML form that you are
already using in your organization, and you want to use a nearly identical form within Micro Focus
Vibe.

This section describes custom JSPs that implement a W-4-form application. (A W-4 form is a
government form in the U.S.A. that is used to withhold federal taxes from an employee’s pay.) This
application requires that the entry resemble the paper form, but it allows for the use of standard tools
within Vibe. This application allows users to add comments to the W-4 entry, to subscribe to the entry,
to send e-mail upon creation of the entry, and to apply a workflow process to the entry. Finally, the
application changes the styles of the buttons used to cancel or submit the form.

NOTE: It is possible to replace the entire, standard Micro Focus Vibe form and to replicate coding for
the Vibe tools (attachments, subscribing to the entry, and sending mail upon entry creation) using
code in your JSP. However, doing so is significantly more difficult to code. The example in this section
documents the best practice of using JSPs to generate most of the form while still enabling the Vibe
tools for standard entries.

The graphic that follows shows the top portion of the W-4 form as it appears in a window sized to be
narrow (note the lack of a “title” text box):
36 Creating JavaServer Pages (JSPs)

Figure 3-15 The Top Portion of the W-4 Form

Here is the bottom portion of the W-4 form, which includes standard Vibe tools in between the W-4
content and the buttons:

Figure 3-16 The Bottom Portion of the W-4 Form
Creating JavaServer Pages (JSPs) 37

When a user creates an entry of this type, it appears as follows (note the title of the entry, comprised
of two elements found on the form):

Figure 3-17 Example of a Created Entry for the W-4 Customization

This section contains these subsections:

 “Creating the Source Files” on page 38

 “Defining Custom Entries” on page 39

 “Coding the Form Files” on page 46

 “Coding the View File” on page 47

 “Identifying Multiple Data Items Defined in One JSP File” on page 48

 “Coding the Mail File” on page 50

Creating the Source Files

Because all JSP customizations are located in the /custom_jsps folders, it is recommended that you
place application files in separate sub-folders. So, the W-4 application places source files here:

/WEB-INF/jsp/custom_jsps/samples/w4

These are the files required for the application:

w4_form_buttons.jsp
w4_form.jsp
w4_mail.jsp
w4_view.jsp
38 Creating JavaServer Pages (JSPs)

NOTE: When developing the W-4 example, it was helpful to begin with the form and view files
containing only standard HTML tagging. For example, to begin, the w4_form.jsp file only contained
the JSP tag that set definitions, and a standard HTML table containing input HTML tags. As the next
step, use the instructions in the sections that follow to add one element at a time to both the form and
view. In the UI, create or modify an entry of this custom type, provide a value for the custom element,
submit the form, and check the view to be sure that Micro Focus Vibe properly captured the data for
the custom element. Proceed with your customization one element at a time, until learning this
customization process and debugging are no longer issues.

Defining Custom Entries

Although it is possible to use a JSP file to add a single element to a standard entry, the more likely
application is the creation of a new definition for a custom entry. When creating a custom entry, it is
common for an application to require that a JSP contain more than one custom element.

To create a new entry definition, access the entry designer in the form and view designers, which are
all located in the administrative portlet. Then, click Entry definitions:

Figure 3-18 Invoking Tools for Entry Definitions

In the tools box on the right side of the designer, click Add a new entry definition:
Creating JavaServer Pages (JSPs) 39

Figure 3-19 Add a New Entry Definition

When providing a caption for your custom entry, remember that this text appears when the user clicks
the New drop-down menu:

Figure 3-20 The New Drop-Down Menu

In the entry designer, complete the information for the custom-entry definition and click OK at the
bottom of the form:
40 Creating JavaServer Pages (JSPs)

Figure 3-21 Complete the Form for the Custom-Entry Definition

Next, you must provide the JSP file specifications for the form page, view page, and mail message. In
the hierarchy to the left of the entry designer, click the plus sign (+) next to Entry form definition to
expand it:

Figure 3-22 Access the Form Definition

Click Form:
Creating JavaServer Pages (JSPs) 41

Figure 3-23 Access Tools for the Form Definition

In the tools box on the right side of the designer, click Add:

Figure 3-24 Add an Element to the Form

In the Layout options section of the tools box, click Custom JSP:
42 Creating JavaServer Pages (JSPs)

Figure 3-25 Add the Custom JSP to the Form

Complete the form, providing the file specifications for the custom JSPs:

Figure 3-26 Providing File Specifications for the JSP Files

NOTE: Be sure to add the path to the filenames specified in the previous graphic. For example, the
correct path for the form customization is samples/w4/w4_form.jsp.

Because Vibe assumes that directories are relative to the /WEB-INF/jsp/custom_jsps directory, the
file specifications in the previous graphic begin with the samples/w4/ string, indicating that the files
are located in the /custom_jsps/samples/w4 directory.

Click OK to submit the form shown in the previous graphic.

Because the W-4 application customizes the buttons for this form, and because standard tools
appear in between the custom form and the buttons (for example, these tools include the form
elements that upload and manage attachments), you need to specify the JSP file for the buttons as a
separate step in the process.

Click Entry form definition again, click Add in the tools box, and, in the Layout options section, click
Custom JSP. Fill out the form:

Figure 3-27 Complete the Form for the Buttons JSP

NOTE: Be sure to add the path to the filenames specified in the previous graphic. For example, the
correct path for the buttons file is samples/w4/w4_form_buttons.jsp.
Creating JavaServer Pages (JSPs) 43

For the W-4 application, the standard title and buttons are not needed (the custom JSPs provide
these elements). So, use the entry designer to delete the Title - Title and Form buttons elements
from the form definition. Next, add the Subscribe to this entry and Send mail when entry is
submitted elements. This is the appearance of the form definition when you are finished:

Figure 3-28 Customized Form Including Both JSP Files

NOTE: After you learn JSP tagging and debugging, you can continue using the form designer at this
stage of the process to enable Micro Focus Vibe tools, such as indexing custom data and making
custom elements available on the advanced search form (see “Identifying Multiple Data Items
Defined in One JSP File” on page 48). However, when you are first learning to do these types of
customizations, it is recommended that you code and debug each custom element one at a time,
ensuring that users can successfully specify data for the custom elements before working further
within the designer for the form definition.

To begin the work needed to define the view definition, click Entry view definition:

Figure 3-29 Access the View Definition

In the tools box on the right side of the designer, click Add. Vibe displays a list of elements that you
can add to the view:
44 Creating JavaServer Pages (JSPs)

Figure 3-30 View Elements

Deeper in the list, locate and click the caption you provided for the form definition (in this example, W4
Federal Form):

Figure 3-31 Clicking the Caption for the Custom JSP

Use the designer tools to reposition the JSP within the view as desired. Here is one order that you
can specify for your view (note the Entry data item - W4 Federal Form line):

Figure 3-32 Repositioning View Elements

At this point in the process, you have a formatted and minimally functioning custom entry; a user can
create an entry, and Vibe can display it. However, users cannot supply values for custom elements
until you edit and debug the JSP files for the form and view so that they store and display custom data
properly.

Use the information in the next section (see “Coding the Form Files” on page 46) to guide the coding
of your JSP files, activating custom elements in your form and view one element at a time. Continue
until a user can create a complete entry, providing values for all custom elements on the form and
ensuring that the view page displays values for all of the custom elements.

When you are finished debugging, you must go back into the form designer to further identify all
custom elements in the form so standard tools in Vibe can access them (see “Identifying Multiple
Data Items Defined in One JSP File” on page 48).
Creating JavaServer Pages (JSPs) 45

Coding the Form Files

Generally, when you are first learning to implement JSP customizations with Micro Focus Vibe, you
add one element, test it by creating an entry and reviewing the view, and then debug. For this reason,
it can be helpful to have two windows open displaying Vibe pages: one in which to work within the
designer and one in which to check a modified entry to see if the changes in the designer are taking
effect.

Also, generally, many entries contain a title element. Vibe automatically uses the value of this element
as the title for a created entry. For example, if you specify Let’s talk about the project plan in the title
element of a form for a new discussion topic, then Let’s talk about the project plan appears as the
title of the new entry.

However, the W-4 application does not include a title element on the form. It uses JavaScript and
DOM coding to construct a title for the entry. For example, if the person filling out a W-4 form specified
Juanita as a first name and Suarez as a last name, then the created entry combines the values of two
form elements and uses Juanita Suarez as the entry title. This customization was included to
illustrate possibilities for your JSP customizations.

So, in the W-4 customization, the first-name and last-name elements need to be added to the form
before the view can properly display its entry title.

As mentioned, you include the JSP tag that establishes supporting definitions for Vibe
customizations. Then, you specify HTML code needed for your specific customization. For the W-4
application, the form and view use a standard HTML table. Here are the first few lines of the W-4
form:

<%@ include file="/WEB-INF/jsp/definition_elements/init.jsp" %>

<table width="100%" cellpadding="6" cellspacing="0" summary="W4 form">
<tr>
<td>Form
W-4</td>
<td colspan="5"><font
size="+1">Employee's Withholding
Allowance Certificate</td>
<td>OMB No. 1545-0010</td>
</tr>

Because the JSP customization defines a page segment within a larger web page, it does not specify
html, head, or body HTML tags.

The code that implements the first name and last name is the same syntactically as the code that
implements single-element JSP files (see “A JSP That Defines Only One Data Element” on page 33).
You provide identifiers for the custom elements, and you use the ssDefinitionEntry object, its
attributes, and their values, to place existing data into the form element (if it exists). This is the code
for the firstName and lastName attributes:

<tr>
<td colspan="2"><input type="text" name="firstName" id="firstName"
size="25" value="${ssDefinitionEntry.customAttributes['firstName'].value}" /></td>
<td colspan="3"><input type="text" name="lastName" id="lastName"
size="25" value="${ssDefinitionEntry.customAttributes['lastName'].value}" /></td>

Generally, the process of coding all other form elements is the same. However, coding radio buttons,
check boxes, and select boxes (there are no select boxes in the W-4 example) require the knowledge
of some additional details (see “Examples of Complex, HTML Data Types” on page 51).
46 Creating JavaServer Pages (JSPs)

The initial part of the JSP file for the buttons contains style information to be applied to the OK and
Cancel buttons:

<style>
input.custom_submit {
 background-color: #009999;
 border: 1px solid #006666;
 color: #ffffff;
 font-size: 12px;
 padding: 0px 6px 0px 6px;
 cursor: pointer;
 white-space: nowrap;
}
</style>

The next section of code in the JSP file for the buttons contains the JavaScript that concatenates the
first and last names, and assigns that string to the title form element:

<script language="JavaScript" type="text/javascript">
function mySubmit() {
 self.document.form1.title.value = self.document.form1.firstName.value + " " +
self.document.form1.lastName.value;
}
</script>

When Vibe generates a form that creates an entry, the standard identifier for the form is form1.

Because this application required the removal of the title element of the form using the designers, the
internal mechanism for recognizing and storing the data for a title has been removed. The next line in
the JSP file for the buttons uses a “hidden” tag to replace the mechanisms removed by the deletions
in the designer:

<input type="hidden" name="title" value="" />

Execution of the JavaScript routine mySubmit provides a value for the title element.

The final segment of code in the JSP file for the buttons contains HTML for the OK and Cancel
buttons:

<input type="submit" class="custom_submit" name="okBtn" value="OK"
onClick="ss_buttonSelect('okBtn');mySubmit();"/>
<input type="submit" class="custom_submit" name="cancelBtn" value="Cancel"
onClick="ss_buttonSelect('cancelBtn'); " />

The HTML for the OK button includes an onClick specification that executes the mySubmit
JavaScript routine, creating the value of the entry title.

Coding the View File

For the W-4 application, the JSP file for the view is a table identical to the one included in the form,
except that it only displays values for each of the custom elements (if they exist).

First, include the tag that establishes the JSP definitions:

<%@ include file="/WEB-INF/jsp/definition_elements/init.jsp" %>

Here is a sample of the code from the view file that displays the first name, last name, and social
security number:
Creating JavaServer Pages (JSPs) 47

<tr>
<td colspan="2">${ssDefinitionEntry.customAttributes['firstName'].value}</td>
<td colspan="3">${ssDefinitionEntry.customAttributes['lastName'].value}</td>
<td colspan="2">${ssDefinitionEntry.customAttributes['ssn'].value}</td>
</tr>

The identifiers firstName, lastName, and ssn map to the name and id elements for the HTML input
tags in the JSP for the form.

Complete the table so that it displays all of the custom elements.

Coding for most of the elements is virtually identical to the code displayed in the last example.
However, displaying data from radio buttons, check boxes, and select boxes (there are no select
boxes in the W-4 example) require the knowledge of some additional details (see “Examples of
Complex, HTML Data Types” on page 51).

Identifying Multiple Data Items Defined in One JSP File

After adding and testing all custom elements, the custom entry for the W-4 application is complete,
which means that someone can create and view an entry containing values for all custom elements.
However, one of the desirable features ofMicro Focus Vibe is the integration between features and
tools. To enable this integration, you need to use the designers to report to the system that this entry
includes custom data elements. As one example, after you report the existence of these elements,
Vibe is able to index the custom data, which, in turn, allows users to perform advanced searches
based on this custom data.

In summary, to report the custom elements to the system, use the form designer for the entry to add
elements that use the same name and HTML data type (text box, radio button, and so on) as the
element in the JSP files.

To report custom elements, access the definition of the custom entry (W4: Employee Withholding
(w4)), and open the form definition by clicking the plus sign (+) next to both Entry form definition and
Form. Then, click Custom JSP - W4 Federal Form. Finally, add elements as children to Custom JSP -
W4 Federal Form.

The instructions that follow show you how to add the first-name element.

As a reminder, here is the HTML from the JSP for the form that establishes the first-name element,
whose form element is a text box:

<input type="text" name="firstName" id="firstName"
size="25" value="${ssDefinitionEntry.customAttributes['firstName'].value}" />

In the tools box on the right side of the designer, click Text:

Figure 3-33 Adding a Text Element for Indexing Purposes
48 Creating JavaServer Pages (JSPs)

Figure 3-34

In the form, specify the same data name (firstName) as the name and id elements used in the HTML
input tag found in the JSP file, and provide the same caption:

Figure 3-35 Match the Name with the One Found in the JSP File

None of the other form values have an effect. Click the OK button to submit the form.

Repeat this action for all elements defined in the JSP file, including the hidden title element. The
order of the elements does not have to match the order of the elements in the JSP file. When you are
finished, the definition includes all of the elements shown in this graphic:
Creating JavaServer Pages (JSPs) 49

Figure 3-36 All Elements Specified for Indexing Purposes

Notice that the elements appear as children to the custom JSP within the hierarchy (as opposed to
peers).

Coding the Mail File

IMPORTANT: Customization of e-mail through JSPs is no longer supported. Depending on your
requirements, you might be able to leverage the Velocity templates described in “Customizing Email
Templates” in the Micro Focus Vibe 4.0.5 Administration Guide.

The W-4 application is a good example of a custom entry for which you might want to provide only a
summary of the information in an e-mail message. For example, this is all of the code in the JSP for
mail:

<%@ include file="/WEB-INF/jsp/definition_elements/init.jsp" %>

<table width="100%" class="border" cellpadding="6"
summary="W4 Information">
<tr>
<td>Form W-4</td>
<td colspan="5">Employee's Withholding
Allowance Certificate</td>
<td>OMB No. 1545-0010</td>
</tr>
<tr>
<td>Department of the Treasury
Internal
Revenue Service</td>
<td colspan="5">For Privacy Act and Paperwork Reduction Act Notice, see
elsewhere</td>
<td>2008</td>
</tr>
<tr><td colspan="7"><hr size="1" noshade="noshade" /></td></tr>
50 Creating JavaServer Pages (JSPs)

<tr>
<td colspan="2">1 First name and
middle initial</td>
<td colspan="3">Last name</td>
<td colspan="2">2 Your social security
number</td>
</tr>
<tr>
<td colspan="2">${ssDefinitionEntry.customAttributes['firstName'].value}</td>
<td colspan="3">${ssDefinitionEntry.customAttributes['lastName'].value}</td>
<td colspan="2">${ssDefinitionEntry.customAttributes['ssn'].value}</td>
</tr>
<tr><td colspan="7"><hr size="1" noshade="noshade" /></td></tr>

</table>

When a user views an entry of this type and clicks Send mail, that person sees:

Figure 3-37 Showing Partial Information in Mail

Examples of Complex, HTML Data Types
This section provides examples of capturing and displaying custom data for radio buttons, check
boxes, and select boxes. This section contains these sections:

 “Radio Buttons” on page 52

 “Check Boxes” on page 52

 “Select Boxes” on page 53
Creating JavaServer Pages (JSPs) 51

Radio Buttons

This section describes the radio buttons used in the W-4 application described in a previous section
(see “A JSP-Defined Entry (W-4 Form)” on page 36). This is the code from the JSP for the W-4 form
that implements the Single, Married, and “Married but...” radio buttons:

<td colspan="4">
3 <input type="radio" name="status" value="Single"

<c:if test="${ssDefinitionEntry.customAttributes['status'].value == 'Single' ||
ssDefinitionEntry.customAttributes['status'].value != 'Married' &&
ssDefinitionEntry.customAttributes['status'].value !=
'MarriedBut'}">checked="checked"</c:if> />Single

<input type="radio" name="status" value="Married" <c:if
test="${ssDefinitionEntry.customAttributes['status'].value ==
'Married'}">checked="checked"</c:if> />Married

<input type="radio" name="status" value="MarriedBut" <c:if
test="${ssDefinitionEntry.customAttributes['status'].value ==
'MarriedBut'}">checked="checked"</c:if> />Married, but withhold at higher
Single rate.
</td>

The JSP tagging code selects the Single radio button by default.

This is the code from the JSP for the view that displays all radio buttons, including the selected
button, but displays them as being disabled (so users do not attempt to change the value of the
element on the view):

<td colspan="4">3 <input type="radio" name="status" value="Single"

<c:if test="${ssDefinitionEntry.customAttributes['status'].value == 'Single' ||
ssDefinitionEntry.customAttributes['status'].value != 'Married' &&
ssDefinitionEntry.customAttributes['status'].value !=
'MarriedBut'}">checked="checked"</c:if> DISABLED />Single

<input type="radio" name="status" value="Married" <c:if
test="${ssDefinitionEntry.customAttributes['status'].value ==
'Married'}">checked="checked"</c:if> DISABLED />Married

<input type="radio" name="status" value="MarriedBut" <c:if
test="${ssDefinitionEntry.customAttributes['status'].value ==
'MarriedBut'}">checked="checked"</c:if> DISABLED />Married, but withhold at higher
Single rate.
</td>

Check Boxes

This section describes the check boxes used in the W-4 application described in a previous section
(see “A JSP-Defined Entry (W-4 Form)” on page 36). This is the code from the JSP for the W-4 form
that implements the differing-names check box:
52 Creating JavaServer Pages (JSPs)

<td colspan="4">
 check
here. You must call 1-800-772-1213 for a new card

<input type="checkbox" name="boxFour"
<c:if test="${ssDefinitionEntry.customAttributes['boxFour'].value ==
'true'}">checked="checked"</c:if>/>
</td>

Here is the code in the JSP for the view that displays the disabled check box (so users do not attempt
to change the value of the element on the view):

<td colspan="4">
 check here. You must call
1-800-772-1213 for a new card

<input type="checkbox" name="boxFour"
<c:if test="${ssDefinitionEntry.customAttributes['boxFour'].value ==
'true'}">checked="checked"</c:if> DISABLED />
</td>

Select Boxes

All other data types involve the storage of a single value. For both single-value and multiple-value
select boxes,Micro Focus Vibe stores the selected value or values in a value set. You can access the
attribute’s value set using this notation:

ssDefinitionEntry.customAttributes[attributeName].valueSet

You can use the foreach tag to loop through the value set, using that information to present either
form or view elements.

The W-4 application did not include an example of a select box, so this section presents code that
implements a multiple-value select box that allows user to choose between the written numbers one
through four:

Figure 3-38 Example of a Select Box on a Form
Creating JavaServer Pages (JSPs) 53

The previous graphic shows how the list looks by default, with no selections. Your code also needs to
display currently selected items upon entry modification.

This code labels the form element and initializes flag variables:

Test select box:

<c:set var="matchOne" value="0"/>
<c:set var="matchTwo" value="0"/>
<c:set var="matchThree" value="0"/>
<c:set var="matchFour" value="0"/>

Next, loop through the value set, and increment the flag that corresponds to a selected item:

<c:forEach var="selection"
items="${ssDefinitionEntry.customAttributes['testSelection'].valueSet}" >
<c:if test="${selection == 'one'}"><c:set var="matchOne" value="1"/></c:if>
<c:if test="${selection == 'two'}"><c:set var="matchTwo" value="1"/></c:if>
<c:if test="${selection == 'three'}"><c:set var="matchThree" value="1"/></c:if>
<c:if test="${selection == 'four'}"><c:set var="matchFour" value="1"/></c:if>
</c:forEach>

Then, in the option HTML tags for the select list, use an if JSP tag to indicate that an option is
selected:

<select name="testSelection" id="testSelection" multiple="multiple">
<option value="one" name="one" id="one"
<c:if test="${matchOne == 1}">selected="selected" </c:if>>One</option>
<option value="two" name="two" id="two"
<c:if test="${matchTwo == 1}">selected="selected" </c:if>>Two</option>
<option value="three" name="three" id="three"
<c:if test="${matchThree == 1}">selected="selected" </c:if>>Three</option>
<option value="four" name="four" id="four"
<c:if test="${matchFour == 1}">selected="selected" </c:if>>Four</option>
</select>

In the view, you can display the selections in many ways. Here is one example:

Figure 3-39 Example of Displaying Selections on the View Page

This code displays the bolded header, and loops through the value set, counting the selections:

Test selection:

<c:set var="numSelections" value="0"/>
<c:forEach var="selection"
items="${ssDefinitionEntry.customAttributes['testSelection'].valueSet}" >
<c:set var="numSelections" value="${numSelections + 1}"/>
</c:forEach>

Then, this code displays the written words that match the selections, separating them with commas,
and does not display a comma after the last selection.
54 Creating JavaServer Pages (JSPs)

<c:set var="count" value="0"/>
<c:forEach var="selection"
items="${ssDefinitionEntry.customAttributes['testSelection'].valueSet}" >
<c:set var="count" value="${count + 1}"/>
<c:if test="${selection == 'one'}">One</c:if>
<c:if test="${selection == 'two'}">Two</c:if>
<c:if test="${selection == 'three'}">Three</c:if>
<c:if test="${selection == 'four'}">Four</c:if>
<c:if test="${count != numSelections}">, </c:if>
</c:forEach>
Creating JavaServer Pages (JSPs) 55

56 Creating JavaServer Pages (JSPs)

4 4Creating and Packaging Extensions for
Deployment

Much of the information in this section references Teaming, which is the product name for the Vibe
product for versions prior to Vibe 4. This information applies to Vibe 4 as well as earlier versions of
the product.

Extensions in Micro Focus Vibe enable you to bundle definition and template XML, custom workflow
calls that implement the workflow action and condition interfaces, custom JSP files, and other Web-
visible resources that are needed by the application browser interfaces.

Extensions can help you customize your Micro Focus Vibe site, adding increased functionality that
can help you solve specific business problems.

This section describes how to create an extension and then package it for deployment. For
information on how to deploy an extension after it has been created and packaged, see “Adding
Software Extensions to Your Vibe Site” in the Micro Focus Vibe 4.0.5 Administration Guide.

 “Understanding the Differences between Extensions and Remote Applications” on page 57

 “Creating an Extension” on page 57

 “Packaging an Extension” on page 58

 “Deploying an Extension” on page 60

 “Updating an Extension” on page 60

 “Locating an Extension in the Vibe Directory Structure” on page 60

 “Retaining an Extension When Updating Your Vibe Software” on page 61

Understanding the Differences between Extensions
and Remote Applications

Extensions and remote applications can be used to accomplish many of the same functions;
however, the way in which they are created and how they are implemented can differ dramatically.

For information about the technical differences between extensions and remote applications, see
“Understanding the Differences between Extensions and Remote Applications” on page 11.

Creating an Extension
Vibe extensions are made up of various files that are commonly used when designing a Web page.

To create an extension for your Micro Focus Vibe site:

1 Create all of the necessary files.

Vibe extensions are made up of various files that are commonly used when designing a Web
page, such as JSP, HTML, XHTML, CSS, JS, GIF, JPG, PNG, CLASS, JAR, XML, PROPERTIES, and TXT.

2 After you have created all the necessary files, you must properly package the files, as discussed
in “Packaging an Extension” on page 58.
Creating and Packaging Extensions for Deployment 57

Packaging an Extension
After you create an extension as described in “Creating an Extension” on page 57, you must package
the extension before it can be deployed on the Vibe site.

1 Create a ZIP file that contains all of the files needed for your extension.

The ZIP file should have a relative directory structure that mirrors the layout of the teaming/
tomcat/webapps/ssf directory found in your Vibe installation.

For examples of how the extension directory structure should look, see “Examples of the Archive
Format” on page 58.

Table 4-1 lists key files and their appropriate locations in this directory structure.

Table 4-1 File Locations for Vibe Extensions

Examples of the Archive Format

Your ZIP file should be structured in the Archive format. This section provides two examples of the
archive format. Archive: VideoEntry.zip includes externally referenced files in the swf/, img/,
and js/ directories. Archive: twitter.zip references only those files that are located within the
WEB-INF directory.

 “Archive: VideoEntry.zip” on page 59

 “Archive: twitter.zip” on page 59

File Type Location

Web-visible resources, such as graphics, static html
pages, js files, and css files.

tomcat/webapps/ssf

You can create additional folders inside the ssf
directory. For example, you might want to create a
js directory where you can place all your javascript
files.

Templates WEB-INF/classes/config/templates

Definitions WEB-INF/classes/config/definitions

jsp WEB-INF/jsp

jar WEB-INF/lib
58 Creating and Packaging Extensions for Deployment

Archive: VideoEntry.zip

install.xml
js/
js/flashembed.min.js
swf/
swf/FlowPlayerClassic.swf
swf/FlowPlayerLight.swf
swf/FlowPlayerLP.swf
swf/FlowPlayerDark.swf
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/config/
WEB-INF/classes/config/definitions/
WEB-INF/classes/config/definitions/VideoEntry.xml
WEB-INF/classes/config/definitions/VideoFolder.xml
WEB-INF/classes/config/templates/
WEB-INF/classes/config/templates/Video Folder Template.xml
WEB-INF/jsp/
WEB-INF/jsp/view.jsp
img/
img/no-flash.png
img/no-flash.svg

Archive: twitter.zip

install.xml
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/config/
WEB-INF/classes/config/definitions/
WEB-INF/classes/config/definitions/_user.xml
WEB-INF/classes/config/definitions/pubToTwitter.xml
WEB-INF/src/
WEB-INF/src/TwitterWorkflowAction.java
WEB-INF/lib/
WEB-INF/lib/TwitterExtension.jar
WEB-INF/lib/commons-httpclient-3.1.jar
WEB-INF/lib/twitter4j-2.0.8.jar
WEB-INF/jsp/
WEB-INF/jsp/password.jsp

Extension Metadata

The install.xml file should contain the following information:

<?xml version="1.0" encoding="utf-8"?>
<extension version="1.0" >
<title>Twitter Extension</title>
<author>Author's Name</author>
<creationDate>August 27 2009</creationDate>
<license>http://www.gnu.org/licenses/gpl-2.0.html GNU/GPL</license>
<authorEmail>nbjensen@novell.com</authorEmail>
<authorUrl>www.mysite.com</authorUrl>
<description>This Plugin is a sample.</description>
<usage>Instructions on how to use this extension.</usage>
</extension>
Creating and Packaging Extensions for Deployment 59

Deploying an Extension
After you have created and packaged an extension, it is ready to deploy into your Vibe site.

NOTE: If your extension requires additional configuration after it is deployed into the Vibe site, ensure
that you provide installation instructions on the page where the extension is downloaded.

You can deploy a Vibe extension in the following two ways:

 “Deploying an Extension from the Vibe Interface” on page 60

 “Deploying an Extension from the Vibe Server” on page 60

Deploying an Extension from the Vibe Interface

For information on how to deploy an extension by using the Vibe interface, see “Adding Software
Extensions to Your Vibe Site” in the Micro Focus Vibe 4.0.5 Administration Guide.

Deploying an Extension from the Vibe Server

1 Copy the ZIP file that contains all the necessary files for your extension to the following location
on the Vibe server: /var/opt/teamingdata/extensions/kablink/pickup

Vibe periodically checks this directory and deploys the file on the Vibe server.

Updating an Extension
1 Navigate to and unzip the ZIP file that you created that contains all of the files for your extension.

2 Modify the install.xml file and any other files that you want to update.

3 Create a ZIP file with the updated files.

The name of this file must be the same name as your original extension.

4 Deploy your extension, as described in “Adding Software Extensions to Your Vibe Site” in the
Micro Focus Vibe 4.0.5 Administration Guide.

Vibe automatically updates your extension files with the latest files from your newly deployed
extension.

Locating an Extension in the Vibe Directory Structure
You might need to locate an extension in the Vibe directory structure in the following scenarios:

 When you are developing and building the file structure for the extension

 When you are troubleshooting problems associated with the extension after it has been
deployed

You can locate the WEB-INF contents and Web-visible contents of the extension at the following
locations in the Vibe directory structure:

WEB-INF Contents: ssf/WEB-INF/ext/zoneKey/extensionName

Web-Visible Contents: ssf/ext/zoneKey/extensionName
60 Creating and Packaging Extensions for Deployment

The name of the extension is the name of the ZIP file that you created in “Packaging an Extension”
on page 58.

Retaining an Extension When Updating Your Vibe
Software

When extensions are located in the /var/opt/teamingdata/extensions directory, they are not lost
during a Vibe software update.

However, if you install a new extension that has the same name as an existing extension, the existing
extension is overwritten.
Creating and Packaging Extensions for Deployment 61

62 Creating and Packaging Extensions for Deployment

5 5Creating Remote Applications

Much of the information in this section references Teaming, which is the product name for the Vibe
product for versions prior to Vibe 4. This information applies to Vibe 4 as well as earlier versions of
the product.

You can set up your Micro Focus Vibe installation so that remote applications—which often run on
other server machines—provide HTML for segments of Vibe pages. Using this customization method
gives you several advantages:

 Provides more control over the format and content than using Vibe designers or JSP files.

 Allows customization designers to work primarily within a familiar development environment (for
example, using PHP or Perl) instead of requiring them to do most of their work within the Vibe
environment.

 Protects the customization from the effects of any future updates to the Vibe source code.

 Eliminates the risk of implementing a customization that destabilizing the base product.

This topic includes the following sections:

 “Understanding the Differences between Extensions and Remote Applications” on page 63

 “Remote Application Overview” on page 64

 “Creating a Remote Application” on page 69

 “Related Sections” on page 71

NOTE: This chapter presents a “hello world” example application that you can implement quickly on
your Micro Focus Vibe server, using the Eclipse build environment and Tomcat. The registration and
application sections assume use of this example application. For more information about the example
application, see “Creating a Remote Application” on page 69.

Understanding the Differences between Extensions
and Remote Applications

Extensions and remote applications can be used to accomplish many of the same functions;
however, the way in which they are created and how they are implemented can differ dramatically.

For information about the technical differences between extensions and remote applications, see
“Understanding the Differences between Extensions and Remote Applications” on page 11.
Creating Remote Applications 63

Remote Application Overview
This section provides a conceptual overview about the interoperability between Micro Focus Vibe and
remote applications. If you prefer to learn by doing, you might want to skip this section and begin with
“Creating a Remote Application” on page 69.

Use the following very high-level steps as an overview for setting up a customization based on a
remote application:

1 A site administrator registers a remote application, specifying a name and a URL for the
application (for more information, see “Registering a Remote Application” on page 71).

2 After using configuration or designer tools to include HTML from a remote application, a page in
Vibe performs an HTTP POST operation to the application’s URL and provides user-context
information.

3 As an option, the remote application can use Web services (SOAP) to obtain Vibe data needed
to generate its section of the page.

For more information about Web services, see Chapter 2, “Web Services Overview,” on page 13.

4 The remote application responds, providing its HTML to the Vibe code that is drawing the page.

Because Vibe has already begun to draw the page, providing structuring HTML tags (such as
html, title, head, and body), the remote application should not specify those tags.

In Vibe, a remote application is treated as a principal; examples of other principals are users and
groups. Vibe treats the application like a user, and users are subject to access control.

When Vibe makes a request of the remote application, it provides the user identifier for the user
currently viewing the page, and it provides a security token. Depending upon the type of Vibe page
that incorporates HTML from the remote application, the security token can be session-based (valid
until the user signs out) or request-based (invalid immediately after the remote application responds
to the request). In most cases, Vibe uses a combination of the registration information for the remote
application, rights assigned to the user currently viewing the page, and rights granted to the remote
application itself.

There are several ways to apply HTML generated from remote applications:

 As an accessory (session-based token)

 As any portion of a custom form or view (session-based token)

 As a consequence of a workflow state change (request-based token)

 As a call from a tag within a custom JSP file (session-based token)

For more information, see the following subsections:

 “Processing Flow for a Remote Accessory” on page 65

 “Processing Flow for a Remote Form” on page 66

 “Setting Access Control for Remote Applications” on page 67

 “Reviewing Supporting Source Code” on page 68

Processing Flow for a Remote Accessory

This section describes the flow of information when someone configures an accessory to use HTML
from a remote application to provide its content. Consider the numbers in this graphic and the
descriptions that follow it:
64 Creating Remote Applications

Figure 5-1 Conceptual Diagram for an Accessory Calling a Remote Application

1. The enclosing rectangle in the graphic represents a workspace or folder page.

Vibe draws the page until it encounters the accessory.

2. The enclosed rectangle represents an accessory that is configured to use HTML generated from
a remote application.

3. Vibe calls the remote application by using the HTTP POST method, and it provides the user ID of
the person viewing the page and a security token.

The gray portion of the diagram indicates that control has been passed to the remote application,
which might be located on a server machine separate from the one running Micro Focus Vibe.

4. The rectangle in the gray area represents the remote application.

The remote application can access databases external to Vibe as part of its process for
constructing the HTML needed to generate the accessory. The remote application can run in any
environment that can generate an HTML response (for example, using PHP or Pearl scripts in its
application environment).

5. As an option, the remote application can use the Vibe user ID and security token to log into the
Vibe Web services and make calls, which can gather Vibe data in preparation for generating the
HTML for the accessory.

6. This rectangle represents Vibe Web services.

In the graphic, both Web services and the Vibe user interface have access to information in the
Vibe database.

After the remote application responds by returning HTML for the accessory, Vibe adds the HTML to
the output stream and finishes drawing the page. Then, Vibe revokes the security token so that it can
no longer be used.
Creating Remote Applications 65

Processing Flow for a Remote Form

This section describes the flow of information when someone uses the Vibe designers to specify that
a remote application provides the HTML for the form used to create an entry. Consider the numbers
in this graphic and the descriptions that follow it:

Figure 5-2 Conceptual Model for an Add-Entry Form Generated Remotely

1. The enclosing rectangle represents the add-entry page.

2. The enclosed rectangle represents the form used to add an entry.

3. Vibe does an HTTP POST to the remote application, sending the folder ID of the enclosing
folder, the user ID of the person currently viewing the add-entry page, and a session-level
security token.

4. The remote application builds the HTML needed to construct the form to be displayed on the
Vibe page. The URL specified to the action element in the form tag points to the remote
application.

5. The remote application can use the user ID and security token to log into Vibe Web services,
which can gather data used to construct the form.

6. This rectangle represents the Vibe Web services.

After the remote application responds by returning HTML for the form, Vibe adds the HTML to the
output stream and finishes drawing the page. The user completes and then submits the form.
Information on the form goes directly to the remote application, which then uses the folder ID, user ID,
and security token to make Web services calls, which, in turn, create a new entry in the folder based
on the information provided in the form.

When the user logs out, Vibe revokes the security token.
66 Creating Remote Applications

Setting Access Control for Remote Applications

 “Understanding Access Control Settings for Remote Applications” on page 67

 “Setting Access Controls on a Remote Application” on page 67

Understanding Access Control Settings for Remote Applications

As mentioned, Vibe treats a remote application as a Micro Focus Vibe user, which allows for the
application of access control. However, for non-workflow uses of remote applications, Vibe considers
these factors when determining access control:

 Rights granted to the user currently viewing the page that contains HTML from the remote
application.

 Rights granted to the remote application by the owner of the containing binder (workspace or
folder).

 The Trusted designation, which a Site Administrator can grant to a remote application upon
registration.

Vibe considers the role of the user viewing the page and the role assigned to the remote application,
and Vibe grants the less powerful role to the application. For example, if the user viewing the page
has the role of Visitor, and if the workspace or folder owner places the remote application in the role of
Participant, the application has the rights associated with a Visitor. As another example, if the user is
a Site Administrator, and if the application is a Participant, the application has the rights associated
with a Participant.

When the site administer selects the Trusted check box while registering a remote application, then
Vibe disregards any access control applied to the application and uses only the access control
granted to the user viewing the page.

Finally, if Vibe calls a remote application as the result of a workflow state change, access control is
determined by settings in the workflow definition, which can result in the application having the rights
of either the entry owner or the folder owner.

Setting Access Controls on a Remote Application

Unless you are certain that an application is trusted (for example, an application that you maintain
and run on the same server machine as Micro Focus Vibe), you should strongly consider placing
access controls on the remote application itself. For example, if the site administrator uses the
access-control tools to place the remote application into the Participant role in the top Workspace, all
workspaces and folders that inherit access control automatically apply the same restrictions on the
remote application. Then, if a site administrator views a page calling the remote application, the
application is restricted to the rights granted to a Participant instead of those granted to a Site
Administrator.

If you do not make any attempt to restrict the rights of a remote application, the remote application
has the same rights as the user viewing the page that calls the application. For example, if a site
administrator views the page, the remote application can use Site Administrator rights to do anything
in Vibe using Web services calls.

To set access controls on a remote application:

1 Log in to the Vibe site as the Vibe administrator.

2 Click the Administration icon in the upper-right corner of the page.

The Administration page is displayed.
Creating Remote Applications 67

3 Under System, click Access Control for Zone Administration Functions.

The Configure Access Control page is displayed.

4 In the provided table, click Add an Application.

5 In the Add an Application field, start typing the name of the remote application for which you
want to set access controls. When the remote application appears in the drop-down list, select it.

6 Click the Add a role link at the top of the table.

7 From the drop-down list, select the role that you want to associate to the remote application.

Vibe adds a new column for the new role.

8 In the row of the remote application, select the check box that is located in the role column that
you want to assign to the remote application.

9 Click Save Changes.

Reviewing Supporting Source Code

To learn more details about the interaction between Micro Focus Vibe and a remote application, you
can look at example source code by downloading the Kablink Vibe code base from the Open Source
Community page (https://sourceforge.net/p/kablink/code/HEAD/tree/).

After downloading the Kablink Vibe sources, review this code:

 SOAP wrappers for objects: These wrappers are located within the Kablink Vibe source code
in /ssf/samples/wsclient/src/org/kablink/teaming/samples/wsclient/
TeamingServiceClientWithStub.java.

For more information about Web services and SOAP wrappers, see Chapter 2, “Web Services
Overview,” on page 13.

 Passed information: To see details about the information passed between Kablink Vibe and a
remote application, see /ssf/main/src/org/kablink/teaming/remoteapplication/impl/
RemoteApplicationManagerImpl.java.

Creating a Remote Application
This section demonstrates how to create a remote application using the hello-world application as an
example.

The hello-world program is common code written by people just beginning to learn a programming
language or paradigm. Usually, upon execution, a hello-world application writes a greeting to
standard output.

This section presents a hello-world application that ships in the Micro Focus Vibe source code, which
you can quickly deploy and implement in your Vibe installation. When it is executed as a remote
application from a Vibe page, this application uses a Web services operation to greet the Vibe user by
name.

To download the Vibe code base, visit the Open Source Community page (https://sourceforge.net/p/
kablink/code/HEAD/tree/). After installing the code base, you can locate this example code here:

/ssf/samples/remoteapp

There are four important files in the /remoteapp hierarchy:

 The class file: This file contains the source code for the remote application.
68 Creating Remote Applications

https://sourceforge.net/p/kablink/code/HEAD/tree/
https://sourceforge.net/p/kablink/code/HEAD/tree/
https://sourceforge.net/p/kablink/code/HEAD/tree/

/remoteapp/src/org/kablink/teaming/samples/remoteapp/web/
HelloWorldServlet.java

 The servlet-definition file: The servlet-definition file establishes the hello-world application as a
Tomcat servlet.

/remoteapp/war/WEB-INF/web.xml

 The JSP file: The JSP file is the content of the response for the application.

/remoteapp/war/WEB-INF/jsp/hello_world/view.jsp

 The build file: The build file deploys the application in Tomcat, making it available for use as a
remote application in Vibe.

/remoteapp/build.xml

The subsections that follow provide more detailed explanation about three of these files:

 “Reviewing the Class File” on page 69

 “Reviewing the Servlet-Definition File” on page 70

 “Reviewing the JSP File” on page 71

Reviewing the Class File

To review the Java source code used to implement this application, locate the following file:

/remoteapp/src/org/kablink/teaming/samples/remoteapp/web/HelloWorldServlet.java

Although this is not a complete description of all of the code contained in the example, the next few
paragraphs explain some of the key parts of the HelloWorldServlet class defined in the
HelloWorldServlet.java file.

The following line in the code creates the bean to contain the user’s first and last name
(ss_userTitle), which is to be used by a JSP:

private static final String PARAMETER_NAME_USER_TITLE = "ss_userTitle";

Toward the bottom of the file, the class defines the following method, which makes a Web services
call, obtains the user object, and applies the getTitle method to the object, placing the user’s first
and last name in a string:

private String getUserTitle(TeamingServiceV1SoapBindingStub stub, String
accessToken, Long userId)
 throws ServiceException, DocumentException, RemoteException {
 User user = stub.profile_getUser(accessToken, userId, false);
 return user.getTitle();
}

The Web services call was set up in the doPost method, which then calls the getUserTitle method
shown in the last code example. Consider this code from the doPost method:
Creating Remote Applications 69

 private static final String TEAMING_SERVICE_ADDRESS = "http://localhost:8080/ssr/
token/ws/TeamingServiceV1";
 .
 .
 .
// Get ready for web services calls to the Teaming.
TeamingServiceV1SoapServiceLocator locator = new
TeamingServiceV1SoapServiceLocator();
 locator.setTeamingServiceV1EndpointAddress(TEAMING_SERVICE_ADDRESS);
TeamingServiceV1SoapBindingStub stub = (TeamingServiceV1SoapBindingStub)
locator.getTeamingServiceV1();

// Get the title of the user by making a web services call.
String userTitle = getUserTitle(stub, accessToken, Long.valueOf(userId));

When using Web services in the context of a remote application, you must use the /ssr/token/ws/
TeamingServiceV1 endpoint. See “Server Endpoints” on page 16, for more information about
specifying server endpoints for Web service calls.

Finally, the doPost code specifies the location of a JSP, which is used to generate the response:

String jsp = "/WEB-INF/jsp/hello_world/view.jsp";
RequestDispatcher rd = req.getRequestDispatcher(jsp);

Reviewing the Servlet-Definition File

To review the XML used to define the hello-world servlet for Tomcat, locate this file:

/remoteapp/war/WEB-INF/web.xml

The XML file contains these lines:

 <servlet>
 <servlet-name>helloWorld</servlet-name>
 <servlet-class>org.kablink.teaming.samples.remoteapp.web.HelloWorldServlet</
servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>helloWorld</servlet-name>
 <url-pattern>/helloWorld/*</url-pattern>
 </servlet-mapping>

The servlet tag defines the class code to be executed when someone specifies /helloWorld in the
URL. The servlet-mapping tag establishes /helloWorld portion of the URL. (See “Registering a
Remote Application” on page 71, for information about how this definition maps to the URL you
specify when registering a remote application with Vibe.)

Reviewing the JSP File

To review the JSP file used to generate the output for the application, locate the following file:

/remoteapp/war/WEB-INF/jsp/hello_world/view.jsp

The file has the following content:
70 Creating Remote Applications

<%@ page isELIgnored="false" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<c:set var="title" value="${ss_userTitle}"/>
<c:if test="${empty title}"><c:set var="title" value="world"/></c:if>

Hello ${title}!

The JSP tests to see if the ss_userTitle bean is empty, and, if it is, substitutes the string Hello
world! for Hello userTitle!

Because the remote application is designed to provide a portion of an HTML page, the JSP file does
not include HTML tags that structure the page, such as the html, title, head, and body tags. Vibe
structures the page, and remote applications provide HTML for a segment within that page.

Related Sections
The following sections are for Micro Focus Vibe administrators and advanced Vibe users:

 “Registering a Remote Application” on page 71

 “Configuring an Accessory to Show a Remote Application” on page 71

 “Controlling the Access of Remote Applications” on page 72

Registering a Remote Application

After you create a remote application, the system administrator needs to register the application with
the Micro Focus Vibe system before it can be applied to an accessory, a custom entry, a workflow
state, or a tag.

For information on how to register a remote application, see “Using Remote Applications on Your
Vibe Site” in the Micro Focus Vibe 4.0.5 Administration Guide.

Configuring an Accessory to Show a Remote Application

Micro Focus Vibe enables you to view remote applications as accessories.

For information on how to create an accessory that displays a remote application, see “Setting Up a
Remote Application as an Accessory” in the Micro Focus Vibe 4.0.5 Advanced User Guide.

Controlling the Access of Remote Applications

Micro Focus Vibe enables you to set access controls on your remote applications.

For information on why it is important to set access controls on remote applications, see “Setting
Access Control for Remote Applications” on page 67.

For information describing how users can set access controls on a remote application, see “Managing
Access Controls for Remote Applications” in the Micro Focus Vibe 4.0.5 Advanced User Guide.
Creating Remote Applications 71

72 Creating Remote Applications

A AWeb Services Operations

Much of the information in this section references Teaming, which is the product name for the Vibe
product for versions prior to Vibe 4. This information applies to Vibe 4 as well as earlier versions of
the product.

This section provides alphabetized reference pages for the Web services operations of Novell
Teaming 2.0 and later.

NOTE: All examples in this reference section use the Micro Focus Vibe client library. See “Client
Stubs” on page 17, for more information about the client library and other ways to call Vibe Web
services operations.

 “admin_destroyApplicationScopedToken” on page 76

 “admin_getApplicationScopedToken” on page 77

 “binder_addBinder” on page 78

 “binder_copyBinder” on page 79

 “binder_deleteBinder” on page 80

 “binder_deleteTag” on page 81

 “binder_getBinder” on page 82

 “binder_getBinderByPathName” on page 83

 “binder_getFileVersions” on page 84

 “binder_getFolders” on page 85

 “binder_getSubscription” on page 86

 “binder_getTags” on page 87

 “binder_getTeamMembers” on page 88

 “binder_getTrashEntries” on page 89

 “binder_indexBinder” on page 90

 “binder_indexTree” on page 91

 “binder_modifyBinder” on page 92

 “binder_moveBinder” on page 93

 “binder_preDeleteBinder” on page 94

 “binder_removeFile” on page 95

 “binder_restoreBinder” on page 96

 “binder_setDefinitions” on page 97

 “binder_setFunctionMembership” on page 98

 “binder_setFunctionMembershipInherited” on page 99

 “binder_setOwner” on page 100

 “binder_setSubscription” on page 101

 “binder_setTag” on page 102
Web Services Operations 73

 “binder_setTeamMembers” on page 103

 “binder_testAccess” on page 104

 “binder_uploadFile” on page 105

 “definition_getDefinitionAsXML” on page 106

 “definition_getDefinitionByName” on page 107

 “definition_getDefinitions” on page 108

 “definition_getLocalDefinitionByName” on page 109

 “definition_getLocalDefinitions” on page 110

 “folder_addEntry” on page 111

 “folder_addEntryWorkflow” on page 112

 “folder_addMicroBlog” on page 113

 “folder_addReply” on page 114

 “folder_copyEntry” on page 115

 “folder_deleteEntry” on page 116

 “folder_deleteEntryTag” on page 117

 “folder_deleteEntryWorkflow” on page 118

 “folder_getEntries” on page 119

 “folder_getEntry” on page 120

 “folder_getEntryByFileName” on page 121

 “folder_getEntryTags” on page 122

 “folder_getFileVersions” on page 123

 “folder_getSubscription” on page 124

 “folder_modifyEntry” on page 125

 “folder_modifyWorkflowState” on page 126

 “folder_moveEntry” on page 127

 “folder_preDeleteEntry” on page 128

 “folder_removeFile” on page 129

 “folder_reserveEntry” on page 130

 “folder_restoreEntry” on page 131

 “folder_setEntryTag” on page 132

 “folder_setRating” on page 133

 “folder_setSubscription” on page 134

 “folder_setWorkflowResponse” on page 135

 “folder_synchronizeMirroredFolder” on page 136

 “folder_unreserveEntry” on page 137

 “folder_uploadFile” on page 138

 “folder_uploadFileStaged” on page 139

 “ical_uploadCalendarEntriesWithXML” on page 141

 “ldap_synchAll” on page 142

 “ldap_synchUser” on page 143
74 Web Services Operations

 “license_getExternalUsers” on page 144

 “license_getRegisteredUsers” on page 145

 “license_updateLicense” on page 146

 “migration_addBinder” on page 147

 “migration_addBinderWithXML” on page 148

 “migration_addEntryWorkflow” on page 150

 “migration_addFolderEntry” on page 151

 “migration_addFolderEntryWithXML” on page 152

 “migration_addReply” on page 154

 “migration_addReplyWithXML” on page 155

 “migration_uploadFolderFile” on page 157

 “migration_uploadFolderFileStaged” on page 159

 “profile_addGroup” on page 161

 “profile_addGroupMember” on page 162

 “profile_addUser” on page 163

 “profile_addUserWorkspace” on page 164

 “profile_deletePrincipal” on page 165

 “profile_getFileVersions” on page 166

 “profile_getGroup” on page 167

 “profile_getGroupByName” on page 168

 “profile_getGroupMembers” on page 169

 “profile_getPrincipals” on page 170

 “profile_getUser” on page 171

 “profile_getUserByName” on page 172

 “profile_getUsers” on page 173

 “profile_getUserTeams” on page 174

 “profile_modifyGroup” on page 175

 “profile_modifyUser” on page 176

 “profile_removeFile” on page 177

 “profile_removeGroupMember” on page 178

 “profile_uploadFile” on page 179

 “search_getFolderEntries” on page 180

 “search_getTeams” on page 181

 “search_getWorkspaceTreeAsXML” on page 182

 “search_search” on page 183

 “template_addBinder” on page 185

 “template_getTemplates” on page 186

 “zone_addZone” on page 187

 “zone_deleteZone” on page 188

 “zone_modifyZone” on page 189
Web Services Operations 75

admin_destroyApplicationScopedToken

Destroys an application-scoped token.

Syntax

public void admin_destroyApplicationScopedToken(String accessToken, String token);

Description

The admin_destroyApplicationScopedToken operation destroys a previously acquired application
scoped token.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

token

The string representation of the previously acquired application-scoped token that you want to
destroy.

return_value

None.
76 Web Services Operations

admin_getApplicationScopedToken

Requests an application-scoped token on behalf of the user.

Syntax

public String admin_getApplicationScopedToken(String accessToken, long applicationId, long userId
);

Description

The admin_getApplicationScopedToken operation requests the system to create and return an
application-scoped token on behalf of the user.The token is subsequently utilized by the application.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

applicationId

The identifier of the application set up with the Vibe system.

userId

The identifier of the user on whose behalf you want the token to be created.

return_value

A string representation of the requested token.
Web Services Operations 77

binder_addBinder

Adds an unconfigured binder to the workspace tree hierarchy.

Syntax

public long binder_addBinder(String accessToken, Binder binder);

Description

The binder_addBinder operation adds either a workspace or folder to the hierarchy.

To add a fully configured binder, use the template_addBinder operation instead.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part implementing a remote
application, or the null value.

binder

Data and methods for the Java Binder object, defined in the Vibe source code.

return_value

The identifier of the new binder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 template_addBinder (page 185)
78 Web Services Operations

binder_copyBinder

Creates a new binder identical to an existing one.

Syntax

public long binder_copyBinder(String accessToken, long sourceId, long destinationId, boolean
cascade);

Description

The binder_copyBinder operation copies an existing workspace or folder, and creates a new one.

Vibe automatically copies all non-binder content (entries and comments). As an option, you can
replicate the source binder’s sub-binders (sub-workspaces or sub-folders).

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

sourceId

The identifier of the binder you want to copy.

destinationId

The binder identifier of the parent for the new workspace or folder.

cascade

A Boolean value indicating whether you want to copy the source binder’s sub-binders (sub-
workspaces and sub-folders).

return_value

The identifier of the new binder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 79

binder_deleteBinder

Deletes a binder.

Syntax

public void binder_deleteBinder(String accessToken, long binderId, boolean deleteMirroredSource);

Description

The binder_deleteBinder operation deletes a workspace or folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier of the workspace or folder you want to delete.

deleteMirroredSource

Deletes the source directory, if the folder being deleted is a mirrored folder.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
80 Web Services Operations

binder_deleteTag

Removes a tag from a binder.

Syntax

public void binder_deleteTag(String accessToken, long binderId, String tagId);

Description

The binder_deleteTag operation removes a tag from a workspace or folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the binder that applies the tag you want to remove.

tagId

The tag you want to remove.

return_value

None.

Example

 public static void checkTags(long binderId) throws Exception { ...
Tag[] tags = setupTags(binderId);
for (int i=0; i<tags.length; ++i) {stub.binder_setTag(null, tags[i]); }
tags = stub.binder_getTags(null, binderId);
validateTags(tags);
stub.binder_deleteTag(null, binderId, tags[0].getId());

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 81

binder_getBinder

Accepts a binder identifier to get information about a binder.

Syntax

public Binder binder_getBinder(String accessToken, long binderId, boolean includeAttachments);

Description

The binder_getBinder operation gets information about a workspace or folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder for which you want information.

includeAttachments

A Boolean value that indicates whether you want Vibe to return attached files.

By default, workspaces do not include attached files. However, users can use the designers to
define workspaces that do include attached files.

return_value

A Binder Java object that contains data and methods for the requested binder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
82 Web Services Operations

binder_getBinderByPathName

Accepts a directory specification to get information about a binder.

Syntax

public Binder binder_getBinderByPathName(String accessToken, String pathName, boolean
includeAttachments);

Description

The binder_getBinderByPathName operation uses a workspace-hierarchy path name to get
information about a workspace or folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

pathName

The titles of the binder for which you want information, preceded by the titles of all of its parents,
separated by slashes:

Workspaces / Global workspaces / wsOrfolderTitle / ... / titleTargetWS

includeAttachments

A Boolean value that indicates whether you want Vibe to return attached files.

By default, workspaces do not include attached files. However, users can use the designers to
define workspaces that do include attached files.

return_value

A Binder Java object that contains data and methods for the requested binder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 83

binder_getFileVersions

Returns information about the versions of a file.

Syntax

public void binder_getFileVersions(String accessToken, long binderID, String fileName);

Description

The binder_getFileVersion operation retrieves information about the versions of a file associated
with a workspace or folder.

By default, workspaces and folders do not contain files, but users can alter definitions by using the
designers in the user interface so that a custom workspace or folder can include one or more files.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderID

The binder identifier for the workspace or folder.

filename

The filename of the file you want to retrieve version information about.

return_value

A File Version Java object that contains information about the file versions.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
84 Web Services Operations

binder_getFolders

Returns a folder collection for a binder’s sub-folders.

Syntax

public FolderCollection binder_getFolders(String accessToken, long binderId,int firstRecord, int
maxRecords);

Description

The binder_getFolders operation returns a folder collection, which contains information about the
sub-folders of a specified binder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder for which you want information about its sub-
folders.

firstRecord

The index of the first record whose folder information you want to obtain. The index is 0-based.

maxRecord

The maximum number of folders whose information should be returned. Specify -1 for unlimited.

return_value

A FolderCollection Java object containing information about the sub-folders.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 85

binder_getSubscription

Obtains subscription information about a binder.

Syntax

public Subscription binder_getSubscription(String accessToken, long binderId);

Description

The binder_getSubscription operation returns subscription information for a specified binder.
When a user subscribes to a binder, that person receives e-mail notifications.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder for which you want subscription information.

return_value

A Subscription Java object containing subscription information.

Example

public static void checkBinderSubscriptions(long binderId) throws Exception { ...
Subscription subscription = setupSubscription(binderId);
stub.binder_setSubscription(null, binderId, subscription);
subscription = stub.binder_getSubscription(null, binderId);
validateSubscription(subscription);
}

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
86 Web Services Operations

binder_getTags

Obtains tags applied to a binder.

Syntax

public Tag[] binder_getTags(String accessToken, long binderId);

Description

The binder_getTags operation gets tag information for a specified binder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder whose tag information you want.

return_value

An array of Tag Java objects, each containing information about one of the tags applied to the
binder.

Example

 public static void checkTags(long binderId) throws Exception { ...
Tag[] tags = setupTags(binderId);
for (int i=0; i<tags.length; ++i) {stub.binder_setTag(null, tags[i]); }
tags = stub.binder_getTags(null, binderId);
validateTags(tags);
stub.binder_deleteTag(null, binderId, tags[0].getId());

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 87

binder_getTeamMembers

Obtains information about the members of a team assigned to a specified binder.

Syntax

public TeamMemberCollection binder_getTeamMembers(String accessToken, long binderId);

Description

The binder_getTeamMembers operation obtains information about the members of a team assigned
to a specified binder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binder

The binder identifier for the workspace or folder for which you want information about team
members.

return_value

A TeamMemberCollection Java object containing information about the members of a team
assigned to the specified binder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
88 Web Services Operations

binder_getTrashEntries

Returns a trash collection for a binder.

Syntax

public TrashCollection binder_getTrashEntries(String accessToken, long binderId);

Description

The binder_getTrashEntries operation returns a trash collection, which contains information about
the contents of the trash for a specified binder. The items in a binder’s trash are all the sub-binders
and entries that are in the trash.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder for which you want information about its trash
contents.

firstRecord

The index of the first record whose trash information you want to obtain. The index is 0-based.

maxRecord

The maximum number of items whose information should be returned. Specify -1 for unlimited.

return_value

A TrashCollection Java object containing information about the trash contents.
Web Services Operations 89

binder_indexBinder

Indexes a binder and its content.

Syntax

public void binder_indexBinder(String accessToken, long binderId);

Description

The binder_indexBinder operation indexes a workspace or folder (and its contents), optimizing the
ability of Vibe to search its contents. This operation does not index sub-binders.

To index sub-binders, use the binder_indexTree operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder that you want to index.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 binder_indexTree (page 91)
90 Web Services Operations

binder_indexTree

Indexes a binder’s sub-binders.

Syntax

public Long binder_indexTree(String accessToken, long binderId);

Description

The binder_indexTree operation indexes the specified workspace or folder, all sub-binders, and all
content in all those binders.

If you want to index a binder and its contents without indexing sub-binders, use the
binder_indexBinder operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder that indicates the node where you want to begin
indexing within the workspace hierarchy.

return_value

An array of integers, with each integer being the identifier of a binder successfully indexed.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 binder_indexBinder (page 90)
Web Services Operations 91

binder_modifyBinder

Modifies a binder.

Syntax

public void binder_modifyBinder(String accessToken, Binder binder);

Description

The binder_modifyBinder operation modifies a workspace or folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binder

Data and methods for the Binder Java object, defined in the Vibe source code.

return_value

None.

Example

public static Binder modifyBinder(Binder binder) throws Exception { ...
binder.setTitle(binder.getTitle() + " (Modified)");
binder.getDescription().setText(binder.getDescription().getText() + "
(Modified)"); stub.binder_modifyBinder(null, binder);
stub.binder_getBinder(null, binder.getId(), true);
System.out.println("ID of the modified binder: " + binder.getId());
return binder;
}

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
92 Web Services Operations

binder_moveBinder

Moves a binder within the workspace tree hierarchy.

Syntax

public void binder_moveBinder(String accessToken, long binderId, long newParentBinderId);

Description

The binder_moveBinder operation moves either a workspace or folder within the workspace
hierarchy.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder that you want to move.

newParentBinderId

The binder identifier of the binder under which you want binderId to appear as a sub-binder.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 93

binder_preDeleteBinder

Predeletes a binder by moving it to the trash.

Syntax

public void binder_preDeleteBinder(String accessToken, long binderId);

Description

The binder_preDeleteBinder operation moves a workspace or folder to the trash. All contained
binders and entries are also moved to the trash.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder that you want to move to the trash.

return_value

None.
94 Web Services Operations

binder_removeFile

Removes a file from a binder.

Syntax

public void binder_removeFile(String accessToken, long binderId, String fileName);

Description

The binder_removeFile operation removes a file from a workspace or folder.

By default, workspaces do not contain files, but users can alter definitions by using the designers in
the UI so that a custom workspace can include one or more files.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder from which you want to remove a file.

fileName

The file name of the file you want to remove from the binder.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 95

binder_restoreBinder

Undeletes a binder by removing it from the trash and restoring it to its previous location in the Vibe
site.

Syntax

public void binder_restoreBinder(String accessToken, long binderId);

Description

The binder_restoreBinder operation undeletes a workspace or folder by removing it from the trash
and restoring it to its previous location in the Vibe site.

Any containing binders that are in the trash are also undeleted.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder that you want to restore.

return_value

None.
96 Web Services Operations

binder_setDefinitions

Associates workflow definitions with entry definitions.

Syntax

public void binder_setDefinitions(String accessToken, long binderId, String[] entryDefinitionIds,
String [] workflowDefinitionIds);

Description

The binder_setDefinitions operation associates entries within the specified binder with workflow
processes. (Vibe associates identifiers in the first element of both arrays, the second element of both
arrays, the third, and so on.)

When an entry is associated with a workflow process, creation of an entry of that type automatically
places the entry into the initial state of the workflow process. By default, workspaces do not contain
entries that can be associated with workflow processes. However, users can alter definitions by using
the designers in the UI so that a custom workspace can include one or more files.

NOTE: This operation is an overwrite operation, setting all workflow associations for the folder; you
cannot use repeated calls to this operation to set associations incrementally. Set all of the workflow
associations for the folder with one call.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the folder or custom workspace within which you want entries associated
with workflow processes.

entryDefinitionIds

An array of definition identfiers for each type of entry to which you want to associate a workflow
process.

workflowDefinitionIds

An array of workflow identifiers in the order in which you want them applied to the entry-definition
identifiers in entryDefinitionIds.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 97

binder_setFunctionMembership

Applies access-control settings to a binder.

Syntax

public void binder_setFunctionMembership(String accessToken, long binderId,
FunctionMembership[] functionMemberships);

Description

The binder_setFunctionMembership operation provides access-control settings for a folder or
workspace. The term function is analogous to an access-control role in the UI.

NOTE: This operation is an overwrite operation, that sets all function memberships for the folder or
workspace; you cannot use repeated calls to this operation to set memberships incrementally. Set all
memberships for the workspace or folder with one call.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder whose access control you want to set.

functionMemberships

An array of FunctionMembership Java objects.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 binder_setFunctionMembershipInherited (page 99)
98 Web Services Operations

binder_setFunctionMembershipInherited

Establishes inheritance as the access-control mechanism for a folder or workspace.

Syntax

public void binder_setFunctionMembershipInherited(String accessToken, long binderId, boolean
inherit);

Description

The binder_setFunctionMembershipInherited establishes whether a specified workspace or
folder inherits access-control settings from its parent binder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder for which you want to establish the inheritance
setting for access control.

inherit

A true or false value that establishes whether the binder inherits its access-control settings.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 binder_setFunctionMembership (page 98)
Web Services Operations 99

binder_setOwner

Establishes the owner of the binder.

Syntax

public long binder_setOwner(String accessToken, long binderId, long userId);

Description

The binder_setOwner operation establishes the specified user as the owner of a workspace or
folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder whose owner you want to establish.

userId

The identifier for the user whom you want to be the owner of the binder.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
100 Web Services Operations

binder_setSubscription

Establishes e-mail settings for a binder.

Syntax

public void binder_setSubscription(String accessToken, long binderId, Subscription subscription);

Description

The binder_setSubscription operation establishes subscription settings for a workspace or folder.
When a user subscribes to a binder, that person receives e-mail notifications.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder whose subscription you want to set.

subscription

A Subscription Java object containing information used to establish e-mail notification settings
for the specified binder.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 101

binder_setTag

Applies a tag for a binder.

Syntax

public void binder_setTag(String accessToken, Tag tag);

Description

The binder_setTag operation applies a tag to a workspace or folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

tag

A Tag Java object that contains information applying the tag to a workspace or folder.

return_value

None.

Example

 public static void checkTags(long binderId) throws Exception { ...
Tag[] tags = setupTags(binderId);
for (int i=0; i<tags.length; ++i) {stub.binder_setTag(null, tags[i]); }
tags = stub.binder_getTags(null, binderId);
validateTags(tags);
stub.binder_deleteTag(null, binderId, tags[0].getId());

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
102 Web Services Operations

binder_setTeamMembers

Establishes members of a team for a binder.

Syntax

public void binder_setTeamMembers(String accessToken, long binderId, String[] teamMembers);

Description

The binder_setTeamMembers operation establishes members of the team for a specified workspace
or folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binder

The binder identifier for the workspace or folder for which you want to establish team
membership.

return_value

None.

teamMembers

Names of the team members.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 103

binder_testAccess

Tests if the calling user has the specified access right on each of the specified binders.

Syntax

public boolean[] binder_testAccess(String accessToken, String workAreaOperationName, long[]
binderIds);

Description

The binder_testAccess operation tests if the calling user has the specified access right on each
workspace or folder that is specified.

If a binder does not exist, the result for that specific binder is set to <code>false</code>. If the
access right is an unknown value in Vibe, then the result for all binders is set to <code>fasle</
code>.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

workAreaOperationName

The string name of a org.kablink.teaming.security.function.WorkAreaOperation instance. See the
Java source file for the names.

binderIds

The ID of the binders against which to test the access.

return_value

An array of boolean values where each value represents whether the access test was successful
or not for each binder.
104 Web Services Operations

binder_uploadFile

Uploads a file into a binder.

Syntax

public void binder_uploadFile(String accessToken, long binderId, String formDataItemName, String
fileName);

Description

The binder_uploadFile operation performs an action equivalent to using the UI to upload a file to
either a workspace or folder. You can attach only one file at a time; call this operation multiple times to
attach more than one file to the binder.

By default, workspaces do not include attached files. However, users can use the designers to define
workspaces that do include attached files.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder into which you want to upload a file.

formDataItemname

A string containing the internal identifier for the part of the entry that contains attached files. This
identifier maps the name attribute of an input HTML tag on a form to data in the Vibe database;
a hidden HTML tag communicates this file mapping to the server.

The name value for the standard entry element containing attached files is ss_attachFile. If you
want to upload a file into a custom form element you defined using the designers, you need to
look up the name identifier for that form element.

If you are uploading to a folder file, specify upload as an argument to this parameter to make this
attachment the primary file for the entry.

fileName

A string containing the filename of the file you want to upload to the binder.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 105

definition_getDefinitionAsXML

Obtains information about a definition.

Syntax

public String definition_getDefinitionAsXML(String accessToken, String definitionId);

Description

The definition_getDefinitionAsXML operation returns a string of XML containing information
about a specified definition.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

definitionId

The definition identifier of the item about which you want information.

return_value

An XML string containing information about the definition. This XML is free form; it does not have
a firm, established schema.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 definition_getDefinitionByName (page 107)

 definition_getDefinitions (page 108)

 definition_getDefinitionByName (page 107)

 definition_getLocalDefinitions (page 110)
106 Web Services Operations

definition_getDefinitionByName

Obtains information about a global definition.

Syntax

public DefinitionBrief definition_getDefinitionByName(String accessToken, String definitionName);

Description

The definition_getDefinitionByName operation obtains information about a global definition by
using the definition name. To get information about a local definition, use the
definition_getLocalDefinitionByName operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

definitionName

The descriptive word or phrase used to name the global definition.

return_value

A DefinitionBrief Java object containing information about the global definition.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 definition_getDefinitions (page 108)

 definition_getLocalDefinitionByName (page 109)
Web Services Operations 107

definition_getDefinitions

Obtains all global definitions in the installation.

Syntax

public DefinitionCollection definition_getDefinitions(String accessToken);

Description

The definition_getDefinitions operation obtains information about all global definitions in the
installation. To get information about local definitions, use the definition_getLocalDefinitions
operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

return_value

A DefinitionCollection Java object containing information about all global definitions in the
installation.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 definition_getLocalDefinitionByName (page 109)

 definition_getLocalDefinitions (page 110)
108 Web Services Operations

definition_getLocalDefinitionByName

Obtains information about a local definition.

Syntax

public DefinitionBrief definition_getLocalDefinitionByName(String accessToken, long binderId, String
name, boolean includeAncestors);

Description

The definition_getLocalDefinitionByname operation obtains information about a local definition
by using a name. To get information about a global definition, use the
definition_getDefinitionByname operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder whose local definition you want.

name

The word or phrase used to name the local definition.

includeAncestors

A Boolean value that indicates whether Vibe should check local definitions inherited from
ancestor workspaces and folders, which are located higher in the hierarchy than the specified
binder. If you specify false, Vibe checks only the local definitions created within the specified
binder.

return_value

A DefinitionBrief Java object containing information about the definition that matches name.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 definition_getLocalDefinitionByName (page 109)

 definition_getLocalDefinitions (page 110)
Web Services Operations 109

definition_getLocalDefinitions

Obtains information about all local definitions.

Syntax

public DefinitionCollection definition_getLocalDefinitions(String accessToken, long binderId, boolean
includeAncestors);

Description

The definition_getLocalDefinitions operation obtains information about the local definitions for
a specified binder. If you want information about all global definitions in the installation, use the
definition_getDefinitions operation.

If you want to add a fully configured binder, use template_addBinder instead.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the workspace or folder whose local definitions you want.

includeAncestors

A Boolean value that indicates whether Vibe should include local definitions inherited from
ancestor workspaces and folders, which are located higher in the hierarchy than the specified
binder. If you specify false, Vibe includes only the local definitions created within the specified
binder.

return_value

A DefinitionCollection Java object that contains information about the binder’s local definitions.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 definition_getDefinitions (page 108)

 definition_getLocalDefinitionByName (page 109)
110 Web Services Operations

folder_addEntry

Adds an entry to a folder.

Syntax

public long folder_addEntry(String accessToken, FolderEntry entry, String attachedFileName);

Description

The folder_addEntry operation adds an entry to a folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entry

A FolderEntry Java object containing information that Vibe uses to create the new entry.

attachedFileName

(Optional) A string containing the filename of a file to attach to the new entry. If you are not
attaching a file, specify the null value for this argument.

return_value

The entry identifier of the newly created entry.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 111

folder_addEntryWorkflow

Initiates a workflow process for a folder entry.

Syntax

public void folder_addEntryWorkflow(String accessToken, long entryId, String workflowDefinitionId);

Description

The folder_addEntryWorkflow operation initiates a workflow process for a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the folder entry with which you want to initiate a workflow process.

workflowDefinitionId

The definition identifier of the workflow process that you want to initiate for the specified folder
entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
112 Web Services Operations

folder_addMicroBlog

Adds a micro-blog entry to a folder.

Syntax

public long folder_addMicroBlog(String accessToken, string text);

Description

The folder_addMicroBlog operation adds a micro-blog entry to a folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

text

A string containing the text of the micro-blog to create.

return_value

The entry identifier of the newly created micro-blog entry.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 113

folder_addReply

Adds a comment to a folder entry.

Syntax

public long folder_addReply(String accessToken, long parentEntryId, FolderEntry reply, String
attachedFileName);

Description

The folder_addReply operation adds a comment to a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

parentEntryId

The entry identifier of the entry or comment that is to be the parent of the comment you are
adding.

reply

A FolderEntry Java object containing information that yyyy uses to create the new comment.

attachedFileName

The filename of a file you are attaching to the comment. If you are not attaching a file, specify the
null value for this argument.

return_value

The entry identifier of the newly created comment.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
114 Web Services Operations

folder_copyEntry

Copies a folder entry.

Syntax

public long folder_copyEntry(String accessToken, long entryId, long parentFolderId);

Description

The folder_copyEntry operation copies a folder entry.

NOTE: This operation does not copy workflow information for an entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the folder entry you want to copy.

parentFolderId

The folder identifier of the folder you want to contain the copied entry.

return_value

The entry identifier of the new entry created by copying the existing entry.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 115

folder_deleteEntry

Deletes a folder entry.

Syntax

public void folder_deleteEntry(String accessToken, long entryId);

Description

The folder_deleteEntry operation deletes a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the folder entry you want to delete.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
116 Web Services Operations

folder_deleteEntryTag

Removes a tag from a folder entry.

Syntax

public void folder_deleteEntryTag(String accessToken, long entryId, String tagId);

Description

The folder_deleteEntryTag operation removes a tag from a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the entry from which you want to remove a tag.

tagId

A string identifying the tag you want to remove from the entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 117

folder_deleteEntryWorkflow

Removes a workflow from an entry.

Syntax

public void folder_deleteEntryWorkflow(String accessToken, long entryId, String workflowDefinitionId
);

Description

The folder_deleteEntryWorkflow operation removes a workflow process from a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the entry for which you want to remove a workflow process.

workflowDefinitionId

A string containing the definition identifier for the workflow process you want to remove from the
entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
118 Web Services Operations

folder_getEntries

Obtains information about the entries within a specified folder.

Syntax

public FolderEntryCollection folder_getEntries(String accessToken, long binderID, int firstRecord, int
maxRecords);

Description

The folder_getEntries operation obtains information about the entries contained in a folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the folder containing the entries for which you want information.

firstRecord

The index of the first record whose information you want to obtain. The index is 0-based.

maxRecords

The maximum number of entries whose information should be returned. Specify -1 for unlimited.

return_value

A FolderEntryCollection Java object containing information about the entries contained within the
folder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 119

folder_getEntry

Accepts an entry identifier to get information about an entry in a folder.

Syntax

public FolderEntry folder_getEntry(String accessToken, long entryId, boolean includeAttachments);

Description

The folder_getEntry operation obtains information about an entry in a folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the entry about which you want information.

includeAttachments

A Boolean value that indicates whether you want Vibe to return the entry’s attachments. The
client program is responsible for placement of attachment files on its local system.

return_value

A FolderEntry Java object that contains information about the specified entry.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
120 Web Services Operations

folder_getEntryByFileName

Accepts a filename to get information about an entry.

Syntax

public FolderEntry folder_getEntryByFileName(String accessToken, long binderId, String fileName,
boolean includeAttachments);

Description

The folder_getEntryByFileName operation obtains information about an entry in a folder by using
the entry’s file name.

Although this operation is most useful for Files folders, it works for any folder that requires that all
filenames within the folder to be unique.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The binder identifier for the folder containing the entry for which you want information.

fileName

The name of the file that corresponds with the entry for which you want information.

includeAttachment

A Boolean value that indicates whether you want Vibe to return the entry’s attachments. The
client program is responsible for placement of attachment files on its local system.

return_value

A FolderEntry Java object that contains information about the specified entry.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 121

folder_getEntryTags

Obtains information about an entry’s tags.

Syntax

public Tag[] folder_getEntryTags(String accessToken, long entryId);

Description

The folder_getEntryTags operation gets information about each of the tags applied to a folder
entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry about whose tags you want information.

return_value

An array of Tag Java objects, where each object contains information about one tag applied to
the entry.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
122 Web Services Operations

folder_getFileVersions

Returns information about the versions of a file.

Syntax

public void folder_getFileVersions(String accessToken, long entryId, String fileName);

Description

The folder_getFileVersions operation retrieves information about the versions of a file associated
with an entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the entry.

fileName

The filename of the file you want to retrieve version information about.

return_value

A File Versions Java object containing information about the file versions.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 123

folder_getSubscription

Obtains subscription information for a specified folder.

Syntax

public Subscription folder_getSubscription(String accessToken, long entryId);

Description

The folder_getSubscription operation gets information about the e-mail notification settings for a
specified folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier for the entry whose subscription information you want.

return_value

A Subscription Java object that contains information about e-mail notification settings for the
specified folder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
124 Web Services Operations

folder_modifyEntry

Modifies an entry in a folder.

Syntax

public void folder_modifyEntry(String accessToken, FolderEntry entry);

Description

The folder_modifyEntry operation modifies the contents of a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entry

A FolderEntry Java object containing the information to apply to the existing folder entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 125

folder_modifyWorkflowState

Changes the workflow state of an entry.

Syntax

public void folder_modifyWorkflowState(String accessToken, long entryId, long StateId, String
toState);

Description

The folder_modifyWorkflowState operation changes the workflow state of a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry whose workflow state you want to change.

stateID

The token ID of the current workflow state from which you want the entry to transition to the new
state.

toState

A string identifying your desired workflow state.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
126 Web Services Operations

folder_moveEntry

Moves an entry within the folder-tree hierarchy.

Syntax

public void folder_moveEntry(String accessToken, long entryId, long parentId);

Description

The folder_moveEntry operation moves an entry to be under a new parent within the folder
hierarchy.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry you want to move.

parentId

The identifier of the folder that is to be the new parent of the specified entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 127

folder_preDeleteEntry

Predeletes an entry by moving it to the trash.

Syntax

public void folder_preDeleteEntry(String accessToken, long entryId);

Description

The folder_preDeleteEntry operation moves an entry to the trash.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the entry that you want to move to the trash.

return_value

None.
128 Web Services Operations

folder_removeFile

Removes a file attachment from an entry.

Syntax

public void folder_removeFile(String accessToken, long entryId, String fileName);

Description

The folder_removeFile operation removes a file attachment from an entry in a folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry that includes the attachment you want to remove.

fileName

A string containing the filename of the attachment you want to remove from the entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 129

folder_reserveEntry

Reserves an entry.

Syntax

public void folder_reserveEntry(String accessToken, long entryId);

Description

The folder_reserveEntry operation reserves an entry in a folder, preventing others from modifying
it.

Users reserve and release an entry in the UI using the Reserve and Unreserve menu items.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry you want to reserve.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
130 Web Services Operations

folder_restoreEntry

Undeletes an entry by removing it from the trash and restoring it to its previous location in the Vibe
site.

Syntax

public void folder_restoreEntry(String accessToken, long entryId);

Description

The folder_restoreEntry operation undeletes an entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The entry identifier of the entry that you want to restore.

return_value

None.
Web Services Operations 131

folder_setEntryTag

Applies a tag to a folder entry.

Syntax

public void folder_setEntryTag(String accessToken, Tag tag);

Description

The folder_setEntryTag operation applies a tag to a folder entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

tag

A Tag Java object containing information about the tag you want to apply.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
132 Web Services Operations

folder_setRating

Sets a rating for a folder entry.

Syntax

public void folder_setRating(String accessToken, long entryId, long value);

Description

The folder_setRating operation applies a “star” rating to an entry.

In the UI, entries can have ratings that range from a lowest value of 1 star to the highest value of 5
stars.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry for which you want to apply a rating.

ratingValue

An integer indicating how many stars you want to set as the rating.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 133

folder_setSubscription

Establishes subscription settings for an entry.

Syntax

public void folder_setSubscription(String accessToken, long entryId, Subscription subscription);

Description

The folder_setSubscription operation establishes settings for e-mail notifications for a specified
entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry for which you want to set subscription information.

subscription

A Subscription Java object that contains subscription information to be applied to the specified
entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
134 Web Services Operations

folder_setWorkflowResponse

Applies an answer to a workflow question for a specified entry.

Syntax

public void folder_setWorkflowResponse(String accessToken, long entryId, long stateId, String
question, String response);

Description

The folder_setWorkflowResponse operation establishes an answer for a workflow question for a
specified entry.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry that is currently in the workflow state within which you want to apply an
answer to a question.

stateId

The token ID of the current workflow state that defines the question that you want to affect.

question

A string identifying the question that you are providing an answer to.

response

A string identifying the response you want to apply to the workflow question.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 135

folder_synchronizeMirroredFolder

Synchronizes a mirrored folder with its source folder.

Syntax

public void folder_synchronizeMirroredFolder(String accessToken, long binderId);

Description

The folder_synchronizeMirroredFolder operation synchronizes a mirrored folder with its source
folder.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the mirrored folder that you want to synchronize.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
136 Web Services Operations

folder_unreserveEntry

Releases a locked entry.

Syntax

public void folder_unreserveEntry(String accessToken, long entryId);

Description

The folder_unreserveEntry operation releases a locked entry.

Users reserve and release an entry in the UI by using the Reserve and Unreserve menu items.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry that you want to release from its lock.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 137

folder_uploadFile

Uploads a file as an attachment to an entry.

Syntax

public void file_uploadFile(String accessToken, long entryId, String formDataItemName, String
fileName);

Description

The file_uploadFile operation uploads a file as an attachment to an entry. You can attach only one
file at a time; call this operation multiple times to attach more than one file to the entry.

Because transferring files across the Internet can be time-consuming, you can upload files that have
already been moved to a staging area on the Vibe server by using the folder_uploadFileStaged
operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

The identifier of the entry that is to include the new attached file.

formDataItemName

A string containing the internal identifier for the part of the entry that contains attached files. This
identifier maps the name attribute of an input HTML tag on a form to data in the Vibe database;
a hidden HTML tag communicates this file mapping to the server.

The name value for the standard entry element containing attached files is ss_attachFile. If you
want to upload a file into a custom form element you defined by using the designers, you need to
look up the name identifier for that form element.

If you are uploading to a folder file, specify upload as an argument to this parameter to make this
attachment the primary file for the entry.

fileName

A string containing the filename of the file you want to attach to the entry.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 folder_uploadFileStaged (page 139)
138 Web Services Operations

folder_uploadFileStaged

Locates a locally stored file and attaches it to an entry.

Syntax

public void file_uploadFileStaged(String accessToken, long entryId, String formDataItemName,
String fileName, String stagedFileRelativePath);

Description

As a way to streamline the transfer of files, the file_uploadFileStaged operation accesses a file
that has been copied locally to the Vibe server, avoiding transferring them over the Internet. The
operation then attaches the file to a folder entry in Vibe. In order for the Web services client to utilize
this operation, the Vibe administrator must first configure the server to allow this operation by
specifying staging.upload.files.enable and staging.upload.files.rootpath configuration
settings in ssf-ext.properties file. Because it involves Vibe administrator access to the server
environment, this operation is reserved only for major migration projects where individual file uploads
through the HTTP protocol do not meet the performance requirements of the project.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entryId

An identifier for the entry to which you want to attach a file.

formDataItemName

A string containing the internal identifier for the part of the entry that contains attached files. This
identifier maps the name attribute of an input HTML tag on a form to data in the Vibe database;
a hidden HTML tag communicates this file mapping to the server.

The name value for the standard entry element containing attached files is ss_attachFile. If you
want to upload a file into a custom form element you defined by using the designers, you need to
look up the name identifier for that form element.

If you are uploading to a folder file, specify upload as an argument to this parameter to make this
attachment the primary file for the entry.

fileName

A string containing the filename of the file you want to attach to the entry.

stagedFileRelativePath

A pathname of the file relative to the staging area on the server side. On the Vibe server, the
staging directory is designated by the value of the staging.uploads.files.rootpath
configuration setting. This relative pathname is resolved against the staging directory of the Vibe
server to identify the input file.

return_value

None.
Web Services Operations 139

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 folder_uploadFile (page 138)
140 Web Services Operations

ical_uploadCalendarEntriesWithXML

Adds a calendar entry to a folder.

Syntax

public void ical_uploadCalendarEntriesWithXML(String accessToken, long folderId, String
iCalDataAsXML);

Description

The ical_uploadCalendarEntriesWithXML adds a calendar entry using iCal information in an XML
string.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

folderId

The identifier of the folder where you want to add a calendar entry.

iCalDataAsXML

A string containing XML formatted calendar data (<doc><entry>iCal data</entry>...</
doc>).

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 141

ldap_synchAll

Synchronizes all users with the current information that is in LDAP.

Syntax

public void ldap_synchAll(String accessToken);

Description

The ldap_synchAll operation synchronizes all users with the current information that is in LDAP.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
142 Web Services Operations

ldap_synchUser

Synchronizes one user with the latest information in LDAP for that person.

Syntax

public void ldap_synchUser(String accessToken, long userId);

Description

The ldap_synchUser operation synchronizes one user with the latest information in LDAP for that
person.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

userId

The identifier of the user whose information you want synchronized with that person’s LDAP
data.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 143

license_getExternalUsers

Obtains a count of external users.

Syntax

public long license_getExternalUsers(String accessToken);

Description

The license_getExternalUsers operation obtains a count of legal external users for the current
license.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

return_value

An integer indicating the number of allowed external users.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
144 Web Services Operations

license_getRegisteredUsers

Obtains a count of registered Vibe users.

Syntax

public long license_getRegisteredUsers(String accessToken);

Description

The license_getRegisteredUsers operation obtains a count of the current number of registered
users on the system.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

return_value

An integer that is the count of users currently registered on the system.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 145

license_updateLicense

Updates the Vibe license.

Syntax

public void license_updateLicense(String accessToken);

Description

The license_updateLicense operation updates the Vibe license.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
146 Web Services Operations

migration_addBinder

Accepts a Java object to add a binder, allowing preservation of SiteScape Forum data.

Syntax

public long migration_addBinder(String accessToken, Binder binder);

Description

The migration_addBinder operation adds either a workspace or folder to the hierarchy, allowing
you to specify SiteScape Forum data (such as the person who created the workspace or folder in
Forum, the Forum creation date, the user who last modified the workspace or folder in Forum, and
the date of the last modification in Forum).

If you prefer to use XML to specify data, use the migration_addBinderWithXML operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binder

Data and methods for the Java Binder object, defined in the Vibe source code. Edit the
information in the Binder object to reflect the Forum values.

return_value

The identifier of the newly created binder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_addBinderWithXML (page 148)
Web Services Operations 147

migration_addBinderWithXML

Accepts XML to add a binder, allowing preservation of SiteScape Forum data.

Syntax

public long migration_addBinderWithXML(String accessToken, long parentId, String definitionId,
String inputDataAsXML, String creator, Calendar creationDate, String modifier, Calendar
modificationDate);

Description

The migration_addBinderWithXML operation adds either a workspace or folder to the hierarchy,
allowing you to specify SiteScape Forum data (such as the person who created the workspace or
folder in Forum, the Forum creation date, the user who last modified the workspace or folder in
Forum, and the date of the last modification in Forum).

If you prefer to use a Java object to specify data, use the migration_addBinder operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

parentId

The identifier of the workspace or folder that is to contain the new binder.

definitionID

A string that identifies the definition used to create the new binder.

inputDataAsXML

An XML string that provides the data needed to construct the workspace or folder.

creator

A string containing the username of the person who created the workspace or folder in Forum.

creationDate

A Calendar Java object that contains the creation date of the workspace or folder in Forum.

modifier

A string containing the username of the person who last modified the workspace or folder in
Forum.

modificationDate

A Calendar Java object that contains the modification date of the workspace or folder in Forum.

return_value

The identifier of the newly created binder.
148 Web Services Operations

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_addBinder (page 147)
Web Services Operations 149

migration_addEntryWorkflow

Associates an entry with a workflow process, allowing preservation of SiteScape Forum data.

Syntax

public void migration_addEntryWorkflow(String accessToken, long binderId, long entryId, String
definitionId, String startState, String modifier, Calendar modificationDate);

Description

The migration_addEntryWorkflow operation associates an entry with a workflow process, while
preserving values from a SiteScape Forum installation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the folder containing the entry with which you want to associate a workflow
process.

entryId

The identifier of the entry with which you want to associate the workflow process.

definitionId

A string containing the definition identifier for the workflow process you want to associate with
the entry.

startState

A string containing the name of the state of the entry as it was last set in the Forum installation.

modifier

A string containing the username of the person who last modified the workflow state in the
Forum installation.

modificationDate

A Calender Java object that contains the date that the workflow state was last modified in the
Forum installation.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
150 Web Services Operations

migration_addFolderEntry

Accepts a Java object to add an entry to a folder, allowing preservation of SiteScape Forum data.

Syntax

public long migration_addFolderEntry(String accessToken, FolderEntry entry, boolean subscribe);

Description

The migration_addFolderEntry operation adds an entry to a folder.

If you prefer to use an XML string to create the new entry, use the
migration_addFolderEntryWithXML operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

entry

A FolderEntry Java object that contains information used to create the new entry, including
information from the entry in the Forum installation.

subscribe

A Boolean value that implements the Forum notify me when someone replies to this entry
feature by establishing a subscription for the entry owner.

return_value

The identifier of the newly created entry.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_addFolderEntryWithXML (page 152)
Web Services Operations 151

migration_addFolderEntryWithXML

Accepts XML to add an entry to a folder, allowing preservation of SiteScape Forum data.

Syntax

public long migration_addFolderEntryWithXML(String accessToken, long binderId, String
definitionId, String inputDataAsXML, String creator, Calendar creationDate, String modifier, Calendar
modificationDate, boolean subscribe);

Description

The migration_addFolderEntry operation adds an entry to a folder, allowing you to preserve data
from the entry as it last existed in an installation of SiteScape Forum.

If you prefer to create the entry by using a Java object, use the migrate_addFolderEntry operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the folder that is to contain the new entry.

definitionId

A string containing the definition identifier for the new entry.

inputDataAsXML

A string containing the XML elements used to construct the new entry.

creator

A string containing the username of the person who created the entry in the Forum installation.

creationDate

A Calendar Java object containing the date the entry was created in the Forum installation.

modifier

A string containing the username of the person who last modified the entry in the Forum
installation.

modificationDate

A Calendar Java object containing the date the entry was last modified in the Forum installation.

subscribe

A boolean value that implements the Forum feature “notify me when someone replies to this
entry” by establishing a subscription for the entry owner.

return_value

The identifier of the binder for the newly created entry.
152 Web Services Operations

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_addFolderEntry (page 151)
Web Services Operations 153

migration_addReply

Accepts a Java object to add a comment, allowing preservation of SiteScape Forum data.

Syntax

public long migration_addReply(String accessToken, long parentEntryId, FolderEntry reply);

Description

The binder_addReply operation adds a comment to an entry or a reply, and allows you to preserve
data from the reply as it last appeared in a Forum installation.

If you prefer to add the comment by using XML, use the migrate_addReplyWithXML operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

parentEntryId

The identifier of the entry or comment that is the parent of the comment you want to create.

reply

A FolderEntry Java object that contains information used to construct the new comment,
including data reflecting the reply as it last appeared in the Forum installation.

return_value

The identifier of the newly created comment.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_addReplyWithXML (page 155)
154 Web Services Operations

migration_addReplyWithXML

Accepts XML to add a comment, allowing preservation of SiteScape Forum data.

Syntax

public long migration_addReplyWithXML(String accessToken, long binderId, long parentId, String
definitionId, String inputDataAsXML, String creator, Calendar creationDate, String modifier, Calendar
modificationDate);

Description

The migration_addReplyWithXML operation adds a comment to an entry or to another comment,
allowing you to preserve data from the reply as it last appeared in the SiteScape Forum installation.

If you prefer to add the comment by using a Java object, use the migration_addReply operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the folder that contains the entry to which you want to add the comment.

parentId

The identifier of the entry or comment that is to be the parent of the newly created comment.

definitionId

A string containing the definition identifier for the comment you want to create.

inputDataAsXML

An XML string whose elements are used to create the new comment.

creator

A string containing the username of the person who created the reply in the Forum installation.

creationDate

A Calendar Java object containing the date that the reply was created in the Forum installation.

modifier

A string containing the username of the person who last modified the reply in the Forum
installation.

modificationDate

A Calendar Java object that contains the date that the reply was last modified in the Forum
installation.

return_value

The identifier of the newly created comment.
Web Services Operations 155

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_addReply (page 154)
156 Web Services Operations

migration_uploadFolderFile

Uploads an entry attachment, allowing preservation of SiteScape Forum data.

Syntax

public void migration_uploadFolderFile(String accessToken, long binderId, long entryId, String
formDataItemName, String fileName, String modifier, Calendar modificationDate);

Description

The migration_uploadFolderFile operation attaches a file to an entry, allowing you to preserve
data from the attachment as it last appeared in a SiteScape Forum installation. You can attach only
one file at a time; call this operation multiple times to attach more than one file to the entry.

Because moving files across the Internet can be time-consuming, you can create attachments from
Forum files that have already been copied to a staging area on the Vibe server by using the
migration_uploadFolderFileStaged operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the folder containing the entry to which you want to attach a file.

entryId

The identifier of the entry to which you want to attach a file.

formDataItemName

A string containing the internal identifier for the part of the entry that contains attached files. This
identifier maps the name attribute of an input HTML tag on a form to data in the Vibe database;
a hidden HTML tag communicates this file mapping to the server.

The name value for the standard entry element containing attached files is ss_attachFile. If you
want to upload a file into a custom form element you defined by using the designers, you need to
look up the name identifier for that form element.

If you are uploading to a folder file, specify upload as an argument to this parameter to make this
attachment the primary file for the entry.

fileName

A string containing the name of the file you want to upload.

modifier

A string containing the username of the last person in the Forum installation to modify the file.

modificationDate

A Calendar Java object containing the date that the file was last modified in the Forum
installation.
Web Services Operations 157

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_uploadFolderFileStaged (page 159)
158 Web Services Operations

migration_uploadFolderFileStaged

Uploads a local copy of an entry attachment, allowing preservation of SiteScape Forum data.

Syntax

public void migration_uploadFolderFileStaged(String accessToken, long binderId, long entryId,
String formDataItemName, String fileName, String stagedFileRelativePath, String modifier, Calendar
modificationDate);

Description

The migration_uploadFolderFileStaged operation accesses a file that has been copied locally to
the Vibe server as a way to streamline the transfer of files, avoiding transferring them over the
Internet. The operation then attaches the file to a folder entry in Vibe.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the binder containing the entry to which you want to attach a file.

entryId

The identifier of the entry to which you want to attach a file.

formDataItemName

A string containing the internal identifier for the part of the entry that contains attached files. This
identifier maps the name attribute of an input HTML tag on a form to data in the Vibe database;
a hidden HTML tag communicates this file mapping to the server.

The name value for the standard entry element containing attached files is ss_attachFile. If you
want to upload a file into a custom form element you defined by using the designers, you need to
look up the name identifier for that form element.

If you are uploading to a folder file, specify upload as an argument to this parameter to make this
attachment the primary file for the entry.

fileName

A string containing the name of the file you want to attach to an entry.

stagedFileRelativePath

A pathname of the file relative to the staging area on the server side. On the Vibe server, the
staging directory is designated by the value of the staging.upload.files.rootpath
configuration setting. This relative pathname is resolved against the staging directory of the Vibe
server to identify the input file.

Although the files can be present in any folder structure within the staging area, one streamlined
way to approach this task is to unzip the Forum hidden directory into the staging area. Then, use
this parameter to specify the relative path through the hidden folder structure to the location of
the file to be attached to the entry in Vibe.
Web Services Operations 159

modifier

A string containing the username of the person who last modified the file in the Forum
installation.

modificationDate

A Calendar Java object that contains the date that the file was last modified in the Forum
installation.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 migration_uploadFolderFile (page 157)
160 Web Services Operations

profile_addGroup

Adds a group.

Syntax

public long profile_addGroup(String accessToken, Group group);

Description

The profile_addGroup operation adds a new group to Vibe.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

group

A Group Java object containing information needed to create the new group in Vibe.

return_value

The identifier of the newly created group.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 161

profile_addGroupMember

Adds a user to a group.

Syntax

public void profile_addGroupMember(String accessToken, String groupName, String userName);

Description

The profile_addGroupMember operation adds a user to a group.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

groupName

A string containing the name of the group.

userName

A string containing the name of the user to be added to the group.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
162 Web Services Operations

profile_addUser

Adds a user profile.

Syntax

public long profile_addUser(String accessToken, User user);

Description

The profile_addUser operation adds a profile for a new Vibe user.

After you add a user profile, you can add a user workspace for the new user by using the
profile_addUserWorkspace operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

user

A User Java object containing the information needed to create a new user.

return_value

The identifier of the newly created user.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 profile_addUserWorkspace (page 164)
Web Services Operations 163

profile_addUserWorkspace

Adds a user workspace for an existing user.

Syntax

public long profile_addUserWorkspace(String accessToken, long userId);

Description

The profile_addUserWorkspace operation adds a user workspace for an existing user.

To create a new user before using this operation, use the profile_addUser operation, which creates
a profile for a new user.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

userId

The identifier of the user for whom you want to create a user workspace.

return_value

The binder identifier of the newly created user workspace.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 profile_addUser (page 163)
164 Web Services Operations

profile_deletePrincipal

Removes a group or user.

Syntax

public void profile_deletePrincipal(String accessToken, long principalId, boolean deleteWorkspace);

Description

The profile_deletePrincipal operation removes a group or user.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

principalId

The identifier of the group or user you want to delete.

deleteWorkspace

When you delete a user, this Boolean value indicates whether Vibe should delete the
corresponding user workspace.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 165

profile_getFileVersions

Returns information about the versions of a file.

Syntax

public void profile_getFileVersions(String accessToken, long principalId, string fileName);

Description

The profile_getFileVersions operation retrieves information about the versions of a file
associated with a user or group.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

principalId

The identifier for the principal (a user or group).

fileName

The filename of the file you want to retrieve version information about.

return_value

A File Version Java object containing information about the file versions.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
166 Web Services Operations

profile_getGroup

Accepts a group identifier to obtain the title and the description of the group.

Syntax

public Group profile_getGroup(String accessToken, long groupId, boolean includeAttachments);

Description

The profile_getGroup operation obtains the title and the description of the group.

If you want to get information about the members of a group, use the profile_getGroupMembers
operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

groupId

The identifier of the group about which you want information.

includeAttachments

A Boolean value that indicates whether you want files that are attached to the group.

By default, you cannot attach files to a group. However, a site administrator can use the
designers in the UI to customize a group to be able to include files.

return_value

A Group Java object containing information about all of the group members.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 profile_getGroupByName (page 168)

 profile_getGroupMembers (page 169)
Web Services Operations 167

profile_getGroupByName

Accepts a group name to obtain the title and the description of the group.

Syntax

public Group profile_getGroupByName(String accessToken, String groupName, boolean
includeAttachments)

Description

The profile_getGroupByName operation obtains the title and the description of a group.

If you want to get information about the members of a group, use the profile_getGroupMembers
operation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

groupName

A string containing the name of the group.

includeAttachments

A Boolean value that indicates whether you want files attached to the group.

By default, you cannot attach files to a group. However, a site administrator can use the
designers in the UI to customize a group to be able to include files.

return_value

A Group Java object containing information about all of the group members.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 profile_getGroup (page 167)

 profile_getGroupMembers (page 169)
168 Web Services Operations

profile_getGroupMembers

Obtains information about the members of a group.

Syntax

public PrincipalCollection profile_getGroupMembers(String accessToken, String groupName);

Description

The profile_getGroupMembers operation obtains information about members of a group.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

groupName

A string containing the name of the group whose members you want information about.

return_value

A PrincipalCollection Java object containing information about the members of the specified
group.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 169

profile_getPrincipals

Gets information for users and groups in the installation.

Syntax

public PrincipalCollection profile_getPrincipals(String accessToken, int firstRecord, int maxRecords
);

Description

The profile_getPrincipals operation gets information for users and groups in the installation.
Because the set of information is potentially very large, you can use successive calls to this operation
to receive manageable subsets of information for each call.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

firstRecord

The number of the record (information about one user or group) to begin returning. Use this
parameter to page the returned list of principals.

The number of the first record 0.

maxRecords

The largest number of records you want returned in this call. For an unlimited number specify -1.

return_value

A PrincipalCollection Java objection containing information about the set of users and groups
you requested.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
170 Web Services Operations

profile_getUser

Accepts a user identifier to get information about a user.

Syntax

public User profile_getUser(String accessToken, long userId, boolean includeAttachments);

Description

The profile_getUser operation accepts a user identifier and returns information about a Vibe user.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

userId

The identifier of the user about whom you want information.

includeAttachments

A Boolean value that specifies whether Vibe should return attachments to the user’s profile.

By default, the only attached files are the users’ pictures. However, the site administrator can
customize the profile to include other files by using the designer tools in the UI.

return_value

A User Java object that contains information about the requested user.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 profile_getUserByName (page 172)
Web Services Operations 171

profile_getUserByName

Accepts a username to get information about a user.

Syntax

public User profile_getUserByName(String accessToken, String userName, boolean
includeAttachments);

Description

The profile_getUserByName operation accepts a username as a parameter and returns information
about a Vibe user.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

userName

A string containing the username of the user for whom you want information.

includeAttachments

A Boolean value that indicates whether Vibe should return attached files.

By default, the only attached files are the users’ pictures. However, the site administrator can
customize the profile to include other files by using the designer tools in the UI.

return_value

A User Java object containing information about the requested user.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 profile_getUser (page 171)
172 Web Services Operations

profile_getUsers

Obtains information for users in the installation.

Syntax

public UserCollection profile_getUsers(String accessToken, boolean captive, int firstRecord, int
maxRecords);

Description

The profile_getUsers operation gets information for users in the installation. Because the set of
information is potentially very large, you can use successive calls to this operation to receive
manageable subsets of information for each call.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

captive

Set this to true if you want the permalink URL returned for each user workspace to represent
captive mode. When a user workspace is viewed in captive mode, the master heading and the
sidebar are removed from the display, which allows the page to fit better in a small screen. The
default is false.

firstRecord

The number of the record to begin returning. Use this parameter to page the returned list of
users.

The number of the first record is 0.

maxRecord

The largest number of records you want to return in this call. Specify -1 for unlimited.

return_value

A UserCollection Java object that contains information about the entries contained within the
folder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 profile_getUserByName (page 172)
Web Services Operations 173

profile_getUserTeams

Obtains information about all teams that the specified user is a member of.

Syntax

public TeamCollection search_getUserTeams(String accessToken, long userId);

Description

The search_getUsersTeams operation obtains information about all teams that the user is a member
of.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

userId

The identifier of the user about whom you want information.

return_value

A UserCollection Java object that contains information about the entries contained within the
folder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
174 Web Services Operations

profile_modifyGroup

Modifies a group.

Syntax

public void profile_modifyGroup(String accessToken, Group group);

Description

The profile_modifyGroup operation modifies information associated with a group.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

group

A Group Java object containing modified information about a group.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 175

profile_modifyUser

Modifies a user.

Syntax

public void profile_modifyUser(String accessToken, User user);

Description

The profile_modifyUser operation modifies information associated with a user.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

user

A User Java object containing modified information about a user.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
176 Web Services Operations

profile_removeFile

Removes a file from the user profile.

Syntax

public void profile_removeFile(String accessToken, long principalId, String fileName);

Description

The profile_removeFile operation removes a file from a user profile.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

principalId

The identifier for the principal (by default, a user) from which you want to remove a file.

By default, only user profiles contain files. However, it is possible for site administrators to
customize groups by using the designer tools in the UI.

fileName

A string containing the name of the file you want to remove.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 177

profile_removeGroupMember

Removes a user from a group.

Syntax

public void profile_removeGroupMember(String accessToken, String groupName, String userName
);

Description

The profile_removeGroupMember operation removes a user from membership in a group.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

groupName

A string containing the name of the group from which you want to remove a member.

userName

A string containing the name of the user you want to remove from the specified group.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
178 Web Services Operations

profile_uploadFile

Uploads a file as an attachment to a user or group.

Syntax

public void profile_uploadFile(String accessToken, long principalID, String formDataItemName,
String fileName);

Description

The profile_uploadFile operation performs an action similar to using the user interface to upload a
picture to user profiles. Files are attached one at a time; call this operation multiple times to attach
more than one file to the binder.

By default, only user profiles contain files. However, it is possible for site administrators to customize
groups by using the designer tools in the user interface,

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

principalId

The identifier for the user or group to which you want to attach a file.

formDataItemName

A string containing the internal identifier for the part of the principal entry that contains attached
files. This identifier maps the name attribute of an input HTML tag on a form to data in the Vibe
database; a hidden HTML tag communicates this file mapping to the server.

The name value for the standard entry element containing attached files is ss_attachFile. To
upload a file into the custom forms element you defined by using the designer, you need to look
up the name identifier for that form element.

To upload a picture for a user profile, specify picture as an argument to this parameter to make
this attachment one of the pictures associated with the user profile.

fileName

A string containing the filename of the file you want to upload to the principal.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 179

search_getFolderEntries

Obtains information about the entries that match the specified search query.

Syntax

public String search_getFolderEntries(String accessToken, String query, int offset, int maxResults);

Description

The search_getFolderEntries operation obtains information about the entries matching the
specified search query. Because the list of each result can be lengthy, this operation lets you make
multiple calls, receiving a subset of the search results each time.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

query

A search query represented in XML.

offset

An integer indicating at which result you want to begin receiving information. The first result is
numbered 0.

maxResults

An integer indicating the number of results you want returned. The value of -1 indicates
unlimited.

return_value

A FolderEntryCollection Java object containing information about the entries contained within the
folder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
180 Web Services Operations

search_getTeams

Obtains information about the teams that the calling user is a member of.

Syntax

public TeamCollection search_getTeams(String accessToken);

Description

The search_getTeams operation obtains information about the teams that the calling member is a
user of.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

return_value

A TeamCollection Java object that contains information about the teams that the calling user is a
member of.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 181

search_getWorkspaceTreeAsXML

Obtains information needed to construct the Vibe workspace and folder tree.

Syntax

public String search_getWorkspaceTreeAsXML(String accessToken, long binderId, int levels, String
page);

Description

The search_getWorkspaceTreeAsXML operation obtains information needed to construct the Vibe
workspace and folder tree.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

binderId

The identifier of the binder whose descendants you want to include in the workspace and folder
tree information.

The top workspace in the Vibe tree has a binder identifier of 1.

levels

The number of hierarchical levels down from the node specified by binderId that you want to
include in the returned information. The value -1 indicates that you want all subsequent levels.

page

A parameter used to expand pages of binders. When you specify a valid page identifier, Vibe
expands the page by the number of levels indicated in the levels parameter.

If you do not want to use this call expand pages, pass null as this parameter.

See “Binder Pages and search_getWorkspaceTreeAsXML” on page 22 for more detailed
information about working with pages.

return_value

A string containing XML elements needed to construct each node within the requested levels of
the workspace hierarchy.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
182 Web Services Operations

search_search

Returns XML for results of a search query.

Syntax

public String search_search(String accessToken, String query, int offset, int maxResults);

Description

The search_search operation returns XML for the results of a search query represented in XML.
Because the list of each results can be lengthy, this operation is designed so that you can make
multiple calls, receiving a subset of the search results each time.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

query

A search query represented in XML.

offset

An integer indicating at which result you want to begin receiving information. The first result is
numbered 0.

maxResults

An integer indicating the number of results you want returned.

return_value

A string of XML containing information about the search results that match your specified criteria.

Example

The following input query string in XML matches all users whose first name begins with the letter J or
the last name is Smith.
Web Services Operations 183

<QUERY>
 <AND>
 <FIELD fieldname="_entityType" exactphrase="true">
 <TERMS>user</TERMS>
 </FIELD>
 <FIELD fieldname="_docType" exactphrase="true">
 <TERMS>entry</TERMS>
 </FIELD>
 <OR>
 <FIELD fieldname="lastName" exactphrase="true">
 <TERMS>Smith</TERMS>
 </FIELD>
 <FIELD fieldname="firstName" exactphrase="false">
 <TERMS>J*</TERMS>
 </FIELD>
 </OR>
 </AND>
</QUERY>

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
184 Web Services Operations

template_addBinder

Adds a fully configured workspace or folder to the workspace hierarchy.

Syntax

public long template_addBinder(String accessToken, long parentId, long binderConfigId, String title);

Description

The template_addBinder operation adds a fully configured workspace or folder to the workspace
hierarchy.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

parentId

The identifier of the workspace or folder that is to contain the new binder.

binderConfigId

The identifier that maps to the default configuration for the folder you want to create.

You can use the template_getTemplates information to get a configuration identifier from a
binder that has a configuration you want for your new binder. Or, you can get a binder
configuration identifier from the Vibe user interface. See “Adding Folders and the Binder
Configuration Identifier” on page 19, for information about getting a configuration identifier from
the user interface.

title

A string containing the title of the new binder.

return_value

The binder identifier of the newly created workspace or folder.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)

 template_getTemplates (page 186)
Web Services Operations 185

template_getTemplates

Obtains information about all defined templates in the installation.

Syntax

public TemplateCollection template_getTemplates(String accessToken);

Description

The template_getTemplates operation obtains information about all defined templates in the
installation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

return_value

A TemplateCollection Java object that contains information about all templates in the installation.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
186 Web Services Operations

zone_addZone

Adds a zone to the installation.

Syntax

public Long zone_addZone(String accessToken, String zoneName, String virtualHost, String
mailDomain);

Description

The zone_addZone operation adds a zone to the installation.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

zoneName

A string containing the name of the new zone.

virtualHost

A string specifying the virtual host. (See the installation guide for more information.)

mailDomain

This parameter is not used.

return_value

The zone identifier, which is the binder identifier of the top workspace in the new zone.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 187

zone_deleteZone

Deletes a zone.

Syntax

public void zone_deleteZone(String accessToken, String zoneName);

Description

The zone_deleteZone operation deletes a zone.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

zoneName

A string containing the name of the zone you want to delete.

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
188 Web Services Operations

zone_modifyZone

Modifies a zone.

Syntax

public void zone_modifyZone(String accessToken, String zoneName, String virtualHost, String
mailDomain);

Description

The zone_modifyZone operation changes a zone’s virtual host specification.

Parameters and Return Value

accessToken

Either the security token passed to your application by Vibe as part of implementing a remote
application, or the null value.

zoneName

A string containing the name of the new zone.

virtualHost

A string specifying the virtual host. (See the installation guide for more information.)

mailDomain

This parameter is not used

return_value

None.

See Also

 Java objects in the Vibe sources (see “Working with Java Objects” on page 18)
Web Services Operations 189

190 Web Services Operations

B BDeprecated Web Services
Operations

This topic provides alphabetized reference pages for deprecated Web services operations provided
by Novell Teaming.

NOTE: Micro Focus recommends that you do not use these Web services operations in new
applications. Instead, use the operations documented in Appendix A, “Web Services Operations,” on
page 73. Micro Focus continues to support the operations in this appendix for backward compatibility
for applications written to interoperate with Teaming 1.0.3 or earlier.

The following are conventions used in this reference section:

NOTE: All examples in this reference section use Apache Axis run-time library methods that specify
Web service operations and their argument lists. If you are not using Apache Axis, map the Apache
methods to those you are using to implement your Web service calls.

The search operation is under development and subject to change or deletion at any time. Do not
use this operation in your client applications.

Web service operations contained in this reference section are used by this Windows based client: /
ssf/samples/wsclient/facade-client.bat. With the exception of uploadCalendarEntries, use
the same parameters for the batch-file command that you use for the corresponding Web service
message.

What you see What it means

Click the Add a team workspace button.

Click the Getting Started link.

Items that are clickable on the page, programming
variables, or syntax parameters are presented in italic
font.

Blog summary - Provides a....

Note: Remember that....

Defined terms in a list, note headers, section headers
on a reference page, and list items on a reference
page are presented in bold font.

Type status, then press Enter.

Open the ManagerGuide.pdf file.

Use the open_db routine with its lock parameter.

Text that you must type, file names, commands,
command options, routines, Web services messages,
and parameters are presented in Courier font when
occurring in a body of text.

[page] Optional syntax parameters are enclosed in brackets ([
]).

..., paramSyntax1 | paramSyntax2,... Required parameters that accept two or more optional
syntaxes are separated by the vertical-line character.

(V1—V1.0.3) The versions of Teaming that support the Web
services operation (“all versions between Version 1.0
through Version 1.0.3”)
Deprecated Web Services Operations 191

The following table maps the facade-client.bat command name to its corresponding, linked Web
services message, which is documented in this reference section:

facade-client.bat command Web services message

addEntry addFolderEntry

addFolder addFolder

addReply addReply

[none] addUserWorkspace

indexBinder indexFolder

listDefinitions getDefinitionListAsXML

migrateBinder migrateBinder

migrateEntry migrateFolderEntry

migrateReply migrateReply

migrateFile migrateFolderFile

migrateFileStaged migrateFolderFileStaged

migrateWorkflow migrateEntryWorkflow

modifyEntry modifyFolderEntry

printAllPrincipals getAllPrincipalsAsXML

printDefinition getDefinitionAsXML

printDefinitionConfig getDefinitionConfigAsXML

printFolderEntry getFolderEntryAsXML

printFolderEntries getFolderEntryAsXML

printPrincipal getPrincipalAsXML

printTeamMembers getTeamMembersAsXML

printTeams getTeamsAsXML

printWorkspaceTree getWorkspaceTreeAsXML

setDefinitions setDefinitions

setFunctionMembership setFunctionMembership

setFunctionMembershipInherited setFunctionMembershipInherited

setOwner setOwner

setTeamMembers setTeamMembers

synchronize synchronizeMirroredFolder

uploadCalendar uploadCalendarEntries

uploadFile uploadFolderFile
192 Deprecated Web Services Operations

addFolder

Adds a folder to the workspace-tree hierarchy. (V1—V1.0.3)

Syntax

public long addFolder(long parentBinderId, long binderConfigId, String title);

Description

The addFolder operation adds a folder to the workspace and folder hierarchy.

Parameters and Return Value

parentBinderId

The identifier of the workspace or folder that is to contain the new folder.

binderConfigId

The identifier that maps to the default configuration for the folder you want to create.

title

A string providing a title for the new entry.

return_value

The binder identifier of the newly created folder.

Example

call.setOperationName(new QName("addFolder")); Object result = call.invoke(new
Object[] {new Long(21), new Long(146), new String("My new folde"r)});

This code creates a new to the container whose binder identifier is 21, gives the folder a
configuration identifier of 146 (on our test installation, this corresponds to a discussion folder),
and establishes the title of the new folder as My new folder. The container whose binder
identifier is 21 can be either a workspace or folder.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Working with Java Objects” on page 18
Deprecated Web Services Operations 193

addFolderEntry

Adds an entry to a folder. (V1—V1.0.3)

Syntax

public long addFolderEntry(long folderId, String definitionId, String inputDataAsXML, String
attachedFileName | null);

Description

The addFolderEntry operation adds an entry to a folder.

Parameters and Return Value

folderId

The binder identifier of the folder that is to contain the new entry.

definitionId

The 32-character, hexadecimal identifier that maps to the type of entry to be created (for
example, some default entry types are topic, file, blog, wiki, and calendar).

The easiest way to work with definition identifiers for entries is to specify null for this value.
When you specify null, Teaming automatically applies the definition identifier for the default
entry type of the folder in which you are creating a new entry. For example, by default, you want
to create an entry in a blog folder. If you pass null as the definition identifier, Teaming
automatically applies the definition identifier for a blog entry.

As another option, you can use the getDefinitionConfigAsXML operation to get information
about all definitions. Then, you can parse the XML string for the definition identifier of the type of
entry you want.

inputDataAsXML

A string of XML containing the values needed to create an entry of your desired type.

Use the Teaming UI to create a complete entry of the type you want this Web services operation
to create, note the entry identifier, and then use the getFolderEntryAsXML operation to return
XML for the entry. Then, use the returned XML as a template for this parameter.

attachedFileName

The name of the file you wish to attach to the new entry. This is an optional parameter. The file
must be located in the directory in which the client code executes.

return_value

The entry identifier for the newly created entry.
194 Deprecated Web Services Operations

Examples

call.setOperationName(new QName("addFolderEntry")); Object result =
call.invoke(new Object[] {new Long(21), new
String("402883b90cc53079010cc539bf260002"), s, filename}, filename);

This code creates a new entry in the folder whose binder identifier is 21; the specified entry-
definition identifier maps to a discussion topic. The variable s contains XML elements needed by
Teaming to create the entry. The new entry includes the attached file whose filename is specified
by the value of the filename variable.

call.setOperationName(new QName("addFolderEntry")); Object result =
call.invoke(new Object[] {new Long(21), new
String("402883b90cc53079010cc539bf260002"), s, null});

This code produces the same effect as the last example, except that it does not attach a file.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 getFolderEntryAsXML (page 204)

 getDefinitionConfigAsXML (page 201)
Deprecated Web Services Operations 195

addReply

Adds a new comment to an entry or comment. (V1.0.3)

Syntax

public long addReply(long folderId, long parentEntryId, String definitionId, String inputDataAsXML,
String attachedFileName | null);

Description

The addReply operation adds a new comment to an entry or to an existing comment.

Parameters and Return Value

folderId

The binder identifier of the folder containing the entry or comment to which you want to apply the
new comment.

parentEntryId

The entry identifier for the entry or comment to which you want to apply the comment.

definitionId

The 32-character, hexadecimal identifier that maps to the type of comment to be created.

You can use the getDefinitionListAsXML operation to get metadata for all definitions. Then,
you can parse the XML string for the definition identifier of the type of comment you want.

inputDataAsXML

A string of XML containing the values needed to create a comment of your desired type.

Use the Teaming UI to create a complete comment of the type you want this Web services
operation to create, note the entry identifier, and then use the getFolderEntryAsXML operation
to return XML for the entry. Then, use the returned XML as a template for this parameter.

attachedFileName

The name of the file you wish to attach to the new comment. This is an optional parameter. The
file must be located in the directory in which the client code executes.

return_value

The entry identifier of the newly created comment.

Example

call.setOperationName(new QName("addReply")); Object result = call.invoke(new
Object[] {new Long(21), new Long(45), null, s, null});

This code creates a new comment in the folder whose binder identifier is 21, and applies it to the
entry or comment whose entry identifier is 45. The first null value instructs Teaming to use the
default comment type for the folder. The variable s contains XML elements needed by Teaming
to create the comment. Because of the final null value, the new comment does not include an
attached file.
196 Deprecated Web Services Operations

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 getFolderEntryAsXML (page 204)

 getDefinitionListAsXML (page 202)
Deprecated Web Services Operations 197

addUserWorkspace

Adds a new personal workspace. (V1.0.3)

Syntax

public long addUserWorkspace (long userId);

Description

The addUserWorkspace operation adds a new personal workspace to the workspace hierarchy.

The primary purpose of this operation is to assist with migrating data from SiteScape Forum to
Teaming. By default using Teaming, the creation of the personal workspace occurs when someone
first uses the portal software to sign in with a username and password. If you want to migrate Forum
information as sub-content to a personal workspace in Teaming, use this operation before creating
the sub-content.

Parameters and Return Value

userId

The identifier for the user for whom you want to create the personal workspace

return_value

The binder identifier of the newly created personal workspace.

Example

call.setOperationName(new QName("addUserWorkspace")); Object result =
call.invoke(new Object[] {new Long(21)});

This code creates a new personal workspace.

See Also

 “Sequence of Migration Operations” on page 235

 “Migrating Users” on page 236
198 Deprecated Web Services Operations

getAllPrincipalsAsXML

Returns summary information for users and groups. (V1—V1.0.3)

Syntax

public String getAllPrincipalsAsXML(int firstRecord, int maxRecords);

Description

The getAllPrincipalsAsXML operation returns XML elements that provide summary information
about registered users and defined groups. You can use this operation to identify a particular user by
name or other data, obtain an identifier for a particular user, and then use the getPrincipalAsXML
operation to gather a finer level of information about that person.

Parameters and Return Value

firstRecord

The index of the first record whose user or group information you want to obtain. The index for
the first principal in the system is 1.

maxRecords

The maximum number of user and group records whose information should be returned.

You can use the previous parameter and this parameter in subsequent calls to
getAllPrincipalsAsXML to process data for sets of users and groups at a time (for example, 50
at a time, or 100 at a time).

return_value

A string containing the XML elements providing information about the requested set of users and
groups.

Example

call.setOperationName(new QName("getAllPrincipalsAsXML")); Object result =
call.invoke(new Object[] {new Integer(100), new Integer(50)});

This code requests information for users and groups starting with the record number 100 and
including up to 50 records.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 getAllPrincipalsAsXML (page 199)
Deprecated Web Services Operations 199

getDefinitionAsXML

Returns information about one definition. (V1—V1.0.3)

Syntax

public String getDefinitionAsXML(String definitionId);

Description

The getDefinitionAsXML operation returns an XML string containing information about one
definition. You work with definitions using the designers in the administration UI.

For example, if you pass one of the definition identifiers for an entry type listed in the
addFolderEntry reference page, Teaming returns information about the definition for that entry.

As an alternative, you can use the getDefinitionConfigAsXML operation to obtain all definitions in
Teaming and then parse the larger string for the definition information you want.

Parameter and Return Value

definitionId

The identifier of the definition whose information you want. Definitions are maintained using the
designers in the administration UI, and define the components of an object in Teaming.

return_value

A string of XML whose elements provide information about the components of an object in
Teaming.

Example

call.setOperationName(new QName("getDefinitionAsXML")); Object result =
call.invoke(new Object[] {new String("402883b9114739b301114754e8120008")});

This code requests XML-formatted information about the definition for a wiki entry.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 addFolderEntry (page 194)

 getDefinitionConfigAsXML (page 201)
200 Deprecated Web Services Operations

getDefinitionConfigAsXML

Returns information about all configuration definitions. (V1—V1.0.3)

Syntax

public String getDefinitionConfigAsXML();

Description

The getDefinitionConfigAsXML operation returns information about all configuration definitions.
The configuration information does not include workflow or template definitions. You can uses the
returned information to extract the definition identifier for a given entry type to use in a subsequent
call to addFolderEntry.

Return Value

return_value

A string of XML whose elements describe all configuration definitions.

Example

call.setOperationName(new QName("getDefinitionConfigAsXML")); Object result =
call.invoke();

This code obtains information about all configuration settings.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 addFolderEntry (page 194)
Deprecated Web Services Operations 201

getDefinitionListAsXML

Returns metadata for all definitions in the installation. (V1.0.3)

Syntax

public String getDefinitionListAsXML ();

Description

The getDefinitionListAsXML operation returns metadata for all definitions in the installation. This
metadata includes information such as the definition name and identifier.

When using other Web services operations that require a definition identifier, you can use this
message, parse the XML for the name (discussion, blog, calendar, comment), and obtain the 32-
character, hexadecimal identifier that maps to the desired object.

Return Value

return_value

A string of XML whose elements contain metadata for all definitions in the installation.

Example

call.setOperationName(new QName("getDefinitionListAsXML")); Object result =
call.invoke();

This code obtains metadata for all definitions in the installation.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)
202 Deprecated Web Services Operations

getFolderEntriesAsXML

Returns a string containing XML providing summary information about entries in a folder. (V1—
V1.0.3)

Syntax

public String getFolderEntriesAsXML(long folderId);

Description

The getFolderEntriesAsXML operation returns XML elements containing summary information
about each entry in the specified folder.

Parameter and Return Value

folderId

The binder identifier of the folder containing the entries for which you want information.

return_value

A string containing XML elements containing summary information for each entry in the folder
specified by folderId.

Example

call.setOperationName(new QName("getFolderEntriesAsXML")); Object result =
call.invoke(new Object[] {new Long(21)});

This code returns a string containing XML information for all of the entries in the folder whose
binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)
Deprecated Web Services Operations 203

getFolderEntryAsXML

Returns information about one entry in a folder. (V1—V1.0.3)

Syntax

public String getFolderEntryAsXML(long folderId, long entryId, boolean includeAttachments);

Description

The getFolderEntryAsXML operation returns XML whose elements provide information about one
entry in a folder.

Parameters and Return Value

folderId

The binder identifier of the folder containing the entry whose information you want.

entryId

The identifier of the entry whose information you want.

includeAttachments

A boolean value that indicates whether you want Teaming to return the entry’s attachments. The
client program is responsible for placement of attachment files on its local system.

return_value

A string containing XML elements for the requested entry.

Example

call.setOperationName(new QName("getFolderEntryAsXML")); Object result =
call.invoke(new Object[] {new Long(21), new Long(34), new Boolean.FALSE});

This code returns XML that includes information contained in entry number 34 in the folder
whose identifier is 21. Because of the value of the last parameter, Teaming does not place the
entry’s file attachments in the client program’s source directory.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Fetching Attachments” on page 21
204 Deprecated Web Services Operations

getPrincipalAsXML

Returns information about one user or group. (V1—V1.0.3)

Syntax

public String getPrincipalAsXML(long binderId, long principalId);

Description

The getPrincipalAsXML operation returns XML whose elements provide information about one
registered user or defined group.

Parameters and Return Value

binderId

The binder identifier of the principal’s parent workspace. The information returned by
getAllPrincipalsAsXML includes the binder number of this containing workspace.

principalId

The identifier that maps to the user or group for which you want to gather information.

return_value

A string containing XML elements whose elements provide information about the specified user
or group.

Example

call.setOperationName(new QName("getPrincipalAsXML")); Object result =
call.invoke(new Object[] {new Long(2), new Long(25)});

This code returns information about a user or group, whose parent workspace has a binder
identifier of 2 and whose principal identifier is 25.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 getAllPrincipalsAsXML (page 199)
Deprecated Web Services Operations 205

getTeamMembersAsXML

Returns information about all team members assigned within a workspace or folder. (V1—V1.0.3)

Syntax

public String getTeamMembersAsXML(long binderId);

Description

The getTeamMembersAsXML operation returns XML that names members of a team assigned within
the specified workspace or folder.

Parameter and Return Value

binderId

The binder identifier of the workspace or folder for which you want information about team
members. The getTeamsAsXML operation returns information about all workspaces and folders
that have assigned teams.

return_value

A string containing XML elements describing team members for the specified place.

Example

call.setOperationName(new QName("getTeamMembersAsXML")); Object result =
call.invoke(new Object[] {new Long(23));

This code returns an XML string whose elements describe all of the team members assigned in
the workspace or folder associated with the binder identifier of 23.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 getTeamsAsXML (page 207)
206 Deprecated Web Services Operations

getTeamsAsXML

Returns information about all workspaces and folders that have assigned teams. (V1—V1.0.3)

Syntax

public String getTeamsAsXML();

Description

The getTeamsAsXML operation returns an XML string providing information about all workspaces and
folders that have assigned teams. You can use this operation to obtain the list of places that have
assigned teams, note a binder number of a particular place, and then use the getTeamMembersAsXML
operation to obtain the list of team members for that place.

Return Value

return_value

An XML string whose elements describe workspaces and folders that have assigned teams.

Example

call.setOperationName(new QName("getTeamsAsXML")); Object result = call.invoke();

This code returns information about all places in the Teaming installation that have assigned
teams.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 getTeamMembersAsXML (page 206)
Deprecated Web Services Operations 207

getWorkspaceTreeAsXML

Returns information needed to construct the Teaming workspace and folder tree. (V1—V1.0.3)

Syntax

public String getWorkspaceTreeAsXML(long binderId, int levels, String page);

Description

The getWorkspaceTreeAsXML operation returns XML elements needed to construct the requested
portion of the Teaming workspace tree.

Parameters and Return Value

binderId

The binder identifier of the starting node of the returned portion of the hierarchy. The top
workspace in the Teaming tree has a binder identifier of 1.

levels

The number of hierarchical levels down from the node specified by binderId that you want to
include in the returned information. The value -1 indicates that you want all subsequent levels.

page

A parameter used to expand pages of binders. When you specify a valid page identifier, Teaming
expands the page by the levels indicated in the levels parameter.

If you do not want to expand pages using this call, pass null as this parameter.

The Web-services overview topic contains more detailed information about working with pages
(“Binder Pages and search_getWorkspaceTreeAsXML” on page 22).

return_value

A string containing XML elements needed to construct each node within the requested levels of
the workspace hierarchy.

Example

call.setOperationName(new QName("getWorkspaceTreeAsXML")); Object result =
call.invoke(new Object[] {new Long(1), new Integer(3), null});

This code returns a string containing XML information for the first three levels of the workspace
hierarchy. The following depicts these levels using default workspace titles:

Level 1: Workspaces

 Level 2: Global, Personal, and Team workspaces

 Level 3: Children of Global, Personal, and Team

The children of Global workspaces, Personal workspaces, and Team workspaces can be either
workspaces or folders.
208 Deprecated Web Services Operations

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Binder Pages and search_getWorkspaceTreeAsXML” on page 22
Deprecated Web Services Operations 209

indexFolder

Indexes a folder. (V1.0.3)

Syntax

public void indexFolder(long folderId);

Description

The indexFolder operation indexes a folder.

The primary use of this operation is to index data after you migrate it from SiteScape Forum into
Teaming. (The migration operations transfer the data but do not index it.)

Parameter

folderId

The binder identifier of the folder you want to index.

Example

call.setOperationName(new QName("indexFolder")); Object result = call.invoke(new
Object[] {new Long(21)});

This indexes the folder whose binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235
210 Deprecated Web Services Operations

migrateBinder

Creates a new workspace or folder while preserving SiteScape Forum data. (V1.0.3)

Syntax

public long migrateBinder (long parentId, String definitionId, String inputDataAsXML, String creator,
Calendar creationDate, String modifier, Calendar modificationDate);

Description

The migrateBinder operation creates a workspace or folder in Teaming that preserves values from a
SiteScape Forum installation (for example, the name of the person who created the item in Forum,
the Forum creation date, the person who last modified the item in Forum, and the date of the last
modification in Forum).

Parameters and Return Value

parentId

The binder identifier of the parent of the newly created workspace or folder.

definitionId

The 32-character, hexadecimal identifier that maps to the type of workspace or folder to be
created.

You can use the getDefinitionListAsXML operation to get metadata for all definitions. Then,
you can parse the XML string for the definition identifier of the type of workspace or folder you
want to create.

inputDataAsXML

A string of XML supplying the elements and values needed to construct the workspace or folder
you want to create.

creator

A string containing the username of the person who created the corresponding workspace or
folder in the Forum installation.

creationDate

Calendar data specifying the date when the corresponding workspace or folder was created in
Forum.

modifier

A string containing the username of the person who last modified the corresponding workspace
or folder in Forum.

modificationDate

Calendar data specifying the date when the corresponding workspace or folder was modified in
Forum.

return_value

The binder identifier of the newly created workspace or folder.
Deprecated Web Services Operations 211

Example

call.setOperationName(new QName("migrateBinder")); Object result = call.invoke(new
Object[] {new Long(21), def, input, new String("JSmith"), createcal, new
String("JGarces"), modcal});

This code creates a new binder determined by the definition in the def variable (use the
getDefinitionListAsXML operation to obtain the correct string for your binder type), and the
binder will be a child of the binder whose identifier is 21. The input variable contains an XML
string, properly formatted for your binder type, which Teaming uses to create binder content. The
remaining four parameters provide names (literals) and dates (the createcal and modcal
variables) for the creation and last modification of the corresponding item in the Forum
installation.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235

 getDefinitionListAsXML (page 202)
212 Deprecated Web Services Operations

migrateEntryWorkflow

Associates an entry with a workflow process while preserving SiteScape Forum data. (V1.0.3)

Syntax

public void migrateEntryWorkflow (long binderId, long entryId, String definitionId, String startState,
String modifier, Calendar modificationDate);

Description

The migrateEntryWorkflow operation associates a workflow process with an entry in Teaming,
while preserving values from a SiteScape Forum installation (for example, the state to which the entry
should be set, the person who last changed workflow state in Forum, and the date of the last state
change in Forum).

Parameters and Return Value

binderId

The binder identifier of the folder that contains the entry to which you want to associate a
workflow process.

entryId

The entry identifier of the entry to which you want to associate a workflow process.

definitionId

The 32-character, hexadecimal identifier that maps to the workflow-process definition.

Before using this message, you must replicate the Forum workflow processes in Teaming.

startState

The current state of the Teaming entry (which would reflect its last state in Forum).

modifier

A string containing the username of the person who last changed the workflow process in
Forum.

modificationDate

Calendar data specifying the date when the workflow process was last changed in Forum.

Example

call.setOperationName(new QName("migrateEntryWorkflow")); Object result =
call.invoke(new Object[] {new Long(21), new Long(45), String("ptoProcess"),
String("PTO Request"), new String("JGarces"), modcal});

This code associates the ptoProcess workflow process with the entry whose identifier is 45 and
which is located in a folder whose binder identifier is 21. The entry should be placed in the PTO
Request state. The operation also provides the name of the person who last changed the
workflow state in Forum and the date when that state change occurred.
Deprecated Web Services Operations 213

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235

 “Migrating Custom Commands and Workflow” on page 237
214 Deprecated Web Services Operations

migrateFolderEntry

Creates a new folder entry while preserving SiteScape Forum data. (V1.0.3)

Syntax

public void migrateFolderEntry (long binderId, String definitionId, String inputDataAsXML, String
creator, Calendar creationDate, String modifier, Calendar modificationDate);

Description

The migrateFolderEntry operation creates a folder entry in Teaming that preserves values from a
SiteScape Forum installation (for example, the name of the person who created the item in Forum,
the Forum creation date, the person who last modified the item in Forum, and the date of the last
modification in Forum).

When creating entries within a Files folder in Teaming, use this operation to create the entry, and then
use either migrateFolderFile or migrateFolderFileStaged to attach the file to the entry.

Parameters and Return Value

binderId

The binder identifier of the folder to contain the new entry.

definitionId

The 32-character, hexadecimal identifier that maps to the type of entry to be created.

The easiest way to work with definition identifiers for entries is to specify null for this value.
When you specify null, Teaming automatically applies the definition identifier for the default
entry type of the folder in which you are creating a new entry. For example, by default, you want
to create an entry in a blog folder. If you pass null as the definition identifier, Teaming
automatically applies the definition identifier for a blog entry.

As another option, you can use the getDefinitionListAsXML operation to get metadata for all
definitions. Then, you can parse the XML string for the definition identifier of the type of
workspace or folder you want to create.

inputDataAsXML

A string of XML supplying the elements and values needed to construct the type of entry you
want to create.

creator

A string containing the username of the person who created the corresponding entry in the
Forum installation.

creationDate

Calendar data specifying the date when the corresponding entry was created in Forum.

modifier

A string containing the username of the person who last modified the corresponding entry in
Forum.

modificationDate

Calendar data specifying the date when the corresponding entry was modified in Forum.
Deprecated Web Services Operations 215

return_value

The entry identifier of the newly created entry.

Example

call.setOperationName(new QName("migrateFolderEntry")); Object result =
call.invoke(new Object[] {new Long(21), def, input, new String("JSmith"),
createcal, new String("JGarces"), modcal});

This code creates a new entry of the type determined by the definition in the def variable (use
the getDefinitionListAsXML operation to obtain the correct string for your entry type), and the
new entry is to be located in the binder whose identifier is 21. The input variable contains an
XML string, properly formatted for your entry type, which Teaming uses to create entry content.
The remaining four parameters provide names (literals) and dates (the createcal and modcal
variables) for the creation and last modification of the corresponding entry in the Forum
installation.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235

 getDefinitionListAsXML (page 202)

 migrateFolderEntry (page 215)

 migrateFolderFileStaged (page 219)
216 Deprecated Web Services Operations

migrateFolderFile

Attaches a file to an entry while preserving SiteScape Forum data. (V1.0.3)

Syntax

public void migrateFolderFile (long binderId, long entryId, String fileUploadDataItemName, String
filename, String modifier, Calendar modificationDate);

Description

The migrateFolderFile operation attaches a file to a folder entry in Teaming that preserves values
from a SiteScape Forum installation (for example, the person who last modified the item in Forum,
and the date of the last modification in Forum).

Parameters and Return Value

binderId

The binder identifier of the folder that contains the entry to which you want to attach a file.

entryId

The entry identifier of the entry to which you want to attach the file.

fileUploadDataItemName

The internal-use name used by the database to identify the file as an element of an entry.

For example, a Forum custom command allowed for uploading different files into a single entry
that served different functions, such as an expense report, a meeting presentation, and so on.
These custom file uploads have associated internal-use names that are different than the
reserved internal-use name applied to standard file entries or standard attachments.

If you are migrating to a folder file, specify upload as an argument to this parameter to make this
attachment the primary file for the entry.

filename

The name of the file to be attached to the entry.

modifier

A string containing the username of the person who last modified the corresponding file in
Forum.

modificationDate

Calendar data specifying the date when the corresponding file was modified in Forum.

Example

call.setOperationName(new QName("migrateFolderFile")); Object result =
call.invoke(new Object[] {new Long(21), new Long(45), String("_budgetReport"),
String("budget-report.xls"), new String("JGarces"), modcal});

This code attaches the budget-report.xls file to the entry whose identifier is 45 and is located
in a folder whose binder identifier is 21. The internal-use name that maps to the file as an
element in the entry is _budgetReport. The operation also provides the name of the person who
modified the file in Forum and the date when that modification occurred.
Deprecated Web Services Operations 217

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235

 “Migrating Files” on page 236
218 Deprecated Web Services Operations

migrateFolderFileStaged

Locates a locally stored file, and attaches it to an entry while preserving Forum data. (V1.0.3)

Syntax

public void migrateFolderFileStaged (long binderId, long entryId, String fileUploadDataItemName,
String filename, String stagedFileRelativePath, String modifier, Calendar modificationDate);

Description

The migrateFolderFileStaged accesses a Forum file that has been copied locally on the Teaming
server as a way to streamline the transfer of files, avoiding transferring them over the Internet. The
operation then attaches the file to a folder entry in Teaming that preserves values from a SiteScape
Forum installation (for example, the person who last modified the item in Forum, and the date of the
last modification in Forum).

Parameters and Return Value

binderId

The binder identifier of the folder that contains the entry to which you want to attach a file.

entryId

The entry identifier of the entry to which you want to attach the file.

fileUploadDataItemName

The internal-use name used by the database to identify the file as an element of an entry.

For example, a Forum custom command allowed for uploading different files into a single entry
that served different functions, such as an expense report, a meeting presentation, and so on.
These custom file uploads have associated internal-use names that are different than the
reserved internal-use name applied to standard file entries or standard attachments.

If you are migrating to a folder file, specify upload as an argument to this parameter to make this
attachment the primary file for the entry.

filename

The name of the file to be attached to the entry.

stagedFileRelativePath

The relative path specification, beginning with the staging area designated in the
ssf.properties and ssf-ext.properties files on the Teaming server. (See the installation
guide for more information about these files.)

Although the files can be present in any folder structure within the staging area, one streamlined
way to approach this task is to unzip the Forum hidden directory into the staging area. Then, use
this parameter to specify the relative path through the hidden folder structure to the location of
the file to be attached to the entry in Teaming.

modifier

A string containing the full name of the person who last modified the corresponding file in Forum.

modificationDate

Calendar data specifying the date when the corresponding file was modified in Forum.
Deprecated Web Services Operations 219

Example

call.setOperationName(new QName("migrateFolderFileStaged")); Object result =
call.invoke(new Object[] {new Long(21), new Long(45), String("_budgetReport"),
String("budget-report.xls"), String("hidden/ssf/myworkspace/myforum/4567849"), new
String("JGarces"), modcal});

To locate the file, Teaming begins with the defined staging folder and then applies the relative
path hidden/ssf/myworkspace/myforum/456789.This code attaches the budget-report.xls
file to the entry whose identifier is 45 and is located in a folder whose binder identifier is 21. The
internal-use name that maps to the file as an element in the entry is _budgetReport. The
operation also provides the name of the person who modified the file in Forum and the date
when that modification occurred.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235

 “Migrating Files” on page 236
220 Deprecated Web Services Operations

migrateReply

Creates a new comment while preserving SiteScape Forum data. (V1.0.3)

Syntax

public void migrateReply (long binderId, long parentId, String definitionId, String inputDataAsXML,
String creator, Calendar creationDate, String modifier, Calendar modificationDate);

Description

The migrateReply operation creates a comment in Teaming that preserves values from a SiteScape
Forum installation (for example, the name of the person who created the item in Forum, the Forum
creation date, the person who last modified the item in Forum, and the date of the last modification in
Forum).

Parameters and Return Value

binderId

The binder identifier of the folder that will contain the new comment.

parentId

The binder identifier of the entry or comment to which you want to apply the new comment.

definitionId

The 32-character, hexadecimal identifier that maps to the type of comment to be created.

You can use the getDefinitionListAsXML operation to get metadata for all definitions. Then,
you can parse the XML string for the definition identifier of the type of comment you want to
create.

inputDataAsXML

A string of XML supplying the elements and values needed to construct the type of comment you
want to create.

creator

A string containing the username of the person who created the corresponding reply in the
Forum installation.

creationDate

Calendar data specifying the date when the corresponding reply was created in Forum.

modifier

A string containing the username of the person who last modified the corresponding reply in
Forum.

modificationDate

Calendar data specifying the date when the corresponding reply was modified in Forum.

return_value

The entry identifier of the newly created comment.
Deprecated Web Services Operations 221

Example

call.setOperationName(new QName("migrateReply")); Object result = call.invoke(new
Object[] {new Long(21), new Long(45), def, input, new String("JSmith"), createcal,
new String("JGarces"), modcal});

This code creates a new comment of the type determined by the definition in the def variable
(use the getDefinitionListAsXML operation to obtain the correct string for your comment
type). The new comment is to be located in the binder whose identifier is 21, and applied to an
entry or comment whose identifier is 45. The input variable contains an XML string, properly
formatted for your comment type, that Teaming uses to create comment content. The remaining
four parameters provide names (literals) and dates (the createcal and modcal variables) for the
creation and last modification of the corresponding reply in the Forum installation.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235
222 Deprecated Web Services Operations

modifyFolderEntry

Modifies a single entry. (V1—V1.0.3)

Syntax

public void modifyFolderEntry(long folderId, long entryId, String inputDataAsXML);

Description

The modifyFolderEntry operation modifies one entry in a folder.

Parameters and Return Value

folderId

The binder identifier of the folder that contains the entry to be modified.

entryId

The identifier of the entry to be modified.

inputDataAsXML

A string of XML containing the values needed to modify the entry.

return_value

None.

Example

call.setOperationName(new QName("modifyFolderEntry")); Object result =
call.invoke(new Object[] {new Long(21), new Long(43), s});

This code modifies entry 43 in the folder whose binder ID is 21. The variable s contains XML
elements needed by Teaming to modify the contents of the entry.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)
Deprecated Web Services Operations 223

setDefinitions

Establishes workflow-entry associations for a folder. (V1.0.3)

Syntax

public void migrateEntryWorkflow (long binderId, String[] definitionIds, String[] workflowAssociations
);

Description

The setDefinitions operation uses two arrays to associate workflow identifiers with entry identifiers
for a folder. (Teaming associates identifiers in the first element of both arrays, the second element of
both arrays, the third, and so on.)

When an entry is associated with a workflow process, creation of an entry of that type automatically
places the entry into the initial state of the workflow process.

NOTE: This operation is an overwrite operation, setting all workflow associations for the folder; you
cannot use repeated calls to this operation to set associations incrementally. So, set all of the
workflow associations for the folder with one call.

Parameters and Return Value

binderId

The binder identifier of the folder in which you want to associate entry and workflow identifiers.

definitionIds

An array of entry identifiers.

workflowAssociations

An array of workflow identifiers.

Before using this message, you must replicate the Forum workflow processes in Teaming.

Example

call.setOperationName(new QName("setDefinitions")); Object result =
call.invoke(new Object[] {new Long(21), entries, workflows});

This code passes two array variables, entries and workflows. Teaming uses the
corresponding elements in both arrays to create entry-workflow associations for the folder whose
binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)
224 Deprecated Web Services Operations

setFunctionMembership

Applies access-control settings to a folder or workspace. (V1—V1.0.3)

Syntax

public void setFunctionMembership(long binderId, String inputDataAsXML);

Description

The setFunctionMembership operation provides access-control settings for folder or a workspace.
The term function is analogous to a role in the user interface (UI).

The primary use of this operation is to establish access-control settings when migrating workspaces
and folders from Forum to Teaming. You must ensure that you have migrated Forum user and group
names to Teaming that are required for your access-control settings.

NOTE: This operation is an overwrite operation, setting all function memberships for the folder or
workspace; you cannot use repeated calls to this operation to set memberships incrementally. So, set
all memberships for the workspace or folder with one call.

Parameters and Return Value

binderId

The binder identifier of the folder or workspace for which you want to set access control.

inputDataAsXML

A string of XML containing the values needed to set access control. Here is an example of XML
that sets the visitor function:

<workAreaFunctionMemberships>
<workAreaFunctionMembership>
<property name="functionName">__role.visitor</property>
<property name="memberName">jGarces</property>
<property name="memberName">sChen</property>
<property name="members">1,2,3</property>
</workAreaFunctionMembership>
 .
 .
 .
</workAreaFunctionMemberships>

To obtain the functionName value:

1. Sign in as a site administrator for Teaming.

2. In the administration portlet, click Configure role definitions.

3. Click any item (for example, Participant).

4. Note or copy the identifier in the Role Name text box (for example, __role.participant).
This identifier begins with a double underscore (_).

You can pass either user or group names (for example, jGarces or sChen) or user or group
identifiers (for example, 1, 2, 3). Teaming reserves the identifiers -1 for the workspace or folder
owner, and -2 for a team member.
Deprecated Web Services Operations 225

Example

call.setOperationName(new QName("setFunctionMembership")); Object result =
call.invoke(new Object[] {new Long(21), s});

This code uses the content of the XML string s to establish access-control settings for the folder
or workspace whose binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235
226 Deprecated Web Services Operations

setFunctionMembershipInherited

Establishes inheritance as the access-control mechanism for a folder or workspace. (V1.0.3)

Syntax

public void setFunctionMembershipInherited(long binderId, boolean inherit);

Description

The setFunctionMembershipInherited operation allows you to establish that a folder or workspace
is to inherit its access-control settings from the parent binder. The primary purpose of this operation is
to set inheritance for folders and workspaces that you migrate from Forum.

Parameters and Return Value

binderId

The binder identifier of the folder or workspace for which you want to establish inheritance for its
access-control settings.

inherit

A boolean value that determines whether the folder or workspace uses inheritance to establish
its access settings.

Example

call.setOperationName(new QName("setFunctionMembershipInherited")); Object result
= call.invoke(new Object[] {new Long(21), new Boolean.TRUE});

This code establishes inheritance as the access-control mechanism for the folder or workspace
whose binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235
Deprecated Web Services Operations 227

setOwner

Establishes the owner of a folder or workspace. (V1.0.3)

Syntax

public void setOwner(long binderId, long userId);

Description

The setOwner operation allows you to establish an owner for a folder or workspace. The primary
purpose of this operation is to mirror Forum ownership as you migrate folders and workspaces.

Parameters and Return Value

binderId

The binder identifier of the folder or workspace for which you want to establish ownership.

userId

The user identifier of the person whom you want to be the owner of a folder or workspace.

Example

call.setOperationName(new QName("setOwner")); Object result = call.invoke(new
Object[] {new Long(21), new Long(345)});

This code establishes the user whose identifier is 345 as the owner of the folder or workspace
whose binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235
228 Deprecated Web Services Operations

setTeamMembers

Establishes the membership of a team for a folder or workspace. (V1.0.3)

Syntax

public void setTeamMembers(long binderId, String[] memberNames);

Description

The setTeamMembers operation establishes the members of a team for a folder or workspace.

Parameters and Return Value

binderId

The binder identifier of the folder or workspace for which you want to establish team
membership.

memberNames

An array containing the names of all team members for the folder or workspace.

Example

call.setOperationName(new QName("setTeamMembers")); Object result =
call.invoke(new Object[] {new Long(21), users});

This code establishes each username in the array users as team members for the folder or
workspace whose binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235
Deprecated Web Services Operations 229

synchronizeMirroredFolder

Synchronizes the mirrored folder with the folder on the external drive. (V1.0.3)

Syntax

public void synchronizeMirroredFolder(long binderId);

Description

The synchronizeMirroredFolder operation synchronizes a mirrored folder with the corresponding
file on the external drive. A new mirrored folder does not synchronize with its external drive until a
synchronization occurs manually in the user interface (UI) or using this message.

Parameters and Return Value

binderId

The binder identifier of the mirrored file that you want to synchronize with its external drive.

Example

call.setOperationName(new QName("synchronizedMirroredFolder")); Object result =
call.invoke(new Object[] {new Long(21)});

This code synchronizes with its external drive the mirrored folder whose binder identifier is 21.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Sequence of Migration Operations” on page 235
230 Deprecated Web Services Operations

uploadCalendarEntries

Creates new calendar entries from a file. (V1—V1.0.3)

Syntax

public void uploadCalendarEntries(long folderId, String XMLCalendarData);

Description

The uploadCalendarEntries operation uses iCal information in an XML string or in an attachment to
add entries to a calendar folder.

NOTE: The uploadCalendar command in the facade-client.bat batch file accepts two required
parameters and an optional third parameter. The second parameter is a file containing XML that
specifies iCal data. The third, optional parameter is an iCal formatted file. Both files must be located in
the same directory as facade-client.bat. Again, if you want the iCal file to be the only source of
data for newly created entries, place an empty XML document in the file specified as the second
command parameter.

Parameters and Return Value

folderId

The binder identifier of the calendar folder that is to contain the new entries.

XMLCalendarData

A string containing XML formatted calendar data (<doc><entry>iCal data</entry>...</
doc>). If you wish to specify all of your calendar data in an iCal file attached to the message,
pass an empty document for this string (<doc></doc>).

return_value

None.

Example

call.setOperationName(new QName("uploadCalendarEntries")); Object result =
call.invoke(new Object[] {new Long(21), s});

This code creates new entries in the calendar folder whose binder ID is 21. Teaming uses XML-
formatted iCal information contained in the s variable to create the new calendar entries.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)

 “Adding Calendar Entries” on page 21
Deprecated Web Services Operations 231

uploadFolderFile

Attaches a file to an entry to a folder. (V1—V1.0.3)

Syntax

public void uploadFolderFile(long folderId, String entryId, String fileUploadDataItemName, String
attachedfileName);

Description

The uploadFolderFile operation attaches a file to an entry in a folder. You can attach only one file at
a time; call this operation multiple times to attach more than one file to the entry. Files to be attached
must be located in the same directory as the executing client.

Parameters and Return Value

folderId

The binder identifier of the folder that contains the entry to which you want to attach a file.

entryId

The identifier of the entry to which you want to attach a file.

fileUploadDataItemName

A string containing the internal identifier for the part of the entry that contains attached files. This
identifier maps the name attribute of an input HTML tag on a form to the Teaming database; a
hidden HTML tag communicates this mapping to the server.

The name value for the standard entry element containing attached files is ss_attachFile. If you
want to upload a file into a custom form element you defined using the designers, you need to
look up the name identifier for that form element (see also getDefinitionConfigAsXML or
getFolderEntryAsXML).

attachedFileName

The name of the file you wish to attach to the new entry. This client is responsible for locating on
its local system the file to be used as an attachment.

return_value

None.

Example

call.setOperationName(new QName("uploadFolderFile")); Object result =
call.invoke(new Object[] {new Long(21), new Long(43), new String("ss_attachFile"),
filename}, filename);

This code attaches a file to entry 43 in the folder whose binder ID is 21. The name of the file to be
attached to the entry is contained in the variable filename.

See Also

 The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Services Operations,” on page 191)
232 Deprecated Web Services Operations

 “Attaching Files” on page 21

 getDefinitionConfigAsXML (page 201)

 getFolderEntryAsXML (page 204)
Deprecated Web Services Operations 233

234 Deprecated Web Services Operations

C CMigrating from Forum to Kablink
Teaming

Kablink Teaming is the ongoing path from the legacy SiteScape Forum product. To assist with
migrating data from SiteScape Forum to an installation of Kablink Teaming, Novell developed a set of
Web services.

Although this section provides guidance about migrating, the task is complex and requires the active
assistance of the Kablink Teaming support team. This is especially true for workflow migration. For
more information, please contact the support team and arrange to receive consultation as you
perform this task.

 “Sequence of Migration Operations” on page 235

 “Migration Overwrite Operations” on page 236

 “Migrating Users” on page 236

 “Migrating Files” on page 236

 “Migrating Custom Commands and Workflow” on page 237

Sequence of Migration Operations
Some operations require the previous execution of other operations. For example, migrating an entry
requires that you have already migrated the folder. As another example, a workflow process requires
that you have already migrated user and group names, so that these names can be applied to its
access control.

Here are notes regarding the sequence of operations:

 Migrate users and groups, and create personal workspaces early in the process.

Use LDAP to establish the Forum users in Kablink Teaming.

You need the existence of personal workspaces to be able to migrate sub-workspaces and child
folders. Also, migrating workflow and some types of custom commands requires that your users
be established in Kablink Teaming first.

The Forum term “custom command” maps to “custom view and form” in Kablink Teaming.

 Generally, migrate parents before children you wish to create.

Examples include migrating parent workspaces before its child folders, and migrating entries
before migrating attached files.

Using SiteScape Forum, a “forum” maps to a “folder” in Kablink Teaming, a “reply” maps to a
“comment” in Kablink Teaming, and the process of “attaching a file” maps to the Web services
phrase “adding a folder file.”

 Migrate binders before setting their ownership, team members, and access control.

The Forum items “workspaces and folders” map to the Kablink Teaming Web services term of
“binders.” The Forum term “access control” maps to “membership.” Also, the Web services term
“function” is equivalent to the term “roles” in the UI for Kablink Teaming.

 Migrate custom commands before creating entries.
Migrating from Forum to Kablink Teaming 235

The custom command migration process cannot be done using only Web services (see
“Migrating Custom Commands and Workflow” on page 237, for more information).

 Migrate workflow processes before migrating entries.

First, the workflow-migration process cannot be done using only Web services (see “Migrating
Custom Commands and Workflow” on page 237, for more information). Second, any entry that is
currently in a workflow state requires the presence of the workflow definition in Kablink Teaming.

 After migrating custom commands and workflow, you can migrate workflow associations for
specific folders.

 Finalizing operations include indexing folders and synchronizing any mirrored folders that you
created.

Remember that migrated entries do not appear in the UI until you index the folders containing
these entries.

The Kablink Teaming UI does not begin to mirror the files on the drive until someone manually
synchronizes them. The Web services call is equivalent to a manual synchronization in the UI.

Migration Overwrite Operations
Two operations require that you perform the operation for all items using one call to the message;
they do not allow you to perform the operation incrementally on subsets of items, using multiple calls
to the message. If you call these operations sequentially for subsets of the information, each
successive call erases the established data from the previous call.

The operations that require you to perform the operation for all items using only one call are:

 binder_setDefinitions: Associates entry types with workflow processes (see setDefinitions
(page 224)).

 binder_setFunctionMembership: Sets access control for a workspace or folder (see
setFunctionMembership (page 225)).

Migrating Users
Migrating users requires two steps:

1 Use LDAP to add your Forum users to Kablink Teaming.

2 Use the migration_addBinder operation to add personal workspaces for the new Kablink
Teaming users.

Migrating custom commands and workflow involve additional work in regard to users. See “Migrating
Custom Commands and Workflow” on page 237, for more information.

Migrating Files
If you have a small number of files to migrate to Kablink Teaming, you can use the
migration_uploadFolderFile operation.

However, most Forum installations include a significant number of files, and those files might be
large. To improve performance, you should strongly consider using the
migration_uploadFolderFileStaged message.
236 Migrating from Forum to Kablink Teaming

Staging involves moving all of the files from SiteScape Forum to the server running the Kablink
Teaming installation. Although the files can be located using any folder hierarchy on the server, a
convenient way to migrate files is to unzip the Forum hidden directory onto the Kablink Teaming
server machine and to work within that existing folder hierarchy from Forum. After placing the files on
the Kablink Teaming server, the migration_uploadFolderFileStaged operation takes files from the
staging area and migrates them into the Kablink Teaming installation.

Here are the steps needed to migrate files:

1 Establish a directory on the Kablink Teaming server machine where you want to place the Forum
files.

2 Make the three required changes to the ssf.properties and ssf-ext.properties files. This
action indicates the location of the staging directory. (See the installation guide for more
information about the these files.)

Multiple Forum file versions are separate files in the staged area. Call the
migration_uploadFolderFileStaged operation once for each version of the file, using the
same filename for each call but specifying a different path. This method creates versioned files in
Kablink Teaming.

3 Copy the Forum files onto the Kablink Teaming server, using the specified staging directory as
your top directory.

4 Use the migration_uploadFolderFileStaged operation to migrate the files into the Kablink
Teaming installation.

This command attaches files to an existing entry. Also, it accepts as one of its arguments a
relative path, which traverses the s beneath the designated staging directory.

See migrateFolderFileStaged (page 219), for more information.

Migrating Custom Commands and Workflow
Migrating custom commands and workflow require tasks beyond the scope of using only Web
services calls. It is highly recommended that you work closely with the Kablink Teaming support team
while completing these tasks.

These are the general steps needed to migrate custom commands and workflow processes:

1 Migrate your Forum users to Kablink Teaming.

2 Use the profile_getPrincipals operation to get a list of the user identifiers for the newly
created Kablink Teaming users.

3 Create a mapping file that maps Kablink Teaming user identifiers to Forum usernames.

4 Run a Tcl script—which uses the mapping file—to generate an XML file of workflow information.

5 Import the workflow XML file into Kablink Teaming.

6 Create another mapping file, which maps workflow identifiers in Kablink Teaming to Forum
workflow names.

7 Run a Tcl script—which uses the second mapping file—to generate an XML file of custom
command information.

Some custom commands are associated with workflow processes. Because of this, the mapping
file of workflow information is necessary.

8 Import the custom command XML into Kablink Teaming.
Migrating from Forum to Kablink Teaming 237

NOTE: This process migrates custom commands created using Forum’s UI. It does not migrate
template-based custom commands. To migrate template-based custom commands, use the Kablink
Teaming entry designer and any necessary JSPs to recreate the command.
238 Migrating from Forum to Kablink Teaming

	Micro Focus Vibe 4.0.4 Developer Guide
	About This Manual
	1 Vibe Developer Overview
	Understanding the Differences between Extensions and Remote Applications
	Vibe Terminology

	2 Web Services Overview
	Web Services Implementation
	Java Web Services
	Sample Clients

	Authentication
	HTTP Basic Authentication Access (ssr)
	Web Services Security Access (ssf)

	Server Endpoints
	Categories of Operations
	Client Stubs
	Managing Data
	Working with Java Objects
	Adding Folders and the Binder Configuration Identifier
	Attaching Files
	Fetching Attachments
	Adding Calendar Entries
	Binder Pages and search_getWorkspaceTreeAsXML

	Extending Vibe Web Services

	3 Creating JavaServer Pages (JSPs)
	Overview of JSP Support
	Directory Structure
	Applicable Pages
	JSPs and the Vibe Designers
	Indexing Issues
	JSPs and Vibe Data Access
	Text Display in the HTML Editor
	Standard Styles

	Examples of Custom Entries
	A JSP That Defines Only One Data Element
	A JSP-Defined Entry (W-4 Form)

	Examples of Complex, HTML Data Types
	Radio Buttons
	Check Boxes
	Select Boxes

	4 Creating and Packaging Extensions for Deployment
	Understanding the Differences between Extensions and Remote Applications
	Creating an Extension
	Packaging an Extension
	Examples of the Archive Format
	Extension Metadata

	Deploying an Extension
	Deploying an Extension from the Vibe Interface
	Deploying an Extension from the Vibe Server

	Updating an Extension
	Locating an Extension in the Vibe Directory Structure
	Retaining an Extension When Updating Your Vibe Software

	5 Creating Remote Applications
	Understanding the Differences between Extensions and Remote Applications
	Remote Application Overview
	Processing Flow for a Remote Accessory
	Processing Flow for a Remote Form
	Setting Access Control for Remote Applications
	Reviewing Supporting Source Code

	Creating a Remote Application
	Reviewing the Class File
	Reviewing the Servlet-Definition File
	Reviewing the JSP File

	Related Sections
	Registering a Remote Application
	Configuring an Accessory to Show a Remote Application
	Controlling the Access of Remote Applications

	A Web Services Operations
	admin_destroyApplicationScopedTokenDestroys an application-scoped token.
	Syntax
	Description
	Parameters and Return Value

	admin_getApplicationScopedTokenRequests an application-scoped token on behalf of the user.
	Syntax
	Description
	Parameters and Return Value

	binder_addBinder Adds an unconfigured binder to the workspace tree hierarchy.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_copyBinder Creates a new binder identical to an existing one.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_deleteBinder Deletes a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_deleteTag Removes a tag from a binder.
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	binder_getBinder Accepts a binder identifier to get information about a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_getBinderByPathName Accepts a directory specification to get information about a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_getFileVersions Returns information about the versions of a file.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_getFolders Returns a folder collection for a binder’s sub-folders.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_getSubscription Obtains subscription information about a binder.
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	binder_getTags Obtains tags applied to a binder.
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	binder_getTeamMembers Obtains information about the members of a team assigned to a specified binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_getTrashEntriesReturns a trash collection for a binder.
	Syntax
	Description
	Parameters and Return Value

	binder_indexBinder Indexes a binder and its content.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_indexTree Indexes a binder’s sub-binders.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_modifyBinder Modifies a binder.
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	binder_moveBinder Moves a binder within the workspace tree hierarchy.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_preDeleteBinderPredeletes a binder by moving it to the trash.
	Syntax
	Description
	Parameters and Return Value

	binder_removeFile Removes a file from a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_restoreBinderUndeletes a binder by removing it from the trash and restoring it to its previous location in the Vibe site.
	Syntax
	Description
	Parameters and Return Value

	binder_setDefinitions Associates workflow definitions with entry definitions.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_setFunctionMembership Applies access-control settings to a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_setFunctionMembershipInherited Establishes inheritance as the access-control mechanism for a folder or workspace.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_setOwner Establishes the owner of the binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_setSubscription Establishes e-mail settings for a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_setTag Applies a tag for a binder.
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	binder_setTeamMembers Establishes members of a team for a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	binder_testAccess Tests if the calling user has the specified access right on each of the specified binders.
	Syntax
	Description
	Parameters and Return Value

	binder_uploadFile Uploads a file into a binder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	definition_getDefinitionAsXML Obtains information about a definition.
	Syntax
	Description
	Parameters and Return Value
	See Also

	definition_getDefinitionByName Obtains information about a global definition.
	Syntax
	Description
	Parameters and Return Value
	See Also

	definition_getDefinitions Obtains all global definitions in the installation.
	Syntax
	Description
	Parameters and Return Value
	See Also

	definition_getLocalDefinitionByName Obtains information about a local definition.
	Syntax
	Description
	Parameters and Return Value
	See Also

	definition_getLocalDefinitions Obtains information about all local definitions.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_addEntry Adds an entry to a folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_addEntryWorkflow Initiates a workflow process for a folder entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_addMicroBlogAdds a micro-blog entry to a folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_addReply Adds a comment to a folder entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_copyEntry Copies a folder entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_deleteEntry Deletes a folder entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_deleteEntryTag Removes a tag from a folder entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_deleteEntryWorkflow Removes a workflow from an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_getEntries Obtains information about the entries within a specified folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_getEntry Accepts an entry identifier to get information about an entry in a folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_getEntryByFileName Accepts a filename to get information about an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_getEntryTags Obtains information about an entry’s tags.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_getFileVersions Returns information about the versions of a file.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_getSubscription Obtains subscription information for a specified folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_modifyEntry Modifies an entry in a folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_modifyWorkflowState Changes the workflow state of an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_moveEntry Moves an entry within the folder-tree hierarchy.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_preDeleteEntry Predeletes an entry by moving it to the trash.
	Syntax
	Description
	Parameters and Return Value

	folder_removeFile Removes a file attachment from an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_reserveEntry Reserves an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_restoreEntry Undeletes an entry by removing it from the trash and restoring it to its previous location in the Vibe site.
	Syntax
	Description
	Parameters and Return Value

	folder_setEntryTag Applies a tag to a folder entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_setRating Sets a rating for a folder entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_setSubscription Establishes subscription settings for an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_setWorkflowResponse Applies an answer to a workflow question for a specified entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_synchronizeMirroredFolder Synchronizes a mirrored folder with its source folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_unreserveEntry Releases a locked entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_uploadFile Uploads a file as an attachment to an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	folder_uploadFileStaged Locates a locally stored file and attaches it to an entry.
	Syntax
	Description
	Parameters and Return Value
	See Also

	ical_uploadCalendarEntriesWithXML Adds a calendar entry to a folder.
	Syntax
	Description
	Parameters and Return Value
	See Also

	ldap_synchAll Synchronizes all users with the current information that is in LDAP.
	Syntax
	Description
	Parameters and Return Value
	See Also

	ldap_synchUser Synchronizes one user with the latest information in LDAP for that person.
	Syntax
	Description
	Parameters and Return Value
	See Also

	license_getExternalUsers Obtains a count of external users.
	Syntax
	Description
	Parameters and Return Value
	See Also

	license_getRegisteredUsers Obtains a count of registered Vibe users.
	Syntax
	Description
	Parameters and Return Value
	See Also

	license_updateLicense Updates the Vibe license.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_addBinder Accepts a Java object to add a binder, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_addBinderWithXML Accepts XML to add a binder, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_addEntryWorkflow Associates an entry with a workflow process, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_addFolderEntry Accepts a Java object to add an entry to a folder, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_addFolderEntryWithXML Accepts XML to add an entry to a folder, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_addReply Accepts a Java object to add a comment, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_addReplyWithXML Accepts XML to add a comment, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_uploadFolderFile Uploads an entry attachment, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	migration_uploadFolderFileStaged Uploads a local copy of an entry attachment, allowing preservation of SiteScape Forum data.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_addGroup Adds a group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_addGroupMember Adds a user to a group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_addUser Adds a user profile.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_addUserWorkspace Adds a user workspace for an existing user.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_deletePrincipal Removes a group or user.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getFileVersionsReturns information about the versions of a file.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getGroup Accepts a group identifier to obtain the title and the description of the group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getGroupByName Accepts a group name to obtain the title and the description of the group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getGroupMembers Obtains information about the members of a group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getPrincipals Gets information for users and groups in the installation.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getUser Accepts a user identifier to get information about a user.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getUserByName Accepts a username to get information about a user.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getUsersObtains information for users in the installation.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_getUserTeamsObtains information about all teams that the specified user is a member of.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_modifyGroup Modifies a group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_modifyUser Modifies a user.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_removeFile Removes a file from the user profile.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_removeGroupMember Removes a user from a group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	profile_uploadFileUploads a file as an attachment to a user or group.
	Syntax
	Description
	Parameters and Return Value
	See Also

	search_getFolderEntriesObtains information about the entries that match the specified search query.
	Syntax
	Description
	Parameters and Return Value
	See Also

	search_getTeams Obtains information about the teams that the calling user is a member of.
	Syntax
	Description
	Parameters and Return Value
	See Also

	search_getWorkspaceTreeAsXML Obtains information needed to construct the Vibe workspace and folder tree.
	Syntax
	Description
	Parameters and Return Value
	See Also

	search_search Returns XML for results of a search query.
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	template_addBinder Adds a fully configured workspace or folder to the workspace hierarchy.
	Syntax
	Description
	Parameters and Return Value
	See Also

	template_getTemplates Obtains information about all defined templates in the installation.
	Syntax
	Description
	Parameters and Return Value
	See Also

	zone_addZone Adds a zone to the installation.
	Syntax
	Description
	Parameters and Return Value
	See Also

	zone_deleteZone Deletes a zone.
	Syntax
	Description
	Parameters and Return Value
	See Also

	zone_modifyZone Modifies a zone.
	Syntax
	Description
	Parameters and Return Value
	See Also

	B Deprecated Web Services Operations
	addFolderAdds a folder to the workspace-tree hierarchy. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	addFolderEntryAdds an entry to a folder. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Examples
	See Also

	addReplyAdds a new comment to an entry or comment. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	addUserWorkspaceAdds a new personal workspace. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	getAllPrincipalsAsXMLReturns summary information for users and groups. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	getDefinitionAsXMLReturns information about one definition. (V1—V1.0.3)
	Syntax
	Description
	Parameter and Return Value
	Example
	See Also

	getDefinitionConfigAsXMLReturns information about all configuration definitions. (V1—V1.0.3)
	Syntax
	Description
	Return Value
	Example
	See Also

	getDefinitionListAsXMLReturns metadata for all definitions in the installation. (V1.0.3)
	Syntax
	Description
	Return Value
	Example
	See Also

	getFolderEntriesAsXMLReturns a string containing XML providing summary information about entries in a folder. (V1— V1.0.3)
	Syntax
	Description
	Parameter and Return Value
	Example
	See Also

	getFolderEntryAsXMLReturns information about one entry in a folder. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	getPrincipalAsXMLReturns information about one user or group. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	getTeamMembersAsXMLReturns information about all team members assigned within a workspace or folder. (V1—V1.0.3)
	Syntax
	Description
	Parameter and Return Value
	Example
	See Also

	getTeamsAsXMLReturns information about all workspaces and folders that have assigned teams. (V1—V1.0.3)
	Syntax
	Description
	Return Value
	Example
	See Also

	getWorkspaceTreeAsXMLReturns information needed to construct the Teaming workspace and folder tree. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	indexFolderIndexes a folder. (V1.0.3)
	Syntax
	Description
	Parameter
	Example
	See Also

	migrateBinderCreates a new workspace or folder while preserving SiteScape Forum data. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	migrateEntryWorkflowAssociates an entry with a workflow process while preserving SiteScape Forum data. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	migrateFolderEntryCreates a new folder entry while preserving SiteScape Forum data. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	migrateFolderFileAttaches a file to an entry while preserving SiteScape Forum data. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	migrateFolderFileStagedLocates a locally stored file, and attaches it to an entry while preserving Forum data. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	migrateReplyCreates a new comment while preserving SiteScape Forum data. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	modifyFolderEntryModifies a single entry. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	setDefinitionsEstablishes workflow-entry associations for a folder. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	setFunctionMembershipApplies access-control settings to a folder or workspace. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	setFunctionMembershipInheritedEstablishes inheritance as the access-control mechanism for a folder or workspace. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	setOwnerEstablishes the owner of a folder or workspace. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	setTeamMembersEstablishes the membership of a team for a folder or workspace. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	synchronizeMirroredFolderSynchronizes the mirrored folder with the folder on the external drive. (V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	uploadCalendarEntriesCreates new calendar entries from a file. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	uploadFolderFileAttaches a file to an entry to a folder. (V1—V1.0.3)
	Syntax
	Description
	Parameters and Return Value
	Example
	See Also

	C Migrating from Forum to Kablink Teaming
	Sequence of Migration Operations
	Migration Overwrite Operations
	Migrating Users
	Migrating Files
	Migrating Custom Commands and Workflow

