
n

Identity Manager Driver for JDBC 2.1: Implementation Guide
Novell

ovdocx (E
N

U
) 9 January 2007
w w w . n o v e l l . c o m

Identity Manager Driver for
JDBC*

2 . 1
A p r i l 4 , 2 0 0 7

I M P L E M E N T A T I O N G U I D E

novdocx (E
N

U
) 9 January 2007
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

novdocx (E
N

U
) 9 January 2007
Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (E
N

U
) 9 January 2007

Contents

novdocx (E
N

U
) 9 January 2007
About This Guide 11

1 Introducing the Identity Manager Driver for JDBC 13
1.1 New Driver Features . 13
1.2 Changes in Terminology . 14
1.3 Terms and Concepts . 14

1.3.1 JDBC . 14
1.3.2 Identity Manager Driver for JDBC . 14
1.3.3 Third-Party JDBC Driver . 15
1.3.4 Identity Vault . 15
1.3.5 Directory Schema . 15
1.3.6 Application Schema. 16
1.3.7 Database Schema. 16
1.3.8 Synchronization Schema. 16
1.3.9 Logical Database Class. 16
1.3.10 XDS . 16

1.4 Database Concepts . 16
1.4.1 Structured Query Language . 17
1.4.2 Data Manipulation Language . 17
1.4.3 Data Definition Language . 17
1.4.4 View. 17
1.4.5 Identity Columns/Sequences. 18
1.4.6 Transaction . 18
1.4.7 Stored Procedures or Functions . 19
1.4.8 Trigger . 19
1.4.9 Instead-Of-Trigger . 20

1.5 Data Synchronization Models . 21
1.5.1 Indirect Synchronization . 21
1.5.2 Direct Synchronization . 23

1.6 Triggerless vs. Triggered Publication. 24

2 Before Installing the Driver 27
2.1 Driver Prerequisites . 27
2.2 Supported Platforms, Databases, and Drivers. 27
2.3 Known Issues . 27
2.4 Limitations . 28

3 Installing or Upgrading the Driver for JDBC 29
3.1 Upgrading to Identity Manager 3 . 29
3.2 Placing Jar Files . 29

3.2.1 Identity Manager File Paths. 29
3.2.2 Remote Loader File Paths. 30

3.3 Installing the Driver for JDBC . 30
3.3.1 Installing the Driver . 30
3.3.2 Importing the Example Configuration File . 37
3.3.3 Setting Up a Remote Loader. 38
3.3.4 Installing and Configuring Database Objects . 39
3.3.5 Testing. 44
Contents 5

6 Identity Man

novdocx (E
N

U
) 9 January 2007
3.3.6 Troubleshooting . 44
3.4 Upgrading the Driver for JDBC. 44

3.4.1 Backward Incompatibilities. 45
3.5 Activating the Driver . 45

4 Uninstalling the IDM Driver for JDBC 47
4.1 Deleting IDM Driver Objects . 47
4.2 Running the Product Uninstaller . 47
4.3 Executing Database Uninstallation Scripts . 47

4.3.1 IBM DB2 Universal Database (UDB) Uninstallation. 48
4.3.2 Informix Dynamic Server (IDS) Uninstallation . 48
4.3.3 Microsoft SQL Server Uninstallation . 48
4.3.4 MySQL Uninstallation. 49
4.3.5 Oracle Uninstallation . 49
4.3.6 PostgreSQL Uninstallation . 49
4.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation . 50

5 Configuring the Identity Manager Driver for JDBC 51
5.1 Smart Configuration . 51
5.2 Configuration Parameters. 53

5.2.1 Viewing Driver Parameters . 53
5.2.2 Deprecated Parameters . 53
5.2.3 Authentication Parameters. 54

5.3 Driver Parameters . 54
5.3.1 Uncategorized Parameters . 56
5.3.2 Database Scoping Parameters . 60
5.3.3 Connectivity Parameters . 64
5.3.4 Compatibility Parameters . 67

5.4 Subscription Parameters . 76
5.4.1 Uncategorized Parameters . 77
5.4.2 Primary Key Parameters . 79

5.5 Publication Parameters . 85
5.5.1 Uncategorized Parameters . 86
5.5.2 Triggered Publication Parameters . 88
5.5.3 Triggerless Publication Parameters . 90
5.5.4 Polling Parameters. 91

5.6 Trace Levels . 94
5.7 Configuring Third-Party JDBC Drivers . 95

6 Schema Mapping 97
6.1 High-Level View . 97
6.2 Logical Database Classes . 97
6.3 Indirect Synchronization . 97

6.3.1 Mapping eDirectory Classes to Logical Database Classes . 98
6.3.2 Parent Tables. 100
6.3.3 Parent Table Columns . 100
6.3.4 Child Tables . 101
6.3.5 Referential Attributes . 102
6.3.6 Single-Value Referential Attributes . 102
6.3.7 Multivalue Referential Attributes . 103

6.4 Direct Synchronization . 105
6.4.1 View Column Meta-Identifiers . 106
6.4.2 Primary Key Columns . 108
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
6.4.3 Schema Mapping . 108
6.5 Synchronizing Primary Key Columns. 108
6.6 Synchronizing Multiple Classes . 108
6.7 Mapping Multivalue Attributes to Single-Value Database Fields . 109

7 Mapping XDS Events to SQL Statements 111
7.1 Mapping XDS Events for Indirect Synchronization . 111

8 The Event Log Table 113
8.1 Event Log Columns . 113
8.2 Event Types. 115

9 Embedded SQL Statements in XDS Events 123
9.1 Common Uses of Embedded SQL . 124
9.2 Embedded SQL Basics . 124

9.2.1 Elements . 124
9.2.2 Namespaces . 124
9.2.3 Embedded SQL Example . 125

9.3 Token Substitution . 125
9.4 Virtual Triggers . 128
9.5 Manual vs. Automatic Transactions. 129
9.6 Transaction Isolation Level . 130
9.7 Statement Type . 131
9.8 SQL Queries . 132
9.9 Data Definition Language (DDL) Statements . 133
9.10 Logical Operations. 134
9.11 Implementing Password Set with Embedded SQL . 134
9.12 Implementing Modify Password with Embedded SQL. 135
9.13 Implementing Check Object Password . 135
9.14 Best Practices . 136

10 Supported Databases 137
10.1 Database Interoperability . 137
10.2 Supported Databases . 137
10.3 Database Characteristics. 138

10.3.1 Database Features . 138
10.3.2 Current Time Stamp Statements. 139
10.3.3 Stored Procedure and Function JDBC Call Syntaxes . 139
10.3.4 Left Outer Join Operators . 140
10.3.5 Undelimited Identifier Case Sensitivity . 140
10.3.6 Supported Transaction Isolation Levels . 141
10.3.7 Commit Keywords . 141
10.3.8 IBM DB2 Universal Database (UDB). 142
10.3.9 Informix Dynamic Server (IDS) . 142
10.3.10 Microsoft SQL Server . 143
10.3.11 MySQL . 144
10.3.12 Oracle . 145
10.3.13 PostgreSQL. 146
10.3.14 Sybase Adaptive Server Enterprise (ASE) . 146
Contents 7

8 Identity Man

novdocx (E
N

U
) 9 January 2007
11 Third-Party JDBC Drivers 149
11.1 Third-Party JDBC Driver Interoperability . 149
11.2 JDBC Driver Types. 149

11.2.1 Which Type To Use? . 150
11.3 Third-Party Jar File Placement . 150

11.3.1 Identity Manager File Paths . 150
11.3.2 Remote Loader File Paths . 150

11.4 Supported Third-Party JDBC Drivers . 151
11.4.1 Third-Party JDBC Driver Features . 151
11.4.2 JDBC URL Syntaxes . 152
11.4.3 JDBC Driver Class Names. 152
11.4.4 BEA Weblogic jDriver for Microsoft SQL Server . 153
11.4.5 IBM DB2 Universal Database JDBC Drivers . 154
11.4.6 Informix JDBC Driver . 156
11.4.7 Microsoft SQL Server 2000 Driver for JDBC . 158
11.4.8 MySQL Connector/J JDBC Driver . 160
11.4.9 Oracle Thin Client JDBC Driver . 160
11.4.10 Oracle OCI JDBC Driver . 162
11.4.11 PostgreSQL JDBC Driver. 164
11.4.12 Sybase Adaptive Server Enterprise JConnect JDBC Driver 164

11.5 Unsupported Third-Party JDBC Drivers . 165
11.5.1 IBM Toolbox for Java/JTOpen . 165
11.5.2 Minimum Third-Party JDBC Driver Requirements . 166
11.5.3 Considerations When Using Other Third-Party JDBC Drivers 166

11.6 Security Issues . 166

12 The Association Utility 167
12.1 Independent Operations . 167
12.2 Before You Begin . 168
12.3 Using the Association Utility . 169
12.4 Editing Associations . 169

A Best Practices 171

B FAQ 173
B.1 Can’t See Tables or Views . 173
B.2 Synchronizing with Tables . 173
B.3 Processing Rows in the Event Log Table. 174
B.4 Managing Database User Accounts . 174
B.5 Synchronizing Large Data Types . 174
B.6 Slow Publication . 174
B.7 Synchronizing Multiple Classes . 175
B.8 Encrypted Transport . 175
B.9 Mapping Multivalue Attributes . 175
B.10 Synchronizing Garbage Strings . 175
B.11 Running Multiple Driver for JDBC Instances . 175
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
C Supported Data Types 177

D java.sql.DatabaseMetaData Methods 179

E JDBC Interface Methods 181

F Third-Party JDBC Driver Descriptor DTD 187

G Third-Party JDBC Driver Descriptor Import DTD 189

H Database Descriptor DTD 191

I Database Descriptor Import DTD 193

J Policy Example: Triggerless Future Event Processing 195

K Setting Up an OCI Client on Linux 197
K.1 Downloading the Instant Client . 197
K.2 Setting Up the OCI Client . 197
K.3 Configuring the OCI Driver . 198

L Sybase Chain Modes and the Identity Manager Driver for JDBC 199
L.1 Error Codes . 199
L.2 Procedures and Modes . 200

L.2.1 Using Stored Procedure sp_proxmode . 200
L.2.2 Chained and Unchained Modes . 200
L.2.3 Managing Transactions in a Policy . 201
L.2.4 Useful Links. 201

M Documentation Updates 203
M.1 December 14, 2005 . 203
M.2 April 24, 2006. 204
M.3 May 1, 2006 . 204
M.4 May 12, 2006 . 204
M.5 May 30, 2006 . 204
M.6 June 13, 2006 . 205
M.7 July 27, 2006 . 205
M.8 August 10, 2006. 205
M.9 August 23, 2006. 205
M.10 September 15, 2006 . 205
M.11 October 5, 2006 . 206
M.12 October 20, 2006 . 206
M.13 November 1, 2006 . 206
M.14 December 1, 2006 . 206
M.15 January 9, 2007 . 207
M.16 February 21, 2007 . 207
M.17 April 4, 2007. 207
Contents 9

10 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
About This Guide

The Identity Manager Driver for Java* Database Connectivity (JDBC*) provides a generic solution
for synchronizing data between an Identity Vault and relational databases.

This guide provides an overview of the driver’s technology as well as configuration instructions.

Audience

This guide is for Novell® eDirectory and Identity Manager administrators who are using the Identity
Manager Driver for JDBC.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell Identity Manager. Please use the User Comment feature at the bottom of each
page of the online documentation, or go to www.novell.com/documentation/feedback.html and enter
your comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager Documentation Web site
(http://www.novell.com/documentation/lg/dirxmldrivers/index.html).

Additional Documentation

For documentation on using Identity Manager and the other drivers, see the Identity Manager
Documentation Web site (http://www.novell.com/documentation/lg/dirxmldrivers).

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell® trademark. An asterisk (*) denotes a third-party
trademark.
About This Guide 11

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers

12 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

1
novdocx (E

N
U

) 9 January 2007
1Introducing the Identity Manager
Driver for JDBC

The Identity Manager Driver for Java DataBase Connectivity (JDBC) provides a generic solution
for synchronizing data between Identity Manager and JDBC-accessible relational databases.

The principal value of this driver resides in its generic nature. Unlike most drivers that interface with
a single application, this driver can interface with most relational databases and database-hosted
applications.

Section 1.1, “New Driver Features,” on page 13
Section 1.2, “Changes in Terminology,” on page 14
Section 1.3, “Terms and Concepts,” on page 14
Section 1.4, “Database Concepts,” on page 16
Section 1.5, “Data Synchronization Models,” on page 21
Section 1.6, “Triggerless vs. Triggered Publication,” on page 24

1.1 New Driver Features
The following driver features are new for Identity Manager 3:

Publication without triggers. See Section 1.6, “Triggerless vs. Triggered Publication,” on
page 24.
Batch processing. See “Batch Size” on page 93.
Future event processing. See “Enable Future Event Processing?” on page 87.
Daily publication. See “Publication Time of Day” on page 92.
Expanded database support. See Section 10.2, “Supported Databases,” on page 137.
Enhanced support for database time types. See “Time Syntax” on page 57
Enhanced ease of use. See Section 5.1, “Smart Configuration,” on page 51.
Schema filtering. See “Include Filter Expression” on page 63 and “Exclude Filter Expression”
on page 63.
Extended view support. See Section 6.4, “Direct Synchronization,” on page 105.
Enhanced support for third-party driver encryption mechanisms. See “Connection Initialization
Statements” on page 65.
Password modify and check support.
Improved driver configuration/database SQL* scripts.

For information on what’s new in Identity Manager, see “What's New in Identity Manager?” in the
Identity Manager 3.0.1 Installation Guide.
Introducing the Identity Manager Driver for JDBC 13

14 Identity Man

novdocx (E
N

U
) 9 January 2007
1.2 Changes in Terminology
The following terms have changed from earlier releases:

Table 1-1 Changes in Terminology

1.3 Terms and Concepts
Section 1.3.1, “JDBC,” on page 14
Section 1.3.2, “Identity Manager Driver for JDBC,” on page 14
Section 1.3.3, “Third-Party JDBC Driver,” on page 15
Section 1.3.4, “Identity Vault,” on page 15
Section 1.3.5, “Directory Schema,” on page 15
Section 1.3.6, “Application Schema,” on page 16
Section 1.3.7, “Database Schema,” on page 16
Section 1.3.8, “Synchronization Schema,” on page 16
Section 1.3.9, “Logical Database Class,” on page 16
Section 1.3.10, “XDS,” on page 16

1.3.1 JDBC
Java DataBase Connectivity (JDBC) is a cross-platform database interface standard that Sun*
Microsystems* developed.

Most enterprise database vendors provide a unique implementation of the JDBC interface. Three
versions of the JDBC interface are available:

JDBC 1 (Java 1.0)
JDBC 2 (Java 1.2 or 1.3)
JDBC 3 (Java 1.4 or 1.5)

The Identity Manager Driver for JDBC primarily uses the JDBC 1 interface. It uses a small subset of
JDBC 2 or JDBC 3 methods when supported by third-party JDBC drivers.

1.3.2 Identity Manager Driver for JDBC
The Identity Manager Driver for JDBC uses the JDBC interface to synchronize data and identities
between an Identity Vault and relational databases.

Earlier Terms New Terms

DirXML® Identity Manager

DirXML Server Metadirectory server

DirXML engine Metadirectory engine

eDirectoryTM Identity Vault (except when referring to eDirectory attributes or classes)
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
The driver consists of four jar files:

JDBCShim.jar

JDBCUtil.jar

JDBCConfig.jar

CommonDriverShim.jar

In addition to these files, you need a third-party JDBC driver to communicate with each individual
database.

1.3.3 Third-Party JDBC Driver
A third-party JDBC driver is one of the numerous JDBC interface implementations that the Identity
Manager Driver for JDBC uses to communicate with a particular database.

 For example, classes12.zip is one of the Oracle* JDBC drivers. Different third-party JDBC drivers
implement different portions of the JDBC interface specification and implement the interface in a
relatively consistent manner.

The following illustration indicates the relationship between the Driver for JDBC and third-party
JDBC drivers.

Figure 1-1 IDM JDBC Driver vs. Third-Party JDBC Drivers

1.3.4 Identity Vault
An Identity Vault is the data store that Identity Manager uses.

1.3.5 Directory Schema
The directory schema is the set of object classes and attributes in the directory.

For example, the eDirectoryTM User class and Given Name attribute are part of the eDirectory
schema.

SELECT

INSERT

UPDATE

DELETE

JDBC Interface

POSTGRES

Database

IFX

DB2

ORACLE

MYSQL

MSSQL

SYBASE

Third-Party

JDBC Driver
IDM JDBC DRIVER
Introducing the Identity Manager Driver for JDBC 15

16 Identity Man

novdocx (E
N

U
) 9 January 2007
1.3.6 Application Schema
The application schema is the set of classes and attributes in an application.

Because databases have no concept of classes or attributes, the Driver for JDBC maps eDirectory
classes to tables or views, and maps eDirectory attributes to columns.

1.3.7 Database Schema
Database schema is essentially synonymous with ownership. A database schema consists of
database objects (for example, tables, views, triggers, stored procedures, and functions) that a
database user owns.

With the Driver for JDBC, schema is useful to scope the database (reduce the number of database
objects visible to the driver at runtime).

Ownership is often expressed by using a qualified dot notation (for example, indirect.usr,
where indirect is the name of the database user that owns the table usr). All of the database
objects owned by indirect constitute the indirect database schema.

1.3.8 Synchronization Schema
The synchronization schema is the database schema visible to the driver at runtime.

1.3.9 Logical Database Class
The logical database class is the set of tables or view used to represent an eDirectory class in a
database.

1.3.10 XDS
XDS format is the defined Novell® subset of possible XML formats that Identity Manager can use.

XDS is the initial format for data coming from the Identity Vault. By modifying default rules and
changing the style sheets, you can configure the Driver for JDBC to work with any XML format.

1.4 Database Concepts
Section 1.4.1, “Structured Query Language,” on page 17
Section 1.4.2, “Data Manipulation Language,” on page 17
Section 1.4.3, “Data Definition Language,” on page 17
Section 1.4.4, “View,” on page 17
Section 1.4.5, “Identity Columns/Sequences,” on page 18
Section 1.4.6, “Transaction,” on page 18
Section 1.4.7, “Stored Procedures or Functions,” on page 19
Section 1.4.8, “Trigger,” on page 19
Section 1.4.9, “Instead-Of-Trigger,” on page 20
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
1.4.1 Structured Query Language
Structured Query Language (SQL) is the language used to query and manipulate data in relational
databases.

1.4.2 Data Manipulation Language
Data Manipulation Language (DML) statements are highly standardized SQL statements that
manipulate database data.

DML statements are essentially the same, regardless of the database that you use. The Driver for
JDBC is DML-based. It maps Identity Manager events expressed as XDS XML to standardized
DML statements.

The following example shows several DML statements:
SELECT * FROM usr;
INSERT INTO usr(lname) VALUES('Doe');
UPDATE usr SET fname = 'John' WHERE idu = 1;

1.4.3 Data Definition Language
Data Definition Language (DDL) statements manipulate database objects such as tables, indexes,
and user accounts.

DDL statements are proprietary and differ substantially between databases. Even though the Driver
for JDBC is DML-based, you can embed DDL statements in XDS events. For additional
information, refer to Chapter 9, “Embedded SQL Statements in XDS Events,” on page 123,

The following examples show several DDL statements:
CREATE TABLE usr
(
 idu INTEGER,
 fname VARCHAR2(64),
 lname VARCHAR2(64)
);

CREATE USER idm IDENTIFIED BY novell;

NOTE: Examples used throughout this guide are for the Oracle database.

1.4.4 View
A view is a logical table.

When queried by using a SELECT statement, the view is constituted by executing the SQL query
supplied when the view was defined. Views are a useful abstraction mechanism for representing
multiple tables of arbitrary structure as a single table or logical database class.
CREATE VIEW view_usr
(
 pk_idu,
 fname,
 lname
Introducing the Identity Manager Driver for JDBC 17

18 Identity Man

novdocx (E
N

U
) 9 January 2007
)
AS
SELECT idu, fname, lname from usr;

1.4.5 Identity Columns/Sequences
Identity columns and sequences are used to generate unique primary key values. Identity Manager
can associate with these values, among other things.

An identity column is a self-incrementing column used to uniquely identify a row in a table. Identity
column values are automatically filled in when a row is inserted into a table.

A sequence object is a counter that can be used to uniquely identify a row in a table. Unlike an
identity column, a sequence object is not bound to a single table. However, if it is used by a single
table, a sequence object can be used to achieve an equivalent result.

The following is an example of a sequence object:
CREATE SEQUENCE seq_idu
 START WITH 1
 INCREMENT BY 1
 NOMINVALUE
 NOMAXVALUE
 ORDER;

1.4.6 Transaction
A transaction is an atomic database operation that consists of one or more statements.

When a transaction is complete, all statements in the transaction are committed. When a transaction
is interrupted or one of the statements in the transaction has an error, the transaction is said to roll
back. When a transaction is rolled back, the database is left in the same state it was before the
transaction began.

Transactions are either manual (user-defined) or automatic. Manual transactions can consist of one
or more statements and must be explicitly committed. Automatic transactions consist of a single
statement and are implicitly committed after each statement is executed.

Manual (User-Defined) Transactions

Manual transactions usually contain more than one statement. DDL statements typically cannot be
grouped with DML statements in a manual transaction.

The following example illustrates a manual transaction:
SET AUTOCOMMIT OFF
INSERT INTO usr(lname) VALUES('Doe');
UPDATE usr SET fname = 'John' WHERE idu = 1;
COMMIT; -- explicit commit

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. An auto-committed
statements is autonomous of any other statement.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
The following example illustrates an automatic transaction:
SET AUTOCOMMIT ON
INSERT INTO emp(lname) VALUES('Doe');
-- implicit commit

1.4.7 Stored Procedures or Functions
A stored procedure or function is programmatic logic stored in a database. Stored procedures or
functions can be invoked from almost any context.

The Subscriber channel can use stored procedures or functions to retrieve primary key values from
rows inserted into tables, to create associations. Stored procedures or functions can also be invoked
from within embedded SQL statements or triggers.

The distinction between stored procedures and functions varies by database. Typically, both can
return output, but they differ in how they do it. Stored procedures usually return values through
parameters. Functions usually return values through a scalar return value or result set.

The following example illustrates a stored procedure definition that returns the next value of a
sequence object:
CREATE SEQUENCE seq_idu
 START WITH 1
 INCREMENT BY 1
 NOMINVALUE
 NOMAXVALUE
 ORDER;
CREATE
PROCEDURE sp_idu(io_idu IN OUT INTEGER)
IS
BEGIN
 IF (io_idu IS NULL) THEN
 SELECT seq_idu.nextval INTO io_idu FROM DUAL;
END IF;
END sp_idu;

1.4.8 Trigger
A database trigger is programmatic logic associated with a table, which executes under certain
conditions. A trigger is said to fire when its execution criteria are met.

Triggers are often useful for creating side effects in a database. In the context of the Driver for
JDBC, triggers are useful to capture event publications. The following is an example of a database
trigger on the usr table.
CREATE TABLE usr
(
 idu INTEGER,
 fname VARCHAR2(64),
 lname VARCHAR2(64)
);
-- t = trigger; i = insert
CREATE TRIGGER t_usr_i
 AFTER INSERT ON usr
Introducing the Identity Manager Driver for JDBC 19

20 Identity Man

novdocx (E
N

U
) 9 January 2007
 FOR EACH ROW

BEGIN
 UPDATE usr SET fname = 'John';
END;

When a statement is executed against a table with triggers, a trigger fires if the statement satisfies
the conditions specified in the trigger. For example, using the above table, suppose the following
insert statement is executed:
INSERT INTO usr(lname) VALUES('Doe')

Trigger t_emp_i fires after the insert statement is executed, and the following update statement is
also executed:
UPDATE usr SET fname = 'John'

A trigger can typically be fired before or after the statement that triggered it. Statements that are
executed as part of a database trigger are typically included in the same transaction as the triggering
statement. In the above example, both the INSERT and UPDATE statements are committed or rolled
back together.

1.4.9 Instead-Of-Trigger
An instead-of-trigger is programmatic logic associated with a view, which executes under certain
conditions.

Instead-of-triggers are useful for making views writable or subscribeable. They are often used to
define what it means to INSERT, UPDATE, and DELETE from a view. The following is an example
of an instead-of-trigger on the usr table.
CREATE TABLE usr
(
 idu INTEGER,
 fname VARCHAR2(64),
 lname VARCHAR2(64)
);

CREATE VIEW view_usr
(
 pk_idu,
 fname,
 lname
)
AS
SELECT idu, fname, lname from usr;
-- t = trigger; i = insert
CREATE TRIGGER t_view_usr_i
 INSTEAD OF INSERT ON usr
BEGIN
 INSERT INTO usr(idu, fname, lname)
 VALUES(:NEW.pk_idu, :NEW.fname, :NEW.lname);
END;

When a statement is executed against a view with instead-of-triggers, an instead-of-trigger executes
if the statement satisfies the conditions specified in the trigger. Unlike triggers, instead-of-triggers
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
always execute before the triggering statement. Also, unlike regular triggers, instead-of-triggers are
executed instead of, not in addition to, the triggering statement.

For example, using the above view, suppose the following insert statement is executed instead of the
original insert statement:
INSERT INTO view_usr(pk_idu, fname, lname)
 VALUES(1, ‘John', ‘Doe')

Rather than executing the original statement, instead-of-trigger t_view_usr_i fires and executes
the following statement:
INSERT INTO usr(idu, fname, lname)
 VALUES(:NEW.pk_idu, :NEW.fname, :NEW.lname);

In this example, the statements happen to be equivalent.

1.5 Data Synchronization Models
The driver supports two data synchronization models: direct and indirect. Both terms are best
understood with respect to the final destination of the data being synchronized.

The following sections describe how direct and indirect synchronization work on both the
Subscriber and Publisher channels.

1.5.1 Indirect Synchronization
Indirect synchronization uses intermediate staging tables to synchronize data between the Identity
Vault and a database.

The following diagrams illustrate how indirect synchronization works on the Subscriber and
Publisher channels. In the following scenarios, you can have one or more customer tables and
intermediate staging tables.

Model Association Description

Direct Usually associated with views Views provide the abstraction mechanism that best
facilitates integration with existing customer tables.

Indirect Usually associated with tables Customer tables probably don’t match the structure
required by the driver. Therefore, it’s usually
necessary to create intermediate staging tables that
do match the structure that the driver requires.
Although the structures might match, it is highly
unlikely.
Introducing the Identity Manager Driver for JDBC 21

22 Identity Man

novdocx (E
N

U
) 9 January 2007
Subscriber Channel

Figure 1-2 Indirect Synchronization on the Subscriber Channel

The Subscriber channel updates the intermediate staging tables in the synchronization schema. The
synchronization triggers then update customer tables elsewhere in the database.

Publisher Channel

Figure 1-3 Indirect Synchronization on the Publisher Channel

When customer tables are updated, synchronization triggers update the intermediate staging tables.
Publication triggers then insert one or more rows into the event log table. The Publisher channel
then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the intermediate tables before updating the Identity
Vault. After updating the Identity Vault, the Publisher channel then deletes or marks the rows as
processed.

Database

Synchronization
Schema

Synchronization
Trigger(s)

Subscriber

Customer
Table(s)

Intermediate
Tables(s)
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
1.5.2 Direct Synchronization
Direct synchronization typically uses views to synchronize data between Identity Manager and a
database. You can use tables if they conform to the structure that the Driver for JDBC requires.

The following diagrams illustrate how direct synchronization works on the Subscriber and Publisher
channels. In the following scenarios, you can have one or more customer views or tables.

Subscriber Channel

Figure 1-4 Direct Synchronization on the Subscriber Channel

The Subscriber channel updates existing customer tables through a view in the synchronization
schema.

NOTE: Direct synchronization without a view is possible only if customer tables match the
structure that the Driver for JDBC requires. For additional information, see Section 6.3, “Indirect
Synchronization,” on page 97.

Publisher Channel

Figure 1-5 Direct Synchronization on the Publisher Channel

Database

Customer
Table(s)

SubscriberSubscriberSubscriber

Synchronization
Schema

View(s)

Database

Event
Log

Customer
Table(s)

Publication
Trigger(s)

Publisher

View(s)

Synchronization
Schema
Introducing the Identity Manager Driver for JDBC 23

24 Identity Man

novdocx (E
N

U
) 9 January 2007
When a customer table is updated, publication triggers insert rows into the event log table. The
Publisher channel then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the view before updating the Identity Vault. After
updating the Identity Vault, the Publisher channel then deletes or marks the rows as processed.

1.6 Triggerless vs. Triggered Publication
Triggers are no longer required to log publication events. In situations where triggers cannot be used
to capture granular events, the Publisher channel can derive database changes by inspecting database
data.

Triggerless publication is particularly useful when support contracts forbid the use of triggers on
database application tables or for rapid prototyping.

Triggerless publication is less efficient than triggered publication. With triggered publication, what
changed is already known. With triggerless publication, change calculation must occur before events
can be processed.

Triggerless publication, unlike triggered publication, does not preserve event order. It only
guarantees that by the end of a polling cycle, objects in the database and the Identity Vault are in
sync.

Triggerless publication, unlike triggered publication, does not provide historical data such as old
values. It provides information on the current state of an object, not the previous state.

Triggerless publication does have the advantage of being much simpler because it reduces database-
side dependencies. Writing database triggers can be complicated and requires extensive knowledge
of database-specific SQL syntaxes.

The following figure illustrates direct triggerless publication:

Figure 1-6 Direct Triggerless Synchronization

Database

Synchronization
Schema

Customer
Table(s)

Publisher View(s)
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
The following figure illustrates indirect triggerless publication:

Figure 1-7 Indirect Triggerless Synchronization

If you move the driver without moving the state files, the driver must build-up new state files by
resynchronizing. For information on this situation, see “State Directory” on page 59.

Database

Synchronization
Schema

Customer
Table(s)

Synchronization
Trigger(s)

Publisher Intermediate
Tables(s)
Introducing the Identity Manager Driver for JDBC 25

26 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

2
novdocx (E

N
U

) 9 January 2007
2Before Installing the Driver

Section 2.1, “Driver Prerequisites,” on page 27
Section 2.2, “Supported Platforms, Databases, and Drivers,” on page 27
Section 2.3, “Known Issues,” on page 27
Section 2.4, “Limitations,” on page 28

2.1 Driver Prerequisites
The Identity Manager Driver for JDBC requires the following:

Novell® iManager 2.5 or later installed on the server
Novell Identity Manager 3 installed on the server
Java Virtual Machine (JVM*) 1.4 or later
A supported third-party JDBC driver

2.2 Supported Platforms, Databases, and Drivers
The driver runs on all Identity Manager-enabled platforms, including Windows* NT*/2000,
NetWare®, Solaris*, Linux*, and AIX*.

For information on supported databases, see “Database Interoperability” on page 137.

For information on supported third-party JDBC drivers, see “Third-Party JDBC Driver
Interoperability” on page 149.

2.3 Known Issues
Identity Vault Time and Timestamp syntaxes are inadequate for expressing the range and
granularity of their database counterparts.

This is a publication problem because database time-related types typically have a wider range
and greater degree of granularity (typically nanoseconds). The converse is not true. For more
information, see “Time Syntax” on page 57.
The Driver for JDBC is unable to parse proprietary database time stamp formats.

Some databases, such as Sybase* and DB2*, have proprietary time stamp formats that the
java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html) class
can’t parse.

When synchronizing time stamp columns from these databases, the Driver for JDBC, by
default, assumes time stamp values placed in the event log table are in ODBC canonical format
(that is, yyyy-mm-dd hh:mm:ss.fffffffff).

The recommended method for enabling the Driver for JDBC to handle proprietary database
time stamp formats is to implement a custom DBTimestampTranslator class. This
Before Installing the Driver 27

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

28 Identity Man

novdocx (E
N

U
) 9 January 2007
interface is documented in the Javadoc Tool that ships with the Driver for JDBC. Using this
approach avoids the problem of reformatting time stamps in the database before they are
inserted into the event log table or reformatted them in style sheets. The Driver for JDBC ships
with default implementations for the native DB2 time stamp format and the Sybase style 109
time stamp format.
Statements executed against the database server might block indefinitely.
Typically, blocking is caused by a database resource being exclusively locked. Because the
locking mechanisms and locking SQL vary by database, the general solution to this problem is
to implement a custom DBLockStatementGenerator class. For additional information,
see “Lock Statement Generator Class” on page 71. The driver for JDBC ships with a default
implementation for Oracle.
Many factors can cause blocking. To mitigate the likelihood of blocking, we recommend that
you do not set the Transaction Isolation Level parameter to a level greater than read
committed.
The JDBC interface defines a method java.sql.Statement.setQueryTimeout(int):void (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) that allows a statement to time out
after a specified number of seconds. Unfortunately, implementations of this method between
third-party JDBC drivers range from not being implemented to having bugs. For this reason,
this method was deemed unsuitable as a general-purpose solution.

2.4 Limitations
The Driver for JDBC does not support the use of delimited (quoted) database identifiers (for
example, “names with spaces”).
JDBC 2 data types are not supported, with the exception of Large Object data types (LOBs)
such as CLOB and BLOB.
JDBC 3 data types are not supported.
PostgreSQL does not support <check-object-password> events. Authentication is
controlled by manually inserting entries into the pg_hba.conf file.
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

3
novdocx (E

N
U

) 9 January 2007
3Installing or Upgrading the Driver
for JDBC

Section 3.1, “Upgrading to Identity Manager 3,” on page 29
Section 3.2, “Placing Jar Files,” on page 29
Section 3.3, “Installing the Driver for JDBC,” on page 30
Section 3.4, “Upgrading the Driver for JDBC,” on page 44
Section 3.5, “Activating the Driver,” on page 45

For information on uninstalling the driver, see Chapter 4, “Uninstalling the IDM Driver for JDBC,”
on page 47

IMPORTANT: We recommend installing or uninstalling driver configurations and database scripts
as a unit. To prevent unintentional mismatching, database scripts and driver configurations contain
headers with a version number, the target database name, and the database version.

3.1 Upgrading to Identity Manager 3
The Identity Manager Driver for JDBC 2.1 won’t run on Identity Manager earlier than Identity
Manager 3.0. To use the Driver for JDBC 2.1, you must upgrade to Identity Manager 3.

The Identity Manager Driver for JDBC 2.0 runs on Identity Manager 2.

During an Identity Manager installation, you can install the Driver for JDBC (along with other
Identity Manager drivers) at the same time that the Metadirectory engine is installed. See the Identity
Manager 3.0.1 Installation Guide. You can upgrade from DirXML 1.1a or Identity Manager 2 to
Identity Manager 3.

3.2 Placing Jar Files
The following tables identify the paths to place JDBC driver jar files on an Identity Manager or
Remote Loader server assuming default installation paths.

3.2.1 Identity Manager File Paths
The following table identifies where to place JDBC driver jar files on an Identity Management
server, by platform.

Table 3-1 Locations for jar Files: Identity Manager Server

Platform Directory Path

NetWare® sys:\system\lib

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)
Installing or Upgrading the Driver for JDBC 29

30 Identity Man

novdocx (E
N

U
) 9 January 2007
3.2.2 Remote Loader File Paths
The following table identifies where to place JDBC driver jar files on a Remote Loader server, by
platform.

Table 3-2 Locations for jar Files: Remote Loader

3.3 Installing the Driver for JDBC
Section 3.3.1, “Installing the Driver,” on page 30
Section 3.3.2, “Importing the Example Configuration File,” on page 37
Section 3.3.3, “Setting Up a Remote Loader,” on page 38
Section 3.3.4, “Installing and Configuring Database Objects,” on page 39
Section 3.3.5, “Testing,” on page 44
Section 3.3.6, “Troubleshooting,” on page 44

3.3.1 Installing the Driver
You can install the Driver for JDBC (along with other Identity Manager drivers) at the same time
that the Metadirectory engine is installed. See the Identity Manager 3.0.1 Installation Guide.

You can also install the driver separately, after the Metadirectory engine is installed.

“Installing to Windows” on page 30
“Installing to NetWare” on page 32
“Installing to Linux or Solaris” on page 34

Installing to Windows

1 Run the installation program (\nt\install.exe) from the Identity Manager 3 download
image or CD.

Downloads are available from Novell Downloads (http://download.novell.com/index.jsp).
2 In the Welcome dialog box, click Next, then accept the license agreement.
3 In the first Identity Manager Overview dialog box, review the information, then click Next.

Windows NT/2000 novell\NDS\lib

Platform Directory Path

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\RemoteLoader\lib

Platform Directory Path
ager Driver for JDBC 2.1: Implementation Guide

http://download.novell.com/index.jsp

novdocx (E
N

U
) 9 January 2007
The dialog box provides information on the following:
A Metadirectory server
A connected server system

4 In the second Identity Manager Overview dialog box, review the information, then click Next.
The dialog box provides information on the following:

A Web-based administration server
Identity Manager utilities

5 If you are installing locally, select only Metadirectory Server, then click Next.

If you are installing remotely (a Remote Loader), select Connected System and refer to “Setting
Up Remote Loaders” and “Setting Up a Connected System” in the Novell Identity Manager
3.0.1 Administration Guide.
If you install a Remote Loader, the policies (and binaries that the policies reference) run locally,
but the driver shim binaries run remotely. If you install the Metadirectory Server, all binaries
and policies run locally.
Installing or Upgrading the Driver for JDBC 31

32 Identity Man

novdocx (E
N

U
) 9 January 2007
6 In the Select Drivers for Engine Install dialog box, select only JDBC, then click Next.

7 In the Identity Manager Upgrade Warning dialog box, click OK.
8 In the Summary dialog box, review the selected options, then click Finish.
9 In the Installation Complete dialog box, click Close.

After installation, configure the driver as explained in “Importing the Example Configuration File”
on page 37.

Installing to NetWare

1 At the NetWare® server, insert the Identity Manager CD and mount the CD as a volume.

If you don’t have a CD, download Identity_Manager_3_NW_Win.iso and create one.
Downloads are available from Novell Downloads (http://download.novell.com/index.jsp).

To mount the CD, enter m cdrom.
2 (Conditional) If the graphical utility isn’t loaded, load it by entering startx.
3 In the graphical utility, click the Novell icon, then click Install.
4 In the Installed Products dialog box, click Add.
ager Driver for JDBC 2.1: Implementation Guide

http://download.novell.com/index.jsp

novdocx (E
N

U
) 9 January 2007
5 In the Source Path dialog box, browse to and select the product.ni file.

5a Browse to and expand the CD volume (IDM_3_0_NW_WIN) that you mounted earlier.
5b Expand the nw directory, select product.ni, then click OK twice.

6 In the Welcome to the Novell Identity Manager 3.0 Installation dialog box, click Next, then
accept the license agreement.

7 View the two Overview dialog boxes, then click Next.
8 In the Identity Manager Install dialog box, select only Metadirectory Server.
Installing or Upgrading the Driver for JDBC 33

34 Identity Man

novdocx (E
N

U
) 9 January 2007
Deselect the following:
Identity Manager Web Components
Utilities

9 Click Next.
10 In the Select Drivers for Engine Install dialog box, select only JDBC.

Deselect the following:
Metadirectory engine
All drivers except Delimited Text

11 Click Next.
12 In the Identity Manager Upgrade Warning dialog box, click OK.

The dialog box advises you to activate a license for the driver within 90 days.
13 In the Summary page, review the selected options, then click Finish.
14 Click Close.

After installation, do the following:

 Import the example .xml configuration file. See “Importing the Example Configuration File”
on page 37.
 Set up a Remote Loader (optional). See “Setting Up a Remote Loader” on page 38.
Configure database objects. See “Installing and Configuring Database Objects” on page 39.

Installing to Linux or Solaris

By default, the Identity Manager Driver for JDBC is installed when you install the Metadirectory
engine. If the driver wasn’t installed at that time, this section can help you install it.

As you move through the installation program, you can return to a previous section (screen) by
entering previous.

1 In a terminal session, log in as root.
2 Insert the Identity Manager CD and mount it.

If you don’t have a CD, download Identity_Manager_3_Linux.iso and create one.
Downloads are available from Novell Downloads (http://download.novell.com/index.jsp).
ager Driver for JDBC 2.1: Implementation Guide

http://download.novell.com/index.jsp

novdocx (E
N

U
) 9 January 2007
Typically, the CD is automatically mounted. The following table lists examples for manually
mounting the CD:

3 Change to the setup directory.

4 Run the installation program by entering ./dirxml_linux.bin.
5 In the Introduction section, press Enter.
6 Accept the license agreement.

Press Enter until you reach DO YOU ACCEPT THE TERMS OF THIS LICENSE
AGREEMENT, type y, then press Enter.

7 In the Choose Install Set section, select the Customize option.

Platform What to Type

AIX mount /mnt/cdrom, then press Enter

Red Hat* mount /mnt/cdrom, then press Enter

Solaris mount /cdrom, then press Enter

SUSE® mount /media/cdrom, then press Enter

Platform Path

AIX /mnt/cdrom/setup/

Red Hat /mnt/cdrom//setup/

Solaris /cdrom//idm_3/setup/

SUSE /media/cdrom//setup/
Installing or Upgrading the Driver for JDBC 35

36 Identity Man

novdocx (E
N

U
) 9 January 2007
Type 4, then press Enter.

8 In the Choose Product Features section, deselect all features except JDBC, then press Enter.
To deselect a feature, type its number. Type a comma between additional features that you
deselect.

9 In the Pre-Installation Summary section, review options.

To return to a previous section, type previous, then press Enter.
To continue, press Enter.

10 After the installation is complete, exit the installation by pressing Enter.

After installation, configure the driver. See Chapter 5, “Configuring the Identity Manager Driver for
JDBC,” on page 51.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
3.3.2 Importing the Example Configuration File
To set up the Identity Manager Driver for JDBC, import a driver configuration file and configure a
database. Database configuration consists of executing SQL scripts. We recommend that you
execute database SQL scripts and test them before starting the driver.

The shipping .xml configuration file is an example only. We recommend that you install the
shipping configuration into a test environment before attempting to customize the configuration.

Importing the Sample Driver Configuration File: iManager

The current example .xml configuration file creates and configures the Identity Manager objects
needed for the sample driver to work properly. The configuration file also includes sample policies
that you can customize.

1 In iManager, select Identity Manager Utilities > New Driver.
2 Select a driver set, then click Next.

If you place this driver in a new driver set, specify a driver set name, context, and associated
server.

3 Select Import a driver configuration from the server (.XML file).
Driver configuration files are installed on the Web server when you set up iManager.

4 From the drop-down list, select the current example XML option, then click Next.
5 When prompted to enter a name for the driver, specify the driver’s name (for example, JDBC

2), then click Next.
6 Select the target database, select whether the driver is local or remote, then click Next.
7 Select a synchronization model, select a third-party JDBC implementation, then click Next.
8 Select a data flow (for example, bidirectional), specify a database host IP address, enter a port

number, then click Next.
9 Specify the User container DN, the Group container DN, and the publication mode, then click

Next.
10 (Optional) Click Define Security Equivalences.

10a Click Add, then select an object with Admin rights (or any other rights that you want the
driver to have).

10b Click Apply, then click OK.
11 (Optional) To exclude objects from replication, click Exclude Administrative Roles.

11a Click Add, then select any users you want to exclude (such as the admin user).
11b Click Apply, then click OK.

12 To view the import summary, click Next.
13 Verify that the configuration is correct, then click Finish with Overview.

The installation created the necessary Identity Manager driver objects. If you didn’t define security
equivalences or exclude administrative users at import time, you can complete these tasks by
modifying the driver object’s properties.
Installing or Upgrading the Driver for JDBC 37

38 Identity Man

novdocx (E
N

U
) 9 January 2007
Configuration File Conventions

Database usernames are the surname of a user concatenated with the corresponding numeric
primary key value. For example, John Doe’s username could be Doe1.
Initial passwords are the surname of a user. For example, John Doe’s password would be Doe.

Sybase passwords must be at least 6 characters long. When shorter than 6 characters, last
names are padded with the character “p.” For example, John Doe’s password would be
Doeppp. The padding character can be adjusted in the Subscriber Command Transformation
policies.

Importing the Driver Configuration File: Designer

You can import the basic driver .xml configuration file for JDBC by using Designer for Identity
Manager. This basic file creates and configures the objects and policies needed to make the driver
work properly.

The following procedure explains one of several ways to import the example configuration file:

1 Open a project in Designer.
2 In the modeler, right-click the Driver Set object, then select Add Connected Application.
3 From the drop-down list, select JBDC.xml, then click Run.
4 Click Yes, in the Perform Prompt Validation window.
5 Configure the driver by filling in the fields.

Specify information specific to your environment. For information on the settings, see
“Configuration Parameters” on page 53.

6 After specifying parameters, click OK to import the driver.
7 Customize and test the driver.
8 Deploy the driver into the Identity Vault.

See “Deploying a Driver to an Identity Vault” in the Designer for Identity Manager 3:
Administration Guide.

3.3.3 Setting Up a Remote Loader
Using a Remote Loader is optional. It isn’t required unless you want the JDBC driver to run in a
connected system.

1 If a Remote Loader isn’t already installed, install one.

See “Setting Up a Connected System” in the Novell Identity Manager 3.0.1 Administration
Guide.

2 Copy the appropriate third-party JDBC driver jar files onto the Remote Loader server.
2a For information on third-party JDBC driver filenames and where to get them, refer to

“Supported Third-Party JDBC Drivers” on page 151.
2b For information on file installation paths, refer to “Placing Jar Files” on page 29.

3 Configure the remote driver.
In the Remote Driver Configuration parameters, set the Driver parameter to
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
com.novell.nds.dirxml.driver.jdbc.JDBCDriverShim.

4 Configure other remote loader parameters. See “Setting Up a Connected System” in the Novell
Identity Manager 3.0.1 Administration Guide.

3.3.4 Installing and Configuring Database Objects
Install and configure database objects (for example, tables, triggers, and indexes) for
synchronization with the example driver configuration. If you don’t configure database objects, the
example .xml configuration file won’t work.

SQL Script Conventions

The following table lists default locations for SQL scripts:

Table 3-3 Default Locations for SQL Scripts

For example, when installed on a SuSE Linux Enterprise Server with eDirectory, the DB2 scripts are
found in /usr/lib/dirxml/rules/jdbc/db2/*.

All SQL scripts use the same conventions, regardless of the database.

The maximum size of a DB2 identifier is 18 characters. This least common denominator length
defines the upper bound of database identifier length across all SQL scripts. Because of this
restricted length, abbreviations are used. The following table summarizes identifier abbreviations
and their meaning:

Table 3-4 Identifier Abbreviations and Meanings

Platform Default Location

Windows c:\novell\NDS\jdbc\sql\database-abbreviation

iUNIX or Linux /usr/lib/dirxml/rules/jdbc/database-abbreviation

Abbreviation Interpretation

proc_1 stored procedure/function

idx_ index

trg_ trigger

_i on insert trigger

_u on update trigger

_d on delete trigger

chk_ check constraint

pk_ view primary key constraint

fk_ view foreign key constraint

mv_ view multi-valued column
Installing or Upgrading the Driver for JDBC 39

40 Identity Man

novdocx (E
N

U
) 9 January 2007
1 The more common abbreviation is sp_. This prefix is reserved for system-stored procedures on
Microsoft* SQL Server. Also, this prefix forces lookup of a procedure first in the master database
before evaluating any qualifiers (for example, database or owner). To maximize procedure lookup
efficiency, this prefix has been deliberately avoided.

The following table indicates identifier naming conventions for indexes, triggers, stored procedures,
functions, and constraints:

Table 3-5 Identifier Naming Conventions

Other conventions:

All database identifiers are lowercase.

This is the most commonly used case convention between databases.
String field lengths are 64 characters.
Fields of this length can hold most eDirectoryTM attribute values. You might want to refine field
lengths to enhance storage efficiency.
For performance reasons, primary key columns use native, scalar numeric types whenever
possible (such as BIGINT as opposed to NUMERIC).
The record_id column in event log tables has the maximum numeric precision permitted
by each database to avoid overflow.
Identity columns and sequence objects do not cache values. Some databases throw away
cached values when a rollback occurs. This action can cause large gaps in identity column or
sequence values.

Installing IBM DB2 Universal Database (UDB)

IMPORTANT: For IBM* DB2, you must manually create operating system user accounts before
running the provided SQL scripts.

sv_ view single-valued column (implicit default)

Database Object Naming Convention Examples

stored procedure/
function

proc_procedure-or-function-name proc_idu

index idx_unqualified-table-name_sequence-number idx_indirectlog
_1

trigger tgr_unqualified-table-name_triggering-statement-
type_sequence-number

tgr_usr_i_1

primary key constraint pk_unqualified-table-name_column-name pk_usr_idu

foreign key constraint fk_unqualified-table-name_column-name fk_usr_idu

check constraint chk_unqualified-table-name_column-name chk_usr_idu

Abbreviation Interpretation
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Because the process to create user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, repeat only Steps 2 through 5.

The directory context for DB2 is install-dir\jdbc\sql\db2_udb\install

1 Create user accounts for users idm, indirect and direct.

Use novell as the password in User Manager for Domains.

Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Adjust the file path to idm_db2.jar in the 1_install.sql installation script. The file path to
idm_db2.jar should reflect the location of this file on your client machine.

3 Execute the 1_install.sql script from the Command Line Processor (CLP.)
For example:
db2 -f 2_install_8.sql

IMPORTANT: The scripts won’t execute in the Command Center interface beyond version 7.
The scripts use the ‘\' line continuation character. Later versions of the Command Center don’t
recognize this character.

4 For versions 8 or later, execute the 2_install_8.sql script.
For example:
db2 -f 2_install_8.sql

Installing Informix Dynamic Server (IDS)

IMPORTANT: For Informix* Dynamic Server, you must manually create an operating system user
account before running the provided SQL scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is
OS-specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, you should repeat only Steps 2 through 4.

The directory context for Informix SQL scripts is install-
dir\jdbc\sql\informix_ids\install.

1 In Windows NT, create a user account for user idm.

Use novell as the password in User Manager for Domains.

Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Start a client such as SQL Editor.
Installing or Upgrading the Driver for JDBC 41

42 Identity Man

novdocx (E
N

U
) 9 January 2007
3 Log in to your server as the informix user or another user with DBA (database
administrator) privileges.
By default, the password for the informix user is informix.

NOTE: If you execute scripts as a user other than informix, change all references to
informix in the scripts prior to execution.

4 Open and execute 1_install.sql from either the ansi (transactional, ANSI-compliant),
log (transactional, non-ANSI-compliant), or no_log (non-transactional, non-ANSI-
compliant) subdirectory, depending upon which type of database you want to create.

Installing Microsoft SQL Server

The directory context for Microsoft SQL Server scripts is install-
dir\jdbc\sql\mssql\install.

1 Start a client such as Query Analyzer.
2 Log in to your database server as the sa user.

By default, the sa user has no password.
3 Execute the installation script.

For version 7, execute 1_install_7.sql.
For version 8 (2000), execute 1_install_2k.sql.

NOTE: The execute hotkey in Query Analyzer is F5.

Installing MySQL

The directory context for MySQL* SQL scripts is install-
dir\jdbc\sql\mysql\install.

1 From a MySQL client, such as mysql, log in as root user or another user with administrative
privileges.

For example, from the command line, execute

mysql -u root -p

By default, the root user has no password.
2 Execute the installation script 1_install_innodb.sql or 1_install_myisam.sql,

depending upon which table type you wish to use.
For example:
mysql> \. c:\1_install_innodb.sql

TIP: Don’t use a semicolon to terminate this statement.

Installing Oracle

The directory context for Oracle SQL scripts is install-
dir\jdbc\sql\oracle\install.

1 From an Oracle client, such as SQL Plus, log in as the SYSTEM user.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
By default, the password for SYSTEM is MANAGER.

NOTE: If you execute scripts as a user other than SYSTEM with password MANAGER, change
all references to SYSTEM in the scripts prior to execution.

2 Execute the installation script 1_install.sql.
For example:
SQL> @c:\1_install.sql

Installing PostgreSQL

The directory context for PostgreSQL scripts is install-
dir\jdbc\sql\postgres\install. The directory context for executing Postgres commands
is postgres-install-dir/pgsql/bin.

1 Create the database idm.

For example, from the UNIX* command line, execute the command createdb:
./createdb idm

2 Install the plpgsql procedural language to database idm.
For example, from the UNIX command line, execute the command createlang:
./createlang plpgsql idm

3 From a Postgres client such as psql, log on as user postgres to the idm database.
For example, from the UNIX command line, execute the command psql:
./psql -d idm postgres

By default, the Postgres user has no password.
4 From inside psql, execute the script 1_install.sql.

For example:
idm=# \i 1_install.sql

5 Update the pg_hba.conf file.
For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK as
necessary:
TYPE DATABASE USER IP-ADDRESS IP-MASK
METHOD# allow driver user idm to connect to database idm
host idm idm 255.255.255.255 255.255.255.0
password

6 Restart the Postgres server to effect changes made to the pg_hba.conf file.

Installing Sybase Adaptive Server Enterprise (ASE)

IMPORTANT: Ensure that you have JDBC metadata support installed on the database server. This
is usually an issue for versions earlier than 12.5 only.

The directory context for Sybase SQL scripts is install-
dir\jdbc\sql\sybase_ase\install.

1 From a Sybase client, such as isql, log in as the sa user and execute the 1_install.sql
installation script.
Installing or Upgrading the Driver for JDBC 43

44 Identity Man

novdocx (E
N

U
) 9 January 2007
For example, from the command line, execute:
isql -U sa -P -i 1_install.sql

By default, the sa account has no password.

3.3.5 Testing
Test scripts for each database are located in the following directories:

Table 3-6 Location of Database Scripts

We recommend that you try the test scripts before starting the sample driver.

3.3.6 Troubleshooting
Publication events might not be recognized by the Publisher channel unless you explicitly
commit changes. For the commit keywords of supported databases, see Section 10.3.7,
“Commit Keywords,” on page 141.
The test scripts should be executed by a user other than the driver’s idm database user account.
If you execute them as the idm user, events are ignored by the driver’s Publisher channel,
unless publication loopback is allowed. For additional information on allowing or disallowing
publication loopback, refer to “Allow Loopback?” on page 90.

3.4 Upgrading the Driver for JDBC
Section 3.4.1, “Backward Incompatibilities,” on page 45

The Identity Manager Driver for JDBC 2.1 won’t run on Identity Manager earlier than Identity
Manager 3.0. The Identity Manager Driver for JDBC 2.0 runs on Identity Manager 2.0.

To upgrade from the Identity Manager Driver for JDBC 1.5 or later to 2.1, install the Driver for
JDBC. This task replaces only binaries.

Database Test SQL Scripts Location

IBM DB2 Universal Database install-dir\jdbc\sql\db2_udb\test

Informix Dynamic Server install-dir\jdbc\sql\informix_ids\log\test
install-dir\jdbc\sql\informix_ids\no_log\test

Informix ANSI test scripts are located in the log\test
subdirectory.

Microsoft SQL Server install-dir\jdbc\sql\mssql\test

MySQL install-dir\jdbc\sql\mysql\test

Oracle install-dir\jdbc\sql\oracle\test

PostgreSQL install-dir\jdbc\sql\postgres\test

Sybase Adaptive Server Enterprise install-dir\jdbc\sql\sybase_ase\test
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Table 3-7 Upgrading to the Identity Manager Driver for JDBC 2.0

Table 3-8 Upgrading to the Identity Manager Driver for JDBC 2.1

1For Identity Manager Driver for JDBC versions earlier than 1.5, you must first upgrade to version
1.5. Refer to the DirXML Driver 1.5 for JDBC Implementation Guide (http://www.novell.com/
documentation/lg/dirxmldrivers/index.html). Be sure to use the 2.1 Association Utility. It supersedes
all previous versions.

3.4.1 Backward Incompatibilities
The driver now requires a minimum of two database connections for bidirectional
synchronization. For additional information, refer to “Use Minimal Number of Connections?”
on page 65.
The driver now returns schema qualifiers (when available) for logical database class names
(parent table or view names). This change doesn’t affect existing configurations unless class
names are remapped in Schema Mapping policies. If class names are remapped, all references
to class names in existing policy need to be schema-qualified.
Slightly alter existing configurations that use views. Set the parameter Enable Meta-Identifier
Support to Boolean False. See “Enable Meta-Identifier Support?” on page 72.
Slightly alter existing configurations that reference the
com.novell.nds.dirxml.driver.jdbc.util.MappingPolicy class. Methods in this class no longer
edit the source document. Instead, they return node sets that must be copied into the destination
document. The example .xml configuration file includes examples of how to do this.
Slightly alter existing configurations deployed against DB2/AS400 or other legacy databases
that do not implement or support column position. Add and set the Sort Column Names By
parameter. To sort column names by string collation order, see “Sort Column Names By” on
page 76. The default behavior has been changed to sort column names by hexadecimal value.

3.5 Activating the Driver
Activate the driver within 90 days of installation. Otherwise, the driver will not run.

For activation information, see “Activating Novell Identity Manager Products” in the Identity
Manager 3.0.1 Installation Guide.

If You Are Running This Version Upgrade to This Version Before Upgrading to This Version

Driver for JDBC earlier than 1.5 Driver for JDBC 1.51 Driver for JDBC 2.0

Driver for JDBC 1.5 or later None Driver for JDBC 2.0

If You Are Running This Version Upgrade to This Version Before Upgrading to This Version

Driver for JDBC earlier than 1.5 Driver for JDBC 1.51 Driver for JDBC 2.1

Driver for JDBC 1.5 or later None Driver for JDBC 2.1
Installing or Upgrading the Driver for JDBC 45

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html

46 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

4
novdocx (E

N
U

) 9 January 2007
4Uninstalling the IDM Driver for
JDBC

Section 4.1, “Deleting IDM Driver Objects,” on page 47
Section 4.2, “Running the Product Uninstaller,” on page 47
Section 4.3, “Executing Database Uninstallation Scripts,” on page 47

IMPORTANT: We recommend that you install and uninstall preconfigured drivers and database
scripts as a unit. To prevent unintentional mismatching, database scripts and preconfigured drivers
contain headers with a version number, the target database name, and the database version.

4.1 Deleting IDM Driver Objects
When deleting Novell® Identity Vault objects, you must delete all child objects before you can
delete a parent object. For example, you must delete all rules and style sheets on the Publisher
channel before you can delete the Publisher object. Similarly, you must delete both the Publisher and
Subscriber objects before you can delete the Driver object.

To remove a driver object from an Identity Vault:

1 In Novell iManager, click Identity Manager > Identity Manager Overview.
2 Select a driver set.
3 From the Identity Manager Overview page, click Delete Driver.
4 Select the driver that you want to delete, then click OK.

4.2 Running the Product Uninstaller
Uninstallation procedures vary by platform.

To uninstall the Identity Manager Driver for JDBC on Windows, use Add or Remove Programs in
the Control Panel.

4.3 Executing Database Uninstallation Scripts
This section provides helps you execute database uninstallation SQL scripts.

Section 4.3.1, “IBM DB2 Universal Database (UDB) Uninstallation,” on page 48
Section 4.3.2, “Informix Dynamic Server (IDS) Uninstallation,” on page 48
Section 4.3.3, “Microsoft SQL Server Uninstallation,” on page 48
Section 4.3.4, “MySQL Uninstallation,” on page 49
Section 4.3.5, “Oracle Uninstallation,” on page 49
Section 4.3.6, “PostgreSQL Uninstallation,” on page 49
Section 4.3.7, “Sybase Adaptive Server Enterprise (ASE) Uninstallation,” on page 50
Uninstalling the IDM Driver for JDBC 47

48 Identity Man

novdocx (E
N

U
) 9 January 2007
4.3.1 IBM DB2 Universal Database (UDB) Uninstallation
The directory context for DB2 is install-dir\jdbc\sql\db2_udbl\install.

1 Drop the idm, indirect and direct operating system user accounts.
2 If you haven’t already done so, change the name of the administrator account name and

password in the installation scripts.
3 Using the Command Line Processor (CLP), execute script uninstall.sql.

For example:
db2 -f uninstall.sql

IMPORTANT: This script won’t execute in the Command Center interface beyond version 7.
It uses the ‘\' line continuation character. Later versions of the Command Center don’t
recognize this character.

4 Delete the idm_db2.jar file.

4.3.2 Informix Dynamic Server (IDS) Uninstallation
The directory context for Informix SQL scripts is install-
dir\jdbc\sql\informix_ids\install.

1 Drop the idm operating system user account.
2 Start a client such as SQL Editor.
3 Log on to your server as user informix or another user with DBA (database administrator)

privileges.
By default, the password for informix is informix.
If you execute scripts as a user other than informix, change all references to informix in the
install scripts prior to execution.

4 If you aren’t using the informix account with the default password, change the name of the
DBA account name and password in the installation scripts if you haven’t already done so.

5 Open and execute uninstall.sql from the ansi (transactional, ANSI-compliant), log
(transactional, non-ANSI-compliant), or no_log (non-transactional, non-ANSI-compliant)
subdirectory, depending upon which type of database you installed.

4.3.3 Microsoft SQL Server Uninstallation
The directory context for Microsoft SQL Server scripts is install-
dir\jdbc\sql\mssql\install.

1 Start a client such as Query Analyzer.
2 Log on to your database server as user sa.

By default, the sa user has no password.
3 Open and execute the first installation script uninstall.sql.

The execute hotkey in Query Analyzer is F5.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
4.3.4 MySQL Uninstallation
The directory context for MySQL SQL scripts is install-
dir\jdbc\sql\mysql\install.

1 From a MySQL client, such as mysql, log on as user root or another user with administrative
privileges.

For example, from the command line execute
mysql -u root -p

By default, the root user has no password.
2 Execute the uninstallation script uninstall.sql.

For example:
mysql> \. c:\uninstall.sql

Don’t use a semicolon to terminate this statement.

4.3.5 Oracle Uninstallation
The directory context for Oracle SQL scripts is install-dir\jdbc\sql\oracle\install.

1 From an Oracle client, such as SQL Plus, log on as user SYSTEM.

By default, the password for SYSTEM is MANAGER.

If you execute scripts as a user other than SYSTEM with password MANAGER, change all
references to SYSTEM in the scripts prior to execution.

2 Execute the uninstallation script uninstall.sql.
For example:
SQL> @c:\uninstall.sql

4.3.6 PostgreSQL Uninstallation
The directory context for PostgreSQL scripts is install-
dir\jdbc\sql\postgres\install. The directory context for executing Postgres
commands is postgres-install-dir/pgsql/bin.

1 From a Postgres client such as psql, log on as user postgres to the idm database.

For example, from the UNIXC command line, execute
./psql -d idm postgres

By default, the Postgres user has no password.
2 From inside psql, execute the script uninstall.sql.

For example:
idm=# \i uninstall.sql

3 Drop the database idm.
For example, from the UNIX command line, execute
./dropdb idm

4 Remove or comment out entries for the idm user from the pg_hba.conf file.
Uninstalling the IDM Driver for JDBC 49

50 Identity Man

novdocx (E
N

U
) 9 January 2007
For example:
#host idm idm 255.255.255.255 255.255.255.0

5 Restart the Postgres server to effect changes made to the pg_hba.conf file.

4.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation
The directory context for Sybase SQL scripts is install-
dir\jdbc\sql\sybase_ase\install.

1 From a Sybase client, such as isql, log on as user sa.
2 Execute the installation script uninstall.sql.

For example, from the command line, execute
isql -U sa -P -i uninstall.sql

By default, the sa account has no password.
ager Driver for JDBC 2.1: Implementation Guide

5
novdocx (E

N
U

) 9 January 2007
5Configuring the Identity Manager
Driver for JDBC

Section 5.1, “Smart Configuration,” on page 51
Section 5.2, “Configuration Parameters,” on page 53
Section 5.3, “Driver Parameters,” on page 54
Section 5.4, “Subscription Parameters,” on page 76
Section 5.5, “Publication Parameters,” on page 85
Section 5.6, “Trace Levels,” on page 94
Section 5.7, “Configuring Third-Party JDBC Drivers,” on page 95

5.1 Smart Configuration
The Identity Manager Driver for JDBC can recognize the supported set of third-party JDBC drivers
and databases. Also, the driver can dynamically and automatically configure the majority of driver
compatibility parameters. These features alleviate the need for the end user to understand and
explicitly set such parameters.

These features are implemented via the following four types of XML descriptor files, which
describe a third-party JDBC driver or database to the Driver for JDBC.

Third-party JDBC driver
Third-party JDBC driver import
Database
Database import

Reserved Filenames for Descriptor Files

Descriptor filenames that ship with the driver begin with the underscore character (_). Such
filenames are reserved to ensure that descriptor files that ship with the driver do not conflict with
custom descriptor files. Obviously, custom descriptor filenames must not begin with the underscore
character.

Import Descriptor Files

Import descriptor files allow multiple, nonimport descriptor files to share content. This functionality
reduces the size of nonimport descriptor files, minimizes the need for repetition of content, and
increases maintainability. Import files cannot be imported across major types. That is, JDBC driver
descriptors cannot import database imports, and database descriptors cannot import JDBC driver
imports.

Furthermore, custom nonimport descriptors cannot import reserved descriptor imports. For example,
if a custom third-party JDBC driver descriptor file named custom.xml tries to import a reserved
Configuring the Identity Manager Driver for JDBC 51

52 Identity Man

novdocx (E
N

U
) 9 January 2007
third-party JDBC driver descriptor named _reserved.xml, an error is issued. These limitations
accomplish the following:

Ensure that no dependencies exist between reserved and custom import files
Allow extension of existing reserved descriptor files in later versions of the driver

Descriptor File Locations

Descriptor files must be located in a jar file whose name begins with the prefix “jdbc” (case-
insensitive) and resides in the runtime classpath.

The following table identifies where to place descriptors within a descriptor jar file:

Table 5-1 Where to Place Descriptors

Reserved descriptor files are located in the JDBCConfig.jar file. To ensure that these reserved
files are not overwritten when the Driver for JDBC is updated, place custom descriptors in a
different jar file.

Precedence

Parameters explicitly specified through a management console, such as iManager, always have
precedence over parameters specified through descriptor files. Descriptor file parameters only take
effect when a parameter is not set through the management console.

Parameters and other information specified in a nonimportable descriptor file always have
precedence over that specified in descriptor import files. If a parameter or other information is
duplicated within a descriptor file, the first instance of the parameter or information takes
precedence over subsequent instances.

Between import files, precedence is determined by import order. Import files declared earlier in the
import list take precedence over those that follow.

Custom Descriptor Best Practices

Do not begin custom descriptor files name with the underscore (_) character.
Place custom descriptor files in a jar file other than JDBCConfig.jar, and begin the
filename with the prefix “jdbc” (case-insensitive).

Descriptor Type Directory Path

Third-party JDBC driver com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver

Third-party JDBC driver import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver/import

Database com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db

Database import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db/import
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Do not use custom descriptors to import reserved import files (filenames that begin with the
underscore character).

Descriptor File DTDs

The following appendixes contain DTDs for all descriptor file types. These DTDs can help you
construct custom descriptor files.

Table 5-2 Where to Find Descriptor DTDs

5.2 Configuration Parameters
Section 5.2.1, “Viewing Driver Parameters,” on page 53
Section 5.2.2, “Deprecated Parameters,” on page 53
Section 5.2.3, “Authentication Parameters,” on page 54

5.2.1 Viewing Driver Parameters
1 In iManager, click Identity Manager > Identity Manager Overview.
2 Locate the driver set containing the driver, then click the driver’s icon.
3 From the Identity Manager Driver Overview, click the driver object.

iManager displays the driver’s configuration parameters.

5.2.2 Deprecated Parameters
The following parameters have been deprecated since version 1.6:

Table 5-3 Deprecated Parameters

Descriptor Type Appendix

Third-party JDBC driver Appendix F, “Third-Party JDBC Driver Descriptor DTD,” on page 187

Third-party JDBC driver
import

Appendix G, “Third-Party JDBC Driver Descriptor Import DTD,” on
page 189

Database Appendix H, “Database Descriptor DTD,” on page 191

Database import Appendix I, “Database Descriptor Import DTD,” on page 193

Tag Name Justification

connection-tester-class The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.
Configuring the Identity Manager Driver for JDBC 53

54 Identity Man

novdocx (E
N

U
) 9 January 2007
5.2.3 Authentication Parameters
After you import the driver, provide authentication information for the target database.

Authentication ID

An Authentication ID is the name of the driver’s database user/login account.The installation SQL
script for each database provides information on the database privileges required for this account to
authenticate to a supported database. The scripts are located in the install-dir\tools\sql\abbreviated-
database-name\install install-dir\tools\sql\abbreviated-database-name\install directory.

This value can be referenced in the Connection Properties parameter value via the token
{$username}. See “Connection Properties” on page 66.

The default value for the sample configuration is idm.

Authentication Context

The authentication context is the JDBC URL of the target database.

URL format and content are proprietary. They differ between third-party JDBC drivers. However,
they have some similarities in content. Each URL, whatever the format, usually includes an IP
address or DNS name, port number, and a database identifier. For the exact syntax and the content
requirements of your driver, consult your third-party driver documentation.

For a list of JDBC URL syntaxes for supported third-party drivers, see “JDBC URL Syntaxes” on
page 152.

IMPORTANT: Changing anything in this value other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

Application Password

An application password is the password for the driver’s database user/login account. The default
value for the sample driver configuration is novell.

This value can be referenced in the Connection Properties parameter value via the token
{$password}. See “Connection Properties” on page 66.

5.3 Driver Parameters
The following table summarizes all driver-level parameters and their properties:

connection-test-stmt The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.

reconnect-interval The reconnect interval is now fixed at 30 seconds on both channels.

Tag Name Justification
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Table 5-4 Driver Parameters and Properties

Display Name Tag Name Sample Value Default Value Required

Third-Party JDBC
Driver Class Name

jdbc-class oracle.jdbc.driver.OracleDri
ver

(none) yes

Time Syntax time-syntax 1 (integer) 1 (integer) no

Synchronization Filter sync-filter schema (include by
schema membership)

(none) no

Schema Name sync-schema indirect (none) yes1

Include Filter
Expression

include-table-filter IDM_.* (none) no

Exclude Filter
Expression

exclude-table-filter BIN\$.{22}==\$0 (none) no

Table/View Names sync-tables usr (none) yes1

Connection Initialization
Statements

connection-init USE idm (none) no

Use Minimal Number of
Connections?

use-single-connection 0 (no) (dynamic3) no

Connection Properties connection-properties USER={$username};
PASSWORD={$password}

(dynamic3) no

State directory state-dir . (current directory) . (current
directory)

no

JDBC Driver Descriptor
Filename

jdbc-driver-descriptor ora_client_thin.xml (none) no

Database Descriptor
Filename

database-descriptor ora_10g.xml (none) no

Use Manual
Transactions?

use-manual-
transactions

1 (yes) (dynamic2) no

Transaction Isolation
Level

transaction-isolation-
level

read committed (dynamic3) no

Reuse Statements? reuse-statements 1 (reuse) (dynamic3) no

Number of Returned
Result Sets

handle-stmt-results one (dynamic3) no

Enable Statement-
Level Locking?

enable-locking 1 (yes) 0 (no) no

Lock Statement
Generator Class

lock-generator-class com.novell.nds.dirxml.drive
r.jdbc.db.lock.OraLockGen
erator

(dynamic3) no

Enable Referential
Attribute Support?

enable-refs 1 (yes) 1 (yes) no

Enable Meta-Identifier
Support?

enable-meta-identifiers 1 (yes) 1 (yes) no
Configuring the Identity Manager Driver for JDBC 55

56 Identity Man

novdocx (E
N

U
) 9 January 2007
1 One of these mutually-exclusive parameters must be present if the Synchronization Filter
parameter is not present. See “Synchronization Filter” on page 60.
2 This default is derived dynamically at runtime from descriptor files and database metadata.
3 This default is derived dynamically from descriptor files at runtime.

Driver parameters fall into the following subcategories:

Section 5.3.1, “Uncategorized Parameters,” on page 56
Section 5.3.2, “Database Scoping Parameters,” on page 60
Section 5.3.3, “Connectivity Parameters,” on page 64
Section 5.3.4, “Compatibility Parameters,” on page 67

5.3.1 Uncategorized Parameters
“Third-Party JDBC Driver Class Name” on page 56
“Time Syntax” on page 57
“State Directory” on page 59

Third-Party JDBC Driver Class Name

This parameter is the fully-qualified Java class name of your third-party JDBC driver.

The following table lists the properties of this parameter:

Table 5-5 Third-Party JDBC Driver Class Name: Properties

Force Username Case force-username-case upper (to uppercase) (none) no

Left Outer Join
Operator

left-outer-join-operator (+) (dynamic3) no

Retrieve Minimal
Metadata

minimal-metadata 0 (no) (dynamic3) no

Function Return
Method

function-return-method result set (dynamic3) no

Supports Schemas in
Metadata Retrieval?

supports-schemas-in-
metadata-retrieval

1 (yes) (dynamic3) no

Sort Column Names By column-position-
comparator

com.novell.nds.dirxml.drive
r.jdbc.util.config.comp.Strin
gByteComparator
(hexadecimal value)

(dynamic3) no

Property Value

Tag Name jdbc-class

Required? yes

Case-Sensitive? yes

Display Name Tag Name Sample Value Default Value Required
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
For a list of supported third-party JDBC driver classnames, see “JDBC Driver Class Names” on
page 152.

Time Syntax

The Time Syntax parameter specifies the format of time-related data types that the driver returns.
The format can be any of the following options:

“Return Database Time, Date, and Timestamp Values as 32-Bit Integers” on page 57
“Return Database Time, Date, and Timestamp Values as Canonical Strings” on page 57
“Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String” on page 58

Return Database Time, Date, and Timestamp Values as 32-Bit Integers

This is the default.

eDirectory Time and Timestamp syntaxes are composed of unsigned, 32-bit integers that express the
number of whole seconds that have elapsed since 12:00 a.m., January 1st, 1970 UTC. The maximum
range of this data type is approximately 136 years. When interpreted as unsigned integers (as
originally intended), these syntaxes are capable of expressing dates and times to the second in the
range of 1970 to 2106. When interpreted as a signed integer, these syntaxes are capable of
expressing dates and times to the second in the range of 1901 to 2038.

This option has two problems:

Identity Vault Time and Timestamp syntaxes cannot express as large a date range as database
Date or Timestamp syntaxes.
Identity Vault Time and Timestamp syntaxes are granular to the second. Database Timestamp
syntaxes are often granular to the nanosecond.

The second and third options overcome these two limitations.

NOTE: Map the database Time, Date, and Timestamp values to eDirectory attributes of type Time
or Timestamp.

Return Database Time, Date, and Timestamp Values as Canonical Strings

The following table shows abstract database data types and their corresponding canonical string
representations:

Table 5-6 Database Types and Canonical String Representations

Sample Value oracle.jdbc.driver.OracleDriver

Default Value (none)

JDBC Data Type Canonical String Format1

java.sql.Time HHMMSS

Property Value
Configuring the Identity Manager Driver for JDBC 57

58 Identity Man

novdocx (E
N

U
) 9 January 2007
1 C = century, Y = year, M = month D = day, H = hour, M= minute, S = second, N = nano

These fixed-length formats collate in chronological order on any platform in any locale. Even
though the precision of nanoseconds varies by database, the length of Timestamps does not.

NOTE: Map the database Time, Date, and Timestamp values to attributes of type Numeric String.

Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String

The following table shows abstract database data types and their corresponding Java String
representations:

Table 5-7 Database Types and Java String Formats

1 y= year, m= month, d= day, h= hour, m= minute, s= second, f= nano

These fixed-length formats collate in chronological order on any platform in any locale. The
precision of nanoseconds, and hence the length of Timestamps, varies by database.

NOTE: Map the database Time, Date, and Timestamp values to attributes of type Case Ignore/Case
Exact String.

The following table lists the properties of the Time Syntax parameter:

Table 5-8 Time Syntax: Properties

java.sql.Date CCYYMMDD

ava.sql.Timestamp CCYYMMDDHHMMSSNNNNNNNNN

JDBC Data Type Java String Format1

java.sql.Time hh:mm:ss

java.sql.Date yyyy-mm-dd

java.sql.Timestamp yyyy-mm-dd hh:mm:ss.fffffffff

Property Value

Tag Name time-syntax

Required? no

Default Value 1 (integer)

Legal Values 1 (integer)
2 (canonical string)
3 (java string)

Schema-Dependent? True

JDBC Data Type Canonical String Format1
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
State Directory

The State Directory parameter specifies where a driver instance should store state data. State data is
currently used for triggerless publication. See “Triggerless Publication Parameters” on page 90.
State data might be used to store additional state information in the future.

Each driver instance has two state files. State filenames follow the formats jdbc_driver-instance-
guid.db and jdbc_driver-instance-guid.lg. For example, jdbc_bd2a3dd5-d571-4171-a195-
28869577b87e.db and jdbc_bd2a3dd5-d571-4171-a195-28869577b87e.lg are state filenames.

State files are named to be unique. These names are not intuitive. The names begin with jdbc_ and
end in .lg or .db. The rest of the filename is a GUID value that must be looked up by using a
directory browser that can display it.

Defunct state files (those belonging to deleted drivers) in the state directory are deleted each time a
driver instance with the same state directory is started.

Changes That Can Force Triggerless Publisher Resynchronization

If you delete state files, the triggerless publisher will build new state files by resynchronizing. If you
move the JDBC driver without moving the state files, the triggerless publisher builds new state files
by resynchronizing. Changing to and from the Remote Loader is a move. Therefore, if you move the
JDBC driver using triggerless publication and want to avoid a full resync, also move all jdbc_*.lg
and jdbc_*.db files in the state directory.

If more than two files exist in the specified state directory, you must look up the GUID to know
which files belong to the driver instance being moved. To identify a driver instance’s state files, you
can use DSTrace or DSBrowse. For convenience, the IDM engine traces each driver's GUID in
DSTrace on startup.You can use Dsbrowse to find the GUID.

If no value is provided for the state directory parameter, or the value is '.', the state directory is the
current directory. The current directory depends upon the following:

The platform that the driver is running on
Whether the driver is running locally or remotely

When a process is started, a default directory in the file system is assigned to it. The default
directory is the current directory "." If you don't supply a value, the default State Directory is the
current directory (the one that the process is running in).

Table 5-9 Default Directories

The current directory might be different for a custom installation.

Platform or Environment Default Directory

Windows, for the Remote Loader novell\remoteloader

Windows, for Identity Manager (local; not on the
Remote Loader)

c:\novell\nds\dibfiles

NetWare (local) _netware
Configuring the Identity Manager Driver for JDBC 59

60 Identity Man

novdocx (E
N

U
) 9 January 2007
No data is lost when resynchronization occurs, although additional data might remain. For example,
because deletes are not captured, users that were deleted in the database during the move will not be
disabled/deleted (depending upon policy).

Moving the driver is not to be undertaken whimsically. As a rule of thumb, don't move the driver
unless you must do so.

Properties

The following table lists the properties of the State Directory parameter:

Table 5-10 State Directory: Properties

5.3.2 Database Scoping Parameters
“Synchronization Filter” on page 60
“Schema Name” on page 62
“Include Filter Expression” on page 63
“Exclude Filter Expression” on page 63
“Table/View Names” on page 64

Synchronization Filter

The Synchronization Filter parameter determines which database objects, such as tables and views,
are members of the synchronization schema (the set of tables/views visible to the driver at runtime).
With the addition of this parameter, the driver can now run in two modes: schema-aware or schema-
unaware.

Schema-Unaware Mode. When the Synchronization Filter parameter is present and set to empty
(exclude all tables/views), the driver is schema-unaware. It does not retrieve table/view metadata on
startup. Therefore, no metadata methods are required. See Appendix D, “java.sql.DatabaseMetaData
Methods,” on page 179.

When schema-unaware, the synchronization schema can be empty. Both the Schema Name and
Sync Tables/Views parameters are completely ignored. Neither is required. Both can be absent,
present, valued or valueless. See “Schema Name” on page 62 and “Table/View Names” on page 64.

In schema-unaware mode, the driver acts as a pass-through agent for embedded SQL. In this state,
standard XDS events (for example, Add, Modify, and Delete) are ignored. See Chapter 9,
“Embedded SQL Statements in XDS Events,” on page 123. Also, triggered or triggerless
publication no longer work.

Property Value

Tag Name state-dir

Required? no

Case-Sensitive? platform-dependent

Sample Value c:\novell\nds\DIBFiles

Default Value . (current directory)
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Schema-Aware Mode. When the Synchronization Filter parameter is not present or set to a value
other than empty (exclude all tables/views), the driver is schema-aware. It retrieves table/view
metadata on a limited number of tables/view to facilitate data synchronization. You can cache
metadata on all tables/views owned by a single database user (include by schema membership), or
cache metadata on an explicit list of table/view names (include by table/view name). When schema-
aware, the driver retrieves database table/view metadata on startup. For a list of required metadata
methods, see Appendix D, “java.sql.DatabaseMetaData Methods,” on page 179.

When schema-aware, parameter Schema Name or Table/View Names must be present and have a
value. Because these two parameters are mutually exclusive, only one parameter can have a value.
See “Schema Name” on page 62 and “Table/View Names” on page 64.

The following table lists parameters that require the driver to be schema-aware. When the driver is
schema-unaware, these parameters do not have any effect on driver behavior.

Table 5-11 Schema-Dependent Parameters

Parameter

Lock Statement Generator Class

Enable Referential Attribute Support?

Enable Meta-Identifier Support?

Left Outer Join Operator

Retrieve Minimal Metadata

Supports Schemas in Metadata Retrieval?

Sort Column Names By

Disable Statement-Level Locking

Check Update Counts?

Add Default Values on Insert?

Generation/Retrieval Method (Table-Global)

Retrieval Timing (Table-Global)

Retrieval Timing

Disable Publisher?

Disable Statement-Level Locking?

Publication Mode

Enable Future Event Processing?

Event Log Table Name

Delete Processed Rows?

Allow Loopback?

Startup Option

Polling Interval (In Seconds)
Configuring the Identity Manager Driver for JDBC 61

62 Identity Man

novdocx (E
N

U
) 9 January 2007
The following table lists the properties of this parameter:

Table 5-12 Synchronization Filter: Properties

Schema Name

The Schema Name parameter identifies the database schema being synchronized. A database
schema is analogous to the name of the owner of the tables or views being synchronized. For
example, to synchronize two tables, usr and grp, each belonging to database user idm, you enter
idm as this parameter’s value.

When using this parameter instead of Table/View Names, names of database objects are implicitly
schema-qualified by the driver. As such, parameters referencing stored procedure, function, or table
names do not need to be schema-qualified unless they reside in a schema other than the one
specified here. In particular, Method and Timing (Table-Local) and Event Log Table Name are
affected. See “Table/View Names” on page 64, “Method and Timing (Table-Local)” on page 81, and
“Event Log Table Name” on page 89.

The following table lists the properties of this parameter:

Table 5-13 Schema Name: Properties

Publication Time of Day

Post Polling Statements

Batch Size

Property Value

Tag Name sync-filter

Required? no

Case-Sensitive? no

Sample Value indirect

Legal Values empty (exclude all tables/views)
schema (include by schema membership)
list (include by table/view name)

Default Value: (none)

Property Value

Tag Name sync-schema

Required? yes1

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 140.

Sample Value indirect

Parameter
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
1 When the Schema Name parameter is used without the Synchronization Filter parameter, the
Table/View Names parameter must be left empty or omitted from a configuration. See
“Synchronization Filter” on page 60 and “Table/View Names” on page 64.

IMPORTANT: Changing the value of the Schema Name parameter forces a resync of all objects
when triggerless publication is used.

Include Filter Expression

The Include Filter Expression parameter is only operative when the Schema Name parameter is
used. See “Schema Name” on page 62.

The following table lists the properties of this parameter:

Table 5-14 Include Filter Expression: Properties

Exclude Filter Expression

This parameter is only operative when the Schema Name parameter is used. See “Schema Name” on
page 62.

The following table lists the properties of this parameter:

Table 5-15 Exclude Filter Expression: Properties

Default Value: (none)

Property Value

Tag Name include-table-filter

Required? no

Case-Sensitive? yes

Sample Value idm_*. (all table/view names starting with “idm_”)

Default Value (none)

Legal Values (any legal Java regular expression)

Property Value

Tag Name exclude-table-filter

Required? no

Case-Sensitive? yes

Sample Value bin*. (all table/view names starting with “bin”)

Default Value (none)

Property Value
Configuring the Identity Manager Driver for JDBC 63

64 Identity Man

novdocx (E
N

U
) 9 January 2007
Table/View Names

The Table/View Names parameter allows you to create a logical database schema by listing the
names of the logical database classes to synchronize. Logical database class names are the names of
parent tables and views. It is an error to list child table names.

This parameter is particularly useful for synchronizing with databases that do not support the
concept of schema, such as MySQL, or when a database schema contains a large number of tables or
views of which only a few are of interest. Reducing the number of table/view definitions cached by
the driver can shorten startup time as well as reduce runtime memory utilization.

When using this parameter instead of Schema Name, you likely need to schema-qualify other
parameters that reference stored procedure, function, or table names. In particular, the Method and
Timing (Table-Local) and Event Log Table Name parameters are affected. See “Schema Name” on
page 62, “Method and Timing (Table-Local)” on page 81 and “Event Log Table Name” on page 89.

The following table lists the properties of this parameter:

Table 5-16 Table/View Names: Properties

1When this parameter is used without the Synchronization Filter parameter, the Schema Name
parameter must be left empty or omitted from a configuration. See “Synchronization Filter” on
page 60 and “Schema Name” on page 62.

IMPORTANT: Changing anything in the Table/View Name parameter other than URL properties
forces a resynchronization of all objects when triggerless publication is used.

5.3.3 Connectivity Parameters
“Use Minimal Number of Connections?” on page 65
“Connection Initialization Statements” on page 65
“Connection Properties” on page 66

Legal Values (any legal Java regular expression)

Property Value

Tag Name sync-tables

Required? yes1

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 140.

Delimiters semicolon, white space, comma

Sample Value indirect.usr; indirect.grp

Default Value (none)

Property Value
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Use Minimal Number of Connections?

The Use Minimal Number of Connections? parameter specifies whether the driver should use two
instead of three database connections.

By default, the driver uses three connections: one for subscription, and two for publication. The
Publisher channel uses one of its two connections to query for events and the other to facilitate
query-back operations.

When this parameter is set to Boolean True, the number of required database connections is reduced
to two. One connection is shared between the Subscriber and Publisher channels. It is used to
process subscription and publication query-back events. The other is used to query for publication
events.

In previous versions, the driver was able to support bidirectional synchronization by using a single
connection. The publication algorithm was redesigned to increase performance, enable support for
future event processing, and to overcome limitations of the previous algorithm at the expense of
requiring an additional connection.

Table 5-17 Use Minimal Number of Connections?: Properties

1This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean False.

NOTE: Setting this parameter to Boolean True reduces performance.

Connection Initialization Statements

The Connection Initialization Statements parameter specifies what SQL statements, if any, should be
executed immediately after connecting to the target database. Connection initialization statements
are useful for changing database contexts and setting session properties. These statements are
executed each time the driver, irrespective of channel, connects or reconnects to the target database.

The following table lists the properties of this parameter:

Table 5-18 Connection Initialization Statements: Properties

Property Value

Tag Name use-single-connection

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False

Property Value

Tag Name connection-init
Configuring the Identity Manager Driver for JDBC 65

66 Identity Man

novdocx (E
N

U
) 9 January 2007
Connection Properties

The Connection Properties parameter specifies authentication properties. This parameter is useful
for specifying properties that cannot be set via the JDBC URL specified in the Authentication
Context parameter. See “Authentication Context” on page 54.

The primary purpose of this parameter is to enable encrypted transport for third-party JDBC drivers.
For a list of relevant connection properties, see “Sybase Adaptive Server Enterprise JConnect JDBC
Driver” on page 164 and “Oracle Thin Client JDBC Driver” on page 160.

Connection properties are specified as key-value pairs. The key is specified as the value to the left of
the “=” character. The value is the value to the right of the “=” character. You can specify multiple
key-value pairs, but each pair must be delimited by the “;” character.

When you use the Connection Properties parameter, authentication information can be passed via
the JDBC URL specified in the Authentication Context parameter or here. See “Authentication
Context” on page 54.

If specified as connection properties, value tokens can be used as placeholders for the database
username specified in the Authentication ID parameter and the password specified in the
Application Password parameter. See “Authentication ID” on page 54 and “Application Password”
on page 54. For username, the token is {$username}. For password, the token is
{$password}.

The following table lists the properties of this parameter:

Table 5-19 Connection Properties: Properties

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 140.

Delimiters semicolon

Sample Value USE idm; SET CHAINED OFF

Default Value (none)

Schema-Dependent False

Property Value

Tag Name connection-properties

Required? no

Case-Sensitive? third-party JDBC driver-dependent

Delimiters semicolon

Sample Value USER={$username}; PASSWORD={$password};
SYBSOCKET_FACTORY=DEFAULT

Default Value (none)

Schema-Dependent False

Property Value
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
5.3.4 Compatibility Parameters
“JDBC Driver Descriptor Filename” on page 67
“Database Descriptor Filename” on page 68
“Use Manual Transactions?” on page 68
“Transaction Isolation Level” on page 69
“Reuse Statements?” on page 70
“Number of Returned Result Sets” on page 70
“Enable Statement-Level Locking?” on page 71
“Lock Statement Generator Class” on page 71
“Enable Referential Attribute Support?” on page 72
“Enable Meta-Identifier Support?” on page 72
“Force Username Case” on page 73
“Left Outer Join Operator” on page 74
“Retrieve Minimal Metadata” on page 74
“Function Return Method” on page 75
“Supports Schemas in Metadata Retrieval?” on page 75
“Sort Column Names By” on page 76

JDBC Driver Descriptor Filename

The JDBCDriver Descriptor Filename parameter specifies the third-party JDBC descriptor file to
use. Descriptor file names must not be prefixed with the underscore character (for example,
_mysql_jdriver.xml) because such filenames are reserved. Place descriptor files in a jar file
beginning with the case-insensitive prefix “jdbc” (for example, JDBCCustomConfig.jar) and
in the jar file’s com/novell/nds/dirxml/driver/jdbc/db/descriptor/driver
directory.

The following table lists the properties of this parameter:

Table 5-20 JDBC Driver Descriptor Filename: Properties

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_jdbc_driver_descriptor.xml

Default Value (none)

Schema-Dependent False
Configuring the Identity Manager Driver for JDBC 67

68 Identity Man

novdocx (E
N

U
) 9 January 2007
Database Descriptor Filename

The Database Descriptor Filename parameter specifies the database descriptor file to use. Do not use
the underscore character in prefixes to Descriptor filenames (for example, _mysql.xml). Such
names are reserved. Place Descriptor files in a jar file beginning with the case-insensitive prefix
“jdbc” (for example, JDBCCustomConfig.jar). Also, place Descriptor files in the jar file’s
com/novell/nds/dirxml/driver/jdbc/db/descriptor/db directory.

The following table lists the properties of this parameter:

Table 5-21 Database Descriptor Filename: Properties

Use Manual Transactions?

The Use Manual Transactions? parameter specifies whether to use manual or user-defined
transactions.

This parameter is primarily used to enable interoperability with MySQL MyISAM table types,
which do not support transactions.

When set to Boolean True, the driver uses manual transactions. When set to Boolean False, each
statement executed by the driver is executed autonomously (automatically).

The following table lists the properties of this parameter:

Table 5-22 Use Manual Transactions?: Properties

1This default is derived dynamically from descriptor files and database metadata at runtime.

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_database_descriptor.xml

Default Value (none)

Schema-Dependent False

Property Value

Tag Name use-manual-transactions

Required? no

Case-Sensitive? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
NOTE: To ensure data integrity, set this parameter to Boolean True whenever possible.

Transaction Isolation Level

The Transaction Isolation Level parameter sets the transaction isolation level for connections that
the driver uses. Six values exist:

unsupported

none

read uncommitted

read committed

repeatable read

serializable

Five of the values correspond to the public constants defined in the java.sql Interface Connection
(http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

Because some third-party drivers do not support setting a connection’s transaction isolation level to
none, the driver also supports the additional non-standardized value of unsupported.
PostgreSQL online documentation (http://www.postgresql.org/docs/current/static/transaction-
iso.html) has one of the better, concise primers on what each isolation level actually means.

IMPORTANT: The list of supported isolation levels varies by database. For a list of supported
transaction isolation levels for supported databases, see “Supported Transaction Isolation Levels” on
page 141.

We recommend using a transaction isolation level of read committed because it is the
minimum isolation level that prevents the driver from seeing uncommitted changes (dirty reads).

The following table lists the properties of this parameter:

Table 5-23 Transaction Isolation Level: Properties

Property Value

Tag Name transaction-isolation-level

Required? no

Case-Sensitive? no

Default Value (dynamic1)

Legal Values unsupported
none
read uncommitted
read committed
repeatable read
serializable

Schema-Dependent False
Configuring the Identity Manager Driver for JDBC 69

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

70 Identity Man

novdocx (E
N

U
) 9 January 2007
1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
read committed.

Reuse Statements?

The Reuse Statements? parameter specifies whether one or more java.sql.Statement items are active
at a time on a given connection. See java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/
java/sql/Statement.html).

This parameter is primarily used to enable interoperability with Microsoft SQL Server 2000 Driver
for JDBC.

When set to Boolean True, the driver allocates a Java SQL Statement once and then reuses it. When
set to Boolean False, the driver allocates/deallocates statement objects each time they are used,
ensuring that no more than one statement is active at a time on a given connection.

The following table lists the properties of this parameter:

Table 5-24 Reuse Statements?: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean True.

NOTE: Setting this parameter to Boolean False degrades performance.

Number of Returned Result Sets

The Number of Returned Result Sets parameter specifies how many java.sql.Result objects can be
returned from an arbitrary SQL statement. See java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/ResultSet.html).

This parameter is primarily used to avoid infinite loop conditions in “Oracle Thin Client JDBC
Driver” on page 160 when evaluating the results of arbitrary SQL statements.

The following table lists the properties of this parameter:

Property Value

Tag Name reuse-statements

Required? no

Case-Sensitive? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

novdocx (E
N

U
) 9 January 2007
Table 5-25 Number of Returned Result Sets: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
multiple, many, or yes.

Enable Statement-Level Locking?

The Enable Statement-Level Locking? parameter specifies whether the driver explicitly locks
database resources before executing SQL statements.

The following table lists the properties of this parameter:

Table 5-26 Enable Statement-Level Locking?: Properties

Lock Statement Generator Class

The Lock Statement Generator Class parameter specifies which DBLockStatementGenerator
implementation to use to generate the SQL statements necessary to explicitly lock database
resources for a pending SQL statement. Information on the DBLockStatementGenerator interface is
in the Java documents that ship with the driver.

The following table lists the properties of this parameter:

Property Value

Tag Name handle-stmt-results

Required? no

Sample Value one

Default Value (dynamic1)

Legal Values none, no (none)
single, one (one)
multiple, many, yes (multiple)

Schema-Dependent False

Property Value

Tag Name enable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
Configuring the Identity Manager Driver for JDBC 71

72 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 5-27 Lock Statement Generator Class: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
com.novell.nds.dirxml.driver.jdbc.db.lock.DBLockGenerator.

Enable Referential Attribute Support?

The Enable Referential Attribute Support? parameter toggles whether the driver recognizes foreign
key constraints between logical database classes. These are used to denote containment. Foreign key
constraints between parent and child tables within a logical database class are unaffected.

When set to Boolean True, foreign key columns are interpreted as referential. When set to Boolean
False, foreign key columns are interpreted as non-referential.

The primary purpose of this parameter is to ensure backward compatibility with the 1.0 version of
the driver. For 1.0 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 5-28 Enable Referential Attribute Support?: Properties

Enable Meta-Identifier Support?

The Enable Meta-Identifier Support? parameter toggles whether the driver interprets view column
name prefixes such as “pk_” and “fk_” strictly as metadata. When interpreted as metadata, such
prefixes are not considered part of the view column name.

For example, when meta-identifier support is enabled, column “pk_idu” has an effective column
name of “idu,” prohibiting the existence of another column with the same effective name in the same

Property Value

Tag Name lock-generator-class

Required? no

Sample Value com.novell.nds.dirxml.driver.jdbc.db.lock.OraLockGenerator

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name enable-refs

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
view. When meta-identifier support is disabled, column “pk_idu” has the effective column name of
“pk_idu,” allowing the existence of another column named “idu.” Furthermore, when meta-
identifier support is enable, a view with a primary key named “pk_idu” would conflict with a table
having a primary key column named “idu.” When meta-identifier support is disabled, they would
not conflict.

When set to Boolean True, view column prefixes are interpreted as metadata. When set to Boolean
False, view column name prefixes are interpreted as part of the column name proper.

The primary purpose of this parameter is to ensure backward compatibility with the 1.5 version of
the driver. For 1.5 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 5-29 Enable Meta-Identifier Support?: Properties

Force Username Case

The Force Username Case parameter changes the case of the driver’s username used to authenticate
to the target database.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 156.

The following table lists the properties of this parameter:

Table 5-30 Force Username Case: Properties

Property Value

Tag Name enable-meta-identifiers

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name force-username-case

Required? no

Default Value (don’t force)

Legal Values lower (to lowercase)
mixed (to mixed case)
upper (to uppercase)

Schema-Dependent False
Configuring the Identity Manager Driver for JDBC 73

74 Identity Man

novdocx (E
N

U
) 9 January 2007
Left Outer Join Operator

The Left Outer Join Operator parameter specifies the left outer join operator used in the triggerless
publication query. It might be used for other purposes in the future.

The following table lists the properties of this parameter:

Table 5-31 Left Outer Join Operator: Properties

1This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
LEFT OUTER JOIN.

Retrieve Minimal Metadata

When set to Boolean True, the driver calls only required metadata methods. When set to Boolean
False, the driver calls required and optional metadata methods. For a list of required and optional
metadata methods, refer to Appendix D, “java.sql.DatabaseMetaData Methods,” on page 179.
Optional metadata methods are required for multivalue and referential attribute synchronization.

Table 5-32 Retrieve Minimal Metadata: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean False.

NOTE: Setting this value to Boolean True improves startup time and third-party JDBC driver
compatibility at the expense of functionality.

Property Value

Tag Name left-outer-join-operator

Required? no

Default Value (dynamic1)

Legal Values *=
(+)
LEFT OUTER JOIN

Schema-Dependent True

Property Value

Tag Name minimal-metadata

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Function Return Method

The Function Return Method parameter specifies how data is retrieved from database functions.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC driver.
See “Informix JDBC Driver” on page 156.

When set to result set, function results are retrieved through a result set. When set to return
value, the function result is retrieved as a single, scalar return value.

Table 5-33 Function Return Method: Properties

1 This default is derived dynamically from descriptor files at runtime.

Supports Schemas in Metadata Retrieval?

The Supports Schemas in Metadata Retrieval? parameter specifies whether schema names should be
used when retrieving database metadata.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 156.

When set to Boolean True, schema names are used. When set to Boolean False, they are not.

Table 5-34 Supports Schemas in Metadata Retrieval?: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean True.

Property Value

Tag Name function-return-method

Required? no

Default Value (dynamic1)

Legal Values result set
return value (scalar return value)

Schema-Dependent False

Property Value

Tag Name supports-schemas-in-metadata-retrieval

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False
Configuring the Identity Manager Driver for JDBC 75

76 Identity Man

novdocx (E
N

U
) 9 January 2007
Sort Column Names By

The Sort Column Names By parameter specifies how column position is to be determined for legacy
databases that do not support sorting by column names.

The primary purpose of this parameter is to enable interoperability with legacy databases, such as
DB2/AS400.

Sorting columns names by hexadecimal value ensures that if a driver instance is relocated to a
different server, it continues to function without modification. Sorting column names by platform or
locale string collation order is more intuitive, but might require configuration changes if a driver
instance is relocated to a different server. In particular, log table column order and compound
column name order might change. In the case of the latter, Schema-Mapping policies and object
association values might need to be updated. In the case of the former, log table columns might have
to be renamed.

It is also possible to specify any fully-qualified Java class name as long as the following occur:

The Java class name implements the java.util.Comparator (http://java.sun.com/j2se/1.5.0/docs/
api/java/util/Comparator.html) interface.
The Java class name accepts java.lang.String (http://java.sun.com/j2se/1.5.0/docs/api/java/
lang/String.html) arguments.
The class is in the runtime classpath.

Table 5-35 Sort Column Names By: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator.

IMPORTANT: After you set this parameter for a given configuration, don’t change the parameter.

5.4 Subscription Parameters
The following table summarizes Subscriber-level parameters and their properties:

Property Value

Tag Name column-position-comparator

Required? no

Default Value (dynamic1)

Legal Values com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator (hexadecimal
value)
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringComparator (string collation
order)
(any java.util.Comparator that accepts java.lang.String arguments)

Schema-
Dependent

True
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

novdocx (E
N

U
) 9 January 2007
Table 5-36 Subscriber-Level Parameters and Properties

1 This default is derived dynamically from descriptor files at runtime.

Subscription parameters are in two subcategories:

Section 5.4.1, “Uncategorized Parameters,” on page 77
Section 5.4.2, “Primary Key Parameters,” on page 79

5.4.1 Uncategorized Parameters
“Disable Subscriber?” on page 77
“Disable Statement-Level Locking?” on page 78
“Check Update Counts?” on page 78
“Add Default Values on Insert?” on page 79

Disable Subscriber?

The Disable Subscriber? parameter specifies whether the Subscriber channel is disabled.

When this parameter is set to Boolean True, the Subscriber channel is disabled. When the parameter
is set to Boolean False, the Subscriber channel is active.

Table 5-37 Disable Subscriber?: Properties

Display Name Tag Name Sample Value Default Value Required

Disable Subscriber? disable 1 (yes) 0 (no) no

Generation/Retrieval
Method (Table-Global)

key-gen-method auto none
(subscription
event)

Retrieval Timing (Table-
Global)

key-gen-timing after (after row insertion) before (before
row insertion)

no

Method and Timing
(Table-Local)

key-gen usr("?=indirect.proc_idu()",
before)

(none) no

Disable Statement-Level
Locking?

disable-locking 1 (yes) 0 (no) no

Check Update Counts? check-update-
count

0 (no) 1 (yes) no

Add Default Values on
Insert?

add-default-
values-on-view-
insert

0 (no) (dynamic1) no

Property Value

Tag Name disable

Required? no
Configuring the Identity Manager Driver for JDBC 77

78 Identity Man

novdocx (E
N

U
) 9 January 2007
Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources are
explicitly locked on this channel before each SQL statement is executed. This parameter is active
only if Enable Statement-Level Locking? is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 5-38 Disable Statement-Level Locking?: Properties

Check Update Counts?

The Check Update Counts? parameter specifies whether the Subscriber channel checks to see if a
table was actually updated when INSERT, UPDATE, and DELETE statements executed against a
table.

When set to Boolean True, update counts are checked. If nothing is updated, an exception is thrown.
When set to Boolean False, update counts are ignored.

When statements are redefined in before-trigger logic, set his parameter to Boolean False

When using Microsoft SQL Server, use the default value, because errors in trigger logic (that might
roll back a transaction) are not propagated back to the Subscriber channel.

Table 5-39 Check Update Counts?: Properties

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name check-update-count

Required? no

Default Value 1 (yes)

Property Value
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Add Default Values on Insert?

The Add Default Values on Insert? parameter specifies whether the Subscriber channel provides
default values when executing an INSERT statement against a view.

The primary purpose of this parameter is to enable interoperability with Microsoft SQL Server 2000.
This database requires that view columns constrained NOT NULL have a non-NULL value in an
INSERT statement.

When this parameter is set to Boolean True, default values are provided for INSERT statements
executed against views, and explicit values are not already available. When this parameter is set to
Boolean False, default values are not provided.

Table 5-40 Add Default Values on Insert?: Properties

1 This default is derived dynamically from descriptor files at runtime.

5.4.2 Primary Key Parameters
“Generation/Retrieval Method (Table-Global)” on page 80
“Retrieval Timing (Table-Global)” on page 81
“Method and Timing (Table-Local)” on page 81

When processing <add> events, which map to INSERT statements, the Subscriber channel uses
primary key values to create Identity Manager associations. These parameters specify how and when
the Subscriber channel obtains the primary key values necessary to construct association values.
How primary key values are obtained is the primary key generation/retrieval method. The retrieval
timing indicates when primary key values are retrieved.

The following table identifies the supported methods and timings:

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name add-default-values-on-view-insert

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value
Configuring the Identity Manager Driver for JDBC 79

80 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 5-41 Supported Methods and Timings

1 The Subscriber channel automatically overrides this timing to before.
2 The Subscriber channel automatically overrides this timing to after.

Generation/Retrieval Method (Table-Global)

The Generation/Retrieval Method (Table-Global) parameter specifies how primary key values are
generated or retrieved for all parent tables and views. The Method and Timing parameter overrides
this parameter on a per-table/view basis. See “Method and Timing (Table-Local)” on page 81.

When this parameter is set to none, primary key values are assumed to already exist in the
subscription event. When this parameter is set to driver, primary key values are generated by one
of the following:

Using a SELECT (MAX()+1) statement if retrieval timing is set to before
Using a SELECT MAX() statement if retrieval timing is set to after

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

When this parameter is set to auto, primary key values are retrieved via the
java.sql.Statement.getGeneratedKeys():java.sql.ResultSet method. The
MySQL Connector/J JDBC driver is the only supported third-party JDBC driver that currently
implements this method. See “MySQL Connector/J JDBC Driver” on page 160.

Table 5-42 Generation/Retrieval Method (Table-Global): Properties

Method Timing: before (row insertion) Timing: after (row insertion)

None (subscription event) X 01

Driver (Subscriber-generated) X X

Auto (auto-generated/identity column) 02 X

(stored procedure/function) X X

Property Value

Tag Name key-gen-method

Required? no

Default Value none (subscription event)

Legal Values none (subscription event)
driver (Subscriber-generated)
auto (auto-generated/identity column)

Schema-Dependent True
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Retrieval Timing (Table-Global)

The Retrieval Timing (Table-Global) parameter specifies when the Subscriber channel retrieves
primary key values for all parent tables and views. The parameter Method and Timing (Table-Local)
overrides this parameter. See “Method and Timing (Table-Local)” on page 81.

When this parameter is set to before, primary key values are retrieved before insertion. When this
parameter is set to after, primary key values are retrieved after insertion.

Table 5-43 Retrieval Timing (Table-Global): Properties

Method and Timing (Table-Local)

The Method and Timing (Table-Local) parameter specifies the primary key generation/retrieval
method and retrieval timing on a per parent table/view basis. It essentially maps a generation/
retrieval method and retrieval timing to a table or view name. The syntax for this parameter mirrors
a procedural programming language method call with multiple arguments (such as, method-
name(argument1, argument2)).

When using the Table/View Names parameter, you probably need to explicitly schema-qualify any
tables, views, stored procedures or functions referenced in this parameter’s value. When you use the
Schema Name parameter, tables, views, stored procedures, or functions referenced in this
parameter’s value are implicitly schema-qualified with that schema name. If tables, views, stored
procedures, or functions referenced in this parameter’s value are located in a different schema other
than the implicit schema, they must be schema-qualified.

BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for this parameter’s value is the following:
<key-gen> ::= <table-or-view-name> "(" <generation-retrieval-method>,

 <retrieval-timing> ")"
{[<delimiter>] <key-gen>}

<generation-retrieval-method> ::= none | driver | auto |
 """ <procedure-signature> """ |
 """ <function-signature> """

<table-or-view-name> ::= <legal-undelimited-database-table-or-view-
 identifier>

Property Value

Tag Name key-gen-timing

Required? no

Default Value before (before row insertion)

Legal Values before (before row insertion)
after (after row insertion)

Schema-Dependent True
Configuring the Identity Manager Driver for JDBC 81

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

82 Identity Man

novdocx (E
N

U
) 9 January 2007
<delimiter> ::= ";" | "," | <white-space>

<procedure-signature> ::= <schema-qualifier> "." <stored-routine-
 name>"("<argument-list>")"

<function-signature> ::= "?=" <procedure-signature>

<schema-qualifier> ::= <legal-undelimited-database-username-
identifier>

<stored-routine-name> ::= <legal-undelimited-database-stored-routine
 -identifier>

<argument-list> ::= <column-name>{"," <column-name>}

<column-name> ::= <column-from-table-or-view-name-previously-
specified>

Generation or Retrieval Method

The generation or retrieval method specifies how primary key values are to be generated, if
necessary, and retrieved. The possible methods are None, Driver, Auto, and Stored Procedure/
Function:

None
By default, the Subscriber channel assumes that the Identity Vault is the authoritative source of
primary key values and that the requisite values are already present in a given <add> event. If this
is the case, no primary values need to be generated because they already exist. They only need to be
retrieved from the current <add> event. This method is desirable when an eDirectory attribute, such
as GUID, is explicitly schema-mapped to a parent table or view’s primary key column.

Assuming the existence of a table named usr and a view named view_usr where the Identity
Vault is the authoritative source of primary key values, this parameter’s value would look something
like the following:

usr(none); view_usr(none)

When you use this method, we recommend mapping GUID rather than CN to a parent table or
view’s primary key column.

Driver
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

When prototyping or in the initial stages of deployment, it is often desirable to have the Subscriber
channel generate primary key values before a stored procedure or function is written. You can also
use this method against databases that do not support stored procedures or functions. When you use
this method in a production environment, however, all SQL statements generated by an <add>
event should be contained in a serializable transaction. For additional information, refer to
“Transaction Isolation Level” on page 69.

Instead of making all transactions serializable, you can also set individual transaction isolation
levels by using embedded SQL attributes. For additional information, refer to Section 9.6,
“Transaction Isolation Level,” on page 130.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
For any numeric column types, the Subscriber channel uses the following to generate primary key
values:

A simple SELECT(MAX+1)statement for before timing
A SELECT MAX()statement for after timing

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

Assuming the existence of a table named usr and a view named view_usr, where the database is
the authoritative source of primary key values, this parameter’s value would look something like the
following:

usr(driver); view_usr(driver)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Auto
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

Some databases support identity columns that automatically generate primary key values for
inserted rows. This method retrieves auto-generated primary key values through the JDBC 3
interface method
java.sql.Statement.getGeneratedKeys():java.sql.ResultSet. The MySQL
Connector/J JDBC driver is the only supported third-party JDBC driver that currently implements
this method. See “MySQL Connector/J JDBC Driver” on page 160.

Assuming the existence of a table named usr and a view named view_usr, where the database is
the authoritative source of primary key values, this parameter’s value would look something like the
following:

usr(auto); view_usr(auto)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Stored-Procedure/Function:
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

Assuming

The existence of a table named usr with a primary key column named idu
A view named view_usr with a primary key values named pk_idu
The existence of a database function func_last_usr_idu and stored procedure
sp_last_view_usr_pk_idu that both return the last generated primary key value for
their respective table/view

this parameter’s value would look something like the following:

usr("?=func_last_usr_idu()");
view_usr("sp_last_view_usr_pk_idu(pk_idu)")
Configuring the Identity Manager Driver for JDBC 83

84 Identity Man

novdocx (E
N

U
) 9 January 2007
In the previous examples, a parameter is passed to the stored procedure. Parameters can also be
passed to functions, but this is not usually necessary. Unlike functions, stored procedures usually
return values through parameters. For stored procedures, primary key columns must be passed as IN
OUT parameters. Non-key columns must be passed as IN parameters.

For both stored procedures and functions, parameter order, number and data type must correspond to
the order, number and data type of the parameters expected by the procedure or function.

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Retrieval Timing

The Retrieval Timing parameter specifies when primary key values are retrieved.

An <add> event always results in at least one INSERT statement against a parent table or view.
This portion of this parameter specifies when primary key values are to be retrieved relative to the
initial INSERT statement.

Before
This is the default setting. When this setting is specified, primary key values are retrieved before the
initial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except auto.
Retrieval timing is required for the none method.

After
When this setting is specified, primary key values are retrieved after the initial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except none.
Retrieval timing is required for the auto method.

The following examples augment the previous ones by adding retrieval timing information:

usr(none, before); view_usr(none, before)

usr(driver, before); view_usr(driver, after)

usr(auto, after); view_usr(auto, after)

usr("?=func_last_usr_idu()", before);
view_usr("sp_last_view_usr_pk_idu(pk_idu)", after)

The following table lists the properties of this parameter:

Table 5-44 Retrieval Timing: Properties

Property Value

Tag Name key-gen

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 140.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
5.5 Publication Parameters
The following table summarizes publisher-level parameters and their properties:

Table 5-45 Publisher-Level Parameters and Properties

1 Required for triggered publication mode.
2 These parameters are mutually exclusive.

Publication parameters fall into four major subcategories:

Section 5.5.1, “Uncategorized Parameters,” on page 86
Section 5.5.2, “Triggered Publication Parameters,” on page 88
Section 5.5.3, “Triggerless Publication Parameters,” on page 90

Sample Value usr("?=proc_idu()", before)

Default Value (none)

Legal Values (any string adhering to the BNF)

Schema-Dependent True

Display Name Tag Name Sample Value Default Value Required

Disable Publisher? disable 1 (yes) 0 (no) no

Disable Statement-Level
Locking?

disable-locking 1 (yes) 0 (no) no

Publication Mode publication-mode 2 (triggerless) 1 (triggered) no

Event Log Table Name log-table indirect_process (none) yes1

Delete Processed
Rows?

delete-from-log 0 (no) 1 (yes) no

Allow Loopback? allow-loopback 1 (yes) 0 (no) no

Enable Future Event
Processing?

handle-future-events 1 (yes) 0 (no) no

Startup Option startup-option no

Polling Interval (In
Seconds)

polling-interval 60 10 no2

Publication Time of Day time-of-day 15:30:00 (none) no2

Post Polling Statements post-poll-stmt DELETE FROM
direct.direct_process

(none) no

Batch Size batch-size 16 1 no

Heartbeat Interval (In
Minutes)

pub-heartbeat-interval 10 0 no

Property Value
Configuring the Identity Manager Driver for JDBC 85

86 Identity Man

novdocx (E
N

U
) 9 January 2007
Section 5.5.4, “Polling Parameters,” on page 91

5.5.1 Uncategorized Parameters
“Disable Publisher?” on page 86
“Disable Statement-Level Locking?” on page 86
“Publication Mode” on page 87
“Enable Future Event Processing?” on page 87

Disable Publisher?

The Disable Publisher? parameter specifies whether the Publisher channel is disabled. When
disabled, the Publisher channel does not query for database events. Unlike with the Disable
Subscriber? parameter, you can still issue database queries on the Publisher channel to facilitate
alternative publication algorithms.

When this parameter is set to Boolean True, the Publisher channel is disabled. When this parameter
is set to Boolean False, the Publisher channel is active.

Table 5-46 Disable Publisher?: Properties

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources should be
explicitly locked on this channel before each SQL statement is executed. This parameter is only
active if the Enable Statement-Level Locking? parameter is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 5-47 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Publication Mode

The Publication Mode parameter specifies which publication algorithm is used.

When set to 1 (triggered), the Publisher channel polls the event log table for events. When set to 2
(triggerless), the Publisher channel dredges all tables/views in the synchronization schema for
changes, and synthesizes events.

The following table lists the properties of this parameter:

Table 5-48 Publication Mode: Properties

Enable Future Event Processing?

For triggered publication, Enable Future Event Processing? specifies whether rows in the event log
table are ordered and processed by insertion order (the record_id column) or chronologically
(the event_time column).

When this parameter is set to Boolean False, rows in the event log table are published by order of
insertion. When this parameter is set to Boolean True, rows in the event log table are published
chronologically.

For triggerless publication, Enable Future Event Processing specifies whether database local time is
published with each event. This additional information can be used to force a retry of future-dated
events. In order for this to work, a column specifying when an event should be processed must be
part of each logical database class utilizing this feature and placed in the Publisher filter as a
notification-only attribute.

Database local time is published as an attribute on each XDS event (for example, add, modify,
delete). The attribute name is jdbc:database-local-time, where the jdbc namespace
prefix is bound to urn:dirxml:jdbc. The format is the Java string representation of a
java.sql.Timestamp: yyyy-mm-dd hh:mm:ss.fffffffff. Depending upon the value of the
Time Syntax parameter, the value indicating when an event should be processed can be published as
an integer, as a canonical string, or as a Java string. See “Time Syntax” on page 57.

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name publication-mode

Required? no

Default Value 1 (triggered)

Legal Values 1 (triggered)
2 (triggerless)

Schema-Dependent True

Property Value
Configuring the Identity Manager Driver for JDBC 87

88 Identity Man

novdocx (E
N

U
) 9 January 2007
Regardless of the publication syntax, this value can be parsed and compared to the database local
time value. The following table maps the time syntax to the appropriate parse method.

Table 5-49 Mapping Time Syntax to Parse Methods

After both time values are in a common Timstamp object representation, they can be compared by
using the following methods:

com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil.before(java.sql.Timestamp,
java.sql.Timestamp):boolean
com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil.after(java.sql.Timestamp,
java.sql.Timestamp):boolean

An example policy is provided in Appendix J, “Policy Example: Triggerless Future Event
Processing,” on page 195.

When this parameter is set to Boolean True, local database time is published with each event. When
this parameter is set to Boolean False, this information is omitted.

The following table lists the properties of this parameter:

Table 5-50 Enable Future Event Processing?: Properties

5.5.2 Triggered Publication Parameters
The Driver for JDBC can use any of four triggered publication parameters.

“Event Log Table Name” on page 89
“Delete Processed Rows?” on page 89
“Allow Loopback?” on page 90

Time Syntax Parse Method

integer java.sql.Timestamp(long) (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Timestamp.html)

canonical string com.novell.nds.dirxml.driver.jdbc.db.DSTime(java.lang.String, java.lang.String,
java.lang.String, java.lang.String)

java string java.sql.Timestamp.valueOf(java.lang.String):java.sql.Timestamp (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

Property Value

Tag Name handle-future-events

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

novdocx (E
N

U
) 9 January 2007
Event Log Table Name

The Event Log Table Name parameter specifies the name of the event log table where publication
events are stored.

The table specified here must conform to the definition of Chapter 8, “The Event Log Table,” on
page 113.

When using “Table/View Names” on page 64, you’ll probably need to explicitly schema-qualify this
table name. When you use “Schema Name” on page 62, this table name is implicitly schema-
qualified with that schema name. If this table is located in a schema other than the implicit schema,
it must be schema-qualified.

The following table lists the properties of this parameter:

Table 5-51 Event Log Table Name: Properties

1 This parameter is required if “Publication Mode” on page 87 is set to 1 (triggered publication).

Delete Processed Rows?

The Delete Processed Rows? parameter specifies whether processed rows are deleted from the event
log table.

When this parameter is set to a Boolean True, processed rows are deleted. When this parameter is set
to Boolean False, processed row’s status field values are updated.

To mitigate the performance hit caused when processed rows remain in the event log table, we
recommend periodically moving the rows into a history table. Do one of the following:

Call a clean-up stored procedure via the parameter “Post Polling Statements” on page 92.
Place a before-delete trigger on the event log table to intercept delete events executed against
the event log table and to move deleted rows to a history table before they are deleted from the
event log table.

The following table lists the properties of this parameter:

Property Value

Tag Name log-table

Required? no1

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 140.

Sample Value eventlog

Default Value (none)

Schema-Dependent True
Configuring the Identity Manager Driver for JDBC 89

90 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 5-52 Delete Processed Rows?: Properties

NOTE: Setting this parameter to Boolean False degrades publication performance unless processed
rows are periodically removed from the event log table.

Allow Loopback?

The Allow Loopback? parameter specifies whether events caused by the driver’s database user
account should be published.

When this parameter is set to Boolean True, loopback events are published. When this parameter is
set to Boolean False, loopback events are ignored.

The following table lists the properties of this parameter:

Table 5-53 Allow Loopback?: Properties

NOTE: Setting this parameter to Boolean True might degrade performance because extraneous
events might be published.

5.5.3 Triggerless Publication Parameters
The Startup Option parameter specifies what happens when a triggerless publisher starts.

Property Value

Tag Name delete-from-log

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name allow-loopback

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Startup Option

Table 5-54 Startup Option: Settings and Results

The following table lists the properties of this parameter:

Table 5-55 Startup Option: Properties

IMPORTANT: The following configuration changes can force a full resynchronization:

Changing anything in the Authentication Context parameter other than URL properties forces a
resynchronization of all objects when triggerless publication is used.
Changing the value of the Schema Name parameter or the Table/View Names parameter forces
a resynchronization of all objects when triggerless publication is used.
Changing the State Directory parameter value.
Moving or deleting state files. See “Changes That Can Force Triggerless Publisher
Resynchronization” on page 59.
Changing table/view structure in the database (in particular, changing the position or type of
key columns).

5.5.4 Polling Parameters
“Polling Interval (In Seconds)” on page 92
“Publication Time of Day” on page 92
“Post Polling Statements” on page 92
“Batch Size” on page 93
“Heartbeat Interval (In Minutes)” on page 94

Setting Result

1 All objects are assumed to have changed and are republished.

2 Past and present changes are ignored.

3 All past and present changes are published.

Property Value

Tag Name startup-option

Required? no

Default Value 1 (process all changes)

Legal Values 1 (resync all objects)
2 (process future changes only)
3 (process all changes)

Schema-Dependent True
Configuring the Identity Manager Driver for JDBC 91

92 Identity Man

novdocx (E
N

U
) 9 January 2007
Polling Interval (In Seconds)

The Polling Interval (In Seconds) parameter specifies how many seconds of inactivity elapse
between polling cycles.

The following table lists the properties of this parameter:

Table 5-56 Polling Interval (In Seconds): Properties

NOTE: We recommend that you set this value to no less than 10 seconds.

Publication Time of Day

The Publication Time of Day parameter specifies at what time, each day, publication begins. Time is
understood to mean server local time (the time on the server where the driver is running).

The following table lists the properties of this parameter:

Table 5-57 Publication Time of Day: Properties

NOTE: This parameter overrides the parameter Polling Interval (In Seconds). See “Polling Interval
(In Seconds)” on page 92.

Post Polling Statements

The Post Polling Statements parameter specifies the SQL statements that are executed at the end of
each active polling cycle. An active polling cycle is one where some publication activity has
occurred.

Property Value

Tag Name polling-interval

Required? no

Default Value 10 (seconds)

Legal Values 1-604800 (1 week)

Schema-Dependent True

Property Value

Tag Name time-of-day

Required? no

Sample Value 13:00:00 (1PM)

Default Value (none)

Legal Values hh:mm:ss (h = hour, m = minute, s = second)

Schema-Dependent True
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
The primary purpose of this parameter is to allow cleanup of the event log table following
publication activity.

You probably need to explicitly schema-qualify any database objects (for example, tables, stored
procedures, and functions) referenced in these statements.

The following table lists the properties of this parameter:

Table 5-58 Post Polling Statements: Properties

Batch Size

The Batch Size parameter specifies how many events are sent in a single publication document.

Basically, the larger the batch, the better the performance.

Larger batches necessitate fewer trips across the network in both directions.
More events in a single document require fewer trips from the Publisher channel to the Identity
Manager engine (assuming that query-back events are not being used).
Larger batches minimize the number of trips from the Publisher channel to the database
(assuming that the third-party JDBC driver and database support batch processing).
Larger batches require fewer commits to state files in the local file system.
Commits can also be costly.

This parameter defines an upper bound. The Publisher channel might override the specified value
under certain conditions. The upper bound of 128 was chosen to minimize the likelihood of
overflowing the Java heap and to mitigate delaying termination of the Publisher thread on driver
shutdown.

The following table lists the properties of this parameter:

Property Value

Tag Name post-poll-stmt

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on
page 140.

Delimiters semicolon

Sample Value DELETE FROM direct.direct_process

Default Value (none)

Legal Values (any set of legal SQL statements)

Schema-Dependent True
Configuring the Identity Manager Driver for JDBC 93

94 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 5-59 Batch Size: Properties

Heartbeat Interval (In Minutes)

The Heartbeat Interval (In Minutes) parameter specifies how many minutes the Publisher channel
can be inactive before it sends a heartbeat document. In practice, more than the number of minutes
specified can elapse. That is, this parameter defines a lower bound. The Publisher channel sends a
heartbeat document only if the Publisher channel has been inactive for the specified number of
minutes. Any publication document sent is, in effect, a heartbeat document.

The following table lists the properties of this parameter:

Table 5-60 Heartbeat Interval (In Minutes): Properties

5.6 Trace Levels
To see debugging output from the driver, add a DirXML-DriverTraceLevel attribute value from 1 to
7 on the driver set containing the driver instance. This attribute is commonly confused with the
DirXML-XSL TraceLevel attribute. For more information on driver set trace levels, refer to the
Novell Identity Manager 3.0.1 Administration Guide.

The driver supports the following seven trace levels:

Table 5-61 Supported Trace Levels

Property Value

Tag Name batch-size

Required? no

Default Value 1

Legal Values 1 to 128

Schema-Dependent True

Property Value

Tag Name pub-heartbeat-interval

Required? no

Default Value 0

Legal Values 0 to 2,147,483,647 (java.lang.Integer.MAX_VALUE)

Schema-Dependent False

Level Description

1 Minimal tracing

2 Database properties
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Levels 6 and 7 are particularly useful for debugging third-party drivers.

5.7 Configuring Third-Party JDBC Drivers
The following guidelines help you configure third-party drivers. For specific configuration
instructions, refer to your third-party driver’s documentation.

Use the latest version of the driver.
Third-party driver behavior might be configurable.
In many cases, incompatibility issues can be resolved by adjusting the driver’s JDBC URL
properties.
When you work with international characters, you often must explicitly specify to third-party
drivers the character encoding that the database uses.
Do this by appending a property string to the end of the driver’s JDBC URL.
Properties usually consist of a property keyword and character encoding value (for example,
jdbc:odbc:mssql;charSet=Big5). The property keyword might vary among third-
party drivers.
The possible character encoding values are defined by Sun. For more information, refer to
Sun’s Supported Encoding Web site (http://java.sun.com/j2se/1.5.0/docs/guide/intl/
encoding.doc.html).

The following table lists the recommended settings for maximum driver compatibility. These
settings are useful when you use an unsupported third-party driver during initial configuration.

Table 5-62 Recommended Settings for Third-Party JDBC Drivers

3 Connection status, SQL statements, event log records

4 Verbose output

5 Database resource allocation/deallocation; state file contents

6 JDBC API (invoked methods, passed arguments, returned values, etc.)

7 Third-party driver

Parameter Name Compatibility Value

Synchronization filter empty

Reuse statements? 0 (no)

Use manual transactions? 0 (no)

Use minimal number of connections? yes

Retrieve minimal metadata? 1 (yes)

Number of returned result sets one

Level Description
Configuring the Identity Manager Driver for JDBC 95

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

96 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

6
novdocx (E

N
U

) 9 January 2007
6Schema Mapping

Section 6.1, “High-Level View,” on page 97
Section 6.2, “Logical Database Classes,” on page 97
Section 6.3, “Indirect Synchronization,” on page 97
Section 6.4, “Direct Synchronization,” on page 105
Section 6.5, “Synchronizing Primary Key Columns,” on page 108
Section 6.6, “Synchronizing Multiple Classes,” on page 108
Section 6.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on page 109

6.1 High-Level View
The following table shows a high-level view of how the driver maps Novell® Identity Vault objects
to database objects.

Table 6-1 Mapping Identity Vault Objects to Database Objects

6.2 Logical Database Classes
A logical database class is the set of tables or the view used to represent an eDirectoryTM class in a
database. A logical database class can consist of a single view or one parent table and zero or more
child tables.

The name of a logical database class is the name of the parent table or view.

6.3 Indirect Synchronization
In an indirect synchronization model, the driver maps the following:

Identity Vault Object Database Object

Tree Schema

Class Table/View

Attribute Column

Association Primary Key
Schema Mapping 97

98 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 6-2 Mappings in Indirect Synchronization

Section 6.3.1, “Mapping eDirectory Classes to Logical Database Classes,” on page 98
Section 6.3.2, “Parent Tables,” on page 100
Section 6.3.3, “Parent Table Columns,” on page 100
Section 6.3.4, “Child Tables,” on page 101
Section 6.3.5, “Referential Attributes,” on page 102
Section 6.3.6, “Single-Value Referential Attributes,” on page 102
Section 6.3.7, “Multivalue Referential Attributes,” on page 103

6.3.1 Mapping eDirectory Classes to Logical Database Classes
In the following example, the logical database class usr consists of the following:

One parent table usr
Two child tables: usr_phone and usr_faxno.

Logical class usr is mapped to the eDirectory class User.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 fname VARCHAR2(64),
 lname CHAR(64),
 pwdminlen NUMBER(4),
 pwdexptime DATE,
 disabled NUMBER(1),
 username VARCHAR2(64),
 loginame VARCHAR2(64),
 photo LONG RAW,
 manager INTEGER,
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu),
 CONSTRAINT fk_usr_manager FOREIGN KEY (manager)

Identity Vault Object Database Object

Classes Tables

Attributes Columns

1 Class 1 parent table

and

0 or more child tables

Single-value attribute Parent table column

Multivalue attribute Parent table column (holding delimited values)

or

Child table column (preferred)
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
REFERENCES indirect.usr(idu)
)
CREATE TABLE indirect.usr_phone
(
 idu INTEGER NOT NULL,
 phoneno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_phone_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)
CREATE TABLE indirect.usr_fax
(
 idu INTEGER NOT NULL,
 faxno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_fax_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>fname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Surname</nds-name>
 <app-name>lname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Password Expiration Time</nds-name>
 <app-name>pwdexptime</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>jpegPhoto</nds-name>
 <app-name>photo</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>manager</nds-name>
 <app-name>manager</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Password Minimum Length</nds-name>
 <app-name>pwdminlen</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Facsimile Telephone Number</nds-name>
 <app-name>usr_fax.faxno</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Telephone Number</nds-name>
 <app-name>usr_phone.phoneno</app-name>
Schema Mapping 99

100 Identity Man

novdocx (E
N

U
) 9 January 2007
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Login Disabled</nds-name>
 <app-name>disabled</app-name>
 </attr-name>
 </attr-name-map>
</rule>

6.3.2 Parent Tables
Parent tables are tables with an explicit primary key constraint that contains one or more columns. In
a parent table, an explicit primary key constraint is required so that the driver knows which fields to
include in an association value.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)

The following table contains sample data for table indirect.usr.

The resulting association for this row is

idu=1,table=usr,schema=indirect

NOTE: The case of database identifiers in association values is determined dynamically from
database metadata at runtime.

6.3.3 Parent Table Columns
Parent table columns can contain only one value. As such, they are ideal for mapping single-value
eDirectory attributes, such as mapping the single-value eDirectory attribute Password Minimum
Length to the single-value parent table column pwdminlen.

Parent table columns are implicitly prefixed with the schema name and name of the parent table. It is
not necessary to explicitly table-prefix parent table columns. For example,
indirect.usr.fname is equivalent to fname for schema mapping purposes.
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>fname</app-name>
 </attr-name>

idu fname lname

1 John Doe
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
 </attr-name-map>
</rule>

Large binary and string data types should usually be mapped to parent table columns. To map to a
child table column, data types must be comparable in SQL statements. Large data types usually
cannot be compared in SQL statements.

Large binary and string data types can be mapped to child table columns if the following occur:

Each <remove-value> event on these types is transformed in a policy into a <remove-
all-values> element
An <add-value> element follows each <remove-value> event

6.3.4 Child Tables
A child table is a table that has a foreign key constraint on its parent table’s primary key, linking the
two tables together. The columns that comprise the child table’s foreign key can have different
names than the columns in the parent table’s primary key.

The following example shows the relationship between parent table usr and child tables
usr_phone and usr_faxno:
CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.usr_phone
(
 idu INTEGER NOT NULL,
 phoneno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_phone_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)
CREATE TABLE indirect.usr_fax
(
 idu INTEGER NOT NULL,
 faxno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_fax_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)

NOTE: In a child table, constrain all columns NOT NULL.

The first constrained column in a child table identifies the parent table. In the above example, the
constrained column in child table usr_phone is idu. The only purpose of this column is to relate
tables usr_phone and usr. Because constrained columns do not contain any useful information,
omit them from publication triggers and Schema Mapping policies.

The unconstrained column is the column of interest. It represents a single, multivalue attribute. In
the above example, the unconstrained columns are phoneno and faxno. Because unconstrained
columns can hold multiple values, they are ideal for mapping multivalue eDirectory attributes (for
Schema Mapping 101

102 Identity Man

novdocx (E
N

U
) 9 January 2007
example, mapping the multivalue eDirectory attribute Telephone Number to
usrphone.phoneno).

The following table contains sample data for indirect.usr_phone.

Table 6-3 Sample Data

Like parent table columns, child table columns are implicitly schema-prefixed. Unlike parent table
columns, however, a child table column name must be explicitly prefixed with the child table name
(for example, usr_phone.phoneno). Otherwise, the driver implicitly interprets column
phoneno (the parent table column) as usr.phoneno, not the child table column
usr_phone.phoneno.
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Facsimile Telephone Number</nds-name>
 <app-name>usr_fax.faxno</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Telephone Number</nds-name>
 <app-name>usr_phone.phoneno</app-name>
 </attr-name>
 </attr-name-map>
</rule>

NOTE: Map each multivalue eDirectory attribute to a different child table.

6.3.5 Referential Attributes
You can represent referential containment in the database by using foreign key constraints.
Referential attributes are columns within a logical database class that refer to the primary key
columns of parent tables in the same logical database class or those of other logical database classes.

6.3.6 Single-Value Referential Attributes
You can relate two parent tables through a single-value parent table column. This column must have
a foreign key constraint pointing to the other parent table’s primary key. The following example
relates a single parent table usr to itself:
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,

idu phoneno

1 111-1111

1 222-2222
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
 -- ...
 manager INTEGER,
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu),
 CONSTRAINT fk_usr_manager FOREIGN KEY (manager)

REFERENCES indirect.usr(idu)
)

NOTE: Single-valued referential columns should be nullable.

<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>manager</nds-name>
 <app-name>manager</app-name>
 </attr-name>
 </attr-name-map>
</rule>

The interpretation of the above example is that each user can have only one manager who himself is
a user.

6.3.7 Multivalue Referential Attributes
You can relate two parent tables through a common child table. This child table must have a column
constrained by a foreign key pointing to the other parent table’s primary key. The following example
relates two parent tables usr and grp through a common child table member.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.grp
(
 idg INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_grp_idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.grp_member
(
 idg INTEGER NOT NULL,
 idu INTEGER NOT NULL,
 CONSTRAINT fk_member_idg FOREIGN KEY (idg) REFERENCES
indirect.grp(idg), CONSTRAINT fk_member_idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu)
)

NOTE: Constrain all columns in a child table NOT NULL.
Schema Mapping 103

104 Identity Man

novdocx (E
N

U
) 9 January 2007
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>Group</nds-name>
 <app-name>indirect.grp</app-name>
 </class-name>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="Group">
 <nds-name>Member</nds-name>
 <app-name>grp_member.idu</app-name>
 </attr-name>
 </attr-name-map>
</rule>

The first constrained column in a child table determines which logical database class the child table
grp_member belongs to. In the above example, grp_member is considered to be part of logical
database class grp. grp_member is said to be a proper child of grp. The second constrained
column in a child table is the multivalue referential attribute.

In the following example, the order of the constrained columns has been reversed so that
grp_member is part of class usr. To more accurately reflect the relationship, table grp_member
has been renamed to usr_mbr_of.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.grp
(
 idg INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_grp_idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.usr_mbr_of
(
 idu INTEGER NOT NULL,
 idg INTEGER NOT NULL,
 CONSTRAINT fk_mbr_of_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu) ON DELETE CASCADE,
CONSTRAINT fk_mbr_of_idg FOREIGN KEY (idg)

REFERENCES indirect.grp(idg) ON DELETE CASCADE
)
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>Group</nds-name>
 <app-name>indirect.grp</app-name>
 </class-name>
 <class-name>
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Group Membership</nds-name>
 <app-name>usr_mbr_of.idg</app-name>
 </attr-name>
 </attr-name-map>
</rule>

In databases that have no awareness of column position (such as DB2/AS400), order is determined
by sorting column names by string or hexadecimal value. For additional information, see “Sort
Column Names By” on page 76.

In general, it is necessary to synchronize only bidirectional, multivalue, referential attributes as part
of one class or the other, not both. If you want to synchronize referential attributes for both classes,
construct two child tables, one for each class. For example, if you want to synchronize eDirectory
attributes Group Membership and Member, you need two child tables.

In practice, when you synchronize User and Group classes, we recommend that you synchronize the
Group Membership attribute of class User instead of the Member attribute of class Group.
Synchronizing the group memberships of a user is usually more efficient than synchronizing all
members of a group.

6.4 Direct Synchronization
In a direct synchronization model, the driver maps the following:

Table 6-4 Mappings in Direct Synchronization

The update capabilities of views vary between databases. Most databases allow views to be updated
when they are comprised of a single base table. (That is, they do not join multiple tables.) If views
are strictly read-only, they cannot be used for subscription. Some databases allow update logic to be
defined on views in instead-of-triggers, which allow a view to join multiple base tables and still be
updateable.

For a list of databases that support instead-of-triggers, see “Database Features” on page 138.
Instead-of-trigger logic can be simulated, regardless of database capability using embedded SQL.
See Section 9.4, “Virtual Triggers,” on page 128.

Section 6.4.1, “View Column Meta-Identifiers,” on page 106
Section 6.4.2, “Primary Key Columns,” on page 108

Identity Vault Object Database Object

Classes Views

Attributes View Columns

Class View

Single-value attribute View Column

Multivalue attribute View Column
Schema Mapping 105

106 Identity Man

novdocx (E
N

U
) 9 January 2007
Section 6.4.3, “Schema Mapping,” on page 108

6.4.1 View Column Meta-Identifiers
A view is a logical table. Unlike tables, views do not physically exist in the database. As such, views
usually cannot have traditional primary key/foreign key constraints. To simulate these constructs,
the driver for JDBC embeds constraints and other metadata in view column names. The difference
between these constraints and traditional ones is that the former are not enforced at the database
level. They are an application-level construct.

For example, to identify to the driver which fields to use when constructing association values, place
a primary key constraint on a parent table. The corollary to this for a view is to prefix one or more
column names with pk_ (case-insensitive).

The following table lists the constraint prefixes that can be embedded in view column names.

Table 6-5 Constraint Prefixes

The following example views contain all of these constraint prefixes:
CREATE VIEW direct.view_usr
(
 pk_idu, -- primary key column; implicitly single-valued
 sv_fname, -- single-valued column
 mv_phoneno, -- multi-valued column
 fk__idu__manager, -- self-referential foreign key column; refers

-- to primary key column idu in view_usr;
-- implicitly single-valued

 fk_mv__idg__mbr_of -- extra-referential foreign key column; refers
-- to primary key column idg in view_grp;
-- multi-valued

)
AS
-- ...
CREATE VIEW direct.view_grp
(
 pk_idg, -- primary key column; implicitly single-valued
 fk_mv__idu__mbr -- extra-referential foreign key column; refers
 -- to primary key column idu in view_usr;
 -- multi-valued
)
AS
-- ...

Constraint Prefixes (case-insensitive) Interpretation

pk_ primary key

fk_ foreign key

sv_ single-value

mv_ multivalue
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for view column meta-identifiers:
<view-column-name> ::= [<meta-info>] <column-name>

<column-name> ::= <legal-unquoted-database-identifier>
<meta-info> ::= <referential> | <non-referential>

<non-referential> ::= [<single-value> | <multiple-value>]

<single-value> ::= "sv_"

<multiple-value> ::= "mv_"

<referential> ::= <primary-key> | <foreign-key>

<primary-key> ::= "pk_" [<single-value>] [<column-group-id>]
 [<referenced-column-name>]
<column-group-id> ::= <non-negative-integer> "_"

<referenced-column-name> ::= "_" <column-name> "__"

<foreign-key> ::= "fk_" [<non-referential>] [<column-group-id>]
 <referenced-column-name>

Normalized Forms

By default, all view column names are single-valued. Therefore, explicitly specifying the sv_
prefix in a view column name is redundant. For example, sv_fname and fname are equivalent
forms of the same column name.

Also, primary key column names implicitly refer to themselves. Therefore, it is redundant to specify
the referenced column name. For example, pk_idu is equivalent to pk__idu__idu.

The Driver for JDBC uses two normalized forms of view meta-identifiers:

Database native form

Database native form is the column name as declared in the database. This form is usually
much more verbose than schema mapping form, and contains all necessary meta information.
Schema mapping form
Schema mapping form is returned when the driver returns the application schema. This form is
much more concise than database native form because much of the meta information included
in database native form is represented in XDS XML and not in the identifier.
The referential prefixes pk_ and fk_ are the only meta information preserved in schema
mapping form. This limitation ensures backward compatibility.

The following table provides examples of each form:
Schema Mapping 107

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

108 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 6-6 Example Normalized Forms of View Meta-Identifiers

Equivalent Forms

A view column name without meta information is called its “effective” name, which is similar to a
directory objects’ “effective” rights. ‘For the driver, view column name equivalency is determined
without respect to meta information by default. For example, pk_idu is equivalent to idu, and
fk_mv__idg__mbr_of is equivalent to mbr_of. Any variant form of a view meta column
identifier can be passed to the driver at runtime. For backward compatibility reasons, meta
information can be treated as part of the effective view column name. See “Enable Meta-Identifier
Support?” on page 72.

6.4.2 Primary Key Columns
Primary key column names must be unique among all views in the synchronization schema.

6.4.3 Schema Mapping
Schema mapping conventions for views and view columns are equivalent to that used for parent
tables and parent table columns.

6.5 Synchronizing Primary Key Columns
When the database is the authoritative source of primary key columns, generally omit the columns
from the Publisher and Subscriber filters, Schema Mapping policies, and publication triggers.

When the Identity Vault is the authoritative source of primary key columns, include the columns in
the Subscriber filter and Schema Mapping policies, but omit the columns from the Publisher filter
and publication triggers. Also, GUID rather than CN is recommended for use as a primary key. CN
is a multivalue attribute and can change. GUID has a single value and is static.

6.6 Synchronizing Multiple Classes
When synchronizing multiple eDirectory classes, synchronize each class to a different parent table
or view. Each logical database class must have a unique primary key column name. The Publisher
channel uses this common column name to identify all rows in the event log table pertaining to a
single logical database class. For example, both the logical database classes usr and grp have a
unique primary key column name.
CREATE TABLE usr
(
 idu INTEGER NOT NULL,
 lname VARCHAR2(64) NOT NULL,

Database Native Form Schema Mapping Form

pk_idu pk_idu

sv_fname fname

mv_phoneno phoneno

fk_mv__idg__mbr_of fk_mbr_of
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
 --...
 CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);
CREATE TABLE grp
(
 idg INTEGER NOT NULL,
 --...
 CONSTRAINT pk_grp_idg PRIMARY KEY(idg)
);

6.7 Mapping Multivalue Attributes to Single-
Value Database Fields
By default, the driver assumes that all eDirectory attributes mapped to parent table columns or view
columns have a single value. Because the driver is unaware of the eDirectory schema, it has no way
of knowing whether an eDirectory attribute has a single value or has multiple values. Accordingly,
multivalue and single-value attribute mappings are handled identically.

The driver implements the Most Recently Touched (MRT) algorithm with regard to single-value
parent table or view columns. An MRT algorithm ensures that the most recently added attribute
value or most recently deleted attribute value is stored in the database. The algorithm is adequate if
the attribute in question has a single value.

If the attribute has multiple values, the algorithm has some undesirable consequences. When a value
is deleted from a multivalue attribute, the database field it is mapped to is set to NULL and remains
NULL until another value is added. The preferred solution to this undesirable behavior is to extend
the eDirectory schema so that only single-value attributes are mapping to parent table or view
columns.

Other solutions include the following:

For indirect synchronization, map each multivalue attribute to its own child table.
For both direct or indirect synchronization, use a policy to delimit multiple values before
inserting them into a table or view column.
Implement a first or last value per replica policy in style sheets by using methods provided in
the com.novell.nds.indirect.driver.jdbc.util.MappingPolicy class.
Under a first-value-per-replica (FPR) policy, the first attribute value on the eDirectory replica is
always synchronized. Under a last-value-per-replica (LPR) policy, the last attribute value on a
replica is always synchronized.

By using global configuration values, you can configure the sample driver configuration to use
either FPR or LPR mapping policies. Multivalue to single-value attribute mapping policies are
contained in the Subscriber Command Transformation policy container. The sample driver
configuration maps the multivalue eDirectory attributes Given Name and Surname to the
single-value columns fname and lname respectively.
Schema Mapping 109

110 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

7
novdocx (E

N
U

) 9 January 2007
7Mapping XDS Events to SQL
Statements

Section 7.1, “Mapping XDS Events for Indirect Synchronization,” on page 111

7.1 Mapping XDS Events for Indirect
Synchronization
The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for indirect synchronization:

Table 7-1 Mapping XDS Events for Indirect Synchronization

The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for direct synchronization:

XML Event SQL Equivalent

<add> 0 or more select statements, depending upon the matching policy

1 parent table insert statement for all single value <add-attr> elements

0 or 1 stored procedure/function calls to retrieve primary key values
before or after the parent table insert statement

1 child table insert statement for each multivalue <add-attr> element

<modify> 1 parent table update statement for each single value <add-value> or
<remove-value> element

1 child table insert statement for each multivalue <add-value> element

1 child table delete statement for each <remove-value> element

<delete> 1 parent table delete statement

1 delete statement for each child table

<query> 1 parent table select statement

1 select statement for each child table

<move>
<rename>
<modify-password>
<check-object-password>

0 statements unless bound to embedded SQL statements
Mapping XDS Events to SQL Statements 111

112 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 7-2 Mapping XDS Events for Direct Synchronization

XML Event SQL Equivalent

<add> 0 or more select statements, depending upon the matching policy

1 view insert statement for all single value <add-attr> element

0 or 1 stored procedure/function call to retrieve primary key values before
or after the view insert statement

1 view insert statement for each multivalue <add-attr> element

<modify> 1 view update statement for each single value <add-value> or <remove-
value> element

1 view insert statement for each multivalue <add-value> element

1 view delete statement for each <remove-value> element

<delete> 1 view delete statement

<query> 1 view select statement

<move>
<rename>
<modify-password>
<check-object-password>

0 statements unless bound to embedded SQL statements
ager Driver for JDBC 2.1: Implementation Guide

8
novdocx (E

N
U

) 9 January 2007
8The Event Log Table

The event log table stores publication events. This section discusses the structure and capabilities of
the event log table.

You can customize the name of the event log table and its columns to avoid conflicts with reserved
database keywords. The order, number, and data types of its columns, however, are fixed. In
databases that are unaware of column position, order is determined by the Sort Column Names By
parameter. See “Sort Column Names By” on page 76.

Events in this table can be ordered either by order of insertion (the record_id column) or
chronologically (the event_time column). Ordering events chronologically allows event
processing to be delayed. To order publication events chronologically, set the Enable Future Event
Processing parameter to Boolean True. See “Enable Future Event Processing?” on page 87.

Section 8.1, “Event Log Columns,” on page 113
Section 8.2, “Event Types,” on page 115

8.1 Event Log Columns
This section describes columns in the event log table. Columns are ordered by position.

1. record_id

The record_id column is used to uniquely identify rows in the event log table and order
publication events. This column must contain sequential, ascending, positive, unique integer
values. Gaps between record_id values no longer prematurely end a polling cycle.

2. status

The status column indicates the state of a given row. The following table lists permitted
values:

Table 8-1 Permitted Values for Status Columns

To be processed, all rows inserted into the event log table must have a status value of N. The
remainder of the status characters are used solely by the Publisher channel to designate
processed rows. All other characters are reserved for future use.

NOTE: Status values are case sensitive.

Character Value Interpretation

N new

S success

W warning

E error

F fatal
The Event Log Table 113

114 Identity Man

novdocx (E
N

U
) 9 January 2007
3. event_type

Values in this column must be between 1 and 8. All other numbers are reserved for future use.
The following table describes each event type:

Table 8-2 Event Types

For additional information on this field, see Section 8.2, “Event Types,” on page 115.
4. event_time

This column serves as an alternative ordering column to record_id. It contains the effective
date of the event. It must not be NULL. For this column to become the ordering column, set the
Enable Future Event Processing parameter to Boolean True. See “Enable Future Event
Processing?” on page 87.

5. perpetrator

This column identifies the database user who instigated the event. A NULL value is interpreted
as a user other than the driver user. As such, rows with a NULL value or value not equal to the
driver’s database username are published. Rows with a value equal to the driver’s database
username are not published unless the Allow Loopback Publisher parameter is set to Boolean
True. See “Allow Loopback?” on page 90.

6. table_name

The name of the table or view where the event occurred.
7. table_key

Format values for this column exactly the same in all triggers for a logical database class. The
BNF or Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html) of this parameter is defined below:
<table-key> ::= <unique-row-identifier> {"+"

<unique-row-identifier>}

<unique-row-identifier> ::= <primary-key-column-name> "=" <value>

For example, for the usr table referenced throughout this chapter, this column’s value might
be idu=1.
For the view_usr view referenced throughout this chapter, this column’s value might be
pk_empno=1.

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)

4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)
ager Driver for JDBC 2.1: Implementation Guide

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

novdocx (E
N

U
) 9 January 2007
For a hypothetical compound primary key (one containing multiple columns), this column’s
value might be pkey1=value1+pkey2=value2.

NOTE: If primary key values placed in the table_key field contains any of the special
characters {, ; ' + " = \ < >}, where ’{’ and ’}’ contain the set of special characters, delimit the
value with double quotes. You’ll also need to escape the double quote character " as \" and the
literal escape character \ character as \\ when contained inside a pair of double quotes.

For a hypothetical primary key containing special characters, this column’s value might be
pkey=", ; ' + \" = \\ < >". (Note the double quotes and escaped characters.)

NOTE: Differences in padding or formatting might result in out-of-order event processing. For
performance reasons, remove any unnecessary white space from numeric values. For example,
"idu=1" is preferred over "idu= 1". (Note the space in “idu= 1”.)

8. column_name

The name of the column that was changed. This column is used only for per-field (1-3, 7-8)
event types. Nevertheless, it must always be present in the event log table. If it is missing, the
Publisher channel cannot start.

9. old_value

The field’s old value. This column is used only for per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher
channel cannot start.

10. new_value

The field’s new value. This column is used only by per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher
channel cannot start.

8.2 Event Types
The following table describes each event type:

Table 8-3 Event Types

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)

4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)
The Event Log Table 115

116 Identity Man

novdocx (E
N

U
) 9 January 2007
Event types are in four major categories. Some categories overlap. The following table describes
each category and indicates which event types are members:

Table 8-4 Event Categories and Types

In general, a combination of event types from each category yields the best trade-off in terms of
space, time, implementation complexity, and peformance.

Per-field event types are more granular, require more space, and are more complex to implement
than per-row event types. Per-row events are less granular, require less space, and are easier to
implement than per-field event types.

Query-back event types use less space but require more time to process than non-query-back event
types. Non-query-back event types use more space but require less time to process than query-back
event types.

Query-back event types trump their non-query-back conterparts. Non-query-back events are
ignored if a query-back event is logged for the same field or object. For example, if an event of type
2 (update-field, non-query-back) and 8 (update-field, query-back) are logged on the same field, the
type 2 event is ignored in favor of the type 8 event.

Furthermore, query-back row event types trump query-back field event types. For example, if an
event type 8 (update field, query-back) and a event type 6 (update row query-back) are logged on the
same object, the type 8 event is ignored in favor of the type 6 event.

Query-back events are ignored by the Publisher if the database object no longer exists. They are
dependent upon the database object still being around at processing time. Therefore, logged query-
back adds and modifies (event types 5, 6, 7, 8) have no effect once the database object they refer to
is deleted.

The following table shows the basic correlation between publication event types and the XDS XML
generated by the Publisher channel.

Event Category Event Types

Per-field (attribute) 1, 2, 3, 7, 8

Per-row (object) 4, 5, 6

Non-query-back 1, 2, 3, 4

Query-back 5, 6, 7, 8

Per-field, non-query-back 1, 2, 3

Per-field, query-back 7, 8

Per-row, non-query-back 4

Per-row, query-back 5, 6
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Table 8-5 Basic Correlation of Publication Event Types

The following example illustrates XML that the Publisher channel generates for events logged on
the usr table for each possible event type.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 fname VARCHAR2(64),
 photo LONGRAW,
 --...
 CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);

The following table shows the initial contents of usr after a new row has been inserted:

Table 8-6 An Inserted Row in the usr Table

The following table shows the current contents of usr after the row has been updated:

Table 8-7 An Updated Row in the usr Table

Insert Field

The table below shows the contents of the event log table after a new row is inserted into table usr.
The value for column photo has been Base64-encoded. The Base64-encoded equivalent of
0xAAAA is qqo=.

Table 8-8 Event Log Table: Type 1

Event Type Resulting XDS

insert <add>

update <modify>

delete <delete>

idu fname lname photo

1 Jack Frost 0xAAAA

idu fname lname photo

1 John Doe 0xBBBB

event_type table table_key column_name old_value new_value

1 usr idu=1 fname NULL Jack

1 usr idu=1 lname NULL Frost

1 usr idu=1 photo NULL qqo=
The Event Log Table 117

118 Identity Man

novdocx (E
N

U
) 9 January 2007
The Publisher channel generates the following XML:
<add class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <add-attr attr-name="fname">
 <value type="string">Jack</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Frost</value>
 </add-attr>
 <add-attr attr-name="photo">
 <value type="octet">qqo=</value>
 </add-attr>
</add>

Update Field

The following table shows the contents of the event log table after the row in table usr has been
updated. The values for column photo has been Base64-encoded. The Base64-encoded equivalent
of 0xBBBB is u7s=.

Table 8-9 Event Log Table: Type 2

The Publisher channel generates the following XML:
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-value>
 <value type="string">Jack</value>
 </remove-value>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-value>
 <value type="string">Frost</value>
 </remove-value>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-value>

event_type table table_key column_name old_value new_value

2 usr idu=1 fname Jack John

2 usr idu=1 lname Frost Doe

2 usr idu=1 photo qqo= u7s=
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
 <value type="octet">qqo=</value>
 </remove-value>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

Update Field (Remove-All-Values)

The following table shows the contents of the event log table after the row in table usr has been
updated. The value for column photo has been Base64-encoded.

Table 8-10 Event Log Table: Type 3

The Publisher channel generates the following XML:
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

Delete Row

The table below shows the contents of the event log table after the row in table usr has been
deleted.

event_type table table_key column_name old_value new_value

3 usr idu=1 fname Jack John

3 usr idu=1 lname Frost Doe

3 usr idu=1 photo qqo= u7s=
The Event Log Table 119

120 Identity Man

novdocx (E
N

U
) 9 January 2007
Table 8-11 Event Log Table: Type 4

The Publisher channel generates the following XML:
<delete class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
</delete>

Insert Row (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table
usr.

Table 8-12 Event Log Table: Type 5

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<add class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <add-attr attr-name="fname">
 <value type="string">John</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Doe</value>
 </add-attr>
 <add-attr attr-name="photo">
 <value type="octet">u7s=</value>
 </add-attr>
</add>

Update Row (Query-Back)

The table below shows the contents of the event log table after the row in table usr has been
updated.

Table 8-13 Event Log Table: Type 6

event_type table table_key column_name old_value new_value

4 usr idu=1 NULL NULL NULL

event_type table table_key column_name old_value new_value

5 usr idu=1 NULL NULL NULL

event_type table table_key column_name old_value new_value

6 usr idu=1 NULL NULL NULL
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

Insert Field (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table
usr. Old and new values are omitted because they are not used.

Table 8-14 Event Log Table: Type 7

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<add class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <add-attr attr-name="fname">
 <value type="string">John</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Doe</value>
 </add-attr>
 <add-attr attr-name="photo">

event_typ
e table table_key column_name old_value new_value

7 usr idu=1 fname NULL NULL

7 usr idu=1 lname NULL NULL

7 usr idu=1 photo NULL NULL
The Event Log Table 121

122 Identity Man

novdocx (E
N

U
) 9 January 2007
 <value type="octet">u7s=</value>
 </add-attr>
</add>

Update Field (Query-Back)

The following table shows the contents of the event log table after the row in table usr has been
updated. Old and new values are omitted because they are not used.

Table 8-15 Event Log Table: Type 8

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

event_type table table_key column_name old_value new_value

8 usr idu=1 fname NULL NULL

8 usr idu=1 lname NULL NULL

8 usr idu=1 photo NULL NULL
ager Driver for JDBC 2.1: Implementation Guide

9
novdocx (E

N
U

) 9 January 2007
9Embedded SQL Statements in XDS
Events

Embedded SQL allows you to embed SQL statements in XDS-formatted XML documents. You can
use embedded SQL statements along with XDS events or use them standalone. When embedded
SQL statements are used standalone, embedded SQL processing does not require that the driver
know anything about tables/view in the target database. As such, the driver can run in schema-
unaware mode. See “Synchronization Filter” on page 60. When using embedded SQL standalone,
you must establish associations manually. The driver won’t establish them for you.

When used in conjunction with XDS events, embedded SQL can act as a virtual database trigger. In
the same way that you can install database triggers on a table and cause side effects in a database
when certain SQL statements are executed, embedded SQL can cause side effects in a database in
response to certain XDS events.

All examples in this section reference the following indirect.usr table.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 fname VARCHAR2(64),
 lname VARCHAR2(64),

 CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);

Section 9.1, “Common Uses of Embedded SQL,” on page 124
Section 9.2, “Embedded SQL Basics,” on page 124
Section 9.3, “Token Substitution,” on page 125
Section 9.4, “Virtual Triggers,” on page 128
Section 9.5, “Manual vs. Automatic Transactions,” on page 129
Section 9.6, “Transaction Isolation Level,” on page 130
Section 9.7, “Statement Type,” on page 131
Section 9.8, “SQL Queries,” on page 132
Section 9.9, “Data Definition Language (DDL) Statements,” on page 133
Section 9.10, “Logical Operations,” on page 134
Section 9.11, “Implementing Password Set with Embedded SQL,” on page 134
Section 9.12, “Implementing Modify Password with Embedded SQL,” on page 135
Section 9.13, “Implementing Check Object Password,” on page 135
Section 9.14, “Best Practices,” on page 136
Embedded SQL Statements in XDS Events 123

124 Identity Man

novdocx (E
N

U
) 9 January 2007
9.1 Common Uses of Embedded SQL
You can accomplish the following by embedding SQL in XDS events:

Create database users or roles.
Manage user passwords
You can set, check or modify user passwords.
Manage database user or role privileges.

For examples of each, consult Embedded SQL examples are contained in the User DDL Command
Transformation style sheet on the Subscriber channel in the example driver configuration.

9.2 Embedded SQL Basics
Section 9.2.1, “Elements,” on page 124
Section 9.2.2, “Namespaces,” on page 124
Section 9.2.3, “Embedded SQL Example,” on page 125

9.2.1 Elements
SQL is embedded in XDS events through the <jdbc:statement> and <jdbc:sql> elements.
The <jdbc:statement> element can contain one or more <jdbc:sql> elements.

9.2.2 Namespaces
The namespace prefix jdbc used throughout this section is implicitly bound to the namespace
urn:dirxml:jdbc when referenced outside of an XML document.

You must use namespace-prefixed embedded SQL elements and attributes. Otherwise, the driver
will not recognize them. In all examples in this section, the prefix used is jdbc. In practice, the
prefix can be whatever you want it to be, as long as it is bound to the namespace value
urn:dirxml:jdbc.

The following XML example illustrates how to use and properly namespace-prefix embedded SQL
elements. In the following example, the namespace declaration and namespace prefixes are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John'
 </jdbc:sql>
 </jdbc:statement>
</input>
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
9.2.3 Embedded SQL Example
The following XML example illustrates how to use the <jdbc:statement> and <jdbc:sql>
elements and their interpretation. In the following example, embedded SQL elements are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John'
 </jdbc:sql>
 </jdbc:statement>
</input>

Because the Subscriber channel resolves <add> events to one or more INSERT statements, the
XML shown above resolves to:
SET AUTOCOMMIT OFF
INSERT INTO indirect.usr(lname)VALUES('Doe');
COMMIT; --explicit commit
UPDATE indirect.usr SET fname = 'John';
COMMIT; --explicit commit

9.3 Token Substitution
Rather than require you to parse field values from an association, the Subscriber channel supports
token substitution in embedded SQL statements. In the following examples, tokens and the values
they reference are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect</association>
 <modify-attr name="lname">
 <add-value>
 <value>DoeRaeMe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

Token placeholders must adhere to the XSLT attribute value template syntax {$field-name}. Also,
the referenced association element must precede the <jdbc:statement> element in the XDS
document, or must be present as a child of the <jdbc:statement> element. Alternatively,
instead of copying the association element as child of the <jdbc:statement> element, you
could copy the src-entry-id of the element containing the association element onto the
<jdbc:statement> element. Both approaches are bolded in the following examples:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify class-name="usr">
Embedded SQL Statements in XDS Events 125

126 Identity Man

novdocx (E
N

U
) 9 January 2007
 <association>idu=1,table=usr,schema=indirect</association>
 <modify-attr name="lname">
 <add-value>
 <value>DoeRaeMe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement>
 <association>idu=1,table=usr,schema=indirect</association>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>

</input>
<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify class-name="usr" src-entry-id="0">
 <association>idu=1,table=usr,schema=indirect</association>
 <modify-attr name="lname">
 <add-value>
 <value>DoeRaeMe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement src-entry-id="0">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

The {$field-name} token must refer to one of the naming RDN attribute names in the association
value. The above examples have only one naming attribute: idu.

An <add> event is the only event where an association element is not required to precede
embedded SQL statements with tokens because the association has not been created yet.
Additionally, any embedded SQL statements using tokens must follow, not precede, the <add>
event. For example:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

To prevent tracing of sensitive information, you can use the {$$password} token to refer to the
contents of the immediately preceding <password> element within the same document. In the
following example, the password token and the value it refers to are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <password>some password</password>
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY
 {$$password}</jdbc:sql>
 </jdbc:statement>
</input>

Furthermore, you can also refer to the driver’s database authentication password specified by the
Application Password parameter as {$$$driver-password} . See “Application Password” on
page 54. Named password substitution is not yet supported.

Just as with association elements, the referenced password element must precede the
<jdbc:statement> element in the XDS document or must be present as a child of the
<jdbc:statement> element. Alternatively, instead of copying the password element as child of
the <jdbc:statement> element, you could copy the src-entry-id of the element
containing the password element onto the <jdbc:statement> element. Both approaches are bolded in
the following examples:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <password>some password</password>
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <password>some password</password>
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY
 {$$password}</jdbc:sql>
 </jdbc:statement>
</input>

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" src-entry-id="0">
 <password>some password</password>
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement src-entry-id="0">
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY
 {$$password}</jdbc:sql>
Embedded SQL Statements in XDS Events 127

128 Identity Man

novdocx (E
N

U
) 9 January 2007
 </jdbc:statement>
</input>

9.4 Virtual Triggers
In the same way that database triggers can fire before or after a triggering statement, embedded SQL
can be positioned before or after the triggering XDS event. The following examples show how you
can embed SQL before or after an XDS event.

Virtual Before Trigger
<input xmlns:jdbc"urn:dirxml:jdbc">
 <jdbc:statement>
 <association>idu=1,table=usr,schema=indirect</association>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John' WHERE
 idu = {$idu}</jdbc:SQL>

</jdbc:statement>
<modify class-name="usr">

<association>idu=1,table=usr,schema=indirect</association>
<modify-attr name="lname">

<remove-all-values/>
<add-value>

<value>Doe</value>
</add-value>

</modify-attr>
</modify>

</input>

This XML resolves to:
SET AUTOCOMMIT OFF
UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;
COMMIT; --explicit commit
UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit

Virtual After Trigger
<input xmlns:jdbc"urn:dirxml:jdbc">

<modify class-name="usr">
<association>idu=1,table=usr,schema=indirect</association>
<modify-attr name="lname">

<remove-all-values/>
<add-value>

<value>Doe</value>
</add-value>

 </modify-attr>
</modify>
<jdbc:statement>

<jdbc:sql>UPDATE indirect.usr SET fname = 'John' WHERE
 idu = {$idu}</jdbc:sql>

</jdbc:statement>
</input>
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
This XML resolves to:
SET AUTOCOMMIT OFF
UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit
UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;
COMMIT; --explicit commit

9.5 Manual vs. Automatic Transactions
You can manually group embedded SQL and XDS events by using two custom attributes:

jdbc:transaction-type

jdbc:transaction-id

jdbc:transaction-type

This attribute has two values: manual and auto. By default, most XDS events of interest (<add>,
<modify>, and <delete>) are implicitly set to the manual transaction type. The manual setting
enables XDS events to resolve to a transaction consisting of one or more SQL statement.

By default, embedded SQL events are set to auto transaction type because some SQL statements,
such as DDL statements, cannot usually be included in a manual transaction. In the following
example, the attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:transaction-type="auto">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT ON
INSERT INTO indirect.usr(lname) VALUES(’Doe’);
-- implicit commit
UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
-- implicit commit

jdbc:transaction-id

The Subscriber channel ignores this attribute unless the element’s jdbc:transaction-type
attribute value defaults to or is explicitly set to manual. The following XML shows an example of
a manual transaction. The attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:transaction-id="0">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
Embedded SQL Statements in XDS Events 129

130 Identity Man

novdocx (E
N

U
) 9 January 2007
 </add>
 <jdbc:statement jdbc:transaction-type="manual"
 jdbc:transaction-id="0">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT OFF
INSERT INTO indirect.usr(lname) VALUES('Doe’);
UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
COMMIT; -- explicit commit

9.6 Transaction Isolation Level
In addition to grouping statements, you can use transactions to preserve the integrity of data in a
database. Transactions can lock data to prevent concurrent access or modification. The isolation
level of a transaction determines how locks are set. Usually, the default isolation level that the driver
uses is sufficient and should not be altered.

The custom attribute jdbc:isolation-level allows you to adjust the isolation transaction
level if necessary. The java.sql.Connection parameter defines five possible values in the interface.
See java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

none

read uncommitted

read committed

repeatable read

serializable

The driver’s default transaction isolation level is read committed unless overridden by a
descriptor file. In manual transactions, place the jdbc:isolation-level attribute on the first
element in the transaction. This attribute is ignored on subsequent elements. In the following
example. the attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:transaction-id="0"
 jdbc:isolation-level="serializable">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement jdbc:transaction-type="manual"
 jdbc:transaction-id="0">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT OFF
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

novdocx (E
N

U
) 9 January 2007
INSERT INTO indirect.usr(lname) VALUES(’Doe’);
UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
COMMIT; -- explicit commit

9.7 Statement Type
The Subscriber channel executes embedded SQL statements, but it doesn’t understand them. The
JDBC 1 interface defines several methods for executing different types of SQL statements. The
following table contains these methods:

Table 9-1 Methods for Executing SQL Statements

The simplest solution is to map all SQL statements to the
java.sql.Statement.execute(String sql):boolean method. By default, the
Subscriber channel uses this method.

Some third-party drivers, particularly Oracle’s JDBC drivers, incorrectly implement the methods
used to determine the number of result sets that this method generates. Consequently, the driver can
get caught in an infinite loop leading to high CPU utilization. To circumvent this problem, you can
use the jdbc:type attribute on any <jdbc:statement> element to map the SQL statements
contained in it to the following methods instead of the default method:

java.sql.Statement.executeQuery(String
query):java.sql.ResultSet

java.sql.Statement.executeUpdate(String update):int

The jdbc:type attribute has two values: update and query. For INSERT, UPDATE, or
DELETE statements, set the value to update. For SELECT statements, set the value to query. In
the absence of this attribute, the driver maps all SQL statements to the default method. If placed on
any element other than <jdbc:statement>, this attribute is ignored.

Recommendations:

Place the jdbc:type=”query” attribute value on all SELECT statements.
Place the jdbc:type=”update” attribute value on all INSERT, UPDATE, and DELETE
statements.
Place no attribute value on stored procedure/function calls.

Statement Type Method Executed

SELECT java.sql.Statement.executeQuery(String query):java.sql.ResultSet

INSERT java.sql.Statement.executeUpdate(String update):int

UPDATE java.sql.Statement.executeUpdate(String update):int

DELETE java.sql.Statement.executeUpdate(String update):int

CALL or EXECUTE
SELECT
INSERT
UPDATE
DELETE

java.sql.Statement.execute(String sql):boolean
Embedded SQL Statements in XDS Events 131

132 Identity Man

novdocx (E
N

U
) 9 January 2007
The following XML shows an example of the jdbc:type attribute. The attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement jdbc:type="update">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

9.8 SQL Queries
To fully support the query capabilities of a database and avoid the difficulty of translating native
SQL queries into an XDS format, the driver supports native SQL query processing. You can embed
select statements in XDS documents in exactly the same way as any other SQL statement.

For example, assume that the table usr has the following contents:

Table 9-2 Example Contents

The XML document below results in an output document containing a single result set.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <jdbc:statement jdbc:type="query">
 <jdbc:sql>SELECT * FROM indirect.usr</jdbc:sql>
 </jdbc:statement>
</input>
<output xmlns:jdbc="urn:dirxml:jdbc">
 <jdbc:result-set jdbc:number-of-rows="1">
 <jdbc:row jdbc:number="1">
 <jdbc:column jdbc:name="idu"
 jdbc:position="1"
 jdbc:type="java.sql.Types.BIGINT
 <jdbc:value>l</jdbc:value>
 </jdbc:column>

<jdbc:column jdbc:name="fname"
 jdbc:position="2"
 jdbc:type="java.sql.Types.VARCHAR>
 <jdbc:value>John</jdbc:value>
 </jdbc:column>
 <jdbc:column jdbc:name="lname"
 jdbc:position="3"
 jdbc:type="java.sql.Types.VARCHAR>
 <jdbc:value>Doe</jdbc:value>
 </jdbc:column>
 </jdbc:row>

idu fname lname

1 John Doe
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
 </jdbc:result-set>
 <status level="success"/>
</output>

SQL queries always produce a single <jdbc:result-set> element whether or not the result set
contains any rows. If the result set is empty, the jdbc:number-of-rows attribute is set to zero.

You can embed more than one query in a document. SQL queries don’t require that the referenced
tables/views in the synchronization schema be visible to the driver. However, XDS queries do.

9.9 Data Definition Language (DDL) Statements
Generally, it is not possible to run a Data Definition Language (DDL) statement in a database trigger
because most databases do not allow mixed DML and DDL transactions. Although virtual triggers
do not overcome this transactional limitation, they do allow DDL statements to be executed as a side
effect of an XDS event.

For example:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY novell</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT OFF
INSERT INTO indirect.usr(fname, lname) VALUES(’John’, ’Doe’);
COMMIT; -- explicit commit
SET AUTOCOMMIT ON
CREATE USER jdoe IDENTIFIED BY novell;
-- implicit commit

Using the jdbc:transaction-id and jdbc:transaction-type attributes to group DML
and DDL statements into a single transaction causes the transaction to be rolled back on most
databases. Because DDL statements are generally executed as separate transactions, it is possible
that the insert statement in the above example might succeed and the create user statement might
roll back.

It is not possible, however, that the insert statement fail and the create user statement
succeed. The driver stops executing chained transactions at the point where the first transaction is
rolled back.
Embedded SQL Statements in XDS Events 133

134 Identity Man

novdocx (E
N

U
) 9 January 2007
9.10 Logical Operations
Because it is not generally possible to mix DML and DDL statements in a single transaction, a
single event can consist of one or more transactions. You can use the jdbc:op-id and
jdbc:op-type to group multiple transactions together into a single logical operation. When so
grouped, all members of the operation are handled as a single unit with regard to status. If one
member has an error, all members return the same status level. Similarly, all members share the
same status type.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:op-id="0"
 jdbc:op-type="password-set-operation">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 <password>Doe{$idu}</password>
 </add>
 <jdbc:statement jdbc:op-id="0">
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY {$$password}
 </jdbc:sql>
 </jdbc:statement>
</input>

The jdbc:op-type attribute is ignored on all elements except the first element in a logical
operation.

9.11 Implementing Password Set with Embedded
SQL
Initially setting a password is usually accomplished by creating a database user account. Assuming
that an <add> event is generated on the Subscriber channel, the following is an example of the
output generated by XSLT style sheets that implement password set as a side effect of an XDS
<add> event:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:op-id="0"
 jdbc:op-type="password-set-operation">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 <password>Doe{$idu}</password>
 </add>
 <jdbc:statement jdbc:op-id="0">
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY {$$password}
 </jdbc:sql>
 </jdbc:statement>
</input>
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
The <add> event is logically bound to the CREATE USER DDL statement by the jdbc:op-id
and jdbc:op-type attributes.

The User DDL Command Transformation style sheet in the example .xml configuration file
contains sample XSLT templates that bind user account creation DDL statements to <add> events
for all databases that support them.

9.12 Implementing Modify Password with
Embedded SQL
Modifying a password is usually accomplished by altering an existing database user account.
Assuming that a <modify-password> event is generated on the Subscriber channel, the
following is an example of the output generated by XSLT style sheets that implement modify-
password:

NOTE: Some databases, such as Sybase Adaptive Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
supply the login name instead of hte user name.

<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify-password jdbc:op-id="0"
 jdbc:op-type="password-set-operation">
 <password>new password</password>
 </modify-password>
 <jdbc:statement jdbc:op-id="0">
 <jdbc:sql>ALTER USER jdoe IDENTIFIED BY {$$password}
 </jdbc:sql>
 </jdbc:statement>
</input>

The <modify-password> event is logically bound to the ALTER USER DDL statement by the
jdbc:op-id and jdbc:op-type attributes.

The User DDL Command Transformation style sheet in the example .xml configuration file
contains sample XSLT templates that bind password maintenance DDL statements to <modify-
password> events for all databases that support them.

9.13 Implementing Check Object Password
Unlike password set, check object password does not require embedded SQL statements or
attributes. Only a user account name is required. This could be obtained from an association value
(assuming that associations are being maintained manually), a directory attribute, or a database field.
If stored in the directory or database, a query must be issued to retrieve the value.

The example .xml configuration file stores database user account names in database fields.

NOTE: Some databases, such as Sybase Adpative Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
store two names, not just one.

To implement check object password, append a dest-dn attribute value to the <check-
object-password> event. In the following example, the dest-dn attribute is bolded:
Embedded SQL Statements in XDS Events 135

136 Identity Man

novdocx (E
N

U
) 9 January 2007
<input xmlns:jdbc="urn:dirxml:jdbc">
 <check-object-password dest-dn="jdoe">
 <password>whatever</password>
 </check-object-password>
</input>

9.14 Best Practices
For performance reasons, it is better to call a single stored procedure/function that contains multiple
SQL statements than to embed multiple statements in an XDS document.

In the following examples, the single stored procedure or function is preferred.

Single Stored Procedure
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CALL PROCEDURE set_name('John', 'Doe')</jdbc:sql>
 </jdbc:statement>
</input>

Multiple Embedded Statements
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John'
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET lname = 'Doe'
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

The syntax used to call stored procedures or functions varies by database. For additional
information, see “Stored Procedure and Function JDBC Call Syntaxes” on page 139.
ager Driver for JDBC 2.1: Implementation Guide

10
novdocx (E

N
U

) 9 January 2007
10Supported Databases

Section 10.1, “Database Interoperability,” on page 137
Section 10.2, “Supported Databases,” on page 137
Section 10.3, “Database Characteristics,” on page 138

10.1 Database Interoperability
The Identity Manager Driver for JDBC is designed to interoperate with a specific set of JDBC driver
implementations, instead of a specific set of databases. Consequently, the list of supported databases
is primarily driven by the capabilities of supported third-party JDBC drivers. A secondary factor is
testing resources.

10.2 Supported Databases
The following databases or database versions have been tested and are recommended for use with
this product:

Table 10-1 Supported Databases

You can use the Driver for JDBC with other databases or database versions. However, Novell® does
not support them. To interoperate with the Driver for JDBC, a database must meet the following
requirements:

Support the SQL-92 entry level grammar.
Be JDBC-accessible.

Database Minor Version

IBM DB2 Universal Database (UDB) 7 7.2 or later

IBM DB2 Universal Database (UDB) 8 8.1 or later

Informix Dynamic Server (IDS) 9.40 or later

Microsoft SQL Server 7 7.5, Service Pack 4 or later

Microsoft SQL Server 8 (2000) Service Pack 3a or later

MySQL 3 3.23.58 or later

MySQL 4 4.1 or later

Oracle 8i Release 3 (8.1.7) or later

Oracle 9i Release 2 (9.2.0.1) or later

Oracle 10g Release 1 (10.0.2.1) or later

PostgreSQL 7 7.4.6 or later

Sybase Adaptive Server Enterprise (ASE) 12 12.5 or later
Supported Databases 137

138 Identity Man

novdocx (E
N

U
) 9 January 2007
10.3 Database Characteristics
Section 10.3.1, “Database Features,” on page 138
Section 10.3.2, “Current Time Stamp Statements,” on page 139
Section 10.3.3, “Stored Procedure and Function JDBC Call Syntaxes,” on page 139
Section 10.3.4, “Left Outer Join Operators,” on page 140
Section 10.3.5, “Undelimited Identifier Case Sensitivity,” on page 140
Section 10.3.6, “Supported Transaction Isolation Levels,” on page 141
Section 10.3.7, “Commit Keywords,” on page 141
Section 10.3.8, “IBM DB2 Universal Database (UDB),” on page 142
Section 10.3.9, “Informix Dynamic Server (IDS),” on page 142
Section 10.3.10, “Microsoft SQL Server,” on page 143
Section 10.3.11, “MySQL,” on page 144
Section 10.3.12, “Oracle,” on page 145
Section 10.3.13, “PostgreSQL,” on page 146
Section 10.3.14, “Sybase Adaptive Server Enterprise (ASE),” on page 146

10.3.1 Database Features

Table 10-2 Database Features

1 DB2 natively supports stored procedures or functions written in Java. To write procedures by using
the native SQL procedural language, install a C compiler on the database server.

Database Schemas Views Identity
Columns Sequences Stored

Procedures Functions Triggers
Instead-
Of-
Triggers

IBM DB2
UDB 7

X X X 0 X1 X1 X 0

IBM DB2
UDB 8

X X X 0 X1 X1 X X

Informix IDS
9

X X X2 0 X3 X X 0

MS SQL 7 X X X 0 X 0 X 0

MS SQL 8 X X X 0 X X X X

MySQL 4 0 0 X4 0 0 0 0 0

Oracle 8i, 9i,
10g

X X 0 X X X X X

Postgres 7 X X X5 X X X X6 X6

Sybase ASE
12

X X X 0 X 0 X 0
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
2 The Informix identity column keyword is SERIAL8.
3 Informix stored procedures cannot return values.
4 The MySQL identity column keyword is AUTO_INCREMENT.
5 You can use a Postgres sequence object to provide default values for primary key columns,
effectively simulating an identity column.

Postgres has a native construct called rules. This construct can be used to effectively simulate
triggers and instead-of-triggers. It also supports the use of triggers or instead-of-triggers written in a
variety of procedural programming languages.

10.3.2 Current Time Stamp Statements
The following table lists SQL statements used to retrieve the current date and time by database:

Table 10-3 Time Stamp Statements

10.3.3 Stored Procedure and Function JDBC Call Syntaxes
The following table lists the SQL syntax for calling a stored procedure or function. This is useful for
formatting procedure and function calls in embedded SQL statements.

Table 10-4 Calling a Stored Procedure or Function

Database Current Time Stamp Statement ANSI-
Compliant

IBM DB2
UDB

SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH
FIRST 1 ROW ONLY

No

Informix IDS SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM
INFORMIX.SYSTABLES

No

MSSQL SELECT (CURRENT_TIMESTAMP) Yes

MySQL SELECT (CURRENT_TIMESTAMP) Yes

Oracle SELECT (SYSDATE) FROM SYS.DUAL No

PostgreSQL SELECT (CURRENT_TIMESTAMP) Yes

Sybase ASE SELECT GETDATE() No

Database Stored Procedure/Function JDBC Call Syntax

IBM DB2 UDB {call schema-name.procedure-name(parameter-list)}

Informix IDS EXECUTE [PROCEDURE | FUNCTION] schema-name.routine-name(parameter-list)

MSSQL EXECUTE schema-name.procedure-name(parameter-list)

MySQL (NA)

Oracle1 CALL schema-name.procedure-name(parameter-list)
Supported Databases 139

140 Identity Man

novdocx (E
N

U
) 9 January 2007
1 Oracle’s JDBC implementation does not support calling functions as a string.

10.3.4 Left Outer Join Operators
The following table lists outer join operators by database.

Table 10-5 Outer Join Operators

NOTE: Oracle supports the ANSI-compliant left outer join operator LEFT OUTER JOIN as of
version 10g.

10.3.5 Undelimited Identifier Case Sensitivity

Table 10-6 Case Sensitivity for Undelimited Identifiers

PostgreSQL SELECT schema-name.procedure-name(parameter-list)

Sybase ASE EXECUTE schema-name.procedure-name(parameter-list)

Database Left Outer Join Operator ANSI-Compliant

IBM DB2 UDB LEFT OUTER JOIN Yes

Informix IDS LEFT OUTER JOIN Yes

MSSQL *= No

MySQL LEFT OUTER JOIN Yes

Oracle (+) No

PostgreSQL LEFT OUTER JOIN Yes

Sybase ASE *= No

Database Case-Sensitive?

IBM DB2 UDB No

Informix IDS No

MSSQL No

MySQL Yes

Oracle No

PostgreSQL No

Sybase ASE Yes

Database Stored Procedure/Function JDBC Call Syntax
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
10.3.6 Supported Transaction Isolation Levels

Table 10-7 Supported Transaction Isolation Levels

1 This is the default isolation level for this database.
2 Can be set, but it is aliased to a supported isolation level.

10.3.7 Commit Keywords
The following table identifies the commit keywords for supported databases:

Table 10-8 Commit Keywords

Database No
ne

Read
Uncommit
ted

Read
Commit
ted

Repeata
ble
Read

Serializa
ble URL

IBM DB2 UDB 0 X X1 X X Setting JDBC Transaction
Isolation Levels (http://
publib.boulder.ibm.com/
infocenter/db2help/
index.jsp?topic=/
com.ibm.db2.udb.doc/ad/
tjvjdiso.htm)

MySQL (InnoDB Table
Type)

0 X X X1 X InnoDB Transaction Isolation
Levels (http://dev.mysql.com/
doc/mysql/en/innodb-
transaction-isolation.html)

Oracle 0 0 X1 0 X JDBC Transaction Optimization
(http://www.oracle.com/
technology/oramag/oracle/02-
jul/o42special_jdbc.html)

PostgreSQL 0 02 X1 02 X Transaction Isolation (http://
www.postgresql.org/docs/
current/static/transaction-
iso.html)

Database Commit Keyword

IBM DB2 UDB COMMIT

Informix IDS COMMIT WORK1

MSSQL GO

MySQL COMMIT

Oracle COMMIT

PostgreSQL COMMIT

Sybase ASE GO
Supported Databases 141

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://www.oracle.com/technology/oramag/oracle/02-jul/o42special_jdbc.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

142 Identity Man

novdocx (E
N

U
) 9 January 2007
1 For logging and ANSI-compliant databases. Non-logging databases do not support transactions.

10.3.8 IBM DB2 Universal Database (UDB)
The following table lists properties for this database.

Table 10-9 Properties for IBM DB2 UDB

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly override these settings.

Table 10-10 Dynamically Configured IBM DB2 Universal Database Settings

Known Issues

The timestamp format is proprietary.

See “Known Issues” on page 147.

10.3.9 Informix Dynamic Server (IDS)
The following table lists properties for this database.

Property Value

Current Timestamp
Statement

SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH
FIRST 1 ROW ONLY

Stored Procedure/
Function Call Syntax

{call schema-name.procedure-name(parameter-list)}

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join
Operator

LEFT OUTER JOIN

Display Name Tag Name Value

Current Timestamp
Statement:

current-timestamp-
stmt

SELECT (CURRENT TIMESTAMP) FROM
SYSIBM.SYSDUMMY1 FETCH FIRST 1 ROW ONLY

Timestamp Translator
class:

time-translator-class com.novell.nds.dirxml.driver.jdbc.db.DB2Timestamp
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Table 10-11 Settings for Informix Dynamic Server

1 For logging and ANSI-compliant databases. Nonlogging databases do not support transactions.

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 10-12 Dynamically Configured Informix Dynamic Server Settings

Known Issues

NUMERIC or DECIMAL columns cannot be used as primary keys unless the scale (the number
of digits to the right of the decimal point) is explicitly set to 0 when the table is created. By
default, the scale is set to 255.

10.3.10 Microsoft SQL Server
The following table lists properties for this database:

Table 10-13 Settings for Microsoft SQL Server

Property Value

Current Timestamp
Statement

SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM
INFORMIX.SYSTABLES

Stored Procedure/
Function Call Syntax

EXECUTE [PROCEDURE | FUNCTION] schema-name.procedure-
name(parameter-list)

Case-Sensitive? No

Commit Keyword COMMIT WORK1

Left Outer Join
Operator

LEFT OUTER JOIN

Display Name Tag Name Value

Current Timestamp
Statement:

current-timestamp-
stmt

SELECT FIRST 1 (CURRENT YEAR TO
FRACTION(5)) FROM INFORMIX.SYSTABLES

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call
Syntax

EXECUTE schema-name.procedure-name(parameter-list)

Case-Sensitive? No

Commit Keyword GO
Supported Databases 143

144 Identity Man

novdocx (E
N

U
) 9 January 2007
Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 10-14 Dynamically Configured Microsoft SQL Server Settings

10.3.11 MySQL
The following table lists properties for this database.

Table 10-15 Settings for MySQL

Dynamic Defaults

The following table lists database compatibility parameters that are dynamically configured at
runtime for this database.

Table 10-16 Dynamically Configured MySQL Settings

Left Outer Join Operator *=

Display Name Tag Name Value

Add default values on insert? add-default-values-on-view-insert true

Left outer-join operator: left-outer-join-operator *=

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call
Syntax

(NA)

Case-Sensitive? Yes

Commit Keyword COMMIT

Left Outer Join Operator LEFT OUTER JOIN

Display Name Tag Name Value

Supports schemas in metadata
retrieval?

supports-schemas-in-metadata-retrieval false

Property Value
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Known Issues

TIMESTAMP columns, when updated after being initially set to 0 or NULL, are always set to
the current date and time. To compensate for this behavior, we recommend that you map
Identity Vault Time and Timestamp syntaxes to DATETIME columns.

10.3.12 Oracle
The following table lists properties for this database:

Table 10-17 Settings for Oracle

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 10-18 Dynamically Configured Oracle Settings

NOTE: The default exclusion filter is intended to omit from the synchronization schema dropped
tables that are visible in Oracle 10g.

Limitations

LONG, LONG RAW and BLOB columns cannot be referenced in a trigger.

You can’t reference columns of these types by using the :NEW qualifier in a trigger, including
instead-of-triggers.

Property Value

Current Timestamp Statement SELECT (SYSDATE) FROM SYS.DUAL

Stored Procedure/Function Call
Syntax

CALL schema-name.procedure-name(parameter-list)

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join Operator (+)

Display Name Tag Name Value

Left outer-join operator left-outer-join-operator (+)

Exclude filter expression exclude-table-filter BIN\$.{22}==\$0

Lock statement generator
class

lock-generator-class com.novell.nds.dirxml.driver.jdbc.db.lock.
OraLockGenerator
Supported Databases 145

146 Identity Man

novdocx (E
N

U
) 9 January 2007
10.3.13 PostgreSQL
The following table lists properties for this database:

Table 10-19 Settings for PostgreSQL

Known Issues

PostgreSQL does not support <check-object-password> events. You control
authentication by manually inserting entries into the pg_hba.conf file.

10.3.14 Sybase Adaptive Server Enterprise (ASE)
The following table lists properties for this database:

Table 10-20 Settings for Sybase ASE

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 10-21 Dynamically Configured Sybase ASE Settings

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call
Syntax

SELECT schema-name.procedure-name(parameter-list)

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join Operator LEFT OUTER JOIN

Property Value

Current Timestamp Statement SELECT GETDATE()

Stored Procedure/Function Call
Syntax

EXECUTE schema-name.procedure-name(parameter-list)

Case-Sensitive? Yes

Commit Keyword GO

Left Outer Join Operator *=

Display Name Tag Name Value

Current timestamp
statement

current-timestamp-stmt SELECT GETDATE()
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Known Issues

Padding and truncation of binary values.

To ensure ANSI-compliant padding and truncation behavior for binary values, make sure that
binary column types (other than IMAGE) meet the following criteria:

They are exactly the size of the eDirectoryTM attribute that maps to them.
They are constrained NOT NULL.
They are added to the Publisher and Subscriber Creation policies.

If they are constrained NULL, trailing zeros, which are significant to eDirectory, are truncated.
If binary columns exceed the size of their respective eDirectory attributes, extra 0s are
appended to the value.

The recommended solution is to use only the IMAGE data type when synchronizing binary
values.
DATETIME fractions of a second are rounded.

Sybase Timestamps are at best accurate to 1/300th of a second (approximately.003 seconds).
The database server rounds to the nearest 1/300th of a second as opposed to the nearest 1/1000th
of a second (.001 seconds or 1 millisecond).
Timestamp formats are proprietary.

Left outer-join operator left-outer-join-operator *=

Timestamp Translator
class

time-translator-class com.novell.nds.dirxml.driver.jdbc.db.SybaseTi
mestamp

Display Name Tag Name Value
Supported Databases 147

148 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

11
novdocx (E

N
U

) 9 January 2007
11Third-Party JDBC Drivers

Section 11.1, “Third-Party JDBC Driver Interoperability,” on page 149
Section 11.2, “JDBC Driver Types,” on page 149
Section 11.3, “Third-Party Jar File Placement,” on page 150
Section 11.4, “Supported Third-Party JDBC Drivers,” on page 151
Section 11.5, “Unsupported Third-Party JDBC Drivers,” on page 165
Section 11.6, “Security Issues,” on page 166

11.1 Third-Party JDBC Driver Interoperability
The Identity Manager Driver for JDBC is designed to interoperate with a specific set of third-party
JDBC drivers, instead of a specific set of databases. In fact, the third-party JDBC driver, not the
database, is the primary determinant of whether the Driver for JDBC works against any given
database. As a general rule, if the Driver for JDBC interoperates well with a given third-party JDBC
driver, it interoperates well with databases and database versions that the third-party driver supports.

We strongly recommend that you use the third-party JDBC drivers supplied by major enterprise
database vendors whenever possible, such as those listed in this section. They are usually free,
mature, and known to interoperate well with the Driver for JDBC and the databases they target. You
can use other third-party drivers, but Novell® does not support them.

In general, most third-party drivers are backward compatible. However, even if they are generally
backward compatible, they are generally not forward compatible. Anytime a database server is
upgraded, the third-party driver used with this product should probably be updated as well.

Also, as a general rule, we recommend that you use the latest version of a third-party driver, unless
otherwise noted.

11.2 JDBC Driver Types
Type 1

A third-party JDBC driver that is partially Java and communicates indirectly with a database server
through a native ODBC driver.

Type 1 drivers serve as a JDBC-ODBC bridge. Sun provides a JDBC-ODBC bridge driver for
experimental use and for situations when no other type of third-party JDBC driver is available.

Type 2

A third-party JDBC driver that is part Java and communicates indirectly with a database server
through its native client APIs.

Type 3

A third-party JDBC driver that is pure Java and communicates indirectly with a database server
through a middleware server.
Third-Party JDBC Drivers 149

150 Identity Man

novdocx (E
N

U
) 9 January 2007
Type 4

A third-party JDBC driver that is pure Java and communicates directly with a database server.

11.2.1 Which Type To Use?
Type 3 and 4 drivers are generally more stable than type 1 and 2 drivers. Type 1 and 2 drivers are
generally faster than type 3 and 4 drivers. Type 2 and 3 drivers are generally more secure than type 1
and 4 drivers.

Because Identity Manager uses a directory as its datastore, and because databases are usually
significantly faster than directories, performance isn’t a primary concern. Stability, however, is an
issue. For this reason, we recommend that you use a type 3 or 4 third-party JDBC driver whenever
possible.

IMPORTANT: If you choose to use a type 1 or type 2 driver (one containing native code) with the
Driver for JDBC, use the Remote Loader to ensure the integrity of the directory process.

11.3 Third-Party Jar File Placement
The following tables identify the paths where third-party JDBC driver jar files should be placed on
an Identity Manager or Remote Loader server assuming default installation paths.

11.3.1 Identity Manager File Paths
The following table identifies where to place third-party JDBC driver jar files on an Identity
Management server, by platform.

Table 11-1 Locations for jar Files: Identity Manager Server

11.3.2 Remote Loader File Paths
The following table identifies where to place third-party JDBC driver jar files on a Remote Loader
server, by platform.

Table 11-2 Locations for jar Files: Remote Loader

Platform Directory Path

NetWare® sys:\system\lib

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\NDS\lib

Platform Directory Path

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
11.4 Supported Third-Party JDBC Drivers
Section 11.4.1, “Third-Party JDBC Driver Features,” on page 151
Section 11.4.2, “JDBC URL Syntaxes,” on page 152
Section 11.4.3, “JDBC Driver Class Names,” on page 152
Section 11.4.4, “BEA Weblogic jDriver for Microsoft SQL Server,” on page 153
Section 11.4.5, “IBM DB2 Universal Database JDBC Drivers,” on page 154
Section 11.4.6, “Informix JDBC Driver,” on page 156
Section 11.4.7, “Microsoft SQL Server 2000 Driver for JDBC,” on page 158
Section 11.4.8, “MySQL Connector/J JDBC Driver,” on page 160
Section 11.4.9, “Oracle Thin Client JDBC Driver,” on page 160
Section 11.4.10, “Oracle OCI JDBC Driver,” on page 162
Section 11.4.11, “PostgreSQL JDBC Driver,” on page 164
Section 11.4.12, “Sybase Adaptive Server Enterprise JConnect JDBC Driver,” on page 164

11.4.1 Third-Party JDBC Driver Features
The following table summarizes third-party JDBC driver features:

Table 11-3 Third-Party JDBC Driver Features

* For JDBC 3 (Java 1.4) versions and later.

Windows NT/2000 novell\RemoteLoader\lib

Driver Supports Encrypted Transport? Supports Retrieval of Auto-Generated
Keys?

BEA* Weblogic* jDriver No No

IBM DB2 UDB Type 3 No No

IBM DB2 UDB Type 4 No No

Informix No No

Microsoft 2000 No No

MySQL Connector/J Yes Yes

Oracle Thin Client Yes No

Oracle OCI Yes No

PostgreSQL Yes* No

Sybase jConnect Yes No

Platform Directory Path
Third-Party JDBC Drivers 151

152 Identity Man

novdocx (E
N

U
) 9 January 2007
11.4.2 JDBC URL Syntaxes
The following table lists URL syntaxes for supported third-party JDBC drivers:

Table 11-4 URL Syntaxes

This information is used in conjunction with the Authentication Context parameter. For information
on this parameter, see “Authentication Context” on page 54.

11.4.3 JDBC Driver Class Names
The following table lists the fully-qualified Java class names of supported third-party JDBC drivers:

Table 11-5 Class Names of Third-Party JDBC Drivers

Third-Party JDBC Driver JDBC URL Syntax

Oracle Thin Client jdbc:oracle:thin:@ip-address:1521:sid

Oracle OCI jdbc:oracle:oci8:@tns-name

IBM DB2 UDB Type 3 jdbc:db2://ip-address:6789/database-name

IBM DB2 UDB Type 4, Universal jdbc:db2://ip-address:50000/database-name

BEA Weblogic jDriver jdbc:weblogic:mssqlserver4:database-name@ip-address:1433

Microsoft SQL Server jdbc:microsoft:sqlserver://ip-address-or-dns-
name:1433;DatabaseName=database-name

Sybase jConnect jdbc:sybase:Tds:ip-address:2048/database-name

MySQL Connector/J jdbc:mysql://ip-address:3306/database-name

Informix jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

PostgreSQL jdbc:postgresql://ip-address:5432/database-name

Third-party JDBC Driver Class Name

BEA Weblogic jDriver weblogic.jdbc.mssqlserver4.Driver

IBM DB2 UDB Type 3 COM.ibm.db2.jdbc.net.DB2Driver

IBM DB2 UDB Type 4, Universal com.ibm.db2.jcc.DB2Driver

Informix com.informix.jdbc.IfxDriver

Microsoft 2000 com.microsoft.jdbc.sqlserver.SQLServerDriver

MySQL Connector/J org.gjt.mm.mysql.Driver

Oracle Thin Client oracle.jdbc.driver.OracleDriver

Oracle OCI oracle.jdbc.driver.OracleDriver

PostgreSQL org.postgresql.Driver
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
This information is used in conjunction with the JDBC Driver Class Name parameter. For
information on this parameter, see “Third-Party JDBC Driver Class Name” on page 56.

11.4.4 BEA Weblogic jDriver for Microsoft SQL Server

Table 11-6 BEA Weblogic jDriver

NOTE: The BEA Weblogic driver is included in the supported third-party driver listing to provide
JDBC access to Microsoft SQL server 7. Microsoft’s driver supports only version 8 (2000).

Compatibility

The BEA Weblogic driver is backward compatible. Database server and driver updates are
infrequent.

Security

The BEA Weblogic driver does not support encrypted transport.

Known Issues

The BEA Weblogic driver is not free. It must be purchased and properly licensed.
Association values that contain UNIQUEIDENTIFIER columns are inconsistent between
driver versions.
Earlier versions of the BEA Weblogic driver returned a non-standard java.sql.Types (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) value for native UNIQUEIDENTIFIER
columns. To compensate, the Driver for JDBC mapped that non-standard type to the standard
type java.sql.Types.BINARY (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html)

Sybase jConnect 5.5 com.sybase.jdbc2.jdbc.SybDriver

Supported Database Version: Microsoft SQL Server 6.5, 7.x, 8.x (2000)

Class Name weblogic.jdbc.mssqlserver4.Driver

Type 4

URL Syntax jdbc:weblogic:mssqlserver4:database-name@ip-address:1433

Download Instructions Register for free and download the latest version of Weblogic server.
Run the installer. The weblogic.jar file is installed in the
install-dir/server/lib directory.

BEA Download Center (http://commerce.bea.com/
showallversions.jsp?family=WLS)

Filename weblogic.jar

Documentation URLs jDriver Documentation (http://e-docs.bea.com/wls/docs81/
mssqlserver4/)

Third-party JDBC Driver Class Name
Third-Party JDBC Drivers 153

http://commerce.bea.com/showallversions.jsp?family=WLS
http://e-docs.bea.com/wls/docs81/mssqlserver4/
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

154 Identity Man

novdocx (E
N

U
) 9 January 2007
because it best mirrored the native database type, which is a 16-byte value. This mapping
results in a Base64-encoded association value.
Later versions of the BEA Weblogic driver return a standard type java.sql.CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html). This mapping results in a non-Base64-
encoded association value, effectively invalidating all associations generated by using earlier
versions of the BEA Weblogic driver. This change effectively breaks backward compatibility.
The best solution to this problem is to continue using the earlier version of the BEA Weblogic
driver. If you must upgrade, you must remove all invalidated associations and reassociate all
previously-associated objects.
The BEA Weblogic driver throws a java.lang.IllegalMonitorStateException (http://
java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalMonitorStateException.html) when method
java.sql.Connection.getConnection(String url, String username,
String password) is called on AIX.

11.4.5 IBM DB2 Universal Database JDBC Drivers
The IBM DB2 driver can be either type 3 or type 4.

Type 3

Table 11-7 IBM DB2 Driver: Type 3

IMPORTANT: The type 3 driver is deprecated for version 8.

Compatibility

The IBM DB2 driver can best be characterized as version-hypersensitive. It is not compatible across
major or minor versions of DB2, including FixPacks. For this reason, we recommend that you use
the file installed on the database server.

Supported Database Versions: 7.x

Class Name: COM.ibm.db2.jdbc.net.DB2Driver

Type 3

URL Syntax: jdbc:db2://ip-address:6789/database-name

Download Instructions: Copy the file from the database server.

file:///database-installation-directory/java

Filename: db2java.zip

Documentation URLs: DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2v7luw)

JDBC Programming (http://publib.boulder.ibm.com/infocenter/
db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/
db2a0159.htm)
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalMonitorStateException.html
http://publib.boulder.ibm.com/infocenter/db2v7luw
http://publib.boulder.ibm.com/infocenter/db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/db2a0159.htm

novdocx (E
N

U
) 9 January 2007
IMPORTANT: The IBM DB2 driver must be updated on the Identity Manager or Remote Loader
server every time the target database is updated, even if only at the FixPack level.

Security

The IBM DB2 driver does not support encrypted transport.

Known Issues

A version mismatch usually results in connectivity-related failures.

The most common problem experienced with the IBM DB2 driver is because of a driver/
database version mismatch. The symptom of a version mismatch is connectivity-related
failures such as "CLI0601E Invalid statement handle or statement is closed." To remedy the
problem, overwrite the db2java.zip file on the Identity Manager or Remote Loader server
with the version installed on the database server.
It’s very difficult to diagnose and remedy Java-related errors on the database server.
Numerous error conditions and error-codes can arise when you attempt to install and execute
user-defined stored procedures and functions written in Java. Diagnosing them can prove time
intensive and frustrating. A log file (db2diag.log on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

Type 4: Universal Driver

Table 11-8 IBM DB2 Driver: Type 4

Supported Database Versions 8.x

Class Name com.ibm.db2.jcc.DB2Driver

Type 4

URL Syntax jdbc:db2://ip-address:50000/database-name

Download Instructions Download as part of the latest FixPack (recommended).

IBM Support & Downloads (http://www.ibm.com/support/us/)

or

Copy the file from the database server.

file:///database-installation-directory/java

Filename db2jcc.jar, db2jcc_license_cu.jar, db2jcc_javax.jar
(optional)
Third-Party JDBC Drivers 155

http://www.ibm.com/support/us/

156 Identity Man

novdocx (E
N

U
) 9 January 2007
NOTE: Unlike the type 3 driver, the type 4 driver has only a minimal set of defined error codes.
This absence inhibits the Driver for JDBC’s ability to distinguish between connectivity, retry,
authentication, and fatal error conditions.

Compatibility

The IBM DB2 driver is backward compatible. However, it doesn’t work with database version 7.
Database server updates are frequent. Driver updates are infrequent.

Security

The IBM DB2 driver supports a variety of authentication security mechanisms but does not support
encrypted transport.

Known Issues

It’s very difficult to diagnose and remedy Java-related errors on the database server.

Numerous error conditions and error codes can arise when you attempt to install and execute
user-defined stored procedures and functions written in Java. Diagnosing these can prove time
intensive and frustrating. A log file (db2diag.log on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

11.4.6 Informix JDBC Driver

Table 11-9 Informix JDBC Driver

Documentation URLs DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2help)

DB2 Universal JDBC Driver (http://publib.boulder.ibm.com/infocenter/
db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm)

Security under the DB2 Universal JDBC Driver (http://
publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/ad/cjvjcsec.htm)

Supported Database Versions Dynamic Server 7.x, 9.x

Class Name com.informix.jdbc.IfxDriver

Type 4

URL Syntax jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

Download Instructions Download URL (http://www-306.ibm.com/software/data/informix/
tools/jdbc)

Filenames ifxjdbc.jar, ifxjdbcx.jar (optional)
ager Driver for JDBC 2.1: Implementation Guide

http://publib.boulder.ibm.com/infocenter/db2help
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/cjvjcsec.htm
http://www-306.ibm.com/software/data/informix/tools/jdbc

novdocx (E
N

U
) 9 January 2007
Compatibility

The Informix driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Informix driver does not support encrypted transport.

Required Parameter Settings for ANSI-Compliant Databases

The following table lists driver parameters that must be explicitly set for the Driver for JDBC to
interoperate with the Informix driver against ANSI-compliant databases.

Table 11-10 Driver Settings for ANSI-Compliant Databases

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not override these settings.

Table 11-11 Informix JDBC Settings Not to Override

Known Issues

Schema names cannot be used to retrieve metadata against an ANSI-compliant database. Set
the driver compatibility parameter “Supports Schemas in Metadata Retrieval?” on page 75 to
Boolean False.

Documentation URLs Informix Information Center (http://publib.boulder.ibm.com/infocenter/
ids9help/index.jsp)

Informix JDBC Driver (http://www-306.ibm.com/software/data/
informix/pubs/library/jdbc_2.html)

Display Name Tag Name Value

Supports schemas in metadata retrieval? supports-schemas-in-metadata-retrieval

See “Supports Schemas in Metadata
Retrieval?” on page 75.

false

Force username case: force-username-case

See “Force Username Case” on page 73.

upper

Display Name Tag Name Value

Function return method: function-return-method

See “Function Return Method”
on page 75.

result set
Third-Party JDBC Drivers 157

http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www-306.ibm.com/software/data/informix/pubs/library/jdbc_2.html

158 Identity Man

novdocx (E
N

U
) 9 January 2007
The database objects available for metadata retrieval are those visible to the database user who
authenticated to the database. Schema qualifiers cannot be used to identify database objects.
Therefore, to avoid naming collisions (such as, owner1.table1, owner2.table1), give the
database authentication user only SELECT privileges on objects being synchronized.
When used against ANSI-compliant databases, usernames must be in uppercase. Set the driver
compatibility parameter “Force Username Case” on page 73 to upper.

11.4.7 Microsoft SQL Server 2000 Driver for JDBC

Table 11-12 Microsoft SQL Server 2000 Driver Settings

Microsoft has released a 2005 version of this driver. However, the filename, URL syntax, and
classname differ.

Compatibility

The SQL Server 2000 driver is backward compatible. However, it doesn’t work with database
version 7. Database server and driver updates are infrequent.

Security

The SQL Server 2000 driver does not support encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

The following table lists values for the SelectMethod URL property for the SQL Server 2000 driver.

Table 11-13 Values for the SelectMethod URL Property

Supported Database Versions: 8 (2000)

Class Name com.microsoft.jdbc.sqlserver.SQLServerDriver

Type 4

URL Syntax jdbc:microsoft:sqlserver://ip-address-or-dns-
name:1433;DatabaseName=database-name

Download Instructions Microsoft JDBC Downloads (http://www.microsoft.com/downloads/
results.aspx?sortCriteria=date&OSID=&productID=&CategoryID=&fr
eetext=jdbc&DisplayLang=en&DisplayEnglishAlso=)

Filenames msbase.jar, mssqlserver.jar, msutil.jar

Legal Value Description

direct The default value. Doesn’t allow for multiple active statements on a single
connection

cursor Allows for multiple active statements on a single connection
ager Driver for JDBC 2.1: Implementation Guide

http://www.microsoft.com/downloads/results.aspx?sortCriteria=date&OSID=&productID=&CategoryID=&freetext=jdbc&DisplayLang=en&DisplayEnglishAlso=

novdocx (E
N

U
) 9 January 2007
Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not explicitly override these settings.

Table 11-14 SQL Server 2000 Settings Not to Override

Known Issues

Can’t start manual transaction because of cloned connections.

An implementation anomaly that doesn’t allow concurrent statements to be active on the same
connection causes the most common problem experienced with the SQL Server 2000 driver.
Unlike other third-party implementations, the SQL Server 2000 driver can have only one
java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) object
active at a time on a given connection.

If you attempt to use more than one statement object, the following error is issued: “Can’t start
manual transaction mode because there are cloned connections.” This error can occur only if
the driver compatibility parameter “Reuse Statements?” on page 70 is set to Boolean True. As a
best practice, never explicitly set this parameter. Instead, defer to the dynamic default value.

An alternative is to place the delimited property ;SelectMethod=cursor at the end of the
URL string. For additional information on this issue, consult the following support articles:

Document 30096 (http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/
30096?OpenDocument) by DataDirect Technologies*
Article 313181 (http://support.microsoft.com/default.aspx?scid=kb%3Ben-
us%3B313181) by Microsoft

Association values that contain UNIQUEIDENTIFIER columns are inconsistent between
driver versions.
Earlier versions of the SQL Server 2000 driver returned a non-standard java.sql.Types (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) value for native UNIQUEIDENTIFIER
columns. To compensate, the Driver for JDBC mapped that non-standard type to the standard
type java.sql.Types.BINARY (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html)
because it best mirrored the native database type, which is a 16-byte value. This mapping
results in a Base64-encoded association value.
Later versions of the SQL Server 2000 driver return a standard type java.sql.CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html). This mapping results in a non-Base64-
encoded association value, effectively invalidating all associations generated by using earlier
versions of the SQL Server 2000 driver. This change effectively breaks backward
compatibility.
The best solution to this problem is to continue using the earlier version of the SQL Server
2000 driver. If you must upgrade, remove all invalidated associations and reassociate all
previously-associated objects.

Display Name Tag Name Value

Reuse Statements? reuse-statements false
Third-Party JDBC Drivers 159

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/30096?OpenDocument
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

160 Identity Man

novdocx (E
N

U
) 9 January 2007
11.4.8 MySQL Connector/J JDBC Driver

Table 11-15 Settings for the MySQL Connector/J JDBC Driver

Also see “Generation/Retrieval Method (Table-Global)” on page 80.

Compatibility

The Connector/J driver is backward compatible. Database server updates are frequent. Driver
updates are infrequent.

Security

The Connector/J driver supports JSSE (Java Secure Sockets Extension) SSL-encrypted transport.

Required Parameter Settings for MyISAM Tables

The following table lists driver parameters that you must set so that the Driver for JDBC can
interoperate with the Connector/J driver against MyISAM tables.

Table 11-16 Settings for MyISAM Tables

11.4.9 Oracle Thin Client JDBC Driver

Table 11-17 Oracle Thin Client Settings

Supported Database Versions 3.x, 4.x

Class Name org.gjt.mm.mysql.Driver

Type 4

URL Syntax jdbc:mysql://ip-address:3306/database-name

Download Instructions Download and extract. The jar file is located in the extract-dir/mysql-
connector-java-version directory.

MySQL Connector/J (http://www.mysql.com/products/connector/j/)

Filename mysql-connector-java-version-bin.jar

Documentation URLs MySQL Connector/J Documentation (http://dev.mysql.com/doc/
refman/5.0/en/java-connector.html)

Connecting Over SSL (http://dev.mysql.com/doc/refman/5.0/en/cj-
using-ssl.html)

Display Name Tag Name Value

Use manual transactions? use-manual-transactions false

Supported Database Versions 8i, 9i, 10g
ager Driver for JDBC 2.1: Implementation Guide

http://www.mysql.com/products/connector/j/
http://dev.mysql.com/doc/refman/5.0/en/java-connector.html
http://dev.mysql.com/doc/refman/5.0/en/cj-using-ssl.html

novdocx (E
N

U
) 9 January 2007
Compatibility

The Thin Client driver is backward compatible. Database server updates and driver updates are
infrequent.

Oracle releases thin client drivers for various JVMs. Even though all of them work with this product,
we recommend that you use the 1.4 version.

Security

The Thin Client driver supports Oracle Advanced Security encrypted transport.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not explicitly override these settings.

Table 11-18 Oracle Thin Client Settings Not to Override

Connection Properties

The following table lists important connection properties for this driver.

Table 11-19 Oracle Thin Client: Connection Properties

Class Name oracle.jdbc.driver.OracleDriver

Type 4

URL Syntax jdbc:oracle:thin:@ip-address:1521:sid

Download Instructions Register for free and download.

Oracle Technology Network (http://otn.oracle.com/software/tech/java/
sqlj_jdbc/content.html)

Filenames ojdbc14.jar, orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07)

Documentation URLs Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/
oracle/10g/java.101/b10979/clientsec.htm)

JDBC FAQ (http://www.oracle.com/technology/tech/java/sqlj_jdbc/
htdocs/jdbc_faq.htm)

Display Name Tag Name Value

Number of returned result sets: handle-stmt-results single

Property Significance

includeSynonyms If the value of this property is true, synonym
column metadata is available.
Third-Party JDBC Drivers 161

http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07
http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm

162 Identity Man

novdocx (E
N

U
) 9 January 2007
Known Issues

High CPU utilization triggered by execution of embedded SQL statements:

The most common problem experienced with this driver is high CPU utilitization. As a result,
this driver always indicates that more results are available from calls to method
java.sql.Statement.execute(String stmt), which can lead to an infinite loop
condition. This condition occurs only if all the following happen:

A value other than single, no or one in the driver compatibility parameter “Number of
Returned Result Sets” on page 70 is being executed.
An embedded SQL statement is being executed.
The type of statement is not explicitly specified.

To avoid the conditions that produce high CPU utilization:
Do not explicitly set this parameter. Defer to the dynamic default value.
Always place a jdbc:type attribute on embedded <jdbc:statement> elements.

NOTE: The jdbc namespace prefix must map to urn:dirxml:jdbc.

Can’t retrieve synonym column metadata:
The connection property includeSynonyms must be set to true.
Can’t see synonym table primary key constraint:
The only known solution to this problem is to use a view.

11.4.10 Oracle OCI JDBC Driver

Table 11-20 Oracle OCI JDBC Driver Settings

ORACLE.NET.ENCRYPTION_CLIENT Defines the level of security that the client
wants to negotiate with the server.

ORACLE.NET.ENCRYPTION_TYPES_CLIENT Defines the encryption algorithm to be used.

ORACLE.NET.CRYPTO_CHECKSUM_CLIENT Defines the level of security that it wants to
negotiate with the server for data integrity.

ORACLE.NET.CRYPTO_CHEKSUM_TYPES_CLIENT Defines the data integrity algorithm to be used.

Supported Database Versions 8i, 9i, 10g

Class Name oracle.jdbc.driver.OracleDriver

Type 2

URL Syntax jdbc:oracle:oci8:@tns-name

Property Significance
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
You can install SQLNet by doing either of the following:

Use the Instant Client (which bypasses unneeded components of the full version).
Download the full package from Oracle.

If the database is running on the same server as Identity Manager, you don’t need to install SQLNet
because SQLNet comes as standard on the database server.

The Oracle OCI driver is essentially the same as the Thin Client driver. See Section 11.4.9, “Oracle
Thin Client JDBC Driver,” on page 160. The OCI client differs in the following ways:

The OCI Client supports clustering, failover, and high availability.
The OCI Client has additional security options.

For information on setting up the Oracle OCI Client, see Appendix K, “Setting Up an OCI Client on
Linux,” on page 197.

Download Instructions The SQLNet infrastructure is the main requirement for OCI. SQLNet
can run on any platform that Oracle supports, not just Linux.

For Linux, register for free and download the following:

 The Oracle Instant Client (instantclient-basic-
linux32-10.2.0.1-20050713.zip) from Instant Client
Downloads (http://www.oracle.com/technology/software/tech/
oci/instantclient/htdocs/linuxsoft.html).

The Oracle SQL*Plus binary (instantclient-sqlplus-
linux32-10.2.0.1-20050713.zip) from Instant Client
Downloads (http://www.oracle.com/technology/software/tech/
oci/instantclient/htdocs/linuxsoft.html).

Filenames ojdbc14.jar, orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07)

Documentation URLs Oracle Call Interface (http://www.oracle.com/technology/tech/oci/
index.html)

OCI FAQ (http://www.oracle.com/technology/tech/oci/htdocs/
oci_faq.html)

Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/
oracle/10g/java.101/b10979/clientsec.htm)

Instant Client (http://www.oracle.com/technology/tech/oci/
instantclient/index.html)

Instant Client (http://download-west.oracle.com/docs/cd/B12037_01/
java.101/b10979/instclient.htm#CHDGDIGG)
Third-Party JDBC Drivers 163

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07
http://www.oracle.com/technology/tech/oci/index.html
http://www.oracle.com/technology/tech/oci/htdocs/oci_faq.html
http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/oci/instantclient/index.html
http://download-west.oracle.com/docs/cd/B12037_01/java.101/b10979/instclient.htm#CHDGDIGG

164 Identity Man

novdocx (E
N

U
) 9 January 2007
11.4.11 PostgreSQL JDBC Driver

Table 11-21 PostgreSQL JDBC Driver Settings

NOTE: The filename of the PostgreSQL varies by database version.

Compatibility

The latest builds of the PostgreSQL driver are backward compatible through server version 7.2.
Database server updates and driver updates are frequent.

Security

The PostgreSQL driver supports SSL-encrypted transport for JDBC 3 driver versions.

11.4.12 Sybase Adaptive Server Enterprise JConnect JDBC
Driver

Table 11-22 Settings for the Sybase Adaptive Server Enterprise Driver

Supported Database Versions 6.x, 7.x, 8.x

Class Name org.postgresql.Driver

Type 4

URL Syntax jdbc:postgresql://ip-address:5432/database-name

Download Instructions JDBC Driver Download (http://jdbc.postgresql.org/download.html)

Documentation URLs JDBC Driver Documentation (http://jdbc.postgresql.org/
documentation/docs.html)

Using SSL (http://jdbc.postgresql.org/documentation/80/ssl.html)

Supported Database Versions Adaptive Server* Enterprise 11.x, 12.x

Class Name com.sybase.jdbc2.jdbc.SybDriver (for jconn2.jar)
com.sybase.jdbc3.jdbc.SybDriver (for jconn3.jar)

Type 4

URL Syntax jdbc:sybase:Tds:ip-address:2048/database-name

Download Instructions Sybase Downloads (http://www.sybase.com/detail?id=1009796)

Filenames jconn2.jar or jconn3.jar

Documentation URLs jConnect Documentation (http://sybooks.sybase.com/onlinebooks/
group-jc/jcg0600e/prjdbc)
ager Driver for JDBC 2.1: Implementation Guide

http://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/documentation/docs.html
http://jdbc.postgresql.org/documentation/80/ssl.html
http://www.sybase.com/detail?id=1009796
http://sybooks.sybase.com/onlinebooks/group-jc/jcg0600e/prjdbc

novdocx (E
N

U
) 9 January 2007
Compatibility

The Adaptive Server driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Adaptive Server driver supports SSL-encrypted transport. To enable SSL encryption, you must
specify a custom socket implementation via the SYBSOCKET_FACTORY connection property. For
additional information on how to set connection properties, see “Connection Properties” on page 66.

Connection Properties

The SYBSOCKET_FACTORY property can be used to specify the class name of a custom socket
implementation that supports encrypted transport.

11.5 Unsupported Third-Party JDBC Drivers
Section 11.5.1, “IBM Toolbox for Java/JTOpen,” on page 165
Section 11.5.2, “Minimum Third-Party JDBC Driver Requirements,” on page 166
Section 11.5.3, “Considerations When Using Other Third-Party JDBC Drivers,” on page 166

11.5.1 IBM Toolbox for Java/JTOpen

Table 11-23 Settings for IBM Toolbox for Java/JTOpen

If you use the IBM Toolbox for Java/JTOpen driver, you must manually enter values for the JDBC
Driver Class Name and Authentication Context parameters. The settings are not automatically
populated. See “Third-Party JDBC Driver Class Name” on page 56 and “Authentication Context”
on page 54.

Database IBM Toolbox for Java/JTOpen

iSeries Toolbox for Java (alias)

AS/400 Toolbox for Java (alias)

Class Name com.ibm.as400.access.AS400JDBCDriver

Type 4

URL Syntax jdbc:as400://ip-address/database-name

Download Instructions Download URLs for JTOpen

JTOpen (http://jt400.sourceforge.net)

Toolbox for Java/JTOpen (http://www-03.ibm.com/servers/
eserver/iseries/toolbox/downloads.html)

Filenames jt400.jar

Documentation URLs Toolbox for Java/JTOpen (http://www-03.ibm.com/servers/eserver/
iseries/toolbox/)
Third-Party JDBC Drivers 165

http://jt400.sourceforge.net
http://www-03.ibm.com/servers/eserver/iseries/toolbox/downloads.html
http://www-03.ibm.com/servers/eserver/iseries/toolbox/

166 Identity Man

novdocx (E
N

U
) 9 January 2007
11.5.2 Minimum Third-Party JDBC Driver Requirements
The Driver for JDBC might not interoperate with all third-party JDBC drivers. If you use an
unsupported third-party JDBC driver, it must meet the following requirements:

Support required metadata methods

For a current list of the required and optional java.sql.DatabaseMetaData method calls that the
Driver for JDBC makes, see Appendix D, “java.sql.DatabaseMetaData Methods,” on page 179.
Support other required JDBC methods
For a list of required JDBC methods that the Driver for JDBC uses, refer to Appendix E,
“JDBC Interface Methods,” on page 181. You can use this list in collaboration with third-party
driver documentation to identify potential incompatibilities.

11.5.3 Considerations When Using Other Third-Party JDBC
Drivers

Because the Driver for JDBC is directly dependent upon third-party JDBC driver
implementations, bugs in those implementations might cause this product to malfunction.

To assist you in debugging third-party JDBC drivers, the Driver for JDBC supports the
following:

Tracing at the JDBC API level (level 6)
Third-party JDBC driver (level 7) tracing

Stored procedure or function support is a likely point of failure.
You’ll probably need to write a custom driver descriptor file.
Specifically, you’ll need to categorize error codes and SQL states for the third-party driver that
you are using.

11.6 Security Issues
To ensure that a secure connection exists between the Identity Manager Driver for JDBC and a third-
party driver, we recommend the following:

Run the Driver for JDBC remotely on the database server.
Use SSL to encrypt communications between the Identity Manager server and the database
server.

If you cannot run the Driver for JDBC remotely, you might want to use a type 2 or type 3 JDBC
driver. These driver types often facilitate a greater degree of security through middleware servers or
client APIs unavailable to other JDBC driver types. Some type 4 drivers support encrypted
transport, but encryption is the exception rather than the rule.
ager Driver for JDBC 2.1: Implementation Guide

12
novdocx (E

N
U

) 9 January 2007
12The Association Utility

The Association Utility normalizes associations of objects associated under the 1.0 or later versions
of the Driver for JDBC. It also provides several other features that simplify driver administration.

This version of the utility is compatible with the 1.0 and later versions of the Driver for JDBC, and
supersedes all previous versions.

Section 12.1, “Independent Operations,” on page 167
Section 12.2, “Before You Begin,” on page 168
Section 12.3, “Using the Association Utility,” on page 169
Section 12.4, “Editing Associations,” on page 169

12.1 Independent Operations
The Association Utility supports seven independent operations:

Table 12-1 Independent Operations

Operation Description Read-Write
Functionality

1 List objects associated with a driver (default). Read-only

2 List objects that have multiple associations to a driver. Read-only

3 List objects that have invalid associations to a driver.

An association is invalid if:

It is malformed.

For example, the association is missing the schema RDN,
missing the table RDN, or the schema keyword is misspelled.

It contains database identifiers that do not map to identifiers in
the target database.

For example, an association includes a mapping to a table that
does not exist.

It maps to no row or multiple rows.

An association is broken if it doesn’t map to a row. Also,
associations aren’t unique if they map to more than one row.

Read-only

4 List objects that need to be normalized.

A normalized association is valid, correctly ordered, and uses the
correct case. Normal case is uppercase for case-insensitive
databases and mixed case for case-sensitive databases.

Read-only

5 Normalize object associations listed during operation 4. Write
The Association Utility 167

168 Identity Man

novdocx (E
N

U
) 9 January 2007
12.2 Before You Begin
Modifying associations can potentially cause problems. If associations are corrupted, Identity
Manager ceases to function. Therefore, use write operations only when necessary. To avoid
unintentionally corrupting an association, the Association Utility creates an undo ldiff file for all
write operations.

Review the following cautions before using the utility:

The Association Utility, like the driver, assumes database identifiers are undelimited (unquoted
and contain no special characters).
Update all object associations related to a driver together.

IMPORTANT: It is extremely important that you update, at the same time, all object
associations related to a driver.

To see all of the objects associated with a particular driver, run the Association Utility on the
Identity Manager server associated with a particular driver instance.
The LDAP search base must contain all of the objects associated with a particular driver.

NOTE: To ensure complete containment, we recommend that you use your tree’s root
container as the search base.

Make sure that the JDBC URL of the target database supplied to this utility is the same as the
URL that the driver uses. Pointing this utility at a case-insensitive database when the database
is actually case-sensitive might result in associations being normalized to the wrong case.
Because the Association Utility runs locally, it uses an unsecured connection. Therefore, the
Identity Vault LDAP server must be temporarily configured to accept clear text passwords.
Depending upon the third-party JDBC driver you are using, the database connection
established by this utility might be insecure.

NOTE: We recommend changing the driver’s authentication password on the database after
you run this utility.

6 List object associations to be modified.

Allows for global replacement of schema, table, and column names
based on search criteria.

This operation requires two parameters (oldRDN and newRDN). See
“Editing Associations” on page 169.

Read-only

7 Modify object associations listed during operation 6.

This operation requires two parameters (oldRDN and newRDN). See
“Editing Associations” on page 169.

Write

Operation Description Read-Write
Functionality
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
12.3 Using the Association Utility
Run the Association Utility once for each instance of the driver installed on an Identity Manager
server. In the install-dir\jdbc\util directory, a batch file association.bat or shell
script association.sh (depending upon your platform) starts the utility.

A properties file containing association utility parameters is provided for each supported database.
These files are in the install-dir\jdbc\util directory.

1This utility does not work with Informix ANSI-compliant databases.

NOTE: For more information on how to run the utility from the command line, refer to run.bat in
the install-dir\tools\util directory.

1 Stop the driver.
2 Run the Association Utility to identify and remove extraneous associations (operations 2 and

3).
No object associated by this product should have multiple associations. Manually remove
extraneous associations on a per object basis. Operation 3 might help you identify which of the
multiple associations is actually valid. After you know this, you can probably discard the
extraneous associations.

3 Run the Association Utility to identify and fix invalid associations (operation 3 and possibly
operations 6 and 7).
As a general rule, if the problem is isolated, manually edit each invalid association. If the
problem is repetitive and affects a large number of associations, consider using operations 6
and 7. This utility can replace bad identifiers on a global basis, but cannot insert or remove
them where they do not already exist.

4 Run the Association Utility to normalize associations (operations 4 and 5).

12.4 Editing Associations
The Association Utility requires two parameters (oldRDN and newRDN) for operations 6 and 7,
which search and replace.

Database Properties Filename

IBM DB2 Universal Database properties_db2.txt

Informix Dynamic Server properties_ifx_ansi.txt1
properties_ifx_log.txt
properties_ifx_no_log.txt

Microsoft SQL Server properties_ms.txt

MySQL properties_my.txt

Oracle properties_ora.txt

PostgreSQL properties_pg.txt

Sybase Adaptive Server Enterprise properties_syb.txt
The Association Utility 169

170 Identity Man

novdocx (E
N

U
) 9 January 2007
The first value (for example, schema) in the parameter is the search criterion. The second value (for
example, old) is the replacement value. Under certain scenarios, you can use the wildcard character
* to generalize the search criterion or replacement value.

Three types of search and replace operations are possible:

Option Description Example

Replace the schema name Replace schema old with schema new.
Wildcards are supported on the right side
only.

oldRDN: schema=old
newRDN: schema=new

Replace the table name Replace table old with table new.
Wildcards are not supported.

oldRDN: table=old
newRDN: table=new

Replace the column name Replace column old with column new.
Wildcards are required on the right side,
but they aren’t supported on the left side.

oldRDN: old=*
newRDN: new=*
ager Driver for JDBC 2.1: Implementation Guide

A
novdocx (E

N
U

) 9 January 2007
ABest Practices

The following section lists important best practices for using the Driver for JDBC. You can find
additional information in Chapter 5, “Configuring the Identity Manager Driver for JDBC,” on
page 51.

Security/Performance:

For performance and security reasons, run the driver remotely on the database server whenever
possible. Be sure to enable SSL encryption between the Identity Vault and the Remote Loader
service.
You should enable SSL encryption for third-party drivers whenever the Driver for JDBC is not
running remotely on the database server. For information on the security capabilities of
supported third-party drivers, see “Third-Party JDBC Drivers” on page 149.
In a production environment, turn off tracing.

Other:

For direct synchronization, prefix one or more view column names with “pk_” (case-
insensitive).
For both direct and indirect synchronization, use different primary key column names between
logical database classes.
Delimit (double-quote) primary key values placed in the event log table_key field if they
contain the following characters:

, ; ' + = \ " < >

This caution is usually an issue only if the primary key column is a binary type.
When an Identity Vault is the authoritative source of primary key values, GUID rather than CN
is recommended for use as a primary key. Unlike CN, GUID is single-valued and does not
change.
Omit from publication triggers foreign key columns that link child and parent tables.
If primary key columns are static (they do not change), do not include them in publication
triggers.
Place the jdbc:type="query" attribute value on all embedded SELECT statements. Place
the jdbc:type="update" attribute value on all embedded INSERT, UPDATE and
DELETE statements.
Best Practices 171

172 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

B
novdocx (E

N
U

) 9 January 2007
BFAQ

Section B.1, “Can’t See Tables or Views,” on page 173
Section B.2, “Synchronizing with Tables,” on page 173
Section B.3, “Processing Rows in the Event Log Table,” on page 174
Section B.4, “Managing Database User Accounts,” on page 174
Section B.5, “Synchronizing Large Data Types,” on page 174
Section B.6, “Slow Publication,” on page 174
Section B.7, “Synchronizing Multiple Classes,” on page 175
Section B.8, “Encrypted Transport,” on page 175
Section B.9, “Mapping Multivalue Attributes,” on page 175
Section B.10, “Synchronizing Garbage Strings,” on page 175
Section B.11, “Running Multiple Driver for JDBC Instances,” on page 175

B.1 Can’t See Tables or Views
Question: Why can’t the driver see my tables or views?

Answer: The driver is capable of synchronizing only tables that have explicit primary key
constraints and views that contain one or more columns prefixed with “pk_” (case-insensitive). The
driver uses these constraints to determine which fields to use when constructing associations. As
such, the driver ignores any unconstrained tables.

If you are trying to synchronize with tables or views that lack the necessary constraints, either add
them or synchronize to intermediate tables with the required constraints.

Another possibility is that the driver lacks the necessary database privileges to see the tables.
Usually, visibility is determined by the presence or absence of the SELECT privilege.

B.2 Synchronizing with Tables
Question: How do I synchronize with tables located in multiple schemas?

Answer: Do one of the following:

Alias the tables into the synchronization schema.
Synchronize to intermediate tables in the synchronization schema and move the data across
schema boundaries.
Use a view.
Create a virtual schema by using the Table/View Names parameter.
See “Table/View Names” on page 64.
FAQ 173

174 Identity Man

novdocx (E
N

U
) 9 January 2007
B.3 Processing Rows in the Event Log Table
Question: Why isn’t the driver processing rows in the Event Log Table?

Answer: Do the following:

1 Check the perpetrator field of the rows in question and make sure that the value is set to
something other than the driver’s database username.

The Publisher channel checks the perpetrator field to detect loopback events if the
Publisher channel Allow Loopback parameter is set to Boolean False (the default). See “Allow
Loopback?” on page 90.

When the Allow Loopback parameter is set to Boolean False, the Publisher channel ignores all
records where the perpetrator field value is equal to the driver’s database username. The
driver’s database username is specified by using the Authentication ID parameter. See
“Authentication ID” on page 54.

2 Ensure that the record’s status field is set to N (new).
Records with status fields set to something other than N will not be processed.

3 Make sure to explicitly commit changes.
Changes are often tentative until explicitly committed.

B.4 Managing Database User Accounts
Question: Can the driver manage database user accounts?

Answer: Yes. You can manage database accounts by using embedded SQL. For more information,
see Chapter 9, “Embedded SQL Statements in XDS Events,” on page 123.

B.5 Synchronizing Large Data Types
Question: Can the driver synchronize large binary and string data types?

Answer: Yes. Large binary and string data types can be subscribed and published. Publish large
binary and string data types by using query-back event types. For additional information, see
Section 8.2, “Event Types,” on page 115.

B.6 Slow Publication
Question: Why is publication slow?

Answer: If the event log table contains a large number of rows, index the table. Example indexes
are provided in all database installation scripts. By using trace level 3, you can view the statements
that the driver uses to maintain the event log.

You can further refine indexes in the installation scripts to enhance publication performance. Placing
indexes in a different tablespace or physical disk than the event log table also enhances publication
performance.

Furthermore, in a production environment, set the Delete Processed Rows parameter to Boolean
False, unless processed rows are being periodically moved to another table. See “Delete Processed
Rows?” on page 89.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
B.7 Synchronizing Multiple Classes
Question: Can the driver synchronize multiple classes?

Answer: Yes. However, primary key column names must be unique between logical database
classes. For example, if class1 is mapped to table1 with primary key column name key1, and class2
is mapped to table2 with primary key column name key2, then the name of key1 cannot equal key2.

This requirement can always be satisfied, no matter which synchronization model is employed.

B.8 Encrypted Transport
Question: Does the driver support encrypted transport?

Answer: No. How the driver communicates with a given database depends upon the third-party
driver being used. Some third-party drivers support encrypted transport, while others do not. Even if
encrypted transport is supported, no standardized way exists to enable encryption between third-
party JDBC drivers.

The general solution for this problem is to remotely run the Driver for JDBC and your third-party
driver. This method allows both the Driver for JDBC and the third-party driver to run locally on the
database server. Then all data traveling across the network between the Metadirectory engine and
the Driver for JDBC are SSL encrypted.

Another possibility is to use a type 3 or type 2 third-party JDBC driver. Database middleware and
client APIs usually provide encrypted transport mechanisms.

B.9 Mapping Multivalue Attributes
Question: How do I map multivalue attributes to single-value database fields?

Answer: See Section 6.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on
page 109.

B.10 Synchronizing Garbage Strings
Question: Why is the driver synchronizing garbage strings?

Answer: The database and the third-party driver are probably using incompatible character
encoding. Adjust the character encoding that your third-party driver uses.

For more information, refer to Character Encoding Values (http://java.sun.com/j2se/1.5.0/docs/
guide/intl/encoding.doc.html), defined by Sun.

B.11 Running Multiple Driver for JDBC Instances
Question: How do I run multiple Driver for JDBC instances in the same driver set? The instances
require different versions of the same third-party JBDC driver (for example, the Oracle JDBC driver
or the IBM DB2 Type 3 JDBC driver).

Answer: Use the Remote Loader to load each Driver for JDBC instance in a separate Java Virtual
Machine (JVM). When run locally in the same JVM, different versions of the same third-party
classes collide.
FAQ 175

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

176 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

C
novdocx (E

N
U

) 9 January 2007
CSupported Data Types

The driver for JDBC can synchronize all JDBC 1 data types and a small subset of JDBC 2 data
types. How JDBC data types map to a database’s native data types depends on the third-party driver.

The following list includes the supported JDBC 1 java.sql.Types (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/Types.html).

Numeric Types:
java.sql.Types.BIGINT

java.sql.Types.BIT

java.sql.Types.DECIMAL

java.sql.Types.DOUBLE

java.sql.Types.NUMERIC

java.sql.Types.REAL

java.sql.Types.FLOAT

java.sql.Types.INTEGER

java.sql.Types.SMALLINT

java.sql.Types.TINYINT

String Types:
java.sql.Types.CHAR

java.sql.Types.LONGCHAR

java.sql.Types.VARCHAR

Time Types:
java.sql.Types.DATE

java.sql.Types.TIME

java.sql.Types.TIMESTAMP

Binary Types:
java.sql.Types.BINARY

java.sql.Types.VARBINARY

java.sql.Types.LONGVARBINARY

The following list includes the supported JDBC 2 java.sql.Types (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/Types.html).

Large Object (LOB) Types:
java.sql.Types.CLOB

java.sql.Types.BLOB
Supported Data Types 177

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

178 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

D
novdocx (E

N
U

) 9 January 2007
Djava.sql.DatabaseMetaData
Methods

This section lists the required and optional java.sql.DatabaseMetaData (http://java.sun.com/j2se/
1.5.0/docs/api/java/sql/DatabaseMetaData.html) methods.

The following JDBC 1 methods are required only if the Synchronization Filter parameter is set to
something other than Exclude all tables/views:

getColumns(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String columnNamePattern):java.sql.ResultSet
getPrimaryKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):java.sql.ResultSet
getTables(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String[] types):java.sql.ResultSet
storesLowerCaseIdentifiers():boolean
storesMixedCaseIdentifiers():boolean
storesUpperCaseIdentifiers():boolean

Optional JDBC 1 methods:

dataDefinitionCausesTransactionCommit():boolean
dataDefinitionIgnoredInTransactions():boolean
getColumnPrivileges(String catalog, String schema, String table, String
columnNamePattern):java.sql.ResultSet
getDatabaseProductName():java.lang.String
getDatabaseProductVersion():java.lang.String
getDriverMajorVersion():int
getDriverMinorVersion():int
getDriverName():java.lang.String
getDriverVersion():java.lang.String
getExportedKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):java.sql.ResultSet
getMaxStatements():int
getMaxConnections():int
getMaxColumnsInSelect():int
getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern,
String columnNamePattern):java.sql.ResultSet
getSchemas():java.sql.ResultSet
getTableTypes():java.sql.ResultSet
getUserName():java.lang.String
java.sql.DatabaseMetaData Methods 179

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html

180 Identity Man

novdocx (E
N

U
) 9 January 2007
supportsColumnAliasing():bolean
supportsDataDefinitionAndDataManiuplationTransactions():boolean
supportsDataManipulationTransactionsOnly():boolean
supportsLimitedOuterJoins():boolean
supportsMultipleTransactions():boolean
supportsSchemasInDataManipulation():boolean
supportsSchemasInProcedureCalls():boolean
supportsTransactionIsolationLevel(int level):boolean
supportsTransactions():boolean

Optional JDBC 2 methods:

supportsBatchUpdates():boolean

Optional JDBC 3 methods:

supportsGetGeneratedKeys():boolean
ager Driver for JDBC 2.1: Implementation Guide

E
novdocx (E

N
U

) 9 January 2007
EJDBC Interface Methods

This section lists the JDBC interface methods (other than java.sql.DatabaseMetaData (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html) methods) that the driver for
JDBC uses. Methods are organized by class.

Often, third-party JDBC driver vendors list defects or known issues by method. You can use the
following methods in collaboration with third-party JDBC driver documentation to troubleshoot or
anticipate potential interoperability problems.

java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html)
java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
CallableStatement.html)
java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html)
java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
PreparedStatement.html)
java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html)
java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
ResultSetMetaData.html)
java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html)
java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

The following table lists java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
DriverManager.html) methods that the Driver for JDBC uses:

Table E-1 java.sql.DriverManager Methods

1One method or the other.

The following table lists java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/CallableStatement.html) methods that the Driver for JDBC uses:

Table E-2 java.sql.CallableStatement Methods

Method Signature JDBC Version Required?

getConnection(String url, java.util.Properties info):java.sql.Connection 1 yes1

getConnection(String url, java.util.Properties info):java.sql.Connection 1 yes1

setLogStream(java.io.PrintStream out):void 1 no

Method Signature JDBC Version Required?

getBigDecimal(int parameterIndex, int scale):java.math.BigDecimal 1 yes
JDBC Interface Methods 181

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html

182 Identity Man

novdocx (E
N

U
) 9 January 2007
The following table lists java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Connection.html) methods that the driver for JDBC uses:

getBoolean(int parameterIndex):boolean 1 yes

getBoolean(String parameterName):boolean 3 no

getByte(int parameterIndex):byte 1 yes

getByte(String parameterName):byte 3 no

getBytes(int parameterIndex):byte[] 1 yes

getBytes(String parameterName):byte[] 3 no

getDate(int parameterIndex):java.sql.Date 1 yes

getDate(String parameterName):java.sql.Date 3 no

getDouble(int parameterIndex):double 1 yes

getDouble(String parameterName):double 3 no

getFloat(int parameterIndex):float 1 yes

getFloat(String parameterName):float 3 no

getInt(int parameterIndex):int 1 yes

int getInt(String parameterName) 3 no

getLong(int parameterIndex):long 1 yes

getLong(String parameterName):long 3 no

getShort(int parameterIndex):short 1 yes

getShort(String parameterName):short 3 no

getString(int parameterIndex):String 1 yes

getString(String parameterName):String 3 no

getTime(int parameterIndex):java.sql.Time 1 yes

getTime(String parameterName):java.sql.Time 3 no

getTimestamp(int parameterIndex):java.sql.Timestamp 1 yes

getTimestamp(String parameterName):java.sql.Timestamp 3 no

registerOutParameter(int parameterIndex, int sqlType):void 1 yes

wasNull():boolean 1 yes

Method Signature JDBC Version Required?
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

novdocx (E
N

U
) 9 January 2007
Table E-3 java.sql.Connection Methods

The following table lists java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/PreparedStatement.html) methods that the Driver for JDBC uses:

Table E-4 java.sql.PreparedStatement Methods

Method Signature JDBC Version Required?

close():void 1 yes

commit():void 1 no

createStatement():java.sql.Statement 1 yes

getAutoCommit():boolean 1 no

getMetaData():java.sql.DatabaseMetaData 1 yes

getTransactionIsolation():int 1 no

getWarnings():java.sql.SQLWarning 1 no

isClosed():boolean 1 no

prepareCall(String sql):java.sql.CallableStatement 1 no

prepareStatement(String sql):java.sql.PreparedStatement 1 yes

rollback():void 1 no

setAutoCommit(boolean autoCommit):void 1 no

setTransactionIsolation(int level):void 1 no

Method Signature JDBC Version Required?

clearParameters() :void 1 no

execute():boolean 1 yes

executeQuery():java.sql.ResultSet 1 yes

executeUpdate():int 1 yes

setBigDecimal(int parameterIndex, java.math.BigDecimal x):void 1 yes

setBoolean(int parameterIndex, boolean x):void 1 yes

setByte(int parameterIndex, byte x):void 1 yes

setBytes(int parameterIndex, byte x[]):void 1 yes

setDate(int parameterIndex, java.sql.Date x):void 1 yes

setDouble(int parameterIndex, double x):void 1 yes

setFloat(int parameterIndex, float x):void 1 yes

setInt(int parameterIndex, int x):void 1 yes

setLong(int parameterIndex, long x):void 1 yes
JDBC Interface Methods 183

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html

184 Identity Man

novdocx (E
N

U
) 9 January 2007
The following table lists java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
ResultSet.html) methods that the Driver for JDBC uses:

Table E-5 java.sql.ResultSet Methods

setNull(int parameterIndex, int sqlType):void 1 yes

setShort(int parameterIndex, short x):void 1 yes

setString(int parameterIndex, String x):void 1 yes

setTime(int parameterIndex, java.sql.Time x):void 1 yes

setTimestamp(int parameterIndex, java.sql.Timestamp x):void 1 yes

Method Signature JDBC Version Required?

close():void 1 yes

getBigDecimal(int columnIndex, int scale):java.math.BigDecimal 1 yes

getBigDecimal(String columnName, int scale):java.math.BigDecimal 1 yes

getBinaryStream(int columnIndex):java.io.InputStream 1 yes

getBinaryStream(String columnName)java.io.InputStream 1 yes

getBoolean(int columnIndex):boolean 1 yes

getBoolean(String columnName):boolean 1 yes

getByte(int columnIndex):byte 1 yes

getByte(String columnName):byte 1 yes

getBytes(int columnIndex):byte[] 1 yes

getBytes(String columnName):byte[] 1 yes

getDate(int columnIndex):java.sql.Date 1 yes

getDate(String columnName)java.sql.Date 1 yes

getFloat(int columnIndex):float 1 yes

getFloat(String columnName):float 1 yes

getInt(int columnIndex):int 1 yes

getInt(String columnName):int 1 yes

getLong(int columnIndex):long 1 yes

getLong(String columnName):long 1 yes

getMetaData():java.sql.ResultSetMetaData 1 no

getShort(int columnIndex):short 1 yes

getShort(String columnName):short 1 yes

Method Signature JDBC Version Required?
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

novdocx (E
N

U
) 9 January 2007
The following table lists java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/ResultSetMetaData.html) methods that the Driver for JDBC uses:

Table E-6 java.sql.ResultSetMetaData Methods

The following table lists java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Statement.html) methods that the Driver for JDBC uses:

Table E-7 java.sql.Statement Methods

getString(int columnIndex):String 1 yes

getString(String columnName):String 1 yes

getTime(int columnIndex):java.sql.Time 1 yes

getTime(String columnName):java.sql.Time 1 yes

getTimestamp(int columnIndex):java.sql.Timestamp 1 yes

getTimestamp(String columnName):java.sql.Timestamp 1 yes

getWarnings():java.sql.SQLWarning 1 no

Method Signature JDBC Version Required?

getColumnCount():int 1 yes

getColumnName(int column):String 1 no

getColumnType(int column):int 1 no

Method Signature JDBC Version Required?

addBatch(java.lang.String sql):void 2 no

clearBatch():void 2 no

clearWarnings():void 1 no

close():void 1 yes

execute(java.lang.String sql):boolean 1 yes

executeBatch():int[] 2 no

executeUpdate(String sql):int 1 yes

executeQuery(String sql):java.sql.ResultSet 1 yes

getGeneratedKeys():java.sql.ResultSet 3 no

getMoreResults():boolean 1 no

getResultSet():java.sql.ResultSet 1 yes

getUpdateCount():int 1 no

Method Signature JDBC Version Required?
JDBC Interface Methods 185

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

186 Identity Man

novdocx (E
N

U
) 9 January 2007
The following table lists java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Timestamp.html) methods that the Driver for JDBC uses:

Table E-8 java.sql.Timestamp Methods

getWarnings():java.sql.SQLWarning 1 no

Method Signature JDBC Version Required?

getNanos():int 1 yes

getTime():long 1 yes

setNanos(int n):void 1 yes

setTime(long time):void 1 yes

toString ():String 1 yes

Method Signature JDBC Version Required?
ager Driver for JDBC 2.1: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

F
novdocx (E

N
U

) 9 January 2007
FThird-Party JDBC Driver
Descriptor DTD

This section contains the DTD for third-party JDBC descriptor files.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT actions (exec-sql | check-for-closed-connection | fetch-
metadata | rollback)*>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT authentication (sql-state | error-code | sql-state-class |
error-code-range | actions)*>
<!ELEMENT check-for-closed-connection EMPTY>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT connection-properties (property*)>
<!ELEMENT connectivity (sql-state | error-code | sql-state-class |
error-code-range | actions)*>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT error-code (value)>
<!ATTLIST error-code
 description CDATA #IMPLIED
>
<!ELEMENT error-code-range (from, to)>
<!ATTLIST error-code-range
 description CDATA #IMPLIED
>
<!ELEMENT errors (connectivity | authentication | retry | fatal)*>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT exec-sql (#PCDATA)>
<!ELEMENT fatal (sql-state | error-code | sql-state-class | error-
code-range | actions)*>
<!ELEMENT fetch-metadata EMPTY>
<!ELEMENT from (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT identity (name?, target-database?, jdbc-type?, jdbc-class?)>
<!ELEMENT import (#PCDATA)>
<!ELEMENT imports (import*)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT jdbc-class (#PCDATA)>
<!ELEMENT jdbc-driver (imports?, identity, (metadata-override |
connection-properties | sql-type-map | options | errors)*)>
<!ELEMENT jdbc-type (#PCDATA)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT metadata-override (supports-schemas-in-procedure-calls?)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in-
Third-Party JDBC Driver Descriptor DTD 187

188 Identity Man

novdocx (E
N

U
) 9 January 2007
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT property (key, value)>
<!ELEMENT retry (sql-state | error-code | sql-state-class | error-
code-range | actions)*>
<!ELEMENT reuse-statements (#PCDATA)>
<!ELEMENT rollback EMPTY>
<!ELEMENT sql-state (value)>
<!ATTLIST sql-state
 description CDATA #IMPLIED
>
<!ELEMENT sql-state-class (value)>
<!ATTLIST sql-state-class
 description CDATA #IMPLIED
>
<!ELEMENT sql-type-map (type*)>
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT supports-schemas-in-procedure-calls (#PCDATA)>
<!ELEMENT target-database (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT type (from, to)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
<!ELEMENT value (#PCDATA)>
ager Driver for JDBC 2.1: Implementation Guide

G
novdocx (E

N
U

) 9 January 2007
GThird-Party JDBC Driver
Descriptor Import DTD

This section contains the DTD for third-party JDBC descriptor import files.
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT actions (exec-sql | check-for-closed-connection | fetch-
metadata | rollback)*>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT authentication (sql-state | error-code | sql-state-class |
error-code-range | actions)*>
<!ELEMENT check-for-closed-connection EMPTY>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT connection-properties (property*)>
<!ELEMENT connectivity (sql-state | error-code | sql-state-class |
error-code-range | actions)*>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT error-code (value)>
<!ATTLIST error-code
 description CDATA #IMPLIED
>
<!ELEMENT error-code-range (from, to)>
<!ATTLIST error-code-range
 description CDATA #IMPLIED
>
<!ELEMENT errors (connectivity | authentication | retry | fatal)*>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT exec-sql (#PCDATA)>
<!ELEMENT fatal (sql-state | error-code | sql-state-class | error-
code-range | actions)*>
<!ELEMENT fetch-metadata EMPTY>
<!ELEMENT from (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT jdbc-driver (metadata-override | connection-properties |
sql-type-map | options | errors)*>
<!ELEMENT key (#PCDATA)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT metadata-override (supports-schemas-in-procedure-calls?)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT property (key, value)>
Third-Party JDBC Driver Descriptor Import DTD 189

190 Identity Man

novdocx (E
N

U
) 9 January 2007
<!ELEMENT retry (sql-state | error-code | sql-state-class | error-
code-range | actions)*>
<!ELEMENT reuse-statements (#PCDATA)>
<!ELEMENT rollback EMPTY>
<!ELEMENT sql-state (value)>
<!ATTLIST sql-state
 description CDATA #IMPLIED
>
<!ELEMENT sql-state-class (value)>
<!ATTLIST sql-state-class
 description CDATA #IMPLIED
>
<!ELEMENT sql-type-map (type*)>
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT supports-schemas-in-procedure-calls (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT type (from, to)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
<!ELEMENT value (#PCDATA)>
ager Driver for JDBC 2.1: Implementation Guide

H
novdocx (E

N
U

) 9 January 2007
HDatabase Descriptor DTD

This section contains the DTD for database descriptor files.
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT database (imports?, identity, options?)>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT identity (name?, regex-name?, regex-version?)>
<!ELEMENT import (#PCDATA)>
<!ELEMENT imports (import*)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT regex-name (#PCDATA)>
<!ELEMENT regex-version (#PCDATA)>
<!ELEMENT reuse-statements (#PCDATA)>
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
Database Descriptor DTD 191

192 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

I
novdocx (E

N
U

) 9 January 2007
IDatabase Descriptor Import DTD

This section contains the DTD for database descriptor import files.
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT database (options?)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT reuse-statements (#PCDATA)>
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
Database Descriptor Import DTD 193

194 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

J
novdocx (E

N
U

) 9 January 2007
JPolicy Example: Triggerless
Future Event Processing

The following example assumes that a “commence” attribute exists and does the following:

Holds the timestamp value of when an event should be processed
 Contains an integer or java string timestamp value. See “Time Syntax” on page 57.

<policy xmlns:Timestamp="http://www.novell.com/nxsl/java/
java.sql.Timestamp"

xmlns:TimestampUtil="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil"

xmlns:jdbc="urn:dirxml:jdbc">
<rule>
<description>Get commencement date from datasource.</description>

<conditions>
<and>

<if-xpath op="true">.</if-xpath>
</and>

</conditions>
<actions>

<do-set-local-variable name="commence">
<arg-string>

<token-src-attr class-name="User"
name="commence"/>

</arg-string>
</do-set-local-variable>

</actions>
</rule>
<rule>

<description>Break if commencement date unavailable.</
description>

<conditions>
<and>

<if-local-variable name="commence" op="equal"/>
</and>

</conditions>
<actions>

<do-break/>
</actions>

</rule>
<rule>
<description>Parse times.</description>

<conditions>
<and>

<if-xpath op="true">.</if-xpath>
</and>

</conditions>
<actions>

<do-set-local-variable name="dbTime">
Policy Example: Triggerless Future Event Processing 195

196 Identity Man

novdocx (E
N

U
) 9 January 2007
<arg-object>
<token-xpath

expression="Timestamp:valueOf(@jdbc:database-local-time)"/>
</arg-object>

</do-set-local-variable>
<do-set-local-variable name="eventTime">

<arg-object>
<token-xpath

expression="Timestamp:valueOf($commence)"/>
</arg-object>

</do-set-local-variable>
</actions>

</rule>
<rule>

<description>Is commencement date after database time?</
description>

<conditions>
<and>

<if-xpath op="true">.</if-xpath>
</and>

</conditions>
<actions>

<do-set-local-variable name="after">
<arg-string>

<token-xpath
expression="TimestampUtil:after($eventTime, $dbTime)"/>

</arg-string>
</do-set-local-variable>

</actions>
</rule>
<rule>
<description>Retry if future event.</description>

<conditions>
<and>

<if-local-variable name="after" op="equal">true</if-
local-variable>

</and>
</conditions>
<actions>

<do-status level="retry">
<arg-string>

<token-text xml:space="preserve">Future event
detected.</token-text>

</arg-string>
</do-status>

</actions>
</rule>
</policy>
ager Driver for JDBC 2.1: Implementation Guide

K
novdocx (E

N
U

) 9 January 2007
KSetting Up an OCI Client on Linux

Section K.1, “Downloading the Instant Client,” on page 197
Section K.2, “Setting Up the OCI Client,” on page 197
Section K.3, “Configuring the OCI Driver,” on page 198

K.1 Downloading the Instant Client
1 Download the Oracle Instant Client (instantclient-basic-linux32-10.2.0.1-
20050713.zip).

The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

2 Download the Oracle SQL*Plus binary (instantclient-sqlplus-linux32-
10.2.0.1-20050713.zip).
The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

K.2 Setting Up the OCI Client
Set up the Oracle Instant Client on the machine where the JDBC driver is running (not on the
machine where Oracle is running).

1 Log into Linux as root, and create the following structure:

/oracle
/oracle/client
/oracle/client/bin
/oracle/client/lib
/oracle/client/network/admin

2 Unzip all files from instantclient-basic-linux32-10.2.0.1-20050713.zip
to /oracle/client/lib.

3 Unzip all files from instantclient-sqlplus-linux32-10.2.0.1-
20050713.zip to /oracle/client/bin.

4 Copy libsqlplus.so from /oracle/client/bin to /oracle/client/lib.
5 Copy libsqlplusic.so from /oracle/client/bin to /oracle/client/lib.
6 Using chmod, ensure that the file sqlplus in /oracle/client/bin is executable.
7 Copy a valid tnsnames.ora into /oracle/client/network/admin.

If you don’t have a tnsnames.ora file, use the Oracle configuration tool to create one.
Make sure that the tnsnames.ora filename is in lowercase.

8 Modify the profile.local file by adding the following lines:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/oracle/client/lib
export TNS_ADMIN=/oracle/client/network/admin
export PATH=$PATH:/oracle/client/lib
Setting Up an OCI Client on Linux 197

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html

198 Identity Man

novdocx (E
N

U
) 9 January 2007
The profile.local file is in the /etc folder. If the file doesn’t exist, create one. The file
can consist of only the three export lines.
The profile.local file extends the LD_LIBRARY_PATH, sets TNS_ADMIN, and
extends the PATH. This file is read when the server boots.

9 Ensure that the exports in the profile.local file are always valid.
10 Copy the classes12.jar and ojdbc14.jar to the IDM classes directory.

These .jar files are supplied with the Instant Client.
The IDM classes directory is the directory where your driver is located.

11 Start SQL*Plus with the following example command (assuming that the directory is /
oracle/client/bin):
./sqlplus username/password@sid

K.3 Configuring the OCI Driver
To configure the driver, customize the driver’s URL syntax. See Table 11-20 on page 162.

An example URL syntax is jdbc:oracle:oci8:@ORACLE10. In this example, ORACLE10 is the
connection string in the tnsnames.ora file.

Figure K-1 Example tnsnames.ora File
ager Driver for JDBC 2.1: Implementation Guide

L
novdocx (E

N
U

) 9 January 2007
LSybase Chain Modes and the
Identity Manager Driver for JDBC

Sybase can execute stored procedures in two distinct modes: chained and unchained. Depending
upon the configuration of the Identity Manager Driver for JDBC and stored procedures in a
database, various problems can arise. This section can help you understand and resolve those
problems.

Section L.1, “Error Codes,” on page 199
Section L.2, “Procedures and Modes,” on page 200

L.1 Error Codes
“Error 226: SET CHAINED command not allowed within multi-statement transaction” on
page 199
“Error 7112: Stored procedure 'x' may be run only in chained transaction mode” on page 199
“Error 7113: Stored procedure 'x' may be run only in unchained transaction mode” on page 200

Error 226: SET CHAINED command not allowed within multi-statement transaction

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 226 and an SQL state of ZZZZZ.

Cause: This exception is usually caused by a defect in older versions of jConnect*.

Solution: Download and upgrade to the latest version. Downloads are available at the
jConnect for JDBC Web page (http://www.sybase.com/products/
informationmanagement/softwaredeveloperkit/jconnect).

Error 7112: Stored procedure 'x' may be run only in chained transaction mode

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 7712 and an SQL state of ZZZZZ.

Cause: The stored procedure was created in chained mode, or later altered to run in
chained mode, but the driver is currently running in unchained mode. The
probable cause is that the Use Manual Transactions? parameter is set to False.
Another possibility is that the transaction type has been overridden to auto in a
policy.

Solution: Do one of the following:

Use stored procedure sp_procxmode to change the stored procedure's
mode to unchained or anymode (preferred).
Change the driver's Use Manual Transactions? parameter to True, or
change the policy transaction type to manual.
Sybase Chain Modes and the Identity Manager Driver for JDBC 199

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

200 Identity Man

novdocx (E
N

U
) 9 January 2007
Error 7113: Stored procedure 'x' may be run only in unchained transaction mode

Effect: Throws the exception com.sybase.jdbc2.jdbc.SybSQLException with error
code 7713 and an SQL state of ZZZZZ.

Cause: The stored procedure was created in unchained mode, or later altered to run in
unchained mode, but the driver is currently running in chained mode. The
probable cause is that the Use Manual Transactions? parameter is set to True.
Another possibility is that the transaction type has been overridden to manual
in policy.

Solution: Do one of the following:

Use stored procedure sp_procxmode to change the stored procedure's
mode to chained or anymode (preferred).
Change the driver's “Use Manual Transactions?” on page 68 parameter to
False, or change the policy transaction type to auto.

NOTE: If you set use-manual-transactions to False, all transactions will
consist of a maximum of one statement.

L.2 Procedures and Modes
Section L.2.1, “Using Stored Procedure sp_proxmode,” on page 200
Section L.2.2, “Chained and Unchained Modes,” on page 200
Section L.2.3, “Managing Transactions in a Policy,” on page 201
Section L.2.4, “Useful Links,” on page 201

L.2.1 Using Stored Procedure sp_proxmode
The preferred way to avoid errors 7112 and 7113 is to alter all stored procedures invoked directly or
indirectly by the driver (via triggers, for example) to run in both chained and unchained mode. To
alter a procedure, invoke the sp_procxmode procedure with two arguments:.

The procedure name
The mode

The following example illustrates how to invoke the sp_procxmode procedure from the isql
command line:

client:sp_procxmode my_procedure, anymode
go

Of course, not all customers are willing to alter stored procedure modes. Altering a procedure's
mode might alter its runtime behavior, which could alter the behavior of other applications that
invoke the procedure.

L.2.2 Chained and Unchained Modes
Unchained mode is Sybase's native way of executing SQL. A second mode, chained mode, was later
added to make the database compatible with SQL standards.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
Table L-1 Modes and Compatibility

Sybase provides a third-party JDBC driver called jConnect. The default mode of jConnect is
unchained. Whenever the method Connection.setAutoCommit(boolean autoCommit):void is
invoked, jConnect switches modes. See java.sql Interface Connection (http://java.sun.com/j2se/
1.4.2/docs/api/java/sql/Connection.html).

Table L-2 Methods and Switches

If the Use Manual Transactions? parameter is set to False, the driver invokes
Connection.setAutoCommit(true). That is, the driver enters unchained mode. This is the normal
processing mode for SELECT statements and SQL embedded in a policy where the transaction type
is set to auto. See Section 9.5, “Manual vs. Automatic Transactions,” on page 129. When the
driver is in this state, any chained stored procedures invoked directly or indirectly by the driver yield
the 7112 error.

If the Use Manual Transactions? parameter is set to True, the driver invokes
Connection.setAutoCommit(false). That is, the driver enters chained mode. This is the normal
processing mode for all statements except SELECT statements and SQL embedded in a policy
where the transaction type is set to manual. See Manual vs. Automatic Transactions (http://
www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/
data/af899ky.html#af8bdjt). When the driver is in this state, any unchained stored procedures
invoked directly or indirectly by the driver yield the 7113 error.

L.2.3 Managing Transactions in a Policy
For information on managing transactions in a policy, see Manual vs.Automatic Transactions (http:/
/www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/
data/af899ky.html#af8bdjt).

L.2.4 Useful Links
Transaction modes and stored procedures (http://manuals.sybase.com/onlinebooks/group-as/
asg1250e/sqlug/@Generic__BookTextView/55096;hf=0;pt=55096#X) in the Transact-SQL
User's Guide
Selecting the transaction mode and isolation level (http://manuals.sybase.com/onlinebooks/
group-as/asg1250e/sqlug/@Generic__BookTextView/53713;pt=53001) in the Transact-SQL
User's Guide

Mode Compatibility

Chained SQL-compatible mode

Unchained Sybase native mode

Method Effect

Connection.setAutoCommit(true) Switches to unchained mode

Connection.setAutoCommit(false) Switches to chained mode
Sybase Chain Modes and the Identity Manager Driver for JDBC 201

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html
http://www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/data/af899ky.html#af8bdjt
http://www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/data/af899ky.html#af8bdjt
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/55096;hf=0;pt=55096#X
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/53713;pt=53001

202 Identity Man

novdocx (E
N

U
) 9 January 2007
ager Driver for JDBC 2.1: Implementation Guide

M
novdocx (E

N
U

) 9 January 2007
MDocumentation Updates

This section contains new or updated information on the Identity Manager Driver for JDBC.

The documentation is provided on the Web in two formats: HTML and PDF. The HTML and PDF
documentation are both kept up-to-date with the documentation changes listed in this section.

If you need to know whether a copy of the PDF documentation you are using is the most recent,
check the date that the PDF file was published. The date is on the title page.

New or updated documentation was published on the following dates:

Section M.1, “December 14, 2005,” on page 203
Section M.2, “April 24, 2006,” on page 204
Section M.3, “May 1, 2006,” on page 204
Section M.4, “May 12, 2006,” on page 204
Section M.5, “May 30, 2006,” on page 204
Section M.6, “June 13, 2006,” on page 205
Section M.7, “July 27, 2006,” on page 205
Section M.8, “August 10, 2006,” on page 205
Section M.9, “August 23, 2006,” on page 205
Section M.10, “September 15, 2006,” on page 205
Section M.11, “October 5, 2006,” on page 206
Section M.12, “October 20, 2006,” on page 206
Section M.13, “November 1, 2006,” on page 206
Section M.14, “December 1, 2006,” on page 206
Section M.15, “January 9, 2007,” on page 207
Section M.16, “February 21, 2007,” on page 207
Section M.17, “April 4, 2007,” on page 207

M.1 December 14, 2005
Table M-1 Updates as of December 14, 2005

Location Change

Section 5.3, “Driver
Parameters,” on page 54

Moved the section up one level in the hierarchy of information, so that
you can easily find the driver parameters.

Section 8.2, “Event Types,”
on page 115

Updated the Events Type table.
Documentation Updates 203

204 Identity Man

novdocx (E
N

U
) 9 January 2007
M.2 April 24, 2006

Table M-2 Updates as of April 19, 2006

M.3 May 1, 2006
Table M-3 Updates as of May 1, 2006

M.4 May 12, 2006
Table M-4 Updates as of May 12, 2006

M.5 May 30, 2006
Table M-5 Updates as of May 30, 2006

Section 11.4.9, “Oracle Thin
Client JDBC Driver,” on
page 160

Updated the Known Issues section.

Location Change

“Subscriber Channel” on
page 23

Corrected a graphic, to display “Views” instead of “Intermediate
Table(s).”

Location Change

Section 11.5.1, “IBM Toolbox
for Java/JTOpen,” on
page 165

Added this topic.

Location Change

Section 11.5.1, “IBM Toolbox
for Java/JTOpen,” on
page 165

Added an explanatory paragraph concerning values for settings in an
imported sample configuration file. You need to manually enter the
values. The are not automatically added.

Location Change

Section 11.4.7, “Microsoft
SQL Server 2000 Driver for
JDBC,” on page 158

Added an explanation that the 2005 driver requires only one file instead
of the four listed in the documentation, and that the file is backwards
compatible.

Location Change
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
M.6 June 13, 2006
Table M-6 Updates as of June 13, 2006

M.7 July 27, 2006
Table M-7 Updates as of July 27, 2006

M.8 August 10, 2006
Updated cross-references to the Identity Manager 3.0.1 documentation set.

M.9 August 23, 2006
Table M-8 Updates as of August 23, 2006

M.10 September 15, 2006
Table M-9 Updates as of September 15, 2006

Location Change

Section 11.4.7, “Microsoft
SQL Server 2000 Driver for
JDBC,” on page 158

Corrected information about the 2005 driver. The filename, URL
syntax, and classname differ from the 2000 driver.

Location Change

“SQL Script Conventions” on
page 39

Corrected the default locations of SQL scripts.

Location Change

Section 11.4.10, “Oracle
OCI JDBC Driver,” on
page 162

Appendix K, “Setting Up an
OCI Client on Linux,” on
page 197

Added these topics.

Location Change

Section 11.4.10, “Oracle
OCI JDBC Driver,” on
page 162

Added several paragraphs about SQLNet.
Documentation Updates 205

206 Identity Man

novdocx (E
N

U
) 9 January 2007
M.11 October 5, 2006
Table M-10 Updates as of October 3, 2006

M.12 October 20, 2006
Table M-11 Updates as of October 20, 2006

M.13 November 1, 2006
Table M-12 Updates as of November 1, 2006

M.14 December 1, 2006
Table M-13 Updates as of December 1, 2006

Location Change

Appendix L, “Sybase Chain
Modes and the Identity
Manager Driver for JDBC,”
on page 199

Added this appendix.

Location Change

“Time Syntax” on page 57

“Enable Future Event
Processing?” on page 87

Reorganized this section. Corrected the first sentence in the three
options so that you understand that you (not the driver) map eDirectory
attributes.

Corrected parameter settings for Boolean values. Replaced incorrect
links.

Location Change

“Time Syntax” on page 57 Separated the three formats from the recommendation to map
database values to eDirectory attributes. The earlier text was
misleading.

Location Change

“State Directory” on page 59 Added information on events that force resynchronization.
ager Driver for JDBC 2.1: Implementation Guide

novdocx (E
N

U
) 9 January 2007
M.15 January 9, 2007
Table M-14 Updates as of January 9, 2007

M.16 February 21, 2007
Table M-15 Updates as of February 21, 2007

M.17 April 4, 2007
Table M-16 Updates as of April 4, 2007

Location Change

“State Directory” on page 59 Made technical review changes to this topic.

Separated the former Advanced Configuration chapter into four
chapters.

Location Change

“Mapping XDS Events to
SQL Statements” on
page 111

Bolded embedded SQL statements in example code.

Location Change

“Mapping XDS Events to
SQL Statements” on
page 111

Tweaked the documentation so that bolding appeared in embedded
SQL statements in example code. (The production process stripped
bolding from the February 21, 2007 update.)
Documentation Updates 207

	Identity Manager Driver for JDBC 2.1: Implementation Guide
	About This Guide
	1 Introducing the Identity Manager Driver for JDBC
	1.1 New Driver Features
	1.2 Changes in Terminology
	1.3 Terms and Concepts
	1.3.1 JDBC
	1.3.2 Identity Manager Driver for JDBC
	1.3.3 Third-Party JDBC Driver
	1.3.4 Identity Vault
	1.3.5 Directory Schema
	1.3.6 Application Schema
	1.3.7 Database Schema
	1.3.8 Synchronization Schema
	1.3.9 Logical Database Class
	1.3.10 XDS

	1.4 Database Concepts
	1.4.1 Structured Query Language
	1.4.2 Data Manipulation Language
	1.4.3 Data Definition Language
	1.4.4 View
	1.4.5 Identity Columns/Sequences
	1.4.6 Transaction
	1.4.7 Stored Procedures or Functions
	1.4.8 Trigger
	1.4.9 Instead-Of-Trigger

	1.5 Data Synchronization Models
	1.5.1 Indirect Synchronization
	1.5.2 Direct Synchronization

	1.6 Triggerless vs. Triggered Publication

	2 Before Installing the Driver
	2.1 Driver Prerequisites
	2.2 Supported Platforms, Databases, and Drivers
	2.3 Known Issues
	2.4 Limitations

	3 Installing or Upgrading the Driver for JDBC
	3.1 Upgrading to Identity Manager 3
	3.2 Placing Jar Files
	3.2.1 Identity Manager File Paths
	3.2.2 Remote Loader File Paths

	3.3 Installing the Driver for JDBC
	3.3.1 Installing the Driver
	3.3.2 Importing the Example Configuration File
	3.3.3 Setting Up a Remote Loader
	3.3.4 Installing and Configuring Database Objects
	3.3.5 Testing
	3.3.6 Troubleshooting

	3.4 Upgrading the Driver for JDBC
	3.4.1 Backward Incompatibilities

	3.5 Activating the Driver

	4 Uninstalling the IDM Driver for JDBC
	4.1 Deleting IDM Driver Objects
	4.2 Running the Product Uninstaller
	4.3 Executing Database Uninstallation Scripts
	4.3.1 IBM DB2 Universal Database (UDB) Uninstallation
	4.3.2 Informix Dynamic Server (IDS) Uninstallation
	4.3.3 Microsoft SQL Server Uninstallation
	4.3.4 MySQL Uninstallation
	4.3.5 Oracle Uninstallation
	4.3.6 PostgreSQL Uninstallation
	4.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation

	5 Configuring the Identity Manager Driver for JDBC
	5.1 Smart Configuration
	5.2 Configuration Parameters
	5.2.1 Viewing Driver Parameters
	5.2.2 Deprecated Parameters
	5.2.3 Authentication Parameters

	5.3 Driver Parameters
	5.3.1 Uncategorized Parameters
	5.3.2 Database Scoping Parameters
	5.3.3 Connectivity Parameters
	5.3.4 Compatibility Parameters

	5.4 Subscription Parameters
	5.4.1 Uncategorized Parameters
	5.4.2 Primary Key Parameters

	5.5 Publication Parameters
	5.5.1 Uncategorized Parameters
	5.5.2 Triggered Publication Parameters
	5.5.3 Triggerless Publication Parameters
	5.5.4 Polling Parameters

	5.6 Trace Levels
	5.7 Configuring Third-Party JDBC Drivers

	6 Schema Mapping
	6.1 High-Level View
	6.2 Logical Database Classes
	6.3 Indirect Synchronization
	6.3.1 Mapping eDirectory Classes to Logical Database Classes
	6.3.2 Parent Tables
	6.3.3 Parent Table Columns
	6.3.4 Child Tables
	6.3.5 Referential Attributes
	6.3.6 Single-Value Referential Attributes
	6.3.7 Multivalue Referential Attributes

	6.4 Direct Synchronization
	6.4.1 View Column Meta-Identifiers
	6.4.2 Primary Key Columns
	6.4.3 Schema Mapping

	6.5 Synchronizing Primary Key Columns
	6.6 Synchronizing Multiple Classes
	6.7 Mapping Multivalue Attributes to Single- Value Database Fields

	7 Mapping XDS Events to SQL Statements
	7.1 Mapping XDS Events for Indirect Synchronization

	8 The Event Log Table
	8.1 Event Log Columns
	8.2 Event Types

	9 Embedded SQL Statements in XDS Events
	9.1 Common Uses of Embedded SQL
	9.2 Embedded SQL Basics
	9.2.1 Elements
	9.2.2 Namespaces
	9.2.3 Embedded SQL Example

	9.3 Token Substitution
	9.4 Virtual Triggers
	9.5 Manual vs. Automatic Transactions
	9.6 Transaction Isolation Level
	9.7 Statement Type
	9.8 SQL Queries
	9.9 Data Definition Language (DDL) Statements
	9.10 Logical Operations
	9.11 Implementing Password Set with Embedded SQL
	9.12 Implementing Modify Password with Embedded SQL
	9.13 Implementing Check Object Password
	9.14 Best Practices

	10 Supported Databases
	10.1 Database Interoperability
	10.2 Supported Databases
	10.3 Database Characteristics
	10.3.1 Database Features
	10.3.2 Current Time Stamp Statements
	10.3.3 Stored Procedure and Function JDBC Call Syntaxes
	10.3.4 Left Outer Join Operators
	10.3.5 Undelimited Identifier Case Sensitivity
	10.3.6 Supported Transaction Isolation Levels
	10.3.7 Commit Keywords
	10.3.8 IBM DB2 Universal Database (UDB)
	10.3.9 Informix Dynamic Server (IDS)
	10.3.10 Microsoft SQL Server
	10.3.11 MySQL
	10.3.12 Oracle
	10.3.13 PostgreSQL
	10.3.14 Sybase Adaptive Server Enterprise (ASE)

	11 Third-Party JDBC Drivers
	11.1 Third-Party JDBC Driver Interoperability
	11.2 JDBC Driver Types
	11.2.1 Which Type To Use?

	11.3 Third-Party Jar File Placement
	11.3.1 Identity Manager File Paths
	11.3.2 Remote Loader File Paths

	11.4 Supported Third-Party JDBC Drivers
	11.4.1 Third-Party JDBC Driver Features
	11.4.2 JDBC URL Syntaxes
	11.4.3 JDBC Driver Class Names
	11.4.4 BEA Weblogic jDriver for Microsoft SQL Server
	11.4.5 IBM DB2 Universal Database JDBC Drivers
	11.4.6 Informix JDBC Driver
	11.4.7 Microsoft SQL Server 2000 Driver for JDBC
	11.4.8 MySQL Connector/J JDBC Driver
	11.4.9 Oracle Thin Client JDBC Driver
	11.4.10 Oracle OCI JDBC Driver
	11.4.11 PostgreSQL JDBC Driver
	11.4.12 Sybase Adaptive Server Enterprise JConnect JDBC Driver

	11.5 Unsupported Third-Party JDBC Drivers
	11.5.1 IBM Toolbox for Java/JTOpen
	11.5.2 Minimum Third-Party JDBC Driver Requirements
	11.5.3 Considerations When Using Other Third-Party JDBC Drivers

	11.6 Security Issues

	12 The Association Utility
	12.1 Independent Operations
	12.2 Before You Begin
	12.3 Using the Association Utility
	12.4 Editing Associations

	A Best Practices
	B FAQ
	B.1 Can’t See Tables or Views
	B.2 Synchronizing with Tables
	B.3 Processing Rows in the Event Log Table
	B.4 Managing Database User Accounts
	B.5 Synchronizing Large Data Types
	B.6 Slow Publication
	B.7 Synchronizing Multiple Classes
	B.8 Encrypted Transport
	B.9 Mapping Multivalue Attributes
	B.10 Synchronizing Garbage Strings
	B.11 Running Multiple Driver for JDBC Instances

	C Supported Data Types
	D java.sql.DatabaseMetaData Methods
	E JDBC Interface Methods
	F Third-Party JDBC Driver Descriptor DTD
	G Third-Party JDBC Driver Descriptor Import DTD
	H Database Descriptor DTD
	I Database Descriptor Import DTD
	J Policy Example: Triggerless Future Event Processing
	K Setting Up an OCI Client on Linux
	K.1 Downloading the Instant Client
	K.2 Setting Up the OCI Client
	K.3 Configuring the OCI Driver

	L Sybase Chain Modes and the Identity Manager Driver for JDBC
	L.1 Error Codes
	L.2 Procedures and Modes
	L.2.1 Using Stored Procedure sp_proxmode
	L.2.2 Chained and Unchained Modes
	L.2.3 Managing Transactions in a Policy
	L.2.4 Useful Links

	M Documentation Updates
	M.1 December 14, 2005
	M.2 April 24, 2006
	M.3 May 1, 2006
	M.4 May 12, 2006
	M.5 May 30, 2006
	M.6 June 13, 2006
	M.7 July 27, 2006
	M.8 August 10, 2006
	M.9 August 23, 2006
	M.10 September 15, 2006
	M.11 October 5, 2006
	M.12 October 20, 2006
	M.13 November 1, 2006
	M.14 December 1, 2006
	M.15 January 9, 2007
	M.16 February 21, 2007
	M.17 April 4, 2007

