Novell
Nsure ldentity Manager Driver

for JDBC

2.0 @

‘ IMPLEMENTATION GUIDE

May 3, 2006

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representati ons or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitnessfor any particular purpose. Further, Novell, Inc. reservestheright to make changesto any and dl partsof Novell software,
at any time, without any obligation to notify any person or entity of such changes.

Y ou may not use, export, or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export
regulations or the laws of the country in which you reside.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries.
Y ou agree to comply with all export control regulations and to obtain any required licensesor classification to export, re-export, or import deliverables.
Y ou agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the
U.S. export laws. Y ou agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please refer to
www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no responsibility for your failure to obtain any
necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher.

Novell, Inc. hasintellectual property rightsrelating to technology embodied in the product that is described in thisdocument. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.novell.com/company/legal/patents/ and
one or more additional patents or pending patent applicationsin the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

Identity Manager Driver for JDBC: Implementation Guide
May 3, 2006

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

Novell Trademarks

DirXML isaregistered trademark of Novell, Inc. in the United States and other countries.
eDirectory is atrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc. in the United States and other countries.
Novell is aregistered trademark of Novell, Inc. in the United States and other countries.
SUSE isaregistered trademark of SUSE AG, a Novell business.

Third-Party Materials
All third-party trademarks are the property of their respective owners.

Contents

About This Guide 9
1 Introducing the Identity Manager Driver for JDBC 11
OVEIVIEW o e e e 11
New Features. e e 11
Driver Features e e e 11
Identity Manager New Features. e 12
Driver CONCEPLS o o e 12
IDBC . . e 12
Identity Manager Driver for IDBC. e e e 12
Third-Party IDBC DriVer o o e e e e 13
Identity Vault e 13
Directory Schema. e e 13
Application Schema. L e e e 13
Database Schema e 14
Synchronization Schema L e 14
Logical Database Class. 14
XDS . o 14
Database CONCEPLS. o o e e e 14
Structured Query Language e e e e e e 14
Data Manipulation Language e e e e e 14
Data Definition Language e e 15
VIBW. . o e 15
Identity ColumNS/SEQUENCES o o o e e 15
Transaction e e 16
Stored Procedures or FUNCLIONS o o e e 16
THOOEr . o e 17
Instead-Of-Trigger e e 17
Data Synchronization Models L 18
Indirect Synchronization L L 19
Direct Synchronization e e 20
Triggerless Publication L L 21
Triggerless vs. Triggered Publication 21
Direct Triggerless Publication. 22
Indirect Triggerless Publication L 22

2 Understanding Driver Prerequisites 23
Driver Prerequisites. e e 23
Supported Platforms L L e e e 23
Supported Databases. L e 23
Supported Third-Party IDBC Drivers o e e e e e e e e 23
Known ISsues e 23
Limitations. e 24

3 Installing or Upgrading the Driver for JDBC 25
Installing 25

Contents 5

Identity Manager-Side Installation L 25

Remote Loader Installation L 27
Database-Side Installation. L L e 27
MySQL Installation. e e 30
Upgrading o e e e e 32
Upgrading from Versions Earlierthan 1.5 L 32
Upgrading from 1.5 orLaterto 2.0. e 32
Backward Incompatibilities. L L e 32
Activating e e 33
Configuring the Driver for JDBC 35
Smart Configuration L L e e e e e 35
Configuration Parameters e e e e 37
Deprecated Parameters. e e 38
Authentication Parameters L e 38
Authentication ID. L e e 38
Authentication Context. 38
Application Password L L e e e 38
Driver Parameters. o e e e 39
Uncategorized Parameters e e e e e e 40
Database Scoping Parameters e e 42
Connectivity Parameters. e e e e e e 44
Compatibility Parameters L e e 46
Subscription Parameters L L e e e e e e 54
Uncategorized Parameters e e e e e 54
Primary Key Parameters. e e 56
Publication Parameters L e 61
Uncategorized Parameters e e e e e e e e 61
Triggered Publication Parameters e e e 63
Triggerless Publication Parameters e e e e e 65
Polling Parameters. e e e 65
Trace Levels. 67
Configuring Third-Party IDBC DriVErs. o e e e e e e e e e e e e e e 68
Advanced Configuration 69
Schema Mapping e e e 69
Logical Database Classes e 69
Indirect Synchronization L L e e 69
Direct Synchronization. L e e 76
Synchronizing Primary Key Columns e e 79
Synchronizing Multiple Classes e e 79
Mapping Multivalue Attributes to Single-Value Database Fields., 79
XDS Eventto SQL Statement Mapping L e 80
The EventLog Table L e e 81
EventLog ColumNs L e e 82
Event TYPeS o e e 84
Embedding SQL Statements in XDS EVENtS L e e e e e 89
Variable Substitution. L e 20
Statement Placement L L e e 91
Manual vs. Automatic Transactions L e 92
Transaction Isolation Level e 93
Statement Type L e e e 94
SQL QUETIES o e e e 95
Data Definition Language (DDL) Statements e 96
Logical Operations. e e e e 96
Best Practices e 97

DirXML Driver for JDBC Implementation Guide

Third-Party JDBC Drivers 99

Third-Party JDBC Driver Interoperability 99
JDBC Drivers: FOUr TYPES o o o e e e e e e e e 99
Which Type TOUSE? L e 100
Supported Third-Party IDBC DHVEIS. o o o e e e e e e e e 100
Third-Party JDBC Driver Features e e e 100
JDBC URL SYNtaxes o o e e e e e e e e e 101
JDBC Driver Class Names o e e e 101
BEA Weblogic jDriver for Microsoft SQL Server 102
IBM DB2 Universal Database JDBC DIVEIS o i it e e e e e e e 103
InNformix IDBC DIIVEr o e e e e e e 105
Microsoft SQL Server 2000 Driver for JDBC e e 106
MySQL Connector/J JDBC DFIVEr. o e e e 107
Oracle Thin Client IDBC DIIVEIS o 0 o e e e e e e e e e e e e e e 108
PostgreSQL IDBC Driver. o o o e e e e 109
Sybase Adaptive Server Enterprise JConnect JDBC Drivero 110
Using Unsupported Third-Party IDBC DHVEIS o o o o e e e e e e e e e e 111
SECUNtY ISSUES o o o e 111
Supported Databases 113
Database Interoperability L e 113
Supported Databases L e e 113
Database CharacteristiCs. e e 114
Database Features e e 114
Current Time Stamp Statements e e e 115
Stored Procedure and Function JDBC Call Syntaxes. e 115
Left Outer JOIin OPerators. o o e e e e e 115
Undelimited Identifier Case-Sensitivity e 116
Supported Transaction Isolation Levels. L 116
Commit Keywords. e e e e 117
IBM DB2 Universal Database (UDB) e e 117
Informix Dynamic Server (IDS) L e 118
Microsoft SQL SEerver. e e e e 118
MYSQL . . 119
Oracle. e 120
PosSgreSQL L 120
Sybase Adaptive Server Enterprise (ASE) 121
Using the Association Utility 123
Understanding the Association Utility 123
Before You Begin L 124
Using the Association Utility o e 124
Editing ASSOCIAtiONS. e e e 125
Uninstalling the IDM Driver for JDBC 127
Deleting IDM Driver Objects e 127
Running the Product Uninstaller e 127
Executing Database Uninstallation Scripts. e 127
IBM DB2 Universal Database (UDB) Uninstallation. 128
Informix Dynamic Server (IDS) Uninstallation. 128
Microsoft SQL Server Uninstallation e e 128
MySQL Uninstallation. e 128
Oracle Uninstallation L 129
PostgreSQL Uninstallation L e 129
Sybase Adaptive Server Enterprise (ASE) Uninstallation. 0 L. 129

Contents 7

I oG m m O O

8

Best Practices

FAQ

Supported Data Types
java.sql.DatabaseMetaData Methods

Utilized JDBC Methods

Third-Party JDBC Driver Descriptor DTD
Third-Party JDBC Driver Descriptor Import DTD
Database Descriptor DTD

Database Descriptor Import DTD

Documentation Updates

May 3,2006 oo

DirXML Driver for JDBC Implementation Guide

131

133

133
133
134
134
134
134
134
135
135
135

137
139
141
147
149
151
153
155

About This Guide

The Nsure™ |dentity Manager Driver for Java* Database Connectivity (JDBC) providesageneric
solution for synchronizing data between an Identity Vault and relational databases.

This guide provides an overview of the driver’stechnology aswell as configuration instructions.

Additional Documentation

For documentation on using Identity Manager and the other drivers, see the Identity Manager
Documentation Web site (http://www.novell.com/documentation/Ig/dirxmldrivers).

Documentation Updates

For the most recent version of this document, see the Identity Manager Documentation Web site
(http://mwww.novell.com/documentation/Ig/dirxmldrivers/index.html).

Documentation Conventions

In this documentation, agreater-than symbol (>) isused to separate actions within astep and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotesaNovell® trademark. An asterisk (*) denotesathird-party
trademark.

User Comments

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell Identity Manager. Please usethe User Comment feature at the bottom of each
page of the online documentation, or go to www.novell.com/documentation/feedback.html and
enter your comments there.

About This Guide 9

http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers/index.html

10 Identity Manager Driver for JDBC: Implementation Guide

Introducing the Identity Manager Driver for
JDBC

The Nsure™ |dentity Manager Driver for Java DataBase Connectivity (JDBC), subsequently
referred to as the driver, provides a generic solution for synchronizing data between |dentity
Manager and JDBC-accessible relational databases.

The principal value of this driver residesin its generic nature. Unlike most driversthat interface
with asingle application, this driver can interface with most relational databases and database-
hosted applications.

Overview

In this section, you will find information on the following topics:
+ “New Features’ on page 11
+ “Driver Concepts’ on page 12
+ “Database Concepts’ on page 14

*

“Data Synchronization Models” on page 18
* “Triggerless Publication” on page 21

New Features

This section includes information about the driver’s new features.

Driver Features
* Publication without triggers. See “ Triggerless Publication” on page 21.
+ Future event processing. See “Enable future event processing?’ on page 64.
+ Daily publication. See " Publication Time of Day” on page 65.
+ Batch processing. See “Batch Size” on page 66.
+ Expanded database support. See “ Supported Databases’ on page 113.
+ Enhanced support for database time types. See “ Time Syntax” on page 40.
+ Enhanced ease of use. See“ Smart Configuration” on page 35.

+ Schemafiltering. See” Include Filter Expression” on page 43 and “ Exclude Filter Expression”
on page 44.

+ Extended view support. See “Direct Synchronization” on page 76.

Introducing the Identity Manager Driver for JDBC 11

+ Enhanced support for third-party driver encryption mechanisms. See*“ Connection Properties’
on page 45.

* Password modify and check support.
* |Improved driver configuration/database SQL* scripts.

Identity Manager New Features

For more information on the new featuresin Identity Manager, refer to the Nsure | dentity Manager
Administration Guide (http://www.novell.com/documentati on/dirxml 20/index.html).

Driver Concepts
The following are some important terms and concepts you should know before installing and
configuring the driver:
+ “JDBC” on page 12
+ “ldentity Manager Driver for JDBC” on page 12
¢ “Third-Party JDBC Driver” on page 13
+ “ldentity Vault” on page 13
+ “Directory Schema’ on page 13
+ “Application Schema’ on page 13
+ “Database Schema” on page 14
+ “Synchronization Schema’ on page 14
+ “Logica Database Class’ on page 14
+ “XDS’ onpage 14

JDBC

An acronym that stands for Java DataBase Connectivity. JDBC is a cross-platform database
interface standard developed by Sun* Microsystems*. Most enterprise database vendors provide
aunigque implementation of the JDBC interface.

Three versions of the JIDBC interface are available:
+ JDBC 1 (Java1.0)
¢+ JDBC2 (Javal.2or1.3)
+ JDBC 3 (Javal.4 or 1.5)

The Identity Manager Driver for JDBC primarily uses the JDBC 1 interface. It will use more
advanced features when supported by third-party JDBC drivers.

Identity Manager Driver for JDBC

An Identity Manager driver that uses the JDBC interface to synchronize data and identities
between eDirectory and relational databases. The driver consists of four jar files:

+ JDBCShim. jar

12 Identity Manager Driver for JDBC: Implementation Guide

http://www.novell.com/documentation/dirxml20/index.html
http://www.novell.com/documentation/dirxml20/index.html

+ JDBCUtil_jar
+ JDBCConfig.jar
¢ CommonDriverShim._jar

In addition to thesefiles, you need athird-party JDBC driver to communicate with each individual
database.

Third-Party JDBC Driver

One of the numerous JDBC interface implementations that the Driver for JDBC uses to
communicate with a particular database. For example, classes12.zip is one of the Oracle* JDBC
drivers. Different third-party JDBC driversimplement different portions of the JDBC interface
specification and implement the interface in arelatively consistent manner.

The following illustration indicates the relationship between the Identity Manager Driver for
JDBC and third-party JDBC drivers.

SYBASE

MSSQL

Third-Part: —

YWl a.8) «<—> | JDBC Interface 1oBC Driveyr MYsQL
POSTGRES

i

L

Database

Identity Vault
The datastore (Novel® eDirectory™) that Identity Manager uses.

Directory Schema

The set of object classes and attributesin the directory. For example, the eDirectory User classand
Given Name attribute are part of the eDirectory schema.

Application Schema

The set of classes and attributes in an application. Because databases have no concept of classes
or attributes, the driver maps eDirectory classes to tables or views and maps eDirectory attributes
to columns.

Introducing the Identity Manager Driver for JDBC 13

Database Schema

Schemaiis essentially synonymous with ownership. A database schema consists of database
objects (for example, tables, views, triggers, stored procedures, and functions) that a database user
owns. In the context of the Identity Manager Driver for IDBC, schemais useful for database
scoping (reducing the number of database objects visible to the driver at runtime).

Ownership is often expressed by using a qualified dot notation such as indirect.usr, where
indirect isthe name of the database user that owns the table usr. All of the database objects
owned by indirect constitute the indirect database schema.

Synchronization Schema

The database schema visible to the driver at runtime.

Logical Database Class

XDS

The set of tables or view used to represent an eDirectory classin a database.

A generic, extensible, portable data format that supports XML

Database Concepts

* “Structured Query Language” on page 14

+ “DataManipulation Language” on page 14

+ “Data Definition Language” on page 15

+ “View” on page 15

+ “ldentity Columns/Sequences’ on page 15

+ “Transaction” on page 16

+ “Stored Procedures or Functions’ on page 16
* “Trigger” on page 17

+ “Instead-Of-Trigger” on page 17

Structured Query Language

Structured Query Language (SQL) isthe language used to query and manipul ate datain relational
databases.

Data Manipulation Language

14

Data Manipulation Language (DML) statements are highly standardized SQL statements that
mani pul ate database data. DML statements are essentially the same, regardless of the database that
you use. The ldentity Manager Driver for JIDBC is essentially DML -based. It maps | dentity
Manager events expressed as XDS XML to standardized DML statements.

The following example shows several DML statements:

Identity Manager Driver for JDBC: Implementation Guide

Data Definition

View

SELECT * FROM usr;
INSERT INTO usr(lname) VALUES(’Doe”);
UPDATE usr SET fname = ”John” WHERE idu = 1;

Language

Data Definition Language (DDL) statements mani pul ate database objects such as tables, indexes,
and user accounts. DDL statements are proprietary and differ substantially between databases.
Even though the Identity Manager Driver for JDBC is DML-based, you can embed DDL
statements in XDS events. For additional information, refer to “Embedding SQL Statementsin
XDS Events’ on page 89.

The following examples show several DDL statements:

CREATE TABLE usr

¢
idu INTEGER,
fname VARCHAR2(64),
Iname VARCHAR2(64)
);

CREATE USER idm IDENTIFIED BY novell;

NOTE: Examples used throughout the implementation guide are for the Oracle database.

A logical table. When queried viaa SELECT statement, the view is constituted by executing the
SQL query supplied when the view was defined. Views are a useful abstraction mechanism for
representing multiple tables of arbitrary structure as asingle table.

CREATE VIEW view_usr

(C
pk_idu,
fname,
Iname

)

AS

SELECT idu, fname, Iname from usr;

Identity Columns/Sequences

Identity columns and sequences are used to generate unique primary key values.

An identity column is a self-incrementing column used to uniquely identify arow in atable.
Identity columns values are automatically filled in when arow isinserted into atable.

A sequence object is a counter that can be used to uniquely identify arow in atable. Unlike an
identity column, a sequence object is not bound to asingle table. However, if it isused by asingle
table, a sequence object can be used to achieve an equivalent result.

The following is an example of a sequence object:

CREATE SEQUENCE seq_idu
START WITH 1
INCREMENT BY 1
NOMINVALUE

Introducing the Identity Manager Driver for JDBC 15

Transaction

NOMAXVALUE
ORDER;

A transaction is an atomic database operation that consists of one or more statements. When a
transaction is complete, al statements in the transaction are committed. When atransactionis
interrupted or one of the statementsin the transaction has an error, the transaction is said to roll
back. When atransaction is rolled back, the database is |eft in the same state it was before the
transaction began.

Transactions are either manual (user-defined) or automatic. Manual transactions can consist of one
or more statements and must be explicitly committed. Automatic transactions consist of asingle
statement and are implicitly committed after each statement is executed.

Manual (User-Defined) Transactions

Manual transactions usually contain more than one statement. DDL statementstypically cannot be
grouped with DML statements in a manual transaction. The following example shows a manual
transaction:

SET AUTOCOMMIT OFF

INSERT INTO usr(lname) VALUES(’Doe”);

UPDATE usr SET fname = ”John” WHERE idu = 1;
COMMIT; -- explicit commit

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. When a statement runs
automatically, it isautonomous of any other statement. Thefollowing example shows an automatic
transaction:

SET AUTOCOMMIT ON
INSERT INTO emp(lname) VALUES(’Doe”);
-— implicit commit

Stored Procedures or Functions

A stored procedure or function is programmatic logic stored in a database. Stored procedures or
functions can be invoked from almost any context.

The Subscriber channel can use stored procedures or functionsto retrieve primary key valuesfrom
rows inserted into tables for the purpose of creating associations. Stored procedures or functions
can aso beinvoked from within embedded SQL statements or triggers.

The distinction between stored procedures and functions varies by database. Typically, both can
return output, but they differ in how they do it. Stored procedures usualy return values through
parameters. Functions usually return values through a scalar return value or result set.

The following is an example of a stored procedure definition that returns the next value of a
seguence object:

CREATE SEQUENCE seq_idu
START WITH 1
INCREMENT BY 1
NOMINVALUE

16 Identity Manager Driver for JDBC: Implementation Guide

Trigger

NOMAXVALUE

ORDER;
CREATE
PROCEDURE sp_idu(io_idu IN OUT INTEGER)
IS
BEGIN

IF (io_idu IS NULL) THEN

SELECT seq_idu.nextval INTO io_idu FROM DUAL;

END IF;
END sp_idu;

A database trigger is programmatic logic associated with atable, which fires or executes under
certain conditions. Triggers are often useful for creating side effects in a database. In the context
of thisdriver, triggers are useful to capture event publications. The following is an example of a
database trigger on the usr table.

CREATE TABLE usr

(C
idu INTEGER,
fname VARCHAR2(64),
Iname VARCHAR2(64)
);

-— t = trigger; i1 = insert

CREATE TRIGGER t_usr_i
AFTER INSERT ON usr
FOR EACH ROW

BEGIN
UPDATE usr SET fname = *John”;
END;

When a statement is executed against atable with triggers, atrigger firesif the statement satisfies
the conditions specified in the trigger. For example, using the above table, suppose the following
insert statement is executed:

INSERT INTO usr(lname) VALUES(’Doe”)

Trigger t_emp_i firesafter the insert statement is executed and the following update statement is
also executed:

UPDATE usr SET fname = >John”

A trigger can typically be fired before or after the statement that triggered it. Statements that are
executed as part of adatabase trigger are typically included in the same transaction as the
triggering statement. In the above example, both the INSERT and UPDATE statements would be
committed or rolled back together.

Instead-Of-Trigger

An instead-of-trigger is programmatic logic associated with aview, which fires or executes under
certain conditions. Instead-of-triggers are useful for making views writable/subscribeable. They
are often used to define what it means to INSERT, UPDATE, and DELETE from aview. The
following is an example of an instead-of-trigger on the usr table.

Introducing the Identity Manager Driver for JDBC 17

CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR2(64),
Iname VARCHAR2(64)
R
CREATE VIEW view_usr
(
pk_idu,
fname,
Iname
)
AS

SELECT idu, fname, Iname from usr;

-- t = trigger; 1 = insert
CREATE TRIGGER t_view_usr_i
INSTEAD OF INSERT ON usr
BEGIN
INSERT INTO usr(idu, fname, Iname)
VALUES(:NEW.pk_idu, :NEW.fname, :NEW.Iname);
END;

When astatement is executed against a view with instead-of-triggers, an instead-of -trigger firesif
the statement satisfies the conditions specified in the trigger. Unlike triggers, instead-of -triggers
awaysfire before the triggering statement. Also, unlike regular triggers, instead-of-triggers are
executed instead of, not in addition to, the triggering statement.

For example, using the above view, suppose the following insert statement is executed:

INSERT INTO view_usr(pk_idu, fname, Iname)
VALUES(1, “John”, “Doe”)

Instead-of-trigger t_view_usr_i would fire and execute the following statement:

INSERT INTO usr(idu, fname, Iname)
VALUES(:NEW.pk_idu, :NEW.fname, :NEW.Iname);

instead of the original insert statement.

In this example, the statements happen to be equivalent.

Data Synchronization Models

18

The driver supports two data synchronization models: direct and indirect. Both terms are best
understood with respect to the final destination of the data being synchronized.

Direct synchronization is usually associated with views because views provide the abstraction
mechanism that best facilitates integration with existing customer tables.

Indirect synchronization is usually associated with tables because customer tables likely don't
match the structure required by thedriver. Therefore, they can serve asan intermediate staging area
only. Although it is possible that the structures might match, it is highly unlikely.

For al practical purposes, this means that

+ Direct synchronization = view

Identity Manager Driver for JDBC: Implementation Guide

+ Indirect synchronization = table

The following sections describe how direct and indirect synchronization work on both the
Subscriber and Publisher channels.

Indirect Synchronization
Indirect synchronization uses intermediate staging tables to synchronize data between an [dentity
Vault and a database.

The following diagrams illustrate how indirect synchronization works on the Subscriber and
Publisher channels. In the following scenarios, you can have one or more customer tables and

intermediate staging tables.

Subscriber Channel

Indirect Synchronization
on the Subscriber Channel

Database

Driver’s

Schema

Intermediate
Tables(s)

Synchronization

Trigger(s) Customer

Table(s)

The Subscriber channel updates the intermediate staging tables in the synchronization schema.
The synchronization triggers then update customer tables elsewhere in the database.

Publisher Channel

Indirect Synchronization
on the Publisher Channel

Database

) w
Driver’s | .
Schema
L. Intermediate <=
Tables(s) Synchronization
Trigger(s) Customer
Table(s)
— []
Publisher) 4=—Juisie Publication
Trigger(s)
—

Introducing the Identity Manager Driver for JDBC

19

When customer tables are updated, synchronization triggers update the intermediate staging
tables. Publication triggers then insert one or more rows into the event log table. The Publisher
then reads the inserted rows and updates the I dentity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the intermediate tables before updating the | dentity
Vault. After updating the Identity Vault, the Publisher channel then deletes or marks the rows as
processed.

Direct Synchronization

Subscriber Channel

Direct synchronization typically uses views to synchronize data between Identity Manager and a
database. Tables can be used if they conform to the structure required by the driver.

The following diagrams illustrate how direct synchronization works on the Subscriber and
Publisher channels. In the following scenarios, you can have one or more customer tablesor views.

Direct Synchronization on
the Subscriber Channel

Database

Driver’s
Schema

(Subseriber)- - +

Customer

Table(s)

The Subscriber channel updates existing customer tables through a view in the synchronization
schema.

NOTE: Direct synchronization without a view is only possible if customer tables match the structure that the
driver requires. For additional information, refer to “Indirect Synchronization” on page 69.

20 Identity Manager Driver for JDBC: Implementation Guide

Publisher Channel

Database
Synchronization
Schema
-=="a
= - l === = -
== == View(s),,' <
1 b K Customer
v Table(s)
Publisher) €=y —
Publication
Trigger(s)
—

When a customer table is updated, publication triggers insert rows into the event log table. The
Publisher channel then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the view before updating the Identity Vault. After
updating the Identity Vault, the Publisher channel then deletes or marks the rows as processed.

Triggerless Publication

Triggers are no longer required to log publication events. In situations where triggers cannot be
used to capture granular events, the Publisher channel can derive database changes by inspecting
database data. Triggerless publication is particularly useful when support contracts forbid the use
of triggers on database application tables or for rapid prototyping.

Triggerless vs. Triggered Publication

Triggerless publication islessefficient than triggered publication. With triggered publication, what
changed is aready known. With triggerless publication, change cal culation must occur before
events can be processed.

Triggerless publication, unlike triggered publication, does not preserve event order. It only
guarantees that by the end of apolling cycle, objectsin the database and the Identity Vault will be
insync.

Triggerless publication, unlike triggered publication, does not provide historical data such asold
values. It provides information on the current state of an object only, not the previous state.

Triggerless publication does have the advantage of being much simpler because it reduces
database-side dependencies. Writing database triggers can be complicated and requires extensive
knowledge of database-specific SQL syntaxes.

Introducing the Identity Manager Driver for JDBC 21

Direct Triggerless Publication

Database

Publisher)<=

Indirect Triggerless Publication

Database

Publisher

22 Identity Manager Driver for JDBC: Implementation Guide

Understanding Driver Prerequisites

+ “Driver Prerequisites’ on page 23

+ “Supported Platforms’ on page 23

+ “Supported Databases’ on page 23

+ “Supported Third-Party JDBC Drivers’ on page 23
+ “Known Issues’ on page 23

¢ “Limitations’ on page 24

Driver Prerequisites

The Identity Manager Driver for JDBC requires the following:
O Novell iManager
O Novell Nsure Identity Manager 2
U JavaVirtua Machine (VM*) 1.4 or higher
U A supported third-party JDBC driver

Supported Platforms
The driver runson al Identity Manager-enabled platforms, including Windows* NT*/2000,
NetWare®, Solaris*, Linux*, and AIX*.

Supported Databases

Refer to “ Database Interoperability” on page 113.

Supported Third-Party JDBC Drivers
Refer to “Third-Party JDBC Driver Interoperability” on page 99.

Known Issues
+ eDirectory™ Time and Timestamp syntaxes are inadequate for expressing the range and
granularity of their database counterparts.

Thisisapublication problem because database time-rel ated typestypically have awider range
and greater degree of granularity (typically nanoseconds). The converseis not true. Refer to
“Time Syntax” on page 40 for more information.

Understanding Driver Prerequisites 23

Limitations

+ Thedriver for JDBC is unable to parse proprietary database time stamp formats.

Some databases, such as Sybase and DB2, have proprietary time stamp formats that the
java.sgl. Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/ Timestamp.html) class
can't parse.

When synchronizing time stamp columns from these databases, the driver for JDBC, by
default, assumes time stamp values placed in the event log table arein ODBC canonical
format (that is, yyyy-mm-dd hh:mm:ss. FFFffffff).

The recommended method for enabling the driver for JIDBC to handle proprietary database
time stamp formats is to implement a custom DBTimestampTranslator class. This
interface is documented in the javadocs that ship with the driver. Using this approach avoids
the problem of reformatting time stampsin the database before they areinserted into the event
log table or reformatting them in style sheets. The driver for JDBC ships with default
implementations for the native DB2 time stamp format and the Sybase style 109 time stamp
format.

Statements executed against the database server might block indefinitely.

Blocking can be caused by a myriad of factors. To mitigate the likelihood of blocking, we
recommend that you do not set the parameter “ Transaction I solation Level” on page 48to a
level greater than read committed.

Typically, blocking is caused by a database resource being exclusively locked. Because the
locking mechanisms and locking SQL vary by database, the general solution to this problem
istoimplement acustomDBLockStatementGenerator class. For additional information,
see “Lock Statement Generator Class’ on page 50. The driver for JDBC ships with a default
implementation for Oracle.

The JDBC interface defines a method that allows a statement to timeout after a specified
number of seconds, signature java.sql.Statement.setQuery Timeout(int):void (http://
java.sun.com/j2se/1.5.0/docs/api/javalsgl/Statement.html). Unfortunately, implementations
of thismethod between third-party JDBC driversrange from not being implemented to having
bugs. For this reason, this method was deemed unsuitable as a general -purpose solution.

The driver does not support the use of delimited (quoted) database identifiers.

JDBC 2 data types are not supported with the exception of Large Object datatypes (LOBS)
such as CLOB and BLOB.

JDBC 3 datatypes are not supported.

PostgreSQL does not support <check-object-password> events. Authentication is
controlled by manually inserting entriesinto the pg_hba.conf file.

24 Identity Manager Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

Installing

Installing or Upgrading the Driver for JDBC

+ “Installing” on page 25
+ “Upgrading” on page 32
* “Activating” on page 33

For information on uninstalling the driver, see Chapter 9, “Uninstalling the IDM Driver for
JDBC,” on page 127

IMPORTANT: We recommend installing or uninstalling driver configurations and database scripts as a unit.
To prevent unintentional mismatching, database scripts and driver configurations contain headers with a
version number, the target database name, and the database version.

Theldentity Manager Driver for JDBC requires|dentity Manager and database-side configuration.
Identity Manager-side configuration consists of importing adriver configuration file. Database-
side configuration consists of executing SQL scripts. We recommend that you execute database
SQL scripts and test them before starting the driver.

The shipping configuration is a sample only. We recommend that you install the shipping
configuration into a test environment before attempting to customize the configuration.

Identity Manager-Side Installation

+ “Installing the Driver for JDBC” on page 25
+ “Importing the Sample Driver Configuration File’ on page 26

Installing the Driver for JDBC

If no previous installation exists for the driver, download the stand-alone installer and complete
the following instructions:

1 Runtheinstaller.
2 Copy the appropriate third-party JDBC driver filesinto the following directory by platform:

Platform Directory Path
NetWare® sys:\systeml\lib
Solaris, Linux, or AIX lusr/lib/dirxml/classes
Windows NT/2000 Novel\NDS\lib

Installing or Upgrading the Driver for JDBC 25

For information on third-party JDBC driver filenames and where to download them, refer to
“Supported Third-Party JDBC Drivers’ on page 100.

3 Restart eDirectory.
4 Start iManager.

Importing the Sample Driver Configuration File

The JDBCv2.xml configuration file creates and configures the I dentity Manager objects needed
for the sample driver to work properly. The configuration file also includes sample policies that
you can customize.

1 IniManager, select DirXML Management > Create Driver.
2 Select adriver set, then click Next.

If you place thisdriver in anew driver set, specify adriver set name, context, and associated
server.

3 Select Import a Driver Configuration from the Server (XML File).
4 From the drop-down list, select the JIDBCv2 . xml file, then click Next.
The driver configuration file is installed on the Web server when you set up iManager.

5 When prompted to enter aname for the driver, specify the driver’s name (for example, JDBC
2), then click Next.

6 Select the target database, select whether the driver islocal or remote, then click Next.
7 Select a synchronization model, select athird-party JDBC implementation, then click Next.

8 Select adataflow (for example, bidirectional), specify adatabase host 1P address, enter aport
number, then click Next.

9 Specify the User container DN, the Group container DN, and the publication mode, then click
Next.

10 (Optiona) Click Define Security Equivalences.

10a Click Add, then select an object with Admin rights (or any other rights that you want the
driver to have).

10b Click Apply, then click OK.

11 (Optional) To exclude objects from replication, click Exclude Administrative Roles.
11a Click Add, then select any users you want to exclude (such as the admin user).
11b Click Apply, then click OK.

12 To view the import summary, click Next.

13 Verify that the configuration is correct, then click Finish with Overview.

The installation has created the necessary Identity Manager driver objects. If you didn’'t define
security equivalences or exclude administrative usersat import time, you can compl ete these tasks
by modifying the driver object’s properties.

Configuration File Conventions

+ Database usernames are the Surname of a User concatenated with the corresponding numeric
primary key value (for example, John Do€'s username could be Doel).

26 Identity Manager Driver for JDBC: Implementation Guide

+ Initial passwords are the Surname of a User (for example, John Do€e's password would be
Doe).

Sybase* passwords must be at least 6 characters long. When shorter than 6 characters, last
names are padded with the character ‘p’ (for example, John Doe's password would be
Doeppp). The padding character can be adjusted in the Subscriber Command Transformation
policies.

Remote Loader Installation

If youwant to run the driver remotely, you must install the Remote L oader on the target server. For
more information, see Setting Up the Remote Loader in the Identity Manager Administration
guide (http://www.novell.com/documentation/dirxml 20/admin/data/bs35pi p.html#bs35piq).

In the Remote Driver Configuration parameters, set the Driver parameter to

com.novell_nds._.dirxml_driver.jdbc.JDBCDriverShim

Database-Side Installation

The following information explains how to install and configure database objects (for example,
tables, triggers, and indexes) for synchronization with the sample driver configuration.

SQL scripts are located in the install-dir\jdbc\sgl\abbreviated-database-name directory.
+ “|BM DB2 Universal Database (UDB) Installation” on page 29
+ “Informix Dynamic Server (IDS) Installation” on page 29
+ “Microsoft SQL Server Installation” on page 30
+ “MySQL Installation” on page 30
+ “Orecle Installation” on page 30
* “PostgreSQL Installation” on page 31
+ “Sybase Adaptive Server Enterprise (ASE) Installation” on page 31

SQL Script Conventions
All SQL scripts use the same conventions, regardless of the database.

The maximum size of aDB2 identifier is 18 characters. Thisleast common denominator length
defines the upper bound of database identifier length across all SQL scripts. Due to this length
restriction, abbreviations are used. The following table summarizes identifier abbreviations and

their meaning:

Abbreviation Interpretation

proc_t stored procedure/function
idx_ index

trg_ trigger

i on insert trigger

_u on update trigger

Installing or Upgrading the Driver for JDBC 27

http://www.novell.com/documentation/dirxml20/admin/data/bs35pip.html#bs35piq
http://www.novell.com/documentation/dirxml20/admin/data/bs35pip.html#bs35piq
http://www.novell.com/documentation/dirxml20/admin/data/bs35pip.html#bs35piq
http://www.novell.com/documentation/dirxml20/admin/data/bs35pip.html#bs35piq

Abbreviation Interpretation

d

chk_
pk_
fk_
mv_

sV_

on delete trigger

check constraint

view primary key constraint
view foreign key constraint
view multi-valued column

view single-valued column (implicit default)

1 The more common abbreviation issp_. This prefix is reserved for system-stored procedures on
Microsoft SQL Server. Also, this prefix forces lookup of a procedure first in the master database
before evaluating any qualifiers (for example, database or owner). To maximize procedure lookup
efficiency, this prefix has been deliberately avoided.

The following table identifies identifier naming conventions for indexes, triggers, stored
procedures, functions, and constraints:

Database Object Naming Convention Examples

stored procedure/function proc_procedure-or-function-name proc_idu

index idx_unqualified-table-name_sequence-number idx_indirectlog_1
trigger tgr_unqualified-table-name_ triggering-statement-type_sequence-number tgr_usr_i_1
primary key constraint pk_unqualified-table-name_column-name pk_usr_idu
foreign key constraint fk_unqualified-table-name_column-name fk_usr_idu
check constraint chk_unqualified-table-name_column-name chk_usr_idu

Other conventions:

*

All database identifiers are lowercase.
Thisisthe most commonly used case convention between databases.
String field lengths are 64 characters.

Fields of thislength can hold most eDirectory attribute values. You might want to refine field
lengths to enhance storage efficiency.

For performance reasons, primary key columns use native, scalar numeric types whenever
possible (such asBIGINT as opposed to NUMERIC).

Therecord_id columnin event log tables has the maximum numeric precision permitted
by each database to avoid overflow.

Identity columns and sequence objects do not cache values. Some databases throw away
cached values when arollback occurs, which can cause large gaps in identity column or
sequence values.

28 Identity Manager Driver for JDBC: Implementation Guide

IBM DB2 Universal Database (UDB) Installation

IMPORTANT: For IBM* DB2, you must manually create operating system user accounts before running the
provided SQL scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows NT operating environment. If you rerun the SQL scripts, you
should repeat only Steps 2 through 5.

The directory context for DB2 isinstall-dir\jdbc\sgl\db2_udb\install.
1 Create user accounts for users idm, indirect anddirect.
Use novel I asthe password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.
You might want to also select Password Never Expires.
NOTE: The remaining instructions are OS-independent.
2 Copy idm_db2. jar to your DB2 server.

3 Change the name of the administrator account name and password and adjust the path to
idm_db2. jar intheinstallation scripts.

4 Executethel_install.sqgl script from the Command Line Processor (CLP)

For example:
db2 -f 1 _install._sqgl

IMPORTANT: The scripts won’t execute in the Command Center interface beyond version 7. The scripts
use the ‘\' line continuation character. Later versions of the Command Center don’t recognize this
character.

5 For versions 8 or later, executethe2_install_8.sql script.

For example:
db2 -f 2_install_8.sqgl

Informix Dynamic Server (IDS) Installation

IMPORTANT: For Informix Dynamic Server, you must manually create an operating system user account
before running the provided SQL scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows NT operating environment. If you rerun the SQL scripts, you
should repeat only Steps 2 through 4.

The directory context for Informix SQL scriptsisinstall-dir\jdbc\sgl\informix_ids\install.
1 InWindows NT, create a user account for user idm.
Use novel I asthe password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.
You might want to also select Password Never Expires.
NOTE: The remaining instructions are OS-independent.
2 Start aclient such as SQL Editor.

3 Loginto your server asthe informix user or another user with DBA (database
administrator) privileges.

By default, the password for informix is informix.

Installing or Upgrading the Driver for JDBC 29

NOTE: If you execute scripts as a user other than informix, change all references to informix in the scripts
prior to execution.

4 Openand executel_install.sql from either theansi (transactional, ANSI-compliant),
log (transactional, non-ANSI-compliant), or no_log (non-transactional, non-ANSI-
compliant) subdirectory, depending upon which type of database you want to create.

Microsoft SQL Server Installation
The directory context for Microsoft* SQL Server scriptsis install-dir\jdbc\sgl\mssgl\install.
1 Start aclient such as Query Analyzer.
2 Logintoyour database server asthe sa user.
By default, the sa user has no password.
3 Execute theinstallation script.
For version 7, execute 1_install_7_sql.

For version 8 (2000), execute 1_install_2k.sql.

NOTE: The execute hotkey in Query Analyzer is F5.

MySQL Installation
The directory context for MySQL* SQL scriptsisinstall-dir\jdbc\sgl\mysgl\install.

1 FromaMySQL client, suchasmysql, loginasroot user or another user with administrative
privileges.

For example, from the command line, execute
mysql -u root -p
By default, the root user has no password.

2 Executetheinstallation script 1_install_innodb.sqgl or 1_install_myisam.sql,
depending upon which table type you wish to use.

For example:
mysql> \. c:\1_install_innodb.sqgl

TIP: Don't use a semi-colon to terminate this statement.

Oracle Installation
The directory context for Oracle* SQL scriptsisinstall-dir\jdbc\sgl\oracle\install.
1 From an Oracle client, such as SQL Plus, log in asthe SYSTEM user.

By default, the password for SY STEM is MANAGER.

NOTE: If you execute scripts as a user other than SYSTEM with password MANAGER, change all
references to SYSTEM in the scripts prior to execution.

2 Executetheinstallation script 1_install.sql.

For example:
SQL> @c:\1_install._sql

30 Identity Manager Driver for JDBC: Implementation Guide

PostgreSQL Installation

The directory context for PostgreSQL scriptsisinstall-dir\jdbc\sgl\postgresiinstall. The directory
context for executing Postgres commands is postgres-install-dir/pgsgl/bin.

1 Create the database idm.

For example, from the UNIX command line, execute the command createdb:
-/createdb idm

2 Instal the plpgsql procedura language to database idm.

For example, from the UNIX command line, execute the command createlang:
-/createlang plpgsql idm

3 From aPostgres client such as psql, log on as user postgres to the idm database.

For example, from the UNIX command line, execute the command psql:
-/psql -d idm postgres

By default, the Postgres user has no password.
4 Frominside psqgl, execute the script 1_install .sql.

For example:
idn=# \i1 1_install._sql

5 Update the pg_hba.conf file.

For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK
as necessary:

TYPE DATABASE USER IP-ADDRESS I1P-MASK METHOD

allow driver user idm to connect to database idm
host idm idm 255.255.255.255 255.255.255.0 password

6 Restart the Postgres server to effect changes made to the pg_hba. conf file.

Sybase Adaptive Server Enterprise (ASE) Installation

IMPORTANT: Ensure that you have JDBC metadata support installed on the database server. This is usually
an issue for versions earlier than 12.5 only.

The directory context for Sybase SQL scriptsisinstall-dir\jdbc\sgl\sybase_ase\install.

1 From a Sybase client, such asisqgl, log in as the sa user and executethe 1_install.sql
installation script.

For example, from the command line, execute:
isql -U sa -P -i 1_install_sqgl

By default, the sa account has no password.

Testing

Test scripts for each database are located in the following directories:

Database Test SQL Scripts Location

IBM DB2 Universal Database install-dir\jdbc\sgl\db2_udb\test

Installing or Upgrading the Driver for JDBC 31

Database Test SQL Scripts Location

Informix Dynamic Server install-dir\jdbc\sgl\informix_ids\log\test
install-dir\jdbc\sg\informix_ids\no_log\test

Informix ANSI test scripts are located in the log\test

subdirectory.
Microsoft SQL Server install-dir\jdbc\sgl\mssgl\test
MySQL install-dir\jdbc\sgl\mysgl\test
Oracle install-dir\jdbc\sgl\oracl e\test
PostgreSQL install-dir\jdbc\sgl\postgresitest

Sybase Adaptive Server Enterprise install-dir\jdbc\sgl\sybase_ase\test

We recommend that you try the test scripts before starting the sample driver.

Troubleshooting

+ Publication events might not be recognized by the publisher unless you explicitly commit
changes. For the commit keywords of supported database, see “Commit Keywords’ on
page 117.

+ Thetest scripts should be executed by a user other than the driver’s idm database user
account. If you execute them as the idm user, events are ignored by the driver’s Publisher
channel, unless publication loopback is alowed. For additional information on alowing or
disallowing publication loopback, refer to “Allow Loopback?’ on page 64.

Upgrading

Upgrading from Versions Earlier than 1.5

For versions earlier than 1.5, you must first upgrade to version 1.5. Refer to the Dir XML Driver
1.5 for JDBC Implementation Guide (http://www.novell.com/documentation/lg/dirxmldrivers/
index.html).

Be sure to use the 2.0 association utility. It supersedes all previous versions.

Upgrading from 1.5 or Later to 2.0

Download the 2.0 driver, then run the stand-alone installer.

Backward Incompatibilities

+ Thedriver now requires aminimum of two database connections for bidirectional
synchronization. For additional information, refer to“ Use Minima Number of Connections?’
on page 44.

+ Thedriver now returns schema qualifiers (when available) for logical database class names
(parent table or view names). This change doesn't affect existing configurations unless class

32 Identity Manager Driver for JDBC: Implementation Guide

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html

names are remapped in SchemaMapping policies. If class names are remapped, all references
to class names in existing policy need to be schema-qualified.

+ Slightly adjust configurations that reference the
com.novell _nds.dirxml _driver.jdbc.util _MappingPolicy class. Methodsin
this class no longer edit the source document. Instead, they return node sets that must be
copied into the destination document. The sample driver configuration file JDBCv2 . xml
includes examples of how to do this.

+ Slightly alter configurations deployed against DB2/AS400 or other legacy databases that do
not have anotion of column position. Add and set the Sort Column Names By parameter. See
“Sort Column Names By” on page 53 to sort column names by string collation order. The
default behavior has been changed to sort column names by hexadecimal value.

Activating

Activate the driver within 90 days of installation. Otherwise, the driver will not run.

For activation information, see Activating Novell |dentity Management Products (http://
www.hovell.com/documentation/lg/dirxml 20/admin/datal/af bx4oc.html).

Installing or Upgrading the Driver for JDBC 33

http://www.novell.com/documentation/lg/dirxml20/admin/data/afbx4oc.html

34 Identity Manager Driver for JDBC: Implementation Guide

Configuring the Driver for JDBC

*

“Smart Configuration” on page 35
“Deprecated Parameters’ on page 38

*

*

“ Authentication Parameters’ on page 38

*

“Driver Parameters’ on page 39

*

“ Subscription Parameters’ on page 54

*

“Publication Parameters’ on page 61

*

“Trace Levels’ on page 67

*

“Configuring Third-Party JDBC Drivers’ on page 68

Smart Configuration

The Identity Manager Driver for JDBC can recognize the supported set of third-party JDBC
drivers and databases. Also, the driver can dynamically and automatically configure the majority
of driver compatibility parameters. These features alleviate the need for the end user to understand
and explicitly set the parameters.

These features are implemented viafour types of XML descriptor files that describe athird-party
JDBC driver or database to the Driver for JIDBC.

Third-party JDBC driver
¢ Third-party JDBC driver import
¢ Database

*

+ Database import

Reserved Filenames

Descriptor filenames that ship with the driver begin with the underscore character (_). Such
filenames are reserved to ensure that descriptor files that ship with the driver do not conflict with
custom descriptor files. Obviously, custom descriptor filenames must not begin with the
underscore character.

Import Descriptor Files

Import descriptor files allow multiple, nonimport descriptor filesto share content. This
functionality reduces the size of nonimport descriptor files, minimizes the need for repetition of
content, and increases maintainability. Import files cannot beimported across major types. That is,
JDBC driver descriptors cannot import database imports, and database descriptors cannot import
JDBC driver imports.

Configuring the Driver for JDBC 35

36

Furthermore, custom nonimport descriptors cannot import reserved descriptor imports. For
example, if a custom third-party JDBC driver descriptor file named custom.xml triesto import a
reserved third-party JDBC driver descriptor named _reserved.xml, an error will be issued. These
limitations

+ Ensure that no dependencies exist between reserved and custom import files

+ Allow extension of existing reserved descriptor filesin later versions of the driver

Descriptor File Locations

Descriptor files must be located in ajar file whose name begins with the prefix “jdbc” (case-
insensitive) that resides in the runtime classpath.

The following table identifies where to place descriptors within a descriptor jar file:

Descriptor Type Directory Path

Third-party JDBC driver com/novell/nds/dirxml/driver/jdbc/db/descriptor/driver
Third-party JDBC driver import com/novell/nds/dirxml/driver/jdbc/db/descriptor/driver/import
Database com/novell/nds/dirxml/driver/jdbc/db/descriptor/db
Database import com/novell/nds/dirxml/driver/jdbc/db/descriptor/db/import

Reserved descriptor files arelocated in the JIDBCConFig. jar file. To ensure that these reserved
files are not overwritten when the Driver for JDBC is updated, place custom descriptorsin a
different jar file.

Precedence

Parameters explicitly specified through a management console, such asiManager, always have
precedence over parameters specified through descriptor files. Descriptor file parametersonly take
effect when a parameter is not set through the management console.

Parameters and other information specified in a nonimportable descriptor file aways have
precedence over that specified in descriptor import files. If a parameter or other information is
duplicated within a descriptor file, the first instance of the parameter or information takes
precedence over subsequent instances.

Between import files, precedence is determined by import order. Import files declared earlier in
the import list take precedence over those that follow.
Custom Descriptor Best Practices

U Do not begin custom descriptor files name with the underscore (_) character.

U Place custom descriptor filesin ajar file other than JDBCConfig. jar, and begin the
filename with the prefix “jdbc” (case-insensitive).

U Do not use custom descriptors to import reserved import files (filenames that begin with the
underscore character).

Identity Manager Driver for JDBC: Implementation Guide

Descriptor File DTDs

The following appendices contain DTDs for all descriptor file types. These DTDs can help you
construct custom descriptor files.

Descriptor Type

Appendix

Third-party JDBC driver

Appendix F, “Third-Party JDBC Driver Descriptor DTD,” on page 147

Third-party JDBC driver
import

Appendix G, “Third-Party JDBC Driver Descriptor Import DTD,” on
page 149

Database

Appendix H, “Database Descriptor DTD,” on page 151

Database import

Appendix |, “Database Descriptor Import DTD,” on page 153

Configuration Parameters

+ “Authentication Parameters’ on page 38

+ “Driver Parameters’ on page 39

+ “Uncategorized Parameters’ on page 40

+ “Database Scoping Parameters’ on page 42

¢ “Connectivity Parameters’ on page 44

+ “Compatibility Parameters’ on page 46

+ “Subscription Parameters’ on page 54

+ “Uncategorized Parameters’ on page 54

* “Primary Key Parameters’ on page 56

+ “Publication Parameters’ on page 61

+ “Uncategorized Parameters’ on page 61

+ “Triggered Publication Parameters’ on page 63

* “Triggerless Publication Parameters’ on page 65

+ “Polling Parameters’ on page 65

Viewing Driver Parameters

1 IniManager, click DirXML Management > Overview.

2 Locate the driver set containing the driver, then click the driver’sicon.

3 From the Driver Overview, click the driver object.

iManager displays the driver’s configuration parameters.

Configuring the Driver for JDBC

37

Deprecated Parameters

The following parameters have been deprecated since version 1.6:

Tag Name Justification

connection-tester-class! The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files.

connection-test-stmt® The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files.

reconnect-interval The reconnect interval is now fixed at 30 seconds on both channels.

1 These parameters are still operable to ensure backwards compatibility. Their continued use,
however, is discouraged.

Authentication Parameters

Authentication

Authentication

After you import the driver, provide authentication information for the target database.
+ “Authentication ID” on page 38
+ “Authentication Context” on page 38
+ “Application Password” on page 38

ID

An Authentication | D isthe name of thedriver’s database user/login account. Theinstallation SQL
script for each database provides information on the database privileges required for this account
to authenticate to a supported database. The scripts are located in the install-
dir\tools\sgl\abbreviated-database-name\install directory.

The default value for the sample configuration is idm.

Context
The authentication context is the JDBC URL of the target database.

URL format and content are proprietary. They differ between third-party JDBC drivers. However,
they have some similaritiesin content. Each URL, whatever the format, usually includes an IP
address or DNS name, port number, and a database identifier. For the exact syntax and the content
requirements of your driver, consult your third-party driver documentation.

For alist of IDBC URL syntaxesfor supported third-party drivers, see“JDBC URL Syntaxes’ on
page 101.

IMPORTANT: Changing anything in this value other than URL properties will force a resync of all objects
when triggerless publication is used.

Application Password

An application password is the password for the driver’s database user/login account. The default
value for the sample driver configuration isnovel l.

38 Identity Manager Driver for JDBC: Implementation Guide

Driver Parameters

The following table is a summary of all driver-level parameters and their properties:

Display Name Tag Name Sample Value Default Value Required
Third-party JDBC driver jdbc-class oracle.jdbc.driver.OracleDriver (none) yes
class name

Schema name sync-schema indirect (none) yes!
Table/view name(s) sync-tables usr (none) yes?!
Include filter expression include-table-filter IDM_.* (none) no
Exclude filter expression exclude-table-filter BIN\$.{22}==\$0 (none) no
Connection initialization connection-init USE idm (none) no
statements

Time syntax time-syntax 1 (integer) 1 (integer) no
State directory state-dir . (current directory) . (current directory) no
JDBC driver descriptor jdbc-driver-descriptor ora_client_thin.xml (none) no
filename

Database descriptor database-descriptor ora_10g.xml (none) no
filename

Use manual transactions? use-manual-transactions 1 (yes) (dynamic?) no
Transaction isolation level transaction-isolation-level read committed (dynamic?®) no
Reuse statements? reuse-statements 1 (reuse) (dynamic?®) no
Number of returned result handle-stmt-results one (dynamic?®) no
sets

Enable statement-level enable-locking 1 (yes) 0 (no) no
locking?

Lock statement generator lock-generator-class com.novell.nds.dirxml.driver.jdbc (dynamic?3) no
class .db.lock.OraLockGenerator

Enable referential attribute enable-refs 1 (yes) 1 (yes) no
support?

Force username case force-username-case upper (to upper case) (none) no
Left outer-join operator left-outer-join-operator +) (dynamic?) no
Retrieve minimal metadata? minimal-metadata 0 (no) (dynamic?®) no
Use minimal number of use-single-connection 0 (no) (dynamic?®) no
connections?

Function return method function-return-method result set (dynamic?®) no

Configuring the Driver for JDBC

39

Display Name Tag Name Sample Value Default Value Required

Supports schemas in supports-schemas-in- 1 (yes) (dynamic?) no
metadata retrieval? metadata-retrieval
Sort column names by column-position-comparator com.novell.nds.dirxml.driver.jdbc (dynamic?) no

.util.config.comp.StringByteCom
parator (hexadecimal value)

! These parameters are mutually exclusive.
2 This default is derived dynamically at runtime from descriptor files and database metadata.
8 These defaults are derived dynamically from descriptor files at runtime.

Driver parameters fall into the following subcategories:
+ “Uncategorized Parameters’ on page 40
+ “Database Scoping Parameters’ on page 42
¢ “Connectivity Parameters’ on page 44
+ “Compatibility Parameters’ on page 46

Uncategorized Parameters
+ “Third-party JDBC Driver Class Name” on page 40
+ “Time Syntax” on page 40
+ “State Directory” on page 41

Third-party JDBC Driver Class Name
This parameter is the fully-qualified Java class name of your third-party JDBC driver.

The following table lists the properties of this parameter:

Property Value

Tag Name jdbc-class

Required? yes

Case-Sensitive? yes

Sample Value oracle.jdbc.driver.OracleDriver
Default Value (none)

For alist of supported third-party JDBC driver classnames, see “JDBC Driver Class Names’ on
page 101.

Time Syntax

The Time Syntax parameter specifies the format of time-related data types that the driver returns.
The format can be either of the following options:

40 Identity Manager Driver for JDBC: Implementation Guide

State Directory

+ Return database Time, Date, and Timestamp values as 32-bit signed integers and map themto
eDirectory attributes of type Time or Timestamp

Thisisthe default.
This option has two problems:

+ eDirectory Time and Timestamp syntaxes cannot express aslarge adate range as database
Date or Timestamp syntaxes (approximately 136 years).

+ eDirectory Time and Timestamp syntaxes are granular to the second. Database
Timestamp syntaxes are often granular to the nanosecond.

The second option overcomes these two limitations.

+ Return database Time, Date, and Timestamp values as canonical strings and map them to
attributes of type Numeric String.

The following table shows abstract database data types and their corresponding canonical string
representations:

JDBC Data Type Canonical String Format:!
java.sql.Time HHMMSS

java.sgl.Date CCYYMMDD

java.sgl.Timestamp CCYYMMDDHHMMSSNNNNNNNNN

1c= century, Y = year, D = day, H = hour, M = minute, S = second, N = nano
These fixed-length formats collate in chronologica order on any platform in any locae.

The following table lists the properties of this parameter:

Property Value

Tag Name time-syntax

Required? no

Default Value 1 (integer)

Legal Values 1 (integer)
2 (string)

The State Directory parameter specifies where adriver instance should store state data. State data
is currently used for triggerless publication, although it maybe used to store additional state
information in the future.

Each driver instance has two state files. State filenames follow the format jdbc_driver-instance-
guid.db and jdbc_driver-instance-guid.lg. For example, jdbc_bd2a3dd5-d571-4171-a195-
28869577b87e.db and jdbc_bd2a3dd5-d571-4171-a195-28869577b87e.lg are state filenames. If
you need to manually identify and delete a driver instance's state files, each driver instance’s
GUID istraced on startup. Defunct state files (those belonging to deleted drivers) in the current
state directory are deleted each time a driver instance with the same state directory is started.

Configuring the Driver for JDBC 41

The following table lists the properties of this parameter:

Property Value

Tag Name state-dir

Required? no

Case-Sensitive? platform-dependent
Sample Value c:\novell\nds\DIBFiles
Default Value . (current directory)

Database Scoping Parameters

This section describes the following driver parameters:
+ “SchemaName” on page 42
+ “Table/View Name” on page 43
+ “Include Filter Expression” on page 43

+ “Exclude Filter Expression” on page 44

Schema Name

The Schema Name parameter identifies the database schema being synchronized. A database
schema is anal ogous to the name of the owner of the tables or views being synchronized. For
example, to synchronizetwo tables, usr and grp, each belonging to database user 1dm, you enter
idm asthis parameter’s value.

When using this parameter instead of “ Table/View Name” on page 43, you don’t need to explicitly
schema-qualify other parameters that reference stored procedure, function, or table names unless
they reside in a schema other than this schema name. Such names areimplicitly schema-qualified
by the driver with this schemaname. In particular, “ Method and Timing (Table-Local)” on page 57
and “Event Log Table Name” on page 63 are affected.

The following table lists the properties of this parameter:

Property Value

Tag Name sync-schema

Required? yes?!

Case-Sensitive? See “Undelimited Identifier Case-Sensitivity” on page 116.
Sample Value indirect

Default Value: (none)

"When this parameter is used, the Table/View Name parameter must be left empty or omitted from
aconfiguration. See “ Table/View Name” on page 43.

IMPORTANT: Changing this value forces a resync of all objects when triggerless publication is used.

42 Identity Manager Driver for JDBC: Implementation Guide

Table/View Name

The Table/View Name parameter allows you to create alogical database schema by listing the
names of the logical database classesto synchronize. Logical database class names are the names
of parent tables and views. It is an error to list child table names.

This parameter is particularly useful for synchronizing with databases that do not support the
concept of schema, such asMySQL, or when a database schema contains alarge number of tables/
views of which only afew are of interest. Reducing the number of table/view definitions cached
by the driver can shorten start-up time as well as reduce runtime memory utilization.

When using this parameter instead of “ Schema Name” on page 42, you'll likely need to schema-
qualify other parameters that reference stored procedure, function, or table names. In particular,
parameters “ Method and Timing (Table-Local)” on page 57 and “Event Log Table Name” on
page 63 are affected.

The following table lists the properties of this parameter:

Property Value

Tag Name sync-tables

Required? yes?!

Case-Sensitive? See “Undelimited Identifier Case-Sensitivity” on
page 116.

Delimiters semicolon, white space, comma

Sample Value indirect.usr; indirect.grp

Default Value (none)

“When this parameter is used, leave the Schema Name parameter empty or omitted from a
configuration. See “ Schema Name” on page 42.

Include Filter Expression

The Include Filter Expression parameter is operative only when the Schema Name parameter is
used. See “Schema Name” on page 42.

The following table lists the properties of this parameter:

Property Value

Tag Name include-table-filter

Required? no

Case-Sensitive? yes

Sample Value idm_*. (all table/view names starting with “idm_")
Default Value (none)

Legal Values (any legal Java regular expression)

Configuring the Driver for JDBC 43

Exclude Filter Expression

This parameter is operative only when the Schema Name parameter is used. See “ Schema Name”
on page 42.

The following table lists the properties of this parameter:

Property Value

Tag Name exclude-table-filter

Required? no

Case-Sensitive? yes

Sample Value bin*. (all table/view names starting with “bin”)
Default Value (none)

Legal Values (any legal Java regular expression)

Connectivity Parameters

+ “Connection Initialization Statements” on page 45
+ “Use Minima Number of Connections?’ on page 44

+ “Connection Properties’ on page 45

Use Minimal Number of Connections?

The Use Minimal Number of Connections parameter specifies whether the driver should use two
instead of three database connections.

By default, the driver uses three connections: one for subscription, two for publication. The
Publisher channel uses one of its two connections to query for events and the other to facilitate
query-back operations.

When set to Boolean True, the number of required database connectionsis reduced to two. Oneis
shared between the Subscriber and Publisher channels. It is used to process subscription and
publication query-back events. The other is used to query for publication events.

In previous versions, the driver was ableto support bidirectional synchronization by using asingle
connection. The publication algorithm was redesigned to increase performance, enabl e support for
future event processing, and to overcome limitations of the previous algorithm at the expense of
requiring an additional connection.

Property Value

Tag Name use-single-connection
Required? no

Default Value (dynamic?)

Legal Values 1, yes, true (yes)

0, no, false (no)

44 Identity Manager Driver for JDBC: Implementation Guide

This default is derived dynamically from descriptor files at runtime. Otherwise, the default value
isBoolean False.

NOTE: Setting this parameter to Boolean True reduces performance.

Connection Initialization Statements

The Connection Initialization Statements parameter specifieswhat SQL statements, if any, should
be executed immediately after connecting to the target database. Connection initialization
statements are useful for changing database contexts and setting session properties. These
statements are executed each timethe driver, irrespective of channel, connects or reconnectsto the
target database.

The following table lists the properties of this parameter:

Property Value

Tag Name connection-init

Required? no

Case-Sensitive? See “Undelimited Identifier Case-Sensitivity” on page 116.
Delimiters semicolon

Sample Value USE idm; SET CHAINED OFF

Default Value (none)

Connection Properties

The Connection Properties parameter specifies authentication properties. This parameter is useful
for specifying properties that cannot be specified viathe JDBC URL specified in the
Authentication Context parameter. See “ Authentication Context” on page 38.

The primary purpose of this parameter is to enable interoperability with the “ Sybase Adaptive
Server Enterprise JConnect JDBC Driver” on page 110 when using a custom SSL socket
implementation.

Connection properties are specified as key-value pairs. Thekey is specified asthe value to the | eft
of the‘=' character. Thevalueisthevaluetotheright of the‘=" character. You can specify multiple
key-value pairs, but they must be delimited by the *;" character.

When using connection properties, authentication information may be passed viathe JDBC URL
specified in the Authentication Context parameter or here. See “ Authentication Context” on
page 38.

If specified as connection properties, value tokens can be used as placehol ders for the database
username specified in the Authentication ID parameter and the password specified in the
Application Password parameter. See “ Authentication ID” on page 38 and “Application
Password” on page 38. For username, the token is {$username}. For password, the token is
{$password}.

The following table lists the properties of this parameter:

Configuring the Driver for JDBC 45

Property Value

Tag Name connection-properties

Required? no

Case-Sensitive? third-party JDBC driver-dependent

Delimiters semicolon

Sample Value USER={$username}; PASSWORD={$password};

SYBSOCKET_FACTORY=DEFAULT

Default Value (none)

Compatibility Parameters

*

*

*

*

“JDBC Driver Descriptor Filename” on page 46
“Database Descriptor Filename” on page 47

“Use Manua Transactions?’ on page 47
“Transaction Isolation Level” on page 48

“Reuse Statements?’ on page 48

“Number of Returned Result Sets’ on page 49
“Enable Statement-Level Locking?’ on page 50
“Lock Statement Generator Class’ on page 50
“Enable Referential Attribute Support?’ on page 50
“Force Username Case” on page 51

“Left Outer Join Operator” on page 51

“Retrieve Minimal Metadata?’ on page 52
“Function Return Method” on page 52

“Supports Schemas in Metadata Retrieval ?’ on page 52
“Sort Column Names By” on page 53

JDBC Driver Descriptor Filename

46

The JDBC Driver Descriptor Filename parameter specifies the third-party JDBC descriptor file
that should be used. Descriptor file names must not be prefixed with the underscore character (for
example, _mysgl_jdriver.xml) because such filenames are reserved. Descriptor files should be
placed in ajar file beginning with the case-insensitive prefix “jdbc” (for example,
JDBCCustomConfig.jar) and placed in the jar file's com/novel 1 /nds/dirxml/driver/

jdbc/db/descriptor/driver directory.

The following table lists the properties of this parameter:

Property Value

Tag Name jdbc-driver-descriptor

Identity Manager Driver for JDBC: Implementation Guide

Property Value

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_jdbc_driver_descriptor.xml
Default Value (none)

Database Descriptor Filename

The Database Descriptor Filename parameter specifies the database descriptor file to use. Do not
use the underscore character in prefixesto Descriptor filenames (for example, _mysgl.xml). Such
names are reserved. Place Descriptor filesin ajar file beginning with the case-insensitive prefix
“jdbc” (for example, IDBCCustomConfig.jar). Also, place Descriptor filesin the jar file's com/
novel l/nds/dirxml/driver/jdbc/db/descriptor/db directory.

The following table lists the properties of this parameter:

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_database_descriptor.xml
Default Value (none)

Use Manual Transactions?

The Use Manual Transactions parameter specifies whether to use manual or user-defined
transactions.

This parameter is primarily used to enable interoperability with MySQL MyISAM table types,
which do not support transactions.

When set to Boolean True, the driver uses manual transactions. When set to Boolean False, each
statement executed by the driver is executed autonomously (automatically).

The following table lists the properties of this parameter:

Property Value

Tag Name use-manual-transactions
Required? no

Case-Sensitive? no

Default Value (dynamic?)

Legal Values 1, yes, true (yes)

0, no, false (no)

Configuring the Driver for JDBC 47

This default is derived dynamically from descriptor files and database metadata at runtime.

NOTE: To ensure data integrity, set this parameter to Boolean True whenever possible.

Transaction Isolation Leve

Reuse Statements?

The Transaction Isolation Level parameter sets the transaction isolation level for connections that
the driver uses. Six values exist. Five of them correspond to the public constants defined in the
java.sgl.Connection (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/Connection.html) interface:

¢ unsupported

¢ none

¢ read uncommitted
¢ read committed

* repeatable read

+ serializable

Because some third-party drivers do not support setting a connection’s transaction isolation level
to none, the driver also supports the additional non-standardized value of unsupported.
PostgreSQL online documentation (http://www.postgresql.org/docs/current/static/transaction-
iso.html) has one of the better, concise primers on what each isolation level actually means. |

IMPORTANT: The list of supported isolation levels varies by database. For a list of supported transaction
isolation levels for supported databases, see “Supported Transaction Isolation Levels” on page 116.

We recommend using a transaction isolation level of read committed becauseitisthe
minimum isolation level that prevents the driver from seeing uncommitted changes (dirty reads).

The following table lists the properties of this parameter:

Property Value
Tag Name transaction-isolation-level
Required? no
Case-Sensitive? no
Default Value (dynamic?)
Legal Values unsupported
none

read uncommitted
read committed
repeatable read
serializable

Thisdefault isderived dynamically from descriptor files at runtime. Otherwise, the default value
isread committed.

The Reuse Statements parameter specifieswhether one or morejava.sgl. Statement items are active
at atime on a given connection. See java.sgl.Statement (http://java.sun.com/j2se/1.5.0/docs/api/
javalsgl/Statement.html).

48 Identity Manager Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://www.postgresql.org/docs/current/static/transaction-iso.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

Thisparameter isprimarily used to enableinteroperability with Microsoft SQL Server 2000 Driver
for JDBC.

When set to Boolean True, thedriver allocates a Java SQL Statement once and then reusesit. When
set to Boolean False, the driver allocates/deall ocates statement objects each time they are used,
ensuring that no more than one statement is active at atime on a given connection.

The following table lists the properties of this parameter:

Property Value

Tag Name reuse-statements
Required? no
Case-Sensitive? no

Default Value (dynamic?)

Legal Values 1, yes, true (yes)

0, no, false (no)

Thisdefault is derived dynamically from descriptor files at runtime. Otherwise, the default value
is Boolean True.

NOTE: Setting this parameter to Boolean False degrades performance.

Number of Returned Result Sets

The Number of Returned Result Sets parameter specifies how many java.sgl.Result objects can be
returned from an arbitrary SQL statement. See java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/
docsapi/javalsgl/ResultSet.html).

This parameter is primarily used to avoid infinite loop conditionsin “Oracle Thin Client JDBC
Drivers’ on page 108 when evaluating the results of arbitrary SQL statements.

The following table lists the properties of this parameter:

Property Value

Tag Name handle-stmt-results

Required? no

Sample Value one

Default Value (dynamic?)

Legal Values none, no (none)
single, one (one)

multiple, many, yes (multiple)

This default isderived dynamically from descriptor files at runtime. Otherwise, the default value
is multiple, many, or yes.

Configuring the Driver for JDBC 49

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

Enable Statement-Level Locking?

The Enable Statement-Level Locking parameter specifies whether the driver explicitly locks
database resources before executing SQL statements.

The following table lists the properties of this parameter:

Property Value

Tag Name enable-locking
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Lock Statement Generator Class

The Lock Statement Generator Class parameter specifies which
DBLockStatementGenerator implementation to use to generate the SQL statements
necessary to explicitly lock database resources for apending SQL statement. The
DBLockStatementGenerator interface is documented in the java documents that ship with
the driver.

The following table lists the properties of this parameter:

Property Value

Tag Name lock-generator-class

Required? no

Sample Value com.novell.nds.dirxml.driver.jdbc.db.lock.OralLockGenerator
Default Value (dynamic?)

Legal Values 1, yes, true (yes)

0, no, false (no)

Thisdefault isderived dynamically from descriptor files at runtime. Otherwise, the default value
is com.novell.nds.dirxml.driver.jdbc.db.lock.DBL ockGenerator.

Enable Referential Attribute Support?

50

The Enable Referential Attribute Support parameter toggles whether the driver recognizesforeign
key constraints between logical database classes. These are used to denote containment. Foreign
key constraints between parent and child tables within alogical database class are unaffected.

When set to Boolean True, foreign key columns areinterpreted asreferential. When set to Boolean
False, foreign key columns are interpreted as non-referential.

The primary purpose of this parameter isto ensure backward compatibility with the 1.0 version of
the driver. For 1.0 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Identity Manager Driver for JDBC: Implementation Guide

Property Value

Tag Name enable-refs
Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)

0, no, false (no)

Force Username Case

The Force Username Case parameter changes the case of the driver’s username used to
authenticate to the target database.

The primary purpose of this parameter isto enableinteroperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 105.

The following table lists the properties of this parameter:

Property Value

Tag Name force-username-case
Required? no

Default Value (don't force)

Legal Values lower (to lower case)

mixed (to mixed case)
upper (to upper case)

Left Outer Join Operator

The Left Outer Join Operator parameter specifiestheleft outer join operator used in thetriggerless
publication query. It might be used for other purposesin the future.

The following table lists the properties of this parameter:

Property Value
Tag Name left-outer-join-operator
Required? no
Default Value (dynamic?)
Legal Values *=
()

LEFT OUTER JOIN

Thisdefault is derived dynamically from descriptor files at runtime. Otherwise, the default value
isLEFT OUTER JOIN.

Configuring the Driver for JDBC 51

Retrieve Minimal Metadata?

When set to Boolean True, the driver calls only required metadata methods. When set to Boolean
False, the driver calls required and optiona metadata methods. For alist of required and optional
metadata methods, refer to Appendix D, “java.sgl.DatabaseM etaData M ethods,” on page 139.

Optional metadata methods are required for multivalue and referential attribute synchronization.

Property Value

Tag Name minimal-metadata
Required? no

Default Value (dynamic?)

Legal Values 1, yes, true (yes)

0, no, false (no)

Thisdefault isderived dynamically from descriptor files at runtime. Otherwise, the default value
isBoolean False.

NOTE: Setting this value to Boolean True improves startup time and third-party JDBC driver compatibility at
the expense of functionality.

Function Return Method

The Function Return Method parameter specifies how datais retrieved from database functions.

The primary purpose of this parameter is to enable interoperability with the “Informix JDBC
Driver” on page 105.

Whensetto result set, function resultsareretrieved through aresult set. When setto return
value, thefunction result isretrieved as asingle, scalar return value.

Property Value

Tag Name function-return-method
Required? no

Default Value (dynamic?)

Legal Values result set

return value (scalar return value)

This default is derived dynamically from descriptor files at runtime.

Supports Schemas in Metadata Retrieval?

52

The Supports Schemas in Metadata Retrieval parameter specifies whether schema names should
be used when retrieving database metadata.

The primary purpose of this parameter isto enableinteroperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 105.

When set to Boolean True, schema names are used. When set to Boolean False, they are not.

Identity Manager Driver for JDBC: Implementation Guide

Property Value

Tag Name supports-schemas-in-metadata-retrieval
Required? no

Default Value (dynamic?)

Legal Values 1, yes, true (yes)

0, no, false (no)

This default isderived dynamically from descriptor files at runtime. Otherwise, the default value
isBoolean True.

Sort Column Names By

The Sort Column Names By parameter specifies how column position isto be determined for
legacy databases that do not support sorting by column names.

The primary purpose of this parameter isto enable interoperability with legacy databases, such as
DB2/AS400.

Sorting columns names by hexadecimal value ensuresthat if adriver instance isrelocated to a
different server, it continues to function without modification. Sorting column names by platform
or locale string collation order ismoreintuitive, but might require configuration changesif adriver
instance is relocated to a different server. In particular, log table column order and compound
column name order might change. In the case of the latter, Schema-Mapping policies and object
association values might need to be updated. In the case of the former, log table columns might
have to be renamed.

It isalso possible to specify any fully-qualified, Java class name as long as the following occur:

+ The Java class name implements the java.util.Comparator (http://java.sun.com/j2se/1.5.0/
docs/api/javalutil/Comparator.html) interface.

+ The Java class name accepts java.lang.String (http://java.sun.com/j2se/1.5.0/docs/api/javal
lang/String.html) arguments.

+ Theclassisin the runtime classpath.

Property

Tag Name

column-position-comparator

Required?

Default Value

(dynamic?)

Legal Values

com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator (hexadecimal value)
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringComparator (string collation order)
(any java.util. Comparator that accepts java.lang.String arguments)

Thisdefault is derived dynamically from descriptor files at runtime. Otherwise, the default value
is com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator.

IMPORTANT: After you set this parameter for a given configuration, don’t change the parameter.

Configuring the Driver for JDBC 53

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

Subscription Parameters

The following table summarizes subscriber-level parameters and their properties:

Display Name Tag Name Sample Value Default Value Required

Disable subscriber? disable 1 (yes) 0 (no) no

Generation/retrieval method key-gen-method auto none (subscription

(table-global) event)

Retrieval timing (table-global) key-gen-timing after (after row insertion) before (before row no

insertion)

Method and timing (table-local) key-gen usr(*?=indirect.proc_idu()", (none) no
before)

Disable statement-level locking? disable-locking 1 (yes) 0 (no) no

Check update counts? check-update-count 0 (no) 1 (yes) no

Add default values on insert? add-default-values- 0 (no) (dynamic?) no

on-view-insert

This default is derived dynamically from descriptor files at runtime.

Subscription parameters are in two subcategories:
* “Uncategorized Parameters’ on page 54
* “Primary Key Parameters’ on page 56

Uncategorized Parameters
+ “Disable Subscriber?’ on page 54
+ “Disable Statement-Level Locking?’ on page 55
+ “Check Update Counts?’ on page 55
+ “Add Default Values on Insert?’ on page 55

Disable Subscriber?

The Disable Subscriber parameter specifies whether the Subscriber channel is disabled.

When this parameter is set to Boolean True, the Subscriber channel is disabled. When the

parameter is set to Boolean False, the Subscriber channel is active.

Property Value

Tag Name disable
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

54 Identity Manager Driver for JDBC: Implementation Guide

Disable Statement-Level Locking?

The Disable Statement-Level Locking parameter specifies whether database resources are
explicitly locked on this channel before each SQL statement is executed. This parameter is active
only if “Enable Statement-Level Locking?’ on page 50 is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Property Value

Tag Name disable-locking
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Check Update Counts?

The Check Update Counts parameter specifies whether the subscriber channel checksto seeif
INSERT, UPDATE, and DELETE statements executed against a table actually updated the table.

When set to Boolean True, update counts are checked. If nothing is updated, an exception is
thrown. When set to Boolean False, update counts are ignored.

When statements are redefined in before-trigger logic, set his parameter to Boolean False

When using Microsoft SQL Server, use the default value, because errorsin trigger logic (that
might roll back a transaction) are not propagated back to the Subscriber channel.

Property Value

Tag Name check-update-count
Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)

0, no, false (no)

Add Default Values on Insert?

The Add Default Values on Insert parameter specifies whether the Subscriber channel provides
default values when executing an INSERT statement against a view.

The primary purpose of this parameter is to enable interoperability with Microsoft SQL Server
2000. This database requiresthat view columns constrained NOT NULL haveanon-NULL valuein
an INSERT statement.

When this parameter is set to Boolean True, default values are provided for INSERT statements
executed against views and explicit values are not already available. When this parameter is set to
Boolean False, default values are not provided.

Configuring the Driver for JDBC 55

Property Value

Tag Name add-default-values-on-view-insert
Required? no

Default Value (dynamic?)

Legal Values 1, yes, true (yes)

0, no, false (no)

This default is derived dynamically from descriptor files at runtime.

Primary Key Parameters

+ “Generation/Retrieval Method (Table-Global)” on page 56
+ “Retrieval Timing (Table-Global)” on page 57
+ “Method and Timing (Table-Local)” on page 57

When processing <add> events, which map to INSERT statements, the Subscriber channel uses
primary key valuesto create |dentity Manager associations. These parameters specify how and
when the Subscriber channel obtains the primary key values necessary to construct association
values. How primary key values are obtained isthe primary key generation/retrieval method. The
retrieval timing indicates when primary key values are retrieved is indicated.

The following table identifies the supported methods and timings:

Timing: before (row insertion) Timing: after (row insertion)

Method: none (subscription event) X 0!
Method: driver (SELECT MAX()) X X
Method: auto (auto-generated/identity column) 02 X
Method: (stored procedure/function) X X

The Subscriber channel automatically overrides this timing to before.
2The Subscriber channel automatically overrides thistiming to after.

Generation/Retrieval Method (Table-Global)

56

The Generation/Retrieval Method (Table-Global) parameter specifies how primary key valuesare
generated or retrieved for all parent tablesand views. The Method and Timing parameter overrides
this parameter. See “Method and Timing (Table-Local)” on page 57.

When this parameter is set to none, primary key values are assumed to aready exist in the
subscription event. When this parameter is set to driiver, primary key values are generated by:

¢ UsingaSELECT (MAX()+1) statement if retrieval timing is set to before
¢ using aSELECT MAX() statement if retrieval timing is set to after

Identity Manager Driver for JDBC: Implementation Guide

When this parameter is set to auto, primary key values are retrieved viathe
java.sgl.Statement.getGeneratedKeys():java.sql .ResultSet method. The
MySQL Connector/J JDBC driver isthe only supported third-party JDBC driver that currently
implements this method. See “MySQL Connector/J JDBC Driver” on page 107.

Property Value

Tag Name key-gen-method
Required? no

Default Value none (subscription event)
Legal Values none (subscription event)

driver (SELECT MAX())
auto (auto-generated/identity column)

Retrieval Timing (Table-Global)

The Retrieval Timing (Table-Global) parameter specifies when the Subscriber channel retrieves
primary key values for all parent tables and views. The parameter Method and Timing (Table-
Local) overrides this parameter. See “Method and Timing (Table-Local)” on page 57.

When this parameter is set to before, primary key values are retrieved before insertion. When
this parameter is set to after, primary key values are retrieved after insertion.

Property Value

Tag Name key-gen-timing

Required? no

Default Value before (before row insertion)
Legal Values before (before row insertion)

after (after row insertion)

Method and Timing (Table-Local)

The Method and Timing (Table-Local) parameter specifies the primary key generation/retrieval
method and retrieval timing on a per parent table/view basis. It essentially maps a generation/
retrieval method and retrieval timing to atable or view name. The syntax for thisparameter mirrors
aprocedura programming language method call with multiple arguments (such as, method-
name(argumentl, argument2)).

When using “ Table/VView Name” on page 43, you' |l probably need to explicitly schema-qualify
any tables, views, stored procedures or functions referenced in this parameter’s value. When you
use parameter “ Schema Name” on page 42, tables, views, stored procedures, or functions
referenced in this parameter’s value are implicitly schema-qualified with that schema name. If
tables, views, stored procedures, or functions referenced in this parameter’s value are located in a
different schema other than the implicit schema, they must be schema-qualified.

BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/anal yseinfo/
AboutBNF.html)) notation for this parameter’s value is the following:

Configuring the Driver for JDBC 57

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

58

<key-gen> ::= <table-or-view-name> " ("' <generation-retrieval-method>,
<retrieval-timing>)" {[<delimiter>] <key-gen>}

<generation-retrieval-method> ::= none | driver | auto |
""" <procedure-signature> """ |
<function-signature> """

<table-or-view-name> ::= <legal-undelimited-database-table-or-view-
identifier>

<delimiter> -:= ";" | "," | <white-space>

<procedure-signature> ::= <schema-qualifier> "_." <stored-routine-

name>"(*'<argument-list>")"

<function-signature> ::= "?=" <procedure-signature>

<schema-qualifier> ::= <legal-undelimited-database-username-identifier>

<stored-routine-name> ::= <legal-undelimited-database-stored-routine
-identifier>

<argument-list> ::= <column-name>{"," <column-name>}

<column-name> ::= <column-from-table-or-view-name-previously-specified>

Generation or Retrieval Method

The generation or retrieval method specifies how primary key values are to be generated, if
necessary, and retrieved. The possible methods are none, driver, auto, and stored procedure/
function:

none:
By default, the Subscriber channel assumes that the Identity Vault is the authoritative source of
primary key values and that the requisite values are already present in agiven <add> event. If this
isthe case, no primary values need to be generated because they already exist. They only need to
beretrieved from the current <add> event. This method is desirable when an eDirectory attribute,
such as GUID, is explicitly schema-mapped to a parent table or view’s primary key column.

Assuming the existence of atable named usr and aview named view_usr where the |dentity
Vault is the authoritative source of primary key values, this parameter’s value would look
something like:

usr(none); view_usr(none)

When you use this method, we recommend mapping GUID rather than CN to a parent table or
view’s primary key column.

driver:
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

When prototyping or intheinitial stages of deployment, it is often desirable to have the Subscriber
channel generate primary key values before a stored procedure or functioniswritten. You can also
use this method can against databases that do not support stored procedures or functions. When
you use this method in a production environment, however, all SQL statements generated by an
<add> event should be contained in aserializable transaction. For additional information, refer to
parameter “ Transaction Isolation Level” on page 48.

Identity Manager Driver for JDBC: Implementation Guide

Instead of making all transactions serializable, you can also set individua transaction isolation
levels by using embedded SQL attributes. For additional information, refer to “ Transaction
Isolation Level” on page 93.

For any numeric column types, the Subscriber channel uses the following to generate primary key
values:

+ A simple SELECT (MAX+1)statement for before timing
¢ A SELECT MAX()statement for after timing

For string column types, the Subscriber channel generates a random alpha character sequence.
Other data types are not supported.

Assuming the existence of atable named usr and aview named view_usr where the database
is the authoritative source of primary key values, this parameter’s value would ook something
like:

usr(driver); view_usr(driver)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

auto:
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

Some databases support identity columns that automatically generate primary key values for
inserted rows. This method retrieves auto-generated primary key values through the JDBC 3
interface method

java.sgl.Statement.getGeneratedKeys():java.sql .ResultSet. The MySQL
Connector/JJDBC driver isthe only supported third-party JDBC driver that currently implements
this method. See “MySQL Connector/J JDBC Driver” on page 107.

Assuming the existence of atable named usr and aview named view_usr where the database
is the authoritative source of primary key values, this parameter’s value would ook something
like:

usr(auto); view_usr(auto)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

stored-procedure/function:
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

Assuming
+ The existence of atable named usr with a primary key column named idu
+ A view named view_usr with aprimary key values named pk_idu

+ The existence of a database function func_last_usr_idu and stored procedure
sp_last_view_usr_pk_idu that both return the last generated primary key value for
their respective table/view

this parameter’s value would look something like:

usr(""?=func_last_usr_idu()");
view_usr(*'sp_last_view_usr_pk_ idu(pk_idu)"™)

Configuring the Driver for JDBC 59

60

In the previous examples, a parameter is passed to the stored procedure. Parameters can aso be
passed to functions, but thisis not usually necessary. Unlike functions, stored procedures usually
return values through parameters. For stored procedures, primary key columns must be passed as
IN OUT parameters. Non-key columns must be passed as IN parameters.

For both stored procedures and functions, parameter order, number and datatype must correspond
to the order, number and data type of the parameters expected by the procedure or function.

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.
Retrieval Timing

Retrieval timing specifies when primary key values are retrieved.

An <add> event alwaysresultsin at least one INSERT statement against a parent table or view.
This portion of this parameter specifieswhen primary key values areto be retrieved relative to the
initial INSERT statement.

before:
Thisisthe default setting. When this setting is specified, primary key values are retrieved before
theinitial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except auto. Retrieval
timing is required for the none method.

after:
When this setting is specified, primary key values are retrieved after theinitial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except none. Retrieval
timing is required for the auto method.

The following examples augment the previous ones by adding retrieval timing information:
usr(none, before); view_usr(none, before)

usr(driver, before); view _usr(driver, after)

usr(auto, after); view _usr(auto, after)

usr("?=func_last_usr_idu()", before);
view_usr('sp_last_view_usr_pk_idu(pk_idu)', after)

The following table lists the properties of this parameter:

Property Value

Tag Name key-gen

Required? no

Case-Sensitive? See “Undelimited Identifier Case-Sensitivity” on page 116.
Sample Value usr("'?=proc_idu()", before)

Default Value (none)

Legal Values (any string adhering to the BNF)

Identity Manager Driver for JDBC: Implementation Guide

Publication Parameters

The following table summarizes publisher-level parameters and their properties:

Display Name Tag Name Sample Value Default Value Required
Disable publisher? disable 1 (yes) 0 (no) no
Disable statement-level disable-locking 1 (yes) 0 (no) no
locking?
Publication mode publication-mode 2 (triggerless) 1 (triggered) no
Event log table name log-table indirect_process (none) yes!
Delete processed rows? delete-from-log 0 (no) 1 (yes) no
Allow loopback? allow-loopback 1 (yes) 0 (no) no
Enable future event handle-future-events 1 (yes) 0 (no) no
processing?
Startup option startup-option no
Polling Interval (in seconds) polling-interval 60 10 no?
Time of day time-of-day 15:30:00 (none) no?
Post polling statements post-poll-stmt DELETE FROM (none) no
direct.direct_process
Batch size batch-size 16 1 no
Heartbeat interval (in pub-heartbeat-interval 10 0 no

minutes)

'Required for triggered publication mode.
2These parameters are mutually exclusive.

Publication parameters fall into four major subcategories:

*

*

*

*

“Polling Parameters’ on page 65

Uncategorized Parameters

+ “Disable Publisher?’ on page 61
+ “Publication Mode” on page 62

Disable Publisher?

“Uncategorized Parameters’ on page 54
“Triggered Publication Parameters’ on page 63
“Triggerless Publication Parameters’ on page 65

The Disable Publisher parameter specifies whether the Publisher channel isdisabled. If itis

disabled, the Publisher channel does not establish a connection to the target database.

Configuring the Driver for JDBC 61

When this parameter is set to Boolean True, the Publisher channel isdisabled. When thisparameter
is set to Boolean False, the Publisher channel is active.

Property Value

Tag Name disable
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Disable Statement-Level Locking?

This parameter specifies whether database resources should be explicitly locked on this channel
before each SQL statement is executed. This parameter is active only if the parameter “ Enable
Statement-Level Locking?” on page 50 is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Property Value

Tag Name disable-locking
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Publication Mode

The Publication Mode parameter specifies which publication algorithm is used.

When set to 1 (triggered), the Publisher channel polls the event log table for events. When set to 2
(triggerless), the Publisher channel dredges all tables/views in the synchronization schema for
changes, and synthesizes events.

The following table lists the properties of this parameter:

Property Value

Tag Name publication-mode
Required? no

Default Value 1 (triggered)
Legal Values 1 (triggered)

2 (triggerless)

62 Identity Manager Driver for JDBC: Implementation Guide

Triggered Publication Parameters

Event Log Table Name

The Event Log Table Name parameter specifiesthe name of the event log table where publication
events are stored.

The table specified here must conform to the definition of “The Event Log Table” on page 81.

When using “ Table/View Name” on page 43, you'll probably need to explicitly schema-qualify
this table name. When you use “ Schema Name” on page 42, thistable name isimplicitly schema-
qualified with that schemaname. If thistableislocated in aschemaother than theimplicit schema,
it must be schema-qualified.

The following table lists the properties of this parameter:

Property Value

Tag Name log-table

Required? not!

Case-Sensitive? See “Undelimited Identifier Case-Sensitivity” on page 116.
Sample Value eventlog

Default Value (none)

This parameter is required if “Publication Mode” on page 62 is set to 1 (triggered publication).

Delete Processed Rows?

The Delete Processed Rows parameter specifies whether processed rows are deleted from the
event log table.

When this parameter is set to a Boolean True, processed rows are deleted. When this parameter is
set to Boolean False, processed row’s status field values are updated.

To mitigate the performance hit caused when processed rows remain in the event log table, we
recommend periodically moving the rowsinto a history table. Do one of the following:

+ Call aclean-up stored procedure viathe parameter “ Post Polling Statements” on page 66.

+ Place abefore-del ete trigger on the event log table to intercept del ete events executed against
the event log table and move deleted rows to a history table before they are deleted from the
event log table.

The following table lists the properties of this parameter:

Property Value

Tag Name delete-from-log
Required? no

Default Value 0 (no)

Configuring the Driver for JDBC 63

Property Value

Legal Values 1, yes, true (yes)
0, no, false (no)

NOTE: Setting this parameter to Boolean False degrades publication performance unless processed rows
are periodically removed from the event log table by some means.

Allow Loopback?

The Allow Loopback parameter specifies whether events caused by the driver’s database user
account should be published.

When this parameter is set to Boolean True, loopback events are published. When this parameter
is set to Boolean False, loopback events are ignored.

The following table lists the properties of this parameter:

Property Value

Tag Name allow-loopback
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

NOTE: Setting this parameter to Boolean True might degrade performance because extraneous events might
be published.

Enable future event processing?

This parameter specifieswhether rowsinthe event log table are ordered and processed by insertion
order (the record_id column) or chronologicaly (the event_time column).

When this parameter is set to Boolean True, rowsin the event log table are published by order of
insertion. When this parameter is set to Boolean False, rows in the event log table are published
chronologicaly.

The following table lists the properties of this parameter:

Property Value

Tag Name handle-future-events
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

64 Identity Manager Driver for JDBC: Implementation Guide

Triggerless Publication Parameters

Startup Option

The Startup Option parameter specifies what happens when a triggerless Publisher starts.

Setting Result

1 All past and present changes are published.

2 Past and present changes are ignored.

3 All objects are assumed to have changed and are republished.

The following table lists the properties of this parameter:

Property Value

Tag Name startup-option
Required? no

Default Value 1 (process all changes)
Legal Values 1 (process all changes)

2 (process future changes only)
3 (resync all objects)

Polling Parameters

Polling Interval (In Seconds)

The Polling Interval (In Seconds) parameter specifies how many seconds of inactivity elapse
between polling cycles.

The following table lists the properties of this parameter:

Property Value

Tag Name polling-interval
Required? no

Default Value 10 (seconds)
Legal Values 1-604800 (1 week)

NOTE: We recommend setting this value to no less than 10 seconds.

Publication Time of Day

The Publication Time of Day parameter specifies at what time, each day, publication begins. Time
is understood to mean server local time (the time on the server where the driver is running).

The following table lists the properties of this parameter:

Configuring the Driver for JDBC 65

Property Value

Tag Name time-of-day

Required? no

Sample Value 13:00:00 (1PM)

Default Value (none)

Legal Values hh:mm:ss (h = hour, m = minute, s = second)

NOTE: This parameter overrides the parameter Polling Interval (In Seconds). See “Polling Interval (In
Seconds)” on page 65.

Post Polling Statements

The Post Polling Statements parameter specifies the SQL statements that are executed at the end
of each active polling cycle. An active polling cycle is one where some publication activity has
occurred.

The primary purpose of this parameter isto allow cleanup of the event log table following
publication activity.

You'll probably need to explicitly schema-qualify any database objects (for exampl e, tables, stored
procedures, and functions) referenced in these statements.

The following table lists the properties of this parameter:

Property Value

Tag Name post-poll-stmt

Required? no

Case-Sensitive? See “Undelimited Identifier Case-Sensitivity” on
page 116.

Delimiters semicolon

Sample Value DELETE FROM direct.direct_process

Default Value (none)

Legal Values (any set of legal SQL statements)

Batch Size

66

The Batch Size parameter specifies how many events are sent in a single publication document.
Basically, the larger the batch, the better the performance.
+ Larger batches necessitate fewer trips across the network in both directions.

+ More eventsin asingle document require fewer trips from the Publisher channel to the
I dentity Manager engine (assuming that query-back events are not being used).

Identity Manager Driver for JDBC: Implementation Guide

Heartbeat Interval (I

Trace Levels

+ Larger batches minimize the number of trips from the Publisher channel to the database
(assuming that the third-party JDBC driver and database support batch processing).

+ Larger batches require fewer commits to state filesin the local file system.
Commits can aso be costly.
This parameter defines an upper bound. The Publisher channel might override the specified value

under certain conditions. The upper bound of 128 was chosen to minimize the likelihood of

overflowing the Java heap and to mitigate delaying termination of the Publisher thread on driver
shutdown.

The following table lists the properties of this parameter:

Property Value
Tag Name batch-size
Required? no
Default Value 1
Legal Values 1to 128

n Minutes)

The Heartbeat Interval (In Minutes) parameter specifies how many minutes the Publisher channel
can beinactive beforeit sends a heartbeat document. I n practice, more than the number of minutes
specified can elapse. That is, this parameter defines alower bound. The Publisher channel sendsa
heartbeat document only if the Publisher channel has been inactive for the specified number of
minutes. Any publication document sent is, in effect, a heartbeat document.

The following table lists the properties of this parameter:

Property Value

Tag Name pub-heartbeat-interval

Required? no

Default Value 0

Legal Values 0to 2,147,483,647 (java.lang.Integer.MAX_VALUE)

To see debugging output from the driver, add aDirXML-DriverTracelevel attribute value from 1
to 7 on the driver set containing the driver instance. This attribute is commonly confused with the
DirXML-XSL Tracelevd attribute. For more information on driver set trace levels, refer to the
|dentity Manager Administration Guide (http://www.novell.com/documentation).

The driver supports the following seven trace levels:

Level Description

1 Minimal tracing

Configuring the Driver for JDBC 67

http://www.novell.com/documentation

Level Description

2 Database properties

3 Connection status, SQL statements, event log records

4 Verbose output

5 Database resource allocation/deallocation, triggerless publication state
6 JDBC API (invoked methods, passed arguments, returned values, etc.)
7 Third-party JDBC driver

Levels 6 and 7 are particularly useful for debugging third-party drivers.

Configuring Third-Party JDBC Drivers

The following guidelines help you configure third-party drivers. For specific configuration
instructions, refer to your third-party driver’s documentation.

+ Usethe latest version of the driver.
¢ Third-party driver behavior might be configurable.

In many cases, incompatibility issues can be resolved by adjusting the driver’'s JIDBC URL
properties.

+ When you work with international characters, you often have to explicitly specify to third-
party drivers the character encoding that the database uses.
Do this by appending a property string to the end of the driver's JIDBC URL.
Properties usually consist of a property keyword and character encoding value (for example,
jdbc:odbc:mssgl;charSet=Big5). The property keyword might vary among third-party drivers

The possible character encoding values are defined by Sun. For more information, refer to
Sun’s Supported Encoding Web site (http://java.sun.com/j2se/1.5.0/docs/guide/intl/
encoding.doc.html).

The following table lists the recommended settings for maximum driver compatibility. These
settings are useful when you use an unsupported third-party driver during initial configuration.

Parameter Name Compatibility Value
Table/view name(s) delimited-list-of-table-names
Reuse statements? 0 (no)

Use manual transactions? 0 (no)

Use minimal number of connections? yes

Retrieve minimal metadata? 1 (yes)

Number of returned result sets one

68 Identity Manager Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

Advanced Configuration

After installing the sample driver configuration, customize it for specialized use.
+ “SchemaMapping” on page 69
+ “The Event Log Table” on page 81
+ “XDSEvent to SQL Statement Mapping” on page 80
+ “Embedding SQL Statementsin XDS Events’ on page 89

Schema Mapping

Thefollowing table shows ahigh-level view of how thedriver mapsNovelI® |dentity Vault objects

to database objects.
Identity Vault Object Database Object
Tree Schema
Class Table/View
Attribute Column
Association Primary Key

Logical Database Classes

A logical database classisthe set of tables or the view used to represent an eDirectory classin a
database. A logical database class can consist of asingle view or one parent table and zero or more
child tables.

The name of alogical database classis the name of the parent table or view.

Indirect Synchronization

In an indirect synchronization model, the driver maps the following:

eDirectory Object Database Object
Classes Tables
Attributes Columns

Advanced Configuration 69

eDirectory Object Database Object

1 Class 1 parent table
and

0 or more child tables

Single-value attribute Parent table column

Multivalue attribute Parent table column (holding delimited values)
or

Child table column (preferred)

Mapping eDirectory Classes to Logical Database Classes
In the following example, the logical database class usr consists of the following:
+ Oneparent table usr

+ Two child tables: usr_phone and usr_faxno.
Logical class usr is mapped to the eDirectory class User.

CREATE TABLE indirect.usr
(
idu INTEGER NOT NULL,
fname VARCHAR2(64),
Iname CHAR(64),
pwdminlen NUMBER(4),
pwdexptime DATE,
disabled NUMBER(1),
username VARCHAR2(64),
loginame VARCHAR2(64),
photo LONG RAW,
manager INTEGER,
CONSTRAINT pk_usr_idu PRIMARY KEY (idu),
CONSTRAINT fk_usr_manager FOREIGN KEY (manager)
REFERENCES indirect.usr(idu)

)

CREATE TABLE indirect.usr_phone

¢
idu INTEGER NOT NULL,
phoneno VARCHAR2(64) NOT NULL,
CONSTRAINT fk_phone_idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu)

)

CREATE TABLE indirect.usr_fax

(
idu INTEGER NOT NULL,
faxno VARCHAR2(64) NOT NULL,
CONSTRAINT fk_fax_idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu)

)

<rule name='"Schema Mapping Rule">
<attr-name-map>
<class-name>

70 Identity Manager Driver for JDBC: Implementation Guide

Parent Tables

</rule>

<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>

</class-name>

<attr-name class-name="User">
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Surname</nds-name>
<app-name>lname</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Password Expiration Time</nds-name>
<app-name>pwdexptime</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>jpegPhoto</nds-name>
<app-hame>photo</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>manager</nds-name>
<app-name>manager</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Password Minimum Length</nds-name>
<app-name>pwdminlen</app-name>

</attr-name>

<attr-name class-name=""User">
<nds-name>Facsimile Telephone Number</nds-name>
<app-name>usr_Tfax. faxno</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Telephone Number</nds-name>
<app-name>usr_phone.phoneno</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Login Disabled</nds-name>
<app-name>disabled</app-name>

</attr-name>

</attr-name-map>

Parent tables are tables with an explicit primary key constraint that contains one or more columns.

In aparent table, an explicit primary key constraint is required so that the driver knows which

fieldsto include in an association value.

CREATE TABLE indirect.usr

(

)

idu

INTEGER NOT NULL,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu)

The following table contains sample datafor table indirect.usr.

Advanced Configuration

71

idu fname Iname

1 John Doe

The resulting association for thisrow is

idu=1,table=usr,schema=indirect

NOTE: The case of database identifiers in association values is determined dynamically from database
metadata at runtime.

Parent Table Columns

Child Tables

Parent table columns can contain only one value. As such, they areideal for mapping single-value
eDirectory attributes, such as mapping the single-value eDirectory attribute Password Minimum
Length to the single-valued parent table column pwdminlen.

Parent table columns are implicitly prefixed with the schema name and name of the parent table.
It is not necessary to explicitly table-prefix parent table columns. For example,
indirect.usr.fname isequivalent to fname for schema mapping purposes.

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>
</attr-name>
</attr-name-map>
</rule>

Large binary and string data types should usually be mapped to parent table columns. To map to a
child table column, data types must be comparable in SQL statements. Large data types usually
cannot be compared in SQL statements.

Large binary and string data types can be mapped to child table columnsiif the following occur:

+ Each <remove-value> event on these typesistransformed in a policy into a<remove-
all-values> element

+ An<add-value> element follows each <remove-value> event

A child tableis atable that has aforeign key constraint on its parent table’s primary key, linking
the two tablestogether. The columnsthat comprise the child table'sforeign key can have different
names than the columns in the parent table's primary key.

The following example shows the relationship between parent table usr and child tables
usr_phone and usr_faxno:

CREATE TABLE indirect.usr
¢

72 Identity Manager Driver for JDBC: Implementation Guide

idu INTEGER NOT NULL,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu)

)

CREATE TABLE indirect.usr_phone

(
idu INTEGER NOT NULL,
phoneno VARCHAR2(64) NOT NULL,
CONSTRAINT fk_phone_idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu)

)

CREATE TABLE indirect.usr_fax

(
idu INTEGER NOT NULL,
faxno VARCHAR2(64) NOT NULL,
CONSTRAINT fk_fax_idu FOREIGN KEY (idu)

REFERENCES indirect._usr(idu)
)

NOTE: In a child table, constrain all columns NOT NULL.

Thefirst constrained column in a child table identifies the parent table. In the above example, the
constrained columnin childtableusr_phone is idu. Theonly purpose of thiscolumnistorelate
tablesusr_phone and usr. Because constrained columns do not contain any useful information,
omit them from publication triggers and Schema Mapping policies.

The unconstrained column is the column of interest. It represents asingle, multivalue attribute. In
the above exampl e, the unconstrained columns are phoneno and faxno. Because unconstrained
columns can hold multiple values, they areideal for mapping multivalue eDirectory attributes (for
example, mapping the multivalue eDirectory attribute Telephone Number to
usrphone . phoneno).

The following table contains sample datafor indirect.usr_phone.

idu phoneno
1 111-1111
1 222-2222

Like parent table columns, child table columns areimplicitly schema-prefixed. Unlike parent table
columns, however, achild table column name must be explicitly prefixed with the child table name
(for example, usr_phone . phoneno). Otherwise, the driver implicitly interprets column
phoneno asusr.phoneno, not usr_phone.phoneno.

<rule name='"Schema Mapping Rule">
<attr-name-map>

<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>

</class-name>

<attr-name class-name="User">
<nds-name>Facsimile Telephone Number</nds-name>
<app-name>usr_Tfax. faxno</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Telephone Number</nds-name>

Advanced Configuration 73

<app-name>usr_phone.phoneno</app-name>
</attr-name>
</attr-name-map>
</rule>

NOTE: Map each multivalue, eDirectory attribute to a different child table.

Referential Attributes

You can represent referential containment in the database by using foreign key constraints.
Referentia attributes are columns within alogical database class that refer to the primary key
columns of parent tables in the same logical database class or those of other logical database
classes.

Single-Value, Referential Attributes

You can relate two parent tables through a single-value parent table column. This column must
have aforeign key constraint pointing to the other parent table’s primary key. The following
example relates a single parent table usr to itself:

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,
manager INTEGER,
CONSTRAINT pk_usr_idu PRIMARY KEY (idu),
CONSTRAINT fk_usr_manager FOREIGN KEY (manager)
REFERENCES indirect.usr(idu)
)

NOTE: Single-valued, referential columns should be nullable.

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>manager</nds-name>
<app-hame>manager</app-name>
</attr-name>
</attr-name-map>
</rule>

Theinterpretation of the above exampleisthat each user can have only one manager who himsel f
isauser.

Multivalue, Referential Attributes

74

You can relate two parent tables through a common child table. This child table must have a
column constrained by aforeign key pointing to the other parent table's primary key. The
following examplerelates two parent tables usr and grp through acommon child tablemember.

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu)

Identity Manager Driver for JDBC: Implementation Guide

CREATE TABLE indirect.grp

(
idg [INTEGER NOT NULL,
CONSTRAINT pk_grp_idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.grp_member
(
idg [INTEGER NOT NULL,
idu INTEGER NOT NULL,
CONSTRAINT fk_member_idg FOREIGN KEY (idg)
REFERENCES indirect.grp(idg),
CONSTRAINT fk_member_idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu)
)

NOTE: Constrain all columns in a child table NOT NULL.

<rule name='"Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>Group</nds-name>
<app-name>indirect.grp</app-name>
</class-name>
<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="Group">
<nds-name>Member</nds-name>
<app-name>grp_member . idu</app-name>
</attr-name>
</attr-name-map>
</rule>

Thefirst constrained columnin achild table determineswhich logical database classthechildtable
grp_member belongs to. In the above example, grp_member is considered to be part of logical
database classgrp. grp_member issaid to be a proper child of grp. The second constrained
column in a child table is the multivalue referential attribute.

In the following example, the order of the constrained columns has been reversed so that
grp_member ispart of classusr. Tomoreaccurately reflect therelationship, tablegrp_member
has been renamed to usr_mbr_of.

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,
CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.grp
(
idg INTEGER NOT NULL,
CONSTRAINT pk_grp_idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.usr_mbr_of
(

idu INTEGER NOT NULL,

Advanced Configuration 75

idg INTEGER NOT NULL,

CONSTRAINT fk_mbr_of idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu) ON DELETE CASCADE,

CONSTRAINT Fk_mbr_of_idg FOREIGN KEY (idg)
REFERENCES indirect.grp(idg) ON DELETE CASCADE

)

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>Group</nds-name>
<app-name>indirect.grp</app-name>
</class-name>
<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>Group Membership</nds-name>
<app-name>usr_mbr_of. idg</app-name>
</attr-name>
</attr-name-map>
</rule>

In databases that aren’t aware of column position (such as DB2/AS400), order is determined by
sorting column names by string or hexadecimal value. For additional information, see “ Sort
Column Names By” on page 53.

In general, it is necessary to synchronize only bidirectional, multivalue, referential attributes as
part of one class or the other, not both. If you want to synchronize referentia attributes for both
classes, construct two child tables, one for each class. For example, if you want to synchronize
eDirectory attributes Group Membership and Member, you need two child tables.

In practice, when you synchronize User and Group classes, we recommend that you synchronize
the Group Membership attribute of class User instead of the Member attribute of class Group.
Synchronizing the group memberships of asingle user isusually moreefficient than synchronizing
al members of a single group.

Direct Synchronization

In adirect synchronization model, the driver maps the following:

Identity Vault Object Database Object
Classes Views
Attributes View Columns
1 Class View
Single-value attribute View Column
Multivalue attribute View Column

The update capabilities of views vary between databases. Most databases allow views to be
updated when they are comprised of asingle basetable. If viewsare strictly read-only, they cannot
be used for subscription. Some databases allow update logic to be defined on views in instead-of -

76 Identity Manager Driver for JDBC: Implementation Guide

triggers, which allow aview to join multiple base tables and still be updated. For alist of databases
that support instead-of-triggers, see “ Database Features’ on page 114.

View Column Meta-ldentifiers

A view isalogical table. Unlike tables, views do not physically exist in the database. As such,
views cannot have traditional primary key/foreign key constraints. To simulate these constructs,
the driver for JDBC embeds constraints and other metadatain view column names. The difference
between these constraints and traditional onesis that the former are not enforced at the database
level. They are an application-level construct.

For example, to identify to the driver which fields to use when constructing association values,
place aprimary key constraint on a parent table. The corollary to thisfor aview isto prefix one or
more column names with pk_ (case-insensitive).

The following table lists the constraint prefixes that can be embedded in view column names.

Constraint Prefixes (case-insensitive) Interpretation

pk_ primary key
fk_ foreign key
SV_ single-value
mv_ multi-value

The following example views contain all of these constraint prefixes:

CREATE VIEW direct.view_usr

(
pk_idu, -- primary key column; implicitly single-valued
sv_Tname, -- single-valued column
mv_phoneno, -- multi-valued column
fk__idu__manager, -- self-referential foreign key column; refers
-— to primary key column idu in view_usr;
-— implicitly single-valued
fk_mv__idg__mbr_of -- extra-referential foreign key column; refers
- to primary key column idg in view_grp;
-- multi-valued
)
AS

CREATE VIEW direct.view_grp

(
pk_idg, -— primary key column; implicitly single-valued
fk_mv__idu__mbr -- extra-referential foreign key column; refers
- to primary key column idu in view_usr;
- multi-valued
)
AS
BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/anal yseinfo/
AboutBNF.html)) notation for view column meta-identifiers:

Advanced Configuration 77

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

<view-column-name> ::= [<meta-info>] <column-name>

<column-name> ::= <legal-unquoted-database-identifier>
<meta-info> ::= <referential> | <non-referential>
<non-referential> ::= [<single-value> | <multiple-value>]
<single-value> ::= "'sv_"

<multiple-value> ::= "mv_"

<referential> ::= <primary-key> | <foreign-key>
<primary-key> ::= "pk_" [<single-value>] [<column-group-id>]

[<referenced-column-name>]

<column-group-id> ::= <non-negative-integer> "_"
<referenced-column-name> ::= "_" <column-name> "
<foreign-key> ::= "fk_" [<non-referential>] [<column-group-id>]

<referenced-column-name>

Normalized Forms

By default, all view column names are single-valued. Therefore, explicitly specifying thesv_
prefix in aview column name is redundant. For example, sv_fname and fname are equivalent
forms of the same column name.

Also, primary key column namesimplicitly refer to themselves. Therefore, it is redundant to
specify the referenced column name. For example, pk_idu isequivalent topk___idu___idu.

The driver for IDBC uses two normalized forms of view meta-identifiers:
+ Database native form

Database native form is the column name as declared in the database. Thisform is usually
much more verbose than schema mapping form, and contains all necessary metainformation.

¢ Schemamapping form

Schema mapping form is returned when the driver returns the application schema. Thisform
is much more concise than database native form because much of the meta information
included in database native form is represented in XDS XML and not in the identifier.

Thereferential prefixes pk_ and fk_ are the only metainformation preserved in schema
mapping form. This limitation ensures backward compatibility.

The following table provides examples of each form:

Database Native Form Schema Mapping Form
pk_idu pk_idu

sv_fname fname

mv_phoneno phoneno
fk_mv__idg__mbr_of fk_mbr_of

78 Identity Manager Driver for JDBC: Implementation Guide

Equivalent Forms

For the driver, view column name equivalency is determined without respect to metainformation.
For example, pk_idu isequivalent to idu, and fk_mv__idg__mbr_of isequivaent to
mbr_of. Any variant form of aview meta columnidentifier can be passed to the driver at runtime.

Primary Key Columns

Schema Mapping

Primary key column names must be unique between all views in the synchronization schema.

Schemamapping for views and view columnsisequival ent to that used for parent tables and parent
table columns.

Synchronizing Primary Key Columns

When the database isthe authoritative source of primary key columns, generally omit the columns
from the Publisher and Subscriber filters, Schema Mapping policies, and publication triggers.

When the Identity Vault is the authoritative source of primary key columns, include the columns
in the Subscriber filter and Schema Mapping policies, but omit the columns from the Publisher
filter and publication triggers. Also, GUID rather than CN is recommended for use as a primary
key. CN isamultivalue and can change. GUID has asingle-value and is static.

Synchronizing Multiple Classes

When synchronizing multiple eDirectory classes, synchronize each classto adifferent parent table
or view. Each logical database class must have aunique primary key column name. The Publisher
channel uses this common column name to identify all rows in the event log table pertaining to a
single logical database class. For example, both the logical database classes usr and grp have a
unique primary key column name.

CREATE TABLE usr

¢
idu INTEGER NOT NULL,
Iname VARCHAR2(64) NOT NULL,
CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);
CREATE TABLE grp
¢
idg [INTEGER NOT NULL,
CONSTRAINT pk_grp_idg PRIMARY KEY(idg)
);

Mapping Multivalue Attributes to Single-Value Database Fields

By default, the driver assumes that all eDirectory attributes mapped to parent table columns or
view columns have asingle value. Because the driver is unaware of the eDirectory schema, it has
no way of knowing whether an eDirectory attribute has a single value or multivalue. Accordingly,
multivalue and single-val ue attribute mappings are handled identically.

Advanced Configuration 79

The driver implements the Most Recently Touched (MRT) algorithm with regard to single-value
parent table or view columns. An MRT algorithm ensures that the most recently added attribute
value or most recently deleted attribute value is stored in the database. The algorithm is adequate
if the attribute in question has asingle value.

If the attribute has multiple values, the algorithm has some undesirable consequences. When a
value is deleted from a multivalue attribute, the database field it is mapped to is set to NULL and
remains NULL until another valueis added. The preferred solution to this undesirable behavior is
to extend the eDirectory schemaso that only single-val ue attributes are mapping to parent table or
view columns.

Other solutions include the following:
+ For indirect synchronization, map each multivalue attribute to its own child table.

+ For both direct or indirect synchronization, use a policy to delimit multiple values before
inserting them into atable or view column.

+ Implement afirst or last value per replicapolicy in style sheets by using methods provided in
thecom.novell .nds.indirect.driver.jdbc.util _MappingPolicy class.
Under afirst-value-per-replica (FPR) policy, thefirst attribute value on the eDirectory replica
is always synchronized. Under a last-value-per-replica (LPR) policy, the last attribute value
on areplicais always synchronized.

By using global configuration values, you can configure the sample driver configuration to
use either FPR or LPR mapping policies. Multivalue to single-value attribute mapping
policies are contained in the Subscriber Command Transformation policy container. The
sample driver configuration maps the multivalue eDirectory attributes Given Name and
Surname to the single-value columns fname and Iname respectively.

XDS Event to SQL Statement Mapping

The following table summarizes how the Subscriber channel maps XDS eventsto DML SQL
statements for indirect synchronization:

XML Event SQL Equivalent

<add> 0 or more select statements, depending upon the matching policy
1 parent table insert statement for all single value <add-attr> elements

0 or 1 stored procedure/function calls to retrieve primary key values before
or after the parent table insert statement

1 child table insert statement for each multivalue <add-attr> element

<modify> 1 parent table update statement for each single value <add-value> or
<remove-value> element

1 child table insert statement for each multivalue <add-value> element

1 child table delete statement for each <remove-value> element

<delete> 1 parent table delete statement

1 delete statement for each child table

80 Identity Manager Driver for JDBC: Implementation Guide

XML Event

SQL Equivalent

<query> 1 parent table select statement

1 select statement for each child table
<move> 0 statements unless bound to embedded SQL statements
<rename>

<modify-password>
<check-object-password>

The following table summarizes how the Subscriber channel maps XDS eventsto DML SQL
statements for direct synchronization:

XML Event SQL Equivalent
<add> 0 or more select statements, depending upon the matching policy
1 view insert statement for all single value <add-attr> element
0 or 1 stored procedure/function call to retrieve primary key values before
or after the view insert statement
1 view insert statement for each multivalue <add-attr> element
<modify> 1 view update statement for each single value <add-value> or <remove-
value> element
1 view insert statements for each multivalue <add-value> element
1 view delete statement for each <remove-value> element
<delete> 1 view delete statement
<query> 1 view select statement
<move> 0 statements unless bound to embedded SQL statements
<rename>

<modify-password>
<check-object-password>

The Event Log Table

The event log table stores Publication events. This section discusses the structure and limitations

of the event log table.

You can customize the name of the event log table and its columnsto avoid conflicts with reserved
database keywords. The order, number, and data types of its columns, however, are fixed. In
databases that don’t use column position, order is determined by the Sort Column Names By
parameter. See“ Sort Column Names By” on page 53.

Eventsin thistable can be ordered either by order of insertion (the record_id column) or
chronologically (the event_time column). Ordering events chronologically allows event
processing to be delayed. To order publication events chronol ogically, set the Enable Future Event
Processing parameter to Boolean True. See “Enable future event processing?’ on page 64.

Advanced Configuration 81

Event Log Columns

This section describes columnsin the event log table. Columns are ordered by position.
1. record_id

The record_id column is used to uniquely identify rows in the event log table and order
publication events. This column must contain sequential, ascending, positive, unique integer
values. Gaps between record_id values no longer prematurely end a polling cycle.

2. status

The status column indicates the state of a given row. The following table lists permitted
values:

Character Value Interpretation

N new
S success
W warning
E error
F fatal

To be processed, all rowsinserted into the event log table must have astatus value of N.
The remainder of the status characters are used solely by the Publisher channel to designate
processed rows. All other characters are reserved for future use.

NOTE: Status values are case-sensitive.
3. event_type
Valuesin this column must be between 1 and 8. All other numbers are reserved for future use.

The following table describes each event type:

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)
4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)

Event types are in four major categories. Some categories overlap. The following table
describes each category and indicates which event types are members:

82 Identity Manager Driver for JDBC: Implementation Guide

Event Category Event Types

Per-field (attribute) 1,2,3,7,8
Per-row (object) 4,56
Non-query-back 1,2,3,4
Query-back 56,7,8

Per-field, non-query-back 1, 2,3

Per-field, query-back 7,8

Per-row, non-query-back 4

Per-row, query-back 56

In general, a combination of event types from each category yields the best time, space, and
complexity tradeoffs.

. event_time

Thiscolumn servesasan aternative ordering columnto record_id. It containsthe effective
date of the event. It must not be NULL. For this column to become the ordering column, set
the Enable Future Event Processing parameter to Boolean True. See “ Enable future event
processing?’ on page 64.

. perpetrator

Thiscolumnidentifiesthe database user who instigated the event. A NULL valueisinterpreted
as auser other than the driver user. As such, rowswith aNULL value or value not equal to the
driver’s database username are published. Rows with avalue equal to the driver’s database
username are not published unlessthe Publisher parameter Allow Loopback is set to Boolean
True. See”Allow Loopback?’ on page 64.

. table_name
The name of the table or view where the event occurred.
. table_key

Format valuesfor this column exactly the samein all triggersfor alogical database class. The
BNF or Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html) of this parameter is defined below:

<table-key> ::= <unique-row-identifier> {"+" <unique-row-identifier>}

<unique-row-identifier> ::= <primary-key-column-name> "=" <value>

For example, for the usr table referenced throughout this chapter, this column’s value might
be idu=1.

For the view_usr view used throughout this chapter, this column’s value might be
pk_empno=1.

Differences in padding or formatting might result in out-of-order event processing. For
performance reasons, remove any unnecessary white space from numeric values. (For
example, "idu=1" is preferred over "idu= 1.

Advanced Configuration 83

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

Event Types

NOTE: If primary key values placed in the table_key field contain the following characters, delimit
(double-quote) the values: , ;' +=\"< >,

8. column_name

The name of the column that was changed. This column is used only for per-field (1-3, 7-8)
event types. Nevertheless, it must always be present in the event log table. If it ismissing, the
Publisher channel will not start.

9. old value

Thefield’s old vaue. This column is used only for per-field, non-query-back event types (1-
3). Nevertheless, it must always be present in the event log table. If it ismissing, the Publisher
channel will not start.

10. new_value

Thefield’'s new value. This column isused only by per-field, non-query-back event types (1-
3). Nevertheless, it must always be present in the event log table. If it ismissing, the Publisher
channel will not start.

The following table shows the basic correlation between publication event types and the XDS
XML generated by the publisher.

Event Type Resulting XDS
insert <add>

update <modify>
delete <delete>

Thefollowing exampleillustrates XML that the Publisher channel generates for eventslogged on
the usr table for each possible event type.

CREATE TABLE indirect.usr

(

idu INTEGER NOT NULL,

fname VARCHAR2(64),

photo LONGRAW,

CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
)

The following table shows the initial contents of usr after a new row has been inserted:

idu fname Iname photo

1 Jack Frost OxAAAA

The following table shows the current contents of usr after the row has been updated:

idu fname Iname photo

1 John Doe 0xBBBB

84 Identity Manager Driver for JDBC: Implementation Guide

Insert Field

Thetable below showsthe contents of the event | og table after anew row isinserted into table
usr. The value for column photo has been Base64-encoded. The Base64-encoded
equivaent of OXAAAA isqgo=.

event_type table table_key column_name old_value new_value
1 usr idu=1 fname NULL Jack
1 usr idu=1 Iname NULL Frost
1 usr idu=1 photo NULL gqgo=
The Publisher channel generates the following XML.:
<add class-name="'usr''>
<association>idu=1,table=usr,schema=indirect
</association>
<add-attr attr-name="fname'>
<value type="'string''>Jack</value>
</add-attr>
<add-attr attr-name="Iname'>
<value type="'string''>Frost</value>
</add-attr>
<add-attr attr-name="photo'>
<value type="octet''>qgqo=</value>
</add-attr>
</add>
2. Update Field
The following table shows the contents of the event log table after the row in table usr has
been updated. The valuesfor column photo hasbeen Base64-encoded. The Base64-encoded
equivalent of 0xBBBB isu7s=.
event_type table table_key column_name old_value new_value
2 usr idu=1 fname Jack John
2 usr idu=1 Iname Frost Doe
2 usr idu=1 photo qgo= u7s=

The Publisher channel generates the following XML.:

<modify class-name="usr'>
<association>idu=1l,table=usr,schema=indirect
</association>
<modify-attr attr-name="fname'>
<remove-value>
<value type="'string''>Jack</value>
</remove-value>
<add-value>
<value type="string''>John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="Ilname">
<remove-value>

Advanced Configuration 85

<value type="'string'>Frost</value>
</remove-value>
<add-value>
<value type="string''>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-value>
<value type="octet''>qqo=</value>
</remove-value>
<add-value>
<value type="octet''>u7s=</value>
</add-value>
</modify-attr>
</modify>

3. Update Field (Remove-All-Vaues)

The following table shows the contents of the event log table after the row in table usr has
been updated. The value for column photo has been Base64-encoded.

event_type table table_key column_name old_value new_value
3 usr idu=1 fname Jack John
3 usr idu=1 Iname Frost Doe
3 usr idu=1 photo ggo= u7s=

The Publisher channel generates the following XML:

<modify class-name="usr">
<association>idu=1, table=usr,schema=indirect
</association>
<modify-attr attr-name="fname"'>
<remove-all-values/>
<add-value>
<value type="'string'>John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="Iname">
<remove-all-values/>
<add-value>
<value type="'string'>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet">u7s=</value>
</add-value>
</modify-attr>
</modify>

4, Delete Row

The table below shows the contents of the event log table after the row in table usr has been
deleted.

86 Identity Manager Driver for JDBC: Implementation Guide

event_type table table_key column_name old_value new_value

4 usr idu=1 NULL NULL NULL

The Publisher channel generates the following XML:

<delete class-name=""usr"'>
<association>idu=1,table=usr,schema=indirect
</association>

</delete>

. Insert Row (Query-Back)

The following table shows the contents of the event log table after anew row isinserted into
tableusr.

event_type table table_key column_name old_value new_value

5 usr idu=1 NULL NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents
of table usr, not the initial contents.

<add class-name=""usr'>
<association>idu=1,table=usr,schema=indirect
</association>
<add-attr attr-name="'fname'>
<value type="string'>John</value>
</add-attr>
<add-attr attr-name=""lname'>
<value type="'string''>Doe</value>
</add-attr>
<add-attr attr-name='"photo'>
<value type="octet'>u7s=</value>
</add-attr>
</add>

. Update Row (Query-Back)

The table below shows the contents of the event log table after the row in table usr has been
updated.

event_type table table_key column_name old_value new_value

6 usr idu=1 NULL NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents
of table usr, not the initial contents.

<modify class-name="usr'>
<association>idu=1,table=usr,schema=indirect
</association>
<modify-attr attr-name="fname"'>
<remove-all-values/>
<add-value>
<value type="'string'>John</value>
</add-value>

Advanced Configuration 87

</modify-attr>
<modify-attr attr-name="Iname">
<remove-all-values/>
<add-value>
<value type="'string''>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo'>
<remove-all-values/>
<add-value>
<value type="octet'>u7s=</value>
</add-value>
</modify-attr>
</modify>

7. Insert Field (Query-Back)

The following table shows the contents of the event log table after anew row isinserted into
table usr. Old and new values are omitted because they are not used.

event_type table table_key column_name old_value new_value
7 usr idu=1 fname NULL NULL
7 usr idu=1 Iname NULL NULL
7 usr idu=1 photo NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents
of table usr, not the initial contents.

<add class-name="'usr"'>
<association>idu=1,table=usr,schema=indirect
</association>
<add-attr attr-name="fname'>
<value type="string''>John</value>
</add-attr>
<add-attr attr-name="'Iname'>
<value type="'string'>Doe</value>
</add-attr>
<add-attr attr-name='photo'>
<value type="'octet''>u7s=</value>
</add-attr>
</add>

8. Update Field (Query-Back)

The following table shows the contents of the event log table after the row in table usr has
been updated. Old and new values are omitted because they are not used.

event_type table table_key column_name old_value new_value
8 usr idu=1 fname NULL NULL
8 usr idu=1 Iname NULL NULL
8 usr idu=1 photo NULL NULL

88 Identity Manager Driver for JDBC: Implementation Guide

The Publisher channel generates the following XML. The values reflect the current contents
of table usr, not the initial contents.

<modify class-name="usr'>
<association>idu=1l,table=usr,schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-al l-values/>
<add-value>
<value type="'string''>John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="Iname">
<remove-al l-values/>
<add-value>
<value type="string''>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-al l-values/>
<add-value>
<value type="octet''>u7s=</value>
</add-value>
</modify-attr>
</modify>

Embedding SQL Statements in XDS Events

The following section includes information to help you embed SQL in XDS events.

All examples reference table usr below. The primary key generation method used to obtain
primary key valuesisirrelevant to the examplesin this section.

CREATE TABLE usr

(

idu INTEGER NOT NULL,

fname VARCHAR2(64),

Iname VARCHAR2(64),

CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);

You can use embedded SQL in XDS events. In the same way that you can install database triggers
on atable and cause side effects in a database, embedded SQL in XDS events acts as avirtua
trigger with similar capabilities.

SQL isembedded in XDS eventsthrough the <jdbc : statement> and <jdbc:sqgl> elements.
The <jdbc:statement> element can contain one or more <jdbc:sql> elements.

NOTE: The namespace prefix jdbc used throughout this section is implicitly bound to the namespace
urn:dirxml : jdbc when referenced outside of an XML document.

The following XML example shows an embedded SQL statement.

<input xmlns:jdbc="urn:dirxml:jdbc'">
<add class-name=""usr"'>
<add-attr name="'lname'>
<value>Doe</value>
</add-attr>
</add>

Advanced Configuration 89

<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = >John”
</jdbc:sql>
</jdbc:statement>
</input>

IMPORTANT: Use namespace-prefixed elements and attributes to embed SQL. Otherwise, the driver will not
recognize them. In the above example, the namespace is urn:dirxml:jdbc. The prefix is the identifier to the right
of the xmins identifier. In the above example, the prefix is jdbc. In practice, the prefix can be whatever you want
it to be, as long as it is bound to the correct namespace.

Because the Subscriber channel resolves <add> events to one or more INSERT statements, the
XML shown above resolves to:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr(Iname)VALUES(”Doe”);
COMMIT; --explicit commit

UPDATE indirect.usr SET fname = “John”;
COMMIT; --explicit commit

Variable Substitution

90

Rather than require you to parse field values from an association, the Subscriber channel supports
variable substitution in embedded SQL statements. For example:

<input xmlns:jdbc="urn:dirxml:jdbc'>
<modify class-name="usr'>
<association>idu=1, table=usr,schema=indirect
</association>
<modify-attr name="Iname">
<add-value>
<value>DoeRaeMe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = "John® WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

Variable placeholders must adhere to the XSLT attribute value template syntax { $field-name} .
Also, the association element must precede the <jdbc: statement> element in the XDS
document, or must be present as a child of the<jdbc:statement> element.

The field-name variable must refer to one of the naming RDN attribute names in the association
value. The above example has only one naming attribute, idu.

An <add> event is the only event where an association element is not required to precede
embedded SQL statements with variabl e substitution because the association has not been created
yet. Additionally, any embedded SQL statements using variable substitution must follow, not
precede, the <add> event. For example:

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="'usr''>
<add-attr name="'Iname'>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>

Identity Manager Driver for JDBC: Implementation Guide

<jdbc:sql>UPDATE indirect.usr SET fname = "John" WHERE
idu = {$idu}</jdbc:sqgl>
</jdbc:statement>
</input>

To prevent tracing of sensitive information, you can use {$$password} to refer to the contents
of theimmediately preceding <password> element within the same document.

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="usr'>
<password>Doe{$idu}</password>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CREATE USER Doe IDENTIFIED BY
{$$password}</jdbc:sql>
</jdbc:statement>
</input>

Furthermore, you can aso refer to the driver’s database authentication password specified by the
Application Password parameter as{$$$dr iver-password} . See” Application Password” on

page 38.

Statement Placement

In the same way that database triggers can fire before or after atriggering statement, embedded
SQL can be positioned before or after the triggering XDS event. The following examples show
how you can embed SQL before or after an XDS event.

Virtual Before Trigger

<input xmlns:jdbc"urn:dirxml:jdbc'>
<jdbc:statement>
<association>idu=1,table=usr,schema=indirect
</association>
<jdbc:sql>UPDATE indirect.usr SET fname = “John” WHERE
idu = {$idu}</JDBC:SQL>
</jdbc:statement>
<modify class-name="usr'>
<association>idu=1,table=usr,schema=indirect
</association>
<modi fy-attr name="Iname">
<remove-all-values/>
<add-value>
<value>Doe</value>
</add-value>
</modify-attr>
</modify>
</input>

This XML resolvesto:

SET AUTOCOMMIT OFF

UPDATE iIndirect.usr SET fname = ”John” WHERE idu = 1;
COMMIT; --explicit commit

UPDATE indirect.usr SET Iname = “Doe” WHERE idu = 1;
COMMIT; --explicit commit

Advanced Configuration 91

Virtual After Trigger

<input xmlns:jdbc"urn:dirxml:jdbc'>
<modify class-name="usr'>
<association>idu=1,table=usr,schema=indirect
</association>
<modify-attr name="Iname">
<remove-all-values/>
<add-value>
<value>Doe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = >John” WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF

UPDATE indirect.usr SET Iname = ’Doe” WHERE idu = 1;
COMMIT; --explicit commit

UPDATE iIndirect.usr SET fname = ”John” WHERE idu = 1;
COMMIT; --explicit commit

Manual vs. Automatic Transactions

92

You can manually group embedded SQL and XDS events by using two custom attributes:
¢ jdbc:transaction-type

¢ jdbc:transaction-id

jdbc:transaction-type

This attribute has two values. manual and auto. By default, most XDS events of interest
(<add>, <modi fy> and <delete>) areimplicitly set to themanual transaction type. Themanual
setting enables XDS events to resolve to a transaction consisting of one or more SQL statement.

By default, embedded SQL events are set to auto transaction type because some SQL statements,
such as DDL statements, cannot usually be included in a manual transaction.

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="'usr" jdbc:transaction-type="auto">
<add-attr name="lIname'>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = "John® WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

This XML resolvesto:

SET AUTOCOMMIT ON
INSERT INTO indirect.usr(Iname) VALUES("Doe");

Identity Manager Driver for JDBC: Implementation Guide

-— implicit commit
UPDATE iIndirect.usr SET fname = *"John" WHERE idu = 1;
-— implicit commit

jdbc:transaction-id

The Subscriber channel ignores this attribute unless the element's jdbc: transaction-type
attribute value defaults to or is explicitly set to manual. The following XML shows an example
of amanual transaction:

<input xmlns:jdbc="urn:dirxml:jdbc'">
<add class-name="'usr" jdbc:transaction-id="0">
<add-attr name="Iname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement jdbc:transaction-type="manual"
jdbc:transaction-id="0">
<jdbc:sql>UPDATE indirect.usr SET fname = "John" WHERE
idu = {$idu}</jdbc:sqgl>
</jdbc:statement>
</input>

This XML resolvesto:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr(Iname) VALUES(’Doe");

UPDATE iIndirect.usr SET fname = *"John" WHERE idu = 1;
COMMIT; -- explicit commit

Transaction Isolation Level

In addition to grouping statements, you can use transactions to preserve the integrity of datain a
database. Transactions can lock data to prevent concurrent access or modification. The isolation
level of atransaction determines how locks are set. Usually, the default isolation level that the
driver usesis sufficient and should not be altered.

The custom attribute jdbc:isolation-level alowsyou to adjust the isolation transaction
level if necessary. Thejava.sgl.Connection parameter definesfive possible valuesin theinterface.
Seejava.sgl.Connection (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/Connection.html).

¢ none

¢ read uncommitted
¢ read committed

* repeatable read

+ serializable

The driver's default transaction isolation level isread committed unless overridden by a
descriptor file. In manual transactions, placethe jdbc:isolation-1level atribute onthefirst
element in the transaction. This attribute isignored on subsequent elements. For example:

<input xmlns:jdbc="urn:dirxml:jdbc'">
<add class-name="'usr" jdbc:transaction-id="0"
jdbc:isolation-level="serializable">
<add-attr name="'Iname''>
<value>Doe</value>

Advanced Configuration 93

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

Statement Type

94

</add-attr>

</add>

<jdbc:statement jdbc:transaction-type="manual"

jdbc:transaction-id="0">
<jdbc:sql>UPDATE indirect.usr SET fname = "John*
WHERE idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

INSERT INTO indirect.usr(Iname) VALUES("Doe");
UPDATE iIndirect.usr SET fname = *John" WHERE idu = 1;
COMMIT; -- explicit commit

The Subscriber channel executes embedded SQL statements, but it doesn’t understand them. The
JDBC 1 interface defines several methods for executing different types of SQL statements. The
following table contai ns these methods:

Statement Type Method Executed

SELECT java.sgl.Statement.executeQuery(String query):java.sqgl.ResultSet
INSERT java.sgl.Statement.executeUpdate(String update):int

UPDATE java.sgl.Statement.executeUpdate(String update):int

DELETE java.sgl.Statement.executeUpdate(String update):int

CALL or EXECUTE java.sgl.Statement.execute(String sql):boolean

SELECT

INSERT

UPDATE

DELETE

The simplest solution isto map all SQL statementsto the
java.sgl.Statement.execute(String sql):boolean method. By default, the
Subscriber channel uses this method.

Some third-party drivers, particularly Oracle’s JDBC drivers, incorrectly implement the methods
used to determine the number of result sets that this method generates. Consequently, the driver
can get caught in an infiniteloop leading to high CPU utilization. To circumvent this problem, you
can use the jdbc: type attribute on any <jdbc:statement> element to map the SQL
statements contained in it to the following methods instead of the default method:

+ java.sql.Statement.executeQuery(String
query):java.sql .ResultSetadsf

+ java.sql.Statement.executeUpdate(String update):int

The jdbc: type attribute has two values: update and query. For INSERT, UPDATE, or
DELETE statements, set the valueto update. For SELECT statements, set thevalueto query. In
the absence of this attribute, the driver maps all SQL statements to the default method. If placed
on any element other than <jdbc : statement>, this attribute is ignored.

Identity Manager Driver for JDBC: Implementation Guide

Recommendations:
+ Placethe jdbc:type=""query” attribute value on all SELECT statements.

+ Placethe jdbc:type="update” attribute valueon all INSERT, UPDATE, and DELETE
Statements.

+ Place no attribute value on stored procedure/function calls.
The following XML shows an example of the jdbc: type attribute:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="‘usr"'>
<add-attr name="Iname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement jdbc:type="update'>
<jdbc:sql>UPDATE indirect.usr SET fname = "John*
WHERE idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

SQL Queries

To fully support the query capabilities of a database and avoid the difficulty of translating native
SQL queriesinto an XDSformat, thedriver supportsnative SQL query processing. You can embed
select statements in XDS documents in exactly the same way as any other SQL statement.

For example, assume that the table usr has the following contents:

idu fname Iname

1 John Doe

The XML document below would result in an output document containing a single result set.

<input xmlIns:jdbc="urn:dirxml:jdbc">
<jdbc:statement jdbc:type="query'>
<jdbc:sql>SELECT * FROM indirect.usr</jdbc:sql>
</jdbc:statement>
</input>

<output xmIns:jdbc="urn:dirxml:jdbc'>
<jdbc:result-set jdbc:number-of-rows="1">
<jdbc:row jdbc:number="1">
<jdbc:column jdbc:name="idu"
jdbc:position="1"
jdbc:type="java.sql.Types.BIGINT
<jdbc:value>I</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name="fname"
jdbc:position="2"
jdbc:type="java.sqgl.Types.VARCHAR>
<jdbc:value>John</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name="Iname"
jdbc:position="3"
jdbc:type="java.sql.Types.VARCHAR>

Advanced Configuration 95

<jdbc:value>Doe</jdbc:value>
</jdbc:column>
</jdbc:row>
</jdbc:result-set>
<status level="'success'/>
</output>

SQL queries always produce asingle <jdbc:result-set> element whether or not the result
set contains any rows. If the result set is empty, the jdbc :number-of-rows attributeis set to
zero.

You can embed more than one query in adocument. SQL queriesdon’t require that the referenced
tables/views are visible to the driver. However, XDS queries do.

Data Definition Language (DDL) Statements

Generally, it is not possible to run a Data Definition Language (DDL) statement in a database
trigger because most databases do not alow mixed DML and DDL transactions. Although virtual
triggers do not overcome this transactional limitation, they do allow DDL statementsto be
executed as a side-effect of an XDS event.

For example:

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="'usr">
<add-attr name="Iname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CREATE USER indirect IDENTIFIED BY novell
</jdbc:sql>
</jdbc:statement>
</input>

This XML resolvesto:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr(Iname) VALUES("Doe");
COMMIT; -- explicit commit

SET AUTOCOMMIT ON

CREATE USER indirect IDENTIFIED BY novell;

-— implicit commit

Using the jdbc: transaction-id and jdbc:transaction-type attributesto group DML
and DDL statements into a single transaction causes the transaction to be rolled back on most
databases. Because DDL statements are generally executed as separate transactions, it is possible
that the insert statement in the above example might succeed and the create user statement might
roll back.

Itisnot possible, however, that the insert statement fail and the create user statement succeed. The
Subscriber channel stops executing chained transactions at the point where the first transactionis
rolled back.

Logical Operations

Because it is not generally possible to mix DML and DDL statementsin a single transaction, a
single event can consist of one or more transactions. You can use the jdbc - op-id and

96 Identity Manager Driver for JDBC: Implementation Guide

Best Practices

Jdbc:op-type to group multiple transactions together into asingle logical operation. When so
grouped, all members of the operation are handled as a single unit with regard to status. If one
member has an error, all members return the same status level. Similarly, all members share the
same status type.

<input xmlns:jdbc="urn:dirxml:jdbc'">
<add class-name=""usr" jdbc:op-id="0"
Jdbc:op-type=""password-set-operation'>
<add-attr name="lname'>
<value>Doe</value>
</add-attr>
<password>Doe{$idu}</password>
</add>
<jdbc:statement jdbc:op-id="0">
<jdbc:sgql>CREATE USER Doe IDENTIFIED BY {$$password}
</jdbc:sql>
</jdbc:statement>
</input>

The jdbc:op-type attribute isignored on all elements except the first element in alogical
operation.

For performance reasons, it is better to call a single stored procedure/function that contains
multiple SQL statements than to embed multiple statementsin an XDS document.

In the following examples, the single stored procedure/function is preferred.
Single Stored Procedure

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="'usr''>
<add-attr name="'fname'>
<value>John</value>
</add-attr>
<add-attr name="'Iname''>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CALL PROCEDURE set_name(’John’, ’Doe”)</jdbc:sql>
</jdbc:statement>
</input>

Embedded Multiple Statements

<input xmlIns:jdbc="urn:dirxml:jdbc">
<add class-name="'usr'>
<add-attr name="Iname'>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname
WHERE idu = {$idu}</jdbc:sql>
</jdbc:statement>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET Iname = ’Doe’
WHERE idu = {$idu}</jdbc:sql>

>John”

Advanced Configuration 97

</jdbc:statement>
</input>

Thesyntax used to call stored procedures/functionsvaries by database. For additional information,
see " Stored Procedure and Function JDBC Call Syntaxes’™ on page 115.

98 Identity Manager Driver for JDBC: Implementation Guide

Third-Party JDBC Drivers

*

“Third-Party JDBC Driver Interoperability” on page 99

*

“JDBC Drivers. Four Types’ on page 99
“Supported Third-Party JDBC Drivers’ on page 100
“Using Unsupported Third-Party JDBC Drivers’ on page 111

*

*

*

“Security Issues’ on page 111

Third-Party JDBC Driver Interoperability

Theldentity Manager Driver for JIDBC isdesigned to interoperate with aspecific set of third-party
JDBC drivers, instead of a specific set of databases. In fact, the third-party JDBC driver, not the
database, is the primary determinant of whether the Driver for IDBC works against any given
database. Asagenera rule, if the Driver for JDBC interoperates well with a given third-party
JDBC driver, it will interoperate well with databases and database versions that the third-party
driver supports.

We strongly recommend that you use the third-party JDBC drivers supplied by major enterprise
database vendors whenever possible, such as those listed in this section. They are usually free,
mature, and known to interoperate well with the Driver for JDBC and the databases they target.
You can use other third-party drivers, but Novell® does not support them.

In general, most third-party drivers are backward compatible. However, evenif they are generally
backward compatible, they are generally not forward compatible. Anytime a database server is
upgraded, the third-party driver used with this product should probably be updated as well.

Also, asagenera rule, we recommend that you usethelatest version of athird-party driver, unless
otherwise noted.

JDBC Drivers: Four Types

Type 1

A third-party JDBC driver that is partially Java and communicates indirectly with a database
server through anative ODBC driver. Type 1 driversserve asaJDBC-ODBC bridge. Sun provides
aJDBC-ODBC bridge driver for experimental use and for situations when no other type of third-
party JDBC driver isavailable.

Type 2

A third-party JDBC driver that is part Java and communicates indirectly with a database server
through its native client APIs.

Third-Party JDBC Drivers 99

Type 3

A third-party JDBC driver that is pure Java and communicates indirectly with a database server
through amiddleware server.

Type 4

A third-party JDBC driver that is pure Java and communicates directly with a database server.

Which Type To Use?

Type 3 and 4 drivers are generally more stable than type 1 and 2 drivers. Type 1 and 2 drivers are
generally faster than type 3and 4 drivers. Type 2 and 3 drivers are generally more secure than type
1 and 4 drivers.

Because Identity Manager uses a directory as its datastore, and because databases are usually
significantly faster than directories, performanceisn’t aprimary concern. Stability, however, isan
issue. For this reason, we recommend that you use atype 3 or 4 third-party JDBC driver whenever
possible.

IMPORTANT: If you choose to use a type 1 or type 2 driver with the Driver for JDBC, use the remote loader
to ensure the integrity of the directory process.

Supported Third-Party JDBC Drivers

+ “BEA Weblogic jDriver for Microsoft SQL Server” on page 102

+ “IBM DB2 Universal Database JDBC Drivers’ on page 103

* “Microsoft SQL Server 2000 Driver for JIDBC” on page 106

* “MySQL Connector/JJDBC Driver” on page 107

¢ “Oracle Thin Client JDBC Drivers’ on page 108

+ “PostgreSQL JDBC Driver” on page 109

¢ “Sybase Adaptive Server Enterprise JConnect JDBC Driver” on page 110

Third-Party JDBC Driver Features

The following table summarizes third-party JDBC driver features:

Driver Supports Encrypted Transport? Supports Retrieval of Auto-Generated Keys?
BEA Weblogic jDriver No No
IBM DB2 UDB Type 3 No No
IBM DB2 UDB Type 4 No No
Informix No No
Microsoft 2000 No No
MySQL Connector/J Yes Yes
Oracle Client Thin Yes No

100 Identity Manager Driver for JDBC: Implementation Guide

Driver Supports Encrypted Transport? Supports Retrieval of Auto-Generated Keys?

PostgreSQL Yes* No

Sybase jConnect Yes No

* For versions JDBC 3 (Java 1.4) and later.

JDBC URL Syntaxes
The following table lists URL syntaxes for supported third-party JDBC drivers.

Third-Party JDBC Driver JDBC URL Syntax
Oracle Thin Client jdbc:oracle:thin:@ip-address:1521:sid
IBM DB2 UDB Type 3 jdbc:db2://ip-address:6789/database-name

IBM DB2 UDB Type 4, Universal jdbc:db2://ip-address:50000/database-name

BEA Weblogic* jDriver jdbc:weblogic:mssqlserver4:database-name@ip-address:1433

Microsoft SQL Server jdbc:microsoft:sqglserver://ip-address-or-dns-
name:1433;DatabaseName=database-name

Sybase jConnect jdbc:sybase:Tds:ip-address:2048/database-name
MySQL Connector/J jdbc:mysql://ip-address:3306/database-name
Informix jdbc:informix-sqli://ip-address:1526/database-

name:informixserver=server-id

PostgreSQL jdbc:postgresql://ip-address:5432/database-name

JDBC Driver Class Names
The following table lists the fully-qualified Java class names of supported third-party JDBC

drivers:

Third-party JDBC Driver Class Name

BEA Weblogic jDriver weblogic.jdbc.mssqlserver4.Driver

IBM DB2 UDB Type 3 COM.ibm.db2.jdbc.net.DB2Driver

IBM DB2 UDB Type 4, Universal com.ibm.db2.jcc.DB2Driver

Informix com.informix.jdbc.IfxDriver

Microsoft 2000 com.microsoft.jdbc.sqglserver.SQLServerDriver
MySQL Connector/J org.gjt.mm.mysql.Driver

Oracle Thin Client oracle.jdbc.driver.OracleDriver

PostgreSQL org.postgresql.Driver

Third-Party JDBC Drivers 101

Third-party JDBC Driver Class Name

Sybase jConnect 5.5 com.sybase.jdbc2.jdbc.SybDriver

BEA Weblogic jDriver for Microsoft SQL Server

102

Supported Database Version: Microsoft SQL Server 6.5, 7.x, 8.x (2000)

Class Name weblogic.jdbc.mssqlserver4.Driver

Type 4

URL Syntax jdbc:weblogic:mssqlserver4:database-name @ip-address:1433
Download Instructions Register for free and download the latest version of Weblogic server.

Run the installer. The weblogic.jar file is installed in the install-dir/
server/lib directory.

BEA Download Center (http://commerce.bea.com/
showallversions.jsp?family=WLS)

Filename weblogic.jar

Documentation URLs jDriver Documentation (http://e-docs.bea.com/wls/docs81/
mssqlserver4/)

NOTE: The BEA Weblogic is included in the supported third-party driver listing to provide JDBC access to
Microsoft SQL server 7. Microsoft’s driver supports only version 8 (2000).

Compatibility

The BEA Weblogic driver is backward compatible. Database server and driver updates are
infrequent.

Security

The BEA Weblogic driver does not support encrypted transport.

Known Issues
+ The BEA Weblogic driver is not free. It must be purchased and properly licensed.

+ Association values that contain UNTQUE IDENT IFIER columns are inconsistent between
driver versions.

Earlier versions of the BEA Weblogic driver returned a non-standard java.sgl. Types (http://
java.sun.com/j2se/1.5.0/docs/api/javalsgl/Types.html) value for native
UNIQUEIDENTIFIER columns. To compensate, the Driver for JIDBC mapped that non-
standard type to the standard type java.sgl. Types.BINARY (http://java.sun.com/j2se/1.5.0/
docs/api/javalsgl/ Types.html) because it best mirrored the native database type -- a 16 byte
value. This mapping results in a Base64-encoded association value.

Later versions of the BEA Weblogic driver return a standard type java.sgl.CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/javalsql/ Types.html). This mapping resultsin a non-
Base64-encoded association value, effectively invalidating all associations generated by
using earlier versions of the BEA Weblogic driver. This change effectively breaks backward
compatibility.

Identity Manager Driver for JDBC: Implementation Guide

http://commerce.bea.com/showallversions.jsp?family=WLS
http://e-docs.bea.com/wls/docs81/mssqlserver4/
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

The best solution to this problem isto continue using the earlier version of the BEA Weblogic
driver. If you must upgrade, you'll haveto removeall invalidated associations and reassociate
all previously-associated objects.

+ The BEA Weblogic driver throws ajava.lang.!llegal M onitorStateException (http:/
java.sun.com/j2se/1.5.0/docs/api/javallang/111egal M onitor StateException.html) when
method java.sqgl .Connection.getConnection(String url, String
username, String password) iscalled on AlX.

IBM DB2 Universal Database JDBC Drivers

Type 3

Supported Database Versions: 7.X

Class Name: COM.ibm.db2.jdbc.net.DB2Driver

Type 3

URL Syntax: jdbc:db2://ip-address:6789/database-name
Download Instructions: Copy the file from the database server.

file:///database-installation-directory/java

File Name: db2java.zip
Documentation URLS: DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2v7luw)

JDBC Programming (http://publib.boulder.ibm.com/infocenter/
db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/
db2a0159.htm)

IMPORTANT: The type 3 driver is deprecated for version 8.

Compatibility

The IBM DB2 driver can best be characterized as version-hypersensitive. It is not compatible
across major or minor versions of DB2, including FixPacks. For this reason, we recommend that
you use the file installed on the database server.

IMPORTANT: The IBM DB2 driver must be updated on the Identity Manager or Remote Loader server every
time the target database is updated, even if only at the FixPack level.

Security

The IBM DB2 driver does not support encrypted transport.

Known Issues
+ A version mismatch usually results in connectivity-related failures.

The most common problem experienced with the IBM DB2 driver is because of adriver/
database version mismatch. The symptom of a version mismatch is connectivity-related
failures such as"CLI0601E Invalid statement handle or statement is closed.” To remedy the
problem, overwritethedb2java. zip file on the | dentity Manager or Remote L oader server
with the version installed on the database server.

Third-Party JDBC Drivers 103

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalMonitorStateException.html
http://publib.boulder.ibm.com/infocenter/db2v7luw
http://publib.boulder.ibm.com/infocenter/db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/db2a0159.htm

+ It'svery difficult to diagnose and remedy Java-related errors on the database server.

Numerous error conditions and error-codes can arise when you attempt to install and execute
user-defined stored procedures and functionswritten in Java. Diagnosing them can provetime
intensive and frustrating. A logfile (db2diag . 1og on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

Type 4: Universal Drivers

104

Supported Database Versions 8.x

Class Name com.ibm.db2.jcc.DB2Driver

Type 4

URL Syntax jdbc:db2://ip-address:50000/database-name

Download Instructions Download as part of the latest FixPack (recommended).

IBM Support & Downloads (http://www.ibm.com/support/us/)
or
Copy the file from the database server.

file:///database-installation-directory/java

Filename db2jcc.jar, db2jcc_license_cu.jar, db2jcc_javax.jar (optional)
Documentation URLs DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2help)

DB2 Universal JDBC Driver (http://publib.boulder.ibm.com/infocenter/
db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm)

Security under the DB2 Universal JDBC Driver (http://
publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/ad/cjvjcsec.htm)

NOTE: Unlike the type 3 driver, the type 4 driver has only a minimal set of defined error codes. This absence
inhibits the Driver for JDBC's ability to distinguish between connectivity, retry, authentication, and fatal error
conditions.

Compatibility

The IBM DB2 driver is backward compatible, although it doesn’t work with database version 7.
Database server updates are frequent. Driver updates are infrequent.

Security

The IBM DB2 driver supports avariety of authentication security mechanisms but does not
support encrypted transport.
Known Issues

+ It'svery difficult to diagnose and remedy Java-related errors on the database server.

Numerous error conditions and error codes can arise when you attempt to install and execute
user-defined stored procedures and functionswrittenin Java. Diagnosing these can provetime

Identity Manager Driver for JDBC: Implementation Guide

http://www.ibm.com/support/us/
http://publib.boulder.ibm.com/infocenter/db2help
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/cjvjcsec.htm

intensive and frustrating. A logfile (db2diag . 1og on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

Informix JDBC Driver

Supported Database Versions Dynamic Server 7.x, 9.x

Class Name com.informix.jdbc.IfxDriver

Type 4

URL Syntax jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

Download Instructions Download URL (http://www-306.ibm.com/software/data/informix/
tools/jdbc)

Filenames ifxjdbc.jar, ifxjdbcx.jar (optional)

Documentation URLsS Informix Information Center (http://publib.boulder.ibm.com/infocenter/
ids9help/index.jsp)

Informix JDBC Driver (http://www-306.ibm.com/software/data/
informix/pubs/library/jdbc_2.html)

Compatibility

The Informix driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Informix driver does not support encrypted transport.

Required Parameter Settings for ANSI-Compliant Databases

The following table lists driver parameters that must be explicitly set for the Driver for JDBC to
interoperate with the Informix driver against ANSI-compliant databases.

Display Name Tag Name Value
Supports schemas in metadata retrieval? supports-schemas-in-metadata-retrieval false
Force username case: force-username-case upper

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JIDBC implicitly sets
at runtime. Do not explicitly override these settings.

Display Name Tag Name Value

Function return method: function-return-method result set

Third-Party JDBC Drivers 105

http://www-306.ibm.com/software/data/informix/tools/jdbc
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www-306.ibm.com/software/data/informix/pubs/library/jdbc_2.html

Known Issues

+ Schemanames cannot be used to retrieve metadata against an ANSI-compliant database. Set
the driver compatibility parameter “ Supports Schemasin Metadata Retrieval 7’ on page 52 to
Boolean False.

Thedatabase objectsavailablefor metadataretrieval arethosevisibleto the database user who
authenticated to the database. Schema qualifiers cannot be used to identify database objects.
Therefore, to avoid naming collisions (such as, ownerl.tablel, owner2.tablel), give the
database authentication user only SELECT privileges on objects being synchronized.

+ When used against ANSI-compliant databases, usernames must be in uppercase. Set the
driver compatibility parameter “ Force Username Case” on page 51 to upper.

Microsoft SQL Server 2000 Driver for JDBC

106

Supported Database Versions: 8 (2000)

Class Name com.microsoft.jdbc.sqlserver.SQLServerDriver
Type 4
URL Syntax jdbc:microsoft:sqglserver://ip-address-or-dns-

name:1433;DatabaseName=database-name

Download Instructions Microsoft JDBC Downloads (http://www.microsoft.com/downloads/
results.aspx?sortCriteria=date&OSID=&productID=&Category|D=&fr
eetext=jdbc&DisplayLang=en&DisplayEnglishAlso=)

Filenames msbase.jar, mssqlserver.jar, msutil.jar

Compatibility

The SQL Server 2000 driver is backward compatible, although it doesn’t work with database
version 7. Database server and driver updates are infrequent.

Security

The SQL Server 2000 driver does not support encrypted transport.

URL Properties
Delimit URL propertiesby usinga‘;’ character.

The following table lists values for the SelectMethod URL property for the SQL Server 2000
driver.

Legal Value Description

direct The default value; doesn’t allow for multiple active statements on a single
connection

cursor Allows for multiple active statements on a single connection

Identity Manager Driver for JDBC: Implementation Guide

http://www.microsoft.com/downloads/results.aspx?sortCriteria=date&OSID=&productID=&CategoryID=&freetext=jdbc&DisplayLang=en&DisplayEnglishAlso=

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly override these settings.

Display Name Tag Name Value

Reuse Statements? reuse-statements false

Known Issues
+ Can't start manual transaction because of cloned connections.

Animplementation anomaly that doesn’t allow concurrent statementsto be active on the same
connection causes the most common problem experienced with the SQL Server 2000 driver.
Unlike other third-party implementations, the SQL Server 2000 driver can have only one
java.sgl.Statement (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/Statement.html) object
active at atime on a given connection.

If you attempt to use more than one statement object, thefollowing error isissued: “Can't start
manual transaction mode because there are cloned connections.” This error can occur only if
driver compatibility parameter “ Reuse Statements?’ on page 48 is set to Boolean True. Asa
best practice, never explicitly set this parameter. Instead, defer to the dynamic default value.

Analternativeisto place the delimited property ; SelectMethod=cursor at theend of the
URL string. For additional information on thisissue, consult the following support articles:

+ Document 30096 (http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/
30096?0OpenDocument) by DataDirect Technologies*

+ Article 313181 (http://support.microsoft.com/default.aspx?scid=kb%3Ben-
us%3B313181) by Microsoft

* Association values that contain UNTQUE IDENT IFIER columns are inconsistent between
driver versions.

Earlier versions of the SQL Server 2000 driver returned a non-standard java.sql. Types (http:/
ljava.sun.com/j2se/1.5.0/docs/api/javalsql/ Types.html) value for native
UNIQUEIDENTIFIER columns. To compensate, the Driver for JIDBC mapped that non-
standard type to the standard type java.sgl. Types.BINARY (http://java.sun.com/j2se/1.5.0/
docs/api/javalsql/ Types.html) because it best mirrored the native database type -- a 16 byte
value. This mapping results in a Base64-encoded association value.

Later versions of the SQL Server 2000 driver return a standard type java.sgl.CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/javalsgl/ Types.html). This mapping resultsin a non-
Base64-encoded association value, effectively invalidating all associations generated by
using earlier versionsof the SQL Server 2000 driver. Thischange effectively breaks backward
compatibility.

The best solution to this prablem is to continue using the earlier version of the SQL Server
2000 driver. If you must upgrade, you'll have to remove al invalidated associations and
reassociate all previously-associated objects.

MySQL Connector/J JDBC Driver

Supported Database Versions 3.x, 4.X

Third-Party JDBC Drivers 107

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/30096?OpenDocument
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

Class Name org.gjt.mm.mysql.Driver

Type 4
URL Syntax jdbc:mysql://ip-address:3306/database-name
Download Instructions Download and extract. The jar file is located in the extract-dir/mysql-

connector-java-version directory.

MySQL Connector/J (http://www.mysql.com/products/connector/j/)

Filename mysql-connector-java-version-bin.jar
Documentation URLS MySQL Connector/J Documentation (http://dev.mysql.com/doc/
connector/jlen/)

Connecting Securely Using SSL (http://dev.mysql.com/doc/refman/
5.0/en/cj-using-ssl.html)

Compatibility

The Connector/J driver is backward compatible. Database server updates are frequent. Driver
updates are infrequent.

Security

The Connector/J driver supports JSSE (Java Secure Sockets Extension) SSL-encrypted transport.

Required Parameter Settings for MyISAM Tables

The following table lists driver parameters that you must set so that the Driver for JIDBC can
interoperate with the Connector/J driver against MylSAM tables.

Display Name Tag Name Value

Use manual transactions? use-manual-transactions false

Oracle Thin Client JDBC Drivers

108

Supported Database Versions 8i, 9i, 10g

Class Name oracle.jdbc.driver.OracleDriver

Type 4

URL Syntax jdbc:oracle:thin:@ip-address:1521:sid
Download Instructions Register for free and download.

Oracle Technology Network (http://otn.oracle.com/software/tech/java/
sqlj_jdbc/content.html)

1.1 Filenames classes111.zip, nls_charsetl1.zip (optional)
1.2-3 Filenames classes12.zip, ocrs12.zip (optional), nls_charset12.zip (optional)
1.4 Filenames ojdbcl4.jar, ocrs12.zip (optional)

Identity Manager Driver for JDBC: Implementation Guide

http://www.mysql.com/products/connector/j/
http://dev.mysql.com/doc/connector/j/en/
http://dev.mysql.com/doc/refman/5.0/en/cj-using-ssl.html
http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html

Documentation URLs Oracle Advanced Security (http://www.oracle.com/technology/
sample_code/deploy/security/files/secure_thin_driver/readme.html)

Compatibility

The Thin Client driver is backward compatible. Database server updates and driver updates are
infrequent.

Oracle releases thin client drivers for various JVMs. Even though all of them work with this
product, we recommend you use the 1.4 version.

Security

The Thin Client driver supports Oracle Advanced Security encrypted transport.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly override these settings.

Display Name Tag Name Value

Number of returned result sets: handle-stmt-results single

Known Issues
+ High CPU utilization triggered by execution of embedded SQL statements.

The most common problem experienced with thisdriver ishigh CPU utilitization, because of
this driver always indicates that more results are avail able from calls to method
jJjava.sgl.Statement.execute(String stmt) which canlead to aninfiniteloop
condition. This condition occursonly if driver compatibility parameter “Number of Returned
Result Sets’ on page 49 other than single, no or one and an embedded SQL statement is
being executed and the type of statement is not explicitly specified.

To avoid the conditions that produce high CPU utilization:
+ Do not explicitly set this parameter.
Defer to the dynamic default.

+ Alwaysplace a jdbc: type attribute on any embedded <jdbc:statement>
elements.

NOTE: The jdbc namespace prefix maps to urn:dirxml:jdbc.

PostgreSQL JDBC Driver

Supported Database Versions 6.x, 7.X, 8.x

Class Name org.postgresql.Driver

Type 4

URL Syntax jdbc:postgresql://ip-address:5432/database-name

Download Instructions JDBC Driver Download (http://jdbc.postgresql.org/download.html)

Third-Party JDBC Drivers 109

http://www.oracle.com/technology/sample_code/deploy/security/files/secure_thin_driver/readme.html
http://jdbc.postgresql.org/download.html

Documentation URLs JDBC Driver Documentation (http://jdbc.postgresqgl.org/
documentation/docs.html)

Using SSL (http://jdbc.postgresql.org/documentation/80/ssl.html)

NOTE: The filename of the PostgreSQL varies by database version.

Compatibility

The latest builds of the PostgreSQL driver are backward compatible through server version 7.2.
Database server updates and driver updates are frequent.

Security

The PostgresQL driver supports SSL-encrypted transport for JIDBC 3 driver versions.

Sybase Adaptive Server Enterprise JConnect JDBC Driver

Supported Database Versions Adaptive Server Enterprise 11.x, 12.x

Class Name com.sybase.jdbc2.jdbc.SybDriver (for jconn2.jar)
com.sybase.jdbc3.jdbc.SybDriver (for jconn3.jar)

Type 4

URL Syntax jdbc:sybase:Tds:ip-address:2048/database-name

Download Instructions Sybase Downloads (http://www.sybase.com/detail?id=1009796)
Filenames jeconn2.jar or jconn3.jar

Documentation URLSs jConnect Documentation (http://sybooks.sybase.com/onlinebooks/

group-jc/jcg0600e/pridbc)

Compatibility

The Adaptive Server driver is backward compatible. Database server updates and driver updates
are infreguent.

Security

The Adaptive Server driver supports SSL-encrypted transport. To enable SSL encryption, you
must specify a custom socket implementation viathe SYBSOCKET_FACTORY connection
property. For additional information on how to set connection properties, see “ Connection
Properties’ on page 45.

Connection Properties

The following table lists an important connection property for this driver.

Property Significance

SYBSOCKET_FACTORY Can be used to specify the class name of a custom socket implementation
that supports encrypted transport

110 Identity Manager Driver for JDBC: Implementation Guide

http://jdbc.postgresql.org/documentation/docs.html
http://jdbc.postgresql.org/documentation/80/ssl.html
http://www.sybase.com/detail?id=1009796
http://sybooks.sybase.com/onlinebooks/group-jc/jcg0600e/prjdbc

Using Unsupported Third-Party JDBC Drivers

Minimum Third-Party JDBC Driver Requirements

The Driver for JIDBC might not interoperate with all third-party JDBC drivers. If you use an
unsupported third-party JDBC driver, it must meet the following requirements:

+ Support required metadata methods

For acurrent list of therequired and optional java.sql.DatabaseM etaDatamethod callsthat the
Driver for IDBC makes, see Appendix D, “java.sgl.DatabaseM etaData Methods,” on
page 139.

+ Support other required JDBC methods

For alist of required JDBC methods that the Driver for IDBC uses, refer to Appendix E,
“Utilized IDBC Methods,” on page 141. You can usethislist in collaboration with third-party
driver documentation to identify potential incompatibilities.

Considerations When Using Other Third-Party JDBC Drivers

* Because the Driver for JDBC is directly dependent upon third-party JDBC driver
implementations, bugs in those implementations might cause this product to malfunction.

To assist you in debugging third-party JDBC drivers, the Driver for JIDBC supports the
following:

+ Tracing at the JDBC API leve (level 6)

¢ Third-party JDBC driver (level 7) tracing
+ Stored procedure or function support is alikely point of failure.
+ You'll probably need to write a custom driver descriptor file.

Specifically, you'll need to categorize error codes and SQL states for the third-party driver
that you are using.

Security Issues
To ensure that a secure connection exists between this product and a third-party driver, we
recommend the following:
+ Run this product remotely on the database server.

+ Use SSL to encrypt communications between the | dentity Manager server and the database
Server.

If you cannot run the Driver for JDBC remotely, you might want to use atype 2 or type 3 JDBC
driver. These driver types often facilitate a greater degree of security through middleware servers
or client APIs unavailable to other JDBC driver types. Some type 4 drivers support encrypted
transport, but encryption is the exception rather than the rule.

Third-Party JDBC Drivers 111

112 Identity Manager Driver for JDBC: Implementation Guide

Supported Databases

+ “Database Interoperability” on page 113

+ “Supported Databases’ on page 113
+ “Database Characteristics’ on page 114

Database Interoperability

The Identity Manager Driver for JDBC is designed to interoperate with a specific set of JDBC
driver implementations, instead of a specific set of databases. Consequently, the list of supported
databases is primarily driven by the capabilities of supported third-party JDBC drivers. A

secondary factor is testing resources.

Supported Databases

The following databases/database versions have been tested and are recommended for use with

this product:

Database Minor Version
IBM* DB2 Universal Database (UDB) 7 7.2 or higher
IBM* DB2 Universal Database (UDB) 8 8.1 or higher
Informix* Dynamic Server (IDS) 9.40 or higher

Microsoft SQL Server 7

7.5, Service Pack 4 or higher

Microsoft* SQL Server 8 (2000)

Service Pack 3a or higher

MySQL* 3 3.23.50 or higher

MySQL* 4 4.1 or higher

Oracle 8i Release 3 (8.1.7) or higher
Oracle 9i Release 2 (9.2.0.1) or higher
Oracle 10g Release 1 (10.0.2.1) or higher

PostgreSQL 7

7.4.6 or higher

Sybase* Adaptive Server Enterprise (ASE) 12

12.5 or higher

You can use the Driver for JDBC with other databases/database versions. However, Novell® does
not support them. To interoperate with this product, a database must:

Supported Databases 113

+ Support the SQL-92 entry level grammar.

+ Be JDBC-accessible.

Database Characteristics

+ “Database Features’ on page 114

+ “IBM DB2 Universal Database (UDB)” on page 117

* “Informix Dynamic Server (IDS)” on page 118

* “Microsoft SQL Server” on page 118

* “MySQL” on page 119

¢ “Oracle” on page 120

* “PosgreSQL” on page 120

+ “Sybase Adaptive Server Enterprise (ASE)” on page 121

Database Features

The following table is a summary of database features:

Database Schemas Views Identity Sequences Stored Functions Triggers Instead-Of-
Columns Procedures Triggers

IBMDB2UDB7 X X X 0 Xt Xt X 0
IBMDB2UDB8 X X X 0 Xt Xt X X
Informix IDS 9 X X X2 0 X3 X X 0

MS SQL 7 X X X 0 X 0 X 0

MS SQL 8 X X X 0 X X X X
MySQL 4 0 0 X4 0 0 0 0 0
Oracle 8i, 9i,10g X X 0 X X X X X
Postgres 7 X X X5 X X X X6 X8
Sybase ASE 12 X X X 0 X 0 X 0

DB2 natively supports stored procedures/functions written in Java. To write procedures using the
native SQL procedural language, install a C compiler on the database server.

The Informix identity column keyword is SERIALS.
Informix stored procedures cannot return values.
The MySQL identity column keyword is AUTO_ INCREMENT.

You can use a Postgres sequence object to provide default values for primary key columns,
effectively simulating an identity column.

114 Identity Manager Driver for JDBC: Implementation Guide

Postgres has a native construct called rules. This construct can be used to effectively simulate
triggers and instead-of -triggers. It also supports the use of triggers/instead-of-triggers writtenin a
variety of procedural programming languages.

Current Time Stamp Statements

The following table lists SQL statements used to retrieve the current date and time by database:

Database Current Time Stamp Statement ANSI-Compliant

IBM DB2 UDB SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH FIRST 1 ROW No
ONLY

Informix IDS SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM INFORMIX.SYSTABLES No

MSSQL SELECT (CURRENT_TIMESTAMP) Yes
MySQL SELECT (CURRENT_TIMESTAMP) Yes
Oracle SELECT (SYSDATE) FROM SYS.DUAL No
PostgreSQL SELECT (CURRENT_TIMESTAMP) Yes
Sybase ASE SELECT GETDATE() No

Stored Procedure and Function JDBC Call Syntaxes

The following table lists the SQL syntax for calling a stored procedure or function. Thisis useful
for formatting procedure and function calls in embedded SQL statements.

Database Stored Procedure/Function JDBC Call Syntax

IBM DB2 UDB {call schema-name.procedure-name(parameter-list)}

Informix IDS EXECUTE [PROCEDURE | FUNCTION] schema-name.procedure-name(parameter-list)
MSSQL EXECUTE schema-name.procedure-name(parameter-list)

MySQL (NA)

Oracle CALL schema-name.procedure-name(parameter-list)

PostgreSQL SELECT schema-name.procedure-name(parameter-list)

Sybase ASE EXECUTE schema-name.procedure-name(parameter-list)

Left Outer Join Operators

The following table lists outer join operators by database.

Database Left Quter Join Operator Ansi-Compliant
IBM DB2 UDB LEFT OUTER JOIN Yes
Informix IDS LEFT OUTER JOIN Yes

Supported Databases 115

Database

Left Outer Join Operator

Ansi-Compliant

MSSQL *= No
MySQL LEFT OUTER JOIN Yes
Oracle (+) No
PostgreSQL LEFT OUTER JOIN Yes
Sybase ASE *= No

NOTE: Oracle supports the ANSI-compliant left outer join operator LEFT OUTER JOIN as of version 10g.

Undelimited Identifier Case-Sensitivity

Database Case-Sensitive?
IBM DB2 UDB No
Informix IDS No
MSSQL No
MySQL Yes
Oracle No
PostgreSQL No
Sybase ASE Yes

Supported Transaction Isolation Levels

Database None Read Read Repeatable Serializable URL
Uncommitted Committed Read

IBM DB2 UDB 0 X Xt X Setting JDBC Transaction Isolation
Levels (http://publib.boulder.ibm.com/
infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/ad/tjvjdiso.htm)

MySQL (InnoDB Table Type) O X X Xt InnoDB Transaction Isolation Levels
(http://dev.mysqgl.com/doc/mysql/en/
innodb-transaction-isolation.html)

Oracle 0 0 Xt 0 JDBC Transaction Optimization (http://
www.oracle.com/technology/oramag/
oracle/02-jul/o42special_jdbc.html)

PostgreSQL 0 02 Xt 02 Transaction Isolation (http://

www.postgresql.org/docs/current/
static/transaction-iso.html)

116 Identity Manager Driver for JDBC: Implementation Guide

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://www.oracle.com/technology/oramag/oracle/02-jul/o42special_jdbc.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

1Thisisthe default isolation level for this database.
2Can be set, but it is aliased to a supported isolation level.

Commit Keywords

The following table identifies the commit keywords for supported databases:

Database Commit Keyword

IBM DB2 UDB COMMIT

Informix IDS COMMIT WORK?

MSSQL GO
MySQL COMMIT
Oracle COMMIT

PostgreSQL COMMIT

Sybase ASE GO

For logging and ANSI-compliant databases. Non-logging databases do not support transactions.

IBM DB2 Universal Database (UDB)

The following table lists properties for this database.

Property Value

Current Timestamp SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH FIRST 1 ROW ONLY
Statement

Stored Procedure/ {call schema-name.procedure-name(parameter-list)}

Function Call Syntax

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join Operator LEFT OUTER JOIN

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly
sets at runtime. Do not explicitly override these settings.

Display Name Tag Name Value

Current Timestamp current-timestamp-stmt SELECT (CURRENT TIMESTAMP) FROM
Statement: SYSIBM.SYSDUMMY1 FETCH FIRST 1 ROW ONLY
Timestamp Translator class: time-translator-class com.novell.nds.dirxml.driver.jdbc.db.DB2Timestamp

Supported Databases 117

Known Issues

+ Thetimestamp format is proprietary.

See “Known Issues’ on page 121.

Informix Dynamic Server (IDS)

The following table lists properties for this database.

Property Value

Current Timestamp SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM INFORMIX.SYSTABLES
Statement

Stored Procedure/ EXECUTE [PROCEDURE | FUNCTION] schema-name.procedure-name(parameter-list)
Function Call Syntax

Case-Sensitive? No

Commit Keyword COMMIT WORK?

Left Outer Join Operator LEFT OUTER JOIN

For logging and ANSI-compliant databases. Nonlogging databases do not support transactions.

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly
sets at runtime. Do not explicitly overwrite these settings.

Display Name Tag Name Value
Current Timestamp current-timestamp-stmt SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM
Statement: INFORMIX.SYSTABLES

Known Issues

+ NUMERIC or DECIMAL columns cannot be used as primary keys unless the scale (the number
of digitsto the right of the decimal point) is explicitly set to O when the table is created. By
default, the scaleis set to 255.

Microsoft SQL Server
The following table lists properties for this database:

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call Syntax EXECUTE schema-name.procedure-name(parameter-list)

Case-Sensitive? No

Commit Keyword GO

118 Identity Manager Driver for JDBC: Implementation Guide

Property Value

Left Outer Join Operator *=

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly
sets at runtime. Do not explicitly overwrite these settings.

Display Name Tag Name Value

Add default values on insert? add-default-values-on-view-insert true

Left outer-join operator: left-outer-join-operator *=

MySQL

The following table lists properties for this database.
Property Value
Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call Syntax (NA)

Case-Sensitive? Yes
Commit Keyword COMMIT
Left Outer Join Operator LEFT OUTER JOIN

Dynamic Defaults

The following table lists database compatibility parameters that are dynamically configured at
runtime for this database.

Display Name Tag Name Value
Supports schemas in metadata supports-schemas-in-metadata-retrieval false
retrieval?

Known Issues

+ TIMESTAMP columns, when updated after being initially set to O or NULL, are aways set to
the current date and time. To compensate for this behavior, we recommend that you map
Identity Vault Time and Timestamp syntaxes to DATET IME columns.

Supported Databases 119

Oracle

The following table lists properties for this database:

Property Value

Current Timestamp Statement SELECT (SYSDATE) FROM SYS.DUAL

Stored Procedure/Function Call Syntax CALL schema-name.procedure-name(parameter-list)

Case-Sensitive? No
Commit Keyword COMMIT
Left Outer Join Operator (+)

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly
sets at runtime. Do not explicitly overwrite these settings.

Display Name Tag Name Value

Left outer-join operator left-outer-join-operator (+)

Exclude filter expression exclude-table-filter BIN\$.{22}==\$0

Lock statement generator class lock-generator-class com.novell.nds.dirxml.driver.jdbc.db.lock.OralLoc
kGenerator

NOTE: The default exclusion filter is intended to omit from the synchronization schema dropped tables visible
in Oracle 10g (database objects visible to the Driver for JDBC at runtime).

Limitations

+ LONG, LONG RAW and BLOB columns cannot be referenced in atrigger.

You can't reference columns of these types by using the : NEW qualifier in atrigger, including
instead-of-triggers.

PosgreSQL
The following table lists properties for this database:
Property Value
Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call Syntax SELECT schema-name.procedure-name(parameter-list)

Case-Sensitive? No
Commit Keyword COMMIT
Left Outer Join Operator LEFT OUTER JOIN

120 Identity Manager Driver for JDBC: Implementation Guide

Known Issues

*

PostgreSQL does not support <check-object-password> events. You control
authentication by manually inserting entries into the pg_hba. conf file.

Sybase Adaptive Server Enterprise (ASE)

The following table lists properties for this database:
Property Value
Current Timestamp Statement SELECT GETDATE()

Stored Procedure/Function Call Syntax EXECUTE schema-name.procedure-name(parameter-list)

Case-Sensitive?

Yes

Commit Keyword

GO

Left Outer Join Operator

Fo—

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly
sets at runtime. Do not explicitly overwrite these settings.

Display Name Tag Name Value

Current timestamp statement current-timestamp-stmt SELECT GETDATE()

Left outer-join operator left-outer-join-operator *=

Timestamp Translator class time-translator-class com.novell.nds.dirxml.driver.jdbc.db.SybaseTimestamp

Known Issues

*

Padding and truncation of binary values.

To ensure AN SI-compliant padding and truncation behavior for binary values, make sure that
binary column types (other than IMAGE) meet the following criteria:

+ They are exactly the size of the eDirectory attribute that maps to them.
+ They are constrained NOT NULL.
* They are added to the Publisher and Subscriber Creation policies.

If they are constrained NULL, trailing zeros, which are significant to eDirectory, will be
truncated. If binary columns exceed the size of their respective eDirectory attributes, extraOs
will be appended to the value.

The recommended solution isto use only the IMAGE data type when synchronizing binary
values.

DATET IME fractions of a second are rounded.
Sybase Timestamps are at best accurate to 1/300th of a second (approximately.003 seconds).

The database server rounds to the nearest 1/300™" of a second as opposed to the nearest 1/
1000™ of a second (.001 seconds or 1 millisecond).

Supported Databases 121

+ Timestamp formats are proprietary.

See “Known Issues’ on page 121

122 Identity Manager Driver for JDBC: Implementation Guide

Using the Association Utility

This section contains information on using the Association Utility. The utility normalizes
associations of objects associated under the 1.0 or later versions of the Driver for JDBC. It also
provides several other features that simplify driver administration.

Thisversion of the utility iscompatible with the 1.0 and | ater versions of the Driver for JDBC, and
supersedes al previous versions.

Understanding the Association Utility

The Association Utility supports seven independent operations:

Operation

Description Read-Write
Functionality

List objects associated with a driver (default). Read-only
List objects that have multiple associations to a driver. Read-only
List objects that have invalid associations to a driver. Read-only

An association is invalid if:
+ |tis malformed.

For example, the association is missing the schema RDN, missing
the table RDN, or the schema keyword is misspelled.

+ [t contains database identifiers that do not map to identifiers in the
target database.

For example, an association includes a mapping to a table that
does not exist.

+ It maps to no row or multiple rows.

An association is broken if it doesn’t map to a row. Also,
associations aren't unique if they map to more than one row.

List objects that need to be normalized. Read-only

A normalized association is valid, correctly ordered, and uses the
correct case. Normal case is uppercase for case-insensitive
databases and mixed case for case-sensitive databases.

Normalize object associations listed during operation 4. Write

Using the Association Utility

123

Operation Description Read-Write
Functionality

6 List object associations to be modified. Read-only

Allows for global replacement of schema, table, and column names
based on search criteria.

This operation requires two parameters (oldRDN and newRDN). See
“Editing Associations” on page 125.

7 Modify object associations listed during operation 6. Write

This operation requires two parameters (oldRDN and newRDN). See
“Editing Associations” on page 125.

Before You Begin

Modifying associations can potentially cause problems. If associations are corrupted, Identity
Manager ceases to function. Therefore, use write operations only when necessary. To avoid
unintentionally corrupting an association, the Association Utility creates an undo Idiff file for all
write operations.

Review the following cautions before using the utility:

+ The Association Utility, like the driver, assumes database identifiers are undelimited
(unguoted and contain no special characters).

+ Update all object associations related to adriver together.

IMPORTANT: It is extremely important that you update all object associations related to a driver
together.

To see all of the objects associated with a particular driver, run the Association Utility on the
Identity Manager server associated with a particular driver instance.

The LDAP search base must contain all of the objects associated with a particular driver.

NOTE: To ensure complete containment, we recommend that you use your tree's root container as the
search base.

+ Make surethat the IDBC URL of the target database supplied to this utility isthe same as the
URL that the driver uses. Pointing this utility at a case-insensitive database when the database
is actually case-sensitive might result in associations being normalized to the wrong case.

+ Because the Association Utility runslocally, it uses an unsecured connection. Therefore, the
Identity Vault LDAP server must be temporarily configured to accept clear text passwords.
Depending upon the third-party JDBC driver you are using, the database connection
established by this utility might be insecure.

NOTE: We recommend changing the driver’s authentication password on the database after you run this
utility.

Using the Association Utility

124

Run the Association Utility once for each instance of the driver installed on an Identity Manager
server. In theinstall-dir\jdbc\util directory, abatch file association.bat or shell script
association.sh (depending upon your platform) starts the utility.

A propertiesfileis provided for each supported database. Thesefilesarein theinstall-dir\jdbc\util
directory.

Identity Manager Driver for JDBC: Implementation Guide

Database Properties Filename

IBM DB2 Universal Database properties_db2.txt

Informix Dynamic Server properties_ifx_ansi.txt
properties_ifx_log.txt
properties_ifx_no_log.txt

Microsoft SQL Server properties_ms.txt
MySQL properties_my.txt
Oracle properties_ora.txt
PostgreSQL properties_pg.txt
Sybase Adaptive Server Enterprise properties_syb.txt

This utility does not work with Informix ANSI-compliant databases.

NOTE: For more information on how to run the utility from the command line, refer to run.bat in the install-
dir\tools\util directory.

1 Stopthedriver.

2 Runthe Association Utility to identify and remove extraneous associations (operations 2 and
3).

No object associated by this product should have multiple associations. Manually remove
extraneous associations on a per object basis. Operation 3 might help you identify which of
the multiple associationsis actually valid. After you know this, you can probably discard the
extraneous associations.

3 Runthe Association Utility to identify and fix invalid associations (operation 3 and possibly
operations 6 and 7).

Asagenerd rule, if the problem isisolated, manually edit each invalid association. If the
problem is repetitive and affects alarge number of associations, consider using operations 6
and 7. This utility can replace bad identifiers on aglobal basis, but cannot insert or remove
them where they do not already exist.

4 Run the Association Utility to normalize associations (operations 4 and 5).

Editing Associations

The Association Utility requires two parameters (oldRDN and newRDN) for operations 6 and 7,
which search and replace.

The first value (for example, schema) in the parameter is the search criterion. The second value
(for example, old) is the replacement value. Under certain scenarios, you can use the wildcard
character * to generalize the search criterion or replacement value.

Three types of search and replace operations are possible:

Using the Association Utility 125

126

Option Description Example

Replace the schema name Replace schema old with schema new. oldRDN: schema=old
Wildcards are supported on the right side newRDN: schema=new
only.

Replace the table name Replace table old with table new. oldRDN: table=old

Wildcards are not supported.

Replace the column name Replace column old with column new.
Wildcards are required on the right side,

but they aren’t supported on the left side.

newRDN: table=new

oldRDN: old=*
newRDN: new=*

Identity Manager Driver for JDBC: Implementation Guide

Uninstalling the IDM Driver for JDBC

+ “Deleting IDM Driver Objects’ on page 127
+ “Running the Product Uninstaller” on page 127
+ “Executing Database Uninstallation Scripts’ on page 127

IMPORTANT: We recommend that you install and uninstall preconfigured drivers and database scripts as a
unit. To prevent unintentional mismatching, database scripts and preconfigured drivers contain headers with a
version number, the target database name, and the database version.

Deleting IDM Driver Objects

When deleting Novel® eDirectory™ objects, you must delete all child objects before you can
delete a parent object. For example, you must delete all rules and style sheets on the Publisher
channel before you can delete the Publisher object. Similarly, you must delete both the Publisher
and Subscriber objects before you can delete the Driver object.

To remove a driver object from an Identity Vault:
1 In Novell iManager, click DirK ML Management > Overview.
2 From Overview, locate the driver set where the driver exists, then click Delete Driver.
3 Click the Driver you want to delete, then click OK.

Running the Product Uninstaller

Uninstallation procedures vary by platform.

To uninstall the Identity Manager Driver for JIDBC on Windows, use Add or Remove Programsin
the Control Panel.

Executing Database Uninstallation Scripts

This section hel ps you execute database uninstallation SQL scripts.
+ “IBM DB2 Universal Database (UDB) Installation” on page 29
+ “Informix Dynamic Server (IDS) Installation” on page 29
* “Microsoft SQL Server Installation” on page 30
+ “MySQL Uninstallation” on page 128
+ “OracleInstallation” on page 30

“PostgreSQL Installation” on page 31

*

*

“Sybase Adaptive Server Enterprise (ASE) Installation” on page 31

Uninstalling the IDM Driver for JDBC 127

IBM DB2 Universal Database (UDB) Uninstallation
The directory context for DB2 isinstall-dir\jdbc\sgl\db2_udbl\install.

1 Dropthe idm, indirect and di rect operating system user accounts.

2 If you haven't already done so, change the name of the administrator account name and
password in the installation scripts.

3 Using the Command Line Processor (CLP) execute script uninstall .sql.

For example:
db2 -f uninstall.sqgl

IMPORTANT: This script won’t execute in the Command Center interface beyond version 7. It uses the
‘\" line continuation character. Later versions of the Command Center don’t recognize this character.

4 Deletethe idm_db2. jar file.

Informix Dynamic Server (IDS) Uninstallation

The directory context for Informix SQL scriptsisinstall-dir\jdbc\sgl\informix_ids\install.
1 Drop the idm operating system user account.
2 Start aclient such as SQL Editor.

3 Logontoyour server asuser informix or another user with DBA (database administrator)
privileges.

By default, the password for informix is informix.

NOTE: If you execute scripts as a user other than informix, change all references to informix in the install
scripts prior to execution.

4 If youaren't using the informix account with the default password, change the name of the
DBA account name and password in the installation scriptsif you haven't already done so.

5 Open and execute uninstal 1 .sql from theansi (transactional, ANSI-compliant), 1og
(transactional, non-ANSI-compliant), or no_log (non-transactional, non-ANSI-compliant)
subdirectory, depending upon which type of database you installed.

Microsoft SQL Server Uninstallation

The directory context for Microsoft SQL Server scriptsisinstall-dir\jdbc\sgl\mssgl\install.
1 Start aclient such as Query Analyzer.
2 Log onto your database server as user sa.
By default, the sa user has no password.
3 Open and execute the first installation script uninstal I _sql.

NOTE: The execute hotkey in Query Analyzer is F5.

MySQL Uninstallation
The directory context for MySQL SQL scriptsisinstall-dir\jdbc\sgl\mysgl\install.

1 FromaMySQL client, such asmysqgl, log on asuser root or another user with administrative
privileges.

128 Identity Manager Driver for JDBC: Implementation Guide

For example, from the command line execute
mysql -u root -p

By default, the root user has no password.
2 Executethe uninstallation script uninstall _sql.

For example:
mysql> \. c:\uninstall.sql

TIP: Don’t use a semicolon to terminate this statement.

Oracle Uninstallation

The directory context for Oracle SQL scriptsisinstall-dir\jdbc\sgl\oracl€\install.
1 From an Oracle client, such as SQL Plus, log on as user SYSTEM.
By default, the password for SYSTEM is MANAGER .

NOTE: If you execute scripts as a user other than SYSTEM with password MANAGER, change all
references to SYSTEM in the scripts prior to execution.

2 Executethe uninstallation script uninstall _sql.

For example:
SQL> @c:\uninstall.sql

PostgreSQL Uninstallation

Thedirectory context for PostgreSQL scriptsisinstall-dir\jdbc\sgl\postgres\install. The directory
context for executing Postgres commands is postgres-install-dir/pgsgl/bin.

1 From a Postgres client such as psgl, log on as user postgres to the i dm database.

For example, from the UNIXC command line, execute
./psqgl -d idm postgres

By default, the Postgres user has no password.
2 Frominside psgl, execute the script uninstal l .sql.

For example:
idm=# \1 uninstall_sql

3 Drop the database idm.

For example, from the UNIX command line, execute
-/dropdb idm

4 Remove or comment out entries for the idm user from the pg_hba. conf file.
For example:
#host idm idm 255.255.255.255 255.255.255.0

5 Restart the Postgres server to effect changes made to the pg_hba. conf file.

Sybase Adaptive Server Enterprise (ASE) Uninstallation
The directory context for Sybase SQL scriptsis install-dir\jdbc\sgl\sybase ase\install.

1 From a Sybase client, such asisqgl, log on as user sa.

Uninstalling the IDM Driver for JDBC 129

2 Executetheinstallation script uninstall.sql.

For example, from the command line, execute
isql -U sa -P -1 uninstall._sqgl

By default, the sa account has no password.

130 Identity Manager Driver for JDBC: Implementation Guide

Best Practices

The following section lists important best practices for using the Driver for JIDBC. You can find
additional information in Chapter 4, “ Configuring the Driver for JDBC,” on page 35 and Chapter
5, “Advanced Configuration,” on page 69.

*

For direct synchronization, prefix one or more view column names with “pk_" (case-
insensitive).

For both direct and indirect synchronization, use different primary key column names
between logical database classes.

Delimit (double-quote) primary key values placed in the event log table_key field if they
contain the following characters:

N A R

This caution is usually an issue only if the primary key column is abinary type.

When eDirectory™ is the authoritative source of primary key values, GUID rather than CN is
recommended for use as aprimary key. Unlike CN, GUID is single-valued and does not
change.

If foreign key columns link child and parent tables, omit the columns from publication
triggers.

If primary key columns are static (they do not change), do not include them in publication
triggers.

In a production environment, turn off tracing.

Placethe jdbc: type=""query" attribute value on all embedded SELECT statements. Place
the jdbc : type=""update"" attribute value on all embedded INSERT, UPDATE and DELETE
statements.

For performance and security reasons, run the driver remotely whenever possible.

Best Practices 131

132 Identity Manager Driver for JDBC: Implementation Guide

FAQ

+ “Why can’t the driver see my tables or views?’ on page 133

+ “How do | synchronize with tables located in multiple schemas?’ on page 133

+ “Why isn't the driver processing rowsin the event log table?’ on page 134

+ “Can the driver manage database user accounts?’ on page 134

+ “Can thedriver synchronize large binary and string data types?’ on page 134

+ “Why is publication so slow?’ on page 134

¢ “Can the driver synchronize multiple classes?’ on page 134

+ “Does the driver support encrypted transport?’ on page 135

+ “How do | map multivalue attributes to single-val ue database fields?” on page 135

*

“Why isthe driver synchronizing garbage strings?’ on page 135

Why can’t the driver see my tables or views?

The driver is capable of synchronizing only tables that have explicit primary key constraints and
views that contain one or more columns prefixed with “pk_” (case-insensitive). The driver uses
these constraints to determine which fields to use when constructing associations. As such, the
driver ignores any unconstrained tables.

If you are trying to synchronize with tables or viewsthat lack the necessary constraints, either add
them or synchronize to intermediate tables with the required constraints.

Another possibility isthat the driver lacks the necessary database privileges to see the tables.
Usually, visibility is determined by the SELECT privilege.

How do | synchronize with tables located in multiple schemas?

Do one of the following:

*

Alias the tables into the synchronization schema.

*

Synchronize to intermediate tables in the synchronization schema and move the data across
schema boundaries.

¢ Useaview.
+ Create avirtua schema by using the Table/View Name parameter.
See “Table/View Name” on page 43.

FAQ 133

Why isn’t the driver processing rows in the event log table?

1 Check the perpetrator field of the rowsin question and make sure that the value is set to
something other than the driver’s database username.

The Publisher channel checks the perpetrator field to detect loopback eventsif the
Publisher channel Allow Loopback parameter is set to Boolean False (the default). See
“Allow Loopback?’ on page 64.

When set to Boolean False, the Publisher channel ignores all records where the
perpetrator fieldvalueisequa tothedriver's database username. The driver’s database
username is specified using the Authentication ID parameter. See“ Authentication ID” on

page 38.
2 Ensurethat therecord’'sstatus fieldissetto ‘N’ (new).

Records with status fields set to something other than ‘N’ will not be processed.
3 Make sureto explicitly commit changes.

Changes are often tentative until explicitly committed.

Can the driver manage database user accounts?

Yes. You can manage database accounts by using embedded SQL. For more information, see
“Embedding SQL Statementsin XDS Events’ on page 89.

Can the driver synchronize large binary and string data types?

Yes. Large binary and string data types can be subscribed and published. Publish large binary and
string data types by using query-back event types. For additional information, see “Event Types’
on page 34.

Why is publication so slow?

If the event log table contains alarge number of rows, index the table. Example indexes are
provided in al database installation scripts. By using trace level 3, you can view the statements
that the driver uses to maintain the event log.

You can further refine indexes in the installation scripts to enhance publication performance.
Placing indexes in a different tablespace or physical disk than the event log table also enhances
publication performance.

Furthermore, in a production environment, set the Delete Processed Rows parameter to Boolean
False, unless processed rows are being periodically moved to another table. See* Del ete Processed
Rows?’ on page 63.

Can the driver synchronize multiple classes?

134

Yes. However, primary key column names must be unique between logical database classes. For
example, if classl is mapped to tablel with primary key column name keyl, and class2 is mapped
to table2 with primary key column name key2, then the name of keyl cannot equal key?2.

This requirement can always be satisfied, no matter which synchronization model is employed.

Identity Manager Driver for JDBC: Implementation Guide

Does the driver support encrypted transport?

No. How the driver communi cates with agiven database depends upon the third-party driver being
used. Some third-party drivers support encrypted transport, while others do not. Evenif encrypted
transport is supported, no standardized way existsto enable encryption between third-party JDBC
drivers.

The general solution for this problem isto remotely run the Driver for JDBC and your third-party
driver. This method allows both the Driver for JDBC and the third-party driver to run locally on

the database server. Then al data traveling across the network between the metadirectory engine
and the Driver for JDBC are SSL encrypted.

Another possihility isto use atype 3 or type 2 third-party JDBC driver. Database middleware and
client APIs usually provide encrypted transport mechanismes.

How do | map multivalue attributes to single-value database fields?

See “Mapping Multivalue Attributes to Single-Value Database Fields’ on page 79.

Why is the driver synchronizing garbage strings?

The database and the third-party driver are probably using incompatible character encoding.
Adjust the character encoding that your third-party driver uses.

For more information, refer to the Character Encoding Values (http://java.sun.com/j2se/1.5.0/
docs/guide/intl/encoding.doc.html) defined by Sun.

FAQ 135

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

136 Identity Manager Driver for JDBC: Implementation Guide

Supported Data Types

The Identity Manager Driver for JDBC can synchronize all JDBC 1 datatypes and a small subset
of JDBC 2 datatypes. How JDBC datatypes map to adatabase’s native data ty pes depends on the
third-party driver.

The following list includes the supported JDBC 1 java.sql. Types (http://java.sun.com/j2se/1.5.0/
docdapi/javalsgl/ Types.html).

+ Numeric Types.
¢+ java.sql.Types.BIGINT
¢+ java.sql.Types.BIT
¢ java.sql .Types.DECIMAL
+ java.sql .Types.DOUBLE
+ java.sql .Types.NUMERIC
+ java.sql .Types.REAL
+ java.sql .Types.FLOAT
¢ java.sql.Types. INTEGER
+ java.sql.Types.SMALLINT
¢ java.sql.Types.TINYINT
+ String Types:
¢ java.sql.Types.CHAR
¢ java.sql.Types.LONGCHAR
¢ java.sql.Types.VARCHAR
+ Time Types.
+ java.sql .Types.DATE
+ java.sql .Types.TIME
+ java.sql .Types.TIMESTAMP
* Binary Types:
¢ java.sql .Types.BINARY
+ java.sql.Types.VARBINARY
¢ java.sql.Types.LONGVARBINARY

The following list includes the supported JDBC 2 java.sql. Types (http://java.sun.com/j2se/1.5.0/
docdapi/javalsgl/Types.html).

Supported Data Types 137

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

¢ Large Object (LOB) Types:
+ java.sql.Types.CLOB
+ java.sql.Types.BLOB

138 Identity Manager Driver for JDBC: Implementation Guide

java.sgl.DatabaseMetaData Methods

This section lists the required and optional java.sgl.DatabaseM etaData (http://java.sun.com/j2se/
1.5.0/docg/api/javalsgl/DatabaseM etaData.html) methods.

Required JDBC 1 methods:

*

*

*

*

getColumns(java.lang.String catal og, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String columnNamePattern):java.sgl.ResultSet

getPrimaryK eys(java.lang.String catal og, java.lang.String schema, java.lang.String
table):java.sql.ResultSet

getTables(javalang.String catalog, java.lang.String schemaPattern, javalang.String
tableNamePattern, java.lang.String[] types):java.sgl.ResultSet

storesL owerCasel dentifiers():boolean
storesMixedCasel dentifiers():boolean
storesUpperCasel dentifiers():boolean

Optiona JDBC 1 methods:

*

*

*

dataDefinitionCausesTransactionCommit():boolean
dataDefinitionlgnoredl nTransactions():boolean
getDatabaseProductName():java.lang.String
getDatabaseProductVersion():javalang.String
getDriverMgjorVersion():int
getDriverMinorVersion():int
getDriverName():java.lang.String
getDriverVersion():java.lang.String

getExportedK eys(java.lang.String catal og, javalang.String schema, java.lang.String
table):java.sql.ResultSet

getMaxStatements():int
getMaxConnections():int
getMaxColumnslnSelect():int

getProcedureColumns(String catal og, String schemaPattern, String procedureNamePattern,
String columnNamePattern):java.sgl.ResultSet

getSchemas():java.sgl.ResultSet
getTableTypes():java.sgl.ResultSet
getUserName():java.lang.String

java.sgl.DatabaseMetaData Methods 139

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html

140

*

*

supportsColumnAliasing():bolean

supportsDataDefinitionAndDataM aniuplationTransactions():bool ean
supportsDataM anipul ationTransactionsOnly():boolean
supportsLimitedOuterJoins():boolean

supportsM ultipleTransactions():boolean

supportsSchemasl nDataM ani pul ation():boolean

supportsSchemasl nProcedureCalls():boolean

supportsTransactionl solationLevel (int level):boolean

supportsTransactions():boolean

Optiona JDBC 2 methods:

*

supportsBatchUpdates():boolean

Optiona JDBC 3 methods:

*

supportsGetGeneratedK eys():boolean

Identity Manager Driver for JDBC: Implementation Guide

Utilized JDBC Methods

This section lists the IDBC interface methods (other than java.sgl.DatabaseM etaData (http://
java.sun.com/j2se/1.5.0/docs/api/javalsgl/DatabaseM etaData.html) methods) that the driver for
JDBC uses. Methods are organized by class.

Often, third-party JDBC driver vendors list defects or known issues by method. You can use the
following methods in collaboration with third-party JDBC driver documentation to troubleshoot
or anticipate potential interoperability problems.

1

java.sgl.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/javalsl/
DriverManager.html)

java.sgl.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/javalsql/
CallableStatement.html)

3. java.sgl.Connection (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/Connection.html)

java.sgl.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/
PreparedStatement.html)

java.sgl.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/ResultSet.html)

6. java.sgl.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/javalsql/

ResultSetM etaData.html)
java.sgl.Statement (http://java.sun.com/j2se/1.5.0/docs api/javalsgl/ Statement.html)
java.sgl. Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/ Timestamp.html)

The following table lists java.sgl.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/javal
sgl/DriverManager.html) methods that the Driver for JDBC uses:

Method Signature JDBC Version Required?
getConnection(String url, java.util.Properties info):java.sgl.Connection 1 yes?!
getConnection(String url, java.util.Properties info):java.sgl.Connection 1 yest
setLogStream(java.io.PrintStream out):void 1 no

10ne method or the other.

Utilized JDBC Methods 141

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html

The following table lists java.sgl.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/javal
sgl/CallableStatement.html) methods that the Driver for JIDBC uses:

Method Signature JDBC Version Required?
getBigDecimal(int parameterindex, int scale):java.math.BigDecimal 1 yes
getBoolean(int parameterindex):boolean 1 yes
getBoolean(String parameterName):boolean 3 no
getByte(int parameterindex):byte 1 yes
getByte(String parameterName):byte 3 no
getBytes(int parameterindex):byte[] 1 yes
getBytes(String parameterName):byte([] 3 no
getDate(int parameterindex):java.sql.Date 1 yes
getDate(String parameterName):java.sql.Date 3 no
getDouble(int parameterindex):double 1 yes
getDouble(String parameterName):double 3 no
getFloat(int parameterindex):float 1 yes
getFloat(String parameterName):float 3 no
getint(int parameterindex):int 1 yes
int getInt(String parameterName) 3 no
getLong(int parameterindex):long 1 yes
getLong(String parameterName):long 3 no
getShort(int parameterindex):short 1 yes
getShort(String parameterName):short 3 no
getString(int parameterindex):String 1 yes
getString(String parameterName):String 3 no
getTime(int parameterindex):java.sql.Time 1 yes
getTime(String parameterName):java.sql.Time 3 no
getTimestamp(int parameterindex):java.sql. Timestamp 1 yes
getTimestamp(String parameterName):java.sqgl.Timestamp 3 no
registerOutParameter(int parameterindex, int sqlType):void 1 yes
wasNull():boolean 1 yes

142 Identity Manager Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html

The following table lists java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/javalsgl/
Connection.html) methods that the driver for JDBC uses:

Method Signature JDBC Version Required?
close():void 1 yes
commit():void 1 no
createStatement():java.sgl.Statement 1 yes
getAutoCommit():boolean 1 no
getMetaData():java.sql.DatabaseMetaData 1 yes
getTransactionlsolation():int 1 no
getWarnings():java.sgl.SQLWarning 1 no
isClosed():boolean 1 no
prepareCall(String sql):java.sql.CallableStatement 1 no
prepareStatement(String sql):java.sql.PreparedStatement 1 yes
rollback():void 1 no
setAutoCommit(boolean autoCommit):void 1 no
setTransactionlsolation(int level):void 1 no

Thefollowing tablelistsjava.sgl.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/javal
sgl/PreparedStatement.html) methods that the Driver for JDBC uses:

Method Signature JDBC Version Required?
clearParameters() :void 1 no
execute():boolean 1 yes
executeQuery():java.sql.ResultSet 1 yes
executeUpdate():int 1 yes
setBigDecimal(int parameterindex, java.math.BigDecimal x):void 1 yes
setBoolean(int parameterindex, boolean x):void 1 yes
setByte(int parameterindex, byte x):void 1 yes
setBytes(int parameterindex, byte x[]):void 1 yes
setDate(int parameterindex, java.sql.Date x):void 1 yes
setDouble(int parameterindex, double x):void 1 yes
setFloat(int parameterindex, float x):void 1 yes
setint(int parameterindex, int x):void 1 yes

Utilized JDBC Methods 143

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html

Method Signature JDBC Version Required?

setLong(int parameterindex, long x):void 1 yes
setNull(int parameterindex, int sqlType):void 1 yes
setShort(int parameterindex, short x):void 1 yes
setString(int parameterindex, String x):void 1 yes
setTime(int parameterindex, java.sql.Time x):void 1 yes
setTimestamp(int parameterindex, java.sql.Timestamp x):void 1 yes

The following table lists java.sgl.ResultSet (http://java.sun.com/j2se/1.5.0/docapi/javalsgl/
ResultSet.html) methods that the Driver for JIDBC uses:

Method Signature JDBC Version Required?
close():void 1 yes
getBigDecimal(int columnindex, int scale):java.math.BigDecimal 1 yes
getBigDecimal(String columnName, int scale):java.math.BigDecimal 1 yes
getBinaryStream(int columnindex):java.io.InputStream 1 yes
getBinaryStream(String columnName)java.io.InputStream 1 yes
getBoolean(int columnindex):boolean 1 yes
getBoolean(String columnName):boolean 1 yes
getByte(int columnindex):byte 1 yes
getByte(String columnName):byte 1 yes
getBytes(int columnindex):byte[] 1 yes
getBytes(String columnName):byte[] 1 yes
getDate(int columnindex):java.sqgl.Date 1 yes
getDate(String columnName)java.sql.Date 1 yes
getFloat(int columnindex):float 1 yes
getFloat(String columnName):float 1 yes
getint(int columnindex):int 1 yes
getint(String columnName):int 1 yes
getLong(int columnindex):long 1 yes
getLong(String columnName):long 1 yes
getMetaData():java.sql.ResultSetMetaData 1 no
getShort(int columnindex):short 1 yes

144 Identity Manager Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

Method Signature

JDBC Version Required?

getShort(String columnName):short 1 yes
getString(int columnindex):String 1 yes
getString(String columnName):String 1 yes
getTime(int columnindex):java.sql.Time 1 yes
getTime(String columnName):java.sql.Time 1 yes
getTimestamp(int columnindex):java.sqgl.Timestamp 1 yes
getTimestamp(String columnName):java.sql.Timestamp 1 yes
getWarnings():java.sql.SQLWarning 1 no

The following table lists java.sgl.ResultSetM etaData (http://java.sun.com/j2se/1.5.0/docs/api/

javalsgl/ResultSetM etaData.html) methods that the Driver for JDBC uses.

Method Signature

JDBC Version Required?

getColumnCount():int 1 no
getColumnName(int column):String 1 no
getColumnType(int column):int 1 no

The following table lists java.sgl. Statement (http:/java.sun.com/j2se/1.5.0/docs/api/javalsql/
Statement.html) methods that the Driver for JIDBC uses:

Method Signature

JDBC Version Required?

addBatch(java.lang.String sql):void 2 no
clearBatch():void 2 no
clearWarnings():void 1 no
close():void 1 yes
execute(java.lang.String sql):boolean 1 yes
executeBatch():int[] 2 no
executeUpdate(String sql):int 1 yes
executeQuery(String sql):java.sgl.ResultSet 1 yes
getGeneratedKeys():java.sql.ResultSet 3 no
getMoreResults():boolean 1 no
getResultSet():java.sqgl.ResultSet 1 yes
getUpdateCount():int 1 no

Utilized JDBC Methods

145

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

146

Method Signature

JDBC Version Required?

getWarnings():java.sql.SQLWarning

1

no

The following table lists java.sgl. Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/javalsql/

Timestamp.html) methods that the Driver for JDBC uses.

Method Signature

JDBC Version Required?

getNanos():int 1 yes
getTime():long 1 yes
setNanos(int n):void 1 yes
setTime(long time):void 1 yes
toString ():String 1 yes

Identity Manager Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

Third-Party JDBC Driver Descriptor DTD

This section contains the DTD for third-party JDBC descriptor files.

<?xml version="1_.0" encoding="UTF-8"?>
<IELEMENT actions (exec-sql | check-for-closed-connection | fetch-metadata | rollback)*>
<IELEMENT add-default-values-on-view-insert (#PCDATA)>
<IELEMENT authentication (sql-state | error-code | sgl-state-class | error-code-range |
actions)*>
<IELEMENT check-for-closed-connection EMPTY>
<IELEMENT column-position-comparator (#PCDATA)>
<IELEMENT connection-properties (property*)>
<IELEMENT connectivity (sql-state | error-code | sql-state-class | error-code-range |
actions)*>
<IELEMENT current-timestamp-stmt (#PCDATA)>
<IELEMENT error-code (value)>
<IATTLIST error-code
description CDATA #IMPLIED
>
<IELEMENT error-code-range (from, to)>
<IATTLIST error-code-range
description CDATA #IMPLIED
>
<IELEMENT errors (connectivity | authentication | retry | fatal)*>
<IELEMENT exclude-table-filter (#PCDATA)>
<IELEMENT exec-sql (#PCDATA)>
<IELEMENT fatal (sql-state | error-code | sqgl-state-class | error-code-range | actions)*>
<IELEMENT fetch-metadata EMPTY>
<IELEMENT from (#PCDATA)>
<IELEMENT function-return-method (#PCDATA)>
<IELEMENT handle-stmt-results (#PCDATA)>
<IELEMENT identity (name?, target-database?, jdbc-type?, jdbc-class?)>
<IELEMENT import (#PCDATA)>
<IELEMENT imports (import*)>
<IELEMENT include-table-filter (#PCDATA)>
<IELEMENT jdbc-class (#PCDATA)>
<IELEMENT jdbc-driver (imports?, identity, (metadata-override | connection-properties | sql-
type-map | options | errors)*)>
<IELEMENT jdbc-type (#PCDATA)>
<IELEMENT key (#PCDATA)>
<IELEMENT left-outer-join-operator (#PCDATA)>
<IELEMENT lock-generator-class (#PCDATA)>
<IELEMENT metadata-override (supports-schemas-in-procedure-calls?)>
<IELEMENT minimal-metadata (#PCDATA)>
<IELEMENT name (#PCDATA)>
<IELEMENT options (lock-generator-class | supports-schemas-in-metadata-retrieval | time-
translator-class | column-position-comparator | use-manual-transactions | minimal-metadata |
transaction-isolation-level | use-single-connection | exclude-table-filter | include-table-
filter | left-outer-join-operator | current-timestamp-stmt | add-default-values-on-view-insert
| reuse-statements | function-return-method | handle-stmt-results)*>

Third-Party JDBC Driver Descriptor DTD 147

<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<IATTLIST

property (key, value)>

retry (sql-state | error-code | sql-state-class | error-code-range | actions)*>
reuse-statements (#PCDATA)>

rollback EMPTY>

sql-state (value)>

sql-state

description CDATA #IMPLIED

>
<TELEMENT
<IATTLIST

sql-state-class (value)>
sql-state-class

description CDATA #IMPLIED

>

<IELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<IELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT

sql-type-map (type*)>
supports-schemas-in-metadata-retrieval (#PCDATA)>
supports-schemas-in-procedure-calls (#PCDATA)>
target-database (#PCDATA)>
time-translator-class (#PCDATA)>

to (#PCDATA)>

transaction-isolation-level (#PCDATA)>

type (from, to)>

use-manual-transactions (#PCDATA)>
use-single-connection (#PCDATA)>

value (#PCDATA)>

148 Identity Manager Driver for JDBC: Implementation Guide

Third-Party JDBC Driver Descriptor Import DTD

This section contains the DTD for third-party JDBC descriptor import files.

<?xml version="1_.0" encoding="UTF-8"?>

<IELEMENT actions (exec-sql | check-for-closed-connection | fetch-metadata | rollback)*>
<IELEMENT add-default-values-on-view-insert (#PCDATA)>

<IELEMENT authentication (sql-state | error-code | sqgl-state-class | error-code-range |
actions)*>

<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT

check-for-closed-connection EMPTY>

column-position-comparator (#PCDATA)>

connection-properties (property*)>

connectivity (sql-state | error-code | sgl-state-class | error-code-range |

actions)*>

<TELEMENT
<ITELEMENT
<IATTLIST

current-timestamp-stmt (#PCDATA)>
error-code (value)>
error-code

description CDATA #IMPLIED

>
<TELEMENT
<IATTLIST

error-code-range (from, to)>
error-code-range

description CDATA #IMPLIED

>

<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
<VTELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
errors)*>
<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
<VELEMENT
<VTELEMENT

errors (connectivity | authentication | retry | fatal)*>

exclude-table-filter (#PCDATA)>

exec-sql (#PCDATA)>

fatal (sql-state | error-code | sql-state-class | error-code-range | actions)*>
fetch-metadata EMPTY>

from (#PCDATA)>

function-return-method (#PCDATA)>

handle-stmt-results (#PCDATA)>

include-table-filter (#PCDATA)>

jdbc-driver (metadata-override | connection-properties | sql-type-map | options |

key (#PCDATA)>

left-outer-join-operator (#PCDATA)>

lock-generator-class (#PCDATA)>

metadata-override (supports-schemas-in-procedure-calls?)>

minimal-metadata (#PCDATA)>

options (lock-generator-class | supports-schemas-in-metadata-retrieval | time-

translator-class | column-position-comparator | use-manual-transactions | minimal-metadata |

transaction-isolation-level | use-single-connection | exclude-table-filter |

include-table-

filter | left-outer-join-operator | current-timestamp-stmt | add-default-values-on-view-insert
| reuse-statements | function-return-method | handle-stmt-results)*>

<ITELEMENT
<IELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<IATTLIST

property (key, value)>

retry (sql-state | error-code | sql-state-class | error-code-range | actions)*>
reuse-statements (#PCDATA)>

rollback EMPTY>

sql-state (value)>

sql-state

description CDATA #IMPLIED

Third-Party JDBC Driver Descriptor Import DTD 149

>
<IELEMENT sql-state-class (value)>
<IATTLIST sql-state-class
description CDATA #IMPLIED
>
<IELEMENT sqgl-type-map (type*)>
<IELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<IELEMENT supports-schemas-in-procedure-calls (#PCDATA)>
<IELEMENT time-translator-class (#PCDATA)>
<IELEMENT to (#PCDATA)>
<IELEMENT transaction-isolation-level (#PCDATA)>
<IELEMENT type (from, to)>
<IELEMENT use-manual-transactions (#PCDATA)>
<IELEMENT use-single-connection (#PCDATA)>
<IELEMENT value (#PCDATA)>

150 Identity Manager Driver for JDBC: Implementation Guide

Database Descriptor DTD

This section contains the DTD for database descriptor files.

<?xml version="1_.0" encoding="UTF-8"?>

<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<TELEMENT
<TELEMENT
<ITELEMENT
<IELEMENT
<IELEMENT
<ITELEMENT
<TELEMENT
<ITELEMENT

add-default-values-on-view-insert (#PCDATA)>
column-position-comparator (#PCDATA)>
current-timestamp-stmt (#PCDATA)>

database (imports?, identity, options?)>
exclude-table-filter (#PCDATA)>
function-return-method (#PCDATA)>
handle-stmt-results (#PCDATA)>
include-table-filter (#PCDATA)>

identity (name?, regex-name?, regex-version?)>
import (#PCDATA)>

imports (import*)>

left-outer-join-operator (#PCDATA)>
lock-generator-class (#PCDATA)>
minimal-metadata (#PCDATA)>

name (#PCDATA)>

options (lock-generator-class | supports-schemas-in-metadata-retrieval | time-

translator-class | column-position-comparator | use-manual-transactions | minimal-metadata |

transaction-isolation-level | use-single-connection | exclude-table-filter |

include-table-

filter | left-outer-join-operator | current-timestamp-stmt | add-default-values-on-view-insert
| reuse-statements | function-return-method | handle-stmt-results)*>

<ITELEMENT
<ITELEMENT
<IELEMENT
<IELEMENT
<IELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT

regex-name (#PCDATA)>

regex-version (#PCDATA)>

reuse-statements (#PCDATA)>
supports-schemas-in-metadata-retrieval (#PCDATA)>
time-translator-class (#PCDATA)>
transaction-isolation-level (#PCDATA)>
use-manual-transactions (#PCDATA)>
use-single-connection (#PCDATA)>

Database Descriptor DTD

151

152 Identity Manager Driver for JDBC: Implementation Guide

Database Descriptor Import DTD

This section contains the DTD for database descriptor import files.

<?xml version="1_.0" encoding="UTF-8"?>

<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<TELEMENT
<TELEMENT
<ITELEMENT
<IELEMENT

add-default-values-on-view-insert (#PCDATA)>
column-position-comparator (#PCDATA)>
current-timestamp-stmt (#PCDATA)>
exclude-table-filter (#PCDATA)>
function-return-method (#PCDATA)>
handle-stmt-results (#PCDATA)>
include-table-filter (#PCDATA)>
database (options?)>
left-outer-join-operator (#PCDATA)>
lock-generator-class (#PCDATA)>
minimal-metadata (#PCDATA)>

options (lock-generator-class | supports-schemas-in-metadata-retrieval | time-

translator-class | column-position-comparator | use-manual-transactions | minimal-metadata |

transaction-isolation-level | use-single-connection | exclude-table-filter |

include-table-

filter | left-outer-join-operator | current-timestamp-stmt | add-default-values-on-view-insert
| reuse-statements | function-return-method | handle-stmt-results)*>

<IELEMENT
<ITELEMENT
<IELEMENT
<IELEMENT
<ITELEMENT
<ITELEMENT

reuse-statements (#PCDATA)>
supports-schemas-in-metadata-retrieval (#PCDATA)>
time-translator-class (#PCDATA)>
transaction-isolation-level (#PCDATA)>
use-manual-transactions (#PCDATA)>
use-single-connection (#PCDATA)>

Database Descriptor Import DTD

153

154 Identity Manager Driver for JDBC: Implementation Guide

May 3, 2006

Documentation Updates

This section contains new or updated information on the Identity Manager Driver for JDBC.

The documentation is provided on the Web in two formats: HTML and PDF. The HTML and PDF
documentation are both kept up-to-date with the documentation changes listed in this section.

If you need to know whether a copy of the PDF documentation you are using is the most recent,
check the date that the PDF file was published. The date is on the title page.

New or updated documentation was published on the following dates:
+ “May 3, 2006” on page 155

Updated three broken links found in the document.

Documentation Updates 155

156 Identity Manager Driver for JDBC: Implementation Guide

	About This Guide
	1 Introducing the Identity Manager Driver for JDBC
	Overview
	New Features
	Driver Features
	Identity Manager New Features

	Driver Concepts
	JDBC
	Identity Manager Driver for JDBC
	Third-Party JDBC Driver
	Identity Vault
	Directory Schema
	Application Schema
	Database Schema
	Synchronization Schema
	Logical Database Class
	XDS

	Database Concepts
	Structured Query Language
	Data Manipulation Language
	Data Definition Language
	View
	Identity Columns/Sequences
	Transaction
	Stored Procedures or Functions
	Trigger
	Instead-Of-Trigger

	Data Synchronization Models
	Indirect Synchronization
	Direct Synchronization

	Triggerless Publication
	Triggerless vs. Triggered Publication
	Direct Triggerless Publication
	Indirect Triggerless Publication

	2 Understanding Driver Prerequisites
	Driver Prerequisites
	Supported Platforms
	Supported Databases
	Supported Third-Party JDBC Drivers
	Known Issues
	Limitations

	3 Installing or Upgrading the Driver for JDBC
	Installing
	Identity Manager-Side Installation
	Remote Loader Installation
	Database-Side Installation
	MySQL Installation

	Upgrading
	Upgrading from Versions Earlier than 1.5
	Upgrading from 1.5 or Later to 2.0
	Backward Incompatibilities

	Activating

	4 Configuring the Driver for JDBC
	Smart Configuration
	Configuration Parameters
	Deprecated Parameters
	Authentication Parameters
	Authentication ID
	Authentication Context
	Application Password

	Driver Parameters
	Uncategorized Parameters
	Database Scoping Parameters
	Connectivity Parameters
	Compatibility Parameters

	Subscription Parameters
	Uncategorized Parameters
	Primary Key Parameters

	Publication Parameters
	Uncategorized Parameters
	Triggered Publication Parameters
	Triggerless Publication Parameters
	Polling Parameters

	Trace Levels
	Configuring Third-Party JDBC Drivers

	5 Advanced Configuration
	Schema Mapping
	Logical Database Classes
	Indirect Synchronization
	Direct Synchronization
	Synchronizing Primary Key Columns
	Synchronizing Multiple Classes
	Mapping Multivalue Attributes to Single-Value Database Fields

	XDS Event to SQL Statement Mapping
	The Event Log Table
	Event Log Columns
	Event Types

	Embedding SQL Statements in XDS Events
	Variable Substitution
	Statement Placement
	Manual vs. Automatic Transactions
	Transaction Isolation Level
	Statement Type
	SQL Queries
	Data Definition Language (DDL) Statements
	Logical Operations
	Best Practices

	6 Third-Party JDBC Drivers
	Third-Party JDBC Driver Interoperability
	JDBC Drivers: Four Types
	Which Type To Use?

	Supported Third-Party JDBC Drivers
	Third-Party JDBC Driver Features
	JDBC URL Syntaxes
	JDBC Driver Class Names
	BEA Weblogic jDriver for Microsoft SQL Server
	IBM DB2 Universal Database JDBC Drivers
	Informix JDBC Driver
	Microsoft SQL Server 2000 Driver for JDBC
	MySQL Connector/J JDBC Driver
	Oracle Thin Client JDBC Drivers
	PostgreSQL JDBC Driver
	Sybase Adaptive Server Enterprise JConnect JDBC Driver

	Using Unsupported Third-Party JDBC Drivers
	Security Issues

	7 Supported Databases
	Database Interoperability
	Supported Databases
	Database Characteristics
	Database Features
	Current Time Stamp Statements
	Stored Procedure and Function JDBC Call Syntaxes
	Left Outer Join Operators
	Undelimited Identifier Case-Sensitivity
	Supported Transaction Isolation Levels
	Commit Keywords
	IBM DB2 Universal Database (UDB)
	Informix Dynamic Server (IDS)
	Microsoft SQL Server
	MySQL
	Oracle
	PosgreSQL
	Sybase Adaptive Server Enterprise (ASE)

	8 Using the Association Utility
	Understanding the Association Utility
	Before You Begin
	Using the Association Utility
	Editing Associations

	9 Uninstalling the IDM Driver for JDBC
	Deleting IDM Driver Objects
	Running the Product Uninstaller
	Executing Database Uninstallation Scripts
	IBM DB2 Universal Database (UDB) Uninstallation
	Informix Dynamic Server (IDS) Uninstallation
	Microsoft SQL Server Uninstallation
	MySQL Uninstallation
	Oracle Uninstallation
	PostgreSQL Uninstallation
	Sybase Adaptive Server Enterprise (ASE) Uninstallation

	A Best Practices
	B FAQ
	Why can’t the driver see my tables or views?
	How do I synchronize with tables located in multiple schemas?
	Why isn’t the driver processing rows in the event log table?
	Can the driver manage database user accounts?
	Can the driver synchronize large binary and string data types?
	Why is publication so slow?
	Can the driver synchronize multiple classes?
	Does the driver support encrypted transport?
	How do I map multivalue attributes to single-value database fields?
	Why is the driver synchronizing garbage strings?

	C Supported Data Types
	D java.sql.DatabaseMetaData Methods
	E Utilized JDBC Methods
	F Third-Party JDBC Driver Descriptor DTD
	G Third-Party JDBC Driver Descriptor Import DTD
	H Database Descriptor DTD
	I Database Descriptor Import DTD
	J Documentation Updates
	May 3, 2006

