
www.novell.com/documentation
Driver for Delimited Text
Implementation Guide
Identity Manager 4.0.1

April 15, 2011

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any
person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right
to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of
such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade
laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or
classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S.
export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use
deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. For more information on exporting
Novell software, see the Novell International Trade Services Web page (http://www.novell.com/info/exports/). Novell assumes
no responsibility for your failure to obtain any necessary export approvals.

Copyright © 2008-2010 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on
a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.
1800 South Novell Place
Provo, UT 84606
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see Novell
Documentation (http://www.novell.com/documentation/).

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/info/exports/
http://www.novell.com/documentation/
http://www.novell.com/documentation/
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents
About This Guide 5

1 Understanding the Delimited Text Driver 7

1.1 How the Delimited Text Driver Works . 7
1.1.1 Publisher and Subscriber Channels . 7
1.1.2 Policies . 8
1.1.3 Supported File Types. 10

1.2 Java Interfaces to the Driver . 10
1.3 Local and Remote Platforms . 10
1.4 Entitlements . 10
1.5 Password Synchronization. 11

2 Installing Driver Files 13

3 Creating a New Driver 15

3.1 Preparing Data Locations. 15
3.2 Creating the Driver in Designer . 15

3.2.1 Importing the Current Driver Packages . 16
3.2.2 Installing the Driver Packages . 16
3.2.3 Configuring the Driver Settings . 18
3.2.4 Deploying the Driver . 18
3.2.5 Starting the Driver . 19

3.3 Creating the Driver in iManager . 19
3.4 Activating the Driver . 19

4 Upgrading an Existing Driver 21

4.1 Supported Upgrade Paths . 21
4.2 What’s New in Version 4.0.1 . 21
4.3 Upgrade Procedure . 21

5 Setting Up One-Way Synchronization 23

6 Configuring for XDS XML Files 25

6.1 Using the Publisher Channel . 25
6.2 Using the Subscriber Channel . 25

7 Using Style Sheets to Configure Data Synchronization 27

8 Using Java Interfaces to Customize File Processing 29

8.1 Creating a Java Class . 30
8.2 Creating a Java .jar File . 30
8.3 Configuring the Driver to Use the New Class. 30
Contents 3

4 Iden
9 Managing the Driver 33

10 Troubleshooting 35

A Driver Properties 37

A.1 Driver Configuration . 37
A.1.1 Driver Module . 38
A.1.2 Driver Object Password (iManager Only) . 38
A.1.3 Authentication . 38
A.1.4 Startup Option . 39
A.1.5 Driver Parameters . 39
A.1.6 ECMAScript (Designer Only) . 42
A.1.7 Global Configurations . 42

A.2 Global Configuration Values . 42

B Delimited Text Driver Extensions 45

B.1 Using the ImageFile InputSource Extension . 45
B.1.1 Installing the ImageFile InputSource Extension. 46
B.1.2 Configuring the Driver for the ImageFile InputSource Extension. 46

B.2 Customizing ImageFile InputSource . 47
B.3 Using the ImageFile PostProcessor . 48

B.3.1 Installing the ImageFile PostProcessor Extension. 49
B.3.2 Configuring the Driver for the ImageFile Extension . 49

B.4 Customizing the ImageFile Extension . 51
tity Manager 4.0.1 Driver for Delimited Text Implementation Guide

About This Guide

This guide explains how to install and configure the Identity Manager Driver for Delimited Text.

 Chapter 1, “Understanding the Delimited Text Driver,” on page 7
 Chapter 2, “Installing Driver Files,” on page 13
 Chapter 3, “Creating a New Driver,” on page 15
 Chapter 4, “Upgrading an Existing Driver,” on page 21
 Chapter 5, “Setting Up One-Way Synchronization,” on page 23
 Chapter 6, “Configuring for XDS XML Files,” on page 25
 Chapter 7, “Using Style Sheets to Configure Data Synchronization,” on page 27
 Chapter 8, “Using Java Interfaces to Customize File Processing,” on page 29
 Chapter 9, “Managing the Driver,” on page 33
 Chapter 10, “Troubleshooting,” on page 35
 Appendix A, “Driver Properties,” on page 37
 Appendix B, “Delimited Text Driver Extensions,” on page 45

Audience

This guide is for Novell eDirectory and Identity Manager administrators who are using the Delimited
Text driver.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Use the User Comment feature at the bottom of each page of the online
documentation, or go to www.novell.com/documentation/feedback.html and enter your comments
there.

Documentation Updates

For the most recent version of this document, see Identity Manager Driver for Delimited Text in the
Identity Manager Drivers section on the Novell Documentation Web site (http://www.novell.com/
documentation/idm401drivers/index.html).

Additional Documentation

For information on Identity Manager and other Identity Manager drivers, see the Identity Manager
Documentation Web site (http://www.novell.com/documentation/idm401/index.html).
About This Guide 5

http://www.novell.com/documentation/idm401drivers/index.html
http://www.novell.com/documentation/idm401/index.html
http://www.novell.com/documentation/idm401/index.html

6 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

1 1Understanding the Delimited Text Driver

The Delimited Text driver lets you use delimited text files (CSV) to synchronize data between the
Identity Vault and applications. Essentially, you can transfer data from the Identity Vault to any
system that can consume delimited text files, or transfer data to the Identity Vault from any system
that can generate delimited text files.

The Delimited Text driver can also be modified to consume an XML files. The following sections
provide information to help you understand the Delimited Text driver.

 Section 1.1, “How the Delimited Text Driver Works,” on page 7
 Section 1.2, “Java Interfaces to the Driver,” on page 10
 Section 1.3, “Local and Remote Platforms,” on page 10
 Section 1.4, “Entitlements,” on page 10
 Section 1.5, “Password Synchronization,” on page 11

1.1 How the Delimited Text Driver Works
The Delimited Text driver uses the Publisher channel, the Subscriber channel, and policies to control
data flow between the Identity Vault and the delimited text files, as explained in the following
sections:

 Section 1.1.1, “Publisher and Subscriber Channels,” on page 7
 Section 1.1.2, “Policies,” on page 8
 Section 1.1.3, “Supported File Types,” on page 10

1.1.1 Publisher and Subscriber Channels

The Delimited Text driver provides data flow along the Publisher and Subscriber channels as shown
in the following diagram.
Understanding the Delimited Text Driver 7

Figure 1-1 Data Flow

The example configuration that ships with this driver includes both Subscriber and Publisher
channels. However, in many configurations, only one-way data flow is required. In those
configurations, only a Publisher or Subscriber channel is used. The other channel is disabled. For
more information, see Chapter 5, “Setting Up One-Way Synchronization,” on page 23.

Publisher Channel

The Publisher channel reads information from input text files on your local file system and submits
that information to the Identity Vault via the Metadirectory engine.

By default, the Publisher channel does the following:

1. Checks the input directory every 10 seconds.
2. Processes any files that have a .csv extension.
3. Changes .csv extensions of processed files to .bak.
4. Cycles through this process until you stop the driver.

Subscriber Channel

The Subscriber channel watches for additions and modifications to Identity Vault objects and creates
output files on your local file system that reflect those changes.

By default, the Subscriber channel keeps an output file open until either 200 transactions have been
logged or 30 seconds have elapsed. When either of these thresholds is reached, the output file is
saved with a number.csv filename and a new output file is opened.

1.1.2 Policies

Policies control data synchronization between the driver and the Identity Vault. The following table
provides information on the set of preconfigured policies that come with the Delimited Text driver.
For information about modifying policies, see Policies in iManager for Identity Manager 4.0.1 or Policies
in Designer 4.0.1.

Identity Vault
Database

Identity
Manager

Delimited
Text Driver

Join
Engine

Input
Directory

Output
Directory

Publisher

Subscriber

Input
Directory

Output
Directory

.bak
.csv

/
.xml

.csv
/

.xml
8 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

https://www.netiq.com/documentation/idm401/pdfdoc/policy_imanager/policy_imanager.pdf#bookinfo
https://www.netiq.com/documentation/idm401/pdfdoc/policy_designer/policy_designer.pdf#bookinfo
https://www.netiq.com/documentation/idm401/pdfdoc/policy_designer/policy_designer.pdf#bookinfo

Table 1-1 Preconfigured Policies

Policy Description

Schema Map Configured on the driver object.

Maps Identity Vault User properties to application attributes as follows:

Surname > LastName

Given Name > FirstName

Title > Title

Internet EMail Address > Email

Telephone Number > WorkPhone

Facsimile Telephone Number > Fax

mobile > WirelessPhone

Description > Description

The application attributes correspond to the sequence of values in the file or,
if present, to the attributes associated with unnamed XDS <field>
elements.

Input Transform Configured on the driver object.

If the input document is an XML document, no transformations are made. If
the document is a delimited text file, each record is transformed into an XDS
Add element for User objects with attributes defined by the schema map.

The user CN is formed by concatenating the values of first name and last
name.

Associations are defined by value the user's e-mail attribute.

Output Transform Configured on the driver object.

Specifies that a comma is used as the delimiter character for output files and
that the file format is comma-separated value (CSV) format.

Create Configured on the Publisher channel.

Specifies that in order for a User to be created in an Identity Vault, the Given
Name and Internet EMail Address attributes must be defined.

Matching Configured on the Publisher channel.

Specifies that a user in an Identity Vault is the same user specified in the
input file when the value of Internet Email Address is the same in both places.

If there is a match, only changed attributes are updated in the Identity Vault.

Placement Configured on the Publisher channel.

Specifies that a new user is placed in the Users or Active container and
named with the CN created by the Input Transform rule.

You need to create a Users\Active container at the root of your tree before
you start the driver.

Event Transform Configured on the Subscriber channel.

If an Identity Vault reports a Modify or Sync event, those events are changed
to an instance element that can be used to create a complete output record.
Understanding the Delimited Text Driver 9

1.1.3 Supported File Types

The driver currently supports two types of files:

 “Comma-Separated Values Files” on page 10
 “XML Files in XDS Format” on page 10

Comma-Separated Values Files

Comma-separated value (CSV) files are text files that contain data divided into fields and records.
Fields are delimited by commas, and records are delimited by a hard return.

If you need a comma or hard return within the value of a particular field, the entire field value should
be enclosed in quotes.

Because the meaning of each field in a CSV file is derived from its position, each record in a CSV file
should have the same number of fields. Field values can be left blank, but each record should have
the same number of delimiter characters.

XML Files in XDS Format

The XDS format is the defined Novell subset of possible XML formats. This is the initial format for
data coming from an Identity Vault. By modifying default rules and changing the style sheets, the
Delimited Text driver can be configured to work with any XML format.

For detailed information on the XDS format, refer to NDS DTD Commands and Events.

For information on configuring the driver to use XML files in the XDS format, see Chapter 6,
“Configuring for XDS XML Files,” on page 25.

1.2 Java Interfaces to the Driver
The Delimited Text driver includes four Java interfaces that enable you to add extensions, which are
optional. These enhancements to the driver require Java programming. For more information, see
Chapter 8, “Using Java Interfaces to Customize File Processing,” on page 29.

1.3 Local and Remote Platforms
The Delimited Text driver runs on the Metadirectory server or uses the Remote Loader to run on
another server.

1.4 Entitlements
The Delimited Text driver does not implement entitlements.
10 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

http://www.novell.com/documentation/developer/dirxml/dirxmlbk/data/a5323rs.html

1.5 Password Synchronization
The Delimited Text driver has policies to handle password synchronization. However, no automatic
password synchronization exists for the Delimited Text driver. You must be aware of and decide on
which attribute you want to hold the password, then synchronize that attribute. Any password
synchronization for the driver is just an attribute synchronization.
Understanding the Delimited Text Driver 11

12 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

2 2Installing Driver Files

By default, the Delimited Text driver files are installed on the Metadirectory server at the same time
as the Metadirectory engine. The installation program extends the Identity Vault’s schema and
installs both the driver shim and the driver configuration files. It does not create the driver in the
Identity Vault (see Chapter 3, “Creating a New Driver,” on page 15) or upgrade an existing driver’s
configuration (see Chapter 4, “Upgrading an Existing Driver,” on page 21).

Unless you extend the driver’s functionality along with the Java interfaces (see Chapter 8, “Using
Java Interfaces to Customize File Processing,” on page 29), the driver is only capable of reading input
text files from the local file system of the server where the driver is running. This means that your
input directory must be located on the same server as the driver. You have three options:

 If your input directory can be located on the Metadirectory server and the Delimited Text driver
files are already installed on the server, skip this section and continue with Chapter 3, “Creating
a New Driver,” on page 15.

 If your input directory can be located on the Metadirectory server but the driver files are not
already installed on the server, install the files by using the instructions in “Installing Identity
Manager” in the Identity Manager 4.0.1 Integrated Installation Guide.

 If your input directory cannot be located on the Metadirectory server, install the Remote Loader
(required to run the driver on a non-Metadirectory server) and the driver files on the server
where the input directory resides. See “Installing Identity Manager” in the Identity Manager 4.0.1
Integrated Installation Guide.
Installing Driver Files 13

https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo8y7u
https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo8y7u
https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo8y7u
https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front

14 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

3 3Creating a New Driver

After the Delimited Text driver files are installed on the server where you want to run the driver (see
Chapter 2, “Installing Driver Files,” on page 13), you can create the driver in the Identity Vault. You
do so by installing the driver packages and then modifying the driver configuration to suit your
environment. The following sections provide instructions:

 Section 3.1, “Preparing Data Locations,” on page 15
 Section 3.2, “Creating the Driver in Designer,” on page 15
 Section 3.3, “Creating the Driver in iManager,” on page 19
 Section 3.4, “Activating the Driver,” on page 19

3.1 Preparing Data Locations
You need to make sure that the driver’s input and output directories exist. The input directory is
where the driver looks for files to be processed into the Identity Vault. The output directory is where
the driver places files to be processed by the target application.

The input and output directories must be located on the same server as the driver. The directories can
have any names supported by the server operating system.

3.2 Creating the Driver in Designer
You create the Delimited Text driver by installing the driver packages and then modifying the
configuration to suit your environment. After you create and configure the driver, you need to
deploy it to the Identity Vault and start it.

 Section 3.2.1, “Importing the Current Driver Packages,” on page 16
 Section 3.2.2, “Installing the Driver Packages,” on page 16
 Section 3.2.3, “Configuring the Driver Settings,” on page 18
 Section 3.2.4, “Deploying the Driver,” on page 18
 Section 3.2.5, “Starting the Driver,” on page 19
Creating a New Driver 15

3.2.1 Importing the Current Driver Packages

The driver packages contain the items required to create a driver, such as policies, filters, and Schema
Mapping policies. Packages are imported into the Package Catalog when you create a project, import
a project, or convert a project, and you can update a package any time after it is imported. It is
important to verify you have the latest packages in the Package Catalog before you install the driver.

To verify you have the latest packages in the Package Catalog:

1 Open Designer.
2 In the toolbar, click Help > Check for Package Updates.
3 Click OK if there are no package updates

or
Click OK to import the package updates.

4 In the Outline view, right-click the Package Catalog.
5 Click Import Package.

6 Select the Delimited Text packages
or
Click Select All to import all of the packages displayed, then click OK.
By default, only the base packages are displayed. Deselect Show Base Packages Only to display all
packages.

7 Click OK to import the selected packages, then click OK in the successfully imported packages
message.

8 After the current packages are imported, continue with Section 3.2.2, “Installing the Driver
Packages,” on page 16.

3.2.2 Installing the Driver Packages

After you have imported the current driver packages into the Package Catalog, you can install the
driver packages to create a new driver.

1 In Designer, open your project.
2 In the Modeler, right-click the driver set where you want to create the driver, then select New >

Driver.
3 Select Delimited Text Base from the list of base packages, then click Next.
4 Click Next.
5 Select the Delimited Text Password Synchronization package, if you want the driver to

synchronize passwords.
6 Click Next.
16 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

7 (Conditional) If this is the first driver you have installed in the driver set, click OK to install the
Common Settings package dependency.

8 (Conditional) Fill in the following fields on the Common Settings page:
The Common Settings page is displayed only if the Common Settings package is installed as a
dependency.
User Container: Select the Identity Vault container where the users are added if they don’t
already exist in the Identity Vault. This value becomes the default value for all drivers in the
driver set.
If you want a unique location for this driver, set the value for all drivers on this page. After the
driver is created, change the value on the driver’s Global Configuration Values page.
Group Container: Select the Identity Vault container where the groups are added if they don’t
already exist in the Identity Vault. This value becomes the default value for all drivers in the
driver set.
If you want a unique location for this driver, set the value for all drivers on this page. After the
driver is created, change the value on the driver’s Global Configuration Values page.

9 On the Install Delimited Text Base page, fill in the following field for the driver information:
Driver Name: Specify a name for the driver that is unique within the driver set.

10 Click Next.
11 On the Install Delimited Text Base page, fill in the following fields:

Input File Path: Specify the path for the input file.
Output File Path: Specify the path for the output file.

12 Click Next.
13 On the Install Delimited Text Base page, fill in the following fields to configure the driver to

connect through the Remote Loader:
Connect to Remote Loader: By default, the driver is configured to connect through the Remote
Loader. If you want to run the driver locally, select no, then click Next. Otherwise, fill in the
remaining fields to configure the driver to connect through the Remote Loader.
Host Name: Specify the host name or IP address of the server where the driver’s Remote Loader
service is running.
Creating a New Driver 17

Port: Specify the port number where the Remote Loader is installed and is running for this
driver. The default port number is 8090.
Remote Password: Specify the Remote Loader’s password (as defined on the Remote Loader).
The Metadirectory server (or Remote Loader shim) requires this password to authenticate to the
Remote Loader
Driver Password: Specify the driver object password that is defined in the Remote Loader
service. The Remote Loader requires this password to authenticate to the Metadirectory server.

14 Click Next.
15 Review the summary of tasks that will be completed to create the driver, then click Finish to

create the driver.
16 Modify the configuration setting by continuing with the next section, Section 3.2.3,

“Configuring the Driver Settings,” on page 18.
or
If you do not need to configure the driver, continue with Section 3.2.4, “Deploying the Driver,”
on page 18.

3.2.3 Configuring the Driver Settings

There are many settings that can help you customize and optimize the driver. The settings are
divided into categories such as Driver Configuration, Engine Control Values, and Global
Configuration Values (GCVs). Although it is important for you to understand all of the settings, your
first priority should be to review the Driver Parameters located on the Driver Configuration page.
These settings let you control the format and content of the input and output files.

The driver configuration settings are explained in Appendix A, “Driver Properties,” on page 37.

If you do not have the Driver Properties page displayed in Designer:

1 Open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Properties.
3 After you have customized the driver for you environment, you must deploy the driver to the

Identity Vault. Proceed to Section 3.2.4, “Deploying the Driver,” on page 18.

3.2.4 Deploying the Driver

After a driver is created in Designer, it must be deployed into the Identity Vault.

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Deploy.
3 If you are authenticated to the Identity Vault, skip to Step 5, otherwise, specify the following

information:
 Host: Specify the IP address or DNS name of the server hosting the Identity Vault.
 Username: Specify the DN of the user object used to authenticate to the Identity Vault.
 Password: Specify the user’s password.

4 Click OK.
5 Read through the deployment summary, then click Deploy.
6 Read the successful message, then click OK.
7 Click Define Security Equivalence to assign rights to the driver.
18 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

The driver requires rights to objects within the Identity Vault and to the input and output
directories on the server. The Admin user object is most often used to supply these rights.
However, you might want to create a DriversUser (for example) and assign security equivalence
to that user. Whatever rights that the driver needs to have on the server, the DriversUser object
must have the same security rights.
7a Click Add, then browse to and select the object with the correct rights.
7b Click OK twice.

8 Click Exclude Administrative Roles to exclude users that should not be synchronized.
You should exclude any administrative User objects (for example, Admin and DriversUser) from
synchronization.
8a Click Add, then browse to and select the user object you want to exclude.
8b Click OK.
8c Repeat Step 8a and Step 8b for each object you want to exclude.
8d Click OK.

9 Click OK.

3.2.5 Starting the Driver

When a driver is created, it is stopped by default. To make the driver work, you must start the driver
and cause events to occur. Identity Manager is an event-driven system, so after the driver is started, it
won’t do anything until an event occurs.

To start the driver:

1 In Designer, open your project.

2 In the Modeler, right-click the driver icon or the driver line, then select Live > Start Driver.

For information about management tasks with the driver, see Chapter 9, “Managing the Driver,” on
page 33.

3.3 Creating the Driver in iManager
Drivers are created with packages, and iManager does not support packages. In order to create or
modify drivers, you must use Designer. See Section 3.2, “Creating the Driver in Designer,” on
page 15.

3.4 Activating the Driver
If you create the Delimited Text driver in a driver set where you have already activated a driver that
comes with the Integration Module for Tools, the driver inherits the activation. If you created the
Delimited Text driver in a driver set that has not been activated, you must activate the driver, by
using the Integration Module for Tools activation within 90 days. Otherwise, the driver stops
working.

The drivers that are included in the Integration Module for Tools are:

 Driver for Delimited Text
 Driver for SOAP
Creating a New Driver 19

For information on activation, refer to “Activating Novell Identity Manager Products” in the Identity
Manager 4.0.1 Integrated Installation Guide.
20 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#bpo948h
https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front
https://www.netiq.com/documentation/idm401/pdfdoc/idm_integrated_install/idm_integrated_install.pdf#Front

4 4Upgrading an Existing Driver

If you are running the driver on the Metadirectory server, the driver shim files are updated when you
update the server unless they were not selected during a custom installation. If you are running the
driver on another server, the driver shim files are updated when you update the Remote Loader on
the server.

The 4.0.1 version of the driver shim supports drivers created by using any 3.x version of the driver
configuration file. You can continue to use these driver configurations until you want to upgrade the
driver to packages.

The following sections provide information to help you upgrade an existing driver to version 4.0.1:

 Section 4.1, “Supported Upgrade Paths,” on page 21
 Section 4.2, “What’s New in Version 4.0.1,” on page 21
 Section 4.3, “Upgrade Procedure,” on page 21

4.1 Supported Upgrade Paths
You can upgrade from any 3.x version of the Delimited Text driver. Upgrading a pre-3.x version of
the driver directly to version 4.0.1 is not supported.

4.2 What’s New in Version 4.0.1
Version 4.0.1 of the driver does not include any new features.

From Identity Manager 4.0 onwards, driver content is delivered in packages instead of through a
driver configuration file.

4.3 Upgrade Procedure
The process for upgrading the Delimited Text driver is the same as for other Identity Manager
drivers. For detailed instructions, see “Upgrading Drivers to Packages” in the Identity Manager 4.0.1
Upgrade and Migration Guide.
Upgrading an Existing Driver 21

https://www.netiq.com/documentation/idm401/pdfdoc/idm_upgrade/idm_upgrade.pdf#bqk8uci
https://www.netiq.com/documentation/idm401/pdfdoc/idm_upgrade/idm_upgrade.pdf#Front
https://www.netiq.com/documentation/idm401/pdfdoc/idm_upgrade/idm_upgrade.pdf#Front

22 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

5 5Setting Up One-Way Synchronization

If your data synchronization goes only one way, you need to disable the channel that you don’t use.
To disable one of the channels, clear the filters on the channel you don’t need and remove the path for
the input or output directory, depending on the channel.

For example, if you only need a Publisher channel:

1 In the Filter editor in iManager, clear the filters on the Subscriber channel.
1a For example, select the User class.

1b Select Ignore in the Subscribe section.
The Subscriber channel icon for the User class changes to show that the class is no longer
being synchronized.

2 Click OK to save the changes.
3 Edit the driver properties to remove the path specified for the Output File Path. This setting is

located under the Subscriber Settings for the Driver Parameters on the Driver Configuration page.
For details, see Section A.1.5, “Driver Parameters,” on page 39.

If you only need a Subscriber channel, clear the filters on the Publisher object and remove the path
specified for the Input File Path in the Driver Parameters section.
Setting Up One-Way Synchronization 23

24 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

6 6Configuring for XDS XML Files

You can use XML files in XDS format instead of comma-separated value (CSV) files with the driver.

Because you generally use this driver only with a Publisher or Subscriber channel, perform only the
steps from the section that you need.

 Section 6.1, “Using the Publisher Channel,” on page 25
 Section 6.2, “Using the Subscriber Channel,” on page 25

6.1 Using the Publisher Channel
To have the driver accept input in XML format, change the input file extension to .xml.

6.2 Using the Subscriber Channel
To have the driver send output in XDS format, remove the Event Transform and Output Transform
style sheets from the Subscriber channel.

1 In iManager, select eDirectory Administration > Delete Object.
2 Browse to the driver’s Subscriber object, then select the SubscriberEventTransformSS object.
3 Click OK.
4 Click Repeat Task.
5 Browse to and select the driver’s OutputTransformSS object.
6 Click OK twice.
Configuring for XDS XML Files 25

26 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

7 7Using Style Sheets to Configure Data
Synchronization

The real power of Identity Manager is in managing the shared data itself. This section covers some
common customizations for the Delimited Text driver.

The example configuration available with the driver uses comma-separated value files. However, you
can use the driver in many ways. It is designed to be as flexible as possible. The driver passes the text-
based files largely unchanged to the style sheets. The style sheets do most of the work. You can write
new style sheets to allow the driver to work with almost any text-based file that contains predictably
repeatable patterns.

The basis for this exchange is the <delimited-text> XML element. For example, to design a
Publisher channel that reads information from a text file, create an Input Transform style sheet that
receives the contents of the file and converts it into a <delimited-text> element.

The following is an example of a <delimited-text> element:

<delimited-text>
 <record>
 <field>John</field>
 <field>Maxfield</field>
 <field>555-1212</field>
 </record>
 <record>
 <field>Sarah</field>
 <field>Lopez</field>
 <field>555-3434</field>
 </record>
</delimited-text>

When field elements appear like this without an identifying name attribute, the driver uses the field
position and matches it with the position of the Field Name driver parameter.

You can provide the field name within the XML:

<delimited-text>
 <record>
 <field name="FirstName">John</field>
 <field name="LastName">Maxfield</field>
 <field name="Phone">555-1212</field>
 </record>
 <record>
 <field name="FirstName">Sarah</field>
 <field name="LastName">Lopez</field>
 <field name="Phone">555-3434</field>
 </record>
</delimited-text>

For detailed information on writing style sheets to handle other document types, refer to the sample
style sheets that come with this driver. If you create the driver by using the example configuration,
you can use Input Transform, Output Transform, and Event Transformation style sheets as a starting
point.
Using Style Sheets to Configure Data Synchronization 27

28 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

8 8Using Java Interfaces to Customize File
Processing

Java interfaces enable you to customize file processing by using Java classes that you write:

 InputSorter
 InputSource
 PreProcessor
 PostProcessor

These interfaces enable you to add extensions, which are optional. The driver continues to function as
before without extensions. However, if you want to directly modify the behavior of the driver, but
you have been unable to make these modifications from a style sheet or DirXML Script, extending the
Delimited Text driver can be useful.

By using Java classes that you write, you can use the interfaces to customize the publish and
subscribe processes in the following ways:

Table 8-1 Customizing the Publish and Subscribe Processes

Process Interface Description

Publish InputSorter Defines the processing order of multiple input files.

The system where your driver is installed determines the default
processing order. For example, files on an NT system are
processed in alphabetical order. You can use the InputSorter to
impose the processing order that you require.

Publish InputSource Provides data other than the files in the default location for the
driver to process.

For example, you can check an FTP server for input files and
then transfer the files to the local file system for processing.

Publish PreProcessor Ties data manipulation required to prepare input files for driver
processing directly to the driver.

Before this interface was available, preprocessing was
independent of the driver. You could create a separate
application that monitored another directory for input files,
modify the files in some way, and then copy the files to the input
directory of the driver. By creating a class that implements the
PreProcessor, you can do this type of preprocessing more
directly.

Subscribe PostProcessor Ties data manipulation required by the application, consuming
Identity Vault output directly to the driver.
Using Java Interfaces to Customize File Processing 29

These enhancements to the driver require Java programming. To implement this functionality,
complete the following processes:

 Section 8.1, “Creating a Java Class,” on page 30
 Section 8.2, “Creating a Java .jar File,” on page 30
 Section 8.3, “Configuring the Driver to Use the New Class,” on page 30

8.1 Creating a Java Class
JavaDoc and an example class are included with the driver to help you implement this functionality.
Find the JavaDoc at ./products/IDM/windows/setup/drivers/delimitedtext/javadocs and the
sample code at ./products/IDM/windows/setup/drivers/delimitedtext/extensions/sample
code.

8.2 Creating a Java .jar File
After you have implemented your class file, create a Java .jar file (Java archive) by using the jar tool.
The .jar file must contain the class that you have created. Put the .jar file into the classes directory.
The path might differ, depending on the platform you’re on, but it should be the same location as
DelimitedTextShim.jar and DelimitedTextUtil.jar.

NOTE: The default path for .jar file:

 In Windows: novell/nds/lib
 In Linux: /opt/novell/eDirectory/lib/dirxml/classes

8.3 Configuring the Driver to Use the New Class
After you have placed the new .jar file in the correct location, configure the driver to use your new
class by modifying the driver's properties.

1 In iManager, open the driver’s property page:

1a In iManager, click to display the Identity Manager Administration page.
1b In the Administration list, click Identity Manager Overview.
1c Open the driver set that contains the driver.
1d Click the driver icon to open the Identity Manager Driver Overview page.
1e Click the upper right corner of the driver icon to open the Actions menu, then click Edit

properties.
2 Select Driver Configuration.
3 Scroll to Driver Parameters, then click Edit XML.
4 Locate the <publisher-options> section of the file.

This file defines which parameters and values appear in the Driver Parameters section of the
Driver Configuration page.
For each class you created that works on the Publisher channel, you enter an additional option in
the <publisher-options> section. After you update this file, you see your new options in the
interface.
30 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

5 For each new class you created on the Publisher channel, add an entry corresponding to the
interface type. Use the following table as a guide:

5a Replace com.acme.MyNewClass with the name of the class that you defined, along with a
full package identifier.

5b Replace MY CONFIG PARAMS with any information that you want to pass to the init method
of your class.
The init method of your class is then responsible for parsing the information contained in
this string. If your class doesn’t require a configuration string to be passed to the init
method, you can leave off the whole element, in which case null is passed to the init
method.

6 If you created a PostProcessor rule, locate the <subscriber-options> section of the file and add
the following lines:
<definition display-name="PostProcessor Class" name="post-processor"
type="string"> <value>com.acme.MyNewClass</value> </definition>
<definition display-name="PostProcessor init string" name="post-processor-
params" type="string"> <value>MY CONFIG PARAMS</value> </definition>

6a Replace com.acme.MyNewClass with the name of the class that you have defined along with
full package information.

6b Replace MY CONFIG PARAMS with any information that you want to pass to the init method
of your class.
The init method of your class is then responsible for parsing the information contained in
this string. If your class doesn’t require a configuration string to be passed to the init
method, you can leave off the entire element, in which case null would be passed to the init
method.

7 Click OK.

Interface New Entry

InputSorter <definition display-name="InputSorter Class" name=" input-
sorter" type="string"> <value>com.acme.MyNewClass</value>
</definition>

<definition display-name="InputSorter init string" name="
input-sorter-params" type="string"> <value>MY CONFIG
PARAMS</value> </definition>

InputSource <definition display-name="InputSource Class" name=" input-
source" type="string"> <value>com.acme.MyNewClass</value>
</definition>

<definition display-name="InputSource init string" name="
input-source-params" type="string"> <value>MY CONFIG
PARAMS</value> </definition>

PreProcessor <definition display-name="PreProcessor Class" name="pre-
processor" type="string"> <value>com.acme.MyNewClass</
value> </definition>

<definition display-name="PreProcessor init string"
name="pre-processor-params" type="string"> <value>MY
CONFIG PARAMS</value> </definition>
Using Java Interfaces to Customize File Processing 31

32 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

9 9Managing the Driver

As you work with the Delimited Text driver, there are a variety of management tasks you might need
to perform, including the following:

 Starting and stopping the driver
 Viewing driver version information
 Using Named Passwords to securely store passwords associated with the driver
 Monitoring the driver’s health status
 Backing up the driver
 Inspecting the driver’s cache files
 Viewing the driver’s statistics
 Using the DirXML Command Line utility to perform management tasks through scripts
 Securing the driver and its information

Because these tasks, as well as several others, are common to all Identity Manager drivers, they are
included in one reference, the Identity Manager 4.0.1 Common Driver Administration Guide.
Managing the Driver 33

https://www.netiq.com/documentation/idm401/pdfdoc/idm_common_driver/idm_common_driver.pdf#Front

34 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

10 10Troubleshooting

Viewing driver processes is necessary to analyze unexpected behavior. To view the driver processing
events, use DSTrace. You should only use it during testing and troubleshooting the driver. Running
DSTrace while the drivers are in production increases the utilization on the Identity Manager server
and can cause events to process very slowly. For more information, see “Viewing Identity Manager
Processes” in the Identity Manager 4.0.1 Common Driver Administration Guide.
Troubleshooting 35

https://www.netiq.com/documentation/idm401/pdfdoc/idm_common_driver/idm_common_driver.pdf#b1rc1vm
https://www.netiq.com/documentation/idm401/pdfdoc/idm_common_driver/idm_common_driver.pdf#b1rc1vm
https://www.netiq.com/documentation/idm401/pdfdoc/idm_common_driver/idm_common_driver.pdf#Front

36 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

A ADriver Properties

This section provides information about the Driver Configuration and Global Configuration Values
properties for the Delimited Text driver. These are the only unique properties for the Delimited Text
driver. All other driver properties (Named Password, Engine Control Values, Log Level, and so forth)
are common to all drivers. Refer to “Driver Properties” in the Identity Manager 4.0.1 Common Driver
Administration Guide for information about the common properties.

The properties information is presented from the viewpoint of iManager. If a field is different in
Designer, it is marked with a icon.

 Section A.1, “Driver Configuration,” on page 37
 Section A.2, “Global Configuration Values,” on page 42

A.1 Driver Configuration
In iManager:

1 In iManager, click to display the Identity Manager Administration page.
2 Open the driver set that contains the driver whose properties you want to edit:

2a In the Administration list, click Identity Manager Overview.
2b If the driver set is not listed on the Driver Sets tab, use the Search In field to search for and

display the driver set.
2c Click the driver set to open the Driver Set Overview page.

3 Locate the Delimited Text driver icon, then click the upper right corner of the driver icon to
display the Actions menu.

4 Click Edit Properties to display the driver’s properties page.

In Designer:

1 Open a project in the Modeler.

2 Right-click the driver icon or line, then select click Properties > Driver Configuration.

The Driver Configuration options are divided into the following sections:

 Section A.1.1, “Driver Module,” on page 38
 Section A.1.2, “Driver Object Password (iManager Only),” on page 38
 Section A.1.3, “Authentication,” on page 38
 Section A.1.4, “Startup Option,” on page 39
 Section A.1.5, “Driver Parameters,” on page 39
 Section A.1.6, “ECMAScript (Designer Only),” on page 42
 Section A.1.7, “Global Configurations,” on page 42
Driver Properties 37

https://www.netiq.com/documentation/idm401/pdfdoc/idm_common_driver/idm_common_driver.pdf#b94pq23
https://www.netiq.com/documentation/idm401/pdfdoc/idm_common_driver/idm_common_driver.pdf#Front
https://www.netiq.com/documentation/idm401/pdfdoc/idm_common_driver/idm_common_driver.pdf#Front

A.1.1 Driver Module

The Driver Module section lets you change the driver from running locally to running remotely or
the reverse.

Java: Used to specify the name of the Java class that is instantiated for the shim component of the
driver. This class can be located in the classes directory as a class file, or in the lib directory as a
.jar file. If this option is selected, the driver is running locally.

The name of the Java class is:

com.novell.nds.dirxml.driver.delimitedtext.DelimitedTextDriver

Native: Used to specify the name of the .dll file that is instantiated for the application shim
component of the driver. If this option is selected, the driver is running locally.

Connect to Remote Loader: Used when the driver is connecting remotely to the connected system.
Designer includes two suboptions:

 Remote Loader Client Configuration for Documentation: Includes information on the Remote Loader
client configuration when Designer generates documentation for the Delimited Text driver.

 Driver Object Password: Specifies a password for the Driver object. If you are using the Remote
Loader, you must enter a password on this page. Otherwise, the remote driver does not run. The
Remote Loader uses this password to authenticate itself to the remote driver shim.

A.1.2 Driver Object Password (iManager Only)

Driver Object Password: Specifies a password for the Driver object. If you are using the Remote
Loader, you must enter a password on this page. Otherwise, the remote driver does not run. The
Remote Loader uses this password to authenticate itself to the remote driver shim.

A.1.3 Authentication

The Authentication section stores the information required to authenticate to the connected system.

Authentication information for server: Displays or specifies the server that the driver is associated
with.

Authentication ID: Specify a user application ID. This ID is used to pass Identity Vault subscription
information to the application.

Example: Administrator

Authentication Context: Specify the IP address or name of the server that the application shim
should communicate with.

Remote Loader Connection Parameter: Used only if the driver is connecting to the application
through the Remote Loader.

In iManager, the parameter to enter is hostname=xxx.xxx.xxx.xxx port=xxxx
kmo=certificatename, where the host name is the IP address of the Remote Loader server and the
port is the port the Remote Loader is listening on. The default port for the Remote Loader is 8090.

The kmo entry is optional. It is used only when an SSL connection exists between the Remote Loader
and the Metadirectory engine.

Example: hostname=10.0.0.1 port=8090 kmo=IDMCertificate
38 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

Application Password: Specify the password for the user object listed in the Authentication ID field.

Remote Loader Password: Used only if the driver is connecting to the application through the
Remote Loader. The password is used to control access to the Remote Loader instance. It must be the
same password specified during the configuration of the Remote Loader on the connected system.

Cache limit (KB): Specify the maximum event cache file size (in KB). If it is set to zero, the file size is
unlimited.

Click Unlimited to set the file size to unlimited in Designer.

A.1.4 Startup Option

The Startup Option section enables you to set the driver state when the Identity Manager server is
started.

Auto start: The driver starts every time the Identity Manager server is started.

Manual The driver does not start when the Identity Manager server is started. The driver must be
started through Designer or iManager.

Disabled: The driver has a cache file that stores all of the events. When the driver is set to Disabled,
this file is deleted and no new events are stored in the file until the driver state is changed to Manual
or Auto Start.

Do not automatically synchronize the driver: This option applies only if the driver is deployed and
was previously disabled. If this is not selected, the driver re-synchronizes the next time it is started.

A.1.5 Driver Parameters

The Driver Parameters section lets you configure the driver-specific parameters. When you change
driver parameters, you tune driver behavior to align with your network environment. For example,
you might find the default Publisher polling interval to be shorter than your synchronization
requires. Making the interval longer could improve network performance while still maintaining
appropriate synchronization.

The driver parameters are presented by categories:

 “Driver Options” on page 39
 “Subscriber Options” on page 40
 “Publish Options” on page 41

Driver Options

Driver parameters for server: Displays or specifies the server name or IP address of the server whose
driver parameters you want to modify.

Edit XML: Opens an editor so that you can edit the driver’s configuration file.

Field Delimiter: Specifies the character that is used to delimit field values in the input files. It must
be one character. The default is a comma.

If the values of any of the input fields contain this character, enclose the entire value in quotes to
prevent it from being seen as a delimiter.
Driver Properties 39

Changing this delimiter parameter to something other than a comma does not automatically change
the delimiter character used in the output files when a Subscriber is used. To change the delimiter
character in the output files, edit the Output Transform style sheet. The delimiter character is
assigned to a variable near the top of that style sheet.

Field Names: Specifies a comma-separated list of attribute names that can be referred to in the
Schema Mapping rule. In the input files, the fields of the records must correspond to the order and
positioning of the names in this list.

For example, if you list eight field names in this parameter, each record of the input files should have
eight fields separated by the field delimiter character. On Windows, see sample.csv in the
delimitedtext/samples directory for an example. On Solaris and Linux, sample.csv is located in
the /usr/lib/dirxml/rules/delim directory.

The default values are LastName, FirstName, Title, Email, WorkPhone, Fax, WirelessPhone, and
Description.

Object Class Name: Specifies the Novell eDirectory class name that should be used when creating
new objects to correspond to input files.

Allow Driver to Consume Its Own Output: Prevents you from inadvertently creating a situation in
which the driver writes output files that are immediately read in again as input of the same driver.

The default is No. By default, the driver won't load if all the following conditions occur:

 You have both a Subscriber channel and a Publisher channel.
 The input and output directories are the same.
 The input and output file extensions are the same.

If you want to feed the output of the Subscriber channel into the input of the Subscriber channel as a
way to detect Identity Vault events to trigger other changes in the Identity Vault, set this parameter to
Yes. For example, to update the Full Name attribute when the Given Name, Surname, or Initials
attributes are updated, set this parameter to Yes.

Subscriber Options

Output File Path: Specifies the directory on the local file system where output files will be created.
An error occurs if this directory doesn’t exist. The default values are:

Windows: c:\csvsample\output

Solaris or Linux: /csvsample/output

Output File Extension: When this parameter contains no value, the default Java character encoding
for your locale is used.

Output files have a unique name that ends with the characters in the Output File Extension parameter.
If the output files from a Subscriber channel are used as input files for the Publisher channel of
another Delimited Text driver, the destination file extension must match the source file extension
parameter of the second driver.

Destination File Character Encoding (leave blank for default): To use an encoding other than the
default for your locale, enter one of the canonical names from the Supported Encodings table (http://
java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html).

The Publisher and Subscriber channels can use different character encodings.
40 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Maximum Number of Transactions per Output File: Specifies the maximum number of transactions
that are written to a single output file. When the file transaction limit is reached, the file closes, and a
new file is created for subsequent transactions. To limit the number of transactions that can be
written to a single file, leave this parameter blank or set it to zero.

For more information, see the next item, “Maximum Time in Seconds before Flushing All
Transactions:” on page 41.

Maximum Time in Seconds before Flushing All Transactions: If no new transactions have been
written to the output file in the amount of time specified in this parameter, the file is closed. When
new transactions need to be written, a new output file is created. If you don’t want to limit the time
that can pass before the output file is closed, leave this parameter blank or set it to zero.

Time of Day (Local Time) to Flush All Transactions: If a value is supplied for this parameter, the
current output file is closed at the specified time each day. Subsequent transactions are written to a
new file. This parameter does not prevent the Maximum Number of Transactions per Output File or the
Maximum Time in Seconds before Flushing All Transactions parameters from also acting as output file
thresholds. If you use this parameter and only want one file per day, set the other two parameters to
zero.

The format of this parameter can be HH:MM:SS (using the 24-hour clock) or H:MM:SS AM/PM. An
hour is required, but the minutes and seconds are optional. Because the parameter assumes local
time, any time zone information included in the value is ignored.

The previous three parameters (Maximum Number of Transactions per Output File, Maximum Time in
Seconds before Flushing All Transactions, and Time of Day to Flush All Transactions) are all capable of
acting as a threshold for the transaction size a file is able to grow to, or for the time that it remains
open to accept new transactions.

As long as an output file is still open for writing by the Delimited Text driver, it shouldn’t be
considered as finalized. Avoid opening the file in any other process until the driver closes the file. For
this reason, one of the three previous parameters must be set to assure that output files don’t remain
open indefinitely. To avoid this condition, if the driver detects that all three parameters are blank (or
zero), it automatically sets the Maximum Number of Transactions per Output File to the value of 1.

Publish Options

Input File Path: The Publisher channel looks for new input files in the Input File Path, which is a
directory on the local file system. Example paths:

 On Windows: c:\csvsample\input
 On Solaris and Linux: /usr/lib/dirxml/rules/delim

Input File Extension: The extension used to designate input files (for example, csv).

Source File Character Encoding (leave blank for default): When this parameter contains no value,
the default Java character encoding for your locale is used.

To use an encoding other than the default for your locale, enter one of the canonical names from the
Supported Encodings table (http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html).

If the Input File Extension parameter is .xml, the Source File Character Encoding can be indicated in
one of two ways.

 If a value is indicated in the Source File Character Encoding parameter, it is used.
 If the parameter is blank, and if the XML document specifies an Encoding Declaration as

described in the W3C XML Recommendation in paragraph 4.3.3, the Encoding Declaration is
handled by the XML parser in the Metadirectory engine.
Driver Properties 41

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://www.w3.org/TR/REC-xml#charencoding

The Identity Manager XML parser handles the following character encodings:
 UTF-8
 UTF-16
 ISO-8859-1
 US-ASCII

Rename File Extension: The Publisher channel uses only files that have the extension specified in the
parameter. After the files have been processed, the value of the Rename File Extension parameter is
appended to the filename, so the Publisher channel won’t try to process the same file again. If the
value of the Rename File Extension parameter is left blank, the source file is deleted after it is
processed.

IMPORTANT: If you change the default, use only characters that are valid in filenames on your
platform. Invalid characters cause the rename to fail and the driver to reprocess the same file
repeatedly.

Polling Rate (in Seconds): When the Publisher channel has finished processing all source files, it
waits the number of seconds specified in this parameter before checking for new source files to
process.

Publisher heartbeat interval: Configures the driver shim to send a periodic status message on the
Publisher channel when there has been no Publisher traffic for the given number of minutes.

A.1.6 ECMAScript (Designer Only)

Enables you to add ECMAScript resource files. The resources extend the driver’s functionality when
Identity Manager starts the driver.

A.1.7 Global Configurations

Displays an ordered list of Global Configuration objects. The objects contain extension GCV
definitions for the driver that Identity Manager loads when the driver is started. You can add or
remove the Global Configuration objects, and you can change the order in which the objects are
executed.

A.2 Global Configuration Values
Global configuration values (GCVs) enable you to specify settings for the Identity Manager features
such as password synchronization and driver heartbeat, as well as settings that are specific to the
function of an individual driver configuration. Some GCVs are provided with the drivers, but you
can also add your own.

IMPORTANT: Password synchronization settings are GCVs, but it’s best to edit them in the
graphical interface provided on the Server Variables page for the driver, instead of the GCV page.
The Server Variables page that shows Password Synchronization settings is accessible as a tab as with
other driver parameters, or by clicking Password Management > Password Synchronization, searching
for the driver, and clicking the driver name. The page contains online help for each Password
Synchronization setting.
42 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

In iManager:

1 In iManager, click to display the Identity Manager Administration page.
2 Open the driver set that contains the driver whose properties you want to edit:

2a In the Administration list, click Identity Manager Overview.
2b If the driver set is not listed on the Driver Sets tab, use the Search In field to search for and

display the driver set.
2c Click the driver set to open the Driver Set Overview page.

3 Locate the Delimited Text driver icon, then click the upper right corner of the driver icon to
display the Actions menu.

4 Click Edit Properties to display the driver’s properties page.
5 Click Global Config Values to display the GCV page.

In Designer:

1 Open a project in the Modeler.

2 Right-click the driver icon or line, then select Properties > Global Configuration Values.
Driver Properties 43

44 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

B BDelimited Text Driver Extensions

The Delimited Text driver defines different interfaces that you can implement in Java classes to
extend the base functionality of the driver.

Figure B-1 Java Class Interfaces

This section includes the following information about using the ImageFile and ImageSource
extensions:

 Section B.1, “Using the ImageFile InputSource Extension,” on page 45
 Section B.2, “Customizing ImageFile InputSource,” on page 47
 Section B.3, “Using the ImageFile PostProcessor,” on page 48
 Section B.4, “Customizing the ImageFile Extension,” on page 51

B.1 Using the ImageFile InputSource Extension
The ImageFile InputSource extension allows you to easily import GIF, JPG, and PNG images into
eDirectory. The InputSource reads the image files from a specified directory, transforms them to a
Base64-encoded string, and passes this string to the driver shim as if it were a normal delimited text
string, together with additional information about the image, such as file size, file name, and
modification date.
Delimited Text Driver Extensions 45

Figure B-2 InputSource Extension

Standard rules and style sheets, as used for other implementations of the Delimited Text driver, can
be used to further process the image data. The image itself is meant to be stored in an attribute of
syntax octet string or stream.

 Section B.1.1, “Installing the ImageFile InputSource Extension,” on page 46
 Section B.1.2, “Configuring the Driver for the ImageFile InputSource Extension,” on page 46

B.1.1 Installing the ImageFile InputSource Extension

The ImageFile InputSource extensions are installed when you install Identity Manager and select the
Delimited Text driver. The extensions are configured in the driver parameters. Each extension takes a
parameter string that is specified in the driver parameters and passes it to the extension during
initialization. Extensions define their own format for the parameter string.

The extensions are included in the DelimitedTextUtil.jar file.

B.1.2 Configuring the Driver for the ImageFile InputSource Extension

Use the following table to customize your driver for the ImageFile extension.

Table B-1 Delimited Text Driver Parameters

Driver
Parameter

XML
Name Sample Values Purpose

Field Delimiter field-
delimiter

Indicates the character that is used to
delineate field values in the input files.
It must be one character.

This must be set to the same
character as the delim extension
parameter or, if delim is not specified,
set it to #.
46 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

B.2 Customizing ImageFile InputSource
You can fine-tune the behavior of the ImageFile InputSource by setting the parameters that are
discussed in this section. Parameters are passed to the InputSource as a string.

The string must be in the following format:

<name1>=<value1>;<name2>=<value2>;<name n>=<value n>

Sample:

srcdir=c:\temp\dirxml;renameto=bak;delblacklist=false;renblacklistto=ignore;minsiz
e=1000;debug=true

Use the following values to configure the ImageFile properties:

Table B-2 ImageFile InputSource Parameters

Field Names
(Field1,
Field2,
Field3…)

field-
names

idx
name
prefix
suffix
size
modified
pic64

A comma-separated list of attribute
names that can be referred to in the
Schema Mapping rule. In the input
files, the fields of the records must
correspond to the order and
positioning of the names in this list.
For example, if you list eight field
names in this parameter, then each
record of the input files should have
eight fields separated by the field
delimiter character.

The extension defines which fields it
supports. The fields as listed here are
the ones delivered by the extension.
Altering the fields can cause
malfunctions.

InputSource
Class

input-
source

com.novell.nds.dirxml.driver.delimitedtext.i
magefile.ImageFileInputSource

Class name of the input source.

InputSource
init string

input-
source-
params

srcdir=c:\temp\dirxml;renameto=bak;delbla
cklist=false;renblacklistto=ignore;minsize=1
000;debug=true

InputSource initialization parameters.
For more information, see
Section B.3.2, “Configuring the Driver
for the ImageFile Extension,” on
page 49.

Driver
Parameter

XML
Name Sample Values Purpose

Parameter Required Default Purpose

srcdir yes Directory where the image files are stored.

minsize no -1 Minimum size of the file to be processed. Number is
the number of bytes. Set the value to -1 to disable
the filter.

maxsize no -1 Maximum size of the file to be processed, in bytes.
Set the value to -1 to disable the filter.
Delimited Text Driver Extensions 47

B.3 Using the ImageFile PostProcessor
The ImageFile PostProcessor extension allows you to easily export images from the directory to the
file system as JPG or PNG files. The PostProcessor further processes the output file generated by the
driver. It expects the output file to be in a certain format. The images are contained in the output file
as Base64-encoded strings and are then converted into binary blobs and written to files in a specified
directory.

minwidth no -1 Minimum width of the image to be processed
(number of pixels). Set the value to -1 to disable the
filter.

maxwidth no -1 Maximum width of the image to be processed
(number of pixels). Set the value to -1 to disable the
filter.

minheight no -1 Minimum height of the image to be processed
(number of pixels). Set the value to -1 to disable the
filter.

delim no # Delimiter to be used in the created input files. The
same delimiter must be configured in the driver
parameters for the Delimited Text driver.

consolidate no true Set consolidate to True to produce only one input file
for all images. Set consolidate to False to produce
an input file for each image.

renameto no Specify the suffix you want to be appended to the
image files after processing. By default, the
renameto parameter is not set and the files are
deleted after processing.

debug no false Set to True to turn on debug messages. Debugging
is turned off by default.

delblacklist no true Set to False to prevent deletion of the blacklist. The
blacklist consists of all the image files that have been
filtered out. By default, the blacklist is deleted.

renblacklistto no Specify any file suffix you want blacklist image files
to be renamed to. By default the renameto
parameter is not set and the processed files are
handled according to the delblacklist parameter.

Parameter Required Default Purpose
48 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

Figure B-3 ImageFile PostProcessor Extension

Policies and style sheets can be used to control the export process. The images are usually stored in
an attribute of syntax octet string or stream for binary data.

B.3.1 Installing the ImageFile PostProcessor Extension

The ImageFile PostProcessor extensions are installed when you install Identity Manager and select
the Delimited Text driver. The extensions are configured in the driver parameters. Each extension
takes a parameter string that is specified in the driver parameters and passes it to the extension
during initialization. Extensions define their own format for the parameter string.

The extensions are included in the DelimitedTextUtil.jar file.

B.3.2 Configuring the Driver for the ImageFile Extension

 “Driver Module” on page 49
 “Driver Parameters” on page 50

Driver Module

The ImageFile InputSource requires the Delimited Text driver.

1 In Designer, right-click the Delimited Text driver, then click Properties.
2 Select Java, then specify

com.novell.nds.dirxml.driver.delimitedtext.DelimitedTextDriver if the driver is
running locally
or
Select Connect to Remote Loader,

3 Click OK to save the changes.
4 (Conditional) If you are running the Remote Loader, you must add the following class for the

Delimited Text driver
com.novell.nds.dirxml.driver.delimitedtext.DelimitedTextDriver.
For more information, see “Configuring the Remote Loader” in the Identity Manager 4.0.1 Remote
Loader Guide.
Delimited Text Driver Extensions 49

https://www.netiq.com/documentation/idm401/pdfdoc/idm_remoteloader/idm_remoteloader.pdf#be4skjr
https://www.netiq.com/documentation/idm401/pdfdoc/idm_remoteloader/idm_remoteloader.pdf#bookinfo
https://www.netiq.com/documentation/idm401/pdfdoc/idm_remoteloader/idm_remoteloader.pdf#bookinfo

Driver Parameters

Use the following table to configure the driver. For additional information regarding other driver
parameters, refer to the Identity Manager Driver for Delimited Text documentation. (http://
www.novell.com/documentation/idm401drivers/delimited/data/bktitle.html)

Table B-3 ImageFile PostProcessor Parameters

Parameter XML Name Sample Value Purpose

Field Delimiter field-delimiter # Indicates the character that is
used to delineate field values
in the input files. It must be one
character.

This must be set to the same
character as the delim
extension parameter or, if
delim is not specified, set it to
#.

Field Names (Field1,
Field2, Field3…)

field-names idx
name
prefix
suffix
size
modified
pic64

A comma-separated list of
attribute names that can be
referred to in the Schema
Mapping rule. In the input files,
the fields of the records must
correspond to the order and
positioning of the names in this
list. For example, if you list
eight field names in this
parameter, then each record of
the input files should have
eight fields separated by the
field delimiter character.

The extension defines which
fields it supports. The fields as
listed here are the ones
delivered by the extension.
Altering the fields can cause
malfunctions.

PostProcessor
Class

post-processor com.novell.nds.dirxml.driver.de
limitedtext.imagefile.ImageFileI
nputSource

Class name of the input
source.

PostProcessor init
string

post-processor-
params

destdir=/var/novell/idm/users/
output/
images;format=png;debug=tru
e

PostProcessor initialization
parameters. For more
information, see Section B.1.1,
“Installing the ImageFile
InputSource Extension,” on
page 46.
50 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

http://www.novell.com/documentation/idm401drivers/delimited/data/bktitle.html

B.4 Customizing the ImageFile Extension
You can fine-tune the behavior of the ImageFile extension by setting parameters. Parameters are
passed to the PostProcessor as a string.

The string must be in the following format:

<name1>=<value1>;<name2>=<value2>;<name n>=<value n>

Sample:

destdir=/var/novell/idm/users/output/images;format=png;debug=true

Use the following table to customize the ImageFile extension.

Table B-4 ImageFile Custom Parameters

Parameter Required Default Value Purpose

destdir yes Directory where the image
files are stored.

delim no # Used when parsing the
output files. The same
delimiter should be
configured in the
Delimited Text driver
parameters.

format no png Image format.

debug no false Set the value to True to
turn on debugging.
Debugging is off by
default.
Delimited Text Driver Extensions 51

52 Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide

	Identity Manager 4.0.1 Driver for Delimited Text Implementation Guide
	About This Guide
	1 Understanding the Delimited Text Driver
	1.1 How the Delimited Text Driver Works
	1.1.1 Publisher and Subscriber Channels
	1.1.2 Policies
	1.1.3 Supported File Types

	1.2 Java Interfaces to the Driver
	1.3 Local and Remote Platforms
	1.4 Entitlements
	1.5 Password Synchronization

	2 Installing Driver Files
	3 Creating a New Driver
	3.1 Preparing Data Locations
	3.2 Creating the Driver in Designer
	3.2.1 Importing the Current Driver Packages
	3.2.2 Installing the Driver Packages
	3.2.3 Configuring the Driver Settings
	3.2.4 Deploying the Driver
	3.2.5 Starting the Driver

	3.3 Creating the Driver in iManager
	3.4 Activating the Driver

	4 Upgrading an Existing Driver
	4.1 Supported Upgrade Paths
	4.2 What’s New in Version 4.0.1
	4.3 Upgrade Procedure

	5 Setting Up One-Way Synchronization
	6 Configuring for XDS XML Files
	6.1 Using the Publisher Channel
	6.2 Using the Subscriber Channel

	7 Using Style Sheets to Configure Data Synchronization
	8 Using Java Interfaces to Customize File Processing
	8.1 Creating a Java Class
	8.2 Creating a Java .jar File
	8.3 Configuring the Driver to Use the New Class

	9 Managing the Driver
	10 Troubleshooting
	A Driver Properties
	A.1 Driver Configuration
	A.1.1 Driver Module
	A.1.2 Driver Object Password (iManager Only)
	A.1.3 Authentication
	A.1.4 Startup Option
	A.1.5 Driver Parameters
	A.1.6 ECMAScript (Designer Only)
	A.1.7 Global Configurations

	A.2 Global Configuration Values

	B Delimited Text Driver Extensions
	B.1 Using the ImageFile InputSource Extension
	B.1.1 Installing the ImageFile InputSource Extension
	B.1.2 Configuring the Driver for the ImageFile InputSource Extension

	B.2 Customizing ImageFile InputSource
	B.3 Using the ImageFile PostProcessor
	B.3.1 Installing the ImageFile PostProcessor Extension
	B.3.2 Configuring the Driver for the ImageFile Extension

	B.4 Customizing the ImageFile Extension

