
Novell

m

 Novell Confidential Manual (99a) 13 November 2003
w w w . n o v e l l . c o

DirXML® Driver for JDBC*
1 . 6 . 2
J a n u a r y 1 5 , 2 0 0 4

I M P L E M E N T A T I O N GU I D E

 Novell Confidential Manual (99a) 13 November 2003
Legal Notices
Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all parts of Novell software,
at any time, without any obligation to notify any person or entity of such changes.

You may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations
or the laws of the country in which you reside.

Copyright © 1993-2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher.

U.S. Patent Nos. 5,608,903; 5,671,414; 5,677,851; 5,758,344; 5,784,560; 5,794,232; 5,818,936; 5,832,275; 5,832,483; 5,832,487; 5,870,739;
5,873,079; 5,878,415; 5,884,304; 5,913,025; 5,919,257; 5,933,826. U.S. and Foreign Patents Pending.
Novell, Inc.
1800 South Novell Place
Provo, UT 84606
U.S.A.

www.novell.com
DirXML Driver for JDBC Implementation Guide
January 15, 2004
Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

 Novell Confidential Manual (99a) 13 November 2003
Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc. in the United States and other countries.
DirXML is a registered trademark of Novell, Inc. in the United States and other countries.
eDirectory is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc. in the United States and other countries.
Novell is a registered trademark of Novell, Inc. in the United States and other countries.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

 Novell Confidential Manual (99a) 13 November 2003

 Novell Confidential Manual (99a) 13 November 2003
Contents

About This Guide 9

1 Introducing the DirXML Driver for JDBC 11
Overview . 11
New Features. 11

Driver Features . 11
Driver Bug Fixes . 11
DirXML 2.0 Features . 11

Driver Concepts . 13
DirXML Driver for JDBC. 13
Third-Party JDBC Driver . 13
JDBC Driver Type. 13
Directory Schema . 13
Application Schema . 14
Synchronization Schema . 14
Logical Database Class . 14

Database Concepts. 14
Database Schema . 14
Data Manipulation Language . 14
Data Definition Language . 15
Transactions . 15
Triggers . 15
Identity Columns/Sequences . 16
Stored Procedures/Functions . 16

Data Synchronization Models . 17
Direct Synchronization . 17
Indirect Synchronization . 18

2 Understanding Driver Prerequisites 21
Driver Prerequisites. 21

Supported Platforms . 21
Supported Databases . 21
Recommended Third-Party JDBC Drivers . 22
Using The Sun JDBC-ODBC Bridge Driver . 23
Security . 24
Known Issues . 24
Limitations. 25

3 Installing or Upgrading the Driver 27
Installing the Driver . 27

Installing the Driver . 27
Installing Database Objects . 31

Configuring Oracle Objects . 31
Configuring Microsoft SQL Server Objects . 32
Configuring IBM DB2 Objects . 32
Configuring Sybase Objects . 33
Contents 5

 Novell Confidential Manual (99a) 13 November 2003
Configuring MySQL Objects . 33
Configuring Informix Objects. 34

Upgrading the Driver . 35
Upgrade Requirements . 35
Upgrading from 1.5 to 1.6 . 35

Activating the Driver . 35

4 Configuring the Driver 37
Setting Driver Authentication Parameters . 37

Configuring Driver Authentication . 37
Authentication ID. 37
Authentication Context . 38
Application Password . 38

Driver Parameters . 38
Configuring Driver Settings . 39
Subscriber Settings . 43
Publisher Settings . 45

Trace Levels . 46
Configuring Third-Party JDBC Drivers. 47

5 Advanced Driver Configuration 49
Schema Mapping . 49

Logical Database Classes . 49
Indirect Synchronization . 49
Direct Synchronization . 56
Synchronizing Primary Key Columns . 57
Synchronizing Multiple Classes . 57
Mapping Multi-Valued Attributes to Single-Valued Database Fields. 57

Event Mapping . 58
Add Events. 58
Modify Events . 58
Delete Events . 58
Query Events . 59
Move and Rename Events. 59

The Event Log Table . 59
Event Log Columns . 59
Event Types . 61

Using Structured Query Language in XML Events . 66
Introduction . 66
Variable Substitution . 67
Statement Placement . 68
Manual vs. Automatic Transactions . 69
Transaction Isolation Level . 70
Statement Type . 71
SQL Queries . 72
Data Definition Language (DDL) Statements . 72
Logical Operations . 73
Best Practices . 74

6 Using the JDBC Association Utility 75
Understanding the Utility . 75

Before You Begin . 76
Using the Utility . 76
Editing Associations . 77

7 Uninstalling the Driver and Database Objects 79
6 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Uninstalling the Driver . 79
Uninstalling Database Objects . 79

Uninstalling Oracle Objects . 79
Uninstalling Microsoft SQL Server Objects . 80
Uninstalling IBM DB2 UDB Objects . 80
Uninstalling Sybase Objects . 80
Uninstalling MySQL Objects . 80
Uninstall Informix Objects . 80

A Best Practices 83

B Common Questions 85
Why Can’t the Driver See My Tables or Views? . 85
How Do I Synchronize Tables Located in Multiple Schemas? . 85
Why Isn’t the Driver Processing Records in the Event Log? . 86
Can the Driver Manage Database User Accounts? . 86
Can the Driver Synchronize Large Binary and String Data Types? . 86
Why is Publication so Slow? . 86
Can the Driver Synchronize Multiple Classes? . 86
Why Must Foreign Key Column and Primary Key Columns Have the Same Name? 86
Does the Driver Support SSL Encryption? . 87
How Do I Map Multi-Valued Attributes to Single-Valued Database Fields? . 87
Why is the Driver Synchronizing Garbage Strings? . 87

C Supported Data Types 89

D java.sql.DatabaseMetaData Methods 91

E JDBC 1.0 Methods 93
Contents 7

 Novell Confidential Manual (99a) 13 November 2003
8 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
About This Guide

The DirXML® Driver for Java* Database Connectivity (JDBC*) provides a generic solution for
synchronizing data between Novell® eDirectoryTM and relational databases.

This guide provides an overview of the driver’s technology as well as configuration instructions.

Additional Documentation

For documentation on using DirXML and the other DirXML drivers, see the DirXML
Documentation Web site (http://www.novell.com/documentation/lg/dirxmldrivers).

Documentation Updates

For the most recent version of this document, see the DirXML Drivers Documentation Web site
(http://www.novell.com/documentation/lg/dirxmldrivers/index.html).

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

User Comments

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell DirXML. To contact us, send e-mail to proddoc@novell.com.
About This Guide 9

http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers/index.html

 Novell Confidential Manual (99a) 13 November 2003
10 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
1 Introducing the DirXML Driver for JDBC

The DirXML® Driver for Java Database Connectivity (JDBC), subsequently referred to as the
driver, provides a generic solution for synchronizing data between Novell® eDirectoryTM and
JDBC-accessible relational databases.

The principal value of this driver resides in its generic nature. Unlike most DirXML drivers that
interface with a single, well-defined application, this driver can interface with most relational
databases and database-hosted applications.

Overview
In this section, you will find information on the following topics:

“New Features” on page 11

“Driver Concepts” on page 13

“Database Concepts” on page 14

“Data Synchronization Models” on page 17

New Features

Driver Features
Referential attribute support can now be disabled.

Driver Bug Fixes
Referential attribute support can now be disabled via the “Enable Referential Support?” driver
parameter. This allows this driver to be backwards compatible with the 1.0 driver.

Objects can now be added on the publisher channel without <add-attr> child elements.

Publication <add> events followed by <modify> events are no longer optimized out. This
ensures backwards compatibility with the 1.5 driver.

DirXML 2.0 Features
DirXML 2.0 includes the following new features. For more information, refer to the Nsure Identity
Manager 2 Administration Guide (http://www.novell.com/documentation/lg/dirxml20/admin/
data/alxnk27.html).

Password Management

The new password management framework includes the following benefits:
Introducing the DirXML Driver for JDBC 11

http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html
http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html
http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html
http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html

 Novell Confidential Manual (99a) 13 November 2003
New Password Policies let you create rules for passwords and assign them to users,
containers, or the whole eDirectory tree. You can enable Universal Password, which lets you
enforce detailed criteria for passwords and allows for special characters.

Password Synchronization 2.0 is now cross-platform, and it lets you enforce your Password
Policies across connected systems. New notification templates let you automatically send
messages to users about their password synchronization status.

Using Password Policies, you can also provide Forgotten Password Self-Service and Reset
Password Self-Service to your users. These new features can help you reduce help desk calls.
Notification templates are also included for automatically sending forgotten password and
password hint messages to users.

Policy Builder Interface and DirXML Script for Creating Policies

For the most common tasks, you can now use the new Policy Builder interface to create policies
for your driver without writing XSLT code. The Policy Builder helps you set up policies using the
new DirXML Script.

Role-Based Entitlements

For many drivers, Role-Based Entitlements is an option in the sample driver configuration that you
can choose when importing the driver.

Role-Based Entitlements let you grant entitlements on connected systems to a group of Novell®
eDirectoryTM users. Using Entitlement Policies, you can streamline management of business
policies and reduce the need to configure your DirXML drivers.

Novell Nsure Audit

Novell NsureTM Audit is a centralized, cross-platform auditing service. It collects event data from
multiple applications across multiple platforms and writes the data to a single, non-repudiable data
store. Nsure Audit is also capable of creating filtered data stores. Based on criteria you define,
Nsure Audit captures specific types of events and writes those events to secondary data stores.

Global Configuration Values

Global configuration values (GCVs) are new settings that are similar to driver parameters. Global
configuration values can be specified for a driver set as well as an individual driver. If a driver does
not have a value for a particular GCV, the driver inherits the value for that GCV from the driver set.

GCVs allow you to specify settings for new DirXML features such as Password Synchronization,
as well as settings that are specific to the function of an individual driver configuration. Some
GCVs are provided with the drivers, but you can also add your own. You can refer to these values
in a policy to help you customize your driver configuration.

Driver Heartbeat

The DirXML engine now accepts driver heartbeat documents from drivers, and drivers can be
configured to send them.
12 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Driver Concepts
The following are some important terms and concepts you should know before installing and
configuring the driver:

“DirXML Driver for JDBC” on page 13

“Third-Party JDBC Driver” on page 13

“JDBC Driver Type” on page 13

“Directory Schema” on page 13

“Application Schema” on page 14

“Synchronization Schema” on page 14

“Logical Database Class” on page 14

DirXML Driver for JDBC
The driver consists of three files: JDBCShim.jar, JDBCUtil.jar, and CommonDriverShim.jar. In
addition to these files, you will need a third-party JDBC driver to communicate with each
respective database.

Third-Party JDBC Driver
One of the numerous JDBC implementations used by the driver to communicate with a particular
database. For example, classes12.zip is one of Oracle’s JDBC drivers.

JDBC Driver Type
There are four types of third-party JDBC drivers:

1. A third-party JDBC driver that is partially Java and communicates indirectly with a database
through an ODBC driver. Type 1 drivers serve as a JDBC-ODBC bridge. Sun provides a
JDBC-ODBC bridge driver for experimental use and for situations when no other type of
third-party JDBC driver is available.

2. A third-party JDBC driver that is partially Java and communicates indirectly with a database
through its native client APIs.

3. A third-party JDBC driver that is pure Java and communicates indirectly with a database
through a middleware server.

4. A third-party JDBC driver that is pure Java and communicates directly with a database.

Type 3 and 4 drivers are generally more stable than type 1 and 2 drivers. Type 1 and 2 drivers are
generally faster than type 3 and 4 drivers. Type 2 and 3 drivers are generally more secure than type
1 and 4 drivers. If you choose to use a type 1 or type 2 driver, you must use the remote loader to
ensure the integrity of the directory process.

Directory Schema
The set of object classes and attributes in the directory. For example, the eDirectory User class and
Given Name attribute are part of the eDirectory schema.
Introducing the DirXML Driver for JDBC 13

 Novell Confidential Manual (99a) 13 November 2003
Application Schema
The set of classes and attributes in an application. Because databases have no concept of classes
or attributes, the driver maps eDirectory classes to views or tables and eDirectory attributes to
columns.

Synchronization Schema
The database schema visible to the the driver.

Logical Database Class
The set of tables or views used to represent an eDirectory class in a database.

Database Concepts
In the following section, you will learn about important database concepts, including:

“Database Schema” on page 14

“Data Manipulation Language” on page 14

“Data Definition Language” on page 15

“Transactions” on page 15

“Triggers” on page 15

“Identity Columns/Sequences” on page 16

“Stored Procedures/Functions” on page 16

Database Schema
A database schema is a set of database objects, such as tables, views, stored procedures, and so
forth that are owned by a particular database user.

Ownership is often expressed using a dot notation such as dirxml.emp, where dirxml is the
name of the database user that owns the table emp. All of the database objects owned by dirxml
constitute the dirxml database schema.

Data Manipulation Language
Data Manipulation Language (DML) statements are highly standardized statements that
manipulate database data. DMLs are essentially the same regardless of the database you use.

The following example shows several DML statements:

SELECT * FROM emp;
INSERT INTO emp(lname) VALUES(’Doe’);
UPDATE emp SET fname = ’John’ WHERE empno = 1;

NOTE: Examples used throughout the implementation guide are for the Oracle* database.
14 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Data Definition Language
Data Definition Language (DDL) statements manipulate database objects such as tables, indexes,
user accounts, and so forth. DDL statements are proprietary and differ substantially between
databases.

The following example shows a DDL statement:

CREATE TABLE emp
(
 empno NUBMER(8),
 fname VARCHAR2(64),
 lname VARCHAR2(64)
);

CREATE USER dirxml IDENTIFIED BY novell;

Transactions
A transaction is an atomic database operation that consists of one or more statements. When a
transaction is complete, all statements in the transaction are committed. When a transaction is
interrupted or one of the statements in the transaction has an error, the transaction is said to roll
back. When a transaction is rolled back, the database is left in the same state it was before the
transaction began.

Transactions are either manual (user-defined) or automatic. Manual transactions can consist of one
or more statements and must be explicitly committed. Automatic transactions consist of a single
statement and are implicitly committed after each statement is executed.

Manual Transactions

Manual transactions usually contain more than one statement. DDL statements typically cannot be
grouped with DML statements in a manual transaction. The following example shows a manual
transaction:

INSERT INTO emp(lname) VALUES(’Doe’);
UPDATE emp SET fname = ’John’ WHERE empno = 1;
COMMIT; /* explicit */

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. When a statement runs
automatically, it is autonomous of any other statement. The following example shows an automatic
transaction:

INSERT INTO emp(lname) VALUES(’Doe’);
/* COMMIT; implicit */

Triggers
A database trigger is programmable logic that is associated with a table, which fires or executes
under certain conditions. Triggers are often useful for creating side effects in a database. The
following is an example of a database trigger on table emp.

CREATE TABLE emp
(
 empno NUMBER(8),
Introducing the DirXML Driver for JDBC 15

 Novell Confidential Manual (99a) 13 November 2003
 fname VARCHAR(64),
 lname VARCHAR(64)
);

CREATE TRIGGER t_emp_insert
 AFTER INSERT ON emp
 FOR EACH ROW

BEGIN
 UPDATE emp SET fname = ’John’;
END;

When a statement is executed against a table with triggers, a trigger will fire if the statement
satisfies the conditions specified in the trigger. For example, using the above table, if the following
insert statement were executed,

INSERT INTO emp(LNAME) VALUES(’Doe’)

Trigger t_emp_insert would fire after the insert statement is executed and the following update
statement would also be executed:

UPDATE emp SET fname = ’John’

A trigger can typically be fired before or after the statement that triggered it. Statements that are
run as part of a database trigger are typically included in the same transaction as the triggering
statement. In the above example, both the insert and update statements would be committed or
rolled back together.

Identity Columns/Sequences
Identity columns and sequences are used to generate unique primary key values.

An identity column is a self-incrementing column used to uniquely identify a row in a table.
Identity columns values are automatically filled-in when a row is inserted into a table.

A sequence object is a counter that can be used to uniquely identify a row in a table. Unlike an
identity column, a sequence object is not bound to a single table. If used by a single table, however,
a sequence object can be used to achieve an equivalent result.

The following is an example of a sequence object:

CREATE SEQUENCE seq_empno
 START WITH 1
 INCREMENT BY 1
 NOMINVALUE
 NOMAXVALUE
 CACHE 100
 ORDER;

Stored Procedures/Functions
A stored procedure or function is programmable logic stored in a database. Unlike triggers, stored
procedures or functions are not associated with a table. They can be invoked from almost any
context.

The subscriber can use stored procedures or functions to retrieve primary key values from rows
inserted into tables for the purpose of creating associations. Stored procedures or functions can
also be invoked from within embedded SQL statements or triggers.
16 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
The distinction between stored procedures and functions varies by database. Typically, both can
return output. How they return output is at issue. Stored procedures usually return values through
parameters. Functions usually return values through a result set.

The following is an example of a stored procedure:

CREATE
PROCEDURE sp_empno
(
 io_empno IN OUT NUMBER,
 i_fname IN VARCHAR2
)
IS
BEGIN
 IF (io_empno IS NULL) THEN
 SELECT seq_empno.nextval INTO io_empno FROM DUAL;
END IF;
END sp_empno;

Data Synchronization Models
The driver supports two data synchronization models: direct and indirect. The following sections
describe how direct and indirect synchronization work on both the Subscriber and Publisher
channels.

Direct Synchronization
Direct synchronization uses views to synchronize information between eDirectory and a database.
The following information explains how direct synchronization works on the Subscriber and
Publisher channels.

In the following scenarios, you can have one or more customer tables or views.

Subscriber Channel

The subscriber updates customer tables through a view in the driver’s schema. A view can be used
to synchronize directly with customer tables.
NOTE: Direct synchronization without a view is only possible if all columns of interest are located in the same
table and if that table has an explicit primary key constraint.

Database

Customer
Table(s)

Direct Synchronization on
the Subscriber Channel

SubscriberSubscriberSubscriber

Driver’s
Schema

View(s)
Introducing the DirXML Driver for JDBC 17

 Novell Confidential Manual (99a) 13 November 2003
Publisher Channel

When a customer table is updated, publication triggers insert rows into the event log table. The
publisher then reads the inserted rows and updates eDirectory.

Depending on the contents of the rows read from the event log table, the publisher might need to
retrieve additional information from the view before updating eDirectory. After updating
eDirectory, the publisher then deletes or marks the rows as processed.

Indirect Synchronization
Indirect synchronization uses intermediate tables to synchronize information between eDirectory
and a database. The following information explains how indirect synchronization works on the
Subscriber and Publisher channels.

In the following scenarios, you can have one or more customer tables or intermediate tables.

Subscriber Channel

The subscriber updates the intermediate table in the driver’s schema. The synchronization triggers
directly update the customer tables elsewhere in the database.

Database

Driver’s
Schema

Event
Log

Customer
Table(s)

Publication
Trigger(s)

Publisher

View(s)

Direct Synchronization on
the Publisher Channel

Database

Driver’s
Schema

Synchronization
Trigger(s)

Indirect Synchronization
 on the Subscriber Channel

Subscriber

Customer
Table(s)

Intermediate
Tables(s)
18 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Publisher Channel

When customer tables are updated, synchronization triggers update the intermediate tables.
Publication triggers then insert one or more rows into the event log table. The publisher then reads
the inserted rows and updates eDirectory.

Depending on the contents of the rows read from the event log table, the publisher might need to
retrieve additional information from the intermediate tables before updating eDirectory. After
updating eDirectory, the publisher then deletes or marks the rows as processed.

Database

Driver’s
Schema

Event
Log

Customer
Table(s)

Synchronization
Trigger(s)

Publisher

Indirect Synchronization
 on the Publisher Channel

Intermediate
Tables(s)

Publication
Trigger(s)
Introducing the DirXML Driver for JDBC 19

 Novell Confidential Manual (99a) 13 November 2003
20 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
2 Understanding Driver Prerequisites

The following sections contain important information you should review before installing and
configuring the driver.

“Driver Prerequisites” on page 21

“Supported Platforms” on page 21

“Supported Databases” on page 21

“Recommended Third-Party JDBC Drivers” on page 22

“Using The Sun JDBC-ODBC Bridge Driver” on page 23

“Security” on page 24

“Known Issues” on page 24

“Limitations” on page 25

Driver Prerequisites
The DirXML® Driver for JDBC requires the following:

Novell® eDirectoryTM 8.6.2 or higher

DirXML 1.1a or higher

ConsoleOne® 1.3.3 or higher or Novell iManager 1.5

Java Virtual Machine (JVM*) 1.2 or higher

A third-party JDBC driver

Supported Platforms
The driver runs on all DirXML-enabled platforms, including Windows* NT*/2000, NetWare®,
Solaris*, and Linux*.

Supported Databases
The driver uses the JDBC 1.0 API to execute SQL statements and obtain metadata from a database.
As such, a database must be JDBC-accessible. The following databases have been tested and are
recommended for use with this product:

Database Version

IBM* DB2 Universal Database (UDB) 7.2 or higher

Microsoft* SQL Server 2000 Service Pack 2 or higher
Understanding Driver Prerequisites 21

 Novell Confidential Manual (99a) 13 November 2003
You can use other databases; however, they must meet the following minimum requirements:

Support the SQL-92 entry level grammar.

Support triggers or some auditing capability suitable for event capture and replication
(publication only).

Recommended Third-Party JDBC Drivers
We recommend using type 3 or type 4 third-party JDBC drivers whenever possible. We also
recommend using the latest version of these drivers. If you choose to use a type 1 or type 2 driver,
you must use the remote loader to ensure the integrity of the directory process.

The following third-party drivers have been tested and are recommended for use with the DirXML
Driver for JDBC:

The following third-party JDBC drivers have been tested, but are not recommended for use with
this product:

Sun Type 1 JDBC-ODBC Bridge driver (JRE 1.2)

We strongly recommend that you use the recommended third-party drivers whenever possible.

Microsoft SQL Server 7 Service Pack 4

Oracle 8i Release 3 (8.1.7)

Oracle 9i Release 2 (9.2.0.1) or higher

Sybase* Adaptive Server Enterprise (ASE) 12.5 or higher

MySQL* 3.23

Informix* Dynamic Server (IDS) 9.30 or higher

Driver Name Version

Oracle 8i JDBC Driver 8.1.7.1

Oracle 9i JDBC Driver 9.2.0.1 or later

BEA* Weblogic* Type 4 jDriver for
Microsoft SQL Server 7/2000

5.1.0, Service Pack 11 or later

Sybase jConnect JDBC Driver 5.5 or later

Microsoft SQL Server 2000 Driver for
JDBC

2.2 or later

Informix JDBC Driver 9.3 or later

MySQL Connector/J 2.0.14 or later

IBM Type 3 JDBC Driver for DB2 UDB 7.2 or later

Database Version
22 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Minimum Third-Party JDBC Driver Requirements

The driver might not work with all third-party drivers. If you choose to use another third-party
driver, it must meet the following requirements to work with the DirXML Driver for JDBC:

Support required metadata methods.

Refer to Appendix D, “java.sql.DatabaseMetaData Methods,” on page 91 for a current list of
the required and optional java.sql.DatabaseMetaData method calls made by the driver. This
list of requirements might be extended in future releases. As such, all
java.sql.DatabaseMetaData methods should be supported. If the third-party driver does not
meet these requirements, you might have to purchase a different third-party driver in the
future.

Return accurate data from select statements.

Correctly execute the insert, update, and delete statements issued by the driver.

Refer to Appendix E, “JDBC 1.0 Methods,” on page 93 for a list of JDBC methods used by the
driver. This list can be used in collaboration with third-party driver documentation to identify
potential incompatibilities.

Considerations When Using Other Third-Party JDBC Drivers

Because the driver is dependent upon third-party drivers, bugs in those drivers might cause
the driver to malfunction. In order to assist you in debugging third-party drivers, the driver's
trace output has been enhanced to include JDBC API-level tracing (level 5) and third-party
driver tracing (level 6).

Stored procedure or function support and connectivity (specifically reconnection) are likely
points of failure.

Using The Sun JDBC-ODBC Bridge Driver
Because of the increased instability inherent in using an ODBC driver and known issues with the
1.3.x Java Runtime Environment (JRE) JDBC-ODBC Bridge driver, We strongly recommend
using a pure Java (type 3 or 4) JDBC driver whenever possible. If you choose to use a type 1 or
type 2 driver, you must use the remote loader to ensure the integrity of the directory process.

The principle disadvantage to using a type 1 JDBC bridge driver and a native ODBC driver is
increased instability. Errors in the native libraries from the ODBC driver imported through the
JDBC bridge driver could bring down the directory.

The driver and JDBC-ODBC Bridge driver might not work with all third-party ODBC drivers. The
list of third-party JDBC driver requirements applies to ODBC drivers as well. Refer to
“Recommended Third-Party JDBC Drivers” on page 22 for more information.

If you choose to use the Microsoft ODBC driver for SQL Server (SQLSRV32.DLL), We
recommend installing the latest version of Microsoft Data Access Components (MDAC).
MDAC can be downloaded from free from Microsoft’s Web site. (http://www.microsoft.com/
data/download.htm).

The Bridge driver included in the JRE (Java Runtime Environment) 1.3.x contains a known
defect regarding IN OUT stored procedure parameters. Calling a stored procedure with IN
OUT parameters results in a memory access violation that brings down the directory. The
recommended solution to this problem is to use the 1.2.x JRE with DirXML. However, doing
so will reduce the performance of all drivers running on the server. DirXML supports the use
of Hotspot only with the 1.3.x JRE or greater. 1.4.x JRE has not been tested with the driver.
Understanding Driver Prerequisites 23

http://www.microsoft.com/data/download.htm

 Novell Confidential Manual (99a) 13 November 2003
Security
In order to ensure that a secure connection exists between the driver and a third-party driver, we
recommends that you run the driver remotely.

When the driver cannot run remotely, you might want to use a type 2 or type 3 JDBC driver. These
driver types often facilitate a greater degree of security through middleware servers or client APIs
than other JDBC driver types.

Known Issues
This section lists the current known driver issues.

General

Some databases, such as Sybase and DB2, have proprietary time stamp formats that cannot be
parsed by the java.sql.Timestamp class.

When synchronizing time stamp columns from these databases, time stamp values placed in
the event log table should be in ODBC canonical format (i.e., yyyy-mm-dd
hh:mm:ss.fffffffff). Alternatively, these values can be converted to ODBC cannonical format
via style sheets. When time stamps are used as primary keys, however, time stamp values
must be placed in the event log table in ODBC cannonical format. Time stamp values can be
reformatted on the database using a general-purpose programming language, such as Java, or
the database’s native SQL programming language.

When eDirectory Time and Timestamp syntaxes are interpreted as signed integers, they
cannot store dates before Jan 1, 1902 or after Jan 1, 2038.

IBM DB2

After applying an IBM Fixpack to your DB2 server, you should use the the updated
db2java.zip file on the database server with the driver. Otherwise, you might receive
connectivity errors such as "CLI0601E Invalid statement handle or statement is closed."

JDBC-ODBC Bridge

The Bridge driver included in the JRE (Java Runtime Environment) 1.3.x contains a known
defect regarding IN OUT stored procedure parameters. Calling a stored procedure with IN
OUT parameters results in a memory access violation that brings down the directory. The
recommended solution to this problem is to use the 1.2.2 JRE with DirXML. However, doing
so will reduce the performance of all drivers running on the server. DirXML only supports the
use of Hotspot with the 1.3.x JRE or greater.

Oracle

You may experience high CPU utilitzation problems when executing embedded SQL
statements unless you place a jdbc:type attribute on each <jdbc:statement> element.
A general means of avoiding this problem is to set the driver parameter Handle Statement
Results to single.

The 8.1.6 version of the Oracle JDBC driver has a bug that effects publication. It incorrectly
returns NULL values for some fields in the event log table when their values are actually non-
NULL.

The net effect is that the driver treats several rows as No Operations or NOOPs, in which the
rows are ignored, and the driver produces an incomplete publication document. Earlier
24 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
versions might also exhibit the same problem. We recommend that you use the 8.1.7 version
because it is backwards-compatible with most versions of Oracle 8.

In order to connect to older versions of Oracle on NetWare (for example, Oracle 8.0.3), you
must use the CLASS111.zip JDBC driver supplied on the Oracle installation CD.

Microsoft SQL Server

Microsoft’s ODBC driver for SQL Server returns an ambiguous type java.sql.Types.OTHER
for data types NVARCHAR, NCHAR, NTEXT, and UNIQUEIDENTIFIER. The driver
assumes type java.sql.Types.OTHER to be NVARCHAR, NCHAR, or NTEXT. Because of
this, type UNIQUEIDENTIFIER is not supported.

Microsoft’s SQL Server 2000 Driver for JDBC issues the following error when the driver
parameter driver parameter Reuse Statements is set anything other than no: "Can't start
manual transaction mode because there are cloned."

Sybase

In order to ensure ANSI-compliant padding and truncation behavior for binary values, binary
columns (other than image) must be exactly the size of the eDirectory attribute that maps to
them, constrained NOT NULL, and added to the publisher or subscriber Create rule. If they
are constrained NULL, trailing zeros, which are significant to eDirectory, will be truncated. If
binary columns exceed the size of their respective eDirectory attributes, extra 0s will be
appended to the value.

MySQL

TIMESTAMP columns, when updated after being initially set to 0 or NULL, are always set
to the current date and time. To compensate for this behavior, we recommend you map
eDirectory Time and Timestamp syntaxes to DATETIME columns.

Publication is not supported. MySQL does not support the query used by the publisher to
retrieve events from the Event Log table.

Informix

NUMERIC or DECIMAL columns cannot be used as primary keys unless the scale (that is,
the number of columns to the right of the decimal point) is explicitly set to zero when the table
is created. By default, the scale is set to 255.

Limitations
The following section lists the known driver limitations.

The driver does not support the use of delimited database identifiers.

Direct synchronization (using views) does not support multi-valued or referential attribute
synchronization.

Informix Dynamic Server databases created with LOG MODE ANSI are not supported.
Databases created with this option use delimited identifiers for user/schema names. The driver
does not currently support delimited identifiers.

Publication is not supported. MySQL does not support the query used by the publisher to
retrieve events from the Event Log table.

JDBC 2.0 data types are not supported with the exception of CLOB and BLOB.
Understanding Driver Prerequisites 25

 Novell Confidential Manual (99a) 13 November 2003
26 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
3 Installing or Upgrading the Driver

In this section, you will find information and procedures to help you install and upgrade the driver:

“Installing the Driver” on page 27

“Installing Database Objects” on page 31

“Upgrading the Driver” on page 35

“Activating the Driver” on page 35

Installing the Driver
The DirXML® Driver for JDBC requires Novell® eDirectoryTM and database-side configuration.
We recommend that you configure your database and test it independently of the driver.

You should use these instructions if no previous installation exists for the driver. After you have
downloaded the CD image, complete the following instructions to install the driver:

Installing the Driver
1 Shut down eDirectory.

2 Copy JDBCShim.jar, JDBCUtil.jar, and CommonDriverShim.jar into the appropriate
directory for your platform. Use the following table to determine the appropriate directory:

3 Copy the appropriate third-party driver files into the same directory you specified in the
previous step.
NOTE: These third-party files are not bundled with the driver. These files should be properly licensed, if
necessary, when used in a production environment.

The following table includes third-party driver download information, by vendor.

Platform Directory Path

NetWare® SYS:\SYSTEM\LIB

Solaris or Linux /usr/lib/dirxml/classes

Windows NT/2000 NOVELL\NDS\LIB
Installing or Upgrading the Driver 27

 Novell Confidential Manual (99a) 13 November 2003
Vendor Database Filename(s) Download Instructions

Oracle Oracle 8i classes12.zip,
nls_charset12.zip

Oracle Technology Network (http://otn.oracle.com/
software/tech/java/sqlj_jdbc/content.html)

You must first register for free with Oracle’s Technology
Network. You should download version 8.1.7.1 or later.

Oracle Oracle 9i classes12.zip,
nls_charset12.zip

Oracle Technology Network (http://otn.oracle.com/
software/tech/java/sqlj_jdbc/content.html)

You must first register for free with Oracle’s Technology
Network. You should download version 9.2.0.1 or later.

BEA Systems Microsoft SQL Server 7/
2000

unspecified BEA Download Center (http://commerce.bea.com/
downloads/weblogic_server.jsp)

This driver requires free registration and expires on a
monthly basis. You should select the JDBC Drivers
product and download MSSQLServer4 Kit, Version 7
and 2000.

You will need to zip/jar the file yourself. To do this:

1. Place the
weblogic\mssqlserver4v70\license\WeblogicLicense.xm
l file into the \weblogic\smsqlserver4v70\classes
directory.

2. Zip/jar the ...\classes\weblogic directory, including its
contents, and the ...\classes\WeblogicLicense.xml file.
This directory and XML file must be at the root of the
zipped/jarred file.

Microsoft SQL Server 2000 msbase.jar

mssqlserver.jar

msutil.jar

Microsoft Downloads (http://www.microsoft.com/sql/
downloads/2000/jdbc.asp)

Click the appropriate download option for your platform.

IBM DB2 Universal Database
(UDB) 7.2

db2java.zip IBM Downloads (http://www-4.ibm.com/software/data/
db2/udb/downloads.html)

This driver is part of the free DB2 UDB Personal
Developer’s Edition download.

If you apply Fixpacks, ensure that you use the
db2java.zip file on the patched server and not the file
supplied with the original download.

Sybase Adaptive Server Enterprise
(ASE) 12.5

jconn2.jar Sybase Downloads (http://www.sybase.com/
downloads)

To download this driver, select jConnect for JDBC.

MySQL MySQL 3.23 mysql-connector-
java-2.0.14-bin.jar

MySQL Downloads (http://www.mysql.com/downloads/
api-jdbc.html)

Select MySQL Connector/J2 or later.

Informix Informix Dynamic Server
(IDS) 9.3

ifxjdbc.jar not available for download
28 DirXML Driver for JDBC Implementation Guide

http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://commerce.bea.com/downloads/weblogic_server.jsp
http://www.microsoft.com/sql/downloads/2000/jdbc.asp
http://www-4.ibm.com/software/data/db2/udb/downloads.html
http://www.sybase.com/downloads
http://www.mysql.com/downloads/api-jdbc.html

 Novell Confidential Manual (99a) 13 November 2003
4 Restart eDirectory.

5 Start ConsoleOne or iManager.

Importing a Preconfigured Driver

The preconfigured drivers are the example configurations only. We recommend that you install a
preconfigured configuration and run it before customizing the driver. Preconfigured driver files are
provided for the following databases:

All configurations use the same conventions, regardless of database:

String field lengths are 64 characters. Fields of this length can hold most eDirectory attributes.
You may want to refine field lengths to enhance storage efficiency.

Primary key field lengths are 8 digits.

The record_id column in the eventlog table has the maximum numeric precision
permitted by each database.

All table, trigger, stored procedure, index, and constraint names are lowercase. This is the
most commonly used case convention.

Triggers names are prefaced with t_, stored procedure names are prefaced with sp_, index
names are prefaced with i_, check constraints are prefaced with chk_, primary key
constraints are prefaced with pk_ and foreign key constraints are prefaced with fk_.

Sun N\A N\A Sun Downloads (http://java.sun.com/j2se/
downloads.html)

Sun’s JDBC-ODBC Bridge driver is freely available as
part of the Java Runtime Environment (JRE).

Database 1.6.1 or Earlier Filename 1.6.2 Filename

Oracle 8i, 9i JDBCOracleDirect.xml

JDBCOracleIndirect.xml

JDBCOracle.xml

Microsoft SQL Server 7/2000 JDBCMSSQLDirect.xml

JDBCMSSQLIndirect.xml

JDBCMSSQL.xml

IBM Universal Database (UDB) 7.2 JDBCDB2Direct.xml

JDBCDB2Indirect.xml

JDBCDB2.xml

Sybase Adaptive Server Enterprise
(ASE) 12.5

JDBCSybaseDirect.xml

JDBCSybaseIndirect.xml

JDBCSybase.xml

MySQL 3.23 JDBCMySQLIndirect.xml JDBCMySQL.xml

Informix Dynamic Server (IDS) 9.3 JDBCInformixDirect.xml

JDBCInformixIndirect.xml

JDBCInformix.xml

Vendor Database Filename(s) Download Instructions
Installing or Upgrading the Driver 29

http://java.sun.com/j2se/downloads.html

 Novell Confidential Manual (99a) 13 November 2003
Check, primary, and foreign key constraints follow this naming convention: prefix_table-
name_column-name (for example, pk_emp_empno, fk_phone_empno,
chk_eventlog_event_type)

Triggers follow this naming convention: t_table-name_operation (for example,
t_emp_insert)

Indexes follow this naming convention: i_table_name_number (for example, i_eventlog_1)

Identity columns and sequence objects cache 100 values.

Usernames are the last name of a User concatenated with a primary key value (for example,
John Doe’s username could be Doe1).

Initial passwords are the last name of a User (for example, John Doe’s password would be
Doe). Sybase passwords must be at least 6 characters long. When shorter than 6 characters,
last names are padded with the character ’p’ (for example, John Doe’s password would be
Doeppp). The padding character can be adjusted in the Subscriber Command Transformation
style sheet.

Importing the Driver Configuration

The driver configuration (XML) file creates and configures the objects needed in order for driver
work properly. It also includes sample rules and style sheets you can modify for your
implementation.

1 In iManager, select DirXML Management > Create Driver.

2 Select a driver set.

If you place this driver in a new driver set, you must specify a driver set name, context, and
associated server.

3 Mark Import a Preconfigured Driver from the Server and select the .xml file.

The driver configuration file is installed on the Web server when you set up iManager.

4 You will be prompted to enter a name for the driver. Enter the driver’s name and click Next
to continue.

5 (Optional) Click Define Security Equivalences.

5a Click Add, then select an object with Admin rights (or any other rights that you want the
driver to have).

5b Click Apply, then click ok.

6 (Optional) Click Exclude Administrative Roles to exclude objects from replication.

6a Click Add, then select any users you want to exclude (such as the admin user).

6b Click Apply, then click ok.

7 Click Next to view the import summary. Verify that the configuration is correct, then click
Finish with Overview.

The necessary DirXML objects have now been created. If you didn’t define security equivalences
or exclude administrative users during the import, you can complete these tasks by modifying the
driver object’s properties.
30 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Installing Database Objects
The following information explains how to install and configure database objects (tables, triggers,
indexes, and so forth) for synchronization with the default, preconfigured driver.

SQL scripts are located in the tools\sql\database directory.

This section contains information to help you:

“Configuring Oracle Objects” on page 31

“Configuring Microsoft SQL Server Objects” on page 32

“Configuring IBM DB2 Objects” on page 32

“Configuring Sybase Objects” on page 33

“Configuring MySQL Objects” on page 33

“Configuring Informix Objects” on page 34
IMPORTANT: We recommend installing or uninstalling preconfigured drivers and database scripts as a unit.
To prevent unintentional mismatching, database scripts and preconfigured drivers now contain headers with a
version number, the target database name, and the database version.

For uninstallation information, refer to Chapter 7, “Uninstalling the Driver and Database Objects,” on page 79.

Configuring Oracle Objects
1 From an Oracle client, such as SQL Plus, logon as user SYSTEM. By default, the password

for SYSTEM is MANAGER.

2 Execute the first installation script for direct or indirect synchronization. For example:

SQL> @c:\tools\sql\oracle\direct\INSTALL_DIRECT_1.sql

SQL> @c:\tools\sql\oracle\indirect\INSTALL_INDIRECT_1.sql

3 Log on as user dirxml using dirxml as the password.

4 Execute the second installation script for direct or indirect synchronization. For example:

SQL> @c:\tools\sql\oracle\direct\INSTALL_DIRECT_2.sql

SQL> @c:\tools\sql\oracle\indirect\INSTALL_INDIRECT_2.sql
NOTE: Before executing the provided publication tests as SYSTEM, you must log in and create a new session.
Otherwise, you won’t be able to see the sequence objects owned by dirxml.

If the scripts execute correctly, you should see notifications that the database objects have been
created. If there are errors, ensure that you are logged in as the correct user. Before re-running the
installation scripts, be sure to execute the uninstallation script (for example,
UNINSTALL_DIRECT.sql or UNINSTALL_INDIRECT.sql).

Troubleshooting Tips

When generating events for publication, make sure you are logged in as someone other than
the dirxml user. If you make changes as the dirxml user, your changes will not be
published.

Be sure to commit changes. Until you commit your changes, they will not be published.
Installing or Upgrading the Driver 31

 Novell Confidential Manual (99a) 13 November 2003
Configuring Microsoft SQL Server Objects
1 Start Query Analyzer.

2 Log on to your database server as user sa. By default, the sa user has no password.

3 Open and execute the first script for direct or indirect synchronization. For example:

tools\sql\mssql\direct\INSTALL_DIRECT_1.sql

tools\sql\mssql\indirect\INSTALL_INDIRECT_1.sql

4 Log on to your database server as user dirxml using dirxml as the password.

5 Open and execute the second installation script for direct or indirect synchronization. For
example:

tools\sql\mssql\direct\INSTALL_DIRECT_2.sql

tools\sql\mssql\indirect\INSTALL_INDIRECT_2.sql

Troubleshooting Tips

When generating events for publication, make sure you are logged in as someone other than
the dirxml user. If you make changes as the dirxml user, your changes will not be
published.

Be sure to commit changes. Until you commit your changes, they will not be published. The
keyword for commit for Microsoft SQL Server is go.

Make sure you are logged in as the correct user in the correct database when running the
scripts.

Configuring IBM DB2 Objects
For DB2 Universal Database, you must manually create a database user account and database
before running the provided scripts.Because the process of creating user accounts differs between
operating systems, Step 1 below is OS-specific. These instructions are for a Windows NT
operating environment. If you reinstall the database objects, you only need to repeat Step 6 through
Step 8.

1 Create a user account for user dirxml using dirxml as the password in User Manager for
Domains.

Remember to uncheck the User Must Change Password at Next Login check box for this
account.

You might want to also check the Password Never Expires check box.
NOTE: The remaining instructions are OS-independent.

2 Start the Control Center.

3 Right-click Databases > click Create Database Using Wizard.

4 Name the database dirxml > then click Finish.

5 Copy JDBCUtil.jar to your DB2 server.

6 Start the Command Center from the Control Center.

7 Change the name of the administrator account and password for your server before executing
the first installation script.
32 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
8 Click the Script tab > open the Script menu > import and execute the script for direct or
indirect synchronization. For example:

tools\sql\db2\direct\INSTALL_DIRECT_1.sql

tools\sql\db2\indirect\INSTALL_INDIRECT_1.sql

9 Import the second installation script for direct or indirect synchronization. For example:

tools\sql\db2\direct\INSTALL_DIRECT_2.sql

tools\sql\db2\indirect\INSTALL_INDIRECT_2.sql

10 Adjust the path to JDBCUtil.jar and execute the script.

Troubleshooting Tips

When generating events for publication, make sure you are logged in as someone other than
the dirxml user. If you make changes as the dirxml user, your changes will not be
published.

Make sure you commit your changes. Until you commit changes, they won’t be published.

Configuring Sybase Objects
This section explains how to install database objects on Sybase Adaptive Server Enterprise (ASE).

If you haven’t installed JDBC support on your Sybase server, you should complete this task. Refer
to your server’s installation manual for further details. If installation is required, you should
execute the sql_server*.sql script to install java.sql.DatabaseMetaData support.

1 From a Sybase client, such as isql, logon as user sa and execute the first installation script for
direct or indirect synchronization. By default, the sa account has no password. For example:

isql -U sa -P -i tools\sql\sybase\direct\INSTALL_DIRECT_1.sql

isql -U sa -P -i tools\sql\sybase\indirect\INSTALL_INDIRECT_1.sql

2 Log on as user dirxml using dirxml as the password and execute the second installation
script for direct or indirect synchronization. For example:

isql -U dirxml -P dirxml -i tools\sql\sybase\direct\INSTALL_DIRECT_2.sql

isql -U dirxml -P dirxml -i tools\sql\sybase\direct\INSTALL_INDIRECT_2.sql

Troubleshooting Tips

Make sure you commit your changes. Until you commit changes, they won’t be published.
The keyword for commit for Sybase is go.

Configuring MySQL Objects
1 From a MySQL client, such as mysql, log on as user root or another user with administrative

privileges. By default, the root user has no password.

2 Execute the first script for indirect synchronization. For example:

mysql> \. c:\tools\sql\mysql\indirect\INSTALL_INDIRECT_1.sql

3 Open and execute the second installation script for indirect synchronization. For example:

mysql> \. c:\tools\sql\mysql\indirect\INSTALL_INDIRECT_2.sql
Installing or Upgrading the Driver 33

 Novell Confidential Manual (99a) 13 November 2003
Configuring Informix Objects
For Informix Dynamic Server, you must manually create a database user account before running
the provided scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is
OS-specific. These instructions are for a Windows NT operating environment. If you reinstall the
database objects, you only need to repeat Step 2 through Step 6.

Installation Instructions

1 Create a user account for user dirxml using dirxml as the password in User Manager for
Domains.

Remember to uncheck the User Must Change Password at Next Login checkbox for this
account.

You might want to also check the Password Never Expires check box.
NOTE: The remaining instructions are OS-independent.

2 Start SQL Editor.

3 Log on to your server as user informix. By default, the password for informix is
informix.

4 Open and execute the first script for direct or indirect synchronization. For example:

tools\sql\informix\direct\INSTALL_DIRECT_1.sql

tools\sql\informix\indirect\INSTALL_INDIRECT_1.sql

5 Log on to your database server as user dirxml using password dirxml.

6 Open and execute the second installation script for direct or indirect synchronization. For
example:

tools\sql\informix\direct\INSTALL_DIRECT_2.sql

tools\sql\informix\indirect\INSTALL_INDIRECT_2.sql

Troubleshooting Tips

When generating events for publication, make sure you are logged in as someone other than
the dirxml user. If you make changes as the dirxml user, your changes will not be
published.

Be sure to commit changes. Until you commit your changes, they will not be published.

Make sure you are logged in as the correct user on the correct database when running the
scripts.
34 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Upgrading the Driver
Use the following information and procedures if you are upgrading the driver from a previous
version.

Upgrade Requirements
For versions prior to 1.5, refer to the DirXML Driver 1.5 for JDBC Implementation Guide (http:/
/www.novell.com/documentation/lg/dirxmldrivers/index.html). Be sure to use the 1.6 association
utility. It supersedes all previous versions.

Upgrading from 1.5 to 1.6
After you download the CD image, perform the following steps to upgrade a previous version of
the driver:

1 Stop the drivers being upgraded. Select Manual for the driver’s startup option.

2 Stop eDirectory.

3 Replace JDBCShim.jar, JDBCUtil.jar, and CommonDriverShim.jar.

4 Restart eDirectory.

5 (Optional) Install the preconfigured drivers.

You should uninstall the previous preconfigured drivers and execute the database uninstall
scripts before installing the new preconfigured drivers and scripts.

6 Set the driver’s startup options to their previous values.

7 Restart the drivers.

Activating the Driver
DirXML and DirXML drivers must be activated within 90 days of installation, or they will shut
down. At any time during the 90 days, or afterward, you can choose to activate DirXML products
to a fully licensed state.

To activate your driver, you should:

Purchase DirXML licenses

Generate a Product Activation Request

Submit the Product Activation Request

Install the Product Activation Credential received from Novell

For more information about completing these tasks, refer to Activating Your DirXML Product
(http://www.novell.com/documentation/lg/dirxml11a/index.html).
Installing or Upgrading the Driver 35

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxml11a/index.html

 Novell Confidential Manual (99a) 13 November 2003
36 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
4 Configuring the Driver

This section explains how to set up driver configuration parameters with possible configuration
values. Before you begin, make sure you have the appropriate driver files and a working
knowledge of Novell® eDirectoryTM and iManager.

“Setting Driver Authentication Parameters” on page 37

“Driver Parameters” on page 38

“Trace Levels” on page 46

“Configuring Third-Party JDBC Drivers” on page 47

Setting Driver Authentication Parameters
After you import the driver, you need to provide authentication information for the database.

Configuring Driver Authentication
1 In Novell iManager, click DirXML Management > Overview.

2 Locate the driver set containing the driver, then click the driver’s icon.

3 From the DirXML Driver Overview, click the driver object, which will display the driver
configurations. Refer to the individual driver implementation guides for more information
about each driver’s specific parameters.

4 Enter driver authentication information:

Authentication ID
Authentication ID is the name of the driver’s database user/login account. This user must exist and
be granted login/session privileges on the database or a connection cannot be established. In
addition, this user must have rights to select, insert, update, and delete on tables in the
synchronization schema or synchronization will fail.

Parameter Name Sample Configuration Value Default
Value

Required
Field

Authentication ID dirxml yes

Authentication Context jdbc:oracle:thin:@255.255.255.255:1521:ora yes

Application Password dirxml yes
Configuring the Driver 37

 Novell Confidential Manual (99a) 13 November 2003
Authentication Context
Authentication Context is the JDBC URL of the target database.

URL format and content are proprietary and differ between third-party drivers. There are some
similarities in content, however. Each URL, whatever the format, usually includes an IP address
or DNS name, port number, and a database identifier. Consult your third-party driver
documentation for the exact syntax and the content requirements of your driver.

The following table lists example URLs for third-party drivers. You will need to substitute the
appropriate IP address, port number, and database/data source identifiers for your database. These
examples use IP address 255.255.255.255, the default port number for each database, and dirxml
database/data source identifier.

Application Password
This is the password for the database user/login account that is used by the driver. You must create
a user/login account on the database and grant login/session privileges to this account or the driver
will be unable to connect.
NOTE: ConsoleOne® will not show the asterisk (*) characters in the New Password fields when you reopen
the driver’s Properties dialog box. The password does persist, however, and doesn’t need to be re-entered.

Driver Parameters
After you smightet the driver authentication parameters, you should set the driver’s parameters.

Driver parameters are divided into three categories:

Driver

Subscriber

Publisher

Third-party Driver Example JDBC URL Syntax

Oracle8i, 9i JDBC Drivers jdbc:oracle:thin:@255.255.255.255:1521:dirxml

IBM DB2 UDB JDBC Driver jdbc:db2://255.255.255.255/dirxml

BEA Weblogic jDriver for Microsoft
SQL Server 7/2000

jdbc:weblogic:mssqlserver4:dirxml@255.255.255.255:1433

Microsoft SQL Server 2000 Driver for
JDBC

jdbc:microsoft:sqlserver://
255.255.255.255:1433;DatabaseName=dirxml

Sybase jConnect jdbc:sybase:Tds:255.255.255.255:2048/dirxml

MySQL Connector/J jdbc:mysql://255.255.255.255:3306/dirxml

Informix JDBC Driver jdbc:informix-sqli://255.255.255.255:1526/
dirxml:informixserver=server

Sun’s JDBC-ODBC Bridge Driver jdbc:odbc:dirxml
Configuring the Driver 38

 Novell Confidential Manual (99a) 13 November 2003
Configuring Driver Settings
1 In iManager, click DirXML Management > Overview.

2 Locate the driver set containing the driver, then click the driver’s icon.

3 From the DirXML Driver Overview, click the driver object, which will display the driver
configurations.

The following table lists the driver settings and sample values:

Third-Party JDBC Driver Class Name

Third-Party JDBC Driver Class Name is a required, case-sensitive parameter. This name refers to
the fully-qualified class name of your third-party driver. The following table lists the class name
for tested third-party drivers:

Parameter Name Sample Configuration Value Default Required Tag

Third-Party JDBC Driver
Class Name

oracle.jdbc.driver.OracleDriver yes <jdbc-class>

Synchronize Schema dirxml yes <sync-schema>

Synchronize Tables emp yes <sync-tables>

Reuse Statements? yes yes no <reuse-
statements>

Use Manual Transactions? yes (dynamically
determined)

no <use-manual-
transactions>

Use Single Connection? no no no <use-single-
connection>

Default Transaction Isolation
Level

read committed (same) no <transaction-
isolation-level>

Connection Tester Class
Name

com.novell.nds.dirxml.driver.jdbc.util.JDBCCo
nnectionTester

(same) no <connection-
tester-class>

Connection Test Statement SELECT empno FROM dirxml.emp where -1
= 0

no <connection-test-
stmt>

Retrieve Minimal Metadata? no no no <minimal-
metadata>

Handle Statement Results? yes yes no <handle-stmt-
results>

Connection Initialization
String

USE dirxml no <connection-init>

Enable Referential Support? yes yes no <enable-refs>

Third-party Driver Value

Oracle8i, 9i JDBC drivers oracle.jdbc.driver.OracleDriver

IBM DB2 UDB JDBC Driver COM.ibm.db2.jdbc.net.DB2Driver
Configuring the Driver 39

 Novell Confidential Manual (99a) 13 November 2003
Synchronize Schema

Synchronize schema is a required parameter that might be case-sensitive. This parameter identifies
the database schema being synchronized. A database schema is analogous to the name of the
owner of the tables being synchronized. For example, if you wanted to synchronize two tables,
emp and phone, each belonging to the database user dirxml, you would enter dirxml in this
field. When this parameter is used, Synchronize Tables must be left empty or omitted from a
driver’s configuration.

Synchronize Tables

Synchronize Tables is a required parameter that might be case-sensitive. This parameter allows
you to create a virtual database schema by listing the names of the logical database classes to
synchronize. Logical database class names are the names of parent tables and views. It is an error
to list child table names. This parameter is useful when synchronizing with databases that do not
support the concept of schema or the synchronization schema contains a large number of tables of
which only a few are of interest to the driver. If you synchronize two tables or views with the same
names in different schemas, be sure to schema-prefix the table or view names in the schema
mapping rule. The driver does not schema-prefix table or view names returned from the
getSchema() operation by default. When this parameter is used, Synchronize Schema must be left
empty or omitted from a driver’s configuration.

Reuse Statements

Reuse Statements is a case-insensitive parameter that might be required for some third-party
drivers. If you set the parameter to yes, which is the default, the driver allocates
java.sql.Statement, java.sql.PreparedStatement, and java.sql.CallableStatement objects once and
reuses them. When set to a no, the driver allocates/deallocates statement objects each time they
are used. Setting this parameter to no will degrade driver performance.

This parameter must be set to no when using Microsoft's SQL Server 2000 Driver for JDBC.

To maximize driver performance, we recommend that you use the default value or omit this
parameter from most driver configurations.

Use Manual Transactions

Use Manual Transactions is a case-insensitive parameter whose value is derived from database
metadata at runtime. This parameter should only be used when it is necessary to override default
driver behavior. For instance, for MySQL, transaction support is determined on a per table rather

BEA Weblogic jDriver for MSSQL
Server 7/2000

weblogic.jdbc.mssqlserver4.Driver

Microsoft SQL Server 2000 Driver for
JDBC

com.microsoft.jdbc.sqlserver.SQLServerDriver

Sybase jConnect 5.5 com.sybase.jdbc2.jdbc.SybDriver

MySQL Connector/J org.gjt.mm.mysql.Driver

Informix JDBC driver com.informix.jdbc.IfxDriver

Sun JDBC-ODBC driver sun.jdbc.odbc.JdbcOdbcDriver

Third-party Driver Value
Configuring the Driver 40

 Novell Confidential Manual (99a) 13 November 2003
than per database basis. As such, it is necessary to disable manual transaction support when
synchronizing to tables without transaction support.

When set to yes, the driver supports the use of manual transactions. When set to no, each
statement executed by the driver is an automatic transaction.

To ensure data integrity in the target database, we recommend that this parameter be omitted from
most driver configurations.

Use Single Connection

Use single connection is a case-insensitive parameter that might be required for some third-party
drivers. When set to yes, both the Subscriber and Publisher channels share a single connection.
When set to no, which is the default, each channel uses a separate connection. Setting this
parameter to yes will degrade driver performance.This parameter should only be set to yes when
both the Subscriber and Publisher channels are in use.

To maximize driver performance, we recommend that you use the default value or omit this
parameter from most driver configurations.

Default Transaction Isolation Level

Default Transaction Isolation Level is an optional, case-insensitive parameter. This parameter sets
the default transaction isolation level for connections used by the driver. There are five possible
values, four of which correspond to the public constants defined in the java.sql.Connection
interface:

none

read uncommitted

read committed

repeatable read

serializable

The default value is read committed. We recommend using the default transaction isolation
level of read committed. For more information on these values, refer to Sun’s Web site. (http:/
/java.sun.com)

Because some third-party drivers do not support setting a connection’s transaction isolation level
to none, the driver also supports the additional value of unsupported.

Connection Test Statement

Connection Test Statement is an optional parameter that might be case-sensitive. This parameter
is a quick alternative to creating a connection tester class. Often, it is sufficient to detect connection
failure by sending an arbitrary SQL statement across the wire.

When present, this parameter overrides the Connection Tester Class Name parameter.

Connection Tester Class Name

Connection Tester Class Name is a case-sensitive parameter that might be required for some third-
party drivers. This is the fully-qualified class name of the class used to determine connection state.
This class must be public, have a public, default constructor, and implement the
com.novell.nds.dirxml.driver.jdbc.db.DBConnectionTester interface.

The default value is
com.novell.nds.dirxml.driver.jdbc.util.JDBCConnectionTester
Configuring the Driver 41

http://java.sun.com

 Novell Confidential Manual (99a) 13 November 2003
Microsoft’s SQL driver for JDBC, set the value to:
com.novell.nds.dirxml.driver.jdbc.db.MSSQLConnectionTester

For Informix’s JDBC driver, set the value to:
com.novell.nds.dirxml.driver.jdbc.db.InformixConnectionTester

For Mysql Connector/J driver, set the value to:
com.novell.nds.dirxml.driver.jdbc.db.MySQLConnectionTester

This parameter is ignored when a Connection Test Statement parameter value is specified.

Retrieve Minimal MetaData

Retrieve Minimal Metadata is a case-insensitive parameter that might be required for some
databases. When set to yes, the driver calls only required metadata methods. When set to no,
which is the default value, the driver calls required and optional metadata methods. Refer to
Appendix D, “java.sql.DatabaseMetaData Methods,” on page 91 for more a list of required and
optional metadata methods. Optional metadata methods are required for multi-valued and
referential attribute synchronization.

Setting this value to yes will improve the driver’s startup time at the expense of driver
functionality.

Handle Statement Results?

Handle statement results is an optional parameter that is case-insensitive. This parameter tells the
driver how many result sets can be generated by an arbitrary SQL statement. There are three
possible values:

none

single

multiple

The default value is multiple. For backwards compatibility reasons, yes equates to
multipleno; equates to none.

For Microsoft’s ODBC driver, Oracle’s JDBC drivers, or Informix’s JDBC driver, you should set
this parameter to single. For other third-party drivers, we recommend that you use the default
value or omit this parameter from most driver configurations.

Connection Initialization String

Connection initialization string is an optional parameter that might be case-sensitive. The
connection initialization string is used to set properties on connections used by the driver. Multiple
statement values must be delimited by a semicolon. This parameter is useful for adjusting ANSI-
compatibility standards and database context.

Enable Referential Support?

Enable referential support is an optional parameter that is case-insensitive. This parameter tells the
driver to interpret foreign key constraints that refer to parent tables of other database classes as
referential attributes. Referential attributes are typically used to denote contaiment (e.g., group
membership). When set to yes, which is the default, the driver interprets said columns as
referential. When set to no, the driver interprets said columns as non-referential. The purpose of
this parameter is to ensure backwards compatibility with the 1.0 version of this driver. For 1.0
compatibility, this parameter should be set to no.
Configuring the Driver 42

 Novell Confidential Manual (99a) 13 November 2003
Subscriber Settings
The following table lists the subscriber settings and sample values.

Disable

Disable is an optional, case-insensitive parameter. When set to yes, the subscriber channel does
not process events; instead it returns warnings. When set to no, which is the default, the subscriber
processes events.

Primary Key Generation

Primary key generation is an optional, complex parameter that might be case-sensitive. Database
identifiers used in this value must not be delimited.

When processing <add> events, the subscriber uses primary key values to create associations.
This parameter specifies how the subscriber obtains the primary key values necessary to construct
association values. There are three possibilities:

1. The necessary primary key values are already present in the XML event.

2. The subscriber needs to generate the necessary primary key values.

3. The subscriber should obtain the necessary primary key values by calling a user-defined
stored procedure or function in the database.

Method 1: By default, the driver assumes primary key values are already present in the XML
event. If this is the case, no values need to be generated. This is desirable when an eDirectory
attribute, such as GUID, is explicitly schema-mapped to a table or view’s primary key column.

The syntax for Method 1 is: logical-database-classname(none)

For example:

emp(none)

view_emp(none)

Method 2: It is often desirable in a testing environment to have the subscriber generate primary
key values before a stored procedure or function is available. This method can also be used against
databases that do not support stored procedures or functions. For any numeric column types, the
driver uses a simple (MAX+1) function to generate primary key values. In the case of string
column types, the driver generates a random alpha character sequence. Other data types are not
supported.

Parameter Name Sample Configuration Value Default
Value

Required Tag

Disable yes no no <disable>

Primary Key Generation emp("sp_empno(empno,fname)") no <key-gen>

Key Generation Timing after before no <key-gen-
timing>

Check Update Counts? yes yes no <check-
update-
count>
Configuring the Driver 43

 Novell Confidential Manual (99a) 13 November 2003
The syntax for Method 2 is: logical-database-classname(driver)

For example:

emp(driver)

view_emp(driver)

Method 3: Primary key values are obtained from a user-defined stored procedure or function.

The syntax for stored procedures is: logical-database-classname("stored-procedure-signature"),
where stored-procedure-signature = procedure-name(column-name, . . .).

For example:

emp("sp_empno(empno, fname)")

view_emp("sp_empno(pk_empno, fname)")

The syntax for functions is: logical-database-classname("? = function-signature"), where
function-signature = function-name(column-name, . . .).

For example:

emp("? = sp_empno(empno, fname)")

view_emp("? = sp_empno(pk_empno, fname)")

This notation maps a parent table or view to a user-defined stored procedure or function. The
column names are those of the logical database class that should be passed to the stored procedure
or function. Parameter order, number, and data type must correspond to the order, number, and data
type of the parameters expected by the procedure or function. For stored procedures, primary key
columns must be passed as IN OUT parameters. Non-key columns must be passed as IN
parameters.

Some Additional Considerations Regarding Primary Key Generation

When using Method 1, GUID rather than CN should be schema-mapped to a primary key
column.

When using Method 3, primary key columns should not be schema-mapped or included in the
subscriber or publisher filters.

When synchronizing multiple classes, a primary key generation method should be declared
for each logical database class. Multiple values can be space-delimited or comma-delimited.

Key Generation Timing

Key Generation Timing is a case-insensitive parameter that is required for most databases when
Primary Key Generation Methods 2 and 3 are used.

There are two legal values:

before

after

The default value is before.

Primary Key Generation Method 1: This parameter is ignored.
Configuring the Driver 44

 Novell Confidential Manual (99a) 13 November 2003
Primary Key Generation Method 2: When set to before, the subscriber executes a select
statement before a row is inserted into a parent table or a view. When set to after, the subscriber
executes a select statement after a row is inserted into a parent table or a view.

Primary Key Generation Method 3: When set to before, procedures or functions declared in
the Primary Key Generation parameter are called before a row is inserted into a parent table or a
view. When set to after, procedures or functions are called after a row is inserted into a parent
table or a view.

For all databases except Oracle, this parameter should be set to after. For Oracle, the default
value should be used or the parameter omitted.

Check Update Counts?

Check Update Counts is an optional, case-insensitive parameter. When set to a yes, which is the
default, update counts are checked to ensure that when rows in a table or view are inserted,
updated, or deleted, it actually happened. If this parameter is set to yes and rows are not updated,
an error is issued. When set to no, update counts are not checked. This parameter should be set to
no when statements are redefined in before-trigger logic on a table or instead-of-trigger logic on
a view.

When synchronizing to Microsoft SQL Server, you should use the default value since errors in
trigger logic (that might roll back a transaction) are not propagated back to the subscriber.

Publisher Settings
The following table lists the publisher settings with default and sample values for the
configuration:

Disable

Disable is an optional, case-insensitive parameter that specifies whether the publisher channel
should open a connection to the database and poll the event log table for events. When set to yes,
the publisher does not establish a connection to the database nor does it poll the event log table.
When set to no, which is the default, the publisher connects to the database and polls the event log
table.

Parameter Name Sample
Configuration Value

Default Value Required Tag

Disable yes no no <disable>

Log Table Name eventlog yes <log-table>

Polling Interval (seconds) 1-604800 (1 week) 10 no <polling-interval>

Reconnect Interval (seconds) 1-3600 (1 hour) 30 no <reconnect-interval>

Optimize Updates yes no no <optimize-update>

Delete from Log yes yes no <delete-from-log>

Allow Loopback? yes no no <check-update-
count>
Configuring the Driver 45

 Novell Confidential Manual (99a) 13 November 2003
Log Table Name

Log table name is a required parameter that might be case-sensitive. This parameter specifies the
name of the table where database events are stored for publication. This value must not be
delimited.

Polling Interval

Polling interval is an optional, case-insensitive parameter that specifies how often, in seconds, the
publisher should poll the event log table for events. The default value is ten seconds.

We recommend setting this value to no less than ten seconds.

Reconnect Interval

Reconnect interval is an optional, case-insensitive parameter that specifies how often, in seconds,
the publisher should attempt to reconnect to the target database. The default value is thirty seconds.

We recommend setting this value to no less than ten seconds.

Optimize Updates

This optional, case-insensitive parameter specifies whether the publisher channel should ignore
type 2 events that contain the same old and new values. Equality is determined in a case-sensitive
string comparison operation. NULL values are considered equal. This option is useful if
publication triggers are not optimized. When set to yes, type 2 events are optimized. When set to
no, which is the default, type 2 events are unoptimized.

Delete from Log

This optional, case-insensitive parameter specifies whether the publisher should delete processed
records from the event log table. When set to no, the publisher does not delete processed rows
from the table. Instead, the publisher sets the status field to 'S' for success. This setting is useful
for debugging purposes. When set to yes, which is the default value, processed rows are deleted.
This is the proper setting for a production environment. Rows that are processed with errors
remain in the event log table independent of this value.

This parameter should be set to no only for debugging purposes. Publication performance is
degraded when this parameter is set to yes. If an auditing mechanism is desired in a production
environment, rows inserted into the event log table for publication should also be written to a
mirror table.

Trace Levels
In order to see debugging output from the driver, you need to add a DirXML-DriverTraceLevel
attribute value from 1 to 6 on the driver set containing the driver. This attribute is commonly
confused with the DirXML-XSL TraceLevel attribute. For more information on driver set trace
levels, refer to the DirXML Administration Guide (http://www.novell.com/documentation).

The driver supports the following six trace levels:

1. Minimal

2. Database properties

3. Connection status, SQL statements, event log records

4. Verbose
Configuring the Driver 46

http://www.novell.com/documentation

 Novell Confidential Manual (99a) 13 November 2003
5. JDBC API (methods, arguments, returned values, etc.)

6. Third-party driver

Levels 5-6 are particularly useful for debugging third-party drivers.

Configuring Third-Party JDBC Drivers
The following guidelines will assist you in configuring third-party drivers. For specific
configuration instructions, refer to your third-party driver’s documentation.

Use the latest version of the driver available.

When configuring an ODBC data source, be careful not to override any driver authentication
parameters (for example, username and password settings).

Third-party driver behavior might be configurable. In many cases, incompatibility issues can
be resolved by adjusting the driver’s configuration properties.

When dealing with international characters, it is often necessary to explicitly specify the
character encoding used by the database to third-party drivers by appending a property string
to the end of the driver's JDBC URL. Properties usually consist of a property keyword and
character encoding value (for example, jdbc:odbc:mssql;charSet=Big5). The property
keyword might vary between third-party drivers.

The possible character encoding values are defined by Sun. Refer to Sun’s Supported
Encoding Web site (http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html)
for more information.

The following table lists the recommended settings for maximum driver compatibility. These
settings are useful when using an untested third-party driver.

Parameter Name Value

Synchronize Tables table-list

Reuse Statements? no

Use Manual Transactions? no

Use Single Connection yes

Default Transaction Isolation Level unsupported

Retrieve Minimal Metadata? yes

Handle Statement Results? single
Configuring the Driver 47

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html
http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

 Novell Confidential Manual (99a) 13 November 2003
Configuring the Driver 48

 Novell Confidential Manual (99a) 13 November 2003
5 Advanced Driver Configuration

After installing a sample preconfiguration and database script, you will need to customize the
driver for specialized use. This section contains important conceptual information, sample
configurations, and so forth to help you configure the driver.

“Schema Mapping” on page 49

“The Event Log Table” on page 59

“Event Mapping” on page 58

“Using Structured Query Language in XML Events” on page 66

Schema Mapping
The following table shows a high-level view of how the driver maps Novell® eDirectoryTM objects
to database objects.

Logical Database Classes
A logical database class is the set of tables or views used to represent an eDirectory class in a
database. A logical database class can consist of a single view or one parent table and zero or more
child tables. The name of a logical database class is the name of the parent table or view.

Indirect Synchronization
In an indirect synchronization model, the driver maps the following:

eDirectory Object Database Object

Tree Schema

Class Table/View

Attribute Column

Association Primary Key

eDirectory Object Database Object

Classes Tables

Attributes Columns
Advanced Driver Configuration 49

 Novell Confidential Manual (99a) 13 November 2003
Mapping eDirectory Classes to Logical Database Classes

In the following example, the logical database class emp consists of one parent table emp and one
child table phone. Logical class emp is mapped to the eDirectory class User.

CREATE TABLE dirxml.emp
(
 empno NUMERIC(8) NOT NULL,
 fname VARCHAR(64),
 lname VARCHAR(64),
 pwdminlen NUMERIC(4),

 CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
);

CREATE TABLE dirxml.phone
(
 empno NUMERIC(8) NOT NULL,
 phone VARCHAR(64) NOT NULL,

 CONSTRAINT fk_phone_empno FOREIGN KEY(empno) REFERENCES
 emp(empno)
);

<rule name="MappingRule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>emp</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>fname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Surname</nds-name>
 <app-name>lname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Password Minimum Length</nds-name>
 <app-name>pwdminlen</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Telephone Number</nds-name>
 <app-name>phone.phoneno</app-name>

1 Class 1 Parent table

and

0 or more child tables

Single-valued attribute Parent table column

Multi-valued attribute Parent table column

or

Child table column (preferred)

eDirectory Object Database Object
50 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
 </attr-name>
 </attr-name-map>
</rule>

Parent Tables

Parent tables are tables with an explicit primary key constraint that contains one or more columns.
In a parent table, an explicit primary key constraint is required so that the driver knows which
fields to include in an association value.

CREATE TABLE dirxml.emp
(
 empno NUMERIC(8) NOT NULL,
 ...
 CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
);

The following table contains sample data for dirxml.emp.

The resulting association for this row would be:

empno=1,table=emp,schema=dirxml

NOTE: The case of database identifiers in association values is determined dynamically at runtime from
database metadata.

Parent Table Columns

Parent table columns can contain only one value. As such, they are ideal for mapping single-valued
eDirectory attributes. For example, mapping the single-valued eDirectory attribute Password
Minimum Length to the single-valued parent table column pwdminlen.

Parent table columns are implicitly prefixed with the name of the parent table. It is not necessary
to explicitly table-prefix parent table columns. For example, emp.fname is equivalent to fname
for schema mapping purposes.

<rule name="MappingRule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>emp</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>fname</app-name>
 </attr-name>
 </attr-name-map>
</rule>

Large binary and string data types should be typically mapped to parent table columns. In order to
map to a child table column, a data type must be comparable in an SQL statements. Large data
types usually cannot be compared in SQL statements.

empno fname lname

1 John Doe
Advanced Driver Configuration 51

 Novell Confidential Manual (99a) 13 November 2003
Large binary and string data types can be mapped to child table columns if <remove-value>
events on these types are transformed in style sheets into a <remove-all-values> element
followed by a series of <add-value> elements, one for each value.

Child Tables

A child table is a table that has a foreign key constraint on its parent table’s primary key, linking
the two tables together. The columns that comprise the child table’s foreign key must have the
same name as the columns in the parent table’s primary key. This common column name is used
by the publisher to identify all rows in the event log table pertaining to a single logical database
class.

The following example shows the relationship between parent table emp and child table phone.
Note the use of the same column name empno in each table.

CREATE TABLE dirxml.emp
(
 empno NUMERIC(8) NOT NULL,
 ...
 CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
);

CREATE TABLE dirxml.phone
(
 empno NUMERIC(8) NOT NULL,
 phoneno VARCHAR(64) NOT NULL,

 CONSTRAINT fk_phone_empno FOREIGN KEY(empno) REFERENCES
 emp(empno)
);

The constrained column in a child table identifies the parent table. In the above example, the
constrained column in child table phone is empno. The only purpose of this column is to relate
tables phone and emp. Because constrained columns do not contain any useful information, they
should be omitted from publication triggers and the schema mapping rule.

The unconstrained column is the column of interest. It represents a single, multi-valued attribute.
In the above example, the unconstrained column is phoneno. Because unconstrained columns
can hold multiple values, they are ideal for mapping multi-valued eDirectory attributes. For
example, mapping the multi-valued eDirectory attribute Telephone Number to phone.phoneno.

All columns in a child table should be constrained NOT NULL.
NOTE: Each multi-valued, eDirectory attribute must be mapped to a different child table column.

The following table contains sample data for dirxml.phone.

When mapping a multi-valued eDirectory attribute to a child table column, the child column name
must be explicitly prefixed with the child table name (for example, phone.phoneno).
Otherwise, the driver will implicitly interpret phoneno as emp.phoneno, not
phone.phoneno.

empno phoneno

1 111-1111

1 222-2222
52 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
<rule name="MappingRule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>emp</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Telephone Number</nds-name>
 <app-name>phone.phoneno</app-name>
 </attr-name>
 </attr-name-map>
</rule>

Referential Attributes

Referential containment can be represented in the database through the use of foreign key
constraints. Referential attributes are columns within a logical database class that refer to the
primary key columns of parent tables of other logical database classes.

Single-Valued Referential Attributes

Two parent tables can be related through a single parent table column. This column must have a
foreign key constraint pointing to the other parent table’s primary key. The following example
relates a single parent table user to itself.

CREATE TABLE user
(
 idu NUMBER(8) NOT NULL,
 manager NUMBER(8),

 CONSTRAINT pk_user_idu PRIMARY KEY(idu),
 CONSTRAINT fk_user_idu FOREIGN KEY(manager)REFERENCES
 user(idu)
);

<rule name="Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>user</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>manager</nds-name>
 <app-name>manager</app-name>
 </attr-name>
 </attr-name-map>
</rule>

Single-valued, referential colums must be nullable.

Multi-valued Referential Attributes

Two parent tables can be related through a common child table. This child table must have a
foreign key constraint pointing to each parent table’s primary key. The following example relates
two parent tables user and group through a common child table member.

CREATE TABLE user
(

Advanced Driver Configuration 53

 Novell Confidential Manual (99a) 13 November 2003
 idu NUMBER(8) NOT NULL,
 lname VARCHAR(64) NOT NULL,

 CONSTRAINT pk_user_idu PRIMARY KEY(idu)
);

CREATE TABLE group
(
 idg NUMBER(8) NOT NULL,

 CONSTRAINT pk_group_idg PRIMARY KEY(idg)
);

CREATE TABLE member
(
 idg NUMBER(8)NOT NULL,
 idu NUMBER(8)NOT NULL,

 CONSTRAINT fk_member_idg FOREIGN KEY(idg) REFERENCES
 group(idg),
 CONSTRAINT fk_member_idu FOREIGN KEY(idu) REFERENCES
 user(idu)
);

<rule name="Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>user</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Surname</nds-name>
 <app-name>lname</app-name>
 </attr-name>
 <class-name>
 <nds-name>Group</nds-name>
 <app-name>group</app-name>
 </class-name>
 <attr-name class-name="Group">
 <nds-name>Member</nds-name>
 <app-name>member.idu</app-name>
 </attr-name>
 </attr-name-map>
</rule>

The first constrained column in a child table determines ownership. In the above example,
member is considered to be part of class group. member is said to be a proper child of group.
The second constrained column in a child table is the multi-valued referential attribute. Both
columns must be constrained NOT NULL.

In the following example, the order of the constrained columns has been reversed so member is
part of class user. To more accurately reflect the relationship, member has been renamed to
member_of.

CREATE TABLE user
(
 idu NUMBER(8) NOT NULL,
 lname VARCHAR(64) NOT NULL,

 CONSTRAINT pk_user_idu PRIMARY KEY(idu)
);
54 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
CREATE TABLE group
(
 idg NUMBER(8) NOT NULL,

 CONSTRAINT pk_group_idg PRIMARY KEY(idg)
);

CREATE TABLE member_of
(
 idu NUMBER(8)NOT NULL,
 idg NUMBER(8)NOT NULL,

 CONSTRAINT fk_member_idg FOREIGN KEY(idg) REFERENCES
 group(idg),
 CONSTRAINT fk_member_idu FOREIGN KEY(idu) REFERENCES
 user(idu)
);

<rule name="Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>user</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Surname</nds-name>
 <app-name>lname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Group Membership</nds-name>
 <app-name>member_of.idg</app-name>
 </attr-name>
 <class-name>
 <nds-name>Group</nds-name>
 <app-name>group</app-name>
 </class-name>
 </attr-name-map>
</rule>

In databases where position is meaningless, order is determined by lexographical comparison.

In general, it is only necessary to synchronize multi-valued, referential attributes as part of one
class or the other, not both. If you wanted to synchronize referential attributes for both classes, it
would be necessary to construct two child tables, one for each class. For example, if you wanted
to synchronize Group Membership and Member, you would need two child tables: member_of
and member.

In practice, when synchronizing User and Group objects, we recommend that you synchronize the
Group Membership attribute of User instead of the Member attribute of Group. When
synchronizing Member, events are generated for unassociated Users added to associated Groups.
When synchronizing Group Membership, events are only generated for associated Users added to
associated Groups.
Advanced Driver Configuration 55

 Novell Confidential Manual (99a) 13 November 2003
Direct Synchronization
In a direct synchronization model, the driver maps the following:

A view is a logical table. Unlike parent or child tables, they do not physically exist in the database.
As such, views cannot have primary key/foreign key constraints. In order to identify to the driver
which fields to use when constructing association values, one or more view columns must be
prefixed with pk_ (case-insensitive).
NOTE: Views must be constructed in such a way that the pk_ prefixed view columns uniquely identify a single
row.

The update capabilities of views vary widely between databases. Most databases allow views to
be updated under certain conditions. If views are strictly read-only, then they cannot be used for
subscription. Microsoft SQL Server 2000 and Oracle 8i and 9i allow update logic to be defined on
views in instead-of-triggers, which allows a view to join multiple tables and still be updateable.

CREATE TABLE dirxml.emp
(
 empno NUMERIC(8) NOT NULL UNIQUE,
 fname VARCHAR(64),
 lname VARCHAR(64),
 pwdminlen NUMERIC(4),
 phoneno VARCHAR(64)
);

CREATE VIEW dirxml.view_emp
(pk_empno, fname, lname, pwdminlen, phoneno)
AS
SELECT empno, fname, lname, pwdminlen, phoneno FROM dirxml.emp;

<rule name="MappingRule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>view_emp</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>fname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Surname</nds-name>
 <app-name>lname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Password Minimum Length</nds-name>

eDirectory Object Database Object

Classes Views

Attributes View Columns

1 Class View

Single-valued attribute View Column

Multi-valued attribute View Column
56 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
 <app-name>pwdminlen</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Telephone Number</nds-name>
 <app-name>phoneno</app-name>
 </attr-name>
 </attr-name-map>
</rule>

Synchronizing Primary Key Columns
When the database is the authoritative source of primary key columns, they should generally be
omitted from the publisher and subscriber filters, the schema mapping rule, and publication
triggers.

When eDirectory is the authoritative source of primary key columns, they should be included in
the subscriber filter and schema mapping rule and omitted from the publisher filter and publication
triggers. Also, GUID rather than CN is recommended for use as a primary key. CN is multi-valued
and can change. GUID is single-valued and static.

Synchronizing Multiple Classes
When synchronizing multiple eDirectory classes, it is necessary to synchronize each class to a
different parent table or view. Each logical database class must have a unique primary key column
name. This common column name is used by the publisher to identify all rows in the event log
table pertaining to a single logical database class. For example, logical database classes user and
group each have a unique primary key column name.

CREATE TABLE user
(
 idu NUMBER(8) NOT NULL,
 lname VARCHAR(64) NOT NULL,

 CONSTRAINT pk_user_idu PRIMARY KEY(idu)
);

CREATE TABLE group
(
 idg NUMBER(8) NOT NULL,

 CONSTRAINT pk_group_idg PRIMARY KEY(idg)
);

Mapping Multi-Valued Attributes to Single-Valued Database Fields
By default, the driver assumes that all eDirectory attributes mapped to parent table columns or
view columns are single-valued. Because the driver is unaware of the eDirectory schema, it has no
way of knowing whether an eDirectory attribute is single-valued or multi-valued. Accordingly,
multi-valued and single-valued attribute mappings are handled identically.

The driver implements the Most Recently Touched (MRT) algorithm with regard to single-valued
parent table or view columns. An MRT algorithm ensures that the most recently added attribute
value or most recently deleted attribute value will be stored in the database. The algorithm is
adequate if the attribute in question is single-valued, and has some undesirable consequences if the
attribute is multi-valued.
Advanced Driver Configuration 57

 Novell Confidential Manual (99a) 13 November 2003
When a value is deleted from a multi-valued attribute, the database field it is mapped to will be set
to NULL and will remain NULL until another value is added. Several solutions to this undesirable
behavior are outlined below.

The preferred solution is to extend the eDirectory schema so that only single-valued attributes
are mapping to parent table or view columns.

For indirect synchronization, map each multi-valued attribute to its own child table.

For both direct or indirect synchronization, use style sheets to delimit multiple values before
inserting them into a parent table or view column.

Implement a first or last value per replica policy in style sheets using methods provided in the
com.novell.nds.dirxml.driver.jdbc.util.MappingPolicy class. Under a first-value-per-replica
(FPR) policy, the first attribute value on the DirXML replica is always synchronized. Under
a last-value-per-replica (LPR) policy, the last attribute value on a replica is always
synchronized. All of the preconfigured drivers demonstrate a first-value-per-replica policy.
They map the multi-valued eDirectory attributes Given name, Surname, and Facsimile
Telephone Number to the single-valued columns fname, lname, and faxno respectively.

Event Mapping
The following table summarizes how the Subscriber maps XML events to SQL statements:

Add Events
Add events map to one insert statement for the parent table or view and zero or more insert
statements for each child table. For Primary Key Generation Method 2, one select statement is
executed. For Primary Key Generation Methods 3, one stored procedure or function call is
executed.

Modify Events
Modify events map to zero or one update statements for the parent table or view and zero or more
insert and delete statements for each child table.

Delete Events
Delete events map to one delete statement for the parent table or view, and zero or one update
statement for each single-valued, referential, parent table column.

Delete events map zero or more delete statements for each multi-valued, referential, child table
column.

XML Event SQL Equivalent

<add> 1 or more insert statements; 0 or 1 select statements; 0 or 1
stored procedure or function calls

<modify> 0 or 1 update statements; 0 or more insert statements; 0 or
more delete statements

<delete> 1 or more delete statements; 0 or more update statements

<query> 1 or more select statements

<move> or <rename> 0 statements
58 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Query Events
Query events map to one select statement for the parent table or view and zero or one select
statement for each child table.

Move and Rename Events
Move and rename events are No Operations or NOOPs. They are always mapped to zero
statements.

The Event Log Table
The event log table is where publication events are stored. This section discusses the structure and
limitations of the event log table.

You can customize the name of the event log table and its columns to avoid conflicts with reserved
database words. The order, number, and data types of its columns, however, must remain constant.
In databases where position is meaningless, order is determined by lexicographical comparison.

Event Log Columns
record_id

The record_id column is used to uniquely identify rows in the event log table. This column
must contain sequential, ascending, positive, unique integer values.

status

The status column indicates the state of a given row. The possible values are:

'N' = new

'U' = unknown

'S' = success

'W' = warning

'F' = fatal

'E' = error

All rows inserted into the event log table must have a status value of 'N' in order to be
processed. The remainder of the status characters are used solely by the publisher. All other
characters are reserved for future use.
NOTE: Status values are case-sensitive.

event_type

Values in this column must be between 1 and 8. Event types fall into two major categories:
per-field (1-3, 7-8) and per-row (4-6). Per-field events are more granular and than per-row
events, but they require more space in the event log table. Per-row events are less granular and
require less space in the event log table. Per-field event types can be thought of as per-
attribute. Per-row event types can be thought of as per-object.

Event types can also be grouped into two additional categories: query-back (5-8) and non-
query-back (1-4). Query-back events are useful when synchronizing large binary and string
data types.
Advanced Driver Configuration 59

 Novell Confidential Manual (99a) 13 November 2003
In general, a combination of event types from each category yields the best time, space, and
complexity trade-offs.

The following values are used to classify event types. All other numbers are reserved for
future use.

1 = insert field

2 = update field

3 = update field (remove-all-values)

4 = delete row

5 = insert row (query-back)

6 = update row (query-back)

7 = insert field (query-back)

8 = update field (query-back)

event_time

Reserved for future use. This value must not be NULL.

perpetrator

The user who instigated the event. A NULL value is interpreted as a user other than the driver
user. As such, records with perpetrator = NULL or !driver’s username are published.
Records with perpetrator = driver’s username are not published unless the publisher
parameter Allow Loopback is set to yes.

table_name

The name of the table or view where the event occurred.

table_key

Values for this column must be formatted exactly the same in all triggers of a logical database
class. For example,

primary key column name = value + primary key column name = value . . .

For indirect preconfigured drivers, for example, the value for this column would be
empno=1.

For direct preconfigured drivers, for example, the value for this column would be
pk_empno=1.

NOTE: Primary key values placed in the table_key field should be delimited (that is, double-quoted) if
they contain the following characters:

, ; ’ + = \ " < >

Differences in padding or formatting might result in out-of-order event processing. For
performance reasons, you should remove any unnecessary white space from numeric values.
(For example, "empno=1" is preferred over "empno= 1")

column_name

The name of the column that was changed. The column is used only by per-field (1-3, 7-8)
event types. Even though this column is used only for per-field event types, it must always be
present in the event log table. If it is missing, the publisher will shut down the driver.

old_value
60 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
The field’s old value.The old value column name is used only by per-field, non-query-back
event types (1-3). Even though this column is only used for these event types, it must always
be present in the event log table. If it is missing, the publisher will cause the driver to shut
down.

new_value

The field’s new value. The new value column name is used only by per-field, non-query-back
event types (1-3). Even though this column is only used for these event types, it must always
be present in the event log table. If it is missing, the publisher will cause the driver to shut
down.

Event Types
This section describes in greater detail the different event types and how they are interpreted by
the publisher.

The table below shows the basic correlation between publication event types and the XML
generated by the publisher.

The example below illustrates the XML generated by the publisher for events logged on table emp
for each possible event type.

CREATE TABLE dirxml.emp
(
 empno NUMERIC(8) NOT NULL,
 fname VARCHAR2(64),
 photo LONGRAW,

 CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
);

The table below shows the initial contents of emp after a new row has been inserted:

The table below shows the current contents of emp after the row has been updated:

1. Insert Field

Event Type Resulting XML

insert <add>

update <modify>

delete <delete>

empno fname lname photo

1 Jack Frost 0xAAAA

empno fname lname photo

1 John Doe 0xBBBB
Advanced Driver Configuration 61

 Novell Confidential Manual (99a) 13 November 2003
The table below shows the contents of the event log table after a new row is inserted into table
emp. The value for column photo has been Base64-encoded. The Base64-encoded
equivalent of 0xAAAA is qqo=.

The XML generated by the Publisher would be:

<add class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <add-attr attr-name="fname">
 <value type="string">Jack</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Frost</value>
 </add-attr>
 <add-attr attr-name="photo">
 <value type="octet">qqo=</value>
 </add-attr>
</add>

2. Update Field

The table below shows the contents of the event log table after the row in table emp has been
updated. The values for column photo has been Base64-encoded. The Base64-encoded
equivalent of 0xBBBB is u7s=.

The XML generated by the Publisher would be:

<modify class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <modify-attr attr-name="fname">
 <remove-value>
 <value type="string">Jack</value>
 </remove-value>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-value>
 <value type="string">Frost</value>

event_type table table_key column_name old_value new_value

1 emp empno=1 fname NULL Jack

1 emp empno=1 lname NULL Frost

1 emp empno=1 photo NULL qqo=

event_type table table_key column_name old_value new_value

2 emp empno=1 fname Jack John

2 emp empno=1 lname Frost Doe

2 emp empno=1 photo qqo= u7s=
62 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
 </remove-value>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-value>
 <value type="octet">qqo=</value>
 </remove-value>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

3. Update Field (Remove-All-Values)

The table below shows the contents of the event log table after the row in table emp has been
updated. The value for column photo has been Base64-encoded.

The XML generated by the Publisher would be:

<modify class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

4. Delete Row

The table below shows the contents of the event log table after the row in table emp has been
deleted.

event_type table table_key column_name old_value new_value

3 emp empno=1 fname Jack John

3 emp empno=1 lname Frost Doe

3 emp empno=1 photo qqo= u7s=
Advanced Driver Configuration 63

 Novell Confidential Manual (99a) 13 November 2003
The XML generated by the Publisher would be:

<delete class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
</delete>

5. Insert Row (Query-Back)

The table below shows the contents of the event log table after a new row is inserted into table
emp.

The XML generated by the Publisher is listed below. Note that the values reflect the current
contents of table emp, not the initial contents.

<add class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <add-attr attr-name="fname">
 <value type="string">John</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Doe</value>
 </add-attr>
 <add-attr attr-name="photo">
 <value type="octet">u7s=</value>
 </add-attr>
</add>

6. Update Row (Query-Back)

The table below shows the contents of the event log table after the row in table emp has been
updated.

The XML generated by the Publisher is listed below. Note that the values reflect the current
contents of table emp, not the initial contents.

<modify class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>

event_type table table_key column_name old_value new_value

4 emp empno=1 NULL NULL NULL

event_type table table_key column_name old_value new_value

5 emp empno=1 NULL NULL NULL

event_type table table_key column_name old_value new_value

6 emp empno=1 NULL NULL NULL
64 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

7. Insert Field (Query-Back)

The table below shows the contents of the event log table after a new row is inserted into table
emp. Old and new values are omitted because they are not used.

The XML generated by the Publisher is listed below. Note that the values reflect the current
contents of table emp, not the initial contents.

<add class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <add-attr attr-name="fname">
 <value type="string">John</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Doe</value>
 </add-attr>
 <add-attr attr-name="photo">
 <value type="octet">u7s=</value>
 </add-attr>
</add>

8. Update Field (Query-Back)

The table below shows the contents of the event log table after the row in table emp has been
updated. Old and new values are omitted since they are not used.

event_type table table_key column_name old_value new_value

7 emp empno=1 fname NULL NULL

7 emp empno=1 lname NULL NULL

7 emp empno=1 photo NULL NULL

event_type table table_key column_name old_value new_value

8 emp empno=1 fname NULL NULL

8 emp empno=1 lname NULL NULL

8 emp empno=1 photo NULL NULL
Advanced Driver Configuration 65

 Novell Confidential Manual (99a) 13 November 2003
The XML generated by the Publisher is listed below. Note that the values reflect the current
contents of table emp, not the inital contents.

<modify class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

Using Structured Query Language in XML Events
The following section includes information that will help you include Structured Query Language
(SQL) in XML events.

All examples reference table emp below. The primary key generation method used to obtain
primary key values is irrelevant for purposes of the examples in this section.

CREATE TABLE emp
(
 empno NUMERIC(8) NOT NULL,
 fname VARCHAR2(64),
 lanem VARCHAR2(64),

 CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
);

NOTE: The namespace prefix jdbc used throughout this section is implicitly bound to the namespace
urn:dirxml:jdbc when referenced outside of an XML document.

Introduction
You can use embedded SQL in XML events. In the same way that you can install database triggers
on a table and cause side effects in a database, embedded SQL in XML events acts as a virtual
trigger with similar capabilities.

SQL is embedded in XML events through the <jdbc:statement> and <jdbc:sql> elements.
The <jdbc:statement> element can contain one or more <jdbc:sql> elements.

The following XML example shows an embedded SQL statement.

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp">
66 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql> UPDATE dirxml.emp SET fname = ’John’
 </jdbc:sql>
 </jdbc:statement>
</input>

Because the subscriber resolves <add> events to one or more insert statements, the above XML
would resolve to:

INSERT INTO dirxml.emp(lname)VALUES(’Doe’);
UPDATE dirxml.emp SET fname = ’John’;

IMPORTANT: You should use namespace-prefixed elements and attributes to embed SQL (otherwise, the
driver will not recognize them). In the above example, the namespace is urn:dirxml:jdbc. The prefix is the
identifier to the right of the xmlns identifier. In the above example, the prefix is jdbc. In practice, the prefix
can be whatever you want it to be as long as is is bound to the correct namespace.

Variable Substitution
Rather than require you to parse field values from an association, the subscriber supports variable
substitution in embedded SQL statements. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <modify-attr name="lname">
 <add-value>
 <value>DoeRaeMe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement>
 <jdbc:sql>UPDATE dirml.emp SET fname = 'John' WHERE
 empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>

Variable placeholders must adhere to the XSLT attribute value template syntax: {$field-name}
and the association element must precede the <jdbc:statement> element in the XML
document or must be present as a child of the <jdbc:statement> element. The field-name must
refer to one of the naming RDN attribute names in the association value. In the above example,
there is only one naming attribute, empno.

An <add> event is the only event where an association element is not required to proceed
embedded SQL statements with variable substitution because the association has not been created
yet. Additionally, any embedded SQL statements using variable substitution must follow, not
proceed, the <add> event. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
Advanced Driver Configuration 67

 Novell Confidential Manual (99a) 13 November 2003
 <jdbc:sql>UPDATE dirxml.emp SET fname = 'John' WHERE
 empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>

In order prevent tracing of sensitive information, you can use {$$password} to refer to the
contents of a <password> element within the same document.

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 <password>Doe{$empno}</password>
 </add>
 <jdbc:statement>
 <jdbc:sql>CREATE USER Doe IDENTIFIED BY
 {$$password}</jdbc:sql>
 </jdbc:statement>
</input>

Statement Placement
In the same way that database triggers can fire before or after a triggering statement, embedded
SQL can be positioned before or after the triggering XML event. The following examples show
how you could embed SQL before or after an XML event.

Before Trigger

<input xmlns:jdbc"urn:dirxml:jdbc">
 <jdbc:statement>
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <jdbc:sql>UPDATE dirxml.emp SET fname = ’John’ WHERE
 empno = ${empno}</JDBC:SQL>
 </jdbc:statement>
 <modify class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <modify-attr name="lname">
 <remove-all-values/>
 <add-value>
 <value>Doe</value>
 </add-value>
 </modify-attr>
 </modify>
</input>

The above XML resolves to:

UPDATE dirxml.emp SET fname = ’John’ WHERE empno = 1;
UPDATE dirxml.emp SET lname = ’Doe’ WHERE empno = 1;
68 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
After Trigger

<input xmlns:jdbc"urn:dirxml:jdbc">
 <modify class-name="emp">
 <association>empno=1,table=emp,schema=dirxml
 </association>
 <modify-attr name="lname">
 <remove-all-values/>
 <add-value>
 <value>Doe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement>
 <jdbc:sql>UPDATE dirxml.emp SET fname = ’John’ WHERE
 empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>

The above XML resolves to:

UPDATE dirxml.emp SET lname = ’Doe’ WHERE empno = 1;
UPDATE dirxml.emp SET fname = ’John’ WHERE empno = 1;

Manual vs. Automatic Transactions
You can manually group embedded SQL and XML events using these two custom attributes:

jdbc:transaction-type

jdbc:transaction-id

jdbc:transaction-type

This attribute has two values: manual and auto. By default, most XML events of interest are set
to the manual transaction type. The manual setting enables XML events to resolve to more than
one SQL statement.

Embedded SQL events are set to auto transaction type by default because some SQL statements
cannot be included in a manual transaction

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp" jdbc:transaction-type="auto">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE dirxml.emp SET fname = 'John' WHERE
 empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>

The above XML resolves to:

INSERT INTO dirxml.emp(lname) VALUES('Doe');
/* COMMIT; implicit */

UPDATE dirxml.emp SET fname = 'John' WHERE empno = 1;
/* COMMIT; implicit */
Advanced Driver Configuration 69

 Novell Confidential Manual (99a) 13 November 2003
jdbc:transaction-id

This attribute is ignored by the subscriber unless the element's jdbc:transaction-type
attribute value defaults to or is explicitly set to manual. The following XML shows an example
of a manual transaction:

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp" jdbc:transaction-id="0">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement jdbc:transaction-type="manual"
 jdbc:transaction-id="0">
 <jdbc:sql>UPDATE dirxml.emp SET fname = 'John' WHERE
 empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>

The above XML code resolves to:

INSERT INTO dirxml.emp(lname) VALUES(’Doe');
UPDATE dirxml.emp SET fname = 'John' WHERE empno = 1;
COMMIT; /* explicit */

Transaction Isolation Level
In addition to grouping statements, transactions are used to preserve the integrity of data in a
database. Transactions can lock data in order to prevent concurrent access or modification. How
locks are set is determined by the isolation level of a transaction. Usually, the default isolation level
used by the driver is sufficient and should not be altered.

The custom attribute jdbc:isolation-level allows you to adjust the isolation transaction
level should the need ever arise. There are five possible values defined in the java.sql.Connection
interface:

none

read uncommitted

read committed

repeatable read

serializable

The driver's default transaction isolation level is read committed. In the case of a manual
transaction, the jdbc:isolation-level attribute should be placed on the first element in the
transaction. This attribute is ignored on subsequent elements. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp" jdbc:transaction-id="0"
 jdbc:isolation-level="serializable">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement jdbc:transaction-type="manual"
 jdbc:transaction-id="0">
 <jdbc:sql>UPDATE dirxml.emp SET fname = 'John'
70 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Advanced Driver Configuration 71

 WHERE empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>

The above XML resolves to:

INSERT INTO dirxml.emp(lname) VALUES('Doe');
UPDATE dirxml.emp SET fname = 'John' WHERE empno = 1;
COMMIT; /* explicit */

Statement Type
The driver executes embedded SQL statements, but it doesn’t understand them. The JDBC
interface defines several methods for executing different types of SQL statements. The following
table contains these methods:

The simplest solution is to map all SQL statements to the execute() method. By default, this is the
method the driver uses. Some third-party drivers, particularly Oracle’s JDBC driver, incorrectly
implement the methods used to determine the number of results generated by the execute()
method. As a result, the driver can get caught in an infinite loop leading to high CPU utilization.
To circumvent this problem, the jdbc:type attribute can be used on any <jdbc:statement>
element to map the SQL statements contained therein to the executeQuery() or executeUpdate()
methods instead of the default execute() method.

The jdbc:type attribute has two values: update and query. The value should be set to
update for insert, update, or delete statements and query for select statements. In the absence
of this attribute, the driver maps all SQL statements to the execute() method. If placed on any
element other than <jdbc:statement>, this attribute is ignored.

We recommend that you place the jdbc:type="query" attribute value on all select statements,
and the jdbc:type="update" attribute value on all insert, update, and delete statements.

The following XML shows an example of the jdbc:type attribute:

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement jdbc:type="update">
 <jdbc:sql>UPDATE dirxml.emp SET fname = 'John'
 WHERE empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>

Statement Type Method of Execution

SELECT Statement.executeQuery(String)

INSERT Statement.executeUpdate(String)

UPDATE Statement.executeUpdate(String)

DELETE Statement.executeUpdate(String)

CALL or EXECUTE

Any of the above statements

Statement.execute(String)

 Novell Confidential Manual (99a) 13 November 2003
SQL Queries
In order to fully support the query capabilities of a database and avoid the difficulty of translating
native SQL queries into an XML format, the driver supports native SQL query processing. Select
statements can be embedded in XML documents in exactly the same way as any other SQL
statement.

For example, if we assumed the contents of table emp were:

The XML document below would result in an output document containing a single result set.

<input xmlns:jdbc="urn:dirxml:jdbc">
 <jdbc:statement jdbc:type="query">
 <jdbc:sql>SELECT * FROM dirxml.emp</jdbc:sql>
 </jdbc:statement>
</input>

<output xmlns:jdbc="urn:dirxml:jdbc">
 <jdbc:result-set jdbc:number-of-rows="1">
 <jdbc:row jdbc:number="1">
 <jdbc:column jdbc:name="empno"
 jdbc:position="1"
 jdbc:type="java.sql.Types.DECIMAL
 <jdbc:value>l</jdbc:value>
 </jdbc:column>
 <jdbc:column jdbc:name="fname"
 jdbc:position="2"
 jdbc:type="java.sql.Types.VARCHAR>
 <jdbc:value>John</jdbc:value>
 </jdbc:column>
 <jdbc:column jdbc:name="lname"
 jdbc:position="3"
 jdbc:type="java.sql.Types.VARCHAR>
 <jdbc:value>Doe</jdbc:value>
 </jdbc:column>
 </jdbc:row>
 </jdbc:result-set>
 <status level="success"/>
</output>

SQL queries always produce a single <jdbc:result-set> element whether or not the result
set contains any rows. If the result set is empty, the jdbc:number-of-rows attribute will be set
to zero.

More than one query can be embedded in a document. SQL queries do not require that the tables
being references are known to the driver; XML queries do.

Data Definition Language (DDL) Statements
It is generally not possible to run a Data Definition Language (DDL) statement in a database
trigger because most databases do not allow mixed DML and DDL transactions. While virtual
triggers do not overcome this transactional limitation, they do allow DDL statements to be
executed as a side effect of an XML event. For example:

empno fname lname

1 John Doe
72 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CREATE USER dirxml IDENTIFIED BY novell
 </jdbc:sql>
 </jdbc:statement>
</input>

The above XML resolves to:

INSERT INTO dirxml.emp(lname) VALUES('Doe');
/* COMMIT; implicit */

CREATE USER dirxml IDENTIFIED BY novell;
/* COMMIT; implicit */

Using the jdbc:transaction-id and jdbc:transaction-type attributes to group DML
and DDL statements into a single transaction would result in the transaction being rolled back on
most databases. Because DDL statements are generally executed as separate transactions, it is
possible that the insert statement in the example above might succeed and the create user statement
might roll back. It is not possible, however, that the insert statement fail and the create user
statement succeed. The driver stops executing chained transactions at the point where the first
transaction is rolled back.

Logical Operations
Because it is not generally possible to mix DML and DDL statements in a single transaction, a
single event can consist of one or more transactions. The jdbc:op-id and jdbc:op-type can
be used to group multiple transactions together into a single logical operation. When so grouped,
all members of the operation are handled as a single unit with regard to status. If one member
errors, all members return the same status level. Similarly, all members share the same status type.

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp" jdbc:op-id="0"
 jdbc:op-type="password-set-operation">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 <password>Doe{$empno}</password>
 </add>
 <jdbc:statement jdbc:op-id="0">
 <jdbc:sql>CREATE USER Doe IDENTIFIED BY {$$password}
 </jdbc:sql>
 </jdbc:statement>
</input>

The jdbc:op-type attribute is ignored on all elements except the first element in the operation.
Advanced Driver Configuration 73

 Novell Confidential Manual (99a) 13 November 2003
Best Practices
For performance reasons, it is better to call a single stored procedure that contains multiple
statements than to embed multiple SQL statements in an XML document. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CALL PROCEDURE set_fname(’John’, ’Joe’,
 ’Jimmy’)</jdbc:sql>
 </jdbc:statement>
</input>

Is preferred to:

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="emp">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE dirxml.emp SET fname = ’John’
 WHERE empno = {$empno}</jdbc:sql>
 </jdbc:statement>
 <jdbc:statement>
 <jdbc:sql>UPDATE dirxml.emp SET fname = ’Joe’
 WHERE empno = {$empno}</jdbc:sql>
 </jdbc:statement>
 <jdbc:statement>
 <jdbc:sql>UPDATE dirxml.emp SET fname = ’Jimmy’
 WHERE empno = {$empno}</jdbc:sql>
 </jdbc:statement>
</input>
74 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
6 Using the JDBC Association Utility

This section contains information on using the JDBC association utility. The utility is designed to
normalize associations of objects associated under the 1.0 or later drivers. It also provides several
other features designed to simplify driver administration.

This version of the utility is backwards compatible with all versions of the JDBC driver back to
version 1.0 and supersedes all previous versions of the utility.

Understanding the Utility
This utility supports seven independent operations:

1. List objects associated with a driver (default)

2. List objects with multiple associations to a driver

3. List objects with invalid associations to a driver

An association is invalid if:

It is malformed. (For example, the association is missing the schema RDN, missing the
table RDN, or the schema keyword is misspelled.)

It contains database identifiers that do not map to identifiers in the target database. (For
example, an association includes a mapping to a table that does not exist.)

It maps to no row or multiple rows. An association is broken if it doesn’t map to a row.
Also, associations aren’t unique if they map to more than one row.

4. List objects that need to be normalized

A normalized association is valid, correctly ordered, and uses the correct case. Normal
case is uppercase for case-insensitive databases and mixed case for case-sensitive
databases.

5. Normalize object associations listed by the previous operation

6. List object associations to be modified

Allows for global replacement of schema, table, and column names based on search
criteria.

7. Modify object associations listed by the previous operation

The following table lists the operations and whether they are read-only or write.

Operation Read-Only vs. Write

1. List objects associated with a driver Read-only

2. List objects with multiple associations to a driver Read-only
Using the JDBC Association Utility 75

 Novell Confidential Manual (99a) 13 November 2003
Before You Begin
Modifying associations can potentially cause problems. If associations are corrupted, DirXML
ceases to function, so you should use write operations only when necessary. To avoid unintentional
association corruption, this utility creates an undo ldiff file for all write operations.

You should review the following cautions before using the utility:

This utility, like the driver, assumes database identifiers are undelimited (unquoted and
contain no special characters).

It is extremely important that all object associations related to a driver be updated together.

In order to see all of the objects associated with a particular driver, this utility should be
run on the Novell® eDirectoryTM server where the driver is run or where the driver is being
remoted from.

All of the objects associated with a particular driver must be contained by the LDAP
search base.
NOTE: To ensure complete containment, we recommend that you use your tree's root container as
the search base.

Make sure the JDBC URL of target database supplied to this utility is the same as the one used
by the driver. Pointing this utility at a case-insensitive database when the database is actually
case-sensitive might result in associations being normalized to the wrong case.

Because this utility is run locally, it uses an unsecured connection, so the eDirectory LDAP
server must be temporarily configured to accept clear text passwords. Depending upon the
third-party JDBC driver you are using, the database connection established by this utility
might be insecure.
NOTE: We recommend changing the shim's authentication password on the database after running this
utility.

Using the Utility
This utility must be run once for each instance of the driver installed on the target server.

A properties file is provided for each supported database and can be found in
tools\sql\database\properties.txt file.
NOTE: For more information on how to run the utility from the command line, refer to run.bat in the tools\util
directory of the download image.

1 Stop the driver.

3. List objects with invalid associations to a driver Read-only

4. List objects that need to be normalized Read-only

5. Normalize object associations listed by the previous
operation

Write

6. List object associations to be modified Read-only

7. Modify object associations listed by the previous
operation

Write

Operation Read-Only vs. Write
76 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
2 Identify and remove extraneous associations (operations 2 and 3).

No object associated by the JDBC driver should have multiple associations. Extraneous
associations must be removed manually on a per object basis. Operation 3 might help you
identify which of the multiple associations is actually valid. After this is known, the
extraneous associations can probably be discarded.

3 Identify and fix invalid associations (operation 3 and possibly operations 6 and 7).

As a general rule of thumb, if the problem is isolated, edit each invalid association manually.
If the problem is repetitive and affects a large number of associations, consider using
operations 6 and 7. This utility can replace bad identifiers on a global basis, but cannot insert
or remove them where they do not already exist.

4 Normalize associations (operations 4 and 5).

Editing Associations
This utility requires two parameters (oldRDN and newRDN) for operations 6 and 7. This section
explains how to use these parameters.

The first value is the search criterion, the second is the replacement value. The wildcard character
* can be used under certain scenarios to generalize the search criterion or replacement value.

Three types of search and replace operations are possible:

1. Schema name replacement

Wildcards are supported on the right side only. For example,

Replace schema old with schema new

oldRDN: schema=old

newRDN: schema=new

2. Table name replacement

Wildcards are not supported. For example,

Replace table old with table new:

oldRDN: table=old

newRDN: table=new

3. Column name replacement

Wildcards are required on the right side, but they aren’t supported on the left side. For
example,

Replace column old with column new:

oldRDN: old=*

newRDN: new=*
Using the JDBC Association Utility 77

 Novell Confidential Manual (99a) 13 November 2003
78 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
7 Uninstalling the Driver and Database Objects

In this section, you will learn how to uninstall a driver and its corresponding database objects.

Uninstalling the Driver
This section provides information about uninstalling the driver.

When deleting Novell® eDirectoryTM objects, you must delete all child objects before you can
delete a parent object. For example, you must delete all rules and style sheets on the Publisher
channel before you can delete the Publisher object. Similarly, you must delete both the Publisher
and Subscriber objects before you can delete the Driver object.

To remove a driver object from eDirectory:

1 In Novell iManager, click DirXML Management > Overview.

2 From Overview, locate the driver set where the driver exists, then click Delete Driver.

3 Click the Driver you want to delete, then click ok.

Uninstalling Database Objects
This section provides information and procedures about uninstalling the database objects.

This section contains information to help you:

“Uninstalling Oracle Objects” on page 79

“Uninstalling Microsoft SQL Server Objects” on page 80

“Uninstalling IBM DB2 UDB Objects” on page 80

“Uninstalling Sybase Objects” on page 80

“Uninstalling MySQL Objects” on page 80

“Uninstall Informix Objects” on page 80
IMPORTANT: We recommend installing and uninstalling preconfigured drivers and database scripts as a unit.
To prevent unintentional mismatching, database scripts and preconfigured drivers now contain headers with
a version number, the target database name, and the database version.

Uninstalling Oracle Objects
1 From an Oracle client, such as SQL Plus, log in in as user SYSTEM. By default, the SYSTEM

user password is MANAGER.

2 Execute the uninstallation script for direct or indirect synchronization. For example:

SQL> @c:\tools\sql\oracle\direct\UNINSTALL_DIRECT.sql

SQL> @c:\tools\sql\oracle\indirect\UNINSTALL_INDIRECT.sql
Uninstalling the Driver and Database Objects 79

 Novell Confidential Manual (99a) 13 November 2003
Uninstalling Microsoft SQL Server Objects
1 Start Query Analyzer.

2 Log on to your sever as user sa. By default, the sa user has no password.

3 Open and execute the uninstallation script for direct or indirect synchronization. For example:

tools\sql\mssql\direct\UNINSTALL_DIRECT.sql

tools\sql\mssql\indirect\UNINSTALL_INDIRECT.sql

Uninstalling IBM DB2 UDB Objects
1 Start Command Center.

2 Click the Script tab > open the Script menu > import the uninstallation script for direct or
indirect synchronization. For example:

tools\sql\db2\direct\UNINSTALL_DIRECT.sql

tools\sql\db2\indirect\UNINSTALL_INDIRECT.sql

3 Change the name of the administrator account and password for your server before executing
the uninstallation script.

4 Execute the script.
NOTE: The uninstall script does not destroy the dirxml database or dirxml OS user account.

Uninstalling Sybase Objects
1 From a Sybase client, such as isql, log on as user sa and execute the uninstallation script for

direct or indirect synchronization. By default, the sa user has no password. For example:

isql -U sa -P -i
c:\tools\sql\sybase\direct\UNINSTALL_DIRECT.sql

isql -U sa -P -i
c:\tools\sql\sybase\indirect\UNINSTALL_INDIRECT.sql

Uninstalling MySQL Objects
1 From a MySQL client, such as mysql, log on as user root and execute the uninstallation

script for indirect synchronization. By default, the root user has no password. For example:

mysql> \. c:\tools\sql\oracle\indirect\UNINSTALL_INDIRECT.sql

Uninstall Informix Objects
1 Start SQL Editor.

2 Logon to your server as user informix. By default, the informix user password is
informix.

3 Execute the uninstallation script for direct or indirect synchronization. For example:

tools\sql\informix\direct\UNINSTALL_DIRECT.sql

tools\sql\informix\indirect\UNINSTALL_INDIRECT.sql
NOTE: The uninstall script does not destroy the dirxml OS user account.
80 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Uninstalling the Driver and Database Objects 81

 Novell Confidential Manual (99a) 13 November 2003
82 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
A Best Practices

The following section lists important best practices for using the driver. You can find additional
information in Chapter 4, “Configuring the Driver,” on page 37 and Chapter 5, “Advanced Driver
Configuration,” on page 49.

For direct synchronization, you must prefix one or more view column names with pk_ (case-
insensitive).

For indirect synchronization, ensure that all tables comprising a logical database class have
the same primary and foreign key column names.

For both direct and indirect synchronization, ensure that you use different primary key and
foreign key column names between logical database classes.

Primary key values placed in the table_key field should be delimited (that is, double-
quoted) if they contain the following characters:

, ; ’ + = \ " < >

This is usually only an issue if the primary key column has a binary type. An example is
provided in the tools\sql\example\pbx directory.

When eDirectory is the authoritative source of primary key values, GUID rather than CN is
recommended for use as a primary key. Unlike CN, GUID is single-valued and does not
change.

Foreign key columns should always be omitted from publication triggers.

DSTrace should not be used in a production environment.

Do not include primary key columns in publication triggers if they are static (that is, they do
not change.)

We recommend that you place the jdbc:type="query" attribute value on all embedded
select statements, and the jdbc:type="update" attribute value on all embedded insert,
update, and delete statements.

For performance and security reasons, you should run the driver remotely whenever possible.
Best Practices 83

 Novell Confidential Manual (99a) 13 November 2003
84 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
B Common Questions

The following section contains answers to some common questions you might encounter as you
install or configure the driver. These include:

“Why Can’t the Driver See My Tables or Views?” on page 85

“How Do I Synchronize Tables Located in Multiple Schemas?” on page 85

“Why Isn’t the Driver Processing Records in the Event Log?” on page 86

“Can the Driver Manage Database User Accounts?” on page 86

“Can the Driver Synchronize Large Binary and String Data Types?” on page 86

“Why is Publication so Slow?” on page 86

“Can the Driver Synchronize Multiple Classes?” on page 86

“Why Must Foreign Key Column and Primary Key Columns Have the Same Name?” on
page 86

“Does the Driver Support SSL Encryption?” on page 87

“How Do I Map Multi-Valued Attributes to Single-Valued Database Fields?” on page 87

“Why is the Driver Synchronizing Garbage Strings?” on page 87

Why Can’t the Driver See My Tables or Views?
The driver is capable only of synchronizing tables that have explicit primary key constraints.
Explicit constraints are used by the driver to determine which fields should be utilized when
constructing associations. As such, the driver ignores any unconstrained tables.
If you are trying to synchronize with tables that lack explicit constraints, you will need to either
add them or synchronize to intermediate tables with the required constraints. The latter is the
preferred solution.

To be seen by the driver, a view must contain at least one column name prefixed with pk_ (case-
insensitive).

How Do I Synchronize Tables Located in Multiple Schemas?
You’ll need to either alias the tables into this driver’s schema, synchronize to intermediate tables
in the driver’s schema and move the data across schema boundaries, use a view, or create a virtual
schema via the new Synchronize Tables driver parameter.
Common Questions 85

 Novell Confidential Manual (99a) 13 November 2003
Why Isn’t the Driver Processing Records in the Event Log?
There are several explanations for this behavior. First, you should check the perpetrator field
of the rows in question and make sure the value is set to something other than the driver’s user
name. The driver only checks the perpetrator field if the publisher Allow Loopback parameter
is set to no. The driver prevents event loopback by ignoring all records where the perpetrator
field value is equal to the driver’s username.

You should also ensure that the record's status field is set to 'N' (new). Records with status
fields set to something other than 'N' will not be processed. Also, make sure to explicitly commit
changes. Changes are only tentative until you commit them.

Can the Driver Manage Database User Accounts?
Yes, database accounts can be managed using embedded SQL. For more information, refer to
“Using Structured Query Language in XML Events” on page 66.

Can the Driver Synchronize Large Binary and String Data Types?
Yes. Large binary and string data types can be subscribed and published. Large binary and string
data types can be published using query-back event types.

Why is Publication so Slow?
If the event log table contains a large number of rows, it should be indexed. Example indexes are
provided in all database installation scripts. The statements used by the driver to maintain the event
log can be viewed using trace level 3. Examples are also provided in the
tools\sql\example\STATEMENTS.sql file.

Indexes in the installation scripts can be further refined to enhance publication performance.
Placing indexes in a different tablespace or physical disk than the event log will also enhance
publication performance.

Also, the Delete From Log publication parameter should be set to no in a production environment.

Can the Driver Synchronize Multiple Classes?
Yes. However, primary key column names must be unique between logical database classes. For
example, if class1 is mapped to table1 with primary key column name key1 and class2 is mapped
to table2 with primary key column name key2, then the name of key1 cannot equal key2. This
requirement can always be satisfied if intermediate tables or views are used.

Why Must Foreign Key Column and Primary Key Columns Have the
Same Name?

Within each logical database class, primary key and foreign key column names must match.
Between logical database classes, they must differ. This common name is used by the publisher to
identify all records in the event log table pertaining to a single, logical database object even if the
object spans multiple tables.
86 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
Does the Driver Support SSL Encryption?
No. How the driver communicates with a given database is dependent upon the third-party driver
being used. Some third-party drivers support SSL sockets while others do not. Even if SSL is
supported, there is no standardized way of enabling SLL encryption between third-party drivers.
The general solution for this problem is to remotely run the driver and your third-party driver
which allows the driver and your third-party driver to run locally on the database server. All data
traveling across the network between the engine and the driver will be SLL encrypted.

Another possibility is to use a type 3 or type 2 third-party JDBC driver. Database middleware and
client APIs usually provide some sort of secure connectivity.

How Do I Map Multi-Valued Attributes to Single-Valued Database
Fields?

For detailed information on how to map multi-valued attributes to single-valued database fields,
refer to “Mapping Multi-Valued Attributes to Single-Valued Database Fields” on page 57.

Why is the Driver Synchronizing Garbage Strings?
The database and the third-party driver are probably using incompatible character encoding. This
can be remedied by adjusting the character encoding used by your third-party driver.

For more information, refer to the Character Encoding Values (http://java.sun.com/products/jdk/
1.1/docs/guide/intl/encoding.doc.html) defined by Sun.
Common Questions 87

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

 Novell Confidential Manual (99a) 13 November 2003
88 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
C Supported Data Types

The driver is capable of synchronizing JDBC 1.0 string, numeric, time, and binary data types. How
JDBC data types map to a database’s native data types is database-dependent. The following list
includes the supported java.sql types:

Numeric Types

java.sql.Types.BIGINT

java.sql.Types.BIT

java.sql.Types.DECIMAL

java.sql.Types.DOUBLE

java.sql.Types.NUMERIC

java.sql.Types.REAL

java.sql.Types.FLOAT

java.sql.Types.INTEGER

java.sql.Types.SMALLINT

java.sql.Types.TINYINT

String Types

java.sql.Types.CHAR

java.sql.Types.LONGCHAR

java.sql.Types.VARCHAR

Time Types

java.sql.Types.DATE

java.sql.Types.TIME

java.sql.Types.TIMESTAMP

Binary Types

java.sql.Types.BINARY

java.sql.Types.VARBINARY

java.sql.Types.LONGVARBINARY
Supported Data Types 89

 Novell Confidential Manual (99a) 13 November 2003
90 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
D java.sql.DatabaseMetaData Methods

This section lists the required and optional java.sql.DatabaseMetaData methods currently used by
the driver. For more information on these methods, refer to Sun’s Web Site on Interface MetaData
(http://java.sun.com/products/jdk/1.2/docs/api).

Required methods:

java.sql.ResultSet getColumns(java.lang.String catalog, java.lang.String schemaPattern,
java.lang.String tableNamePattern, java.lang.String columnNamePattern)

java.sql.ResultSet getPrimaryKeys(java.lang.String catalog, java.lang.String schema,
java.lang.String table)

java.sql.ResultSet getTables(java.lang.String catalog, java.lang.String schemaPattern,
java.lang.String tableNamePattern, java.lang.String[] types)

boolean storesLowerCaseIdentifiers()

boolean storesMixedCaseIdentifiers()

boolean storesUpperCaseIdentifiers()

Optional methods:

boolean dataDefinitionCausesTransactionCommit()

boolean dataDefinitionIgnoredInTransactions()

java.sql.ResultSet getExportedKeys(java.lang.String catalog, java.lang.String schema,
java.lang.String table)

int getMaxConnections()

int getMaxColumnsInSelect()

int getMaxStatements()

int getMaxStatementLength()

java.sql.ResultSet getTableTypes()

java.lang.String getUserName()

boolean supportsDataDefinitionAndDataManiuplationTransactions()

boolean supportsDataManipulationTransactionsOnly()

boolean supportsSchemasInDataManipulation()

boolean supportsSchemasInProcedureCalls()

boolean supportsTransactions()

boolean supportsMultipleTransactions()

boolean supportsTransactionIsolationLevel(int level)
java.sql.DatabaseMetaData Methods 91

http://java.sun.com/products/jdk/1.2/docs/api

 Novell Confidential Manual (99a) 13 November 2003
92 DirXML Driver for JDBC Implementation Guide

 Novell Confidential Manual (99a) 13 November 2003
E JDBC 1.0 Methods

This section lists the JDBC 1.0 methods (other than DatabaseMetaData methods) used by the
driver. Methods are organized by class. Often, third-party driver vendors list defects or known
issues by method. This section can be used in collaboration with third-party driver documentation
to troubleshoot or anticipate potential interoperability problems.

java.sql.DriverManager

java.sql.Connection getConnection(java.lang.String url, java.lang.String user,
java.lang.String password)

java.sql.PreparedStatement

void clearParameters()
void setNull(int parameterIndex, int sqlType)
void setString(int parameterIndex, java.sql.String x)
void setBoolean(int parameterIndex, boolean x)
void setBigDecimal(int parameterIndex, java.math.BigDecimal x)
void setLong(int parameterIndex, long x)
void setDouble(int parameterIndex, double x)
void setInt(int parameterIndex, int x)
void setFloat(int parameterIndex, float x)
void setShort(int parameterIndex, short x)
void setByte(int parameterIndex, byte x)
void setTimestamp(int parameterIndex, java.sql.Timestamp x)
void setTime(int parameterIndex, java.sql.Time x)
void setDate(int parameterIndex, java.sql.Date x)
void setBytes(int parameterIndex, bytes[] x)

java.sql.Statement

void clearWarnings()
void close()
boolean execute(String sql)
java.sql.ResultSet executeQuery(String sql)
int executeUpdate(String sql)
boolean getMoreResults()
int getUpdateCount()
java.sql.ResultSet getResultSet()

java.sql.CallableStatement

void registerOutParameter(int parameterIndex, int sqlType)
JDBC 1.0 Methods 93

 Novell Confidential Manual (99a) 13 November 2003
java.sql.Connection

void close()
void commit()
void rollback()
int getTransactionIsolation()
void setAutoCommit(boolean autoCommit)
java.sql.PreparedStatement prepareStatement(String sql)
java.sql.CallableStatement prepareCall(String sql)
java.sql.Statement createStatement()

java.sql.ResultSet

void close()
boolean next()
java.lang.String getString(int columnIndex)
java.lang.String getString(java.lang.String columnName)
java.math.BigDecimal getBigDecimal(int columnIndex, int scale)
long getLong(int columnIndex)
double getDouble(int columnIndex)
int getInt(int columnIndex)
float getFloat(int columnIndex)
short getShort(int columnIndex)
byte getByte(int columnIndex)
boolean getBoolean(int columnIndex)
byte[] getBytes(int columnIndex)
byte[] getBytes(java.lang.String columnName)
java.sql.Timestamp getTimestamp(int columnIndex)
java.sql.Time getTime(int columnIndex)
java.sql.Date getDate(int columnIndex)
java.io.InputStream getBinaryStream(String columnName)
94 DirXML Driver for JDBC Implementation Guide

	About This Guide
	1 Introducing the DirXML Driver for JDBC
	Overview
	New Features
	Driver Features
	Driver Bug Fixes
	DirXML 2.0 Features

	Driver Concepts
	DirXML Driver for JDBC
	Third-Party JDBC Driver
	JDBC Driver Type
	Directory Schema
	Application Schema
	Synchronization Schema
	Logical Database Class

	Database Concepts
	Database Schema
	Data Manipulation Language
	Data Definition Language
	Transactions
	Triggers
	Identity Columns/Sequences
	Stored Procedures/Functions

	Data Synchronization Models
	Direct Synchronization
	Indirect Synchronization

	2 Understanding Driver Prerequisites
	Driver Prerequisites
	Supported Platforms
	Supported Databases
	Recommended Third-Party JDBC Drivers
	Using The Sun JDBC-ODBC Bridge Driver
	Security
	Known Issues
	Limitations

	3 Installing or Upgrading the Driver
	Installing the Driver
	Installing the Driver

	Installing Database Objects
	Configuring Oracle Objects
	Configuring Microsoft SQL Server Objects
	Configuring IBM DB2 Objects
	Configuring Sybase Objects
	Configuring MySQL Objects
	Configuring Informix Objects

	Upgrading the Driver
	Upgrade Requirements
	Upgrading from 1.5 to 1.6

	Activating the Driver

	4 Configuring the Driver
	Setting Driver Authentication Parameters
	Configuring Driver Authentication
	Authentication ID
	Authentication Context
	Application Password

	Driver Parameters
	Configuring Driver Settings
	Subscriber Settings
	Publisher Settings

	Trace Levels
	Configuring Third-Party JDBC Drivers

	5 Advanced Driver Configuration
	Schema Mapping
	Logical Database Classes
	Indirect Synchronization
	Direct Synchronization
	Synchronizing Primary Key Columns
	Synchronizing Multiple Classes
	Mapping Multi-Valued Attributes to Single-Valued Database Fields

	Event Mapping
	Add Events
	Modify Events
	Delete Events
	Query Events
	Move and Rename Events

	The Event Log Table
	Event Log Columns
	Event Types

	Using Structured Query Language in XML Events
	Introduction
	Variable Substitution
	Statement Placement
	Manual vs. Automatic Transactions
	Transaction Isolation Level
	Statement Type
	SQL Queries
	Data Definition Language (DDL) Statements
	Logical Operations
	Best Practices

	6 Using the JDBC Association Utility
	Understanding the Utility
	Before You Begin
	Using the Utility
	Editing Associations

	7 Uninstalling the Driver and Database Objects
	Uninstalling the Driver
	Uninstalling Database Objects
	Uninstalling Oracle Objects
	Uninstalling Microsoft SQL Server Objects
	Uninstalling IBM DB2 UDB Objects
	Uninstalling Sybase Objects
	Uninstalling MySQL Objects
	Uninstall Informix Objects

	A Best Practices
	B Common Questions
	Why Can’t the Driver See My Tables or Views?
	How Do I Synchronize Tables Located in Multiple Schemas?
	Why Isn’t the Driver Processing Records in the Event Log?
	Can the Driver Manage Database User Accounts?
	Can the Driver Synchronize Large Binary and String Data Types?
	Why is Publication so Slow?
	Can the Driver Synchronize Multiple Classes?
	Why Must Foreign Key Column and Primary Key Columns Have the Same Name?
	Does the Driver Support SSL Encryption?
	How Do I Map Multi-Valued Attributes to Single-Valued Database Fields?
	Why is the Driver Synchronizing Garbage Strings?

	C Supported Data Types
	D java.sql.DatabaseMetaData Methods
	E JDBC 1.0 Methods

