AUTHORIZED DOCUMENTATION

Policies in Designer 3.0

Novell:
Designer for Identity Manager

3.0
July 23, 2008

www.novell.com



Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2007-2008 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).


http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.


http://www.novell.com/company/legal/trademarks/tmlist.html




Contents

About This Guide 15
1 Overview 17
1.1 PoliCies. . . . 17
2 Using the Pre-ldentity Manager 3.5 Policy Builder 19
3 Managing Policies with the Policy Builder 21
3.1 Accessing the Policy Builder . ... ... .. . 21
3.1.1 Model Outline View . . .. ... e 21

3.1.2 Policy FIow View . . ... e 22

3.1.3  Policy Set. . .. 23

3.2 Using the Policy Builder. . ... ... . e 24
3.3 Creatinga PoliCy . ... ... 24
3.3.1 Accessingthe Policy Set . . ... ... . . 24

3.3.2 Usingthe Policy Set. . .. ... ... . . 25

3.3.3 Usingthe Add Policy Wizard . . . ... . e 26

3.4  Creatinga Rule . ... . . 28
3.41 CreatingaNew RuUle . ... ... .. 29

3.4.2 Using Predefined Rules. . . ... ... 31

3.4.3 Including an ExistingRule . .. ... ... . 32

3.4.4 Importing a Policy Froman XML File. . . ......... ... ... . . . . . . . .. 33

3.5  Creating an Argument . . ... ... 33
3.6 Variable Selector . . ... ... .. 35
3.6.1 Dynamic Variable Expansion. . .. ... ... ... 35

3.6.2 Accessing the Variable Selector From the Conditions Tab .. .................. 36

3.6.3  Accessing the Variable Selector From the Actions Tab. . ..................... 37

3.6.4  Accessing the Variable Selector From the Argument Builder .. ................ 38

3.6.5  XPath EXpressions . ... ... 39

3.7  Editing a Policy. . ... 39
3.71 Actions and Menu Items in the Policy Builder . ... ............ ... ... ... .... 40

3.7.2 Keyboard Support . . ... ... 41

3.7.3 Renaming a Policy. . . ... ... e 42

3.7.4  Saving Your Work . . ... 42

3.75 Policy Description . ... ... 42

3.8  Viewingthe Policy in XML . .. ... 43
4 Using Additional Builders and Editors 45
4.1 Action Builder. . ... 45
411 Creating an ACtioN . . . ... o 45

4.1.2  Additional Options for the Action Builder. . . .. ... ... .. ... ... ... .. ... . ... 46

4.2  Actions Builder. . ... ... e 46
4.3  Argument Builder . . . ... . 47
4.31 Launching the Argument Builder . . . ... ... . . 49

4.3.2  Argument Builder Example .. ... .. ... 50

4.4  Condition BUIlder . . .. ... . 52
4.41 Creatinga Condition ... ... .. ... . 52

Contents 5



6

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.15

4.16

6.1

6.2

6.3
6.4

6.5
6.6

7.1

7.2

4.4.2  Additional Options for the Condition Builder .. .......... ... ... ... ... ... ....

Conditions Builder . . ... ...
Match Attribute Builder. . .. ... ..
Action Argument Component Builder. . . . ... .. .
Argument Value List Builder. . .. ... ... .
Named String Builder. . . ... ...
Condition Argument Component Builder . . .. ... .. ... . . .
Pattern Builder . . ... ..
String Builder . ... ...
XPath Builder. . .. ...
Mapping Table Editor. . . ... . e
4.14.1 Creating a Mapping Table Object . ......... ... .. .. . .. . . ..
4.14.2 Adding a Mapping Table Objecttoa Policy. . ........... ... . ... ... .......
4.14.3 Editing a Mapping Table Object. . ... ... ... ... .
4.14.4 Importing Datafroma CSV File. .. ... ... ... . .. . . .
4145 ExportingDatatoa CSV File.. ... ... . . .
4.14.6 Testinga Mapping Table Object .. ......... ... .. .. . . ..
Namespace Editor . .. ... . e
4.15.1 Accessing Java Classes Using Namespaces . ............. ... ... ...
Local Variable Selector . ... ... ...

5 Using the XPath Builder

6 Defining Schema Map Policies
Using the Schema Map Editor. . ... ... .
6.1.1 Accessing the Schema Map Editor ............ ... . ... . . ... . ...
6.1.2 Navigating the Schema Map Editor. .. ............ ... ... ... .. ... ... ......
6.1.3  Understanding the Schema Map Editor Toolbar . .. .......... ... ... ... ... ...
Editinga Schema Map Policy . ... ...
6.2.1 Adding or Deleting Classes and Attributes . ............. ... .. ... ... ......
6.2.2 Refreshing the Application Schema. .. ....... ... ... ... .. ... .. . . ...
6.2.3 Editing ltems . . ... ..
6.2.4  Sorting SchemaMapEntries. . ... ...
6.2.5 Managing the Schema. . . ... ... ... .. . . . . .
Testing Schema Map Policies . .. ... ...
Exporting and Importing with the Schema Map Editor. . . . ........ ... ... ... ... ......
6.4.1 Exportinga Schema Map Policy . ......... ... ... .. . . . . ..
6.4.2 Importinga Schema Map Policy . ......... . .
Accessing the Schema Map Policy in XML . . ... ...
Additional Schema Map Policy Options . . . . ... ...
6.6.1 Outline View Additional Options . . ... ... .. . . e
6.6.2  Policy Flow View Additional Options . . . ... . i
6.6.3 Policy Set View Additional Options . .. ........ ... .. . i

7 Controlling the Flow of Objects with the Filter
Using the Filter Editor. . . .. ... . e
711 Accessing the Filter Editor. . . ... ... .. ..
71.2 Navigating the Filter Editor . . ...... ... .. . . . . .
713 Understanding the Filter Editor Toolbar. ... ............... ... ... ... ... ....
Editing the Filter. . .. ... e
7.2.1 Removing or Adding Classes and Attributes . . .. ...........................
7.2.2 Modifying Multiple Attributes . .. ... ... . .
7.2.3 Copying an Existing Filter .. ........ .. . .

Policies in Designer 3.0

71

7

78
78
79
80
81
81
85
85
86
86
86
87
87
87
87
87
88
88
90



7.2.4  Setting Default Values for Attributes . ... ....... ... .. 97

7.25 Changing the Filter Settings ......... ... .. . . . . i 97
7.3 Testingthe Filter ... ... . . e 102
7.4  Exporting and Importing Filter Files . . . ... .. ... 102
7.4.1 Exportinga Filter File. . . ... ... .. 102
74.2 Importinga Filter File. . .. ... . 102
7.5 Adding Comments to Classes and Attributes. . . . ......... .. ... ... ... .. ... .. ...... 102
7.6 Viewingthe Filterin XML . ... ... 103
7.7 Deployingthe Filter . ... ... . e 103
7.8  Additional Filter Options. . . .. ... . e 103
7.8.1 Outline View Additional Options . .. ......... ... ... . . . .. 103
7.8.2 Policy Flow View Additional Options . . ... ....... ... ... . ... ... ... ... 104
7.8.3  Policy Set View Additional Options . ... ......... . ... .. . . i 105
Using Predefined Rules 107
8.1  Command Transformation - Create Departmental Container - Part1and Part2 ......... 108
8.1.1 Creatinga Policy . . ... 108
8.1.2 Importing the Predefined Rule. . ...... ... ... .. . . . . 109
8.1.3 Howthe Rule Works . .. ... .. . e 110
8.2 Command Transformation - Publisher Delete to Disable. ... ........................ 111
8.2.1 Creatinga PoliCy . . ... 111
8.2.2 Importing the PredefinedRule. . ... ... ... .. .. ... . ... . . . . 111
8.23 HowtheRule Works . ... ... e 112
8.3  Creation - Require Attributes . . .. ... ... . . 112
8.3.1 Creatinga Policy . . ... .. . e e 112
8.3.2 Importing the Predefined Rule. . . ........ ... ... . . . . 113
8.3.3 Howthe Rule Works . ........ . . e i 114
8.4  Creation - Publisher-Use Template . . ........ ... ... . . i, 114
8.4.1 Creatinga PoliCy . . ... 114
8.4.2 Importing the Predefined Rule. . ......... ... .. .. . . 115
8.4.3 Howthe Rule Works . .. ... .. e 115
8.5 Creation - Set Default Attribute Value .. ......... .. . . . . . 115
8.5.1 Creatinga Policy . ... . 116
8.5.2 Importing the Predefined Rule. . . ...... ... ... ... ... . ... . . .. . . ... 116
8.5.3 Howthe Rule Works . .. ... ... . e e 117
8.6  Creation - Set Default Password . . . ... ... .. e 117
8.6.1 Creatinga PoliCy . . ... 117
8.6.2 Importing the Predefined Rule. . ......... ... .. . . . . . 118
8.6.3 Howthe Rule Works . .. ... ... e 118
8.7  Event Transformation - Scope Filtering - Include Subtrees . . . ....................... 119
8.7.1 Creatinga Policy . . ... ... i 119
8.7.2 Importing the PredefinedRule. . ... ... ... .. .. ... . . .. . . . . 119
8.7.3 Howthe Rule Works . ... ... . i e e 120
8.8  Event Transformation - Scope Filtering - Exclude Subtrees . ........................ 120
8.8.1 Creatinga Policy . ... . 120
8.8.2 Importing the Predefined Rule. .. ...... ... ... . . . . 121
8.8.3 How the Rule Works . .. ... .. . e 122
8.9  Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-
0] 01 0T 0 122
8.9.1 Creatinga PoliCy . . ... 122
8.9.2 Importing the Predefined Rule. . ......... ... .. . . . . 123
8.9.3 Howthe Rule Works . .. ... .. e e 123
8.10 Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-
] 0 0T 123
8.10.1 Creatinga Policy . . ...t e 124

Contents

7



8

8.10.2 Importing the PredefinedRule. .. ... ... ... .. . ... . . . . . . . .. .. 124

8.10.3 Howthe Rule Works . . ... ... . e e 125

8.11 Matching - Publisher Mirrored . .. ......... .. . . . . . . 125
8.11.1 Creatinga Policy . ... 125
8.11.2 Importing the PredefinedRule. ....... ... ... ... ... .. .. . . ... . . .. . . ... 126
8.11.3 Howthe Rule Works . ... ... . . e i 127

8.12 Matching - Subscriber Mirrored - LDAP Format. ... ... ... .. . i 127
8.12.1 Creatinga PoliCy . .. ... 127
8.12.2 Importing the Predefined Rule. .. ... ... ... . . . . 128
8.12.3 Howthe Rule Works . .. ... ... . e 129

8.13 Matching - By Attribute Value. . . . ... . .. . 129
8.13.1 Creatinga PoliCy . .. ... ..o 129
8.13.2 Importing the PredefinedRule. . ... ... ... ... .. ... .. . .. . .. . . . ... 130
8.13.3 Howthe Rule Works . ... ... . e 130

8.14 Placement - Publisher Mirrored . . . ... ... . . 131
8.14.1 Creatinga Policy . ... . . e 131
8.14.2 Importing the Predefined Rule. .. ... ... .. . . . . 131
8.14.3 Howthe Rule Works .. ... . e i 132

8.15 Placement - Subscriber Mirrored - LDAP Format. . .. ......... .. ... ... ... ... ... . ... 132
8.15.1 Creatinga Policy . . ...« 133
8.15.2 Importing the Predefined Rule. . ......... ... ... . . . . 133
8.15.3 Howthe Rule Works . . ... ... e 134

8.16 Placement - Publisher Flat. .. ... ... . . . . 134
8.16.1 Creatinga Policy . ....... .. i 134
8.16.2 Importing the PredefinedRule. ....... ... .. ... ... .. ... . .. . . . .. .. ... 135
8.16.3 Howthe Rule Works .. ... .. . e i 136

8.17 Placement - Subscriber Flat - LDAP Format . . ........ ... ... . . . i 136
8.17.1 Creatinga PoliCy . ... ... 136
8.17.2 Importing the Predefined Rule. . ......... ... ... . . . . 137
8.17.3 Howthe Rule Works . . ... ... e 137

8.18 Placement - Publisher By Dept . .. ... .. . 138
8.18.1 Creatinga Policy . ....... .. i 138
8.18.2 Importing the PredefinedRule. . ... ... ... ... ... .. . .. .. . .. . .. . .. . ... 138
8.18.3 Howthe Rule Works . ... ... . i e 139

8.19 Placement - Subscriber By Dept - LDAP Format. .. .......... ... . ... .. 140
8.19.1 Creatinga Policy . ... . e 140
8.19.2 Importing the Predefined Rule. .. ... ... ... . . . . 140
8.19.3 Howthe Rule Works . . ... ... .. . e 141

9 Testing Policies with the Policy Simulator 143
9.1  Accessing the Policy Simulator . ....... ... .. ... . . . 143
9.1.1 OUtline VieW. . . ..o 143

9.1.2 Policy Flow View . . . ... e 144

9.1.3 EdiOrs . .o 144

9.2 Creatingan XDS Input Document . . ... ... ... . e 144
9.2.1 SOUMCE . . ottt 146

9.2.2 Import an XDS DocumeENt . . . ... ... 146

9.2.3 Use an Identity Vault Object AsaTemplate .. ......... ... .. ... ... ...... 146

9.24 Use an Application Object AsaTemplate. . ......... ... ... .. ... ... .. ... 147

9.2.5 Clear All Parameters . . . ... ... e 147

9.26  Configuration Options . . ... ... .. e 147

9.2.7 SavethelnputDocument . ...... ... .. . . . . ... 148

9.2.8 Simulation Point. . .. ... ... . e 148

9.2.9  Operation. . . ... 149
9.2.10 Parameterand Value. ... ... ... ... . 149

9.2.11 Aftributes . . ... .. 150

Policies in Designer 3.0



9.3 Using the Operation Data Editor . ............ .. . . e
9.4  Usingthe Hex Editor . ... .
9.4.1 Accessing the Hex Editor. . . ... ... ..
9.4.2 Importing Data into the Hex Editor. . ... ......... ... ... . . . .
9.4.3 Inserting Data in the Hex Editor. . . ........ ... .. ... . . . .
9.44  AppendingDatainthe Hex Editor . . . . ....... ... .. ... . . . . . . . ...
9.4.5 Editing Datainthe Hex Editor . ... ....... ... ... . . . . . .
9.46 Reverting Changes inthe Hex Editor . .......... ... ... . ... ... ... ... .. ...
9.47 DeletingDatainthe Hex Editor. . ...... ... ... .. . . .
9.4.8 Moving the Cursor inthe Hex Editor ... ......... ... ... . ... . . . ..
9.4.9 Exporting Data from the Hex Editor. ... ........ .. .. ... ... ... ... ... ....
9.5 Simulating @ Policy. . . .. ...
9.6  Simulating Policies with Java Extensions .. ......... ... ... .. ... ... . . . ..
10 Storing Information in Resource Objects
10.1 Generic Resource ObJeCtS . . . ... .ot
10.1.1 Creatinga Resource Object . ........ ... . . . ..
10.1.2 Using a Generic Resource Object. .. ... ... . ... ...
10.2 Mapping Table Objects . . ... ... e e
10.3 ECMASCript Objects . ... ... i e e e
10.4 Application ObJeCtS . . ... .. .
10.5 Repository Objects. . . ... ... e
10.6  Library ObJecCtS . . . . . .ot
10.6.1 Creating Library Objects .. ... .. .
10.6.2 Adding Policies to the Library Objects. ... ......... ... ... ... ... ... ......
10.6.3 Using Policies in the Library Objects . . . ......... .. ... .. ... ... ... .. ......
11 Using ECMAScript in Policies
11.1  Creating an ECMAScript Object. . . ... ...
11.2 Usingthe ECMAScript Editor. . .. ... .. .
11.2.1 Main Scripting Area . . .. ...
11.2.2 Expression Builder. . . ... .. . . . e
11.2.3 Functionsand Variables .. ... .. . . . . . .
11.2.4 ErrorDisplay . . ... ..
11.25 Shell Area . ... .
11.3 Examples of ECMAScripts with Policies . ....... ... ... .. .. . .. . . .
11.3.1  DirXML Script Policy Calling an ECMAScript Function . .. ...................
11.3.2 XSLT Policy Calling an ECMAScript Function at the Driver Level. . ............
11.3.3 XSLT Policy Calling an ECMAScript Function in the Style Sheet . . ... .........
12 Conditions
I ASSOCIAtioON. . . . .
AU . . .
IFClass NamMe . . ...
If Destination Attribute. . . .. .. ...
If Destination DN . . .. ... .
fENtitlement. . ...
If Global Configuration Value . . ........ .. .. . e
If Local Variable . . ... ... ..
If Named Password. . . . ... ... e
I Operation . . ..o e
If Operation Attribute. . . . .. ...

169

169

169
170
171

171
171
171
171

172
172
173

175

175
176

176
179
181
182
182
184

185
186
187

189

190
192
195
198
201
202
205
207
211
212
215

Contents 9



If Operation Property. . . . ... e 218

I PasSSWOrd . . .o 220
If Source Attribute . . . .. . . e 223
IFSource DN . .. e 225
XML AHbDULE . . . .. 227
If XPath EXPression . .. ... 229
13 Actions 231
Add ASSOCIatIoN . . . ..o 233
Add Destination Attribute Value . . .. ... . 234
Add Destination Object . . .. ... ... .. e 236
Add ROlE . . .o 238
Add Source Attribute Value. . . . .. ... 240
Add Source Object . . ... .. . 241
Append XML Element. . . .. .. e 242
Append XML TexXt . . ..o e 244
Break. . .. 246
Clear Destination Attribute Value . . . .. ... ... . 247
Clear Operation Property . ... ... 248
Clear Source Attribute Value . .. ... .. 249
Clear SSO Credential . . ... ... 250
Clone By XPath EXpressions . . ... ... e e e e 251
Clone Operation Attribute . . . .. ... .. e 252
Delete Destination Object . . .. ... ...t e 253
Delete Source Object . ... ... o 254
Find Matching Object . .. ... .. . e 255
For Each . . .. 258
Generate Event. . . ... . 259
A 262
Implement Entitlement . .. ... .. e 264
Move Destination Object. . ... ... .. 265
Move Source ObjJeCt . . . ... 267
Reformat Operation Attribute .. ... ... . . 268
Remove Association . . ... ... e 270
Remove Destination Attribute Value. . ... ... ... . 271
Remove Role . ... . e 272
Remove Source Attribute Value . . ... ... .. . 274
Rename Destination Object . . ... ... . e 275
Rename Operation Attribute . . . .. .. ... 276
Rename Source Object. . . ... .. 277
Send Email . . ... 278
Send Email from Template . . . . ... .. 280
Set Default Attribute Value . . . ... ... 282
Set Destination Attribute Value. . .. . ... .. 284
Set Destination Password. . ... .. ... e 286
SetLocal Variable. . . .. ... 287
Set Operation Association . . ... ... ... e 289
SetOperation Class Name . . ... ... . e e e e e e 290
Set Operation Destination DN. . . ... ... . e e 291
Set Operation Property . . .. ... . e 292
Set Operation Source DN . . . ... e 293

10 Policies in Designer 3.0



Set Operation Template DN . . .. ...
Set Source Attribute Value . . ... ...
Set Source Password . . ... ...
Set SSO Credential. . .. ...
Set SSO Passphrase . . ... ... e
Set XML Attribute . . ...

Strip Operation Attribute . . . ... ... e
Strip XPath EXPression . . . ..o e

Added Entitlement. . .. ...
ASSOCIAtioN . . . . e
AttribUte. . . o
Character . ... e
Class Name . . ... o
Destination Attribute . . . ... ... e
Destination DN . ... ... e e
Destination Name . . ... ... e
DOCUMENt . . . e e
Entitlement . . ... . e
Generate Password . ... ...
Global Configuration Value. . . . ... ... .
Local Variable . . . ... ..
Named Password . ... ... . e
OpEratioN . . . .o
Operation Attribute . . .. ... ..
Operation Property . . ... .o e
PassWOrd . .. e
QUETY
Removed Attribute . ... ... .
Removed Entitlement . . ... ...
RESOIVE . . .

Unigque Name . ...
Unmatched Source DN . . . ... e
XPath .

15 Verb Tokens

BaseB4 DeCOde . . ... ...
BaseB4 ENCOAE. . . . ... ..

31

312
314
315
316
317
318
319
321
323
324
325
326
327
328
330
332
333
335
336
337
339
340
341
342
343
344
345
346
349
350

351

352
353

Contents 11



Escape Destination DN . . . ... .. 356
Escape Source DN . .. ... 357
JOIN L e 358
LOW B CaSE. . . ottt 359
= T o 360
Parse DN . . e 362
Replace All . ... e e e 364
Replace First. . . ... e 365
St o 367
SUDSHING. . . o e 368
UPPEICaSE. . . ottt ettt e e 370
XML Parse . .. 371
XML Serialize . . . ... 372
16 Pre-ldentity Manager 3.5 Builders 373
16.1  Action Builder. . . ... . e 373
16.1.1  Creatingan Action . . . ... .. 373

16.1.2 Additional Options for the Action Builder. . . ........ ... ... ... ... ... ...... 373

16.2 Actions Builder. . ... .. e 374
16.3 Argument BUilder . . .. ... 375
16.3.1 Launching the ArgumentBuilder . . ......... .. ... ... . . . 376

16.3.2 ArgumentBuilder Example ... ... ... .. 377

16.4 Action Argument Component Builder. . . ... ... ... . . 379
16.5 Condition BUIldEr . . . . ... e 380
16.5.1 Creatinga Condition ... ... .. .. .. . . . 380

16.5.2 Additional Options for the Condition Builder . ............................. 380

16.6 Condition Argument Component Builder . . ....... ... ... . ... . . . 381
16.7 Match Attribute Builder. . . ... ... . 381
16.8 Named String Builder. . .. ... .. . 383
16.9 Pattern String Builder. . .. ... .. 384
16.10 Argument Value List Builder. . . .. ... ... 386
16.11 Namespace Editor . . ... ... 386
16.11.1 Accessing Java Classes by Using Namespaces. . ......................... 387

17 Pre-ldentity Manager 3.5 Conditions 389
I ASSOCIAtioN. . . . . 390
A DU . . . 391
IfClass Name . . .. .. 393
If Destination Attribute. . . .. .. .. 395
If Destination DN . . . . ... . e 397
I ENttement. . ... e 398
If Global Configuration Value . . ........ ... 400
IfLocal Variable . .. ... ... e 402
If Named Password. . . . ... ... e 404
If Operation Attribute. . . . ... . . e 405
If Operation Property. . . ... ... e 407
I Operation . . ... 409
I PaSSWOId . . .o 411
If Source Attribute . . . .. .. 412
I Source DN ... 414

12 Policies in Designer 3.0



If XPath EXPression . .. ... e e 415

18 Pre-ldentity Manager 3.5 Actions 417
Add ASSOCIatioNn . .. ... . 419
Add Destination Attribute Value . . ... ... . 420
Add Destination Object . . . .. .. . e 421
Add Source Attribute Value. . . ... ... 422
Add Source Object . . ... . 423
Append XML Element. . ... .. e 424
ApPeNnd XML TexXt. . .. e 425
BreakK. . . . 426
Clear Destination Attribute Value . .. ... ... .. . . 427
Clear Operation Property . . ... ... e e e 428
Clear Source Attribute Value . .. ... ... . 429
Clear SSO Credential . . . ... ... e 430
Clone By XPath EXpression . ... ... .o 431
Clone Operation Attribute . . . ... ... 432
Delete Destination Object. . .. ... .. 433
Delete Source Object . ... ... 434
Find Matching Object . .. ... . 435
FOr EaCh . . . 436
Generate EVent. . .. ... 437
Implement Entitlement . ... ... e 439
Move Destination Object. . ... .. ... . 440
Move Source ObjJeCt . . .. .. . e 441
Reformat Operation Attribute Value . .. ... ... . 442
Remove Association . . ... ... . 443
Remove Destination Attribute Value . . . .. ... ... .. 444
Remove Source Attribute Value . . .. ... .. .. e 445
Rename Destination Object . . ... .. . 446
Rename Operation Attribute . . . .. ... 447
Rename Source Object. . . ... .. 448
Send Email . ... 449
Send Email from Template . . .. ... .. e 450
Set Default Attribute Value . . ... ... 451
Set Destination Attribute Value . . ... ... ... e 452
Set Destination Password. . ... ... .. . e 453
SetLocal Variable. . ... ... e 454
Set Operation ASSOCIation . . ... ... .. e 455
Set Operation Class Name . . . .. ... 456
Set Operation Destination DN. . . ... ... 457
Set Operation Property . . . . ... 458
Set Operation Source DN . . . ... 459
Set Operation Template DN . . . . ... 460
Set Source Attribute Value . . ... ... 461
Set Source Password . . ... ... 462
Set SSO Credential. . .. ... . 463
Set SSO Passphrase . . ... ... e 464
Set XML Attribute . . ... . 465
StatUS . .. 466
Strip Operation Attribute . . . .. ... 467

Contents 13



Trace MeSSage . . . . ..ot 469
VB0, . o 470
Veto If Operation Attribute Not Available .. ...... ... ... .. . . . . . . 471
19 Pre-ldentity Manager 3.5 Noun Tokens 473
Added Entitlement. . .. ... 474
ASSOCIAtioN . . . . e 475
AU, . L 476
Class Name . . ... o 477
Destination Attribute . . . ... ... 478
Destination DN . .. .. ... e 479
Destination Name . . ... ... e 480
Entitlement . . ... e e e 481
Global Configuration Value. . . . ... ... . 482
Local Variable . . .. ... .. e 483
Named Password . . ... ... . 484
OpEratioN . . . .o 485
Operation Attribute . . .. ... 486
Operation Property . ... ... o e 487
PasSsWOrd . .. e e 488
Removed Attribute . ... ... . e 489
Removed Entitlements . . .. ... e 490
Source Attribute ... .. 491
Source DN ..o 492
SoUrCE NaME . ... 493
TXt. o o 494
Unigque Name . ... 495
Unmatched Source DN . . .. .. 497
XPath . 498
20 Pre-ldentity Manager 3.5 Verb Tokens 499
Escape Destination DN . . . ... ... 500
Escape Source DN . .. ... 501
LOWEICaASE. . . . .t 502
Parse DN ... 503
Replace All . ... e e 505
Replace First. . . ... e e 506
SUDSHING. . . o e 507
U CaSE. . . .ttt e e e 508

14 Policies in Designer 3.0



About This Guide

Novell® Identity Manager 3.6 is a data sharing and synchronization service that enables
applications, directories, and databases to share information. It links scattered information and
enables you to establish policies that govern automatic updates to designated systems when identity
changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user
self-service, authentication, authorization, automated workflows, and Web services. It allows you to
integrate, manage, and control your distributed identity information so you can securely deliver the
right resources to the right people.

This guide provides detailed information on using Designer 3.0 for Identity Manager 3.6.

¢ Chapter 1, “Overview,” on page 17

¢ Chapter 3, “Managing Policies with the Policy Builder,” on page 21
¢ Chapter 4, “Using Additional Builders and Editors,” on page 45

¢ Chapter 5, “Using the XPath Builder,” on page 71

¢ Chapter 6, “Defining Schema Map Policies,” on page 77

¢ Chapter 7, “Controlling the Flow of Objects with the Filter,” on page 91
¢ Chapter 8, “Using Predefined Rules,” on page 107

¢ Chapter 9, “Testing Policies with the Policy Simulator,” on page 143
¢ Chapter 10, “Storing Information in Resource Objects,” on page 169
¢ Chapter 11, “Using ECMAScript in Policies,” on page 175

¢ Chapter 12, “Conditions,” on page 189

¢ Chapter 13, “Actions,” on page 231

¢ Chapter 14, “Noun Tokens,” on page 311

¢ Chapter 15, “Verb Tokens,” on page 351

There are additional reference chapters for the pre-Identity Manager Policy Builder:

¢ Chapter 2, “Using the Pre-Identity Manager 3.5 Policy Builder,” on page 19
¢ Chapter 16, “Pre-Identity Manager 3.5 Builders,” on page 373

¢ Chapter 17, “Pre-Identity Manager 3.5 Conditions,” on page 389

¢ Chapter 18, “Pre-Identity Manager 3.5 Actions,” on page 417

¢ Chapter 19, “Pre-Identity Manager 3.5 Noun Tokens,” on page 473

¢ Chapter 20, “Pre-Identity Manager 3.5 Verb Tokens,” on page 499

Audience

This guide is intended for Identity Manager administrators.

About This Guide

15



Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of Policies in Designer, visit the Identity Manager Documentation Web
site (http://www.novell.com/documentation/idm35).

Additional Documentation

For documentation on using the Identity Manager drivers, see the Identity Manager Drivers
Documentation Web site (http://www.novell.com/documentation/idm35drivers/index.html).

For documentation on using Designer, see the Designer 3.0 for Identity Manager 3.6 Documentation
Web site (http://www.novell.com/documentation/designer21/).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™ etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.

16 Policies in Designer 3.0


http://www.novell.com/documentation/idm35
http://www.novell.com/documentation/idm35
http://www.novell.com/documentation/idm35drivers/index.html
http://www.novell.com/documentation/idm35drivers/index.html
http://www.novell.com/documentation/designer21/
http://www.novell.com/documentation/designer21/

Overview

Policies manage the data that is synchronizing between the Identity Vault and the remote data store.
The policies are stored in the policy sets (see “Understanding Types of Policies” in Understanding
Policies for Identity Manager 3.6.) Designer provides a wide set of tools for defining and debugging
policies to control how information flows from one system to another, and under what conditions.
The following sections explain how to use the tools that are provided to help manage the policies:

¢ Chapter 3, “Managing Policies with the Policy Builder,” on page 21

¢ Chapter 4, “Using Additional Builders and Editors,” on page 45

¢ Chapter 5, “Using the XPath Builder,” on page 71

¢ Chapter 6, “Defining Schema Map Policies,” on page 77

¢ Chapter 7, “Controlling the Flow of Objects with the Filter,” on page 91

¢ Chapter 8, “Using Predefined Rules,” on page 107

¢ Chapter 9, “Testing Policies with the Policy Simulator,” on page 143

¢ Chapter 10, “Storing Information in Resource Objects,” on page 169

¢ Chapter 11, “Using ECMAScript in Policies,” on page 175
This section also contains a detailed reference section to all of the elements in DirXML® Script. For
more information on DirXML Script, see “DirXML Script DTD” in the Identity Manager 3.6 DTD
Reference.

¢ Chapter 12, “Conditions,” on page 189

¢ Chapter 13, “Actions,” on page 231

¢ Chapter 14, “Noun Tokens,” on page 311

¢ Chapter 15, “Verb Tokens,” on page 351

There are also reference sections for the pre-Identity Manager Policy Builder:

¢ Chapter 2, “Using the Pre-Identity Manager 3.5 Policy Builder,” on page 19
¢ Chapter 16, “Pre-Identity Manager 3.5 Builders,” on page 373

¢ Chapter 17, “Pre-Identity Manager 3.5 Conditions,” on page 389

¢ Chapter 18, “Pre-Identity Manager 3.5 Actions,” on page 417

¢ Chapter 19, “Pre-Identity Manager 3.5 Noun Tokens,” on page 473

¢ Chapter 20, “Pre-Identity Manager 3.5 Verb Tokens,” on page 499

1.1 Policies

As part of understanding how policies work, it is important to understand the components of
policies.

¢ Policies are made up of rules.

¢ A rule is a set of conditions (see Chapter 12, “Conditions,” on page 189) that must be met
before a defined action (see Chapter 13, “Actions,” on page 231) occurs.

Overview

17



¢ Actions can have dynamic arguments that derive from tokens that are expanded at runtime.
+ Tokens are broken up into two classifications: nouns and verbs.

+ Noun tokens (see Chapter 14, “Noun Tokens,” on page 311) expand to values that are
derived from the current operation, the source or destination data stores, or some external
source.

* Verb tokens (see Chapter 15, “Verb Tokens,” on page 351) modify the concatenated
results of other tokens that are subordinate to them.

+ Regular expressions (see “Regular Expressions”) and XPath 1.0 expressions (see “XPath 1.0
Expressions”) are commonly used in the rules to create the desired results for the policies.

+ A policy operates on an XDS document and its primary purpose is to examine and modify that
document.

¢ An operation is any element in the XDS document that is a child of the input element and the
output element. The elements are part of the Novell® nds . dtd; for more information, see
“NDS DTD” in the Identity Manager 3.6 DTD Reference.

¢ An operation usually represents an event, a command, or a status.

+ The policy is applied separately to each operation. As the policy is applied to each operation in
turn, that operation becomes the current operation. Each rule is applied sequentially to the
current operation. All of the rules are applied to the current operation unless an action is
executed by a prior rule that causes subsequent rules to no longer be applied.

¢ A policy can also get additional context from outside of the document and cause side effects
that are not reflected in the result document.

18 Policies in Designer 3.0



Using the Pre-ldentity Manager 3.5
Policy Builder

Designer contains two Policy Builders: the pre-Identity Manager 3.5 Policy Builder and the Identity
Manager 3.5 and Newer Policy Builder. The Policy Builders are similar except for the following:

+ You can enable and disable trace only at the driver level in the pre-Identity Manager 3.5 Policy
Builder.
+ The DirXML® Script elements are different between the two builders.
These differences require two Policy Builders. For information on how to use both Policy Builders,
see Chapter 3, “Managing Policies with the Policy Builder,” on page 21, which documents the

Identity Manager 3.5 and Newer Policy Builder. The only difference is an additional icon that
enables Bl and disables 4 tracing on rules, actions, conditions, and tokens.

For a list of the DirXML Script elements for the pre-Identity Manager 3.5 Policy Builder:

¢ Chapter 17, “Pre-Identity Manager 3.5 Conditions,” on page 389

*

Chapter 18, “Pre-Identity Manager 3.5 Actions,” on page 417
¢ Chapter 19, “Pre-Identity Manager 3.5 Noun Tokens,” on page 473
¢ Chapter 20, “Pre-Identity Manager 3.5 Verb Tokens,” on page 499

For a list of the DirXML Script elements for the Identity Manager 3.5 and Newer Policy Builder:

¢ Chapter 12, “Conditions,” on page 189

¢ Chapter 13, “Actions,” on page 231

¢ Chapter 14, “Noun Tokens,” on page 311
¢ Chapter 15, “Verb Tokens,” on page 351

Using the Pre-Identity Manager 3.5 Policy Builder

19



20 Policies in Designer 3.0



Managing Policies with the Policy
Builder

The Policy Builder is a complete graphical interface for creating and managing the policies that
define the exchange of data between connected systems.

¢ Section 3.1, “Accessing the Policy Builder,” on page 21

¢ Section 3.2, “Using the Policy Builder,” on page 24

¢ Section 3.3, “Creating a Policy,” on page 24

¢ Section 3.4, “Creating a Rule,” on page 28

¢ Section 3.5, “Creating an Argument,” on page 33

¢ Section 3.6, “Variable Selector,” on page 35

¢ Section 3.7, “Editing a Policy,” on page 39

¢ Section 3.8, “Viewing the Policy in XML,” on page 43

3.1 Accessing the Policy Builder

There are two different Policy Builders included in Designer 3.0: one that works with the new policy
features for Identity Manager 3.5 and newer, and an older one that does not support these features.
The Policy Builder version is determined by the version of Identity Manager. To set the version of
Identity Manager:

1 Open a project in Designer.

2 Click the Outline tab > select the Show Model Outline icon.

3 Right-click the server object, then click Properties.

4 Select the appropriate Identity Manager Version.

When the Identity Manager version is set to 3.5 or newer, the new Policy Builder is available. If the
version is set to anything other than 3.5, the old Policy Builder is available.

The Policy Builder can be accessed from the Model Outline view, from the Policy Flow view, or
from a policy set.

¢ Section 3.1.1, “Model Outline View,” on page 21
¢ Section 3.1.2, “Policy Flow View,” on page 22
¢ Section 3.1.3, “Policy Set,” on page 23

3.1.1 Model Outline View

1 Open a project in Designer.
2 Click the Outline view > select the Show Model Outline icon.
3 Double-click a policy listed in the Model Outline view or right-click and select Ediz.

Managing Policies with the Policy Builder

21



22

Project

= 8
B B
= MPrajeth

=-[8] IDMDESIGHTREE

BE IDMDrivers

) Delimited Text
¥ g LDAP

El@ Active Direckory

InputTransForm
CukputTransForm
Password{Pub}-Sub Emai
Password{Sub)-Pub Emai
~ME Schemalapping
'ﬁ Active Directory Filker
=% Publisher

: 2 Command Transform

Creation

Event TransForm
Matching

3.1.2 Policy Flow View

1 Open a project in Designer.

2 Select the Outline tab > select the Show Policy Flow icon.
3 Double-click a policy object in the Policy Flow view.

Generic Designer

)

B |
Chatpat
[0
Sehaina Magplng -
Puhbivhar |
]| B

Policies in Designer 3.0

53




You can also right-click in the Policy Flow view, select Edit Policy, then select the policy you
want to edit.

3.1.3 Policy Set

1 Open a project in Designer.
2 Click the Outline view > select the Show Model Outline icon.
3 Select the policy in the policy set, then click Edit the policy .
You can also right-click the policy in the policy set, then click Edit.

(B Policy Set &3 = 0O

Active Directory Driver Policy Sets
K =
= [E- Input Transformation
InputTransform
Password{Pub)-5ub Email Motifications
+ [E, Oukput Transformation
+ [E, Schema Mapping

(B Filker

To see all of the information in the Policy Builder window without scrolling, double-click the policy
tab so the Policy Builder fills the entire window. To minimize the window, double-click the policy
tab.

Figure 3-1 Policy Builder Full Screen

13/ Design_doc - Developer 22 | Matching 3 = O

Policy Build r.T-—lm‘—'-—L—-'-'--——-—| LRE T JE= - v
il Design_doc/Design_doc. proj =R = % & 5 @

“l Matching. Publisher, Active Directary . entitlment DOCIDMTEST

¢ Policy Description

Rules
+ % remember relative position in hierarchy
# " % veto out-of-scope events
[ 5 match users based on NT logon name
# " % match users based on full name
[ 5 maktch everything else

“H Policy Builder | XML Source | XML Tree

Managing Policies with the Policy Builder

23



For information on using the Policy Builder, see Section 3.2, “Using the Policy Builder,” on
page 24.

3.2 Using the Policy Builder

The Policy Builder enables you to add, view, and delete the rules that make up a policy. You can also
use it to import and save policies and rules, and manage XML namespaces. The Policy Builder
contains the “Action Builder” on page 45 and the “Condition Builder” on page 52.

The following tips describe how to perform some common Policy Builder tasks:

*

*

Click ¥ to disable a policy, rule, condition, or action. Click @ to re-enable it.

Click # to disable tracing on a rule, condition, or action. Click Z jicon to enable tracing on a
rule, condition, or action.

Click the 7 in the tool bar to set DirXML Script tracing on the policy.
Click # to edit the name of a rule or edit the description of a rule.
Click * to delete a rule or a policy.

Click “ to see a list of values for a field.

Click 2= to add a new rule. If you click the down-arrow on the right, you can add a rule, add an
action, add a condition, use predefined rules, include a policy, or create a new Condition Group.

Click & to import a policy or a rule. Click £ to export a policy or a rule.

Click 8 to deploy a policy to the Identity Vault.

Click % to compare the policy in the Policy Builder to an existing policy in the Identity Vault.
Click “© to launch the Policy Simulator and to test the policy.

Click * to add multiple XML namespaces to the rule or policy.

Click B8 to launch the XPath Builder. It allows you to create XPath expressions.

Click * to expand all of the rules or click =l to collapse all of the rules.

Click 1 icon to move a rule up. Click ** icon to move the rule down.

To save your work from the main menu, click File > Save or press Ctrl+S.

To add a comment to a policy or rule, fill in the Policy Description field. Comments are stored
directly in the policy or rule, and can be as long as necessary.

3.3 Creating a Policy

A policy sends data to the connected systems. A policy is created through the policy set.

*

*

*

Section 3.3.1, “Accessing the Policy Set,” on page 24
Section 3.3.2, “Using the Policy Set,” on page 25
Section 3.3.3, “Using the Add Policy Wizard,” on page 26

3.3.1 Accessing the Policy Set

1
2

Select a driver object from the Outline view in an open project.
Select the Policy Set tab.

24 Policies in Designer 3.0



‘E Policy S

Active Directory Driver Policy Sets
& B =

farmation

Properties | DataFlo

=N Irput Trans
Er| InputTransform
H Password{Pub)-3ub Email Motifications
+ IE Qukput Transformation
+ IE Schema Mapping

+ (2 Filer

3.3.2 Using the Policy Set

The policy set contains a toolbar and a list of policies.

The policy list displays all the policies contained in the selected policy set. During a transformation,
the policies within the list are executed from top to bottom. The toolbar contains buttons and a drop-
down menu that you can use to manage policies displayed in the list, including, editing, adding,
deleting, renaming, and changing the processing order of the policies.

Policy Set Toolbar

The policy set displays a copy of the policy. The buttons on the toolbar are enabled or disabled
depending upon the item you have selected. The different icons are described below.

Table 3-1 Policy Set Toolbar

Operation Description

Edit a policy Fd Launches the Policy Builder.
Create or add a new policy to the Policy Set Launches the Add Policy Wizard.
Remove and delete the selected policy X Deletes the policy from the project.

Remove the selected policy from the Policy Set, do Removes the policy from the selected policy set

not delete = object but doesn’t delete the policy.
Move the policy up the policy chain i@ Moves the policy up in the processing order.
Move the policy down the policy chain o Moves the policy down in the processing order.

Keyboard Support

You can move through the policy set with keystrokes as well as using the mouse. The supported
keystrokes are listed below.

Table 3-2 Keyboard Support

Keystroke Description
Up-arrow Moves the selected policy up in the processing
order.

Managing Policies with the Policy Builder

25



Keystroke Description

Down-arrow Moves the selected policy down in the processing
order.

Delete Deletes the policy from the project.

Minus Removes the policy from the selected policy set,

but does not delete it.

Plus Launches the Add Policy Wizard.
Ctrl+Z Undoes the last operation.
Ctrl+Y Redoes the last operation.

3.3.3 Using the Add Policy Wizard

The Add Policy Wizard launches when you click the Create or add a new policy to the Policy Set
icon in the toolbar. The Add Policy Wizard enables you to do the following:

¢ “Creating a Policy” on page 26

¢ “Copying a Policy” on page 27

¢ “Linking to a Policy” on page 28

To launch the Add Policy Wizard:

1 Select a driver in the Outline view.

2 Select a policy set item in the policy set, then click Create or add a new policy to the Policy Set
ar,

Creating a Policy

1 Inthe Add Policy Wizard, select Create a new policy, then click Next.

You can also add a policy by right-clicking a policy set in the Policy Flow view, selecting Add
Policy, then selecting how to create the policy:

DirXML Script
XSLT
Link To Existing

*

*

*

¢ Copy Existing

*

Schema Map (Only displayed, if the Schema Map policy set is selected.)
2 In the Create Policy dialog box, specify a policy name, then click Next.

Select Open Editor after creating object to automatically launch the Policy Builder after
creating the new policy.

26 Policies in Designer 3.0



Create Policy

i

Specify the name of the new policy and the container where it will
be created.

Palicy Mame:

Policy Conkainer:

Active Directory. IDMDrivers, IDMDESIGNTREE

[] open Editor after creating object.

Accept the default container, or browse to and select the Driver, Publisher, or Subscriber object
where you want the policy to be created.

If a policy is not reused by multiple drivers, you typically create that policy under the driver or
channel that is using it.

This decision depends on how you want to organize the policies. By default, policies are placed
under the container object that is selected in the Outline tab when the Add Policy Wizard is
launched.

For example, if you move to a Publisher object in the Outline tab and then add a policy to a
policy set, the policy defaults to the Publisher container.

You can change this setting if you want to create policies in a different container. For example,
you can set up a policy library, put all of the common policies under this driver, and then simply
reference the policies from the other drivers. That way, the policy is common. If you need to
change a policy, you need to do it only once.

3 In the Select Type dialog box, select the type of policy you want to implement, then click
Finish.

The policy type defaults to DirXML Script. You can select XSLT, if you don’t want to use
DirXML® Script.

If you create a Schema Map policy set, an additional option is available for Schema Map.

The new policy appears in the expanded policy set.

Copying a Policy
1 In the Add Policy Wizard, select Copy a policy, then click Next.
2 In the Create Policy dialog box, provide the necessary policy information, then click OK.

+ Specify a name for the new policy

+ Accept the default container, or browse to and select the Driver, Publisher, or Subscriber
object where you want the policy to be created.

+ Browse to and select the policy you want to copy, then click Finish.

Managing Policies with the Policy Builder



28

Copy Policy

Specify the name of the new palicy, the container where it will be created and
the policy to be copied.

Palicy Manne:
IMatching
Palicy Container:

Active Dirsctory. IDMDrivers. IDMDESIGHTREE

Policy to be Copied:

Matching. Publisher . Active Directory . IDMDrivers, [DMDESIGMTR ‘ E—

[] open Editor after creating object.,

Linking to a Policy
1 In the Add Policy Wizard, select Link a policy, then click Next.

2 In the Link Policy dialog box, click Browse to launch the model browser.

Link Policy
Specify the existing policy to link inko the Policy Set.

Palicy to Link:

Browse..,

3 Browse to and select the Policy object you want to link into the policy set, then click OK.

Linking a policy into a policy set doesn’t create a new Policy object. Instead, it adds a reference
to an existing policy. This reference can be to any existing policy within the current Identity
Vault. It doesn’t need to be contained within the current Driver object, but the policy type must
be valid for the policy set that it is being linked to. For example, you can’t link a Schema Map
policy into an Input policy set.

Linking a policy into a policy set is not permitted when viewing all policies.
4 Click Finish to link to the selected policy.

3.4 Creating a Rule

A rule is a set of conditions that must be met before a defined action occurs. Rules are created from
condition groups, conditions, and actions.

Rules can be created in four different ways:

¢ Section 3.4.1, “Creating a New Rule,” on page 29

¢ Section 3.4.2, “Using Predefined Rules,” on page 31

¢ Section 3.4.3, “Including an Existing Rule,” on page 32

¢ Section 3.4.4, “Importing a Policy From an XML File,” on page 33

Policies in Designer 3.0



3.4.1 Creating a New Rule

When you create a rule, you create condition groups, conditions, and actions. Each rule is composed
of conditions, actions, and arguments. For more information, click the Help icon @ when creating
each item. The help files contain a definition and an example of the item being used.

¢ “Creating a Rule” on page 29

¢ “Creating a Conditional Group” on page 30

¢ “Creating a Condition” on page 30

¢ “Creating an Action” on page 31

Creating a Rule

Policy Builder includes a wizard to step you through the process of creating a rule.

NOTE: On any of the wizard dialog boxes, you can click Finish to exit the wizard and create a rule
with the details you have specified to that point.

ey
-

1 In Policy Builder toolbar, click Rule ==..
2 In the Name and Describe Rule dialog box, specify the name of the rule, then click Next.

3 In the Select the Condition Structure dialog box, select the rule’s condition structure, then click
Next.

You can choose OR Conditions, AND Groups or AND Conditions, OR Groups.

4 1In the Define the Condition dialog box, select the condition you want, specify the appropriate
information, then click Next.

Define the Condition

Select the values to complete the syntax of the condition. Yalues with an * are required to be valid,
The First condition is automatically inserted into a new condition group,

Condition 1 of Group 1

Condition | attribute v
Marme * | Givenhame Q;I g“\' .,3‘
Qperatar * | not available w

The icons next to the Name field let you browse the Identity Vault schema, the connected
application schema, or use the Variable Selector to select the appropriate information.

5 In the Continue Defining Conditions dialog box, select the appropriate option, then click Next.

If desired, you can define additional conditions or condition groups before proceeding. For this
example, there is only one condition.

Managing Policies with the Policy Builder

29



30

Continue Defining Conditions? F_

Select whether to continue defining your condition oF proceed ko defining actions For ﬁ
waur Fule,

Select one:
(%) Continue (Define actions For the rule)
") Define another condition in the same condition group

(") Define a new condition in a new condition group

6 In the Define the Action dialog box, select the action that you want, then click Next.
7 In the Continue Defining Actions dialog box, select the appropriate option, then click Next.

If desired, you can define additional actions before proceeding. For this example, there is only
one action.

8 In the Summary page, click Finish to create the rule.

You can expand or collapse the view of the rule by clicking the plus or minus sign.

Summary

The Following is a summary of the new rule ko be created,

Rule Summary

=l Require Users to have Given Mame
= Conditions
=] Group 1
if attribute 'Given Name' not available
=~ Actions
webol)

Creating a Conditional Group

1 In the Policy Builder, right-click the Conditions tab then click Append Condition Group.

You can also right-click the name of the Condition Group, then click New > Insert Condition
Group Before or Insert Condition Group After.

Change the condition for the Condition Groups by clicking the And/Or icon.

% Condition Group 1

v & i attribute 'Given Mame' not available

v & if attribute 'Surname’ not available

" & Condition Group 2

Creating a Condition

1 Right-click the condition, then click New > Insert Condition Before or Insert Condition After.

Policies in Designer 3.0



Conditions

+* & Condition Group 1

SN i ottribuite 'Given Mame' Dot available

m & Edit... i~ Insert Condition After ...

You can change the condition by clicking the And/Or icon.

Conditions

& Condition Group 1

& i attribute 'Given Mame' not available

v & attribute 'Surname’ not available

% rCondition Group 2

Creating an Action

1 Right-click the action, then click New > Insert Action Before or Insert Action Afier.

Conditions

% Condition Group 1

& i attribute 'Given Mame' not available

E_u/ Insert Action Befare. .,

& Insert Action After, ..

3.4.2 Using Predefined Rules

Designer includes a list of predefined rules. You can import and use these rules as well as create
your own rules.

1 Right-click in the Policy Builder and select New > Predefined Rules > Insert Predefined Rule
Before or Insert Predefined Rule After.

See Chapter 8, “Using Predefined Rules,” on page 107 for more information.

Rules

By &
H & sende

(== Import Policy from File. .. Predefined Rule » "Ej Insert Predefined Rule Before. ..
7 Edi Include I P& 1rsert Predefined Rule After...
7 Edit...

Append Condition Group...

Managing Policies with the Policy Builder

31



32

3.4.3 Including an Existing Rule

Designer allows you to include the rules from another policy.

1 Right-click in the Policy Builder and click New > Include > Insert Include Before or Insert

Include After.
Rules
v 5 : —
FEw Rule 4
v 7 Sende (= Import: Policy from File.., Predefined Rule ¢ Manager data store pas:

Edit... " ,
& Ed Append Condition Group. .. &= Insert Include After...

2 Click the Browse icon.

Policy to Include: | | |

[+] 5et DM relative to policy [ (04 ] [ Cancel ]

3 Browse to the policy you want to include, then click OK.

Select an object:

= IDMDESIGMTREE
= E IDMDrivers

o' Delimited Text

&' LDAP

=-dg Active Directary
H InputTransfarm
Paszword({Pub)-5ub Email Motifications
CukputTransForm
Paszword(5ub)-Pub Email Motifications
=& Publisher

ZH Event Transform

4 The field is now populated with the path to the policy. Click OK.

Policy to Include: | . JPublisher\Matching |

[#]5et DM relative ko policy: [ K I [ Cancel ]

(===l

The rule is a link to the original rule. You cannot edit the rule in this location. Access the
original rule to make changes.

Policies in Designer 3.0



Rules

v 5 Require Users to have Given Mame

- Include .. Publisher,Matching

3.4.4 Importing a Policy From an XML File

Rules and policies can be saved as XML files. If you have a file that contains a rule or a policy you
want to use, the Policy Builder allows you to import the file.

1 In the Policy Builder, right-click and select Import Policy from file.

Rules

By Z

v 7 se B= Import Palicy From Ffile..

2 Select one of the two options: Append the rules from the imported policy or Replace the rules
from the imported policy.

(*)append the rules From the imported policy:

(") Replace the rules from the imported palicy

Specify the DirgkL Script File to import,

[ K H Cancel ]

3 Click the browse icon and select the file that contains the policy, then click Open.
4 Click OK.

3.5 Creating an Argument

The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within the Policy Builder. To access the Argument Builder, see
“Argument Builder” on page 47.

Arguments are dynamically used by actions and are derived from tokens that are expanded at run
time.

Tokens are broken up into two classifications: nouns and verbs. Noun tokens expand to values that
are derived from the current operation, the source or destination data stores, or some external source.
Verb tokens modify the results of other tokens that are subordinate to them.

To define an expression, select one or more noun tokens (values, objects, variables, etc.), and
combine them with verb tokens (substring, escape, uppercase, and lowercase) to construct
arguments. Multiple tokens are combined to construct complex arguments.

Managing Policies with the Policy Builder

33



Figure 3-2 Argument Builder

Create and edit arguments

Add or remove your components to the expression area to constrock vour argument. Specify component values in the
Editor,

- EXpression @ 7 & Nouns = -

Added Entitlement

Associakion

Attribute

Character b

Yerbs & -

D &
Basefd Encode
Converk Time
Escape Destination DM
Escape Source DN
Jain
Lowercase
Map
Parse DM

2 Editor *Requred @ pegcription @

£

iconskank text,

For example, if you want the argument set to an attribute value, you select the attribute noun, then
select the attribute name:

1 Double-click Attribute in the list of noun tokens to add it to the Expression pane.

& Mouns L

Text -~
Added Enkitlement
Association

Character

Class Mame

Destination Attribuke

Cestination DN

Cestination MName

Cocurnenk

Enkitlement b

2 Browse to and select the attribute name in the Editor field.

= Editor * Required

Mame: * [ given fame (==

You can browse the Identity Vault schema or the connected application schema.

If you only want a portion of this attribute, you can combine the attribute token with the
substring token. The expression displays a substring length of 1 for the Given Name attribute
combined with the entire Surname attribute.

34 Policies in Designer 3.0



= A - Substringilength="1", Attribute("Given Mame"))

& 5 Attribute"Given Name")
& & Atbributed"Surname")

After you add a noun or verb, you can provide values in the editor, then immediately add another
noun or verb. You do not need to refresh the Expression pane to apply your changes; they appear
when the next operation is performed.

See “Noun Tokens” on page 311 and “Verb Tokens” on page 351 for a detailed reference on the
noun and verb tokens. See “Argument Builder” on page 47 for more information on the Argument
Builder.

3.6 Variable Selector

The variable selector provides a list of variables that you can select and insert into conditions,
actions, and tokens.

@ variable Selector @

Variable Selector Eé’

Select alocal variable From the list,

LY Selectar ™ GCW Seleckor

current-node
current-op
current-value
Fromids

Policy Scope . Driver Scope | Error Variables

2] I (04 H Cancel ]

¢ Section 3.6.1, “Dynamic Variable Expansion,” on page 35

*

Section 3.6.2, “Accessing the Variable Selector From the Conditions Tab,” on page 36

*

Section 3.6.3, “Accessing the Variable Selector From the Actions Tab,” on page 37

*

Section 3.6.4, “Accessing the Variable Selector From the Argument Builder,” on page 38

*

Section 3.6.5, “XPath Expressions,” on page 39

3.6.1 Dynamic Variable Expansion
The variable selector allows for the use of dynamic variable expansion in conditions, actions, and

tokens. It is used when the writer of the DirXML script doesn’t know what value to enter during the
design phase, and wants the value to be populated dynamically when the code is run (for local

Managing Policies with the Policy Builder

35



variables) or when the driver starts (for global variables). Dynamic variables are not used when the
policy needs to refer directly to the variable itself. Instead, they are used when the policy needs to
refer to the value of the variable.

Many actions support dynamic variable expansion in their attributes or content. Where supported, an
embedded reference of the form $variable-name$ is replaced with the value of the local variable
with the given name. An embedded reference of the form ~variable-name~ is replaced with the
value of the global variable name. $variable-name$ and ~variable-name~ must be legal variable
names. For information on what constitutes a legal XML name, see W3C Extensible Markup
Language (XML) (http://www.w3.0org/TR/2006/REC-xml11-20060816/#sec-suggested-names).

If the given variable does not exist, the reference is replaced with the empty string. Where it is
desirable to use a single $ and not have it interpreted as a variable reference, use an additional $ as
an escape character (for example, You owe me $$100.00).

NOTE: If the global variable doesn’t exist on the driver or driver set, the driver does not start.

3.6.2 Accessing the Variable Selector From the Conditions Tab

1 In the Policy Builder, double-click the Conditions tab.

For instructions on accessing the Policy Builder, see Section 3.1, “Accessing the Policy
Builder,” on page 21.

2 Select one of the following conditions:
+ If Attribute (page 192)
¢ [f Destination Attribute (page 198)
+ If Entitlement (page 202)
+ [f Global Configuration Value (page 205)
¢ [f Local Variable (page 207)
¢ [f Named Password (page 211)
¢ [If Operation Attribute (page 215)
¢ [f Source Attribute (page 223)
3 Click the Launch variable browser icon &«
dynamic variable.

4 Select the variable, then click OK.

next to the field where you want to insert a

Or, for conditions that don’t bring up the Launch variable browser icon:

1 Select one of the following operators:
+ Equal
¢ Qreater than
¢ Less than
+ Not equal
+ Not greater than

+ Not less than

36 Policies in Designer 3.0


http://www.w3.org/TR/2006/REC-xml11-20060816/#sec-suggested-names
http://www.w3.org/TR/2006/REC-xml11-20060816/#sec-suggested-names

2 Click the Launch variable browser icon next to the field where you want to insert the dynamic
variable.

3 Select the variable, then click OK.

3.6.3 Accessing the Variable Selector From the Actions Tab

1 In the Policy Builder, double-click the Actions tab.

For instructions on accessing the Policy Builder, see Section 3.1, “Accessing the Policy
Builder,” on page 21.

2 In the Do field, select one of the following options:
¢ Add Destination Attribute Value (page 234)
¢ Add Destination Object (page 236)
+ Add Role (page 238)
+ Add Source Attribute Value (page 240)
+ Add Source Object (page 241)
¢ Append XML Element (page 242)
+ Append XML Text (page 244)
¢ Clear Destination Attribute Value (page 247)
¢ Clear Source Attribute Value (page 249)
¢ Clear SSO Credential (page 250)
¢ Clone By XPath Expressions (page 251)
¢ Clone Operation Attribute (page 252)
¢ Delete Destination Object (page 253)
¢ Delete Source Object (page 254)
+ Move Destination Object (page 265)
+ Move Source Object (page 267)
+ Reformat Operation Attribute (page 268)
+ Remove Destination Attribute Value (page 271)
+ Remove Role (page 272)
¢ Remove Source Attribute Value (page 274)
+ Rename Destination Object (page 275)
¢ Rename Operation Attribute (page 276)
¢ Rename Source Object (page 277)
¢ Send Email from Template (page 280)
¢ Set Default Attribute Value (page 282)
¢ Set Destination Attribute Value (page 284)
¢ Set Destination Password (page 286)
+ Set Local Variable (page 287)Set Source Attribute Value (page 295)
+ Set Source Password (page 297)

Managing Policies with the Policy Builder 37



+ Set SSO Credential (page 298)

+ Set SSO Passphrase (page 299)

¢ Set XML Attribute (page 300)

+ Start Workflow (page 301)

+ Strip Operation Attribute (page 304)

¢ Strip XPath Expression (page 305)

* Veto If Operation Attribute Not Available (page 309)
3 Click the Launch variable browser icon &
dynamic variable.

4 Select the variable, then click OK.

next to the field where you want to insert the

3.6.4 Accessing the Variable Selector From the Argument
Builder

1 In the Argument Builder, select one of the following noun tokens from the Nouns section:
+ Text (page 312)
¢ Added Entitlement (page 314)
+ Attribute (page 316)
+ Destination Attribute (page 319)
+ Entitlement (page 325)
+ Generate Password (page 326)
¢ Global Configuration Value (page 327)
¢ Local Variable (page 328)
¢ Named Password (page 330)
* Operation Attribute (page 333)
* Query (page 337)
+ Removed Attribute (page 339)
¢ Removed Entitlement (page 340)
+ Source Attribute (page 342)
+ Time (page 345)
¢ Unique Name (page 346)
+ XPath (page 350)
Or, select one of the following verb tokens from the Verbs section:
¢ Convert Time (page 354)
* Map (page 360)

2 Click the Launch variable browser icon
dynamic variable.

3 Select the variable, then click OK.

=
= next to the field where you want to insert the

38 Policies in Designer 3.0



3.6.5 XPath Expressions

Instead of using the DirXMLScript engine to perform the variable expansion, as is the case with
most variable expansion, XPath uses built in XPath functionality and the XSLT processor to do the
variable expansion.

For conditions, actions, and tokens that contain XPath expressions, a single $ sign at the beginning
of the policy denotes a dynamic variable, which is displayed in the Value field. This is also true for
the XPath token in the Argument Builder, and for all actions that contain XPath. This is because in
order to maintain valid XPath, only one $ sign can be used.

The following procedure gives an example of using the variable selector with XPath expressions:

1 In the Policy Builder, click the Actions tab.
2 In the Do field, select the clone by XPath expressions option.

A

3 After the Specify source XPath expression field, click the Launch variable browser icon
4 Seclect an item and click OK.
Only one $ sign is displayed before the policy.

3.7 Editing a Policy

The Policy Builder allows you to create and edit policies. You can drag and drop rules, conditions
and actions. For additional operations, access the Policy Builder toolbar. To display a context menu,
right-click an item.

Managing Policies with the Policy Builder

39



Figure 3-3 Policy Builder Context Menu and Toolbar

Policy Builder for IDM 3.5 and Newer =5 ~ ,E :’1

E InputTransfarm, Ackive Direckory Driver Set, FABIOL7TREE

b Policy Description

Rules

v & !'_"'__“""-"
v & 1= mmpart Policy From Fle. .
AT

o N> Lz @«
Rule L4
Predefined Rule L4
Include L4

append Condition Group, ..

v’ 5 I uniic iuinnnac
L Move Dawn
of” Cut Chrl+x
Copy Chrl+C
¥ Delete Dielete
—| Collapse Al
+| Expand All

& Launch Simulator., ..

2| Preferences. ..

=H Policy Builder | %ML Source | XML Tree

3.7.1 Actions and Menu Items in the Policy Builder

The table contains a list of the different actions and menu items in the Policy Builder.

Table 3-3 Policy Builder Actions and Menu Items

Operation

Description

Collapse All '=

E=)

Compare Deployed Policy =%

Copy
Copy and drop
Cutt

Delete ¥
Deploy Policy E ]
Disable @

Collapses all expanded rules.

Compares the policy in the Policy Builder to an
existing policy in the Identity Vault.

Copies the selected item to the Clipboard.
Select the item, press Cirl, then drag the item.

Cuts the selected item and copies it to the
Clipboard.

Deletes the selected item.
Deploys the policy into the Identity Vault.

Displays a rule, condition, or action as disabled.

40 Policies in Designer 3.0



Operation

Description

Disable Trace ¢
DirXML Script Tracing 7

Drag and drop
Edit &

Enable v
Enable Trace &°
Expand All '+

Import Policy from file =

Launch Policy Simulator “©

Move and drop

Move the selected item down **
Move the selected item up i

New > Append Condition Group

New > Include > Insert Include Before or Insert
Include After

New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After

New > Rule > Insert Rule Before or Insert Rule
After

Paste @
Preferences 5=

Redo =
Select
Undo

Disables trace on the rule.
Enables DirXML Script Tracing on the policy.

Enables you to select an item, then relocate it.
Select the item, then drag it to the new location.

Enables you to edit the selected item. To open the
Rule Builder, select a rule, then click Edit.

Displays a rule, condition, or action as enabled.
Enables tracing on the rule.

Expands all the rules so that you can view the
conditions and actions of each rule.

Imports a policy from the file system and appends it
to the policy, or replaces all the rules of the policy.

Launches the Policy Simulator.

Enables you to select and move an item. Select the
item, then drag it.

Moves the item down in the list of policies.
Moves the item up in the list of policies.

Creates a new condition group after a selected
item.

Creates a new Include before or after the selected
item.

Inserts a predefined rule before or after the
selected item.

Creates a new rule before or after the selected
item.

Pastes the contents of the Clipboard after the
selected item.

Enables you to change how the information is
displayed.

Redoes the previous action.
Click any item to select it.

Undoes the previous action.

3.7.2 Keyboard Support

You can move through the Policy Builder with keystrokes as well as using the mouse. The supported

keystrokes are listed below.

Managing Policies with the Policy Builder

4



Table 3-4 Keyboard Support in the Policy Builder

Keystroke Description

Ctrl+C Copies the selected item into the Clipboard.

Ctrl+X Cuts the selected item and adds it to the Clipboard.

Ctrl+Vv Pastes the contents of the Clipboard after the
selected item.

Delete Deletes the selected Item.

Left-arrow Collapses a rule node.

Right-arrow Expands a rule node.

Up-arrow Navigates up.

Down-arrow Navigates down.

Ctrl+Z Undo

Ctrl+Y Redo

3.7.3 Renaming a Policy

1 In the Outline view, select the policy you want to rename.
2 Right-click and select Properties.
3 Change the name of the policy in the Policy Name field.

1. General

Policy Mame: | Match
4 Click OK.

3.7.4 Saving Your Work

Do one of the following:

¢ From the main menu, click File > Save (or Save All).
+ Close the editor by clicking the X in the editor’s tab.
¢ Select Close from the main menu’s file menu.

* Press Ctrl+S.

3.7.5 Policy Description

The description fields provide a place to add notes about the functionality of the policy. You can add
a description for the policy and you can add a description for the rule.

1 In the Policy Builder, click Policy Description.

42 Policies in Designer 3.0



Ec TS Z @9

match. Publisher, Active Directory, Driver Set, Identity vaulk

Policy Builder for IDM 3.5 and Newer 3% ~  :

+ Policy Description

2 Provide a description of the policy.
3 Save the policy by pressing Ctrl+S.

To add a description to a rule:

1 Double-click the name of the rule.

Rules

B 5( Require User to have Given Name'

Mo description awvailable

Mame | Require User to have Given Name

<5pecify Description and Comments =
Description

2 Specify a description of the rule in the Description field.
3 Save the rule by pressing Ctrl+S.

3.8 Viewing the Policy in XML

Designer enables you to view, edit, and validate the XML by using an XML editor. Click the XML
Source or XML Tree tabs to access the XML editor. For more information about the XML editor, see
“The Novell XML Editor” in the Designer 3.0 for Identity Manager 3.6 Administration Guide.

Managing Policies with the Policy Builder

43



Figure 3-4 View Policy in XML

b Policy Description

Rules

H v

v
B
® v
m

AR ORNSN RN

remember relative position in hierarchy
veto out-of-scope events

match users based on NT logon name
match users based on full name

match everything else

SH Policy Builldde ML Source | XML Tree

44 Policies in Designer 3.0



Using Additional Builders and
Editors

Although you define most arguments in the Argument Builder, there are several more builders and
editors that are used by the Condition editor and Action editor in the Policy Builder. Each builder
can recursively call anyone of the builders in the following list:

¢ Section 4.1, “Action Builder,” on page 45

¢ Section 4.2, “Actions Builder,” on page 46

¢ Section 4.3, “Argument Builder,” on page 47

¢ Section 4.4, “Condition Builder,” on page 52

¢ Section 4.5, “Conditions Builder,” on page 53

¢ Section 4.6, “Match Attribute Builder,” on page 54

¢ Section 4.7, “Action Argument Component Builder,” on page 56

¢ Section 4.8, “Argument Value List Builder,” on page 57

¢ Section 4.9, “Named String Builder,” on page 58

¢ Section 4.10, “Condition Argument Component Builder,” on page 59

¢ Section 4.11, “Pattern Builder,” on page 60

¢ Section 4.12, “String Builder,” on page 61

¢ Section 4.13, “XPath Builder,” on page 62

¢ Section 4.14, “Mapping Table Editor,” on page 62

¢ Section 4.15, “Namespace Editor,” on page 67

¢ Section 4.16, “Local Variable Selector,” on page 69

4.1 Action Builder

The Action Builder enables you to add, view, and delete the actions that make up a rule. Actions can
also contain other actions.

4.1.1 Creating an Action

1 In the Policy Builder, create a new rule or edit an existing rule.

2 Double-click the Actions tab to launch the Action Builder.

Using Additional Builders and Editors

45



=

Define new action below

Do | =Select an action> v @

3 Select the desired action from the drop-down list, then click OK.

4.1.2 Additional Options for the Action Builder

1 Right-click the action to see the additional options:

| Y = | 1rset Action Befors. .

& Edit.., T Insert Action After. ..
o= Cut Chrl+
Copw Zerl+
[ Paste Chrl+y
M Delete Delete

Preferences...

¢ New > Insert Action Before: Adds a new action before the current action.

¢ New > Insert Action After: Adds a new action after the current action.

+ Edit: Launches the Action Builder.

+ Move the selected item up: Moves the selected action up in the order of execution.

+ Move the selected item down: Moves the selected action down in the order of execution.
¢ Cut, Copy, Paste, or Delete an Action: Cuts, copies, pastes, or deletes the action.

+ Undo or Redo: Undoes or redoes the last action.

¢ Preferences: Allows you to set default functionality in the Policy Builder.

+ Help: Select an action, then click the Help icon to see information specific to that action.

4.2 Actions Builder

The Actions Builder allows you to create an action inside of another action. To launch the Actions
Builder, select one of the following actions, then click the Edit the actions icon .

¢ For Each (page 258)
¢ Implement Entitlement (page 264)

46 Policies in Designer 3.0



* If (page 262)
+ While (page 310)

In the following example the add destination attribute value action is performed for each Group
entitlement that is being added in the current operation.

Figure 4-1 For Each Action

Do |Faor each v @
Spedfy node set: * | Added Entitlement"Group™)
Specify ackion: * | do-add-dest-attr-value

To define the action of the add destination attribute value, click the Edit the actions icon. This
launches the Actions Builder. In the Actions Builder, you define the desired action. In the following
example, the member attribute is added to the destination object for each added Group entitlement.

Figure 4-2 Actions Builder

Do | add destination attribuke value w | (3

i

Specify attribute name; * | Member

A A

i

Specify class name: | Group
Select mode: | add ko current operation
Select object: |DM
Specify DMN: * | Local Wariabled"current-node™)

Specify value bvpe: | skring

mg e g

Enter string: * | Destination DM

4.3 Argument Builder

The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within Rule Builder.

Using Additional Builders and Editors

47



Figure 4-3 Argument Builder

Create and edit arguments F_
Add or remove wour components ko the expression area ko conskruck vour argument, Specify component values in the ﬁ =
Editor,
= Expression [E (7 &4 Nouns E

Texk -

Added Entitlement

Association

Atkribute

Character b
Yerbs g v

Basefd Decode
Basetd Encode
Canvert Time

Escape Destination DM
Escape Source DM

Join

Lowercase

Map

Parse DM b
2 Editor * Required % Description ]

Conskant texk,

The Argument Builder consists of six separate sections:

*

Nouns: Contains a list of all of the available noun tokens. Double-click a noun token to add it
to the Expression pane. See “Noun Tokens” on page 311 for more information.

Verbs: Contains a list of all of the available verb tokens. Double-click a verb token to add it to
the Expression pane. See “Verb Tokens” on page 351 for more information.

Description: Contains a brief description of the selected noun or verb token. Click the Help
icon to launch additional help.

Expression: Contains the argument that is being built. Multiple noun and verb tokens can be
added to a single argument. Tokens can be arranged in different orders through the Expression
pane.

Editor: Provide the values for the nouns and the verbs in the Editor pane.

Toolbar: Allows you to manipulate the noun and verb tokens. See Table 4-1 for a list of all of
the options in the toolbar.

Table 4-1 Argument Builder Toolbar Options

Option Description
K Delete Deletes the selected token.
# Cut Cuts the selected token to the Clipboard.

48 Policies in Designer 3.0



Option Description

Copy Copies the selected token to the Clipboard.

@ Paste Pastes the token from the Clipboard into the Argument Builder.

i Move Up Moves the selected token up.

T Move Down Moves the selected token down.

@ Help Launches the help.

+ Append noun Appends a noun token to the end of the argument as a sibling token.
*F Insert noun Inserts a noun token into the argument.

. Append noun to child token Appends a noun token as a child token instead of as a sibling token.
list

% Insert noun at beginning of Inserts a noun token into the argument as the first child in the token list

child token list instead of as a sibling token.
+ Append verb Appends a verb token to the end of the argument as a sibling token.
* Insert verb Inserts a verb token into the argument.

- Append verb to child token Appends a verb token as a child token instead of as a sibling token.
list

- Insert verb at beginning of Inserts a verb token into the argument as the first child in the token list
child token list instead of as a sibling token.

You can select to trace each token or disable the tracing of the token in the Argument Builder. To
disable tracing:

1 Click the trace icon to disable tracing.

M % Attribubel"Given Mame")

To enable tracing:

1 Click the disable trace icon to enable tracing.

A % Attribube("Given Mame", notrace="true")

¢ Section 4.3.1, “Launching the Argument Builder,” on page 49
¢ Section 4.3.2, “Argument Builder Example,” on page 50

4.3.1 Launching the Argument Builder

To launch the Argument Builder, select one of the following actions, then click the Edit the
arguments icon E1.

+ Add Association (page 233)
¢ Add Destination Attribute Value (page 234)
¢ Add Destination Object (page 236)

Using Additional Builders and Editors

49



¢ Add Source Attribute Value (page 240)

¢ Append XML Text (page 244)

¢ Clear Destination Attribute Value (page 247) (when the selected object is DN or Association)
¢ Clear Source Attribute Value (page 249) (when the selected object is DN or Association)
¢ Delete Destination Object (page 253) (when the selected object is DN or Association)

¢ Delete Source Object (page 254) (when the selected object is DN or Association)

+ Find Matching Object (page 255)

¢ For Each (page 258)

+ Move Destination Object (page 265)

+ Move Source Object (page 267)

+ Reformat Operation Attribute (page 268)

+ Remove Association (page 270)

+ Remove Destination Attribute Value (page 271)

+ Remove Source Attribute Value (page 274)

¢ Rename Destination Object (page 275) (when the selected object is DN or Association and
Enter String)

¢ Rename Source Object (page 277) (when the selected object is DN or Association and Enter
String)

¢ Set Destination Attribute Value (page 284) (when the selected object is DN or Association and
Enter Value Type is not structured)

¢ Set Destination Password (page 286)

¢ Set Local Variable (page 287)

¢ Set Operation Association (page 289)
¢ Set Operation Class Name (page 290)
¢ Set Operation Destination DN (page 291)
¢ Set Operation Property (page 292)

¢ Set Operation Source DN (page 293)

¢ Set Operation Template DN (page 294)
¢ Set Source Attribute Value (page 295)
¢ Set Source Password (page 297)

+ Set XML Attribute (page 300)

¢ Status (page 303)

+ Trace Message (page 306)

4.3.2 Argument Builder Example

The following example creates an argument for a username from the first letter of the first name and
the entire last name:

1 Double-click Attribute from the list of nouns.

50 Policies in Designer 3.0



5 Mouns i

Texk -
#dded Entitlernent =3
Association

Character

Class Mame

Destination Atkribute

Destination DN

Destination Marme

Dacurent

Entitlement v

2 Specify or select the Given Name attribute.

= Editor * Required

Mame: * [ given fame | O g &

You can browse the Identity Vault attributes, the application attributes, or launch the variable
browser. For more information on the variable browser, see Section 3.6, “Variable Selector,” on
page 35.

3 Double-click Substring from the list of verbs.

- verbs ETRS

Map

Parse DM
Replace all
Replace First

SEIit
Uppercase
XML Parse

ML Serialize

|

| [

4 Type 1 in the Length field.

Z# Editor

Skark: El
Length:

5 Select the Given Name attribute, then click the Move Down icon.

- EXpression b4 Oé" @ @ @

ren Mame")

% Substringflength="1"}

6 Double-click Attribute from the list of nouns.

7 In the Name field, specify or browse to the Surname attribute.

Using Additional Builders and Editors 51



52

7 EXpression

= £ Substring{length="1"}
& & Attribute"Given Name")
% Bttribute"surname")

The argument takes the first character of the Given Name attribute and adds it to the Surname
attribute to build the desired value.

8 Click Finish to save the argument.

4.4 Condition Builder

The Condition Builder enables you to add, view, and delete the conditions that make up a rule. A
condition contains one or more conditions and one or more condition groups. The condition groups
contain two different condition structures, which define the logic of condition groups. The two
condition structures are:

+ OR Conditions, AND Groups
+ AND Conditions, OR Groups

To create and customize a condition, see the following sections:

¢ Section 4.4.1, “Creating a Condition,” on page 52
+ Section 4.4.2, “Additional Options for the Condition Builder,” on page 52

4.4.1 Creating a Condition

1 In the Policy Builder, create a new rule or edit an existing rule.

2 Double-click the Conditions tab to launch the Condition Builder.

Conditions

.~ & Condition Group 1

Define new condition below

Conditian |Select a conditian v| 6

3 Select the desired condition from the drop-down list, then click OK.

4.4.2 Additional Options for the Condition Builder

1 Right-click the condition to see the additional options:

Policies in Designer 3.0



,@ Insert Condition Group Afker

F| Expand all Conditions
i_} Append Condition, ..

af” Cut e+
Copy Chrl+C
[ Paste Chrl+y

zlele zlele
3 Delet Delet
< undo Chrl+Z
Preferences. ..

¢ New > Insert Condition Before: Adds a condition before the current condition.

¢ New > Insert Condition After: Adds a condition after the current condition.

¢ Edit: Launches the Condition Builder.

+ Move the selected item up: Moves the selected condition up in the order of execution.

+ Move the selected item down: Moves the selected condition down in the order of
execution.

¢ Cut, Copy, Paste, or Delete: Cuts, copies, pastes, or deletes the condition.

+ Undo or Redo: Undoes or redoes the last action.

¢ Preferences: Allows you to set default functionality in the Policy Builder.

¢ Help: Select a condition, then click the Help icon to see information specific to that

condition.

For additional information on the Condition Builder and the rules, see Section 3.4, “Creating a
Rule,” on page 28.

4.5 Conditions Builder

The Conditions Builder allows you to create a condition inside of an action. To launch the
Conditions Builder, select one of the following actions, then click the Edit the actions icon = next
to the If conditions field.

+ If (page 262)
+ While (page 310)

1 In the Conditions Builder, browse to and select the desired condition.

Using Additional Builders and Editors

53



54

Create a list of Conditions

i

=

Create, delete, or rearrange a lisk of conditions,

Condition List Z H+ X £ BB ¢+ @

v 5 Condikion Group 1

v 5 Define new condition below

Condition | Select a condition v @

QK | | Cancel * Required

< ?

2 Define the condition, then click OK.
The Conditions Builder allows for many different actions through the toolbar:

* The Edit icon & opens the condition for edits.

¢ The Append condition group icon [ adds a new condition group. You can have multiple
condition groups.

¢ The Append new item icon * adds a new condition. You can have multiple conditions.
¢ The Delete icon ¥ deletes the selected condition or condition group.

¢ The Cut, Copy, and Paste icons allow you to use the clipboard to copy the conditions and
condition groups.

¢ The Move Up and Move Down icons allow you to move the conditions and conditions groups.

If you have multiple conditions and conditions groups, the And/Or icons are tied together. If you
change the And/Or icon for the condition groups, it is changed for the conditions as well.

Figure 4-4 Conditions Builder And/Or Icons

Create a list of Conditions r
Create, delete, or rearrange a list of conditions, ﬁ =
Condition List 2 He X ABE 4 @

v 5.- Condition Group 1

o 5- if attribute 'Given Mame' available

and v 5- if attribute 'Surname’ available

v 5.- Condition Group 2

7 5- if association available

4.6 Match Attribute Builder

The Match Attribute Builder enables you to select attributes and values used by the Find Matching
Object (page 255) action to determine if a matching object exists in a data store.

Policies in Designer 3.0



For example, if you wanted to match users based on a common name and a location:

Select the action of find matching object.

2 Select the scope of the search for the matching objects. Select from entry, subordinates, or
subtree.

3 Specify the DN of the starting point for the search.
4 Click the Edit match attributes icon = to launch the Match Attribute Builder.

Da |find matching object v @
Select scope; | subtree

Specify DM: | "Movel"

D m=

Specify match attribukes:

5 Click the Browse the Identity Vault attributes icon, the Browse application attributes icon, or
the Launch variable browser icon. For more information on the Launch variable browser icon,
see Section 3.6, “Variable Selector,” on page 35.

Match Attributes + R oL BB @

| @C‘:@ Use values From the current object w

6 Browse to and select the desired attribute, then click OK.

Attributes of: | <Al Classes=

<

[Arything] A
[Mathing]

accessCardiumber

Account Balance

ACL

Aliased Object Name
allowaliasToAncestor

Allow Unlimited Credit
assistant

assistantPhone
associatedhame
atbrEncryptionDefinition
atkrEncryptionReguiresSecure
atkributeCertificate

audio

Audit: A Encrypion Key
Audit:B Encryption Key

Audit: Conbents

Aodit: Current Encryption Key
Audit:File Link

Audit:Link List

Audit:Path

Audit:Policy

Audit: Type

autharitative

[l only show changes

o

If you want to add more than one attribute, click the Append new item icon to add another line.

Using Additional Builders and Editors 55



56

Match Attributes @ X BB 4 @
| | @ &
| | @ &

& | Use values From the current object W |

£ & | Use values from the current: object v |

You can browse the Identity Vault schema or the connected system schema.
7 Click Finish.

The Match Attribute Builder also allows you to specify another value, instead of using the value
from the current object.

To use another value:

1 Launch the Match Attribute Builder, then select Other Value from the drop-down list.
2 Select the desired value type.

¢ counter

¢ dn

¢ int

+ interval

* octet

* state

¢ string

¢ structured

+ teleNumber

* time

3 Specify the value, then click OK.

4.7 Action Argument Component Builder

To launch the Action Argument Component Builder, select one of the following actions when the
Select Value Type selection is structured, then click the Edit the components icon =,

¢ Add Destination Attribute Value (page 234)

¢ Add Source Attribute Value (page 240)

+ Reformat Operation Attribute (page 268)

+ Remove Destination Attribute Value (page 271)

+ Remove Source Attribute Value (page 274)

¢ Set Destination Attribute Value (page 284)

¢ Set Source Attribute Value (page 295)

Policies in Designer 3.0



Figure 4-5 Add Destination Attribute Value Action

Do | add destination atkribube valoe A | )]
Specify attribute name: * | Given Mame | 8 g &
Specify class name: | User | @ l.?:' G:_
Select mode: |write directly to destination datasktore b |
Select object: |Current object b |
Specify value type:q structured ) - |
Enter components: * | user |

1 Make sure the value type is set to structured, then click the Edit the components icon =,

2 Create the value of the action component.

You can type the value, or click the Edit the arguments = icon to create the value in the
Argument Builder.

Argument Components

The argument components are skructured argument values,

Mame ¥Yalues + X Og{ % @

| user | | walue |

3 Click Finish.

4.8 Argument Value List Builder

To launch the Argument Value List Builder, select the following action, then click the Edit the
arguments icon =1,

¢ Set Default Attribute Value (page 282)

Figure 4-6 Set Default Attribute Value

Do | set default attribute value e | )]
Specify attribute name: * | Campary | @ E‘:l @l::
‘write back: |False ~ |
Specify argument values; * | |

1 Select the type of the value: counter, dn, int, interval, octet, state, string, structured,
teleNumber, time.

Using Additional Builders and Editors 57



4 Argument Value List Builder |:|®
Argument ¥Yalues [n

Argurment values specify the values that are ko be used For an attribute, =

Type Argument Yalues + K of % @

vl| | =

state Es
skring

skruckured
telemumber —
kirne b

2 Create the value of the list.

You can type the value, or click the Edit the arguments icon to create the value in the Argument
Builder.

k1 Argument Yalue List Builder |_I B
Argument Values |
Argument values specify the values that are to be used For an attribute,
Type Argument Yalues + K ‘é" @ 6]
| string A | | | '@

3 Click Finish.

4.9 Named String Builder

To launch the Named String Builder, select one of the following actions, then click the Edit the
strings icon Ei next to the Strings field.

*

*

Add Role (page 238)

Generate Event (page 259)

Remove Role (page 272)

Send Email (page 278)

Send Email from Template (page 280)
Start Workflow (page 301)

Select the name of the string from the drop-down list.

58 Policies in Designer 3.0



@ Named String Builder

MNamed String Builder

String elements provide walues Ffor arguments,

—
v=

+ ®K  of BB 4@

Name String Yalue

= v/ | |
| subject v| | |
| message v| | |

2 Create the value for the string by clicking the Edit the arguments icon to launch the Argument

Builder.

@ Named String Builder

Named String Builder

String elements provide values For arguments,

—

Name String Yalue + X 4 BB 4| @
= vl
| subject v |
= 3 |

3 Click Finish.

For a Send Email action, the named strings correspond to the elements of the e-mail. A complete list
of possible values is contained in the help file corresponding to the action that launches the Named

String Builder.

4.10 Condition Argument Component Builder

To launch the Condition Argument Component Builder, select one of the following conditions, then
select the structured selection for Mode in order to see the Launch ArgComponent Builder icon [E

*

If Attribute (page 192)

If Destination Attribute (page 198)
If Operation Attribute (page 215)
If Source Attribute (page 223)

*

*

*

Using Additional Builders and Editors

59



Figure 4-7 If Attribute mode

Condition | destination attribute v| @
Mame * | Given Name | @ & &
Operator * | equal v]
ModeCstructured ) v|
Yalue | | &

1 Specify the name and value of the condition component.

@ Condition Argument Component Builder

Argument Compohents |
The condition argument components are namevalue pairs, :"‘ =
MName Yalues + K “f' IE @

2 Click Finish.

4.11 Pattern Builder

You can launch the Pattern Builder from the Argument Builder editor when the Unique Name

(page 346) token is selected. The Argument Builder editor pane shows a Pattern field where you can
click to launch the Pattern Builder.

For information on how to access the Argument Builder, see “Launching the Argument Builder” on
page 49.

60 Policies in Designer 3.0



Figure 4-8 Unique Name Token in the Argument Builder

Create and edit arguments [=
Add or remove vour components to the expression area to construct vour argument. Specify component. walues in the Editor, v

B Expression w | oA & @ & Nouns

Character

Class Mame
Destination Attribute
Destination DM
Destination Mame
Document
Entitlernent
Generate Password
Global Configuration Walue
Local Yariable
Mamed Password
Crperation

Cperation Attribute
Dperation Property
Password

Query

Removed Attribute
Removed Entitlement
Resolve

Source Attribuke
Source DN

Source Mame

|>

Time

Urmatched Source DM
#Path

=

-/ Yerbs

Basetd Decode
Base64 Encods
Convert Time

Escape Destination DN
Escape Source DN
Jain

Lowercase

Map

Parse DN

|

£

. el
2 Editor * Required 2 ? Description @

Attribute name: | | @ e:' @@ A generated unique name.
Start search:
Gorem D E
‘hen ko use counters:

Use counter with which pattern:

Caounter stark: | 1 diaits: | 1 Pad counter with leading 0's

£

1 Click the Edit patterns icon = to launch the Pattern Builder.

Pattern Builder

Define a list of patterns

Pattern Yalues + XK ‘:’f % @
Pattern: |

2 Specify the pattern or click the Edit the arguments icon =l to use the Argument Builder to
create the pattern.

3 Click Finish.

4.12 String Builder

The String Builder enables you to construct name/value pairs for use in certain actions, including Set
SSO Credential and Clear SSO Credential.

Using Additional Builders and Editors

61



To open String Builder, select the Edit the Strings icon [Zi next to the appropriate field when
defining a new action or modifying an existing action. For example, The Set SSO Credential action
contains a Login Parameter Strings field for necessary login parameter strings. String Builder
allows you to create the appropriate strings.

In the String Builder, specify a name for each string you want to add to the action, then manually, or
using the Argument Builder, create the appropriate string value.

Figure 4-9 String Builder Example

String Builder
String elements provide values for arguments, o =

Name String Yalue X AL IE D @
LSS Atribate{"LIID") m
passrord Mamed Password("userpass™) m ]

4.13 XPath Builder

The XPath Builder is a powerful tool that allows you to build and test an XPath expression against
any XML document. See “Using the XPath Builder” on page 71 for more information.

4.14 Mapping Table Editor

The Mapping Table editor allows you to create, edit, and manage mapping table objects. A mapping
table object is used by a policy to map a set of values to another set of corresponding values. After a
mapping table object is created, the Map (page 360) token maps the results of the specified tokens
from the values specified in the mapping table.

To use a mapping table object, the following steps must be completed:

1. Section 4.14.1, “Creating a Mapping Table Object,” on page 62
2. Section 4.14.2, “Adding a Mapping Table Object to a Policy,” on page 64

To edit a mapping table, see Section 4.14.3, “Editing a Mapping Table Object,” on page 65.

4.14.1 Creating a Mapping Table Object

A mapping table object can be created in a library, driver object, Publisher channel, or Subscriber
channel.

1 In the Outline view, right-click the location to create the mapping table, then select New >
Mapping Table.

2 Specify the name of the mapping table object, then click OK.

62 Policies in Designer 3.0



Select Open the editor afier creating the object to open the Mapping Table editor.

@® New Mapping Table El
Choose Mapping Table name Pl
Creabe a Mapping Tabls resource a

Mame: | New Mapping Table

[] pens the: editor after creating the object

[ ok J[ conce |

3 In the File Conflict message, click Yes to save the project before opening the Mapping Table
editor.
4 In the Mapping Table editor, select column _new-1.

column_new-1 =
Zase Insensitive

5 Specify a column name and data type, then click Close.

Column names must be unique. The data type lets you specify if the column values are Case
Sensitive, Case Insensitive, or Numeric.

5| Design_doc - Developer = ] x =B

Mapping Table Editor [i] [i] = = =

MappinaTable, Active Directory . entitiment, DOCIDMTEST

Colurnn Mame: | S,

Zolumn Tvpe
{} Case Sensitive

'@' Case Insensitive

{} Mumeric

Close

Mapping Table Editor | XML Source | XML Tree

6 Select New Value to specify a cell value.

Using Additional Builders and Editors

63



64

MapTablel,Delimited Text, Driver Set,

Depk =
LCase Insensitive
Mew Yalue

7 (Optional) To add another column, click the Add Column icon F§1, then repeat Step 4 and
Step 5.

8 (Optional) To add another row, click the Add Row icon = then repeat Step 6.
9 Press Ctrl+S to save the mapping table object.
10 Continue with Section 4.14.2, “Adding a Mapping Table Object to a Policy,” on page 64.

4.14.2 Adding a Mapping Table Object to a Policy

1 Either create a policy to use the mapping table in, or select an existing policy to edit.
2 Launch the Argument Builder in the Policy Builder.

For information on how to access the Argument Builder, see “Launching the Argument
Builder” on page 49.

3 Double-click Map from the list of verbs to add it to the expression panel.

Create and edit arguments |-

Add or remowe wour components to the expression area ko conskruck your argument. Specify component values in the Editor,

B Expression B o EE (@ &5 Nouns

Text e
Added Entitlement

Association

Attribute

Character

Class Mame ht

Yerbs dt v gm0

Basetd Decode ~
Basef4 Encode

Corvert Time

Escape Destination DM

Escape Source DM

Join

Lowercase

Parse DM b’
2 Editor * Required % Description

-

o

Mapping Table DM: * Maps the result of the enclased takens
. X from the values specified by the source
[[]5et DN redative ko policy column to the destination column in the

Source column nams: * specified mapping table,

Destination column nams: *

Jjoly o]
B M

Default value:

4 1In the Mapping Table DN field, browse to and select the mapping table object created in
Section 4.14.1, “Creating a Mapping Table Object,” on page 62, then click OK.

Policies in Designer 3.0



Select an object:

= (@] 1dentity vault
=4l Driver Set
2 ﬁ Mew Library
Mew Mapping Table

5 Select whether the mapping table DN is set relative to the policy or not.

6 Select the source column name by clicking the Browse icon.

22 Editor

Mapping Table DM: * | \[root]inullhDriver Set\Mew LibraryMew Mapping Table k:\ k}f

[C15et DM relative ko policy
Source colurmn name: * @k}f
code
Destination calumn name: * (), E:llocation
Defaulk value:
7 Select the destination column name by clicking the Browse icon.

£ Editor

Mapping Table DM: * | \[root]inullDriver SetiMew LibraryiMew Mapping Table k.l (=

[]5et DM relative ko policy

Source column name: * | dept

Q
Destination column nare: * @ 3
code
location

Default value:

T

The mapping table can be used in any manner at this point. In this example, the OU attribute is
populated with the value derived from the mapping table.

§v Map(dest="location", src="dept", table="{root]ynulliDriver SetiLibrary\Mapping Table", Operation Atkributed"oU")
& & Operation Atkribubel"OL")

4.14.3 Editing a Mapping Table Object

Designer provides the following options to edit the mapping table:

Using Additional Builders and Editors

65



Figure 4-10 Editing a Mapping Table

< Unda add Colurn
" Redo Add Colurn

FE'I add Colurmin
FEI Delete Calumn
+= Add Fow

®= Delete Row

4 Move Row Up

L Move Row Down
<A Maove Column Left
=+ Move Column Right

*

Undo: Undoes the last action performed in the table.

Redo: Redoes the action that was undone.

Add Column: Inserts a column to the mapping table.

Delete Column: Deletes a column from the mapping table.

Add Row: Inserts a row to the mapping table.

Delete Row: Deletes a row from the mapping table.

Move Row Up: Moves the selected row up one row.

Move Row Down: Moves the selected row down one row.

Move Column Left: Moves the selected column left one column.

Move Column Right: Moves the selected column right one column.

The Mapping Table Editor also supports keyboard shortcuts for several of its operations:

Keyboard Shortcut Description

Ctrl+Shift+Insert Insert a column to the right of the current column.

Ctrl+Shift+Delete Delete the current column. You are prompted to confirm the deletion.
Ctrl+Shift+C Rename the current column. Opens the Column Edit dialog box.
Alt+Insert Insert a row below the current row.

Alt+Delete Delete the current row. You are prompted to confirm the deletion.
Ctrl+Up Arrow Navigate up one row.

Ctrl+Down Arrow Navigate down one row.

Ctrl+Left Arrow Navigate left one column.

Ctrl+Right Arrow Navigate right one column.

66 Policies in Designer 3.0



4.14.4 Importing Data from a CSV File

The Mapping Table editor allows you to import data that is stored in a CSV file. It then populates the
table with the information in the CSV file. To import a CSV:

1 In an empty Mapping Table, select Import From CSV file &

2 Browse to and select the CSV file, then click Open.

3 Click Yes to overwrite your existing data.

4 Press Ctrl+S to save the data in the table.

4.14.5 Exporting Data to a CSV File

The Mapping Table editor allows you to export data to a CSV file. To export data to a CSV file:

1 When the data in the Mapping Table is ready to export, select Export To CSV File ..
2 Click Yes to save this editor’s changes and continue.

3 Specify a name and location for the CSV file, then click Save.

4.14.6 Testing a Mapping Table Object

You can use the Policy Simulator to test the functionality of the mapping table. The Policy Simulator
tests the mapping table by testing the policy that is using the mapping table. For more information,
see Chapter 9, “Testing Policies with the Policy Simulator,” on page 143.

4.15 Namespace Editor

The Policy Builder enables you to use multiple XML namespaces within your XML documents.
You launch the Namespace editor when you access the following DirXML Script elements in the
Policy Builder:

+ Append XML Element (page 242)

¢ Append XML Text (page 244)

¢ Clone By XPath Expressions (page 251)

¢ Set XML Attribute (page 300)

¢ Strip XPath Expression (page 305)
XPath (page 350)

*

Click the Edit the policy s namespace definitions * icon.
Specify the namespace prefix.
Specify the URI.

Do not select Java Extension.

H ODN =

Using Additional Builders and Editors

67



@ MNamespace Editor

Edit Policy's Namespace Definitions \
<)
Policy Builder enables you ko use multiple ML namespace definitions within wour XML < >
docurnents.,
+ "X £ BB @
Prefix LRI Java Extension
|| |0
[ Einish l [ Cancel

You can also access Java* classes through XPath by using XML namespaces. To create a namespace
for a Java class, specify the namespace prefix in the Name field, the class name in the URI field, and
select the Java Extension check box.

4.15.1 Accessing Java Classes Using Namespaces

Novell provides several Identity Manager Java classes that can be called by using XPath expressions
from the Policy Builder. The following links open Javadoc references for these Java classes:

¢ com.novell.nds.dirxml.driver.XdsQueryProcessor (http://developer.novell.com/documentation/
dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html)

¢ com.novell.nds.dirxml.driver. XdsCommandProcessor (http://developer.novell.com/
documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/
XdsCommandProcessor.html)

¢ com.novell.nds.dirxml.driver. DNConverter (http://developer.novell.com/documentation/
dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html)

The Java Developer Kit (JDK*) also provides several useful classes, such as java.lang.String, and
java.lang.System. References for these classes are available with the JDK.

For additional information on using XPath and the Novell Java classes listed above, consult the
DirXML® Driver Developer Kit (http://developer.novell.com/documentation/dirxml/dirxmIbk/ref/
dirxmlfaq.html).

68 Policies in Designer 3.0


http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsCommandProcessor.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/ref/dirxmlfaq.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/ref/dirxmlfaq.html

4.16

Local Variable Selector

Policies use local variables and they have different scopes. A local variable is defined for a specific
policy or it is defined for a driver. If a local variable scope is set to driver, then any policy in the
driver can use this variable.

The Policy Builder contains a Local Variable Selector that allows you to select any local variables
that have been defined for use in the selected policy.

Figure 4-11 Local Variable Selector

2

Local Variable Selector
Select & local variable from the list.

Policy Seape _Driver Scope | Error Variables

current-node
current-op
current-value
fromiids

Lok J[ concel |

The Local Variable Selector is accessed through the following actions, conditions, and tokens:

¢ [f Local Variable (page 207)
¢ Set Local Variable (page 287)
¢ Local Variable (page 328)

The Local Variable Selector displays three tabs:

+ Policy Scope: Lists any local variables with a scope of policy.

+ Driver Scope: Lists any local variables with a scope of driver.

+ Error Variables: Lists local variables that are set, if an error is encountered during the
execution of the policy that contains the following actions:

*

*

*

Clear SSO Credential (page 250)

Set SSO Credential (page 298)

Set SSO Passphrase (page 299)

Send Email (page 278)

Send Email from Template (page 280)
Start Workflow (page 301)

Using Additional Builders and Editors

69



Figure 4-12 Error Variables

@ Local Variable Selector

Local Yariable Selector

This list has all lacal wariables that are errors that
can occur within a palicy

Policy Scope |Driver Scope | Error Wariables

K

ierrar, do-clear-sso-credential

error, do-set-sso-credential

error, do-set-sso-passphrase
error, do-send-email

error, do-send-email-from-template
error, do-start-workflow

'\'E:' o] 8 ] [ Cancel

70 Policies in Designer 3.0




Using the XPath Builder

The XPath Builder is a powerful tool that allows you to build and test an XPath expression against
any XML document. You can test different expressions against an XDS document and modify the
XDS document while testing the expression. For more information about XPath expression, see
“XPath 1.0 Expressions” in Understanding Policies for Identity Manager 3.6.

Figure 5-1 XPath Builder

Create an XPath Expression
Import an %05 document, select the current context in the XPath Contesxt Selector, then build and test an ¥Path expression in P e o
the ¥Path Expression text area, i L B L ]

#D5 Docurnent Location: RPath Selected Context
| - (®) Genetic () Unique
Mo context currently selected
AML Tree | WML Source
¥Path Context Selector [# =] | [S] =Path Expression @ o

The document is ermpty,
Right mouse click here ko insert content,

Results:

Item Location

¥Path:
< ’

Ok I [ Cancel

To use the XPath Builder:
1 In the Policy Builder, select any of the following conditions or actions, then click the Launch
XPath Builder icon .
¢ If XML Attribute (page 227)
¢ [f XPath Expression (page 229)
+ Append XML Element (page 242)
+ Append XML Text (page 244)
+ Clone By XPath Expressions (page 251)
+ Set XML Attribute (page 300)
¢ Strip XPath Expression (page 305)

Using the XPath Builder

7



2 Select Import to browse to and select the XDS document to test.

#05 Docurnent Location:

!Il [meu:nrt...]]

Designer comes with sample event files you can use to test the XPath expression against. The
files are located in the plug-in

com.novell.designer.idm.policy version\simulation, where version is the
current version of Designer. The events are Add, Association, Delete, Instance, Modify, Move,
Query, Rename, and Status.

J

Recent
(1
Dezktop
ty Documents
ky Cormputer

e

dy Metwork,

Laok ir: | 9 simulation

v| 0?‘ * -

[ﬁ.ﬂssaciatian
[C)Delete
[ﬁlnstance
5 Modify
ﬁMD\-’e

() Query
ﬁRename

ElStatus

File name:

Files of type:

| v|  [(geen ]

| * mrril w | [ Cancel ]

3 Double-click the folder to display the available events. Each event has different files you can
select. For example, if you select Add you have three options: Organization.xml,
OrganizationalUnit.xml, and User.xml. The file indicates the event. If you select
User.xml, itis an Add event for a User object.

4 Select a file, then click Open.

The input document is now displayed in the XPath Context Selector view. The XML Source tab
allows you to use an XML source editor to edit the imported document, or an XML document
from another editor can be copied and pasted into the source view. If you change the document,
click Save A4s to save the changed document.

72 Policies in Designer 3.0



ML Tree | ML Source
@Path Conkexk Selector) + = | 5]

PR el

= [e] nds
drdversion
ndswersion
xmlispace

=l |8 input
+ [e] add

%Path:

If you want to see the XDS document without scrolling, click the Hide XPath Details icon . To
see the XPath Expression and Results windows, click Show XPath Details icon.

mML Tree | ¥ML Source

®Path Context Selector H B | [5
T wml version="1.0" encading="UTF-5"
= [e] nds
dkdversion 1.0
ndswersion G.5
«mlispace default
= [g] input
=l [e] add n
class-name User
qualifigd-src-dn o=dirsML Testhou=sersicn=Usear1
src-dn o=dirsML Testhou=sersicn=Userl
8] association o=dir¥ML Testhou=sersicn=Usear1
+ [e] add-atkr
+ [e] add-atkr
+ [e] add-atkr
+ [e] add-atkr
+ [e] add-atkr
+ [e] add-atkr
+ [e] add-attr
e] password initialpid
#Path:

5 Select the current position in the document from which you want to start building your XPath
expression.

Using the XPath Builder 73



HML Tree | %ML Source
¥Path Conkext Select = | 8

=7 wml
= [e] nds
drdversion
ndsversion
xmlispace
0.
= [&] input
= E add
class-name
qualified-sre-dn
src-dn
[8] association
[8] add-attr
[e] add-attr
(8] add-attr
[8] add-aktr
[e] add-attr
[8] add-attr
[8] add-attr
(8] passward

¥Path: /ndsfinput[1]fadd[1]

The XPath context that you have selected is displayed in the XPath Selected Context as shown.

%Path Selected Conkesxt
(%) Generic () Unique
{"Il'nds,l'input,l'add')

6 Select Generic or Unique.

Generic searches the entire XML document to match the specified XPath expression. It returns
results for each instance of the XPath expression. In this example, the XPath expression is “/
nds/input/add”. It searches the entire XML document for each instance of add.

Unique searches the XML document until it finds a match and then stops. The unique XPath
expression is “/nds/input[1]/add[1]”. It searches for the first instance of add and then stops. You
can specify which instance you want to use by selecting the next instance of the XPath element
in the XML Context Selector.

7 Specify an XPath expression in the XPath Expression field.

74 Policies in Designer 3.0



nPath Expression 74 {3'
[

add-attr S
associakion

password

kexki

(L
processing-instruckiond
descendant::
preceding: :

attribute:;

parent::

self:

Cmllmss i il i s

NOTE: Using the keystroke combination Ctrl+Space+3, /, [, or ( triggers code completion. The
expression is evaluated up until the cursor location, and insertable elements are shown in a
drop-down box.

The results of your XPath expression appear in the Results text area below.

¥Path Expression [ O
add-attr

([Results: 7 nodels

Item Lacation
[e] elerment("add-attr™) line @ - 10
[e] elerment("add-attr™) line 11 - 13
[e] elerment("add-attr™) line 14 - 16
[&] element("add-attr") line 17 - 19
[&] element("add-attr") line 20 - 22
|&] element("add-attr") line 23 - 25
|&] element("add-attr") line 26 - 32
L1 >

If the XPath editor does not evaluate the expression, click the Evaluate XPath expression icon
© to force the XPath Builder to evaluate the expression.

(Optional) Click the ECMA Expression Editor icon to use a valid ECMAScript expression
instead of an XPath expression.

When you are finished building and testing an XPath expression, click OK to close the XPath
Builder.

The text displayed in the XPath Expression is placed into the policy that you are editing.

Using the XPath Builder



76 Policies in Designer 3.0



Defining Schema Map Policies

Schema Map policies map class names and attribute names between the Identity Vault namespace
and the application namespace. All documents passed between the Metadirectory engine and the
application shim in either direction on either channel are passed through the Schema Map policy.
There is one Schema Map policy per driver.

Figure 6-1 The Schema Map Editor

13| Design_doc - Developer M- SchemaMapping &3 L)
Schema Map Editor a a £ X7 Pwo®
M SchemaMapping, Active Direckory. entitiment DOCIDMTEST

B *

Identity Yault Active Directory

+ Mon-class-specific Mapping Mon-class-specific Mapping

+ Group group

Locality locality

+ Cwrganization organizakion

+ Organizational Unit organizationalling

= User user
DirML-ADAliasName sAMAccountMame
L physicalDeliveryOfficelame
nsprlistributicnPassword nspraDistributionPassword

Phyysical Delivery Office Name I

Mapping Editor | XML Source XML Tree

NOTE: The Schema Map editor is for creating and managing schema map policies. If you want to
manage the actual schema on the Identity Vault or Application, use the Manage Schema tool, which
is accessible by clicking the pulldown menu *, then selecting Manage Identity Vault Schema +in or
Manage Application Schema “2.

For more information, see “Managing the Schema” in the Designer 3.0 for Identity Manager 3.6
Administration Guide.

This section includes the following topics:

¢ Section 6.1, “Using the Schema Map Editor,” on page 78
¢ Section 6.2, “Editing a Schema Map Policy,” on page 81
¢ Section 6.3, “Testing Schema Map Policies,” on page 86
¢ Section 6.4, “Exporting and Importing with the Schema Map Editor,” on page 87

Defining Schema Map Policies

77



78

¢ Section 6.5, “Accessing the Schema Map Policy in XML,” on page 87
¢ Section 6.6, “Additional Schema Map Policy Options,” on page 87

6.1 Using the Schema Map Editor

The Schema Map editor allows you to edit the Schema Map policies. This section includes the
following topics:

¢ Section 6.1.1, “Accessing the Schema Map Editor,” on page 78
¢ Section 6.1.2, “Navigating the Schema Map Editor,” on page 79
¢ Section 6.1.3, “Understanding the Schema Map Editor Toolbar,” on page 80

6.1.1 Accessing the Schema Map Editor

There are three different ways to access the Schema Map editor in Designer:
Outline View To open the Schema Map editor from the Outline view:

1 In an open project, click the Outline tab.

2 Click Show Model Outline &.

3 Expand the driver where you want to manage the schema map policy.

4 Double-click the Schema Map icon M= to launch the Schema Map editor.

You can also right-click the icon, then select Edit.
Policy Flow View To open the Schema Map editor from the Policy Flow view:

1 In an open project, click the Outline tab.
2 Click Show Policy Flow .

3 Double-click the Schema Mapping object, select the Schema Mapping policy, then click Edit to
launch the Schema Map Editor.

You can also right-click the Schema Mapping object, then select Edit Policy > SchemaMapping
to launch the Schema Map Editor.

Generic Designer

Input | | Qutput -

Schema Mapping

Publisher

[ Event

Policy Set View To open the Schema Map editor from the Policy Set view:

1 In an open project, click the Outline tab.
2 Click the Show Model Outline icon. &

Policies in Designer 3.0



3 In the Outline view, select the appropriate driver object.

4 In the Policy Set view, open the Schema Mapping folder, then double-click the Schema
Mapping policy to launch the Schema Map editor.

You can also right-click the Schema Mapping policy, then click Edit to launch the Schema
Map editor.

(B Policy Set &3 = 0O

Active Directory Driver Policy Seks

- XK =
+ lE’ Input Transformation
+ lE’ Oukput Transformation

=B schema Mapping
M= SchemaMapping

(B Filker

6.1.2 Navigating the Schema Map Editor

The Schema Map Editor uses standard point-and-click navigation. However, it also provides
keyboard-based navigation options as described in Table 6-1.

NOTE: The Schema Map Editor lets you order the list of mapped classes and attributes
alphabetically (ascending or descending.) To do so, click either the gray Identity Vault header or the
gray application datastore header that appears above the list of mapped classes. If you first select a
class mapping and then click one of the headers, only the attributes within the class mapping are
ordered.

Table 6-1 Schema Map Editor Keyboard Support

Keystroke Description

Up-arrow Moves the cursor up in the Schema Map editor.
Down-arrow Moves the cursor down in the Schema Map editor.
Left-arrow Collapses the information displayed

Right-arrow Expands the information displayed.

Insert Adds a class.

Ctrl+Insert Adds an attribute.

Delete Deletes the selected items.

Enter Opens edit mode for the currently selected field.

Press Enter a second time to commit the change in
Schema Map editor.

Esc Exits the edit mode.

Defining Schema Map Policies

79



6.1.3 Understanding the Schema Map Editor Toolbar

The Schema Map editor includes a toolbar that provides access to the following features. Several of
these features, along with an option to Edit # a selected mapping, is also available from a
dropdown menu by right-clicking in the Schema Map editor.

Tool Description

c Insert Identity Vault Class launches a dialog box from which you can add a new ID Vault

da
class, and its associated attributes, to the schema map. For more information, see “Adding
an Identity Vault Class or Attribute” on page 81.

8 Insert Identity Vault Attribute launches a dialog box from which you can add additional
attributes to an existing ID Vault class in the schema map. For more information, see
“Adding an Identity Vault Class or Attribute” on page 81.

B Insert Application Class launches a dialog box from which you can add a new Application
class, and its associated attributes, to the schema map. For more information, see “Adding
an Application Class or Attribute” on page 83.

@ Insert Application Attribute launches a dialog box from which you can add additional
attributes to an existing Application class in the schema map. For more information, see
“Adding an Application Class or Attribute” on page 83.

c Insert Class Row adds an empty class row to the schema map. You can then populate the
class fields manually or by selecting from the dropdown menu of available classes.

@ Insert Attribute Row adds an empty attribute row to the selected class in the schema map.
You can then populate the attribute fields manually or by selecting from the dropdown
menu of available attributes.

4 Delete deletes the selected class or attribute mappings from the schema map.

Clear All Items deletes all class and attribute entries from the schema map.

N

2] Synchronize with the Filter Editor instructs the Schema Map editor to update the Filter
policy with any schema mappings you have added in the Schema Map editor. The Schema
Map editor does not synchronize deleted entries to the Filter policy.

For more information about filter policies and the Filter editor, see Chapter 7, “Controlling
the Flow of Objects with the Filter,” on page 91.

& Launch Policy Simulator launches the Policy Simulator. For more information, see
Chapter 9, “Testing Policies with the Policy Simulator,” on page 143.

@ Help launches the context-sensitive help for the Schema Map editor.

80 Policies in Designer 3.0



Tool Description

- The pulldown menu opens a secondary menu of schema map editor tools, including the
following:

% Save to File exports the current schema map to an XML file.
= Import from File imports a schema map from a previously saved XML file.

B Manage Identity Vault Schema launches the Manage Schema tool. For more
information, see “Managing the Schema” in the Designer 3.0 for Identity Manager 3.6
Administration Guide.

2 Manage Application Schema launches the Manage Schema tool. For more
information, see “Managing the Schema” in the Designer 3.0 for Identity Manager 3.6
Administration Guide.

Gy Refresh Application Schema queries a live application for its current schema. This lets
you update the application schema in Designer as it changes on the live system.

6.2 Editing a Schema Map Policy

The Schema Map editor allows you to create and edit schema map policies. This section includes the
following topics:

¢ Section 6.2.1, “Adding or Deleting Classes and Attributes,” on page 81

¢ Section 6.2.2, “Refreshing the Application Schema,” on page 85

¢ Section 6.2.3, “Editing Items,” on page 85

¢ Section 6.2.4, “Sorting Schema Map Entries,” on page 86

¢ Section 6.2.5, “Managing the Schema,” on page 86

For information about exporting and importing a schema map policy, see Section 6.4, “Exporting
and Importing with the Schema Map Editor,” on page 87.

6.2.1 Adding or Deleting Classes and Attributes

There are three types of classes or attributes you can add to a schema map. The process for adding
each type of class or attribute varies.

When you add or remove a class or attribute in the Schema Map policy, Designer updates relevant
filters at the same time. For more information about filters, see Chapter 7, “Controlling the Flow of
Objects with the Filter,” on page 91.

¢ “Adding an Identity Vault Class or Attribute” on page 81

+ “Adding an Application Class or Attribute” on page 83

+ “Adding a Non-class-specific Attribute Mapping” on page 84

¢ “Deleting a Class or Attribute Mapping” on page 85

Adding an Identity Vault Class or Attribute

You can both add new Identity Vault classes and attributes to a schema map, and add additional
Identity Vault attributes to an existing class mapping.

Defining Schema Map Policies

81



To add a new Identity Vault class and attributes to a schema map:

1 In the Schema Map Editor, select Insert Identity Vault Class = .

You can also right-click in the Schema Map editor, then click Insert Identity Vault Class.

2 In the Select Identity Vault Class and its Attributes page, select a class and the relevant class
attributes to add to the schema map, then click OK.

Use Shift+click and Ctrl+click to select multiple attributes, if desired.

El Select Identity Vault Class and its Attributes E]

€ : Attributes of this class: i
srvpryTaskGroupdas: TR m =
srvpryTeam a

| srvpryTeamDefs
srvprvTeamPequest
srvpryThems accessCardiumber

|srvprvUserhux Account Balance
srvprvWebappConfig ACL
srvpry'Workflow
srvpreWoarkFlowDefs MDW Unbrmsted Credit
sshadmnConfiguration assistant
sshadmnServer acaitartPhions
sssServerPolicies s
sssServerPolicyOverride :
strongAuthenticationdiser Audic:File Link
StyleShest Authority Revocation
Template suxClassCompatibiity
e Back Link
Jrea oo Bandery Pr (]
uamPosixConfig o _crv operty
uamPosioGroup sinessCatagory
uamPosixliser CA Private Key
uamPoskxWorkstation CA Public Key
L carLicense
. _

i i Certificate Revocation
e Infcrmat;
m:mw e Certificabe Yalidity Interyal
WANMAN:LAN Area
|¥Timr w o pr
[]Show audliary attributes
Cancel

3 In the Schema Map Editor, double-click each class and attribute you added to the schema map,
then specify the appropriate Application class (or attribute) to which you want to map it.

You can either select the class or attribute name from the dropdown list, or type it in the field

manually.

Idenkity Wault
Mon-class-specific Mapping

Active Direckary
Mon-class-specific Mapping

= Group group
DirML-ADAlIasMame sAMAccountMame
GID v || guid v
Locality locality
Organization organizakion
Qrganizational Unik organizationallnit
User user

4 To save the schema map changes, select File > Save.

82 Policies in Designer 3.0



To add additional Identity Vault attributes to an existing class mapping:

1 In the Schema Map Editor, select a class mapping, then select Add Identity Vault Attributes 2.
You can also right-click in the Schema Map editor, then select Insert Identity Vault Attributes.

2 In the Select ID Vault Attributes page, select the desired attributes to add to the class mapping,
then click OK.

Use Shift+click and Ctrl+click to select multiple attributes, if desired.

3 In the Schema Map Editor, double-click each attribute you added to the schema map, then
specify the appropriate Application attribute to which you want to map it.

You can either select the attribute from the dropdown list, or type it in the field manually.

Identity Yault Active Directory
1 Mon-class-specific Mapping Mon-class-specific Mapping
=] Group group
DirML-ADAlIasMame sAMAccountMame
GID || | guid w
Locality locality
+ Crganization organizakion
1 Organizational Linit organizationallnit
+ User user

4 To save the schema map changes, select File > Save.

Adding an Application Class or Attribute

You can both add new Application classes and attributes to a schema map, and add additional
Application attributes to an existing class mapping.

IMPORTANT: To view an application’s schema classes and attributes, the driver must be able to
retrieve the schema information from a live application environment. This occurs automatically
when a driver starts (right-click the driver, then select Live > Start Driver). However. vou can
refresh the application schema at any time by selecting Refresh Application Schema Eal

To add a new Attribute class and attributes to a schema map:

1 In the Schema Map Editor, select Insert Application Class =.
You can also right-click in the Schema Map editor, then click Insert Application Class.

2 In the Select Application Class and its Attributes page, select a class and the relevant class
attributes to add to the schema map, then click OK.

Use Shift+click and Ctrl+click to select multiple attributes, if desired.

3 In the Schema Map Editor, double-click each class and attribute you added to the schema map,
then specify the appropriate Application class (or attribute) to which you want to map it.

You can either select the class or attribute name from the dropdown list, or type it in the field
manually.

Defining Schema Map Policies

83



Idenkity Wault Active Directory

1 Mon-class-specific Mapping Mon-class-specific Mapping
=] Group group
DirsML-ADAliasHame sAMAccountMarme
GID || | guid w
Locality locality
+ Crganization organizakion
1 Organizational Linit organizationallnit
+ User user

4 To save the schema map changes, select File > Save.

To add additional Application attributes to an existing class mapping:

i

1 Inthe Schema Map Editor, select a class mapping, then select Insert Application Attributes ==.
You can also right-click in the Schema Map editor, then select Insert Identity Vault Attributes.

2 Inthe Select App Attributes page, select the desired attributes to add to the class mapping, then
click OK.

Use Shift+click and Ctrl+click to select multiple attributes, if desired.

3 In the Schema Map Editor, double-click each attribute you added to the schema map, then
specify the appropriate Identity Vault attribute to which you want to map it.

You can either select the attribute from the dropdown list, or type it in the field manually.

Identity Yault Active Directory
1 Mon-class-specific Mapping Mon-class-specific Mapping
=] Group group
DirML-ADAlIasMame sAMAccountMame
GID || | guid w
Locality locality
+ Crganization organizakion
1 Organizational Linit organizationallnit
+ User user

4 To save the schema map changes, select File > Save.

Adding a Non-class-specific Attribute Mapping

Sometimes an attribute mapping doesn’t apply to a specific class. In this case you can define the
attribute mappingin the Non-class-specific container.

To add a non-class-specific attribute mapping:

1 Select the Non-class-specific Mapping entry in the Schema Map Editor.
2 Add the appropriate attribute mapping using one of the methods described previously.

For more information, see “Adding an Identity Vault Class or Attribute” on page 81 and
“Adding an Application Class or Attribute” on page §3.

84 Policies in Designer 3.0



Deleting a Class or Attribute Mapping

If you do not want an Identity Vault class or an attribute to be mapped to an Application class or
attribute, the best practice is to completely remove the class or the attribute from the Schema Map
policy. To remove multiple classes or attributes at the same time, use Ctrl-click or Shift-click to
select more than one class or attribute at a time.

H H

Identity Yault Active Directory
Mon-class-specific Mapping Mon-class-specific Mapping
Group group

Locality locality

[=] Organization organization
L phrysicalDeliveryOFficeManme
Pheysical Delivery Qffice Mame |

COrganizational Unit organizationallinik

[= User user
DirML-ADAlasManme sAMAccountMane

physicalDelivery OfficeMame

nsprDistributionPassword nsprDistributionPassword

Pheysical Delivery Office Mame |

You can add or remove attributes and classes from the Schema Map policy in the following ways:

¢ Select the classes or attributes you want to remove, then right-click and select Delete.

« Select the classes or attributes you want to remove, then click Delete % in the Schema Map
editor toolbar.

¢ Select the classes or attributes you want to remove, then press the Delete key.

You can also delete all classes and attributes at once by selecting Clear All Items &

6.2.2 Refreshing the Application Schema

If you have modified the schema in the application, these changes need to be reflected in the Schema
Map policy. To make the new schema available, click the toolbar pulldown menu, then select
Refresh Application Schema o

Refreshing the application schema requires a connection to the live application because the
application driver must be able to query the application for the updated schema.

6.2.3 Editing Items

To edit a mapping, double-click the selected row. An in-place editor appears, allowing you to edit
the mapping.

Defining Schema Map Policies

85



Figure 6-2 In-line Edits in the Schema Map Editor

5 E

Identity Yault Active Directory
1 Mon-class-specific Mapping Mon-class-specific Mapping
+ | B==l | | user L
1 Organizational Unik organizationallinik
+ Organization organization
Locality locality
+ Group group

6.2.4 Sorting Schema Map Entries

The Schema Map editor allows you to sort entries in ascending/descending order by clicking on the
column heading. Click the Identity Vault heading to sort entries based on Identity Vault items. Click
the connected system heading to sort entries based on connected system items.

6.2.5 Managing the Schema

Designer allows you to manage the Identity Vault schema and any connected system's schema. You
can import the schema, modify it, and deploy the changed schema back into the Identity Vault or the
Application.

To manage the Identity Vault schema, click the pulldown menu *, then select Manage Identity
Vault Schema. This opens the Manage Schema tool and displays information about the classes and
attributes in the Identity Vault schema.

To manage the Application schema, click the pulldown menu ™, then select Manage Application
Schema. This opens the Manage Schema tool and displays information about the classes and
attributes in the Application schema.

For more information about how to manage the schema, see “Managing the Schema” in the
Designer 3.0 for Identity Manager 3.6 Administration Guide.

6.3 Testing Schema Map Policies

Designer comes with a tool called the Policy Simulator. It allows you to test your policies without
implementing them in a production environment. You can launch the Policy Simulator through the
Schema Map editor to test your policy after you have modified it.

86 Policies in Designer 3.0



To access the Policy Simulator and test the Schema Map policy:

1 Click the Launch Policy Simulator icon 2 in the toolbar.
2 Select To Identity Vault or From Identity Vault as the simulation point of the Schema Map
policy.

For more information on the Policy Simulator, see Chapter 9, “Testing Policies with the Policy
Simulator,” on page 143.

6.4 Exporting and Importing with the Schema
Map Editor

Designer allows you to export a schema map policy document to an XML file. It also allows you to
Import an XML file from a particular point on the file system to the Schema Map Editor.

6.4.1 Exporting a Schema Map Policy
Schema Map policies can be exported from the editor and saved as an XML file located in the file
system.

1 In the Schema Map editor, click the pulldown menu ', then select Save to File &L, .

2 Specify a filename and location where you want to export your schema map policy, then click
Save.

6.4.2 Importing a Schema Map Policy

The Exported policies which were saved as XML files on the file system can be re-imported to the
Schema Map editor. This functionality saves you the effort of redoing the class or attribute
mappings again. To import a schema map policy:

1 In the Schema Map editor, click the pulldown menu *, then select Import from File &

2 Inthe Import a SchemaMap File dialog box, browse to the schema file you want to import, then
click Open.

Specify whether you want to append the imported schema mappings to the existing schema
map, or replace the existing schema map with the imported schema map.

6.5 Accessing the Schema Map Policy in XML

Designer enables you to view, edit, and validate the XML by using an XML editor. Click the XML
Source tab or the XML Tree tab to access the XML editor. For more information about the XML
editor, see “The Novell XML Editor” in the Designer 3.0 for Identity Manager 3.6 Administration
Guide.

6.6 Additional Schema Map Policy Options

When you right-click a Schema Map policy, there are multiple options presented in the Outline
view, the Policy Flow view, and the Policy Set view.

¢ Section 6.6.1, “Outline View Additional Options,” on page 88

Defining Schema Map Policies

87



+ Section 6.6.2, “Policy Flow View Additional Options,” on page 88
¢ Section 6.6.3, “Policy Set View Additional Options,” on page 90

6.6.1 Outline View Additional Options

1 Right-click the Schema Map policy in the Outline view, which displays the following menu:

&2 Edit
Copy..,

[5] save fs...
& Simulate. .,

Export to Configuration File, .,

Live 4

Cpen With 4
¥ Delete

Properties

+ Edit: Launches the Schema Map editor. For more information, see Chapter 6, “Defining
Schema Map Policies,” on page 77.

+ Copy: Creates a copy of the Schema Map policy.
+ Save As: Saves the Schema Map policy as a .xm1 file.

¢ Simulate: Tests the Schema Map policy. For more information, see Section 6.3, “Testing
Schema Map Policies,” on page 86.

+ Export to File: Saves the Schema Map policy as a . xm1 file.
+ Live > Deploy: Deploys the Schema Map policy into the Identity Vault.

¢ Live > Compare: Compares the Schema Map policy in Designer to the Schema Map
policy in the Identity Vault.

¢ Open With > Designer Built-in Editor: Launches the Schema Map editor.
¢ Open With > Novell XML Editor: Launches the XML editor.

¢ Open With > Text Editor: Launches the text editor.

¢ Delete: Deletes the Schema Map policy.

+ Properties: Allows you to rename the Schema Map policy.

6.6.2 Policy Flow View Additional Options

1 Right-click the Schema Map policy in the Policy Flow view.

88 Policies in Designer 3.0



Add Palicy 4

Edit Palicy 4
£ DirdkL Script Tracing. .

o Simulate. ..
Live L4

3 Delete All Set Policies

= Remove All Set Palicies

¢ Add Policy > DirXML Script: Adds a new Schema Map policy by using DirXML®
Script.

¢ Add Policy > XSLT: Adds a new Schema Map policy by using XSLT.
¢ Add Policy > Schema Map: Adds a new Schema Map policy containing no information.

¢ Add Policy > Link to Existing: Allows you to browse and select an existing Schema
Map policy to link to the current Schema Map policy.

+ Add Policy > Copy Existing: Allows you to browse to and select an existing Schema
Map policy to copy to the current Schema Map policy.

+ Edit Policy > Schema Map: Launches the Schema Map editor. For more information, see
Section 6.2, “Editing a Schema Map Policy,” on page 81.

¢ DirXML Script Tracing: Enables DirXML Script tracing on the Schema Map policy.

¢ Simulate: Tests the Schema Map policy. For more information, see Section 6.3, “Testing
Schema Map Policies,” on page 86.

¢ Live > Import: Imports an existing Schema Map policy from the Identity Vault.
¢ Live > Deploy: Deploys the selected Schema Map policy into the Identity Vault.

¢ Live > Compare: Compares the selected Schema Map policy to a Schema Map policy in
the Identity Vault.

+ Live > Driver Configuration > Import Attributes: Allows you to import attributes
from the Identity Vault and compare the attributes from the Identity Vault to what is in
Designer.

+ Live > Driver Configuration > Deploy Attributes: Allows you to deploy attributes
from Designer into the Identity Vault and compare the attributes from Designer with the
attributes in the Identity Vault.

¢ Live > Driver Configuration > Compare Attributes: Allows you to compare attributes
from the selected Schema Map policy to attributes in the Identity Vault.

+ Live > Driver Status: Displays the status of the driver.

¢ Live > Start Driver: Starts the driver.

¢ Live > Stop Driver: Stops the driver.

¢ Live > Restart Driver: Restarts the driver.

+ Delete All Set Policies: Deletes all policies in the selected policy set.

+ Remove All Set Policies: Removes all policies from the selected policy set, but does not
delete the existing policies.

Defining Schema Map Policies



6.6.3 Policy Set View Additional Options

1 Right-click the Schema Map policy in the Policy Set view.

&7 Edit
Copy...

LD_I Save As...
o Simulate. ..

= Remaove
gﬁ Link T Exisking Paolicy. ..

Export ko Configuration File. ..
Live L4
¥ Delete

Properties

¢ Edit: Launches the Schema Map editor. For more information, see Section 6.2, “Editing a
Schema Map Policy,” on page 81.

+ Copy: Creates a copy of the Schema Map policy.
+ Save As: Saves the Schema Map policy as a . xm1 file.

¢ Simulate: Tests the Schema Map policy. For more information, see Section 6.3, “Testing
Schema Map Policies,” on page 86.

+ Remove: Removes the Schema Map policy from the policy set, but does not delete the
Schema Map policy from the Identity Vault.

+ Link to Existing Policy: Allows you to browse to another Schema Map policy and link it
into the existing policy.

+ Move Up: Moves the Schema Map policy up in the execution order of the policy.

+ Move Down: Moves the Schema Map policy down in the execution order of the policy.
+ Export to Configuration File: Saves the Schema Map policy as a . xm1 file.

+ Live > Deploy: Deploys the Schema Map policy into the Identity Vault.

+ Live > Compare: Compares the Schema Map policy in Designer to the Schema Map
policy in the Identity Vault.

¢ Delete: Deletes the Schema Map policy.

+ Properties: Allows you to rename the Schema Map policy.

90 Policies in Designer 3.0



Controlling the Flow of Objects
with the Filter

The Filter editor allows you to manage the filter. In the Filter editor, you define how each class and
attribute should be handled by the Publisher and Subscriber channels.

Figure 7-1 The Filter Editor

Filter Editor g @ X & Q4 R & @
'@. Active Directory Filker, Active Directory, entitiment, DOCIDMTEST

Classiattribute Comments  Class: Group

+ 13ro

+ %% atiu:unal Init comments

- BRI @R User
Publish
EP (¥ synchronize 14
. () Ignore
Subscribe
% @ synchronize
0 () Ignore

Zreate home directory:

i

Track member of template

{:}'fes i

< 3 {E}ND

Filker Editor | XML Source | $ML Tree
When information is synchronized between connected systems, the connected system can receive

the changes or just be notified that a change has occurred. Designer displays this information in the
Policy Flow view as Sync and Notify filters.

If a filter is set to Sync, then the objects modifications are automatically synchronized to the
connected system. If the filter is set to Notify, then the object modification is reported to the
metadirectory engine, but the object is not automatically synchronized. For more information, see
Section 7.2.5, “Changing the Filter Settings,” on page 97.

This section includes the following topics:

¢ Section 7.1, “Using the Filter Editor,” on page 92

Controlling the Flow of Objects with the Filter

91



¢ Section 7.2, “Editing the Filter,” on page 96

¢ Section 7.3, “Testing the Filter,” on page 102

¢ Section 7.4, “Exporting and Importing Filter Files,” on page 102

+ Section 7.5, “Adding Comments to Classes and Attributes,” on page 102
¢ Section 7.6, “Viewing the Filter in XML,” on page 103

¢ Section 7.7, “Deploying the Filter,” on page 103

¢ Section 7.8, “Additional Filter Options,” on page 103

7.1 Using the Filter Editor

The Filter editor allows you to edit filter policies. This section includes the following topics:

¢ Section 7.1.1, “Accessing the Filter Editor,” on page 92
¢ Section 7.1.2, “Navigating the Filter Editor,” on page 94
¢ Section 7.1.3, “Understanding the Filter Editor Toolbar,” on page 95

7.1.1 Accessing the Filter Editor

The Filter editor allows you to edit the filter. There are three different ways to access the Filter
editor:

¢ “Model Outline View” on page 92

+ “Policy Flow View” on page 93

+ “Policy Set View” on page 94
Model Outline View

1 In the Outline view, select the Show Model Outline icon B,

2 In the Model Outline, open the driver for which you want to manage a filter.

92 Policies in Designer 3.0



=" Project EE Outline 3 =0
|E| Tl s =
= e projectl
=@ 1dentity vault

[ server

= E Drriver Set
=&/ Active Directory
‘%) Publisher
& subscriber

i

Active Direckory Filker
SchemaMapping
InputTransFarm

=

Oukput TransForm
Passward{Publ-5ub Email Moki
EE Password(Sub)-Pub Email Moki
[ﬂ Active Direckary
& Delimited Text
& LDaF
% Cefault Motification Colleckion

ool ol

3 Double-click the Filter object (or right-click it and select Edif) to launch the Filter editor.

Policy Flow View

1 In the Outline view, select the Show Policy Flow icon. ]

Controlling the Flow of Objects with the Filter 93



Active Directory

|

! Input Gu‘tput o

Schema Mapping
Publisher | Subscriber
e
Evet =
Command -
. Placement i
E Matching Cresiion i
i I :
§ | Creation Matching !
' i :
8 pi t g :
E acemen wat
n

"' Command

Identity Yault

2 In the Policy Flow, double-click the Sync icon or the Notify objects (or Right-click and select
Edit Policy > Filter) to launch the Filter editor.

Policy Set View

1 Double-click the filter object in the Policy Set view.

(D prope [ owat [(Bhpabey 50, Provs| = O

| Active DirectoryDriver Policy Sets

| B e W - i 3
# (B Input Transformation
i# (B oubput Transformation

ﬁ Ackive Direcbory Fiker

7.1.2 Navigating the Filter Editor

The Filter Editor uses standard point-and-click navigation. However, it also provides keyboard-
based navigation options as described in Table 7-1.

Policies in Designer 3.0



NOTE: The Filter Editor lets you order the classes/attributes as needed:

¢ Click the header bar above the class/attribute list to switch between ascending and descending
order. This sorts both the classes and the attributes within the classes.

¢ Click and drag individual classes or attributes to create a custom order.

Table 7-1 Filter Editor Keyboard Support

Keystroke Description

Up-arrow Moves the cursor up in the Filter editor.
Down-arrow Moves the cursor down in the Filter editor.
Left-arrow Collapses the information displayed.

Right-arrow Expands the information displayed.

Insert Adds a class.

Ctrl+Insert Adds an attribute.

Delete Deletes the selected items.

Esc Exits the edit mode.

Ctrl+A Selects all classes and attributes in the Filter editor.

7.1.3 Understanding the Filter Editor Toolbar

The Filter editor includes a toolbar that provides access to the following features. Each of these
features, along with options to Undo “~ and Redo “+ recent actions, is also available from a
dropdown menu by right-clicking in the Filter Editor.

Tool
@ Add Attributes opens the Schema Browser so you can select attributes from the selected
class to add to the filter policy. For more information, see “Adding an Attribute” on page 97.
Add Classes opens the Schema Browser so you can select classes from the Identity Vault
Gi p y y
schema to add to the filter policy. For more information, see “Adding a Class” on page 96.
4 Delete deletes the selected attributes and classes from the filter policy.
goe Default Attribute Settings lets you define default values for all attributes added to the filter
= policy. For more information, see Section 7.2.4, “Setting Default Values for Attributes,” on
page 97.
g Copy an Existing Filter lets you copy the filter policy from another Designer object. For more
- information, see Section 7.2.3, “Copying an Existing Filter,” on page 97.
G Import Filter imports an existing filter policy from a previously saved XML file. For more
information, see Section 7.4.2, “Importing a Filter File,” on page 102.
= Export Filter saves the current filter policy to an XML file. For more information, see

Section 7.4.1, “Exporting a Filter File,” on page 102.

Controlling the Flow of Objects with the Filter

95



Tool Description

Deploy Filter deploys the filter policy to a live Identity Manager environment. For more

5
= information, see Section 7.7, “Deploying the Filter,” on page 103.
= Expand All expands all Class/Attribute groups in the filter policy.
= Collapse All collapses all Class/Attribute groups in the filter policy.
& Clear Filter deletes all class and attribute entries from the filter policy.
& Launch Policy Simulator launches the Policy Simulator. For more information, see
Chapter 9, “Testing Policies with the Policy Simulator,” on page 143.
@ Help launches the context-sensitive help for the Filter editor.

7.2 Editing the Filter

The Filter editor allows you to create and edit the filter. It provides the following primary tasks:

¢ Section 7.2.1, “Removing or Adding Classes and Attributes,” on page 96
Section 7.2.2, “Modifying Multiple Attributes,” on page 97

*

*

Section 7.2.3, “Copying an Existing Filter,” on page 97

*

Section 7.2.4, “Setting Default Values for Attributes,” on page 97

*

Section 7.2.5, “Changing the Filter Settings,” on page 97

7.2.1 Removing or Adding Classes and Attributes

By removing or adding classes and attributes, you determine the objects that synchronize between
the connected data store and the Identity Vault.

+ “Removing a Class or Attribute” on page 96
¢ “Adding a Class” on page 96
¢ “Adding an Attribute” on page 97

Removing a Class or Attribute

If you do not want a class or an attribute to synchronize, the best practice is to completely remove
the class or the attribute from the filter. To remove attributes and classes from the filter, do one of the
following:

+ Right-click the class or attribute you want to remove, then select Delefe.
¢ Select the class or attribute you want to remove, then click Delete X

* Click Clear Filter & to delete all classes and attributes from the filter.

Adding a Class

1 Click Add Classes ®.
You can also right-click in the Filter editor, then select Add Classes.

96 Policies in Designer 3.0



2 Browse and select the class you want to add, then click OK.
3 Change the options to synchronize the information.

4 To save the changes, click File > Save.

Adding an Attribute

1 Click Add Attributes @

You can also right-click in the Filter editor, then select Add Attribute.
2 Browse and select the attribute you want to add, then click OK.
3 Change the options to synchronize the information.

4 To save the changes, click File > Save.

7.2.2 Modifying Multiple Attributes

The Filter editor allows you to modify more than one attribute at a time. Press the Ctrl key and select
multiple attributes; when the option changes, it is changed for all of the selected attributes.

7.2.3 Copying an Existing Filter

You can copy an existing filter from another driver and use it in the driver you are currently working
with.

1 Click Copy an Existing Filter L&
You can also right-click in the Filter editor, then select Copy an Existing Filter.
2 Browse to and select the filter object you want to copy, then click OK.

If you have more than one Identity Vault in your project, you can copy filters from the other
Identity Vaults. When you are browsing to select the other object, you can browse to the other
Identity Vault and use a filter stored there.

7.2.4 Setting Default Values for Attributes

You can define the default values for new attributes when they are added to the filter.

1 Click Default Attribute Settings ¥-=.

2 Select the options you want new attributes to have, then click OK.

7.2.5 Changing the Filter Settings

The Filter editor gives you the option of changing how information is synchronized between the
Identity Vault and the connected system. The filter has different settings for classes and attributes.

1 In the Filter editor, select a class.

Controlling the Flow of Objects with the Filter

97



‘* Active Directory Fikter Active Directory. entitiment, DOCIDMTEST

Class)attribute

= P
VO o
EPER Description
EP ey Full Name
Péb L
L™y member
D Owner

] & Organizational Uit

2
®  EP&y user

Comment Class: Group

>

Comments

Pubdich

EP (& synchronize (&)
) Oigore

Subscribe

i @ synchronize (@)
(™) O lgnore

Create home directory

Track member of template
Oives @
= No

2 Change the filter settings for the selected class.
See Table 7-2 on page 99 for information on each of the class settings available in the Filter

Editor.

3 In the Filter Editor, select an attribute.

98 Policies in Designer 3.0



ﬂ Active Directory Filber. Active Directory entitiment DOCIDMTEST

Class [ Attribbe Comments  Class: Growp
= P cow Attribute: Ful ame
%g E:'mﬂm Comments
e Yl e |
Dih L Publerh Subscrbe
LI Mestber o
Py owner @ (=) Synchronize. e @ (=) Synchronize
# TP Organationsl U () Cignore ™y C grore
* @@ Lbgeer h ::_-t'MY b ':}M‘r’
¥ CiResst ¥ (O Resst
Marps Authority
(=) Def sult i
() Identity Yauk
() Apphcation
Cihone
Optimize modifications to the [dantity Vauk
@Yes @
it
< >

4 Change the filter settings for the selected attribute, then click Save (=l (in the Designer toolbar)

to save the changes.

See Table 7-3 on page 100 for information on each of the attribute settings available in the

Filter Editor.

Table 7-2 Filter Editor Class Settings

Options Definitions

Publish + Synchronize: Allows the class to synchronize from the
connected system into the Identity Vault.

+ Ignore: Does not synchronize the class from the connected

system into the Identity Vault.

Subscribe + Synchronize: Allows the class to synchronize from the Identity

Vault into the connected system.

+ Ignore: Does not synchronize the class from the Identity Vault

into the connected system.

Create Home Directory Create Home Directory allows you to create a home directory for a
User object in eDirectory™. The option only works for eDirectory.

* Yes: Automatically creates home directories.

+ No: Does not create home directories.

Controlling the Flow of Objects with the Filter

99



Options

Definitions

Track Member of Template

* Yes: Determines whether or not the Publisher channel
maintains the Member of Template attribute when it creates
objects from a template.

+ No: Does not track the Member of Template attribute.

When a User object is created using an eDirectory Template
object, the eDirectory driver maintains the Member of Template
attribute, if the Track Member of Template option is selected.
The option only works for eDirectory.

Table 7-3 Filter Editor Attribute Settings

Options

Definitions

Publish

Subscribe

+ Synchronize: Changes to this object are reported and

automatically synchronized.

Ignore: Changes to this object are neither reported nor
automatically synchronized.

Notify: Changes to this object are reported, but not automatically
synchronized.

Reset: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)

The Reset option makes a data store the authoritative source of
information. For example, if employee addresses should only be
changed in the HR database, then set the Reset option in the filter
for this attribute. When an address is changed in the e-mail
system and sent to the HR database, the filter sends the
information from the HR database back to the e-mail system and
the employee’s address is not changed.

Synchronize: Changes to this object are reported and
automatically synchronized.

Ignore: Changes to this object are neither reported nor
automatically synchronized.

Notify: Changes to this object are reported, but not automatically
synchronized.

Reset: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)

The Reset option makes a data store the authoritative source of
information. For example, if employee addresses should only be
changed in HR database, then set the Reset option in the filter for
this attribute. When an address is changed in the e-mail system
and sent to the HR database, the filter sends the information from
the HR database back to the e-mail system and the employee’s
address is not changed.

100 Policies in Designer 3.0



Options

Definitions

Merge Authority

Optimize Modification to
Identity Manager

*

*

Default: If an attribute is not being synchronized in either channel,
no merging occurs.

If an attribute is being synchronized in one channel and not the
other, then all existing values on the destination for that channel
are removed and replaced with the values from the source for that
channel. If the source has multiple values and the destination can
only accommodate a single value, then only one of the values is
used on the destination side.

If an attribute is being synchronized in both channels and both
sides can accommodate only a single value, the connected
application acquires the Identity Vault values unless there is no
value in the Identity Vault. If this is the case, the Identity Vault
acquires the values from the connected application (if any).

If an attribute is being synchronized in both channels and only one
side can accommodate multiple values, the single-valued side’s
value is added to the multi-valued side if it is not already there. If
there is no value on the single side, you can choose the value to
add to the single side.

This is always valid behavior.

Identity Vault: Behaves the same way as the default behavior if
the attribute is being synchronized on the Subscriber channel and
not on the Publisher channel.

This is valid behavior when synchronizing on the Subscriber
channel.

Application: Behaves the same as the default behavior if the
attribute is being synchronized on the Publisher channel and not
on the Subscriber channel.

This is valid behavior when synchronizing on the Publisher
channel.

None: No merging occurs regardless of synchronization.

Yes: Changes to this attribute are examined on the Publisher
channel to determine the minimal change made in the Identity
Vault.

No: Changes are not examined.

When an operation is a Modify on the Publisher channel, the
Metadirectory engine examines the current state of the object in
the Identity Vault and changes the Modify to update only the
values that are changing. For example, if an object has attributes
of a, b, ¢, and d and the Publisher channel receives a Modify event
to remove all existing values and add a, b, d, and e, the optimize
process knows that the minimal change is to remove d and add e.

Using this option can take a long time to process events on
attributes that have more than 1,000 values.

Controlling the Flow of Objects with the Filter

101



7.3 Testing the Filter

Designer comes with a tool called the Policy Simulator, which allows you to test policies without
implementing them in a production environment. You can launch the Policy Simulator through the
Filter editor to test your policy after you have modified it.

1 Click Launch Policy Simulator ~%2.
2 Select To Identity Vault or From Identity Vault as the simulation point of the filter.

For more information on the Policy Simulator, see Chapter 9, “Testing Policies with the Policy
Simulator,” on page 143.

7.4 Exporting and Importing Filter Files

Designer allows you to Import an XML filter file from a particular point on the file system to the
filter editor. It also allows you to Export an XML filter file to a particular location on the file
system.

¢ Section 7.4.1, “Exporting a Filter File,” on page 102

¢ Section 7.4.2, “Importing a Filter File,” on page 102

7.4.1 Exporting a Filter File

1 Select Export Filter ..

2 In the Export Filter dialog box, specify a file name and location for the XML filter file, then
click Save.

7.4.2 Importing a Filter File

1 Select Import Filter &

2 In the Import Filter File dialog box, browse to the filter file you want to import, then click
Open.

Specify whether you want to append the imported filter rules to the existing filter rules, or
replace the existing filter rules with the imported filter rules.

NOTE: Both the Import and Export features enable the user to export filter editor documents and re-
import them if required, thereby avoiding the need to redo the entire task of adding classes and
attributes and assigning their properties.

7.5 Adding Comments to Classes and Attributes

Filter Editor lets you add additional comments to the classes and attributes in the filter. These
comments are visible in the Filter Editor, and in Designer’s generated documentation for the project.

1 In the Filter Editor, select the class or attribute to which you want to add a comment, then type
the desired comment in the Comments field.

Once entered, the comment is visible in the Comments column next to its associated class or
attribute.

102 Policies in Designer 3.0



7.6 Viewing the Filter in XML

Designer enables you to view, edit, and validate the XML by using an XML editor. Click the XML
Source tab or the XML Tree tab to access the XML editor. For more information about the XML
editor, see “The Novell XML Editor” in the Designer 3.0 for Identity Manager 3.6 Administration
Guide.

7.7 Deploying the Filter

To deploy the filter to the live Identity Vault:

1 Click Deploy Filter )
2 In the Deployment Summary page, click Deploy.

The Deployment Summary displays Designer’s Compare feature so you know what the
differences are between Designer’s filter and the currently deployed filter, if any. For more
information about the Compare feature, see “Using the Compare Feature When Deploying” in
the Designer 3.0 for Identity Manager 3.6 Administration Guide.

3 In the Deployment Results page, click OK.

The Deployments Results page notes any errors or warnings that occurred during the
deployment process.

7.8 Additional Filter Options

When you right-click a filter object, there are multiple options presented in the Outline view, the
Policy Flow view, and the Policy Set view.

¢ Section 7.8.1, “Outline View Additional Options,” on page 103
¢ Section 7.8.2, “Policy Flow View Additional Options,” on page 104
¢ Section 7.8.3, “Policy Set View Additional Options,” on page 105

7.8.1 Outline View Additional Options

The Outline view offers the following filter-related options. To access them, right-click the filter
object in the Outline view.

27 Edit
L.:,_l Save As...
o Simulate, .
@ Export ko Configuration File. ..
Live »

Open With L4

¢ Edit: Launches the Filter editor. For more information, see Section 7.2, “Editing the Filter,” on
page 96.

+ Save As: Saves the filter as a . xm1 file.

Controlling the Flow of Objects with the Filter

103



¢ Simulate: Launches the Policy Simulator. For more information, see Section 7.3, “Testing the
Filter,” on page 102.

+ Export to Configuration File: Saves the filter as a . xm1 file.

+ Live > Deploy: Deploys the filter into the Identity Vault.

¢ Live > Compare: Compares the filer with an existing filter object in the Identity Vault.
¢ Open With > Designer Built-in Editor: Launches the Filter editor.

¢ Open With > Novell XML Editor: Launches the XML editor.

¢ Open With > Text Editor: Launches the built-in text editor.

7.8.2 Policy Flow View Additional Options

The Policy Flow view offers the following filter-related options. To access them, right-click the
filter object in the Policy Flow view.

2 Edit

L.:,_| Save s,
@ Simulate. .

Live L4

+ Edit: Launches the Filter editor. For more information, see Section 7.2, “Editing the Filter,” on
page 96.

¢ Save: Saves the selected Policy Set as an XML file.

¢ Simulate: Launches the Policy Simulator. For more information, see Section 7.3, “Testing the
Filter,” on page 102.

¢ Live > Import: Allows you to import filter details from the Identity Vault.
¢ Live > Deploy: Allows you to deploy the filter into the Identity Vault.
¢ Live > Compare: Compares the filter to an existing filter in the Identity Vault.

¢ Live > Driver Configuration > Import Attributes: Allows you to import attributes from the
Identity Vault and compare the attributes from the Identity Vault to what is in Designer.

¢ Live > Driver Configuration > Deploy Attributes: Allows you to deploy attributes from
Designer into the Identity Vault and compare the attributes from Designer with the attributes in
the Identity Vault.

¢ Live > Driver Configuration > Compare Attributes: Allows you to compare attributes from
the selected Schema Map policy to attributes in the Identity Vault.

¢ Live > Driver Status: Displays the status of the driver.
+ Live > Start Driver: Starts the driver.
¢ Live > Stop Driver: Stops the driver.

+ Live > Restart Driver: Restarts the driver.

104 Policies in Designer 3.0



7.8.3 Policy Set View Additional Options

The Policy Set view offers the following filter-related options. To access them, right-click the filter
object in the Policy Set view.

S Edit

L.:,_| Save As...
& Simulate, .,
@ Export ko Configuration File. ..

Live L4

¢ Edit: Launches the Filter editor. For more information, see Section 7.2, “Editing the Filter,” on
page 96.

+ Save As: Saves the filter as a XML file.

¢ Simulate: Launches the Policy Simulator. For more information, see Section 7.3, “Testing the
Filter,” on page 102.

+ Export to Configuration File: Saves the filter as a . xm1 file.
+ Live > Deploy: Allows you to deploy the filter into the Identity Vault.

¢ Live > Compare: Compares the filter to an existing filter in the Identity Vault.

Controlling the Flow of Objects with the Filter 105



106 Policies in Designer 3.0



Using Predefined Rules

Designer includes 19 predefined rules. You can import and use these rules as well as create your
own rules. These rules include common tasks that administrators use. You need to provide
information specific to your environment to customize the rules.

*

*

Section 8.1, “Command Transformation - Create Departmental Container - Part 1 and Part 2,”
on page 108

Section 8.2, “Command Transformation - Publisher Delete to Disable,” on page 111
Section 8.3, “Creation - Require Attributes,” on page 112

Section 8.4, “Creation - Publisher - Use Template,” on page 114

Section 8.5, “Creation - Set Default Attribute Value,” on page 115

Section 8.6, “Creation - Set Default Password,” on page 117

Section 8.7, “Event Transformation - Scope Filtering - Include Subtrees,” on page 119
Section 8.8, “Event Transformation - Scope Filtering - Exclude Subtrees,” on page 120

Section 8.9, “Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-
nnnn to nnn-nnn-nnnn,” on page 122

Section 8.10, “Input or Output Transformation - Reformat Telephone Number from nnn-nnn-
nnnn to (nnn) nnn-nnnn,” on page 123

Section 8.11, “Matching - Publisher Mirrored,” on page 125

Section 8.12, “Matching - Subscriber Mirrored - LDAP Format,” on page 127
Section 8.13, “Matching - By Attribute Value,” on page 129

Section 8.14, “Placement - Publisher Mirrored,” on page 131

Section 8.15, “Placement - Subscriber Mirrored - LDAP Format,” on page 132
Section 8.16, “Placement - Publisher Flat,” on page 134

Section 8.17, “Placement - Subscriber Flat - LDAP Format,” on page 136
Section 8.18, “Placement - Publisher By Dept,” on page 138

Section 8.19, “Placement - Subscriber By Dept - LDAP Format,” on page 140

To access the predefined rules:

1

In the Policy Builder, right-click and select New > Predefined Rules > Insert Predefined Rule
Before or Insert Predefined Rule After.

Rules

v 5 I Mew
(= Import Policy From File, .. Predefined Rule

: Include 4
Z Edi... append Condition Group...

The Predefined Rules dialog box displays a list of the available rules.

Using Predefined Rules

107



@ Predefined Rules

Select Predefined Rules

Select a predefined rule and click Ok,
@

Cammand Transformation - Create Deparkmental Container - Part 1

Cammand Transformation - Create Departmental Container - Park 2

Cormmand TransFormation - Publisher Delete to Disable

Creation - Require attributels)

Creation - Publisher - Use Templake

Creation - Set Defaulk Attribute Yalue

Creation - Set Default Password

Event TransFormation - Scope Filkering - Include subtresds)

Event TransFormation - Scope Filkering - Exclude subtreels)

Input or Dutpuk Transformation - Reformat Telephone Mumber From {nnnd nnn-nnnn ko nnn-nnn-nnnn
Input or Dutpuk Transformation - Reformat Telephone Mumber From nnn-nnn-nnnn ta {nnn) nnn-nnnn
Matching - Publisher Mirrored

Matching - Subscriber Mirrared - LDAP Farmat

Matching - by attribute walue

Placement - Publisher Mirrored

Placement - Subscriber Mirrored - LDAP Format

Placement - Publisher Flak

Placement - subscriber Flat - LOAP Formak

Placement - Publisher By Dept

Placement - Subscriber By Dept - LDAP Format

3] [ (04 ] [ Cancel

8.1 Command Transformation - Create
Departmental Container - Part 1 and Part 2

This rule creates a department container in the destination data store, if one does not exist.
Implement the rule on the Command Transformation policy in the driver. You can implement the
rule on either the Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule.

¢ Section 8.1.1, “Creating a Policy,” on page 108

¢ Section 8.1.2, “Importing the Predefined Rule,” on page 109

¢ Section 8.1.3, “How the Rule Works,” on page 110

8.1.1 Creating a Policy

From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Command Transformation policy set in the Policy Set view, then click Create or add
a new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

108 Policies in Designer 3.0



Create Policy

Specify the name of the new policy and the container where it will be
created,

Falicy Marme;

| Create Containet| |

Policy Conkainer:

| Publisher . LDAP.IDM Driver Set 2, IDMDESIGMTREE | Browse

Zpen the editor after creating the object.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Command
Transformation policy is saved.

9 Continue with Importing the Predefined Rule.

8.1.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Command Transformation - Create Department Container - Part 1, then click OK.

B ¢ 5 Command Transformation - Create Departmental Container - Part 1

Mo description available

Conditions

v~ % Condition Group 1

« & if operation equal "add"

v 5' set local variablel"target-container”, Destination DM{ength="-2"1}
v Z

set local variable("does-target-exist”, Destination Attribute
—{"objectclass", class name="Crganizational Unit", dnfLocal
—Wariablel"target-container" )i

3 Right-click in the Policy Builder and click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

4 Select Command Transformation - Create Department Container - Part 2, then click OK.

Using Predefined Rules 109



E + % Command Transformation - Create Departmental Container - Part 2

Mo description available

+ & Condition Group 1

v 5- if local wariable 'does-target-exist' available

v 5' if local wariable ‘does-target-exist’ equal ™

4 5. add destination object{class name="0rganizational Unit", direct="
—trug", dnfLocal Yariable!"target-container)))

o 5 add destination attribute walue("ou”, direck="true", dniLocal
—fariablef"target-container'), Parse DR("dest-dn”, "dot”, length="
—1", stark="-1", Local Yariable("target-container" i)

5 Save the rule by clicking File > Save.

There is no information to change that is specific to your environment.

IMPORTANT: Make sure that the rules are listed in order. Part 1 must be executed before Part 2.

8.1.3 How the Rule Works

This rule is used when the destination location for an object does not exist. Instead of getting a veto
because the object cannot be placed, this rule creates the container and places the object in the
container.

Part 1 looks for any Add event. When the Add event occurs, two local variables are set. The first
local variable is named target-container. The value of target-container is set to the destination DN.
The second local variable is named does-target-exist. The value of does-target-exist is set to the
destination attribute value of objectclass. The class is set to OrganizationalUnit. The DN of the
OrganizationalUnit is set to the local variable of target-container.

& Editor
Mame: * | ohieckclass & &g &
Class name: | Organizational Unit \I@ 'Q' Cé
Select object: |DM w
Specify DM: * | Local Variable("target-container™)

Part 2 checks to see if the local variable does-target-exist is available. It also checks to see if the
value of the local variable does-target-exist is set to a blank value. If the value is blank, then an
Organizational Unit object is created. The DN of the organizational unit is set to the value of the
local variable target-container. It also adds the value for the OU attribute. The value of the OU
attribute is set to the local variable of target-container. It uses the source format as the destination
DN and the destination format is dot format.

110 Policies in Designer 3.0



8.2 Command Transformation - Publisher Delete
to Disable

This rule transforms the Delete event for a user object into disabling the user object. Implement the

rule on the Command Transformation policy in the driver. The rule needs to be implemented on the
Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule.

¢ Section 8.2.1, “Creating a Policy,” on page 111
¢ Section 8.2.2, “Importing the Predefined Rule,” on page 111
¢ Section 8.2.3, “How the Rule Works,” on page 112

8.2.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Command Transformation policy set in the Policy Set view, then click Create or add
a new policy to the policy set icon ¥ to create a new policy.

3 Select Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

specify the name of the new policy and the container where it will be = E
created.

Policy Mame:
Delete to Disable

Palicy Container:

Publisher LDAP.IDM Driver Set: 2. IDMDESIGNTREE

[¥]open the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Command
Transformation policy is saved.

9 Continue with Importing the Predefined Rule.

8.2.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

Using Predefined Rules 111



2 Select Command Transformation - Publisher Delete to Disable, then click OK.
3 Expand the predefined rule.

SRV Command Transformation - Publisher Delete to Disable

Mo description available

Conditions

+  Z Condition Group 1

v 5- if operation equal "delete”

v fr if class name equal "User"

4 5 set destination attribute waluel"Login Disabled”, "true")

v 5 remove associationfassociation{Associationg 1)

4 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.

8.2.3 How the Rule Works

This rule is used when a Delete event occurs in the connected data store. Instead of the user object
being deleted in the Identity Vault, the User object is disabled. Anytime a Delete event occurs for a
User object, the destination attribute value of Login Disabled is set to True and the association is
removed from the User object. The User object can no longer log in to the Novell® eDirectory™
tree, but the User object was not deleted.

8.3 Creation - Require Attributes

This rule does not allow user objects to be created unless the required attributes are populated.
Implement the rule on the Creation policy in the driver. You can implement the rule on either the
Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to Importing the Predefined Rule.

¢ Section 8.3.1, “Creating a Policy,” on page 112

¢ Section 8.3.2, “Importing the Predefined Rule,” on page 113

¢ Section 8.3.3, “How the Rule Works,” on page 114

8.3.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

112 Policies in Designer 3.0



5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created,

Policy Mame:

| Creation Palicy |

Policy Container:

| Publisher . LDAP. IDM Driver Set 2, IDMDESIGMTREE | Erowse

[#]iopen the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

9 Continue with Importing the Predefined Rule.

8.3.2 Importing the Predefined Rule
1 Right-click in the Policy Builder and click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Require attributes, then click OK.
3 Expand the predefined rule.

= 5 Creation - Require attribute{s)

Mo description available

Conditions

+ & Condition Group 1

o 5 if class name equal "User"

v 5. veto if operation attribute not availabled"[Enter name of required
—attribute]")

4 Edit the action by double-clicking the Actions tab.

5 Inthe Specify Name field, browse to and select the attributes you require for a User object to be
created, then click OK.

6 Click OK.

7 Save the rule by selecting File > Save.

Using Predefined Rules 113



8.3.3 How the Rule Works

This rule is used when your business processes require a user to have specific attributes populated
when the user object is created. When a user object is created, the rule vetoes the creation of the
object unless the required attributes are provided. You can have one or more required attributes.

If you want more than one required attribute, right-click the Actions tab and select Append Action.
Select veto if operation attribute not available, then browse to the attribute you want to require.

8.4 Creation - Publisher - Use Template

This rule allows the use of a Novell eDirectory template object during the creation of a User object.
Implement the rule on the Publisher Creation policy in the driver. You can implement the rule only
on the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to Importing the Predefined Rule.

¢ Section 8.4.1, “Creating a Policy,” on page 114
¢ Section 8.4.2, “Importing the Predefined Rule,” on page 115
¢ Section 8.4.3, “How the Rule Works,” on page 115

8.4.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Select Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created,

Policy Mame:
Creation Palicy

Policy Containet:

Publisher LDAP.IDM Driver Set 2, IDMDESIGHTREE

[¥]:open the editar after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

9 Continue with Importing the Predefined Rule.

114 Policies in Designer 3.0



8.4.2 Importing the Predefined Rule

1

Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Publisher - Use Template, then click OK.

o O 00 N O g »

Expand the predefined rule.

SR Creation - Publisher - Use Template

Mo description awvailsble

+ % Condition Group 1

¥ §v if class mame equal "Usetr"

& set operation template DM(dn{"[Enter DN of Template object]")

Edit the action by double-clicking the Actions tab.

Delete [Enter DN of Template object] from the Enter DN field.

Click the Edit the arguments icon = to launch the Argument Builder.

Select 7ext in the noun list.

Double-click 7ext to add it to the argument.

In the editor, click the browse icon, browse to and select the template object, then click OK.
Click Finish.

Save the rule by clicking File > Save.

8.4.3 How the Rule Works

This rule is used when you want to use a template object to create a user in the Identity Vault. If you
have attributes that are the same for different users, using the template saves time. You fill in the
information in the template object, and when the User object is created, Identity Manager calls the
template and uses that to create the User object.

During the creation of User objects, the rule performs the action of the set operation template DN.
The action calls the template object and creates the User object with the information in the template.

8.5 Creation - Set Default Attribute Value

This rule allows you to set default values for attributes that are assigned during the creation of User
objects. Implement the rule on the Subscriber Creation policy or Publisher Creation policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to Importing the Predefined Rule.

*

Section 8.5.1, “Creating a Policy,” on page 116

Using Predefined Rules

115



¢ Section 8.5.2, “Importing the Predefined Rule,” on page 116
¢ Section 8.5.3, “How the Rule Works,” on page 117

8.5.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Creation policy set in the Policy Set view, then click the Create or add a new policy
to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

specify the name of the new policy and the container where it will be
created,

Policy Mame:

| Creation Policy |

Policy Caontainer:

| Publisher LDAP.IDM Driver Set 2, IDMDESIGNTREE e

[¥]open the editar after creating the object, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

9 Continue with Importing the Predefined Rule.

8.5.2 Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Set Default Attribute Value, then click OK.
3 Expand the predefined rule.

ST N Creation - Set Default Attribute Yalue

Mo description available

Condikions

% cCondition Group 1

v 5 if class name equal "User"

v 5. set default attribute valued"[Enter attribute name]”, write-back="
—true", "[Enter defaulk attribute walua]")

116 Policies in Designer 3.0



4 Edit the action by double-clicking the Actions tab.

5 Inthe Specify attribute name field, click the browse icon, then browse to and select the attribute
you want to create.

6 Click the Edit the value list icon =2 to launch the Argument Value List Builder.
7 Select the type of data you want the value to be.

8 Delete [Enter default attribute value], then click the Edit the arguments icon [ to launch the
Argument Builder.

9 Create the value for the attribute in the Argument Builder, then click OK.
10 Click Finish.
11 Save the rule by clicking File > Save.

8.5.3 How the Rule Works

This rule is used when you want to create a User object with default attributes and values. When a
User object is created, the rule sets the attribute and the value for that attribute.

If you want more than one attribute value defined, right-click the Actions tab and click Append
Action. Select the action, set the default attribute value, and follow Step 1 on page 116 through
Step 11 on page 117 to assign the value to the attribute.

8.6 Creation - Set Default Password

During the creation of user objects, this rule sets a default password for user objects. Implement the
rule on the Creation policy in the driver. You can implement the rule on either the Subscriber or the
Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to Importing the Predefined Rule.

¢ Section 8.6.1, “Creating a Policy,” on page 117

¢ Section 8.6.2, “Importing the Predefined Rule,” on page 118

+ Section 8.6.3, “How the Rule Works,” on page 118

8.6.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Using Predefined Rules

117



Create Policy

i

Specify the name of the new policy and the container where it will be
created,

Policy Mame:
Creation Palicy

Policy Containet:

Publisher LDAP.IDM Driver Set 2, IDMDESIGHTREE

[¥]:open the editar after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

9 Continue with Importing the Predefined Rule.

8.6.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Set Default Password, then click OK.
3 Expand the predefined rule.

SR (reation - Set Default Password

Mo description available

% Condition Group 1

v §r if class name equal "User”

v 5 set destination password({attribute!"Given Mame™+Attribute
—{"surname"Y)

4 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.

8.6.3 How the Rule Works

This rule is used when you want User objects to be created with a default password. During the
creation of a User object, the password that is set for the User object is the Given Name attribute
plus the Surname attribute of the User object.

You can change the value of the default password by editing the argument. You can use the
Argument Builder to set the password to any other value you want.

118 Policies in Designer 3.0



8.7 Event Transformation - Scope Filtering -
Include Subtrees

This rule excludes all events that occur except for the specific subtree. Implement the rule on the
Event Transformation policy in the driver. You can implement the rule on either the Subscriber or
the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule.

¢ Section 8.7.1, “Creating a Policy,” on page 119

¢ Section 8.7.2, “Importing the Predefined Rule,” on page 119

¢ Section 8.7.3, “How the Rule Works,” on page 120

8.7.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Event Transformation policy set in the Policy Set view, then click Create or add a
new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Policy Mame:
Ewvent Transformation

Policy Container:

Publisher.LDAP . I0M Driver Set 2, IDMDESIGNTREE

[¥]open the editor after creating the object, |

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Event Transformation
policy is saved.

9 Continue with Importing the Predefined Rule.

8.7.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then select New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

Using Predefined Rules

119



2 Select Event Transformation - Scope Filtering - Include subtrees, then click OK.
3 Expand the predefined rule.

B ¢ §v Event Transformation - Scope Filtering - Include subtree(s)

Mo description available

& Condition Group 1

o 5 if source DM not in subtree "[Enter a subtree to includs]"

v & wetol)

4 Edit the condition by double-clicking the Conditions tab.
5 Delete [Enter a subtree to include] in the Value field.

6 Click the browse button to browse the Identity Vault for the part of the tree you were you want
events to synchronize, then click OK.

7 Click OK.
8 Save the rule by clicking File > Save.

8.7.3 How the Rule Works

This rule is used when you want to exclude part of the Identity Vault from synchronizing. It allows
you to synchronize some objects and not other objects, without using the Filter. When an event
occurs anywhere but in that specific part of the Identity Vault, it is vetoed.

8.8 Event Transformation - Scope Filtering -
Exclude Subtrees

This rule excludes all events that occur in a specific subtree. Implement the rule on the Event
Transformation policy in the driver. You can implement the rule on either the Subscriber or the
Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule.

¢ Section 8.8.1, “Creating a Policy,” on page 120

¢ Section 8.8.2, “Importing the Predefined Rule,” on page 121

+ Section 8.8.3, “How the Rule Works,” on page 122

8.8.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Event Transformation policy set in Policy Set view, then click Create or add a new
policy to the Policy Set icon * to create a new policy.

3 Click Create a new policy, then click Next.

120 Policies in Designer 3.0



4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created.

Policy Mame:

| Event Transformation |

Policy Container:

| Publisher, LOAR . IDM Driver Set 2, IDMDESIGMTREE | Browse. ..

[“]iopen the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Event Transformation
policy is saved.

9 Continue with Importing the Predefined Rule.

8.8.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule.

2 Select Event Transformation - Scope Filtering - Exclude subtrees, then click OK.
3 Expand the predefined rule.

= 5 Event Transformation - Scope Filtering - Exclude subtree(s)

Mo description available

Conditions

% Condition Group 1

v §r if source DM in subtree "[Enter a subtree to exclude]”

| v & vetol) |

4 Edit the condition by double-clicking the Conditions tab.
5 Delete [Enter a subtree to exclude] in the Value field.

6 Click the browse icon to browse the Identity Vault for the part of the tree where you want to
exclude events from synchronizing, then click OK.

7 Click OK.
8 Save the rule by clicking File > Save.

Using Predefined Rules 121



8.8.3 How the Rule Works

This rule is used when you want to exclude part of the Identity Vault from synchronizing. It allows
you to synchronize some objects and not other objects, without using the Filter. When an event
occurs in that specific part of the Identity Vault, it is vetoed.

8.9 Input or Output Transformation - Reformat
Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn

This rule transforms the format of the telephone number when a desired condition is met. Implement
the rule on the Input or Output Transformation policy in the driver. You can implement the rule on
either the Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Input or Output
Transformation policy set and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule.

¢ Section 8.9.1, “Creating a Policy,” on page 122
¢ Section 8.9.2, “Importing the Predefined Rule,” on page 123
¢ Section 8.9.3, “How the Rule Works,” on page 123

8.9.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select a driver.

2 Select the Input or Output Transformation policy set in the Policy Set view, then click Create or
add a new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Policy Mame:
Input Transformation

Palicy Container:

Publisher LDAP.IDM Driver Set: 2, IDMDESIGNTREE

[¥]open the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

122 Policies in Designer 3.0



8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Input or Output
Transformation policy is saved.

9 Continue with Importing the Predefined Rule.

8.9.2 Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to
nnn-nnn-nnnn, then click OK.

3 Expand the predefined rule.

= 5 Input or Output Transformation - Reformat Telephone Mumber from
—{nnn) nnn-nnnn to nnn-nnn-nnnn

Mo description available

Z Condition Group 1

Define new condition here

reformat operation atkribute"phone”, Replace Firsk("~y((didid)l)
it di-f i didig” "61-$2-45", Local Yariable("current-
—ualue™n
Edit the condition by double-clicking the Conditions tab.
Define the condition you want to have occur when the telephone number is reformatted.
Click OK.

Save the rule by clicking File > Save.

N o g b

8.9.3 How the Rule Works

This rule is used when you want to reformat the telephone number. You define the condition that is
to be met when the telephone number is reformatted.

8.10 Input or Output Transformation - Reformat
Telephone Number from nnn-nnn-nnnn to (nnn)
nnn-nnnn

This rule transforms the format of the telephone number when a desired condition is met. Implement
the rule on the Input or Output Transformation policy. You can implement the rule on either the
Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules; creating a policy in the Input or Output
Transformation policy set and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule.

¢ Section 8.10.1, “Creating a Policy,” on page 124

Using Predefined Rules 123



¢ Section 8.10.2, “Importing the Predefined Rule,” on page 124
¢ Section 8.10.3, “How the Rule Works,” on page 125

8.10.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select a driver.

2 Select the Input or Output Transformation policy set in the Policy Set view, then click Create or
add a new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created.

Palicy Mame:
Input Transformation

Palicy Container:

Publisher.LDAP.IDM Driver Set 2. IDMDESIGMTREE

[*]open the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Input or Output
Transformation policy is saved.

9 Continue with Importing the Predefined Rule.

8.10.2 Importing the Predefined Rule

1 Right-click in the Policy Builder and click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Click Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn, then click OK.

3 Expand the predefined rule.

124 Policies in Designer 3.0



=g 5 Input or Output Transformation - Reformat Telephone Number from
—nnn-nnn-nnnn bo {nnn) nnn-nnnn

Mo description available

% Condition Group 1

Define new condition here

reformat operation attributel"phone”, Replace Firsk("~(\ddid)-
—{(\ et d)-C i D", (510 $2-43", Local Variable"current-
—alug™)))

4 Edit the condition by double-clicking the Conditions tab.

5 Define the condition you want to have occur when the telephone number is reformatted.
6 Click OK.

7 Save the rule by clicking File > Save.

8.10.3 How the Rule Works

This rule is used when you want to reformat the telephone number. You define the condition that is
to be met when the telephone number is reformatted.

8.11 Matching - Publisher Mirrored

This rule matches for objects in the Identity Vault by using the mirrored structure in the data store
from a specified point. Implement the rule on the Matching policy in the driver. You can implement
the rule only on the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.11.1, “Creating a Policy,” on page 125

¢ Section 8.11.2, “Importing the Predefined Rule,” on page 126

¢ Section 8.11.3, “How the Rule Works,” on page 127

8.11.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Using Predefined Rules 125



Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Policy Mame:
Matching

Policy Container:

Publisher.LDAR.IDM Driver Set 2, IDMDESIGNTREE

[#]iopen the editor after creating the objeck, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

9 Continue with Importing the Predefined Rule.

8.11.2 Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.
2 Select Matching - Publisher Mirrored, then click OK.
3 Expand the predefined rule.

B §v Matching - Publisher Mirrored

Mo description available

% Condition Group 1

v § if source DM in subtree "[Enter base of source hierarchy]"

i 5, set local variable!"dest-base", "[Enter base of destination
—hierarchy]™)

A 5, find matching object{scope="entry", dn{Local Yariable("dest-base")
—+"\"+Unmakched Source DM{convert="true" 1))

4 Edit the condition by double-clicking the Conditions tab.

In the Value field, browse to and select the container in the source hierarchy where you want
the matching to start, then click OK.

Click OK.

Edit the action by double-clicking the Actions tab.

Delete [Enter base of destination hierarchy] from the Specify string field.
Click the Edit the arguments icon = to launch the Argument Builder.

Select 7ext in the noun list.

- O O 00 N O

— -

Double-click 7ext to add it to the argument.

126 Policies in Designer 3.0



12 1In the editor, click the browse button, browse to the container in the destination hierarchy
where you want the source structure to be matched, then click OK.

13 Click Finish.
14 Save the rule by clicking File > Save.

8.11.3 How the Rule Works

This rule matches for objects in the Identity Vault by using the mirrored structure in the data store
from a specified point. When an Add event occurs and the driver checks to see if the object exists, it
starts checking at the specific DN in the data store. The driver then sets a local variable of dest-base
to be the starting point in the Identity Vault that the structure is mirrored to in the data store. The
driver then creates the context it is searching by adding the local variable of dest-base plus a \ and
the source DN of the object. It creates the path it is looking for in the slash format.

8.12 Matching - Subscriber Mirrored - LDAP
Format

This rule matches for objects in the data store by using the mirrored structure in the Identity Vault

from a specified point. Implement the rule on the Matching policy in the driver. You can implement
the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.12.1, “Creating a Policy,” on page 127
¢ Section 8.12.2, “Importing the Predefined Rule,” on page 128
¢ Section 8.12.3, “How the Rule Works,” on page 129

8.12.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Subscriber channel.

2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created,

Policy Mame:
Matching

Policy Container:

Publisher LOAP. I0M Driver Set 2, IDMDESIGHTREE

[w]open the editor after creating the object, :

Using Predefined Rules 127



Select Open Editor after creating policy, then click Next.

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you

need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

Continue with Importing the Predefined Rule.

8.12.2 Importing the Predefined Rule

1

Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Matching - Subscriber Mirrored - LDAP format, then click OK.

Expand the predefined rule.
B fr Matching - Subscriber Mirrored - LDAP format

Mo description available

+ % cCondition Group 1

v fr if source DM in subtree "[Enter base of source higrarchy]”

o 5, set local wariablel"dest-base", "[Enter base of destination
—hierarchy]")

o 5, find matching object{scope="entry", dn{Unmatched Source DM
—{convert="true"+","+Local Yariable"dest-base™)))

Edit the condition by double-clicking the Conditions tab.

5 In the Value field, browse to and select the container in the source hierarchy where you want

o O 0 N O

12

13
14

the matching to start, then click OK.

Click OK.

Edit the action by double-clicking the Actions tab.

Delete [Enter base of destination hierarchy] from the Specify String field.
Click the Edit the arguments icon = to launch the Argument Builder.
Select Text in the noun list.

Double-click 7ext to add it to the argument.

In the editor, click the browse icon, browse to and select the container in the destination
hierarchy where you want the source structure to be matched, then click OK.

Click Finish.
Save the rule by clicking File > Save.

8.12.3 How the Rule Works

This rule matches for objects in the data store by using the mirrored structure in the Identity Vault
from a specified point. When an Add event occurs and the driver checks to see if the object exists, it
starts checking at the specific DN in the Identity Vault. The driver then sets a local variable of dest-

128 Policies in Designer 3.0



base to be the starting point in the data store that the structure is mirrored to in the Identity Vault.
The driver then creates the context it is searching by adding the source DN of the object and a local
variable of dest-base. It creates the path it is looking for in LDAP format.

8.13 Matching - By Attribute Value

This rule matches for objects by specific attribute values. Implement the rule on the Matching policy

in the driver. You can implement the rule on either the Subscriber or the Publisher channel or on
both channels.

There are two steps involved in using the predefined rules; creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you would like to
add this rule to, skip to Importing the Predefined Rule.

¢ Section 8.13.1, “Creating a Policy,” on page 129
¢ Section 8.13.2, “Importing the Predefined Rule,” on page 130
¢ Section 8.13.3, “How the Rule Works,” on page 130

8.13.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created,

Policy Mame:
Matching

Policy Container:

Publisher LOAP. I0M Driver Set 2, IDMDESIGHTREE

[w]open the editor after creating the object, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

9 Continue with Importing the Predefined Rule.

Using Predefined Rules 129



8.13.2 Importing the Predefined Rule

1

Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Matching - by attribute value, then click OK.

© 0 N O O b~

1"

12

13
14

Expand the predefined rule.

B §r Matching - by attribute value

Mo description available

" & Condition Group 1

o 5 if class mame egual "User”

o 5 find matching object{dn{"[Enter base DN to start search]"), match
—{"[Enter name of attribute to match on]"i)

Edit the action by double-clicking the Actions tab.

Delete [Enter base DN to start search] from the Specify DN field.
Click the Edit the arguments icon =2 to launch the Argument Builder.
Select 7ext in the noun list.

Double-click 7ext to add it to the argument.

In the editor, click the browse button, browse to and select the container where you want the
search to start, then click OK.

Click Finish.

In the Specify Match Attributes field, click the Edit the match attributes icon = to launch the
Match Attribute Builder.

Click the browse button and select the attributes you want to match. You can select one or more
attributes to match against, then click OK.

Click Finish.
Save the rule by clicking File > Save.

8.13.3 How the Rule Works

This rule matches for User objects by attributes. When a User object is synchronized, the driver uses
the rule to check and see if the specified attributes exist. If the attributes do not exist, a new User
object is created.

8.14 Placement - Publisher Mirrored

This rule places objects in the Identity Vault by using the mirrored structure in the data store from a
specified point. Implement the rule on the Placement policy in the driver. You can implement the
rule only on the Publisher channel.

130 Policies in Designer 3.0



There are two steps involved in using the predefined rules: creating a policy in the Placement policy

set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.14.1, “Creating a Policy,” on page 131
¢ Section 8.14.2, “Importing the Predefined Rule,” on page 131
¢ Section 8.14.3, “How the Rule Works,” on page 132

8.14.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the policy set, then click Create or add a new policy to the
Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

specify the name of the new policy and the container where it will be
created,

Policy Mame:
Matching

Policy Container:

Publisher LOAP. I0M Driver Set 2, IDMDESIGHTREE

[w]open the editor after creating the object, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Importing the Predefined Rule.

8.14.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.
2 Select Placement - Publisher Mirrored, then click OK.

3 Expand the predefined rule.

Using Predefined Rules 131



SRS Placement - Publisher Mirrored

Mo description available

& Condition Group 1

v & if source DM in subtree "[Enter base of source higrarchy]”

v 5 set local variable("dest-base”, "[Enter base of destination
—hierarchy]"

o 5 set operation destination DRdniLocal Yariable!"dest-basa"i+""
—+Unmatched Source DM{conyert="trug"11)

4 Edit the condition by double-clicking the Conditions tab.

5 In the Value field, browse to and select the container in the source hierarchy where you want
the object to be acted upon, then click OK.

6 Edit the action by double-clicking the Actions tab.
7 Delete [Enter base of destination hierarchy] from the Specify String field.
8 Click the Edit the arguments icon =2 to launch the Argument Builder.
9 Select 7ext in the noun list.
10 Double-click Text to add it to the argument.

11 In the editor, click the browse button, browse to and select the container in the destination
hierarchy where you want the object to be placed, then click OK.

12 Click Finish.
13 Save the rule by clicking File > Save.

8.14.3 How the Rule Works

If the User object resides in the source hierarchy, the object is placed in the mirrored structure from
the data store. The placement starts at the point that the local variable dest-base is defined. It places
the User object in the location of dest-base\unmatched source DN. The rule uses the slash format.

8.15 Placement - Subscriber Mirrored - LDAP
Format
This rule places objects in the data store by using the mirrored structure in the Identity Vault from a

specified point. Implement the rule on the Placement policy in the driver. You can implement the
rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.15.1, “Creating a Policy,” on page 133

¢ Section 8.15.2, “Importing the Predefined Rule,” on page 133

¢ Section 8.15.3, “How the Rule Works,” on page 134

132 Policies in Designer 3.0



8.15.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Subscriber channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

|

Specify the name of the new palicy and the container where it will be
created.

Palicy Mame:
Placement Policy

Policy Container:

Publisher LDAP. IOM Driver Set 2, IDMDESIGMTREE

[¥]iopen the editar after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Importing the Predefined Rule.

8.15.2 Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber Mirrored - LDAP format, then click OK.
3 Expand the predefined rule.

SRV Placement - Subscriber Mirrored - LDAP format

Mo description available

" % Condition Group 1

o §r if source DM in subkree "[Enter base of source hierarchy]"

v 5 set local varisblel"dest-base”, "[Enter base of destination
—hierarchy]™")

v 5 set operation destination DM{dn{Unmatched Source DH{convert="
—true™i+","+Local Yariable("dest-base"1))

4 Edit the condition by double-clicking the Conditions tab.

Using Predefined Rules 133



5 In the Value field, browse to the container in the source hierarchy where you want the object to
be acted upon, then click OK.

6 Edit the action by double-clicking the Actions tab.

7 Delete [Enter base of destination hierarchy] from the Specify String field.
8 Click the Edit the arguments icon =2 to launch the Argument Builder.

9 Select Text in the noun list.

0 Double-click 7ext to add it to the argument.

11 In the editor, click the browse button, browse to the container in the destination hierarchy
where you want the object to be placed, then click OK.

12 Click Finish.
13 Save the rule by clicking File > Save.

8.15.3 How the Rule Works

If the User object resides in the source hierarchy, then the object is placed in the mirrored structure

from the Identity Vault. The placement starts at the point that the local variable dest-base is defined.
It places the User object in the location of the unmatched source DN, dest-base. The rule uses LDAP
format.

8.16 Placement - Publisher Flat

This rule places objects from the data store into one container in the Identity Vault. Implement the
rule on the Placement policy in the driver. You can implement the rule only on the Publisher
channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.16.1, “Creating a Policy,” on page 134

¢ Section 8.16.2, “Importing the Predefined Rule,” on page 135

¢ Section 8.16.3, “How the Rule Works,” on page 136

8.16.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon * to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

134 Policies in Designer 3.0



Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Palicy Mame:
Placement Palicy

Policy Container:

Publisher LDAP.IDM Driver Set 2, IDMDESIGMTREE

[¥]iopen the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Importing the Predefined Rule.

8.16.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Publisher Flat, then click OK.
3 Expand the predefined rule.

= -l Flacement - Publisher Flat

Mo description available

Z Condition Group 1

% if class name equal "User"

5 set local variable!"dest-base", "[Enter DM of destination container]")

5, set operation destination Dh{dniLocal Yariable!"dest-base")+","
—+Escape Destination DM{Unique Mame("CH", scope="subtree",
— owercaselSubstringflength="1", Operation AtkributelGiven
—Mame"))+COperation Attributed"Surname")), LowercaselSubstring
—{length="2", Operation Attribute ' Given Mame"))+Operation
—Atkributed"Ssurname"

Edit the action by double-clicking the Actions tab.

Delete [Enter DN of destination container] from the Specify String field.
Click the Edit the arguments icon =2 to launch the Argument Builder.
Select Text in the noun list.

Double-click Text to add it to the argument.

© 00 N OO O b

In the editor, click the browse button, then browse to and select the destination container where
you want all of the User objects to be placed, then click OK.

Using Predefined Rules 135



10 Click Finish.
11 Save the rule by clicking File > Save.

8.16.3 How the Rule Works

This rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be the dest-
base\CN attribute. The CN attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute in lowercase. The rule uses slash format.

8.17 Placement - Subscriber Flat - LDAP Format

This rule places objects from the Identity Vault into one container in the data store. Implement the
rule on the Subscriber Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.17.1, “Creating a Policy,” on page 136
¢ Section 8.17.2, “Importing the Predefined Rule,” on page 137
¢ Section 8.17.3, “How the Rule Works,” on page 137

8.17.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in Policy Set view, then click Create or add a new policy to the
Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Palicy Mame:
Placement Palicy

Policy Container:

Publisher LDAP.IDM Driver Set 2, IDMDESIGMTREE

[¥]iopen the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

136 Policies in Designer 3.0



8

9

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

Continue with Importing the Predefined Rule.

8.17.2 Importing the Predefined Rule

1

Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber Flat - LDAP format, then click OK.

© 00 N o O b

1"

Expand the predefined rule.

= .l Flacement - Subscriber Flat - LDAP format

Mo description available

< Condition Group 1

£ if class name equal "User"

fr set local varisblel"dest-base”, "[Enter DM of destination container]")

5, set operation destination DM{dn{"uid="+Escape Destination DM
—{Unique Mame("uid", scope="subtres", Lowercase(Substring
—{length="1", QOperation Attribute"Given Name" )+ COperation
—Attribute!"Surname")), Lowercase(Substringllength="2",
—iOperation Attributel'Given Mame"11+Operation Attribute
—{"Surname")11+", "+Local Yariable("dest-base")))

Edit the action by double-clicking the Actions tab.

Delete [Enter DN of destination container] from the Specify String field.
Click the Edit the arguments icon =2 to launch the Argument Builder.
Select Text in the noun list.

Double-click 7ext to add it to the argument.

In the editor, add the destination container where you want all of the User objects to be placed.
Make sure the container is specified in LDAP format, then click OK.

Click Finish.
Save the rule by clicking File > Save.

8.17.3 How the Rule Works

This rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be uid=unique
name,dest-base. The uid attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute in lowercase. The rule uses LDAP format.

Using Predefined Rules

137



8.18 Placement - Publisher By Dept

This rule places objects from one container in the data store into multiple containers in the Identity

Vault. Implement the rule on the Placement policy in the driver. You can implement the rule only on
the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.18.1, “Creating a Policy,” on page 138
¢ Section 8.18.2, “Importing the Predefined Rule,” on page 138
¢ Section 8.18.3, “How the Rule Works,” on page 139

8.18.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Grw

Create Policy

il

Specify the name of the new palicy and the container where it will be
created,

Palicy Mame:
Placement Policy

Palicy Container:

Publisher . LD&P. I0M Driver Set 2, IDMDESIGMTREE

[»]open the edicor after creaking the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Importing the Predefined Rule.

8.18.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.
2 Select Placement - Publisher By Dept, then click OK.

3 Expand the predefined rule.

138 Policies in Designer 3.0



= 5 Placement - Publisher By Dept

Mo description available

4 Condition Group 1
% if class name equal "Lser"

and fv if attribute 'OL" available

5. set local variable!"dest-base”, "[Enter DM of destination
—iJrganization]")

5 set operation destinstion DR(dn(Local Variable("dest-base")+""
—+aAtkributed"OU" )+ "+Escape Destination DR(URique Mame!"CH",
—scope="subtree", LowercaselSubstring(length="1", Operation
—Attribute!Eiven Mame "N+ Operation Attributed"surname")),

— owercasel Substringllength="2", Cperation Attribute!"Given
—Marne"))-+0peration Attribute!"Surnanne" 1)

Edit the action by double-clicking the Actions tab.

Delete [Enter DN of destination Organization] from the Specify String field.
Click the Edit the arguments icon =2 to launch the Argument Builder.

Select 7ext in the noun list.

Double-click 7ext to add it to the argument.

© 0 N o O b

In the editor, click the browse button, then browse to and select the parent container in the
Identity Vault. Make sure all of the department containers are child containers of this DN, then
click OK.

10 Click Finish.
11 Save the rule by clicking File > Save.

8.18.3 How the Rule Works

This rule places User objects in proper department containers depending upon the value that is
stored in the OU attribute. If a User object needs to be placed and has the OU attribute available,
then the User object is placed in the dest-base\value of OU attribute\CN attribute.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The child containers must be associated for the user objects to be placed. The value of the OU
attribute must be the name of the child container. If the OU attribute is not present, this rule is not
executed.

The CN attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute in lowercase. The rule uses slash format.

Using Predefined Rules

139



8.19 Placement - Subscriber By Dept - LDAP
Format

This rule places objects from one container in the Identity Vault into multiple containers in the data
store based on the OU attribute. Implement the rule on the Placement policy in the driver. You can
implement the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule.

¢ Section 8.19.1, “Creating a Policy,” on page 140
¢ Section 8.19.2, “Importing the Predefined Rule,” on page 140
¢ Section 8.19.3, “How the Rule Works,” on page 141

8.19.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Subscriber channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be EE
created,

Palicy Mame:
Placement Policy

Palicy Container:

Publisher . LD&P. I0M Driver Set 2, IDMDESIGMTREE

[»]open the edicor after creaking the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Importing the Predefined Rule.

8.19.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber By Dept - LDAP format, then click OK.

140 Policies in Designer 3.0



3 Expand the predefined rule.

=] 5- Placement - Subscriber By Dept - LDAP format

Mo description available

Z Condition Group 1
% if class name equal "User"

and fr if attribute 'OU" available

5, set local variable!"dest-base", "[Enter DM of destination
—iorganization]")

5, set operation destination DM{dn"uid="+Escape Destination Dk
—i{Unique Mame("uid", scope="subtree", LowercasefSubstring
—{length="1", Operation Attribute"Given Mame"))+Operation
—attributed"surname")), Lowercase!Substring{length="z2",
—iOperation Attribukel"Given Mame"+Operation Attribute
—{"surname" )+, ou="-+attribute"OU"+", "+Local Yariable!"dest-
—base"1i)

4 Edit the action by double-clicking the Actions tab.

5 Delete [Enter DN of destination Organization] from the Specify string field.
6 Click the Edit the arguments icon =2 to launch the Argument Builder.

7 Select Text in the noun list.

8 Double-click Text to add it to the argument.

9 In the editor, add the parent container in the data store. The parent container must be specified
in LDAP format. Make sure all of the department containers are child containers of this DN,
then click OK.

10 Click Finish.
11 Save the rule by clicking File > Save.

8.19.3 How the Rule Works

This rule places User objects in proper department containers depending upon the value that is
stored in the OU attribute. If a User object needs to be placed and has the OU attribute available,
then the User object is placed in the uid=unique name,ou=value of OU attribute,dest-base.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The child containers must be associated for the User objects to be placed. The value of the OU
attribute must be the name of the child container. If the OU attribute is not present, then this rule is
not executed.

The uid attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses LDAP format.

Using Predefined Rules

141



142 Policies in Designer 3.0



Testing Policies with the Policy
Simulator

The Policy Simulator allows you to test and debug a single policy or a group of policies contained in
a policy set without implementing the policy in the Identity Vault. It also provides a graphical editor
to create XDS Input documents. With these features, you can test the policies without affecting the
production environment or the connected system.

For more information about common tasks with the Policy Simulator, see the following sections:

*

Section 9.1, “Accessing the Policy Simulator,” on page 143

*

Section 9.2, “Creating an XDS Input Document,” on page 144

*

Section 9.3, “Using the Operation Data Editor,” on page 153

*

Section 9.4, “Using the Hex Editor,” on page 153

*

Section 9.5, “Simulating a Policy,” on page 161

*

Section 9.6, “Simulating Policies with Java Extensions,” on page 166

The Policy Simulator uses XML. The eDirectory™ document type definition file (nds . dtd)
defines the schema of the XML documents that the Metadirectory engine can process. XML
documents that do not conform to this schema generate errors. To verify whether the document
conforms to the nds . dtd and to find information about why errors are occurring, see the “NDS
DTD” in the Identity Manager 3.6 DTD Reference.

If the policy uses a mapping table object or ECMAScript object, the Policy Simulator tests these
objects when the policy is tested. It also allows you to test included policies and referenced GCVs.

The Policy Simulator cannot simulate the initial policy sets from application drivers such as SOAP
and Delimited text. These drivers use comma-separated files or text files as input, and the XML or

XDS is derived from policies in the policy chain. Currently, the Policy Simulator only accepts valid
XML or XDS as input. Additional functionality is being considered for future releases.

9.1 Accessing the Policy Simulator

The Policy Simulator can be accessed in three different ways:

¢ “Outline View” on page 143
¢ “Policy Flow View” on page 144
¢ “Editors” on page 144

9.1.1 Outline View

1 Click the Show Model Outline icon E.

2 Right-click the driver, publisher, subscriber, mapping rule, filter, or any policy you want to
simulate, then select Simulate 2.

Testing Policies with the Policy Simulator 143



9.1.2 Policy Flow View

1 Click the Show Policy Flow icon .

2 Right-click the Input, Output, Schema Map, filter, or any policy set icons you want to simulate,
then select Simulate ~&.

9.1.3 Editors

You can access the Policy Simulator through the Policy Builder, the Schema Map editor, or the Filter
editor by selecting the Policy Simulator icon “% in the toolbar of each editor.

9.2 Creating an XDS Input Document

In order to simulate a policy, you must have a valid XDS Input document. The policy consumes the
input document and the results are displayed as if the policy was executed. The simulator provides a
graphical editor, to help you create the input document. The editor is called the XDS Builder.

You access the XDS Builder by clicking the XDS Builder tab in the Policy Simulator.

For information on how to access the Policy Simulator, see “Accessing the Policy Simulator” on
page 143.

144 Policies in Designer 3.0



Figure 9-1 XDS Builder

W: Simulate Policy Transformation - Active Directory

Input Document

Semdation Port: | (IS

Operation:
Add W

Paranmeter Wahue
Class

Assodiation

Password

Source D

Template DN

Event D
Operation Data

Atributes: ¥
=0 Atributes >

A0S Budder | Source

Bagin by sebacting a point of simulation, Then create the input document by seliscting
an operation and providing parameters., Salect the source bab to edi the XML of the

N4 €| &

LIIT
P

| met> || close

Click the Source tab in the Policy Simulator to display the input document in XML. The XDS
Builder creates this input document. You can modify the XML by editing the XML directly or using

the XDS Builder.

The XDS Builder allows you to select the operation type as well as provide the operation
parameters, attributes, and values. XDS Builder saves the parameters and values of the simulator for
the current Designer session. To make the simulator input available after Designer has been shut

down, save the input document to disk.

After you have created the XDS input document, you need to analyze the results. For more
information, see Section 9.5, “Simulating a Policy,” on page 161.

The Policy Simulator has several different components. Each component helps create the input

document to test the policy against.

¢ Section 9.2.1, “Source,” on page 146

¢ Section 9.2.2, “Import an XDS Document,” on page 146

Testing Policies with the Policy Simulator

145



¢ Section 9.2.3, “Use an Identity Vault Object As a Template,” on page 146
¢ Section 9.2.4, “Use an Application Object As a Template,” on page 147

¢ Section 9.2.5, “Clear All Parameters,” on page 147

¢ Section 9.2.6, “Configuration Options,” on page 147

¢ Section 9.2.7, “Save the Input Document,” on page 148

¢ Section 9.2.8, “Simulation Point,” on page 148

¢ Section 9.2.9, “Operation,” on page 149

¢ Section 9.2.10, “Parameter and Value,” on page 149

¢ Section 9.2.11, “Attributes,” on page 150

9.2.1 Source

The Policy Simulator allows you to create the input document in XML without using the builder.
The Source tab is an XML editor.

9.2.2 Import an XDS Document

The Policy Simulator allows you to import an existing input document to test the policy against.

1 In the toolbar, select Import an XDS input document from a file —j
2 Browse to and select the existing input document, then click Open.
3 Click Next to test the policy against this existing information.
Designer comes with sample input document files you can use. The files are located in the plug-in

com.novell.designer.idm.policy\simulation. The events are Add, Association,
Delete, Instance, Modify, Move, Query, Rename, and Status.

9.2.3 Use an ldentity Vault Object As a Template

The Policy Simulator allows you to use an existing Identity Vault object to populate the input
document.
1 In the toolbar, select Browse to an object in the Identity Vault to use as a template Q,

2 Ifyou are not logged in to the Identity Vault, specify the following information; otherwise skip
to Step 3.

2a Specify the host name of the Identity Vault server.

It can be the IP address of the server or the DNS name of the server.
2b Specify a DN of a user object to authentication to the Identity Vault.
2c¢ Specify the password of the user in Step 2b, then click OK.

3 Browse to and select the desired object, then click OK.

If the simulation point is set to Input, Output, or Schema Map Inbound, a warning message is
displayed. (For more information about simulation points, see “Simulation Point” on

page 148.) The warning message informs the user that the input document should be created by
using the application’s attribute names and value formats. The XDS Builder converts the

146 Policies in Designer 3.0



Identity Vault attribute names to the corresponding application attribute by using the Schema
Map policy, as long as the driver references the Schema Map policy. However, the values for
the attributes might be in an incorrect format.

4 Click OK if a warning message is displayed.
5 Click Next to test the policy against the object.

9.2.4 Use an Application Object As a Template

The Policy Simulator allows you to use an existing Application object to populate the input
document.

rl
1 In the toolbar, select Browse to an object in the Application to use as a template " .

2 Designer opens an Application Browser so you can browse to the object you want to use as a
template.

Designer uses Independent Driver Services (IDS) to access the application. If you encounter an
error while connecting to the application, use the IDS Trace view to see where the error
occurred.

To open the IDS Trace view, right-click the driver object in the Outline view, then select Show
IDS Trace. IDS trace must be loaded before connecting to the application in order to capture
any error messages.

NOTE: Simulator access to application attributes is based on the rights granted to the
application user specified in the driver configuration.

3 Browse to and select the desired object, then click OK.

The Simulator populates the input document based on the values in the selected application
object.

4 Click Next to test the policy using the input document.

9.2.5 Clear All Parameters

The Policy Simulator allows you to clear all parameters, attributes, and values that have been set.
You can create a new input document without launching the XDS Builder again.

1 In the toolbar, select Clear & .

2 Specify information to create a new input document.

9.2.6 Configuration Options

The Policy Simulator allows you to set configuration options for the simulation.

1 In the toolbar, select Configure options for the simulation |:
2 Specify the desired XSL Trace Level.

If you have XSL in your policy and you want to see the XSL trace results, specify a value. If
the value is set to 0, no information is displayed. The range of the trace value is 0 to 4.

3 Specify the desired Driver Trace Level.

Testing Policies with the Policy Simulator

147



To set the results of the simulation, set a value in the Driver Trace Level field. The range of the
trace value is 0 to 5.

4 Click OK.

@ Simulation Options E|

#5L Trace Level i]

LEARE S

Driver Trace Level |5

[ (2] 9 H Cancel ]

9.2.7 Save the Input Document

The Policy Simulator does not store the input document for future sessions in Designer. If you want
to use the input document for a later session in Designer, the input document must be saved.

1 In the toolbar, click Save =,
2 Browse to a location where you want to save the file, then specify a filename.

3 Click Save to save the input document.

Novell® recommends that you do not save the input document in the same directory where Designer
is installed or it might be overwritten during a Designer upgrade.

9.2.8 Simulation Point

The Policy Simulator allows you to select a policy set or group of policies to simulate with a specific
operation.

Figure 9-2 Simulation Point in the Policy Simulator

Simulation Point: | Input w

You can select a Driver object, Publisher channel, Subscriber channel, policy, or rule as the
simulation point. If you select a Driver object, Publisher channel, or Subscriber channel, the
Simulation Point options are:

Input Publisher Placement Subscriber Command
Schema Map Inbound Publisher Command Subscriber Placement
Publisher Event Publisher Notify Filter Subscriber Creation
Publisher Sync Filter Output Subscriber Matching
Publisher Matching Schema Mapping Outbound Subscriber Event
Publisher Creation Subscriber Notify Filter Subscriber Sync Filter

148 Policies in Designer 3.0



NOTE: If you want to test a single policy, launch the simulator from the selected policy. If you do
select a specific policy or rule to test, the Simulation Point options are 1o Identity Vault and From

Identity Vault.

9.2.9 Operation

The XDS Builder allows you to select the type of operation that the input document performs.

Figure 9-3 Operation Options in the XDS Builder

Operation:

Add “

The available operations are:

Add Modify

Add Association Modify Association
Check Object Password Modify Password
Check Password Move

Delete Query

Get Named Password Extended Query

Remove Association
Rename

Status

Sync

Instance

Depending upon which operation is selected, the XDS Builder displays different options and

screens.

9.2.10 Parameter and Value

The XDS Builder allows you to define parameters and specify values for the selected operation.

Each operation displays different parameters.

Figure 9-4 Parameters and Values in the XDS Builder

Operation:

Add W

Parameter Yalue
Class [ liser
Associakion
Password
Source DM
Destination DN
Template DM
Ewent ID

Attributes:
<hlo Attributes =

A [ e

Testing Policies with the Policy Simulator

149



The list of parameters for each operation is set, and cannot be changed. You do not need to have each
parameter defined for the simulation to work; just define the parameters that apply to your policy.
You can edit the parameter value by double-clicking the value or selecting the value and clicking the
Edit button.

All parameter values are edited inline, with the exception of Class and Operation Data parameters.
Editing these parameters launches a dialog box that allows you to select a class name or edit the
operation data.

Parameters that contain a reference to an object enable the Browse button. Although these values can
be edited inline, the Browse button allows you to browse for an object in the application or the
Identity Vault, depending on the current simulation point. For any Publisher channel or Input
simulation point the Browse button for any source parameters such as Source DN launches the
application browser. While all destination parameters such as Destination DN launches the Identity
Vault Browser.

Likewise, for any Subscriber channel or Output simulation point, the Browse button for any source
parameters such as Source DN launches the Identity Vault browser. However, the Browse button for
all destination parameters such as Destination DN, launches the application Browser.

Editing the Class parameter launches the application class browser when the Input, Output, or
Schema Map inbound policy simulation point is selected. For all other simulation points, the
Identity Vault class browser is opened. If the desired class is not included in the application or
Identity Vault schema, it can be added during the simulation process. For more information about
managing a schema in Designer, see “Managing the Schema” in the Designer 3.0 for Identity
Manager 3.6 Administration Guide.

Editing the Operation Data parameter launches the Operation Data editor. For more information,
see Section 9.3, “Using the Operation Data Editor,” on page 153.

9.2.11 Attributes

The Input Document Attributes field allows you to add, edit, and remove attribute values for
simulating operations.

+ “Working with Attribute Values” on page 151
+ “Simulating the Adding of an Attribute” on page 151
+ “Simulating the Modification of an Attribute” on page 152

150 Policies in Designer 3.0



Figure 9-5 XSD Input Document - Attribute Field

Attributes; F =

= Telephone Mumnber add Attribute. ..

G801-555-0234
=l Facsimile Telephone Mumber
=J- skruckured-value
FaxMumber=501-555-9999 Edit. ..
FaxBitCount=5
faxParameters=3,

Remove

= audio
+OAGAABDAAAAALLALAAALAAAGOALLLAAALLLAALLALLALLLLLAALLD

Working with Attribute Values

Because there are several different attribute types, the Attributes field provides different ways of
manipulating attribute values.

+ Add a New Attribute: To add a new attribute to the attribute list, click Add Attribute. For
more information, see “Simulating the Adding of an Attribute” on page 151.

+ Remove an Attribute: To remove an attribute from the attribute list, select the attribute, then
click Remove (or right-click the attribute, then select Remove.)

¢ Add an Attribute Value: To add another value to an existing attribute, select the attribute,
then click Add (or right-click the attribute, then select Add.

+ Remove an Attribute Value: To remove a value from an exsiting attribute, select the value,
then click Remove (or right-click the value, then select Remove.)

¢ Change an Attribute Value: To change the value of an existing attribute, select an attribute
value, then click Edit (or double-click an attribute value.)

If the attribute uses a structured value, you can change each of the value components
separately. You cannot modify the entire structured value at once.

If the attribute is an octet string, Simulator opens the Hex Editor to modify the value. For more
information, see Section 9.4, “Using the Hex Editor,” on page 153.

¢ Identity Vault Schema When working with Identity Vault attributes with structured values,
the Simulator displays customized Value editor dialog boxes that describe each of the
structured value components. For example, adding a Facsimile Telephone Number attribute
launches a Value Editor dialog box that asks for the Fax Number, Bit Count, and Parameters for
the attribute, each of which is a component of the Facsimile Telephone Number structured
value.

However, when working with an Application schema, the Simulator uses a generic structured
value dialog box since it cannot know the type of data that comprises the structured value.

Simulating the Adding of an Attribute

1 Select Add in the Operation field of the Simulator.
2 Double-click Class in the Parameter field of the Simulator.

Testing Policies with the Policy Simulator 151



3 Browse to and select the desired class, the click OK.
4 Click Add Attribute.

The Add Attribute icon launches the Identity Vault or application attribute browser, based on
the simulation point.

5 Browse to and select the desired attribute, then click OK.
6 Specify the attribute value, then click OK.

Based on the attribute type, Simulator opens either the Value editor or the Hex editor so you
can specify the attribute value.

7 Click Next in the Simulator to view the results of the Add operation with the specified attribute
value.

Simulating the Modification of an Attribute
There are multiple events that cause an attribute to be modified. They are:

¢ Add Value: Adds a new value to the attribute.
+ Remove Value: Removes a single value from the attribute.
¢+ Remove All Values: Removes all values stored in the attribute.
+ Remove: Removes the attribute.
When you are simulating a Modify operation, you need to select which event occurs to modify the
attribute. The Simulator allows you to do that:
In the Policy Simulator, select Modify in the Operation field of the XDS Builder.
Double-click Class in the Parameter column.
Browse to and select the desired class, then click OK.
Click the Add Attribute button.
Browse to and select the desired attribute, then click OK.

O A~ WODN -

Right-click the attribute, then select one of the modifying events:
¢ Add Value

+ Remove Value

*

Remove All Values
+ Remove
You can add multiple events to a single attribute.

7 Click Next in the Policy Simulator to view the results of the Modify operation.
The Policy Simulator allows you to modify the values of the attribute and change the order of events
that occur to an attribute. When you right-click an event in the Attributes field, you have additional
options that allow to make these changes:

¢ Add: Allows you to add content to the attribute value.

¢ Change to Add Value/Change to Remove Value: Allows you to change the event from Add
Value to Remove Value or vice versa.

+ Remove: Removes the selected event from the list of events to occur on an attribute.

152 Policies in Designer 3.0



+ Move Up: Moves the selected event up in the order of execution.

* Move Down: Moves the selected event down in the order of execution.

9.3 Using the Operation Data Editor

The Operation Data editor allows you to create an operation data element for the selected operation
by specifying attributes and values that should be included in the node. An XML fragment should
also be included in the node.

In the Parameter column of the Policy Simulator, double-click the Operation Data field.

In the Operation Data editor, click 4dd to add the desired attribute.

Specify the name of the attribute in the Aztribute field.

Specify the value of the attribute in the Value field.

If you want to add an additional attribute, repeat Step 2 through Step 4.

Click the Data field, then specify the XML fragment.

Artribuke Yalue

O O A~ WODN -

fFrom-reset krue
old-dn Ch=j0E, 0=Ccompanty

Remave

£ ?

Daka:

<node>my operation data</ node>|

7 Click OK to save the information.

9.4 Using the Hex Editor

The Hex editor allows you to view or edit any attribute values in hex mode. For example, if you are
synchronizing eDirectory attribute values of type octet string, then you can edit this information
through Designer.

Testing Policies with the Policy Simulator

153



Figure 9-6 Hex Editor

@ Hex Editor

Enter the value.

Encoding: P.':‘--::II w |

Offset 0O 1 2 3 4 5 f 7 g 9 L B C D 13 F | ASCTT | &8

bl

Offset: 00000000H of 000000000 | Yalue: 0:FF (hex) = 234 (dec) = 0234 (ock) = 0101101011010¢ | Filesize: 100000

[Import... ] [qu:u:nrt... ]

@ I oK ] [ Cancel

¢ Section 9.4.1, “Accessing the Hex Editor,” on page 154

¢ Section 9.4.2, “Importing Data into the Hex Editor,” on page 155
¢ Section 9.4.3, “Inserting Data in the Hex Editor,” on page 155

¢ Section 9.4.4, “Appending Data in the Hex Editor,” on page 156

¢ Section 9.4.5, “Editing Data in the Hex Editor,” on page 157

¢ Section 9.4.6, “Reverting Changes in the Hex Editor,” on page 159
¢ Section 9.4.7, “Deleting Data in the Hex Editor,” on page 159

¢ Section 9.4.8, “Moving the Cursor in the Hex Editor,” on page 160
¢ Section 9.4.9, “Exporting Data from the Hex Editor,” on page 160

9.4.1 Accessing the Hex Editor

The Hex editor is inside of the Policy Simulator. The Hex editor is opened for all attributes that have
an eDirectory syntax of octet string or unknown and an application syntax type of octet. You can
also access the Hex editor by following these steps:

1 Launch the Policy Simulator and do the following:
1a Set the Simulation Point to Publisher Creation.

154 Policies in Designer 3.0



1b Add a class parameter of User.
1c Click the Add Attribute button to add a new attribute to the class.
2 In the Schema Browser, select Add an Attribute @

Follow the steps in the New Attribute Wizard to create a new attribute. Make sure you specify
the attribute’s syntax type as Octet String.

For more information, see “Creating Identity Vault Attributes” in the Designer 3.0 for Identity
Manager 3.6 Administration Guide.

3 In the Schema Browser, select the new attribute, then click OK to launch the Hex editor.

Classes |

attributes of: | ser v|

Facsimile Telephone Mumber ~
Full Marne j
Generational Qualifier

Given Mame

Group Membership

GUID

Higher Privileges

Harme Direckory

homePhone

homePostalsddress

Initials

instantMessaginglD

inkernationalisDMMumber

Internet EMail Address

isManager

jackiumber

jobCode

jpegPhato

L w

[Jonly show changes

E (9] j Cancel E]

9.4.2 Importing Data into the Hex Editor

You can import data from a file into the Hex editor.

1 Click Import in the Hex editor.

2 Browse to and select the file that has the information to import, then click Open.

9.4.3 Inserting Data in the Hex Editor

You can press the Insert key to insert a single byte, or you can use the following method to add
multiple bytes:

1 Select where you want to insert new data, then right-click in the Hex editor and select Insert.

Testing Policies with the Policy Simulator 155



Encading: | ASCII v |

Offset 0| 1] 2] 3] 2] 5
00000000: 2B 3D {00 pirere
00000010: 00 00 00

00000020: 00 00 00

00000030: 00 00 00  Undo
00000040: 00 00 00 Redo
000000S0: 00 00 00

00000060: 00 00 00

00000070: 00 00 00 Goto...
00000080: 00 00 00

000000S0: 00 00 00

Delete. ..

about, ..

L T e T e B e B e B e B e R e R e B o |

2 Specify the amount of data to add in bytes (B) or kilobytes (kB).

Insert data

Insert data

Amount of data to inserk:
Initial hex value:

[ K H Cancel ]

9.4.4 Appending Data in the Hex Editor

1 Right-click in the Hex editor, then select Append.

156 Policies in Designer 3.0



Enter the value.

Marmne: | value 1

Encoding: | ASCIT |

Offset 0O 1 2 3 4 =) &

L_l

Redo
Delete. ..
Gaka...

about, ..

The Append option is available when you right-click the first byte in the table, if there is no

data. It is also available when you right-click the last byte if there is data.
2 Specify the amount of data to append in bytes or kilobytes.

Append data

#mount of data ko append:
Initial hex value:

[ 0K H Cancel ]

3 Specify the initial hex value, then click OK.

9.4.5 Editing Data in the Hex Editor

1 From the Encoding drop-down list, select the desired encoding for the value.

Testing Policies with the Policy Simulator

157



@ncnding: ASCIT

Offset

Qo0o0o0o0:
Qo0o00010:
Q0o000zZ0:
Qo0o00030:
Qo0o00040:
Q0000050 :
Q0000060 :
Qo0o00a70:
Qooo00s0:
Q0o000s0:
Q00000AD:
QC0o000ED :
Qooo00co:
Q0o0000D0:
QO00000ED:
Q00000F0:
Qo0oo0100:
oo0o00110:
Qoo0o001z20:

u}
2B
[alu]
oo
oo
[alu]
oo
oo
[alu]
oo
oo
[alu]
oo
oo
oo
[alu]
oo
oo
[alu]
oo

1
3D
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

2]
14
ulu]
oo
oo
ulu]
oo
oo
ulu]
ao
oo
ulu]
ao
oo
oo
ulu]
oo
oo
ulu]
oo

3
24
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
ulu]
oo
oo
ulu]
oo
oo
ulu]
ao
oo
ulu]
ao
oo
oo
ulu]
oo
oo
ulu]
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

ao
oo
oo
ao
oo
oo
oo
oo
oo
oo
oo
oo
oo
ao
oo
oo
ao
oo
oo

oo
ulu]
oo
oo
ulu]
oo
oo
ulu]
ao
oo
ulu]
ao
oo
oo
ulu]
oo
oo
ulu]
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

ao
oo
oo
ao
oo
oo
oo
oo
oo
oo
oo
oo
oo
ao
oo
oo
ao
oo
oo

ao
oo
oo
ao
oo
oo
oo
oo
oo
oo
oo
oo
oo
ao
oo
oo
ao
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

ao
oo
oo
ao
oo
oo
oo
oo
oo
oo
oo
oo
oo
ao
oo
oo
ao
oo
oo

ao
oo
oo
ao
oo
oo
oo
oo
oo
oo
oo
oo
oo
ao
oo
oo
ao
oo
oo

Offset: 000000030 of 0000012Fh {69%:) | Walue: 0x00 (hex) = 0 {dec) = 00 {oct) = 00000000 (bin)

Filesize: 304 bytes

When the encoding is selected, the far right column displays the value encoded.

2 Select the cell of data to edit, then edit the data.

Encoding: | ASCIT

Offset

00000000 :
Qoooooio:
ooooooz20:
000o00o030:
Qooooo40:
00000o0s0:
oooooo&0:
Qooooo7o:
oooooos0:
Qooooos0:
000000AD :
O000000EO:
Qoooooco:
0o0oo00oDo:
Oo0o000ED:
O000000F0:
ooooo100:
ooooo1i0:
ooooo120:

n]
2E
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

1
3D
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

W

Z

3

4

1x(za)oo

oo
oo
oo
[alu]
oo
oo
[alu]
oo
oo
oo
oo
[alu]
oo
oo
oo
oo
[alu]
oo

ulu]
oo
oo
ulu]
oo
ulu]
ulu]
oo
ulu]
oo
oo
ulu]
oo
ulu]
oo
oo
ulu]
oo

Offset: 00000003k of 0000012Fh (0%:)

ulu]
oo
oo
ulu]
oo
ulu]
ulu]
oo
ulu]
oo
oo
ulu]
oo
ulu]
oo
oo
ulu]
oo

15
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

&
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

7
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
[alu]
oo
oo
[alu]
oo
oo
oo
oo
[alu]
oo
oo
oo
oo
[alu]
oo

oo
ulu]
oo
oo
ulu]
oo
ulu]
ulu]
oo
ulu]
oo
oo
ulu]
oo
ulu]
oo
oo
ulu]
oo

oo
ulu]
oo
oo
ulu]
oo
ulu]
ulu]
oo
ulu]
oo
oo
ulu]
oo
ulu]
oo
oo
ulu]
oo

u]u]
oo
u]u]
u]u]
oo
u]u]
oo
oo
u]u]
oo
u]u]
u]u]
oo
u]u]
oo
u]u]
u]u]
oo
u]u]

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

E
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

Value: 024 (hex) = 36 (dec) = 044 (oct) = 00100100 (hin)

When a cell is selected, the value is displayed in blue.

3 Click OK to save the changes.

The Hex editor also displays the value as hex, decimal, octet, and binary.

158 Policies in Designer 3.0

Filesize: 304 bytes



Figure 9-7 Value Displayed in Multiple Formats

Encoding: |ASCII

Qffset
ooooooon:
oooooo10:
Qoocooza:
Qoooooz0:
Qoocood40:
Qooooosa:
Qoooooen:
oooooo7o:
Qoooooos0:
Qooooooso:
QoooooAn:
Qoo0ooEBO:
Qoooooca:
Qoocoona:
Qo0o000Ed:
Qoooooro:
ooooo1o0:
ooooo110:
ooooo1zo:

]
ZB
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

1
3D
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

2z
1A
oo
uls]
uls]
uls]
uls]
uls]
oo
oo
oo
oo
uls]
uls]
uls]
uls]
ao
oo
oo
oo

3
24
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
uls]
uls]
uls]
uls]
uls]
oo
oo
oo
oo
uls]
uls]
uls]
uls]
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
uls]
uls]
uls]
uls]
uls]
oo
oo
oo
oo
uls]
uls]
uls]
uls]
ao
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
uls]
uls]
uls]
uls]
uls]
oo
oo
oo
oo
uls]
uls]
uls]
uls]
ao
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

Offset: 000000D3h of 0000012Fh (699%) Glalue: 000 (hex) = 0 {dec) = 00 {oct) = 00000000 fhin))

9.4.6 Reverting Changes in the Hex Editor

If you make a change in the Hex editor and want to undo it:

1 Right-click in the Hex editor, then select Undo.

The last change you had made is undone.

If you decide you want that change back:

1 Right click in the Hex editor, then select Redo.

The change that was undone is now redone.

9.4.7 Deleting Data in the Hex Editor

Filesize: 304 bytes

You can delete a single byte of data by pressing the Delete key. The Hex editor also allows you to

delete sections of data from the table:

1 Right-click in the Hex editor, then select Delete.
2 Specify the amount of data to delete in bytes or kilobytes, then click OK.

Testing Policies with the Policy Simulator

159



X

Delete data
Amount of data to delete: B %

[JFrom the cursor position o the end

I (2] 9 H Cancel l

Data is deleted from the current cursor position.

If you select From the cursor position to the end, it deletes all data in the Hex editor from the
cursor position in the table to the end of the table.

9.4.8 Moving the Cursor in the Hex Editor

You can move the cursor to a specified position in the Hex editor:

1 Right-click in the Hex editor, then select Goto.

2 Select whether the address specified in the table is a Decimal or Hexadecimal offset, then

specify the value.
Go to address E|
Mode
) Decimal (®) absolute
(%) Hexadecimal (") Relative down
El () Relative up
[ K ] [ Cancel ]

3 Select the mode of moving the cursor:
+ Absolute: Moves the cursor to the specified offset.

+ Relative Down: Moves the cursor down from where the cursor is currently located in the
Hex editor.

+ Relative Up: Moves the cursor up from where the cursor is currently located in the Hex
editor.

4 Click OK to move the cursor.

9.4.9 Exporting Data from the Hex Editor

You can export data from the Hex editor to a file.

1 Click Export in the Hex editor.

2 Specify a filename and location for the file, then click Save.

160 Policies in Designer 3.0



9.5 Simulating a Policy

After the XDS input document has been created, you can use it to simulate the behavior of a policy.

1 In the Policy Simulator, after the XDS input document is complete, click Next.

-,
-~ S

Input Document ; :
Beqgin by selecting a point of simulation. Then create the input document by selecting an L@]

operation and providing parameters, Select the source tab bo edit the XML of the input

I
i;

N Qg &
Sirmulation Point: | Input w

Cperation:
Add w

Parameter Yalue

Clags Lser

Association o=dirkML Testiou=Usersion=0lzer 1
Password initialpsad

Source DN o=dirML Testou=Usersion=_lser |
Dresstination DN

Template DN

Evienk ID

Opeer ation Daka

Abtributes: =

on Add Attribute. .
SLrmae

Given Mame

Initials

Full Name

Generational Qualifier
Facsimile Telephone Number

g H
2
@

EEEEEREBREE

#0S Builder | Source

[ net> |[ close |

2 If'the policy you are simulating generates a query, review the query in the Query tab, and model
the query response in the Response tab, then click Next.

NOTE: As with Input Documents, you can browse the Identity Vault for objects that you want
to use as templates for the simulator query or response.

Testing Policies with the Policy Simulator 161



Query | Response

Operation:
Query W
Parameter Walue
Class ser
Association o=novell
Destination DM
Scope enkry

Search Classes
Read Attributes O
Operation Data

% >
Attributes: F =
=Nao Attributes = add Akkribuke, .
%03 Builder | Source
Submit to Application
Field Description

Parameter Table

Attributes Field

Displays the query parameters generated during the
policy simulation. This matches the XML displayed in
the Source tab. For information on using the
Parameter table, see Section 9.2.10, “Parameter and
Value,” on page 149.

You can adjust the query parameters to vary the
response generated when you send the query to the
Application or ID Vault.

Allows you to refine your query by searching for
objects that contain particular values. For information
on the Attributes field, see Section 9.2.11,
“Attributes,” on page 150.

162 Policies in Designer 3.0



Field

Description

Submit to Vault

Sends the specified query to the Identity Vault to
generate a Response instance document. The
Simulator determines the query destination
automatically and displays the appropriate button.

Submit to Vault requires valid associations in the
Association parameter. This is typically possible only
when the ID Vault is deployed.

Similarly, you can model the Response instance page from the Response tab, which displays a
list of objects that satisfy the query. The policy uses this response data to determine what it

should do.

Query | Response

Operation:
Instance W
Parameter Walue
Class Qrganization
Association o=novell
Source DM o=novell

Destination DM

Parent Association

Parent Source DM o=novell
Parent Qualified Source DM

Parent Destinakion DM

Ewvent ID

Operation Data

Attributes: F =
= E add Attribuke. .
novel
%03 Builder | Source
Field Description

Parameter Table

Displays the parameters of the response instance
document. This matches the XML displayed in the
Source tab. For information on using the Parameter
table, see Section 9.2.10, “Parameter and Value,” on
page 149.

Testing Policies with the Policy Simulator

163



Field Description

Attributes Field Allows you to modify the response by adding or
modifying the attributes in the instance document.
For information on the Attributes field, see
Section 9.2.11, “Attributes,” on page 150.

3 Click Next.

4 In the View Transform Results page, examine the results of the transformation based on your
defined XDS input document.

Trace: The Trace tab displays the events that occur when the policy processes the defined input
document. This is similar to what you would see in DS Trace if the policy processed the same
input in a live IDM environment. You can configure the level of trace detail. For more
information, see Section 9.2.6, “Configuration Options,” on page 147.

Trate | Cubpuk Compare

Stephen Active Directory :Applying policy: %+C%14C'Cors

Stephen_Active_Directory @  Applying to add #1.
Stephen Active Directory : Evaluacing selection cr:
Stephen Active Directory : Query from policy

Stephen_Active _Directory :
<nds dtdversion="3.5" ndsversion="g.x">
<Jource>
<product version="%, 3. 7. ?"eDirXfL</ products>
<contactrNovell, Inc.</contact:>
</ source>
<inputs>
Zgquery class-neme="User"” acope="entcy">
<associatiohro=dicXNL Tesc\ou=Users\cn=Userl</a:
<read-attr atCE=name=0M s
</ gquecy>
<finpucs
</ nd=
Stephen Active Directory : Query from policy resi
Stephen_Active _Directory :
<nds dtdversion="3.5" ndsversion="g.x">
<Jourcer
<product version="%, 3. 7. ?"eDirXfL</ products>
<contactrNovell, Inc.</contact:>
</ source>
<output e

L >

Output: The Output tab displays the output document generated when the policy processes the
defined input document.

You can edit the output document in the XDS Builder or through the Source tab. If the
operation was vetoed, the operation listed in the Output tab is indicated.

164 Policies in Designer 3.0



Trace .WW..W:

Operation:

Parameter
Class
Associakion
Password
Source DN
Creskination DN
Template DN
Event ID
Operation Data

Artributes:

&
® Surname

H Given Name

- Initials

Value

Liser

o=dr ML Testiou=Lsersion=_ser1
initi

o=driML Testiou=Usersion=Userl

+ Generational Qualifier
i Facsimile Telephone Number

=3
& Full Name
T
+

¥DS Buillder | Source

&
x

Compare: The Compare tab displays the input document and the output document side-by-
side so you can examine the changes resulting from the policy processing of the input

document.

Testing Policies with the Policy Simulator

165



Trace | Output | Compare

Text Compare SRR
Input Docurment: at Cukpist Document:
<add-actctr attr-n <add-attr at] 4
<value type= <value t:
</add-accr> </add-accr>
<add-atcr attr-n <add-accr ac
<value types <valus !
<fadd=-attr> </add=-attr>
<add=attr attc=n <add-attr at’
<values type= <value ©7
</add-attr> </add-attr>
<add-attr attr-n <add-actr at:
<value type= <value t©7
</add-accr> </add-atte>
<add-atcr attr-n <add-accr ac
[ <value types|—] <value t]
Eelndul i1 lub ol <iCom]
<COmpone <Com
Loompone <oon o
</value> <fvalue»
</add-atcr> </add-actr>
<passwordrinitia <passwordrin
</ add> <f mdd>
</ inpuc> </ inpuc>
</ nds> </nds> ~
£ > < >

5 After examining the policy effects on the input document, click one of the buttons at the bottom
of the View Transform Results page:

Back: Re-opens the Input Document page so you can repeat the simulation with a different
settings.

Next: Uses the current output document as the input document for the next policy set in the
driver. This lets you examine how the policies work together as data flows from one policy to
another.

Close: Closes the Policy Simulator.

9.6 Simulating Policies with Java Extensions

Policies that contain references to external Java extensions can now be simulated by adding the
appropriate . jar file or directory to the class path.

To add a . jar file or directory to the Java class path:

1 Select Windows > Preferences from the tool bar.
2 Navigate to the Novell > Identity Manager > Simulation page.
3 Copy the . jar file containing the Java class to the specified directory and simulate the policy.

166 Policies in Designer 3.0



type Filter text Simulation

General i
Directories | Options

FeR

Help
(= Mol

Designer Java Extensions

=) Identity Manager

Configuration
Dacument Generation
Entitlements
iManager
ImportiDeploy

Modeler

Palicy Builder

) add. .

Provisioning
web and =ML

Restore Defaulks Apply

4 Click Apply to save your changes, or click OK to save your changes and close the window.

Designer allows you to specify more than one directory that contains the external Java classes.

1 Click Add files to select a specific . jar file to add to the class path. Alternatively, click Add
directories to add all . jar files in the specified directory to the class path.

2 Browse to and select the desired file or directory, then click OK.

3 To remove a file or directory entry from the Java Extensions list, select the appropriate entry,

then click Remove.

Testing Policies with the Policy Simulator

167



168 Policies in Designer 3.0



Storing Information in Resource
Objects

Resource objects store information that drivers use. The resource objects can hold arbitrary data in
any format. Novell® Identity Manager contains different types of resource objects.

¢ Section 10.1, “Generic Resource Objects,” on page 169

¢ Section 10.2, “Mapping Table Objects,” on page 171
Section 10.3, “ECMAScript Objects,” on page 171

*

*

Section 10.4, “Application Objects,” on page 171

*

Section 10.5, “Repository Objects,” on page 171

*

Section 10.6, “Library Objects,” on page 171

10.1 Generic Resource Objects

Generic Resource objects allow you to store information that a policy consumes. It can be any
information stored in text or XML format. A resource object is stored in a library or driver object.
An example of using a resource object is when multiple drivers need the same set of constant
parameters. The resource object stores the parameters and the drivers use these parameters at any
time.

¢ Section 10.1.1, “Creating a Resource Object,” on page 169

¢ Section 10.1.2, “Using a Generic Resource Object,” on page 170

10.1.1 Creating a Resource Object
1 In the Outline view, right-click the location where you want to create the resource object, then
select New > Resource.
2 Specify the name of the resource object.
3 Select the content type: XML or Text.
4 Select the check box for Open the editor after creating the object, then click OK.

Set Resource Name R rael)
1 s
Enter a name Far wour new resource., L m—
Marne: | Creation F‘arameters|
Conktent type: | Text v
Cpen the editor after creating the object.
[al 4 ] [ Cancel

Storing Information in Resource Objects 169



5 Click Yes in the file conflict messages.

@ File Conflict E

. Befaore editing this item, vou need ko save, Do you want ko save this editor's
\__4:/ changes and continue?

6 Specify the desired text or XML, then press Ctrl+S to save the resource object.

\E. project 1 - Developer ﬁ Resource &a =8

Resource Editor @
3 Resource, Library, Driver Set,Identity Yault

XML /Text Editor

£# Configuration

10.1.2 Using a Generic Resource Object

A resource object is a place to store information. It is an eDirectory™ object, and to use the
information in the object, you treat it as any other eDirectory object. The attribute DirXML-Data
stores the information in the resource object, and the attribute DirXML-Content type stores the label

of the information.

170 Policies in Designer 3.0



To read the information stored in the resource object, use the Source Attribute (page 342) or
Destination Attribute (page 319) tokens. To write information to the object, use the following
actions:

¢ Clear Destination Attribute Value (page 247)

¢ Clear Source Attribute Value (page 249)
Set Default Attribute Value (page 282)
¢ Set Source Attribute Value (page 295)

10.2 Mapping Table Objects

A mapping table object is used by a policy to map a set of values to another set of corresponding
values. After a mapping table object is created, the Map (page 360) token maps the results of the
specified tokens from the values specified in the mapping table. For more information, see
Section 4.14, “Mapping Table Editor,” on page 62.

10.3 ECMAScript Objects

ECMAScript objects are resource objects that store ECMAScripts. The ECMAScript is used by
policies and style sheets. For more information, see Chapter 11, “Using ECMAScript in Policies,”
on page 175.

*

10.4 Application Objects

Application objects store authentication parameter values for Novell Credential Provisioning
policies. There application objects for Novell SecureLogin and for Novell SecretStore®. For
information on how to create application objects for SecureLogin, see “Creating an Application
Object for Novell SecureLogin” in Novell Credential Provisioning Policies for Identity Manager
3.6. For information on how to create application objects for SecretStore, see “Creating an
Application Object for Novell SecretStore” in Novell Credential Provisioning Policies for Identity
Manager 3.6.

10.5 Repository Objects

Repository objects store static configuration information for Novell Credential Provisioning
policies. There are repository objects for Novell SecureLogin and for Novell SecretStore. For
information on how to create repository objects for SecureLogin, see “Creating a Repository Object
for Novell SecureLogin ” in Novell Credential Provisioning Policies for Identity Manager 3.6. For
information on how to create repository objects for SecretStore, see “Creating a Repository Object
for Novell SecretStore” in Novell Credential Provisioning Policies for Identity Manager 3.6.

10.6 Library Objects

Library objects store multiple policies and other resources that are shared by one or more drivers. A
library object can be created in a driver set object or any eDirectory container. Multiple libraries can
exist in an eDirectory tree. Drivers can reference any library in the tree as long as the server running
the driver holds a Read/Write or Master replica of the library object.

Storing Information in Resource Objects

171



Style sheets, policies, rules, and other resource objects can be stored in a library and be referenced
by one or more drivers.

¢ Section 10.6.1, “Creating Library Objects,” on page 172

¢ Section 10.6.2, “Adding Policies to the Library Objects,” on page 172

¢ Section 10.6.3, “Using Policies in the Library Objects,” on page 173
10.6.1 Creating Library Objects

1 Right-click a driver set or the Identity Vault object in the Outline view, then click New >
Library.

2 Specify the name of the library object, then click OK.

Set Library Name
Enter a name For wour new library,

Mame: | Library 1]

I Ok H Cancel ]

10.6.2 Adding Policies to the Library Objects

Libraries can hold any policy, XSLT style sheets, or any type of resource object.

1 Right-click the library object, select New, then select the type of object you want stored in the
library. The options are:

;ﬁl} Credential Application...
:_ﬁ Credential Repositary..,
B DirkML Seript. ..

FEF° ECMASCHpt, .

Mapping Table...

:_‘;]} Resource. .,

MZ Schema Map...

TE WALt

From Copy...
+ Credential Application: Stores application authentication parameter values for Novell
Credential Provisioning policies. For information, see “Creating an Application Object for

Novell SecureLogin” or “Creating an Application Object for Novell SecretStore” in
Novell Credential Provisioning Policies for Identity Manager 3.6.

172 Policies in Designer 3.0



¢ Credential Repository: Stores static configuration information for Novell Credential
Provisioning policies. For information, see “Creating a Repository Object for Novell
SecureLogin ” or “Creating a Repository Object for Novell SecretStore” in Novell
Credential Provisioning Policies for Identity Manager 3.6.

+ DirXML Script: Creates a policy set. See Section 3.3, “Creating a Policy,” on page 24
for more information.

¢+ ECMAScript: Creates an ECMAScript object. See Section 11.1, “Creating an
ECMAScript Object,” on page 175 for more information.

+ Mapping Table: Creates a mapping table object. For more information, see
Section 4.14.1, “Creating a Mapping Table Object,” on page 62.

+ Resource: Creates a generic resource object. For more information, see Section 10.1.1,
“Creating a Resource Object,” on page 169.

¢ Schema Map: Creates a Schema Map object. For more information, see Chapter 6,
“Defining Schema Map Policies,” on page 77.

¢ XSLT: Creates an XSLT style sheet in the library. For more information, see “Defining
Policies by Using XSLT Style Sheets”.

+ From Copy: Creates a copy of an existing object.

10.6.3 Using Policies in the Library Objects

After you have created the library, you can use any of the resources stored in the library in any
policy.

1 Double-click the desired policy in the Outline view.

2 Right-click in the Policy Builder, then select New > Include > Insert Include Before or Insert
Include After.

3 Browse to and select the desired resource stored in the library object, then click OK twice.

Select an object:

= [l 1dentity vaulk
= E Driver Set
& Active Directory
&g Delimited Text
&' LDoP
&g I45 PIY Life Cycle Driver
ﬁ) Enrollment Driver For Honewwell SmartPlus Syskem
‘p’ PACS Inteqgration Driver For Honewwell SmarkPlus System
= i’f Library 1
Hr] matching policies

Storing Information in Resource Objects 173



174 Policies in Designer 3.0



Using ECMAScript in Policies

ECMAScript is a scripting programming language, standardized by Ecma International. It is often
referred to as JavaScript™ or JScript, but these are actually implementations of ECMAScript.
Identity Manager supports ECMAScript. ECMAScript objects are resource objects that store
ECMAScripts. The ECMAScript is called through a policy to provide advanced functionality that
DirXML® Script or XSLT style sheets cannot provide.

Identity Manager uses the ECMACScript objects in two different ways: to create a custom form in
the provisioning request definition editor, and to call an ECMAScript function in policies. For more
information on custom forms, see Creating Custom Forms (http://www.novell.com/documentation/
idm35/dgpro/data/prdefcreateformschapter.html).

This section explains how to use the ECMAScript editor, how to use ECMAScript with policies, and
how to use ECMAScript with custom forms. It does not explain the ECMAScript language. See the
ECMAScript Language Specification (http://www.ecma-international.org/publications/standards/
Ecma-262.htm) for information on how to use the ECMAScript language.

¢ Section 11.1, “Creating an ECMAScript Object,” on page 175
¢ Section 11.2, “Using the ECMAScript Editor,” on page 176
¢ Section 11.3, “Examples of ECMAScripts with Policies,” on page 184

11.1 Creating an ECMAScript Object

ECMAScript objects can be created in a library, driver object, Publisher channel, or Subscriber
channel.

1 In the Outline view, right-click the location to create the ECMAScript object, then select New >
ECMAScript.

2 Specify the name of the ECMAScript object.
3 Select the check box for Open the editor after creating the object, then click OK.

New ECMAScript
_reate a Mew ECMASCript ECMA
Mame: | ECMASCript Palicy Examples|

Cpen the editor after creating the object.

l oK H Cancel ]

4 Click Yes in the file conflict message to save the ECMAScript object.

Using ECMAScript in Policies 175


http://www.novell.com/documentation/idm35/dgpro/data/prdefcreateformschapter.html
http://www.ecma-international.org/publications/standards/Ecma-262.htm

@ File Conflict E

P Befare editing this item, you need ko save. Do you want ko save this editor's
\_‘J/ changes and continue?

5 Either type the ECMAScript, or copy the ECMAScript into the editor from an existing file.
6 To save the ECMAScript press Ctrl+S after the ECMAScript is finished.

For information on how to use the ECMAScript editor, see Section 11.2, “Using the ECMAScript
Editor,” on page 176.

11.2 Using the ECMAScript Editor

ECMAScript objects are supported only with servers that have Identity Manager 3.5 or later
installed. If a server in a selected driver set is earlier than Identity Manager 3.5, an error message is
displayed, and Designer does not allow the object to be created. Change the version of the server to
Identity Manager 3.5 or later on the properties of the server, then the ECMAScript object can be
created.

Designer provides an ECMAScript editor, which also includes an ECMA Expression Builder. You
use both to create the ECMAScript.

To access the ECMAScript editor:

1 Right-click an ECMAScript object in the Outline view, then select Edit.
or
When creating an ECMAScript object, select the check box Open the editor after creating the
object.

The ECMAScript editor provides different types of functionality depending upon which section you
are using.

¢ Section 11.2.1, “Main Scripting Area,” on page 176

¢ Section 11.2.2, “Expression Builder,” on page 179

¢ Section 11.2.3, “Functions and Variables,” on page 181

*

Section 11.2.4, “Error Display,” on page 182
Section 11.2.5, “Shell Area,” on page 182

*

11.2.1 Main Scripting Area

The ECMAScript editor provides a main scripting area where the ECMAScript is created. You can
type a new script, or copy an existing one.

176 Policies in Designer 3.0



Figure 11-1 Main Scripting Area

ECMAScript Editor ®

F=]l ECMAScript.Library Driver Set,Identity Yault

- =
[Z @ getBe4ImageF importPackage (Packages.com.nowell, xml. #

& rebval importPackage (Fackages.com.novell.xml.x
& 5 iwmporcPackage (FPackages.com.novell.nds.d
& importClass (java. lang.3ystem) ;
& gy importClass (java.net . URL) ;
& bEdnos iwmporcClass (Packages.com.hovell. 1o, BEase
[=) @ split importClass (java.io.3tringliriter) ;
&  document
& nodeSet
& figlds f%% Read an image from a UTRL and return
& Field * @param {3tring} url3tring URL of the
& textMode * [ltype Itring
=@ join * [freturn Basetd4 encoded content of th
& countk =
& resul function getBedImageFromURL (url3tring)
& node i “
. £ % .
=
< >

¢ “Using an Existing ECMAScript” on page 177
+ “Editing an ECMAScript” on page 177
¢ “Coding Help for ECMAScript” on page 178

Using an Existing ECMAScript

1 Open the ECMAScript in a text editor, then copy the script.
2 Paste the ECMAScript into the ECMAScript editor.
3 Press Ctrl+S to save the ECMAScript.

Editing an ECMAScript

1 Right-click in the main scripting area, then select the desired option.

Using ECMAScript in Policies 177



<2 Unda Typing Chr+Z

W

o Cut Chrl+%

Copy Chrl+C

[ Paste Chrl+y

¥ Delete Delete
Select All i+,
Find/Replace... Chel+F

@ Show Expression Builder

¢ Undo Typing: Undoes the typing that has occurred.

+ Redo: Redoes the last action.

¢ Cut: Cuts the selected area.

+ Copy: Copies the selected area.

¢ Paste: Pastes the information in the Clipboard into the main scripting area.
+ Delete: Deletes the selected information from the main scripting area.

¢ Select All: Selects all of the information in the main scripting area.

+ Find/Replace: Finds and replaces the specified information.

¢ Show Expression Builder: Launches the Expression Builder. For more information, see
Section 11.2.2, “Expression Builder,” on page 179.

Coding Help for ECMAScript

1 Right-click in the left margin of the main scripting area, then select the desired option.

Toggle Breakpoints

Add Bookmark. ..
add Task. ..
Revert Block
Delete Added Line

w Show Quick, Diff Chrl+Shift+Q
Show Ling Mumnbers

Preferences...

+ Toggle Breakpoints: To be implemented.

+ Enable Breakpoints: Sets breakpoints in the ECMAScript.

+ Breakpoint Properties: Displays the properties of the breakpoints.

¢ Add Bookmark: Places a bookmark icon on a line in the ECMAScript editor.

+ Add Task: Places a task icon in a line as a reminder of additional work that needs to be
done. If you open the Task view from the toolbar, by selecting Window > Show View >
Tasks, the task is displayed.

¢ Revert Block: To be implemented.

178 Policies in Designer 3.0



Delete Added Line: Deletes the last line added.
Show Quick Diff: To be implemented.
Show Line Numbers: Displays line numbers in the main scripting area.

Preferences: Sets the line delimitation and sets the suffix for the files created in the
ECMAScript editor. By default, there is no translation for line delimiters, and the suffix is

js.

11.2.2 Expression Builder

The Expression Builder helps in creating ECMAScript expressions. The Expression Builder can be
accessed in two ways through the ECMAScript editor; it can also be accessed through the Policy
Builder and the Argument Builder.

To access the Expression Builder in the ECMAScript editor:

1 Right-click in the main scripting area of the ECMAScript editor, then click Show Expression
Builder.

or

Right-click the shell area of the ECMAScript editor, then click Show Expression Builder.

To access the Expression Builder through the Policy Builder:

1 Click the Launch ECMA Expression Builder icon next to the following actions or conditions:.

*

*

*

*

*

*

[f XPath Expression

Append XML Element
Append XML Text

Clone By XPath Expressions
Set XML Attribute

Strip XPath Expression

To access the Expression Builder through the Argument Builder:

1 Double click the XPath noun token.
2 Click the Launch ECMA Expression Builder icon in the Argument Builder.

The Expression Builder has three panes; ECMAScript/Variables, Functions/Methods, and
ECMAScript Operators.

Using ECMAScript in Policies

179



Figure 11-2 Expression Builder

ECMASCripk Objecks Functions Methods ECMAScript Operators
F=l Functions =l =2 ECMAScripk + @ Logical
+- 8 Array +--8 Math
+--IE Boolean +--E Relational
+ @ Date + @ Skring
+ @ Funckion
+--® slobal
+-IE Math
+-8 Mumber
+ - Object
+ @ Skring
[ O ] [ Cancel ] [Check Syntax]

ECMAScript Objects lists all of the current defined functions in the ECMAScript. Function/Methods
contains the standard ECMAScript functions. ECMAScript Operators displays the standard
ECMAScript operators.

To use the Expression Builder:

1 (Optional) Click the desired ECMAScript Objects.

2 (Optional) Click the desired Functions/Methods.

3 (Optional) Click the desired ECMAScript Operators.
4 Click Check Syntax to validate the expression.

5 Click OK to close the Expression Builder.

In the following example, the join ECMAScript variable is used with the toString function or
method, but there is no ECMAScript operator selected.

180 Policies in Designer 3.0



Figure 11-3 Expression Builder Example

ECMASCript Yariables Functions/Methods ECMAScript Operators
= FEl Functions +-(® object L +-8 Math
@ getBS4ImageFromURL =@ String +-(® Relational
@ split Foe Stringi) +-(® Logical
2 join Fe FromCharCade(chart +-{8 String
Fe tostring()
e valusof()
e charakipos)
Fe charCodedk{pos)
Fe indexOf{searchStrim
Fe lastIndexOf({searchs
Fe splitfseparator)
. cibckrinafchart and’
< >
joing ), koStringl)
O, l [ Cancel ] [Check Syntax

11.2.3 Functions and Variables

As functions and variables are defined in the ECMAScript, they are displayed on the left side of the

ECMAScript editor.

Figure 11-4 Functions and Variables

ECMAScript Editor

@

F=] Ecmascript.Library, Driver Set, Identity Yaulk

Y
&

1
o
o kR

[

=@ joi
F
F
F

=l @ getBEﬂImageF—

retyal
is

url

i
batos

it
document
nodeset
fields
Field
texthode

Iy

caunk

result

node

importPackage (Packages.com. novell, Xml. &
importPackage (Packages.com.novell.xml.x
importPackage (Packages.com.novell.nds.d
importClass (Jjava. lang. 3ystem) ;
iwportClass (java.net . URL) ;
importClass (Fackages.com.hovell.io. Base
importClass (Java.lio.3tringWriter) ;

J*% Read an image from =& URL and return
* [iparamw {String} url3tring URL of the
* @type Jtring
* @return Basefd encoded content of th
=

functionh getBedImageFrowmURL (url3tring)

{ w
£ >

Using ECMAScript in Policies 181



All of the variables that are stored in a function are grouped together. You can expand a function to
view all of the variables, by clicking the plus icon (arrow icon in Linux). You can view the function
without the variables by clicking the minus icon (arrow icon in Linux).

11.2.4 Error Display

As the ECMAScript is created, errors are displayed in the main scripting area and in the Problems
view. The main scripting area displays the errors as a red X on the line where the error occurs.

Figure 11-5 Main Scripting Area Errors

war count = 0; Ll |
war result = M2
44 loop through the Nodes in the N
for (wvar node = nodelet.firsti(l: n
1

f4 if not first Node, append t©

if (count++ > 0)

{

result 4+= delimiter:

i
/7 append the string value of
result += XPathlUtil.getNodeVal
H
return result:;

€ :

£ >
The Problems view accumulates the errors as the ECMAScript is typed, displays the cause of the
error.

Double-click the error in the Problems view. The cursor jumps to the problem line in the main
scripting area.

To access the Problems view:

1 In the toolbar, select Window > Show View > Other > General > Problems.

The Problems view is displayed below the ECMAScript editor.

[£{ Problems &3 & ¥ =0
1 errar, 0 warnings, O infos
Description Resource Path Location
= - Errors (1 item)
@ missing ) in parenthetical BASO1672....  project/Maodel/IdentityMan...  line 122

11.2.5 Shell Area

The shell area of the ECMAScript area allows you execute the ECMAScript. After the ECMAScript
is created, you can test the functionality of the script.

182 Policies in Designer 3.0



Figure 11-6 Shell Area

ECMAScript Editor @

F=1 Function, Libeary, Driver Set,Identity Yaulk

@ areaOfCircle function areaQfCircle | radius )
recurn 2 ¥ Math.PI * (radius * radius):
¥

=areaCfCircle { 10 )
6?8.318530?1?958?
=

Figure 11-6 contains an example of a function that determines the area of a circle. The function is
tested by specifying a value of areaOfCircle (10). The shell displays the value of
628.3185307179587.

To execute the expression, press the Enter key. If you want to enter more than one line of code in the
console, press Enter on the numeric keypad.

Additional Options in Shell Area

If you right-click inside the shell area you are presented with the following additional options:

Using ECMAScript in Policies 183



Figure 11-7 Shell Area Additional Options

ECMAScript Editor

P2l Mew ECMASCript.Library Identity Yaulk 3

function areadflircle [ radius )
return 2 % Math.PI * (radius * radius)

b

@ areaOfCircle

of” Cut
Copy

Shiow Expression Builder

¢ Cut, Copy and Paste: Enables you to cut, copy and paste from and into the shell area.

¢ Show Expression Builder: Launches ECMA Expression Builder.

11.3 Examples of ECMAScripts with Policies

The following examples use the ECMAScript file demo . j s (../samples/demo.js) with different
policies. The demo . j s file contains three ECMAScript function definitions.
¢ Section 11.3.1, “DirXML Script Policy Calling an ECMAScript Function,” on page 185

¢ Section 11.3.2, “XSLT Policy Calling an ECMAScript Function at the Driver Level,” on
page 186

¢ Section 11.3.3, “XSLT Policy Calling an ECMAScript Function in the Style Sheet,” on
page 187

184 Policies in Designer 3.0



../samples/demo.js
../samples/demo.js
../samples/demo.js

11.3.1 DirXML Script Policy Calling an ECMAScript Function

The DirXML Script policy converts an attribute that is a URL reference to a photo to the Base64
encoded photo data by calling the ECMAScript function getB64ImageFromURL (). The policy can
be used as an Input Transformation or Output Transformation policy.

The function reads an image from a URL and returns the content as a Base64 encoded string.

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE policy PUBLIC "policy-builder-dtd"
"C:\Program
Files\Novell\Designer\eclipse\plugins\com.novell.designer.idm.policybuilder 1.2.0.
200612180606\DTD\dirxmlscript.dtd"><policy>
<rule>
<description>Reformat photo from URL to octet</description>
<conditions/>
<actions>
<do-reformat-op-attr name="photo">
<arg-value type="octet">
<token-xpath expression="es:getB64ImageFromURL (string (Scurrent-value))"/>
</arg-value>
</do-reformat-op-attr>
</actions>
</rule>
</policy>

Function: <static> String getB64ImageFromURL (<String> urlString)
Parameters: urlString (URL of the image file)
Returns: Base64 encoded content of the image (or empty string if error)

The file ReformatPhoto.xml (../samples/ReformatPhoto.xml) calls the ECMAScript function
getB64ImageFromURL from a DirXML Script policy. The file phototest.xml (../samples/
phototest.xml) is a sample input document that shows the policy in action.

Figure 11-8 Reformat Photo Example

B § Reformat photo from URL to octet

Mo description available.,

Conditions

+ & Condition Group 1

Define new condition here

" & reformat operation attribuke"photo”, "xPathi"es:getBe4ImagerromURL{string$current-value ™"}

Lo |reﬁ:|rmat operation attribute - | )]
Specify name: * | phiotal | & & &
Specify walue bype: | ockek B |
Enkter ocket: * | "wPathi{"es:getBS4ImageFromURLLstring$ourrent-walue)™" |

The ECMAScript calls the getB64ImageFromURL function, which then returns the current value as
a string.

Using ECMAScript in Policies

185


../samples/ReformatPhoto.xml
../samples/ReformatPhoto.xml
../samples/ReformatPhoto.xml
../samples/phototest.xml
../samples/phototest.xml
../samples/phototest.xml

11.3.2 XSLT Policy Calling an ECMAScript Function at the
Driver Level
The XSLT policy either splits a single comma-delimited value into multiple values, or joins multiple

values into a single comma-delimited value. The XSLT policy is defined at the driver level and can
be used as an Input Transformation or Output Transformation policy.

NOTE: DirXML Script has the split and join functionality built into it, but XSLT does not. This
type of function allows XSLT to have the split and join functionality.

There are two functions:

¢ “Join” on page 186

* “Split” on page 186

Join
The Join function joins the text values of Nodes in a NodeSet into a single string

<!-- template that joins the joinme attribute values into a single value -->
<xsl:template match="*[Qattr-name='Jjoinme']//*[value] | *[Qattr-
name="'joinme'] [value]">
<xsl:copy>
<xsl:apply-templates select="@*|node () [not (self::value)]"/>
<value>
<xsl:value-of select="es:join(value)"/>
</value>
</xsl:copy>
</xsl:template>

Function: <static> String join (<NodeSet> nodeSet, <string> delimiter)

Parameters: nodeSet (the input NodeSet) and delimiter (the delimiter to split on. Optional: default
= none).

Returns: The concatenation of the string values of the Nodes in the nodeSet, separated by the
delimiter.

Split

The Split function splits a string into a NodeSet.

<!-- template that splits the splitme attribute values into multiple values -->
<xsl:template match="*[Qattr-name='splitme']//value">
<xsl:for-each select="es:split(string(.))">
<value>
<xsl:value-of select="."/>
</value>

</x%sl:for-each>
</xsl:template>

Function: <static> NodeSet split(<String> inputString, <String>
delimiter)

186 Policies in Designer 3.0



Parameters: inputString (the script to split) and delimiter (the delimiter to split on. Optional:
default = ).

Returns: A NodeSet containing text nodes.

The file SplitJoin.xs1 (../samples/SplitJoin.xsl) calls the join or split functions in an XSLT
style sheet. The file splitjointest.xml (../samples/splitjointest.xml) is an input document
that shows the style sheet in action.

11.3.3 XSLT Policy Calling an ECMAScript Function in the Style
Sheet

The XSLT policy demonstrates embedding ECMAScript function definitions with the XSLT style
sheet. The functions convert a string to uppercase.

<!-- define ecmascript functions -->
<es:script>
function uppercase (input)

{
return String(input) .toUpperCase() ;

}

</es:script>

The file uppercase.xsl (../samples/uppercase.xsl) defines the ECMAScript function with the
XSLT style sheet. The file uppercasetest.xml (../samples/uppercasetest.xml) is an input
document that shows the style sheet in action.

Using ECMAScript in Policies 187


../samples/SplitJoin.xsl
../samples/SplitJoin.xsl
../samples/SplitJoin.xsl
../samples/splitjointest.xml
../samples/splitjointest.xml
../samples/splitjointest.xml
../samples/uppercase.xsl
../samples/uppercase.xsl
../samples/uppercase.xsl
../samples/uppercasetest.xml
../samples/uppercasetest.xml
../samples/uppercasetest.xml

188 Policies in Designer 3.0



Conditions

Conditions define when actions are performed. Conditions are always specified in either
Conjunctive Normal Form (CNF) (http://mathworld.wolfram.com/ConjunctiveNormalForm.html)
or Disjunctive Normal Form (DNF) (http://mathworld.wolfram.com/DisjunctiveNormalForm.html).
These are logical expression forms. The actions of the enclosing rule are only performed when the
logical expression represented in CNF or DNF evaluates to True or when no conditions are
specified.

This section contains detailed information about all conditions that are available through the Policy
Builder interface.

*

*

“If Association” on page 190

“If Attribute” on page 192

“If Class Name” on page 195

“If Destination Attribute” on page 198
“If Destination DN on page 201

“If Entitlement” on page 202

“If Global Configuration Value” on page 205
“If Local Variable” on page 207

“If Named Password” on page 211

“If Operation” on page 212

“If Operation Attribute” on page 215
“If Operation Property” on page 218
“If Password” on page 220

“If Source Attribute” on page 223

“If Source DN on page 225

“If XML Attribute” on page 227

“If XPath Expression” on page 229

Conditions 189


http://mathworld.wolfram.com/ConjunctiveNormalForm.html
http://mathworld.wolfram.com/DisjunctiveNormalForm.html

If Association

Performs a test on the association value of the current operation or the current object. The type of
test performed depends on the operator specified by the operation attribute.

Fields
Operator

Operator Returns True When...

Associated There is an established association for the current object.

Available There is a non-empty association value specified by the current
operation.

Equal The association value specified by the current operation is exactly equal
to the content of the if association.

Greater Than The association value specified by the current operation is greater than
the content of the condition when compared by using the specified
comparison mode.

Less Than The association value specified by the current operation is less than the
content of the condition when compared by using the specified
comparison mode.

Not Associated There is not an established association for the current object.

Not available The association is not available for the current object.

Not Equal The association value specified by the current operation is not equal to
the content of the if association.

Not Greater Than Greater Than or Equal would return False.

Not Less Than Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Equal

¢ Greater Than

¢ Less Than

Not Equal

Not Greater Than
Not Less Than

*

*

*

Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

190 Policies in Designer 3.0



Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

The operators that contain the comparison mode parameter are:

¢ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than

+ Not Less Than

Example

This example tests to see if the association is available. When this condition is met, the actions that

are defined are executed.

Caondition | assaciation

¥ @

Cperator * | available W

Conditions

191


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Attribute

Performs a test on attribute values of the current object in either the current operation or the source
data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the
test is satisfied if the condition is met in the source data store or in the operation. The test performed
depends on the specified operator.

Fields

Name

Specify the name of the attribute to test. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Operator

Select the condition test type.

Operator

Returns True When...

Available

Equal

Greater Than

Less Than

Not Available
Not Equal
Not Greater Than

Not Less Than

There is a value available in either the current operation or the source
data store for the specified attribute.

There is a value available in either the current operation or the source
data store for the specified attribute, which equals the specified value
when compared by using the specified comparison mode.

There is a value available in either the current operation or the source
data store for the specified attribute that is greater than the content of the
condition when compared by using the specified comparison mode.

There is a value available in either the current operation or the source
data store for the specified attribute that is less than the content of the
condition when compared by using the specified comparison mode.

Available would return False.
Equal would return False.
Greater Than or Equal would return False.

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Equal

*

*

Less Than
Not Equal

*

*

*

192 Policies in Designer 3.0

Greater Than

Not Greater Than
Not Less Than



Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric
Binary

Structured

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.
Compares the binary information.

Compares the structured attribute according to the comparison rules for the
structured syntax of the attribute.

The operators that contain the comparison mode parameter are:

+ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than

+ Not Less Than

Example

The example uses the condition If Attribute when filtering for User objects that are disabled or have
a certain title. The policy is Policy to Filter Events, and it is available for download from the
Novell® Support Web site. For more information, see “Downloading Identity Manager Policies” in
Understanding Policies for Identity Manager 3.6. To view the policy in XML, see 001 -Event-
FilterByContainerDisabledOrTitle.xml (../samples/001-Event-
FilterByContainerDisabledOrTitle.xml).

Conditions

193


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
../samples/001-Event-FilterByContainerDisabledOrTitle.xml
../samples/001-Event-FilterByContainerDisabledOrTitle.xml
../samples/001-Event-FilterByContainerDisabledOrTitle.xml
../samples/001-Event-FilterByContainerDisabledOrTitle.xml

8y 5 Filter events: From Users sub-tree, Users not disabled, no
—consultants or sales people

Mo description available

Conditions

+  Z Condition Group 1

+ & i source DN nok in subtres "Users”
v 5 if attribute 'Login Disabled' equal "True"
v fr if attribute 'Title' match . *consulkant|sales, *"

¢ & wetol)

The condition is looking for any User object that has an attribute of Title with a value of consultant

or sales.
Condition |attribute -~ | )]
Mame * |Title | & O &
Cperakor * |equa| L |
Mode |regu|ar expression LT |
Walue | Sronsulbant sales. ™ | f:.}" &l

194 Policies in Designer 3.0



If Class Name

Performs a test on the object class name in the current operation.

Fields

Operator
Select the condition test type.

Operator Returns True When...
Available There is an object class name available in the current operation.
Equal There is an object class name available in the current operation, and it

equals the specified value when compared by using the specified
comparison mode.

Greater Than There is an object class name available in the current operation, and it is
greater than the content of the condition when compared by using the
specified comparison mode.

Less Than There is an object class name available in the current operation, and it is
less than the content of the condition when compared by using the
specified comparison mode.

Not Available Available would return False.

Not Equal Equal would return False.

Not Greater Than Greater Than or Equal would return False.

Not Less Than Less Than or Equal would return False.
Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

+ Equal

¢ Greater Than

¢ Less Than

+ Not Equal

¢ Not Greater Than
Not Less Than

*

Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

Case Insensitive Character-by-character case insensitive comparison.

Conditions 195



Mode Description

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison parameter are:
¢ Equal
¢ Greater Than
¢ Less Than
¢ Not Equal
¢ Not Greater Than
¢ Not Less Than

Example

The example uses the condition If Class Name to govern group membership for a User object based
on the title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from the Novell Support Web site. For more information, see “Downloading Identity
Manager Policies” in Understanding Policies for Identity Manager 3.6. To view the policy in XML,
see 004-Command-GroupChangeOnTitleChange.xml (../samples/004-Command-
GroupChangeOnTitleChange.xml).

B §v User changing from Manager to Employee

Mo description available

% Condition Group 1

v §r if class mame equal "User"
v 5 if destination attribute 'Title' match ", *manager, *"
v 5' if operation attribute 'Title' not-match . *manager, *"

v 5 set destination attribute walue("Group Membership", "Users\Emploveesiaroup™
v 5 clone operation attribute!"Group Membership”, "Security Equals")

196 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
../samples/004-Command-GroupChangeOnTitleChange.xml
../samples/004-Command-GroupChangeOnTitleChange.xml
../samples/004-Command-GroupChangeOnTitleChange.xml

Checks to see if the class name of the current object is User.

Condition | class name v| @
Operator * | equal v |
Mode |case insensitive bl |
value | User| | & & &

Conditions 197



If Destination Attribute

Performs a test on attribute values of the current object in the destination data store. The test
performed depends on the specified operator.

Fields

Name
Specify the name of the attribute to test. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Operator
Select the condition test type.

Operator Returns True When...

Available There is a value available in the destination data store for the specified
attribute.

Equal There is a value available for the specified attribute in the destination data

store that equals the specified value when compared by using the
specified comparison mode.

Greater Than There is a value available for the specified attribute in the destination data
store that is greater than the content of the condition when compared by
using the specified comparison mode. If mode="structured”, the
content must be a set of <component> elements; otherwise, it must be
text.

Less Than There is a value available for the specified attribute in the destination data
store that is greater than the content of the condition when compared by
using the specified comparison mode. If node="structured”, the
content must be a set of <component> elements; otherwise, it must be

text.
Not Available Available would return False.
Not Equal Equal would return False.
Not Great Than Greater Than or Equal would return False.
Not Less Than Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,’
on page 35. The operators that contain the value field are:

>

¢ Equal

¢ Greater Than
¢ Less Than

¢ Not Equal

198 Policies in Designer 3.0



+ Not Greater Than

+ Not Less Than

Comparison Mode

The condition has a

comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric
Binary

Structured

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.
Compares the binary information.

Compares the structured attribute according to the comparison rules for the
structured syntax of the attribute.

The operators that contain the comparison mode parameter are:

¢ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than

+ Not Less Than

Example

The example uses the condition If Attribute to govern group membership for a User object based on
the title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from the Novell Support Web site. For more information, see “Downloading Identity
Manager Policies” in Understanding Policies for Identity Manager 3.6. To view the policy in XML,
see 004-CommandGroupChangeOnTitleChange.xml (../samples/004-Command-
GroupChangeOnTitleChange.xml).

Conditions

199


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
../samples/004-Command-GroupChangeOnTitleChange.xml
../samples/004-Command-GroupChangeOnTitleChange.xml
../samples/004-Command-GroupChangeOnTitleChange.xml

S M User changing from Manager to Employee

Mo description awailable

Conditions

v~ % Condition Group 1

v & if class name equal "User"

v 5' if destination attribute Title' match . *manager, *"
And v 5' if operation attribuke 'Title" not-match " *manager, *"

& set destination attribute value("Group Membership”, "Users\EmployveesGraup™)

v % clone operation attribute("Group Membership”, "Security Equals™

The policy checks to see if the value of the title attribute contains manager.

Condition |destinati-:un attribute e | D)
Mame * | Title | @ & &
Operaktor ¥ |equa| b |
Mode |regu|ar Expression b |
Value | rnanager,® | Q&

200 Policies in Designer 3.0



If Destination DN

Performs a test on the destination DN in the current operation. The test performed depends on the

specified operator.

Fields

Operator

Select the condition test type.

Operator Returns True When...

Available There is a destination DN available.

Equal There is a destination DN available, and it equals the specified value
when compared by using semantics appropriate to the DN format of the
destination data store.

in Container There is a destination DN available, and it represents an object in the
container, specified by value, when compared by using semantics
appropriate to the DN format of the destination data store.

In Subtree There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared by using semantics
appropriate to the DN format of the destination data store.

Not Available Available would return False.

Not Equal Equal would return False.

Not in Container

Not In Subtree

In Container would return False.

In Subtree would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

+ Equal

+ In Container

+ In Subtree

+ Not Equal

+ Not in Container

*

Example

Zondition | deskination DM
Operatar * | in container

Value | Users

Not in Subtree

plk
M

Conditions

201



If Entitlement

Performs a test on entitlements of the current object, in either the current operation or the Identity
Vault. The test performed depends on the specified operator.

Fields

Name

Specify the name of the entitlement to test for the selected condition. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Operator

Select the condition test type.

Operator Returns True When...

Available The named entitlement is available in either the current operation or the
Identity Vault.

Changing The current operation contains a change (modify attribute or add attribute)

Changing From

Changing To

Equal

Greater Than

Less Than

Not available

Not Changing

Not Changing From
Not Changing To
Not Equal

Not Greater Than

Not Less Than

of the named entitlement.

The current operation contains a change that removes a value (remove
value) of the named entitlement, which has a value that equals the
specified value when compared by using the specified comparison mode.

The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement. It has a value that equals the
specified value when compared by using the specified comparison mode.

There is a value available for the specified attribute in the destination data
store that equals the specified value when compared by using the
specified comparison mode.

The named entitlement is available and granted in either the current
operation or the Identity Vault and has a value that is greater than the
content of the condition when compared by using the specified
comparison mode.

The named entitlement is available and granted in either the current
operation or the Identity Vault and has a value that is less than the content
of the condition when compared by using the specified comparison mode.

Available would return False.

Changing would return False.

Changing From would return False.
Changing To would return False.

Equal would return False.

Greater Than or Equal would return False.

Less Than or Equal would return False.

202 Policies in Designer 3.0



Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Changing From

¢ Changing To
¢ Equal
¢ Greater Than

+ Less Than

¢ Not Changing From

¢ Not Changing To

+ Not Equal

+ Not Greater Than

+ Not Less Than

Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

The operators that contain the comparison mode parameter are:

¢ Changing From

¢ Changing To
¢ Equal
¢ Greater Than

+ Less Than

¢ Not Changing From

Conditions

203


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

*

Not Changing To
Not Equal

Not Greater Than
Not Less Than

*

*

*

Example

Condition | entitlernent

Mare * | nokes-group

COperator * |changing Fram

Mode | casze insensitive

Value | Uszers

204 Policies in Designer 3.0



If Global Configuration Value

Performs a test on a global configuration value. The test performed depends on the specified

operator.

Remark

For more information on using variables with policies, see “Understanding Policy Components” in
Understanding Policies for Identity Manager 3.6.

Fields

Name

Specify the name of the global value to test for the selected condition. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Operator

Select the condition test type.

Operator Returns True When...
Available There is a global configuration value with the specified name.
Equal There is a global configuration value with the specified name, and its

Greater Than

Less Than

Not Available
Not Equal
Not Greater Than

Not Less Than

value equals the specified value when compared by using the specified
comparison mode.

There is a global configuration value with the specified name, and its
value is greater than the content of the condition when compared by using
the specified comparison mode.

There is a global configuration value with the specified name, and its
value is less than the content of the condition when compared by using
the specified comparison mode.

Available would return False.
Equal would return False.
Greater Than or Equal would return False.

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Equal

¢ Greater Than

+ Less Than
+ Not Equal

Conditions

205



+ Not Greater Than

+ Not Less Than

Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

The operators that contain the comparison mode parameter are:

¢ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than

+ Not Less Than

Example

Condition | global configuration value | (70

Mame * | myGlobalvariable L

S

COperator ¥ | available -

206 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Local Variable

Performs a test on a local variable. The test performed depends on the specified operator.

Remark

For more information on using variables with policies, see “Understanding Policy Components” in
Understanding Policies for Identity Manager 3.6.

Fields

Name

Specify the name of the local variable to test for the selected condition. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Operator

Select the condition test type.

Operator Returns True When...

Available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.

Equal There is a local variable with the specified name, and its value equals the

Greater Than

Less Than

Not Available
Not Equal
Not Greater Than

Not Less Than

specified value when compared by using the specified comparison mode.

There is a local variable with the specified name, and its value is greater
than the content of the condition when compared by using the specified
comparison mode.

There is a local variable with the specified name, and its value is less than
the content of the condition when compared by using the specified
comparison mode.

Available would return False.
Equal would return False.
Greater Than or Equal would return False.

Less than or equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Equal

*

*

Less Than
Not Equal

*

Greater Than

Conditions

207



+ Not Greater Than

+ Not Less Than

Comparison Mode

The condition has a

comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

The operators that contain the comparison mode parameter are:

¢ Equal
¢ Not Equal

¢ QGreater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Example

The example adds a User object to the appropriate Employee or Manager group based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see “Downloading Identity Manager Policies” in Understanding
Policies for Identity Manager 3.6. To view the policy in XML, see 003-Command-AddCreate-
Groups.xml (../samples/003-Command-AddCreateGroups.xml).

208 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

v fr Set local variables to test existence of groups and for placement

0 5 Create ManagersGroup, if needed

Mo description available

Conditions

+ % Condition Group 1

if local wariable 'manager-group-info' available

v 5' if local wariable 'manager-group-info' not equal "group”

v 5 add destination object(class name="Group", when="before", dniLocal ¥ariable("manager-group-dn™i)

v fr Create EmployeesGroup, if needed
v 5 IF Title indicates Manager, add to ManagerGroup and set rights

v § IF Title does not indicate Manager, add to EmployeeGroup and set rights

The policy contains five rules that are dependent on each other.

El " % setlocal variables to test existence of groups and for placement

Mo description available

Conditions

+ % Condition Group 1

v § if class name equal "User"

" Z Condition Group 2
" & i operation equal "add"

v § if operation equal "modify"

set local wariable"manager-group-dn®, "UsersiManagersaroup™)

—dn")3))

set local variable"employee-group-dn®, "Users\Emplovessaroup™)

v 7
v &
v &
v &

—dn"n

set local variable"manager-group-infa”, Destination Attributel"Object Class", dnilocal Yariable"manager-group-

set local variable"employes-group-info”, Destination Attribute!"Object Class", dnilocal Yariabled " employee-group-

For the If Locate Variable condition to work, the first rule sets four different local variables to test

for groups and where to place the groups.

Candition |I-:u:a| variable w | )]
Mame * |manager-gru:uu|:--inf-:- | q @@
Cperakar * |n|:|t equal R |
Mode |case insensitive hd |
Yalue |gr-:-u|:| | q &

Conditions 209



The condition the rule looks for is to see if the local variable of manager-group-info is available and
if manager-group-info is not equal to group. If these conditions are met, then the destination object
of group is added.

210 Policies in Designer 3.0



If Named Password

Performs a test on a named password from the driver in the current operation with the specified
name. The test performed depends on the selected operator.

Fields

Name
Specify the name of the named password to test for the selected condition. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Operator
Select the condition test type.

Operator Returns True When...
Available There is a password with the specified name available.
Not Available Available would return False.
Example
Condition | named password | 2
Marne * | password Q) &
Ciperatar * | available b

Conditions 211



If Operation

Performs a test on the name of the current operation. The type of test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Returns True When...

Equal The name of the current operation is equal to the content of the condition
when compared by using the specified comparison mode.

Greater Than The name of the current operation is greater than content of the condition
when compared by using the specified comparison mode.

Less Than The name of the current operation is less than content of the condition
when compared by using the specified comparison mode.

Not Equal Equal would return False.

Not Greater Than Greater Than would return False.

Not Less Than Less Than would return False.
Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

212 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

The operators that contain the comparison mode parameter are:

*
*

*

Value

Equal

Greater Than
Less Than

Not Equal

Not Greater Than
Not Less Than

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”

on page 35. The operators that contain the value field are:

*

*

*

*

*

*

The values are the operations that the Metadirectory engine looks for:

*

*

*

Equal

Greater Than
Less Than

Not Equal

Not Greater Than
Not Less Than

add

add-association

check-object-password

check-password
delete
generated-password
get-named-password
init-params

instance

modify
modify-association
modify-password
move

password

query
query-schema
remove-association
rename

schema-def

status

Conditions 213



¢ sync
+ trigger

This list is not exclusive. Custom operations can be implemented by drivers and administrators.

Example

The example adds a User object to the appropriate Employee or Manager group based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see “Downloading Identity Manager Policies” in Understanding
Policies for Identity Manager 3.6. To view the policy in XML, see 003-Command-
AddCreateGroups.xml (../samples/003-Command-AddCreateGroups.xml).

B 5- Set local variables to test existence of groups and for placement

Mo description available

Conditions

+ % Condition Group 1

W fr if class name equal "User”

% Condition Group 2

v & i operation equal "add"

" % I operation equal "modify"

v % setlocal variable("manager-group-dn®, "UsersiManagersaroup)
v 5. set local wariable"manager-group-info”, Destination Attributed"Object Class", dnilocal Variable!"manager-group-
—dn"3)
v 5 set local variable"employee-group-dn”, "UsersiEmplovessGroup™
& setlocal variable("smployee-group-info”, Destination Attribute("Cbject Class”, dnilocal Variable("employee-group-
—dn"1)
Condition ||:||:|erati|:|n v| =)
Cperakor # |equa| LS |
Mode |case insensitive e |
Walue | modify | Q &

The condition checks to see if an Add or Modify operation has occurred. When one of these occurs,
it sets the local variables.

214 Policies in Designer 3.0


../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

If Operation Attribute

Performs a test on attribute values in the current operation. The test performed depends on the
specified operator.

Fields

Name

Specify the name of the attribute to test. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Operator

Select the condition test type.

Operator Returns True When...

Available There is a value available in the current operation other than a remove
value for the specified attribute.

Changing The current operation contains a change for the specified attribute.

Changing From

Changing To

Equal

Greater Than

Less Than

Not Available

Not Changing

Not Changing From
Not Changing To
Not Equal

Not Greater Than

Not Less Than

The current operation contains a change that removes a value other than
a remove value of the specified attribute. It equals the specified value
when compared by using the specified comparison mode.

The current operation contains a change that adds a value other than a
remove value to the specified attribute. It equals the specified value when
compared by using the specified comparison mode.

There is a value available in the current operation other than a remove
value for the specified attribute. It equals the specified value when
compared by using the specified comparison mode.

There is a value available in the current operation other than a remove
value for the specified attribute that is greater than the content of the
condition when compared by using the specified comparison mode. If
mode=“structured”, the content must be a set of <component>
elements; otherwise, it must be text.

There is a value available in the current operation other than a remove
value for the specified attribute that is less than the content of the
condition when compared by using the specified comparison mode. If
mode="“structured” then the content must be a set of <component>
elements; otherwise, it must be text.

Available would return False.

Changing would return False.

Changing From would return False.
Changing To would return False.

Equal would return False.

Greater Than or Equal would return False.

Less Than or Equal would return False.

Conditions

215



Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Changing From

¢ Changing To

¢ Equal

¢ Greater Than

¢ Less Than

¢ Not Changing From
+ Not Changing To

+ Not Equal

+ Not Greater Than

¢ Not Less Than

Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

Structured Compares the structured attribute according to the comparison rules for the

structured syntax of the attribute.

The operators that contain the comparison mode parameter are:
¢ Changing From
¢ Changing To
¢ Equal

¢ Greater Than

216 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

*

Less Than

*

Not Changing From
Not Changing To
Not Equal

Not Greater Than
Not Less Than

*

*

*

*

Example

The example adds a User object to the appropriate Employee or Manager group based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see “Downloading Identity Manager Policies” in Understanding

Policies for Identity Manager 3.6. To view the policy in XML, see 003-Command-Add-

CreateGroups.xml (../samples/003-Command-AddCreateGroups.xml).

v §r Set local variables to test existence of groups and for placement

v §r Create ManagersGroup, if needed
v 5 Create EmployeesGroup, if needed

B fr If Title indicates Manager, add to ManagerGroup and set rights

Mo description available

Conditions

% Condition Group 1

v §r if class name equal "User”

v 5' if operation attribute 'Title' match . *manager, *"

W 5 set destination attribute valued"Group Membership”, Local Mariable!"'manager-group-dn'™)

v §r clone operation attribuke"Group Membership”, "Security Equals™)

v §r IF Title does not indicate Manager, add to EmployeeGroup and set rights

Condition |Dperatinn atkribute b | @
Mame * |Title | & O
Cperator * |equal L |
Mode |regular Expression R |
walue | Fmanager # | Q &

The condition checks to see if the attribute of Title is equal to . *manager. *, which is a regular

expression. The condition looks for a title that has zero or more characters before manager and a

single character after manager. It would find a match if the User object’s title was sales managers.

Conditions 217


../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

If Operation Property

Performs a test on an operation property on the current operation. An operation property is a named
value that is stored as an attribute on an <operation-data> element within an operation. It is
typically used to supply additional context that might be needed by the policy that handles the
results of an operation. The test performed depends on the selected operator.

Fields

Name

Specify the name of the operation property to test for the selected condition. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Operator

Select the condition test type.

Operator

Returns True When...

Available

Equal

Greater Than

Less Than

Not Available
Not Equal
Not Greater Than

Not Less Than

There is an operation property with the specified name on the current
operation.

There is an operation property with the specified name on the current
operation, and its value equals the provided content when compared by
using the specified comparison mode.

There is an operation property with the specified name on the current
operation, and its value is greater than the content of the condition when
compared by using the specified comparison mode.

There is an operation property with the specified name on the current
operation, and its value is less than the content of the condition when
compared by using the specified comparison mode.

Available would return False.
Equal would return False.
Greater Than or Equal would return False.

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Equal

+ Greater Than

¢ Less Than
+ Not Equal

+ Not Greater Than
+ Not Less Than

218 Policies in Designer 3.0



Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

The operators that contain the comparison mode parameter are:

+ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than

+ Not Less Than

Example

Condition | operation properkyr S [

Mams * | Title

Operaktar ¥ | equal
Mode |regular expression

walue Hrmanager .

IJ(<M

Conditions

219


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Password

Performs a test on a password in the current operation. The test performed depends on the specified
operator.

Fields

Operator
Select the condition test type.

Operator Returns True When...
Available There is a password available in the current operation.
Equal There is a password available in the current operation, and its value

equals the content of the condition when compared by using the specified
comparison mode.

Greater Than There is a password available in the current operation, and its value is
greater than the content of the condition when compared by using the
specified comparison mode.

Less Than There is a password available in the current operation, and its value is
less than the content of the condition when compared by using the
specified comparison mode.

Not Available Available would return False.

Not Equal Equal would return False.

Not Greater Than Greater Than or Equal would return False.

Not Less Than Less Than or Equal would return False.
Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

+ Equal

¢ Greater Than

¢ Less Than

+ Not Equal

Not Greater Than
Not Less Than

*

*

Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

220 Policies in Designer 3.0



Mode

Description

Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

The operators that contain the comparison mode parameter are:

+ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than

+ Not Less Than

Example

If you are implementing Novell Credential Provisioning policies, there is a sample Subscriber
Command Transformation policy that uses the password condition. The sample file is called
SampleSubCommandTransform.xml. Itis found in the \dirxml\utilities folder on
the Identity Manager media. For more information, see “Example Credential Provisioning Policies”
in Novell Credential Provisioning Policies for Identity Manager 3.6. To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The Subscriber Command Transformation policy checks to see if a password is available when an
object is added. If the password is available, then the Novell SecureLogin and Novell SecretStore®
credentials are provisioned.

Conditions

221


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml

+ §r Add operation-data element to password subscribe operations (if needed)

+ 5' Add payload data to modify-password subscribe operations

= 5 Add payload data to add subscribe operations

Mo description available

Z Condition Group 1

% I operation equal "add"

And fr if password available

AR R RN RN R R RN R

Condition | passwaord

222 Policies in Designer 3.0

append #ML element{'sso-sync-data”, "operation-data™)

append XML element("sso-target-user-dn”, "operation-data)sso-sync-data™

append #ML kext"operation-data)sso-sync-datafsso-target-user-dn”, Source AtkributelDirsML-A0Context"))
append “ML element{'sso-app-username”, "operation-data/sso-sync-data™)

append XML kext"operation-datafsso-sync-datafsso-app-username”, Source Atkributel"CH"))

append #ML element("password”, "operation-data)sso-sync-data)

append ¥ML text"operation-datafsso-sync-datapassword”, Password())

append XML element("nsl-set-passphrase-answer", "operation-datajsso-sync-data™)

append XML kext"operation-datafsso-sync-datafnsl-set-passphrase-answer”, Source Attributel"waorkforcelD"))

J @

Operator * | available w



If Source Attribute

Performs a test on attribute values of the current object in the source data store. The test performed
depends on the specified operator.

Fields

Name

Specify the name of the source attribute to test for the selected condition. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Operator

Select the condition test type.

Operator Returns True When...

Available There is a value available in the source data store for the specified
attribute.

Equal There is a value available in the source data store for the specified

attribute. It equals the specified value when compared by using the
specified comparison mode.

Greater Than There is a value available in the source data store for the specified

attribute that is greater than the content of the condition when compared
by using the specified comparison mode. If the mode is structured, the
content must be a set of components; otherwise, it must be text.

Less Than There is a value available in the source data store for the specified

attribute that is less than the content of the condition when compared by
using the specified comparison mode. If the mode is structured, the
content must be a set of components; otherwise, it must be text.

Not Available Available would return False.

Not Equal Equal would return False.

Not Great Than Greater Than or Equal would return False.

Not Less Than Less Than or Equal would return False.
Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

*

*

*

Equal

Greater Than
Less Than

Not Equal

Not Greater Than
Not Less Than

Conditions

223



Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric
Binary

Structured

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.
Compares the binary information.

Compares the structured attribute according to the comparison rules for the
structured syntax of the attribute.

The operators that contain the comparison mode parameter are:

+ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than

+ Not Less Than

Example

Condition | source attribute

MName * | Ol

Cperator * | egual

Mode |case insensitive

Walue | Users

224 Policies in Designer 3.0

v ®
Q@
v
v
Q&


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Source DN

Performs a test on the source DN in the current operation. The test performed depends on the

specified operator.

Fields

Operator

Select the condition test type.

Operator Returns True When...

Available There is a source DN available.

Equal There is a source DN available, and it equals the content of the specified
value in-container.

In Container There is a source DN available, and it represents an object in the
container specified by the content of If Source DN, when compared by
using semantics appropriate to the DN format of the source data store.

In Subtree There is a source DN available, and it represents an object in the subtree
identified by the specified value.

Not Available Available would return False.

Not Equal Equal would return False.

Not In Container

Not In subtree

In Container would return False.

In Subtree would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Equal

+ In Container

+ In Subtree

Not Equal

*

*

*

Example

Not in Container

Not in Subtree

The example uses the condition If Source DN to check if the User object is in the source DN. The
rule is from the predefined rules that come with Identity Manager. For more information, see
Section 8.8, “Event Transformation - Scope Filtering - Exclude Subtrees,” on page 120. To view the
policy in XML, see predef transformation filter exclude subtress.xml (./
samples/predef transformation_filter exclude subtrees.xml).

Conditions

225


../samples/predef_transformation_filter_exclude_subtrees.xml
../samples/predef_transformation_filter_exclude_subtrees.xml
../samples/predef_transformation_filter_exclude_subtrees.xml

B « §r Event Transformation - Scope Filtering - Exclude subtree(s)

Mo description available

Conditions

+* % Condition Group 1

v 5 if source DM in subkree "[Enter a subtres to exclude]”

| v & weto) |

Condition |5EILII’EE-' =) ~ | 7
Cperator * |in subtree L |
Value | [Enter a subtree bto exclude] | Q &

The condition checks to see if the source DN is in the Users container. If the object comes from that
container, it is vetoed.

226 Policies in Designer 3.0



If XML Attribute

Performs a test on an XML attribute of the current operation. The type of test performed depends on
the operator specified by the operation attribute.

Fields

Name

Specify the name of the XML attribute. An XML attribute is a name/value pair associated with
an element in an XDS document.

Operator

Select the condition test type.

Operator Returns True When...

Available There is an XML attribute with the specified name on the current
operation.

Equal There is a an XML attribute with the specified name on the current

Greater Than

Less Than

Not Available
Not Equal
Not Greater Than

Not Less Than

operation, and its value equals the content of the condition when
compared by using the specified comparison mode.

There is a an XML attribute with the specified name on the current
operation, and its value is greater than the content of the condition when
compared by using the specified comparison mode.

The association value specified by the current operation is less than the
content of the condition when compared by using the specified
comparison mode.

Available would return False.
Equal would return False.
Greater Than or Equal would return False.

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35. The operators that contain the value field are:

¢ Equal

*

*

Less Than
Not Equal

*

*

*

Mode

Greater Than

Not Greater Than
Not Less Than

The condition has a comparison mode parameter that indicates how a comparison is done.

Conditions

227



Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

For more information, see Sun’s Web site (http://java.sun.com/j2se/1.4/docs/
api/javalutil/regex/Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

The operators that contain the comparison mode parameter are:

¢ Equal

¢ Greater Than
¢ Less Than

+ Not Equal

+ Not Greater Than
+ Not Less Than

Example

Condition | %ML attribute

228 Policies in Designer 3.0

v @
Mame * | From-merge

Operatar * | available “


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If XPath Expression

Performs a test on the results of evaluating an XPath 1.0 expression.

Fields

Operator
Select the condition test type.

Operator Returns True When...
True The XPath expression evaluates to True.
Not True True would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information on variable expansion and XPath, see
Section 3.6.5, “XPath Expressions,” on page 39. The operators that contain the value field are:

+ Equal

¢ Greater Than

¢ Less Than

+ Not Equal

¢ Not Greater Than
Not Less Than

*

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Example

If you are implementing Novell Credential Provisioning policies, there is a sample Subscriber
Command Transformation policy that uses the XPath Expression condition. The sample file is called
SampleSubCommandTransform.xml. Itis found inthe \dirxml\utilities folder on
the Identity Manager media. For more information, see “Example Credential Provisioning Policies”
in Novell Credential Provisioning Policies for Identity Manager 3.6. To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The sample Credential Provisioning policy checks each Add operation to see if there is operation
data associated with the Add. If there is no operation data, the Novell SecureLogin and Novell
SecretStore credentials are provisioned.

Conditions

229


../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml

E " % nadd operation-data element to password subscribe operations (if needed)

Mo description available

Conditions

% Condition Group 1

v & if operation equal "add"

v 5 if password available
v 5 if %Path expression not krue "operation-daka®

+ & Condition Group 2

o §v if operation equal "modify-passwaord”
v 5' if ¥Path expression not true "operation-data”

v fr append XML element("operation-data”, "."

o §r Add payload data to modify-password subscribe operations

v % &dd payload data to add subscribe operations

Condition |><Path expression - | )
Dperatar * |n|:|l: true LT |
Value | operation-data | T @ B &

230 Policies in Designer 3.0



Actions

Policies perform actions when the associated conditions are met. Some actions have a Mode field.
The policy does not honor the mode at run time if the context in which the policy is running is
incompatible with the selected mode.

This section contains detailed information about the actions available in the Policy Builder interface:

+ “Add Association” on page 233

¢ “Add Destination Attribute Value” on page 234
¢ “Add Destination Object” on page 236

¢ “Add Role” on page 238

+ “Add Source Attribute Value” on page 240

¢ “Add Source Object” on page 241

¢ “Append XML Element” on page 242

+ “Append XML Text” on page 244

¢ “Break” on page 246

¢ “Clear Destination Attribute Value” on page 247
¢ “Clear Operation Property” on page 248

¢ “Clear Source Attribute Value” on page 249

¢ “Clear SSO Credential” on page 250

¢ “Clone By XPath Expressions” on page 251

¢ “Clone Operation Attribute” on page 252

¢ “Delete Destination Object” on page 253

+ “Delete Source Object” on page 254

+ “Find Matching Object” on page 255

¢ “For Each” on page 258

¢ “Generate Event” on page 259

* “If” on page 262

+ “Implement Entitlement” on page 264

+ “Move Destination Object” on page 265

+ “Move Source Object” on page 267

+ “Reformat Operation Attribute” on page 268

+ “Remove Association” on page 270

¢ “Remove Destination Attribute Value” on page 271
+ “Remove Role” on page 272

+ “Remove Source Attribute Value” on page 274
¢ “Rename Destination Object” on page 275

+ “Rename Operation Attribute” on page 276

Actions 231



¢ “Rename Source Object” on page 277

¢ “Send Email” on page 278

¢ “Send Email from Template” on page 280

+ “Set Default Attribute Value” on page 282

¢ “Set Destination Attribute Value” on page 284
¢ “Set Destination Password” on page 286

+ “Set Local Variable” on page 287

¢ “Set Operation Association” on page 289

¢ “Set Operation Class Name” on page 290

¢ “Set Operation Destination DN on page 291
¢ “Set Operation Property” on page 292

¢ “Set Operation Source DN on page 293

¢ “Set Operation Template DN on page 294

* “Set Source Attribute Value” on page 295

* “Set Source Password” on page 297

¢ “Set SSO Credential” on page 298

+ “Set SSO Passphrase” on page 299

¢ “Set XML Attribute” on page 300

+ “Start Workflow” on page 301

* “Status” on page 303

+ “Strip Operation Attribute” on page 304

+ “Strip XPath Expression” on page 305

+ “Trace Message” on page 306

* “Veto” on page 308

* “Veto If Operation Attribute Not Available” on page 309
* “While” on page 310

This section contains detailed information about all actions available in the Policy Builder.

232 Policies in Designer 3.0



Add Association
Sends an add association command with the specified association to the Identity Vault.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the target object or leave the field blank to use the current object.
Association

Specify the value of the association to be added.

Example

Do | add assoriation v @
Select mode: | add to current operation A

@ Leave the DN field below blank ko use the current object
Specify DM: | Source D)

Specify assodation: * | Source Mamed)

Actions 233



Add Destination Attribute Value

Adds a value to an attribute on an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Specify the DN, association, or current object as the target object.

Value Type

Select the syntax of the attribute value to be added. The options are string, counter, dn, int,
interval, octet, state, structured, teleNumber, or time.

Value
Specify the attribute value to be added.

Example

The example adds the destination attribute value to the OU attribute. It creates the value from the
local variables that are created. The rule is from the predefined rules that come with Identity
Manager. For more information, see Section 8.1, “Command Transformation - Create Departmental
Container - Part 1 and Part 2,” on page 108. To see the policy in XML, see

predef command create dept containerl.xml (../samples/

predef command create dept containerl.xml) and

predef command create dept container2.xml (../samples/

predef command create dept container2.xml).

234 Policies in Designer 3.0


../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container2.xml
../samples/predef_command_create_dept_container2.xml
../samples/predef_command_create_dept_container2.xml

B 5- Command Transformation - Create Departmental Container - Part 1

Mo description available

Conditions

" & Condition Group 1

v~ & if operation equal "add"

set local variable("target-container”, Destination DM{length="-2"})

v &

v 5, set local variable("does-target-exist”, Destination Attribute
—{"ohjectclass", class name="0Organizational Unit", dniLocal
—Yariabled"target-container i)

B §r Command Transformation - Create Departmental Container - Part 2

Mo description available

& Condition Group 1

o fr if local wariable 'does-target-exist' available

v f’ if local wariable ‘does-target-exist’ equal ™

v 5, add destination objecticlass name="Crganizational Unit", direct="
—true”, dniLocal Yariable!"target-container" )

v f, add destination attribute walue"ou”, direck="true", dniLocal
—Yariabled"target-container"y), Parse DR("dest-dn”, "dot”, length="
—1", skart="-1", Local ¥ariable"target-container" 1)

Do | add destination attribute value ~ | )]
Specify attribube name: * | 1| | @ l\f‘e R%-
Specify class name: | | @ lf'E‘ E%-
Select mode: |write directly ko destination datastore b |
Select abject: |DN R |
Specify Dr: *+ | "Local wariable!"target-containkter™)" |
Specify value bvpe: | skrimg L |

Enker skring: * | "Parse DN("dest-dn”, "dot”, length="1", start="1", Local Yariat |

Actions 235



Add Destination Object

Creates an object of the specified type in the destination data store, with the name and location
specified in the Enter DN field. Any attribute values to be added as part of the object creation must
be done in subsequent Add Destination Attribute Value actions, using the same DN.

Fields

Class Name

Specify the class name of the object to be created. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the object to be created.

Remarks

Any attribute values to be added as part of the object creation must be done in subsequent Add
Destination Attribute Value actions, using the same DN.

Example

The example creates the department container that is needed. The rule is from the predefined rules
that come with Identity Manager. For more information, see Section 8.1, “Command
Transformation - Create Departmental Container - Part 1 and Part 2,” on page 108 from the
predefined rules. To see the policy in XML, see

predef command create dept containerl.xml (../samples/

predef command create dept containerl.xml) and

predef command create dept container2.xml (../samples/

predef command create dept container2.xml).

B §v Command Transformation - Create Departmental Container - Part 1

Mo description available

Conditions

v % Condition Group 1
v & if operation equal "add"

[ cions

v fr set local variable("target-container”, Destination DM{length="-2"}}
v Z

set local variablef"does-target-exist", Destination Attribute
—{"objectclass”, class name="0Organizational Unit", dniLocal
—ariable("target-container 1))

236 Policies in Designer 3.0


../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container2.xml
../samples/predef_command_create_dept_container2.xml
../samples/predef_command_create_dept_container2.xml

E " % Command Transformation - Create Departmental Container - Part 2

Mo description available

Conditions

% Condition Group 1

o fr if local wariable 'does-target-exist' available

v f’ if local wariable ‘does-target-exist’ equal ™

v 5, add destination objeckiclass name="rganizational Unit", direct="
—true”, dniLocal Yariable!"target-container" )

v 5, add destination attribute value"ou”, direct="true", dniLocal
—Yariabled"target-container"y), Parse DR("dest-dn”, "dot”, length="
—1", skart="-1", Local ¥ariable"target-container" 1)

Do | add destination object - | )]

Specify class name: * | organizational Unik

Seleck mode: |write directly ko destination datastore

Specify DR * | "Local Wariable("target-containter™)"

The OU object is created. The value for the OU attribute is created from the destination attribute

value action that occurs after this action.

Actions 237



Add Role

Initiates a request to the Roles Based Provisioning Module (RBPM) to assign the specified role (in
the Role DN field) to the specified user (in the Authorized User DN field). This field is only
available if the Identity Manager server version is set to 3.6 or later.

Fields

Role DN

Specify the name of the role to assign, in LDAP format. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

User Application URL
Specify the URL of the User Application server hosting the Roles Based Provisioning module.

Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.
Authorized User DN

Specify the name of the user authorized to request the role assignment, in LDAP format.
Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.

Password

Specify the authorized user password. You can enter a clear text password (not recommended)
or use the Argument Builder to specify a Named Password.

Object
Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

Strings

(Optional) Specify additional argument strings for the Role assignment request. You can enter
the strings manually, or select the Edit the Strings icon =i to open the Named String Builder
and specify the strings. For more information about the Named String Builder, see Section 4.9,
“Named String Builder,” on page 58.

The Add Role action supports the following string arguments:

String Name Description

description A description of the reason for the request used for auditing and (if
necessary) approval purposes.

Default: Request generated by policy.

effective-time The time (in CTIME format) the role assignment should become effective.
Default: now
expiration-time The time (in CTIME format) the role assignment automatically expires.

Default: never

238 Policies in Designer 3.0



String Name Description

sod-justification A justification for requesting an exception for any Separation of Duty
violations this assignment will trigger.

Default: No exception will be requested and the request will fail if it
causes a violation.

NOTE: By default, the Named String Builder does not display this string.
However, you can manually add it to the string list.

Example

Do |add role w | (7

7]

Specify role DN * | Ch=roleManager, CHM=5vskem, CHM=Level20, CN=RoleDefs, CHN=
Specify user application URL: * | 192,168, 10,208,5030/I0M

Specify authorized user DM * | Ch=admin, O=nawell

M omp
)7

Specify password: * | Mamed Password("admin")

Select object: | Current object w

Specify strings: | description, effective-time, expiration-time

Actions 239



Add Source Attribute Value

Adds the specified attribute on an object in the source data store.

Fields

Attribute Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Specify the DN, association, or the current object as the target object.

Value Type

Select the syntax of the attribute value to be added. The options are string, counter, dn, int,
interval, octet, state, structured, teleNumber, or time.

String
Specify the attribute value to be added.

Example

Do | add source attribuke walue | (3

i

Specify attribute name: * | Title

n 5

|

Specify class name: | User
Select object: | Association
Specify association: * | "Source Mame()"

Specify walue bype: | string

mlm® e a

Enter string: * | "Manager"

240 Policies in Designer 3.0



Add Source Object

Creates an object of the specified type in the source data store, with the name and location provided
in the DN field. Any attribute values to be added as part of the object creation must be done in
subsequent Add Source Attribute Value actions, using the same DN.

Fields

Class Name

Specify the class name of the object to be added. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

DN
Specify the DN of the object to be added.

Example
Do |add source object |
Specify class name: * | User & & &
Specify DM: * | "Usersh John Smith"

Actions 241



Append XML Element

Appends a custom element, with the name specified in the Name field, to the set of elements
selected by the XPath expression. If Before XPath Expression is not specified, the new element is
appended after any existing children of the selected elements. If Before XPath Expression is
specified, it is evaluated relative to each of the elements selected by the expression to determine
which of the children to insert before. If Before XPath Expression evaluates to an empty node set or
a node set that does not contain any children of the selected element, the new element is appended
after any existing children; otherwise, the new element is inserted before each of the nodes in the
node set selected by before that are children of the selected node.

Fields

Name

Specify the tag name of the XML element. This name can contain a namespace prefix if the
prefix has been previously defined in this policy. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

XPath Expression
Specify an XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.

Insert
Select whether to insert the XPath expression before the source XPath expression or append the
XPath expression to the end of the current node in the destination XPath expression.

Before XPath Expression

Specify an XPath 1.0 expression that evaluates relative to each of the nodes selected by the
expression that returns a node set containing the child nodes that the new elements should be
inserted before. Supports variable expansion. For more information on variable expansion and
XPath, see Section 3.6.5, “XPath Expressions,” on page 39.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Example

If you are implementing Novell® Credential Provisioning policies, there is a sample Subscriber
Command Transformation policy that uses the XPath Expression condition. The sample file is called
SampleSubCommandTransform.xml. Itis found in the \dirxml\utilities folder on
the Identity Manager media. For more information, see “Example Credential Provisioning Policies”
in Understanding Policies for Identity Manager 3.6. To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The sample file uses the append XML element action to add the Novell SecureLogin or Novell
SecretStore® credentials to the user object when it is provisioned.

242 Policies in Designer 3.0


../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml

§r Add operation-data element to password subscribe operations (if needed)

5' Add payload data to modify-password subscribe operations

5 Add payload data to add subscribe operations

Mo description available

Z Condition Group 1
% I operation equal "add"

And fr if password available

append #ML element{'sso-sync-data”, "operation-data™)

append XML element("sso-target-user-dn”, "operation-data)sso-sync-data™

append #ML kext"operation-data)sso-sync-datafsso-target-user-dn”, Source AtkributelDirsML-A0Context"))
append “ML element{'sso-app-username”, "operation-data/sso-sync-data™)

append XML kext"operation-datafsso-sync-datafsso-app-username”, Source Atkributel"CH"))

append #ML element("password”, "operation-data)sso-sync-data)

append ¥ML text"operation-datafsso-sync-datapassword”, Password())

append XML element("nsl-set-passphrase-answer", "operation-datajsso-sync-data™)

AR R RN RN R R RN R

append XML kext"operation-datafsso-sync-datafnsl-set-passphrase-answer”, Source Attributel"waorkforcelD"))

Do | append XML element w|
Enter element name: * | sso-sync-daka \._1 -:\E
Specify XPath expression: * | operation-data {n’._i?n_‘. E" S&p Q‘E
Insert: | Append to end of XPath expression R

Actions 243



Append XML Text

Appends the specified text to the set of elements selected by the XPath expression. If Before XPath
Expression is not specified, the text is appended after any existing children of the selected elements.
If Before XPath Expression is specified, it is evaluated relative to each of the elements selected by
the expression to determine which of the children to insert before. If Before XPath Expression
evaluates to an empty node set or a node set that does not contain any children of the selected
element, then the text is appended after any existing children; otherwise, the text is inserted before
each of the nodes in the previously selected node set that are children of the selected node.

Fields

XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended. Supports variable expansion. For more information on
variable expansion and XPath, see Section 3.6.5, “XPath Expressions,” on page 39.

String
Specify the text to be appended.

Insert

Select whether to insert the XPath expression before the source XPath expression or append the
XPath expression to the end of the current node in the destination XPath expression.

Before XPath Expression

Specify the XPath 1.0 expression that evaluates relative to each of the nodes selected by the
expression that returns a node set containing the child nodes that the text should be inserted
before. Supports variable expansion. For more information on variable expansion and XPath,
see Section 3.6.5, “XPath Expressions,” on page 39.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Example

If you are implementing Novell Credential Provisioning policies, there is a sample Subscriber
Command Transformation policy that uses the XPath Expression condition. The sample file is called
SampleSubCommandTransform.xml. Itis found in the \dirxml\utilities folder on
the Identity Manager media. For more information, see “Example Credential Provisioning Policies”
in Novell Credential Provisioning Policies for Identity Manager 3.6. To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The example is using the append XML text action to find the Novell SecureLogin or Novell
SecretStore application username. By obtaining the application name, the credentials can be set for
the user object when it is provisioned.

244 Policies in Designer 3.0


../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml
../samples/SampleSubCommandTransform.xml

+ §r Add operation-data element to password subscribe operations (if needed)

+ 5' Add payload data to modify-password subscribe operations

= 5 Add payload data to add subscribe operations

Mo description available

Z Condition Group 1
% I operation equal "add"

And fr if password available

append #ML element{'sso-sync-data”, "operation-data™)

append XML element("sso-target-user-dn”, "operation-data)sso-sync-data™

append #ML kext"operation-data)sso-sync-datafsso-target-user-dn”, Source AtkributelDirsML-A0Context"))
append “ML element{'sso-app-username”, "operation-data/sso-sync-data™)

append XML kext"operation-datafsso-sync-datafsso-app-username”, Source Atkributel"CH"))

append #ML element("password”, "operation-data)sso-sync-data)

append ¥ML text"operation-datafsso-sync-datapassword”, Password())

append XML element("nsl-set-passphrase-answer", "operation-datajsso-sync-data™)

AR R RN RN R R RN R

append XML kext"operation-datafsso-sync-datafnsl-set-passphrase-answer”, Source Attributel"waorkforcelD"))

Do |append HML kext | &
Specify XPath expression: * | operation-datafsso-sync-datafsso-target-user-dn -'nﬁﬁ @ S»‘.h C\E
Specify string: * | "Source Attribute!"DirXML-ADConkext™)"

Insert: | Append ko end of XPath expression w

Actions 245



Break

Ends processing of the current operation by the current policy.

Example

Do |break v @

246 Policies in Designer 3.0



Clear Destination Attribute Value

Removes all values for the named attribute from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN
Select the DN, association, or current object as the target object.
Example
Do |clear destination attribute value w | @
Specify attribute name: * | Member &8 & &
Specify class name: | User 8 & &
Select mode: |add to current operation LS
Select object: | DM b
Specify DM: * | "UsersiJohn Smith"

Actions 247



Clear Operation Property
Clears any operation property with the provided name from the current operation. The operation

property is the XML attribute attached to an <operation-data> element by a policy. An XML
attribute is a name/value pair associated with an element in the XDS document.

Fields

Property Name

Specify the name of the operation property to clear. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Example

Do | clear operation property | 7

S

Specify property name: * | MyStoredProperky

248 Policies in Designer 3.0



Clear Source Attribute Value

Removes all values of an attribute from an object in the source data store.

Fields

Attribute Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. This value might be required for schema map purposes if the
object is other than current object. Supports variable expansion. For more information, see

Section 3.6, “Variable Selector,” on page 35.

Object
Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Select the DN, association, or current object as the target object.

Example
Do | clear destination atkribute value ~ | =
Specify atktribute name: * | Member & & &
Specify class name: | User O & &
Select mode: | add to current operation -
Select objeck: |DM -
Specify DR: * | "Users)John Smith™

Actions 249



Clear SSO Credential

Clears the Single Sign On credential so objects can be deprovisioned. Additional information about
the credential to be cleared can be provided in the Enter login parameter strings field. The number
of the strings and the names used are dependent on the credential repository and application for
which the credential is targeted. For more information, see Novell Credential Provisioning Policies
for Identity Manager 3.6.

Fields

Credential Repository Object DN
Specify the DN of the repository object. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Login Parameter Strings

Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object. You can enter the strings manually, or select the Edit the
Strings icon = to open the String Builder and specify the strings. For more information about
the Named String Builder, see Section 4.12, “String Builder,” on page 61.

Example

Do |clear 550 credential » | (F

jo
M

Specify credential repository object DM * | LA, WaroupiWiseliEroupivise_Repasitory
Set DM relative to policy
Specify karget user DM: * | "Novell\Users"

Populate the following From an application object
Specify application credential I * | Grouphise_Credential

m s

Specify login parameter strings: | Username, Passward

250 Policies in Designer 3.0



Clone By XPath Expressions

Appends deep copies of the nodes specified by the source field to the set of elements specified by
the destination field. If Before XPath Expression is not specified, the non-attribute cloned nodes are
appended after any existing children of the selected elements. If Before XPath Expression is
specified, it is evaluated relative to each of the elements selected by expression to determine which
of the children to insert before. If Before XPath Expression evaluates to an empty node set or a node
set that does not contain any children of the selected element, the non-attribute cloned nodes are
appended after any existing children; otherwise, the non-attribute cloned nodes are inserted before
each of the nodes in the previously selected node set that are children of the selected node.

Fields

Source XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the nodes to be copied.
Supports variable expansion. For more information on variable expansion and XPath, see
Section 3.6.5, “XPath Expressions,” on page 39.

Destination XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the elements to which the
copied nodes are to be appended. Supports variable expansion. For more information on
variable expansion and XPath, see Section 3.6.5, “XPath Expressions,” on page 39.

Insert
Select whether to insert the XPath expression before the source XPath expression or append the
XPath expression to the end of the current node in the destination XPath expression.

Before XPath Expression

Specify the XPath 1.0 expression that evaluates relative to each of the nodes selected by the
expression that returns a node set containing the child nodes that the text should be inserted
before. Supports variable expansion. For more information on variable expansion and XPath,
see Section 3.6.5, “XPath Expressions,” on page 39.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Example
Do | clone by xPath expressions w @
Specify source ¥Path expression: * | @* Eﬁy @ Qp &
Specify destination xXPath expression: * | . imodify[last()] [ﬂﬁ @‘ %} &

Insert: | Append to end of kXPath expression w

Actions

251



Clone Operation Attribute

Copies all occurrences of an attribute within the current operation to a different attribute within the
current operation.

Fields

Source Name
Specify the name of the attribute to be copied from. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Destination Name

Specify the name of the attribute to be copied to. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Example

The example adds a User object to the appropriate Employee or Manager group based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see “Downloading Identity Manager Policies” in Understanding
Policies for Identity Manager 3.6. To see the policy in XML, see 003-Command-
AddCreateGroups.xml (../samples/003-Command-AddCreateGroups.xml).

v fr Set local wariables to test existence of groups and for placement

v §r Create ManagersGroup, if needed
v §r Create EmployeesGroup, if needed

B « §r IF Title indicates Manager, add to ManagerGroup and set rights

Mo description available

+* % Condition Group 1

v 5 if class name equal "User”

v fr if operation attribute 'Title' match . *manager, *"

v §r set destination attribute valued"Group Membership”, Local Mariable!"'manager-group-dn'™)

W §r clone operation attribute!"Group Membership”, "Security Equals™

v fr If Title does not indicate Manager, add to EmployeeGroup and set rights

Do |clone operation attribute | 7
Specify source name: * | Group Membership @ 'i- =
Specify destination name: | Security Equals & & &

The Clone Operation Attribute is taking the information from the Group Membership attribute and
adding it to the Security Equals attribute so the values are the same.

252 Policies in Designer 3.0


../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

Delete Destination Object

Deletes an object in the destination data store.

Fields

Class Name
(Optional) Specify the class name of the object to delete in the destination data store. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.
Object

Select the target object type to delete in the destination data store. This object can be the current
object, or can be specified by a DN or an association.

DN
Select the DN, association, or current object as the target object.
Example
Do | delete destination object w |
Specify class name: | User & & &
Select mode: | add ko currenk operation L
Select object: |DN A

Specify DMN: * | "MovellUsershjdoes"

Actions 253



Delete Source Object

Deletes an object in the source data store.

Fields

Class Name
(Optional) Specify the class name of the object to delete in the source data store. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Object
Select the target object type to delete in the source data store. This object can be the current
object, or can be specified by a DN or an association.
DN

Select the DN, association, or current object as the target object.

Example
Do | delete source object |
Specify class name: | User u-‘@ C-‘.: =3
Select objeck: | DM >
Specify DM * | "MovelllUsers)jdoes"

254 Policies in Designer 3.0



Find Matching Object

Finds a match for the current object in the destination data store.

Fields

Scope

Select the scope of the search. The scope might be an entry, a subordinate, or a subtree.

DN
Specify the DN that is the base of the search.

Match Attributes

Specify the attribute values to search for.

IMPORTANT: To improve performance when using the find matching object verb, create an
index for the attributes that you are going to use when querying the Identity Vault. For more
information about indexes, see the Novell eDirectory 8.8 Administration Guide (http://
www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/
edir88/data/aStuuus.html).

Remarks

Find Matching Object is only valid when the current operation is an add.

The DN argument is required when the scope is “entry,” and is optional otherwise. At least one
match attribute is required when the scope is “subtree” or “subordinates.”

The results are undefined if the scope is “entry” and there are match attributes specified. If the
destination data store is the connected application, then an association is added to the current
operation for each successful match that is returned. No query is performed if the current operation
already has a non-empty association, thus allowing multiple find matching object actions to be
strung together in the same rule.

If the destination data store is the Identity Vault, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of the
current operation is set to the source DN of the matching object. If only a single result is returned
and it is already associated, then the destination DN of the current operation is set to the single
character &#xFFFC;. If multiple results are returned, then the destination DN of the current
operation is set to the single character &#xFFFD;,.

Example

The example matches on User objects with the attributes CN and L. The location where the rule is
searching starts at the Users container and adds the information stored in the OU attribute to the DN.
The rule is from the predefined rules that come with Identity Manager. For more information, see
Section 8.13, “Matching - By Attribute Value,” on page 129. To see the policy in XML, see
predef match by attribute.xml (../samples/predef match by attribute.xml).

Actions

255


http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/a5tuuu5.html
../samples/predef_match_by_attribute.xml
../samples/predef_match_by_attribute.xml
../samples/predef_match_by_attribute.xml

256

SRV Matching - by attribute value

Mo description available

Conditions

v~ Z Condition Group 1

v & if class name equal "User"

o 5. find matching object{dn{"[Enter base DM to skart search]™, match
—{"[Enter name of attribute to match on]"y

Do |find matching obiject v| 0]
Select scope: |su|:|tree V|
Specify DH: | “Hovell |
specify makch attribubes: | CH, L |

When you click the Argument Builder icon, the Match Attribute Builder comes up. You specify the
attribute you want to match on in the builder. This example uses the CN and L attributes.

Match Attributes + X LBB O
|CN ‘ @ e |Use waluas from the current object v|
|L ‘ @ e |Use waluas from the current object v|

The left fields store the attributes to match. The right fields allow you to specify to use the value
from the current object to match or to use another value. If you select Other Value, there are multiple
value types to specify:

¢ counter

¢ dn

¢ int

+ interval

* octet

+ state

¢ string

¢ structured

¢ teleNumber

* time
To use another value:

1 Launch the Match Attribute Builder by selecting Edit the match attributes, then select Other
Value.

Policies in Designer 3.0



Match Attributes |
The match attributes specify the attributes that are to be used to find a makch for the action,

Match Attributes ¢+ X 4BB 00
(& & Ohervale v/

Seed Ve Ty Shing v

Specky Strng | |

2 Select the desired value type.
3 Specify the value, then click Finish.

Actions 257



For Each

Repeats a set of actions for each node in a node set.

Fields

Node Set
Specify the node set.

Action

Specify the actions to perform on each node in the node set.

Remarks

The current node is a different value for each iteration of the actions, if a local variable is used.

If the current node in the node set is an entitlement element, then the actions are marked as if they
are also enclosed in an Implement Entitlement action. If the current node is a query element returned
by a query, then that token is used to automatically retrieve and process the next batch of query

results.
Example
Do |for each v @
Specify node set: * | Added Entitlement("Group")
Specify ackion: * | do-add-dast-attr-value

The following is an example of the Actions Builder, used to provide the action argument:

Do | add destination attribute value | &

i

Specify attribuke name: * | Member

A A
M

Specify class name: | Group
Select mode: | add ko current operation
Select object: |DM
Specify DMN: * | Local Yariabled"current-node™)

Specify value bvpe: | skring

mm e g

Enter string: * | Destination DM

For more information on the Action Argument Component Builder, see Section 4.2, “Actions
Builder,” on page 46.

258 Policies in Designer 3.0



Generate Event

Sends a user-defined event to Novell Audit or Sentinel™.

Fields

ID

ID of the event. The provided value must result in an integer in the range of 1000-1999 when
parsed by using the parselnt method of java.lang.Integer. Supports variable expansion. For
more information, see Section 3.6, “Variable Selector,” on page 35.

Level

Level of the event.

Level

Description

log-informational
log-alert

log-critical

log-debug

log-emergency

Positive events of any importance.
Events that require immediate attention.

Events that can cause parts of the Metadirectory engine or driver to
malfunction.

Events of relevance for support or engineers to debug the operation of
the Metadirectory engine or driver.

Events that cause the Metadirectory engine or driver to shut down.

log-error Events describing errors that can be handled by the Metadirectory
engine or driver.
log-notice Events (positive or negative) that an administrator can use to understand
or improve use and operation.
log-warning Negative events not representing a problem.
Strings

Specify user-defined string, integer, and binary values to include with the event. You can enter
the strings manually, or select the Edit the Strings icon =i to open the Named String Builder
and specify the strings. For more information about the Named String Builder, see Section 4.9,
“Named String Builder,” on page 58.

The Generate Event action supports the following strings:

String Name Description

data Data entered here is stored in the blob event field.
data-type Specifies the data-type of the value in the data tag.
subTarget The subcomponent of the target being acted upon.
target The object being acted upon.

Actions

259



String Name Description

target-type Integer specifying a predefined format for the target. Predefined values
for target-type are currently:

+ 0=None

+ 1 = Slash Notation
+ 2 = Dot Notation

+ 3 =LDAP Notation

text1 Text entered here is stored in the text1 event field.
text2 Text entered here is stored in the text2 event field.
text3 Text entered here is stored in the text3 event field.
value Any number entered here is stored in the value event field. You can also

access this field using the valuel tag.

value3 Any number entered here is stored in the value3 event field.

Remarks

The Novell Audit or Sentinel event structure contains a target, a subTarget, three strings (text1,
text2, text3), two integers (value, value3), and a generic field (data). The text fields are limited to
256 bytes, and the data field can contain up to 3 KB of information, unless a larger data field is
enabled in your environment.

Example

The example has four rules that implement a placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit or
Sentinel event. The Generate Event action is used to send Novell Audit or Sentinel an event. The
policy name is Policy to Place by Surname and is available for download from the Novell Support
Web site. For more information, see “Downloading Identity Manager Policies”. To view the policy
in XML, see 001-Placement-BySurname.xml (../samples/001-Placement-BySurname.xml).

260 Policies in Designer 3.0


../samples/001-Placement-BySurname.xml
../samples/001-Placement-BySurname.xml
../samples/001-Placement-BySurname.xml

- 5 ctup Local Yariables
B fr Surname A-I: place in Users1

Mo description available

Conditions

+ Z Condition Group 1

v 5 if class name equal "User"

v 5 if operation attribute 'Surname’ match "[a-i].*"

o 5 set operation destination DH(dn(" TraininglUsersiactivelUsers 1"+, "+Operation Atkribuke!"Cr")

o 5 trace messagefcolor="vellow", Local Yariabled"L¥Users1"

v 5 generate event(id="1000", textl=Local Yariable("L¥Users1"1)

v §r Surname J-R: place in Users2

v §r Surname 5-Z: place in Users3

[wila} |generate evenkt el | @
Specify ID: * | 1000 | &g
Select level: |inFDrmatiDna| o |
Specify skrings: | texkl |

Actions 261



If

Conditionally performs a set of actions.

Fields

If Conditions
Specify the desired condition.

Then Perform Actions

Specify the desired actions, if the conditions are True.

Else Perform Actions

(Optional) Specify the desired actions, if the conditions are False.

Example

During an Add or Modify operation, if the attribute of Title equals manager, the user object is added
to the ManagerGroup group. If the Title does not equal manager, then the user object is added to the
UsersGroup group. To view the policy in XML, see i f.xm1 (../samples/if.xml).

=v ZH

Conditions

" % Condition Group 1
v % i operation equal "add"

v 5 if operation equal "modify”

e

then

if operation attribute Title' equal "manager”

set destination atkribute walue!"Group Membership”, dass
—name="User", "Novel\Users\ManagerGroup™)

else
set default attribute valuel"Group Membership”,

—"NovelUsersiUsersaroup™

Do |if v @

If conditions: | and(if operation attribute 'Title' equal "manager") |

Then perform actions: | do-set-dest-attr-value |

Else perform actions: | do-set-default-attr-value |

When you create the if action, you must add a condition and one action. In this example, there are
two separate actions. The condition is if a user object has the title of manager.

262 Policies in Designer 3.0


../samples/if.xml
../samples/if.xml
../samples/if.xml

Create a list of Conditions

Create, delete, or rearrange a list of conditions.

Condition List Z - R A4 BB @

i 5, Condition Group 1

v 5,. if operation attribute 'Title' equal "manager”

The action is to add the user object to the ManagerGroup group.

Create a list of Actions r
Create, delete, or rearrange a list of ackions, f =
Action List £+ R of & @
v 5 set destination attribute walue"Group Membership”, class name="User", "MovelliUsers\ManagerGroup™ |

If the title does not equal manager, the user object is placed in the UsersGroup group.

Create a list of Actions r
Create, delete, or rearrange a list of actions, f =
Action List 2+ R o4& BB @
A 5 set default attribute value("Group Membership”, "Movell\UsersiUsersGroup™) |

Actions 263



Implement Entitlement

Designates actions that implement an entitlement so that the status of those entitlements can be
reported to the agent that granted or revoked the entitlement.

Fields

Node Set

Node set containing the entitlement being implemented by the specified actions.

Action

Actions that implement the specified entitlements.

Example

D |implement entitlemeant v @

Specify node sek: * | Removed Entitlement!" Account™)

Specify action: * | do-add-dest-atte-value

The following is an example of the Actions Builder, used to provide the action argument:

Do | add destination attribuke walue b
Specify atkribute name: * | Login Disabled 8 g &
specify class name: | User kl-'g' '-_T_ &
Seleck mode: |add to current operation b
Select object: |DN w
Specify DM * | "Local Yariable!"current-node™)"
Specify value bype: | string o
Enter skring: * | "Destination D"

For more information on the Actions Builder, see Section 4.2, “Actions Builder,” on page 46.

264 Policies in Designer 3.0



Move Destination Object

Moves an object into the destination data store.

Fields

Class Name
(Optional) Specify the class name of the object to move into the destination data store.
Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container to Move to

Select the container to receive the object. This container is specified by a DN or an association.

DN or Association

Specify whether the DN or association of the container is used.

Example

The example contains a single rule that disables a user’s account and moves it to a disabled
container when the Description attribute indicates it is terminated. The policy is named Disable User
Account and Move When Terminated, and it is available for download from the Novell Support Web
site. For more information, see “XPath 1.0 Expressions” in Understanding Policies for Identity
Manager 3.6. To view this policy in XML, see 005-Command-
DisableMoveOnTermination (../samples/005-Command-DisableMoveOnTermination.xml).

B 5 On Termination, disable user and move to Disabled container

Conditions

+~ & Condition Group 1

v 5 if operation equal "modify"

v 5 if class name equal "User"

v 5 if operation attribute ‘Description’ match "~terminated.*"

, "True'™

v 5 set destination attribute waluel"Login Disabled”, direct="true

v 5 miove destination objeck{when="after", dn("UsersiDisabled"))

Actions 265


../samples/005-Command-DisableMoveOnTermination.xml
../samples/005-Command-DisableMoveOnTermination.xml
../samples/005-Command-DisableMoveOnTermination.xml
../samples/005-Command-DisableMoveOnTermination.xml

Do | mowe destination object

vl@

Specify class name: |

===
Select mode; |add ko current operation b |
Select abject ko move: |Current object R |
Seleck conkainer to mowve to: |DN s |
Specify DMN: * | "UsersiDisabled" |

The policy checks to see if it is a modify event on a User object and if the attribute Description
contains the value of terminated. If that is the case, then it sets the attribute of Login Disabled
to True and moves the object into the User\Disabled container.

266 Policies in Designer 3.0



Move Source Object

Moves an object into the source data store.

Fields

Class Name
(Optional) Specify the class name of the object to move into the source data store. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Object to Move

Select the object to be moved. This object can be the current object, or it can be specified by a
DN or an association.

Select Container

Select the container to receive the object. This container is specified by a DN or an association.

Example
Do |move source object w I:EI
Specify class name: | User @ C': &
Select object ko move: | DR w
Specify DN: * | "Users)Activel Jdoe"
Select container to maove to: | DM hd
Specify DM+ | "Users\Inackive”

Actions 267



Reformat Operation Attribute

Reformats all values of an attribute within the current operation by using a pattern.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Value Type

Specify the syntax of the new attribute value.

Value

Specify a value to use as a pattern for the new format of the attribute values. If the original
value is needed to constructed the new value, it must be obtained by referencing the local
variable current-value.

Example

The example reformats the telephone number. It changes it from (nnn)-nnn-nnnn to nnn-nnn-nnnn.
The rule is from the predefined rules that come with Identity Manager. For more information, see
Section 8.9, “Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn
to nnn-nnn-nnnn,” on page 122. To view the policy in XML, see

predef transformation reformat telephonel.xml (../samples/

predef transformation_reformat_telephonel.xml).

3 5 Input or Output Transformation - Reformat Telephone Mumber from
—{nnn) nnn-nnnn to nnn-nnn-nnnn

Mo description available

& Condition Group 1

Define new condition here

reformat operation attribute!"phone”, Replace First{"~{{d\dhdil)
—is*didd)-O A", "$1-%2-$3", Local Variable"current-

—ualue")i
Do |reformat operation attribute -
sSpecify name: * | phone & & &
Specify value tyvpe: | string L

Enter string: * | "Replace First("~\(Oddbdi ns*0ddydp-0udh dhdh g™, "41-$2-4

The action reformat operation attribute changes the format of the telephone number. The rule uses
the Argument Builder and regular expressions to change how the information is displayed.

268 Policies in Designer 3.0


../samples/predef_transformation_reformat_telephone1.xml
../samples/predef_transformation_reformat_telephone1.xml
../samples/predef_transformation_reformat_telephone1.xml

Replace First"~(Odididns*Odidid-Odhdididis”, "$1-52-43"1
fh Local Yariabled"current-value™

Actions 269



Remove Association

Sends a remove association command to the Identity Vault.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association

Specify the value of the association to be removed.

Example

The example takes a Delete operation and disables the User object instead. The transforms an event.
The rule is from the predefined rules that come with Identity Manager. For more information, see
Section 8.2, “Command Transformation - Publisher Delete to Disable,” on page 111. To view the
policy in XML, see predef command delete to disable.xml (./samples/

predef command delete to disable.xml).

SRS Cormmand Transformation - Publisher Delete to Disable

Mo description available

Conditions

+ Z Condition Group 1

v §r if operation equal "delete"”

v fr if class name equal "User"

v 5- set destination attribute valued"Login Disabled", "trus™)

v 5- remove association(association( Association )

(] |remove assaciation v| @
Select mode: |add ko current operation w |
Specify association: * | Associationt) |

When a Delete operation occurs for a User object, value of the Login Disabled attribute is set to True
and the association is removed from the object. The association is removed because the associated
object in the connected application no longer exists.

270 Policies in Designer 3.0


../samples/predef_command_delete_to_disable.xml
../samples/predef_command_delete_to_disable.xml
../samples/predef_command_delete_to_disable.xml

Remove Destination Attribute Value

Removes an attribute value from an object in the destination data store.

Fields

Attribute Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Specify the attribute syntax of the value you want to remove.

Value

Specify the attribute value of the value you want to remove.

Example
Do |remowve destination atkribute walue |
Specify attribute name: * | Member 8 &8 &
Specify class name: | User 8 & &
Select mode: | add ko current operakion w
Select object: [DM b
specify DM: * | "MovelllUsersiManagerGroup”
Specify walue bype; | skring -
Enter string: * | "Destination DMO"

Actions 271



Remove Role

Initiates a request to the Roles Based Provisioning Module (RBPM) to revoke the specified role (in
the Role DN field) from the specified user (in the Authorized User DN field). This field is only
available if the Identity Manager server version is set to 3.6 or later.

Fields

Role DN
Specify the name of the role to revoke, in LDAP format. Supports variable expansion. For
more information, see Section 3.6, “Variable Selector,” on page 35.

User Application URL
Specify the URL of the User Application server hosting the Roles Based Provisioning module.
Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.

Authorized User DN

Specify the name of the user authorized to request the role assignment, in LDAP format.
Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.

Password
Specify the authorized user password. You can enter a clear text password (not recommended)
or use the Argument Builder to specify a Named Password.

Object
Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN or Association

Select the DN or association as the target object.

Strings

(Optional) Specify additional argument strings for the Role assignment request. You can enter
the strings manually, or select the Edit the Strings icon =i to open the Named String Builder
and specify the strings. For more information about the Named String Builder, see Section 4.9,
“Named String Builder,” on page 58.

The Remove Role action supports the following string arguments:

String Name Description

description A description of the reason for the request used for auditing and (if
necessary) approval purposes.

Default: Request generated by policy.
effective-time The time (in CTIME format) the role assignment should become effective.

Default: now

272 Policies in Designer 3.0



Example

Do |remu:-ve role ‘Vl )

Specify rale DR: * | Config, Ch=appZaonfig, CM=Test App, CN=entitlement, D=nove | Q E%-

Specify user application URL: * | 192,165, 10,208,8080/IDM

| &

Specify authorized user DR * | CM=admin, 2=novell

Qe

Specify password: * | MNamed Password("admin™)

|

Select object: |Current object

|

Specify strings: | textl

Actions 273



Remove Source Attribute Value

Removes the specified value from the named attribute on an object in the source data store.

Fields

Attribute Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

DN or Association

Select the DN or association as the target object.

Value Type

Specify the syntax of the attribute value to be removed.

String

Specify the attribute value to be removed.

Example

Do |remove source attribute value w| &

i

Specify atktribute name: * | Member

i

5 Sy

Specify class name: | User

Select object: (DN

Specify DM * | "Novel\Users\ManagerGroup”
Specify walue bype: | skring

Enter string: * | Source DM

EEm® e a

274 Policies in Designer 3.0



Rename Destination Object

Renames an object in the destination data store.

Fields

Class Name
(Optional) Specify the class name of the object to rename in the destination data store. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.
Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.
DN or Association

Select the DN or association as the target object.

String

Specify the new name of the object.
Example

Do |rename destination object w | 7

£
M

Specify class name: | User
Select mode: | add ko current operation
Select object: [DM

Specify DM: #* | "MNovelllUsers\jdoe”

ERELiy?

Specify string: ¥ | "JoeDoe"

Actions 275



Rename Operation Attribute

Renames all occurrences of an attribute within the current operation.

Fields

Source Name

Specify the original attribute name. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Destination Name

Specify the new attribute name. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Example
Do |rename operation attribute w | 7
Specify source name: * | Surname &8 &g &
Specify destination name: | sn u@ L_:‘- =d]

276 Policies in Designer 3.0



Rename Source Object

Renames an object in the source data store.

Fields

Class Name
(Optional) Specify the class name of the object to rename in the source data store. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Select Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.
DN or Association

Select the DN or association as the target object.

String

Specify the new name of the object.

Example
Do |rename source object | B
specify class name: | User & &

Select object: |DM

Specify OM: * | "MowvelliUsers) jdoe"

mEYe

Specify string: * | "Joehoe"

Actions 277



Send Email

Sends an e-mail notification.

Fields

ID
(Optional) Specify the User ID in the SMTP system sending the message. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Server
Specify the SMTP server name. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Message Type

Select the e-mail message type.

Password

(Optional) Specify the SMTP server account password.

IMPORTANT: You can store the SMTP server account password as a Named Password on the
driver object. This allows the password to be encrypted; otherwise, you enter the password and
it is stored in clear text. For more information on Named Passwords, see “Securely Storing
Driver Passwords with Named Passwords” in the Identity Manager 3.6 Common Driver
Administration Guide.

Strings

Specify the values containing the various e-mail addresses, subject, and message. You can enter
the strings manually, or select the Edit the strings icon = to open the Named String Builder
and specify the strings. For more information about the Named String Builder, see Section 4.9,
“Named String Builder,” on page 58.

The Send Email action supports the following string arguments:

String Name Description

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

custom-smtp-header Specifies a custom SMTP header to add to the e-mail message.

encoding Specifies the character encoding to use for the e-mail message.

from Specifies the address to be used as the originating e-mail address.
message Specifies the content of the e-mail message.

reply-to Specifies the address to be used as the e-mail message reply address.
subject Specifies the e-mail subject.

278 Policies in Designer 3.0



String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed. Can contain a comma-separated list of recipients.

Example

Do | send email w“ | B

||rl

Specify ID: | ssmith

|||ll

Specify server: * | smtp.digitalairlines. com
Select message tvpe: |text

Specify password: | Mamed Password("smkp-admin®™)

¢
O

Specify strings: | ko, subjeck, message

Actions 279



Send Email from Template

Generates an e-mail notification by using a template.

Fields

Notification DN
Specify the slash form DN of the SMTP notification configuration object. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Template DN
Specify the slash form DN of the e-mail template object. Supports variable expansion. For
more information, see Section 3.6, “Variable Selector,” on page 35.
Password

(Optional) Specify the SMTP server account password. Select the Edit the arguments icon
to open the Argument Builder and specify the password argument.

IMPORTANT: You can store the SMTP server account password as a Named Password on the
driver object. This allows the password to be encrypted; otherwise, you enter the password and
it is stored in clear text. For more information on Named Passwords, see “Securely Storing
Driver Passwords with Named Passwords” in the Identity Manager 3.6 Common Driver
Administration Guide.

Strings
Specify additional string arguments for the e-mail message. You can enter the strings manually,
or select the Edit the strings icon = to open the Named String Builder and specify the strings.
For more information about the Named String Builder, see Section 4.9, “Named String
Builder,” on page 58.

Send Email from Template supports the following string arguments that you can use to specify
the various e-mail addresses.

String Name Description

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

custom-smtp-header Specifies a custom SMTP header to add to the e-mail message.

encoding Specifies the character encoding to use for the e-mail message.
reply-to Specifies the address to be used as the e-mail message reply address.
to Adds the address to the list of e-mail recipients; multiple instances are

allowed. Can contain a comma-separated list of recipients.

In addition to the reserved field names listed above, Send Email from Template supports Global
Configuration Values (GCVs) for creating the desired string.

280 Policies in Designer 3.0



Each template can also define fields that can be replaced in the subject and body of the e-mail

message.

Example

Do | send email From template w | B
Specify notification DM: * | SecurityiDeFault Motification Colleckion
Specify template DN: * | SecurityiDefault Motification Collection\Forgok Password
Specify password: | "Mamed Password]"smip-adrnin')"

Specify strings: | ko, cc

uf

i

HEOL

Actions 281



Set Default Attribute Value

Adds default values to the current operation (and optionally to the current object in the source data
store) if no values for that attribute already exist. It is only valid when the current operation is Add.

Fields

Attribute Name
Specify the name of the default attribute. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Write Back

Select whether or not to also write back the default values to the source data store.

Argument Values

Specify the default values of the attribute.

Example

The example sets the default value for the company attribute. You can set the value for an attribute
of your choice. The rule is from the predefined rules that come with Identity Manager. For more
information, see Section 8.5, “Creation - Set Default Attribute Value,” on page 115. To view the
policy in XML, see predef creation set default attribute value.xml (./
samples/predef creation set_default attribute value.xml).

SRV Creation - Set Default Attribute Yalue

Mo description available

Conditions

+* % Condition Group 1

v §r if class name equal "User"

v 5. set default attribute value("[Enter attribute name]", write-back="
—true", "[Enter default attribute value]™)

Lo |set default attribute value b | )
Specify attribute name: * | comparry | @ ¢ &
Wirike back: |true L |
Specify argument values: * | Digital Airlines |

Argument Yalues

argurnent values specify the walues that are ko be used For an attribute,

Type Argument ¥Yalues + K ‘33‘" E% @

string v| | Sigital Airlines |

282 Policies in Designer 3.0


../samples/predef_creation_set_default_attribute_value.xml
../samples/predef_creation_set_default_attribute_value.xml
../samples/predef_creation_set_default_attribute_value.xml

To build the value, the Argument Value List Builder is launched. See Section 4.8, “Argument Value
List Builder,” on page 57 for more information on the builder. You can set the value to what is
needed. In this case, we used the Argument Builder and set the text to be the name of the company.

Actions 283



Set Destination Attribute Value

Adds a value to an attribute on an object in the destination data store, and removes all other values
for that attribute.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name
(Optional) Specify the class name of the target object in the destination data store. Leave the
field blank to use the class name from the current object. Supports variable expansion. For
more information, see Section 3.6, “Variable Selector,” on page 35.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value to set.

String

Specify the attribute values to set.

Example

The example takes a Delete operation and disables the User object instead. The rule is from the
predefined rules that come with Identity Manager. For more information, see Section 8.2,
“Command Transformation - Publisher Delete to Disable,” on page 111. To view the policy in XML,
see predef command delete to disable.xml (./samples/

predef command delete to disable.xml).

SRS Cormand Transformation - Publisher Delete to Disable

Mo description available

Conditions

+* % Condition Group 1

v 5 if operation equal "delete"”

v 5' if class name equal "User”

v 5- set destination attribute valued"Login Disabled", "trug™)

v 5 remove association{associationAssociation] 1))

284 Policies in Designer 3.0


../samples/predef_command_delete_to_disable.xml
../samples/predef_command_delete_to_disable.xml
../samples/predef_command_delete_to_disable.xml

Do | sek deskination attribuke walue

vl@

Specify attribute name: * | Login Disabled

ELE
Specify class name: | | & O &
Select mode: |add ko current aperation - |
Select object; |Current object b |
Specify value bvpe: | skring LS |
Enter skrimg: * | “krus" |

The rule sets the value for the attribute of Login Disabled to true. The rule uses the Argument

Builder to add the text of true as the value of the attribute. See Section 4.3, “Argument Builder,” on
page 47 for more information about the builder.

Actions 285



Set Destination Password

Sets the password for an object in the destination data store.

Fields

Class Name

(Optional) Specify the class name for the object to set the password on in the destination data
store. Supports variable expansion. For more information, see Section 3.6, “Variable Selector,”
on page 35.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

New Password

Specify the password to be set.

Old Password

Specifies the old password, which is used to confirm that you have rights to change the
password.

NOTE: This field is only available if the Identity Manager server version is set to 3.6 or later.

Example
Do |set destination password w
Specify class name: @ g &
Select mode: | add to current operation w
Select object: | Current object v

Specify new password; * | "Generate Password{policy-dn="1[root]\Security|Password Pali

Specify old password: | "Password()"

(04 Cancel * Required
)

286 Policies in Designer 3.0



Set Local Variable

Sets a local variable.

Fields

Variable Name

Specify the name of the new local variable. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Scope

Select the scope of the local variable. This can be set to the driver or to the policy. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Variable Type

Select the type of local variable. This can be a string, an XPath 1.0 node set, or a Java* object.

String
Specify the attribute values to set.

Example

The example adds a User object to the appropriate Employee or Manager group based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title, and it is available for download from the Novell Support Web site.
For more information, see “Downloading Identity Manager Policies” in Understanding Policies for
Identity Manager 3.6. To view the policy in XML, see 003-AddCreateGroups.xml (../
samples/003-Command-AddCreateGroups.xml).

SV fr Set local variables to test existence of groups and for placement

Mo description available

Conditions

% Condition Group 1

v 5 if class name equal "User"

% Condition Group 2
v & if operation equal "add"

v 5 if operation equal "modify"

set local wariabled"manager-group-dn®, "UsersiManagersaroup™)

set local wariabled"manager-group-info”, Destination Attributed"Object Class", dnilocal Variable"manager-group-
—dn" 1

set local wariabled"employes-group-dn”, "UserstEmployessGroup™)

ANENEENEN
RNORNRNORN

set local wariablel"employes-group-info”, Destination attribute*Object Class”, dnilocal Yariable!"employee-group-
—dn"1n

Actions

287


../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

Do |set lacal wariable

~ | )
Enter wariable name; * | managet-group-dn | (.__1 =
Select scope: ||:u:||ic~;.-' L |
Select wariable bype: |5tring ~ |
Specify string: * | "UsersiManagersaroup” |

The local variable is set to the value that is in the User object’s destination attribute of Object Class

plus the Local Variable of manager-group-info. The Argument Builder is used to construct the local
variable. See Section 4.3, “Argument Builder,” on page 47 for more information.

288 Policies in Designer 3.0



Set Operation Association

Sets the association value for the current operation.

Fields

Association

Provide the new association value.

Example

Do |set operation association v @B

Specify association: * | Source Mamed)

Actions 289



Set Operation Class Name

Sets the object class name for the current operation.

Fields

String

Specify the new class name.
Example

Do | set operation class name w @

Specify string: * | "User”

290 Policies in Designer 3.0



Set Operation Destination DN

Sets the destination DN for the current operation.

Fields

DN
Specify the new destination DN.

Example

This example places the objects in the Identity Vault, by using the structure that is mirrored from the
connected system. You need to define at what point the mirroring begins in the source and
destination data stores. The rule is from the predefined rules that come with Identity Manager. For
more information, see Section 8.14, “Placement - Publisher Mirrored,” on page 131. To view the
policy in XML, see predef place pub mirrored.xml (../samples/

predef place pub mirrored.xml).

SRV Placement - Publisher Mirrored

Mo description awvailable

Conditions

+ % Condition Group 1

% if source DMin subtree "[Enter base of source hisrarchy]”

v 5. set local wariable("dest-base", "[Enter base of destination
—hierarchy]")

4 5.- set operation destination DM{dn{Local Yariable"dest-base")+""

—+Unmatched Source DMN{convert="true"}})

Do |set operation destination DM W | @

Specify DNz * | Local Yariable!"dest-base"+""+Unmatched Source DM{conver |

The rule sets the operation destination DN to be the local variable of the destination base location
plus the source DN.

Actions 291


../samples/predef_place_pub_mirrored.xml
../samples/predef_place_pub_mirrored.xml
../samples/predef_place_pub_mirrored.xml

Set Operation Property

Sets an operation property. An operation property is a named value that is stored within an
operation. It is typically used to supply additional context that might be needed by the policy that
handles the results of an operation.

Fields

Property Name

Specify the name of the operation property. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

String
Specify the name of the string.

Example

Do | sek operation properky ~ |

Specify property name: * | MyStoredProperky

o A

Specify sktring: * | "Fred”

292 Policies in Designer 3.0



Set Operation Source DN

Sets the source DN for the current operation.

Fields

DN
Specify the new source DN.

Example

Do | set operation source D hd @

Specify DN: * | "NovelliUsers"Hatkribubed"CN")

Actions 293



Set Operation Template DN

Sets the template DN for the current operation to the specified value. This action is only valid when
the current operation is Add.

Fields

DN
Specify the template DN.

Example

The example applies the Manager template if the Title attribute contains the word Manager. The
name of the policy is Policy: Assign Template to User Based on Title, and it is available for
download from the Novell Support Web site. For more information, see “Downloading Identity
Manager Policies” in Understanding Policies for Identity Manager 3.6. To view the policy in XML,
see 003-Create-AssignTemplateByTitle.xml (../samples/003-Create-
AssignTemplateByTitle.xml).

B 5 Assign Manager template if Title contains "Manager”

Mo description available

Conditions

& Condition Group 1

v §r if class mame egual "User"

v 5' if operation attribute Title' available
v fr if operation attribute 'Title' match . *manager . *"

| v 5 set operation template DR{dR{"Users\Manager Template™))

v % Assign Employee template if Title does not contain "Manager™

Do | set operation template DM e @

Specify DN: * | "Users\Managet Template"

The template Manager Template is applied to any User object the has the attribute of Title available
and contains the word Manager somewhere in the title. The policy uses regular expressions to find
all possible matches.

294 Policies in Designer 3.0


../samples/003-Create-AssignTemplateByTitle.xml
../samples/003-Create-AssignTemplateByTitle.xml
../samples/003-Create-AssignTemplateByTitle.xml

Set Source Attribute Value

Adds a value to an attribute on an object in the source data store, and removes all other values for
that attribute.

Fields

Attribute Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Class Name

(Optional) Specify the class name of the target object in the source data store. Leave the field
blank to use the class name from the current object. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value.

Value
Specify the attribute value to be set.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from the Novell
Support Web site. For more information, see “Downloading Identity Manager Policies” in
Understanding Policies for Identity Manager 3.6. To view the policy in XML, see 001 -

Input PushBackOnEmail (../samples/001-Input-PushBackOnEmail.xml).

[ fr Push back on email changing

Mo description available

Conditions

" Z Condition Group 1

v §r if class name equal "User"

v 5 if operation attribute ‘Email' changing

v fr set source attribute value("Email”, Destination Attributed"Internet EMail Address"))

v 5 strip operation attribute!"Email"y

Actions

295


../samples/001-Input-PushBackOnEmail.xml
../samples/001-Input-PushBackOnEmail.xml
../samples/001-Input-PushBackOnEmail.xml
../samples/001-Input-PushBackOnEmail.xml

Do |set source attribute value ~ | 6]

Specify attribute name; * | Email | LE? L_aE' F.%n
Specify class name: | | @ L_g'e R%n
Select object: |Current object * |
Specify value type: | skring L |
Enter string: * | Destination Attribute!"Internet EMail Address™) |

The action takes the value of the destination attribute Internet EMail Address and sets the source
attribute of Email to this same value.

296 Policies in Designer 3.0



Set Source Password

Sets the password for an object in the source data store.

Fields

Class Name
(Optional) Specify the class name of the object to set the password on in the source data store.
Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.

Object
Select the target object. This object can be the current object, or can be specified by an DN or
an association.

New Password

Specify the password to be set.

Old Password

Specifies the old password, which is used to confirm that you have rights to change the
password.

NOTE: This field is only available if the Identity Manager server version is set to 3.6 or later.

Example
Do |set source password hd @
Specify class name: | User Ll:? Q" Cé

Select object: | Current object w
Specify new password: * | “Generate Password{palicy-dn="1[ront ]}Security|Password Pali

Specify old password; | Password()

#) Action modified. Click OK to update the policy or dlick * )
Cancel to discard changes. Required

Actions 297



Set SSO Credential

Sets the SSO credential when a user object is created or when a password is modified. This action is
part of the Credential Provisioning policies. For more information, see Novell Credential
Provisioning Policies for Identity Manager 3.6.

Fields

Credential Repository Object DN
Specify the DN of the repository object. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Target User DN
Specify the DN of the target users.

Application Credential ID

Specify the application credential that is stored in the application object. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Login Parameter Strings

Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object. You can enter the strings manually, or select the Edit the
strings icon £l to open the String Builder and specify the strings. For more information about
the Named String Builder, see Section 4.12, “String Builder,” on page 61.

Example
Do |set S50 credential w | (#
Specify credential repositary objeck DM: * | | \GroupWisel Groupiwise _Repositary C\ &

Set DM relative ko policy
Specify barget user DN: * | Destination AttributeDirML-ADContext”, dass name="User,:

Populate the Fallowing from an application objsct

Specify application credential ID: * | GroupsWise_Credential

M

Specify login parameter strings: | Username, Passwaord

298 Policies in Designer 3.0



Set SSO Passphrase

Sets the Novell SecureLogin passphrase and answer when a User object is provisioned. This action
is part of the Credential Provisioning policies. For more information, see Novell Credential
Provisioning Policies for Identity Manager 3.6.

Fields

Credential Repository Object DN

Specify the DN of the repository object. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Target User DN
Specify the DN of the target users.

Question String

Specify the SecureLogin passphrase question.

Answer String

Specify the SecureLogin passphrase answer.

Example
Do |set S50 passphrase w @
Specify credential repaositary objeck DM * | L. \GroupWise\Group'wise_Repository k:\ Cé
Set DM relative ko policy
Specify target user DN * | Destination AttributeDirksML-ADContext", class name="User,:
Question string: * | "Emplovee code™
Answer string: * | Atkribuke"waorkForceID™)

The SecureLogin passphrase question and answer are stored as strings in the policy.

Actions 299



Set XML Attribute

Sets an XML attribute on a set of elements selected by an XPath expression.

Fields

Name

Specify the name of the XML attribute. This name can contain a namespace prefix if the prefix
has been previously defined in this policy. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

XPath Expression

XPath 1.0 expression that returns a node set containing the elements on which the XML
attribute should be set. Supports variable expansion. For more information on variable
expansion and XPath, see Section 3.6.5, “XPath Expressions,” on page 39.

String
Specify the value of the XML attribute.

Example
Do | sek XML attribute w |
Enter attribute narne: * | cert-id Q, &
Specify XPath expression: * || i @ By &
Specify string: * | "cilotushdominoldataleng.id”

300 Policies in Designer 3.0



Start Workflow

Starts the workflow specified by workflow-id for the recipient DN on the User Application server
specified by a URL and by using credentials specified by the ID and password. The recipient must
be an LDAP format DN of an object in the directory served by the User Application server. The
additional arguments to the workflow can be specified by named strings. The number of the strings
and the names used are dependent on the workflow to be started.

Remark

There are some names that have special meaning and are available regardless of the workflow being
started.

+ :InitiatorOverrideDN: The LDAP format DN of the initiator of the workflow, if other than
the User used to authenticate.
+ :CorrelationID: An identifier used to correlate related workflows.
If any error occurs while starting the workflow, the error string is available to the enclosing policy in

the local variable named error .do-start-workflow. Otherwise, that local variable is
unavailable.

Fields

Provisioning Request DN
Specify the DN of the workflow to start in LDAP format. Supports variable expansion. For
more information, see Section 3.6, “Variable Selector,” on page 35.
User Application URL
Specify the URL of the User Application server where the workflow will run. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Authorized User DN

Specify the DN of a user authorized to start workflows on the User Application server in LDAP
format. Supports variable expansion. For more information, see Section 3.6, “Variable
Selector,” on page 35.

Authorized User Password
Specify the password of the authorized user to start workflows on the User Application server.
Store the password as a Named Password on the driver object. This allows the password to be
encrypted when it is stored.

Recipient DN
Specify the DN of the recipient of the workflow in LDAP format.

Strings

Specify the arguments for the workflow.You can enter the strings manually, or select the Edit
the strings icon =l to open the Named String Builder and specify the strings. For more
information about the Named String Builder, see Section 4.9, “Named String Builder,” on
page 58.

Actions

301



The arguments are defined on the workflow. Depending on how the workflow is defined, some
of the arguments might be required for the workflow to start.

Example

The following example starts a workflow process each time there in an Add operation. The
workflow is a request for a cell phone. To view the policy in XML, see start workflow.xml
(../samples/start_workflow.xml).

SRVl Start Vorkflow)

Mo description available

Conditio

& Condition Group 1

& i operation equal "add"

v 5. stark workflow(id="cn="arkflowadmin,o=People", url="http:
—iflocalhost: 8080/IDMProw”, workFlow-id="CN=~ApproveCellPhone
—CM=RequestDefs, CN=apponfig, CM=Userapplication,
—CM=Driverset, d=novel", arg-password{Mamed Password
—{"workFlow-admin™)), dn{Parse DM("qualified-slash”, "ldap”, X¥Path
—{"mqualified-src-dn"1)), provider="ACMEWirelass", reason="new
—hire")

Do | skark workflow V| @

=

Specify provisioning request DR * | CN=ApproveCelPhone, CN=RequestDefs, CN=AppConfig, Ch= | Q =g

Specify user application URL: * | hitp: fflocalhost : @080/ IDMProvo | E_}:;
specify authorized user DM * | crn=Warkflowadmin, o=People | Q @@
specify authorized user password: * | Mamed Passwoard{"workflow-admin) |

Specify recipient DM * | Parse DM{"qualified-slash", "ldap", *Path{"@qualified-src-dn") |

Specify strings: | provider, reason |

302 Policies in Designer 3.0


../samples/start_workflow.xml
../samples/start_workflow.xml
../samples/start_workflow.xml

Status

Generates a status notification.

Fields

Level

Specify the status level of the notification. The levels are error, fatal, retry, success, and
warning. Supports variable expansion. For more information, see Section 3.6, “Variable
Selector,” on page 35.

String

Provide the status message by using the Argument Builder.

Remarks

If level is retry, then the policy immediately stops processing the input document and schedules a
retry of the event currently being processed.

If the level is fatal, the policy immediately stops processing the input document and initiates a
shutdown of the driver.

If a the current operation has an event-id, that event-id is used for the status notification; otherwise,
there is no event-id reported.

Example

¥ @
Specify level: * | warning 3

Specify string: * | Source DM{)+": operation vetoed on out-of -scope-object”

Actions 303



Strip Operation Attribute

Strips all occurrences of an attribute from the current operation.

Fields

Name

Specify the name of the attribute to be stripped. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from the Novell
Support Web site. For more information, see “Downloading Identity Manager Policies” in
Understanding Policies for Identity Manager 3.6. To view the policy in XML, see 001 -Input-
PushBackOnEmail.xml (../samples/001-Input-PushBackOnEmail.xml).

SR N Push back on email changing

Mo description available

Conditions

% Condition Group 1

W fr if class name equal "User”

v~ % if operation attribute 'Email' changing

v 5 set source attribuke value"Email”, Destination Attribute"Internet EMail Address"))

& strip operation attribuke!"Email")

Da |stri|:| operation atkribute b | @

Specify name: * | Ernail | & & &

The action strips the attribute of Email and keeps the value that was in the destination Email
attribute.

304 Policies in Designer 3.0


../samples/001-Input-PushBackOnEmail.xml
../samples/001-Input-PushBackOnEmail.xml
../samples/001-Input-PushBackOnEmail.xml
../samples/001-Input-PushBackOnEmail.xml

Strip XPath Expression

Strips nodes selected by an XPath 1.0 expression.

Fields

XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the nodes to be stripped.
Supports variable expansion. For more information on variable expansion and XPath, see
Section 3.6.5, “XPath Expressions,” on page 39.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Example
Do | strip XPath expression w | 7
Specify ®Path expression: * | *@attr-name="00U"] i @ By &

Actions 305



Trace Message

Sends a message to DSTRACE.

Fields

Level

Specify the trace level of the message. The default level is 0. The message only appears if the
specified trace level is less than or equal to the trace level configured in the driver.

For information on how to set the trace level on the driver, see “Viewing Identity Manager
Processes” in the Identity Manager 3.6 Common Driver Administration Guide.
Color

Select the color of the trace message.

String

Specify the value of the trace message.

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit or
Sentinel event. The Trace Message action is used to send a trace message to DSTRACE. The policy
name is Policy to Place by Surname and it is available for download from the Novell Support Web
site. For more information, see “Downloading Identity Manager Policies” in Understanding Policies
for Identity Manager 3.6. To view the policy in XML, see 001-Placement-BySurname .xml
(../samples/001-Placement-BySurname.xml).

- 5 =tup Local Yariables
B 5 Surname A-I: place in Users1

Mo description available

Conditions

% cCondition Group 1

v 5 if class name equal "User"
v 5’ if operation attribute ‘Surname' match “[a-i].*"

v 5 set operation destination DM(dn(" TraininglUsersiactivelUsers1"+", "+ Operation Atkribuke!"CR"T)

v 5 trace messagefcolor="vellom", Local Yariablef"LYUsers1")
v 5 generate event(id="1000", text1=Local Variable("L¥Users1"))

v % Surname J-R: place in Users2

v % Surname 5-2: place in Users3

306 Policies in Designer 3.0


../samples/001-Placement-BySurname.xml
../samples/001-Placement-BySurname.xml
../samples/001-Placement-BySurname.xml

Do |trace message v| @

Specify level: | |
Select color: |§.-'Ellnw v|
specify string: * | Local variable("Ly¥Users1") |

The action sends a trace message to DSTRACE. The contents of the local variable is LVUsers1 and
it shows up in yellow in DSTRACE.

Actions 307



Veto

Vetoes the current operation.

Example

The example excludes all events that come from the specified subtree. The rule is from the
predefined rules that come with Identity Manager. For more information, see Section 8.8, “Event
Transformation - Scope Filtering - Exclude Subtrees,” on page 120. To view the policy in XML, see
predef transformation filter exclude subtress.xml (../samples/

predef transformation_filter exclude subtrees.xml).

B « §r Event Transformation - Scope Filtering - Exclude subtree(s)

Mo description available

Conditions

+ & Condition Group 1

v §r if source DM in subkree "[Enter a subtree to exclude]”

| v & weto) |

Do |veto v| )

The action vetoes all events that come from the specified subtree.

308 Policies in Designer 3.0


../samples/predef_transformation_filter_exclude_subtrees.xml
../samples/predef_transformation_filter_exclude_subtrees.xml
../samples/predef_transformation_filter_exclude_subtrees.xml

Veto If Operation Attribute Not Available

Conditionally cancels the current operation and ends processing of the current policy, based on the
availability of an attribute in the current operation.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Example

The example does not allow User objects to be created unless the attributes Given Name, Surname,
Title, Description, and Internet EMail Address are available. The policy name is Policy to Enforce
the Presences of Attributes, and it is available for download from the Novell Support Web site. For
more information, see “Downloading Identity Manager Policies” in Understanding Policies for
Identity Manager 3.6. To view the policy in XML, see 001 -Create-RequiredAttrs.xml (../
samples/001-Create-RequiredAttrs.xml).

B 5 User required attributes: First/Last Mame, Title, Description, Email

Mo description available

+~ % Condition Group 1

v 5- if class name equal "User"

veto if operation attribute not availabled"Given Mame™)
veto if operation attribute not available!"surname")
weto if operation attribute nok awvailabled"Title")

veto iF operation attribute not availabledDescripkion™)

ANENENENEN
RN RN RN R

veto if operation attribute not available!"Internet EMail Address")

Do |weto if operation attribute not available | 7

Specify name; * | Given Mame 'J.g‘ & &

The actions vetoes the operation if the attributes of Given Name, Surname, Title, Description, and
Internet Email Address are not available.

Actions 309


../samples/001-Create-RequiredAttrs.xml
../samples/001-Create-RequiredAttrs.xml
../samples/001-Create-RequiredAttrs.xml

While

Causes the specified actions to be repeated while the specified conditions evaluate to True.

Fields

Conditions

Specify the condition to be evaluated.

Actions

Specify the actions to be repeated if the conditions evaluate to True.

Example

SRV Vil |

Conditions

& Condition Group 1

& if operation equal "add"

& setlocal variable("counter”, "1")
& whie
do

if local wariable 'counter' nok greater than "10"

trace messagelcolor="yellow", level="0", "Counter =
—"+Local ¥ariable!"counter")

set local variablel"counter”, ¥Path("$counter + 1)

Do [whils v | @

Specify conditions: * | and(if local variable 'counter’ not greater than) |

Specify action: * | do-trace-message, do-set-local-variable |

310 Policies in Designer 3.0



Noun Tokens

Noun tokens expand to values that are derived from the current operation, the source or destination
data stores, or some external source.

This section contains detailed information about the noun tokens available in the Policy Builder
interface.

*

*

*

*

“Text” on page 312

“Added Entitlement” on page 314
“Association” on page 315
“Attribute” on page 316
“Character” on page 317

“Class Name” on page 318
“Destination Attribute” on page 319
“Destination DN on page 321
“Destination Name” on page 323
“Document” on page 324
“Entitlement” on page 325

“Generate Password” on page 326

“Global Configuration Value” on page 327

“Local Variable” on page 328
“Named Password” on page 330
“Operation” on page 332

“Operation Attribute” on page 333
“Operation Property” on page 335
“Password” on page 336

“Query” on page 337

“Removed Attribute” on page 339
“Removed Entitlement” on page 340
“Resolve” on page 341

“Source Attribute” on page 342
“Source DN” on page 343

“Source Name” on page 344

“Time” on page 345

“Unique Name” on page 346
“Unmatched Source DN” on page 349
“XPath” on page 350

Noun Tokens 311



Text

Expands to the text.

Fields

Text

Specify the text. Supports variable expansion. For more information, see Section 3.6, “Variable
Selector,” on page 35.

Example

The example is from the Govern Groups for User Based on Title policy, which is available for
download from the Novell® Support Web site. For more information, see “Downloading Identity
Manager Policies” in Understanding Policies for Identity Manager 3.6. To view the policy in XML,
see 003-Command-AddCreateGroups .xml (../samples/003-Command-
AddCreateGroups.xml).

The Text token is used in the action Set Location Variable to define the DN of the manager’s group.
The Text token can contain objects or plain text.

E " % setlocal variables to test existence of groups and for placement

Mo description available

Conditions

% cCondition Group 1

v & i class name equal "User”

% cCondition Group 2
" & if operation equal "add"

v & if operation equal "modify”

set local wariable"manager-group-dn®, "UsersiManagersaroup™)

set local wariablel"manager-group-infa”, Destination Attributed"Object Class", dnilocal Yariable!"manager-group-
—dn"1n

set local wariablel"employes-group-dn", "Users\EmployessGroup™)

LN NN
RN RN RN

set local variabled"employves-group-info", Destination Attribute!"Object Class", dnilocal Yariabled"employee-group-
—dn"in

& 5 "UsersiManagersiGroup”

27 Editor

Text: Users|ManagersGroup q

S

312 Policies in Designer 3.0


../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

The Text token contains the DN for the manager’s group. You can browse to the object you want like
to use, or type the information into the editor.

Noun Tokens 313



Added Entitlement

Expands to the values of an entitlement granted in the current operation.

Fields

Name

Name of the entitlement. Supports variable expansion. For more information, see Section 3.6,
“Variable Selector,” on page 35.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

Example

& §r Added Entitlement;"manager"

314 Policies in Designer 3.0



Association

Expands to the association value from the current operation.

Example

The example is from the predefined rules that come with Identity Manager. For more information on
the predefined rule, see Section 8.2, “Command Transformation - Publisher Delete to Disable,” on
page 111.

The action of Remove Association uses the Association token to retrieve the value from the current
operation. The rule removes the association from the User object so that any new events coming
through do not affect the User object. To view the policy in XML, see

predef command delete to disable.xml (../samples/predef command delete to disable.xml).

SRS Cormmand Transformation - Publisher Delete to Disable

Mo description available

Conditions

v~ Z Condition Group 1

v §r if operation equal "delete”

v 5 if class name equal "User"

v §v set destination attribute valued"Login Disabled", "trug™)

v 5- remove association(association( Association )

&L & Association()

Noun Tokens 315


../samples/predef_command_delete_to_disable.xml

Attribute

Expands to the value of an attribute from the current object in the current operation and in the source
data store. It can be logically thought of as the union of the operation attribute token and the source
attribute token. It does not include the removed values from a Modify operation.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see Section 8.6, “Creation - Set Default Password,” on page 117.

The action of Set Destination Password uses the attribute token to create the password. The
password is made up of the Given Name attribute and the Surname attribute. When you are in the
Argument Builder Editor, you browse and select the attribute you want to use. To view the policy in
XML, see predef creation set default password.xml (./samples/

predef creation_set default password.xml).

SRV Creation - Set Default Password

Mo description available

Conditions

+* % Condition Group 1

v fr if class name equal "User"

7 5- set destination password{Attribute!"Given Mame"i+Attribute
—{"Surname"))

& % Attribuke("Given Mame")
& % Attribute("Surname")

£ Editor

Mame: ™ [ Given Mame | @ @ &

316 Policies in Designer 3.0


../samples/predef_creation_set_default_password.xml
../samples/predef_creation_set_default_password.xml
../samples/predef_creation_set_default_password.xml

Character

Expands to a character specified by a Unicode* code point.

Remarks

For a listing of Unicode values and characters, see Unicode Code Charts (http://www.unicode.org/
charts/).

Fields

Character Value

The Unicode code point of the character. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

A hexadecimal number can be specified if it is prefixed with 0x, as in C-based programming
languages.
Example

&y & Characker{value="10")

22 Editor

Character value: * | 10

Noun Tokens 317


http://www.unicode.org/charts/

Class Name

Expands to the object class name from the current operation.

Example

& & Class Mamef)

318 Policies in Designer 3.0



Destination Attribute

Expands to the specified attribute value an object.

Fields

Name
Name of the attribute. Supports variable expansion. For more information, see Section 3.6,
“Variable Selector,” on page 35.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Select Object
Select Current Object, Association, or DN.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Example

The example is from the Govern Groups for User Based on Title policy, which is available for
download from the Novell® Support Web site. For more information, see “Downloading Identity
Manager Policies” in Understanding Policies for Identity Manager 3.6. To view the policy in XML,
see 003-Command-AddCreateGroups .xml (../samples/003-Command-
AddCreateGroups.xml).

The policy creates the Destination Attribute with the Argument Builder. The action of Set Local
Variable contains the Destination Attribute token.

Noun Tokens 319


../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

El " % setlocal variables to test existence of groups and for placement

Mo description available

Conditions

+ % Condition Group 1

v § if class name equal "User"

" Z Condition Group 2
" & i operation equal "add"

v § if operation equal "modify"

set local wariable"manager-group-dn®, "UsersiManagersaroup™)

set local variable"manager-group-infa”, Destination Attributel"Object Class", dnilocal Yariable"manager-group-
—dn"1}

set local variable"employee-group-dn®, "Users\Emplovessaroup™)

v 7
v &
v &
v &

set local variable"employes-group-info”, Destination Attribute!"Object Class", dnilocal Yariabled " employee-group-
—dn"}i)

&4 § Destination Attributed"Object Class", dni))

2 Editor
Name: * |Object Class | g
Class name: | | 8 g e
Specify DM * | Lacal Yariable 'manager-group-dn™) |

You build the Destination Attribute through the Editor. In this example, the attribute of Object Class
is set. The DN is used to select the object. The value of DN is the Local Variable of manager-group-
dn.

320 Policies in Designer 3.0



Destination DN

Expands to the destination DN specified in the current operation.

Fields

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

¢ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Specify the number of RDN segments to include. Negative numbers are interpreted as (total #
of segments + length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) +
1=5-2=(5+(-2)+1=4,cectc.

Convert

Select whether or not to convert the DN to the format used by the source data store.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise, only the
portion of the DN specified by start and length is used.

Example

The example uses the Destination DN token to set the value for the local variable of target-container.
The policy creates a department container for the User object if it does not exist. The policy is from
the predefined rules that come with Identity Manager. For more information, see Section 8.1,
“Command Transformation - Create Departmental Container - Part 1 and Part 2,” on page 108. To
view the policy in XML, see predef command create dept containerl.xml (../
samples/predef command create dept containerl.xml).

B §v Command Transformation - Create Departmental Container - Part 1

Mo description available

Conditions

v % Condition Group 1
v & if operation equal "add"

set local variable("target-container”, Destination DM{length="-2"}}

set local variablef"does-target-exist", Destination Attribute
—{"objectclass”, class name="0Organizational Unit", dniLocal
—ariable("target-container 1))

v &
v Z

Noun Tokens 321


../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container1.xml

&4 % Destination DHlength="-2"

2# Editor

Start: |0
Length: | -2

Corvert to source DM format: |False W

322 Policies in Designer 3.0



Destination Name

Expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in
the current operation.

Example

&L % Destination Mame)

Noun Tokens 323



Document

Reads the XML document pointed to by the URI and returns the document node in a node set. The
URI can be relative to the URI of the including policy. With any error, the result is an empty node
set.

Fields

XML Document URI
Specify the XML document URI.

Example

&G 5 Docurnent“Movelt Southt Driver SetiDelimited Text")

22 Editor

%ML document URT: * | MovellSouthiDriver SetiDelimited Text|

324 Policies in Designer 3.0



Entitlement

Expands to the values of a granted entitlement from the current object.

Fields

Name

Name of the entitlement. Supports variable expansion. For more information, see Section 3.6,
“Variable Selector,” on page 35.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

Example

& & Entitlement("manager”)

22 Editor

jo!
A

ik
Marne: * | manager

Noun Tokens 325



Generate Password

Generates a random password that conforms to the specified password policy.

Fields

Password Policy

The DN of the password policy that receives the randomly generated password. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Set DN relative to policy
Select whether the DN of the password policy is relative to the policy being created.

Example

&L 5 Generate Password{policy-dn="i[root]\SecurityiPassword Policies\Sample Password Policy™

326 Policies in Designer 3.0



Global Configuration Value

Expands to the value of a global configuration variable.

Fields

Name

Name of the global configuration value. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Example

o 5 Gzlobal Configuration Yaluel"Connected3ystemtame")

Noun Tokens 327



Local Variable

Expands to the value of a local variable.

Fields

Name

Specify the name of the local variable. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Example

The example is from the Govern Groups for User Based on Title policy, which is available for
download from the Novell Support Web site. For more information, see “Downloading Identity
Manager Policies” in Understanding Policies for Identity Manager 3.6. To view the policy in XML,
see 003-Command-AddCreateGroups .xml (../samples/003-Command-
AddCreateGroups.xml).

The action Add Destination Object uses the Local Variable token.

v § 5et local variables to test existence of groups and for placement

B 5 Create ManagersGroup, if needed

Mo description available

Conditions

% Condition Group 1

if local variable 'manager-group-info’ avail

v % flocal variable 'manager-group-infao’ not equal "graup”

v 5- add destination object{class name="Group", when="before", dn{Local Yariable("manager-group-dn™i)

" % Create EmployeesGroup, if needed
v :’7 If Title indicates Manager, add to ManagerGroup and set rights

v 5- If Title does not indicate Manager, add to EmployeeGroup and set rights

&4 5 Local Wariable!"manager-group-dn™)

£ Editor

M

ariable name: * | anager-group-dn |Q

328 Policies in Designer 3.0


../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

@ Local Yariable Selector

X

Local Yariable Selector

Select a local wariable From the list.

Policy Scope ._Driver Scope | Errar Variables

emplovee-group-dn
rmanager-graup-infa

emEIDﬁee-irauE-inFD

':':’:' [ Ck H Cancel ]

The Local Variable can only be used if the action Set Local Variable has been used previously in the
policy. It sets the value that is stored in the Local Variable. In the Editor, you click the browse icon
and all of the local variables that have been defined are listed. Select the correct local variable.

The value of the local variable is group-manager-dn. In the example, the Set Local Variable action
defines group-manager-dn as DN of the manager’s group Users\ManagersGroup.

Noun Tokens 329



Named Password

Expands to the named password from the driver.

Fields

Name

Name of the password. Supports variable expansion. For more information, see Section 3.6,
“Variable Selector,” on page 35.

Example

The Named Password noun token can only be used if a Named Password has been set on the driver
object. The Named Password is used to save a password in an encrypted form. For more information
on Named Passwords, see “Securely Storing Driver Passwords with Named Passwords” in the
Identity Manager 3.6 Common Driver Administration Guide.

The example uses the Start Workflow (page 301) action. It requires that the password for the
workflow administrator be entered. To view the policy in XML, see start workflow.xml (../
samples/start workflow.xml).

SRV 35t ort Viorkflow |

Mo description available

Conditions

+~ % Condition Group 1
v % if operation equal "add"

v 5- start workflow(id="cn="arkflowadmin,o=People", url="http:
—{llocalhost: 3080/ IDMProv", workflow-id="CN=approveCelPhone
—CM=RequestDefs, CN=appConfig, ChM=UserApplication,
—CM=Driverset, D=novel”, arg-password{Mamed Password
—{"workflow-admin"y), dn{Parse DN"qualified-slash", "ldap", ¥Path
—{"imqualified-src-dn"))), provider="ACMEWireless", reason="new
—hire")

Do | skark workflow b | @

=

Specify provisioning request DR; | ChN=ApproveCelPhone, CN=RequestDefs, CN=AppConfig, Ch= | C'.,_ =

Specify user application URL: * | http: filocalhost: 3030/ IDMProvD | &
Specify authorized user DM * | cn=WorkFlowadmin, o=People | C.’., "?‘:i
Specify authorized user password: * | Mamed Password{"workflow-admin") |

Specify recipient DM * | Parse DM{"qualified-slash", "ldap”, ®Path{"@qualified-src-dn™) |

Specify strings: | provider, reason |

& 5 Mamed Passwordi"waorkow-admin™)

330 Policies in Designer 3.0


../samples/start_workflow.xml
../samples/start_workflow.xml
../samples/start_workflow.xml

£2 Editor

Password name: * = pRCS
wiorkflowe-adrmin U =

Select Named Password

The selected named password is passed to the expression in the Argument Builder,

Server:
w
Mame Display Mame
iempk-admin smpkt-adrin
watkflow-admin warkflow-admin

Noun Tokens 331



Operation

Expands to the name of the current operation.

Example

& & Operation()

332 Policies in Designer 3.0



Operation Attribute

Expands to the value of an attribute in the current operation. The operation can be an <add-attr>,
<add-value>, or <attr>. If this token is evaluated in a context where a node-set result is expected,
then all the available values are returned as nodes in a node-set. Otherwise, the first available value
is returned as a string.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit or
Sentinel™ event. The policy name is Policy to Place by Surname, and it is available for download
from the Novell Support Web site. For more information, see “Downloading Identity Manager
Policies” in Understanding Policies for Identity Manager 3.6. To view the policy in XML, see
00l1-Placement-BySurname.xml (../samples/001-Placement-BySurname.xml).

-3 Setup Local Yariables

B « 5 Surname A-I: place in Users1

Mo description available

Conditions

% Condition Group 1

v & i class name equal "User"

v 5 if operation attribute ‘Surname’ makch “[a-i1.+"

" & set operation destination Dr(dni TraininglUserstactivelUsers1"+""+Operation AbbribukeCr" 1)

v fr trace message(color="vellow", Local Yariabled"LYUsers1"1)

v 5 generate evenk(id="1000", texkl=Local Yariable!"Ly¥Users1"1)

v 5 Surname J-R: place in Users2

v 5 Surname 5-Z: place in Users3

& §r "TraininglJsersiactivelsers1"
& 5 "I||"
&4 & Operation Attribube"CH")

£ Editor

Mame: * [ |@ CT L_‘:_

Noun Tokens 333


../samples/001-Placement-BySurname.xml
../samples/001-Placement-BySurname.xml
../samples/001-Placement-BySurname.xml

The action Set Operation Destination DN contains the Operation Attribute token. The Operation
Attribute token sets the Destination DN to the CN attribute. The rule takes the context of
Training\Users\Active\Users and adds a \ plus the value of the CN attribute.

334 Policies in Designer 3.0



Operation Property

Expands to the value of the specified operation property on the current operation.

Fields

Name

Specify the name of the operation property. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Example

& 5 Cperation Property“myStoredproperty™)

Noun Tokens 335



Password

Expands to the password specified in the current operation.

Example

& & Password()

336 Policies in Designer 3.0



Query

Queries the source or destination data store and returns the resulting instances.

Fields

Datastore
Specify the data store to query.
Scope

Select the scope of the query. The options are entry, subordinates, or subtree.

Max Result Count

Specify the maximum number of results returned from the query.

Class Name

Specify the class name in the query. If a class name is not specified, all classes are searched.
Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.

Select Object

Specify the base of the query. It can be the DN or an association. If neither is selected, the query
starts at the root of the datastore.

Match Attributes

Select the attributes to search for.

IMPORTANT: To improve performance when using the query noun, create an index for the
attributes that you are going to use when querying the Identity Vault. For more information
about indexes, see the Novell eDirectory 8.8 Administration Guide (http://www.novell.com/
documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/
aStuuu5.html).

Strings

Specify the set of attributes to return. If nothing is specified, no attributes are read. Use an
asterisk to read all attributes.

Remarks

The Query token returns a node set containing the instance elements found as a result of the
query. To effectively use the results of a Query token it must be used in a context that is expecting a
node set. For example, you could assign the result to a variable of type node set, or iterate
through the result using a for each loop.

Treating the node set asifit were a string seldom provides anything useful. Extracting useful
information from the node set or its constituent instance elements requires the use of an XPath
expression and knowledge of the structure of an instance element. For additional information, see
the following:

+ “instance” in the Identity Manager 3.6 DTD Reference.

Noun Tokens

337


http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/a5tuuu5.html

¢ “XPath 1.0 Expressions” in Understanding Policies for Identity Manager 3.6.
¢ Chapter 5, “Using the XPath Builder,” on page 71

Example

L 5 Queryiclass name="User", matchi"CN"), match("L"), "Prowva™)

Mazx result count: | |

Class name: |User | 8 g &

Select object: |R00t of datastore | w

Match attributes: | CM, L |

Read attribuke: | "Provao" | o

338 Policies in Designer 3.0



Removed Attribute

Expands to the specified attribute value being removed in the current operation. It applies only to a
Modify operation.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Example

& % Removed Attribute"Member")

Noun Tokens 339



Removed Entitlement

Expands to the values of the an entitlement revoked in the current operation.

Fields

Name

Specify the name of the entitlement. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

Example

e 5 Remaoved Entitlement( " manager")

340 Policies in Designer 3.0



Resolve

Resolves the DN to an association key, or the association key to a DN in the specified data store.

Fields

Datastore

Select the destination or source datastore to be queried.

Resolve Type

Select to resolve the association key to a DN or to resolve the DN to an association key.

Example

L 5 Resolveldatastore="src", dn)

22 Editor

Datastore: |[Source W
Resolve bype: |DM ko Association (W

DN: * | MovellUsers\ManagerGroup

Noun Tokens 341



Source Attribute

Expands to the values of an attribute from an object in the source data store.

Fields

Name

Name of the attribute. Supports variable expansion. For more information, see Section 3.6,
“Variable Selector,” on page 35.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Object

Select the source object. This object can be the current object, or can be specified by a DN or an
association.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Example

N 5 Source Attribute!"Member”, class name="Group")

2# Editor

Mame: * | pergber

fa S
A S
T

Class name: | Grouop

Select object: | Current object v

342 Policies in Designer 3.0



Source DN

Expands to the source DN from the current operation.

Fields

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

¢ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Number of RDN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5
+(-2)) +1=4,etc.

Convert

Select whether or not to convert the DN to the format used by the destination data store.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise, only the
portion of the DN specified by start and length is used.

Example

& & Source DNilength="-2"}

2 Editor

Skart: | 0O
Length: | -2

Converk bo destination DM Format: |False

Noun Tokens 343



Source Name

Expands to the unqualified relative distinguished name (RDN) of the source DN specified in the
current operation.

Example

&L & Source Mame()

344 Policies in Designer 3.0



Time
Expands to the current date/time into the format, language, and time zone specified.

Fields

Format

Specify the date/time format. Select a named time format or specify a custom format pattern.
Supports variable expansion. For more information, see Section 3.6, “Variable Selector,” on
page 35.

Language

Specify the language. (It defaults to the current system language.) Supports variable expansion.
For more information, see Section 3.6, “Variable Selector,” on page 35.

Time zone

Specify the time zone. (It defaults to the current system time zone.) Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Remark

The Test icon displays the time format that is created by selecting the format, language, and time
zone.

Example

&L fr TimedFormat="Mr dd ", lang="en-Us", kz="america/Denver")

£# Editor

Format: * | MMiddfyy ~| & ) &
Language: | Endlish (United States)[en-US] “
Time zone: | Mountain Standard Time[AmericaiDenver]| “

Noun Tokens 345



Unique Name

Expands to a pattern-based name that is unique in the destination data store according to the criteria
specified.

Fields

Attribute Name

Specify the name of attribute to check for uniqueness.

IMPORTANT: To improve performance when using the unique name noun, create an index
for the attributes that you are going to use when querying the Identity Vault. For more
information about indexes, see the Novell eDirectory 8.8 Administration Guide (http://
www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/
edir88/data/aStuuus.html).

Scope

Specify the scope in which to check uniqueness. The options are subtree or subordinates.

Start Search
Select a starting point for the search. The starting point can be the root of the data store, or can
be specified by a DN or association.

Pattern

Specify patterns to use to generate unique values by using the Argument Builder.

Counters Use
Select when to use a counter. The options are:
* never
+ always
+ fallback

Counters Pattern
Select which pattern to use the counter with. The options are:
* first
* last

+ all

Start

The starting value of the counter. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Digits
Specify the width in digits of counter; the default is 1. The Pad counter with leading 0's option
prepends 0 to match the digit length. For example, with a digit width of 3, the initial unique

value would be appended with 001, then 002, and so on. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

346 Policies in Designer 3.0


http://www.novell.com/documentation/edir88/edir88/index.html?page=/documentation/edir88/edir88/data/a5tuuu5.html

If Cannot Construct Name
Select the action to take if a unique name cannot be constructed. The options are:
¢ Ignore, return empty
¢ Generate warning, return empty name
+ Generate error, abort current transaction

+ Generate fatal error, shut down driver

Remarks

Each <arg-string> element provides a pattern to be used to create a proposed name.

A proposed name is tested by performing a query for that value in the name attribute against the
destination data store by using the <arg—-dn> element or the <arg-association> element as
the base of the query and scope as the scope of the query. If the destination data store is the Identity
Vault and name is omitted, then a search is performed against the pseudo-attribute “[Entry].rdn”,
which represents the RDN of an object without respect to what the naming attribute might be. If the
destination data store is the application, then name is required.

A pattern can be tested with or without a counter as indicated by counter-use and counter-pattern.
When a pattern is tested with a counter, the pattern is tested repeatedly with an appended counter
until a name is found that does not return any instances or the counter is exhausted. The counter
starting value is specified by counter-start and the counter maximum value is specified in terms of
the maximum number of digits as specified by counter-digits. If the number of digits is less than
those specified, then the counter is right-padded with zeros unless the counter-pad attribute is set to
False. The counter is considered exhausted when the counter can no longer be represented by the
specified number of digits.

As soon as a proposed name is determined to be unique, the testing of names is stopped and the
unique name is returned.

The order of proposed names is tested as follows:

¢ FEach pattern is tested in the order specified. If counter-use="always” and the pattern is one of
the patterns indicated by the counter-pattern, then the pattern is tested with a counter;
otherwise, it is tested without a counter.

¢ Ifno unique name has been found after the patterns have been exhausted and counter-
use="fallback”, then the patterns indicated by the counter-pattern are retried with a counter.

If all specified combinations of patterns and counters are exhausted, then the action specified by the
on-unavailable is taken.

Example

&L 5 Unique Mame("CN", counker-pattern="last", counter-use="fallback", on-unavailable="errot", Uppercase+Uppercase]+Attribute

The following is an example of the Editor pane when constructing the unique name argument:

Noun Tokens

347



Attribute name: | CN & &
Scope: | Subtres v
Start search: |Root of datastore  w
Pattern: * | "Uppercase{Substring{Attribute" Given Mame" ) )+Aktributel 3.
When to use counters: | fallback

IJse counter with which pattern: |first  »

Counter skark: | 1 Cé digits: | 1 Cé Pad counter with leading 0's

The following pattern was constructed to provide unique names:

= fr Uppercase{substringg Attributed"Given Mame")))
= 5- Substring{Attribute!"Given Mame"))
& & Attribute("Given Name")
& % attribute"surname")
= fr Uppercase{Substring(length="1", Attribute!"MI"))+3Substring))
= 5.- Substringilength="1", Atkributel M)
& fr Attributed"MI"
£ Substring()
& & Attributel"Given Name")
= § Uppercase{attribute!"Given Mame")+Aktributed" Surname"))
& & Attributed"Given Name'")
& & Attribubel"Surmame")

If this pattern does not generate a unique name, a digit is appended, incrementing up to the specified
number of digits. In this example, nine additional unique names would be generated by the
appended digit before an error occurs (patternl - pattern99).

348 Policies in Designer 3.0



Unmatched Source DN

Expands to the part of the source DN in the current operation that corresponds to the part of the DN
that was not matched by the most recent match of an If Source DN condition.

Fields

Convert

Select whether or not to convert the DN format used by the destination data store.

Remarks

If there are no matches, the entire DN is used.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see Section 8.12, “Matching - Subscriber Mirrored - LDAP Format,” on page 127. To view the
policy in XML, see predef match sub mirrored.xml (../samples/

predef match_sub_mirrored.xml).

The action of Finding Matching Object uses the Unmatched Source DN token to build the matching
information in LDAP format. It takes the unmatched portion of the source DN to make a match.

A ¢ 5- Matching - Subscriber Mirrored - LDAP format

Mo description available

Conditions

2% Condition Group 1

o 5- if source DM in subtree "[Enter base of source hierarchy]"

v 5.. set local wariablel"dest-base", "[Enter base of destination
—hierarchy]"

v 5,. find matching objectiscope="entry", dn{Unmatched Source DN
—{convert="true"}+","+Local Yariable"dest-base"1i)

o 5 Unmatched Source DM{convert="trug")
& 5 "_|"
& 7

Local Yariable!"dest-base™)

22 Editor

Convert bo destination DM Format:

Noun Tokens 349


../samples/predef_match_sub_mirrored.xml
../samples/predef_match_sub_mirrored.xml
../samples/predef_match_sub_mirrored.xml

XPath

Expands to the results of evaluating an XPath 1.0 expression.

Fields

Expression

XPath 1.0 expression to evaluate.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Example

= 5 wPath("* [@attr-name="0U" v alue[start-with{skringl, 1, o]

22 Editor

Path expression: * | #[@atty-name="0U" fvalue[start-with(stringl, ), )] i) @ B &

350 Policies in Designer 3.0



Verb Tokens

Verb tokens modify the concatenated results of other tokens that are subordinate to them.

This section contains detailed information about all verbs that are available through the Policy

Builder interface.

¢ “Base64 Decode” on page 352

*

*

*

“Base64 Encode” on page 353

“Convert Time” on page 354

“Escape Destination DN on page 356
“Escape Source DN” on page 357

“Join” on page 358
“Lowercase” on page 359
“Map” on page 360

“Parse DN” on page 362
“Replace All” on page 364
“Replace First” on page 365
“Split” on page 367
“Substring” on page 368
“Uppercase” on page 370
“XML Parse” on page 371
“XML Serialize” on page 372

Verb Tokens 351



Base64 Decode

Decodes the result of the enclosed tokens from Base64-encoded data to bytes, then converts the
bytes into a string by using the specified character set.

Fields

Character Set

Specify the character set that converts the decoded bytes to a string. It can be any character set
supported by Java. If the field is left blank, the character set defaults to the system encoding as
specified by the file.encoding System property. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Example

= 5 Baset4 Decodelcharset="UTF-8", Operation Aktkribuke"data"n
&y & Operation Attribute"data")

352 Policies in Designer 3.0



Base64 Encode

Converts the result of the enclosed tokens to bytes by using the specified character set, then Base64-
encodes the bytes.

Fields

Character Set

Specify the character set that converts the string to bytes. It can be any Java-supported
character set. If the filed is left blank, the character set defaults to the system encoding as
specified by the file.encoding System property. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Example

= 5 Basefd Encadelcharset="UTF-8", Operation Atkribuked"Surname"))
& 5 Cperation Akkributed"Surname'

Verb Tokens 353



Convert Time

Converts the date and time represented by the result of the enclosed tokens from the source format,
language, and time zone to the destination format, language, and time zone.

Fields

Source Format
Specify the source date/time format. Select a named time format or specify a custom format
pattern. Supports variable expansion. For more information, see Section 3.6, “Variable
Selector,” on page 35.
Source Language
Specify the source language (defaults to the current system language). Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Source Time Zone
Specify the source time zone (defaults to the current system time zone). Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Destination Format
Specify the destination date/time format. Select a named time format or specify a custom
format pattern. Supports variable expansion. For more information, see Section 3.6, “Variable
Selector,” on page 35.
Destination Language
Specify the destination language (defaults to the current system language). Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Destination Time Zone
Specify the destination time zone (defaults to the current system time zone). Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Offset

Specifies an offset to apply to the time in the selected noun. Specify an offset number, then
select the appropriate time unit from the dropdown list (seconds, minutes, hours, days, weeks,
months, years.)

NOTE: This field is only available if the Identity Manager server version is set to 3.6.

Remark

The Test icon displays the time format that is created by selecting the format, language, and time
zone.

Example

= 5 Corwert Time({dest-Format="IMEDILM.DATE", dest-lang="en-U5", dest-tz="UTC", offset="2", offset-unit="day",
o Operation Attribute("birthdate”)

354 Policies in Designer 3.0



£ Editor

Destination language: | English (United States){en-US]

* Required
Source Format: * | Language-specific FULL date Format [FULL.DATE] v| & &
Source language: | English (United States){en-LIs] v/
Source time zone: | Mountain Standard Time[AmericajDerver] | [1est]
Destination format; * | Language-specific MEDIUM date format [IMEDIUM.DATE]  » | 551 (x} &
K]
v | [Test]

Destination time zone: | Uriversal Time[UTC]

offset: (2| | v |

Verb Tokens 355



Escape Destination DN

Escapes the enclosed tokens according to the rules of the DN format of the destination data store.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see Section 8.16, “Placement - Publisher Flat,” on page 134. To view the policy in XML, see
predef place pub flat.xml (./samples/predef place pub_flat.xml).

The action of Set Operation Destination DN uses the Escape Destination DN token to build the
destination DN of the User object.

= ol Flacement - Publisher Flat

Mo description available

< Condition Group 1

% if class name equal "User"

5 set local wariabled"dest-base", "[Enter DM of destination container]")

5 set operation destination DM{dn({Local Yariable!"dest-base")+""
—+Escape Destination DR{URIque Mame(CN", scope="subtres",
— owercasel Substringilength="1", Operation Attribute"Given
—hlame"))+Operation Atkribute!"Surname")), Lowercase{Substring
—{length="2", Operation Attribute("Given Mame"Y+Operation
—Atkributed"Surname" i)

& & Local Yariable"dest-base")

2 %

5 Escape Destination DN{Unique Mame("Ch", scope="subtree", Lowercase(Substring(length="1", Operation Attribute("Given Mame"))+
i 5 Unique Mame("Ch", scope="subtree", LowercaseSubstring(length="1", Operation Attribute"Given Name"))+Operation Attribuk

The Escape Destination DN token takes the value in Unique Name and sets it to the format for the
destination DN.

356 Policies in Designer 3.0


../samples/predef_place_pub_flat.xml
../samples/predef_place_pub_flat.xml
../samples/predef_place_pub_flat.xml

Escape Source DN

Escapes the enclosed tokens according to the rules of the DN format of the source data store.

Example

5 5 Escape Source DM{AEErbuke"Surname"))
& & Attribubed"Surname")

Verb Tokens 357



Join

Joins the values of the nodes in the node set result of the enclosed tokens, separating the values by
the characters specified by delimiter. If the comma-separated values (CSV) are true, then CSV
quoting rules are applied to the values.

Fields

Delimiter

(Optional) Specify the string used to delimit the joined values. Supports variable expansion.
For more information, see Section 3.6, “Variable Selector,” on page 35.

Apply CSV Quoting Rules
Applies CSV quoting values.

Example

The example combines all of the members of the group into a CSV record.

= 5 Joinfcsy="true", delimiter=",", attribute"Member")
& & Attribotel"Member")

1 Apphy ©SY quoting rules

358 Policies in Designer 3.0



Lowercase

Converts the characters in the enclosed tokens to lowercase.

Example

This example sets the e-mail address to be name(@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname, and it is available for download at the Novell® Support Web site. For
more information, see “Downloading Identity Manager Policies” in Understanding Policies for
Identity Manager 3.6. To view the policy in XML, see 001-Command-
SetEmailByGivenNameAndSurnam.xml (../samples/001-Command-
SetEmailByGivenNameAndSurname.xml).

=] 5 Set email address: name@slartybartfast.com; name = {1 char of Given Mame + Surname) <= 8 chars

Mo description available

% Condition Group 1
% if class name equal "User"

And 5 if operation attribute 'Given Mame' available

And § if operation attribute 'Surname’ available

5 strip operation attributel"Inkernet Email Address")

5 set destination attribute valued"Internet Email Address", LowercaselSubstringflength="8", Substringilength="1",
—peration Attribuked"Firsthame"+Operation Atkribuke"LastMame™) )+ "@slarkybartfast com™)

5 Lowercase(Substringglength="g", Substring{length="1", Operation Atkribute]"FirstMame"1+Oper ation Atkribubed"LastMame"+"E
§ Substring{length="3", Substring{length="1", Operation Attribute"Firsthame"+Oper ation Attribuke!"Lasthame"))
= £ Substringflength="1", Operation Attribubed"Firsthame")
& & Operation Attribute{"FirstMame")
L 5 Operation Attributed"LastMame")
& & "@slartybartfast.com”

The Lowercase token sets all of the information in the action Set Destination attribute value to
lowercase.

Verb Tokens 359


../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml

Map

Maps the result of the enclosed tokens from the values specified by the source column to the
destination column in the specified mapping table.

Remarks

If this token is evaluated in a context where a node set result is expected and multiple rows are
matched by the value being mapped, a node set is returned that contains the values from the
destination column of each matching row. Otherwise, only the value from the first matching row is
returned.

The table attribute should be the slash form DN of the Resource object containing the mapping table
to be used. The DN might be relative to the including policy.

Fields

Mapping Table DN
Specify the slash form DN of a Resource object containing the mapping table. Supports
variable expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Set DN Relative to Policy
When it is enabled, it displays the mapping table DN relative to the policy. This is the default.

Source Column Name
Specify the name of the source column. Supports variable expansion. For more information,
see Section 3.6, “Variable Selector,” on page 35.

Destination Column Name
Specify the name of the destination column. Supports variable expansion. For more
information, see Section 3.6, “Variable Selector,” on page 35.

Default Value

Specifies a value to return if the value being mapped does not match any values in the Source
column.

NOTE: This field is only available if the Identity Manager server version is set to 3.6.

360 Policies in Designer 3.0



Example

2 Editor

Mapping Table DN | oo ALibrary\Departments Table

Q&

[]set DM relative to policy

Source column name: * ldapt

Q&

Destination column name; * | code

Q&

Default value: | 126

Verb Tokens 361



Parse DN

Converts the enclosed token’s DN to an alternate format.

Fields

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

+ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Number of RDN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5
+(-2)) +1=4,etc.

Source DN Format

Specifies the format used to parse the source DN.

Destination DN Format

Specify the format used to output the parsed DN.

Source DN Delimiter

Specify the custom source DN delimiter set if Source DN Format is set to custom.

Destination DN Delimiter

Specify the custom destination DN delimiter set if Destination DN Format is set to custom.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used; otherwise, only the
portion of the DN specified by start and length is used.

When specifying custom DN formats, the eight characters that make up the delimiter set are defined
as follows:
¢ Typed Name Boolean Flag: 0 means names are not typed, and 1 means names are typed

¢ Unicode No-Map Character Boolean Flag: 0 means don’t output or interpret unmappable
Unicode characters as escaped hex digit strings, such as \FEFF. The following Unicode
characters are not accepted by eDirectory™: Oxfeff, Oxfffe, Oxftfd, and Oxftft.

+ Relative RDN Delimiter
+ RDN Delimiter
* Name Divider

+* Name Value Delimiter

362 Policies in Designer 3.0



* Wildcard Character

¢ Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, the orientation of the name is
root right, otherwise the orientation is root left.

If there are more than eight characters in the delimiter set, the extra characters are considered as
characters that need to be escaped, but they have no other special meaning.

Example

The example uses the Parse DN token to build the value the Add Destination Attribute Value action.
The example is from the predefined rules that come with Identity Manager. For more information,
see Section 8.1, “Command Transformation - Create Departmental Container - Part 1 and Part 2,” on
page 108. To view the policy in XML, see

predef command create dept container2.xml (../samples/

predef command create dept container2.xml).

E " % Command Transformation - Create Departmental Container - Part 2

Mo description available

Conditions

% Condition Group 1

o 5r if local wariable 'does-target-exist' available

v 5r if local wariable 'does-target-exist' equal ™

v 5, add destination object{class name="Crganizational Unit", direct="
—true", dniLocal Yariable!"target-container" )

v 5, add destination attribute value!"ou”, direck="true", dniLocal
—ariablel"target-container")), Parse DN{"dest-dn", "daot", length="
—1", skart="-1", Local ¥ariable"target-container" i)

= 5 Parse DMN("dest-dn", "daot", length="1", start="-1", Local Yariable{"target-container"))
o 5 Local Yariabled"target-container™)

2 Editor

Stark: | -1

Length: | 1

Source DM Format: | destination DN W

Destination DM Format: | dot

II

The Parse DN token takes the information from the source DN and converts it to dot notation. The
information from the Parse DN is stored in the attribute value of OU.

Verb Tokens

363


../samples/predef_command_create_dept_container2.xml
../samples/predef_command_create_dept_container2.xml
../samples/predef_command_create_dept_container2.xml

Replace All

Replaces all occurrences of a regular expression in the enclosed tokens.

Fields

Regular Expression

Specify the regular expression that matches the substring to be replaced. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.

Replace With

Specify the replacement string. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Remarks

For details on creating regular expressions, see:

¢ Java ‘Class Pattern’ information (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html)

¢ Java ‘Class Matcher’ information (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed by using the appropriate embedded escapes.

Example

= 5 Replace all"(.)", "$1", Destination DN
& & Destination DME

£? Editor

Regular expression: * | ()

m 5

Replace with: | $1

364 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Replace First

Replaces the first occurrence of a regular expression in the enclosed tokens.

Fields

Regular Expression
Specify the regular expression that matches the substring to replace. Supports variable
expansion. For more information, see Section 3.6, “Variable Selector,” on page 35.
Replace With

Specify the replacement string. Supports variable expansion. For more information, see
Section 3.6, “Variable Selector,” on page 35.

Remarks

The matching instance is replaced by the string specified in the Replace with field.
For details on creating regular expressions, see:
¢ Java ‘Class Pattern’ information (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html)
¢ Java ‘Class Matcher’ information (java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/
java/util/regex/Matcher.html#replaceAll (java.lang.String))

The pattern options CASE INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed by using the appropriate embedded escapes.

Example

The example reformats the telephone number (nnn)-nnn-nnnn to nnn-nnn-nnnn. The rule is from the
predefined rules that come with Identity Manager. For more information, see Section 8.9, “Input or
Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn,” on
page 122. To view the policy in XML, see

predef transformation reformat telephonel.xml (../samples/

predef transformation_reformat_telephonel.xml).

The Replace First token is used in the Reformat Operation Attribute action.

=]V 5’ Input or Output Transformation - Reformat Telephone Mumber from
—{nnn) nnn-nnnn to nnn-nnn-nnnn

Mo description available

Condikions

% cCondition Group 1

Define new condition here

reformat operation attributed"phone”, Replace First("~didhdii)
—As* A dyd)-0d Ay A", "61-%2-43", Local Yarisble"ourrent-
—yalue"in

Verb Tokens 365


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
../samples/predef_transformation_reformat_telephone1.xml
../samples/predef_transformation_reformat_telephone1.xml
../samples/predef_transformation_reformat_telephone1.xml

= 5 Replace First(" (O dydydt s+ dd d-Od D dDg", "$1-4$2-43", Local Yariabled"current-valug"y)
N 5 Local Yariable"current-walue™)
2# Editor

Regular expression: * | ~U(Odd A s*FOddd)-0diddvd) g
Replace with: | $1-42-%3|

g

The regular expression of "\((\d\d\d)\)\s*(\d\d\d)-(\d\d\d\d)$ represents (nnn) nnn-nnnn and the

regular expression of $1-$2-$3 represents nnn. This rule transforms the format of the telephone
number from (nnn) nnn-nnnn to nnn-nnn-nnnn.

366 Policies in Designer 3.0



Split

Splits the result of the enclosed tokens into a node set consisting of text nodes based on the pattern
specified by delimiter. If comma-separated values (CSV) are true, then CSV quoting rules are
honored during the parsing of the string.

Fields

Delimiter

Regular expression that matches the delimiter characters. Supports variable expansion. For
more information, see Section 3.6, “Variable Selector,” on page 35.

Apply CSV Quoting Rules
Applies CSV quoting values.

Example

= 5 Split{csy="true", delimiter=",", "Does, John,Doe, John™)
#- 44 % "Does,John,Doe, John"

Z? Editor

A

Delimiter: * | .

Apply 5% quoting rules

Verb Tokens 367



Substring

Extracts a portion of the enclosed tokens.

Fields

Start
Specify the starting character index:
+ Index 0 is the first character.
+ Positive indexes are an offset from the start of the string.
¢ Index -1 is the last character.
+ Negative indexes are an offset from the last character toward the start of the string.

For example, if the start is specified as -2, then it starts reading at the first character from the
end. If -3 is specified, then it starts 2 characters from the end.

Length

Number of characters from the start to include in the substring. Negative numbers are
interpreted as (total # of characters + length) + 1. For example, -1 represents the entire length of
the original string. If -2 is specified, the length is the entire string -1. For a string with 5
characters, a length of -1 = (5 + (-1)) + 1 =5,-2=(5+(-2)) + 1 =4, etc.

Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname, and it is available for download at the Novell Support Web site. For
more information, see “Downloading Identity Manager Policies” in Understanding Policies for
Identity Manager 3.6. To view the policy in XML, see 001 -Command-
SetEmailByGivenNameAndSurname.xml (../samples/001-Command-
SetEmailByGivenNameAndSurname.xml).

SN st email address: name@slartybartfast.com; name = {1 char of Given Name + Surname) <= 8 chars

Mo description available

& Condition Group 1

v % if class name equal "User"

v & I operation attribute 'Given Name' available
& i operation attribute 'Surname’ available

& strip operation attribute("Internet Email Address")

o 5 set destination attribute valueInternet Email Address", Lowercase ubstring{length="8", Substring(length="1",
—Operation Atkribute("Firsthlame")i+Operation Atkributel"LastMame")+"@slartybartf ast, com™))

368 Policies in Designer 3.0


../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml

- 5 LowercaselSubstring(length="8", Substring(length="1", Operation Attribute"FirstName" ) +Operation Attribute"Lasthame"+"T
= fv Substringflength="3", Substring{length="1", Cperation Attribute Firsthame"))+Cperation Attributed"Lasthame"))
= Z Substringllength="1", Operation Attributel"FirstMame"}}
&L % Operation Attributed"Firsthame'")
&L 5 Operation AktribukelLastMame")
& & "@slartybartfast.com”

The Substring token is used twice in the action Set Destination Attribute Value. It takes the first
character of the First Name attribute and adds eight characters of the Last Name attribute to form
one substring.

Verb Tokens 369



Uppercase

Converts the characters in the enclosed tokens to uppercase.

Example

The example converts the first and last name attributes of the User object to uppercase. The policy
name is Policy: Convert First/Last Name to Uppercase and it is available for download at the Novell
Support Web site. For more information, see “Downloading Identity Manager Policies” in
Understanding Policies for Identity Manager 3.6. To view the policy in XML, see 002 -Command-
UppercaseNames . xml (../samples/002-Command-UppercaseNames.xml).

SN Convert First/Last name to uppercase

Mo description available

Conditions

+* % Condition Group 1
v fr if class name equal "User"
And
% Condition Group 2

v §r if operation attribute 'Given Mame' changing
v 5' if operation attribute "Surname’ changing

& reformat operation attributel"Given Name", Uppercase{Operation Attribute("Given Name")))

v §r reformat operation attributel"Surname", Uppercase{Operation Attribute("Surname"i)

g 5 Uppercase(Operation Attributel"Given Mame"))
& 5 Operation Attribute"Given Mame")

370 Policies in Designer 3.0


../samples/002-Command-UppercaseNames.xml
../samples/002-Command-UppercaseNames.xml
../samples/002-Command-UppercaseNames.xml
../samples/002-Command-UppercaseNames.xml

XML Parse

Parses the result of the enclosed tokens as XML and returns the resulting document node in a node

set. If the result of the enclosed tokens is not well-formed XML or cannot be parsed for any reason,
an empty node set is returned.

Example

= 5 #ML ParseiBasedcd Decodelcharset="UTF-5", Operation Attribute"data™i)n
= 5 Basefd Decode(charset="UTF-3", Operation Attributel"data"))
& % Operation Attributed"data")

Verb Tokens 371



XML Serialize

Serializes the node set result of the enclosed tokens as XML. Depending on the content of the node

set, the resulting string is either a well-formed XML document or a well-formed parsed general
entity.

Example

= & WML Serislize{xPath{"."))
& & wpath("")

372 Policies in Designer 3.0



Pre-ldentity Manager 3.5 Builders

Although you define most arguments by using the Argument Builder, there are several more builders
that are used by the Condition Editor and Action Editor in the Policy Builder. Each builder can
recursively call anyone of the builders in the following list:

¢ Section 16.1, “Action Builder,” on page 373

¢ Section 16.2, “Actions Builder,” on page 374

¢ Section 16.3, “Argument Builder,” on page 375

¢ Section 16.4, “Action Argument Component Builder,” on page 379

¢ Section 16.5, “Condition Builder,” on page 380

¢ Section 16.6, “Condition Argument Component Builder,” on page 381

¢ Section 16.7, “Match Attribute Builder,” on page 381

¢ Section 16.8, “Named String Builder,” on page 383

¢ Section 16.9, “Pattern String Builder,” on page 384

¢ Section 16.10, “Argument Value List Builder,” on page 386

¢ Section 16.11, “Namespace Editor,” on page 386

16.1 Action Builder

The Action Builder enables you to add, view, and delete the actions that make up a rule. Action can
also contain other actions.

16.1.1 Creating an Action

1 In the Policy Builder, create a new rule or edit an existing rule.

2 Double-click the Actions tab to launch the Action Builder.

=

Define new action below

Do | <Select an ackion s ~ @

3 Select the desired action from the drop-down list, then click OK.

16.1.2 Additional Options for the Action Builder

1 Right-click the action to see the additional options:

Pre-ldentity Manager 3.5 Builders 373



' Insert Action Before. .,

22 Edit... = Insert Action After. .,
e Cut Chrl+
Copy ChrlC
[ Paste Chrl+y
M Delets Delete

SZ| Preferences, ..

¢ New > Insert Action Before: Adds a new action before the current action.

¢ New > Insert Action After: Adds a new action after the current action.

+ Edit: Launches the Action Builder.

+ Move the selected item up: Moves the selected action up in the order of execution.

+ Move the selected item down: Moves the selected action down in the order of execution.
¢ Cut, Copy, Paste, or Delete an Action: Cuts, copies, pastes, or deletes the action.

+ Undo or Redo: Undoes or redoes the last action.

+ Preferences: Allows you to set default functionality in the Policy Builder.

+ Help: Select an action, then click the Help icon to see information specific to that action.

16.2 Actions Builder

The Actions Builder allows you to create an action inside of another action.To launch the Actions
Builder, select one of the following actions, then click the Edit the arguments icon E.

+ For Each (page 436)
¢ Implement Entitlement (page 439)

In the following example the add destination attribute value action is performed for each Group
entitlement that is being added in the current operation.

Figure 16-1 For Each Action

Do |for each v 3
Specify node sek: * | Added Entitlement"Group™)
Specify ackion: * | do-add-dest-attr-value

To define the action of the add destination attribute value, click the icon that launches the Actions
Builder. In the Actions Builder, you define the desired action. In the following example, the member
attribute is added to the destination object for each added Group entitlement.

374 Policies in Designer 3.0



Figure 16-2 Actions Builder

Do | add destination atkribute value v | 3
Specify attribute name: * | Member u@ li‘. =2
Specify class name: | Group u@ li‘. =
Select mode: |[add ko current operation -
Select object: |DMN A
Specifv DM * | Local Yariable("current-node")
Specify walue bype: | string "
Enter string: * | Destination DR

16.3 Argument Builder

The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within Rule Builder.

The Argument Builder consists of five separate sections:

+ Nouns: Contains a list of all of the available noun tokens. Select a noun token, then click Add
to add the noun token to the Expression pane. See “Pre-Identity Manager 3.5 Noun Tokens” on
page 473 for more information.

* Verbs: Contains a list of all of the available verb tokens. Select a verb token, then click Add to
add the verb token to the Expression pane. See “Pre-Identity Manager 3.5 Verb Tokens” on
page 499 for more information.

¢ Description: Contains a brief description of the noun or verb token. Click the help icon to
launch additional help.

¢ Expression: Contains the argument that is being built. Multiple noun and verb tokens can be
added to a single argument. Tokens can be arranged in different orders through the Expression
pane.

+ Editor: Provide the values for the nouns and the verbs in the Editor pane.

Pre-ldentity Manager 3.5 Builders 375



Figure 16-3 Pre-Identity Manager 3.5 Argument Builder

Create and edit arguments F
add or remove your components o the expression area ko construck your argument, Enter component values :’" =
under Editor,
5 Expression B3 (7) &5 Mouns
Text ~
Added Entitlerment
Associakion
Attribute
Class Mame
Destination Atkribuke b
¥erbs

Escape Destination OM
Escape Source DN
Lawer Case

Parse DN

Replace Al

Replace Firsk
Substring

Uppet Case

22 Editor * Required # Description )

¢ Section 16.3.1, “Launching the Argument Builder,” on page 376
¢ Section 16.3.2, “Argument Builder Example,” on page 377

16.3.1 Launching the Argument Builder

To launch the Argument Builder, select one of the following actions, then click the Edit the
Arguments icon 1.

+ Add Association (page 419)

¢ Add Destination Attribute Value (page 420)

¢ Add Destination Object (page 421)

¢ Add Source Attribute Value (page 422)

¢ Append XML Text (page 425)

¢ Clear Destination Attribute Value (page 427) (when the selected object is DN or Association)
¢ Clear Source Attribute Value (page 429) (when the selected object is DN or Association)

¢ Delete Destination Object (page 433) (when the selected object is DN or Association)

¢ Delete Source Object (page 434) (when the selected object is DN or Association)

376 Policies in Designer 3.0



+ Find Matching Object (page 435)

¢ For Each (page 436)

+ Move Destination Object (page 440)

+ Move Source Object (page 441)

+ Reformat Operation Attribute Value (page 442)
+ Remove Association (page 443)

+ Remove Destination Attribute Value (page 444)
¢ Remove Source Attribute Value (page 445)

¢ Rename Destination Object (page 446) (when the selected object is DN or Association and
Enter String)

¢ Rename Source Object (page 448) (when the selected object is DN or Association and Enter
String)

¢ Set Destination Attribute Value (page 452) (when the selected object is DN or Association and
Enter Value Type is not structured)

¢ Set Destination Password (page 453)

¢ Set Local Variable (page 454)

¢ Set Operation Association (page 455)
¢ Set Operation Class Name (page 456)
¢ Set Operation Destination DN (page 457)
¢ Set Operation Property (page 458)

¢ Set Operation Source DN (page 459)

¢ Set Operation Template DN (page 460)
+ Set Source Attribute Value (page 461)
¢ Set Source Password (page 462)

+ Set XML Attribute (page 465)

¢ Status (page 466)

+ Trace Message (page 469)

16.3.2 Argument Builder Example

The following example creates an argument for a user name from the first letter of the first name and
the entire last name:

1 Double-click Attribute from the list of nouns.

Pre-ldentity Manager 3.5 Builders 377



& Mouns EE

Text S
Added Entitlement 2
fssaciakion

Character

Class Mame

Destination Atkribute

Destination DM

Diestination Mame

Dacurnent

Entitlement >

2 Specify or select the Given Name attribute.

=2 Editor

* Required

.o .
Mame: Given Mame

@« e

3 Double-click Substring from the list of verbs.

- Yerbs i

Map

Parse DM
Replace All
Replace First

SEIit
Uppercase

AML Parse
#ML Serialize

[

[

4 Type 1 in the Length field.

2 Editor

Skark: El
Length:

5 Select the Given Name attribute, then click the Move Down icon.

X o BB

- Expression

“. Ottribute("Given Marme")

./ & Substringilength="1")

6 Double-click Attribute from the list of nouns.

7 Specify or browse to the Surname attribute.

o Expression

- ./ % sSubstringflength="1")
&L & Aktribute{"Given Mams")

% Atbributed"Surname")

378 Policies in Designer 3.0

@ ®



The argument takes the first character of the Given Name attribute and adds it to the Surname
attribute to build the desired value.

8 Click OK to save the argument.

16.4 Action Argument Component Builder

To launch the Action Argument Component Builder, select one of the following actions when the
Enter value type selection is structured, then click the Edit components icon F.

¢ Add Destination Attribute Value (page 420)

¢ Add Source Attribute Value (page 422)

+ Reformat Operation Attribute Value (page 442)

+ Remove Destination Attribute Value (page 444)

*

Remove Source Attribute Value (page 445)

*

Set Destination Attribute Value (page 452)
¢ Set Source Attribute Value (page 461)

Figure 16-4 Add Destination Attribute Value Action

Lo | add destination attribuke value b | @
Specify attribute name: * | Given Mame | @ C‘E &
Specify class name: | User | s
Select mode: |write directly to destination datastore w |
Select object: |Current object w |
— —
Specify walue type:q structured ) " |
e |
Enter components: * | Lser |
1 Click the Edit the components icon =] when the value type is set to structured.
2 Create the value of the action component.
You can type the value, or click the Edit the arguments =2 icon to create the value in the
Argument Builder.
Argument Components r
The argurent cormponents are struckured argument values, :“ =
Name ¥alues + H of % @
| user | | walue |

3 Click Finish.

Pre-ldentity Manager 3.5 Builders 379



16.5 Condition Builder

The Condition Builder enables you to add, view, and delete the conditions that make up a rule. A
condition contains one or more conditions and one or more condition groups. The condition groups
contain two different condition structures, which define the logic of condition groups. The two
condition structures are:

¢ OR Conditions, AND Groups

¢ AND Conditions, OR Groups

¢ Section 16.5.1, “Creating a Condition,” on page 380
¢ Section 16.5.2, “Additional Options for the Condition Builder,” on page 380

16.5.1 Creating a Condition

1 In the Policy Builder, create a new rule or edit and existing rule.

2 Double-click the Conditions tab to launch the Condition Builder.

Conditions

" % Condition Group 1

Define new condition below

Condition | Select a condition w|

3 Select the desired condition from the drop-down list, then click OK.

16.5.2 Additional Options for the Condition Builder

1 Right-click the condition to see the additional options:

|%+ Insert Condition Group After

Expand all Conditions
$.) Append Condition, ..

af” Cut Chrl+x
Copy Chrl+C
[ Paste Chrl+y
¥ Delete Delete
< Unda Chrl+Z
Preferences...

+ New > Insert Condition Before: Adds a condition before the current condition.

380 Policies in Designer 3.0



+ New > Insert Condition After: Adds a condition after the current condition.
¢ Edit: Launches the Condition Builder.
+ Move the selected item up: Moves the selected condition up in the order of execution.

+ Move the selected item down: Moves the selected condition down in the order of
execution.

¢ Cut, Copy, Paste, or Delete: Cuts, copies, pastes, or deletes the condition.

¢ Undo or Redo: Undoes or redoes the last action.

¢ Preferences: Allows you to set default functionary in the Policy Builder.

+ Help: Select a condition, then click the Help icon to see information specific to that

condition.

For additional information on the Condition Builder and the rules, see Section 3.4, “Creating a
Rule,” on page 28.

16.6 Condition Argument Component Builder

To launch the Condition Argument Component Builder, select one of the following conditions, then
select the structured selection for Mode in order to see the Launch ArgComponent Builder icon [E

+ If Attribute (page 391)
¢ [f Destination Attribute (page 395)
¢ If Association (page 390)

Figure 16-5 [f Attribute mode

Condition | destination attribute w | &
Mame * | Given Mame U@ CAE e
Operator * | equal b
Yalue &

1 Specify the name and value of the condition component.

@ Condition Argument Component Builder

Argument Components [
The condition argument components are name/value pairs., :’; =
Mame values = K| o I‘_E @

2 Click Finish.

16.7 Match Attribute Builder

The Match Attribute Builder enables you to select attributes and values used by the Find Matching
Object (page 435) action to determine if a matching object exists in a data store.

Pre-ldentity Manager 3.5 Builders 381



For example, if you wanted to match users based on a common name and a location:

Select the action of find matching object.

2 Select the scope of the search for the matching objects. Select from entry, subordinates, or
subtree.

3 Specify the DN of the starting point for the search.
4 Click the Edit match attributes icon = to launch the Match Attribute Builder.

Do |find matching object v @
Select scope: | subtree

Specify DN | "Mawel"

D m =

Specify match attributes:

5 Click the Browse attributes “ icon to launch the Schema Browser.

6 Click the Attributes tab, then browse to and select the desired attribute.

& ®@

attributes of: | <Al Classes=

<

[Anything] N
[Mothing]

accessCardhumber

Account Balance

AL

Aliased Ohject Mame
allowaliasTosncestar

Al Unlimited Credit
assistant

assistantPhone
associatedhlanne
attrEncryptionDefinition
attrEncryptionRequiresSecure
attributeCertificate

audio

Audit: & Encryplion Key
Audit:B Encryption Key
AodityZonkents
Audit:Current Encryplion Key
Audit:File Link

AoditsLink List

Audit:Path

Audit:Policy

Audit: Type

AnibhAritakive

[Jonly show changes

[ O, H Cancel ] [E]

7 Click OK.

If you want to add more than one attribute, click the Append new item icon ¥ to add another
line.

382 Policies in Designer 3.0



Match Attributes @ @B o @

| | gg& | Use walues From the current object “ |

| | @ CT &l | IJse values From the current object w |

8 Click Finish.

The Match Attribute Builder also allows you to specify another value, instead of using the value
from the current object. To use a different value, select Other Value instead of Use values from
current object. There are multiple value types to specify:

¢ counter

¢ dn

¢ int

¢ interval

* octet

+ state

¢ string

¢ structured

¢ teleNumber

* time
To use the another value:

1 Launch the Match Attribute Builder, then select Other Value.

Match Attributes I
The match attributes specify the attribubes that are to be used to find a match for the action, ﬁ =
Match Attributes + X 4 BA @
‘ @de ‘Other e v‘
Select Yalue Type: ‘ string W ‘
Specify String: ‘ |

2 Select the desired value type.
3 Specify the value, then click OK.

16.8 Named String Builder

To launch the Named String Builder, select one of the following actions, then click the Edit the
strings icon E,

+ Generate Event (page 437)

Pre-ldentity Manager 3.5 Builders 383



¢ Send Email (page 449)
¢ Send Email from Template (page 450)

1 Select the name of the string from the drop-down list.

2 Create the value for the string by clicking the Edit the arguments icon = to launch the
Argument Builder.

@ Named String Builder | ﬂ

Named String Builder |
String elements provide values For arguments, Y=
Name String Yalue + X | & BB 4 @
E v =
| subject || |
|mEssage V|| |

3 Click Finish.

For a Send Email action, the named strings correspond to the elements of the e-mail:

@ Named String Builder

MNamed String Builder
String slements pravids values for arguments, Y=
Name String ¥alue = K | of i) 4@
[E v
| subiect v/ | |
| message - | | |

A complete list of possible values is contained in the help file corresponding to the action that
launches the Named String Builder.

16.9 Pattern String Builder

You can launch the Pattern String Builder from the Argument Builder editor when the Unique Name
(page 495) token is selected. The Argument Builder editor pane shows a Pattern field where you can
click to launch the Pattern String Builder.

384 Policies in Designer 3.0



Figure 16-6 Unique Name Token in the Argument Builder

Create and edit arguments

Add or remove your components ko the expression area to construct wour argument., Enter compaonent values under Editor,

= Expression ® o E (7) & Nouns
i Unique Mame(™) Operation Attribute ~
Operation Properky )
Password
Removed Attribuke

Removed Entitlement
Source Akkribute
Source DM
Source Mame
Lnigue Mame

| £

./ Werbs

Escape Destination DM
Escape Source DN
Lower Case

Parse DM

Replace all

Replace First
Substring

Upper Case

2 Editor * Required # Description @

Attribute name: | | Q # generated unigue name,

(Pattern: *) | |

Counter skart: | 1 | digits: | 1 | Pad counter with leading 0's

1 Click the Edit patterns icon 2 to launch the Pattern Builder.

2 Specify the pattern or click the Edit the arguments icon =l to use the Argument Builder to
create the pattern.

@ Pattern Builder |._| m

Pattern Builder

Define a lisk of patterns

Pattern Yalues + K ‘:’f @ @
Pattern: | |

3 Click Finish.

Pre-ldentity Manager 3.5 Builders 385



16.10 Argument Value List Builder

To launch the Argument Value List Builder, select the following action, then click the Edit the
arguments icon 1.

¢ Set Default Attribute Value (page 451)

Figure 16-7 Set Default Attribute Value

Do | set defaulk attribute value | &
Specify attribute name: * | Company U@ C‘E Cé
Write back: |False w
Specify argument values: *

1 Select the type of the value: counter, dn, int, interval, octet, state, string, structured,
teleNumber, time.

2 Click the Edit the value lists icon E3.

2 Argument Value List Builder |:|@@

Argument Yalues [
y=

Argument values specify the values that are to be used for an attribute,

Type Argument ¥alues + X ‘73/’ @ @
|

structured
teleMumber
tirme:

3 Click the Edit the arguments icon E.
4 Create the value of the action component.

You can type the value, or click the Edit the arguments = icon to create the value in the
Argument Builder.

5 Click Finish.

16.11 Namespace Editor

The Policy Builder enables you to use multiple XML namespaces within your XML documents. To
define a namespace, specify the namespace prefix in the Name field, and the URI in the URI field.
Leave the Java Extension check box deselected.

You can also access Java classes through XPath by using XML namespaces. To create a namespace
for a Java class, specify the namespace prefix in the Name field, the class name in the URI field, and
select the Java Extension check box.

386 Policies in Designer 3.0



Figure 16-8 Namespace Editor

@ Names pace Editor

Edit Policy's Namespace Definitions

documents.

Paolicy Builder enables you to use multiple XML namespace definitions within your XML < >

LRI

+ - R ABRB O

Java Extension

O |

Finish l [ Cancel

16.11.1 Accessing Java Classes by Using Namespaces

Novell® provides several Identity Manager Java classes that can be called by using XPath
expressions from the Policy Builder. The following links open JavaDoc references for these Java

classes:

¢ com.novell.nds.dirxml.driver.XdsQueryProcessor (http://developer.novell.com/documentation/
dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html)

¢ com.novell.nds.dirxml.driver.XdsCommandProcessor (http://developer.novell.com/

documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/

XdsCommandProcessor.html)

¢ com.novell.nds.dirxml.driver. DNConverter (http://developer.novell.com/documentation/
dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html)

The Java Developer Kit (JDK*) also provides several useful classes, such as java.lang.String, and
java.lang.System. References for these classes are available with the JDK.

For additional information on using XPath and the Novell Java classes listed above, consult the
DirXML® Driver Developer Kit (http://developer.novell.com/documentation/dirxml/dirxmlbk/ref/

dirxmlfaq.html).

Pre-ldentity Manager 3.5 Builders 387


http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsCommandProcessor.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/ref/dirxmlfaq.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/ref/dirxmlfaq.html

388 Policies in Designer 3.0



Pre-ldentity Manager 3.5
Conditions

Conditions define when actions are performed. Conditions are always specified in either
Conjunctive Normal Form (CNF) (http://mathworld.wolfram.com/ConjunctiveNormalForm.html)
or Disjunctive Normal Form (DNF) (http://mathworld.wolfram.com/DisjunctiveNormalForm.html).
These are logical expression forms. The actions of the enclosing rule are only performed when the
logical expression represented in CNF or DNF evaluates to True or when no conditions are
specified.

This section contains detailed information about all conditions that are available through the pre-
Identity Manager 3.5 Policy Builder interface.

¢ “If Association” on page 390

* “If Attribute” on page 391

+ “If Class Name” on page 393

+ “If Destination Attribute” on page 395

¢ “If Destination DN on page 397

¢ “If Entitlement” on page 398

¢ “If Global Configuration Value” on page 400

¢ “If Local Variable” on page 402

¢ “If Named Password” on page 404

¢ “If Operation Attribute” on page 405

¢ “If Operation Property” on page 407

¢ “If Operation” on page 409

¢ “If Password” on page 411

¢ “If Source Attribute” on page 412

¢ “If Source DN” on page 414

¢ “If XPath Expression” on page 415

Pre-ldentity Manager 3.5 Conditions 389


http://mathworld.wolfram.com/ConjunctiveNormalForm.html
http://mathworld.wolfram.com/DisjunctiveNormalForm.html

If Association

Performs a test on the association value of the current operation or the current object. The type of
test performed depends on the operator specified by the operation attribute.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Associated There is an established association for the current object.

Not Association There is not an established association for the current object.

Available There is a non-empty association value specified by the current
operation.

Not available The association is not available for the current object.

Equal The association value specified by the current operation is exactly equal

to the content of the if association.

Not Equal The association value specified by the current operation is not equal to
the content of the if association.

Value
Contains the value defined for the select operator. The value is used by the condition.
+ Equal
+ Not Equal

390 Policies in Designer 3.0



If Attribute

Performs a test on attribute values of the current object in either the current operation or the source
data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the
test is satisfied if the condition is met in the source data store or in the operation. The test performed
depends on the specified operator.

Fields

Name

Specify the name of the attribute to test.

Operator
Select the condition test type.

Operator Returns True when...

Available There is a value available in either the current operation or the source
data store for the specified attribute.

Not Available Available would return False.

Equal There is a value available in either the current operation or the source
data store for the specified attribute, which equals the specified value
when compared by using the specified comparison mode.

Not Equal Equal would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal
+ Not Equal

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Pre-ldentity Manager 3.5 Conditions

391


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

Mode Description

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal

392 Policies in Designer 3.0



If Class Name

Performs a test on the object class name in the current operation.

Fields

Operator

Select the condition test type.

Operator Returns True when...

Available There is an object class name available in the current operation.

Not Available Available would return False.

Equal There is an object class name available in the current operation, and it
equals the specified value when compared by using the specified
comparison mode.

Not Equal Equal would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal
+ Not Equal

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Destination DN

Numeric

Binary

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.

Compares the binary information.

Pre-ldentity Manager 3.5 Conditions

393


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal

394 Policies in Designer 3.0



If Destination Attribute

Performs a test on attribute values of the current object in the destination data store. The test
performed depends on the specified operator.

Fields

Name

Specify the name of the attribute to test.

Operator

Select the condition test type.

Operator Returns True when...

Available There is a value available in the destination data store for the specified
attribute.

Not Available Available would return False.

Equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared by using the
specified comparison mode.

Not Equal Equal would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

+ Equal
+ Not Equal

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive
Case Insensitive

Regular Expression

Source DN

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Compares by using semantics appropriate to the DN format for the source
data store.

Pre-ldentity Manager 3.5 Conditions

395


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

Mode Description

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

Structured Compares the structured attribute according to the comparison rules for the

structured syntax of the attribute.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal

396 Policies in Designer 3.0



If Destination DN

Performs a test on the destination DN in the current operation. The test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Available There is a destination DN available.

Not Available Available would return False.

Equal There is a destination DN available, and it equals the specified value

when compared by using semantics appropriate to the DN format of the
destination data store.

Not Equal Equal would return False.

In Container There is a destination DN available, and it represents an object in the
container, specified by value, when compared by using semantics
appropriate to the DN format of the destination data store.

Not in Container In Container would return False.

In Subtree There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared by using semantics
appropriate to the DN format of the destination data store.

Not in Subtree In Subtree would return False.
Value
Contains the value defined for the select operator. The value is used by the condition.
¢ Equal
+ Not Equal

+ In Container
+ Not in Container
+ In Subtree

+ Not in Subtree

Pre-ldentity Manager 3.5 Conditions 397



If Entitlement

Performs a test on entitlements of the current object, in either the current operation or the Identity
Vault. The test performed depends on the specified operator.

Fields

Name

Specify the name of the entitlement to test for the selected condition.

Operator
Select the condition test type.

Operator Returns True when...

Available The named entitlement is available in either the current operation or the
Identity Vault.

Not available Available would return False.

Equal There is a value available for the specified attribute in the destination data

store that equals the specified value when compared by using the
specified comparison mode.

Not Equal Equal would return False.

Changing The current operation contains a change (modify attribute or add attribute)
of the named entitlement.

Not Changing Changing would return False.

Changing From The current operation contains a change that removes a value (remove
value) of the named entitlement, which has a value that equals the
specified value, when compared by using the specified comparison mode.

Not Changing From Changing From would return False.

Changing To The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement. It has a value that equals the
specified value, when compared by using the specified comparison mode.

Not Changing To Changing To would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal

+ Not Equal

+ Changing To

¢ Changing From

+ Not Changing To

¢ Not Changing From

398 Policies in Designer 3.0



Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
+ Equal
+ Not Equal
¢ Changing To
¢ Changing From
+ Not Changing To
¢ Not Changing From

Pre-ldentity Manager 3.5 Conditions 399


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Global Configuration Value

Performs a test on a global configuration value. The test performed depends on the specified
operator.

Remark

For more information on using variables with policies, see “Understanding Policy Components” in
Understanding Policies for Identity Manager 3.6.

Fields

Name

Specify the name of the global value to test for the selected condition.

Operator
Select the condition test type.

Operator Returns True when...

Available There is a global configuration value with the specified name.

Not Available Available would return False.

Equal There is a global configuration value with the specified name, and its

value equals the specified value when compared by using the specified
comparison mode.

Not Equal Equal would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal
¢ Not Equal

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

Case Insensitive Character-by-character case insensitive comparison.

400 Policies in Designer 3.0



Mode Description

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal

Pre-ldentity Manager 3.5 Conditions 401


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Local Variable

Performs a test on a local variable. The test performed depends on the specified operator.

Remark

For more information on using variables with policies, see “Understanding Policy Components”in
Understanding Policies for Identity Manager 3.6.

Fields

Name

Specify the name of the local variable to test for the selected condition.

Operator
Select the condition test type.

Operator Returns True when...

Available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.

Not Available Available would return False.

Equal There is a local variable with the specified name, and its value equals the
specified value when compared by using the specified comparison mode.

Not Equal Equal would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal
+ Not Equal

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/apil/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

402 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

Mode Description

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal

Pre-ldentity Manager 3.5 Conditions 403



If Named Password

Performs a test on a named password from the driver in the current operation with the specified
name. The test performed depends on the selected operator.

Fields

Name
Specify the name of the named password to test for the selected condition.

Operator
Select the condition test type.

Operator Returns True when...
Available There is a password with the specified name available.
Not Available Available would return False.

404 Policies in Designer 3.0



If Operation Attribute

Performs a test on attribute values in the current operation. The test performed depends on the

specified operator.

Fields

Name

Specify the name of the attribute to test.

Operator

Select the condition test type.

Operator Returns True when...

Operator Returns True when...

Available There is a value available in the current operation other than a remove
value for the specified attribute.

Not Available Available would return False.

Equal There is a value available in the current operation other than a remove
value for the specified attribute. It equals the specified value when
compared by using the specified comparison mode.

Not Equal Equal would return False.

Changing The current operation contains a change other than a remove value for
the specified attribute.

Not Changing Changing would return False.

Changing From

Not Changing From

The current operation contains a change that removes a value other than
a remove value of the specified attribute. It equals the specified value
when compared by using the specified comparison mode.

Changing From would return False.

Changing To The current operation contains a change that adds a value other than a
remove value to the specified attribute. It equals the specified value when
compared by using the specified comparison mode.

Not Changing To Changing To would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal
+ Not Equal
¢ Changing To

¢ Changing From

Pre-ldentity Manager 3.5 Conditions

405



¢ Not Changing To
¢ Not Changing From

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

Structured Compares the structured attribute according to the comparison rules for the

structured syntax of the attribute.

The operators that contain the comparison mode parameter are:
¢ Equal
¢ Not Equal
+ Changing To
¢ Changing From
+ Not Changing To
¢ Not Changing From

406 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Operation Property

Performs a test on an operation property on the current operation. An operation property is a named
value that is stored as an attribute on an <operation-data> element within an operation. It is
typically used to supply additional context that might be needed by the policy that handles the
results of an operation. The test performed depends on the selected operator.

Fields

Name

Specify the name of the operation property to test for the selected condition.

Operator

Select the condition test type.

Operator Returns True when...

Available There is an operation property with the specified name on the current
operation.

Not Available Available would return False.

Equal There is a an operation property with the specified name on the current

operation, and its value equals the provided content when compared by
using the specified comparison mode.

Not Equal Equal would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal
+ Not Equal

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Pre-ldentity Manager 3.5 Conditions

407


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

Mode Description

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal

408 Policies in Designer 3.0



If Operation

Performs a test on the name of the current operation. The type of test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...
Equal The name of the current operation is equal to the content of the condition
when compared by using the specified comparison mode.
Not Equal Equal would return False.
Value

Contains the value defined for the select operator. The value is used by the condition. The

operators that contain the value field are:

*

*

Equal
Not Equal

The values are the operations that the Metadirectory engine looks for:

*

*

*

add

add-association

check-object-password

check-password
delete
get-named-password
init-params
instance

modify
modify-association
modify-password
move

password

query
query-schema
remove-association
rename

schema-def

Pre-ldentity Manager 3.5 Conditions

409



¢ status
¢ sync

This list is not exclusive. Custom operations can be implemented by drivers and administrators.

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

Destination DN Compares by using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal

410 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Password

Performs a test on a password in the current operation. The test performed depends on the specified
operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...
Available There is a password available in the current operation.
Not Available Available would return False.

Pre-ldentity Manager 3.5 Conditions 411



If Source Attribute

Performs a test on attribute values of the current object in the source data store. The test performed
depends on the specified operator.

Fields

Name

Specify the name of the source attribute to test for the selected condition.

Operator
Select the condition test type.

Operator Returns True when...

Available There is a value available in the source data store for the specified
attribute.

Not Available Available would return False.

Equal There is a value available in the source data store for the specified

attribute. It equals the specified value when compared by using the
specified comparison mode.

Not Equal Equal would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

+ Equal
+ Not Equal

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.
Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed by using the appropriate embedded escapes.

Source DN Compares by using semantics appropriate to the DN format for the source
data store.

412 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

Mode

Description

Destination DN

Numeric
Binary

Structured

Compares by using semantics appropriate to the DN format for the destination
data store.

Compares numerically.
Compares the binary information.

Compares the structured attribute according to the comparison rules for the
structured syntax of the attribute.

The operators that contain the comparison mode parameter are:

¢ Equal

+ Not Equal

Pre-ldentity Manager 3.5 Conditions

413



If Source DN

Performs a test on the source DN in the current operation. The test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Available There is a source DN available.

Not Available Available would return False.

Equal There is a source DN available, and it equals the content of the specified

value in-container.
Not Equal Equal would return False.

In Container There is a source DN available, and it represents an object in the
container specified by the content of If Source DN, when compared by
using semantics appropriate to the DN format of the source data store.

Not In Container In Container would return False.

In Subtree There is a source DN available, and it represents an object in the subtree
identified by the specified value.

Not In subtree In Subtree would return False.

Value

Contains the value defined for the select operator. The value is used by the condition. The
operators that contain the value field are:

¢ Equal

+ Not Equal

+ In Container

+ Not in Container
¢ In Subtree

+ Not in Subtree

414 Policies in Designer 3.0



If XPath Expression

Performs a test on the results of evaluating an XPath 1.0 expression.

Fields

Operator
Select the condition test type.

Operator Returns True when...
True The XPath expression evaluates to True.
Not True True would return False.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in

Understanding Policies for Identity Manager 3.6.

Pre-ldentity Manager 3.5 Conditions

415



416 Policies in Designer 3.0



Pre-ldentity Manager 3.5 Actions

Actions are performed when conditions of the enclosing rule are met. Some actions have a Mode
field. The mode is not honored at run time if the context in which the policy is running is
incompatible with the selected mode.

This section contains detailed information about all actions that are available through using the pre-
Identity Manager Policy Builder interface.

*

*

*

*

“Add Association” on page 419

“Add Destination Attribute Value” on page 420
“Add Destination Object” on page 421

“Add Source Attribute Value” on page 422
“Add Source Object” on page 423

“Append XML Element” on page 424

“Append XML Text” on page 425

“Break” on page 426

“Clear Destination Attribute Value” on page 427
“Clear Operation Property” on page 428

“Clear Source Attribute Value” on page 429
“Clear SSO Credential” on page 430

“Clone By XPath Expression” on page 431
“Clone Operation Attribute” on page 432
“Delete Destination Object” on page 433
“Delete Source Object” on page 434

“Find Matching Object” on page 435

“For Each” on page 436

“Generate Event” on page 437

“Implement Entitlement” on page 439

“Move Destination Object” on page 440

“Move Source Object” on page 441

“Reformat Operation Attribute Value” on page 442
“Remove Association” on page 443

“Remove Destination Attribute Value” on page 444
“Remove Source Attribute Value” on page 445
“Rename Destination Object” on page 446
“Rename Operation Attribute” on page 447
“Rename Source Object” on page 448

“Send Email” on page 449

Pre-ldentity Manager 3.5 Actions 417



¢ “Send Email from Template” on page 450

¢ “Set Default Attribute Value” on page 451

¢ “Set Destination Attribute Value” on page 452
¢ “Set Destination Password” on page 453

+ “Set Local Variable” on page 454

+ “Set Operation Association” on page 455

+ “Set Operation Class Name” on page 456

¢ “Set Operation Destination DN on page 457
¢ “Set Operation Property” on page 458

¢ “Set Operation Source DN on page 459

+ “Set Operation Template DN on page 460

+ “Set Source Attribute Value” on page 461

+ “Set Source Password” on page 462

¢ “Set SSO Credential” on page 463

* “Set SSO Passphrase” on page 464

¢ “Set XML Attribute” on page 465

+ “Status” on page 466

* “Strip Operation Attribute” on page 467

+ “Strip XPath” on page 468

* “Trace Message” on page 469

¢ “Veto” on page 470

* “Veto If Operation Attribute Not Available” on page 471

418 Policies in Designer 3.0



Add Association

Sends an add association command with the specified association to the Identity Vault.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the target object or leave the field blank to use the current object.

Association

Specify the value of the association to be added.

Pre-ldentity Manager 3.5 Actions 419



Add Destination Attribute Value

Adds a value to an attribute on an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Specify the DN, association, or current object as the target object.

Value Type

Select the syntax of the attribute value to be added. The options are string, counter, dn, int,
interval, octet, state, structured, teleNumber, or time.

Value

Specify the attribute value to be added.

420 Policies in Designer 3.0



Add Destination Object

Creates an object of the specified type in the destination data store, with the name and location
specified in the Enter DN field. Any attribute values to be added as part of the object creation must
be done in subsequent Add Destination Attribute Value actions, using the same DN.

Fields

Class Name

Specify the class name of the object to be created.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the object to be created.

Remarks

Any attribute values to be added as part of the object creation must be done in subsequent Add
Destination Attribute Value actions, using the same DN.

Pre-ldentity Manager 3.5 Actions

421



Add Source Attribute Value

Adds the specified attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object.

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Specify the DN, association, or the current object as the target object.

Value Type

Select the syntax of the attribute value to be added. The options are string, counter, dn, int,
interval, octet, state, structured, teleNumber, or time.

Value
Specify the attribute value to be added.

422 Policies in Designer 3.0



Add Source Object

Creates an object of the specified type in the source data store, with the name and location provided
in the DN field. Any attribute values to be added as part of the object creation must be done in
subsequent Add Source Attribute Value actions, using the same DN.

Fields

Class Name

Specify the class name of the object to be added.
DN

Specify the DN of the object to be added.

Pre-ldentity Manager 3.5 Actions 423



Append XML Element

Appends a custom element, with the name specified in the Name field, to the set of elements
selected by the XPath expression.

Fields

Name

Specify the tag name of the XML element. This name can contain a namespace prefix if the
prefix has been previously defined in this policy.

XPath Expression

Specify an XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

424 Policies in Designer 3.0



Append XML Text

Appends the specified text to the set of elements selected by the XPath expression.

Fields

XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.

String
Specify the text to be appended.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Pre-ldentity Manager 3.5 Actions 425



Break

Ends processing of the current operation by the current policy.

Fields

There are no fields for the Break action.

426 Policies in Designer 3.0



Clear Destination Attribute Value

Removes all values for the named attribute from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Select the DN, association, or the current object as the target object.

Pre-ldentity Manager 3.5 Actions 427



Clear Operation Property
Clears any operation property with the provided name from the current operation. The operation

property is the XML attribute attached to an <operation-data> element by a policy. An XML
attribute is a name/value pair associated with an element in the XDS document.

Fields

Property Name

Specify the name of the operation property to clear.

428 Policies in Designer 3.0



Clear Source Attribute Value

Removes all values of an attribute from an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. This value might be required for schema map purposes if the
object is other than current object.

Object
Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Select the DN, association, or current object as the target object.

Pre-ldentity Manager 3.5 Actions

429



Clear SSO Credential

Clears the Single Sign On credential so objects can be deprovisioned. Additional information about
the credential to be cleared can be provided in the Enter login parameter strings field. The number
of the strings and the names used are dependent on the credential repository and application for

which the credential is targeted. For more information, see Novell Credential Provisioning Policies

for Identity Manager 3.6.

Fields

Credential Repository Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object.

Login Parameter Strings

Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.

430 Policies in Designer 3.0



Clone By XPath Expression

Appends deep copies of the nodes specified by the source field to the set of elements specified by
the destination field.

Fields

Source XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the nodes to be copied.

Destination XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the elements to which the
copied nodes are to be appended.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Pre-ldentity Manager 3.5 Actions

431



Clone Operation Attribute

Copies all occurrences of an attribute within the current operation to a different attribute within the
current operation.

Fields

Source Name

Specify the name of the attribute to be copied from.

Destination Name

Specify the name of the attribute to be copied to.

432 Policies in Designer 3.0



Delete Destination Object

Deletes an object in the destination data store.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object type to delete in the destination data store. This object can be the current
object, or can be specified by a DN or an association.

DN

Select the DN, association, or current object as the target object.

Pre-ldentity Manager 3.5 Actions 433



Delete Source Object

Deletes an object in the source data store.

Fields

Object

Select the target object type to delete in the source data store. This object can be the current
object, or can be specified by a DN or an association.

DN

Select the DN, association, or current object as the target object.

434 Policies in Designer 3.0



Find Matching Object

Finds a match for the current object in the destination data store.

Fields

Scope

Select the scope of the search. The scope might be an entry, a subordinate, or a subtree.

DN
Specify the DN that is the base of the search.

Match Attributes

Specify the attribute values to search for.

Remarks

Find Matching Object is only valid when the current operation is an add.

The DN argument is required when the scope is “entry,” and is optional otherwise. At least one
match attribute is required when the scope is “subtree” or “subordinates.”

The results are undefined if the scope is “entry” and there are match attributes specified. If the
destination data store is the connected application, then an association is added to the current
operation for each successful match that is returned. No query is performed if the current operation
already has a non-empty association, thus allowing multiple find matching object actions to be
strung together in the same rule.

If the destination data store is the Identity Vault, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of the
current operation is set to the source DN of the matching object. If only a single result is returned
and it is already associated, then the destination DN of the current operation is set to the single
character &#xFFFC;. If multiple results are returned, then the destination DN of the current
operation is set to the single character &#xFFFD;,.

Pre-ldentity Manager 3.5 Actions

435



For Each

Repeats a set of actions for each node in a node set.

Fields

Node Set
Specify the node set.

Action

Specify the actions to perform on each node in the node set.

Remarks
The current node is a different value for each iteration of the actions, if a local variable is used.

If the current node in the node set is an entitlement element, then the actions are marked as if they
are also enclosed in an Implement Entitlement action. If the current node is a query element returned
by a query, then that token is used to automatically retrieve and process the next batch of query
results.

436 Policies in Designer 3.0



Generate Event

Sends a user-defined event to Novell Audit or Sentinel™.

Fields

ID

ID of the event. The provided value must result in an integer in the range of 1000-1999 when
parsed by using the parselnt method of java.lang.Integer.

Level

Level of the event.

Level

Description

log-emergency

Events that cause the Metadirectory engine or driver to shut down.

log-alert Events that require immediate attention.

log-critical Events that can cause parts of the Metadirectory engine or driver to
malfunction.

log-error Events describing errors that can be handled by the Metadirectory
engine or driver.

log-warning Negative events not representing a problem.

log-notice Events (positive or negative) that an administrator can use to understand
or improve use and operation.

log-info Positive events of any importance.

log-debug Events of relevance for support or engineers to debug the operation of
the Metadirectory engine or driver.

Strings

Specify user-defined string, integer, and binary values to include with the event. These values
are provided by using the Named String Builder.

Tag

Description

target

target-type

subTarget

text1

The object being acted upon.

Integer specifying a predefined format for the target. Predefined values
for target-type are currently:

+ 0=None

+ 1 = Slash Notation

+ 2 = Dot Notation

+ 3 =LDAP Notation

The subcomponent of the target being acted upon.

Text entered here is stored in the text1 event field.

Pre-ldentity Manager 3.5 Actions

437



Tag Description

text2 Text entered here is stored in the text2 event field.

text3 Text entered here is stored in the text3 event field.

value Any number entered here is stored in the value event field.

value3 Any number entered here is stored in the value3 event field.

data Data entered here is stored in the blob event field.
Remarks

The Novell Audit or Sentinel event structure contains a target, a subTarget, three strings (text1,
text2, text3), two integers (value, value3), and a generic field (data). The text fields are limited to
256 bytes, and the data field can contain up to 3 KB of information, unless a larger data field is
enabled in your environment.

438 Policies in Designer 3.0



Implement Entitlement

Designates actions that implement an entitlement so that the status of those entitlements can be
reported to the agent that granted or revoked the entitlement.

Fields

Node Set
Node set containing the entitlement being implemented by the specified actions.

Action

Actions that implement the specified entitlements.

Pre-ldentity Manager 3.5 Actions 439



Move Destination Object

Moves an object into the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container to Move to

Select the container to receive the object. This container is specified by a DN or an association.

DN or Association

Specify whether the DN or association of the container is used.

440 Policies in Designer 3.0



Move Source Object

Moves an object in the source data store.

Fields

Object to Move

Select the object to be moved. This object can be the current object, or it can be specified by a
DN or an association.

Select Container

Select the container to receive the object. This container is specified by a DN or an association.

Pre-ldentity Manager 3.5 Actions 441



Reformat Operation Attribute Value

Reformats all values of an attribute within the current operation by using a pattern.

Fields

Name

Specify the name of the attribute.

Value Type

Specify the syntax of the new attribute value.

Value

Specify a value to use as a pattern for the new format of the attribute values. If the original
value is needed to constructed the new value, it must be obtained by referencing the local
variable current-value.

442 Policies in Designer 3.0



Remove Association

Sends a remove association command to the Identity Vault.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association

Specify the value of the association to be removed.

Pre-ldentity Manager 3.5 Actions 443



Remove Destination Attribute Value

Removes an attribute value from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object.

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Select Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Specify the syntax of the new attribute value.

String

Specify the value of the new attribute.

444 Policies in Designer 3.0



Remove Source Attribute Value

Removes the specified value from the named attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type
Specify the syntax of the attribute value to be removed.

String

Specify the attribute value to be removed.

Pre-ldentity Manager 3.5 Actions 445



Rename Destination Object

Renames an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

String

Specify the new name of the object.

446 Policies in Designer 3.0



Rename Operation Attribute

Renames all occurrences of an attribute within the current operation.

Fields

Source Name

Specify the original attribute name.

Destination Name

Specify the new attribute name.

Pre-ldentity Manager 3.5 Actions 447



Rename Source Object

Renames an object in the source data store.

Fields

Select Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

String
Specify the new name of the object.

448 Policies in Designer 3.0



Send Email

Sends an e-mail notification.

Fields

ID

(Optional) Specify the User ID in the SMTP system sending the message.

Server

Specify the SMTP server name.

Password

(Optional) Specify the SMTP server account password.

IMPORTANT: You can store the SMTP server account password as a Named Password on the
driver object. This allows the password to be encrypted; otherwise, you enter the password and
it is stored in clear text. For more information on Named Passwords, see Using Named
Password in the Novell Identity Manager Administration Guide (http://www.novell.com/
documentation/idm35/index.html).

Message Type

Select the e-mail message type.

Strings

Specify the values containing the various e-mail addresses, subject, and message. The
following table lists valid named string arguments:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed. Can contain a comma-separated list of recipients.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

from Specifies the address to be used as the originating e-mail address.

reply-to Specifies the address to be used as the e-mail message reply address.

subject Specifies the e-mail subject.

message Specifies the content of the e-mail message.

encoding Specifies the character encoding to use for the e-mail message.

Pre-ldentity Manager 3.5 Actions

449


http://www.novell.com/documentation/idm35/index.html

Send Email from Template

Generates an e-mail notification by using a template.

Fields

Notification DN
Specify the slash form DN of the SMTP notification configuration object.

Template DN
Specify the slash form DN of the e-mail template object.

Password

(Optional) Specify the SMTP server account password.

IMPORTANT: You can store the SMTP server account password as a Named Password on the
driver object. This allows the password to be encrypted; otherwise, you enter the password and
it is stored in clear text. For more information on Named Passwords, see Using Named
Passwords in the Novell Identity Manager Administration Guide (http://www.novell.com/
documentation/idm35/index.html).

Strings

Specify additional fields for the e-mail message. The following table contains reserved field
names, which specify the various e-mail addresses:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed. Can contain a comma-separated list of recipients.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

reply-to Specifies the address to be used as the e-mail message reply address.

encoding Specifies the character encoding to use for the e-mail message.

Each template can also define fields that can be replaced in the subject and body of the e-mail
message.

450 Policies in Designer 3.0


http://www.novell.com/documentation/idm35/index.html

Set Default Attribute Value

Adds default values to the current operation (and optionally to the current object in the source data
store) if no values for that attribute already exist. It is only valid when the current operation is Add.

Fields

Attribute Name
Specify the name of the default attribute.

Write Back

Select whether or not to also write back the default values to the source data store.

Values

Specify the default values of the attribute.

Pre-ldentity Manager 3.5 Actions 451



Set Destination Attribute Value

Adds a value to an attribute on an object in the destination data store, and removes all other values
for that attribute.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object in the destination data store. Leave the
field blank to use the class name from the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value to set.

String

Specify the attribute values to set.

452 Policies in Designer 3.0



Set Destination Password

Sets the password for an object in the destination data store.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

String
Specify the password to be set.

Pre-ldentity Manager 3.5 Actions 453



Set Local Variable

Sets a local variable with the given name to the string value specified, the XPath 1.0 Node Set
specified, or the Java* Object specified.

Fields

Variable Name

Specify the name of the new local variable.

Variable Type

Select the type of local variable. This can be a string, an XPath 1.0 node set, or a Java object.

String
Specify the value of the variable, in the format required by the Variable Type field.

454 Policies in Designer 3.0



Set Operation Association

Sets the association value for the current operation.

Fields

Association

Specify the new association value.

Pre-ldentity Manager 3.5 Actions 455



Set Operation Class Name

Sets the object class name for the current operation.

Fields

String

Specify the new class name.

456 Policies in Designer 3.0



Set Operation Destination DN

Sets the destination DN for the current operation.

Fields

DN
Specify the new destination DN.

Pre-ldentity Manager 3.5 Actions 457



Set Operation Property

Sets an operation property. An operation property is a named value that is stored within an
operation. It is typically used to supply additional context that might be needed by the policy that
handles the results of an operation.

Fields

Property Name
Specify the name of the operation property.

String
Specify the name of the string.

458 Policies in Designer 3.0



Set Operation Source DN

Sets the source DN for the current operation.

Fields

DN
Specify the new source DN.

Pre-ldentity Manager 3.5 Actions 459



Set Operation Template DN

Sets the template DN for the current operation to the specified value. This action is only valid when
the current operation is Add.

Fields

DN
Specify the template DN.

460 Policies in Designer 3.0



Set Source Attribute Value

Adds a value to an attribute on an object in the source data store, and removes all other values for
that attribute.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object in the source data store. Leave the field
blank to use the class name from the current object.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value.

Value
Specify the attribute value to be set.

Pre-ldentity Manager 3.5 Actions 461



Set Source Password

Sets the password for an object in the source data store.

Fields

String
Specify the password to be set.

462 Policies in Designer 3.0



Set SSO Credential

Sets the SSO credential when a user object is created or when a password is modified. This action is
part of the Credential Provisioning policies. For more information, see Novell Credential
Provisioning Policies for Identity Manager 3.6.

Fields

Credential Repository Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Application Credential ID

Specify the application credential that is stored in the application object.

Login Parameter Strings

Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.

Pre-ldentity Manager 3.5 Actions 463



Set SSO Passphrase

Sets the Novell SecureLogin passphrase and answer when a User object is provisioned. This action
is part of the Credential Provisioning policies. For more information, see Novell Credential
Provisioning Policies for Identity Manager 3.6.

Fields

Credential Repository Object DN
Specify the DN of the repository object.

Target User DN
Specify the DN of the target users.

Question Strings

Specify the SecureLogin passphrase question.

Answer String

Specify the SecureLogin passphrase answer.

464 Policies in Designer 3.0



Set XML Attribute

Sets an XML attribute on a set of elements selected by an XPath expression.

Fields

Name

Specify the name of the XML attribute. This name can contain a namespace prefix if the prefix
has been previously defined in this policy.

XPath Expression

XPath 1.0 expression that returns a node set containing the elements on which the XML
attribute should be set.

String
Specify the value of the XML attribute.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

Pre-ldentity Manager 3.5 Actions 465



Status

Generates a status notification.

Fields

Level

Specify the status level of the notification. The levels are error, fatal, retry, success, and
warning.

Message

Provide the status message by using the Argument Builder.

Remarks

If level is retry, then the policy immediately stops processing the input document and schedules a
retry of the event currently being processed.

If the level is fatal, the policy immediately stops processing the input document and initiates a
shutdown of the driver.

If a the current operation has an event-id, that event-id is used for the status notification; otherwise,
there is no event-id reported.

466 Policies in Designer 3.0



Strip Operation Attribute

Strips all occurrences of an attribute from the current operation.

Fields

Name

Specify the name of the attribute to be stripped.

Pre-ldentity Manager 3.5 Actions 467



Strip XPath

Strips nodes selected by an XPath 1.0 expression.

Fields

XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the nodes to be stripped.

Remarks

For more information on by using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

468 Policies in Designer 3.0



Trace Message

Sends a message to DSTRACE.

Fields

Level

Specify the trace level of the message. The default level is 0. The message only appears if the
specified trace level is less than or equal to the trace level configured in the driver.

For information on how to set the trace level on the driver, see “Viewing Identity Manager
Processes” in the Identity Manager 3.6 Common Driver Administration Guide.

Color

Select the color of the trace message.

String

Specify the value of the trace message.

Pre-ldentity Manager 3.5 Actions 469



Veto

Vetoes the current operation.

Fields

There are no fields.

470 Policies in Designer 3.0



Veto If Operation Attribute Not Available

Conditionally cancels the current operation and ends processing of the current policy, based on the
availability of an attribute in the current operation.

Fields

Name

Specify the name of the attribute.

Pre-ldentity Manager 3.5 Actions 471



472 Policies in Designer 3.0



Pre-ldentity Manager 3.5 Noun
Tokens

Noun tokens expand to values that are derived from the current operation, the source or destination
data stores, or some external source.

This section contains detailed information about all noun tokens that are available through using the
pre-ldentity Manager Policy Builder interface.

*

*

*

*

“Added Entitlement” on page 474
“Association” on page 475
“Attribute” on page 476

“Class Name” on page 477
“Destination Attribute” on page 478
“Destination DN on page 479
“Destination Name” on page 480
“Entitlement” on page 481

“Global Configuration Value” on page 482
“Local Variable” on page 483
“Named Password” on page 484
“Operation” on page 485

“Operation Attribute” on page 486
“Operation Property” on page 487
“Password” on page 488

“Removed Attribute” on page 489
“Removed Entitlements” on page 490
“Source Attribute” on page 491
“Source DN on page 492

“Source Name” on page 493

“Text” on page 494

“Unique Name” on page 495
“Unmatched Source DN on page 497
“XPath” on page 498

Pre-ldentity Manager 3.5 Noun Tokens

473



Added Entitlement

Expands to the values of an entitlement granted in the current operation.

Fields

Name

Name of the entitlement.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

474 Policies in Designer 3.0



Association

Expands to the association value from the current operation.

Fields

There are no fields.

Pre-ldentity Manager 3.5 Noun Tokens 475



Attribute

Expands to the value of an attribute from the current object in the current operation and in the source
data store. It can be logically thought of as the union of the operation attribute token and the source
attribute token. It does not include the removed values from a Modify operation.

Fields

Name

Specify the name of the attribute.

Remarks
If the token is used in a context where a node set is expected, the token expands to a node set

containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

476 Policies in Designer 3.0



Class Name

Expands to the object class name from the current operation.

Fields

There are no fields.

Pre-ldentity Manager 3.5 Noun Tokens 477



Destination Attribute

Expands to the specified attribute value an object.

Fields
Name
Name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object.

Select Object
Select Current Object, DN, or Association.
Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

478 Policies in Designer 3.0



Destination DN

Expands to the destination DN specified in the current operation.

Fields

Convert

Select whether or not to convert the DN to the format used by the source data store.

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

+ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Specify the number of RDN segments to include. Negative numbers are interpreted as (total #
of segments + length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) +
1=5-2=(5+(2))+1=4,etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Pre-ldentity Manager 3.5 Noun Tokens

479



Destination Name

Expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in
the current operation.

Fields

There are no fields.

480 Policies in Designer 3.0



Entitlement

Expands to the values of a granted entitlement from the current object.

Fields

Name

Name of the entitlement.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

Pre-ldentity Manager 3.5 Noun Tokens 481



Global Configuration Value

Expands to the value of a global configuration variable.

Fields

Name

Name of the global configuration value.

482 Policies in Designer 3.0



Local Variable

Expands to the value of a local variable.

Fields

Name

Specify the name of the local variable.

Pre-ldentity Manager 3.5 Noun Tokens 483



Named Password

Expands to the Named Password from the driver.

Fields

Name

Specify the Named Password.

484 Policies in Designer 3.0



Operation

Expands to the name of the current operation.

Fields

There are no fields.

Pre-ldentity Manager 3.5 Noun Tokens 485



Operation Attribute

Expands to the value of an attribute from the current operation. It does not include the removed
values from a modify operation.

Fields

Name

Specify the name of the attribute.

486 Policies in Designer 3.0



Operation Property

Expands to the value of the specified operation property on the current operation.

Fields

Name

Specify the name of the operation property.

Pre-ldentity Manager 3.5 Noun Tokens 487



Password

Expands to the password specified in the current operation.

Fields

There are no fields.

488 Policies in Designer 3.0



Removed Attribute

Expands to the specified attribute value being removed in the current operation. It applies only to a
Modify operation.

Fields

Name
Specify the name of the attribute to remove.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Pre-ldentity Manager 3.5 Noun Tokens 489



Removed Entitlements

Expands to the values of the an entitlement revoked in the current operation.

Fields

Name

Specify the name of the entitlement.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

490 Policies in Designer 3.0



Source Attribute

Expands to the values of an attribute from an object in the source data store.

Fields

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object.

Name

Name of the attribute.

Object

Select the source object. This object can be the current object, or can be specified by a DN or an
association.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Pre-ldentity Manager 3.5 Noun Tokens

491



Source DN

Expands to the source DN from the current operation.

Fields

Convert

Select whether or not to convert the DN to the format used by the destination data store.

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

+ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Number of RDN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5
+(-2))+1=4,etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise, only the
portion of the DN specified by start and length is used.

492 Policies in Designer 3.0



Source Name

Expands to the unqualified relative distinguished name (RDN) of the source DN specified in the
current operation.

Fields

There are no fields.

Pre-ldentity Manager 3.5 Noun Tokens 493



Text

Expands to the text.

Fields

Text
Specify the text.

494 Policies in Designer 3.0



Unique Name

Expands to a pattern-based name that is unique in the destination data store according to the criteria
specified.

Fields

Attribute Name

Specify the name of attribute to check for uniqueness.

Scope

Specify the scope in which to check uniqueness. The options are subtree or subordinates.

Start Search

Select a starting point for the search. The starting point can be the root of the data store, or be
specified by a DN or association.

Pattern

Specify patterns to use to generate unique values by using the Argument Builder.

Counter Start
The starting value of the counter.
Digits
Specify the width in digits of counter; the default is 1. The Pad counter with leading 0% option

prepends 0 to match the digit length. For example, with a digit width of 3, the initial unique
value would be appended with 001, then 002, and so on.

Remarks

Each <arg-string> element provides a pattern to be used to create a proposed name.

A proposed name is tested by performing a query for that value in the name attribute against the
destination data store, using the <arg—-dn> element or the <arg-association> element as the
base of the query and scope as the scope of the query. If the destination data store is the Identity
Vault and name is omitted, then a search is performed against the pseudo-attribute “[Entry].rdn”,
which represents the RDN of an object without respect to what the naming attribute might be. If the
destination data store is the application, then name is required.

A pattern can be tested with or without a counter as indicated by counter-use and counter-pattern.
When a pattern is tested with a counter, the pattern is tested repeatedly with an appended counter
until a name is found that does not return any instances or the counter is exhausted. The counter
starting value is specified by counter-start and the counter maximum value is specified in terms of
the maximum number of digits as specified by counter-digits. If the number of digits is less than
those specified, then the counter is right-padded with zeros unless the counter-pad attribute is set to
False. The counter is considered exhausted when the counter can no longer be represented by the
specified number of digits.

As soon as a proposed name is determined to be unique, the testing of names is stopped and the
unique name is returned.

Pre-ldentity Manager 3.5 Noun Tokens

495



The order of proposed names is tested as follows:

¢ Each pattern is tested in the order specified. If counter-use="always” and the pattern is one of
the patterns indicated by the counter-pattern, then the pattern is tested with a counter;
otherwise, it is tested without a counter.

¢ [f no unique name has been found after the patterns have been exhausted and counter-
use="fallback”, then the patterns indicated by the counter-pattern are retried with a counter.

If all specified combinations of patterns and counters are exhausted, then the action specified by the
on-unavailable is taken.

496 Policies in Designer 3.0



Unmatched Source DN

Expands to the part of the source DN in the current operation that corresponds to the part of the DN
that was not matched by the most recent match of an If Source DN condition.

Fields

Convert

Select whether or not to convert the DN format used by the destination data store.

Remarks

If there are no matches, the entire DN is used.

Pre-ldentity Manager 3.5 Noun Tokens 497



XPath

Expands to the results of evaluating an XPath 1.0 expression.

Fields

Expression

XPath 1.0 expression to evaluate.

Remarks

For more information on using XPath expressions with policies, see “XPath 1.0 Expressions” in
Understanding Policies for Identity Manager 3.6.

498 Policies in Designer 3.0



Pre-ldentity Manager 3.5 Verb
Tokens

Verb tokens modify the concatenated results of other tokens that are subordinate to them.

This section contains detailed information about all verbs that are available through the pre-Identity
Manager Policy Builder interface.

+ “Escape Destination DN on page 500

¢ “Escape Source DN” on page 501

+ “Lowercase” on page 502

¢ “Parse DN” on page 503

+ “Replace All” on page 505

¢ “Replace First” on page 506

¢ “Substring” on page 507

¢ “Uppercase” on page 508

Pre-ldentity Manager 3.5 Verb Tokens 499



Escape Destination DN

Escapes the enclosed tokens according to the rules of the DN format of the destination data store.

Fields

There are no fields.

500 Policies in Designer 3.0



Escape Source DN

Escapes the enclosed tokens according to the rules of the DN format of the source data store.

Fields

There are no fields.

Pre-ldentity Manager 3.5 Verb Tokens 501



Lowercase

Converts the characters in the enclosed tokens to lowercase.

Fields

There are no fields.

502 Policies in Designer 3.0



Parse DN

Converts the enclosed token’s DN to an alternate format.

Fields

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

+ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Number of RDN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5
+(-2)) +1=4,etc.

Source DN Format

Specifies the format used to parse the source DN.

Destination DN Format

Specify the format used to output the parsed DN.

Source DN Delimiter

Specify the custom source DN delimiter set if Source DN Format is set to custom.

Destination DN Delimiter

Specify the custom destination DN delimiter set if Destination DN Format is set to custom.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used; otherwise, only the
portion of the DN specified by start and length is used.

When specifying custom DN formats, the eight characters that make up the delimiter set are defined
as follows:
¢ Typed Name Boolean Flag: 0 means names are not typed, and 1 means names are typed

¢ Unicode No-Map Character Boolean Flag: 0 means don’t output or interpret unmappable
Unicode characters as escaped hex digit strings, such as \FEFF. The following Unicode
characters are not accepted by eDirectory™: Oxfeff, Oxfffe, Oxftfd, and Oxftft.

+ Relative RDN Delimiter
+ RDN Delimiter
* Name Divider

+* Name Value Delimiter

Pre-ldentity Manager 3.5 Verb Tokens 503



* Wildcard Character

¢ Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, the orientation of the name is
root right, otherwise the orientation is root left.

If there are more than eight characters in the delimiter set, the extra characters are considered as
characters that need to be escaped, but they have no other special meaning.

504 Policies in Designer 3.0



Replace All

Replaces all occurrences of a regular expression in the enclosed tokens.

Fields
Regular Expression

Specify the regular expression that matches the substring to be replaced.

Replace With

Specify the replacement string.

Remarks

For details on creating regular expressions, see:

+ Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)

+ Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed by using the appropriate embedded escapes.

Pre-ldentity Manager 3.5 Verb Tokens 505


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Replace First

Replaces the first occurrence of a regular expression in the enclosed tokens.

Fields

Regular Expression

Specify the regular expression that matches the substring to replace.

Replace With

Specify the replacement string.

Remarks

The matching instance is replaced by the string specified in the Replace with field.
For details on creating regular expressions, see:

+ Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)

+ Sun’s Java Web site (java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE_INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed by using the appropriate embedded escapes.

506 Policies in Designer 3.0


http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Substring

Extracts a portion of the enclosed tokens.

Fields

Start
Specify the starting character index:
+ Index 0 is the first character.
+ Positive indexes are an offset from the start of the string.
¢ Index -1 is the last character.
+ Negative indexes are an offset from the last character toward the start of the string.
For example, if the start is specified as -2, then it starts reading at the first character from the
end. If -3 is specified, then is starts 2 characters from the end.
Length

Number of characters from the start to include in the substring. Negative numbers are
interpreted as (total # of characters + length) + 1. For example, -1 represents the entire length of
the original string. If -2 is specified, the length is the entire string -1. For a string with 5
characters, a length of -1 = (5 + (-1)) + 1 =5,-2=(5+(-2)) + 1 =4, etc.

Pre-ldentity Manager 3.5 Verb Tokens 507



Uppercase

Converts the characters in the enclosed tokens to uppercase.

Fields

There are no fields.

508 Policies in Designer 3.0



	Policies in Designer 3.0
	About This Guide
	1 Overview
	1.1 Policies

	2 Using the Pre-Identity Manager 3.5 Policy Builder
	3 Managing Policies with the Policy Builder
	3.1 Accessing the Policy Builder
	3.1.1 Model Outline View
	3.1.2 Policy Flow View
	3.1.3 Policy Set

	3.2 Using the Policy Builder
	3.3 Creating a Policy
	3.3.1 Accessing the Policy Set
	3.3.2 Using the Policy Set
	3.3.3 Using the Add Policy Wizard

	3.4 Creating a Rule
	3.4.1 Creating a New Rule
	3.4.2 Using Predefined Rules
	3.4.3 Including an Existing Rule
	3.4.4 Importing a Policy From an XML File

	3.5 Creating an Argument
	3.6 Variable Selector
	3.6.1 Dynamic Variable Expansion
	3.6.2 Accessing the Variable Selector From the Conditions Tab
	3.6.3 Accessing the Variable Selector From the Actions Tab
	3.6.4 Accessing the Variable Selector From the Argument Builder
	3.6.5 XPath Expressions

	3.7 Editing a Policy
	3.7.1 Actions and Menu Items in the Policy Builder
	3.7.2 Keyboard Support
	3.7.3 Renaming a Policy
	3.7.4 Saving Your Work 
	3.7.5 Policy Description

	3.8 Viewing the Policy in XML

	4 Using Additional Builders and Editors
	4.1 Action Builder
	4.1.1 Creating an Action
	4.1.2 Additional Options for the Action Builder

	4.2 Actions Builder
	4.3 Argument Builder
	4.3.1 Launching the Argument Builder
	4.3.2 Argument Builder Example

	4.4 Condition Builder
	4.4.1 Creating a Condition
	4.4.2 Additional Options for the Condition Builder

	4.5 Conditions Builder
	4.6 Match Attribute Builder
	4.7 Action Argument Component Builder
	4.8 Argument Value List Builder
	4.9 Named String Builder
	4.10 Condition Argument Component Builder
	4.11 Pattern Builder
	4.12 String Builder
	4.13 XPath Builder
	4.14 Mapping Table Editor
	4.14.1 Creating a Mapping Table Object
	4.14.2 Adding a Mapping Table Object to a Policy
	4.14.3 Editing a Mapping Table Object
	4.14.4 Importing Data from a CSV File
	4.14.5 Exporting Data to a CSV File
	4.14.6 Testing a Mapping Table Object

	4.15 Namespace Editor
	4.15.1 Accessing Java Classes Using Namespaces

	4.16 Local Variable Selector

	5 Using the XPath Builder
	6 Defining Schema Map Policies
	6.1 Using the Schema Map Editor
	6.1.1 Accessing the Schema Map Editor
	6.1.2 Navigating the Schema Map Editor
	6.1.3 Understanding the Schema Map Editor Toolbar

	6.2 Editing a Schema Map Policy
	6.2.1 Adding or Deleting Classes and Attributes
	6.2.2 Refreshing the Application Schema
	6.2.3 Editing Items
	6.2.4 Sorting Schema Map Entries
	6.2.5 Managing the Schema

	6.3 Testing Schema Map Policies
	6.4 Exporting and Importing with the Schema Map Editor
	6.4.1 Exporting a Schema Map Policy
	6.4.2 Importing a Schema Map Policy

	6.5 Accessing the Schema Map Policy in XML 
	6.6 Additional Schema Map Policy Options
	6.6.1 Outline View Additional Options
	6.6.2 Policy Flow View Additional Options
	6.6.3 Policy Set View Additional Options


	7 Controlling the Flow of Objects with the Filter
	7.1 Using the Filter Editor
	7.1.1 Accessing the Filter Editor
	7.1.2 Navigating the Filter Editor
	7.1.3 Understanding the Filter Editor Toolbar

	7.2 Editing the Filter
	7.2.1 Removing or Adding Classes and Attributes
	7.2.2 Modifying Multiple Attributes
	7.2.3 Copying an Existing Filter
	7.2.4 Setting Default Values for Attributes
	7.2.5 Changing the Filter Settings

	7.3 Testing the Filter
	7.4 Exporting and Importing Filter Files
	7.4.1 Exporting a Filter File
	7.4.2 Importing a Filter File

	7.5 Adding Comments to Classes and Attributes
	7.6 Viewing the Filter in XML
	7.7 Deploying the Filter
	7.8 Additional Filter Options
	7.8.1 Outline View Additional Options
	7.8.2 Policy Flow View Additional Options
	7.8.3 Policy Set View Additional Options


	8 Using Predefined Rules
	8.1 Command Transformation - Create Departmental Container - Part 1 and Part 2
	8.1.1 Creating a Policy
	8.1.2 Importing the Predefined Rule
	8.1.3 How the Rule Works

	8.2 Command Transformation - Publisher Delete to Disable 
	8.2.1 Creating a Policy
	8.2.2 Importing the Predefined Rule
	8.2.3 How the Rule Works

	8.3 Creation - Require Attributes
	8.3.1 Creating a Policy
	8.3.2 Importing the Predefined Rule
	8.3.3 How the Rule Works

	8.4 Creation - Publisher - Use Template 
	8.4.1 Creating a Policy
	8.4.2 Importing the Predefined Rule
	8.4.3 How the Rule Works

	8.5 Creation - Set Default Attribute Value 
	8.5.1 Creating a Policy
	8.5.2 Importing the Predefined Rule
	8.5.3 How the Rule Works

	8.6 Creation - Set Default Password
	8.6.1 Creating a Policy
	8.6.2 Importing the Predefined Rule
	8.6.3 How the Rule Works

	8.7 Event Transformation - Scope Filtering - Include Subtrees 
	8.7.1 Creating a Policy
	8.7.2 Importing the Predefined Rule
	8.7.3 How the Rule Works

	8.8 Event Transformation - Scope Filtering - Exclude Subtrees 
	8.8.1 Creating a Policy
	8.8.2 Importing the Predefined Rule
	8.8.3 How the Rule Works

	8.9 Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn- nnn-nnnn 
	8.9.1 Creating a Policy
	8.9.2 Importing the Predefined Rule
	8.9.3 How the Rule Works

	8.10 Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-nnnn 
	8.10.1 Creating a Policy
	8.10.2 Importing the Predefined Rule
	8.10.3 How the Rule Works

	8.11 Matching - Publisher Mirrored
	8.11.1 Creating a Policy
	8.11.2 Importing the Predefined Rule
	8.11.3 How the Rule Works

	8.12 Matching - Subscriber Mirrored - LDAP Format
	8.12.1 Creating a Policy
	8.12.2 Importing the Predefined Rule
	8.12.3 How the Rule Works

	8.13 Matching - By Attribute Value 
	8.13.1 Creating a Policy
	8.13.2 Importing the Predefined Rule
	8.13.3 How the Rule Works

	8.14 Placement - Publisher Mirrored 
	8.14.1 Creating a Policy
	8.14.2 Importing the Predefined Rule
	8.14.3 How the Rule Works

	8.15 Placement - Subscriber Mirrored - LDAP Format 
	8.15.1 Creating a Policy
	8.15.2 Importing the Predefined Rule
	8.15.3 How the Rule Works

	8.16 Placement - Publisher Flat 
	8.16.1 Creating a Policy
	8.16.2 Importing the Predefined Rule
	8.16.3 How the Rule Works

	8.17 Placement - Subscriber Flat - LDAP Format 
	8.17.1 Creating a Policy
	8.17.2 Importing the Predefined Rule
	8.17.3 How the Rule Works

	8.18 Placement - Publisher By Dept
	8.18.1 Creating a Policy
	8.18.2 Importing the Predefined Rule
	8.18.3 How the Rule Works

	8.19 Placement - Subscriber By Dept - LDAP Format 
	8.19.1 Creating a Policy
	8.19.2 Importing the Predefined Rule
	8.19.3 How the Rule Works


	9 Testing Policies with the Policy Simulator
	9.1 Accessing the Policy Simulator
	9.1.1 Outline View
	9.1.2 Policy Flow View
	9.1.3 Editors

	9.2 Creating an XDS Input Document
	9.2.1 Source
	9.2.2 Import an XDS Document
	9.2.3 Use an Identity Vault Object As a Template
	9.2.4 Use an Application Object As a Template
	9.2.5 Clear All Parameters
	9.2.6 Configuration Options
	9.2.7 Save the Input Document
	9.2.8 Simulation Point
	9.2.9 Operation
	9.2.10 Parameter and Value
	9.2.11 Attributes

	9.3 Using the Operation Data Editor
	9.4 Using the Hex Editor
	9.4.1 Accessing the Hex Editor
	9.4.2 Importing Data into the Hex Editor
	9.4.3 Inserting Data in the Hex Editor
	9.4.4 Appending Data in the Hex Editor
	9.4.5 Editing Data in the Hex Editor
	9.4.6 Reverting Changes in the Hex Editor
	9.4.7 Deleting Data in the Hex Editor
	9.4.8 Moving the Cursor in the Hex Editor
	9.4.9 Exporting Data from the Hex Editor

	9.5 Simulating a Policy
	9.6 Simulating Policies with Java Extensions

	10 Storing Information in Resource Objects
	10.1 Generic Resource Objects
	10.1.1 Creating a Resource Object
	10.1.2 Using a Generic Resource Object

	10.2 Mapping Table Objects
	10.3 ECMAScript Objects
	10.4 Application Objects
	10.5 Repository Objects
	10.6 Library Objects
	10.6.1 Creating Library Objects
	10.6.2 Adding Policies to the Library Objects
	10.6.3 Using Policies in the Library Objects


	11 Using ECMAScript in Policies
	11.1 Creating an ECMAScript Object
	11.2 Using the ECMAScript Editor
	11.2.1 Main Scripting Area
	11.2.2 Expression Builder
	11.2.3 Functions and Variables
	11.2.4 Error Display
	11.2.5 Shell Area

	11.3 Examples of ECMAScripts with Policies
	11.3.1 DirXML Script Policy Calling an ECMAScript Function
	11.3.2 XSLT Policy Calling an ECMAScript Function at the Driver Level
	11.3.3 XSLT Policy Calling an ECMAScript Function in the Style Sheet


	12 Conditions
	If AssociationPerforms a test on the association value of the current operation or the current object. The type of test performed depends on the operator specified by the operation attribute. 
	If AttributePerforms a test on attribute values of the current object in either the current operation or the source data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the test is satisfied if the conditi
	If Class NamePerforms a test on the object class name in the current operation.
	If Destination AttributePerforms a test on attribute values of the current object in the destination data store. The test performed depends on the specified operator.
	If Destination DNPerforms a test on the destination DN in the current operation. The test performed depends on the specified operator. 
	If EntitlementPerforms a test on entitlements of the current object, in either the current operation or the Identity Vault. The test performed depends on the specified operator.
	If Global Configuration ValuePerforms a test on a global configuration value. The test performed depends on the specified operator.
	If Local VariablePerforms a test on a local variable. The test performed depends on the specified operator.
	If Named PasswordPerforms a test on a named password from the driver in the current operation with the specified name. The test performed depends on the selected operator.
	If OperationPerforms a test on the name of the current operation. The type of test performed depends on the specified operator.
	If Operation AttributePerforms a test on attribute values in the current operation. The test performed depends on the specified operator.
	If Operation Property
	If PasswordPerforms a test on a password in the current operation. The test performed depends on the specified operator.
	If Source AttributePerforms a test on attribute values of the current object in the source data store. The test performed depends on the specified operator. 
	If Source DNPerforms a test on the source DN in the current operation. The test performed depends on the specified operator.
	If XML AttributePerforms a test on an XML attribute of the current operation. The type of test performed depends on the operator specified by the operation attribute. 
	If XPath ExpressionPerforms a test on the results of evaluating an XPath 1.0 expression.

	13 Actions
	Add Association
	Add Destination Attribute ValueAdds a value to an attribute on an object in the destination data store.
	Add Destination Object
	Add RoleInitiates a request to the Roles Based Provisioning Module (RBPM) to assign the specified role (in the Role DN field) to the specified user (in the Authorized User DN field). This field is only available if the Identity Manager server version is
	Add Source Attribute ValueAdds the specified attribute on an object in the source data store.
	Add Source Object
	Append XML Element
	Append XML TextAppends the specified text to the set of elements selected by the XPath expression. If Before XPath Expression is not specified, the text is appended after any existing children of the selected elements. If Before XPath Expression is spec
	BreakEnds processing of the current operation by the current policy.
	Clear Destination Attribute ValueRemoves all values for the named attribute from an object in the destination data store.
	Clear Operation Property
	Clear Source Attribute ValueRemoves all values of an attribute from an object in the source data store.
	Clear SSO Credential
	Clone By XPath ExpressionsAppends deep copies of the nodes specified by the source field to the set of elements specified by the destination field. If Before XPath Expression is not specified, the non-attribute cloned nodes are appended after any existi
	Clone Operation AttributeCopies all occurrences of an attribute within the current operation to a different attribute within the current operation.
	Delete Destination ObjectDeletes an object in the destination data store.
	Delete Source ObjectDeletes an object in the source data store.
	Find Matching Object
	For EachRepeats a set of actions for each node in a node set.
	Generate EventSends a user-defined event to Novell Audit or SentinelTM.
	IfConditionally performs a set of actions.
	Implement EntitlementDesignates actions that implement an entitlement so that the status of those entitlements can be reported to the agent that granted or revoked the entitlement.
	Move Destination ObjectMoves an object into the destination data store.
	Move Source ObjectMoves an object into the source data store.
	Reformat Operation AttributeReformats all values of an attribute within the current operation by using a pattern.
	Remove AssociationSends a remove association command to the Identity Vault.
	Remove Destination Attribute ValueRemoves an attribute value from an object in the destination data store.
	Remove RoleInitiates a request to the Roles Based Provisioning Module (RBPM) to revoke the specified role (in the Role DN field) from the specified user (in the Authorized User DN field). This field is only available if the Identity Manager server versi
	Remove Source Attribute ValueRemoves the specified value from the named attribute on an object in the source data store.
	Rename Destination ObjectRenames an object in the destination data store.
	Rename Operation AttributeRenames all occurrences of an attribute within the current operation.
	Rename Source ObjectRenames an object in the source data store.
	Send EmailSends an e-mail notification.
	Send Email from TemplateGenerates an e-mail notification by using a template.
	Set Default Attribute ValueAdds default values to the current operation (and optionally to the current object in the source data store) if no values for that attribute already exist. It is only valid when the current operation is Add.
	Set Destination Attribute ValueAdds a value to an attribute on an object in the destination data store, and removes all other values for that attribute.
	Set Destination PasswordSets the password for an object in the destination data store.
	Set Local VariableSets a local variable.
	Set Operation AssociationSets the association value for the current operation. 
	Set Operation Class NameSets the object class name for the current operation. 
	Set Operation Destination DNSets the destination DN for the current operation.
	Set Operation PropertySets an operation property. An operation property is a named value that is stored within an operation. It is typically used to supply additional context that might be needed by the policy that handles the results of an operation. 
	Set Operation Source DNSets the source DN for the current operation.
	Set Operation Template DNSets the template DN for the current operation to the specified value. This action is only valid when the current operation is Add.
	Set Source Attribute ValueAdds a value to an attribute on an object in the source data store, and removes all other values for that attribute.
	Set Source PasswordSets the password for an object in the source data store. 
	Set SSO Credential
	Set SSO Passphrase
	Set XML AttributeSets an XML attribute on a set of elements selected by an XPath expression.
	Start WorkflowStarts the workflow specified by workflow-id for the recipient DN on the User Application server specified by a URL and by using credentials specified by the ID and password. The recipient must be an LDAP format DN of an object in the dire
	StatusGenerates a status notification.
	Strip Operation AttributeStrips all occurrences of an attribute from the current operation.
	Strip XPath ExpressionStrips nodes selected by an XPath 1.0 expression.
	Trace MessageSends a message to DSTRACE.
	VetoVetoes the current operation.
	Veto If Operation Attribute Not AvailableConditionally cancels the current operation and ends processing of the current policy, based on the availability of an attribute in the current operation. 
	WhileCauses the specified actions to be repeated while the specified conditions evaluate to True. 

	14 Noun Tokens
	TextExpands to the text.
	Added EntitlementExpands to the values of an entitlement granted in the current operation. 
	AssociationExpands to the association value from the current operation. 
	AttributeExpands to the value of an attribute from the current object in the current operation and in the source data store. It can be logically thought of as the union of the operation attribute token and the source attribute token. It does not include
	CharacterExpands to a character specified by a Unicode* code point.
	Class NameExpands to the object class name from the current operation. 
	Destination AttributeExpands to the specified attribute value an object.
	Destination DNExpands to the destination DN specified in the current operation.
	Destination NameExpands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in the current operation.
	DocumentReads the XML document pointed to by the URI and returns the document node in a node set. The URI can be relative to the URI of the including policy. With any error, the result is an empty node set.
	EntitlementExpands to the values of a granted entitlement from the current object. 
	Generate PasswordGenerates a random password that conforms to the specified password policy.
	Global Configuration ValueExpands to the value of a global configuration variable.
	Local VariableExpands to the value of a local variable.
	Named PasswordExpands to the named password from the driver.
	OperationExpands to the name of the current operation.
	Operation AttributeExpands to the value of an attribute in the current operation. The operation can be an <add-attr>, <add-value>, or <attr>. If this token is evaluated in a context where a node-set result is expected, then all the available values are 
	Operation PropertyExpands to the value of the specified operation property on the current operation.
	PasswordExpands to the password specified in the current operation.
	QueryQueries the source or destination data store and returns the resulting instances.
	Removed AttributeExpands to the specified attribute value being removed in the current operation. It applies only to a Modify operation.
	Removed EntitlementExpands to the values of the an entitlement revoked in the current operation. 
	ResolveResolves the DN to an association key, or the association key to a DN in the specified data store.
	Source AttributeExpands to the values of an attribute from an object in the source data store. 
	Source DNExpands to the source DN from the current operation.
	Source NameExpands to the unqualified relative distinguished name (RDN) of the source DN specified in the current operation.
	TimeExpands to the current date/time into the format, language, and time zone specified.
	Unique NameExpands to a pattern-based name that is unique in the destination data store according to the criteria specified.
	Unmatched Source DNExpands to the part of the source DN in the current operation that corresponds to the part of the DN that was not matched by the most recent match of an If Source DN condition.
	XPathExpands to the results of evaluating an XPath 1.0 expression. 

	15 Verb Tokens
	Base64 DecodeDecodes the result of the enclosed tokens from Base64-encoded data to bytes, then converts the bytes into a string by using the specified character set.
	Base64 EncodeConverts the result of the enclosed tokens to bytes by using the specified character set, then Base64- encodes the bytes.
	Convert TimeConverts the date and time represented by the result of the enclosed tokens from the source format, language, and time zone to the destination format, language, and time zone.
	Escape Destination DNEscapes the enclosed tokens according to the rules of the DN format of the destination data store.
	Escape Source DNEscapes the enclosed tokens according to the rules of the DN format of the source data store. 
	JoinJoins the values of the nodes in the node set result of the enclosed tokens, separating the values by the characters specified by delimiter. If the comma-separated values (CSV) are true, then CSV quoting rules are applied to the values.
	LowercaseConverts the characters in the enclosed tokens to lowercase.
	MapMaps the result of the enclosed tokens from the values specified by the source column to the destination column in the specified mapping table. 
	Parse DNConverts the enclosed token’s DN to an alternate format.
	Replace AllReplaces all occurrences of a regular expression in the enclosed tokens.
	Replace FirstReplaces the first occurrence of a regular expression in the enclosed tokens.
	SplitSplits the result of the enclosed tokens into a node set consisting of text nodes based on the pattern specified by delimiter. If comma-separated values (CSV) are true, then CSV quoting rules are honored during the parsing of the string.
	SubstringExtracts a portion of the enclosed tokens.
	UppercaseConverts the characters in the enclosed tokens to uppercase.
	XML ParseParses the result of the enclosed tokens as XML and returns the resulting document node in a node set. If the result of the enclosed tokens is not well-formed XML or cannot be parsed for any reason, an empty node set is returned.
	XML SerializeSerializes the node set result of the enclosed tokens as XML. Depending on the content of the node set, the resulting string is either a well-formed XML document or a well-formed parsed general entity.

	16 Pre-Identity Manager 3.5 Builders
	16.1 Action Builder
	16.1.1 Creating an Action
	16.1.2 Additional Options for the Action Builder

	16.2 Actions Builder
	16.3 Argument Builder
	16.3.1 Launching the Argument Builder
	16.3.2 Argument Builder Example

	16.4 Action Argument Component Builder
	16.5 Condition Builder
	16.5.1 Creating a Condition
	16.5.2 Additional Options for the Condition Builder

	16.6 Condition Argument Component Builder
	16.7 Match Attribute Builder
	16.8 Named String Builder
	16.9 Pattern String Builder
	16.10 Argument Value List Builder
	16.11 Namespace Editor
	16.11.1 Accessing Java Classes by Using Namespaces


	17 Pre-Identity Manager 3.5 Conditions
	If AssociationPerforms a test on the association value of the current operation or the current object. The type of test performed depends on the operator specified by the operation attribute. 
	If AttributePerforms a test on attribute values of the current object in either the current operation or the source data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the test is satisfied if the conditi
	If Class NamePerforms a test on the object class name in the current operation.
	If Destination AttributePerforms a test on attribute values of the current object in the destination data store. The test performed depends on the specified operator.
	If Destination DNPerforms a test on the destination DN in the current operation. The test performed depends on the specified operator. 
	If EntitlementPerforms a test on entitlements of the current object, in either the current operation or the Identity Vault. The test performed depends on the specified operator.
	If Global Configuration ValuePerforms a test on a global configuration value. The test performed depends on the specified operator.
	If Local VariablePerforms a test on a local variable. The test performed depends on the specified operator.
	If Named PasswordPerforms a test on a named password from the driver in the current operation with the specified name. The test performed depends on the selected operator.
	If Operation AttributePerforms a test on attribute values in the current operation. The test performed depends on the specified operator.
	If Operation Property
	If OperationPerforms a test on the name of the current operation. The type of test performed depends on the specified operator.
	If PasswordPerforms a test on a password in the current operation. The test performed depends on the specified operator.
	If Source AttributePerforms a test on attribute values of the current object in the source data store. The test performed depends on the specified operator. 
	If Source DNPerforms a test on the source DN in the current operation. The test performed depends on the specified operator.
	If XPath ExpressionPerforms a test on the results of evaluating an XPath 1.0 expression.

	18 Pre-Identity Manager 3.5 Actions
	Add Association
	Add Destination Attribute ValueAdds a value to an attribute on an object in the destination data store.
	Add Destination Object
	Add Source Attribute ValueAdds the specified attribute on an object in the source data store.
	Add Source Object
	Append XML Element
	Append XML TextAppends the specified text to the set of elements selected by the XPath expression.
	BreakEnds processing of the current operation by the current policy.
	Clear Destination Attribute ValueRemoves all values for the named attribute from an object in the destination data store.
	Clear Operation Property
	Clear Source Attribute ValueRemoves all values of an attribute from an object in the source data store.
	Clear SSO Credential
	Clone By XPath ExpressionAppends deep copies of the nodes specified by the source field to the set of elements specified by the destination field.
	Clone Operation AttributeCopies all occurrences of an attribute within the current operation to a different attribute within the current operation.
	Delete Destination ObjectDeletes an object in the destination data store.
	Delete Source ObjectDeletes an object in the source data store.
	Find Matching Object
	For EachRepeats a set of actions for each node in a node set.
	Generate EventSends a user-defined event to Novell Audit or SentinelTM.
	Implement EntitlementDesignates actions that implement an entitlement so that the status of those entitlements can be reported to the agent that granted or revoked the entitlement.
	Move Destination ObjectMoves an object into the destination data store.
	Move Source ObjectMoves an object in the source data store.
	Reformat Operation Attribute ValueReformats all values of an attribute within the current operation by using a pattern.
	Remove AssociationSends a remove association command to the Identity Vault.
	Remove Destination Attribute ValueRemoves an attribute value from an object in the destination data store.
	Remove Source Attribute ValueRemoves the specified value from the named attribute on an object in the source data store.
	Rename Destination ObjectRenames an object in the destination data store.
	Rename Operation AttributeRenames all occurrences of an attribute within the current operation.
	Rename Source ObjectRenames an object in the source data store.
	Send EmailSends an e-mail notification.
	Send Email from TemplateGenerates an e-mail notification by using a template.
	Set Default Attribute ValueAdds default values to the current operation (and optionally to the current object in the source data store) if no values for that attribute already exist. It is only valid when the current operation is Add.
	Set Destination Attribute ValueAdds a value to an attribute on an object in the destination data store, and removes all other values for that attribute.
	Set Destination PasswordSets the password for an object in the destination data store.
	Set Local VariableSets a local variable with the given name to the string value specified, the XPath 1.0 Node Set specified, or the Java* Object specified. 
	Set Operation AssociationSets the association value for the current operation. 
	Set Operation Class NameSets the object class name for the current operation. 
	Set Operation Destination DNSets the destination DN for the current operation.
	Set Operation PropertySets an operation property. An operation property is a named value that is stored within an operation. It is typically used to supply additional context that might be needed by the policy that handles the results of an operation. 
	Set Operation Source DNSets the source DN for the current operation.
	Set Operation Template DNSets the template DN for the current operation to the specified value. This action is only valid when the current operation is Add.
	Set Source Attribute ValueAdds a value to an attribute on an object in the source data store, and removes all other values for that attribute.
	Set Source PasswordSets the password for an object in the source data store. 
	Set SSO Credential
	Set SSO Passphrase
	Set XML AttributeSets an XML attribute on a set of elements selected by an XPath expression.
	StatusGenerates a status notification.
	Strip Operation AttributeStrips all occurrences of an attribute from the current operation.
	Strip XPathStrips nodes selected by an XPath 1.0 expression.
	Trace MessageSends a message to DSTRACE.
	VetoVetoes the current operation.
	Veto If Operation Attribute Not AvailableConditionally cancels the current operation and ends processing of the current policy, based on the availability of an attribute in the current operation. 

	19 Pre-Identity Manager 3.5 Noun Tokens
	Added EntitlementExpands to the values of an entitlement granted in the current operation. 
	AssociationExpands to the association value from the current operation. 
	AttributeExpands to the value of an attribute from the current object in the current operation and in the source data store. It can be logically thought of as the union of the operation attribute token and the source attribute token. It does not include
	Class NameExpands to the object class name from the current operation. 
	Destination AttributeExpands to the specified attribute value an object.
	Destination DNExpands to the destination DN specified in the current operation.
	Destination NameExpands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in the current operation.
	EntitlementExpands to the values of a granted entitlement from the current object. 
	Global Configuration ValueExpands to the value of a global configuration variable.
	Local VariableExpands to the value of a local variable.
	Named PasswordExpands to the Named Password from the driver.
	OperationExpands to the name of the current operation.
	Operation AttributeExpands to the value of an attribute from the current operation. It does not include the removed values from a modify operation. 
	Operation PropertyExpands to the value of the specified operation property on the current operation.
	PasswordExpands to the password specified in the current operation.
	Removed AttributeExpands to the specified attribute value being removed in the current operation. It applies only to a Modify operation.
	Removed EntitlementsExpands to the values of the an entitlement revoked in the current operation. 
	Source AttributeExpands to the values of an attribute from an object in the source data store. 
	Source DNExpands to the source DN from the current operation.
	Source NameExpands to the unqualified relative distinguished name (RDN) of the source DN specified in the current operation.
	TextExpands to the text.
	Unique NameExpands to a pattern-based name that is unique in the destination data store according to the criteria specified.
	Unmatched Source DNExpands to the part of the source DN in the current operation that corresponds to the part of the DN that was not matched by the most recent match of an If Source DN condition.
	XPathExpands to the results of evaluating an XPath 1.0 expression. 

	20 Pre-Identity Manager 3.5 Verb Tokens
	Escape Destination DNEscapes the enclosed tokens according to the rules of the DN format of the destination data store.
	Escape Source DNEscapes the enclosed tokens according to the rules of the DN format of the source data store. 
	LowercaseConverts the characters in the enclosed tokens to lowercase.
	Parse DNConverts the enclosed token’s DN to an alternate format.
	Replace AllReplaces all occurrences of a regular expression in the enclosed tokens.
	Replace FirstReplaces the first occurrence of a regular expression in the enclosed tokens.
	SubstringExtracts a portion of the enclosed tokens.
	UppercaseConverts the characters in the enclosed tokens to uppercase.


