AUTHORIZED DOCUMENTATION

Understanding Policies

Novell
Identity Manager

3.6.1
June 05, 2009

www.novell.com

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2007-2009 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 Understanding Policies for Identity Manager 3.6

Contents

About This Guide 7

1 Overview 9
1.1 What Are PoliCIes?.o 9

2 Upgrading Identity Manager Policies 1
2.1 Methods for Upgrading the Driver Configuration File. 11
211 Installing a New Driver and Moving the Existing Policies from the Old Driver. 11

212 Overlay the New Driver Configuration File Over an Existing Driver. 11

2.2 Recommended Driver Configuration Upgrade Procedure 12
221 Upgrading the Driver Configuration in Designer 12

222 Upgrading the Driver Configuration iniManager 14

3 Understanding Types of Policies 17
3.1 Identity Manager Architecture in Relation to Policies. 17
3.2 UsiNg FIlerso 18
3.3 How Policies Function 18
3.3.1 Detecting Changes and Sending Them to the Identity Vault. 19

3.3.2 Filtering Information. 19

3.3.3 Using Policies to Apply Changes. e 19

3.4 POlICY TYPES. . oot 20
3.4.1 Event Transformation Policy 21

3.4.2 Matching Policies. e 24

3.4.3 Creation Policy.o e 25

3.4.4 Placement Policy e 28

3.4.5 Command Transformation Policy 31

34.6 Schema Mapping PoliCy 34

3.4.7 Output Transformation Policy 36

3.4.8 Input Transformation Policy. 38

3.5 Defining PoliCies. 40
3.5.1 Policy Builder and DirXML Script.o 40

4 Understanding Policy Components 41
4.1 DIrXML Script. . . o 41
4.2 Naming Conventions for Policies 41
4.21 Naming Convention for Driver Policy Objects 42

4.2.2 Naming Convention for Policy Objects in Libraries 42

4.3 Variables 43
4.4 Variable EXpansion e 44
4.5 Date/Time Parameters. 44
4.6 Regular EXPressionsttt 45
4.7 XPath 1.0 EXPresSiONS.o vttt it e e e 46
4.8 Nested GroUPSottt e 47

Contents 5

6

5 Downloading Identity Manager Policies 49

6 Defining Policies by Using XSLT Style Sheets 51
6.1 Managing XSLT Style Sheetsin Designer. 51
6.1.1 Adding an XSLT Style Sheetin Designer 51

6.1.2 Modifying an XSLT Style SheetinDesigner 53

6.1.3 Deleting an XSLT Style SheetinDesigner 53

6.2 Managing XSLT Style SheetsiniManager 53
6.2.1 Adding an XSLT Policy iniManager i, 53

6.2.2 Modifying an XSLT Style SheetiniManager. 54

6.2.3 Deleting an XSLT Style SheetiniManager........... 54

6.3 Prepopulated Information in the XSLT Style Sheet 54
6.4 Using the Parameters that Identity Manager Passes. 55
6.5 Using Extension Functions. 57
6.6 Creating a Password: Example Creation Policy. 58
6.7 Creating an eDirectory User: Example CreationPolicy 59

Understanding Policies for Identity Manager 3.6

About This Guide

Novell® Identity Manager 3.6.1 is a data sharing and synchronization service that enables
applications, directories, and databases to share information. It links scattered information and
enables you to establish policies that govern automatic updates to designated systems when identity
changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user
self-service, authentication, authorization, automated workflows, and Web services. It allows you to
integrate, manage, and control your distributed identity information so you can securely deliver the
right resources to the right people.

This guide provides detailed explanation of policies and their components.

¢ Chapter 1, “Overview,” on page 9

¢ Chapter 2, “Upgrading Identity Manager Policies,” on page 11

¢ Chapter 3, “Understanding Types of Policies,” on page 17

¢ Chapter 4, “Understanding Policy Components,” on page 41

¢ Chapter 5, “Downloading Identity Manager Policies,” on page 49

¢ Chapter 6, “Defining Policies by Using XSLT Style Sheets,” on page 51

To see information about administering the policies, see Policies in Designer 3.0 or Policies in
iManager for Identity Manager 3.6.1.
Audience

This guide is intended for Identity Manager administrators.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager Documentation Web site
(http://www.novell.com/documentation/idm35).

Additional Documentation

For documentation on using the Identity Manager drivers, see the Identity Manager Driver
Documentation Web site (http://www.novell.com/documentation/idm36drivers/index.html).

For documentation on using Designer 3.0, see the Designer 3.0 for Identity Manager 3.6.1
Documentation Web site (http://www.novell.com/documentation/designer30/).

For a detailed discussion of the document type definitions (DTD) that Identity Manager uses, see the
Identity Manager 3.6 DTD Reference.

About This Guide

http://www.novell.com/documentation/idm35
http://www.novell.com/documentation/idm36drivers/index.html
http://www.novell.com/documentation/idm36drivers/index.html
http://www.novell.com/documentation/designer30/
http://www.novell.com/documentation/designer30/

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™_etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

8 Understanding Policies for Identity Manager 3.6

Overview

Policies are what Identity Manager uses to synchronize data to the different systems. They are the
foundation of Identity Manager. Understanding policies and how they work is important to
successfully working with Identity Manager.

*

Section 1.1, “What Are Policies?,” on page 9

For administration information about policies, see

¢ Policies in Designer 3.0

*

*

Policies in iManager for Identity Manager 3.6.1
Novell Credential Provisioning for Identity Manager 3.6

¢ [dentity Manager 3.6 DTD Reference

1.1 What Are Policies?

At a high level, a policy is the set of rules that enables you to manage the way Identity Manager
sends and receives updates. The driver sends changes from the connected system to the Identity
Vault, where policies are used to manipulate the data to achieve the desired results.

As part of understanding how policies work, it is important to understand the components of
policies.

*

*

Policies are made up of rules.

A rule is a set of conditions, see “Conditions” that must be met before a defined action, see
“Actions” occurs.

Actions can have dynamic arguments that derive from tokens that are expanded at run time.
Tokens are broken up into two classifications: nouns and verbs.

+ Noun tokens, see “Noun Tokens” expand to values that are derived from the current
operation, the source or destination data stores, or some external source.

+ Verb tokens, see “Verb Tokens” modify the concatenated results of other tokens that are
subordinate to them.

Regular expressions (see Section 4.6, “Regular Expressions,” on page 45) and XPath 1.0
expressions (see Section 4.7, “XPath 1.0 Expressions,” on page 46) are commonly used in the
rules to create the desired results for the policies.

A policy operates on an XDS document and its primary purpose is to examine and modify that
document.

An operation is any element in the XDS document that is a child of the input element and the
output element. The elements are part of the Novell® nds . dtd; for more information, see
Identity Manager 3.6 DTD Reference in the Identity Manager DTD Reference.

An operation usually represents an event, a command, or a status.

Overview

+ The policy is applied separately to each operation. As the policy is applied to each operation in
turn, that operation becomes the current operation. Each rule is applied sequentially to the
current operation. All of the rules are applied to the current operation unless an action is
executed by a prior rule that causes subsequent rules to no longer be applied.

+ A policy can also get additional context from outside of the document and cause side effects
that are not reflected in the result document.

For detailed information, see the following sections in this guide:

¢ Chapter 2, “Upgrading Identity Manager Policies,” on page 11

¢ Chapter 3, “Understanding Types of Policies,” on page 17

¢ Chapter 4, “Understanding Policy Components,” on page 41

¢ Chapter 5, “Downloading Identity Manager Policies,” on page 49
Chapter 6, “Defining Policies by Using XSLT Style Sheets,” on page 51

*

10 Understanding Policies for Identity Manager 3.6

Upgrading Identity Manager
Policies

If you have a prior version of Identity Manager installed, continue with this section. If you have
installed Identity Manager for the first time, skip to Chapter 3, “Understanding Types of Policies,”
on page 17.

¢ Section 2.1, “Methods for Upgrading the Driver Configuration File,” on page 11

¢ Section 2.2, “Recommended Driver Configuration Upgrade Procedure,” on page 12

2.1 Methods for Upgrading the Driver
Configuration File

There are multiple ways of upgrading an existing driver and its policies. There is no simple method,
because there is no merge process in Identity Manager to merge customized policies. When a driver

is upgraded, any policy that has the same name as a policy in the new driver is over written. If the
policies have been customized, they are overwritten and the customization is lost.

There are many different ways of upgrading to address this issue, but this section discusses two of
the upgrade methods. There are pros and cons to each upgrade method.

¢ Section 2.1.1, “Installing a New Driver and Moving the Existing Policies from the Old Driver,”
on page 11

¢ Section 2.1.2, “Overlay the New Driver Configuration File Over an Existing Driver,” on
page 11

2.1.1 Installing a New Driver and Moving the Existing Policies
from the Old Driver

The pros to this method are:
+ Any existing policies are not overwritten.
The cons to this method are:

+ All associations for synchronized objects are lost and must be re-created, expanded, and
reloaded.

+ The amount of time it takes to make the associations again. If you have a policy that depends
upon a specific association, that policy does not work.

¢ Complexity of making sure policies and rules are restored correctly.

2.1.2 Overlay the New Driver Configuration File Over an
Existing Driver

The impact of this method depends upon how your policies are configured.

Upgrading Identity Manager Policies

1"

The pros are:
¢ Ifyour policies have different names than the policies in the driver configuration file, they are
not overwritten.

+ The associations for the synchronized objects stay the same and do not need to be re-created.
The cons are:

¢ Ifyour policies have the same name as policies in the driver configuration file, they are
overwritten.

This is the recommended upgrade option. However, in order for this upgrade method to work, some
methodology needs to be in place for creating policies.

+ You should follow the same procedures when developing policies as when you upgrade the
policies.

+ Existing Novell policies or rules should never be modified.

¢ Ifyou do not use a default policy, disable the policy, but do not delete it.

+ Create new policies or rules to achieve the desired result for your business needs.

¢ Use a standard naming model for naming the policies in your company.

+ Name your policies with a prefix of the policy set where the policy is stored. This allows you to

know which policy set to attach the policy to.

If you have these methodologies in place, use Section 2.2, “Recommended Driver Configuration
Upgrade Procedure,” on page 12, to upgrade the driver configuration.

2.2 Recommended Driver Configuration Upgrade
Procedure

This is Novell’s recommended driver configuration upgrade procedure. Make sure you do the
procedure in a lab environment. The procedure can be performed in Designer or iManager.

¢ Section 2.2.1, “Upgrading the Driver Configuration in Designer,” on page 12
¢ Section 2.2.2, “Upgrading the Driver Configuration in iManager,” on page 14

2.2.1 Upgrading the Driver Configuration in Designer

The upgrade procedure has three different tasks that need to be completed:

¢ “Creating an Export of the Driver” on page 13
¢ “Overlay the New Driver Configuration File Over the Existing Driver” on page 13

¢ “Restoring Custom Policies and Rules to the Driver” on page 13

12 Understanding Policies for Identity Manager 3.6

Creating an Export of the Driver

Creating an export of the driver makes a backup of your current configuration. Make sure you have
a backup before upgrading.

1

a A~ WODN

Verify that your project in Designer has the most current version of your driver. For
instructions, see “Importing a Library, a Driver Set, or Driver from the Identity Vault” in the
Designer 3.5 for Identity Manager 3.6 Administration Guide.

In the Modeler, right-click the driver line of the driver you are upgrading.
Select Export to a Configuration File.
Browse to a location to save the configuration file, then click Save.

Click OK on the results page.

Overlay the New Driver Configuration File Over the Existing Driver

1 In the Modeler, right-click the driver line of the driver you are upgrading.

6

Select Run Configuration Wizard.
Click Yes on the warning page.

The warning is informing you that all of the driver setting and policies are reset.

IMPORTANT: Make sure that your customized policies have different names, from the
default policies, so you do not lose any data.

Browse to and select the driver configuration for the driver are upgrading, then click Run.
Specify the information for the driver, then click Next.
There might be more than one page of information to specify.

Click OK on the results page.

Restoring Custom Policies and Rules to the Driver

You can add policies into the policy set in two different ways:

*

*

“Adding a Customized Policy Through the Outline View” on page 13
“Adding a Customized Policy Through the Show Policy Flow View” on page 14

Adding a Customized Policy Through the Outline View

1
2

o O A~ W

In the Outline view, select the upgraded driver to display the Policy Set view.

Right-click the policy set where you need to restore the customized policy to the driver, then
select New > From Copy.

Browse to and select the customized policy, then click OK.
Specify the name of the customized policy, then click OK.
Click Yes in the file conflict message to save your project.

After the Policy Builder opens the policy, verify that the information is correct in the copied
policy.
Repeat Step 2 through Step 6 for each customized policy you need to restore to the driver.

Upgrading Identity Manager Policies

13

8 Start the driver and test the driver.

9 After you verify that the policies work, move the driver to the production environment.

Adding a Customized Policy Through the Show Policy Flow View

1 In the Outline view, select the upgraded driver, then click the Show Policy Flow icon.

2 Right-click the policy set where you need to restore the customized policy to the driver, then
select Add Policy > Copy Existing.

Browse to and select the customized policy, then click OK.
Specify the name of the customized policy, then click OK.

Click Yes in the file conflict message to save your project.

o 0 A~ W

After the Policy Builder opens the policy, verify that the information is correct in the copied
policy.

7 Repeat Step 2 through Step 6 for each customized policy you need to restore to the driver.
Start the driver and test the driver.

After you verify that the policies work, move the driver to the production environment.

2.2.2 Upgrading the Driver Configuration in iManager

The upgrade procedure has three different tasks that need to be completed:

¢ “Creating an Export of the Driver” on page 14
¢ “Overlaying the New Driver Configuration File Over the Existing Driver” on page 14

¢ “Restoring Custom Policies and Rules Back to the Driver” on page 15

Creating an Export of the Driver

Creating an export of the driver makes a backup of your current configuration. Make sure you have
a backup before upgrading.

In iManager, select Identity Manager > Identity Manager Overview.

Click Search to find the Driver Set object that holds the driver you want to upgrade.

Click the driver you want to upgrade, then click Export.

Click Next, then click Save As.
Select Save to Disk, then click OK.

1
2
3
4 Click Next, then select Export all contained policies, linked to the configuration or not.
5
6
7 Click Finish.

Overlaying the New Driver Configuration File Over the Existing Driver

1 In iManager, select Identity Manager > Identity Manager Overview.

2 Click Add Driver, then click Next on the New Driver Wizard page.

3 Select the driver configuration you want to overlay, then click Next.

4 1In the Existing drivers field, browse to and select the driver you want to upgrade.

5 Specify the information for the driver, the click Nexz.

14 Understanding Policies for Identity Manager 3.6

6 On the summary page, select Update everything about that driver and policy libraries.

IMPORTANT: Make sure that any customized policies have a different name from the default,
so you do not lose any data.

7 Click Next, then click Finish on the Summary page.

Restoring Custom Policies and Rules Back to the Driver

1 In iManager, select Identity Manager > Identity Manager Overview.

2 Click Search to find the Driver Set object, then click the upgraded driver.

w

Select the policy set where you need to restore the customized policy to the driver, then click
Insert.

Select Use an existing policy, then browse to and select the custom policy.
Click OK, then click Close.
Repeat Step 3 through Step 5 for each custom policy you need to restore to the driver.

Start the driver and test the driver.

0 N o a »

After you verify that the policies work, move the driver to the production environment.

Upgrading Identity Manager Policies 15

16 Understanding Policies for Identity Manager 3.6

Understanding Types of Policies

This section contains an overview of policies and filters, and their function in an Identity Manager
environment. The following topics are covered:

¢ Section 3.1, “Identity Manager Architecture in Relation to Policies,” on page 17

¢ Section 3.2, “Using Filters,” on page 18

*

Section 3.3, “How Policies Function,” on page 18

*

Section 3.4, “Policy Types,” on page 20

*

Section 3.5, “Defining Policies,” on page 40

3.1 Identity Manager Architecture in Relation to
Policies

Identity Manager provides for the clean movement of data between the Identity Vault and any
application, directory, or database. To accomplish this, Identity Manager has a well-defined interface
that translates eDirectory™ data and events into XML format. This interface allows the data to flow
in and out of the directory.

The following figure illustrates the basic Identity Manager components and their relationships.

Figure 3-1 Identity Manager Components

Policies
A
r N\
Filter
)

Identity Publisher
Application

) Identity or
Metadirectory Directol
Erfine Manager ! ry

or

Driver
Database
Subscriber

Filter

Policies

The Metadirectory engine is the key module in the Identity Manager architecture. It provides the
interface that allows Identity Manager drivers to synchronize information with the Identity Vault,
allowing even disparate data systems to connect and share data.

Understanding Types of Policies

17

The Metadirectory engine exposes the Identity Vault data and the Identity Vault events by using an
XML format. The Metadirectory engine employs a rules processor and a data transformation engine
to manipulate the data as it flows between two systems. Access to the rules processor and
transformation engine is provided through control points called Policy Sets. Policy Sets can contain
zero or more policies.

A policy implements business rules and processes primarily by transforming an event on a channel
input into a set of commands on the channel output. The way each driver synchronizes data and
events is configured by the administrator through a series of policies. For example, if a Creation
Policy specifies that a User object must have a value for the Given Name attribute, any attempt to
create a User object without a given name value is rejected.

3.2 Using Filters

Filters specify the object classes and the attributes for which the Metadirectory engine processes
events and how changes to those classes and attributes are handled.

Filters only pass events occurring on objects whose base class matches one of those classes specified
by the filter. Filters do not pass events occurring on objects that are a subordinate class of a class
specified in the filter unless the subordinate class is also specified. There is a separate filter setting
for each channel, which allows the control of the synchronization direction and the authoritative data
source for each class and attribute.

NOTE: In eDirectory™, a base class is the object class that is used to create an entry. You must
specify that class in the filter, rather than a super class from which the base class inherits or the
auxiliary classes from which additional attributes might come.

For example, if the User class with the Surname and Given Name attributes is set to synchronize in
the filter, the Metadirectory engine passes on any changes to these attributes. However, if the entry’s
Telephone Number attribute is modified, the Metadirectory engine drops this event because the
Telephone Number attribute is not in the filter.

Filters must be configured to include the following:

+ Attributes that are to be synchronized

+ Attributes that are not synchronized, but are used to trigger policies to do something

See “Controlling the Flow of Objects with the Filter” in Policies in Designer 3.0 for information on
defining filters.

3.3 How Policies Function

At a high level, a policy is a set of rules that enables you to customize the way Identity Manager
sends and receives updates. The driver sends changes from the connected system to the Identity
Vault, where policies are used to manipulate the data to achieve the desired results.

¢ Section 3.3.1, “Detecting Changes and Sending Them to the Identity Vault,” on page 19

¢ Section 3.3.2, “Filtering Information,” on page 19

¢ Section 3.3.3, “Using Policies to Apply Changes,” on page 19

18 Understanding Policies for Identity Manager 3.6

3.3.1 Detecting Changes and Sending Them to the Identity
Vault

When a driver is written, an attempt is made to include the ability to synchronize anything a
company deploying the driver might use. The developer writes the driver to detect any relevant
changes in the connected system, then pass these changes to the Identity Vault.

Changes are contained in an XML document, formatted according to the Identity Manager
specification. The following snippet contains one of these XML documents:

<nds dtdversion="2.0" ndsversion="8.7.3">
<source>
<product version="2.0">DirXML</product>
<contact>Novell, Inc.</contact>
</source>

<input>
<add class-name="User" event-id="0" src-dn="\ACME\Sales\Smith"
src-entry-id="33071">
<add-attr attr-name="Surname">
<value timestamp="1040071990#3" type="string">Smith</value>
</add-attr>
<add-attr attr-name="Telephone Number">
<value timestamp="1040072034#1" type="teleNumber">111-1111</value>
</add-attr>
</add>
</input>
</nds>

3.3.2 Filtering Information

Drivers are designed to report any relevant changes, then enable you to filter the information, so
only the information you desire enters your environment.

For example, if a company doesn’t need information about groups, it can implement a filter to block
all operations regarding groups in either the Identity Vault or the connected system. If the company
does need information about users and groups, it can implement a filter to allow both types of
objects to synchronize between the Identity Vault and the connected system.

Defining filters to allow the synchronization of only objects that are interesting to you is the first
step in driver customization.

The next step defines what Identity Manager does with the objects that are allowed by the filter. As
an example, refer to the add operation in the XML document above. A user named Smith with a
telephone number of 111-1111 was added to the connected system. Assuming you allow this
operation, Identity Manager needs to decide what to do with this user.

3.3.3 Using Policies to Apply Changes

To make changes, Identity Manager applies a set of policies, in a specific order.

First, a Matching policy answers the question, “Is this object already in the data store?”” To answer
this, you need to define the characteristics that are unique to an object. A common attribute to check
might be an e-mail address, because these are usually unique. You can define a policy that says “If
two objects have the same e-mail address, they are the same object.”

Understanding Types of Policies

19

If a match is found, Identity Manager notes this in an attribute called an association. An association
is a unique value that enables Identity Manager to associate objects in connected systems.

In circumstances where a match is not found, a Creation policy is called. The Creation policy tells
Identity Manager under what conditions you want objects to be created. You can make the existence
certain attributes mandatory in the creation rule. If these attributes do not exist, Identity Manager
blocks the creation of the object until the required information is provided.

After the object is created, a Placement policy tells Identity Manager where to put it. You can
specify that objects should be created in a hierarchical structure identical to the system they came
from, or you can place them somewhere completely different, based on an attribute value.

If you want to place users in a hierarchy according to a location attribute on the object, and name
them according to the Full Name, you can require these attributes in the Creation policy. This
ensures that the attribute exists so your placement strategy works correctly.

There are many other things you can do with policies. Using the Policy Builder, you can easily
generate unique values, add and remove attributes, generate events and commands, send e-mail, and
more. Even more advanced transformations are available by using XSLT to directly transform the
XML document that carries information between applications.

Continue to Chapter 3, “Understanding Types of Policies,” on page 17 to learn more about the
different types of policies, then move on to Policies in Designer 3.0 to learn how to use the Policy
Builder.

3.4 Policy Types

There are several different types of policies you can define on both the Subscriber and Publisher
channels. Each policy is applied at a different step in the data transformation, and some policies are
only applied when a certain action occurs. For example, a Creation policy is applied only when a
new object is created.

The different policy types and their order of execution on the channel are:

¢ Section 3.4.1, “Event Transformation Policy,” on page 21

¢ Section 3.4.2, “Matching Policies,” on page 24

¢ Section 3.4.3, “Creation Policy,” on page 25

¢ Section 3.4.4, “Placement Policy,” on page 28

¢ Section 3.4.5, “Command Transformation Policy,” on page 31
¢ Section 3.4.6, “Schema Mapping Policy,” on page 34

¢ Section 3.4.7, “Output Transformation Policy,” on page 36

¢ Section 3.4.8, “Input Transformation Policy,” on page 38

20 Understanding Policies for Identity Manager 3.6

Figure 3-2 Order of Execution of the Policies

LDAP

LA
Directory

it

Scherna Mapping

Publisher

Event

Command
o f
[Sl Placement !
H i
E Matching Creation
E Creation Matching i
H i
! Placement E "o |
“*! command

Evert

Identity ¥Yault

3.4.1 Event Transformation Policy

Event Transformation policies alter the Metadirectory engine's view of the events that happen in the
Identity Vault or the connected application. The most common task performed in an Event
Transformation policy is custom filtering, such as scope filtering and event-type filtering.

Scope filtering removes unwanted events based on event location or an attribute value. For example,
removing the event if the department attribute is not equal to a specific value or is not a member of a
specific group.

Event-type filtering removes unwanted events based on event type. For example, removing all
delete events.

Examples:

+ “Scope Filtering: Example 1 on page 21
+ “Scope Filtering: Example 2” on page 22
¢ “Type Filtering: Example 1” on page 23
¢ “Type Filtering: Example 2” on page 23

Scope Filtering: Example 1

This example DirXML Script policy allows events only for users who are contained within the
Users subtree, are not disabled, and do not contain the word Consultant or Manager in the Title
attribute. It also generates a status document indicating when an operation has been blocked. To
view the policy in XML, see Event_Transformation Scopel.xml (../samples/
Event_Transformation Scopel.xml).

Understanding Types of Policies

21

../samples/Event_Transformation_Scope1.xml

22

<policy>
<rule>
<description>Scope Filtering</description>
<conditions>
<or>
<if-class-name op="equal">User</if-class—-name>
</or>
<or>
<if-src-dn op="not-in-subtree">Users</if-
src-dn>
<if-attr name="Login Disabled"
op="equal">True</if-attr>
<if-attr mode="regex" name="Title"
op="equal">.*Consultant.*</if-attr>
<if-attr mode="regex" name="Title"
op="equal">.*Manager.*</if-attr>
</or>
</conditions>
<actions>
<do-status level="error">
<arg-string>
<token-text>User doesn’t meet required
conditions</token-text>
</arg-string>
</do-status>
<do-veto/>
</actions>
</rule>
</policy>

Scope Filtering: Example 2

This DirXML Script policy vetoes modify operations on User objects except for modifies of objects
that are already associated. To view the policy in XML, see Event Transformation_Scope2.xml. (../
samples/Event_Transformation_Scope2.xml).

<policy>
<rule>
<description>Veto all operation on User except modifies of
already associated objects</description>

<conditions>
<or>
<if-class-name op="equal">User</if-class-name>
</or>
<or>
<if-operation op="not-equal">modify</if-
operation>
<if-association op="not-associated"/>
</or>
</conditions>
<actions>
<do-veto/>
</actions>
</rule>
</policy>

Understanding Policies for Identity Manager 3.6

../samples/Event_Transformation_Scope2.xml

Type Filtering: Example 1

The first rule of this example DirXML Script policy allows only objects in the Employee and
Contractor containers to be synchronized. The second rule blocks all Rename and Move operations.
To view the policy in XML, see Event_Transformation Typel.xml (../samples/
Event_Transformation Typel.xml).

<policy>
<rule>
<description>Only synchronize the Employee and Contractor
subtrees</description>
<conditions>
<and>
<if-src-dn op="not-in-
container">Employees</if-src-dn>
<if-src-dn op="not-in-
container">Contractors</if-src-dn>
</and>
</conditions>
<actions>
<do-status level="warning">
<arg-string>
<token-text>Change ignored: Out of scope.</token-text>
</arg-string>
</do-status>
<do-veto/>

</actions>
</rule>
<rule>
<description>Don’t synchronize moves or renames</description>
<conditions>
<or>
<if-operation op="equal">move</if-operation>
<if-operation op="equal">rename</if-
operation>
</or>
</conditions>
<actions>

<do-status level="warning">
<arg-string>
<token-text>Change ignored: We
don’t like you to do that.</token-text>
</arg-string>
</do-status>
<do-veto/>
</actions>
</rule>
</policy>

Type Filtering: Example 2

This DirXML Script policy blocks all Add events. To view the policy in XML, see
Event_Transformation Type2.xml (../samples/Event Transformation Type2.xml).

Understanding Types of Policies

23

../samples/Event_Transformation_Type1.xml
../samples/Event_Transformation_Type2.xml

<policy>

<rule>
<description>Type Filtering</description>
<conditions>
<and>
<if-operation op="equal">add</if-
operation>
</and>
</conditions>
<actions>

<do-status level="warning">
<arg-string>
<token-text>Change ignored: Adds are
not allowed.</token-text>
</arg-string>
</do-status>
<do-veto/>
</actions>
</rule>
</policy>

3.4.2 Matching Policies

Matching policies, such as Subscriber Matching and Publisher Matching, look for an object in the
destination data store that corresponds to an unassociated object in the source datastore. It is
important to note that Matching policies are not always needed or desired.

For example, a Matching policy might not be desired when performing an initial migration if there
are no preexisting or corresponding objects.

A Matching policy must be carefully crafted to ensure that the Matching policy doesn’t find false
matches.

¢ “Match by Internet E-Mail Address: Example” on page 24
¢ “Match by Name: Example” on page 25
Match by Internet E-Mail Address: Example

This example DirXML Script policy matches users based on the Internet E-mail Address. To view
the policy in XML, see Matchingl.xml (../samples/Matching1.xml).

<policy>
<rule>
<description>Match Users based on email address</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class—-name>
</and>
</conditions>
<actions>
<do-find-matching-object>
<arg-dn>
<token-text>ou=people, o=novell</token-text>
</arg-dn>

24 Understanding Policies for Identity Manager 3.6

../samples/Matching1.xml

<arg-match-attr name="Internet EMail Address"/>
</do-find-matching-object>
</actions>
</rule>
</policy>

Match by Name: Example

This example DirXML Script policy matches a Group object based on its Common Name attribute.
To view the policy in XML, see Matching2.xml (../samples/Matching2.xml).

<?xml version="1.0" encoding="UTF-8"?>

<policy>
<rule>
<description>Match Group by Common Name</description>
<conditions>
<or>
<if-class-name op="equal">Group</if-
class-name>
</or>
</conditions>
<actions>

<do-find-matching-object scope="subtree">
<arg-match-attr name="CN"/>
</do-find-matching-object>
</actions>
</rule>
</policy>

3.4.3 Creation Policy

Creation policies, such as the Subscriber Creation policy and the Publisher Creation policy, define
the conditions that must be met to create a new object. The absence of a Creation policy implies that
the object can be created.

For example, you create a new user in the Identity Vault, but you give the new User object only a
name and ID. This creation is mirrored in the eDirectory tree, but the addition is not immediately
reflected in applications connected to the Identity Vault because you have a Creation policy
specifying that only User objects with a more complete definition are allowed.

A Creation policy can be the same for both the Subscriber and the Publisher, or it can be different.

Template objects can be specified for use in the creation process when the object is to be created in
eDirectory.

Creation policies are commonly used to:

¢ Veto creation of objects that don’t qualify, possibly because of to a missing attribute.
¢ Provide default attribute values.

¢ Provide a default password.
Examples:

+ “Required Attributes: Example” on page 26
¢ “Default Attribute Values: Example” on page 27

Understanding Types of Policies

25

../samples/Matching2.xml

26

¢ “Default Password: Example” on page 27

+ “Specify Template: Example” on page 28

Required Attributes: Example

The first rule of this example DirXML Script policy requires that a User object contain a CN, Given
Name, Surname, and Internct EMail Address attribute before the user can be created. The second
rule requires an OU attribute for all Organizational Unit objects. The final rule vetoes all User
objects with a name of Fred. To view the policy in XML, see Createl.xml (../samples/Createl.xml).

<policy>
<rule>
<description>Veto if required attributes CN, Given Name, Surname
and Internet EMail Address not available</description>
<conditions>
<or>
<if-class-name op="equal">User</if-class-name>
</or>
</conditions>
<actions>
<do-veto-if-op-attr-not-available name="CN"/>
<do-veto-if-op-attr-not-available name="Given Name"/>
<do-veto-if-op-attr-not-available name="Surname"/>
<do-veto-if-op-attr-not-available name="Internet EMail

Address"/>
</actions>
</rule>
<rule>
<description>Organizational Unit Required Attributes</
description>
<conditions>
<or>

<if-class-name op="equal">Organizational Unit</
if-class-name>
</or>
</conditions>
<actions>
<do-veto-if-op-attr-not-available name="0U"/>
</actions>
</rule>
<rule>
<description>Conditionally veto guys named "Fred"</description>
<conditions>
<and>
<if-global-variable name="no-fred" op="equal">true</if-global-
variable>
<if-op-attr name="Given Name" op="equal">Fred</if-op-attr>
</and>
</conditions>
<actions>
<do-status level="warning">
<arg-string>
<token-text xml:space="preserve" xmlns:xml="http://www.w3.o0rqg/XML/
1998/namespace">Vetoed "Fred"</token-text>
</arg-string>

Understanding Policies for Identity Manager 3.6

../samples/Create1.xml

</do-status>
<do-veto/>
</actions>
</rule>
</policy>

Default Attribute Values: Example

This example DirXML Script policy adds a default value for a user’s Description attribute. To view
the policy in XML, see Create2.xml (../samples/Create2.xml).

<policy>
<rule>
<description>Default Description of New Employee</description>
<conditions>
<or>
<if-class-name op="equal">User</if-class-name>
</or>
</conditions>
<actions>
<do-set-default-attr-value name="Description">
<arg-value type="string">
<token-text>New Employee</token-text>
</arg-value>
</do-set-default-attr-value>
</actions>
</rule>
</policy>

Default Password: Example

This example DirXML Script policy provides creates a password value comprised of the first two
characters of the first name and the first six characters of the last name, all in lowercase. To view the
policy in XML, see Create3.xml (../samples/Create3.xml)

<policy>
<rule>
<description>Default Password of [2]FN+[6]LN</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-name>
<if-password op="not-available"/>
</and>
</conditions>
<actions>
<do-set-dest-password>
<arg-string>
<token-lower-case>
<token-substring length="2">
<token-op-attr name="Given
Name" />
</token-substring>
<token-substring length="6">
<token-op-attr name="Surname"/
>

</token-substring>
</token-lower-case>

Understanding Types of Policies

27

../samples/Create2.xml
../samples/Create3.xml

</arg-string>
</do-set-dest-password>
</actions>
</rule>
</policy>

Specify Template: Example

This example DirXML Script policy specifies a template object if a user’s Title attribute indicates
that the user is a Manager (contains “Manager”). To view the policy in XML, see Create4.xml (../
samples/Create4.xml).

<policy>
<rule>
<description>Assign Manager Template if Title contains
Manager</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-
name>
<if-op-attr name="Title" op="available"/>
<if-op-attr mode="regex" name="Title"
op="equal">.*Manager.*</if-op-attr>
</and>
</conditions>
<actions>
<do-set-op-template-dn>
<arg-dn>
<token-text>Users\Manager
Template</token-text>
</arg-dn>
</do-set-op-template-dn>
</actions>
</rule>
</policy>

3.4.4 Placement Policy

Placement policies determine where new objects are placed and what they are named in the Identity
Vault and the connected application.

A Placement policy is required on the Publisher channel if you want object creation to occur in the
Identity Vault. A Placement policy might not be necessary on the Subscriber channel even if you
want object creations to occur in the connected application, depending on the nature of the
destination data store. For example, no Placement policy is needed when synchronizing to a
relational database because rows in a relational database do not have a location or a name.

¢ “Placement By Attribute Value: Example 1 on page 28

¢ “Placement By Attribute Value: Example 2 on page 29

¢ “Placement By Name: Example” on page 30

Placement By Attribute Value: Example 1

This example DirXML Script policy creates the user in a specific container based on the value of the
Department attribute. To view the policy in XML, see Placement1.xml (../samples/Placement]1.xml).

28 Understanding Policies for Identity Manager 3.6

../samples/Create4.xml
../samples/Placement1.xml

<policy>
<rule>
<description>Department Engineering</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-name>
<if-op-attr mode="regex" name="Department"

op="equal">.*Engineering.*</if-op-attr>

</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Eng</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
<rule>
<description>Department HR</description>
<conditions>
<and>

<if-class-name op="equal">User</if-class-name>
<if-op-attr mode="regex" name="Department"
op="equal">.*HR.*</if-op-attr>
</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>HR</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
</policy>

Placement By Attribute Value: Example 2

This DirXML Script policy determines placement of a User or Organization Unit by the src-dn in
the input document. To view the policy in XML, see Placement2.xml (../samples/Placement2.xml).

<policy>
<rule>
<description>PublisherPlacementRule</description>
<conditions>
<or>
<if-class-name op="equal">User</if-class-
name>
<if-class-name op="equal">Organizational Unit</if-
class-name>
</or>
<or>
<if-src-dn op="in-subtree">o=people,

Understanding Types of Policies

29

../samples/Placement2.xml

30

o=novell</if-src-dn>

</or>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>

<token-text>People</token-text>
<token-text>\</token-text>
<token-unmatched-src-dn convert="true"/>

</arg-dn>
</do-set-op-dest-dn>
</actions>

</rule>
</policy>

Placement By Name: Example

This example DirXML Script policy creates the user in a specific container based on the first letter
of the user’s last name. Users with a last name beginning with A-I are placed in the container
Users1, while J-R are placed in Users2, and S-Z in Users3. To view the policy in XML, see
Placement3.xml (../samples/Placement3.xml).

<policy>
<rule>
<description>Surname - A to I in Usersl</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-
name>
<if-op-attr mode="regex" name="Surname"
op="equal">[A-I].*</if-op-attr>

</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Usersl</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
<rule>
<description>Surname - J to R in Users2</description>
<conditions>
<and>

<if-class-name op="equal">User</if-class-
name>
<if-op-attr mode="regex" name="Surname"
op="equal">[J-R].*</if-op-attr>
</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Users2</token-text>
<token-text>\</token-text>

Understanding Policies for Identity Manager 3.6

../samples/Placement3.xml

<token-op-attr name="CN"/>

</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
<rule>
<description>Surname - S to Z in Users3</description>
<conditions>
<and>

<if-class-name op="equal">User</if-class-
name>

<if-op-attr mode="regex" name="Surname"
op="equal">[S-Z].*</if-op-attr>

</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Users3</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
</policy>

3.4.5 Command Transformation Policy

Command Transformation policies alter the commands that Identity Manager is sending to the
destination data store by either substituting or adding commands. Intercepting a Delete command
and replacing it with Modify, Move, or Disable command is an example of substituting commands
in a Command Transformation policy. Creating a Modify command based on the attribute value of
an Add command is a common example of adding commands in a Command Transformation policy.

In the most general terms, Command Transformation policies are used to alter the commands that
Identity Manager executes as a result of the default processing of events that were submitted to the
Metadirectory engine.

It is also common practice to include policies here that do not fit neatly into the descriptions of any
other policy.

* “Convert Delete to Modify: Example” on page 31
¢ “Create Additional Operation: Example” on page 32

+ “Setting Password Expiration Time: Example” on page 33

Convert Delete to Modify: Example

This DirXML Script policy converts a Delete operation to a Modify operation of the Login
Disabled attribute. To view the policy in XML, see Comannd1.xml (../samples/Command1.xml).

<policy>
<rule>
<description>Convert User Delete to Modify</description>
<conditions>
<and>

Understanding Types of Policies

31

../samples/Command1.xml

32

<if-operation op="equal">delete</if-operation>
<if-class-name op="equal">User</if-class-name>
</and>
</conditions>
<actions>
<do-set-dest-attr-value name="Login Disabled">
<arg-value type="state">
<token-text>true</token-text>
</arg-value>
</do-set-dest-attr-value>
<do-veto/>
</actions>
</rule>
</policy>

Create Additional Operation: Example

This DirXML Script policy determines if the destination container for the user already exists. If the
container doesn’t exist, the policy creates an Add operation to create the Container object. To view
the policy in XML, see Command2.xml (../samples/Command2.xml).

<policy>
<rule>
<description>Check if destination container already exists</
description>
<conditions>
<and>
<if-operation op="equal">add</if-operation>
</and>
</conditions>
<actions>

<do-set-local-variable name="target-container">
<arg-string>
<token-dest-dn length="-2"/>
</arg-string>
</do-set-local-variable>
<do-set-local-variable name="does-target-exist">
<arg-string>
<token-dest-attr class-
name="0OrganizationalUnit" name="objectclass">
<arg-dn>
<token-local-variable
name="target-container"/>
</arg-dn>
</token-dest-attr>
</arg-string>
</do-set-local-variable>
</actions>
</rule>
<rule>
<description>Create the target container if necessary</description>
<conditions>
<and>
<if-local-variable name="does-target-exist"
op="available"/>
<if-local-variable name="does-target-exist" op="equal"/
>
</and>

Understanding Policies for Identity Manager 3.6

../samples/Command2.xml

</conditions>
<actions>
<do-add-dest-object class-name="organizationalUnit"
direct="true">
<arg-dn>
<token-local-variable name="target-
container"/>
</arg-dn>
</do-add-dest-object>
<do-add-dest-attr-value direct="true" name="ou">
<arg-dn>
<token-local-variable name="target-
container"/>
</arg-dn>
<arg-value type="string">
<token-parse-dn dest-dn-format="dot"
length="1" src-dn-format="dest-dn" start="-1">
<token-local-variable name="target-
container"/>
</token-parse-dn>
</arg-value>
</do-add-dest-attr-value>
</actions>
</rule>
</policy>

Setting Password Expiration Time: Example

This DirXML Script policy modifies an eDirectory user’s Password Expiration Time attribute. To
view the policy in XML, see Command3.xml (../samples/Command3.xml).

<?xml version="1.0" encoding="UTF-8"?>
<policy xmlns:jsystem="http://www.novell.com/nxsl/java/java.lang.System">
<rule>
<description>Set password expiration time for a given interval
from current day</description>
<conditions>
<and>
<if-operation op="equal">modify-password</if-
operation>
</and>
</conditions>
<actions>
<do-set-local-variable name="interval">
<arg-string>
<token-text>30</token-text>
</arg-string>
</do-set-local-variable>
<do-set-dest-attr-value class—-name="User" name="Password
Expiration Time" when="after">
<arg-association>
<token-association/>
</arg-association>
<arg-value type="string">
<token-xpath
expression="round (jsystem:currentTimeMillis () div 1000 + (86400*Sinterval))"/>

Understanding Types of Policies

33

../samples/Command3.xml

</arg-value>
</do-set-dest-attr-value>
</actions>
</rule>
</policy>

3.4.6 Schema Mapping Policy

Schema Mapping policies hold the definition of the schema mappings between the Identity Vault
and the connected system.

The Identity Vault schema is read from eDirectory. The Identity Manager driver for the connected
system supplies the connected application’s schema. After the two schemas have been identified, a
simple mapping is created between the Identity Vault and the target application.

After a Schema Mapping policy is defined in the Identity Manager driver configuration, the
corresponding data can be mapped.

It is important to note the following:

¢ The same policies are applied in both directions.

¢ All documents that are passed in either direction on either channel between the Metadirectory
engine and the application shim are passed through the Schema Mapping policies.

See “Defining Schema Map Policies” in Policies in Designer 3.0 for administrative information.

+ “Basic Schema Mapping Policy: Example” on page 34
¢ “Custom Schema Mapping Policy: Example” on page 35

Basic Schema Mapping Policy: Example

This example DirXML Script policy shows the raw XML source of a basic Schema Mapping policy.
However, when you edit the policy through Designer for Identity Manager, the default Schema
Mapping editor allows the policy to be displayed and edited graphically. To view the policy in XML,
see SchemaMap1.xml (../samples/SchemaMap1.xml).

<?xml version="1.0" encoding="UTF-8"?><attr-name-map>
<class-name>
<app-name>WorkOrder</app-name>
<nds-name>DirXML-nwoWorkOrder</nds-name>
</class-name>
<class-name>
<app-name>PbxSite</app-name>
<nds-name>DirXML-pbxSite</nds-name>
</class-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>PBXName</app-name>
<nds-name>DirXML-pbxName</nds-name>
</attr-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>TelephoneNumber</app-name>
<nds-name>Telephone Number</nds-name>
</attr-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>LoginName</app-name>
<nds-name>DirXML-pbxLoginName</nds-name>

34 Understanding Policies for Identity Manager 3.6

../samples/SchemaMap1.xml

</attr-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>Password</app-name>
<nds-name>DirXML-pbxPassword</nds-name>
</attr-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>Nodes</app-name>
<nds-name>DirXML-pbxNodesNew</nds-name>
</attr-name>
</attr-name-map>

Custom Schema Mapping Policy: Example

This example DirXML Script policy uses DirXML Script to perform custom Schema Mapping. To
view this policy in XML, see SchemaMap2.xml (../samples/SchemaMap2.xml).

<?xml version="1.0" encoding="UTF-8"?><policy>
<rule>
<l--
The Schema Mapping Policy can only handle one-to-one mappings.
That Mapping Policy maps StudentPersonal addresses.
This rule maps StaffPersonal addresses.
-—>
<description>Publisher Staff Address Mappings</description>
<conditions>
<and>
<if-local-variable name="fromNds"
op="equal">false</if-local-variable>
<if-xpath op="true">@original-class-name =
