opentext-

GroupWise* Software Developer Kit
Custom Third-Party Object (C3PO™)

April 2024

Legal Notices

Copyright 1993 - 2024 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as may be set
forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

Contents

About This Guide 7
1 Overview 9
C3PO FUNCHiONalitYo e e e 9
C3PO Functionality and the Object APl i e e e 10
EMpPty ObjeCtS . ottt e 10

(0 1 N [o1 7=Y o - o] Y- 10

INR I ANCE . . o oot e e e 10

C3PO Instance Management it e 11
AN U S . vt ittt e e e e 11
Thread Storage ArChiteCtUre. it e e et et et e e et 11

C3PO RegiStrationo e 12
G W MESSAGE . . . ittt e e e 12

G L L ENT ottt e e e e e e e 13
Registry Definitionot e e 13

(2 C=Tolo o I 1Y/ o T=IN = 2o T Vo 1 41 Y/Z 14
2 Tasks 17
How to Wrrite @ C3P O . ..o e e e e e 17
MBS S a8 Ty DS . . o ottt ettt e et e e e e e e 17

OLE COM SV T . o ottt e et e e et e e e e e et et e e e e e 18
Properties and Methods o e 19
CUSEOM ICONS et e e e e e e e 20

C3P O EVBNS . o ottt e 21
Adding Menus, Menu Items, Buttons and Predefined Commands........................... 21

Hints for the Developer e e e e e e 27
Modeless Dialog BOXES . ..o v ittt e e e e 27
Identification of Menu Items, Submenus, and Separators.ccvuiiiiin .. 27
Refreshing the Client User Interfaceo it i et 27

C3PO Sample: the Customer Tracking Application.t i 28
Creating the Customer-Tracking C3PO with Delphi. e 28
Creating the Customer-Tracking C3POWith C++. i 32

3 Tools 41
Starting the Wizard o e e e 41
Defining Custom Message Classes. oottt et et e et e e e e e e 43
USING EVENTS . .ttt et e ettt e e e e e e 45
CUSTOMIZING MBNUS. . . oottt et et et et et et et et e e e 46
Customizing the Toolbar. e e e e 49
Customizing ConteXt MENUSt it e e et et et e e e e e 51
USING COMMANDS . . o\ttt et ittt et e e e e e e e e et e e e e e et e e 52
Completing the C3P Oo e e e e e e e 54
USINg VisUal BasiC.BXB. . . .ttt ittt et e e e e e 55
NEW FIlES .ot e e e e 56

Contents

4

Creating an EXE File i e e e e e e e 56

Registering YOUr C3P 0. . .. i e e e e e 56
Testing YOUr C3P 0 ..o i e e e e e e e e e 57
Unregistering a C3P O ... i e e e e 57
SamMPlEe C3P O . . e e 57

Using Visual Basic .dll e e 58
NEW FilES ot e e e e e 58
Creating a DLL File ..o e e e e 58
Registering Your C3PO with Windows ot e e 59
Registering Your C3PO With GroUpWIiseottt e et 59
Testing YOUr C3PO . .ottt e e e e e e, 59
Unregistering a C3PO with Windowsot e i 60
Unregistering Your C3PO with GroupWisettt e e e 60
SAMPIE C3P O . ettt e e e e e 60

Using Delphi .dll ..o e 61
NEW FIlES .ttt e e e 61
Creating a DLLFile ... i e e e e e e 61
Registering YOUr C3P 0. . ..ottt e e e e e e e e 61
TestiNg YOUEr C3P O ..ot e e e e e e e e e e e 62
Unregistering @ C3P 0 ... i e e e e 62
SAMPIE C3P O .ttt 62

USiNg Delphi c8Xe. . ..ottt e e e e 63
NEW FIlES ottt e e e e e e 63
Creating an .EXE Fileot e e e e e e e 63
Registering YOUr C3P 0. . .ottt e e e e e 64
TestiNg YOUIr C3P 0 .ot e e e e e e e e e e e e e 64
Unregistering YoUr C3P 0. . .. u ittt i e e e e e e e e 64
SAMPIE C3P O .ot e 64

USING G ottt e e e et et et et e e e e e e e e e 65
NEW FIlES .t e e e e 65
Standard Files. . ..ot e e e 65
Creating a DLLFile ... e e e e e e e 66
Registering YOUr C3P 0. . .. i e e e e e e e e 67
Testing YOUr C3P 0 ..o i e e e e e e e e e e 67
Unregistering a C3P O ... i e e e e 67
SaMPlE C3P O . . e e 67

4 Reference 69
(@] o =T 3 70
AttachmentControl e 71

L0 o 0 1= V=T P 72

C3P 0SBVl ot e e 74
CalledPhoneNUM DN . . .o e e e e e e e 75
CalledPhoneNUMDErSot e e e e e e e e 76

Gl Nt At .« oottt e e 77
ClientState Implementation (Subclass)t i e e 79
ComMaAaNAFaCTOry ...ttt e 81
EVENEM ONI O, .o e e 84

GW COMMaANd. .« ottt e e e e e e e e 85

GW VN, L e e 87

GWIM BNU . e e e e e 88
GWIMBNUACKION . . e e e e e e e e e e e 89

GWIM ENUI M . . e e e e e 90

Contents

GW M BNUI M. .ttt e e e e e e e e e e e e e e e e e e e 91

GWIM ENUS PRI O . . o ittt et et e e e 93
GWT00IDar . . e 94
GWT 00 bar e m . .o e e 95
GWT00lbar e m 2 . . . e 97
GWT00Ibar e mMS . . ot e e 98
[ole]] o= Tl o] V28 99
MeEsSageBloCKo e e 100
PresenCERaCtOry ..ot e e e e e 101
PrES N .« e 102
AVailable CoNteXtS. . . .ot e e 104
Pre-Built Command ID ENCOAINGottt e e e e e 105
Predefined GroupWise Client Identifiers i et i e 105
Identifiers and the GroupWise SDK i e e e 105
C3PO Data Type Related Identifiersot e e et 105
EVENES . o e 106
Sample AppPliCatioNso e e e 107
C3P O PO T . . ettt et e e e e 107
Customer Tracking (C++and Delphi)o e 108
2 o Yo 110
GW Notes (Delphi). . ..o 110
K BN o e e 111
Tip Of the Day. ... e e e 111

Contents

5

About This Guide

GroupWise C3PO (Custom 3rd-Party Object) is an OLE COM Server object that is used to extend the
GroupWise environment. The extensions take various forms, ranging from implementing custom
record types (objects) in the GroupWise data store to modifying the GroupWise browser or toolbar
functionality. A C3PO can be developed by using C++, Delphi, or Visual Basic.

IMPORTANT: Unless otherwise marked, the features in GroupWise C3PO work with GroupWise 8
and later versions.

This guide contains the following sections:
+ Chapter 1, “Overview,” on page 9
¢ Chapter 2, “Tasks,” on page 17
¢ Chapter 3, “Tools,” on page 41
+ Chapter 4, “Reference,” on page 69

Audience

This guide is intended for GroupWise developers.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comment feature at the bottom of each page of the
online documentation and enter your comments there.

Additional Documentation

For additional GroupWise SDK documentation, see the GroupWise Web site.

About This Guide

7

http://www.novell.com/documentation/groupwise/

8

About This Guide

Overview

GroupWise Custom 3rd-Party Object (C3PO) software combines and replaces the older and less
functional notion of custom messages and custom commands.

A C3PO can make the following modifications to the user interface:

+ Add new menus, menu items, and separators to existing menus.
+ Add new buttons, with user-defined bitmaps, to the toolbar.

+ Define new custom message types with their own custom icons.

The ability to modify the user interface allows a C3PO to appear as an integrated feature of
GroupWise.

A C3PO can also intercept a number of GroupWise commands and events, allowing the user to
customize the handling of these commands and events.

This section covers the following topics:

¢ “C3PO Functionality” on page 9
+ “C3PO Registration” on page 12

+ “Record Type Taxonomy” on page 14

C3PO Functionality

One way to run a C3PO is to select the menu item or toolbar button that was added by the C3PO. A
C3PO can also be registered to run when an existing menu item or toolbar button is selected, thus
allowing the C3PO to enhance or replace the normal functionality. In addition, you can trigger a
C3PO to run when GroupWise starts, when GroupWise ends, or when a new item arrives in the
mailbox.

Each object in the GroupWise data store (mail message, appointment, task) is theoretically a C3PO.
By installing a C3PO against the default message class names, customized C3PO behavior can be
invoked. For example, arrival of all items in the GroupWise data store can be monitored by installing
a C3PO under the root item message class. Multiple handlers for a given message class are allowed.
However, the order of execution is dependent on the order of handler installation in the Windows
registry.

This section covers the following topics:
¢ “C3PO Functionality and the Object API” on page 10
+ “Empty Objects” on page 10
¢ “C3PO Interfaces” on page 10
+ “Inheritance” on page 10

¢ “C3PO Instance Management” on page 11

Overview

10

+ “Languages” on page 11

+ “Thread Storage Architecture” on page 11

C3PO Functionality and the Object API

A C3PO accesses and manipulates the GroupWise data store through the GroupWise Object API. The
combination provides a powerful framework to open the GroupWise system to third-party
development.

C3PO classes are expressed in the GroupWise Object APl as the MessageClass property on the
message object and its derivatives. Every object in the GroupWise data store has a message class
field, which is a string. The object class ties an instance of a C3PO back to the associated object
handler hierarchy.

Empty Objects

A C3PO does not need to generate any data records in the GroupWise data store. This allows the
C3PO to fully participate in menu modifications, toolbar negotiations, chaining of command
extensions, and so forth, without requiring the overhead of managing instance data. Hence, a single
set of extensions (the C3PO specification) can be used for client extensions. Although it is legal to
register C3PO implementations that do not generate instance records under other headings, they
are typically registered under GW.CLIENT.

C3PO Interfaces

A C3PO is a COM Server that implements the appropriate interfaces to achieve a desired purpose.
The C3PO specification defines the prototypes of functions and methods. The C3PO writer must
write the code to implement these methods. This is distinct from other APIs, which supply a library
of functions that may be called by the user.

The C3PO specification defines the interfaces that a C3PO can choose to support. A C3PO is required
to support only those interfaces that are necessary to implement the desired behavior. The
GroupWise client determines which interfaces a C3PO supports by calling the Query interface.
Minimizing the set of supported interfaces can improve performance. Because excessive processing
while adding items to the GroupWise menus can hinder the perceived performance, the C3PO writer
should take care not to disturb system processing beyond reasonable limits.

The C3PO interfaces are applicable to remote applications. However, the menu and toolbar
modifications cannot be made from a remote application unless the C3PO writer performs custom
marshalling using the raw menu and toolbar handles which will be exposed.

Inheritance

C3PO software supports the notion of inheritance. That is, if class Msg.Foobar exists (along with the
requisite object handler), the message class Msg.Foobar.Bif represents specialized behavior of
Msg.Foobar. For example, when an action is attempted against a database record of type
Msg.Foobar.Bif, the associated handler is passed contextual information (COM interfaces) that allow

Overview

it to delegate behavior to ancestor classes. Individual C3POServers are responsible for delegation
semantics. The C3POManager code (C3POManager) allows the C3POServer to build various
enumerators for proper aggregation and delegation semantics.

The inheritance scheme is substantially (though not fully) realized. Each C3PO component can
navigate the tree of data types and use the C3PO facilities. This is achieved through use of the
C3POManager interfaces coupled with appropriate aggregation and delegation.

C3PO Instance Management

Each object in the GroupWise data store has a message class field, which is a string. The Object Class
ties a C3PO instance to the associated object handler hierarchy. The C3PO system supports the
multi-server concept, which allows multiple C3POServers to register under a single C3PO name.
However, certain C3PO operations can only operate on a single server, in which case the first server
registered under the C3PO name is invoked.

Languages

This optional key represents a series of language designations. The languages are precisely those
supported by the component, which implies that multilingual support is accomplished by mapping
from a single originating component into multiple languages. Presence of this section implies that
the component can operate only in the target languages. Because Language Context ID (LCID) of O
means any language, the restriction can be released by adding this key.

Each language is specified by a subkey, which is the LCID that is supported.

Thread Storage Architecture

When you are loading multiple C3POs as in-process servers (DLLs, rather than EXEs), you should be
aware of an architectural limitation that is imposed by the operating system on the number of
Thread Local Storage (TLS) indexes that are available. Since both the GroupWise Client and C3POs
draw upon the same TLC pool and the GroupWise Client already uses a large number of these
indexes (depending on what is being activated in the client), the TLS index limit might be exceeded
when too many C3POs are added to the client.

The exact number of TLS indexes that are required by a C3PO can vary widely, depending on the
language that is used to create the C3PO, what operations the C3PO performs, and other factors.

The following are TLS index limits for various operating systems:

Operating System TLS Index Limit
Windows 95 and Windows NT 4.0 64

Windows 98 and Windows ME 80

Windows 2000 and Windows XP 1088

Because of the larger limit, TLS indexes are never a problem for Windows 2000 or Windows XP. Note
also that the GroupWise 6.0 client uses slightly less indexes than GroupWise 5.5.EP.

If the TLS limit is exceeded, you might see a number of different runtime error messages.

Overview 11

12

C3PO Registration

Each C3PO must appear in the Windows system registry under a series of names that identify the
C3PO to the GroupWise environment. Information stored in the registry includes ProgID
identifications for C3POServers, hints about how the C3PO is to be used, and identification
information. This information registers the C3PO with the GroupWise environment.

The registration naming system identifies a type relationship to GroupWise and is used to support
inheritance of behavior. Names in the system are of the form GW.Classtype.Subtype. Classtype
identifies the category of C3PO being registered (see GW.CLIENT). Subtype is used to relate one
C3PO to another for purposes of supporting inheritance of behavioral semantics.

As each C3PO is registered with GroupWise, an association between the C3POServer and a particular
type name is made. It is possible to register more than one C3PO at a specific naming point, but be
careful when doing so because many operations have meaning only when bound to a single C3PO
instance. To guarantee correct behavior, GroupWise will bind to the first registered C3PO in those
instances. It is generally preferable to use subtypes or COM TreatAs mechanisms rather than
registering more than one C3PO at a specific naming point.

The C3P0O naming system has some restrictions. Naming is accomplished by appending a period (.) to
an existing type and including an extension, which indicates a subtype. There are fixed root names
under which names can be registered. Only one of these root names can be extended by subtyping.
The root names available for registration are GW.MESSAGE and GW.CLIENT.

This section covers the following topics:

+ “GW.MESSAGE” on page 12
¢+ “GW.CLIENT” on page 13
+ “Registry Definition” on page 13

GW.MESSAGE

C3PO software registered under this root name are intended to implement behavior of specific
record types. That is, the C3PO intends to create, display, send, or manipulate individual records.

Each item must be a subtype of one of the following:

GW.MESSAGE.MAIL
GW.MESSAGE.APPOINTMENT
GW.MESSAGE.TASK
GW.MESSAGE.NOTE
GW.MESSAGE.PHONE
GW.MESSAGE.DOCREF

In addition, the following are two subtypes of GW.MESSAGE.MAIL that already exist in GroupWise:

GW.MESSAGE.MAIL.Internet
GW.MESSAGE.MAIL.NGW.DISCUSS

Overview

GW.CLIENT

This root name indicates that the C3PO wants to implement some type of global behavior. Typically
this is global menu modification, startup processing, or processing of delivery for all object types.

The following subtypes are allowed:

Subtype

Description

GW.CLIENTWINDOW.ATTACHVIEWER
GW.CLIENTWINDOW.BROWSER
GW.CLIENTWINDOW.CALENDAR

GW.CLIENTWINDOW.DOCUMENTLIST

GW.CLIENTWINDOW.FINDRESULTS
GW.CLIENTWINDOW.PROPERTIES
GW.CLIENTWINDOW.QUICKVIEWER

GW.CLIENTWINDOW.ATTACHEMENT
CONTROL

GW.CLIENTWINDOW.ATTACHMENT
CONTROL.EDITABLEFILE

GW.CLIENTWINDOW.ATTACHMENT
CONTROL.STATICFILE

Implements behavior local to the attachment viewer.
Implements behavior local to the browser window.
Implements behavior local to calendar windows.

Implements behavior local to a document version list
window.

Implements behavior local to a query results window.
Implements behavior local to a properties window.
Implements behavior local to the quick viewer window.

Implements behavior when you right click in an attachment
window (in GroupWise 5.5.EP and GroupWise 6.0).

Implements behavior when you right click in an outgoing
attachment to a message (in GroupWise 5.5.EP and
GroupWise 6.0).

Implements behavior when you right click on an incoming
attachment to a message (in GroupWise 5.5.EP and
GroupWise 6.0).

For example, to register a context menu item for the calendar, the C3PO must be registered under

GW.CLIENTWINDOW.CALENDAR.

Registry Definition

GroupWise refers to these registry entries to invoke the C3PO handlers. All registry entries appear as

subkeys of the following entry:

HKEY_LOCAL_MACH NE\ Sof t war e\ Novel | \ G oupW se\ 5. 0\ C3PO\ Dat aTypes\

Beneath this key appear entries for supported C3PO contexts, such as:

...\ GW MESSACE. MAI L ...\ GW MESSAGE. MAI L. X ...\ GW CLI ENT. W NDOW

Each registry section for a specific context contains subkeys used for naming the object server. The
subkeys at this level are the PROGIDs of the COM servers for the C3PO. The value of each subkey is a

description of the C3POServer, such as:

...\ GW MESSAGE. MAI L. X\ Vendor . Cbj Nane. Version = "My Description"

...\ GW MESSAGE. MAI L. X\ Vendor 2. bj Nane2. Version = "Your Description”

Overview 13

14

These examples indicate that Vendor.ObjName.Version is the PROGID of the COM server supporting
the C3PO0. Beneath each PROGID key are further subkeys that clarify the use of the C3POServer. The
subkeys are Objects and Events.

Objects

This subkey is required. It identifies the objects that are supported by the C3PO. This is an
optimization to allow loading of the C3PO to be deferred. This is also a multi-valued key. Each value
names a particular object that is supported by the C3POServer, such as:

\ Progl D\ Ovj ects = "ComandFactory" = "l conFactory"

Events

This subkey identifies the events for which that the C3PO is interested in receiving notification
messages. This is a multi-valued key. Each value names a particular event, such as:

\Progl D\Events = "OnDel i very" = "OnReady"” = "nShutdown" = "OnOverfl ow' =
<Per si stent Conmand | D>

Record Type Taxonomy

The GroupWise environment (both client and data-access components) binds to the registered C3PO
providers as the support mechanism for custom data types. The data types are implemented via the
data store in GroupWise.

Figure 1-1 C3PO Object Class Hierarchy

'Roct" GWS
Ohject Type

Object Class: "GW.Message"

Mail . Phone Document
Messages Tasks Appoirtments Motes Messages Managemert

Chject Class: "GW.Message Appointment >

KX

Object Class: "GW.Message Appointment.

HEA X¥.B XRC

(Appropriate Object Classes)

As illustrated, each C3PO data type is associated with a specific object class designation. These
object classes are hierarchical in nature, representing a subtyping relationship. All behavior of an
object, whether predefined, subclassed, or a newly instantiated type, is fully inheritable. For
example, new methods introduced for new objects in the data store are fully inherited by any
subtyped object.

Overview

Aggregations, delegation, and use of ancestor methods for implementation are fully supported. This
is achieved by each C3PO writer having access to the instances of the C3POServers for supertypes.
The C3PO writer is thereby free to invoke ancestor methods for any reason, such as delegation,
aggregation, and behavior modification.

Overview 15

16 Overview

Tasks

This section contains instructions on how to write a GroupWise Custom 3rd-Party Object (C3PO),
hints for developers, and the C3PO Customer Tracking Application sample.

+ “How to Write a C3PO” on page 17
+ “Hints for the Developer” on page 27

¢ “C3PO Sample: the Customer Tracking Application” on page 28

How to Write a C3PO

GroupWise Custom 3rd-Party Object (C3PO) allows you to alter the GroupWise client user interface.

You can add buttons to the toolbar, add menus and menu items to a menu, and create custom
functionality for predefined client commands, such as Open or Compose. There are over 20
predefined GroupWise commands whose functionality you can either replace or enhance.

This section provides generic instructions on how to write C3PO. You can also use the “Tools” on
page 41 section to create your C3PO.

+ “Message Types” on page 17

+ “OLE COM Server” on page 18

+ “Properties and Methods” on page 19

¢ “Custom Icons” on page 20

¢ “C3PO Events” on page 21

+ “Adding Menus, Menu Items, Buttons and Predefined Commands” on page 21

Message Types

GroupWise has six message types. Each message type is defined as GW.MESSAGE. The types are:

GW.MESSAGE.APPOINTMENT
GW.MESSAGE.DOCUMENTREFERENCE
GW.MESSAGE.MAIL
GW.MESSAGE.NOTE
GW.MESSAGE.PHONE
GW.MESSAGE.TASK

In addition, GroupWise defines the following two subtypes of the GW.MESSAGE.MAIL context:

GW.MESSAGE.MAIL.Internet
GW.MESSAGE.MAIL.NGW.DISCUSS

Tasks

17

18

Tasks

Your C3PO can subclass any of the GroupWise message types to create a new custom class of your
own. To do this, you pick one of the existing classes that fits the class you wish to create, then you
subclass that class. For example:

GW.MESSAGE.NOTE.MYMESSAGE

You can use any name in place of MYMESSAGE. A new message of this type will have all the
properties of a NOTE plus any others you give it.

Your C3PO can associate a custom icon with your custom class so that the user can distinguish
between your custom message and others. Your C3PO can tell the C3PO Manager that you wish to
be notified of certain events that occur. You can be notified of startup (eGW_CMDEVTID_READY),
shutdown (eGW_CMDEVTID_SHUTDOWN), delivery of a certain message
(eGW_CMDEVTID_DELIVERY), or overflow (eGW_CMDEVTID_OVERFLOW) conditions.

To summarize, with a C3PO you can create a custom message class of
GW.MESSAGE.NOTE.MYMESSAGE and take control of the Open function of that class. Then, any time
a user opens a message of your class, your C3PO will handle the Open.

You can control as much or as little of the manipulation of your custom class as you wish. You can
add a menu item to File > New in the browser that, when selected, calls your C3PO to create a new
message of your custom class type. Your C3PO can be seamlessly integrated into the GroupWise
client user interface.

OLE COM Server

A C3PO is an OLE COM server. You can write a C3PO using any language that supports OLE or COM.
But because a C3PO is a server, it makes writing a C3PO a little different than using most other APIs.
You must create objects that the GroupWise C3PO Manager is looking for and that perform
functions required by the manager.

The first C3PO OLE COM server object is C3POServer. It is the only object that is required.
In Visual Basic you create a C3POServer class with the following properties and methods:

Public Property Get CommandFactory() As CommandFactory
Public Property Get Description() As String

Public Property Get EventMonitor() As EventMonitor

Public Property Get IconFactory() As IconFactory

Public Function CanShutdown() As Boolean

Public Sub Delnit()

Public Sub Init(objGWManager As Object)

In Delphi you define a class and then instantiate it. The class would look like the following:

C3PCServer = cl ass(TAut oOoj ect)
private

{ Private declarations }

function GetCndFact: Variant;
function GetDescription : string;
function GetEventMnitor : variant;
function GetlconFactory : variant;

aut omat ed

end;

{ Automated declarations }

property CommandFactory : Variant read GetCrdFact;
property Description: string read GetDescription;
property EventMonitor: variant read Get Event Monitor;
property lconFactory: variant read GetlconFactory;
function CanShutdown: Td eBool ;

procedure Delnit;

procedure Init(Minager: variant);

Make sure that you create the routines associated with the new class.

Properties and Methods

The following are C3PO methods:

Method

Description

Init

CanShutdown

Delnit

This is called first by the C3PO Manager. The main purpose is to pass in the Manager
object. One of the properties of the Manager object is the ClientState object, which
object is used to find out the current state of the GroupWise client.

This is called when the GroupWise client needs to shut down. You need to return a TRUE
or FALSE. You are telling the Manager if it is all right to shut down. If you return a TRUE
value, the Client will proceed with the shutdown. If you return a FALSE value, the
Manager will poll you until you return a TRUE value.

This is called to allow the C3PO to release any holds that still exist on any objects. Delnit
terminates the relationship of the C3PO Manager with the C3PO.

The following are C3PO properties:

Tasks

19

Property Description

Description This contains a short description of the C3PO.

CommandFactory This contains the CommandFactory object. If this property is NULL, the Manager
assumes that the C3PO does not want to have any CommandFactory functionality.
CommandFactory is the object that allows you to add menus and menu items, add
buttons to the toolbar, or take over predefined GroupWise commands.

EventMonitor This contains the EventMonitor object. If this property is NULL, the Manager
assumes that the C3PO does not want to have any EventMonitor functionality.
EventMonitor allows the C3PO to handle events such as Ready, Shutdown, Delivery,
and Overflow.

IconFactory This contains the IconFactory object. If this property is NULL, the Manager assumes
that the C3PO does not want to have any IconFactory functionality. IconFactory
allows the C3PO to associate icons with custom message classes.

Custom Icons

Suppose you want to have a custom icon associated with your custom message class. You would
create an IconFactory object and return it to the Manager when it calls your Get IconFactory
function. The only method in the Getlcons object is the Getlcons method. In Visual Basic it would
look like the following:

Public Sub Getlcons(sGADbj O ass As String,
psGN conFile As String,
pl GAUnOpenl con As Long,

pl GAOpenl con As Long)

psGN conFile = "icons.dl " " set the icon file name
pl GAUnOpenl con = 1 ' set the unopen icon index
pl GAOpenl con = 0 ' set the open icon index

The variable passed in sGWObjClass is a string that is the class of the message that the client is going
to paint. You must do the following:
1 Check to make sure it is the class you want to have your new icon associated with.

2 Pass back to the Manager the full path name of the .EXE or .DLL that contains the icon
information for your custom icon.

3 Define 16x16 and 32x32 icons.

4 Return the index of the icon you want associated with both opened and unopened messages.

You also need to register your C3PO so that the Manager knows you want to have a custom icon
associated with a custom message class. You need to register under:

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ Novel I\ Gr oupW se\ 5. 0\ C3PQO\ Dat aTypes\
GW MESSAGE. MAI L. NEWCLASS\ MYC3PO\ bj ect s]

GW.MESSAGE.MAIL.NEWCLASS is the name of the new class that you want to have your icon
associated with. MYC3PO is the name of your C3PO. The string value you need for this key is
IconFactory.

20 Tasks

C3PO Events

To set up your C3PO to handle GroupWise events, create an EventMonitor object and pass it back to
the Manager in your GetEventMonitor function. EventMonitor has only one method: Notify. In
Visual Basic it would look like the following:

Public Sub Notify(sGAContext As String, obj GAEvent As Object)
Dimres
Sel ect Case obj GNEvent. Persistent!|D
Case eGW CVDEVTI D_READY
' Check for Ready Event
"This is were you put Ready code.
res = MsgBox(obj GAEvent. Persistentl D, vbOKOnly, sGAContext)
Case eGW CVDEVTI D_SHUTDOAN
' Check for Shutdown Event
"This is were you put Shutdown code.
res = MsgBox(obj GAEvent. Persistentl D, vbOKOnly, sGAContext)
Case eGW CVDEVTI D_OVERFLOW
' Check for Overfl ow Event
"This is were you put Overflow code.
res = MsgBox(obj GAEvent. Persistentl D, vbOKOnly, sGAContext)
Case eGW CMVDEVTI D_DELI VERY
' Check for Delivery Event
"This is were you put Delivery code.
I f sGMContext = "GN MESSAGE. MAI L. XXXX" Then
" Check for correct context
res = MsgBox(obj GAEvent. Persistent| D, vbOKOnly,

sGWCont ext)
End If
Case El se
MsgBox "Unsupported Case"
End Sel ect

End Sub
This Notify routine handles all four possible C3PO events: Ready, Shutdown, Overflow, and Delivery.

Notice in the preceding Visual Basic example that Notify passes in sGWContext, which is the class of
the message that was delivered. Notify also passes in the objGWEvent object, which has a
PersistentID property that tells you which events your C3PO is being called for, so it can handle it. For
delivery, the context is also checked to make sure it is the desired message class.

Adding Menus, Menu Items, Buttons and Predefined Commands

The CommandFactory object handles these functions. You must create a CommandFactory object
and return it in your GetCommandFactory function in the C3POServer object. The CommandFactory
object has six methods you need to support. They are:

Tasks 21

22

Tasks

Public Function Init(l GALCI D As Long) As Long

Publ i c Functi on Want Command(sGAContext As String,
sGWPersistentI D As String)
As Bool ean

Publ i ¢ Function Buil dCommand(sGAContext As String,
sGAPersistentI D As String,
obj GABaseCommand As Obj ect,
obj GAPar anet er As (bj ect)
As (bj ect

Publ i c Function Custom zeMenu(sGAContext As String,
obj GAvenu As (nj ect)
As Bool ean

Publ i c Sub Cust om zeCont ext Menu(sGACont ext As String,
obj GMENU As (bj ect)

Publ i c Function Custom zeTool bar (sGACont ext As String,
obj GATool bar As (bj ect)
As Bool ean

Init

The Init routine is called first. It is an optimization to help speed up your C3PO. You pass back a set of
flags that tell the Manager what to do. To only change menus, do the following:

Init = eGN.CVDI NI T_MENUS

To add menus and buttons, use the following:

Init = eGN.CVDI NI T_MENUS + eGW CVDI NI T_TOCOLBARS

The possible flags are:

eGW_CMDINIT_MENUS
eGW_CMDINIT_TOOLBARS
eGW_CMDINIT_CONTEXT_MENUS
eGW_CMDINIT_NO_PREDEFINED

WantCommand, BuildCommand, and GWCommand

These methods work together. If you have registered your C3PO to handle one of the GroupWise
pre-built commands your WantCommand method will be called. For a complete list of the possible
pre-built commands, see C3PO Data Type Related Identifiers.

WantCommand

If you create a new custom message class of NEWCLASS that is sub-classed from the MAIL message
class, then when a user opens any message of this class type, you will want to handle the open
function. If you name your C3PO as MYC3PO, you would register your C3PO in the following manner:

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ Novel |\ G oupW se\ 5. 0\ C3PQ\ Dat aTypes\
GW MESSAGE. MAI L. NEWCLASS\ MYC3PO\ Obj ect s]

Under the Objects key you would have a string value of CommandFactory.

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ Novel |\ G oupW se\ 5. 0\ C3PQ\ Dat aTypes\
GW MESSAGE. MAI L. NEWCLASS\ MYC3PO\ Event s]

Under the Events key you would have a string value of GW#C#OPEN.

With your system registry set up like this, when a user opens a message of class
GW.MESSAGE.MAIL.NEWCLASS, your WantCommand will be called. The WantCommand passes in
two variables:

sGWContext The class of the message.

sGWPersistentID The type of predefined command that the user is attempting to perform.

A check is made to ensure that sGWContext contains the message class you are interested in and
that sGWPeristentID is eGW_CMD_OPEN. If both of these conditions are TRUE, a TRUE value is
returned for the method. By doing this, the Manager is informed that you are going to take over the
Open function for this message.

BuildCommand

The BuildCommand method is called next. Again, sGWContext and sGWPeristentID are checked to
ensure that the correct message and command are being used. You then need to build a
GWCommand object and return it to the Manager. The code to build a GWCommand in the
BuildCommand method would look like the following:

Dim GACd As New GWCommand
' Check for correct context before creating GAConmand obj ect
I f sGAContext = COMMANDCONTEXTO Then
' Check for the correct persistent IDto create GAConmand obj ect
I f sGAPersistentl D = eGWN.CVMD_OPEN Then
" Set persistent ID for GAConmand obj ect
Let GACnd. PersistentID =1
' Save base GANConmand for |ater use
Set GACnd. BaseCmd = obj GBaseCommrand
Set Bui | dConmand = GACd
" Return GAMCommand creat ed

End If
End | f
GWCommand

The GWCommand object is the object that the Manager uses to perform a GroupWise command. It
looks like the following:

Tasks 23

Property Get BaseCrd() As bject
Property Set BaseCnd(obj NewBaseCnd As (bj ect)

Property Let LongPronpt (sNewLongPrompt As String)

Property Get PersistentlD() As String
Property Let PersistentlD{sNewPersistentID As String)

Property Let Tool Ti p(sNewTool Tip As String)

Public

Public

Public Property Get LongPrompt() As String
Public

Public Property Get Parameters() As bject
Public

Public

Public Property Get Tool Tip() As String
Public

Public Sub Execute()

Public Sub Hel p()

Public Sub UnDo()

Public Function Validate() As Long

BaseCmd: A property containing the GWCommand for client functionality.

LongPrompt: The string that will be displayed in the client when the user puts the cursor on a menu

item.

ToolTip: The string that will be displayed in the client when the user puts the cursor on the toolbar

button.

PersistentID: The ID of the GWCommand.

CustomizeMenu

The CustomizeMenu method allows your C3PO to add menus and menu items to the GroupWise
client menus. If in the Init method you have set the bit telling the Manager that you want to change
menus, this routine will be called any time the menu that you have registered to change is built.

You first need to decide were you want to place the menu. There are several options:

Option

Description

GW.CLIENT
GW.CLIENTWINDOW.ATTACHVIEWER
GW.CLIENTWINDOW.BROWSER
GW.CLIENT.WINDOW.CALENDAR
GW.CLIENTWINDOW.DOCUMENTLIST
GW.CLIENTWINDOW.FINDRESULTS
GW.CLIENTWINDOWS.PROPERTIES
GW.MESSAGE
GW.MESSAGE.APPOINTMENT[.xx]
GW.MESSAGE.DOCUMENTREFERENCE
GW.MESSAGE.MAIL[.xx]
GW.MESSAGE.NOTE[.xx]

GW.MESSAGE.PHONE[.xx]

All client views.

Attachment viewer.

Browser window.

All calendar views.

Document list window.

Query results window.

Properties window.

All message types and their windows.
Appointments and their windows.
Document references.

Mail messages and their windows.
Notes and their windows.

Phone messages and their windows.

24 Tasks

Option Description

GW.MESSAGE.TASK[.xx] Tasks and their windows.

If you want to place a new client menu item under the File > New menu, you would register it in the
following manner:

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ Novel |\ G oupW se\ 5. 0\ C3PQ\ Dat aTypes\
GW CLI ENT. W NdOW BROWSER\ MYC3PO\ Obj ect s]

The string under the Objects key would be CommandFactory. Registered this way, your
CustomizeMenu routine will be called. The Manager passes in to the CustomizeMenu routine the
context that is being called for, and you need to check to be sure it is the right context. Also, the
Manager passes in the GroupWise main menu object. That object is taken and used to find the menu
you want to add to, and then the new menu item is added. The following is how to do this in Visual
Basic:

Publ i ¢ Function Custom zeMenu(sGAContext As String, obj GAvenu As (bj ect)
As Bool ean
Dim Menu As Obj ect
I f sGAContext = "GN CLI ENT. W NDOW BROABER" Then
' Check for correct context
Set Menu = obj GMENU
' Get Main menu object
Set Menu = Menu. Menultens.lten{"File")
' get menu File
Di m Cnd01 As New GWCommand
" Build GAMConmand obj ect
Let Omd0l1. Persistentl D = XXXX
' Set persistent ID for Custom nmenu in GAConmand obj ect
Let Ond0l1. LongPronpt = "Create a new nessage of type
GW MESSAGE. MAI L. XXXX"
set long prompt for nenu item
Cal | Menu. Menul tens. Add(" Create New XXXX Message", Cnd01)
' add nmenu itemto the end of nenu

End | f
End Functi on

Notice that once again a GWCommand object is built. Set the Persistent ID and the Long prompt for
the new menu item. When a user selects your new menu item, the Manager calls your
GWCommand Execute method. You then should check the Persistent ID to see that it is this menu
item being clicked. Then you can continue with whatever you want your C3PO to do.

You must provide the Execute method. This method is called by the Manager when a button is
clicked, a menu item is selected or a predefined command is executed.

You must provide the Validate method. This method is called to ask the C3PO if the GWCommand is
valid under the current conditions. Validate can return:

eGW_CMDVAL_CHECKED The command has a check mark.

eGW_CMDVAL_DISABLED The command is disabled.

Tasks 25

CustomizeContextMenu

The CustomizeContextMenu method allows your C3PO to add menus and menu items to the
GroupWise client context menus. If in the Init method you have set the bit telling the Manager that
you want to change context menus, this routine will be called anytime the menu that you have
registered to change is built.

You first need to decide were you want to place the menu. There are several options to choose from
that are similar to the CustomizeMenu method, except that the GW.CLIENT.WINDOW.PROPERTIES
and the GW.CLIENTWINDOW.ATTACHVIEWER contexts are not available. Also, the following three
additional contexts have been added for GroupWise 5.5.EP and GroupWise 6.x:

GW.CLIENTWINDOW.ATTACHMENTCONTROL is the attachment window.

GW.CLIENTWINDOW.ATTACHMENTCONTROL.STATICFILE is the incoming attachment in the
attachment window.

GW.CLIENTWINDOW.ATTACHMENTCONTROL.EDITABLEFILE is the outgoing attachment in the
attachment window.

Another difference is that CustomizeContextMenu passes in the context menu object instead of the
menu object itself.

The execution and validation functions for customizing context menus operate in the same manner
as the functions for customizing regular menus, and the registration information is the same.

CustomizeToolbar

To add a button to the toolbar you need to add code to the CustomizeToolbar method. If in the Init
method you have set the bit telling the Manager that you want to change the toolbar and you are
registered correctly, your CustomizeToolbar method will be called each time that toolbar is built.

You need to decide to which toolbar you want to add a toolbar button. The options are the same as
for the CustomizeMenu method, with the addition of the GW.CLIENTWINDOW.QUICKVIEWER
context. The registration for adding a button is also the same. Do the following in Visual Basic:

Publ i ¢ Function Custom zeTool bar (sGANContext As String, obj GMool bar As
bj ect)
As Bool ean
Dim Button As (bj ect
DimFilePath As String
If sGAContext = "GW CLI ENT. W NDOW BROASER' Then
' Check for correct context
Di m Cmd00 As New GAConmand
" Build GAConmmand obj ect
Let Cnrd00. Persistentl D = XXXX
' Set persistent ID for GAConmand obj ect
Let Cnd00. Tool Tip = "Create a new message of type
GW MESSAGE. MAI L. XXXX"
Set Button tooltip
Set Button = obj GMool bar. Tool bar|tems. Add(" New XXXX Message",

26 Tasks

Cnd00)
' Add button to tool bar
FilePath = App.Path & "\icons.dlIl"
' Set bitmap for Button
" icons.dll can be replaced by the full path name of any
' .exe or .dll that contains a 16x16 and a 32x32 pi xel
" bitmap
' BUTTON_1 can be replaced with the nane of the bitmap
' contained in the .exe or .dll
Cal |l Button. SetBitmp(FilePath, "BUTTON 1")
' set were the bitmap is found and its nane
End If
Cust omi zeTool bar = Fal se
End Function

In this routine, you check to see if it is the context that you are interested in. Then you create a new
GWCommnad object. You set the Persistent ID, set the ToolTip, and the add the button. You then set
the bitmap for the button.

Hints for the Developer

The following sections address various hints:

+ “Modeless Dialog Boxes” on page 27
+ “ldentification of Menu Items, Submenus, and Separators” on page 27

+ “Refreshing the Client User Interface” on page 27

Modeless Dialog Boxes

Modeless dialog boxes are best implemented in an out-of-process server. Because GroupWise traps
keyboard events (to turn them into accelerators and eventually into tokens), a .DLL server will
experience problems receiving keyboard events when creating a modeless dialog box or window.

Identification of Menu Items, Submenus, and Separators

These items can often be identified in C++ by using the IlUnknown pointers to ID the running
instances. For example, when an item is added to the menu, the IlUnknown pointer is saved and used
later to identify the instance when calling GWMenultems::ltem().

Refreshing the Client User Interface

A C3PO that replaces custom commands often needs to refresh the client user interface. To do this,
given the GWClientState interface, invoke the BuildPersistentID method using the syntax GW#C#xxx
where xxx is a function, such as Open. Then call the BuildCommand method, passing the new ID to
create a GWCommand. Finally, execute the GWCommand to refresh the Client Ul. (See Pre-Built
Command ID Encoding.)

Note that if you refresh a query folder, the query will re-execute. The constants in Pre-Built
Command ID Encoding provide a text parameter that is associated with each numerical value.

Tasks 27

28

C3PO Sample: the Customer Tracking Application

Tasks

This section contains the following:

+ “Creating the Customer-Tracking C3PO with Delphi” on page 28
¢ “Creating the Customer-Tracking C3PO with C++” on page 32

Creating the Customer-Tracking C3PO with Delphi

Start Delphi and create a new project. Rename the project to CusTrack. Rename unitl.pas to exesrv,
change the form name to CTS, and set the form caption to Customer Tracking.

“C3POServer” on page 28
“CommandFactory” on page 29
“Customize Menus” on page 29
“Customize ContextMenus” on page 30
“Customize Toolbars” on page 30
“Predefined Commands” on page 30
“IconFactory” on page 31
“EventMonitor” on page 32

C3POServer

Add a new OLE object called C3POServer. This creates a new unit; rename it to servobj.pas. In
addition, an object class named C3POServer will be created.

The C3POServer object is the first object that needs to be created for the C3PO. Change C3POServer
so that it subclasses from TC3POServer instead of TAutoObject. Then add functions, procedures, and
properties as shown in the following:

C3PCServer = cl ass(TC3PCSer ver)

private

{ Private declarations }

function Get CmdFact: Variant;

function GetDescription : string;

aut omat ed

{ Aut omat ed decl arations }

property CommandFactory : Variant read GetCrdFact;
property Description: string read GetDescription;
function CanShut down: Td eBool ;

procedure Init(Minager: variant);

end;

The C3POServer object is required and all properties must be set up. TC3POServer is defined in
C3PQin.pas, and is a complete C3POServer object with all C3PO objects and routines necessary for
these objects. The C3POServer that you defined subclasses TC3POServer, and overrides only the
routines that you need to use. TC3POServer will handle the others. This keeps your servobj.pas
simple and easy to read.

Add C3POin.pas and ObjApiin.pas from the SDK to your project. These files are similar to C header
files. They contain information you need for using C3PO software and the Object API. In servobj.pas,
add C3PQin, OLE2, and Windows to the uses directive as shown in the following:

uses
OLEAut o, OLE2, W ndows, C3PQ n;

Add routines for the functions and procedures defined in the C3POServer object. This is shown in
servobj.pas. Notice that C3POServer.Init() saves "manager" into a global variable called
g_C3POManager, which is used later to get the ClientState.

C3POServer.GetCmdFact returns g CommandFactory.OLEObject, which means you need to define a
CommandFactory object. This is done in the sample under the vars directive. Make
g_CommandFactory a global variable of type CommandFactory. Then, under initialization, give

g _CommandFactory to CommandFactory.Create. This creates a CommandFactory object. Finally,
under finalization, release g_CommandFactory to free up memory.

CommandFactory

A CommandFactory class must be defined. To do this, create a new unit called C3PO.pas, then add
C3PO to the uses directive in servobj.pas. Next, create a CommandFactory class in C3PO.pas as
shown in the following:

CommandFactory =

cl ass(TCommandFact ory)

private

Cont ext Menul D: i nt eger

public

public

Constructor Create; /1 Used to create CommandFactory Obj ect
aut onat ed

function Custom zeMenu(Context: string;
GWMenu: variant): TA eBool

function Init(lcid : longint): |ongint;
end;

You are subclassing from TCommandFactory defined in C3POin.pas. You are going to change only the
menus at this time, so all you need to define are the CustomizeMenu and Init functions.

Customize Menus

Create the CommandFactory.Init() function as in the sample. Return eGW_CMDINIT_MENUS to say
that you are customizing the menus.

Create the CommandFactory.CustomizeMenu() function. This is the routine that will change the
GroupWise client menus. See the sample.

Each menu item must have a GWCommand object. To do this, you need to define a Command class
as in the following example:

Tasks 29

Command = cl ass(TGAConmmand)
private

{ Private declarations }
LongPrmt : string;

Tool Tp : string;

function GetLongPronmpt : string;
function GetTool Tip : string;

public

mnCnd : | ongint; /1 Command | D information

Constructor Create(nCnd: |ongint); /1 Used to create Command (bj ect
aut omat ed

property LongPronpt: string read
Get LongPr ompt ;

property Tool Tip: string read
Get Tool Ti p;

procedure Execute;

function Validate: |ongint;

end;

Create the functions and procedures as in the sample. As a command object for each menu item is
created, a unique ID is stored in m_nCmd. This ID is used to determine which menu item has been
chosen by the user when Execute is called.

Compile and register CusTrack.

Customize ContextMenus

CusTrack also customizes the context menu by overriding
CommandFactory.CustomizeContextMenu() in CommandFactory. To do this, add the routine shown
in the following example. Change CommandFactory.Init() to look like this example:

result := eGW CVDI NI T_MENUS or /1 nodify menus
eGW CVDI NI T_CONTEXT_MENUS; /1 nodify context menus

Customize Toolbars

CusTrack customizes the toolbar by overriding CommandFactory.CustomizeToolBar in
CommandFactory. To do this, add the routine as shown in the following example. Change
CommandFactory.Init to look like this example:

result := eGN CVDI NI T_MENUS or /'l nodify menus
eGW CVDI NI T_CONTEXT_MENUS or /1 nodify context menus
eGW CVDI NI T_TOOLBARS; /'l nodify tool bars

Predefined Commands

The CusTrack C3PO defines three new objects:

CTS_COMPANY_OBJ =’GW.MESSAGE.MAIL.NGWCOMPANY’;
CTS_CONTACT_OBJ = ’"GW.MESSAGE.MAIL.NGWCONTACT’;
CTS_ACTION_OBJ ="GW.MESSAGE.MAIL.NGWACTION’;

These objects subclass from GW.MESSAGE.MAIL.

30 Tasks

CusTrack supports the Open predefined command for these three objects. To do this, you need to set
up the registry. You also need to override CommandFactory.WantCommand and
CommandFactory.BuildCommand as shown in C3P0.pas. WantCommand checks context and the
PersistentID to see if the predefined command that is being set up will be supported. A check is
made to see if it is the Open command, and then the context is checked to make sure it is one of the
new objects. TRUE is then returned to tell the C3POManager that we will handle the open of these
new objects. In BuildCommand a check is again made for the PersistentID and Context for the proper
objects. A GWCommand is then built to handle Open.

IconFactory

To show your own icons for your custom objects, you need to support IconFactory. Override the
IconFactory property in C3POServer as shown in the following example:

C3PCServer = cl ass(TC3PCSer ver)

private

{ Private declarations }

function Get CmdFact: Variant;

function GetDescription : string;

function GetlconFactory : variant;

aut onat ed

{ Automat ed decl arations }

property CommandFactory : Variant read GetCrdFact;
property Description: string read

Get Descri ption;

property lconFactory: variant read CetlconFactory;
function CanShutdown: TO eBool; procedure Init(Mnager: variant);
end,

Under the vars directive in servobj.pas, add the following:

g_lconFactory : IconFactory; I/ Create global |conFactory object
Under the initialization directive in servobj.pas, add the following:

g_l conFactory := lconFactory. Create;

Under the finalization directive in servobj.pas, add the following:

g_l conFact ory. Rel ease;

In C3PO0.pas, define IconFactory as shown below.

| conFactory = cl ass(TI conFact ory)
private

{ Private declarations }
public

aut onat ed

procedure Getlcons(

Obj A ass: string;

var plconFile: string;

var pl UnQpenl con: 1 ongint;
var pl Openlcon:longint);
end;

Create the Getlcons procedure as shown in the sample.

Tasks 31

32

Tasks

EventMonitor

CusTrack uses two events, OnReady and OnShutdown. To do this, override the EventMonitor
property in C3POServer as shown in the following example:

C3POserver = cl ass(TC3PCServer)

private

{ Private declarations }

function GetCndFact: Variant; function GetDescription : string;
function GetEventMnitor : variant;

function GetlconFactory : variant;

aut onat ed

{ Automat ed decl arations }

property CommandFactory : Variant read GetCrhdFact;
property Description: string read

Get Descri ption;

property EventMonitor: variant read Get Event Monit or
property lconFactory: variant read CetlconFactory;
functi on CanShutdown: Td eBool

procedure Init(Minager: variant);

end,

Under the vars directive in servobj.pas, add the following:

g_Event Moni tor : Event Monitor; /1 Create gl obal EventMnitor object
Under the initialization directive in servobj.pas, add the following:

g_Event Moni tor :=EventMonitor. Create;

Under the finalization directive in servobj.pas, add the following:
g_Event Moni t or. Rel ease;

In C3PO0.pas, define EventMonitor as shown in the following:

Event Monitor = cl ass(TEvent Monitor)

private

public

aut onat ed

procedure Notify(Context: string; evt: variant);
end,

Create the Notify procedure as shown in the sample.

Creating the Customer-Tracking C3PO with C++

The Customer tracking sample application was created as a in-process server (DLL) using Microsoft
Visual C++ 4.0. A C3PO in C/C++ must use a COM interface. Begin by creating a DLL project called
C3PO.

Add a new file to the project called C3PO.cpp. In C3PO.cpp add new routines DIIGetClassObject,
DllICanUnloadNow, and BuildlUnkDispatch as shown in the C3PO.cpp sample. Next, use
GUIDGEN.EXE to define a new GUID for the COM server. Put the definition in C3PO.h. For example:

DEFI NE_GUI D(CLSI D_SAMPLEC3PQ,
0xd49, 0ce00, O0x8bb, 0xllcf, Oxbb, Oxf3,
0x0, 0x20, Oxaf, Oxe0, 0x28, 0x9c);

The next step is to build a Class Factory. In C3PO.h define MyFactory as shown in the following:

class MyFactory :

public | dassFactory

{

public:

/* 1 Unknown net hods */

STDVETHOD(Quer yl nterface) (

TH'S REFIIDTriid,

LPVO D FAR*ppvoj) ;

STDVETHOD (ULONG, AddRef) (THI'S);
STDMVETHOD (ULONG Rel ease) (TH ' S);
STDMETHODI MP Cr eat el nstance(| Unknown *, REFIID, void**);
STDMETHODI MP LockServer (BOOL) ;
MyFactory();

~MyFactory();
private:

ULONG m cRef;

Next, you need to build routines for the methods defined in MyFactory as shown in C3PO.cpp. In
MyFactory::Createlnstance, build a C3POServer called CC3PO.

STDVETHODI MP MyFact ory: : Creat el nst ance(
I Unknown *pUnkQut er,

REFIID riid,

voi d** ppv)

{

i f (NULL !'= pUnkQuter)

return CLASS E NOAGGREGATI ON;
CC3PO *pl C3PO = new CC3PO,

i f(pl C3PO == NULL)

return E_OUTOFMEMORY,;

pl C3PO >Create();

HRESULT hr = pl C3PO->Querylnterface(riid, ppv);
i f (FAILED(hr))

del ete pl C3PO

el se

g_cQoj ++;

return hr;

}

“C3POServer” on page 34
“CommandFactory” on page 35
“CustomizeMenus” on page 36
“CustomizeContextMenu” on page 37
“CustomizeToolBars” on page 37
“Predefined Commands” on page 37
“IconFactory” on page 38
“EventMonitor” on page 39

Tasks

33

34

Tasks

C3POServer

You now need to define a C3POServer object. Every C3PO must support this interface. It is used to
initialize the C3P0O. Add a new Class called CC3PO in C3PO.h. Subclass it from IC3POServer. This is the
object that was created in MyFactory::Createlnstance.

class CC3PO : public
| C3PCSer ver
{
public: /1 1 Unknown net hods
STDVETHOD(Quer yl nterface) (

TH'S REFIIDriid,

LPVO D FAR* ppvQbj);
STDVETHOD_(ULONG, AddRef) (TH'S) ;
STDMETHOD _(ULONG Rel ease) (THI' S);
/* 1 C3PCServer nethods */
STDVETHOD(get _CommandFact or y) (

TH S_ 1 Di spatch * FAR*ppl Di spComrandFact ory);
STDVETHOD(get _Descri ption)(

TH S_ BSTR FAR* pbstrDescription);
STDVETHOD(get _Event Moni t or) (

THI S_ I Di spatch * FAR*ppl Di spEvent Monitor);
STDVETHOD(get _| conFact ory) (

TH S_ 1 Dispatch * FAR*ppl Di spl conFact ory);
STDVETHOD(CanShut down) (

TH' S_ VARI ANT_BOOL FAR* pbCanShut down) ;
STDVETHOD(Del nit) (TH S);
STDMETHOD(| ni t) (

THI S_ |1 Di spatch * pl b spvanager); /'l Constructor
CC3PO); /'l Destructor
virtual ~CC3PQ(); /1 RefCount required nethod
BOOL Create();
private:
ULONG m cRef;

CConmmandFactory *m pl CndFact ;
Event Monitor *m pl Event Moni tor;
| conFactory *m pllconFactory;

I Unknown *m pl UnkDi spServ;

}

All IC3POServer methods must be declared. If a method is not needed, it simply does a return. The
Init() method is the first one called and passes in the C3POManager. The Manager object is saved to
get the Client State and is valid until a future Delnit() call. If the server fails the call, the C3POServer
is unloaded.

The Customer Tracking C3PO uses the functionality from the CommandFactory, EventMonitor and
IconFactory methods. In Create() they are created and in Querylnterface() a check of the riid is
made for these interfaces and the appropriate object is returned. In each get the interface for the
object is returned. See C3PO.cpp.

CommandFactory

This interface is used to manage commands in GroupWise. Commands are located in menus and
toolbars. Since menu, context menu, and the toolbar are to be modified in Customer Tracking , this
interface must be supported. Begin by defining a new class in Setupcmd.h called CCommandFactory.

cl ass CConmandFactory :
public | ConmandFact ory
{
public:
/* 1 Unknown mnet hods */
STDVETHOD(Quer yl nterface) (
TH'S_ REFIID riid, LPVO D FAR*ppvj);
STDVETHOD _(ULONG AddRef) (THI' S)
{ return m pUnkQuter-> AddRef(); }
STDMETHOD _(ULONG, Rel ease) (TH' S)
{ return m_pUnkQuter-> Rel ease(); }
/* | CommandFact ory met hods */
STDVETHOD(Bui | dConmand) (
THI'S BSTR bstr Cont ext,
BSTR bstrPersistent!| D,
| Di spatch *pl Di spBaseConmand,
| Di spatch * pl Di spParaneters,
| Di spatch *FAR* ppl Di spGAConmrand) ;
STDVETHOD(Cust omi zeCont ext Menu) (
THI'S BSTR bstr Cont ext,
| Di spatch * pl Di spGAVENU) ;
STDVETHOD(Cust omi zeMenu) (
THI'S BSTR bstr Cont ext,
| Di spatch *pl Di spGAMENU,
VARI ANT_BOOL FAR* pbChanged);
STDVETHOD(Cust omi zeTool bar) (
THI'S BSTR bstr Cont ext,
| Di spatch *pl Di spGATool bar,
VARI ANT_BOOL FAR* pbChanged
STDMETHOD(| ni t
TH S_long Ilcid,
[ong FAR* pl CmdFl ags
STDVETHOD(Want Conmand
THI'S BSTR bstr Cont ext,
BSTR bstrPersistent!| D,
VARI ANT_BOCL FAR*pbChanged
CConmmandFact or y(| Unknown *pUnk
CConmmandFact ory
private
| Uhknown *m pUnkQut er;
I Unknown *m pl UnkDi spFact ;

1

All methods in CommandFactory must be supported. After Querylnterface(), the first method to be
called is the Init() routine.

Tasks 35

36

Tasks

STDMETHODI MP CCommandFactory::Init(long |cid,
| ong FAR* pl CdFl ags)

{

*pl CndFl ags = eGW CVDI NI T_MENUS /'l nodify menus

eGW CVDI NI T_CONTEXT_MENUS | /1 nodify context nenus
eGW CVDI NI T_TOOLBARS; /1 nodify tool bars
return NOERROR;

}

A flag is returned in *plCmdFlags indicating if modify menus, context menus and/or toolbars are to
be modified. In this case, all of them will be modified.

CustomizeMenus

The CustomizeMenu method must be supported. If you do not want to customize a menu, simply
return NOERROR. To support the method, you must first define a new class named CGWCommand in
Setupcmd.h.

cl ass CGAConmand :
public | GAConmand
{
public:
/* 1 Unknown net hods */
STDVETHOD(Quer yl nt er f ace) (
TH'S REFIIDriid, LPVO D FAR* ppvQbj);
STDVETHOD_(ULONG AddRef) ();
STDMVETHOD (ULONG Rel ease) ();
/* 1 GACommand net hods */
STDVETHOD(get _BaseCnd) (
THIS 1Dispatch * FAR* ppl Di spBaseCd) ;
STDVETHOD(get _LongPr onpt) (
TH S_ BSTR FAR* pbstrLongPronmpt);
STDVETHOD(get _Par anet er s) (
THIS 1Dispatch * FAR* ppl Di spBaseCmd) ;
STDMETHOD(get _Per si stent | D) (
THI'S BSTR FAR* pbstrPersistent|D);
STDVETHOD(get _Tool Ti p) (
TH S_ BSTR FAR* pbstr Tool Ti p);
STDVETHOD(Execute) (THI' S) ;
STDVETHOD(Hel p) (THI' S) ;
STDVETHOD(Undo) (THI' S) ;
STDMETHOD(Val i dat e) (
TH S_ I ong FAR* pl Validate);
CGNCommand(int nlD);
~COAComand() ;
BSTR bstrLongPronpt ;
BSTR bstr Tool Ti p;
private:
ULONG m cRef;
i nt m nl D
I Unknown *m pl UnkDi sp;
H

Once again, all methods must be supported. LongPrompt is only for menu items and Tooltip is only
for toolbar items. One command is distinguished from another with the m_nID. As each command is
created it is given a unique ID, so that you can tell each command apart. Validate returns whether
the command is enabled, disabled, or checked for menu items and toolbar items. Execute is called
when the item has been selected by the user. See Setupcmd.cpp.

With GWCommand set up, you can now build or modify a menu item.
CCommandFactory::CustomizeMenu() adds another menu to the New menu of the File menu. In
the new menu, called Customer Tracking, three new menu items are included. See
CCommandFactory::CustomizeMenu() in Setupcmd.cpp.

In CGWCommand::Validate(), a check is made to see if any customer tracking message has been
selected by the user. If no customer tracking message has been selected, the contact and action
menu items are disabled and company menu item is enabled. If the user has selected a company
message, then the company and contact menu items are enabled. If the user has selected a contact
message, then the company and action menu items are enabled.

CustomizeContextMenu

For customer tracking, you want to add a new item to the context menu only when the user has
selected a customer tracking message item, and then right-clicks to bring up the context menu. To do
this the value of bstrContext is checked to see if it isa CTS_ COMPANY_OBJ, CTS_CONTACT_OBJ or
CTS_ACTION_OBJ message object. If the user has selected a company object that then a new menu
item is set for creating a contact message. If the user has selected a contact message, then a new
menu item is set for creating an action message. If the user has selected an action message, a new
menu item is set for creating another action message. This is done in
CCommandFactory::CustomizeContextMenu() in Setupcmd.cpp.

CustomizeToolBars

For customer tracking, three new buttons are set up on the toolbar, one each to create a new
company, contact, and action message. CCommandFactory::CustomizeToolbar() makes the
modifications to the toolbar. Since the same command IDs in CustomizeToolbar() are used as in
CustomizeMenu(), the buttons on the toolbar will act the same as the items on the custom menu
that was created.

Predefined Commands

The CusTrack C3PO defines three new objects:

CTS_COMPANY_OBIJ =’GW.MESSAGE.MAIL.NGWCOMPANY’;
CTS_CONTACT_OBJ = ’"GW.MESSAGE.MAIL.NGWCONTACT’;
CTS_ACTION_OBJ ="GW.MESSAGE.MAIL.NGWACTION’;

These objects subclass from GW.MESSAGE.MAIL.

CusTrack supports the Open predefined command for these three objects. To do this, enter the

registry entries shown in Cts.reg. After the C3PO is registered, CCommandFactory::WantCommand()
will be called when the user attempts to open one of the custom objects. In WantCommand, check
bstrPersistentID see if the Open command is being called. If so then *pbChanged = TRUE is returned.

Tasks 37

If not, FALSE is returned. If TRUE is returned, then CCommandFactory::BuildCommand() is called.
Here you once again check for the correct persistent ID, and if it is correct build a GWCOMMAND for
this Open. See Setupcmd.cpp.

IconFactory

This interface is used to retrieve icons that represent the state of C3PO records. Use IconFactory to
change the icons for custom objects.

class lconFactory : public
Il conFactory
{
public:
/* 1 Unknown met hods */
STDVETHOD(Quer yl nterface) (
THIS_ REFIIDriid, LPVO D FAR*ppvQj);
STDVETHOD _(ULONG, AddRef) (THI S)
{ return m pUnkQuter-> AddRef (); }
STDMVETHOD _(ULONG Rel ease) (THI' S)
{ return mpUnkQuter-> Rel ease(); }
/* lconFactory nethods */
STDVETHOD(Get | cons) (
TH S_ BSTR bstr Obj O ass,
BSTR FAR*pbstrlconFil e,
l ong FAR* pl UnQOpenl con,
| ong FAR*pl Openl con);
| conFact ory(1 Unknown *pUnk) ;
~l conFactory();
private:
| Unknown *m pUnkQut er;
| Unknown *m pl UnkDi spFact ;

1

In Getlcons(), bstrObjClass is checked to see which custom object is being called for, then the icon
file and the icon index for both an opened and unopened state of the object are returned. See
Setupcmd.cpp. In addition, IconFactory needs to be registered; an example is found in Cts.reg.

38 Tasks

EventMonitor

Customer Tracking uses two events, OnReady and OnShutdown.

cl ass Event Moni t or
public | Event Monitor
{
public:
/* 1 Unknown et hods */
STDVETHOD(Queryl nterface) (
THIS REFIIDriid, LPVOD FAR* ppvQhj);
STDVETHOD_(ULONG AddRef) (TH'S)
{ return mpUnkQuter->AddRef(); }
STDMVETHOD (ULONG Rel ease) (TH' S)
{ return mpUnkQuter->Rel ease(); }
/* 1 Event Moni tor methods */
STDMVETHOD(Not i fy) (
THI S_ BSTR bstr Cont ext,
| Di spatch *pl Di spGAEvent) ;
Event Moni t or (1 Unknown *pUnk) ;
~Event Monitor();
private:
[Unknown *m pUnkQuter;\
[Unknown *m pl UnkDi spFact ;

b

In the EventMonitor::Notify(), bstrPersistentID is checked to see which event is calling and then it
performs the desired function. See Setupcmd.cpp.

Tasks 39

40 Tasks

Tools

This section documents the GroupWise Custom 3rd-Party Object (C3PO) tools, such as the C3PO
Wizard.

The C3PO Wizard provides a menu-driven interface that helps you create a C3PO framework for the
Visual Basic, Delphi, and C++ development languages. The Wizard walks you through:

+ Creating a C3PO name and defining a path.

+ Determining how you want your C3PO to function.

+ Provide additional information based on your function selections.

Once you have provided all the necessary information to create the C3PO, the Wizard will finish the
creation process.

This guide consists of the following sections.

+ “Starting the Wizard” on page 41

+ “Defining Custom Message Classes” on page 43
+ “Using Events” on page 45

¢ “Customizing Menus” on page 46

¢ “Customizing the Toolbar” on page 49

¢ “Customizing Context Menus” on page 51
+ “Using Commands” on page 52

+ “Completing the C3PO” on page 54

+ “Using Visual Basic.exe” on page 55

+ “Using Visual Basic .dIlI” on page 58

+ “Using Delphi .dll” on page 61

+ “Using Delphi .exe” on page 63

¢ “Using C++” on page 65

Starting the Wizard

1 Start the wizard by running C3POW ZARD. EXE.

Tools 41

42

After you have read the initial box which explains how to navigate through the wizard, click Next
to display the following dialog box

Figure 3-1 C3PO Creation Wizard Screenshot

C3P0 Creation Wizard]|

Path: I Browse I

What do you want your CIP0 to handle?

[Meszage classes
[T Ewerts

[Menus

[T Tookbar

" Contest menus
[C Commands

Help | < Back: I Mext = I Cancel

The following step describes the fields in this dialog box.
2 Fill in the fields:
Name: Specify the name of the .WIZ file you want to create.

Path: Specify the path to the directory where you want the .WIZ file created. Click Path to
browse for the directory. The path must already exist.

Options: These options let you perform certain tasks with your C3PO. After selecting a check
box, you will be prompted to provide additional information. For example, if you select the
option to use GroupWise C3PO Events, you will be prompted to choose which events to use:
Ready, Shutdown, Delivery, or Overflow.

+ | want to define a custom message class in GroupWise. Check this box if you want your
C3PO to define a customer message class that GroupWise will recognize.

+ [want to use GroupWise C3PO events. C3POs allow you to trap four GroupWise events:

+ Ready—Occurs when the GroupWise client has painted the screen and the client
dialog box is ready to receive user input.

¢ Shutdown—Occurs when the user has exited the GroupWise client and the client is
ready to shut down.

¢ Delivery—OQOccurs when a GroupWise message of the specified Class type has been
delivered to the In Box.

+ Overflow—QOccurs when more messages are delivered to the In Box than the Delivery
event can handle.

+ | want to customize the GroupWise menus. Check this box if you want your C3PO to modify
the GroupWise client menus.

+ | want to customize the GroupWise Toolbar. Check this box if you want your C3PO to add
buttons to the GroupWise client toolbar.

Tools

+ [want to customize the GroupWise context menus. Check this box if you want your C3PO to
modify the GroupWise client context menus.

+ | want to handle standard GroupWise C3PO commands. Check this box if you want your
C3PO to use certain predefined client functions, such as Open, Save, and Save As.

3 Click Next. For each option you selected, a dialog box will appear, prompting you to provide
additional information about your selections.

Defining Custom Message Classes

If you selected | want to define a custom message class in GroupWise, the following dialog box is
displayed.

Figure 3-2 C3PO Custom Messages Screenshot

4~ L3P0 Creation Wizard Mi=] E3
Define Custom Classes

Add

Cancel |

Back |

Tools 43

This dialog lists defined custom classes.
1 Click Add to display the following dialog box.

Figure 3-3 C3PO Defining Custom Classes Screenshot

A~ C3P0 Creation Wizard [_ [O] =]

Define Custom Classes

T |

G MESSAGE

| want a custom icon for this clazs: € ez % Mo

Help | (] Cancel

2 Click the down arrow, then select one of the six base message classes. All custom classes must
be subclasses of the six base classes:

GW.MESSAGE.APPOINTMENT
GW.MESSAGE.DOCREFERENCE
GW.MESSAGE.MAIL
GW.MESSAGE.NOTE
GW.MESSAGE.PHONE
GW.MESSAGE.TASK

3 Select the base class that best fits your custom class, then enter the name of your custom class
in the te