
Novell

m
w w w . n o v e l l . c o

Integration Manager™
6 . 0
J u n e 1 5 , 2 0 0 6

E N T E R P R I S E S E R V E R U S E R ’ S G U I D E

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all
parts of Novell software, at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other
countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or
import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological
weaponry end uses. Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system,
or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular,
and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S. and in other
countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.
2 Integration Manager Enterprise Server User’s Guide

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.
3

http://www.novell.com/company/legal/trademarks/tmlist.html

4 Integration Manager Enterprise Server User’s Guide

Contents

About This Book. 7

1 Welcome to Novell Integration Manager Enterprise Server. 11
What is Integration Manager Enterprise Server?. 11
Support for Popular Application Servers . 12
Service Types . 12

Service Triggers . 12

2 Integration Manager Enterprise Server Overview. 15
Deployment Archive Contents . 15

Novell exteNd Application Server Database Requirement . 17
Push-Model versus Pull-Model Deployment . 18
Hot Deployment . 18
Removing (Undeploying) Existing Applications . 18
Updating Your License . 19

3 Runtime Administration of Integration Manager Enterprise Server . 21
Runtime Administration Consoles . 21

Real-Time Update . 21
How to Access the General Properties Console . 21
General Properties User Interface . 22

Caching and Cache Administration . 26
What Is Caching? . 26
Least-Recently-Used (LRU) Cache Algorithm. 27
Cacheable Objects . 27
Cache Scope . 27
User-Adjustable Settings. 28

Performance Tuning . 29
Connection Pools. 29

Database Connection Pools . 29
Logon Components and Non-Database Connection Pools. 30
Proxy Servers . 30
Security Roles. 31

Publishing XML Resources . 32
Publishing Java Classes . 32

Controlling Access to JAR and Class files . 33

4 The Runtime Framework. 35
Integration Manager Runtime Architecture . 35

Typical Request-Handling Scenario . 36
Alternative Request-Handling Scenarios. 37

Framework Classes . 38
Where to Find the Source Files and JavaDoc. 38
Packages of Interest . 38
Static Constants . 38

What Types of Programming Needs Does the Framework Address? . 39
High-Level Architecture . 39

Input and Data Conversion . 40
Service Names within Framework Objects . 40
Obtaining a Service Instance . 40
Executing the Service . 41
Delegating Service Calls Through GXSServiceComponentBean . 42
Data-Passing Options . 43

Service Triggers. 43
IGXSServiceRunner . 44
GXSServiceRunner and GXSServiceRunnerEx . 45
IGXSInputConversion and IGXSExInputConversion. 49

EJB-Deployed Services . 50
5

5 Transaction Management. 53
Transaction Control in Integration Manager . 53
Transaction Deployment Considerations for the Novell exteNd Application Server . 53

Servlet Deployment Considerations . 54
EJB Deployment . 54
XA-Aware Database Drivers . 56
EJB Deployment Considerations . 56
JDBC Transaction Control: Allowing User Transactions . 56
References. 57

A exteNd Application Server Dependencies . 59
Connections . 59

Using Novell exteNd Connection Pools . 59

B Contents of Deployment Objects . 61
Deployment EAR . 61
Project JAR . 61
WAR . 62
Servlets . 62
EJBs . 62
ImportObjects.bat . 62

C Reserved Words. 63

D Server Glossary . 65
6 Integration Manager Enterprise Server User’s Guide

About This Book

Purpose

This guide describes how to use Integration Manager Enterprise Server and its
related administrative facilities, APIs, and classes to deploy and manage
Integration Manager applications. As such, it is an adjunct to the Novell
Integration Manager User’s Guide.

NOTE:

Audience

This guide is aimed at the application server administrator and/or persons tasked
with deployment and management of Integration Manager services.

Prerequisites

This book assumes prior familiarity with the Integration Manager design-time
environment and Integration Manager application-building metaphors. You
should also be familiar with Java archive formats (WAR, EAR, JAR) and J2EE
deployment concepts in general.

Organization

This guide is organized as follows:

Chapter Description

Chapter 1, Welcome to
Integration Manager
Enterprise Server

Gives a definition and overview of the
Integration Manager suite of products.

Chapter 2, Server
Overview

Briefly describes Integration Manager
Enterprise Server specifications and the
production runtime environment.

Chapter 3, Planning Your
Deployment

Outlines the key environmental and resource-
related factors that should be considered before
deploying a Integration Manager service.

Chapter 4, Deploying a
Project

Explains the available Service Trigger options
and how to use the Integration Manager
Deployment Wizard.

Chapter 5, Using the
Deployment Framework

Describes how to customize or extend the
application server framework classes for non-
standard deployments. Read this chapter if you
need to use custom service triggers.

Chapter 6, Transaction
Management

Describes options for controlling the
transactional aspects of your application.
7

Conventions

This guide uses the following stylistic and typographical conventions.

Bold serif typeface within instructions indicate action items, including:

Menu selections
Form selections
Dialog box items

Bold sans-serif typeface indicates:

Uniform Resource Identifiers
File names

Italic typeface indicates:

Variable information that you supply
Technical terms used for the first time
Title of other Novell publications

Monospaced typeface indicates:

Method names
Code examples
System input
Operating system objects

Additional Documentation

For the complete set of Novell Integration Manager documentation, see the Novell Documentation Web
Site:

http://www.novell.com/documentation

Appendix A, Novell
exteNd Application Server
Dependencies

Describes database connection-pool issues
specific to deployment in the Novell exteNd
Application Server.

Appendix B, Contents of
Deployments Objects

Describes the content of the files that are
installed into the application server.

Appendix C, Deployment
Framework API
Documentation

Describes the Integration Manager Enterprise
Server Java framework files.

Appendix D, Reserved
Words

A listing of keywords that are used by
Integration Manager and should be avoided in
your code.

Appendix E, Glossary Definitions of terms used in this guide.

Chapter Description
8 Integration Manager Enterprise Server User’s Guide

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation/exteNd.html
http://www.novell.com/documentation/exteNd.html

About the Product Name Change

In version 6.0. we've changed the name of exteNd Composer to Novell Integration Manager. In some
places in the user interface, and in Integration Manager file and directory names, you will still see the
name "exteNd Composer" or "Composer".
9

10 Integration Manager Enterprise Server User’s Guide

1 Welcome to Novell Integration Manager
Enterprise Server

Novell Integration Manager is a suite of web application development products aimed at reducing the
time required to develop and deploy powerful XML-enabled, portal-aware web applications for use on
J2EE app servers. The Integration Manager suite consists of three products:

Integration Manager—a visual design environment for creating B2B integration applications
Integration Manager Enterprise Server—a runtime environment that executes the applications
created in Integration Manager
Integration Manager Enterprise Connects—a family of products that extend the capabilities of
Integration Manager and Server to permit the XML-enablement of diverse enterprise information
sources such as databases, host applications, and Java components.

The focus of this Guide is Integration Manager Enterprise Server., which is the application-server-
resident “execution engine” for Integration Manager-built services. (Each of the above pieces has its own
documentation, so please refer to the Novell Integration Manager User’s Guide for information on the
design-time Integration Manager executable, and refer to the various individual User’s Guides for the
specific Integration Manager Connects that you need to incorporate into your applications.)

What is Integration Manager Enterprise Server?
Novell Integration Manager Enterprise Server is the runtime environment for applications developed
with Integration Manager. It is a Java application that runs in its own thread on a J2EE-compliant
enterprise application server. It starts up when the app server starts up and shuts down when the server
shuts down.

Integration Manager Enterprise Server provides both the runtime execution engine for Integration
Manager-built services (interpreting and processing the XML metadata deployed from Integration
Manager), and an application-server tailored framework that provides integration with services provided
by an application server (e.g., thread management, connection pooling, load balancing, failover, security,
transaction control).

Runtime capabilities provided by Integration Manager Enterprise Server include:

Deployment assistance
XML parsing
XSL and XForms processing
Instantiation and execution of Connect objects via installable factories
Interpretation of XML application object metadata
Mediation of SOAP-related interactions with the app server
Mediation of various other container-level app server interactions
Connection pooling and caching
Welcome to Novell Integration Manager Enterprise Server 11

Support for Popular Application Servers
Integration Manager Enterprise Server is available for (and is tested against) various popular application
servers, including not only the Novell exteNd Application Server but JBoss, IBM’s WebSphere, BEA
WebLogic, and Apache Tomcat, running on various operating systems. (For the latest support matrix, go
to http://www.novell.com/documentation/exteNd.html.)

The application framework consists partly of base classes that are environment-independent, and partly
of classes tailored to the specific application server within which Integration Manager Enterprise Server
executes. Classes that are application-server-specific include classes responsible for:

Logging
Connection pooling
Transaction control (Enterprise Edition only)

Service Types
Integration Manager applications are organized into deployable units of work called services. The
services consist of actions stored in components. (For a more precise definition of these terms, please
consult the Novell Integration Manager User’s Guide.) All of the action-model logic, connection info,
and miscellaneous resources that make up the components inside a service, as well as the service wrapper
itself, are packaged as XML metadata. (In other words, a Integration Manager service is not compiled
bytecode.) This means, among other things, that you can examine any individual component of a
Integration Manager service using an ordinary text editor.

Integration Manager Enterprise Server is the runtime piece that invokes or instantiates services based on
incoming requests; executes the instructions (actions) contained in the service and its components;
manages caching and connection pooling; and provides for other runtime needs of executing services.

Integration Manager Enterprise Server handles service-invocation requests from a number of sources:

Servlet-based trigger objects (see below)
EJB objects
JSPs that invoke a service via custom tags that, in turn, reference the Integration Manager tag
library
Direct programmatic invocation by Java objects

Service Triggers
A Integration Manager service encapsulates the logic, connection information, and resources needed to
execute a unit of work. The service does not encapsulate any triggering mechanism; invocation is
abstracted out, to another type of object, known as a service trigger.

The service trigger is responsible for:

Dealing with any transport-related issues
Data acquisition (marshalling/unmarshalling)
Instantiation of the target service
Passing properly formatted data to the target service

In most cases, the trigger object is a conventional HTTP servlet. But there are other possibilities, to
handle non-HTTP requests. Some of the other kinds of events that can trigger a Integration Manager
service include:
12 Integration Manager Enterprise Server User’s Guide

http://www.novell.com/documentation/exteNd.html

Arrival of a message at a (JMS) message queue/topic. (This kind of event is monitored by a JMS
MessageListener.) A service that responds to this kind of triggering is known in Integration
Manager as a JMS Service. This functionality is available only when the JMS Connect product is
installed (as in the Enterprise Edition of the exteNd suite).
The firing of an SAP function that has been designed to use a BAPI process to trigger a Integration
Manager servlet. This functionality is available only when the SAP Connect product is installed (as
in the Enterprise Edition of the exteNd suite).
A disk-I/O “write” operation in a given path location on a storage device. (A File Trigger causes a
Integration Manager service to start up when a new file appears in a given location.)
Arrival of e-mail in a particular mailbox at a given mail server.
Direct invocation by a “scheduled task” daemon. (Integration Manager supports something called a
Timer trigger.)

It is possible to assign more than one trigger type to a given service. The trigger merely acquires and
forwards data to the service (after instantiating the service).

Service triggers will be discussed in additional detail in a later section.
Welcome to Novell Integration Manager Enterprise Server 13

14 Integration Manager Enterprise Server User’s Guide

2 Integration Manager Enterprise Server
Overview

This chapter introduces some basic runtime issues you will need to know about if you intend to deploy
projects to Integration Manager Enterprise Server and administer them at runtime. Those issues include:

Deployment Archive Contents
Push-Model versus Pull-Model Deployment
Hot Deployment
Removing (Undeploying) Existing Applications
Updating Your License

Cache management and other administrative issues are discussed in the next chapter.

NOTE: This chapter assumes that you are familiar with EAR, JAR, and WAR packaging concepts, as well
as other J2EE deployment idioms. You should also be familiar with runtime and deployment concepts
applicable to the particular app server you will be targeting (Novell exteNd, JBoss, IBM WebSphere, BEA
WebLogic, Apache Tomcat).

Deployment Archive Contents
Integration Manager follows a standard J2EE deployment model, using the EAR (Enterprise ARchive)
file type as the deployment object.

The deployment EAR wrappers all of the project-level resources and components you’ve chosen to
deploy. The EAR is scoped to a single project (.spf) file. The EAR encapsulates all services that exist in
your project, and the resources they use.

You can create your deployment EAR either with Integration Manager (design time) or exteNd Director.
If you are using Integration Manager, you can use Integration Manager’s design-time deployment wizard
to deploy projects straight to the application server (or to a staging area of your choosing). In this
scenario, Integration Manager does all the packaging for you, automatically, and puts the resulting EAR
on the application server. The EAR is immediately “live,” with no need to restart the server.

The other way of creating deployment archives is to use Director’s native J2EE packaging facilities.

NOTE: Director-native deployment is covered in the Director documentation. Likewise, Integration
Manager Enterprise Edition deployment procedures are covered in the Novell Integration Manager User’s
Guide. See the appropriate guide for more information. The following discussion centers on low-level
descriptions of deployment artifacts.

A Integration Manager deployment EAR contains the following types of objects:
Integration Manager Enterprise Server Overview 15

Table 2-1

The following diagram summarizes the containment hierarchy of a deployment EAR.

Object Use Notes:

Project JAR File Contains the services,
components and
resources of the project,
in XML form.

The Components and other xObjects that
comprise your services are stored in metadata
form (not Java class files). Integration
Manager Enterprise Server uses these files to
create your runtime objects on the app server.

NOTE: This file is always generated, and is
always packaged into the deployment EAR.

EJB Service Trigger
class files

Allows services to be
invoked through EJBs
(potentially front-ended
by JSPs), which in turn
means Container
services (for transaction
control, etc.) are
available..

EJB triggers are required for standalone use of
Integration Manager services as part of local
business applications..

WAR file Contains manifest.mf file
(listing the JAR resources
for this deployment) and
web.xml (see below).

Required if Servlets or EJBs are created.
Produced by Integration Manager
automatically.

web.xml file Describes information
necessary to install
Service Trigger Java
classes into the
application server. The
URI associated with the
Servlet based Service
Triggers and JNDI name
for EJBs are described in
these.

Created automatically and stored in a WAR file
within the deployment EAR.

SilverCmd batch file
called
ImportObjects.bat

Contains SilverCmd utility
calls to install the
deployment objects into
the Novell exteNd
application server.

Created automatically. (And invoked
automatically, if you choose the “Yes” radio
button on the final screen of the Integration
Manager deployment wizard.) This artifact is
created only for the Novell exteNd Application
Server.

xc_deployment_info.
xml

Contains the deployment
profile from the last time
the Deployment Wizard
was executed.

Created automatically. Allows exteNd to
restore the previous deployment information
the next time a deployment is performed.
16 Integration Manager Enterprise Server User’s Guide

(For a more detailed description of the contents of these objects, see “Contents of Deployment Objects”
on page 61.)

Novell exteNd Application Server Database Requirement
Many J2EE application servers use ordinary disk storage as the “backing store” for app-server content.
By contrast, the Novell exteNd Application Server (up through and including version 5.1) uses a
database.

NOTE: For a list of supported databases and drivers, see the Novell exteNd Application Server release
notes and documentation.

The app server stores its own internal classes and runtime artifacts in a default database called
SilverMaster (or SilverMaster50; the name always contains the version number in the final two
characters). You can deploy your own projects (your Composer and Director EAR and WAR files)
directly to SilverMaster, if you wish. But for better encapsulation and easier management, you may want
to create individual databases for each project. The deployment process, in this case, involves the
following steps:

Create a database and make it available to the app server (using the client-side smc.exe (Server
Management Console) application that comes with Novell exteNd application server)
Specify that database’s name in the Server Profile corresponding to the deployment you wish to
perform (in Integration Manager, use Tools > Profiles . . . to access the dialog where you can create
or edit Server Profiles; and specify the target database there)
Deploy to the app server

The deployment database for your project need only be created and installed once. You can then deploy
and redeploy your project into that database as many times as needed.

NOTE: A visual user interface for managing databases and drivers installed on the application server is
available in the smc.exe (Server Management Console) app that ships with the app server. Consult the
Novell exteNd Application Server documentation for details.
Integration Manager Enterprise Server Overview 17

Push-Model versus Pull-Model Deployment
Deployment of Integration Manager services is usually initiated from within a Integration Manager or
Director design-time environment. Director offers a variety of wizards and tools for creating and
packaging deployment artifacts, including those needed to deploy Integration Manager services. (See the
Director documentation for details.) Integration Manager Enterprise Edition has its own wizards and
tools to enable direct deployment from the Integration Manager design-time environment. (See the
separate Novell Integration Manager User’s Guide for details.) Integration Manager can do a live deploy
straight to a target application server, or a “packaging only” deploy to a staging area on disk.

Integration Manager supports a push model as well as a pull model for deployment. The push model is
the case described above, where you initiate deployment from the design side. In the pull model,
deployment is initiated from a browser console on the server. (See the next chapter.)

Hot Deployment
You can deploy a project to the app server while the app server is running, even if an earlier version of
your project already exists on the server. (The old deployment EAR is simply overwritten.) There is no
need to undeploy an existing EAR before deploying a new one. However, you should clear the cache (see
“Clearing the Cache” on page 28) before running the newly deployed project, because it’s always
possible that old objects from the previous deployment are still in memory.

Removing (Undeploying) Existing Applications
Various app-server vendors offer various tools for managing deployed web applications. With the Novell
exteNd Application Server, you can use the following procedure to undeploy an already deployed object
(which is to say, remove it from its host database, without removing the database itself). To undeploy a
deployed Integration Manager project:

1 With the app server running, launch the Server Management Console (smc.exe) application.
2 In the toolbar at the top of the main window, click the Deployment button (as shown below).

3 In the main window under Deployed Objects, locate the database that contains the deployed
project you wish to undeploy. (All databases will be listed in tree view.) Toggle the plus sign next to
the database “parent node” to expose its children. The child (or leaf) nodes of the tree represent
deployed archives.

4 Single-click (select) the deployed archive you wish to remove. (See illustration below.)

CAUTION: If your deployment database is SilverMaster, be careful not to select the Director EAR
nor the exteNd Composer EAR. These EARs contain runtime executables for Director and Composer.
18 Integration Manager Enterprise Server User’s Guide

5 Click the Undeploy button in the lower right corner of the window. The EAR or WAR in question
will disappear from tree view and will no longer exist on the app server.

NOTE: You cannot undeploy individual Integration Manager services one at a time. The entire project
EAR will be undeployed as a unit.

For information on how to undeploy EAR and WAR files from other app servers, consult the appropriate
vendor’s product documentation.

Updating Your License
Should the need arise to update the license string associated with Integration Manager Enterprise Server,
you can use the UpdateLicense.bat file (located in your exteNdComposer\bin directory) to accomplish
this. From the command line, run:

updateLicense product newLicense [Composer/Server]

where product is the name of the particular product (whose license you would like to update, newLicense
is the license string, and the final argument (one of Composer or Server) specifies whether to update the
design-time or runtime version of the product in question.

You can see a list of installed products by running:

updateLicense -L
Integration Manager Enterprise Server Overview 19

20 Integration Manager Enterprise Server User’s Guide

3 Runtime Administration of Integration Manager
Enterprise Server

This chapter discusses subjects of importance to anyone who needs to administer deployed Integration
Manager services. Those subjects include:

The various consoles available for managing deployed Integration Manager services, and how to
use them
How to inspect and/or edit license-string info for Integration Manager server-side products
Cache management and performance-tuning issues
Security roles
How to publish (and control the visibility of) JAR files and custom Java classes

Runtime Administration Consoles
You can manage various aspects of Integration Manager Enterprise Server’s runtime operation through
browser-based (JSP-powered) consoles. In addition to a General Properties console page where you can
exercise control over settings of more-or-less global scope, there are individual consoles for the various
Integration Manager Connects (such as JDBC, LDAP, Telnet, and so on), which expose Connect-specific
settings. The GUI allows easy navigation back and forth between and among the various console.

NOTE: The consoles depend, in part, for their functionality on JavaScript, so be sure scripting is enabled
in your browser. Your browser should also be HTML 4.0 compliant and CSS-aware. No Java applets are
used, however, so there is no need to have a Java-plugin-enabled browser.

In addition to offering a GUI for adjusting important runtime settings, the General Properties panel of the
main administrative console lets you inspect and/or update your product license(s). This is discussed
below.

Real-Time Update
Any console settings you wish to change or experiment with will be updated on the server in real time, as
you adjust them, so that you do not have to restart the server. Changes to cache settings, pool settings,
etc., take effect immediately.

How to Access the General Properties Console
You can use the administrative console(s) at any time after the app server is running. The entry point is
the General Properties page.

To access the General Properties page:

1 Be sure the application server is running, with Integration Manager Enterprise Server installed and
operational.

2 Launch your web browser.
Runtime Administration of Integration Manager Enterprise Server 21

3 If the target server is Novell exteNd Application Server: Navigate to the default host address
and port (for example, http:\\localhost:80.) A master console window similar to the following will
appear, with a list of links. Click the exteNdComposer link.

Other app servers: Enter the default host IP address, port, and “exteNdComposer/Console” in
your browser window and hit Go. (The URL should look something like
http://localhost/exteNdComposer/Console.)
The General Properties console screen will appear:

General Properties User Interface
The General Properties page (shown above) has a toolbar at the top, a navigator frame on the left, and a
content frame with various text fields and buttons.
22 Integration Manager Enterprise Server User’s Guide

Navigator Frame

The navigator frame contains links for each of the Integration Manager Enterprise Connect products that
you have installed (including eval versions). Clicking any link will take you to a product-specific license-
info page for the Connect in question. If the Connect in question is capable of using connection pooling,
there will be a pushbutton on the license page labeled “Console.”

NOTE: An exception to this rule is the JDBC Connect, whose pooling is handled by the app server rather
than by Integration Manager Enterprise Server.

If you press the Console button, a new browser window will open, containing a console screen with
information about connection pooling. (Consult the documentation for the individual Connects to learn
more about the use of these connection-pooling consoles.) You can also open the connection-pooling
console window(s) by use of the toolbar buttons, as described below.

Toolbar

At the top of the page, you’ll find a row of buttons on a toolbar. The exact number and kind of buttons
will depend on the number and type of Integration Manager Enterprise Connect products you currently
have installed on the server. The toolbar configuration for Integration Manager Enterprise Edition is
shown below:

Each button has a hover-tip associated with it. The tip appears above the button. In the illustration above,
the cursor is hovering over the button corresponding to the 3270 Connect product. (The tooltip says
“3270 Console.”) Clicking the button will result in a new browser window opening, with the 3270
console showing in it.

The very first button on the far left of the toolbar is a link to the General Properties page. This button is
present on all Integration Manager console pages.

The button next to the General Properties button is the Exit button. It closes the browser window.
Runtime Administration of Integration Manager Enterprise Server 23

The button at the far right of the toolbar is the Server-Based Deployment button. This button will take you
to a series of deployment screens that you can use to locate and deploy a preexisting EAR, WAR, or JAR
file that is ready to be retrieved from a staging area on a network drive. (In other words, this button will
initiate a “pull-style” deployment.) To perform this kind of deployment requires that a deploy-ready
archive (e.g., EAR) already exist somewhere on disk.

General Properties and Settings

The main frame of the General Properties page contains controls for inspecting and adjusting various
runtime parameters on the fly.

If you want to change the log-message threshold for your Integration Manager project(s), enter a number
from 1 to 10 in the Log Level field and click the Apply Log Level button. (The lower the number, the
more verbose the logging.) Changes take place immediately.

Click the Clear Cache button if you want to purge all objects from the in-memory cache immediately.
(See additional discussion below.)

You can enter new cache settings as desired (again, see discussion below), then click the Apply Cache
Settings button to make your new settings take effect immediately.

License Manager

The exteNd Composer logo in the top left corner of the General Properties page is itself a button. The
cursor changes to a hand when you hold the mouse pointer over the words “exteNd Composer.”
24 Integration Manager Enterprise Server User’s Guide

If you click the mouse when it is over the Composer logo, you will see the content area of the browser
window change appearance:

This screen displays the current license key, product version and build number, and other important
information. You may be asked for this information when and if you need to contact Customer Support.

At the bottom of the license summary page, there is a Licenses . . . button. If you click this button, a new
browser window will open:
Runtime Administration of Integration Manager Enterprise Server 25

This page gives a detailed listing of license information, including Status info that may be useful for
troubleshooting. In the above picture, for example, the entry for SAP Connect has a detailed status
message explaining why the connector did not load. Likewise, the entry for SAP Service contains a
message mentioning a specific class name. Again, you may be asked for this information when
contacting Customer Support.

Caching and Cache Administration
The General Properties page of the Integration Manager Enterprise Server console gives you the ability
to inspect cache statistics as well as adjust caching parameters. This section, and the sections that follow,
address the various issues you need to know about in order to use this portion of the console to best
advantage.

What Is Caching?
Caching refers to temporary storage of in-memory objects that might be costly to create over and over
again. It’s a technique for achieving runtime-object reuse.

The goal of caching is to enable higher performance: more units of work per second. When objects are
already available in memory and don’t have to be created from scratch, applications take less time to run.
The trick is knowing which objects to cache, and how to manage the cache so as to minimize RAM usage,
data-copying, garbage collection overhead, etc. These are nontrivial issues, especially in a container
process that manages a heterogeneous,complex, fast-changing execution environment. Fortunately,
Integration Manager Enterprise Server does most of the hard work for you.

The down side to caching, in general, is the need for extra memory to store cached objects. Beyond this,
there is the potential for performance degradation if cache-management overhead becomes great. The
cost of managing a cache can become significant if the cache contains large numbers of objects, or if
conditions are so dynamic that new objects are being “turned over” quickly.
26 Integration Manager Enterprise Server User’s Guide

Ideally, a cache should contain only frequently accessed items, and/or items that are costly to create. But
it’s not always obvious which items meet these criteria. The cache has to “know” how to identify (and
retain) high-demand objects while removing infrequently accessed objects that are only taking up
valuable memory.

Least-Recently-Used (LRU) Cache Algorithm
Integration Manager Enterprise Server handles cache management automatically, via a least-recently-
used (LRU) algorithm.

LRU means that cacheable objects, once they exist, are kept in memory until some predetermined
number of cached objects has been reached or exceeded, at which point the least recently used objects
will be removed if it is necessary to add new objects. The “predetermined number” is something you can
set yourself, using the Total Component Cache Size control on the Integration Manager Enterprise
Server main console. Entering a large number in this field tells Integration Manager Enterprise Server to
maintain a large number of objects in memory, at the expense of available free Virtual Machine memory.
Setting a low number means relatively few objects will be retained in memory, freeing up RAM. The
default value is 250.

NOTE: A large value does not guarantee better performance: For example, routine JVM garbage
collection (compaction and purging of memory) becomes more timeconsuming if the cache is large, and
LRU analysis (and pruning) of the cache is more costly as well. You will have to experiment with different
cache settings to find the “sweet spot” for your particular production environment.

Cacheable Objects
Integration Manager can cache the following types of objects:

Components (XML Map, JDBC, LDAP, Telnet, and other components)
Actions (Log, Map, Function, Decision, etc.)
User-scripted functions in Custom Script resources
Code Table resources

Integration Manager does not cache:

Resource XObjects other than Code Table: For example, there is no caching of WSDL Resources,
Form Resources, Images, JARs, XSD, etc.
XML Templates
User objects (custom Java objects)

Of course, CPUs, operating systems, and JVMs all have their own caching mechanisms. It’s possible
(indeed likely) that objects not cached by Integration Manager will reside in a cache of one kind or
another at runtime.

Cache Scope
Integration Manager Enterprise Server provides runtime services for all Integration Manager-built
executables deployed on the app server, regardless of which EAR, WAR, or JAR file(s) the executables
come from. Accordingly, caching operates across a scope that encompasses any and all Integration
Manager deployments on a given server. This means that any time you change cache parameters in the
console, you are potentially affecting all deployed services.
Runtime Administration of Integration Manager Enterprise Server 27

For example, if you’ve deployed five projects, with three services each, and those 15 total services
contain a grand total of 400 cacheable objects, Integration Manager Enterprise Server will cache the 250
most recently used objects (no matter what type they are or which project they came from), assuming
you’ve kept the default Total Component Cache Size setting of 250. If you adjust the cache size up or
down, Integration Manager Enterprise Server will add to or prune the cache as appropriate, again
according to LRU only, with no regard for which object came from which deployed app.

User-Adjustable Settings
The user-adjustable caching parameters available on the General Properties console screen include:

Expression Caching on/off—This radio button tells Integration Manager Enterprise Server
whether to include Actions (such as Map, Decision, Function, etc.) in the cache. (Actions are
considered “expressions” at runtime.) If you are using a generous Total Component Cache Size (see
below) but are not seeing any performance improvement under load, try turning Expression
Caching off.
Component Cache Expiry—This setting allows you to put a maximum limit (in minutes) on the
lifetime of inactive (but still cached) objects. The default is 720 minutes (12 hours), which means
no inactive item will stay in memory longer than 12 hours. (The key intuition here is that if an
object has been in memory for 12 hours and hasn’t been used, it probably doesn’t need to be in
memory any longer.)
Total Component Cache Size—This is the maximum number of objects (of all types) that will be
stored in the cache at runtime. The default is 250.

The cache-expiry and total size limits are enforced via a daemon process—a cache pruner—that runs in
its own thread. Every ten seconds, the pruner inspects the cache to see if any objects have “expired”
(reached their inactivity time limit, or “Expiry,”as discussed above), in which case those objects are
summarily purged from the cache, regardless of whether the cache is full.

IMPORTANT: The console contains a button called Apply Cache Tuning. This button applies the
changes you’ve made (if any) to cache settings and refreshes the console. Don’t forget to click this button
after you’ve edited any cache settings.

Clearing the Cache

The General Properties and Settings console contains a button called “Clear Cache.” This button does
just what it says: It immediately removes all stored objects from cache memory. The console’s Cache
Status numbers will update in real time to reflect this.

You will typically use the Clear Cache button when redeploying (“hot” deploying) a project after
modifying it. If old, unmodified objects from the previous deployment are still in the cache, you may not
see your new project’s changes take effect until the cache is cleared.

NOTE: Undeploying a project (using the app-server’s own utilities for removing deployed objects) does
not obviate the need for clearing the cache. See “Removing (Undeploying) Existing Applications” in the
previous chapter.

The Clear Cache button is often useful in testing. For example, if you are running in-house benchmark
tests to determine which of various cache settings is optimal for a given set of conditions, you would
probably want to zero out the cache between runs.
28 Integration Manager Enterprise Server User’s Guide

Performance Tuning
Performance optimization is a complex subject because of the many variables involved and the non-
obvious interactions between them. There are few hard-and-fast rules. Some issues to be aware of include
the following:

Larger cache sizes may improve application performance, but those gains can be offset by the
larger amount of time spent in garbage collection (which is under control of the VM, not
Integration Manager).
In an LRU-governed system, larger cache sizes may not have a dramatic effect if the VM is already
using generational garbage collection (as is the case on the HotSpot server VM by default).
Incremental (as opposed to generational) garbage collection can be turned on via a VM param. You
may want to test performance with and without incremental GC enabled.
Always be sure the same VM is used on production machines and performance-test machines. If
you tune against a particular VM and then redeploy to a different VM, performance may not be
what you expected.
Be sure the VM command-line params used in testing are exactly the same as those on the final
target machine.
Garbage-collection algorithms generally change with each new release of a VM, so be sure to retest
every time a new VM release comes out.
Tuning requirements will differ significantly depending on whether your applications are I/O
bound, compute-intensive, or memory-intensive. Deploying a new project into a set of existing
projects may alter the mix of dependencies and change the performance of other apps, because the
newly deployed services may be I/O-bound, whereas the preexisting services might be compute-
intensive.

The only way to know which cache and pool settings are best for a given set of apps is to test.

Connection Pools
In a client/server system, one of the most resource consumptive operations is connection management.
Allowing each transaction to open and close a connection for each request usually introduces significant
overhead. To minimize this overhead, Integration Manager Enterprise Server allows you to exploit the
connection pooling features of your application server.

It’s important to make a distinction between database connection pooling and other types of connection
pooling. In general, database connection pooling is under the control of the app server, whereas other
types of pooled connections (such as 3270 connection pools) are under the direct control of Integration
Manager. In the database case, you should consult the documentation for your app server for information
of a more detailed nature than will be presented here. (The different application servers, such as Novell
exteNd, JBoss, WebLogic, WebSphere, etc., have different setup and administrative capabilities for
managing and creating database connection pools.)

Database Connection Pools
In the Novell exteNd Application Server, database connection pools are identified by database name. To
take advantage of the server’s connection pooling, the Connection Resource for the target database must
have the pool name specified. You will want to coordinate with your app server administrator on this at
design time, when setting up Connection Resources for your JDBC components.
Runtime Administration of Integration Manager Enterprise Server 29

Logon Components and Non-Database Connection Pools
For connections to non-database resources, Integration Manager Enterprise Server provides connection
pooling capabilities that augment those of the application server. Integration Manager Enterprise Server’s
connector-specific connection pools are configurable and manageable through separate console pages.

Some of the Integration Manager connectors (chiefly those that emulate terminal sessions: 3270, 5250,
Telnet, etc.) offer the ability not only to pool connections, per se, but to log in to a particular “start
page”of an application or system (which sometimes involves navigating past several screens). The ability
to pool properly pre-positioned (by “start page”) connections is afforded by so-called Logon
Components, which you build as part of your project in Integration Manager at design time.

In order for Logon components to work properly, their existence needs to be made known to the
application server as well as to Integration Manager Enterprise Server. If your project uses Logon
Components, you should do the following after deploying your project to the server:

To enable the use of Logon Components:

1 Locate the Integration Manager deployment JAR that contains your Logon Components. This will
be a JAR file (bearing the name of your project) located in the \archives folder of your staging
area’s main output folder.

2 Manually copy the JAR file to the app server’s \lib folder.
3 Follow the app-server vendor’s recommendation for putting the JAR file in your server’s classpath.

NOTE: If you’re using Novell exteNd Application Server, you can add appropriate $SS_LIB entries
in agjars.conf after copying the JAR files to the lib directory of the app server

4 Restart the server.
If you want to go ahead and initialize the logon components (thus opening all pool connections and
bringing them to the proper startup screen), continue to the next two steps. Otherwise, if you are
okay with letting connections and logons happen in real time as they are needed (and taking the
onetime performance hit associated with that), you can skip the next two steps.

5 Navigate to the Integration Manager runtime console (using your web browser) and click into the
console for the particular Connect product in question.

6 Click the Initialize Connection Pool button. (This step needs to be done every time you start the
server, if you want connections to be set up before going live. Otherwise, there will be a onetime
speed hit as individual logon connections “start up” one by one, on demand.)

The architectural and other particulars of various types of pools differ somewhat depending on the type
of back-end system involved. These issues are discussed in greater detail in the various individual User’s
Guides for the various Integration Manager Connect products (e.g., 3270, 5250, CICS RPC, JMS). See
the appropriate guide for more information.

Proxy Servers
If your service will be running inside a proxy server, you will need to inspect (and possibly hand-edit)
certain settings in your xconfig.xml file.

NOTE: There are two xconfig.xml files: One for design time, and another one on the server. The design-
time file can be found under Composer\Designer\bin. The server-side file can be found under
AppServer\Composer\lib. Be sure Integration Manager is not running when you make hand edits to the
design-time file. (Integration Manager overwrites the file on shutdown.) Likewise, make edits to the server-
side version of this file when the server is stopped. Then restart the server.

At design time, you can modify a project’s proxy-server settings in Integration Manager via the Designer
tab on the Tools > Preferences dialog. (See the Novell Integration Manager User’s Guide for details.)
When you shut down Integration Manager, xconfig.xml is updated for you with respect to proxy-server
settings that you made in Tools > Preferences.
30 Integration Manager Enterprise Server User’s Guide

On the server, you need to inspectand/or edit xconfig.xml manually in order to “sync up” the runtime
proxy server parameters with those you used at design time. Simple go to your
AppServer\Composer\lib folder and open xconfig.xml file with a text editor. Look for the
PROXYSERVERINFO tag. The child elements under this tag allow you to fine-tune your proxy settings.
Edit them as necessary (with the server shut down), then restart the server.

NOTE: Be sure the USEPROXYSERVER element is set to “ON” if your app will be running inside a proxy
server at runtime.

Here is an example of what the relevant section of xconfig.xml looks like:

<PROXYSERVERINFO>
 <USEPROXYSERVER Desc="If on, the additional PROXY options are enabled (valid
values are on | off)">on</USEPROXYSERVER>
 <HTTPPROXYHOST Desc=" For Doc I/O, HTTP Actions etc., if network uses a
proxy enter name here."></HTTPPROXYHOST>
 <HTTPPROXYPORT Desc="Port number HTTPPROXYHOST listens
on.">80</HTTPPROXYPORT>
 <HTTPNONPROXYHOSTS Desc="List of hosts that do not require a Proxy. Each
hostname must be seperated by a pipe '|'.">localhost</HTTPNONPROXYHOSTS>
 <FTPPROXYHOST Desc=" For Doc I/O, HTTP Actions etc., if network uses a proxy
enter name here."></FTPPROXYHOST>
 <FTPPROXYPORT Desc="Port number FTPPROXYHOST listens on.">80</FTPPROXYPORT>
<!-- Note: The following section applies only if you are
in a Windows NT Lan Manager (NTLM) security environment -->
 <NTLMCREDENTIALS>
 <NTLMUSER>MyUserName</NTLMUSER>
 <NTLMPWD>aEPUqn2YTUV+s0y/AXHwBA==
</NTLMPWD>
 <NTLMDOMAIN/>
 <PROXYNTLMPROTECTED>on</PROXYNTLMPROTECTED>
 </NTLMCREDENTIALS>
 </PROXYSERVERINFO>

Note that if your proxy server requires the use of NTLM Authentication, you will need to copy the
NTLMCREDENTIALS portion of the PROXYSERVERINFO block (see above) from your design-time
xconfig.xml file to your server-side xconfig.xml file. This block will exist in your design-time
xconfig.xml file if and only if you have set your NTLM credentials in the dialog at Tools > Preferences
> Designer > Advanced > Setup. (You may have to exit Integration Manager in order to see the changes
show up in xconfig.)

If you are using the exteNd Application Server, you must start the server using the following command
line options:

SilverServer +Dhttp.proxyHost=%server name%+Dhttp.proxyPort=%port%

Security Roles
Security Roles (a J2EE feature supported by most app servers) provide a highly granular, inheritance-
based mechanism by which you can set and enforce access privileges to deployed services that use
connections and connection pools. With security roles, constraints can be placed on HTTP actions for
particular URL patterns. Roles are also common in database connection pool scenarios.

Security Roles for container-scoped objects are created and administered at the application-server level
(rather than in Integration Manager). You should consult your app server documentation for detailed
information on how to set up and manage roles on your particular server. In Integration Manager, you use
role names to identify a particular service with a role so that when the service acts as a client (to obtain
connections, invoke beans, etc.) it can identify itself appropriately.

Most of the service-trigger property sheets in Integration Manager’s design-time environment have a
field in which you can specify the Role required in order to run the servlet/trigger in question.

NOTE: Service-trigger property sheets are visible only in Integration Manager Enterprise Edition.
Runtime Administration of Integration Manager Enterprise Server 31

When you specify a Role name in a trigger property sheet, you are essentially limiting access to the
Integration Manager service. The role of the caller must match the Role required by the service, or it must
inherit from a role with appropriate access rights, in order for the caller to invoke the target service. In
this scenario, the Integration Manager service is the target of the request and uses the role mechanism to
decide whether the caller is qualified to trigger the service.

You can also specify a “Run As” role for Integration Manager services that will execute other services.
In this scenario, the Integration Manager service is the client, rather than the target. The “Run As” role
gives the Integration Manager service a Role (an identity for security purposes) to be known by when it
calls other services.

Publishing XML Resources
When establishing a business-to-business process, you may need to publish (or expose) certain files that
are required by other services, or perhaps by your business partners. Examples of these files include XSL
style sheets for rendering an invoice and DTD/schema files for validating documents sent by your site.

For management and maintenance purposes, it is usually more effective to prepare these files in their own
dedicated JAR and deploy them to the application server. A URI can then be associated with the JAR and
its contents published .

The use of special-purpose JARs can also be an effective strategy for resource files needed by your
services, since they allow you to deploy and maintain ancillary files (and the services that use them)
separately. In creating special-purpose JARS, you need to plan ahead and indirect all references to these
resources through exteNd Project Variables.

Publishing Java Classes
You may find it convenient or necessary to use non-Integration Manager-built Java classes or JARs in
your service. If you do require additional Java classes in your application, you must make them available
(visible) to Integration Manager Enterprise Servce and the application server.

If your JARs or classes need to be visible to Integration Manager Enterprise Server, you can edit or create
<JAR> elements under the <RUNTIME> block of xconfig.xml. (You can locate the xconfig.xml file for
the runtime environment in Integration Manager Enterprise Server’s \lib directory. On the design-time
side, look in Integration Manager’s \bin directory.)

NOTE: You must do this when the server is not running, since Integration Manager overwrites
xconfig.xml at shutdown.

If JARs need to be visible to the app server, and you’re using Novell exteNd Application Server, you can
add appropriate $SS_LIB entries in agjars.conf and copy the JAR files to the lib directory of the app
server; or you can add classes directly to the server’s application database.

Other application servers have their own classpath exposure points, generally involving .bat or .sh files
and/or config files and/or custom environment variables. You can read about these in the appropriate
vendor’s documentation.

For development purposes, you can always set the system environment classpath variable to point to your
classes or JARs, using operating-system utilities. This should be done only for development work,
however. In a production environment, you should limit the scope of JAR/class access to just the
applications that need access.
32 Integration Manager Enterprise Server User’s Guide

Controlling Access to JAR and Class files
In J2EE, there are five ways in which JARs and/or classes can be installed such that they can be found by
client processes within an app-server environment:

As individual classes within a web archive’s WEB-INF/classes folder. These classes are visible
only to processes that live within the same archive. If the classes are general-purpose utility classes,
this may not be the best location because the classes might not be functionally related to the archive
that contains them. A higher-level scope might be more appropriate so that the classes do not need
to be put inside multiple WARs that need them.
As a JAR file within a web archive’s WEB-INF/lib folder. Again, this is a good place to put utility
classes functionally related to the applications in the WAR. But since these JAR files will be visible
only from within the WAR, this is not a good place for utility JARs that might be needed by
multiple modules. You could end up putting multiple copies of the JAR inside numerous WARs,
creating a maintainability nightmare.
As individual classes within an EJB module. Although the classes are visible from other modules
that use a manifest file, this is not something you should strive for, because the utility classes may
not be functionally related to other code in the EJB module.
As a JAR stored within the enterprise application archive (the deployment EAR). The classes are
then visible to any module within the application that has a valid manifest file. This is usually a
good solution, as it keeps the classes neatly packaged in their own JAR file, which is usable by any
services in the EAR. In Integration Manager, the easiest way to accomplish this kind of JAR-
within-EAR packaging is to bring a JAR into your project at design time using the JAR Resource
wizard. (See the chapter on Resources in the Novell Integration Manager User’s Guide.) From that
point on, the JAR gets deployed with your project automatically.
As JARs or individual classes on the application server’s global classpath. This is by far the easiest
solution, since it makes classes visible to any applications running on the server. But from a design
standpoint, it’s a bad idea, for the following reasons.

Portability issues: Because the classes live outside of the EAR or WAR, they represent files
that must be copied along with the project. (The project is no longer self-contained.) It also
means changing the global classpath of each server to which the project or JAR is deployed.
Compatibility and Maintainability issues: It forces all client processes running on the server
to use the same version of the classes. If the external classes are updated, all client applications
must be upgraded and/or retested.
Visibility issues: The classes are visible to all applications running on the server. This is usually
not what you want.

The classpath mechanism is a high-level, coarse-granularity mechanism for controlling class and
package visibilities. If the goal is to restrict runtime access to code rather than design- and runtime
visibility of code packages, it may be appropriate to consider using the programmatic and/or declarative
role-based security models available for EJBs and WARs. (WAR security is a J2EE 1.3 concept.) If
remote method invocation is an option, many access-control models are available.

The issue of how best to share “shared code” is a notoriously difficult one, regardless of the control
mechanism(s) available. As with performance tuning, there are no hard and fast rules that apply for all
situations.
Runtime Administration of Integration Manager Enterprise Server 33

34 Integration Manager Enterprise Server User’s Guide

4 The Runtime Framework

Most of the time, you will find Integration Manager’s native deployment facilities and packaging options
more than adequate to meet the architectural requirements of your business applications. But if your
development needs are such that it’s essential to be able to manipulate Integration Manager-built services
on a programmatic level, you will need to know how to write code that leverages Integration Manager’s
Framework API for low-level Java integration.

The Integration Manager framework is a set of classes (in source code form) for working with, or
extending, Integration Manager runtime objects. Its features are discussed in some detail later in this
chapter.

In many cases, you can create your own custom service-trigger objects without hand-writing any “setup”
code. Novell exteNd Director has code-generation wizards that can create servlet, EJB, JSP, and Java stub
files for you, which you can then customize. But to fully understand the generated skeleton-code, you
need to be familiar with the basic architectural assumptions and API requirements of Integration
Manager’s runtime layer. The information in this chapter will give you the essential background info you
need in order to create classes that interact with Integration Manager runtime objects.

NOTE: This chapter is aimed at intermediate-level (or higher) Java programmers who are interested in
understanding the application programming interface for code-level access to Integration Manager
runtime objects. To benefit from this chapter, you should be thoroughly familiar with servlet and bean
programming, and J2EE app server runtime idioms in general.

This chapter will be of help to you if you need to:

Invoke Integration Manager services programmatically from your own Java classes
Augment existing Integration Manager “data input” functionality by providing your own support
for transports, protocols, or data formats not natively supported by Integration Manager
Create service triggers that respond to events not natively supported by Integration Manager’s
existing trigger types
Obtain direct access to a service’s output art runtime so that you can perform custom post-
processing of data or do some kind of custom dispatching of data, etc.

NOTE: The following discussion deals with runtime issues only. A software development kit (SDK) for
creating your own pluggable design-time artifacts in Integration Manager is available by special request
through the Novell marketing organization.

Integration Manager Runtime Architecture
The core functionality of Integration Manager Enterprise Server is provided by the classes in xcs-all.jar
(in Integration Manager’s \lib directory, under the app server install path), plus the three dozen or so
accompanying technology-specific JAR files in the \lib directory. The classes in xcs-all.jar provide all
of the essential “core services” your deployed Integration Manager applications need in order to run on
the server, including:

Instantiation of service objects
Data conversion (preprocessing) in advance of service execution
The Runtime Framework 35

Actual execution of service logic
Basic support functions, like XML parsing, XSL processing, etc.
Access to app-server services
Support for various kinds of connectivity (LDAP, JDBC, etc.)
Caching and cache management

Instantiation and execution of service objects is done through decoding and deserialization of the
metadata stored in your deployment archives. When you create a service or component in Integration
Manager (design time), you are actually creating an XML file that wrappers the actions in your service
or component’s Action Model. If you’ve ever examined the contents of a Integration Manager-created
deployment archive, you will probably have noticed that it contains no compiled classes (except if the
deployment involves EJBs).

Instead of bytecode, each action in each component’s Action Model consists of a metadata description.
Integration Manager Enterprise Server understands how to convert that description into executable code
at runtime. The classes that do this are opaque: They are not exposed in the Framework API (see below),
except for the main execute() method of GXSServiceComponent.

Invocation of a Integration Manager service typically occurs through a servlet. But (again) you’ll notice
there are no servlets in your deployment WAR or EAR. Invocation is handled by a “master servlet”
already residing on the server. Your deployment archive contains only a metadata description of how to
call the server-resident “trigger servlet.” (That description is in the web.xml file in the WAR.) The
metadata description contains initialization parameters for the servlet. Those parameters include the
name of the service that needs to be run, the name of the “converter class” that should be used for
preprocessing arriving data, whether to instantiate the service as an EJB, etc.

Typical Request-Handling Scenario
From Integration Manager Enterprise Server’s point of view, the events that typically accompany
invocation of a Integration Manager service include the following:

1 A request arrives at the app server: e.g., XML arrives via HTTP POST. The server notifies the
appropriate servlet, in this case GXSServiceRunnerEx (a pre-installed, always-present Integration
Manager Enterprise Server class that handles most servlet-based requests for Integration Manager
services).

2 The service-runner servlet uses Integration Manager Enterprise Server’s GXSServiceFactory class
to obtain an instance of the desired kind of service (represented by the GXSServiceComponent
shown above).
36 Integration Manager Enterprise Server User’s Guide

3 The service runner calls on the appropriate converter class (one of several core Integration
Manager Server utility classes) to fetch arriving data and put it in String or String-array format.
Converter classes are discussed in more detail below.

4 Finally, the service runner calls the service component’s execute() method. In the typical case, this
method returns a Java String containing the XML output of the service. (Various overloaded
versions of the method exist, each with its own return type.)

Once the service has finished executing, the servlet performs any necessary post-processing on the output
data (for example, last-minute XSL transformations), in its processResponse() method.

There are many possible variations on the scheme just described. The above diagram describes one
common scenario, involving servlets and HTTP requests. It is intended to illustrate important Integration
Manager architectural idioms, such as:

The use of a “service runner” object (in this case, a servlet) to run a Integration Manager service
The use of a factory to obtain the instantiated service. Delegation through a factory object makes it
possible for Integration Manager to do behind-the-scenes housekeeping (including things like
cache management) in a way that’s transparent to the service runner. It also simplifies working with
EJB deployments, since the service factory can obtain a service as a regular Java object or as an
EJB, based on the request parameters.
The separation of data-prefetch logic from service invocation logic by means of converter classes
(which handle the details of collecting XML input from various kinds of HTTP payloads)

Obviously, not all data travels by HTTP, and it’s not always convenient to invoke services from a servlet.
Other scenarios need to be taken into account.

Alternative Request-Handling Scenarios
One useful variation on the above invocation scheme is afforded by the GXSServiceComponentBean
class, wherein a bean implements the IGXSServiceRunner interface. The GXSServiceComponentBean
provides extra isolation between the client/request layer and the invocation-target layer, so that it
becomes possible for a single type of Java object (the bean) to field requests from many potential types
of client objects (servlets, JSPs, arbitrary Java objects). Experienced developers will recognize features
of the well-known Proxy and Facade design patterns in this approach.

Remote access to Integration Manager services can also occur through EJBs. The
GXSEJBServiceComponent class implements javax.ejb.EnterpriseBean, IGXSServiceRunner,
java.io.Serializable, and javax.ejb.SessionBean. Likewise, there is an EJB equivalent of
GXSServiceComponent, called GXSEJBService. Enterprise Java Beans make possible the use of any
number of well-known design patterns.

In addition to the familiar “request-response” paradigm, of course, it’s possible to enlist Integration
Manager services in other operational flows. For example, you might have a Integration Manager service
that starts up in response to a scheduling daemon of some kind and executes at regular timed intervals. It
might not use any input data; it may or may not produce any output. Perhaps it performs a recurring
maintenance function. This type of specialized invocation scenario can be supported through the use of a
custom trigger object (your own, or derived from a framework object) that implements the
IGXSServiceRunner interface.

Source code for many of the classes and interfaces just mentioned can be found in the Integration
Manager Enterprise Server framework distribution archive, xcs-src.jar (see next section). The main
classes are discussed in more depth below, but for definitive information you should consult the source
code or the Javadoc.
The Runtime Framework 37

Framework Classes
To facilitate working with Integration Manager deployment and runtime objects, Novell provides a set of
framework classes that can be used to create custom Service Triggers for Integration Manager services,
alter the Integration Manager JSP tag library, change the way data is passed, etc. This framework
comprises a runtime API for working with Integration Manager services.

Where to Find the Source Files and JavaDoc
You will find the framework files in the AppServer\Composer\lib path under your main \exteNd install
directory. Look for these two files:

api-xs.zip: This archive contains the JavaDoc files (HTML) for the framework API.
xcs-src.jar: This archive contains Java source code for the approximately 130 classes that make up
the framework. (Included in this set of files are the sources for the custom JSP tag library that
comes with Integration Manager. For a description of the tag library, see the appendix in the main
Novell Integration Manager User’s Guide.)

Packages of Interest
Unless you have unusually far-reaching requirements, it’s unlikely that you will work with more than a
handful of the 130+ classes in xcs-src.jar. Nevertheless, a great deal of useful example code can be found
there for working with Integration Manager services using servlet technology, EJB technology, SOAP,
JSP taglib, transaction managers, etc.

Some of the more interesting packages include:

com.sssw.b2b.xs.deploy.wl70: Helper classes to install J2EE components into the WebLogic
Server 7.0, utilizing capabilities of the DeployerRuntimeMBean class.
com.sssw.b2b.xs.deploy.ws50: Support classes for deploying to WebSphere, utilizing
AppManager features.
com.sssw.b2b.xs.bean: This package contains Java beans that can instantiate and utilize a
deployed Integration Manager service. The classes provide for separation of input conversion from
component execution.
com.sssw.b2b.xs.ejb: This package provides an EJB session bean class for obtaining remote access
to Integration Manager service components, as well as home and remote interfaces for same.
com.sssw.b2b.xs.service.conversion: Contains various helper classes for obtaining XML data by
way of various transports and packagings. (These classes will be discussed in further detail below.)
com.sssw.b2b.xs.mail: Contains classes that make an entry point from SMTP/MIME/POP3 to
deployed services.
com.sssw.b2b.xs.tl: JSP custom tag library implementation.
com.sssw.b2b.xs.deploy2.tc4: Deploy handlers for Tomcat 4.1 platform.
com.sssw.b2b.xs.soap: Provides an implementation of a service trigger that responds to SOAP
requests, utilizing Novell Integration Manager WSSDK technology.
com.sssw.b2b.xs.util: A grabbag of utility classes, including classes to manipulate JARs, a vulture
class that watches a certain directory for incoming files, a class to represent the manifest.mf file
found in Java archives, and classes with miscellaneous static convenience methods.

Static Constants
See the file called constant-values.html in xcs-src.jar for a comprehensive list of constants used in the
framework classes.
38 Integration Manager Enterprise Server User’s Guide

What Types of Programming Needs Does the Framework
Address?

The framework allows you to use your own objects to instantiate and execute Integration Manager
services. This capability can be important for many development scenarios. For example:

You can use your own objects to perform custom pre-processing of data (perhaps converting non-
XML data to XML) before passing it to a Integration Manager service.
You can post-process a service’s output in some custom fashion, perhaps altering its mime-type.
The framework makes it easy to augment Integration Manager’s invocation layer. For example, you
might have legacy CGI scripts (in Python or PHP, say) that need to be able to call Integration
Manager services directly.
If your development efforts involve operating-system-level calls, you may have C++/Java
crossover points that require direct access to Integration Manager services.
The framework also makes it easier to customize your deployments to take advantage of special
app-server services. This can sometimes be important if you’re deploying to a platform that’s not
currently supported by Novell, or you need to “bridge across” to a non-J2EE server API of some
kind.
For performance profiling, you may want to create test routines that can call Integration Manager
services directly (eliminating servlet-engine and network-stack overhead) so that you can
benchmark different cache configurations, for example, without clouding the results with non-
cache-related issues (browser/router/proxy latencies and such).
If you need to implement certain design patterns in your J2EE projects, it might be necessary (or
convenient) to extend various framework classes.

High-Level Architecture
The framework affords a great deal of flexibility in choosing how to invoke a service. A few of the
possible choices are depicted in the diagram below.

The choice of how to set up your invocation layer will probably be dictated by architectural concerns
related to:

Whether you are composing large, distributed web apps with reusable components, or small, “low-
cost” apps that are self-contained
Whether you need to support remote invocation across machines (via RMI rather than SOAP)
The Runtime Framework 39

Whether your data will mostly arrive by HTTP as opposed to other transports
The need to implement certain J2EE design patterns
Possible enlistment of services in transactions
Your personal programming style

The invocation patterns shown in the foregoing diagram are all supported, in one way or another, by the
design-time deployment options of Director and Integration Manager. If you are using the framework, it’s
presumably because you need to customize some aspect of the invocation layer (by extending one or
more of the classes shown). That’s what this discussion will focus on.

Input and Data Conversion
Most (but not all) Integration Manager services operate on input data of some kind. Integration Manager
services expect to receive input data (if any) in one of the following forms:

XML string (java.lang.String containing raw XML)
A Java array of XML strings
A DOM object (of type org.w3c.dom.Document)
An array of DOM objects
A pair of String arrays: one representing SOAP body parts, another representing SOAP header
parts.

If your input data will be arriving via HTTP, you may find it convenient to use or extend one of the
framework’s existing converter classes, which are designed to handle the most common HTTP transport
scenarios. (See the Javadoc and/or source code for the com.sssw.b2b.xs.service.conversion framework
package.)

Whether your input data arrive by HTTP or not, and whether you choose to use the framework converter
classes or not, your code must be prepared to pass input data to your service in one of the formats
described above.

Service Names within Framework Objects
When referring to a service name within a framework object (such as a service runner servlet), you
should use only the full-context name of your service: That is to say, you should combine the deployment
context with the service component name.

The following is an example of a fully qualified service name:

com.yourcompany.composer.ProductInquiry

Where:

com.yourcompany.composer is the deployment context specified during deployment
ProductInquiry is the Integration Manager service component name

NOTE: Novell recommends, as a best practice, that you include “composer” in the deployment context
of every Integration Manager-created artifact, and “director” in the context of every Director-built artifact.
This is not only to provide namespace separation of artifacts that might be built by different development
team members working remotely, but to make debugging easier. (At stack-trace time, it’s valuable to be
able to see, at a glance, which product the artifact was created in.)

Obtaining a Service Instance
You will generally use the static createService() method of the GXSServiceFactory object to obtain a
reference to a so-called service component This overloaded methods comes in three flavors, with
signatures as follows:
40 Integration Manager Enterprise Server User’s Guide

IGXSServiceComponent createService(java.lang.String fullServiceName)

IGXSServiceComponent createService(IGXSServiceRunner aOriginator)

IGXSServiceComponent createService(javax.naming.InitialContext aContext,
java.lang.String aJNDIName)

The first case is simplest: You can obtain a (non-EJB) service by name. In the second case, the caller (an
IGXSServiceRunner) passes a reference to itself; the factory inspects the caller’s properties to obtain
initialization parameters, then instantiates and configures the service.

The third method produces a service component as an EJB (assuming the service was deployed that way
to begin with). The factory needs to know the initial JNDI context and JNDI Name of the service’s home
interface in order to obtain a reference to the EJB (or its accessor object). After that, the factory takes care
of any communication with the EJB container.

Executing the Service
The code for executing a service directly is straightforward. First, obtain an instance of the desired
service by means of a service factory object. Then call the execute() method of the service object. The
execute method returns the service’s output document(s) as native XML in String form.

Code for calling a service can be as simple as:

String inputDoc =

“<?xml version=\"1.0\" encoding=\"UTF-8\"?><root/>”;

String outputDoc = ““;

String serviceName = "com.acme.composer.ProductInquiry";

try {

// Obtain an instance of the desired service:

IGXSServiceComponent myService =

GXSServiceFactory.createService(serviceName);

// Execute the service:

outputDoc = myService.execute(inputDoc);

}

catch(GXSException gxsEx)

 {

 // Do something with exception

 }

Using this kind of code, you can invoke a Integration Manager service from any kind of custom Java
object (not just a servlet). Of course, it’s the caller’s job to obtain the input data for the service, so it can
be passed directly in the execute method. In the bare-minimal code shown above, you are passing a single
input document as a native-XML string. If you need to pass more than one document, perhaps as a DOM
object (i.e., an object of type org.w3c.dom.Document), you can call one of the other variants of execute()
or executeEx(); see the discussion under “Data-Passing Options” on page 43.
The Runtime Framework 41

Delegating Service Calls Through GXSServiceComponentBean
Instead of calling execute() on a factory-obtained service instance, you might find that a more flexible
and architecturally robust way of doing things is to delegate service operations through an accessor
object: namely, a bean. (Not an EJB, but a regular Java bean.) In this strategy, you instantiate a general-
purpose bean directly, use the bean’s setter methods to specify the desired service name, input
document(s), and other parameters, then call execute() on the bean. (The bean then delegates the call to
the service.)

The framework provides a utility bean for this purpose, in a class called GXSServiceComponentBean.
Code for utilizing this bean typically looks similar to that shown below.

private static final String SERVICE_NAME =
"com.composer.MyService";

// Legal values here are “Normal” or “EJB”:
private static final String SERVICE_TYPE = "Normal";

// Instantiate the bean
GXSServiceComponentBean lService =

new GXSServiceComponentBean();

// Configure it
lService.setInputXMLDoc(aXML);
lService.setServiceName(SERVICE_NAME);
lService.setServiceType(SERVICE_TYPE);

// Now execute the service:
try {
 lService.execute();
}
catch (GXSException e) {
 System.out.println(e);
 }

// Obtain the service’s output:
String myOutput = lService.getOutputXMLDoc();

The bean mechanism offers a great deal of flexibility. The bean itself is generic: It can be “configured”
dynamically to bind to any service. It implements the IGXSServiceRunner interface, which means that
through a variety of setter methods, you can specify XSL resource info, converter class name, and other
config parameters for the service before invoking it. Likewise, you can use a wide variety of “getters” to
obtain information back from the service after it executes. In addition, the GXSServiceComponentBean
class has utility methods, such as getXPath() and findDocByPartName(), that can be helpful in
manipulating output data.

The service-runner bean (GXSServiceComponentBean) allows you to specify, via setServiceType(),
whether to use EJB access to obtain and execute the target service (assuming it was deployed in EJB
fashion), or non-EJB (“Normal”) access. This hides some of the complexity of working with services
deployed as EJBs.

The custom tag library used in Director-generated (and Integration Manager-generated) JSP code is built
around usage of the GXSServiceComponentBean object. (Source code for the tag library itself is part of
the framework.)

NOTE: The GXSServiceComponentBean class inherits from a utility class called
GXSServiceComponentBase (which in turn implements the service-runner interface). Consult the source
code and/or Javadoc for these two classes to learn more about the numerous setter, getter, and utility
methods they offer.
42 Integration Manager Enterprise Server User’s Guide

Data-Passing Options
The execute() method on GXSServiceComponent is overloaded to allow you to pass and receive XML
data in various ways. Variants of this method exist to allow passing more than one input document (as
either a String array or an array of DOM objects), or passing input as a java.io.Reader. In each case, the
return type mimics the input type.

There is also an overloaded method called executeEx() that differs from execute() in that it returns a
GXSExResponse object, which is a lightweight wrapper object for responses from SOAP services that
might involve one or more output parts and/or header parts.

The various signatures of execute() and executeEx() are shown below, along with a brief description of
the intended usage..

java.lang.String execute()

 Executes a Integration Manager service that does not expect an input document.

 org.w3c.dom.Document execute(org.w3c.dom.Document aInputDoc)

 Executes the Integration Manager service using the supplied DOM.

 org.w3c.dom.Document execute(org.w3c.dom.Document[] aInputDocs)

 Executes the Integration Manager service using the supplied mulitple DOMs.

 java.io.Reader execute(java.io.Reader xmlIn)

 Executes the Integration Manager service using the supplied XML Reader.

 java.lang.String execute(java.lang.String xmlIn)

 Executes the Integration Manager service using the supplied XML string.

 java.lang.String execute(java.lang.String[] aInpDocs)

 Executes the Integration Manager service using the supplied XML strings.

 GXSExResponse executeEx(java.lang.String[] aInpDocs)

 Executes the Integration Manager service using the supplied XML strings.

 GXSExResponse executeEx(java.lang.String[] aInpDocs, java.lang.String[]
aInpHdrDocs)

 Executes the Integration Manager service using the supplied XML strings.

Service Triggers
A service trigger, broadly speaking, is any object responsible for obtaining a service instance and
executing it. In the framework, the principal trigger objects are GXSServiceRunnerand
GXSServiceComponentBean. The former is a servlet; the latter is a general-purpose bean.

The GXSServiceRunner class inherits from javax.servlet.http.HttpServlet and implements the
IGXSServiceRunner interface (as well as java.io.Serializable). The GXSServiceRunnerEx class differs
from GXSServiceRunner in its ability to deal with one or more input documents.

GXSServiceComponentBean inherits from GXSServiceComponentBase. Both implement
IGXSServiceRunner as well as java.io.Serializable. The parent class, GXSServiceComponentBase, has
many getter and setter methods, allowing you to fine-tune its functionality dynamically. It is not limited
to handling HTTP requests.

If you are implementing a trigger that handles data arriving via HTTP, a convenient starting point may be
GXSServiceRunner or GXSServiceRunnerEx.
The Runtime Framework 43

Of course, strictly speaking, it is not necessary for you to extend any of the framework’s preexisting
service-runner classes in order to execute a service. In fact, it’s not even necessary for your custom trigger
object to implement IGXSServiceRunner. (See “Executing the Service” on page 41 for example code that
neither extends nor implements framework classes.) Even so, you should understand how these classes
and interfaces work.

IGXSServiceRunner
The interface that all framework service-runner objects implement is IGXSServiceRunner. This interface
has two methods, called getServiceProperty() and getClassLoader(), plus numerous predefined
public/static properties (Strings) that are used for parameter discovery at runtime. The
getServiceProperty() method takes a String as an argument; the String should match one of the static
property strings defined on IGXSServiceRunner. The getServiceProperty() method uses the String
passed to it as a key to look up information about the service environment.

For example, one of the properties is called SERVICE_NAME. The hard-coded (final) value of
IGXSServiceRunner.SERVICE_NAME is "servicename." If your service-runner object receives this value
in a call to getServiceProperty(), the method should return the name of the service that will be called.

The getServiceProperty() method is called by various objects that, from time to time, might receive a
reference to your service-runner and might need to look up information about the service your runner
intends to run. For example, the GXSServiceFactory object has an overloaded method called
createService(). One of the createService() methods takes an IGXSServiceRunner argument. Using the
passed-in service-runner reference, the factory object can inspect properties on the caller to determine
how to configure a service instance before returning it to the caller. This same mechanism is used by
various data-converter objects in the framework.

As it turns out, your service runner does not need to define lookup values (nor “get” methods) for all of
the String properties in the IGXSServiceRunner interface. Some of the properties are relevant only in
specialized scenarios involving (for example) digitally signed XML in SOAP transactions. For most
common scenarios, the only “discovery” properties you must make available before every call to a
service factory’s createService() method are the SERVICE_NAME and SERVICE_TYPE properties.
(The latter allows the factory or converter object to discover whether the caller is expecting an EJB, or
non-EJB service.)

A bare-minimal implementation of IGXSServiceRunner is shown below:

class MyServiceRunner implements IGXSServiceRunner
{
 private String mFullServiceName;

 MyServiceRunner(String fullServiceName)
 {
 mFullServiceName = fullServiceName;
 }

 public String getServiceProperty(String aName)
 {
 if(aName == IGXSServiceRunner.SERVICE_NAME)
 return mFullServiceName;
 else if(aName == IGXSServiceRunner.SERVICE_TYPE)
 return IGXSServiceRunner.SERVICE_TYPE_NORMAL;
 else
 return null;
 }

 public ClassLoader getClassLoader()
 {
 return Thread.currentThread().getContextClassLoader();
 }
}

44 Integration Manager Enterprise Server User’s Guide

Note that if getServiceProperty() is called with an argument other than SERVICE_NAME or
SERVICE_TYPE, the method returns null. It is important to return null here, because the Integration
Manager runtime objects that call getServiceProperty() implement default behaviors of various kinds
based on a null return value being encountered. If you return a dummy value (such as “Not supported”),
you will get unpredictable results.

In addition to getServiceProperty(), your service runner needs to provide an implementation of
getClassLoader() for use by factory objects. The implementation shown in above is appropriate for most
cases.

GXSServiceRunner and GXSServiceRunnerEx
If your code will be handling HTTP requests, you might want to extend GXSServiceRunnerEx. This is the
framework’s all-purpose servlet for triggering Integration Manager services.

The following code shows how to extend GXSServiceRunnerEx. It implements a custom Java class called
MyComposerServiceRunner.

package com.composer;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import com.sssw.b2b.xs.*;
import com.sssw.b2b.xs.service.GXSServiceRunnerEx;

public class MyComposerServiceRunner extends GXSServiceRunnerEx
{
 static final String CONTENT_TYPE = "text/html";

// Overload the following method if you want to
// override the default converter class architecture

 protected String[] processRequestEx(HttpServletRequest aReq)
throws ServletException
 {

 return super.processRequestEx(aReq);
 }

// Overload the following method if you want to
// override default response architecture

 public void processResponse(String xmlOut,
 HttpServletRequest req,
 HttpServletResponse res)

throws GXSException
 {
 super.processResponse(xmlOut, req, res);
 }
}

The processRequestEx() and processResponse() methods offer convenient hooks for implementing your
own special data pre- and post-processing logic. The above code merely delegates execution to the
parent’s default implementations of these methods. Remove the “super” calls and insert your own code
to take over control of pre- and post-processing.

The example class shown above inherits from GXSServiceRunner, which in turn inherits from
HttpServlet. Normal servlet control flow applies. In GXSServiceRunner, the following flow occurs:

doGet(), if invoked, calls doPost()
The doPost() method calls initService(), which obtains the desired service via
GXSServiceFactory.createService(this).
The Runtime Framework 45

Also within doPost(), a method named performProcessRequest() is called.
performProcessRequest() calls processRequest(), which in turn obtains the input data for the
service. (To obtain the data, a GXSInputConverterBean is instantiated. The bean, in turn, inspects
the CONVERTER_CLASS_NAME property of the service runner to determine which converter
class to use.) The service’s execute() method is then called.
When processRequest() returns, the method processResponse() executes. This is where data post-
processing can be performed. It is also where any OutputStreams that are opened from the
HttpServletResponse should be closed.
NOTE: The default implementation of processResponse() contains code for converting XML to
HTML (using server-side XSL transformation), based on the value of the HTML_INDICATOR
property set by the service runner. Study the source code for GXSServiceRunner if you want to see
how this kind of data post-processing can be done.

Initialization Parameters

It’s important to understand that the default implementation of GXSServiceRunner depends on
framework methods (specifically, methods belonging to GXSServiceFactory and
GXSInputConverterBean) in which the service runner itself is an argument to the method. When a
reference to the service runner is passed this way, it’s because the factory object needs access to the
caller’s properties. The properties in question usually involve configuration parameters of some kind.

For example, when GXSServiceRunner calls the GXSServiceFactory method createService(), passing
‘this’ as an argument, the factory uses the servlet reference to find out the name of the service to obtain
and the type of service (EJB or non-EJB). These pieces of information ultimately come from the servlet’s
initialization parameters (in particular, the params called “servicename” and “xcs_servicetype”). The
initialization parameters, in turn, are specified in the web.xml file in the servlet’s WAR module.

The following listing shows what the web.xml servlet entry for the MyComposerServiceRunner class
might look like. This example assumes that the target Integration Manager service is called HelloWorld
and that the framework-supplied GXSInputFromHttpParams converter class will be used to obtain data
from the HTTP request.

<servlet>
 <servlet-name>

MyComposerServiceRunner
</servlet-name>

 <display-name />
<servlet-class>
com.composer.MyComposerServiceRunner

</servlet-class>
<init-param>

 <param-name>servicename</param-name>
 <param-value>com.composer.HelloWorld</param-value>
 </init-param>
<init-param>
 <param-name>xcs_servicetype</param-name>
 <param-value>NORMAL</param-value>
 </init-param>
<init-param>
 <param-name>transform_into_html</param-name>
 <param-value>false</param-value>
 </init-param>
<init-param>
 <param-name>rootname</param-name>
 <param-value>greeting</param-value>
 </init-param>
<init-param>
 <param-name>converterclassname</param-name>
 <param-value>

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpParams
</param-value>

 </init-param>
46 Integration Manager Enterprise Server User’s Guide

</servlet>

Note that the “servicename” init param specifies the complete (full-context) name of the target service,
in this case com.composer.HelloWorld.

Other parameters are supplied as well, such as “rootname” (to specify the root element name of the XML
document that the converter class will create as input to the service), a “transform_into_html” flag to
indicate to GXSServiceRunner whether to attempt XSL transformation of the output data in
processResponse(), and so on.

The important point to note is that if you intend to extend GXSServiceRunner or GXSServiceRunnerEx,
you should ensure that the web.xml file for your servlet class specifies, at a minimum, the init params
“servicename”, “xcs_servicetype”, and “converterclassname” (and valid values for them), as shown
above. The other initialization parameters are optional.

The framework factories “understand” a large number of possible init parameter types: see the properties
defined on the IGXSServiceRunner interface for a full list. Some of the more commonly used params are
shown in the following table. (Required params are in bold.)
The Runtime Framework 47

IGXSServiceRunner
Property Name

Description Initialization
Parameter

GXSServiceRunner
method

SERVICE_NAME The name of the
Integration
Manager service
component.

servicename getServiceName()

ROOT_NAME The root node
that is expected
as the input
document.

rootname getRootName()

JNDI_NAME The JNDI name
of the EJB home
interface, for the
Integration
Manager service
component.

jndiname getJndiServiceName()

CONVERTER_
CLASS_NAME

The class that
should be used to
convert the HTTP
request into an
XML document.

converterclassname getConverterClassName()

PARAM_NAME The name of the
parameter that
contains the input
XML document.

xcs_paramname getxcsParamName()

SERVICE_TYPE Whether the
service
component
reference is an
EJB or NORMAL.

xcs_servicetype getServiceType()

PROVIDER_PARAM The JNDI
provider URI.

providerURI

CONTEXT_FACTORY The JNDI context
factory.

contextfactory

HTML_INDICATOR An indicator used
to specify
whether the
output document
will be rendered
as HTML.

transform_into_html getOutputHTMLIndicator()

OUTPUT_XSL If the output
document is
being
transformed into
HTML, this will
give the URI of
the style sheet.
This is only
necessary if the
XSL processing
instruction has
not been
embedded in the
output XML
document.

output_xsl_URI getOutputXSL()
48 Integration Manager Enterprise Server User’s Guide

If your servlet class will be used in an environment where the web.xml init-param mechanism can’t be
relied upon, you should provide custom implementations of the following methods:

getServiceName() to bind the servlet to the Integration Manager service component
(mandatory in all cases)
getRootName() to return the name of the root element to be used if the converter class will be
GXSInputFromHttpParams (otherwise “root” will be used by default)
getServiceType() should return a string value of “NORMAL” or “EJB”, indicating the type of
service component that will be invoked (mandatory in all cases)
getConverterClassName() should return the name of a class that implements the
IGXSInputConversion interface (not mandatory in every case, but recommended as a best
practice)
getOutputHTMLIndicator() should return true if the output of the service will be transformed
into HTML using the default implementation of processResponse(); false if it will be XML.
(Again, (not mandatory in every case, but recommended as a best practice.)

IGXSInputConversion and IGXSExInputConversion
The framework’s servlet-based service runner class (GXSServiceRunnerEx) makes use of so-called
converter classes to obtain data arriving via HTTP. These classes are intended to provide a clean
separation of “data marshalling and unmarshalling” logic from service invocation logic.

The converter classes in the framework implement the IGXSExInputConversion interface (which in turn
extends IGXSInputConversion). This interface has only one method:

String[] processMultipleRequests(HttpServletRequest aReq)

As you can see, this method essentially converts a servlet request to an array of XML strings.

NOTE: Since you cannot implement the IGXSExInputConversion interface if your custom service runner
class does not use (or cannot supply) a HttpServletRequest object, this discussion applies only if you are
extending GXSServiceRunnerEx (or if you are implementing a custom servlet that will eventually get
passed to factory objects). If your trigger class does not inherit from HttpServlet, you can implement your
own scheme for fetching data, and simply pass the data to the service’s execute() method.

Most of the framework’s converter classes implement a constructor that takes a IGXSServiceRunner
argument so that the converter can obtain initialization parameters (or other information) from the caller.
Study the source code for the framework converter classes if you want to see examples of this technique
in use.

Framework-Supplied Converter Classes

The framework contains a number of predefined converter classes (that is, classes that implement the
IGXSExInputConversion interface). The names of these classes can be specified in servlet init-params, or
supplied to the setConverterClassName() method of GXSServiceComponentBase.

Converter classes available in the framework include:

GXSInputFromHttpContent — Obtains XML directly from the request’s InputStream
GXSInputFromHttpMultiPartRequest — Obtains XML from multipart form data
GXSConvertHttpMPReqNonBuff — Same as above, but uses a non-buffered MultipartRequest.
(Note: The MultipartRequest class is defined in the framework. See the relevant Javadoc and/or
source code for details.)
GXSInputFromHttpParams — Obtains XML by parsing query parameters off the tail end of the
URL in an HTTP GET. Those params are assembled into an XML document on the fly.
GXSInputFromHttpSpecificParam — Assumes that a form has been POSTed, with a field called
‘xmlfile’ that contains XML.
The Runtime Framework 49

GXSInputFromJavaObject — This is actually a convenience object for use by Integration
Manager JSP taglib methods. It is constructed using a reference to a GXSServiceComponentBean.
The bean needs to be able to point to a XML String whose variable name is located in an init param
called ‘xmldoc’. See source code for details.
GXSInputFromSoapContent — Obtains XML strings from elements under the BODY element
of a SOAP request. Every element is accumulated into a String[].

You should study the source code for these classes to see how they work before implementing any but the
most trivial of custom converter classes. Depending on what kinds of data conversion you need to do, you
may be able to extend an existing converter class (and save yourself a lot of coding).

A custom converter class will look something like this.

public class MyConverterClass implements IGXSInputConversion
{
 // Attribute that holds the service
// runner for querying parameters.
 IGXSServiceRunner mRunner = null;

 // Constructor to take the IGXSServiceRunner
 // so that the class can retrieve params
 public MyConverterClass(IGXSServiceRunner aRunner)
 {
 mRunner = aRunner;
 }

 // the processRequest method should take
 // an HttpServletRequest as
 // a parameter and return an XML doc as a String:
 public String processRequest(HttpServletRequest aReq)
 throws GXSConversionException
 {
 String lsExpandedDoc = null;
 // (create or obtain XML . . .)
 return lsExpandedDoc;
 }
}

EJB-Deployed Services
The Enterprise Java Bean (EJB) API implements a container architecture designed to facilitate clean
separation of logic, data-access, and presentation layers while also providing connection pooling,
transaction management, persistence, access control (via Roles), “naming services” (JNDI), and remote
invocation mechanisms, so as to free applications from having to implement or manage such features
individually.

Integration Manager services can be deployed as EJBs. In Integration Manager Enterprise Edition, a
simple drag-and-drop UI exists for designating EJB associations at design time (see the separate Novell
Integration Manager User’s Guide), such that when you choose a service to deploy as an EJB session
bean, you can specify whether it is to be Stateful or Stateless, the transaction participation level
(Mandatory, Never, Supports, etc.), and the JNDI name of the service.

Since EJBs cannot be instantiated directly by use of constructors, you must use the GXSServiceFactory’s
static createService() method to obtain a reference to a service. The signature of the method in question
is:

public static IGXSServiceComponent createService(javax.naming.InitialContext
aContext,

java.lang.String aJNDIName)
 throws GXSException
50 Integration Manager Enterprise Server User’s Guide

The returned service object is of type IGXSServiceComponent, which means it supports all of the various
execute() overloaded signatures discussed previously.

An alternative to using the GXSServiceFactory is to utilize the GXSServiceComponentBean class, which
can act as a kind of “proxy object” for interacting with Integration Manager services. Example code for
using this JavaBean was given earlier (under “Delegating Service Calls Through
GXSServiceComponentBean” on page 42). To use this bean as an EJB-service accessor, follow the
procedure discussed before, but specify “EJB” in setServiceType(), and in addition to calling
setServiceName() with the name of the deployed service, use setJndiServiceName() to specify the JNDI
name that you supplied for the service at deployment time. If you are implementing the
IGXSServiceRunner interface yourself, you should provide an implementation of getJndiServiceName()
in your service runner and vector to it from getServiceProperty() when the latter gets a request for
JNDI_NAME.

Getting the EJB Home and Remote Interfaces

The EJB remote interface, called IGXSEJBServiceComponent, is located in the com.sssw.b2b.xs.ejb
package. When deploying an Integration Manager service as an EJB, you will assign a JNDI name to the
EJB. It is this name rather than the qualified Integration Manager service name that will be used to get a
reference to the EJBs home interface. The name of the EJB home interface for creating the
IGXSEJBServiceComponent is IGXSEJBServiceHome.

When specifying the JNDI name for an EJBs home interface remember that, for the Novell exteNd
Application Server, the string “sssw://host/RMI/” needs to be prepended. For example, if you were
deploying an EJB into an Application Server called main.server, and the JNDI name for the EJB happens
to be com/acme/inventory/ProductInquiry, then the fully qualified JNDI name would be
sssw://main.server/RMI/com/acme/inventory/ProductInquiry.

Once the home interface has been retrieved, much like the GXSServiceFactory’s createService()
method, a method called create() can be invoked which will return the remote interface of the EJB.
(This is the closest thing to “instantiating” an EJB that exists in the EJB world.) The remote interface
contains several execute methods, as described below:

java.lang.String execute()

 Method to execute a Integration Manager service that does not expect an input document.

 java.lang.String execute(java.lang.String inXML)

 Method to execute the Integration Manager service against a single XML document.

 java.lang.String execute(java.lang.String[] asInputStrs)

 Method to execute the Integration Manager service component using multiple input documents.

 GXSExResponse executeEx(java.lang.String[] asInputStrs)

 Executes the Integration Manager service using the supplied XML strings.

 GXSExResponse executeEx(java.lang.String[] aInpDocs, java.lang.String[]
aInpHdrDocs)

 Executes the Integration Manager service component using the supplied XML strings as inputs and
headers.

You will notice that the Reader or Document versions of execute() available in the
IGXSServiceComponent are not available in the EJB remote interface. This is because neither Reader
nor Document is serializable and thus neither one is able to appear in a remote method.
The Runtime Framework 51

Factory to Obtain EJB Home Interfaces

If you want low-level control over EJB access, you will want to know about a factory class called
GXSEJBAccessor, located in the com.sssw.b2b.xs.sssw package. It contains two methods to obtain an
EJB’s home interface from a Novell exteNd Application Server.

One method can be used within a server that does not require authentication; the second provides two
extra parameters for username and password.

When using the factory, there is no need to fully qualify the JNDI name assigned to the EJB. The factory
creates the fully qualified hostname with the supplied parameters. In the following example, the JNDI
name of the EJB is com/acme/inventory/ProductInquiry, the Novell exteNd Application Server name
is main.server and the ports are at their installation default of 80 for HTTP and 54890 for RMI.

import com.sssw.b2b.xs.ejb;
import com.sssw.b2b.xs.sssw.GXSEJBAccessor;

public void doSomeEJBStuff() throws java.rmi.RemoteException
{

IGXSEJBServiceHome srvcHome = GXSEJBAccessor.getHomeBean(
“com.sssw.b2b.xs.ejb.IGXSEJBServiceHome”,
“com/acme/inventory/ProductInquiry”, “main.server”,
80, 54890);

IGXSEJBServiceComponent ejbSrvc = srvcHome.create();
// Do something with the service component

}

52 Integration Manager Enterprise Server User’s Guide

5 Transaction Management

Integration Manager applications that perform transactions require special planning and deployment.
Runtime and deployment issues associated with transaction management are covered in this chapter. For
a discussion of design-time issues, such as how to use the Transaction Action, see the chapter on
Advanced Actions in the Novell Integration Manager User’s Guide.

Transaction Control in Integration Manager
In Integration Manager Enterprise Edition, the Transaction action can call any of the defined Java
Transaction API (JTA) server-side transaction commands. For example:

The begin, commit, and rollback commands are available for use in projects that will be deployed
as servlets or EJBs with bean-managed transaction behavior.
The Set Rollback Only command is available for use in projects that will be deployed as container-
managed EJBs.

These choices, appropriately enabled/disabled, are available from the Transaction dialog (see below),
which appears when you create a new Transaction Action in Integration Manager.

Transaction Deployment Considerations for the Novell exteNd
Application Server

As described in an earlier chapter, Integration Manager services can be front-ended by servlets, EJBs, or
arbitrary Java classes. Each mechanism has important implications for transaction control, as a result of
the way transactions are defined in the Java Transaction API (JTA).
Transaction Management 53

Servlet Deployment Considerations
Servlet deployment using JDBC connection pools are recommended when complex transactional
behavior is not required, such as inquiry-only services. The primary limitations of Servlet deployments
are:

Declarative transaction control is not allowed. If this is a requirement, use an EJB deployment
instead.
JDBC connections from the connection pool destined for a Servlet are by default set with auto-
commit turned on. This means that after each Update, Delete, or Insert statement, the transaction is
automatically committed to the database. Subsequent rollbacks will have no effect. There are two
ways to change this behavior:
1. Issue a Begin Transaction command (using a Transaction action), and utilize a subsequent
Commit or Rollback command as appropriate.
2. Check the “Allow SQL Transactions” checkbox for the connection. See “JDBC Transaction
Control: Allowing User Transactions” on page 56 for further details.
NOTE: Nested transactions are not allowed, but sequential ones are.

EJB Deployment
Deploying Integration Manager services as EJBs gives the maximum transaction management flexibility.
EJBs are the recommended deployment choice if your application requires a distributed transaction
environment where data has to be updated in a number of back end systems. Before examining
Integration Manager specifics for EJB deployment, it is worthwhile to review the deployment options
regarding transactions as indicated in the EJB specification. The following definitions are helpful:

Application is the user of the transaction services, normally the EJB.

Container is the application server provided context in which an EJB is deployed to and executes.

Resource Manager is the interface to the back end system, such as a database or a message queue.

Resource Adapter is the interface to the Resource manager, such as a JDBC driver.

Transaction Manager is an application server provided object that controls the flow of the transaction,
setting up the transaction between all players. This normally involves mapping the high level calls to low
level transaction calls to the standard X/Open XA protocol.

See the accompanying illustration.

All container-managed transactions are on a method call basis, while stateful Bean-managed transactions
may span method calls. The EJB literature sometimes implies that with EJBs, all transaction management
is done behind the scenes and is of no concern to the application developer. Although complex two-phase
commit logic is, in fact, performed automatically (and rollbacks will automatically occur if exceptions
are thrown), developers still need to have an understanding of how EJB transactions are managed in order
to ensure desired application results.
54 Integration Manager Enterprise Server User’s Guide

Bean Managed Transaction Demarcation

When an EJB is deployed as a Bean-managed transaction, it is expected to communicate with the
transaction manager indirectly via a simplified transaction interface called UserTransaction.
UserTransaction provides transactional commands such as begin, commit, and rollback. These
commands are only available to the Bean if it is deployed as Bean-managed. If they are issued when the
EJB is deployed as Container-managed, an IllegalStateException is thrown. Consequently, developers
need to know in advance how the Bean is going to be deployed.

Container-Managed Transaction Demarcation

Container-managed Transaction demarcation, also known as declarative transaction support, is a
powerful and flexible means for transaction support. The application assembler is free to determine the
EJB’s transactional behavior post construction. Container-managed transactions are most useful in cases
where EJBs utilize other EJBs to get work done. The classic example of this case is a stateless Session
Bean calling several Entity Beans to update various tables in a database. Linking their transaction via
declarative transaction management greatly reduces the complexity of the code, as any failure in any of
the components can automatically roll back the transaction.

EJBs support six different Container-managed transaction types. The most important differentiator
among the six is the notion of transaction propagation. If one EJB with an ongoing transaction calls
another, the transaction may or may not be passed along to the second EJB. If it is passed, and the
transaction is subsequently rolled back, then all work done in all EJBs within the scope of that transaction
are rolled back.

Container-managed transaction types include:

Table 5-2

In Container-managed transactions, there is no way to call any type of commit. The user can initiate a
rollback by calling the setRollbackOnly() method on the EJB context. This call is only appropriate
in certain situations, however. If the application is deployed as a Bean-managed EJB, or a Container-
managed EJB without Transaction support, a call to setRollbackOnly() will result in a
java.lang.IllegalStateException.

Container-managed transactions are a very powerful mechanism to perform complex transaction
management in a heterogeneous environment. Such a complex distributed environment requires support
from the back end resource manager, the middleware drivers, and the application server.

NOTE: At this time, the Novell exteNd Application Server supports distributed transaction management
across connections from a single connection pool. Check with the appropriate vendor’s documentation if
you are using a server other than Novell exteNd Application Server.

Transaction type Behavior

Not Supported No transaction support is available.

Required If called with a transaction, it will join, else it will
create one.

Supports If called with a transaction, it will use, otherwise it
will run without one.

Requires New Always creates a new transaction. The callers
transaction is suspended until this one completes.

Mandatory If called with a transaction, it will use, otherwise it
throws an exception.

Never If called with a transaction, it will throw an
exception.
Transaction Management 55

XA-Aware Database Drivers
Check that you are using an XA-enabled database driver before using transactions involving database
access. Most vendors provide XA and non-XA version of their drivers. If you are not able to use an XA-
aware driver, you may still be able to enlist JDBC components in transactions, but you should commence
the transaction before opening the database connection (i.e., before calling the JDBC component). You
should test this scenario, obviously, before relying on it.

EJB Deployment Considerations
EJB deployment is recommended in situations where complex transactional behavior is required. By
default, the Deployment Wizard bases the deployment-mode choice on the current Transaction
Emulation Mode (as set in Tools > Preferences, using the Designer tab). If the emulation mode you’ve
chosen indicates a bean-managed EJB deployment, the Deployment Wizard will create this type of
deployment. Otherwise, it will default to a Container-managed, “Transaction Not Supported”
deployment. (One can easily change from Not Supported to Mandatory, Supports, Requires New, or any
of the other valid choices for bean or Container-managed transactions using the pull-down menu in the
Transaction Attribute field of the EJB-Based Service Triggers Panel of the Deployment Wizard.)

JDBC Transaction Control: Allowing User Transactions
Manual control of transactions is sometimes required. For such situations, Integration Manager has a
special checkbox on the JDBC connection component that allows user-controlled SQL transactions.

NOTE: This is an advanced option, and should only be used if you are comfortable with the details of
SQL programming.

Checking the Allow SQL Transactions box does the following:

It turns auto-commit off for the JDBC driver
It translates all SQL commit and rollback commands to the equivalent JDBC connection calls
It causes Integration Manager Enterprise Server to perform a rollback on the JDBC connection if
the last Execute SQL Action in the JDBC component was not a commit or a rollback.
56 Integration Manager Enterprise Server User’s Guide

NOTE: This behavior is important if connection pools are used. When you return a connection to
the pool, the pool manager expects to be handed a “clean” connection. If you return a dirty
connection (a connection with uncommitted changes on it), undesirable results, such as table
locking and transaction scope mismatches, can occur. To prevent this, Integration Manager detects
a dirty connection, and attempts to clean it by issuing a rollback, unless the user has explicitly
commanded a commit. Bottom line: It is vitally important that you explicitly issue a commit (with a
Transaction Action) at the end of the JDBC component action model, after all database operations
have completed, if your transactionable logic executed without error.

It restores the state of the autocommit flag at the end of the transaction immediately before
returning the connection back to the pool

If you check the Allow SQL Transactions box, Novell recommends that you deploy your Integration
Manager service either as a conventional servlet-triggered service, or as an EJB in the Container-
managed, “Not Supported” transaction mode. In addition, we strongly recommend that you issue a
commit or a rollback as the last SQL statement in your JDBC component. A “best practice” would be to
wrap the entire JDBC component action model in a Try/On Fault block to catch any exceptions.

NOTE: As database drivers may react differently, be sure to test your application in a deployed state to
verify the desired transactional behavior.

References
EJB home page: http://java.sun.com/products/ejb

JTA home page: http://java.sun.com/products/jta
Transaction Management 57

http://java.sun.com/products/ejb

58 Integration Manager Enterprise Server User’s Guide

A exteNd Application Server Dependencies

Connections

Using Novell exteNd Connection Pools
When specifying the connection pool name in the exteNd JDBC connection panel, make sure that it is
specified using the Novell exteNd naming convention. Any database that has been added to the server is
available for use with a connection pool. The naming convention for a database pool is
Databases/appDBName/DataSource where appDBName is the name of the exteNd Application Server
database that will be used for connection pooling.

For example, if a exteNd Application Server had a database attached called ProductionDB, the correct
qualified name for the pool would be

Databases/ProductionDB/DataSource
exteNd Application Server Dependencies 59

60 Integration Manager Enterprise Server User’s Guide

B Contents of Deployment Objects

If you look in your staging directory after deploying, you will see a number of files. This appendix
describes those files.

Deployment EAR
This is the final packaging of your project into a deployable object: It is what’s deployed, ultimately, to
the app server. This file, like WAR and JAR archives, can be opened with any .zip-file viewer. If you open
it, you will see a project JAR, a WAR file, and optionally an EJB JAR and application.xml file.

Project JAR
Deploying a project results in the creation of a JAR file (the “Project JAR”) that contains all the xObjects
(as well as other XML files, such as schemas and WSDL) used in your project’s deployed services. The
xObjects are encoded as metadata in individual XML files (one per xObject). The xObject XML files
have a context associated with them in the JAR. The context follows a naming convention that consists
of a two-part path prefixed to the name of the xObject file.

The first path part, which you create, is a unique name called the deployment context. This can be any
name of your choosing. (You specify this value in the first panel of the Integration Manager deployment
wizard.) The deployment context is used to distinguish two Integration Manager services from each other
that are named the same in different Integration Manager projects residing in the same application server
database. (In other words, the deployment context provides namespace separation.)

The second path part, which exteNd creates automatically, mirrors the same directory structure as the
original Integration Manager project on the hard disk. The directory structure for a Integration Manager
project consists of a root directory whose name is the name for the project, with subdirectories for each
xObject type created (i.e., JDBC, Map, Connections, Functions, Script, Service, Code Tables etc.).
Consider a Integration Manager project called Tutorial, with a JDBC component named
LookupInventory. The disk directory / file structure would contain the following:

{parent directory of project}\Tutorial\JDBC\LookupInventory.XML.

The final part of the path is the name of the xObject.

Example:

com.yourcompany.project.jdbc.LookupInventory

Where:

com.yourcompany.project is the deployment context
jdbc is the object type (and directory name)
LookupInventory is the xObject
Contents of Deployment Objects 61

WAR
The WAR file inside your deployment EAR contains a manifest as well as a web.xml file. The manifest
file tells the app server about the JARs in your project. The web.xml file contains servlet/URL/classfile
associations and related information, so that at runtime the app server knows how to invoke the trigger
servlets that (in turn) invoke your services.

Servlets
For each Servlet that the Deployment Wizard generates, an entry is made in the web.xml file of the WAR
file. The WAR file, in turn, is stored inside the deployment EAR.

EJBs
For each EJB that the Deployment Wizard generates, an entry is created in the manifest file for the EJB
deployment JAR, called meta-inf/ejb-jar.xml, which contains the type of EJB (i.e., session or entity),
environment settings for each EJB, and the classes that make up the EJB. An entry is also made in the
BuildEJBs.XML descriptor file that specifies the EJBs to build and their JNDI names.

The EJB Jar is named using the JAR filename that was specified in the Deployment Wizard. The name
of the deployment EJB JAR file and the remote interface EJB JAR, both of which are built on the Novell
exteNd Application Server during the deployment, are also based upon the project JAR filename. The
naming conventions for the three JAR filenames are:

EJB JAR – EJB-xxxx

EJB deployment JAR – EJBDeployxxxx

EJB Remote interface JAR – EJBStub-xxxx

(where xxxx is the name of the Project JAR file)

In the following example the Project JAR filename is Production.jar

EJB JAR: EJB-Production.jar

EJB Deployment/built JAR: EJBDeployProduction.jar

EJB Remote interface JAR: EJBStub-Production.jar

ImportObjects.bat
This batch utility contains all of the SilverCmd calls to import and deploy the various artifacts
(deployment files) that were created by the Deployment Wizard. See the Novell exteNd Application
Server documentation for detailed information about this utility.
62 Integration Manager Enterprise Server User’s Guide

C Reserved Words

Avoid using Java-language keywords in your deployment-context strings. The following table lists Java
keywords.

Java Keywords

abstract boolean break

byte case catch

char class const

continue default do

double else extends

final finally float

for goto if

implements import instanceof

int interface long

native new package

private protected public

return short static

strictfp super switch

synchronized this throw

throws transient try

void volatile while
Reserved Words 63

64 Integration Manager Enterprise Server User’s Guide

D Server Glossary

Bean Managed Transactions
An Enterprise Java Bean that demarcates its own transaction boundaries is said to exercise bean-managed transaction control.
(The alternative is Container-managed transactions.) The bean-managed model allows the programmer to exert low-level
control over transaction logic, but at the expense of extra code and program complexity.

Connection Pool
A group of database connections that can be shared among processes, under the control of a management process (typically the
application server). Since opening and closing database connections can becostly from a performance standpoint, it makes
sense for a server to cache connections.

Container-Managed Transactions
Also known as declarative transaction control, the Container-managed transaction model shifts transaction management
responsibilities out of the EJB and into its Container. EJBs that use this transaction model need not be “transaction aware” at
the internal code level. Instead, the bean’s transaction attributes can be set in a descriptor, and the Container will ensure that
appropriate control is exercised over transactions in which the bean may play a part. The Container-managed model can greatly
reduce code complexity while increasing reliability.

Deployment Context
The deployment context is a name string (whose elements are separated by periods) that can be used to prevent namespace
collisions between services with like-named components.

JNDI
Java Naming and Directory Interface. A standard extension to the Java platform, providing a unified interface to multiple
naming and directory schemes that might exist across file systems and server domains.

JTA
Java Transactions API. A standard Java interface between the transaction manager and parties involved in a distributed
transaction system. Bean-managed transactions rely on this API.

Params (URL/Form)
One of the four canonical Integration Manager service trigger types. This Servlet type builds an in-memory XML document
using HTTP URI form parameters as the names of nodes and their values as text. Multiple values for a parameter can be
handled, but multiple input documents are not created.

Service Triggers
A Service Trigger is a Java Servlet or Enterprise Java Bean created when deploying a project from Integration Manager. It
submits a Service to exteNd.Server for execution. A Service Trigger is also associated with an URI and converts inbound data
into XML documents as input to the service it triggers.
Server Glossary 65

SOAP (Simple Object Access Protocol)
A platform-independent protocol for remote invocation of objects using HTTP as the transport layer and XML to represent the
payload.

XML (HTML form field)
One of the four canonical Integration Manager service trigger types. This Servlet type extracts a service’s input document from
a POSTed form’s field. The Servlet expects the field name containing the XML file to be called ‘xmlfile’ and it uses the first
occurrence of this parameter for the extraction.

XML (HTTP POST)
One of the four canonical Integration Manager service trigger types. This type of trigger Servlet extracts an XML document
sent via an HTTP POST method. This differs from HTML Form POSTs that contain parameter name | value pairs. The payload
of this kind of HTTP transmission is, in fact, the raw XML document. It is a convenient method for exchanging XML
documents with trading partners.

XML Metadata
All objects created in Integration Manager are themselves stored as XML files. The object data and processing instructions in
these files are referred to as XML metadata. The Integration Manager runtime engine processes this metadata to perform XML
Integration services.

XML (MIME multipart)
Another of the four canonical Integration Manager service trigger types. This Servlet type extracts a service’s input document
from a multipart encoded form containing a field with an input type of file. The Servlet expects the field name containing the
XML file to be called ‘xmlfile’ and it uses the first occurrence of this parameter for the extraction.
66 Integration Manager Enterprise Server User’s Guide

Index
A
agjars.conf 30, 32
Allow SQL Transactions 56
application server

transaction deployment considerations 53
auto-commit 56

C
connection pool 55
connection pools 29

using Novell exteNd connection pools 59
container-managed transaction demarcation 55
Container-managed transaction types 56
container-managed transaction types 55
context 40

D
dependencies, server 59
deployment

context 40
EJB 54, 56
servlet considerations 54

deployment context 40, 61
deployment objects

contents 61
EJBs 62
ImportObjects.bat 62
project JAR 61
servlets 62

E
EJB

application 54
container 54
container-managed transaction demarcation 55
container-managed transaction types 55
deployment 54
deployment considerations 56
factory to obtain EJB home interfaces 52
getting the home and remote interfaces 51
resource manager 54
transaction manager 54

EJB deployment 54, 56

EJB service triggers panel 56

I
IGXSEJBServiceComponent 51
IGXSEJBServiceHome 51
ImportObjects.bat 62

J
JAR files 32
Java classes

adding 32
Java Transaction API 53
JDBC transaction control 56

allowing user transactions 56

N
Novell exteNd application server

transaction deployment considerations 53
Novell exteNd connection pools 59

P
pools, connection 59
Project JAR 16
project JAR 61
Project Variables 32
proxy server 30
PROXYSERVERINFO 31
publishing XML resources 32

R
resources, publishing XML 32
Roles 31
rollback 55

S
Server

about 11
overview 15
what it is 11
67

server dependencies 59
connections 59

service triggers
definition of 65

SQL, transaction control using 56

T
Transaction action 53
transaction management

servlet deployment considerations 54
transaction deployment considerations for the Novell exteNd

application server 53
transaction manager 53
transactions

Container-managed 56
declarative 55
propagation 55
SQL control of 57

U
USEPROXYSERVER 31

X
xconfig.xml 30, 31
XML meta data, definition of 66
68

69

70 Integration Manager Enterprise Server User’s Guide

71

72 Integration Manager Enterprise Server User’s Guide

	Contents
	About This Book
	1 Welcome to Novell Integration Manager Enterprise Server
	What is Integration Manager Enterprise Server?
	Support for Popular Application Servers
	Service Types
	Service Triggers

	2 Integration Manager Enterprise Server Overview
	Deployment Archive Contents
	Novell exteNd Application Server Database Requirement

	Push-Model versus Pull-Model Deployment
	Hot Deployment
	Removing (Undeploying) Existing Applications
	Updating Your License

	3 Runtime Administration of Integration Manager Enterprise Server
	Runtime Administration Consoles
	Real-Time Update
	How to Access the General Properties Console
	General Properties User Interface

	Caching and Cache Administration
	What Is Caching?
	Least-Recently-Used (LRU) Cache Algorithm
	Cacheable Objects
	Cache Scope
	User-Adjustable Settings

	Performance Tuning
	Connection Pools
	Database Connection Pools
	Logon Components and Non-Database Connection Pools
	Proxy Servers
	Security Roles

	Publishing XML Resources
	Publishing Java Classes
	Controlling Access to JAR and Class files

	4 The Runtime Framework
	Integration Manager Runtime Architecture
	Typical Request-Handling Scenario
	Alternative Request-Handling Scenarios

	Framework Classes
	Where to Find the Source Files and JavaDoc
	Packages of Interest
	Static Constants

	What Types of Programming Needs Does the Framework Address?
	High-Level Architecture
	Input and Data Conversion
	Service Names within Framework Objects
	Obtaining a Service Instance
	Executing the Service
	Delegating Service Calls Through GXSServiceComponentBean
	Data-Passing Options

	Service Triggers
	IGXSServiceRunner
	GXSServiceRunner and GXSServiceRunnerEx
	IGXSInputConversion and IGXSExInputConversion

	EJB-Deployed Services

	5 Transaction Management
	Transaction Control in Integration Manager
	Transaction Deployment Considerations for the Novell exteNd Application Server
	Servlet Deployment Considerations
	EJB Deployment
	XA-Aware Database Drivers
	EJB Deployment Considerations
	JDBC Transaction Control: Allowing User Transactions
	References

	A exteNd Application Server Dependencies
	Connections
	Using Novell exteNd Connection Pools

	B Contents of Deployment Objects
	Deployment EAR
	Project JAR
	WAR
	Servlets
	EJBs
	ImportObjects.bat

	C Reserved Words
	D Server Glossary
	Index

