
Orchestration Console
Reference

Cloud Manager 2.1.5

January 31, 2013

Legal Notice

THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT ARE FURNISHED UNDER AND ARE
SUBJECT TO THE TERMS OF A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT. EXCEPT AS EXPRESSLY
SET FORTH IN SUCH LICENSE AGREEMENT OR NON-DISCLOSURE AGREEMENT, NETIQ CORPORATION PROVIDES
THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW DISCLAIMERS OF
EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS; THEREFORE, THIS STATEMENT MAY NOT APPLY
TO YOU.

This document and the software described in this document may not be lent, sold, or given away without the prior written
permission of NetIQ Corporation, except as otherwise permitted by law. Except as expressly set forth in such license
agreement or non-disclosure agreement, no part of this document or the software described in this document may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, or otherwise,
without the prior written consent of NetIQ Corporation. Some companies, names, and data in this document are used for
illustration purposes and may not represent real companies, individuals, or data.

This document could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein. These changes may be incorporated in new editions of this document. NetIQ Corporation may make
improvements in or changes to the software described in this document at any time.

© 2013 NetIQ Corporation and its affiliates. All Rights Reserved.

U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), in accordance with 48 C.F.R. 227.7202-4
(for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101 and 12.212 (for non-DOD acquisitions), the government’s
rights in the software and documentation, including its rights to use, modify, reproduce, release, perform, display or disclose
the software or documentation, will be subject in all respects to the commercial license rights and restrictions provided in the
license agreement.

Check Point, FireWall-1, VPN-1, Provider-1, and SiteManager-1 are trademarks or registered trademarks of Check Point
Software Technologies Ltd.

Access Manager, ActiveAudit, ActiveView, Aegis, AppManager, Change Administrator, Change Guardian, Cloud Manager,
Compliance Suite, the cube logo design, Directory and Resource Administrator, Directory Security Administrator, Domain
Migration Administrator, Exchange Administrator, File Security Administrator, Group Policy Administrator, Group Policy
Guardian, Group Policy Suite, IntelliPolicy, Knowledge Scripts, NetConnect, NetIQ, the NetIQ logo, PlateSpin, PlateSpin
Recon, Privileged User Manager, PSAudit, PSDetect, PSPasswordManager, PSSecure, Secure Configuration Manager, Security
Administration Suite, Security Manager, Server Consolidator, VigilEnt, and Vivinet are trademarks or registered trademarks
of NetIQ Corporation or its affiliates in the USA. All other company and product names mentioned are used only for
identification purposes and may be trademarks or registered trademarks of their respective companies.

For purposes of clarity, any module, adapter or other similar material ("Module") is licensed under the terms and conditions of
the End User License Agreement for the applicable version of the NetIQ product or software to which it relates or
interoperates with, and by accessing, copying or using a Module you agree to be bound by such terms. If you do not agree to
the terms of the End User License Agreement you are not authorized to use, access or copy a Module and you must destroy all
copies of the Module and contact NetIQ for further instructions.

Contents
About This Guide 9
About NetIQ Corporation 11

1 Interface Layout of the Orchestration Console 13

2 Orchestration Console Menus and Tools 15

2.1 Operations Menu Bar . 15
2.1.1 File . 15
2.1.2 Edit. 16
2.1.3 View . 20
2.1.4 Actions . 20
2.1.5 Provision . 20
2.1.6 Server . 22
2.1.7 Windows . 25
2.1.8 Help . 25

2.2 Orchestration Console Toolbar . 25

3 The Orchestration Server and the Server Admin Objects 27

3.1 Orchestration Server Object. 27
3.1.1 The Orchestration Server Info/Configuration Page . 28
3.1.2 Orchestration Server Authentication Page . 36
3.1.3 Orchestration Server Policies Page. 40
3.1.4 Orchestration Server Constraints/Facts Page . 40

3.2 Server Admin Object . 40

4 The Job Object 41

4.1 Job Groups. 41
4.2 The Job Info/Groups Page . 42

4.2.1 Info. 42
4.2.2 Groups . 51

4.3 The Job Configuration Page . 51
4.4 The JDL Editor Page . 51
4.5 The Job Library Editor Page . 52
4.6 The Job Policies Page . 53
4.7 The Job Constraints/Facts Page . 54

5 The Resource Object 55

5.1 Resource Groups . 55
5.2 Resource Info/Groups Page. 55

5.2.1 Info Panel. 56
5.2.2 Groups Panel . 80

5.3 Provision Info Page . 81
5.4 Resource Log Page . 81
5.5 Resource Policies Page . 81
5.6 Resource Health Debugger Page . 82
Contents 3

4 NetI
5.7 Resource Constraints/Facts Page . 82
5.8 Resource Object Naming and Renaming. 82

6 The VM Host Object 85

6.1 Info Page . 85
6.1.1 Show Inherited Fact Values Check Box . 86
6.1.2 VM Host Information Panel . 86
6.1.3 Provisioning Adapter Config Panel . 89
6.1.4 Guest VM Monitor Information Panel. 89

6.2 Policies Page . 90
6.3 Health Debugger Page. 90
6.4 Constraints/Facts Page . 90
6.5 Action History Page . 91
6.6 VM Host Object Naming and Renaming . 91
6.7 Unique VM Host Cluster Facts. 92

6.7.1 Orchestration Server Facts in the VM Host Cluster Object . 92
6.7.2 Orchestration Server Facts in a VM Host Residing in a Cluster . 93
6.7.3 Orchestration Server Facts in VMs Hosted in Clusters . 94

6.8 vCPU Slots for VM Hosts . 95
6.8.1 Configuring vCPUs on VM Hosts. 95
6.8.2 Configuring vCPUs on VM Host Clusters . 96
6.8.3 Configuring vCPUs on VMs . 96

7 The Virtual Disk Object 99

7.1 Understanding the Virtual Disk Object . 99
7.1.1 Creating or Deleting a vDisk in the Orchestration Console . 99
7.1.2 Sharing Virtual Disks Among VM Hosts . 103
7.1.3 Moving Virtual Disks . 103

7.2 Viewing Virtual Disk Configuration in the Orchestration Console. 104
7.2.1 Virtual Disk Information Panel . 105
7.2.2 Virtual Disk Policies Tab . 107
7.2.3 Virtual Disk Health Debugger Tab . 108
7.2.4 Virtual Disk Constraints/Facts Tab . 108
7.2.5 Virtual Disk Object Naming and Renaming . 109

7.3 Managing Block Devices as VM Virtual Disks . 109
7.3.1 Prerequisites to Configure on Xen and KVM Hosts Before Setting Up Block Device

Support . 110
7.3.2 How Block Device Support Works . 110
7.3.3 Viewing the Physical Disk Configuration in the Orchestration Console. 112

8 The Virtual NIC Object 117

8.1 Understanding the Virtual NIC Object . 117
8.1.1 The Purpose of the Virtual NIC . 117
8.1.2 Creating or Deleting a vNIC in the Orchestration Console . 117

8.2 Viewing the Virtual NIC Configuration in the Orchestration Console . 120
8.2.1 Virtual NIC Info Panel . 120
8.2.2 Virtual NIC Policies Tab. 123
8.2.3 Virtual NIC Health Debugger Tab . 123
8.2.4 Virtual NIC Constraints/Facts Tab . 123
8.2.5 Virtual NIC Object Naming and Renaming . 124

9 The Network Group and its Virtual Bridge Objects 125

9.1 Understanding the Network Group and Virtual Bridge Objects . 125
Q Cloud Manager 2.1.5 Orchestration Console Reference

9.1.1 Virtual Bridge Object . 125
9.1.2 The Purpose of the Virtual Bridge . 126
9.1.3 Creating or Deleting a vBridge in the Orchestration Console . 126
9.1.4 Virtual Bridge Object Naming and Renaming . 128

9.2 Viewing the Virtual Bridge Configuration in the Orchestration Console . 128
9.2.1 Virtual Bridge Info/Groups Tab . 129
9.2.2 Virtual Bridge Policies Tab. 130
9.2.3 Virtual Bridge Health Debugger Tab . 130
9.2.4 Virtual Bridge Constraints/Facts Tab . 130

10 The Repository Object 131

10.1 Right-Click Menu Actions on the Repository Object. 131
10.2 Repository Groups . 132
10.3 Repository Info/Groups Tab . 132

10.3.1 Info Panel. 132
10.3.2 Best Practices for Entering Repository File Paths . 137
10.3.3 Groups . 139

10.4 Repository Policies Tab . 139
10.5 Repository Health Debugger Tab. 139
10.6 Repository Constraints/Facts Tab . 139
10.7 The Repository Action History Tab . 139
10.8 Repository Object Naming and Renaming. 140
10.9 Shared Storage for Disk Images . 140

10.9.1 Setting Disk Discovery Facts . 141
10.9.2 Running the Discovery. 141
10.9.3 Sharing Disks Between VMs . 142
10.9.4 Attaching a Discovered Disk to a VM . 142
10.9.5 Using Attached Disks in the Guest OS . 143

11 The User Object 145

11.1 User Groups. 145
11.2 User Info/Groups Tab. 145

11.2.1 Info. 146
11.2.2 Groups . 151

11.3 User Policies Tab . 151
11.4 User Health Debugger Tab . 151
11.5 User Constraints/Facts Tab . 151
11.6 The User Action History Tab . 152

12 Miscellaneous Objects Displayed in the Explorer Tree 153

12.1 Policy Object . 153
12.1.1 Policy Constraints . 153
12.1.2 Policy Facts . 153

12.2 Computed Fact Objects . 154
12.3 Event Objects. 154
12.4 Metrics Objects . 154

13 The Orchestration Server Job Scheduler 155

13.1 Understanding the Job Scheduler View . 155
13.1.1 Navigating The Job Schedules Table . 156
13.1.2 Creating or Modifying a Job Schedule. 158
13.1.3 Understanding Cron Syntax in the Job Scheduler . 166
Contents 5

6 NetI
13.2 Walkthrough: Scheduling a System Job . 170
13.2.1 Deploying a Sample System Job. 170
13.2.2 Creating a New Schedule for the Job . 171
13.2.3 Defining the New Schedule . 172
13.2.4 Activating the New Schedule . 176
13.2.5 Running the New Schedule Immediately . 176

14 The Policy Debugger 177

14.1 Constraints Table View . 177
14.1.1 Match Context Area . 178
14.1.2 Constraint Type List . 179
14.1.3 Verbose Check Box . 179
14.1.4 Capable Resources Summary. 180
14.1.5 Constraints Column of the Constraints Table View . 180
14.1.6 Policy Column of the Constraints Table. 181

14.2 Facts Table View . 182
14.2.1 All Facts Check Box. 182

14.3 Policy Debugger Use Cases . 183

A Grid Object Health Monitoring 185

A.1 Health Facts . 185
A.1.1 Explicitly Set or Cleared by the Administrator . 185
A.1.2 Set by Using a Discovery Job . 186
A.1.3 Set by Using a Policy. 186
A.1.4 Set by Using a Computed Fact . 186
A.1.5 Set Automatically by Using a Health Constraint . 186

A.2 Health Events. 187
A.3 Health Debugger . 187

A.3.1 Constraints Table Panel . 188
A.3.2 Facts Table View . 191

B Events 193

B.1 Event Object Visualization and Management in the Orchestration Console 193
B.1.1 Deploying a New Rule-Based Event . 194
B.1.2 Deploying a Pre-written Rule-Based Event . 194
B.1.3 Undeploying an Event . 194
B.1.4 Event Editor . 194

B.2 Event Debugger . 195
B.2.1 Constraints Table. 196
B.2.2 The Facts Table. 197

B.3 Understanding the Orchestration Server Events System. 198
B.3.1 Event Notification. 199
B.3.2 Built-in Events . 199
B.3.3 Rule-based Events . 200

C The Metrics Facility 203

C.1 Metrics Facility Functionality . 203
C.2 Ganglia Metrics . 203
C.3 How Does the Metrics Facility Impact Orchestration Server Performance? 204

C.3.1 I/O Contention . 205
C.3.2 Too Many Open Files . 205

C.4 RRD Definition Using Deployable .metric Files . 205
C.4.1 XML Format for Deployable .metric Definitions . 206
Q Cloud Manager 2.1.5 Orchestration Console Reference

C.5 Query of Aggregated Metric Values . 206
C.5.1 Example of a JDL Query for Aggregated Metric Values . 207
C.5.2 Example of a Policy Constraint or Event Constraint Using Aggregated Metric Values . . . 207
C.5.3 Example of Using Non-aggregated (“Raw”) Historical Metric Values 207

C.6 MetricsManager MBean API . 207
C.6.1 MBean Methods Exposed by the MetricsManager Facility . 208
C.6.2 The MetricsDeployer Facility . 208

C.7 Using the Metrics Facility in the Orchestration Console. 208
Contents 7

8 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

About This Guide

This Cloud Manager Orchestration Console Reference introduces the Orchestration Console, the basic
administration environment for the Cloud Manager Orchestration Server. The guide provides an
introductory overview of the Orchestration Console interface. The guide is organized as follows:

 Chapter 1, “Interface Layout of the Orchestration Console,” on page 13
 Chapter 2, “Orchestration Console Menus and Tools,” on page 15
 Chapter 3, “The Orchestration Server and the Server Admin Objects,” on page 27
 Chapter 4, “The Job Object,” on page 41
 Chapter 5, “The Resource Object,” on page 55
 Chapter 6, “The VM Host Object,” on page 85
 Chapter 7, “The Virtual Disk Object,” on page 99
 Chapter 8, “The Virtual NIC Object,” on page 117
 Chapter 9, “The Network Group and its Virtual Bridge Objects,” on page 125
 Chapter 10, “The Repository Object,” on page 131
 Chapter 11, “The User Object,” on page 145
 Chapter 12, “Miscellaneous Objects Displayed in the Explorer Tree,” on page 153
 Chapter 13, “The Orchestration Server Job Scheduler,” on page 155
 Chapter 14, “The Policy Debugger,” on page 177
 Appendix A, “Grid Object Health Monitoring,” on page 185
 Appendix B, “Events,” on page 193
 Appendix C, “The Metrics Facility,” on page 203

Intended Audience
This information is intended for anyone who is assigned the Cloud Administrator role for a NetIQ
Cloud Manager system. Consumers of this information should be experienced Linux and Windows
system administrators who are familiar with virtual machine technology and datacenter operations.

Additional Documentation
For other NetIQ Cloud Manager 2.1.5 documentation, see the NetIQ Cloud Manager 2.x
documentation site (https://www.netiq.com/documentation/cloudmanager2/).
About This Guide 9

https://www.netiq.com/documentation/cloudmanager2/
https://www.netiq.com/documentation/cloudmanager2/
https://www.netiq.com/documentation/cloudmanager2/
https://www.netiq.com/documentation/cloudmanager2/
https://www.netiq.com/documentation/cloudmanager2/

10 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

About NetIQ Corporation

NetIQ, an Attachmate business, is a global leader in systems and security management. With more
than 12,000 customers in over 60 countries, NetIQ solutions maximize technology investments and
enable IT process improvements to achieve measurable cost savings. The company’s portfolio
includes award-winning management products for IT Process Automation, Systems Management,
Security Management, Configuration Audit and Control, Enterprise Administration, and Unified
Communications Management. For more information, please visit www.netiq.com.

Contacting Sales Support
For questions about products, pricing, and capabilities, please contact your local partner. If you
cannot contact your partner, please contact our Sales Support team

Contacting Technical Support
For specific product issues, please contact our Technical Support team.

Contacting Documentation Support
Our goal is to provide documentation that meets your needs. We want to hear your comments and
suggestions about this manual and the other documentation included with this product.

 Please use the User Comments feature at the bottom of each page of the online documentation to
provide specific feedback about the content on that page. A documentation representative will
contact you via e-mail with a resolution to the documentation problem within five business
days.

 If you have more general suggestions for improvements, please email Documentation-
Feedback@netiq.com. We value your input and look forward to hearing from you.

Worldwide: www.netiq.com/about_netiq/officelocations.asp

United States and Canada: 888-323-6768

Email: info@netiq.com

Web Site: www.netiq.com

Worldwide: www.netiq.com/Support/contactinfo.asp

North and South America: 1-713-418-5555

Europe, Middle East, and Africa: +353 (0) 91-782 677

Email: support@netiq.com

Web Site: www.netiq.com/support
About NetIQ Corporation 11

http://www.netiq.com
http://www.netiq.com/about_netiq/officelocations.asp
mailto:info@netiq.com
http://www.netiq.com
mailto:support@netiq.com
http://www.netiq.com/Support/contactinfo.asp
http://www.netiq.com/support

Contacting the Online User Community
Qmunity, the NetIQ online community, is a collaborative network connecting you to your peers and
NetIQ experts. By providing more immediate information, useful links to helpful resources, and
access to NetIQ experts, Qmunity helps ensure you are mastering the knowledge you need to realize
the full potential of IT investments upon which you rely. For more information, please visit http://
community.netiq.com.
12 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

http://community.netiq.com
http://community.netiq.com

1 1Interface Layout of the Orchestration
Console

Both the grid administrator and the job developer need to have access to and use the Cloud Manager
Orchestration Console. The administrator needs to use the console to perform any management
functions, such as creating user accounts and managing Orchestration Server activities. The
developer uses the console to access the JDL editor for creating or modifying jobs and policies.

The following figure shows the general areas on the console interface that are referred to in this
guide.

Figure 1-1 The Cloud Manager Orchestration Console

The following list describes the functional areas of the main Orchestration Console display.

 Operations Menu bar: The Operations Menu bar provides operations categorized under menus
such as File, Edit, View, Grid, Server, Windows, and Help.
 The File menu lets you save any changes you have made or exit the console.

Explorer
Tree

Status Bar Info panel
button

Info panel

Workspace
panel

Busy IndicatorToolbarMenu bar
Interface Layout of the Orchestration Console 13

 The Edit menu lets you cut, copy, and paste items and choose general and server
preferences for the console.

 The View menu lets you manipulate the display of the different components of the console
and refresh the Explorer and Workspace panels.

 The Actions menu lets you launch specific tools that create and delete users or user groups,
computing resources, jobs, policies, and computed facts.

 The Provision menu lets you discover VM hosts and Repositories, VM Images, disks, and
Repository capacities. you can also start and stop VMs and VM hosts, resync a VM’s state or
a VM hosts’ state, reset the state of all VMs in the grid or cancel that resync, or can perform
a rediscovery of all VMs in the grid.

 The Server menu lets you start a local server, log in to the server, create and display logs for
logged-in servers, log out of the server, and shut down the server.

 The Windows menu lets you select console windows to display when you have more than
one console window open. You can open the Explorer panel and the two tabs of the Info
panel (<Orchestrator> Log and Console Output) in their own windows by right-clicking the
tab and choosing Open in window in the pop-up menu.

 The Help menu provides access to the About box for the console. It also provides a link to
Cloud Manager documentation on the Web.

 Console toolbar: The Console toolbar has buttons for executing common tasks. The basic tasks
are Go Back, Go Forward, Refresh the view, Hide or Show the Explorer Panel, Cut, Copy, Paste, Save
changes in workspace view, and Open the Find Dialog.
The toolbar also includes buttons that open monitoring views for Jobs, Resources, and Users.
To the far right of the toolbar, a pinwheel icon indicates when the console is busy.

 Explorer tree: Sometimes referred to as the “Tree view,” this panel displays a hierarchical tree
that lets you navigate to different objects; you can click items in the tree to see their details. For
example, you can display computing resources for a selected grid. When you click Computing
Resources in the tree, its details appear in the Workspace panel with a list of active computing
resources. You can edit the Computing Resource attributes in the workspace panel.

 Workspace panel: This panel displays a detailed view for an item you select in the Explorer tree.
For example, if you select a computing resource under physical in the Explorer tree, the
Workspace panel view changes to and “Admin view” to show the details for that resource. You
can edit the properties of Grid object in the views displayed in the Workspace panel.
The views in the panel change as you select different monitoring tools (Jobs, Resources, Users, VM
Hosts, Provisioner) or the Scheduler tool in the Main toolbar.

 Info panel: The Info panel displays a variety of information, such as validation and error
messages, log files, and query results. You can display or hide the Info panel by clicking the Info
panel icon in the Status bar.

 Status bar: The status bar displays general identity information about the Orchestration Server
where you are logged in.

For information about launching the console and using it for the first time, see “Launching the
Orchestration Console and Logging in to the Orchestration Server”in the NetIQ Cloud Manager 2.1.5
Orchestration Installation Guide.

For more information about the user interface of the Orchestration Console, see Chapter 2,
“Orchestration Console Menus and Tools,” on page 15.
14 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

2 2Orchestration Console Menus and Tools

A number of operations are available from the Cloud Manager Orchestration Console and can be
accessed from its menu bar and toolbar.

 Section 2.1, “Operations Menu Bar,” on page 15
 Section 2.2, “Orchestration Console Toolbar,” on page 25

2.1 Operations Menu Bar
The Operations Menu Bar in the Orchestration Console provides options that help you to create and
administer objects in the Explorer Tree.

 Section 2.1.1, “File,” on page 15
 Section 2.1.2, “Edit,” on page 16
 Section 2.1.3, “View,” on page 20
 Section 2.1.4, “Actions,” on page 20
 Section 2.1.5, “Provision,” on page 20
 Section 2.1.6, “Server,” on page 22
 Section 2.1.7, “Windows,” on page 25
 Section 2.1.8, “Help,” on page 25

2.1.1 File

The File menu (Alt+F) provides keyboard and mouse accessible methods for users to save changes or
to exit the application.

 “Save” on page 15
 “Exit” on page 15

Save

The Save operation provides a keyboard (File > Ctrl+S) and mouse-accessible method for users to
save any changes made in the visible view.

Exit

The exit operation provides a keyboard (File > Alt+X) and mouse-accessible method for users to close
all server connections and to exit the Orchestration Console application.
Orchestration Console Menus and Tools 15

2.1.2 Edit

The Edit menu (Alt+E) provides keyboard and mouse-accessible methods for users to save changes
or to exit the application.

 “Undo Addition” on page 16
 “Redo” on page 16
 “Cut” on page 16
 “Copy” on page 16
 “Paste” on page 16
 “Find” on page 17
 “Find Next” on page 17
 “Find Previous” on page 17
 “Enter Find String” on page 17
 “Load Text” on page 17
 “Save Text” on page 17
 “Preferences” on page 18

Undo Addition

The Undo operation provides a mouse-accessible method for users to undo the action they have just
performed in the Orchestration Console. The operation can also be executed from the keyboard
(Ctrl+Z).

Redo

The Redo operation provides a mouse-accessible method for users to redo the action they have just
performed in the Orchestration Console. The operation can also be executed from the keyboard
(Ctrl+Y).

Cut

The Cut operation provides a mouse-accessible method for users to cut the selected object and move
it to the clipboard. The operation can also be executed from the keyboard (Ctrl+X).

Copy

The Copy operation provides a mouse-accessible method for users to copy the selected object to the
clipboard. The operation can also be executed from the keyboard (Ctrl+C).

Paste

The Paste operation provides a mouse-accessible method for users to paste the contents of the
clipboard to the desired location. The operation can also be executed from the keyboard (Ctrl+V).
16 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Find

The Exit operation provides a mouse-accessible method for users to open the Find and Replace
dialog box, where they can search for and replace (if necessary) editable strings located in logs and
editing views (for example, the Policy Editor).

Figure 2-1 The Find and Replace Dialog Box Invoked From the Policy Editor

The operation can also be executed from the keyboard (Ctrl+F).

Find Next

The Find Next operation provides a mouse-accessible method for users to find the next occurrence of
the string they previously searched for. The operation can also be executed from the keyboard (F3).

Find Previous

The Find Previous operation provides a mouse-accessible method for users to find the previous
occurrence of the string they searched for. The operation can also be executed from the keyboard
(Shift+F3).

Enter Find String

The Enter Find String operation provides a mouse-accessible method for users to load the text of the
string they want to search for. The operation can also be executed from the keyboard (Ctrl+E).

Load Text

The Load Text operation provides a method for users to load text from an existing file into the open,
editable view. When selected, the operation opens a browse dialog box where the file can be selected.

Save Text

The Save Text operation provides a method for users to save text in an editable, active view to a file.
When selected, the operation opens a Save dialog box where you can browse to a network location
where you want to save the file. By default, the file is named according to the view and the context
within which you are viewing it. You can change the name of the file when you save it.
Orchestration Console Menus and Tools 17

Preferences

The Preferences operation provides a method for users to change the preferences for the
Orchestration Console display. When selected, the operation opens the Orchestration Console
Preferences dialog box.

The dialog box has three tabbed pages

 “General Page” on page 18
 “Server Page” on page 19
 “Java Properties Page” on page 19

General Page

Figure 2-2 General Page of the Orchestration Console Preferences

Preference settings that you can change on this page are self-explanatory. If you click Initialize
Preferences, the preference settings (except Look and Feel settings) are returned to installation values.
18 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Server Page

Figure 2-3 Server Page of the Orchestration Console Preferences

Preference settings that you can change on this page are self-explanatory.

Java Properties Page

Figure 2-4 The Java Properties Page of the Orchestration Console Preferences

This page lists the Java property names and values that are used to render the Orchestration Console
interface in Java Swing. The list is for your information only.
Orchestration Console Menus and Tools 19

2.1.3 View

The View menu includes various operations that let you manipulate the Orchestration Console
display of the various Orchestration component views. The function of the options under this menu
are self-explanatory, and are a compilation of view operations that are also available from the
Operations toolbar.

For more information about the View operations, see Section 2.2, “Orchestration Console Toolbar,”
on page 25.

2.1.4 Actions

The multiple operations listed as options under the Actions menu provide a quick way for you to
perform operations that can also be performed (generally by right-clicking an object) in the Explorer
View.

For example, if you select a Create option from the Actions menu, the Create dialog box remains open
after you create each object. You can repeatedly create new objects in the dialog box, pressing OK or
Create after each is created. Similarly, in the dialog boxes of some operations in the Actions menu, you
can select many objects and delete them at the same time.

2.1.5 Provision

The Provision menu includes provisioning actions that you can perform on multiple resources
simultaneously. Many of the operations listed in the menu include some of the provisioning actions
that you can execute by right-clicking a single VM or VM Host object in the Explorer Tree.

 “Discover VM Hosts & Repositories” on page 20
 “Discover VM Images” on page 21
 “Discover Disks” on page 21
 “Rediscover VMs” on page 21
 “Other Provisioning Operations” on page 22

Discover VM Hosts & Repositories

When you select this option, the Discover VM Hosts and Repositories dialog box is displayed.

Figure 2-5 VM Discovery Dialog Box

You use this dialog box to select a provisioning adapter (hyperv, vsphere, kvm, xen, xenserver) that
discovers all VM host machines where the Cloud Manager Orchestration Agent is installed and
creates objects in the model. The provisioning adapter also discovers the VM Repositories where VM
hosts reside.
20 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Discover VM Images

When you select the Discover VM Images menu option, the Discover VM Images dialog box is
displayed.

Figure 2-6 Discover VM Images Dialog Box

You use this dialog box to select a provisioning adapter (hyperv, kvm, vsphere2, xen, or xenserver)
that discovers all of its associated VM images and creates objects in the model.

Discover Disks

When you select the Discover Disks menu option, the Discover Disks dialog box is displayed.

Figure 2-7 Discover Disks Dialog Box

Using this dialog box, you can select a provisioning adapter that discovers all of its associated source
repositories and the vDisks on those repositories.

Rediscover VMs

When you select the Discover Disks menu option, the Discover Disks dialog box is displayed.
Orchestration Console Menus and Tools 21

Figure 2-8 Rediscover VMs Dialog Box

You use this dialog box to select a provisioning adapter that rediscovers the configurations of all of its
associated VMs. This can occur when the native hypervisor is used to reconfigure a VM. Using this
operation, you can reconfigure the Orchestration Server facts to match the configuration of the
hypervisor facts.

A VM is not listed in the dialog box if the Cloud Manager Orchestration Server cannot rediscover its
facts.

Other Provisioning Operations

The other operations listed in the menu are self-explanatory. Remember that all VMs

 Start VM Hosts
 Shutdown VM Hosts
 Shutdown VMs
 Resync VMs’ State
 Resync VM Host’s State
 Reset State of all VMs
 Cancel Resync of all VMs

2.1.6 Server

The Server menu lets you start a local server, log in to the server, create and display logs for logged in
servers, log out from the server, and shut down a server.

 “Select Server” on page 23
 “Discover Servers” on page 23
 “Shutdown Server” on page 23
 “Login” on page 23
 “Logout” on page 23
 “Display Log” on page 23
 “Create Custom Log” on page 24
22 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Select Server

The Select Server operation lets you select one of the Orchestration Servers in your grid to log in to.
When you select a server, you are required to log in. This operation accomplishes the same thing as
selecting a server object from the Explorer Tree.

Discover Servers

The Discover Servers operation lets you launch the discovery process for servers. This is the same
process that initiates (if so chosen in your server preferences) when the Orchestration Console starts.

Shutdown Server

The Shutdown Server operation lets you shut down the current, logged-in Orchestration Server. The
shutdown dialog box also lets you create a snapshot of the server state when you shut down.

Figure 2-9 The Server Shutdown Dialog Box

Login

The Login operation lets you establish a remote connection to another Orchestration Server. The
server IP address is required for the login. When you enter the IP address, you need to provide the
username and password for the server where you are logging on.

Logout

The Logout operation lets you log out of the current, logged-inn Orchestration Server without exiting
the Orchestration Console. Logging out removes the server’s nodes from the Explorer Tree and its
workspace views.

Display Log

The Display Log operation displays the default server log for the current, logged-inn Orchestration
Server. The display is in the Information window located at the bottom of the Orchestration Console.
The server log file is also located by default in the /var/opt/novell/zenworks/zos/server/logs
directory.
Orchestration Console Menus and Tools 23

Figure 2-10 Server Log Opened in Information Window of the Orchestration Console

When a log is displayed, you can right-click its tab to further direct the actions of the display. You can
pause logging in the window, copy the log to the clipboard, clear its contents, undock the log display
as a new window, or remove it from the Information window.

If you right-click on the log display, all of the default editing capabilities of the Orchestration Console
are available for your use inside the window. For more information, see Section 2.1.2, “Edit,” on
page 16.

Create Custom Log

The Create Custom Log operation opens the Custom Log View Parameters dialog box.

Figure 2-11 The Custom Log View Parameters Dialog Box

By enabling a custom log, you can monitor various components of the Orchestration Server. For
example, you can view debugging information for the Audit facility. You can create, update, or
remove a log view from the dialog box. You can open a custom view in the Information window by
selecting Open in the dialog box.

Log View Name: Provide the name of the log view. This is displayed on a tab in the log display
panel.

NOTE: You can enter only alphanumeric characters and spaces in the Log View Name field.

Log Level: From the drop-down list, select the minimum log level for the log view. The log messages
included in the custom view will be of this level and above.
24 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Log Channels: A log channel provides log information specific to an Orchestration Server
component or facility, such as the Audit facility.

When the custom view is displayed, you can right-click its tab to further direct the actions of the
display. You can pause logging in the window, copy the log to the clipboard, clear its contents,
undock the log display as a new window, or remove it from the Information window.

If you right-click on the log display, all of the default editing capabilities of the Orchestration Console
are available for your use inside the window. For more information, see Section 2.1.2, “Edit,” on
page 16.

2.1.7 Windows

When you right-click various views and panels in the Orchestration Console, you can select the Open
in Window option to open these views and panels in separate windows. This allows you the
perspective you sometimes need when working with Orchestration Server objects in conjunction
with one another. The Windows menu lets you toggle between the various views or panels that are
open. You can also choose to Show All, Hide All, or Close All of these windows.

When a window is open, its fields and selectable dialog boxes remain functional so that you can
perform object operations or text editing as you would when these views or panels are docked
normally to the Orchestration Console.

2.1.8 Help

From the Help menu, you can access a link to the online Cloud Manager documentation (available in
.html or .pdf format) or you can open the About box for the product, where you can view its version
number, its license expiration date, and a list of its current management pack capabilities (for
example, the Virtual Machine Management capability).

2.2 Orchestration Console Toolbar
The Orchestration Console Toolbar includes several buttons that let you perform command tasks in
the Orchestration Console workspace views and the Explorer Tree. The table below lists the functions
of these buttons.

Table 2-1 Tool Buttons from the Orchestration Console Toolbar

Button Tool Name Tool Function

Back Go back to the previous workspace view seen.

Forward Go forward to the next workspace view.

Refresh Refresh the Explorer and Workspace views.
Orchestration Console Menus and Tools 25

Open/Hide
Explorer

Open the Explorer Tree in a window

Hide the Explorer window

Cut Cut the selected object from the workspace and copy it to the
clipboard

Copy Copy the selected object to the clipboard while keeping the original
in place

Paste Paste the contents of the clipboard

Find and Replace Open the Find dialog box

Save Save changes (in the workspace views or in the Explorer)

Resource Usage
Meter

(Not an active button) visual indication of resource usage. Mouse
over for a listing of Active Resources, Busy resources and Available
Resources, right-click to stop the meter

none (blank
area)

Bookmark Toolbox Click and drag any object from the Explorer tree into this area to
create a bookmark to jump to that object’s view. Right-click the
bookmark to select options to open and show the object or to
remove it from the toolbox. Right-click to remove all objects when
some are not visible.

Busy Indicator This pinwheel shape appears to rotate when the Server is busy
performing an operation.

Button Tool Name Tool Function
26 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

3 3The Orchestration Server and the Server
Admin Objects

The Orchestration Console lets you visualize the object model maintained by the Orchestration
Server and that the server uses to make resource provisioning decisions. The left pane of the
Orchestration Console displays a hierarchical tree known as the Explorer Tree or the Explorer View.
This tree lets you navigate to different objects to see their details. Each object in the Explorer Tree is
referred to as a “Grid object.” These objects can also be associated with one or more containers called
Groups. When you navigate to these objects, you can edit their attributes and view more detail about
their configurations.

This section includes information about the following objects that you can manage in the Explorer
Tree:

 Section 3.1, “Orchestration Server Object,” on page 27
 Section 3.2, “Server Admin Object,” on page 40

3.1 Orchestration Server Object
The highest object in the Explorer Tree is the Orchestration Server Object, sometimes called the Grid
Server object because it represents the Orchestration Server acting as the holding place for all of the
information used to manage objects for a single computing grid.

The Orchestration Console is version aware. When the console launches or when server discovery is
manually run, the console recognizes both current Orchestration Server installations and old
installations of discovered servers and displays their icons accordingly. This visual cue helps you to
recognize when older Orchestration Servers need to be upgraded.

Figure 3-1 Current and “Old” Server Objects

The tool tip for an Orchestration Server lists its RMI configuration, its IP address, the directory
location where the server instance was installed, and its exact version number.

The icons to the right of a current Orchestration Server represent its policies, either those added by
default upon server install and configuration, or those added later. A drop-down menu of all
associated policies is opened when you right-click a policy icon. From there, you can select a policy to
open in the Policy Editor. For more information about policies, see Section 12.1, “Policy Object,” on
page 153.
The Orchestration Server and the Server Admin Objects 27

When selected, the Server object exposes four tabs where you can further configure its attributes.
Further information about these tabs is available in the following sections:

 Section 3.1.1, “The Orchestration Server Info/Configuration Page,” on page 28
 Section 3.1.2, “Orchestration Server Authentication Page,” on page 36
 Section 3.1.3, “Orchestration Server Policies Page,” on page 40
 Section 3.1.4, “Orchestration Server Constraints/Facts Page,” on page 40

3.1.1 The Orchestration Server Info/Configuration Page

The page that opens under the Info/Configuration tab includes several collapsible sections on the page
where you can configure the general information and attributes of the server.

 “Server/Cluster Panel” on page 28
 “Data Grid Configuration Panel” on page 29
 “Security/TLS Configuration Panel” on page 30
 “Agent/User Session Configuration Panel” on page 32
 “Audit Database Configuration Panel” on page 32
 “Sentinel Server Configuration Panel” on page 33
 “Job Limits Panel” on page 35

Server/Cluster Panel

If you are using this server in a High Availability environment, the information in this section is
populated as a result of the configuration you managed during the High Availability installation. The
following items are included in the section:

 Server Version
 Is Master Server
 Master Server Address
 External Cluster Address
 Cluster Addresses

Server Version: A non-editable field that lists the version of this server in the form
<major>.<minor>.<point>.<build_number>. This is the data for the matrix.version fact.

Is Master Server: A check box that is selected if the server is the Master Server in a High Availability
cluster configuration.

Master Server Address: Set this value when the Orchestration Server participates in a High
Availability cluster.

External Cluster Address: Set this value when the Orchestration Server participates in a High
Availability cluster.

Cluster Addresses: Shows the hostname or IP addresses associated with an Orchestration Server
when it is in a High Availability configuration.

The button opens the Attribute Element Values dialog box, where you can add, remove, or
reorder addresses (element values) in an array of address choices.
28 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

For more information about using Cloud Manager Orchestration components in a High Availability
environment, see the NetIQ Cloud Manager 2.1.5 Orchestration Server High Availability Configuration
Guide.

Data Grid Configuration Panel

This section of the Info/Configuration tab allows for advanced configuration of datagrid related tuning
parameters. The properties on the page and their descriptions are listed below.

 Data Grid Root
 Cleanup Interval
 Cleanup Interval Enabled
 Default Multicast Rate
 Selected Interfaces
 Available Interfaces
 Total Packets Sent
 Total Packets Resent
 Total Resend Rate
 Current Packets Sent
 Current Packets Resent
 Current Resend Rate
 Current File Size
 Current Bytes Sent
 Current Percent Complete
 Skipped (Sparse) Bytes
 Current Receiver Count
 Current File Name

Data Grid Root: The location of the Orchestration Server datagrid in the file system. For example,
you might change this location to use a different file system mount point (recommended when there
is considerable datagrid I/O).

Cleanup Interval: The interval at which the Orchestration Server scans User job history files on the
datagrid. Job history files older than the owning user’s job history retention time limit
(user.datagrid.maxhistory) are deleted.

Cleanup Interval Enabled: Select this check box to set a flag to enable periodic job history cleanup
checking. Deselect it to disable the checking.

Default Multicast Rate: Sets the default data rate in bytes per second for multicast operations in
which the client has not explicitly set a rate for a particular file transfer.

Max Multicast Rate: The maximum data rate (in bytes per second) that a client can specify for a
multicast file transfer.

Selected Interfaces: The interfaces on which multicast file transfers are to be sent. This allows an
administrator to limit multicast traffic to specific interfaces (that is, the interfaces where the agents
are connected). You can add or delete interfaces by clicking the button.

Available Interfaces: Lists the network interfaces that are available on the local machine for
multicasting.
The Orchestration Server and the Server Admin Objects 29

The property is read-only and is provided for your information.

Multicast Metrics Subpanel: This panel lets you monitor multicast data transfer, including:

 Total Packets Sent: The total number of multicast data packets sent by the file multicaster since
the last reset of the counters.

 Total Packets Resent: The total number of multicast packets resent because of errors since the
last counter reset.

 Total Resend Rate: The total packet resend rate as a percentage since the last counter reset.
 Current Packets Sent: The total number of multicast packets sent during the current or most

recent multicast file transfer.
 Current Packets Resent: The total number of multicast packets resent because of errors,

corruption, or loss during the current or most recent multicast file transfer.
 Current Resend Rate: The packet resend rate as a percentage of packets sent since the start of

the current or most recent multicast file transfer.
 Current File Size: The file size in bytes for the current or most recent multicast file transfer.
 Current Bytes Sent: The number of bytes sent so far in the current or most recent multicast file

transfer.
 Current Percent Complete: The completion percentage of the current or most recent multicast

file transfer.
 Skipped (Sparse) Bytes: The number of bytes skipped because of long runs of zeros. These

“holes” are skipped in order to reduce file transfer time for large sparse files like VM images.
 Current Receiver Count: The number of recipient agents for the current or most recent multicast

file transfer.
 Current File Name: The name of the file transferred in the current or most recent multicast file

transfer.

The data list includes a check box that is selected if the current multicast transfer is finished. It also
includes a Reset Stats button that you can click to clear all of the metrics in order to begin monitoring
multicast statistics from a new point in time.

Security/TLS Configuration Panel

This section lets you configure TLS or SSL data encryption for both user and agent connections. There
are four different levels of encryption that can be set for both users and nodes. These are described
below. The properties in this section also let you configure the TCP/IP socket listener address and
port for TLS connections.

 TLS On Agent
 Forbid TLS for agents
 Allow TLS on the agents; default to falling back to unencrypted
 Allow TLS on the agents; default to TLS encrypted if not configured encrypted
 Make TLS mandatory on the agents
 TLS On Client
 Forbid TLS for clients
 Allow TLS on clients; default to falling back to unencrypted
 Allow TLS on agents; default to TLS encrypted if not configured encrypted
30 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 Make TLS mandatory on the clients
 TLS Address

TLS On Agent: Allows the encryption level to be set to one of four values, as described (in order of
security level) below:

 Forbid TLS for agents: Only unencrypted connections are allowed for nodes (that is, agents)
authenticating to this server. If the agent attempts to initiate encrypted communication, the
connection attempt is rejected. This is the least secure of the encryption levels and is only
recommended for installations where encryption is forbidden because of legal or policy
restrictions, or where the performance benefits of disabling encryption outweigh security
concerns.

 Allow TLS on the agents: default to falling back to unencrypted: Specifies that the server
defaults to unencrypted communication, but the agent can optionally enable encryption.
This is the default setting for the Orchestration Server. More secure installations might require a
setting to one of the higher levels below.

 Allow TLS on the agents; default to TLS encrypted if not configured encrypted: The server
defaults to using encryption, but the agent can optionally disable encryption.

 Make TLS mandatory on the agents: The Orchestration Server rejects any connections that do
not establish TLS encryption. This is the most secure encryption level because it ensures that all
message communication between the node (that is, an agent) and the server is protected from
tampering or interception.

TLS On Client: This setting allows the encryption level to be set to one of four values, as described
(in order of security level) below.

 Forbid TLS for clients: Only unencrypted connections are allowed for users of this server. If the
user or client attempts to initiate encrypted communication, the connection attempt is rejected.
This is the least secure of the encryption levels and is only recommended for installations where
encryption is forbidden because of legal or policy restrictions, or where the performance benefits
of disabling encryption outweigh security concerns.

 Allow TLS on clients; default to falling back to unencrypted: This level specifies that the
server defaults to unencrypted communication, but that the user can optionally enable
encryption.
This is the default setting for the Orchestration Server. More secure installations might require a
setting to one of the higher levels below.

 Allow TLS on agents; default to TLS encrypted if not configured encrypted: The server
defaults to using encryption, but the user can optionally disable encryption.

 Make TLS mandatory on the clients: The Orchestration Server rejects any connections that do
not establish TLS encryption. This is the most secure encryption level because it ensures that all
message communication between the user’s client programs and the server is protected from
tampering or interception.

TLS Address: The port number and optional bind address for incoming encrypted connections from
users and nodes. The format is hostname:port. For example, 10.10.10.10:8101 causes the server to
accept only TLS connections on the address 10.10.10.10 on port 8101. If “*” is used as the
hostname, then the Orchestration Server listens on all available network interfaces. The default is
*:8101, which causes the Orchestration Server to listen for encrypted sessions on all available
interfaces on the system.
The Orchestration Server and the Server Admin Objects 31

Agent/User Session Configuration Panel

When nodes (agents) and users log on to the Orchestration Server, they establish a session context
that is used to manage the state of the messaging connection between client and server. This session
can be revoked by the administrator, and it can also expire if the connection exceeds its maximum
lifetime or idle timeout.

 Agent Session Lifetime
 Agent Session Timeout
 Socket Keeps Agent Sessions Alive
 User Session Lifetime
 User Session Timeout
 Socket Keeps User Sessions Alive

Agent Session Lifetime: The maximum number of seconds that an agent’s session can last before the
agent is disconnected and must re-authenticate with the server. A value of -1 means “forever.”

Agent Session Timeout: The idle timeout for agents. If an agent connection remains idle with no
message traffic in either direction for this time period (in seconds), the session times out, and the
agent is disconnected and must reauthenticate when it is ready to communicate with the server
again.

Socket Keeps Agent Sessions Alive: Select this check box to set a flag that causes the server and
agent to maintain a keepalive ping in order to detect hung/stalled network connections. This allows
the agent to recover from hung connections and to transparently reconnect with the server.

User Session Lifetime: The maximum number of seconds that a user’s session can last before the
user is required to re-authenticate with the server. A value of -1 means “forever.”

User Session Timeout: The idle timeout (in seconds) for user sessions. If a user’s session encounters
no message traffic or requests in either direction for this amount of time, any connection with user
software is closed and the session expires. At this point, the user must re-authenticate.

Socket Keeps User Sessions Alive: Select this check box to set a flag that causes the server and user
client to maintain a keepalive ping in order to detect hung/stalled network connections. This allows
the agent to recover from hung connections and to transparently reconnect with the server. This
setting applies only in situations where you are using custom user client software or certain
subcommands of the zos command line utility to maintain a persistent connection.

Audit Database Configuration Panel

This section of the Info/Configuration page lets you configure the connection to a relational database
that uses a deployed JDBC driver and connection properties. The PostgreSQL driver is deployed by
default.

 JDBC Driver Name
 JDBC Library
 JDBC Connection URL
 Database Username
 Database Password
 Is Connected
 Connect
32 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 Disconnect
 Clear Queue

JDBC Driver Name: Specifies the Java class for the driver.

JDBC Library: Specifies the deployed library that contains the driver.

JDBC Connection URL: Specifies the driver-dependent connection string.

Database Username: Specifies the username for database authentication.

Database Password: Specifies the password to be used for database authentication.

Is Connected: Indicates that the driver is successfully connected.

Connect (button): Click to connect through the current connection settings.

Disconnect (button): Click to disconnect the current connection.

Clear Queue (button): Clear queued records that have not yet been written to the database.

Sentinel Server Configuration Panel

This section of the Info/Configuration page lets you configure the values needed to connect to a
deployed Novell Sentinel Event Source Server, where logging events from the Orchestration Server
are collected, parsed, and mapped for prioritization and subsequent administrator analysis.

For information about setting up a Sentinel Collector Server in your Orchestration Server
environment, see “Integrating the Orchestration Server with a Sentinel Collector” in the NetIQ Cloud
Manager 2.1.5 Orchestration Administrator Reference.

The following fields are available in the Sentinel Server Configuration panel:

 Server Hostname
 Server Port Number
 Is Connected
 Log Channels
 Connect
 Disconnect
 Configure

Server Hostname: Specify the hostname of the Sentinel Event Source Server where log messages are
to be sent.

Server Port Number: Specify the port number on the Sentinel Event Source Server where the
Orchestration Server should make its SSL connection.

Is Connected: Selected when the connection between the Orchestration Server and the Sentinel Event
Source Server is established.

Log Channels: Lists the log channels from which log messages are to sent to the Sentinel server.

Connect (button): Click to connect to the Sentinel Event Source Server. When the SSL connection is
made, the Orchestration Server begins to send its log messages to Sentinel.

Disconnect (button): Click to disconnect the Orchestration Server from the Sentinel server. When the
connection ends, log messages are no longer sent to the Sentinel server.
The Orchestration Server and the Server Admin Objects 33

Configure (button): Click to open the Sentinel Log Parameters dialog box. In this dialog box, you can
map a log level to one or more log channels. These log channels send log messages to the Sentinel
server.

For more information about Orchestration Server log levels, see “Orchestration Server Log Levels
Mapped to Sentinel Log Levels” in the NetIQ Cloud Manager 2.1.5 Orchestration Administrator
Reference.

NOTE: To select multiple log channels, press Ctrl while selecting the log channel options you want.
You can select only one log level at a time for mapping log channels.

The following table shows the log channels you can choose and the Orchestration Server actions that
prompt sending a log message through this channel.

Table 3-1 Log Channels and the Occasions for Sending Messages Through Each

Log Channel Name in the
Orchestration Console (Sentinel
Server Configuration Panel)

When Are Messages Sent to This Channel?

ActionStatusManager  When the status of a Grid action is updated.

Audit  When the Grid interacts with the audit database.

AuthLDAP
AuthZOS
AuthenticationManager

 On grid-wide authentication events.

Broker  On job execution.

 start

 cancel

Event Manager
JobManager
NodeManager
UserManager
repositoryManager
vbridgeManager
vdiskManager
vnicManager

 When a Grid object of the corresponding type is created,
deleted, or its health changes to a bad state.

GroupManager  When a member is added/removed in a Group.

JobScheduler  When the job schedule or the job trigger deployment/
undeployment.

MBeanServer  When internal Grid Resources are updated.

PolicyManager  On policy creation/deletion.

 On policy association/disassociation with any Grid object.

Sentinel  When the Grid interacts with a Novell Sentinel server.

SessionManager  On user or Resource login/logout.
34 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Job Limits Panel

The facts in this section of the page are used in the default constraints to help protect the
Orchestration Server from denial-of-service attacks or badly written jobs that might otherwise get
stuck in the server queue, consume resources, and cause adverse server performance.

The following fields are available in the job.limits panel:

 max.active.jobs
 max.queued.jobs
 job.finishing.timeout

max.active.jobs: Sets a global default limit on the number of active jobs.

The Orchestration Server uses this value in the start constraint and does not allow more than this
number of jobs (including child jobs) to be actively running at the same time. Jobs that exceed this
number might be queued. See max.queued.jobs.

max.queued.jobs: Sets a global default limit on the number of queued jobs.

This value is similar to max.active.jobs but it is used in the accept constraint to limit the number
of jobs in a queue waiting to be started. Therefore, the maximum jobs that can be present on an
Orchestration Server is max.active.jobs + max.queued.jobs. New jobs are not accepted by the
server if they exceed this total.

job.finishing.timeout: Sets a global default limit on the timeout for job completion.

VmManager  When actions are performed on VMs (provision, migrate,
shutdown, clone, etc.). This could be initiated automatically or
manually.

 When authorization fails during VM operation.

 When provisioning job fails.

computedFact  When computed facts are created or updated or deleted.

deployer/computedFact
deployer/event
deployer/facility
deployer/jdlLibrary
deployer/job
deployer/library
deployer/metric
deployer/policy
deployer/properties
deployer/schedule
deployer/service
deployer/trigger
deployer/xml

 When a corresponding resource is deployed to or undeployed
from the Grid.

Log Channel Name in the
Orchestration Console (Sentinel
Server Configuration Panel)

When Are Messages Sent to This Channel?
The Orchestration Server and the Server Admin Objects 35

This value represents the number of seconds that the Orchestration Server allows a job to execute its
job_cancelled_event() (if defined) before forcibly canceling the job. This prevents jobs from
potentially hanging during cancellation.

3.1.2 Orchestration Server Authentication Page

The Authentication tab opens a page with several collapsible sections where you can configure various
methods for authenticating both users and resources to the Orchestration Server.

 “Resources Panel” on page 36
 “Users Panel” on page 36
 “Authentication Page” on page 38

Resources Panel

The resources in a Orchestration Server grid are actually Orchestration Agents that authenticate or
“register” with the Orchestration Server.

Auto Register Agents: Select this check box if you want the Orchestration Server to automatically
register agents when they first connect to the Orchestration Server.

Auto Upgrade Agents: This check box is already selected if you chose to enable the automatic
upgrade of Orchestration Agents that communicate with your Orchestration Server. If you did not
select this option during upgrade configuration, the check box is not selected.

If you select this check box, the associated Orchestration Agents are upgraded at intervals over a
period of approximately five minutes. The upgrade happens without administrator approval.

If you deselect this check box at any time before or during the automatic upgrade, the upgrade
process stops. Any agents that are not upgraded continue to be identified as “OLD” and are not
useable with the newly upgraded server.

Users Panel

Only authenticated users can log into the Orchestration Server. As an administrator, you can
configure this authentication to use an internal user database or to externally authenticate users
through an LDAP server.

Auto Register Users: Select this check box if you want the Orchestration Server to automatically
register users when they first connect to the Orchestration Server.

Enable LDAP Subpanel

Depending on the selections you make in this subpanel, the following settings are displayed:

 Enable LDAP
 Administrators
 Server Type
 Settings Subpanel

 Directory Name
 Servers
36 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 Advanced
 SSL
 Start TLS
 Query Account
 Query Password

 Generic Settings Subpanel
 Base Domain Name
 User Attribute
 User Filter
 User Prefix
 Group Attribute
 Group Filter
 Group Prefix
 Group DNA Attribute
 Nested DNA Attribute

Enable LDAP (Check Box): Select this check box if you want the Orchestration Server to authenticate
users externally by using an LDAP server. Additional LDAP-related configuration fields are
displayed when you select the check box:

Administrators: The Administrators list specifies the group names whose membership includes
Orchestration Server administrators as returned by the specified authentication provider. You can
add groups to this list by clicking the button to open an array editor dialog box, which allows
groups to be added, removed, and reordered. A group must be in the format
<provider>:<group|groupnocase>:<groupname>, where the <provider> is either ZOS or LDAP.
For example, adding LDAP:groupnocase:XyZ allows users reported by the LDAP server as members
of a group xyz, or XYZ, xYz, etc. to authenticate as an administrator. To enforce to case-sensitive
matching, use LDAP:group:XyZ instead. Non-case-sensitive matching is needed for Active Directory
servers.

Server Type: This drop-down list lets you specify which authentication provider you want to use:
Active Directory Service or Generic LDAP Directory Service.

 If you select Active Directory Service, specify the values in the Settings subpanel only.
 If you select Generic LDAP Directory Service, specify the values in the Settings subpanel (except

Advanced settings) and the values in the Generic Settings subpanel.

Settings Subpanel: Set the values in this subpanel for the ADS authentication provider.

 Directory Name: The name of the Active Directory Service server.
 Servers: A list of strings containing server:port entries for a list of servers to be used.

Each entry can be of one of three forms:
 <hostname>

 <hostname>:<port>

 <hostname>:<port>:<sslport>

In all cases, <hostname> is a resolvable DNS name or an IP address. If SSL or TLS is in use, the
hostname must exactly match the name on the ADS server SSL certificate.
The Orchestration Server and the Server Admin Objects 37

You can modify this list by clicking the button to open an Attribute Element Values dialog
box, where you can add, remove, or change the order of server names.

 Advanced: The settings in this subpanel are for more selective ADS authentication.
 SSL: If the accompanying Start TLS check box is not selected and if the ADS server’s SSL

certificate has been installed on the Orchestration Server JVM, this option securely connects
to the ADS server through SSL encryption.
The older LDAP protocol (ldaps://) is used for the connection.

 Start TLS: Selecting this option immediately promotes the connection to SSL encryption by
bypassing the older protocol in favor of the LDAPv3 Start TLS extended operation on the
non-SSL LDAP port. To use this option, the ADS server’s SSL certificate must be installed
on the JVM of the Orchestration Server.

 Query Account: The account name that is to be used for querying group information on
authenticated users.

 Query Password: The clear text password used to authenticate the query account on the
LDAP server.

Generic Settings Subpanel: When you select Generic LDAP Directory Service as the Server Type, the
following additional fields are displayed:

 Base Domain Name: The Root DN of the LDAP server’s directory tree. This must be obtained
by the administrator, and is usually in the form of dc=adsroot,dc=novell,dc=com.

 User Attribute: The attribute on a user’s entry that identifies his or her login account name. For
ADS servers, this attribute is sAMAccountName.

 User Filter: The name of the filter to be used in the lookup for the user’s LDAP distinguished
name.
For ADS, this prefix is cn=Users.

 User Prefix: The prefix used to define the LDAP subtree within the BaseDN tree that contains
user accounts. If you leave this property blank, the Orchestration Server uses the BaseDN.

 Group Attribute: Specifies the attribute of a group entry describing the login name of that
group.

 Group Filter: A filter to be used in the lookup for group memberships on some LDAP schemas.
The filter can use either ${USER_NAME} or ${USER_DN} to substitute that value. For example:
memberUid=${USER_NAME}.

 Group Prefix: The prefix used to define the LDAP subtree within the BaseDN tree that contains
group accounts.
This field is not used for Active Directory authentication.

 Group DNA Attribute: The directory root where all queries for a user’s group memberships
(stored as a list of “member of” attributes on the user’s entry on an ADS server) are to occur.

 Nested DNA Attribute: The attribute of a group entry where subgroups can be queried.

Authentication Page

As a data center administrator, you often have to provide credentials and certificates as you interact
with the different hypervisor technologies, such as the Amazon EC2 or vSphere technologies. The
Orchestration Server lets you store this data in a centralized, secure (no clear text passwords are
accessible) location in its Credential Manager.

NOTE: The Cloud Manager Orchestration Server uses Triple DES password-based encryption in its
Credential Manager to encrypt stored credentials and certificates.
38 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

The Credential Manager requires information from the Authentication page of the Orchestration
Server object in the Orchestration Console, The page includes the following sections:

 “Stored Credentials Panel” on page 39
 “Stored Certificates Panel” on page 39

Stored Credentials Panel

The Stored Credentials panel displays a list of names of credential sets that you have created. You can
create additional credentials if you select Add Credential and fill in the following fields:

 Name: (Required) The name that you want to use to refer to this credential set.
 User: (Required) The username with rights to administer objects in this grid.
 Secret/Password: (Required) The password that authenticates the user.
 Type: (Optional) A user-defined string that lets similar credentials be put into a category or

group. For example, you might have a “type” of credential for the amazon-ec2 provisioning
adapter and another type for the vsphere provisioning adapter.

Stored Credentials Password: (Conditional) If you want to change the password element of your
stored credentials, click Change and enter the new password.

This password is used to encrypt the stored passwords. By default the password is
CHANGE_THIS_PASSPHRASE. We recommend that you select a new password to use for encrypting
stored passwords.

Stored Certificates Panel

In order to trust certificates not signed by well-known certificate authorities, the Orchestration Server
lets you store certificates that are trusted by Java.

NOTE: Public/Private key pairs can be stored as certificates. This is useful if you need to manage
amazon- ec2 key pairs.

The Stored Certificates panel displays a list of stored certificates. These certificates are not mapped to
anything other than the name or identifier that you assign. They are not stored in a trust store, but
their PEM-encoded representation is encrypted and stored alongside the credentials referred to
above. Trust stores are generated on demand and are available to the Orchestration Agents.

Currently, this functionality is used only by the Orchestration vsphere provisioning adapter.

You can create additional trust stores if you select Add Certificate and fill in the following fields:

Identifier: (Required) The name that you want to use to refer to this trust store.

Location: (Required) Where the certificate should be obtained. This can be either a file (one that you
can browse to find on the local machine), or an HTTPS server.

Select Browse if you want to select an existing a PEM-encoded certificate file from the local machine.

If you want to provide the actual URL for the certificate, open the drop-down list, select HTTPS, then
enter the URL. The HTTPS server address can be entered as:

https://your.server.name

or as

your.server.name
The Orchestration Server and the Server Admin Objects 39

or as

https://your.server.name:<sslport>

With this address, the Orchestration Server retrieves the public server certificate from the server and
then stores it in a secure location.

Group: (Optional) A user-defined string used for grouping related certificates. For example, you
might have a grouping called “vsphere” when you are managing resources in a multiple-vSphere
Server environment.

3.1.3 Orchestration Server Policies Page

The Policies tab opens a page that contains a policy viewer for each of the policies associated with the
Server object.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy, and clicking the Save
button.

3.1.4 Orchestration Server Constraints/Facts Page

The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for the
Server object. The Server object has an associated set of facts and constraints that define its properties.
By building, deploying, and running jobs on the Orchestration Server, you can individually change
the functionality of any system resource by managing an object’s facts and constraints. The
Orchestration Server assigns default values to each of the component facts, although they can be
changed at any time by the administrator, unless they are read-only. Facts that have mode r/o have
read-only values, which can be viewed by using the pencil icon, but changes cannot be made.

3.2 Server Admin Object
The Server Admin object lists the accessible Orchestration Servers and their deployed components.
Clicking a deployed component displays information about that component's associated
Deployment Session.
40 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

4 4The Job Object

A job is deployed to the Orchestration Server to automate processes, such as coordinating VM
provisioning, high-performance computing, or general data center management. Jobs consist of Job
Development Language (JDL) scripts and might have one or more policies associated with them.
Policies define job arguments and other facts that are used by the job.

Usually a job has logic that runs on the Orchestration Server itself and schedules work to run on one
or more managed resources that are running the Orchestration Agent. The logic that is dispatched
and run on the managed resources is called a joblet. A job might or might not define one or more
joblets.

A JDL script is partitioned into a Job section and one or more Joblet sections. The joblet sections of the
script describe most of the work of a job. The Orchestration Server dispatches joblets to resources in
the grid where the work is done.

A Job object represents an individual job in the Explorer tree of the Orchestration Console. This object
contains facts with attributes that are used for job and joblet control. Policies associated with the job
also control the job. The Orchestration Console has an administrative (“admin”) view in the Explorer
Panel that lets you edit these objects.

This section includes information about a Job object that is visible in the Explorer view and the
accompanying Admin view of the Orchestration Console:

 Section 4.1, “Job Groups,” on page 41
 Section 4.2, “The Job Info/Groups Page,” on page 42
 Section 4.3, “The Job Configuration Page,” on page 51
 Section 4.4, “The JDL Editor Page,” on page 51
 Section 4.5, “The Job Library Editor Page,” on page 52
 Section 4.6, “The Job Policies Page,” on page 53
 Section 4.7, “The Job Constraints/Facts Page,” on page 54

4.1 Job Groups
Any group object displayed in the Explorer panel represents a collection of similar object types.
Groups can also be created automatically, such as when a provisioning adapter discovers a local
repository on a VM host. For example, the xen provisioning adapter, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a xen30
repository group. You can also create groups manually in the Orchestration Console, either by
clicking the Actions menu and choosing Create Job Group or by right-clicking a Job Group object
(anywhere in the Job hierarchy) and selecting New Job Group.
The Job Object 41

4.2 The Job Info/Groups Page
The page that opens under the Info/Configuration tab of the Job admin view includes several
collapsible sections on the page where you can configure the general information and attributes of
the job.

 Section 4.2.1, “Info,” on page 42
 Section 4.2.2, “Groups,” on page 51

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
objects icon , signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save button on the Orchestration Console toolbar.

4.2.1 Info

The following fields on the Information panel provide facts for the Job object:

 “Show Inherited Fact Values Check Box” on page 42
 “Job Control Settings” on page 42
 “Joblet Control Settings” on page 46
 “Automatic Resource Provisioning Settings” on page 47
 “Resource Preemption Settings” on page 48
 “Job Counts” on page 48
 “Job History” on page 49

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

Job Control Settings

The Job Control Settings panel on the Info/Groups page includes the following fields:

NOTE: Tool tip text is available when you mouse over any of these fields.

Description: Enter information in this box that describes the nature or purpose of this job.

In the Fact Editor, this fact is listed as job.description:

<fact name="job.description" value="" type="String" />

Enabled: This check box is selected by default. When it is selected (it has a value of true), the job is
enabled and is ready to run.

In the Fact Editor, this fact is listed as job.enabled:

<fact name="job.enabled" value="true" type="Boolean" />

Job Visible to Users: This check box is selected by default. When it is selected (it has a value of true),
the job can be viewed in the Orchestration Console, through the use of command line queries, or in
the Orchestration Server Portal. Deselecting this check box does not keep the job from running.
42 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

In the Fact Editor, this is fact is listed as job.visible:

<fact name="job.visible" value="true" type="Boolean" />

JDL Debug Tracing: This check box is not selected by default. When it is selected (it has a value of
true), the job log includes tracing information when job events are executed.

In the Fact Editor, this fact is listed as job.tracing:

<fact name="job.tracing" value="false" type="Boolean" />

Job Type: Lets you choose the job type that applies to this job. This setting is optional and is
leveraged by the server in order to provide better quality completion time calculation for the job.

The job type options (completion time algorithms) include:

 normal: The default job type. If this job has joblets, the job is based on PSPACE progression
algorithm. If it does not have joblets, it is based on historical wall time average.

 workflow: This job type does not offer a time algorithm to the server.
 pspace: If this job has joblets, the job is based on PSPACE progression. If it does not have joblets,

do not offer a time algorithm.
 fixedtime: This job type directs the server to use a time algorithm based on historical wall time

average.
 fixedgcycles: If this job has joblets, the job is based on average gcycles and current consumption

rate. If it does not have joblets, the job is based on historical wall time average.

NOTE: You can change this setting at runtime to refine the calculation time as the job progresses. For
example, the zosmake job might start out as type normal, but when all tasks have been submitted, you
could change it to type workflow to allow its subjobs to drive the end time.

In the Fact Editor, the Job Type fact is listed as job.jobtype:

<fact name="job.jobtype" value="normal" type="String" />

Job Timeout: The amount of time (in seconds) after which the server can take action to cancel the
whole job, including all joblets and subjobs. A value of -1 indicates no timeout.

In the Fact Editor, this fact is listed as job.timeout:

<fact name="job.timeout" value="-1" type="Integer" />

Job Auto Terminate: This check box is selected by default. When it is selected (it has a value of true),
the job ends when all child jobs and joblets are executed.

In the Fact Editor, this fact is listed as job.autoterminate.

<fact name="job.autoterminate" value="true" type="Boolean" />

Provision Adapter Hook Jobs: The name of a job that implements administrator-defined pre-
provisioning or post-provisioning hooks.

NOTE: This fact is visible in the Info/Groups tab only when a provision adapter job is selected.

In the Fact Editor, this fact is listed as an array:

<fact name="job.paHooksVmJob">
 <array type="String">
 </array>
</fact>
The Job Object 43

You can edit this array by clicking the button to open the Attribute Element Values dialog box,
where you can add or remove fact specifications to the array of element choices..

Queue Type: Lets you choose the queue type that applies to this job. This setting is optional and is
leveraged by the server to provide a better start time calculation for the job.

The queue type options (start time algorithms) include:

 none: The start time is always unknown for jobs that are queued.
 pfifo: Packet First In First Out. The start time implemented through policies. The server is

directed to look at the job as having a finite number of active slots, so its start time depends on
its position in the queue and the estimated end time of running jobs of this type. The FIFO queue
for this queue reshuffles based on priority.

 fifo: First In First Out. The start time implemented through policies. The server is directed to
look at the job as having a finite number of active slots, so its start time depends on its position in
the queue (first-come, first-served) and the estimated end time of running jobs of this type. The
FIFO queue for this job does not reshuffle based on priority.

 lifo: Last In First Out. The start time is implemented through policies. The server is directed to
look at the job as having a finite number of active slots, so its start time depends on its position in
the queue and the estimated end time of running jobs of this type. The queue for this job does
not reshuffle based on priority.

 fixedtime: The start time is based on the historical average queue time. This can be explicitly
overridden through setting the job.history.queuetime.average fact.

In the Fact Editor, this fact is listed as job.queuetype:

<fact name="job.queuetype" value="pfifo" type="String" />

Job Queued Timeout: The amount of time (in seconds) after which the server can take action to
cancel a queued job, including all joblets and subjobs. A value of -1 indicates no timeout.

In the Fact Editor, this fact is listed as job.queuedtimeout:

<fact name="job.queuedtimeout" value="-1" type="Integer" />

Resource Match Cache TTL: Specifies the job’s willingness to allow resource matches to be cached if
the Job Scheduler becomes too loaded. The value is the time (in seconds) to live (TTL) of the cache.
Enter a value less than zero (<0) to disable caching.

In the Fact Editor, this fact is listed as jopb.cacheresourcematches.ttl:

<fact name="job.cacheresourcematches.ttl" value="30" type="Integer" />

Preemptible: This check box is not selected by default. When it is selected (it has a value of true), you
set the job’s ability to be preempted. This setting can be overridden by the job instance.

In the Fact Editor, this fact is listed as job.preemptible:

<fact name="job.preemptible" value="false" type="Boolean" />

Restartable: This check box is not selected by default. When it is selected (it has a value of true), you
set the job’s ability to be restarted when the server restarts. This setting can be overridden by the job
instance.

In the Fact Editor, this fact is listed as job.restartable:

<fact name="job.restartable" value="false" type="Boolean" />

Absolute Max Joblets: Specifies the absolute maximum number of joblets that you want this job to
schedule.
44 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

In the Fact Editor, this fact is listed as job.joblet.max:

<fact name="job.joblet.max" value="1000" type="Integer" />

Max Joblet Failures: Specifies the number of non-fatal joblet errors that you want this job to tolerate
before the job fails completely. Set the value at -1 to attempt to continue after errors.

In the Fact Editor, this fact is listed as job.joblet.maxfailures:

<fact name="job.joblet.maxfailures" value="0" type="Integer" />

Max Node Failures: Specifies the number of resource failures that you want this job to tolerate before
the node is excluded from further joblet processing. Set the value at -1 to specify that limited failures
are acceptable.

In the Fact Editor, this fact is listed as job.maxnodefailures:

<fact name="job.maxnodefailures" value="2" type="Integer" />

Max Resources: Specifies the maximum number of resources that you want the job to use at one time.
The Orchestration Server does not exceed the value set here. Set the value at -1 to specify unlimited
resources.

In the Fact Editor, this fact is listed as job.maxresources:

<fact name="job.maxresources" value="-1" type="Integer" />

Max Joblets Running: Specifies the maximum number of joblets that you want the job to have
running at one time. The Orchestration Server does not exceed the value set here. Set the value at -1
to specify unlimited joblets.

In the Fact Editor, this fact is listed as job.joblet.maxrunning:

<fact name="job.joblet.maxrunning" value="-1" type="Integer" />

Max Joblets Per Resource: Specifies the maximum number of joblets that you want the job to occupy
on a resource. Set the value at -1 to specify unlimited joblets.

In the Fact Editor, this fact is listed as job.joblet.maxperresource:

<fact name="job.joblet.maxperresource" value="-1" type="Integer" />

Resource Selection Ranking: Displays ranking specification used to select suitable resources. The
element syntax is fact/order where order is either ascending or descending

In the Fact Editor, this fact is listed as an array:

<fact name="job.resources.rankby">
 <array>
 <string>resource.loadaverage/a</string>
 <string>resource.anything/a</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog box,
where you can add or remove fact specifications to the array of element choices.

Persist Facts on Completion: This check box is not selected by default. When it is selected (it has a
value of true), you specify that the Grid objects that this job modifies are persistent after the job. This
setting is available and applicable only in a High Availability setup.

In the Fact Editor, this fact is listed as job.persistfactsonfinish:

<fact name="job.persistfactsonfinish" value="false" type="Boolean" />
The Job Object 45

Joblet Control Settings

Joblet Timeout: Specifies the amount of time (in seconds) you want the Orchestration Server to wait
until canceling the joblet. Set the value at -1 to specify no timeout.

In the Fact Editor, this fact is listed as job.joblet.timeout:

<fact name="job.joblet.timeout" value="-1" type="Integer" />

Max Joblet Retries: Specifies the number of joblet retries (of any type) to be attempted before the
Orchestration Server considers the joblet as failed. A value of zero (0) specifies that the joblet should
not be retried. A value of less than zero (<0) specifies that the joblet should be continually retried.

In the Fact Editor, this fact is listed as job.joblet.maxretry:

<fact name="job.joblet.maxretry" value="0" type="Integer" />

Retry Limit (Forced): Specifies the number of forced joblet retries (requested by the joblet to run on
another resource) to be allowed before the Orchestration Server considers the joblet as failed. A value
of zero (0) specifies that the joblet should not be retried. A value of less than zero (<0) specifies that
the joblet should be continually retried. This value should never exceed the value in
job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.forced:

<fact name="job.joblet.retrylimit.forced" value="-1" type="Integer" />

Retry Limit (Unforced): Specifies the number of unforced joblet retries to be allowed before the
Orchestration Server considers the joblet as failed. A value of zero (0) specifies that the joblet should
not be retried. A value of less than zero (<0) specifies the joblet should be continually retried. This
value should never exceed the value in job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.unforced:

<fact name="job.joblet.retrylimit.unforced" value="-1" type="Integer" />

Retry Limit (Resource Disconnect): Specifies the number of joblet retries caused by an unexpected
resource disconnect to be allowed before the Orchestration Server considers the joblet as failed. A
value of zero (0) specifies that the joblet should not be retried. A value of less than zero (<0) specifies
the joblet should be continually retried. This value should never exceed the value in
job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.disconnect:

<fact name="job.joblet.retrylimit.disconnect" value="-1" type="Integer" />

Retry Limit (Timeout): Specifies the number of joblet retries caused by a server-initiated joblet
timeout to be allowed before the Orchestration Server considers the joblet as failed. A value of zero
(0) specifies that the joblet should not be retried. A value of less than zero (<0) specifies that the joblet
should be continually retried. This value should never exceed the value in job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.timeout:

<fact name="job.joblet.retrylimit.timeout" value="-1" type="Integer" />

Immediately Retry Failed Joblet: This check box is not selected by default. When it is selected (it has
a value of true), you specify that you want the system to immediately retry a joblet rather than
waiting until all other joblets are either running or complete before retrying.

In the Fact Editor, this fact is listed as job.joblet.immediateretry:

<fact name="job.joblet.immediateretry" value="true" type="Boolean" />
46 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Max Joblet Wait Time: Specifies the amount of time (in seconds) you want a resource to wait before
being utilized by a joblet. A setting of -1 indicates no timeout.

In the Fact Editor, this fact is listed as job.joblet.maxwaittime:

<fact name="job.joblet.maxwaittime" value="-1" type="Integer" />

Joblet JDL Debug Tracing: This check box is not selected by default. When it is selected (it has a
value of true), you specify that you want the joblet to include tracing information on the job log as it
executes joblet events.

In the Fact Editor, this fact is listed as job.joblet.tracing:

<fact name="job.joblet.tracing" value="false" type="Boolean" />

Joblet Run Type: Use this list to select whether or not the file and executable operations that run in
the joblet are in behalf of the job user.

 RunAsJobUserFallingBackToNodeUser: (The default setting.) If this option is selected, any
joblet logic executes as the local user with the same name as the grid user. If a local user of a
matching name is not available, the joblet logic runs as the same user who is running the
Orchestration Agent (also known as the Node User). By default, the agent (Node User) is root.

 RunOnlyAsJobUser: If this option is selected, any joblet logic executes as the local user using
the same name as the grid user (that is, the Orchestration Server user who matches the
Orchestration Server username). If a local user of a matching name is not available, the joblet
logic, and perhaps the job, fails. By default, the agent (Node User) is root.

 RunOnlyAsNodeUser: If this option is selected, any joblet logic runs as the same user who is
running the Orchestration Agent (also known as the “Node User”). It does not run as the OS
user whose username matches the Orchestration Server user name. By default, the agent (Node
User) is root.

In the Fact Editor, this fact is listed as job.joblet.runtype:

<fact name="job.joblet.runtype" value="RunAsJobUserFallingBackToNodeUser"
type="String" />

Automatic Resource Provisioning Settings

Max Resource Provisions: Specifies the number of resources that can be automatically provisioned
in behalf of this job. A setting of zero (0) turns off automatic provisioning behavior. A setting of -1
allows unlimited provisioning.

In the Fact Editor, this fact is listed as job.provision.maxcount:

<fact name="job.provision.maxcount" value="0" type="Integer" />

Max Pending Provisions: Specifies the number of resources that can be automatically provisioned at
one time (that is, simultaneously) in behalf of this job. A setting of less than or equal to zero (<=0)
turns off automatic provisioning behavior.

In the Fact Editor, this fact is listed as job.provision.maxpending:

<fact name="job.provision.maxpending" value="1" type="Integer" />

Max Resource Provision Failures: Specifies the maximum number of resource provisioning failures
to be tolerated before excluding the node from future automatic provisioning. A setting of -1
indicates that unlimited failures are acceptable.

In the Fact Editor, this fact is listed as job.provision.maxnodefailures:
The Job Object 47

<fact name="job.provision.maxnodefailures" value="1" type="Integer" />

Provision Selection Ranking: Displays the ranking the specification used to select suitable resources
to automatically provision. The element syntax is fact/order where the order is either ascending or
descending.

In the Fact Editor, this fact is listed as an array:

<fact name="job.provision.rankby">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog box,
where you can add or remove fact specifications for the array of element choices.

Host Selection Strategy: Lets you choose the type of strategy you want to use in finding a host for
any automatically provisioned resource. The choices include:

 queue: Directs the server to use the default affinity wait period defined by the resource before
considering all possible hosts. The request is queued until a suitable resource becomes available
or a requesting job finishes.

 immediate: Directs the server to immediately consider the affinity host before trying to find any
matching resources and to fail if a suitable resource is not available.

In the Fact Editor, this fact is listed as job.provision.hostselection:

<fact name="job.provision.hostselection" value="immediate" type="String" />

Resource Preemption Settings

Job Selection Ranking: Displays the ranking specification used to select suitable jobs to
automatically preempt on a resource. Element syntax is fact/order where the order is either
ascending or descending.

In the Fact Editor, this fact is listed as an array:

<fact name="job.preemption.rankby">
 <array>
 <string>jobinstance.priority/a</string>
 <string>jobinstance.joblets.running/d</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog box,
where you can add or remove fact specifications for the array of element choices.

Job Counts

Total Instances: Displays the total number of job instances of this type that exist in the Cloud
Manager Orchestration Server system.

In the Fact Editor, this fact is listed as job.instances.total:

<fact name="job.instances.total" value="0" type="Integer" />

Active Instances: Displays the total number of job instances of this type that are in a queued state in
the Orchestration Server system.

In the Fact Editor, this fact is listed as job.instances.active:
48 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

<fact name="job.instances.active" value="0" type="Integer" />

Queued Instances: Displays the total number of job instances of this type that are active in the
Orchestration Server system.

In the Fact Editor, this fact is listed as job.instances.queued:

<fact name="job.instances.queued" value="0" type="Integer" />

Job Accounting Group: Lets you select the Job Group whose statistics are updated by default when
the job runs.

In the Fact Editor, this fact is listed as job.accountinggroup:

<fact name="job.accountinggroup" value="all" type="String" />

Job Resource Group: Lets you select the default Resource Group whose members and any of its
resource policies are selected for this job.

In the Fact Editor, this fact is listed as job.resourcegroup:

<fact name="job.resourcegroup" value="all" type="String" />

Job History

Shared Instance Count: (Read only) Displays the total number of job instances, including those
denied by “accept” constraints, of this job that have ever been initiated on this Orchestration Server
system.

In the Fact Editor, this fact is listed as job.history.jobcount:

<fact name="job.history.jobcount" value="0" type="Integer" />

Completed Count: (Read only) Displays the total number of job instances, including those denied by
“accept” constraints, of this job that have been canceled.

In the Fact Editor, this fact is listed as job.history.jobcount.complete:

<fact name="job.history.jobcount.complete" value="0" type="Integer" />

Cancelled Count: (Read only) Displays the total number of job instances, including those denied by
“accept” constraints, of this job that have been completed.

In the Fact Editor, this fact is listed as job.history.jobcount.cancelled:

<fact name="job.history.jobcount.cancelled" value="0" type="Integer" />

Failed Count: (Read only) displays the total number of job instances of this type that have failed.

In the Fact Editor, this fact is listed as job.history.jobcount.failed:

<fact name="job.history.jobcount.failed" value="0" type="Integer" />

Total Cost: Displays the total cost of running this job. The amount is calculated since the job was
deployed or last modified.

In the Fact Editor, this fact is listed as job.history.cost.total:

<fact name="job.history.cost.total" value="0.0000" type="Real" />

Average Cost: Displays the average cost of running this job. The amount is calculated since the job
was deployed or last modified and is updated only if the job finishes successfully.

In the Fact Editor, this fact is listed as job.history.cost.average:
The Job Object 49

<fact name="job.history.gcycles.average" value="0" type="Integer" />

Total Runtime: Displays the total runtime (in seconds) since the job was deployed.

In the Fact Editor, this fact is listed as job.history.runtime.total:

<fact name="job.history.runtime.total" value="0" type="Integer" />

Average Runtime: Displays the average runtime (in seconds) since the job was deployed.

In the Fact Editor, this fact is listed as job.history.runtime.average:

<fact name="job.history.runtime.average" value="0" type="Integer" />

Total Execution Time: Displays the total combined resource wall time (in seconds) of all work
performed on behalf of this job since the job was deployed.

In the Fact Editor, this fact is listed as job.history.time.total:

<fact name="job.history.time.total" value="0" type="Integer" />

Average Execution Time: Displays the average resource wall time (in seconds) of all work performed
on behalf of this job since the job was deployed.

In the Fact Editor, this fact is listed as job.history.time.average:

<fact name="job.history.time.average" value="0" type="Integer" />

Total Grid Time: Displays the total amount of normalized grid time (in gcycles) consumed by this
job since deployment.

In the Fact Editor, this fact is listed as job.history.gcycles.total:

<fact name="job.history.gcycles.total" value="0" type="Integer" />

NOTE: A gcycle can be thought of as a normalized second of compute time. It is a relative measure
that is approximately a second of the real processing time of a 2Ghz Pentium class Intel processor.

Average Grid Time: Displays the average amount of normalized grid time (in gcycles, which is a
normalized grid cycle) consumed by running this job. The value is updated only if the job finishes
successfully.

In the Fact Editor, this fact is listed as job.history.gcycles.average:

<fact name="job.history.gcycles.average" value="0" type="Integer" />

Total Queue Time: Displays the total amount of time (in seconds) since deployment that the job has
spent in a queued state.

In the Fact Editor, this fact is listed as job.history.queuetime.total:

<fact name="job.history.queuetime.total" value="0" type="Integer" />

Average Queue Time: Displays the average amount of wall time (in seconds) spent waiting for this
job to start.

In the Fact Editor, this fact is listed as job.history.queuetime.average:

<fact name="job.history.queuetime.average" value="0" type="Integer" />

Average Sample Size: Displays the total number of points you want to use in the trailing average
calculation for all historical averages.

In the Fact Editor, this fact is listed as job.history.samplesize:
50 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

<fact name="job.history.samplesize" value="2" type="Integer" />

NOTE: A trailing average is the mean average measured over the last x datapoints.

4.2.2 Groups

This section of the Info/Groups page lists the groups of Job objects in the grid. Click Choose to open
the Job Group Selection dialog box. In this dialog box, you can choose which Job Groups to display in
the Explorer Panel by selecting a group and then clicking Add or Remove to move it to or from the
Source Job Groups list.

4.3 The Job Configuration Page
The Job Configuration tab of the Job admin view opens the Job Configuration page, which includes the
LVM Discovery Settings panel. On this panel, you can configure settings that control the discovery of
logical volume managers. The Volume Group Patterns fact (job.volume_group_patterns) provides a
place for you to define regular expression patterns for Volume Group names. The Orchestration
Server uses these patterns to create Repository objects.

In the Fact Editor, this fact is listed as an array:

<fact name="job.volume_group_patterns" description="Regular expression patterns
for Volume Group names to create a Repository Object for">
 <array>
 <string>NCM-*</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog box,
where you can add or remove fact specifications to the array of element choices.

The admin view also includes a link to open and edit the configuration definition file.

4.4 The JDL Editor Page
The JDL Editor tab of the Job admin view opens an editor where you can inspect and modify the Job
Description Language (JDL) code. This code consists of a Python script that contains the bits to
control a job. The JDL code for each job includes commented documentation to explain the job’s
purpose and methods for implementation.
The Job Object 51

Figure 4-1 The JDL Editor

A drop-down list at the top of the editor includes the Java classes and their methods that are
bookmarked in the code. Select any of these to go to the location in the code where they are invoked.
Clickable colored blocks on the editor scroll bar perform a similar bookmarking function.

4.5 The Job Library Editor Page
The Library Editor tab of the Job admin view opens an editor where you can inspect and modify the
different library scripts for a job. The scripts for each job include instructions to the Orchestration
Server for handling job functions.
52 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Figure 4-2 The Job Library Editor

There are two drop-down lists located at the top of the Library Editor view. The first list displays the
different libraries for the job, and the second list displays the methods that are bookmarked in the
code. Select a method in the second drop-down list to go to the location in the library code where that
method is invoked. Clickable colored blocks on the editor scroll bar perform a similar bookmarking
function.

4.6 The Job Policies Page
The Policies tab of the Job admin view opens a page that contains a policy viewer for each of the
policies associated with a Job Grid object.

You can modify a policy by using the Policy Grid object. For more information see Section 12.1,
“Policy Object,” on page 153.

Click Choose in the admin view of the Policy viewer to launch a Policy Selection dialog box where you
can add or remove individual policies to be applied to the selected Job Grid object.

Figure 4-3 The Policy Selection Dialog Box
The Job Object 53

4.7 The Job Constraints/Facts Page
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. By
changing the policy constraints and fact values for a job, you can change the behavior of the job and
how the Orchestration Server allocates available system resources to it. The Orchestration Server
assigns default values to each of the component facts. Facts with no mode shown can be changed at
any time by the administrator. Facts with mode r/o have read-only values, which can be viewed by
using the pencil icon, but changes cannot be made.
54 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

5 5The Resource Object

A Resource object in the Explorer tree represents a fixed physical machine or a virtual machine (VM)
that is managed by the Cloud Manager Orchestration Server. If a resource is running the
Orchestration Agent, that resource can be scheduled for remote execution of a job.

This section includes information about a Resource object that is visible in the Explorer tree and the
accompanying Admin view of the Orchestration Console:

 Section 5.1, “Resource Groups,” on page 55
 Section 5.2, “Resource Info/Groups Page,” on page 55
 Section 5.3, “Provision Info Page,” on page 81
 Section 5.4, “Resource Log Page,” on page 81
 Section 5.5, “Resource Policies Page,” on page 81
 Section 5.6, “Resource Health Debugger Page,” on page 82
 Section 5.7, “Resource Constraints/Facts Page,” on page 82
 Section 5.8, “Resource Object Naming and Renaming,” on page 82

5.1 Resource Groups
Any group object displayed in the Explorer tree represents a collection of similar object types. Groups
can also be created automatically, such as when a provisioning adapter discovers a local repository
on a VM host. For example, the xen provisioning adapter, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a xen
repository group. You can also create groups manually in the Orchestration Console, either by
clicking the Actions menu and choosing Create Resource Group or by right-clicking a Resource Group
object anywhere in the Resource hierarchy and selecting New Resource Group.

5.2 Resource Info/Groups Page
The page that opens under the Info/Configuration tab of the Resource admin view includes several
collapsible sections on the page where you can configure the general information and attributes of
the job.

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon , signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save button on the Orchestration Console toolbar.

 Section 5.2.1, “Info Panel,” on page 56
 Section 5.2.2, “Groups Panel,” on page 80
The Resource Object 55

5.2.1 Info Panel

The following fields on the Information panel provide facts for the Resource object:

 “Show Inherited Fact Values Check Box” on page 56
 “Resource Information” on page 56
 “VM Host Info” on page 60
 “Virtual Machine Configuration” on page 61
 “Provisioning Information” on page 65
 “OS Information” on page 74
 “CPU Information” on page 75
 “Memory Information” on page 76
 “Disk/Network Information” on page 77
 “Agent Information” on page 77
 “Agent Configuration” on page 78
 “Installed Components” on page 80

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

Resource Information

The Job Control Settings panel on the Info/Groups page includes the following fields:

 Resource Type
 Resource Enabled
 Healthy
 Shutting Down
 Host Name
 Host Fully Qualified Name
 Password
 Host IP Address
 VNC IP Address
 VNC Port
 Billing Rate
 Bill For
 Power Factor
 Load Average
 CPU Load
 Joblet Slots
 Extra System Joblet Slots
 Joblets Active
56 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 Became Idle On
 Total Joblets Started
 Total Completed Joblets
 Total Cancelled Joblets
 Total Failed Joblets
 Total Charge
 Total Wall Time
 Total Grid Time
 Sessions
 Provisionable Resource

NOTE: Tool tip text is available when you mouse over any of these fields.

Resource Type: Lets you choose the resource type. If you manually create a resource, you must select
the appropriate type.

 Fixed Physical: The node is a physical, hardware-based computer.
 VM: The node is a virtual, software-based container that can run its own operating system and

applications as if it were a physical computer.
 VM Template: The node is an image of a server that can be used to create and provision new

virtual servers. The template includes virtual hardware components, a guest operating system,
its configuration, and other software applications.

In the Fact Editor, the Resource Type fact is listed as resource.type:

<fact name="resource.type" value="Fixed Physical" type="String" />

Resource Enabled: This check box is selected by default. When it is selected (it has a value of true),
the resource is enabled and allowed to accept work.

In the Fact Editor, this fact is listed as resource.enabled:

<fact name="resource.enabled" value="true" type="Boolean" />

Healthy: When this check box is selected (it has a value of true), the resource is considered to be in
good health. You can set the health of the object by selecting or deselecting the health check box.
Changing the value in this way has an immediate effect unless the value is overriden by an attached
policy. For more information, see Appendix A, “Grid Object Health Monitoring,” on page 185.

In the Fact Editor, this is fact is listed as resource.health:

<fact name="resource.health" value="true" type="Boolean" />

Shutting Down: (Read Only) When this check box is selected (it has a value of true), the node is
attempting to shut down, pause, or suspend and does not accept new work.

In the Fact Editor, this fact is listed as resource.shuttingdown:

<fact name="resource.shuttingdown" value="false" type="Boolean" />

Host Name: The network hostname of the resource that is running the Orchestration Agent. The
resource ID and the hostname are often the same, but this is not always the case.

In the Fact Editor, this fact is listed as resource.hostname:

<fact name="resource.hostname" value="foonode" type="String" />
The Resource Object 57

Host Fully Qualified Name: The full network hostname of the resource that is running the
Orchestration Agent.

In the Fact Editor, this fact is listed as resource.hostname.full:

<fact name="resource.hostname.full" value="foonode.division.company.com"
type="String" />

Password: The password you want the Orchestration Agent on this node to use for authentication to
the Orchestration Server.

In the Fact Editor, this fact is listed as resource.password.

<fact name="resource.password" value="xxx" type="String" />

Host IP Address: The network IP address of the resource running the Orchestration Agent.

In the Fact Editor, this fact is listed as resource.ip:

<fact name="resource.ip" value="10.255.255.255" type="String" />

VNC IP Address: The IP address for a VNC session running on this resource.

In the Fact Editor, this fact is listed as resource.vnc.ip:

<fact name="resource.vnc.ip" value="" type="String" />

VNC Port: The port number for a VNC session running on this resource.

In the Fact Editor, this fact is listed as resource.vnc.port:

<fact name="resource.vnc.port" value="0" type="Integer" />

Billing Rate: The billing rate (in dollars per hour) that you want to charge for this resource running
its assigned joblets.

In the Fact Editor, this fact is listed as resource.billingrate:

<fact name="resource.billingrate" value="1.0000" type="Real" />

Bill For: Lets you choose the time scale you want to bill for.

 walltime: The total time for the process to complete.
 gcycles: The normalized average of compute cycles.

In the Fact Editor, this fact is listed as resource.billfor:

<fact name="resource.billfor" value="walltime" type="String" />

Power Factor: (Read Only) The normalized power index of this machine relative to a 2.0 GHz Intel
Pentium 4 machine.

In the Fact Editor, this fact is listed as resource.powerfactor:

<fact name="resource.powerfactor" value="1.0000" type="Real" />

Load Average: (Read Only) The load average on this resource as determined with the uptime
command or other similar methods. The resource is polled every 30 seconds to determine the
average.

In the Fact Editor, this fact is listed as resource.loadaverage:

<fact name="resource.loadaverage" value="0.0000" type="Real" />

CPU Load: (Read Only) The percentage of CPU utilization currently used by the resource.
58 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

In the Fact Editor, this fact is listed as resource.cpuload

<fact name="resource.cpuload" value="0" type="Integer" />

Joblet Slots: The number of joblets that this resource can run simultaneously.

In the Fact Editor, this fact is listed as resource.joblets.slots:

<fact name="resource.joblets.slots" value="1" type="Integer" />

Extra System Joblet Slots: The number of extra slots you want to be made available to privileged
system joblets.

In the Fact Editor, this fact is listed as resource.joblets.systemslots:

<fact name="resource.joblets.systemslots" value="1" type="Integer" />

Joblets Active: (Read Only) The number of joblets that are currently active on this resource.

In the Fact Editor, this fact is listed as resource.joblets.active:

<fact name="resource.joblets.active" value="0" type="Integer" />

Became Idle On: (Read Only) The date and time when the resource became idle. The field displays -
1 if the resource is active.

In the Fact Editor, this fact is listed as resource.becameidle:

<fact name="resource.becameidle" value="7/23/11 5:02 PM" type="Date" />

Total Joblets Started: (Read Only) The total number of joblets that have run historically on this
resource.

In the Fact Editor, this fact is listed as resource.history.jobletcount:

<fact name="resource.history.jobletcount" value="8" type="Integer" />

Total Completed Joblets: (Read Only) The total number of joblets that have completed historically
on this resource.

In the Fact Editor, this fact is listed as resource.history.jobletcount.completed:

<fact name="resource.history.jobletcount.completed" value="8" type="Integer" />

Total Cancelled Joblets: (Read Only) The total number of joblets that have been canceled historically
on this resource.

In the Fact Editor, this fact is listed as resource.history.jobletcount.cancelled:

<fact name="resource.history.jobletcount.cancelled" value="0" type="Integer" />

Total Failed Joblets: (Read Only) The total number of joblets that have failed historically on this
resource.

In the Fact Editor, this fact is listed as resource.history.jobletcount.failed:

<fact name="resource.history.jobletcount.failed" value="0" type="Integer" />

Total Charge: (Read Only) The cost (in dollars) of all of the joblets run on this resource.

In the Fact Editor, this fact is listed as resource.history.cost.total:

<fact name="resource.history.cost.total" value="0.0088" type="Real" />

Total Wall Time: (Read Only) The total wall time (measured in seconds) that this resource has spent
running joblets.
The Resource Object 59

In the Fact Editor, this fact is listed as resource.history.time.total:

<fact name="resource.history.time.total" value="31" type="Integer" />

Total Grid Time: (Read Only) The amount of time (measured in gcycles, which is the normalized
average of compute cycles) of all work performed on this resource.

In the Fact Editor, this fact is listed as resource.history.gcycles.total:

<fact name="resource.history.gcycles.total" value="31" type="Integer" />

Sessions: (Read Only) The number of current active sessions (that is, the resource instances with an
active agent). The value will be either 1 or 0, unless the object is actually a resource template, in which
case it might be greater than 1.

In the Fact Editor, this fact is listed as resource.sessions:

<fact name="resource.sessions" value="0" type="Integer" />

Provisionable Resource: This check box is not selected by default. When it is selected (it has a value
of true), you specify that this resource is a provisionable type. Currently, only a VM resource and a
VM template resource are provisionable.

In the Fact Editor, this fact is listed as resource.provisionable:

<fact name="resource.provisionable" value="false" type="Boolean" />

VM Host Info

The settings in this section of the Info/Groups page are available when the resource is a VM host.

 VM Host Containers
 VM Host Repositories

VM Host Containers: A list of VM host containers that are supported by this resource. The list is
aggregated from the VM host containers.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vmhosts">
 <array>
 <string>host1slesx_xen30</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove VM host containers for the array of element choices.

VM Host Repositories: A list of VM host repositories visible to this resource. The list is aggregated
from the VM host repositories.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.repositories">
 <array>
 <string>zos</string>
 <string>vmh3slesx</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove VM host repositories to the array of element choices.
60 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Virtual Machine Configuration

The settings in this section of the Info/Groups page are available when the resource is a VM:

 Under Construction
 VM Vendor
 VM UUID
 VM Version
 Default Storage Repository
 Virtual NICs
 Virtual NIC Networks
 Virtual Disks
 Virtual Disk Repositories
 Moveable Virtual Disk Repositories
 Unmoveable Virtual disk Repositories
 Storage Location in Repository
 VM Files
 Required VM Memory
 Required VM Memory Overhead
 Required Total VM Memory
 Host CPU Architecture
 Requires Host HVM Support
 Host CPU % Weight
 Host CPU Number
 Moveable Disk Size
 Allow VM Migration
 VM Host Ranking
 Construction Specification

For information about VM provisioning based on options exposed in the Orchestration Console, see
“Using the Right-Click Menu for Provisioning Actions” in NetIQ Cloud Manager 2.1.5 VM
Orchestration Reference.

Under Construction: This check box is not selected by default. When it is selected (it has a value of
true), the VM is currently in the process of being created and cannot be provisioned.

In the Fact Editor, this fact is listed as resource.vm.underconstruction:

<fact name="resource.vm.underconstruction" value="false" type="Boolean" />

VM Vendor: The vendor name of the hypervisor that provides the virtual machine.

In the Fact Editor, this fact is listed as resource.vm.vendor:

<fact name="resource.vm.vendor" value="xen" type="String" />

VM UUID: The vendor and adapter-specific UUID of the resource. You should edit this value only if
you are manually creating a Resource object.

In the Fact Editor, this fact is listed as resource.vm.uuid:
The Resource Object 61

<fact name="resource.vm.uuid" value="237e9975-xxx15-yy1122-7c62-bf6d23d3a049"
type="String" />

VM Version: This fact is no longer used.

In the Fact Editor, this fact is listed as resource.vm.version:

<fact name="resource.vm.version" value="0" type="Integer" />

Default Storage Repository: Lets you choose the repository where the images of this VM disk and
other configuration files are currently stored or where they will be stored.

In the Fact Editor, this fact is listed as resource.vm.repository:

<fact name="resource.vm.repository" value="vmh1slesx" type="String" />

Virtual NICs: The virtual network interface cards (VNICs) that make up this VM. The list is
aggregated from the VNIC containers.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.vnics">
 <array>
 <string>win2003_vnic1</string>
 </array>
</fact>

Virtual NIC Networks: The networks associated with the VM network interfaces.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.networks">
 <array>
 <string>eth1</string>
 </array>
</fact>

Virtual Disks: The list of virtual disks that make up this VM.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.vdisks">
 <array>
 <string>websrvr_vdisk1</string>
 </array>
</fact>

Virtual Disk Repositories: The repositories where the VM disk images are stored.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.repositories">
 <array>
 <string>zos</string>
 </array>
</fact>

Moveable Virtual Disk Repositories: The repositories where the moveable VM disk images are
stored.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.repositories.moveable">
 <array>
 <string>zos</string>
 </array>
</fact>
62 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Unmoveable Virtual Disk Repositories: The repositories where the unmoveable VM disk images
are stored.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.repositories.unmoveable">
 <array type="String">
 </array>
</fact>

Storage Location in Repository: The file system location (either absolute or relative to
repository.location) of the VM files.

In the Fact Editor, this fact is listed as resource.vm.basepath:

<fact name="resource.vm.basepath" value="vm/websrvr" type="String" />

VM Files: The files that make up this VM.The dictionary key (String) represents the file type (adapter
specific). The value is the file path either absolute or relative to repository.location of the
resource.vm.repository.

In the Fact Editor, this fact is listed as a dictionary:

<fact name="resource.vm.files">
 <dictionary>
 <dictelement key="config">
 <string>/var/lib/xen/images/win2kbuild/config.xen</string>
 </dictelement>
 </dictionary>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove ranking specifications for the array of element choices.

Required VM Memory: The amount (measured in MB) of virtual memory required for this VM
image.

In the Fact Editor, this fact is listed as resource.vm.memory:

<fact name="resource.vm.memory" value="1024" type="Integer" />

Required VM Memory Overhead: The amount (measured in MB) of virtual memory overhead
required for this VM image to provision.

In the Fact Editor, this fact is listed as resource.vm.memory.overhead:

<fact name="resource.vm.memory.overhead" value="70" type="Integer" />

Required Total VM Memory: The total amount (measured in MB) of virtual memory required for
this VM image.

In the Fact Editor, this fact is listed as resource.vm.memory.total:

<fact name="resource.vm.memory" value="402" type="Integer" />

Host CPU Architecture: The type of CPU architecture required by this VM. You should edit these
values only when you are manually creating a Resource object.

Possible types include:

 x86
 x86_64
 sparc
The Resource Object 63

 ppc
 mips
 alpha

In the Fact Editor, this fact is listed as resource.vm.cpu.architecture:

<fact name="resource.vm.cpu.architecture" value="x86" type="String" />

Requires Host HVM Support: This check box is selected by default. When it is selected (it has a
value of true), this VM requires host HVM support. The setting is required when you want to
perform paravirtualization; otherwise, only full virtualization is possible.

In the Fact Editor, this fact is listed as resource.vm.cpu.hvm:

<fact name="resource.vm.cpu.hvm" value="true" type="Boolean" />

Host CPU % Weight: The CPU weight (as a percentage of the virtual processor runtime) that you can
assign to the virtual processor associated with this VM.

A value of 1.0 represents normal weighting. Setting another VM to a weight of 2.0 means that it gets
twice as much CPU runtime as this VM.

In the Fact Editor, this fact is listed as resource.vm.cpu.weight:

<fact name="resource.vm.cpu.weight" value="1.0000" type="Real" />

Host CPU Number: The number of virtual CPUs assigned to this VM.

In the Fact Editor, this fact is listed as resource.vm.vcpu.number:

<fact name="resource.vm.vcpu.number" value="1" type="Integer" />

Moveable Disk Size: The total size (measured in MB) of all the virtual moveable disks for this VM
image.

In the Fact Editor, this fact is listed as resourc.vm.vdisksize:

<fact name="resource.vm.vdisksize" value="4096" type="Integer" />

Allow VM Migration: This check box is selected by default. When it is not selected (it has a value of
false), Orchestration Server prevents migration of the VM to another potential VM host.

In the Fact Editor, this fact is listed as resource.vm.migratable:

<fact name="resource.vm.migratable" value="true" type="Boolean" />

VM Host Ranking: This list box includes the ranking specifications used to select suitable VM hosts.
The element syntax is fact/order, where order is either ascending or descending.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.vmhost.rankby">
 <array>
 <string>vmhost.vm.placement.score/a</string>
 <string>vmhost.loadindex.slots/a</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove ranking specifications for the array of element choices. A trailing /a indicates an ascending
sort order. A trailing /d indicates a descending sort order.
64 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Construction Specification: The VM Builder Specifications field in this section displays a list of
specifications that were used to build this VM. These specifications are interpreted by the
provisioning adapter. .

In the Fact Editor, this fact is listed as a dictionary:

<fact name="resource.vm.spec">
 <dictionary>
 <dictelement key="ssd">
 <string>ddd</string>
 </dictelement>
 </dictionary>
</fact>

You can edit this array by clicking the button to open an array editor dialog box, where you can
add or remove builder specifications for the array of element choices.

Provisioning Information

The settings on this section of the Info/Groups panel are not available unless the resource you select is
a VM.

 Provisioning Job
 Provisioned Instances
 Cloned Instances
 Instances
 Max Provisioned Instances
 Agent Shutdown Timeout
 Default Agent Idle Timeout
 Host Wait Timeout
 Preferred Host Wait
 Recommended Host
 Debug Provision Log
 Parent Template
 Current State
 Current Host
 Current Status
 Current Action
 Request Time
 Start Time
 Shutdown Time
 Host Wait Time
 Managing Job ID
 Automatic Provision
 Needs Resync
The Resource Object 65

If the Resource object is a VM, it can be automatically personalized for provisioning with information
you provide in one of the following subpanels of the Provisioning Information panel:

 “Linux Autoprep Config:” on page 68
 “Windows Sysprep Config” on page 70

Provisioning Job: Lets you select the name of the provisioning job that manages the life cycle of this
resource.

In the Fact Editor, this fact is listed as resource.provisioner.job:

<fact name="resource.provisioner.job" value="xen" type="String" />

Provisioned Instances: The total count of operational instances and provisions in progress.

In the Fact Editor, this fact is listed as resource.provisioner.count:

<fact name="resource.provisioner.count" value="0" type="Integer" />

Cloned Instances: The total count of cloned instances of the template.

In the Fact Editor, this fact is listed as resource.provisioner.instancecount:

<fact name="resource.provisioner.instancecount" value="0" type="Integer" />

Instances: The IDs of the instances of this template resource (if applicable).

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.instances">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove instance IDs to the array of choices.

Max Provisioned Instances: (For VM templates only) The maximum allowed number of instances of
this provisionable resource.

In the Fact Editor, this fact is listed as resource.provisioner.maxinstances:

<fact name="resource.provisioner.maxinstances" value="1" type="Integer" />

Agent Shutdown Timeout: The maximum amount of time, measured in seconds, allowed for this
VM to shut down and for the Orchestration Agent to disconnect from the Orchestration Server.

In the Fact Editor, this fact is listed as resource.provisioner.timeout.shutdown:

<fact name="resource.provisioner.timeout.shutdown" value="" type="Integer" />

Default Agent Idle Timeout: The maximum amount of time, measured in seconds, allowed for a VM
instance to be idle before relaxing the reservation policy or shutting down. Behavior depends on the
mode, and can be overridden by the provisioning request.

In the Fact Editor, this fact is listed as resource.provisioner.timeout.idle:

<fact name="resource.provisioner.timeout.idle" value="" type="Integer" />

Host Wait Timeout: The maximum amount of time, measured in seconds, to wait for a suitable host
before timing out. A value of less than zero (<0), means that the VM waits indefinitely.

In the Fact Editor, this fact is listed as resource.provisioner.host.maxwait:

<fact name="resource.provisioner.host.maxwait" value="-1" type="Integer" />
66 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Preferred Host Wait: The amount of time, measured in seconds, after which some VM Host
constraints (for example, whether to move the disk image) are lifted to increase the available pool of
hosts. A value of less than zero (<0), means that the VM resource waits indefinitely.

In the Fact Editor, this fact is listed as resource.provisioner.host.preferredwait:

<<fact name="resource.provisioner.host.preferredwait" value="0" type="Integer" />

Recommended Host: The names of VM hosts that you can choose to associate with this VM resource
image. You might specify this host when you want a quick VM startup or if you want to change hosts
because the original host was suspended. When combined with the
resource.provisioner.host.preferredwait fact, this fact can lock a VM to one host.

In the Fact Editor, this fact is listed as resource.provisioner.recommendedhost:

<fact name="resource.provisioner.recommendedhost" value="" type="String" />

Debug Provision Log: This check box is not selected by default. When it is selected (it has a value of
true), the debug log level in the provisioner is enabled.

In the Fact Editor, this fact is listed as resource.provisioner.debug:

<fact name="resource.provisioner.debug" value="false" type="Boolean" />

Parent Template: The ID of the template resource from which this instance was created.This is only
applicable if the template was copied from another template.

In the Fact Editor, this fact is listed as resource.provision.template:

<fact name="resource.provision.template" value="" type="String" />

Current State: The current state of this provisioned instance. The different states include:

 down
 suspended
 up
 paused
 unknown (when an administrative action is in process)

In the Fact Editor, this fact is listed as resource.provision.state:

<fact name="resource.provision.state" value="down" type="String" />

Current Host: The ID of the VM host that is currently housing this provisioned resource.

In the Fact Editor, this fact is listed as resource.provision.vmhost:

<fact name="resource.provision.vmhost" value="vmh6sles_xen" type="String" />

Current Status: (Read Only) The current descriptive status of the provisioned resource.

In the Fact Editor, this fact is listed as resource.provision.status:

<fact name="resource.provision.status" value="Undefined" type="String" />

Current Action: (Read Only) The management action currently in progress on this provisioned
resource.

In the Fact Editor, this fact is listed as resource.provision.currentaction:

<fact name="resource.provision.currentaction" value="" type="String" />
The Resource Object 67

Request Time: (Read Only) The time when the last provision or other administrative action was
requested.

In the Fact Editor, this fact is listed as resource.provision.time.request:

<fact name="resource.provision.time.request" value="8/24/11 4:36 PM" type="Date" /
>

Start Time: (Read Only) The time when the resource was last successfully provisioned.

In the Fact Editor, this fact is listed as resource.provision.time.start:

<fact name="resource.provision.time.start" value="12/31/69 4:59 PM" type="Date" />

Shutdown Time: (Read Only) The time when the resource was last shut down.

In the Fact Editor, this fact is listed as resource.provision.time.shutdown:

<fact name="resource.provision.time.shutdown" value="12/31/69 4:59 PM" type="Date"
/>

Host Wait Time: (Read Only) The amount of time, measured in seconds, that this resource has been
waiting for or did wait for a suitable host.

In the Fact Editor, this fact is listed as resource.provision.time.hostwait:

<fact name="resource.provision.time.hostwait" value="0" type="Integer" />

Managing Job ID: (Read Only) The current or last Job ID that performed a provisioning action on
this resource. This is useful when viewing the job log to monitor specific provisioning actions.

In the Fact Editor, this fact is listed as resource.provision.jobid:

<fact name="resource.provision.jobid" value="system.xen.74239" type="String" />

Automatic Provision: (Read Only) This check box is not selected by default. When it is selected (it
has a value of true), the resource was cloned or provisioned automatically and will be shut down or
destroyed automatically.

In the Fact Editor, this fact is listed as resource.provision.automatic:

<fact name="resource.provision.automatic" value="false" type="Boolean" />

Needs Resync: This check box is not selected by default. When it is selected (it has a value of true),
you specify that the provisioned resource’s state needs to be resynchronized by using the associated
provisioning technology at the next opportunity.

In the Fact Editor, this fact is listed as resource.provision.resync:

<fact name="resource.provision.resync" value="false" type="Boolean" />

Linux Autoprep Config:

NOTE: This section displays when a Linux VM is selected.

If any of the fields in this section are blank (that is, undefined), click Define to install a fact editor that
you can use to define the value.

This section includes the following settings:

 Linux Computer Name
 Linux Domain
68 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

The section also includes a subpanel where you can set Network Autoprep Configuration
information.

Linux Computer Name: This value specifies the host name of a new VM. Enter “*” to indicate that
the VM ID is to be used rather than the hostname you specify.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.linuxglobal.ComputerName:

<fact name="resource.provisioner.autoprep.linuxglobal.ComputerName" value="afd"
type="String" />

Linux Domain: This value specifies the domain to which the new VM belongs.

In the Fact Editor, this fact is listed as resource.provisioner.autoprep.linuxglobal.Domain:

<fact name="resource.provisioner.autoprep.linuxglobal.Domain" value=""
type="String" />

Network Autoprep Config

This section includes the following settings:

 DNS Server IP Addresses
 DNS Suffixes
 Gateway IP Addresses

DNS Server IP Addresses: This field displays a list of DNS server IP addresses for name lookup.
This is only for cloning/personalize actions.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.autoprep.DNSServers">
 <array>
 <string>0.0.00.200</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove a server IP address or change its order in the array of element choices.

DNS Suffixes: The list of suffixes to append to a name for lookup.This is only for cloning/
personalize actions.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.autoprep.DNSSuffixes">
 <array>
 <string>afjkdl</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box you can
add or remove a suffix or change its order in the array of element choices.

Gateway IP Addresses: The list of Internet gateways available to this VM. This is only for cloning/
personalize actions.

In the Fact Editor, this fact is listed as an array:
The Resource Object 69

<fact name="resource.provisioner.autoprep.Gateways">
 <array>
 <string>afdasadfs</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box, you
can add or remove the IP address or change its order in the array of element choices.

Windows Sysprep Config

NOTE: This section displays when a Windows VM is selected.

If any of the fields in this section are blank (that is, undefined), click Define to install a fact editor that
you can use to define the value.

The section includes the following settings/facts:

 Change SID
 Delete Accounts
 Admin Password
 Admin Password Plaintext
 Timezone
 Autologon
 Autologon Count
 Fullname
 Org Name
 Computer Name
 Product ID
 Run Once Command
 Workgroup
 Domain
 Domain Admin
 Domain Admin Password
 Domain Admin Password Plaintext
 Machine Object OU
 Machine Password
 Machine Password Plaintext
 License File Automode
 License File Autousers

The section also includes a subpanel where you can set Network Sysprep Configuration information.

Change SID: The Windows Security ID. If the value is true, sysprep generates a new Security ID.

In the Fact Editor, this fact is listed as resource.provisioner.autoprep.options.changeSID:

<fact name="resource.provisioner.autoprep.options.changeSID" value="false"
type="Boolean" />
70 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Delete Accounts: If it is set to true, this fact removes all accounts from the destination VM. If it is
false, it retains existing accounts from the source VM.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.options.deleteAccounts:

<fact name="resource.provisioner.autoprep.options.deleteAccounts" value="true"
type="Boolean" />

Admin Password: This field displays the IP address for the adapter.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.value:

<fact
name="resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.value"
value="klvm" type="String" />

Admin Password Plaintext: This field displays the subnet mask for the adapter.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.plainText:

<fact
name="resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.plainText"
value="false" type="Boolean" />

Timezone: The time zone of the new VM. See Microsoft [GUI Unattended] (Sysprep) product
documentation (http://technet.microsoft.com/en-us/library/cc772783%28WS.10%29.aspx). (Scroll to
the TimeZone heading on that page.)

If you do not specify a value for this fact, the default value is 004 (Pacific Standard Time).

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.TimeZone:

<fact name="resource.provisioner.autoprep.sysprep.GuiUnattended.TimeZone"
value="10" type="String" />

Autologon: If the value is true, the VM automatically logs into the Administrator account using
Admin Password. If it is false, logon is prompted.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogon:

<fact name="resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogon"
value="true" type="Boolean" />

Autologon Count: The limit count for the VM to auto log on with the Administrator account.
AutoLogon must be True.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogonCount:

<fact name="resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogonCount"
value="2" type="Integer" />

Fullname: The user’s full name.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.FullName:

<fact name="resource.provisioner.autoprep.sysprep.UserData.FullName" value="adfkl"
type="String" />
The Resource Object 71

http://technet.microsoft.com/en-us/library/cc772783%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc772783%28WS.10%29.aspx

Org Name: The organization name.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.OrgName:

<fact name="resource.provisioner.autoprep.sysprep.UserData.OrgName" value="Novell"
type="String" />>

Computer Name: The VM's new host name. An asterisk (*) means to generate a name based on the
source VM name.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.ComputerName:

<fact name="resource.provisioner.autoprep.sysprep.UserData.ComputerName"
value="docdev1" type="String" />

Product ID: The Windows product key.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.ProductID:

<fact name="resource.provisioner.autoprep.sysprep.UserData.ProductID"
value="jklaieuqa4354" type="String" />

Run Once Command: A list of commands that run the first time a user logs on after the new VM is
created. Commands are scheduled using the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce registry key.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiRunOnce.Command:

<fact name="resource.provisioner.autoprep.sysprep.GuiRunOnce.Command"
value="purge" type="String" />>

Workgroup: Windows workgroup name. If the VM is joining a domain, use JoinDomain.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.JoinWorkgroup:

<fact name="resource.provisioner.autoprep.sysprep.Identification.JoinWorkgroup"
value="prod" type="String" />

Domain: Windows domain name. If the VM is joining a workgroup, use JoinWorkgroup. For joining
a domain, DomainAdmin and DomainAdminPassword must be defined.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.JoinDomain:

<fact name="resource.provisioner.autoprep.sysprep.Identification.JoinDomain"
value="test" type="String" />>

Domain Admin: The Windows domain administrator name.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.DomainAdmin:

<fact name="resource.provisioner.autoprep.sysprep.Identification.DomainAdmin"
value="admin" type="String" />

Domain Admin Password: The Windows domain administrator account password.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.DomainAdminPassword.value:
72 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

<fact
name="resource.provisioner.autoprep.sysprep.Identification.DomainAdminPassword.val
ue" value="cleanwindow" type="String" />

Domain Admin Password Plaintext: Select the check box if DomainAdminPassword is in plain text.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.DomainAdminPassword.plainText
:

<fact
name="resource.provisioner.autoprep.sysprep.Identification.DomainAdminPassword.pla
inText" value="false" type="Boolean" />

Machine Object OU: Provide the organizational unit (OU) of the Windows Active Directory
machine.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.MachineObjectOU

<fact name="resource.provisioner.autoprep.sysprep.Identification.MachineObjectOU"
value="dd" type="String" />

Machine Password: Provide the account password for the Windows Active Directory machine.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.MachinePassword.value

<fact
name="resource.provisioner.autoprep.sysprep.Identification.MachinePassword.value"
value="fad" type="String" />

Machine Password Plaintext: Select the check box if MachinePassword is in plain text.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.MachinePassword.plainText

<fact
name="resource.provisioner.autoprep.sysprep.Identification.MachinePassword.plainTe
xt" value="true" type="Boolean" />

License File Automode: Enter either PerServer or PerSeat. If you enter PerServer, AutoUsers must be
set.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoMode:

<fact name="resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoMode"
value="PerSeat" type="String" />

License File Autousers: The number of client licenses. Use this setting only if AutoMode is PerServer.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoUsers:

<fact name="resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoUsers"
value="33" type="Integer" />

Network Sysprep Config

This section includes the following settings:

 DNS Suffixes
The Resource Object 73

DNS Suffixes: The list of suffixes to append to a name for lookup.This is only for cloning/
personalize actions.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.autoprep.DNSSuffixes">
 <array>
 <string>afjkdl</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove a suffix or change its order in the array of element choices.

OS Information

This section includes the following settings:

 OS Name
 OS Version
 OS Version String
 OS Architecture
 OS Family
 OS Type
 OS Vendor
 OS Vendor Version
 OS Vendor String
 OS File Path Separator

OS Name: (Read Only) The name of the resource operating system.

In the Fact Editor, this fact is listed as resource.os.name:

<fact name="resource.os.name" value="Windows" type="String" />

OS Version: (Read Only) The version number of the resource operating system. For a VM resource,
this fact remains undefined.

In the Fact Editor, this fact is listed as resource.os.version:

<fact name="resource.os.version.string" value="Microsoft Windows XP [Version
5.1.2600]" type="String" />

OS Version String: (Read Only) The operating system vendor full identification string (requires the
osInfo system job).

In the Fact Editor, this fact is listed as resource.os.version.string:

<fact name="resource.os.vendor.string" value="Microsoft Windows XP [Version
5.1.2600]" type="String" />

OS Architecture: The operating system architecture (for example, x86, amd64, i386, or sparc).

In the Fact Editor, this fact is listed as resource.os.arch:

<fact name="resource.os.arch" value="i386" type="String" />

OS Family: The operating system family name (for example, windows, linux, solaris, unix, aix, mac) of
the resource, if known.
74 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

In the Fact Editor, this fact is listed as resource.os.family:

<fact name="resource.os.family" value="linux" type="String" />

OS Type: This drop-down list lets you select the unique string identifier for each OS release, for
example, sles11.

In the Fact Editor, this fact is listed as resource.os.type:

<fact name="resource.os.type" value="sles10" type="String" />

OS Vendor: (Read Only) The operating system vendor. SuSE for SUSE Linux Enterprise Server or
SUSE Linux Enterprise Desktop.

In the Fact Editor, this fact is listed as resource.os.vendor:

<fact name="resource.os.vendor" value="SuSE" type="String" />

OS Vendor Version: (Read Only) This field displays the vendor-defined version for the operating
system. Ffor example, 11 for SUSE Linux Enterprise Server 11.

In the Fact Editor, this fact is listed as resource.os.vendor.version:

<fact name="resource.os.vendor.version" value="10" type="String" />

OS Vendor String: (Read Only) This field displays the full identification for the operating system
that is supplied by the vendor. The osinfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.os.vendor.string:

<fact name="resource.os.vendor.string" value="Welcome to SUSE Linux Enterprise
Server 11 (i586) - Kernel (\l)." type="String" />

OS File Path Separator: (Read Only) The resource operating system file separator.

In the Fact Editor, this fact is listed as resource.os.file.separator:

<fact name="resource.os.file.separator" value="/" type="String" />

CPU Information

This section includes the following settings:

 Number of CPUs
 CPU Speed (Mhz)
 CPU Vendor
 CPU Model
 CPU Architecture
 CPU HVM Support

Number of CPUs: (Read only) The number of CPUs available for this resource to use. For a VM
resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.number:

<fact name="resource.cpu.number" value="2" type="Integer" />

CPU Speed (Mhz): (Read only) The processor speed measured in Mhz. The cpuinfo job must run for
this value to be displayed. For a VM resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.mhz:
The Resource Object 75

<fact name="resource.cpu.mhz" value="2594" type="Integer" />

CPU Vendor: (Read only) The name of the CPU vendor. The cpuinfo system job must run for this
value to be displayed. For a VM resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.vendor:

<fact name="resource.cpu.vendor" value="GenuineIntel" type="String" />

CPU Model: (Read only) The full vendor model number of the CPU. The cpuinfo system job must
run for this value to be displayed. For a VM resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.model:

<fact name="resource.cpu.model" value="Intel(R) Pentium(R) 4 CPU 2.60GHz"
type="String" />

CPU Architecture: The CPU architecture (for example, x86, x86_64, sparc) of this resource. For a VM
resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.architecture:

<fact name="resource.cpu.architecture" value="x86" type="String" />

CPU HVM Support: This field is marked true if the CPU has hardware virtualization support.

In the Fact Editor, this fact is listed as resource.cpu.hvm:

<fact name="resource.cpu.hvm" value="false" type="Boolean" />

Memory Information

This section includes the following settings:

 Virtual Memory (Mb)
 Virtual Available
 Physical Memory (Mb)
 Physical Available
 Swap Memory (Mb)
 Swap Available

Virtual Memory (Mb): (Read only) The total amount of virtual memory, measured in MB, on the
resource. The memInfo system job must run for this value to be displayed

In the Fact Editor, this fact is listed as resource.memory.virtual.total:

<fact name="resource.memory.virtual.total" value="4060" type="Integer" />

Virtual Available: (Read only) The amount of available virtual memory, measured in MB, on the
resource. The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.virtual.available:

<fact name="resource.memory.virtual.available" value="19951" type="Integer" />

Physical Memory (Mb): (Read only) The total amount of physical memory, measured in MB, on the
resource. The memInfo system job must run for this value to be displayed

In the Fact Editor, this fact is listed as resource.memory.physical.total:

<fact name="resource.memory.physical.total" value="3889" type="Integer" />
76 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Physical Available: (Read only) The amount of available physical memory, measured in MB, on the
resource. The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.physical.available:

<fact name="resource.memory.physical.available" value="3565" type="Integer" />

Swap Memory (Mb): (Read only) The total amount of configured swap space, measured in MB, on
the resource. The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.swap.total:

<fact name="resource.memory.swap.total" value="16386" type="Integer" />

Swap Available: (Read only) The total amount of free swap space, measured in MB, on the resource.
The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.swap.available:

<fact name="resource.memory.swap.available" value="16386" type="Integer" />

Disk/Network Information

The facts in the Disk/Network Information section of the Info/Groups page are not currently functional
and are not supported.

Agent Information

This section includes the following settings:

 Agent Version
 Agent Install Dir
 Agent Java Version
 Agent Java Runtime
 Agent Java Vendor
 Agent Java Home Dir
 Available Agent Memory
 Enhanced Exec Available
 Clustered Agent

Agent Version: (Read only) The Orchestration Agent version and build number that is installed on
this resource. The string uses the following syntax:

major.minor.point_build

In the Fact Editor, this fact is listed as resource.agent.version:

<fact name="resource.agent.version" value="2.0.2_70917" type="String" />

Agent Install Dir: (Read only) The name of the home directory of the Orchestration Agent
installation files.

In the Fact Editor, this fact is listed as resource.agent.home:

<fact name="resource.agent.home" value="/opt/novell/zenworks/zos/agent"
type="String" />
The Resource Object 77

Agent Java Version: (Read only) The version of the Java JVM currently in use by the Orchestration
Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.version:

<fact name="resource.agent.jvm.version" value="1.5.0_17" type="String" />

Agent Java Runtime: (Read only) The version of the Java JVM runtime currently in use by the
Orchestration Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.runtime:

<fact name="resource.agent.jvm.runtime" value="1.5.0_17-b04" type="String" />

Agent Java Vendor: (Read only) The name of the vendor of the Java JVM currently in use by the
Orchestration Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.vendor:

<fact name="resource.agent.jvm.vendor" value="Sun Microsystems Inc." type="String"
/>

Agent Java Home Dir: (Read only) The path to the home directory of the Java JVM currently in use
by the Orchestration Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.home:

<fact name="resource.agent.jvm.home" value="/opt/novell/zenworks/zos/agent/jre"
type="String" />

Available Agent Memory: (Read only) The amount of memory, measured in MB, available to the
Orchestration Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.memory:

<fact name="resource.agent.jvm.memory" value="127" type="Integer" />

Enhanced Exec Available: This check box is selected by default. When it is selected (it has a value of
true), it indicates that the Orchestration Agent installed on this resource is able to use enhanced exec
features, as opposed to unsupported agent installs, such as AIX.

In the Fact Editor, this fact is listed as resource.agent.exec.installed:

<fact name="resource.agent.exec.installed" value="true" type="Boolean" />

Clustered Agent: This check box is not selected by default. When you select it (it has a value of true),
you specify that the agent is “clustered” on this VM resource. This means that it converts duplicate
logins to failover logins.

In the Fact Editor, this fact is listed as resource.agent.clustered:

<fact name="resource.agent.clustered" value="false" type="Boolean" />

Agent Configuration

This section includes the following settings:

 Gmond Port
 Datagrid Cache TTL
 Datagrid Cleanup Interval
 Exec Daemon Timeout
78 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 Exec As Agent User Only
 Cleanup After Joblets
 Use Enhanced Exec
 Log Level
 Debug Logging

Gmond Port: The port that the agent uses for gmond. Port 8649 is the default port. A setting of zero
(0) or less means that the value is not read.

In the Fact Editor, this fact is listed as esource.agent.config.gmond.port:

<fact name="resource.agent.config.gmond.port" value="8649" type="Integer" />

Datagrid Cache TTL: The amount of time (measured in minutes) that inactive files should remain in
the agent’s datagrid cache. A setting of zero (0) turns off the cache.

In the Fact Editor, this fact is listed as jresource.agent.config.datagrid.cache.lifetime:

<fact name="resource.agent.config.datagrid.cache.lifetime" value="1440"
type="Integer" />

Datagrid Cleanup Interval: The amount of time (measured in minutes) that the Orchestration Server
should wait between cleanup sweeps of the agent’s datagrid cache.

In the Fact Editor, this fact is listed as
resource.agent.config.datagrid.cache.cleanupinterval:

<fact name="resource.agent.config.datagrid.cache.cleanupinterval" value="60"
type="Integer" />

Exec Daemon Timeout: The amount of time (measured in seconds) that the enhanced exec daemon is
to remain running. A setting of zero (0) specifies that the daemon is to remain running. The exec
daemon is the non-Java component of the agent that is responsible for executing commands remotely.

In the Fact Editor, this fact is listed as resource.agent.config.exec.daemon.timeout:

<fact name="resource.agent.config.exec.daemon.timeout" value="300" type="Integer"
/>

Exec As Agent User Only: This check box is selected by default. When you select it (it has a value of
true), you specify that the agent is to always run executables as the Agent User only. Selecting this
check box overrides any job fact settings for the job.joblet.runtype fact.

In the Fact Editor, this fact is listed as resource.agent.config.exec.asagentuseronly:

<fact name="resource.agent.config.exec.asagentuseronly" value="true"
type="Boolean" />

Cleanup After Joblets: This check box is not selected by default. When you select it (it has a value of
true), you specify that the agent on this resource is to clean up temporary directories created for each
joblet. You can deselect this check box for debugging purposes; when you select it again, the cleanup
process starts again, deleting temporary directories that were created while the setting was
deactivated.

In the Fact Editor, this fact is listed as resource.agent.config.joblet.cleanup:

<fact name="resource.agent.config.joblet.cleanup" value="true" type="Boolean" />

Use Enhanced Exec: This check box is not selected by default. When you select it (it has a value of
true), you specify that the agent on this resource is to use the enhanced exec feature of the agent,
which is available for supported agent installations. Marking this fact as false causes the enhanced
exec feature to not be used.
The Resource Object 79

In the Fact Editor, this fact is listed as resource.agent.config.exec.enhancedused:

<fact name="resource.agent.config.exec.enhancedused" value="true" type="Boolean" /
>

Log Level: Lets you choose the level of agent logging in terms of the amount of detail (that is, the
verbosity) you want to include in the agent log. The choices include:

 quiet
 normal
 verbose

In the Fact Editor, this fact is listed as resource.agent.config.loglevel:

<fact name="resource.agent.config.loglevel" value="normal" type="String" />

Debug Logging: This check box is not selected by default. When you select it (it has a value of true),
you activate the debug function in the agent log, which is additive to the log level.

In the Fact Editor, this fact is listed as resource.agent.config.logdebug:

<fact name="resource.agent.config.logdebug" value="false" type="Boolean" />

Installed Components

Applications: A list of the names of applications (including the full version name) that are installed
on this resource. This is useful for constraining joblets to run only on a resource with a particular
application installed.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.installed.apps">
 <array>
 <string>man-pages-2.39-0.9</string>
 <string>xorg-x11-fonts-scalable-6.9.0-50.45</string>
 <string>cifs-mount-3.0.24-2.23</string>
 <string>gdbm-1.8.3-243.2</string>
 <string>libaio-0.3.104-14.2</string>
 <string>libnl-1.0-18.4</string>
...
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove the application name or change its order in the array of element choices.

5.2.2 Groups Panel

This section of the Info/Groups page lists the groups of Resource objects in the grid. Click Choose to
open the Resource Group Selection dialog box. In this dialog box, you can choose which Resource
Groups to display in the Explorer Panel by selecting a group and then clicking Add or Remove to move
it to or from the Source Resource Groups list.
80 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

5.3 Provision Info Page
The Provision Info tab is displayed only for VM resource objects selected in the Explorer tree. The
read-only fields displayed at the top of the Provision Info page summarize information related to the
provisioning of the resource, whether that resource is a VM or VM template.

The page has several subtabs that open other pages that display further information about the VM:

 Show Log: A log that includes historical details about the history of the provisioning of the VM.
 Host Assignment Log: A log of VM host assignment constraint errors of the last migration or

provision action.
 Autoprep Data: A list of autoprep/sysprep fact overrides used to prepare this VM instance. For

more information about autoprep, see “Understanding and Configuring Autoprep” in the NetIQ
Cloud Manager 2.1.5 Orchestration Installation Guide.

 Policy Debugger: Information to help you debug the policy and its resulting constraints and
facts that are associated with this VM. For more information, see Chapter 14, “The Policy
Debugger,” on page 177.

 Action History: A log that includes historical details about the history of the provisioning of the
VM. For more information, see “Provisioning Actions and History” in the NetIQ Cloud Manager
2.1.5 VM Orchestration Reference.

5.4 Resource Log Page
Open the Resource Log tab to view the contents of the log file for this resource. You can click Refresh to
update the content. You can also select Debug Logging to activate the debug feature as part of the
logging or change the Log Level to the level of detail that you want.

5.5 Resource Policies Page
The Policies tab of the Resource admin view opens a page that contains a policy viewer for each of the
policies associated with a Resource Grid object.

You can modify a policy by using the Policy Grid object. For more information, see Section 12.1,
“Policy Object,” on page 153.

Click Choose in the admin view of the Policy viewer to launch a Policy Selection dialog box where you
can add or remove individual policies to be applied to the selected Resource Grid object.
The Resource Object 81

Figure 5-1 The Policy Selection Dialog Box

5.6 Resource Health Debugger Page
The Health Debugger is a common Admin view in the Orchestration Console for most Grid objects.
For information about this tool, see Health Debugger in Appendix A, “Grid Object Health
Monitoring,” on page 185.

5.7 Resource Constraints/Facts Page
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. By
changing the policy constraints and fact values for a job, you can change the behavior of the job and
how the Orchestration Server allocates available system resources to it. The Orchestration Server
assigns default values to each of the component facts. Facts with no mode specified can be changed
at any time by the administrator.Facts with mode r/o have read-only values, which can be viewed by
using the edit pencil icon, but changes cannot be made.

For information about renaming Resource objects using the Fact Editor on this page, see Section 5.8,
“Resource Object Naming and Renaming,” on page 82.

5.8 Resource Object Naming and Renaming
The Orchestration Server Resource Grid object type can include resources of various types, including
physical machines, virtual machines (VMs), and VM templates, all of which are modeled differently
in the Orchestration Console because of their varying roles in the Orchestration Server system. Some
resource names are generated by the Orchestration Server system and can therefore receive generic,
arbitrary names such as mysql-1, mysql-2, and so on. Resources you name at installation time or
creation time might also change in their purpose or facilities.

As the quantity of these Resource objects grows in your grid, you might find it helpful or necessary to
rename them, assigning more meaningful, intuitive names to suit the purpose of the object. The
object’s “display name” is visible in the Orchestration Console interface, interfaces, and in optional
zos and zosadmin commands.

NOTE: Resource object groups (that is, the folders that contain these Resource objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.
82 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

A Resource object’s name is stored in the ${objectType}.displayname fact, which exists on every
Grid object type, even those objects that cannot be renamed.

You can rename a Resource object in the Orchestration Console by using one of three methods:

 Right-click the Resource object in the Explorer tree, then select Rename to allow editing of the
display name.

 Triple-click the Resource object in the Explorer tree to allow editing of the display name.
 In the Constraints/Facts page, select the resource object .displayname fact and then open the

Fact Editor to enter a new value for that fact.

As you use one of these methods, you will notice that the fact value is pre-populated with the
${objectType}.id fact. This functions as the name value for the object name until you decide to
change it.

NOTE: Even after being renamed, the Resource object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the NetIQ Cloud Manager 2.1.5 Orchestration Server Command Line
Reference.
The Resource Object 83

84 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

6 6The VM Host Object

A VM host represents a VM host technology or hypervisor (for example, Xen, Hyper-V, and so on)
either installed on a physical resource or accessed by it (in the case of VMware). VM host objects can
be used when making provisioning decisions for a resource.

The Cloud Manager Orchestration Server also supports the discovery of VMware vSphere clusters
used for high availability in a VMware environment or managed by the VMware Distributed
Resource Scheduler (DRS) after an Orchestration Agent has been deployed into such an environment.
In this scenario, the Orchestration Server also allows you to determine when actions have taken place
outside of the Orchestration environment, such as when the DRS moves a VM to an alternate host in
the cluster or when an administrator moves a VM into a different resource pool (see “Setting Up
Orchestration to Accommodate VMware DRS Clustering and Updates” in the NetIQ Cloud Manager
2.1.5 Orchestration Installation Guide).

Although the VM host and the VM host Cluster are regarded as two different types of VM host
object, and have differing icons, the discovered clusters are represented in the Explorer tree of the
Orchestration Console as VM host objects.

NOTE: The Orchestration Console interface (that is, the fields in the admin view) for a VM host and a
VM host Cluster are nearly identical. Facts unique to the VM host Cluster are listed in Section 6.7,
“Unique VM Host Cluster Facts,” on page 92.

This section includes the following information:

 Section 6.1, “Info Page,” on page 85
 Section 6.2, “Policies Page,” on page 90
 Section 6.3, “Health Debugger Page,” on page 90
 Section 6.4, “Constraints/Facts Page,” on page 90
 Section 6.5, “Action History Page,” on page 91
 Section 6.6, “VM Host Object Naming and Renaming,” on page 91
 Section 6.7, “Unique VM Host Cluster Facts,” on page 92
 Section 6.8, “vCPU Slots for VM Hosts,” on page 95

6.1 Info Page
The page that opens under the Info tab includes several collapsible sections on the page where you
can configure the general information and attributes of the VM host.

 Section 6.1.1, “Show Inherited Fact Values Check Box,” on page 86
 Section 6.1.2, “VM Host Information Panel,” on page 86
 Section 6.1.3, “Provisioning Adapter Config Panel,” on page 89
 Section 6.1.4, “Guest VM Monitor Information Panel,” on page 89
The VM Host Object 85

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon, signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save button on the Orchestration Console toolbar.

6.1.1 Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable), although you can use the Policy Editor to
modify the policy values themselves if you want to.

6.1.2 VM Host Information Panel

The VM Host Information panel on the Info page includes the following fields:

 Physical Resource
 VM Host Type
 VmHost Cluster
 Enabled
 Online
 Healthy
 Shutting Down
 Location
 Supports VM Migration
 Supports H/W HVM
 Accounting Group
 Max Hosted VMs
 Max Hosted vCPUs
 Max Virtual Memory
 Repositories
 Available VM Resource Groups
 Managing Job
 Needs Resync

NOTE: Tooltip text is available when you mouse over any of these fields.

Physical Resource: (Read Only) The name of the resource that houses this VM host container.

In the Fact Editor, this fact is listed as vmhost.resource:

<fact name="vmhost.resource" value="vmh7sles" type="String" />

VM Host Type: This field displays a read-only fact, as discovered by the Orchestration Server. It
identifies the VM host as a regular VM host (vmhost) or as a VMware cluster (vmhostcluster).

In the Fact Editor, this fact is listed as vmhost.type:

<fact name="vmhost.type" value="vmhostcluster" type="String" />
86 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

VmHost Cluster: (Conditional) This field displays a read-only fact, as discovered by the
Orchestration Server. It identifies the VM host cluster to which this VM host belongs. The field is
displayed on the information page only when the VM host is a member of a cluster.

In the fact editor, this fact is listed as vmhost.cluster:

<fact name="vmhost.cluster" value="esx35_cluster_vsphere" type="String" />

Enabled: This check box is selected by default. When it is selected (it has a value of true), the VM host
is enabled, which means that VM instances can be provisioned on it.

In the Fact Editor, this fact is listed as vmhost.enabled:

<fact name="vmhost.enabled" value="true" type="Boolean" />

Online: When this check box is selected (it has a value of true), the agent on the physical resource is
online.

In the Fact Editor, this fact is listed as vmhost.online:

<fact name="vmhost.online" value="true" type="Boolean" />

Healthy: This check box is selected by default. When it is selected (it has a value of true), the VM host
is designated as being in good health. You can set the health of the object by selecting or deselecting
the health check box. Changing the value in this way has an immediate effect unless the value is
overriden by an attached policy. For more information, see Appendix A, “Grid Object Health
Monitoring,” on page 185

In the Fact Editor, this is fact is listed as vmhost.health:

<fact name="vmhost.health" value="false" type="Boolean" />

Shutting Down: When this check box is selected (it has a value of true), the VM host is attempting to
shut down and does not accept provisioning requests.

In the Fact Editor, this fact is listed as vmhost.shuttingdown:

<fact name="vmhost.shuttingdown" value="false" type="Boolean" />

Location: For the vsphere provisioning adapter, this is the ManagedObjectReference path for this
VM host. For other provisioning adapters, this is an optional description of the physical location of
the VM host.

In the Fact Editor, this fact is listed as vmhost.location:

<fact name="vmhost.location" value="" type="String" />

Supports VM Migration: When this check box is selected (it has a value of true), the VM host can
support VM migration. The state of this fact can also depend on the migration capabilities of the
provisioning adapter used to provision the VM.

In the Fact Editor, this fact is listed as vmhost.migration:

<fact name="vmhost.migration" value="true" type="Boolean" />

Supports H/W HVM: When this check box is selected (it has a value of true), the hypervisor on the
VM host can support hardware virtualization.

In the Fact Editor, this fact is listed as vmhost.hvm:

<fact name="vmhost.hvm" value="false" type="Boolean" />

Accounting Group: The default VM host group that you want to be adjusted for VM tracking
statistics.
The VM Host Object 87

In the Fact Editor, this fact is listed as vmhost.accountinggroup:

<fact name="vmhost.accountinggroup" value="all" type="String" />

Max Hosted VMs: The maximum number of VM instances allowed on this VM host.

In the Fact Editor, this fact is listed as vmhost.maxvmslots:

<fact name="vmhost.maxvmslots" value="8" type="Integer" />

Max Hosted vCPUs: The maximum number of virtual CPUs that this VM host can support.

In the Fact Editor, this fact is listed as vmhost.vcpu.max:

<fact name="vmhost.vcpu.max" value="8" type="Integer" />

For more information about vCPU slots, see Section 6.8, “vCPU Slots for VM Hosts,” on page 95.

Max Virtual Memory: The amount of memory (measured in MB) available to hosted VMs.

In the Fact Editor, this fact is listed as vmhost.memory.max:

<fact name="vmhost.memory.max" value="1000" type="Integer" />

Repositories: The list of repositories (VM disk stores) that are visible to this VM host.

In the Fact Editor, this fact is listed as an array:

<fact name="vmhost.repositories">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add, remove, or edit repositories in an array of repository choices.

Available VM Resource Groups: This field displays a list of resource groups containing VMs that
are allowed to run on this VM host.

In the Fact Editor, this fact is listed as an array:

<fact name="vmhost.vm.available.groups">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add, remove, or edit the resource groups (element values) in an array of choices.

Managing Job: The ID of a running job that manages VM operations on this VM host. When this field
is completed, the VM Manager prevents other jobs from initiating provisioning actions. The fact is
cleared when the managing job ends.

In the Fact Editor, this fact is listed as vmhost.controllingjob:

<fact name="vmhost.controllingjob" value="" type="String" />

Needs Resync: When this check box is selected (it has a value of true), you specify that, at the next
opportunity, this VM host is to be probed to resynchronize all the VMs that are managed here.

In the Fact Editor, this fact is listed as vmhost.resync:

<fact name="vmhost.resync" value="false" type="Boolean" />
88 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

6.1.3 Provisioning Adapter Config Panel

 Adapter Job Name
 Username
 Password

Adapter Job Name: The name of the provisioning adapter job that manages VM discovery on this
host. Do not change this value unless you have implemented your own discovery job.

In the Fact Editor, this fact is listed as vmhost.provisioner.job:

<fact name="vmhost.provisioner.job" value="vsphere" type="String" />

Username: (Optional) The username required for provisioning on the VM host.

In the Fact Editor, this fact is listed as vmhost.provisioner.username:

<fact name="vmhost.provisioner.username" value="" type="String" />

Password: (Optional) The password required for provisioning on the VM host.

In the Fact Editor, this fact is listed as vmhost.provisioner.password:

<fact name="vmhost.provisioner.password" value="" type="String" />

6.1.4 Guest VM Monitor Information Panel

 Current VM Count
 Available vCPUs
 Available Virtual Memory
 VM Image Counts
 Running VM Instances
 Load Index (Slots)
 Load Index (Memory)

Current VM Count: (Read Only) The current number of active VM instances.

In the Fact Editor, this fact is listed as vmhost.vm.count:

<fact name="vmhost.vm.count" value="0" type="Integer" />

Available vCPUs: The number of vCPUs available on this VM host.

In the Fact Editor, this fact is listed as vmhost.vcpu.available:

<fact name="vmhost.vcpu.available" value="8" type="Integer" />

For more information, see Section 6.8, “vCPU Slots for VM Hosts,” on page 95.

Available Virtual Memory: The amount of memory (measured in MB) available to new VMs.

In the Fact Editor, this fact is listed as vmhost.memory.available:

<fact name="vmhost.memory.available" value="1000" type="Integer" />

VM Image Counts: The dictionary of running instance counts for each running VM template.

In the Fact Editor, this fact is listed as a dictionary:
The VM Host Object 89

<fact name="vmhost.vm.templatecounts">
 <dictionary>
 <dictelement key="ads">
 <time>12:00 AM</time>
 </dictelement>
 </dictionary>
</fact>

You can edit the dictionary elements by clicking the button to open the VM Image Counts
dialog box, then adding or removing the names in the dictionary.

Running VM Instances: (Read Only) A list of active VM instances.

In the Fact Editor, this fact is listed as an array:

<fact name="vmhost.vm.instanceids">
 <array type="String">
 </array>
</fact>

Load Index (Slots): (Read Only) The current loading index of resource slots, which is a ratio of the
active hosted VMs to the specified maximum number of VMs allowed on this host. Each provision
VM takes up one slot. For more information, see Max Hosted VMs.

In the Fact Editor, this fact is listed as vmhost.loadindex.slots:

<fact name="vmhost.loadindex.slots" value="0.1250" type="Real" />

Load Index (Memory): (Read Only) The current loading index for memory, which is a ratio of the
virtual memory consumed on this VM host to the specified maximum amount of memory allocated
to this host.

In the Fact Editor, this fact is listed as vmhost.loadindex.virtualmemory:

<fact name="vmhost.loadindex.virtualmemory" value="0.0000" type="Real" />

6.2 Policies Page
The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.

NOTE: You can edit a policy by right-clicking a policy icon and selecting Edit Policy. Remember to
click the Save button when your changes are complete.

6.3 Health Debugger Page
The Health Debugger is a common Admin view in the Orchestration Console for most Grid objects.
For information about this tool, see Health Debugger in Appendix A, “Grid Object Health
Monitoring,” on page 185.

6.4 Constraints/Facts Page
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. By
building, deploying, and running jobs on the Orchestration Server, you can individually change the
functionality of any system resources by managing an object’s facts and constraints. The
90 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Orchestration Server assigns default values to each of the component facts. Facts with no mode listed
can be changed at any time by the administrator. Facts with mode r/o have read-only values, which
can be viewed by using the pencil icon, but changes cannot be made.

For information about using the Fact Editor on this page to rename VM host objects, see Section 6.6,
“VM Host Object Naming and Renaming,” on page 91

6.5 Action History Page
The Action History tab is displayed in the administrative view of the Repository object. When you
select the Action History tab, a table displays on the Action History page with a list of the history for
all VM provisioning actions performed on this Grid object.

The Orchestration Server must be connected to an audit database for the Include Audit Database check
box to be available. If the Include Audit Database check box is selected in this view, the action status is
not polled. Click the Refresh button in the toolbar to retrieve and display fresh data.

For more details about the information listed on the Action History page, see “Action History in
Admin Views of the Orchestration Console” in the NetIQ Cloud Manager 2.1.5 VM Orchestration
Reference.

6.6 VM Host Object Naming and Renaming
Some VM host names (or VM host Cluster names) are generated by the Orchestration Server and can
therefore receive generic, arbitrary names such as host2_demoAdapter, host3_demoAdapter, and so
on. VM hosts you name at creation time might also change later in their purpose or facilities.

As the quantity of these VM host objects grows in your grid, you might find it helpful or necessary to
rename them, assigning more meaningful, intuitive names to suit the purpose of the object. The
object’s “display name” is visible in the Orchestration Console interface, the , and in optional zos and
zosadmin commands.

NOTE: Resource object groups (that is, the folders that contain these VM host objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A VM host object’s name is stored in the ${objectType}.displayname fact, which exists on every
Grid object type, even those objects that cannot be renamed.

You can rename a VM host object (or a VM host Cluster object) in the Orchestration Console by using
one of three methods:

 Right-click the VM host object in the Explorer tree, then select Rename to allow editing of the
display name.

 Triple-click the VM host object in the Explorer tree to allow editing of the display name.
 In the Constraints/Facts page, select the VM host object .displayname fact and then open the

Fact Editor to enter a new value for that fact.

As you use one of these methods, you will notice that the fact value is pre-populated with the
${objectType}.id fact. This functions as the name value for the object name until you decide to
change it.

NOTE: Even after being renamed, the VM host object retains its associated resource ID in the .id
fact. This is not editable.
The VM Host Object 91

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the NetIQ Cloud Manager 2.1.5 Orchestration Server Command Line
Reference.

6.7 Unique VM Host Cluster Facts
There are several VM host cluster-related facts that are not found in a regular VM host object. This
section contains detail about those facts.

 Section 6.7.1, “Orchestration Server Facts in the VM Host Cluster Object,” on page 92
 Section 6.7.2, “Orchestration Server Facts in a VM Host Residing in a Cluster,” on page 93
 Section 6.7.3, “Orchestration Server Facts in VMs Hosted in Clusters,” on page 94

6.7.1 Orchestration Server Facts in the VM Host Cluster Object

Any vSphere clusters discovered by the Orchestration Server are listed in the Orchestration Console
as members of a convenience group (for example, a group named clusters_vsphere). The following
table lists the read-only, cluster-related facts in a VM host Cluster object.

Table 6-1 Cluster-Related Facts in a Cluster Object

Fact Name Type Description

vmhost.cluster.vmhosts String[] This string array lists
all of the VM hosts
that are members of
this cluster.

vmhost.location String The data center
Managed Object
Reference (MOR)
path to the cluster.

vmhost.vphere.cluster.das.admission_control_enabled Boolean If this fact value is
true, the VM host
cluster has high
availability
configuration to use
admission control.

NOTE: High
availability was
originally named
“Dynamic
Availability Service”
(DAS) in VMware.
This is the origin of
the .das prefix.

vmhost.vphere.cluster.das.enabled Boolean If this fact value is
true, high availability
is turned on in this
cluster.
92 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

6.7.2 Orchestration Server Facts in a VM Host Residing in a Cluster

The following table lists the read-only, cluster-related facts in a virtual or physical machine with an
installed Orchestration Agent and residing in a cluster.

Table 6-2 Cluster-Related Facts in a VM Host Residing in a vSphere Cluster

vmhost.vphere.cluster.drs.allow_behavior_override Boolean Whether VMs can
specify their own
placement behavior.

vmhost.vphere.cluster.drs.default_behavior String Specifies manual,
partially automated,
or fully automated
VM placement.

vmhost.vphere.cluster.drs.enabled Boolean If this fact value is
true, DRS is turned
on in this cluster.

vmhost.vphere.pools Dictionary The mapping of the
pool MOR path to
dictionaries of pool
configuration values.

vmhost.type String The “type”
differentiation for
clusters vs. VM
hosts. The value is
either vmhost or
vmhostcluster.

Fact Name Type Description

Fact Name Type Description

vmhost.cluster String[] The ID of the cluster that contains this host.

vmhost.type String The “type” differentiation for clusters vs. VM hosts.
Tthe value is either vmhost or vmhostcluster.
The VM Host Object 93

6.7.3 Orchestration Server Facts in VMs Hosted in Clusters

The following table lists the read-only, cluster-related facts in a VM hosted in vSphere clusters.

Table 6-3 Cluster-Related Facts in VMs Hosted in Clusters

Fact Name Type Description

resource.provision.vmhost String The ID of the VM host cluster or VM
host that contains this VM.

When provisioning or migrating to a
cluster, this value is initially the cluster
ID. On subsequent resync or discovery
or when using the VsphereUpdate
daemon, this is set to the value of the
selected VM host within the cluster.

resource.vm.pool String The MOR path of the resource pool
that contains this VM.

This value is also a key in the
vmhost.vsphere.pools dictionary.

resource.vm.vmhost.location String The MOR path of the VM host cluster
that contains this VM.

This is always the cluster if the VM host
is in a cluster; otherwise, it is the MOR
path of the VM host itself.

resource.vm.vsphere.cpu.limit Integer The maximum amount (in MHz) of CPU
resources to be used by this VM.

resource.vm.vsphere.cpu.reservation Integer The minimum amount (in MHz) of CPU
resources guaranteed to this VM.

resource.vm.vsphere.cpu.shares.level String The relative amount (assigned a value
of low, normal, high, or custom) of CPU
allocated for this VM.

resource.vm.vsphere.cpu.shares.custom Integer The custom amount of relative CPU for
this VM.

This fact is valid only when the value
for the
resource.vm.vsphere.cpu.shar
es.level fact is “custom.”

resource.vm.vsphere.memory.limit Integer The maximum amount (measured in
MB) of memory resources to be used
by this VM.

resource.vm.vsphere.memory.reservation Integer The minimum amount (measured in
MB) of memory resources guaranteed
to this VM.

resource.vm.vsphere.memory.shares.level String The relative amount (assigned a value
of low, normal, high, or custom) of
memory specified for this VM.
94 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

6.8 vCPU Slots for VM Hosts
In the Orchestration Server, a vCPU represents a logical CPU. It provides a way to set up limits for
allocating CPUs on VM hosts. These limits let you specify how many vCPUs should be hosted by
each VM host so that you can control how much CPU processing power is available. If all vCPUs are
in use, a subsequent provision can be denied or made to wait. This lets you ensure the quality of
service you want to maintain in the data center.

When a VM is provisioned, the Orchestration Server runs a constraint check on every suitable VM
host to determine if the number of available vCPUs on the VM host is sufficient for a VM. If a VM
host with sufficient available vCPUs is not available, the provisioning request waits until one
becomes available or (depending on VM facts) the request is denied.

Using vCPU facts differs from using the existing slot fact (vmhost.maxvmslots). The maxvmslots
fact provides basic control of the number of VMs allocated to a VM host, which is useful for limiting
VMs because of license restrictions or for generally limiting the VMs being managed. The vCPU facts
are similar to the memory limit facts, giving you more control to avoid overloading a VM host and
letting you ensure quality of service.

This section includes information about how the vCPU facts are used in the Orchestration Server.

 Section 6.8.1, “Configuring vCPUs on VM Hosts,” on page 95
 Section 6.8.2, “Configuring vCPUs on VM Host Clusters,” on page 96
 Section 6.8.3, “Configuring vCPUs on VMs,” on page 96

6.8.1 Configuring vCPUs on VM Hosts

There are two vCPU facts displayed on the VM host Info page in the Orchestration Console:

 Max Hosted vCPUs: This value (Integer) represents the maximum number of vCPUs that the
VM host can support. The fact name is vmhost.vcpu.max.

 Available vCPUs: This value (Integer) represents the number of virtual CPUs available on this
host. The fact name is vmhost.vcpu.available.

The vmhost.vcpu.available value changes when a VM is provisioned or shut down on that VM
host. If the vmhost.vcpu.max fact is set to -1 (unlimited), the vmhost.vcpu.available value changes
to -1 (unlimited). When it is set to unlimited, no counting occurs, so the Orchestration Server does not
check vCPU limits.

When a VM host object is created (during discovery), the vmhost.vcpu.max value is set to the
number of physical cores multiplied by a factor of 4. For example, on a Xen VM host that has eight
physical cores, the Orchestration VM host discovery for Xen creates a VM host object with a
maximum vCPU of 32. The factor value of 4 represents partitioning a physical core to four vCPUs,
which represents 25% capacity.

resource.vm.vsphere.memory.shares.custom Integer The custom amount of relative memory
for this VM.

This fact is valid only when the value
for the
resource.vm.vsphere.memory.s
hares.level fact is “custom.”

Fact Name Type Description
The VM Host Object 95

You can change this default value by creating a policy that sets the vmhost.vcpu.max fact value and
associates the policy either to the VM host or to a Resource Group of VM hosts. In the preceding Xen
VM host example, if you wanted to partition the eight physical cores on a VM host to 50% capacity,
you would set the maximum vCPUs to 16 by creating the following policy and then associating it to
the VM host or to a Resource Group of VM hosts:

<policy>
 <vmhost>
 <fact name="vcpu.max" type="Integer" value="16" />
 </vmhost>
</policy>

If you want the Orchestration Server to allocate vCPUs without checking limits, you can set the
maximum vCPUs to -1, which indicates an unlimited number. You would create the following policy
to make that configuration setting:

<policy>
 <vmhost>
 <fact name="vcpu.max" type="Integer" value="-1 />
 </vmhost>
</policy>

6.8.2 Configuring vCPUs on VM Host Clusters

Because the VM host Cluster object represents a set of VM hosts, both vmhost.vcpu.available and
vmhost.vcpu.max facts are sums of the underlying VM host objects. If all of the underlying VM hosts
have their vmhost.vcpu.max values set to -1 (unlimited), then the corresponding vmhost.vcpu.max
fact in the VM host Cluster is -1 (unlimited). This also means that no counting or checking occur for
vCPU limits. This is used in scenarios where you rely on the underlying hypervisor to account for
vCPUs rather than the Orchestration Server. For example, if you have set up vSphere with DRS and
clustering, you do not need the server to do any checking.

NOTE: The Orchestration Server vsphere provisioning adapter sets the vmhost.vcpu.max fact value
to -1 (unlimited) for DRS-enabled VM host clusters.

6.8.3 Configuring vCPUs on VMs

An existing vCPU fact (resource.vm.vcpu) specifies the number of vCPUs for a VM. This fact is set
on VM image discovery. You can view it in the Orchestration Console on the VM object Admin view
on the Info/Groups page. The Virtual Machine Configuration pane on this page has a Host CPU
Number field where this fact is set.

In the VM Hosts Monitor view, the tooltip for a VM host displays the following:

..Total vCPUs: xx, Available vCPUs: xx

Figure 6-1 Tool Tip Text for VM Host vCPU Slots
96 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

These values change when a VM is provisioned or shut down. For example, if the vmhost.vcpu.max
fact is set to -1 (unlimited), then the tooltip shows “-1” for both total and available.
The VM Host Object 97

98 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

7 7The Virtual Disk Object

This section includes the following information:

 Section 7.1, “Understanding the Virtual Disk Object,” on page 99
 Section 7.2, “Viewing Virtual Disk Configuration in the Orchestration Console,” on page 104
 Section 7.3, “Managing Block Devices as VM Virtual Disks,” on page 109

7.1 Understanding the Virtual Disk Object
A virtual disk (vDisk) represents a VM’s view of its storage devices, which could include any type of
physical disk (such as a file-backed disk image, an ISO image file, a physical hard drive, a CD/DVD
device, or a block device) associated to a VM. The vDisk objects are discovered, along with their
associated VM, when a Discover VM Images job is run on a repository.

The vDisk is modeled as a Grid object, located as a subordinate to the VM Grid object in the Explorer
tree of the Orchestration Console. In the Explorer Tree, a vDisk is given the form vmname_vdisk<n>
where <n> represents the numerical order in which this vDisk was discovered, with 1 appended to
the name of the first vDisk discovered or created. For example, suse11_vdisk1 would be the name
of the first disk discovered for a VM with the Grid ID suse11. Each additional vDisk is incremented
by one, so the second vDisk in this example would be named suse11_vdisk2.

This section includes the following information:

 Section 7.1.1, “Creating or Deleting a vDisk in the Orchestration Console,” on page 99
 Section 7.1.2, “Sharing Virtual Disks Among VM Hosts,” on page 103
 Section 7.1.3, “Moving Virtual Disks,” on page 103

7.1.1 Creating or Deleting a vDisk in the Orchestration Console

This section includes the following information:

 “Creating and Configuring a Virtual Disk” on page 99
 “Creating a Sparse Virtual Disk” on page 101
 “Deleting a Virtual Disk” on page 101

Creating and Configuring a Virtual Disk

You might want to manually create a vDisk in the following scenarios:

 When you want to create a “blank” disk image file for the VM. In this scenario, the disk image
does not actually reside on the local file system, but a disk image of the specified size (measured
in MB) should be created at the location specified for use by the VM. This is essentially a blank
file, until it is used by the VM.
The Virtual Disk Object 99

 When the Orchestration Server might not have discovered the vDisk objects correctly, such as
omitting a disk that should exist. You need to manually correct the incorrect discovery.

 A VM that already exists needs to have patches applied to it. The patches are delivered through
an ISO file, which was not configured to be attached to the VM. This configuration lets the
administrator configure the VM with access to the ISO disk image, then apply the patches, and
then later delete the vDisk object, returning the VM to its original configuration.
You need to manually add the vDisk, select the Save Config action in the Orchestration Console,
then apply the patches to the running VM. Later, you shut down the VM, delete the vDisk object
from the Orchestration Server, then select the Save Config action again.
The scenario includes configuring the VM to use the existing ISO file (that is, creating the vDisk
object, then selecting Save Config), and then deconfiguring the VM to no longer use the ISO file
(that is, deleting the vDisk object, then selecting Save Config).
In this scenario, only the vDisk object from the Orchestration Server is deleted, not the ISO file.

To create a virtual disk in the Orchestration Console, you can either right-click the VM where you
want to create the vDisk, then select Create Virtual Disk (if you do this, you can skip to Step 4 below) or
you can use the following procedure from the Orchestration Console menu:

1 In the Orchestration Console main menu, select Actions > Create Virtual Disk to display the Create
a New Virtual Disk dialog box.

2 In the VM drop-down list, select the name of the VM where you want to add a vDisk, then click
Create.

3 When you have created all of the vDisks you need, click Close.
4 Select a newly created vDisk object in the Explorer tree to view the Info/Groups page of the

admin view.
5 On the Info/Groups page, configure the following settings:

Type: Specify the vDisk type as the VM host sees it.
Description: Describe the vDisk with any text that you choose
Healthy: Designates the health state of the vDisk. Do not configure.
Moveable: Specifies whether the disk image can be copied (relocated) with the VM when the
VM is moved (relocated) to another repository. For more information, see “Moveable” later in
this section.
Mode: Specifies the mode of the vDisk as made available and supported by the provisioning
adapter:
 r = read only
 w = read/write

VM: Specifies the name of the VM that uses this vDisk.
100 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Repository: The repository where this disk location path resides.This setting is important
because the Orchestration Server uses it to find a suitable VM host for provisioning, building, or
migration actions. The value of this setting can be none, which informs the server to ignore this
vDisk when locating a suitable VM host.
Physical Disk: The name of the pDisk that this vDisk is associated with.
Location: The path (location) to the disk image.
 If you specify a location to a disk that already exists, the existing disk file is used and the

VM configuration is modified (according to the value in vdisk.location fact) to use this
existing disk.

 If you specify a path to a disk that does not exist (that is, if the value in vdisk.location is
invalid), the action fails and an empty disk image file of the specified size is created. An
error in the action status or job log is created.

 For a vDisk created for a Hyper-V VM, you need to provide the complete path of that vDisk
file.
To form the path, you need to know the repository path where the VM currently resides, the
vDisk name, which is the name you give it plus the .vhd extension. For example, the syntax
would be

<value_of_the_repository.preferredpath_fact>\<your_vhd_filename>.vhd

NOTE: Make sure that the .vhd file you designate in this field doesn’t already exist in the
path.

Size: The size (measured in MB) of the disk image. Do not configure.
Sparse Disk: Designates whether the vDisk file is a sparse file. Do not configure.
Actual Size: The actual sparse size (measured in MB) of the vDisk file. Do not configure.

6 Click the Save button in the toolbar to save the fact changes you made.
7 In the Explorer tree, right-click the VM object where you added the vDisk, then select Save Config

to apply the changes to the VM’s configuration.

Creating a Sparse Virtual Disk

Sparse disk creation is supported by the Xen, vSphere, and KVM hypervisors. If you want to create
your vDisk as a sparse file, you can use the procedure for “Creating and Configuring a Virtual Disk”
on page 99 (see Step 5 on page 100 in particular).

You need to set the Sparse Disk fact to true, specify the amount of space (in MB) for the disk in the
Size fact, and also specify the path to the repository where the sparse vDisk resides. Make sure that
you perform the Save Config action to apply the vDisk changes to the VM’s configuration.

Deleting a Virtual Disk

You might want to manually delete a vDisk in at least two scenarios:

 When the Orchestration Server might not have discovered the vDisk objects correctly, such as
adding a disk that should not exist. The administrator needs to manually correct the incorrect
discovery.

 A VM that already exists needs to have patches applied to it. The patches are delivered through
an ISO file, which was not configured to be attached to the VM. This configuration lets the
administrator configure the VM with access to the ISO disk image, then apply the patches, then
later delete the vDisk object, returning the VM to its original configuration.
The Virtual Disk Object 101

The administrator needs to manually add the vDisk, run the Save Config command from the
Orchestration Console, then apply the patches to the running VM. Later, the administrator shuts
down the VM, deletes the vDisk object from the server, then performs the Save Config action
again.
The scenario includes configuring the VM to use the existing ISO file (that is, creating the vDisk
object and selecting the Save Config action), then deconfiguring the VM to no longer use the ISO
file (that is, deleting the vDisk object, then selecting the Save Config action).
In this scenario, only the vDisk object from the server is deleted, not the ISO file.

To delete a virtual disk, you can either right-click the vDisk object in the Explorer, then select Delete (if
you do this, you can skip to Step 4, below), or you can use the following procedure from the
Orchestration Console:

1 In the Orchestration Console, select Actions > Delete > Delete Virtual Disk to display the Delete a
Virtual Disk dialog box.

2 In the Source Objects list, select the name of the vDisk (hold down the Ctrl key to select multiple
objects), then click Add to move these objects to the Delete Targets list.

3 When you have selected all of the vDisks you want to delete, click Delete to display the Delete
dialog box.

4 In the dialog box, select Apply to all to delete all of the vDisk objects in the Delete Targets list,
select Delete associated disk file if you want to delete the files associated with the vDisks you have
selected, click OK, then click Close.

5 In the Explorer tree, right-click the VM object where you deleted the vDisk, then select Save
Config to apply the changes to the VM’s configuration.

NOTE: The Save Config action rewrites the configuration file for the VM (for example, config.xen
for the xen provisioning adapter), but it does not delete any vDisk files on the file system. In this case,
manual deletion of the vDisk file is required.

To delete a VM and its backing files, use the Delete/Destroy Resource action.
102 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

7.1.2 Sharing Virtual Disks Among VM Hosts

For a VM to be provisionable by other VM hosts, all of a VM’s vDisks must be visible in the same way
that the VM’s default repository (resource.vm.repository) is visible to VM hosts. If a VM has
multiple vDisks and each vDisk has a different associated repository, these repositories must also be
visible from a potential VM host.

7.1.3 Moving Virtual Disks

When you move a VM to a new repository (see the Move Disk Image action for each hypervisor at
“Orchestration Provisioning Adapter Information”), all of that VM’s moveable vDisk images (see
“Moveable:” on page 106) are moved with it to be co-located in the same repository. The
Orchestration Server uses the aggregated size of each moveable vDisk to determine if the designated
repository has enough space for all of the disk images. vDisks that are marked as not moveable stay
in place and are not used in the calculation for the VM disk size.

The following illustration further explains this concept:

Figure 7-1 Example of Moving Virtual Disks with the VM

 VM host 1, VM host 2, and VM host 3 all have their own local storage repositories.
 VM host 1 has a vDisk located on it. It is designated as a moveable vDisk.
 VM host 1 and VM host 2 are also connected to a shared NAS storage repository.
 The local repository connected to VM host 1 has a vDisk located on it. It is designated as a

moveable vDisk.
 The shared NAS repository has a vDisk located on it. It is designated as a non-moveable vDisk.

Local
Storage

Local
Storage

Local
Storage

Shared NAS
Repository

VM
Host 1

VM
Host 2

VM
Host 3

VM

Moveable Vdisk

Non-Moveable Vdisk
The Virtual Disk Object 103

NOTE: Shared repositories are not created on discovery. They must be manually created and the
sharing (visibility) configured.

 VM host 1 has a VM located on it.
 VM host 3 cannot communicate with the NAS repository; its vmhost.repositories fact does

not include the NAS repository in the array, so that repository is not visible to VM host 3.

If you want to move the VM from VM host 1 to another VM host, the server manifests the following
behavior:

 The vDisk sizes used by the VM (on local storage and shared storage) are aggregated and
compared to free space available on the repositories.

 The only vDisk that is allowed to move is the moveable disk. This disk would be copied to either
the shared NAS repository or the local storage on VM host 2.

 VM host 3 is not considered because it does not have access to the non-moveable disk on the
NAS repository.

7.2 Viewing Virtual Disk Configuration in the Orchestration
Console

You can visually expose a vDisk Grid object in the Orchestration Console in two ways:

 In the Explorer Tree, select a VM Resource object, select the Info/Groups tab in the admin view to
open the VM Info Groups page, then scroll to the Virtual Machine Configuration panel on that
page. Right-click the vDisk icon in that panel to display the four tabs in the Virtual Disk admin
view.

 In the Explorer Tree, click the expand/collapse icon of a VM Grid object, identify the vDisk icon,
then select the icon to display the four tabs in the Virtual Disk admin view.
104 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Figure 7-2 The Virtual Disk Info/Groups Page

The page that opens under the Info tab includes fields where you can configure the general
information and attributes (facts) of the vDisk.

NOTE: Whenever you make changes to vDisk object facts, the write icon is superimposed on the
object’s icon , signifying that the object has been changed. If you want to save the changes you
have made, click the Save button on the Orchestration Console toolbar.

This section includes the following additional information:

 Section 7.2.1, “Virtual Disk Information Panel,” on page 105
 Section 7.2.2, “Virtual Disk Policies Tab,” on page 107
 Section 7.2.3, “Virtual Disk Health Debugger Tab,” on page 108
 Section 7.2.4, “Virtual Disk Constraints/Facts Tab,” on page 108
 Section 7.2.5, “Virtual Disk Object Naming and Renaming,” on page 109

7.2.1 Virtual Disk Information Panel

The Virtual Disk Information panel on the Info page includes the following fields:

NOTE: Tool tip text is displayed when you mouse over any of these fields.

Type: This drop-down list lets you select one of the vDisk types as the VM host sees it:

 file: Specifies this vDisk as a file-backed disk.
 block: Specifies this vDisk as a block device.

In the Fact Editor, this fact is listed as vdisk.type:
The Virtual Disk Object 105

<fact name="vdisk.type" value="file" type="String" />

Description: Describes the vDisk with any text that you choose.

In the Fact Editor, this fact is listed as vdisk.description:

<fact name="vdisk.description" value="" type="String" />

For a vDisk discovered and managed by the xen provisioning adapter or the kvm provisioning
adapter, this field is usually blank. Because this is a free form field, you can enter any text you want
here. For a vDisk discovered and managed by the vsphere provisioning adapter, this field is
populated with a display name label obtained by vSphere and mapped to this vDisk by the
Orchestration Server.

Healthy: For a vDisk managed by any supported hypervisor, this check box is selected by default,
which designates the vDisk as being in good health.

NOTE: We recommend that you do not change the Healthy value from its default.

In the Fact Editor, this is fact is listed as vdisk.health:

<fact name="vdisk.health" value="true" type="Boolean" />

Moveable: When this check box is selected (its value is true), the vDisk is moveable, which means
that the disk image can be copied to a different repository when the VM moves.

In the Fact Editor, this fact is listed as vdisk.moveable:

<fact name="vdisk.moveable" value="true" type="Boolean" />

If Moveable is not selected, the disk image must stay at its current location because it cannot be copied
or moved. By default upon discovery, if the server sees that this vDisk is an ISO image, the fact is set
to false because it is assumed that the administrator doesn’t want to copy ISO images from one
location to another.

Whenever you want to prevent a vDisk from being moved, you can deselect this check box.

The vDisk is not deleted during a VM Delete/Destroy action if this check box is deselected.

NOTE: In Cloud Manager 2.0, block type disks (that is, pDisks) are not moveable, even if you change
this setting.

Mode: Specifies the mode of the vDisk as made available and supported by the provisioning adapter:

 r = read only
 w = read/write

In the Fact Editor, this fact is listed as vdisk.mode:

<fact name="vdisk.mode" value="w" type="String" />

VM: (Read Only) Specifies the name of the VM that uses this vDisk.

In the Fact Editor, this fact is listed as vdisk.vm:

<fact name="vdisk.vm" value="mysql" type="String" />

This is a fact junction referencing the associated VM. Conversely, the resource.vm.vdisks fact
visible from the VM Grid object is a fact junction showing the associated vDisks associated with the
VM.

Repository: The storage location containing the vDisk image on the VM host.
106 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Changing this fact after discovery only corrects a possible incorrectly discovered fact. Changing the
storage location does not move the vDisk.

In general terms, a block type Repository represents a container for physical devices you can use for
VM disks. For the xen and kvm provisioning adapters, a block type Repository represents a Volume
Group on a VM host. If you select this type, the physical disks (Logical Volumes) on that VM host are
listed.

In the Fact Editor, this fact is listed as vdisk.repository:

<fact name="vdisk.repository" value="zos" type="String" />

Physical Disk: Indicates the name of the pDisk to which this vDisk is associated.

In the Fact Editor, this fact is listed as vdisk.pdisk:

You can edit this fact only if a block type Repository is selected for the vdisk.repository fact. When
you make that selection, a drop-down list of Physical Disks becomes available for this field.

<fact name="vdisk.pdisk" value="" type="String" />

Although there might be several pDisks available in the block Repository, you can select only one.

Location: For file-backed disks, this fact represents the file system path to the vDisk image in the
specified repository.

For example, a vDisk located on an NFS repository datastore would show the URI to the NFS share
with the path to the disk appended to it.

For block type disks, this fact contains the URI to the block device, for example /dev/hdc, which
could represent a CD/DVD tray on a VM host.

In the Fact Editor, this fact is listed as vdisk.location:

<fact name="vdisk.location" value="/var/lib/xen/images/mysql/disk1" type="String"
/>

Size: The size (measured in MB) of this vDisk image.

In the Fact Editor, this fact is listed as vdisk.size:

<fact name="vdisk.size" value="2048" type="Integer" />

The disk size value for each moveable vDisk on a VM is aggregated by the Orchestration Server into
the resource.vm.vdisksize fact, which is used to determine if the VM can relocate from one
repository to another, given that the new repository has enough free space to store the VM.

Sparse Disk: When this check box is selected (its value is true), this is a sparse (thin) backed vDisk.

In the Fact Editor, this fact is listed as vdisk.sparse:

<fact name="vdisk.sparse" value="true" type="Boolean" />

Actual Size: The actual (sparse) size (measured in MB) of this virtual disk.

In the Fact Editor, this fact is listed as vdisk.size.actual:

<fact name="vdisk.size.actual" value="1024" type="Integer" />

7.2.2 Virtual Disk Policies Tab

The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.
The Virtual Disk Object 107

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy, and clicking the
Save icon.

7.2.3 Virtual Disk Health Debugger Tab

The Health Debugger is a common admin view in the Orchestration Console for most Grid objects.
For information about this tool, see “Health Debugger” on page 187.

7.2.4 Virtual Disk Constraints/Facts Tab

To support constraining a VM’s provisioning actions based on more than one disk’s repository (that
is, more than just resource.vm.repository), the vDisk can be referenced in constraints. The vDisk
constraints are used to assign VM hosts during actions such as provisioning, building, or migrating.
You can write constraints against attributes of disks (such as the repository where the vDisk resides)
and against the available VM host repositories.

The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by building, deploying, and running jobs on the Orchestration Server, you can individually
change the functionality of any and all system resources by managing an object’s facts and
constraints.

The Orchestration Server assigns default values to each of the component facts. The following table
lists the possible fact modes and their function:

Table 7-1 vDisk Fact Modes Displayed in the Constraints/Facts Tab

IMPORTANT: Several custom facts for the vDisk object can be added at discovery time, and vary
according to the VM technology that manages the respective vDisk. These facts are documented in
the NetIQ Cloud Manager Orchestration Developer Reference.

For more information about using the Fact Editor on this page to rename the Virtual Disk object, see
Section 7.2.5, “Virtual Disk Object Naming and Renaming,” on page 109.

vDisk Mode Type Mode Function

blank (no mode displayed) read/write, not deleteable

del read/write, deleteable

dynamic read/write, not deleteable

dynamic, r/o read only, not writable

r/o read only
108 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

7.2.5 Virtual Disk Object Naming and Renaming

Some resource names are generated by the Orchestration system and can therefore have generic,
arbitrary names such as mysql-vdisk1, mysql-vdisk2, and so on. A Virtual Disk (vDisk) you name
at creation time might also change later in its purpose or facilities.

The object’s display name is visible in the Orchestration Console interface, the interfaces, and in
optional zos and zosadmin commands. As the number of these vDisk objects grows in your grid, you
might find it helpful or necessary to rename them, assigning more meaningful, intuitive names to
suit the purpose of the object.

NOTE: Resource object groups (that is, the folders that contain these vDisk objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A vDisk object’s name is stored in the ${objectType}.displayname fact, which exists on every Grid
object type, even those objects that cannot be renamed.

You can rename a vDisk object in the Orchestration Console by using one of three methods:

 Right-click the vDisk object in the Explorer tree, then select Rename to allow editing of the
display name.

 Triple-click the vDisk object in the Explorer tree to allow editing of the display name.
 In the Constraints/Facts page, select the vDisk object .displayname fact and then open the Fact

Editor to specify a new value for the fact.

As you use one of these methods, notice that the fact value is prepopulated with the
${objectType}.id fact. This functions as the name value for the object name until you decide to
change it.

NOTE: Even after being renamed, the vDisk object retains its associated resource ID in the .id fact.
This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the NetIQ Cloud Manager 2.1.5 Orchestration Server Command Line
Reference.

7.3 Managing Block Devices as VM Virtual Disks
Cloud Manager Orchestration Server can use a block device (an addressable, physical location) for
storage on Xen, KVM, VMware vSphere, or Microsoft Hyper-V managed hosts, but it manages such
devices as physical disks (pDisks) attached to VM virtual disks (vDisks) to provide better
performance compared to a file-backed virtual disk.

A vDisk represents a VM’s view of its storage devices, but a pDisk represents a VM Host’s view of its
physical storage devices allocated for VM usage.

Managing block devices as pDisks also saves the additional setup and management that normal
block devices require.

IMPORTANT: Block devices defined in the Amazon EC2 environment are not discovered or
supported by the Orchestration Server in NetIQ Cloud Manager.
The Virtual Disk Object 109

This section includes information to help you set up this kind of block device support for the xen and
kvm provisioniong adapters in the Cloud Manager Orchestration Server.

 Section 7.3.1, “Prerequisites to Configure on Xen and KVM Hosts Before Setting Up Block
Device Support,” on page 110

 Section 7.3.2, “How Block Device Support Works,” on page 110
 Section 7.3.3, “Viewing the Physical Disk Configuration in the Orchestration Console,” on

page 112

7.3.1 Prerequisites to Configure on Xen and KVM Hosts Before Setting Up
Block Device Support

Before you can set up block device support in the Orchestration Server, you need to create the block
device on a host that is visible to the supported hypervisor. The block device you set up on that host
must be configured with Logical Volume Management (LVM), creating Logical Volumes and Volume
Groups. LVM allows flexibility in administering the underlying device, such as making it easeir to
move objects, create snapshots, and back up data.

Before you create Volume Groups, you should plan with the Cloud Manager model in mind: an LVM
Logical Volume maps to an Orchestration pDisk and an LVM Volume Group maps to an
Orchestration Server Repository object of type “block.” The Orchestration Server leverages the
Volume Group Name to identify a shared repository, which could map to a shared iSCSI target. The
Volume Group Name must be the same on each VM host that accesses this repository (a shared iSCSI
target).

Additional Prerequisite for KVM Hosts

In addition to the LVM prerequisite mentioned above, if you are managing VMs with the KVM
hypervisor, you must also use the Virtual Machine Manager to create a Logical Volume type Storage
Pool on each VM host.

7.3.2 How Block Device Support Works

The following information is included in this section:

 “Creating New Block Type Repositories” on page 110
 “Discovering pDisks” on page 111
 “Attaching an Available pDisk to a VM” on page 111
 “Sharing Block Devices Between KVM or Xen VMs” on page 112
 “Limitations of Block Device Support in This Release” on page 112

Creating New Block Type Repositories

When you run the Discover Hosts and Repositories action by using the appropriate the Orchestration
Server provisioning adapter job, the Orchestration Server discovers the block device on the VM host
and creates a “block” type Repository Grid object for it in the Explorer tree . The repository is to be
used only as a container for physical disks.
110 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

NOTE: For Xen hosts, you need to configure a setting on the xen provisioning adapter job that
facilitates the discovery of multiple Volume Groups previously created for the Xen environment. You
can find this setting, called Volume Group Patterns, in the Job Configuration panel of the xen job. The
default expression is NCM-*. You can add regular expression patterns (for example, *XenPAVolGrp*)
for Volume Group names that are used in the creation of new Repository objects.

You do not need a naming pattern for the storage pools managed by the KVM hypervisor because
they are explicitly created.

For more information about repository Grid objects, see Chapter 10, “The Repository Object,” on
page 131.

Discovering pDisks

After the initial VM host and Repository discovery action, some block devices (considered to be a
“physical disk” or “pDisk” in the the Orchestration Server model) might be discovered already
attached to a VM, while some are not yet discovered and added under the block repository container.
Further discovery requires a Discover Disks action on the new block Repository Grid object. The
action launches a provisioning adapter job that discovers the physical disks available for the
repository. When this job finishes, new pDisk objects are created in the Explorer tree under the
block Repository object.

You can also create a pDisk in a block Repository by right-clicking the block Repository object and
selecting the Create Physical Disk action. If you create a pDisk without using the discovery, you need
to provide information (that is, facts) about it for the Orchestration Server. For more information, see
Section 7.3.3, “Viewing the Physical Disk Configuration in the Orchestration Console,” on page 112.
If you create this object without having a corresponding Logical Volume on the host system, you
must create it there so that block device support for this pDisk works in the Orchestration Server.

Attaching an Available pDisk to a VM

After you discover a pDisk (that is, a Logical Volume) using Discover Disks on the block type
Repository, that pDisk is not associated with any VM (workload) that Cloud Manager can access. You
need to create this association by attaching the pDisk to a vDisk on an available VM.

1 In the Explorer tree of the Cloud Manager Orchestration Console, select a VM to which you
want to attach a pDisk.

2 Right-click the VM object and select Create Virtual Disk to create a new vDisk object to be
associated with the VM.

3 Attach the pDisk to the vDisk:
3a In the admin view of the vDisk object, select the Info/Groups tab to open the Info page for the

object.
3b Select the Repository drop-down menu to display the list of available repositories, then

select the appropriate block type repository from the list.
3c Select the Physical Disk drop-down menu to display the list of available pDisks, then select

the appropriate pDisk form the list. The default value, none, does not select any physical
disk.

3d Click the Save icon on the toolbar to save the fact changes you have made.
When you perform this action, the vDisk facts are automatically populated with the
corresponding values from the pDisk object. These values become read-only, because they
are retrieved from the pDisk.
The Virtual Disk Object 111

3e In the Explorer tree, right-click the VM object associated with the new vDisk you created,
then select the Save Config action to reconfigure this VM.

NOTE: Remember that when you save the configuration, you only update the object model
in the Orchestration Server; you have not affected the VM in the hypervisor. To do so, you
must perform the Save Config action.

Sharing Block Devices Between KVM or Xen VMs

You can use the Orchestration Server to share block devices between VMs residing on either a Xen
host or on a KVM host. If you configure this sharing, however, you must be careful to avoid data
corruption.

You can safeguard the data on the underlying block device being shared by using the hypervisor or
operating system tools to configure it (for example, during logical volume creation) as “read-only.”
Another alternative is to install a cluster aware file system like OCFS2 on the block device if that
device must be writeable.

To protect data on the block device using the server, you have two alternatives:

 Modify the vdisk.mode fact to a readonly value, select Save on the console toolbar to save this
change, then right-click the VM object in the Explorer Tree and select Save Config to modify the
configuration file.

 Set a maximum number of pDisks that can be associated to a vDisk by using the
pdisk.vdisks.max fact. This counter is respected by the provisioning action; the VM does not
start if the maximum value is reached.

Limitations of Block Device Support in This Release

Block device support for this release has the following limitations:

 Orchestration Services does not allow the creation or deletion of pDisks. In other words, no LUN
or volume management is possible from the Orchestration Console.

 Although a VM move is supported (block device disks are marked as unmoveable), cloning a
VM that includes the pDisk is not supported if the pdisk.vdisks.max fact is set to 1. Cloning
works if the fact is set to a value greater than 1.

 Not all variations of possible block-based data disks can be discovered on a VM host.

7.3.3 Viewing the Physical Disk Configuration in the Orchestration Console

You can visually expose a pDisk Grid object in the Explorer Tree of the Orchestration Console by
selecting the expand/collapse icon of a block Repository object, identifying the pDisk icon, then
selecting the icon to display the four tabs in the Virtual Disk admin view.
112 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Figure 7-3 The Physical Disk Info/Groups Page

The page that opens under the Info tab includes fields where you can configure the general
information and attributes (facts) of the pDisk.

NOTE: Whenever you make changes to pDisk object facts, the write icon is superimposed on the
object’s icon , signifying that the object has been changed. If you want to save the changes you
have made, click the Save icon on the Orchestration Console toolbar.

This section includes the following additional information:

 “The Physical Disk Info Panel” on page 113
 “The Physical Disk Policies Tab” on page 115
 “The Physical Disk Health Debugger Tab” on page 115
 “The Physical Disk Constraints/Facts Tab” on page 115
 “Physical Disk Object Naming and Renaming” on page 116

The Physical Disk Info Panel

The Physical Disk Info panel on the Info page includes the following fields:

NOTE: Tool tip text is displayed when you mouse over any of these fields.

Show Inherited Fact Values: Select this check box to show facts with overridden values supplied
through attached and/or inherited policies. Such fact values are read only (non-editable).

Type: This field is read-only. It specifies this pDisk as a block device, which is the pDisk type as the
VM host sees it:

In the Fact Editor, this fact is listed as pDisk.type:
The Virtual Disk Object 113

<fact name="pDisk.type" value="block" type="String" />

Description: Describes the pDisk with any text that you choose.

In the Fact Editor, this fact is listed as pDisk.description:

<fact name="pdisk.description" value="" type="String" />

For a pDisk discovered and managed by the xen provisioning adapter, this field is usually blank.
Because this is a free form field, you can enter any text you want here. For a pDisk discovered and
managed by the vSphere provisioning adapter, this field is populated with a display name label
obtained by vSphere and mapped to this pDisk by the Orchestration Server..

Healthy: For a pDisk managed on a Xen host, this check box is selected by default, which designates
the pDisk as being in good health.

NOTE: We recommend that you do not change the Healthy value from its default.

In the Fact Editor, this is fact is listed as pDisk.health:

<fact name="pdisk.health" value="true" type="Boolean" />

Moveable: This fact is marked false by default. Do not change this fact.

In the Fact Editor, this fact is listed as pDisk.moveable:

<fact name="pdisk.moveable" value="false" type="Boolean" />

Repository: The storage location (a Volume Group) containing the pDisk image on the VM host. The
field is pre-populated with a block type repository name. It cannot be edited.

In the Fact Editor, this fact is listed as pDisk.repository:

<fact name="pdisk.repository" value="xen3vg" type="String" />

Vdisks: The list of virtual disks that are associated with this physical disk.

In the Fact Editor, this fact is listed as an array:

<fact name="pdisk.vdisks">
 <array type="String">
 </array>
</fact>

This list box is populated when you attach the pDisk to a VM.

Location: For block type disks, this fact contains the URI to the block device, for example /mnt/
shared/iscsi/, which could represent an iSCSI share on a VM host.

In the Fact Editor, this fact is listed as pdisk.location:

<fact name="pdisk.location" value="/dev/xen3vg/xen3lv2" type="String" />

Size: The size (measured in MB) of this pDisk image.

In the Fact Editor, this fact is listed as pdisk.size:

<fact name="pdisk.size" value="32767" type="Integer" />

Sparse Disk: This check box is marked true if the image is a sparse (thin) backed vDisk.

In the Fact Editor, this fact is listed as pdisk.sparse:

<fact name="pdisk.sparse" value="false" type="Boolean" />
114 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Actual Size: The actual (sparse) size (measured in MB) of this virtual disk.

In the Fact Editor, this fact is listed as pdisk.size.actual:

<fact name="pdisk.size.actual" value="8192" type="Integer" />

Max vDisks: This fact represents the maximum number of vDisks that are allowed concurrent access
to this pDisk. Its value is set to 1 by default. To allow multiple instances of the pDisk, you need to set
this value accordingly. A value of -1 indicates that an unlimited number of vDisks have access.

One practical application of this setting is for specifying the pDisks in an OCFS2 environment. If you
are using OCFS2, change this value of this fact to match the number of hosts, with each host
representing an OCFS2 node.

In the Fact Editor, this fact is listed as pdisk.vdisks.max:

<fact name="pdisk.vdisks.max" value="1" type="Integer" />

In order to allow multiple instances of the pDisk, this value has to be set to some positive number
other than 1.

The Physical Disk Policies Tab

The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy, and clicking the Save
icon.

The Physical Disk Health Debugger Tab

The Health Debugger is a common Admin view in the Orchestration Console for most Grid objects.
For information about this tool, see Chapter A.3, “Health Debugger,” on page 187.

The Physical Disk Constraints/Facts Tab

To support constraining a VM’s provision actions based on more than one disk’s repository (that is,
more than just resource.vm.repository), the pDisk can be referenced in constraints. The pDisk
constraints are used to assign VM hosts during actions such as provisioning, building, or migrating.
You can write constraints against attributes of disks (such as the repository where the pDisk resides)
and against the available VM host repositories.

The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by building, deploying, and running jobs on the Orchestration Server, you can individually
change the functionality of any and all system resources by managing an object’s facts and
constraints. The Orchestration Server assigns default values to each of the component facts, although
they can be changed at any time by the administrator, unless they are read-only. Facts with mode r/o
have read-only values, which can be viewed (using the edit pencil icon) but changes cannot be made.

IMPORTANT: Several custom facts for the pDisk object can be added at discovery time, and they
vary according to the VM technology that manages the respective pDisk. These facts are documented
in the NetIQ Cloud Manager Orchestration Developer Reference.

For more information about using the Fact Editor on this page to rename the Physical Disk object, see
Section 7.2.5, “Virtual Disk Object Naming and Renaming,” on page 109.
The Virtual Disk Object 115

Physical Disk Object Naming and Renaming

Some resource names are generated by the Orchestration Server and can therefore have generic,
arbitrary names such as mysql-pDisk1, mysql-pDisk2, and so on. A Physical Disk (pDisk) you name
at creation time might also change later in its purpose or facilities.

The object’s display name is visible in the Orchestration Console interface and in optional zos and
zosadmin commands. As the number of these pDisk objects grows in your grid, you might find it
helpful or necessary to rename them, assigning more meaningful, intuitive names to suit the purpose
of the object.

NOTE: Resource object groups (that is, the folders that contain these pDisk objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A pDisk object’s name is stored in the ${objectType}.displayname fact, which exists on every Grid
object type, even those objects that cannot be renamed.

You can rename a pDisk object in the Orchestration Console by using one of three methods:

 Right-click the pDisk object in the Explorer tree, then select Rename to allow editing of the
display name.

 Triple-click the pDisk object in the Explorer tree to allow editing of the display name.
 In the Constraints/Facts page, select the pDisk object .displayname fact and then open the Fact

Editor to specify a new value for the fact.

As you use one of these methods, notice that the fact value is pre-populated with the
${objectType}.id fact. This functions as the name value for the object name until you decide to
change it.

NOTE: Even after being renamed, the pDisk object retains its associated resource ID in the .id fact.
This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the NetIQ Cloud Manager 2.1.5 Orchestration Server Command Line
Reference.
116 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

8 8The Virtual NIC Object

This section includes the following information:

 Section 8.1, “Understanding the Virtual NIC Object,” on page 117
 Section 8.2, “Viewing the Virtual NIC Configuration in the Orchestration Console,” on page 120

8.1 Understanding the Virtual NIC Object
A virtual network interface card (vNIC) represents the configuration of a VM connected to a
network. A VM can be configured to have multiple vNICs. When a VM is provisioned, each of its
associated vNICs can be attached to a virtual network bridge in order to gain connectivity to a
specified network. The vNIC objects are discovered, along with their associated VM, when a
Discover VM Images job has been run on a repository.

The vNIC is modeled as a Grid object, located as a subordinate to the VM Grid object in the Explorer
tree of the Orchestration Console. A vNIC is given the form of vmname_vnic<n> where <n> is
appended to indicate the order of discovery or creation of the vNIC. For example, redhat_vnic1
would be the name of the first NIC discovered for a VM with the Grid ID redhat. Each additional
vNIC is incremented by one, so the second vNIC in this example would be named redhat_vnic2.

 Section 8.1.1, “The Purpose of the Virtual NIC,” on page 117
 Section 8.1.2, “Creating or Deleting a vNIC in the Orchestration Console,” on page 117

8.1.1 The Purpose of the Virtual NIC

A vNIC represents the network interface configuration for a virtual machine. A vNIC is linked to a
network by connecting to a virtual network bridge (vBridge). A group of vBridge objects is
represented as a Network group in the Explorer Tree. By convention, during VM host discovery, any
vBridges that are configured with the same name are assumed to be part of the same network.

For more information, see Chapter 9, “The Network Group and its Virtual Bridge Objects,” on
page 125.

8.1.2 Creating or Deleting a vNIC in the Orchestration Console

Although a vNIC is generally discovered on a VM, you can also manually create or delete a vNIC.
This section includes the following information:

 “Creating a Virtual NIC” on page 118
 “Creating a Virtual NIC for a Hyper-V VM” on page 118
 “Deleting a Virtual NIC” on page 119
The Virtual NIC Object 117

Creating a Virtual NIC

You can manually create a vNIC anytime you want to give a VM access to a network configured on
the VM host.

To create a vNIC, you can select the VM Grid object in the Explorer tree, then right-click and select
Create Virtual NIC. You can also use the following alternate method:

1 In the Orchestration Console main menu, select Actions > Create > Create Virtual NIC to display
the Create a New Virtual NIC dialog box.

2 In the VM drop-down list, select the name of the VM to which you want to add a vNIC, then
click Create.

3 When you have created all of the vNICs you need, click Close.
4 Select the newly created vNIC object in the Explorer Tree to view the Info/Groups page of the

admin view.
5 On the Info/Groups page, configure the following settings:

MAC Address: The MAC Address assigned to this vNIC. If this field is left empty, or if it
contains an asterisk (*), a MAC address is autogenerated for this vNIC.
Network: The network (vBridge group) that should be used when provisioning the VM. When a
VM is provisioned, any vBridge contained within the specified network group can be used for
attaching the VNIC to the network.
Although the vNIC can be formally created at this point, you can also configure Autoprep or
Sysprep facts used to prepare a personalized version of the VM that can be provisioned later.

6 Click the Save button to save the fact changes you have made.
7 In the Explorer tree, right-click the VM object to which you added the vNIC, then select Save

Config to apply the changes to the VM's configuration.

IMPORTANT: If you do not run the Save Config action after configuring the vNIC, any vNICs
that were added to the grid or vNIC settings that were modified could be lost.

Creating a Virtual NIC for a Hyper-V VM

1 Right-click the VM for which you want to create a vNIC, select Create Virtual NIC.
2 In the Explorer tree, select the vNIC object you created in the previous step, then from the

Admin view, select the Constraints/Facts tab to open the Constraints/Facts page.
3 In the Constraints/Facts page, click the Add a fact button to open the Add Fact dialog box.
4 In the dialog box, add a custom fact for each of the items in the table below.
118 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

5 In the Explorer tree, right-click the VM object to which you added the vNIC, then select Save
Config to apply the changes to the VM's configuration.

IMPORTANT: If you do not run the Save Config action after configuring the vNIC, any vNICs
that were added to the grid or vNIC settings that were modified could be lost.

Deleting a Virtual NIC

Although it is uncommon, you might want to manually delete a vNIC when you no longer want the
VM to have access to a specified network on the VM host. For example, if the initial need for
connecting the VM to a network no longer exists or if the network is going to become private and the
VM should not have access, you would delete the virtual NIC that allows connectivity.

To delete a virtual NIC, you can select the vNIC object in the Explorer tree, then right-click and select
Delete, or you can use the following procedure:

1 In the Orchestration Console main menu, select Actions > Delete > Delete Virtual NIC to display
the Create a New Virtual NIC dialog box.

2 In the Source Objects list, select the name of the vNIC (hold down the Ctrl key to select multiple
vNICs), then click Add to move these objects to the Delete Targets list.

3 When you have selected all of the vNICs you want to delete, click Delete to display the Delete
dialog box.

4 In the dialog box, select Apply to all to delete all of the vNIC objects in the Delete Targets list, click
OK, then click Close.

5 In the Explorer tree, right-click the VM object where you deleted the vNIC, then select Save
Config to apply the changes to the VM's configuration.

NOTE: You must run the Save Config action to confirm the deletion of the vNIC. If you do not run this
action, the vNIC is not deleted from the VM’s configuration.

Fact name Type Value and Description

vnic.type String SyntheticEthernetPort

or

EmulatedEthernetPort

SyntheticEthernetPort is the default vNIC type. Use
the EmulatedEthernetPort type to perform a network-
based installation of the guest OS or when integration
services are not installed in the guest OS.

vnic.mac String Provide a valid MAC address.

vnic.static_mac_address Boolean True or false. When this fact is set to true, the
provided MAC address (vnic.mac) is used to set for
this adapter; otherwise, it is dynamically set by the
Hyper-V system.

vnic.network String Copy the value of the group.id fact from the
networks to which you want to attach the vNIC.
The Virtual NIC Object 119

8.2 Viewing the Virtual NIC Configuration in the Orchestration
Console

You can visually expose a vNIC Grid object in the Orchestration Console in two ways:

 In the Explorer Tree, select a VM Resource object, then select the Info/Groups tab in the Admin
View to open the VM Info Groups page, then scroll to the Virtual Machine Configuration panel on
that page. You can right-click the vNIC icon in that panel to display the four tabs in the Virtual
Disk Admin view.

 In the Explorer Tree, click the expand/collapse icon of a VM Grid object, identify the vNIC icon,
then select the icon to display the four tabs in the Virtual NIC Admin view.

The page that opens under the Info/Groups tab includes fields where you can configure the general
information and attributes (facts) of the vNIC.

NOTE: Whenever you make changes to vNIC object facts, the write icon is superimposed on the
object’s icon , signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save button on the Orchestration Console toolbar.

This section includes the following additional information:

 Section 8.2.1, “Virtual NIC Info Panel,” on page 120
 Section 8.2.2, “Virtual NIC Policies Tab,” on page 123
 Section 8.2.3, “Virtual NIC Health Debugger Tab,” on page 123
 Section 8.2.4, “Virtual NIC Constraints/Facts Tab,” on page 123
 Section 8.2.5, “Virtual NIC Object Naming and Renaming,” on page 124

8.2.1 Virtual NIC Info Panel

The Virtual NIC Info panel on the Info/Groups page includes the following sections:

 “Show Inherited Fact Values Check Box” on page 120
 “Virtual NIC Information” on page 120
 “Autoprep/Sysprep Network Adapter” on page 121

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached and inherited
policies. These fact values are read only (non-editable).

Virtual NIC Information

The Virtual NIC Information panel on the Info page includes the following fields:

NOTE: Tooltip text is available when you mouse over any of these fields.

Description: A free-form field you can use to add any description about this vNIC.

In the Fact Editor, this fact is listed as vnic.description:

<fact name="vnic.description" value="" type="String" />
120 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Healthy: In most cases, this check box is selected by default, which designates the vNIC as being in
good health.

We recommend that you do not change the Healthy value from its default.

In the Fact Editor, this is fact is listed as vnic.health:

<fact name="vnic.health" value="true" type="Boolean" />

MAC Address: Specifies the MAC address assigned to this vNIC. An empty string implies an auto-
generated MAC address, as does an asterisk (*).

When the VM appears on the network, this will be its MAC identifier. A MAC address must be
unique on the network to avoid routing conflicts.

There are some situations when you might want to define a static MAC address. For example, if a VM
uses DHCP, you might want the DHCP service on the network to give the VM a static address. When
the VM boots up and attempts to get an IP address, it contacts the DHCP server, which sees its
statically-defined MAC address and then provides the same IP address (not a new one) each time the
VM boots up. In this way, the VM is consistently configured with the same IP address. You might also
want to define a static MAC address for audit trails or other security reasons.

In the Fact Editor, this fact is listed as vnic.mac:

<fact name="vnic.mac" value="" type="String" />

vBridge: Specifies the name of the actual host bridge used by this vNIC. When the VM is not
running, this field is blank. When a VM is provisioned, a vBridge is chosen for this vNIC based on the
available VM hosts and the specified network group. When the VM is running, the associated
vBridge is identified in this field. For more information, see Chapter 9, “The Network Group and its
Virtual Bridge Objects,” on page 125.

In the Fact Editor, this read-only fact is listed as vnic.vbridge:

<fact name="vnic.vbridge" value="" type="String" />

VM: Specifies the name of the VM resource that uses this vNIC.

In the Fact Editor, this read-only fact is listed as vnic.vm:

<fact name="vnic.vm" value="" type="String" />

This is a fact junction referencing the associated VM. Conversely, the resource.vm.vnics fact visible
from the VM Grid object is a fact junction showing the associated vNICs associated with the VM. A
vNIC cannot be shared between two VMs. Each VM has its own vNIC objects.

Network: The network (vBridge group) that should be used by this vNIC when the VM is
provisioned. This fact is used in combination with the VM host placement constraints to choose a
suitable vBridge at provision time.

In the Fact Editor, this fact is listed as vnic.network:

<fact name="vnic.network" value="eth1" type="String" />

Autoprep/Sysprep Network Adapter

VMs can be prepared for provisioning by configuring the facts in this panel. Click Define for each
field if the value has not been previously configured.
The Virtual NIC Object 121

NOTE: When you change any of the settings in this panel, you need to right-click the VM and select
Personalize for the changes to take effect.

 MAC Address: The MAC address of the interface. Specify an asterisk (*) to generate a new MAC
address. If the value is not set, the existing vnic.mac is used.

IMPORTANT: An unset MAC Address fact generates a new MAC address. This is contrary to the
current tooltip text.

In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.MACAddress:

<fact name="vnic.provisioner.autoprep.MACAddress" value="" type="String" />

 Use DHCP: When this check box is selected (it has a value of true), the VM is configured to
retrieve its network settings from a DHCP server. If the check box is not selected (it has value of
false), you should make sure that the IP address, subnet mask, and gateway address facts are
defined.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.UseDHCP:

<fact name="vnic.provisioner.autoprep.UseDHCP" value="false" type="Boolean" />

 IP Address: The IP address for the adapter.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.IPAddress:

<fact name="vnic.provisioner.autoprep.IPAddress" value="" type="String" />

 Subnet Mask: The subnet mask for this adapter.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.subnetMask:

<fact name="vnic.provisioner.autoprep.subnetMask" value="" type="String" />

 Gateway IP Addresses: (Windows sysprep only) A list of the gateway IP addresses available to
the interface.
In the Fact Editor, this fact is listed as an array:

<fact name="vnic.provisioner.autoprep.Gateways">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add
or remove the IP address or change its order in the array of element choices.

 DNS from DHCP: (Optional. SUSE VM only) When this check box is selected (it has a value of
true), the SUSE VM is configured to retrieve its DNS server settings from DHCP.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.DNSFromDHCP:

<fact name="vnic.provisioner.autoprep.DNSFromDHCP" value="false"
type="Boolean" />

 DNS Server IP Addresses: (Windows VM only) The adapter’s list of DNS servers used for name
lookup.
In the Fact Editor, this fact is listed as an array:

<fact name="vnic.provisioner.autoprep.DNSServers">
 <array type="String">
 </array>
</fact>
122 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 DNS Domain: (Windows VM only) The adapter’s DNS domain name.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.DNSDomain:

<fact name="vnic.provisioner.autoprep.DNSDomain" value="" type="String" />

 Primary WINS Server: (Windows VM only) The name of the adapter’s primary WINS server.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.primaryWINS:

<fact name="vnic.provisioner.autoprep.primaryWINS" value="" type="String" />

 Secondary WINS Server: (Windows VM only) The name of the adapter’s secondary WINS
server.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.secondaryWINS:

<fact name="vnic.provisioner.autoprep.secondaryWINS" value="" type="String" />

 NetBIOS: (Windows VM only) The NetBIOS options for this VM. Options include:
 EnableNetBIOSviaDhcp
 EnableNetBIOS
 DisableNetBIOS

In the Fact Editor this fact is listed as vnic.provisioner.autoprep.netBIOS:

<fact name="vnic.provisioner.autoprep.netBIOS" value="" type="String" />

8.2.2 Virtual NIC Policies Tab

The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy and clicking the Save
button.

8.2.3 Virtual NIC Health Debugger Tab

The Health Debugger is a common Admin view in the Orchestration Console for most Grid objects.
For information about this tool, see “Health Debugger” on page 187.

8.2.4 Virtual NIC Constraints/Facts Tab

The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by building, deploying, and running jobs on the Orchestration Server, you can individually
change the functionality of any system resources by managing an object’s facts and constraints. The
Orchestration Server assigns default values to each of the component facts. Facts with no displayed
mode can be changed at any time by the administrator. Facts with mode r/o have read-only values,
which can be viewed by using the pencil button, but changes cannot be made.

For information about using the Fact Editor on this page to rename the Virtual NIC object, see
Section 8.2.5, “Virtual NIC Object Naming and Renaming,” on page 124.
The Virtual NIC Object 123

8.2.5 Virtual NIC Object Naming and Renaming

Some resource names are generated by the Orchestration Server and can therefore receive generic,
arbitrary names such as mysql-vnic1, mysql-vnic2, and so on. A Virtual NIC (vNIC) you name at
creation time might also change later in its purpose or facilities.

The object’s display name is visible in the Orchestration Console, the Cloud Manager Web Console
and Mobile Clients interfaces, and in optional zos and zosadmin commands. As the number of these
vNIC objects grows in your grid, you might find it helpful or necessary to rename them, assigning
more meaningful, intuitive names to suit the purpose of the object.

NOTE: Resource object groups (that is, the folders that contain these vNIC objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A vNIC object’s name is stored in the ${objectType}.displayname fact, which exists on every Grid
object type, even those objects that cannot be renamed.

You can rename a vNIC object in the Orchestration Console by using one of three methods:

 Right-click the vNIC object in the Explorer tree, then select Rename to allow editing of the
display name.

 Triple-click the vNIC object in the Explorer tree to allow editing of the display name.
 In the Constraints/Facts page, select the vNIC object .displayname fact, then open the Fact

Editor to enter a new value for that fact.

As you begin to use one of these methods, you will notice that the fact value is prepopulated with the
${objectType}.id fact. This functions as the name value for the object name until you decide to
change it.

NOTE: Even after being renamed, the vNIC object retains its associated resource ID in the .id fact.
This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the NetIQ Cloud Manager 2.1.5 Orchestration Server Command Line
Reference.
124 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

9 9The Network Group and its Virtual
Bridge Objects

This section includes the following information:

 Section 9.1, “Understanding the Network Group and Virtual Bridge Objects,” on page 125
 Section 9.2, “Viewing the Virtual Bridge Configuration in the Orchestration Console,” on

page 128

9.1 Understanding the Network Group and Virtual Bridge
Objects
 Section 9.1.1, “Virtual Bridge Object,” on page 125
 Section 9.1.2, “The Purpose of the Virtual Bridge,” on page 126
 Section 9.1.3, “Creating or Deleting a vBridge in the Orchestration Console,” on page 126
 Section 9.1.4, “Virtual Bridge Object Naming and Renaming,” on page 128

9.1.1 Virtual Bridge Object

In the Cloud Manager Orchestration Server, a group of Virtual Bridge (vBridge) objects is called a
“network.” It represents the networks (actually, LANs and VLANs) that are available to that VM
host, and can be shared across multiple VM hosts. Network groups are created automatically during
VM and VM host discovery as their virtual networking settings are determined. By default, the server
automatically groups vBridges with the same name into a corresponding network with the same
name, assuming that vBridges with similar names usually refer to the same network. After discovery,
you can freely reassign the vBridges to other networks or multiple networks, depending on your
organization’s physical network topology.

VLAN Fact

A Virtual LAN (VLAN) provides a “logical” LAN topology for a group of machines that does not
need to depend on the switch hardware to which the machines (virtual or physical) are directly
connected. Modern “smart” network switches can keep track of a VLAN ID on network traffic
passing though them. Using this ID, the switches transparently route such traffic to the hosts
configured to use the VLAN specified by the ID.

Using VLANs can reduce the costs of an organization’s physical network infrastructure. For example,
if your organization requires multiple subnets or multi-homed hosts, you won’t need to buy new
equipment for each new subnet or install multiple physical NICs on the physical machines; this can
be done with VLANs using the same common physical network layer. VLANs allow greater
flexibility in managing the network topology.
The Network Group and its Virtual Bridge Objects 125

Where possible, the Orchestration Server discovers that a VLAN ID is in use on a network. The
Virtual LAN Identifier fact is found on a Network object:

<fact name="group.vlanid" value="" type="String" />

The fact is populated with a positive integers value upon discovery of an already-existing VM host
configuration. The server can track a VLAN ID for each Network object to allow correct management
of individual VLANs as full-fledged networks.

The server applies a graphic overlay to the Network icon to signify that the network was
discovered as a VLAN. In cases where VLAN discovery is not accomplished through automation,
you can also set the VLAN fact value manually.

9.1.2 The Purpose of the Virtual Bridge

The vBridge is discovered, along with its associated VM, when a discovery job runs on a VM host. A
virtual bridge (vBridge) acts as a “virtual” Ethernet segment contained entirely within the software of
a VM host. The virtual NIC (vNIC) devices on that host’s VMs can each be assigned to one of the VM
host’s vBridges as if they were physically connected to a LAN.

Virtual bridges can also be associated with one or more physical NICs to combine the virtual LANs
on these hosts into one common virtual LAN. This combined LAN is referred to as a “network” in the
Orchestration Console. Association of virtual bridges is also frequently done to include a “virtual”
LAN on a VM host in the organization’s overall physical LAN topology so the VMs can access other
systems in the organization as if they were directly connected to the switches.

The following points might help you understand the relationship of these objects:

 Associating a vNIC to a vBridge is like plugging a physical NIC into an Ethernet switch.
 Associating a vBridge with a physical NIC is like connecting two physical switches together

using their uplink ports.
 A vBridge can become part of a vLAN by associating it with a physical NIC device that itself is

configured as a VLAN.
 A VM host can have multiple vBridges, each of which can be connected to separate physical

networks (for example, through 802.1Q VLAN tagging).
 When a VM is provisioned, a virtual NIC must be connected to a virtual bridge in order for the

virtual NIC to be usable.

In the Explorer Tree, a vBridge is given the form vmhostname_ethn where n represents the numerical
order in which this vBridge was discovered on the VM host, with 0 being appended to the name of
the first vBridge discovered or created. For example, host1_eth0 might be the name of the first
bridge. Each additional vBridge is incremented by one, so the second vBridge in this example would
be named host1_eth1.

9.1.3 Creating or Deleting a vBridge in the Orchestration Console

This section includes the following information:

 “Creating a Virtual Bridge” on page 127
 “Deleting a Virtual Bridge” on page 127
126 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Creating a Virtual Bridge

You might want to manually create a vBridge if, for some reason, the discovery process did not find
one of the vBridges in a network. Creating a new vBridge in the Orchestration Console does not
“add” a physical bridge to the network, it only helps to model a physical bridge that was not
previously discovered.

To create a vBridge, you can select the Network object in the Explorer tree, then right-click and select
New Virtual Bridge. You can also use the following alternate method:

1 From the Orchestration Console main menu, select Actions > Create > Create Virtual Bridge to
display the Create a New Virtual Bridge dialog box.

2 In the Source Groups list, select the Network object where you want to add a vBridge, then click
Add to move it to the Target Groups list.

3 In the New Virtual Bridge Name field, specify the name you want to use to identify this vBridge.
The data you enter here is completely free form. When the Orchestration Server discovers and
names vBridges, it associates them by name as the default practice. This is done for convenience
in locating the objects. A vBridge can be named anything, provided that it is a legal name for a
vBridge on the VM host’s operating system.
It is not necessary to add the <vmhostname>_ prefix on the name. This prefix is automatically
prepended when the new object is created. For example, if you select bridge name sales on VM
host vmh1, the actual object is created as vmh1_sales.

4 Click Create, then click Close.
5 In the Explorer tree, expand the Network group where you created the new vBridge object.
6 Select the new vBridge object to open its Info/Groups admin view.
7 Configure the settings described in Section 9.2.1, “Virtual Bridge Info/Groups Tab,” on page 129.

8 Click the Save button to save the fact changes you have made.

Deleting a Virtual Bridge

Although it is uncommon, you might want to manually delete a vBridge when you no longer want
the VM to have access to a specified network on the VM host. For example, if the initial need for
connecting the VM to a network no longer exists or the network is going to become private and the
VM should not have access you would delete the vBridge that allows connectivity.

To delete a virtual bridge, you can select the vBridge object in the Explorer tree, then right-click and
select Delete, or you can use the following procedure:

1 In the Orchestration Console main menu, select Actions > Delete > Delete Virtual Bridge to display
the Create a New Virtual Bridge dialog box.

2 In the Source Objects list, select the name of the vBridge (hold down the Ctrl key to select
multiple), then click Add to move these objects to the Delete Targets list.

3 When you have selected all of the vBridges you want to delete, click Delete to display the Delete
dialog box.

4 In the dialog box, select Apply to all to delete all of the vBridge objects in the Delete Targets list,
click OK, then click Close.
The Network Group and its Virtual Bridge Objects 127

9.1.4 Virtual Bridge Object Naming and Renaming

Some resource names are generated by the Orchestration Server and can therefore receive generic,
arbitrary names such as host1-eth1, host2-eth1, and so on. A Virtual Bridge (vBridge) you name at
creation time might also change later in its purpose or facilities.

The object’s display name is visible in the Orchestration Console, the Cloud Manager Web Console
and Mobile Clients interfaces, and in optional zos and zosadmin commands. As the number of these
vBridge objects grows in your grid, you might find it helpful or necessary to rename them, assigning
more meaningful, intuitive names to suit the purpose of the object.

NOTE: A Network object (that is, the group that contains these vBridge objects) can also be renamed.
Objects such as jobs, events, and users cannot be renamed.

A vBridge object’s name is stored in the ${objectType}.displayname fact, which exists on every
Grid object type, even those objects that cannot be renamed.

You can rename a vBridge object in the Orchestration Console by using one of three methods:

 Right-click the vBridge object in the Explorer tree, then select Rename to allow editing of the
display name.

 Triple-click the vBridge object in the Explorer tree to allow editing of the display name.
 In the Constraints/Facts page, select the vBridge object .displayname fact and then open the

Fact Editor to enter a new value for that fact.

As you use one of these methods, you will notice that the fact value is prepopulated with the
${objectType}.id fact. This functions as the name value for the object name until you decide to
change it.

NOTE: Even after being renamed, the vBridge object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the NetIQ Cloud Manager 2.1.5 Orchestration Server Command Line
Reference.

9.2 Viewing the Virtual Bridge Configuration in the
Orchestration Console
You can visually expose a vBridge Grid object in the Explorer tree by selecting a Network object
to expand it, then selecting the vBridge you want to view in the Info/Groups page.

The page that opens under the Info/Groups tab includes fields where you can configure the general
information and attributes (facts) of the vBridge.

NOTE: Whenever you make changes to vBridge object facts, the write icon is superimposed on the
object’s icon, signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save button on the Orchestration Console toolbar.
128 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

9.2.1 Virtual Bridge Info/Groups Tab

The page that opens under the Info/Groups tab includes two collapsible sections where you can
configure the general information and attributes of the vBridge.

 “Virtual Bridge Info Panel” on page 129
 “Virtual Bridge Groups Panel” on page 130

Virtual Bridge Info Panel

The Info panel on the Info/Groups page includes the following information:

 “Show Inherited Fact Values Check Box” on page 129
 “Network Information” on page 129

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached and inherited
policies. Such fact values are read only (non-editable).

Network Information

The Network Information panel on the Info/Groups page for the vBridge Grid object includes the
following fields:

NOTE: Tooltip text is available when you mouse over any of these fields.

Description: Enter a description of the vBridge Grid object.

In the Fact Editor, this fact is listed as vmhost.resource:

<fact name="vbridge.description" value="" type="String" />

Vbridge Enabled: This check box is selected by default. When it is selected (it has a value of true), the
vBridge is enabled and Virtual NICs can be attached to it.

In the Fact Editor, this fact is listed as vbridge.enabled:

<fact name="vbridge.enabled" value="true" type="Boolean" />

Healthy: This check box is selected by default. When it is selected (it has a value of true), the virtual
bridge is designated as being in good health. You can set the health of the object by selecting or
deselecting the health check box. Changing the value in this way has an immediate effect unless the
value is overridden by an attached policy (this follows the normal rules of policy inheritance). For
more information, see Appendix A, “Grid Object Health Monitoring,” on page 185.

In the Fact Editor, this is fact is listed as vbridge.health:

<fact name="vbridge.health" value="true" type="Boolean" />

Attached Virtual NICs: This list box lists the Virtual NICs that are attached to this vBridge.

In the Fact Editor, this fact is listed as an array:

<fact name="vbridge.vnics">
 <array type="String">
 </array>
</fact>
The Network Group and its Virtual Bridge Objects 129

The list includes vNICs from currently running VMs only. When a VM is not running, the
Orchestration Server does not consider its vNICS as “currently attached.” This is because vNICs are
configured to associate with Network objects, and the attached vBridge might change, depending on
which host the VM has been provisioned. The list can also change dynamically if the VM is migrated
to another host (and that host’s vBridge) on the same network.

Virtual Bridge Groups Panel

This section of the Info/Groups page lists the groups of vBridge objects (called “Networks”) in the grid
to which this vBridge is associated. Click Choose to open the Network Selection dialog box. In this
dialog box, you can choose which networks to display in the Explorer tree by selecting a group and
then clicking Add or Remove to move it to or from the Source Networks list.

9.2.2 Virtual Bridge Policies Tab

The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object. Click Choose to associate an existing policy with a vBridge.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy, and clicking the Save
button.

9.2.3 Virtual Bridge Health Debugger Tab

The Health Debugger is a common Admin view in the Orchestration Console for most Grid objects.
For information about this tool, see Appendix A.3, “Health Debugger,” on page 187.

9.2.4 Virtual Bridge Constraints/Facts Tab

The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by building, deploying, and running jobs on the Orchestration Server, you can individually
change the functionality of any system resources by managing an object’s facts and constraints. The
Orchestration Server assigns default values to each of the component facts. Facts with no mode can
be changed at any time by the administrator. Facts with mode r/o have read-only values, which can
be viewed by using the edit pencil button, but changes cannot be made.
130 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

10 10The Repository Object

Repositories are storage areas for VM image files and VM template files.

If a VM’s files are stored on a particular host server, that VM must be run from that host server. If a
VM’s files are stored on a shared repository, that VM can be run on any host server that has access to
the shared repository.

Host servers can have multiple repositories associated with them, and some repository types can be
associated with multiple host servers as shared repositories. A host server can be associated with
repositories stored locally on its server and with shared repositories stored on other machines.

The default size for all repositories is unlimited. To control disk space usage, you can change this
default. For more information, see Capacity (MB): in “Repository Information Subpanel” on
page 132.

The repository groups and their constituent repository objects are displayed in the Explorer panel
and the accompanying Repository Admin View of the Cloud Manager Orchestration Console.

 Section 10.1, “Right-Click Menu Actions on the Repository Object,” on page 131
 Section 10.2, “Repository Groups,” on page 132
 Section 10.3, “Repository Info/Groups Tab,” on page 132
 Section 10.4, “Repository Policies Tab,” on page 139
 Section 10.5, “Repository Health Debugger Tab,” on page 139
 Section 10.6, “Repository Constraints/Facts Tab,” on page 139
 Section 10.7, “The Repository Action History Tab,” on page 139
 Section 10.8, “Repository Object Naming and Renaming,” on page 140
 Section 10.9, “Shared Storage for Disk Images,” on page 140

10.1 Right-Click Menu Actions on the Repository Object
The Repository object displayed in the Explorer tree has three available actions in the right-click
menu:

 Discover VM Images: Use this action on a newly discovered or newly created repository to
populate it with the VMs residing in the mapped datastore location.

 Discover Disks: Use this action to discover ISO disks stored in this repository.
 Delete: Use this action to delete the Repository object from the Explorer tree in the Orchestration

Console.
Before you delete the Repository object, you need to delete all the VMs contained in that
repository; otherwise, an error message is displayed.

 Rename: Use this action to rename the Repository object. For more information, see Section 10.8,
“Repository Object Naming and Renaming,” on page 140.
The Repository Object 131

10.2 Repository Groups
Any group object displayed in the Explorer panel represents a collection of similar object types.
Groups can also be created automatically, such as when a provisioning adapter discovers a local
repository on a VM host. For example, the xen provisioning adapter, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a Xen
repository group. You can also create groups manually in the Orchestration Console, either by
clicking the Actions menu and choosing Create Repository Group or by right-clicking the Repository
object (anywhere in the Repository hierarchy) and selecting New Repository Group.

10.3 Repository Info/Groups Tab
The page that opens under the Info/Configuration tab includes several collapsible sections on the page
where you can configure the general information and attributes of the repository.

 Section 10.3.1, “Info Panel,” on page 132
 Section 10.3.2, “Best Practices for Entering Repository File Paths,” on page 137
 Section 10.3.3, “Groups,” on page 139

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon, signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save button on the Orchestration Console toolbar.

10.3.1 Info Panel

The following fields on the Information panel provide facts for the Repository object:

 ““Show Inherited Fact Values” Check Box” on page 132
 “Repository Information Subpanel” on page 132
 “SAN Adapter Configuration” on page 137

“Show Inherited Fact Values” Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

Repository Information Subpanel

The Repository Information panel on the Info/Groups page includes the following fields:

NOTE: Tool tip text is available when you mouse over any of these fields.

Description: The nature or purpose of this repository.

In the Fact Editor, this fact is listed as repository.description:

<fact name="repository.description" value="" type="String" />

Repository Enabled: This check box is selected by default. When it is selected (it has a value of true),
VMs can be moved to this repository or they can be provisioned from it.
132 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

In the Fact Editor, this fact is listed as repository.enabled:

<fact name="repository.enabled" value="true" type="Boolean" />

Healthy: This check box is selected by default. When it is selected (it has a value of true), the
repository is designated as being in good health. You can set the health of the object by selecting or
deselecting the health check box. Changing the value in this way has an immediate effect unless the
value is overridden by an attached policy. For more information, see Appendix A, “Grid Object
Health Monitoring,” on page 185

In the Fact Editor, this is fact is listed as repository.health:

<fact name="repository.health" value="true" type="Boolean" />

Type: Select the repository type for this Repository object by selecting an option from the drop-down
list.

In the Fact Editor, this fact is listed as repository.type:

<fact name="repository.type" value="local" type="String" />

The following table includes information about the various repository types:

Table 10-1 Repository Types and Descriptions

IMPORTANT: If you have a vSphere environment with an iSCSI datastore based on an ESX 3.5 (or
previous) host, the Orchestration Console incorrectly displays its type as local rather than SAN. This
misrepresentation affects the accuracy of the VM host assignment (how the repositories are scored in
the plan), and could possibly affect VM migration validation.

To work around this issue, set the type to SAN. You need to check that this setting is retained when
another VM host or Repository discovery is executed.

SAN ID: (SAN repositories only) The SAN ID (the Virtual Fabric ID) for this repository.

Repository Type Description Orchestration
Console Icon

local The default repository on a host server. Each host server starts
with its own local repository, which has the same name as the
server’s Resource Grid object.

NAS (Network Attached
Storage)

Represents a NAS device connected to host servers (for
example, NFS mount). This NAS device must be mounted and
available on all host servers associated with this Repository
Grid object.

SAN (Storage Area
Network)

Represents an iSCSI or Fibre Channel SAN. Currently
supported only with the vsphere provisioning adapter.

datagrid The shared datagrid repository (named zos) is located on the
Orchestration Server and is accessible to all host servers in
the datagrid. By default, each host server has access to the
zos datagrid repository.

virtual Represents an externally managed virtual disk (for example,
Amazon EC2).

The Repository Object 133

In the Fact Editor, this fact is listed as repository.id:

<fact name="repository.id" value="test1" type="String" />

Root Location: The repository’s logical root location. You can also think of this as the base location
for all VM files and subdirectories contained within this repository.

In the Fact Editor, this fact is listed as repository.location:

<fact name="repository.location" value="/" type="String" />

The table below provides some examples you can consider as you enter a shared root path in this
field. For more information, see “Best Practices for Entering Repository File Paths” on page 137.

Table 10-2 Repository Types and Root Location Examples

VM Config Search Path: The relative path (from repository.location) to be used during discover
of VM configuration files. This fact also implicitly includes the resource.preferredpath fact. For
xen30 repositories, the default path is /etc/xen/vm.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.searchpath">
 <array>
 <string>/etc/xen/vm</string>
 </array>
</fact>

The button opens the Attribute element values dialog box, where you can add, remove, or edit
the path (element values) in an array of path choices.

The table below provides some examples you can consider as you enter a search path in this field.

Repository Type Root Location Examples

local  / (root)

 c:/vm

NAS (Network Attached
Storage)

This is the mount point that is assumed to be the same on every host
server with a connection to this NAS.

 /u

/mnt/myshareddisk

SAN (Storage Area
Network)

Not required.

datagrid grid:///vms

virtual  / (root)

 c:/vm
134 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Table 10-3 Repository Types and VM Config Search Path Examples

Preferred Storage Path: The relative path (from repository.location) where you want the
Orchestration Server to place the VM files after a move or a clone operation.

In the Fact Editor, this fact is listed as repository.preferredpath:

<fact name="repository.preferredpath" value="" type="String" />

IMPORTANT: If you use this field, do not include a leading forward slash (/) in the path. For more
information, see “Best Practices for Entering Repository File Paths” on page 137.

Table 10-4 Repository Types and Preferred Storage Path Examples

Disk Discovery Path: The directories to search for disk image files

In the Fact Editor, this fact is listed as an array:.

<fact name="repository.disks.paths">
 <array type="String">
 </array>
</fact>

Disk Discovery Patterns: The patterns used to discover disk image files.

In the Fact Editor, this fact is listed as an array:

Repository Type VM Config Search Path Examples

local /etc/xen/vm

NAS (Network
Attached Storage)

Each of these is the relative path from the location to search for VM configuration
files. Null specifies to search the whole mount.

 my_vms

 saved_vms

 null (no path entry)

SAN (Storage Area
Network)

Not required.

datagrid grid:///vms

virtual

Repository Type Preferred Storage Path Examples

local var/lib/xen/images for Xen VMs

NAS (Network Attached
Storage)

my_vms

SAN (Storage Area Network) Not required.

datagrid grid:///vms

virtual
The Repository Object 135

<fact name="repository.disks.patterns">
 <array>
 <string>*.iso</string>
 </array>
</fact>

Capacity (MB): The maximum amount (measured in MB) of storage space on the repository. The
default (-1) designates an unlimited amount of space.

In the Fact Editor, this fact is listed as repository.capacity:

<fact name="repository.capacity" value="-1" type="Integer" />

Used Space (MB): The amount (measured in MB) of storage space used for VMs.

In the Fact Editor, this fact is listed as repository.usedspace:

<fact name="repository.usedspace" value="0" type="Integer" />

Free Space (MB): The amount (measured in MB) of storage space available to new VMs. The value is
always set to -1, which designates an unlimited amount of space.

In the Fact Editor, this fact is listed as repository.freespace:

<fact name="repository.freespace" value="-1" type="Integer" />

Actual Used Space (MB): The actual amount (measured in MB) of storage space used for VMs.

In the Fact Editor, this fact is listed as repository.usedspace.actual:

<fact name="repository.usedspace.actual" value="0" type="Integer" />

Actual Free Space (MB): The actual amount (measured in MB) of storage space available to new
VMs. A value of -1 means unlimited.

Efficiency: Enter an efficiency coefficient that the Orchestration Server uses to calculate the cost of
moving VM disk images to and from the repository. This value is multiplied by the disk image size
(in MB) to determine an efficiency score. A score of zero (0) means no cost (very efficient).

NOTE: A fact not visible in the UI (except in the Fact Editor) is repository.capacity.set, a
Boolean flag used by provisioning adapters to indicate that the repository capacity has been
discovered.

Stored VMs: The VM images stored in this repository. The list is aggregated from individual VM
facts.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.vmimages">
 <array type="String">
 </array>
</fact>

This fact designated as readonly and is not editable.

Compatible VM Hosts: The VM hosts capable of using this repository. The list is aggregated from
individual VM facts.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.vmhosts">
 <array>
 <string>tszen4_xen30</string>
 </array>
</fact>
136 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

You can edit this array by clicking the button to open the Attribute element values dialog box,
where you can add, remove, or edit the VM host IDs (element values) in an array of VM host ID
choices.

Accessed By Provision Adapters: The provisioning adapter jobs that are allowed access to VMs on
this repository.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.provisioner.jobs">
 <array>
 <string>xen30</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add or remove provisioning adapters for the array of provisioning adapter choices.

NOTE: In the Fact Editor, you edit the provisioning adapter array by using the Attribute Element
Values dialog box.

SAN Adapter Configuration

SAN Adapter Vendor: (SAN repositories only) The name of the vendor of the SAN.This should be
adapter specific, such as iqn, npiv, emc. An empty field (that is, no value in the string) indicates that
bind/unbind is a no-op (no operation performed).

In the Fact Editor, this fact is listed as repository.san.vendor:

<fact name="repository.san.vendor" value="" type="String" />

SAN Transport: (SAN repositories only) From the drop-down list, select iSCSI or Fibre Channel to
indicate the type of SAN transport this repository uses.

In the Fact Editor, this fact is listed as repository.san.type:

<fact name="repository.san.type" value="" type="String" />

10.3.2 Best Practices for Entering Repository File Paths

Use the following guidelines in scenarios where you need VM repositories.

 “Creating a Repository to Use with New VMs” on page 137
 “Creating a Repository to Use with Existing VMs” on page 138
 “Creating a Repository for Existing VMs with Shared Root Locations and Separate

Configuration Directories” on page 138

Creating a Repository to Use with New VMs

If you are creating a repository for new VMs that you will eventually provision:

1 In the Root Location field, specify the location for the new repository.
Example: /vms_new

2 In the Preferred Storage Path field, specify the path to your image file store (relative to the root
location path). This becomes the path for VM configuration files and VM image files when you
associate a VM with this repository.
The Repository Object 137

Example: images (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM files
in /vms_new/images.

Creating a Repository to Use with Existing VMs

Use this procedure when you already have VMs in your grid and a store for the VM configuration
and disk image files already exists.

1 In the Root Location field, specify the shared location for this repository.
Example: /vms_new

2 In the VM Config Search Path field, specify the search path to your existing configuration file store
(relative to the root location path).
Example: old_config (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM
configuration files in /vms_new/old_config.

3 In the Preferred Storage Path field, specify the path to your existing image file store (relative to the
root location path). This also becomes the path for VM configuration files and VM image files
when you associate a VM with this repository.
Example: all_images (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM files
in /vms_new/all_images.

Creating a Repository for Existing VMs with Shared Root Locations and Separate
Configuration Directories

Use this procedure when you want to create a repository for existing VMs that have a shared root
path but separate configuration file directories such as /vms_new/old_config1 and /vms_new/
old_config2).

1 In the Root Location field, specify the shared location for this repository.
Example: /vms_new

2 In the VM Config Search Path field, specify the search paths to your existing configuration file
store (relative to the Root Location path).
Example: Adjacent to the VM Config Search Path field, click , click Add element, enter
old_config1 (no leading forward slash), click OK, click Add element again, specify old_config2
(no leading forward slash), then click OK.
Because the fields are concatenated, the provisioning adapter searches for the existing VM
configuration files in the array consisting of /vms_new/old_config1 and /vms_new/
old_config2.

3 In the Preferred Storage Path field, specify the path to your existing image file store (relative to the
root location path).This path also becomes the path for VM configuration files and VM image
files after a move or clone when a VM has been associated with this repository.
Example: all_images (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM files
in /vms_new/all_images.
138 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

10.3.3 Groups

This section of the Info/Groups page lists the groups of Repository objects in the grid. Click Choose to
open the repository Group selection dialog box. In this dialog box, you can choose which Repository
Groups to display in the Explorer Panel by selecting a group, then clicking Add or Remove to move it
to or from the Source Repository Groups list.

10.4 Repository Policies Tab
The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy, then clicking the
Save button.

10.5 Repository Health Debugger Tab
The Health Debugger is a common Admin view in the Orchestration Console for most Grid objects.
For information about this tool, see Appendix A.3, “Health Debugger,” on page 187.

10.6 Repository Constraints/Facts Tab
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties.

By building, deploying, and running jobs on the Orchestration Server, you can individually change
the functionality of any system resources by managing an object’s facts and constraints. The
Orchestration Server assigns default values to each of the component facts, although they can be
changed at any time by the administrator, unless they are read-only. Facts with mode r/o have read-
only values, which can be viewed by using the pencil icon, but changes cannot be made.

10.7 The Repository Action History Tab
The Action History tab is displayed in the administrative view of the Repository object. When you
select the Action History tab, a table displays a list of the history for all actions performed on this Grid
object.

The Orchestration Server must be connected to an audit database for the Include Audit Database check
box to be available. If the Include Audit Database check box is selected in this view, the action status is
not polled. Click the Refresh button in the toolbar to retrieve and display fresh data.

For more details about the information listed on the Action History page, see “Action History in
Admin Views of the Orchestration Console” in the NetIQ Cloud Manager 2.1.5 VM Orchestration
Reference.
The Repository Object 139

10.8 Repository Object Naming and Renaming
Some resource names are generated by the Orchestration Server and can therefore have generic,
arbitrary names such as host1, host2, host3, and so on. Repositories you name at creation time
might also change later in their purpose or facilities.

The object’s display name is visible in the Orchestration Console, the Cloud Manager Web Console
and Mobile Clients interfaces, and in optional zos and zosadmin commands. As the number of these
Repository objects grows in your grid, you might find it helpful or necessary to rename them,
assigning more meaningful, intuitive names to suit the purpose of the object.

NOTE: Repository object groups (that is, the folders that contain these Repository objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A Repository object’s name is stored in the ${objectType}.displayname fact, which exists on every
Grid object type, even those objects that cannot be renamed.

You can rename a Repository object in the Orchestration Console using one of three methods:

 Right-click the Repository object in the Explorer tree, then select Rename to allow editing of the
display name.

 Triple-click the Repository object in the Explorer tree to allow editing of the display name.
 In the Constraints/Facts page, select the Repository object .displayname fact and then open the

Fact Editor to enter a new value for that fact.

As you use one of these methods, you will notice that the fact value is pre-populated with the
${objectType}.id fact. This functions as the name value for the object name until you decide to
change it.

NOTE: Even after being renamed, the Repository object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the NetIQ Cloud Manager 2.1.5 Orchestration Server Command Line
Reference.

10.9 Shared Storage for Disk Images
The Orchestration Server can discover disk files (such as ISOs) inside storage represented by a
Repository Grid object, making it easier to specify a disk file that you want to attach to a VM.

This section includes the following information:

 Section 10.9.1, “Setting Disk Discovery Facts,” on page 141
 Section 10.9.2, “Running the Discovery,” on page 141
 Section 10.9.3, “Sharing Disks Between VMs,” on page 142
 Section 10.9.4, “Attaching a Discovered Disk to a VM,” on page 142
 Section 10.9.5, “Using Attached Disks in the Guest OS,” on page 143
140 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

10.9.1 Setting Disk Discovery Facts

Before the Orchestration Server can discover disks, you need to set two facts in the Repository object.
These facts are listed in the table below.

Table 10-5 Required Facts for ISO Disk Discovery

You can use the built-in array editor in the Orchestration Console to modify these facts. For example,
to modify the repository.disks.paths fact,

1 In the Orchestration Console, select a Repository object that represents your shared storage.
2 Select the Info/Groups tab to open Info page in the admin view.

3 In the Disk Discovery Path field, click the array editor button to open the Attribute element
values dialog box.

4 On the dialog box, click Add element to open the editor where you can add a string value to the
repository.disks.paths fact. For example, you could enter /data/isos as a possible search
directory for disk image files.

5 Click the Save icon on the main toolbar to save your fact changes.

A similar array editor is available for changing the values in the repository.disks.patterns fact found
in the Disk Discovery Patterns field of the Repository Info page of the Orchestration Console.

10.9.2 Running the Discovery

The Discover Disks action is included in the right-click menu of a Repository Grid object and in the
Provision main menu of the Orchestration Console. The right-click action lets you discover disks on a
single repository, while the action under the Provision menu lets you select multiple repositories for
disk discovery.

When you select this action, a provisioning adapter function runs to search for and retrieve ISO disk
filenames stored on the selected repository or repositories. If the selected provisioning adapter does
not support the Discover Disks action, the option is dimmed in the menu.

Fact Name Purpose

repository.disks.paths The directories to search for disk image files

repository.disks.patterns The patterns used to discover disk image files (the
default pattern is *.iso).
The Repository Object 141

NOTE: The Orchestration Server can discover any disk, but its default is to search for filenames with
a .iso suffix.

After discovery, the disk filenames are stored in the repository.disks fact of the Repository object,
located in the Stored disks field of the Repository’s Info/Groups page in the admin view.

Figure 10-1 The Disk Discovery Portion of the Info/Groups Page for the Repository Object

This is an array of disks, each of which is a valid value for the vdisk.location vDisk fact and stored
in this repository. You can edit the filenames of these disks or add new filenames as values in the
array.

10.9.3 Sharing Disks Between VMs

To share ISOs between VMs, you would need to store the ISOs in a shared location that is accessible
on all VM hosts where those VMs are to run. In such a scenario, you would set up a directory on all
VM hosts where /data/isos/ is a mount point to some SAN or NFS storage of ISO files. For
example, an ISO file might have this path: /data/isos/SLES-11-SP1-DVD-x86_64-DVD1.iso.

10.9.4 Attaching a Discovered Disk to a VM

You can attach a discovered disk to a VM.

1 In the Orchestration Console, select the VM to which you want to attach a disk, then right-click
to display the available actions for the VM.

2 Select Create Virtual Disk to create a new disk. The Info/Groups page for the disk is displayed in
the admin view.
142 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

The Location drop-down menu lists the ISO file names that were previously discovered in the
Repository associated to this vDisk.

3 In the Location field (that is, the vdisk.location fact), select the disk that you want to attach to
the VM. You can also manually edit the filename of the disk you want to attach.

4 Click the Save icon on the main toolbar to save your changes.
5 Commit the changes to the VM configuration.

5a (If the VM is running) In the Explorer tree, right-click the VM object, select Apply Config.
5b (If the VM is not running) In the Explorer tree, right-click the VM object, select Save Config.

If the VM state or the provisioning adapter do not support either of these actions, the
options are dimmed.

10.9.5 Using Attached Disks in the Guest OS

After the disk is attached to a VM, you might need to take additional steps for the disk to be usable.

Linux Guest OS: Use the mount command to make the disk visible to the guest OS. Use the umount
command to unmount the disk prior to changing or deleting the underlying PSO vDisk object.

Windows Guest OS: If the disk is not immediately visible, you need to reboot your guest OS. In
general, the you can assume that disk is visible if it is replacing an already-mounted disk that is
visible in a CD-ROM device.
The Repository Object 143

144 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

11 11The User Object

A User object represents an individual account that is allowed to connect to the Cloud Manager
Orchestration Server. Administrator users are also allowed to connect by using the zosadmin
command line and the Orchestration Console user interfaces.

You can use the Orchestration Console user interface to manually create a User object. You can create
objects automatically if authentication through LDAP or Active Directory is enabled, or optionally if
auto-registration is configured.

The user object icon and the red square user object icon.

 Section 11.1, “User Groups,” on page 145
 Section 11.2, “User Info/Groups Tab,” on page 145
 Section 11.3, “User Policies Tab,” on page 151
 Section 11.4, “User Health Debugger Tab,” on page 151
 Section 11.5, “User Constraints/Facts Tab,” on page 151
 Section 11.6, “The User Action History Tab,” on page 152

11.1 User Groups
Any group object displayed in the Explorer panel represents a collection of similar object types.
Groups can also be created automatically, such as when a provisioning adapter discovers a local
repository on a VM host. For example, the xen provisioning adapter, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a Xen
repository group. You can also create groups manually in the Orchestration Console, either by
clicking the Actions menu and choosing Create User Group or by right clicking a User Group object
(anywhere in the User hierarchy) and selecting New User Group.

11.2 User Info/Groups Tab
The page that opens under the Info/Configuration tab of the User admin view includes several
collapsible sections on the page where you can configure the general information and attributes of
the user.

 Section 11.2.1, “Info,” on page 146
 Section 11.2.2, “Groups,” on page 151

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon, signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save button on the Orchestration Console toolbar.
The User Object 145

11.2.1 Info

The following fields on the Information panel provide facts for the User object:

 “Show Inherited Fact Values Check Box” on page 146
 “User Information” on page 146
 “Personal Information” on page 147
 “Job Information” on page 148
 “Accounting Information” on page 148
 “Job Control” on page 149
 “Quota Information” on page 150

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

User Information

The User Information panel on the Info/Groups page includes the following fields:

NOTE: Tooltip text is available when you mouse over any of these fields.

Account Enabled: This check box is selected by default.When the check box is selected, the user is
allowed to log in and run jobs.

In the Fact Editor, this fact is listed as user.enabled:

<fact name="user.enabled" value="true" type="Boolean" />

Online: When this check box is selected (it has a value of true), the user is currently logged in to the
server.

In the Fact Editor, this fact is listed as user.online:

<fact name="user.online" value="false" type="Boolean" />

Healthy: This check box is selected by default. When it is selected (it has a value of true), the user is
designated as being in good health. You can set the health of the object by selecting or deselecting the
health check box. Changing the value in this way has an immediate effect unless the value is
overridden by an attached policy. For more information, see Appendix A, “Grid Object Health
Monitoring,” on page 185

In the Fact Editor, this is fact is listed as user.health:

<fact name="user.health" value="true" type="Boolean" />

External Groups: A list of external groups (for example, LDAP) that this user belongs to.

In the Fact Editor, this fact is listed as an array:

<fact name="user.external.groups">
 <array type="String">
 </array>
</fact>
146 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

You can edit this array by clicking the button to open the Attribute element values dialog box,
where you can add, remove, or edit the name and value for every user environment you want to use.

Personal Information

First Name: The user’s first name.

In the Fact Editor, this fact is listed as user.name.first:

<fact name="user.name.first" value="" type="String" />

Last Name: The user’s last name.

In the Fact Editor, this fact is listed as user.name.last:

<fact name="user.name.last" value="" type="String" />

Password: The user’s hashed login password.

In the Fact Editor, this fact is listed as user.password:

<fact name="user.password" value="kNLj1_Fc96C3ajVXcqQEGZBRrbivgxhhzK3TKLpP"
type="String" />

IMPORTANT: The System User password should not be changed. If you try to change this password
by using the Orchestration Console, the password does not actually change and no warning is posted
that the change was unsuccessful. There is no indication of authentication failure until you try to log
in with the “new” password.

EMail: The user’s e-mail address.

In the Fact Editor, this fact is listed as user.name.email:

<fact name="user.name.email" value="" type="String" />

City: The name of the city where the user is located.

In the Fact Editor, this fact is listed as user.location.city:

<<fact name="user.location.city" value="" type="String" />

State: The name of the state or province where the user is located.

In the Fact Editor, this fact is listed as user.location.state:

<fact name="user.location.state" value="" type="String" />

Country: The name of the country where the user is located.

In the Fact Editor, this fact is listed as user.location.country:

<fact name="user.location.country" value="" type="String" />

Site: The name of the site (for example, a campus or building) where the user works.

In the Fact Editor, this fact is listed as user.location.site:

<fact name="user.location.site" value="" type="String" />

Environment: A list of default user environment variable names and values that the Orchestration
Server sets when executing joblets remotely.

In the Fact Editor, this fact is listed as a dictionary:
The User Object 147

<fact name="user.env">
 <dictionary>
 <dictelement key="dfadsafd">
 <string>safdaf</string>
 </dictelement>
 </dictionary>
</fact>

Job Information

Total Job Count: The total number of jobs that this user has historically initiated on this
Orchestration Server.

In the Fact Editor, this fact is listed as user.history.jobcount:

<fact name="user.history.jobcount" value="0" type="Integer" />

Active Jobs: The number of top-level jobs run with this user account that are in an active state.

In the Fact Editor, this fact is listed as user.jobs.active:

<fact name="user.jobs.active" value="0" type="Integer" />

Queued Jobs: The number of top-level jobs run with this user account that are currently in a queued
state.

In the Fact Editor, this fact is listed as user.jobs.queued:

<fact name="user.jobs.queued" value="0" type="Integer" />

Total Jobs: The total number of top-level jobs run by this user account.

In the Fact Editor, this fact is listed as user.jobs.total:

<fact name="user.jobs.total" value="0" type="Integer" />

Active Sessions: The number of currently active sessions (that is, connections) that the user has
established with the Orchestration Server.

In the Fact Editor, this fact is listed as user.sessions:

<fact name="user.sessions" value="1" type="Integer" />

Accounting Information

Total Spending: The total cost of computing resources by this user.

In the Fact Editor, this fact is listed as user.history.cost.total:

<fact name="user.history.cost.total" value="0.0088" type="Real" />

Average Spending Rate: The computed moving average spending (in dollars per hour) over the last
hour of activity for this user.

In the Fact Editor, this fact is listed as user.account.spendrate:

<fact name="user.account.spendrate" value="-0.0006" type="Real" />

Maximum Spending Rate: An amount (in dollars per hour) to be used by the Resource Scheduler to
throttle the rate at which computing cycles are consumed by the user. A value of less than or equal to
zero (<=0) turns the feature off.

In the Fact Editor, this fact is listed as user.account.maxspendrate:
148 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

<fact name="user.account.maxspendrate" value="0.0000" type="Real" />

Default Accounting Group: Lets you select the default User Group to be billed for work conducted
by this user.

In the Fact Editor, this fact is listed as user.accounting.group:

<fact name="user.accountinggroup" value="all" type="String" />

Total Wall Time: The total amount of wall time (in seconds) consumed by this user.

In the Fact Editor, this fact is listed as user.history.time.total:

<fact name="user.history.time.total" value="31" type="Integer" />

Total Grid Time: The total amount of grid time (in gcycles, which is a normalized average of
compute cycles) consumed by this user.

In the Fact Editor, this fact is listed as user.history.gcycles.total:

<fact name="user.history.gcycles.total" value="31" type="Integer" />

Job Control

Default Priority Value: A numerical representation of the default priority at which this user’s job
runs, with 1 being the lowest priority and 9 being the highest priority.

In the Fact Editor, this fact is listed as user.priority.default:

<fact name="user.priority.default" value="7" type="Integer" />

Default Priority: The string representation of the default priority at which this user can run a job.
The value is matched to the integer value in user.priority.default.

In the Fact Editor, this fact is listed as user.priority.default.string:

<fact name="user.priority.default.string" value="high" type="String" />

Maximum Priority Value: A numerical representation of the maximum priority at which this user’s
job can run, with 1 being the lowest priority and 9 being the highest priority. Only the system user
can run jobs at priority 10.

In the Fact Editor, this fact is listed as user.priority.max:

<fact name="user.priority.max" value="5" type="Integer" />

Datagrid Maximum History: The maximum number of job instance directories that should be kept
in the datagrid for this user.

In the Fact Editor, this fact is listed as user.datagrid.maxhistory:

<fact name="user.datagrid.maxhistory" value="25" type="Integer" />

Job Preemption Enabled: Select this check box if you want to allow the user to preempt jobs that
have a priority less than the priority of the running job instance.

In the Fact Editor, this fact is listed as user.preemption.enabled:

<fact name="user.preemption.enabled" value="false" type="Boolean" />

Max Preemption Priority: The highest job priority band from which this user is allowed to preempt
resources. The value acts as a delta from the current job instance priority. The maximum preemptible
priority is always less than or equal to user.priority.max.
The User Object 149

In the Fact Editor, this fact is listed as user.preemption.priority.delta:

<fact name="user.preemption.priority.delta" value="0" type="Integer" />

Resources Stealing Enabled: Select this check box to allow the user to steal resources that are
running jobs that have a priority less than the priority of the running job instance.

In the Fact Editor, this fact is listed as user.stealing.enabled:

<fact name="user.stealing.enabled" value="false" type="Boolean" />

Max Stealing Priority: The highest job priority band from which this user is allowed to steal
resources. The value acts as a delta from the current job instance priority, and must be less than zero
(<0).

In the Fact Editor, this fact is listed as user.stealing.priority.delta:

<fact name="user.stealing.priority.delta" value="-1" type="Integer" />

Privileged Job Groups: A list of Job Groups with jobs and joblets that this user is allowed to run on
resources that have reached their slot maximum or that are provisioned resources that are reserved
for another user or job.

In the Fact Editor, this fact is listed as an array:

<fact name="user.privilegedjobgroups">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add or remove Job Groups in an array of choices. The Job Groups can be added to or
removed from a list of Source Grid Objects to a list of Target Grid Objects (or vice versa).

Quota Information

Account Balance Remaining: The balance (measured in dollars) that remains available for this user
since the last reset. You can use this value to implement quotas on your server.

In the Fact Editor, this fact is listed as user.account.balance:

<fact name="user.account.balance" value="0.0000" type="Real" />

Job Counter: The number of jobs this user has initiated since the last reset. You can use this value to
implement quotas on your server.

In the Fact Editor, this fact is listed as user.jobcount:

<fact name="job.history.jobcount.complete" value="0" type="Integer" />

Time Remaining: The amount of wall time (measured in seconds) remaining for use by this user
since last the reset. You can use this value to implement quotas on your server.

In the Fact Editor, this fact is listed as user.account.time:

<fact name="user.account.time" value="0" type="Integer" />

Grid Time Remaining: The amount of grid time (measured in gcycles) remaining for use by this user
since last the reset. You can use this value to implement quotas in your grid.

In the Fact Editor, this fact is listed as job.history.jobcount.complete:

<fact name="user.account.gcycles" value="0" type="Integer" />
150 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

11.2.2 Groups

This section of the Info/Groups page lists the groups of User objects in the grid. Click Choose to open
the User Group Selection dialog box. In this dialog box, you can choose which User Groups to
display in the Explorer Panel by selecting a group and then clicking Add or Remove to move it to or
from the Source Job Groups list.

11.3 User Policies Tab
The Policies tab of the User admin view opens a page that contains a policy viewer for each of the
policies associated with a User Grid object.

You can modify policies by using the Policy Grid object. For more information, see Section 12.1,
“Policy Object,” on page 153.

If you click Choose on the Policy tab, a Policy Selection dialog box is launched, where you can add or
remove individual policies to be applied to the selected User Grid object.

Figure 11-1 The Policy Selection Dialog Box

11.4 User Health Debugger Tab
The Health Debugger is a common Admin view in the Orchestration Console for most Grid objects.
For information about this tool, see Section A.3, “Health Debugger,” on page 187.

11.5 User Constraints/Facts Tab
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties.

By building, deploying, and running jobs on the Orchestration Server, you can individually change
the functionality of any system resources by managing an object’s facts and constraints. The
Orchestration Server assigns default values to each of the component facts. Facts with no displayed
mode can be changed at any time by the administrator. Facts with mode r/o have read-only values,
which can be viewed by using the pencil button, but changes cannot be made.
The User Object 151

11.6 The User Action History Tab
The Action History tab is displayed in the administrative view of the User object. When you select the
Action History tab, a table displays a list of the history for provisioning actions performed on this Grid
object (assuming that it is provisionable, for example, a VM or VM template).

The Orchestration Server must be connected to an audit database for the Include Audit Database check
box to be available. If the Include Audit Database check box is selected in this view, the action status is
not polled. Click the Refresh button in the toolbar to retrieve and display fresh data.

For more details about the information listed on the Action History page, see “Action History in
Admin Views of the Orchestration Console” in the NetIQ Cloud Manager 2.1.5 VM Orchestration
Reference.
152 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

12 12Miscellaneous Objects Displayed in the
Explorer Tree

The Explorer panel (tree) of the Orchestration Console displays some miscellaneous objects of
importance:

 Section 12.1, “Policy Object,” on page 153
 Section 12.2, “Computed Fact Objects,” on page 154
 Section 12.3, “Event Objects,” on page 154
 Section 12.4, “Metrics Objects,” on page 154

12.1 Policy Object
XML is used to define Orchestration Server policies. A policy can be deployed to the server and
associated with any grid object. The policy element is the root element for policies. Policies contain
constraints and fact definitions for grid objects.

You can edit a policy by clicking its icon in the Explorer tree view, making your changes, then clicking
the save icon. The Where Used tab of the Policy Editor lists the jobs where the selected policy is
associated.

12.1.1 Policy Constraints

A policy can define a collection of constraints that are applied appropriately based on context. For
example, a resource constraint can limit the selection of a resource to a subset based on resource
group membership, or any number of other fact-based evaluations.

You can use /opt/novell/zenworks/zos/server/examples/customNode.policy on the
Orchestration Server as an example policy file with constraints.

12.1.2 Policy Facts

The XML fact element defines a fact to be stored in the grid object’s fact namespace. The name, type
and value of the fact are specified as attributes. For list or array fact types, the element tag defines list
or array members. For dictionary fact types, the dict tag defines dictionary members.

You can see an example policy with an XML representation for all the fact types on the Orchestration
Server at /opt/novell/zenworks/zos/server/examples/allTypes.policy.
Miscellaneous Objects Displayed in the Explorer Tree 153

12.2 Computed Fact Objects
Computed facts are used when you want to run JDL to generate the value for a fact. Although
computed facts are not jobs, they use the same JDL syntax. You can see examples of computed facts
on the Orchestration Server at /opt/novell/zenworks/zos/server/examples/activejobs.cfact
and /opt/novell/zenworks/zos/server/examples/repostiory.cfact.

12.3 Event Objects
An Event object in the Explorer tree represents a user-described set of rules that can be associated
with a schedule trigger or handled by long-running jobs written to respond to events.

For more information about using events, see “Event Triggers” on page 161 and Section A.2, “Health
Events,” on page 187.

12.4 Metrics Objects
The Orchestration Server Metrics Facility collects, aggregates, and allows simple fact-based retrieval
of metric values by jobs and computed facts (via JDL), policy constraints, and Event triggers on a per-
resource basis.

A Metrics object is deployed in the Explorer tree. Use the right-click menu to display the “deploy”
and “undeploy” actions. Pre-defined .metric files are located in the /opt/novell/zenworks/zos/
server/components/metrics folder, or you can create a new .metric file and paste in an XML file.

NOTE: You can also use the zosadmin deploy command to deploy a .metric file. For example:

zosadmin deploy load_one.metric

Metrics objects are listed by their deployment name, which may or may not be the same as the name
of the actual metric. This potentially allows multiple, separately deployable, RRD definitions for a
single “instantaneous” metric, with different aggregation periods defined.
154 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

13 13The Orchestration Server Job Scheduler

You can use the Job Scheduler in the Orchestration Server to automatically start deployed jobs on
your grid by using either time or event triggers.

You can think of the functionality provided by the time triggers as being similar to a distributed cron
system (in fact, time triggers can be described in cron syntax). This triggering, coupled with the job
control functions in the Orchestration Server, allows for the sophisticated automation of routine data
center tasks.

For example, suppose you want to periodically harvest a large log file in a coordinated way from a
farm of several hundred machines. First, you could create an Orchestration Server job that uses the
datagrid for file movement. The job control options specify that the job should run on not more than
three machines at once and sweep across the entire grid. You would then create a schedule to run this
job at the desired interval.

As another example, you could use the Job Scheduler to trigger a discovery job every time a new
resource is added to the grid. In this case, the job developer writes the discovery job to discover and
set facts about the resource. Next, you would create a schedule to run this job on the
RESOURCE_ONLINE built-in trigger. In fact, this type of triggered job is currently used in the standard
set of deployed discovery jobs to detect specific resource CPU and OS information.

Yet another example would be to run a job on server startup that sends a notification e-mail to an
administrator.

This section includes the following information:

 Section 13.1, “Understanding the Job Scheduler View,” on page 155
 Section 13.2, “Walkthrough: Scheduling a System Job,” on page 170

13.1 Understanding the Job Scheduler View
This section includes information to help you understand the functions of the Job Scheduler and how
to use it to launch Orchestration Server jobs.

 Section 13.1.1, “Navigating The Job Schedules Table,” on page 156
 Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 158
 Section 13.1.3, “Understanding Cron Syntax in the Job Scheduler,” on page 166

Click Scheduler on the main toolbar of the Orchestration Console to open the Job Scheduler view.
The Orchestration Server Job Scheduler 155

Figure 13-1 Job Scheduler View of the Orchestration Console

13.1.1 Navigating The Job Schedules Table

The Orchestration Server includes several predefined and predeployed discovery jobs that have
predefined launch schedules. Among these jobs are the cpuinfo, findapps, osinfo, and other jobs,
depending on the options (that is, the server profile) you chose and the configuration you used
during the installation. After installation, these jobs are listed by name in a table in the Job Scheduler
view.

Figure 13-2 The Job Schedules Table in the Job Scheduler View

By default, the server uses schedule names that are similar to the job name so that schedules are easy
to match (although this is not required). The schedules list shows all of the existing job schedules that
accompany predefined jobs, along with the schedules that you create in the Job Scheduler.

NOTE: The Job Scheduler view is not a real-time monitor view of jobs, so if a job attribute (for
example, Last Job Status or Last Fire Time) has changed, it might not be displayed until you click
Refresh.
156 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

The Job Schedules Table has functionality that lets you decide how you want to display information
about the job schedules:

 You can drag any column in the table to move it left or right in the table according to your
preference.

 You can mouse over any column heading in the table to view tooltip text about the purpose of
the data in that column.

 You can right-click any column heading in the table to open the Job Scheduler Column Editor
dialog box.

Figure 13-3 Job Scheduler Column Editor Dialog Box

You can select any column heading in this dialog box to display it in the Job Schedules Table. The
columns display the attributes of a previously configured job schedule. As the figure shows, this
dialog box also includes text that clarifies the purpose of the data in each column.

In the Job Scheduler view, there are seven function buttons next to the Job Schedules Table (see Figure
13-2 on page 156) that let you take action on any schedule you select inside the table. (Only one
schedule at a time can be selected.)

 New: Opens a dialog box where you can create a new schedule. When you create a new
schedule, the Job Scheduler adds a new line to the Job Schedules Table. When the new line is
added, you can use the Job Schedule Editor to edit the attributes of the schedule. A new
schedule must be given a unique schedule name.

The Job Scheduler forces a new schedule to be created in the Disabled state to prevent it from
running while it is being defined. You click Enable when a job is ready to be used.

 Copy: Copies a schedule you have selected in the Job Schedules Table. Clicking this button
opens a dialog box where you rename the copy. If you want to create a schedule that is similar
but not identical to an existing schedule, use this button to save time in adding attributes to a job
schedule configuration. A copy of a schedule must be given a unique schedule name.

 Deploy: Opens a dialog box where you can select a schedule (that is, a deployable .sched file) to
deploy.

 Delete: Deletes the selected schedule from the Job Schedules Table. You cannot recover a deleted
job schedule.

NOTE: Deleting a schedule that was deployed as part of a .job or .sar displays a confirmation
dialog box. Deleting the schedule undeploys all contents of the .job or .sar that contains the
schedule.
The Orchestration Server Job Scheduler 157

 Disable: Disables the selected schedule in the Job Schedules Table. The jobs associated with the
schedule are not re-run, but any currently running instances of this job continue to run.

 Enable: Enables a disabled job schedule.
 Run Now: Forces the specified schedule to run immediately. This updates statistics such as Last

Fire Time.

Removed Jobs or Users: Scheduler Behavior

If a job or a user is undeployed or removed from the Orchestration Server, the Job Schedules Table
continues to list the schedule previously associated to that removed grid object, but the removed grid
object no longer displays the icon that represents the object (job or user).

Figure 13-4 User Object and Job Object Icons Are Not Displayed

In the preceding figure, the CpuDiscovery schedule displays no Job icon for the cpuInfo job in the
schedules table. Even though the job has been undeployed, the schedule is still listed.

In the osinfo schedule, the system user has no User icon. That user has been removed from the server.

If you choose a new user or job to be associated with a schedule, a deleted or undeployed user or job
is never displayed in the pop-up menu for that schedule again.

13.1.2 Creating or Modifying a Job Schedule

The Job Schedule Editor is located immediately below the Job Schedules Table in the Job Scheduler
view.

Figure 13-5 The Job Schedule Editor in the Job Scheduler View

There are several times when you use this part of the Job Scheduler tool:

 When you create a new schedule by clicking New.
158 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 When you modify the attributes of an existing schedule (available when you select a schedule in
the table).

 When you create a copy of an existing schedule by clicking Copy.

The Job Schedule Editor lets you create or modify a job schedule by specifying its attributes.

You use the following controls and data when you create or modify a job schedule:

 “Schedule Name” on page 159
 “Job” on page 159
 “User” on page 159
 “Priority” on page 160
 “Description” on page 160
 “Matching Resources” on page 160
 “Test Schedule Now” on page 160
 “Triggers” on page 160
 “Job Arguments” on page 165
 “User Environment” on page 165
 “Constraints” on page 166

Schedule Name

When you create a new schedule, the unique name you specify is displayed in this field. If you select
a schedule from the Job Schedules Table, the name of the schedule is displayed in this field. The field
is not editable, because schedules cannot be renamed after they are created. (You can use a copy if
this is required.)

Job

When you create a new schedule, you need to associate a deployed job with it. You can select the job
you want to run from this drop-down list.

If you want to use a previously created schedule to run a different job, you can change the job here.

User

When you create a new schedule, you need to associate a user with it. The user represents the user for
whom the job will run. The choice of user might affect the permissions, privileges and constraints of
the job. You can select the user from this drop-down list.

If you want a different user to run a job on a previously created schedule, you can change the user
here.

If you decide to change the user who runs the job, check the Priority field to make sure that the
priority you want is selected.
The Orchestration Server Job Scheduler 159

Priority

When you create a new schedule and associate a job and a user with it, a list of possible run priorities
becomes available in this drop-down list. The list of priorities varies, depending on the user that is
specified in the previous field. In this field, you select the priority of the job that is to be run so that if
other jobs are to start concurrently or are competing for resources, the Orchestration Server can
determine which job takes priority.

Description

For predeployed jobs, this field contains a default description of what the job’s schedule does. The
field is editable, so you can enter a description of your own for job schedules that you create.

Matching Resources

This button displays a list of resources where the job runs now or where it could run. This list is
useful for checking the context of constraints that might have been affected by a choice of user or by
manually specifying additional constraints under the Policy tab. The list is also useful to verify that a
discovery job (that is, one that is triggered by the Run on Resource Start option) runs on the preferred
set of machines.

Test Schedule Now

Click this button to test the new or modified schedule you are working with. The test runs the new or
modified schedule without permanently saving the current configuration of the schedule or
recording statistics. This control differs from the Run Now control in the Job Schedules Table, which
runs a saved (persisted) schedule, disregarding any unsaved modifications that have been made to it
in the Job Schedule Editor.

Triggers

When you click the Triggers tab in the Job Scheduler view, the following page opens:

Figure 13-6 The Schedule Triggers Page in the Job Scheduler

In this view, you can add or define the triggers you want to associate with job schedules. A trigger is
the signal to the Job Scheduler to initiate, or “fire” a schedule at a given time or at the occurrence of a
given event. Job Scheduler triggers can be classified with regard to two conditions: events and time.
160 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

The Triggers table on this page has functionality that lets you decide how you want to display
information about the triggers:

 You can drag any column in the table to move it left or right in the table according to your
preference.

 You can mouse over any column heading in the table to view tooltip text about the purpose of
the data in that column.

 You can right-click any column heading in the table to open the Triggers table column editor
dialog box.

Figure 13-7 Trigger Table Column Editor Dialog Box

You can select any column heading in this dialog box to display it in the Triggers table. The
columns display the attributes of a previously configured Triggers table. As the figure shows,
this dialog box also includes text that clarifies the purpose of the data in each column.

You can create as many triggers as you want to meet any scheduling situation you might have.
Multiple time triggers can be associated with a schedule and multiple schedules can use the same
trigger. The triggers you create are retained by the Job Scheduler for you to choose from when you
create a schedule for a job. The currently associated triggers are displayed in the list along with a
description.

Choose Triggers

This button opens a dialog box where you can choose both predefined and user defined time triggers
to associate with this job schedule.

In this dialog box, you can click Add to move a selected trigger to the active, scheduled triggers that
are to be associated with this job schedule. You can also click Remove to unassociate a trigger.

When a trigger is moved to the scheduled list, it becomes associated to the job schedule and it is
displayed in the Job Scheduler view.

Most example jobs in the Orchestration Server are associated with event triggers. The dialog box can
also list other job schedule triggers that are based on time.

Event Triggers

An Event trigger is the signal to the Job Scheduler to initiate, or “fire” a job when a given event
occurs. An Event can be one of three types:

 Event objects: These objects are user defined events that are fired when an event rule is
triggered. If an event object is deployed, it automatically shows in the trigger chooser as a
possible choice.
The Orchestration Server Job Scheduler 161

 Built-in events: These events are system-wide events such as a resource coming online or a
changing resource health condition. Built-in events are always available as a trigger choice. The
Job Scheduler has eight possible built-in event triggers:
 AGENT_VERSION_MISMATCH

 RESOURCE_ONLINE

 REPOSITORY_HEALTH

 RESOURCE_HEALTH

 SERVER_UP

 USER_HEALTH

 USER_ONLINE

 VMHOST_HEALTH

You can select any combination of these event triggers for a single schedule.
The first trigger, AGENT_VERSION_MISMATCH, triggers the job when an Orchestration Agent of an
incompatible version attempts to connect to this Orchestration Server. It can be used to initiate a
configuration management tool for an agent software update or the job could e-mail a message
to an administrator to report the incompatible agent. The other seven available built-in event
triggers are listed with accompanying descriptions in the dialog box.

 External events: These events are fired by an outside process. These are not automatically
shown as choices in the trigger chooser, but must be defined by the trigger editor.

An event trigger can be used in conjunction with a time trigger to allow flexibility in scheduling the
job application for maximum effectiveness or convenience. Jobs triggered by events require that their
job arguments contain a dictionary named context. For example, your event-triggered job should
have this jobarg element in its policy:

<policy>
 <jobargs>
 <fact name="context" type="Dictionary"
 description="Dictionary containing the context for the event" />
 </jobargs>
</policy>

The key/values of the dictionary are dependent on the event type. For event objects, the
jobargs.context dictionary contains the matching context of the triggered rule. For built-in events,
the jobargs.context dictionary contains the key of the object type corresponding to the built-in
event and the object ID that caused the event.

For example, if the USER_ONLINE event triggers because the user named foo logs in, the
jobargs.context dictionary contains:

{ user : foo }

Likewise, if the RESOURCE_ONLINE event is triggered because the resource agent named “vmhost1”
comes online, the jobargs.context dictionary contains:

{ resource : vmhost1 }

For the AGENT_VERSION_MISMATCH event, the jobargs.context dictionary contains more
information, as shown in the following table:
162 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Table 13-1 Dictionary Information

Time Triggers

A time trigger is the signal to the Job Scheduler to initiate, or “fire” a job when a prescheduled time
occurs. A time trigger can be used in conjunction with an event trigger to allow flexibility in
scheduling the job application for maximum effectiveness or convenience. No default time triggers
are defined in the Job Scheduler. You need to create new time triggers by clicking Edit Triggers.

Edit Triggers

Click Edit Triggers to open the Triggers dialog box.

The following controls and information are available in the dialog box:

 New: Opens a secondary dialog box where you can create a new time trigger name. When you
create the trigger name, the attribute fields in the Triggers dialog box are cleared and you can
specify new attributes for the trigger. A new trigger must be given a unique trigger name.

Key Type

AgentBuild Long

AgentIP String

AgentId String

AgentMajor Integer

AgentMinor Integer

AgentPoint Integer

JavaMajor Integer

JavaMinor Integer

JavaPoint Integer

JavaVendor String

JavaVersion String

OsMajor Integer

OsMinor Integer

OsName String

OsPoint Integer

OsVendor String

OsVersion String

SystemArch String

UsingJRE Boolean

resource String
The Orchestration Server Job Scheduler 163

 Copy: Lets you modify an existing time trigger by giving it a new name and attributes. This can
be helpful if there are only slight differences in the new attributes. A copy of a trigger must be
given a unique trigger name.

 Deploy: Opens a file chooser where you can choose an existing, stored trigger (that is, a .trig
file) to deploy.

 Delete: Deletes a selected time trigger.

IMPORTANT: Deleted triggers are not recoverable. If the trigger is used by existing schedules,
it is removed from all of those schedules when it is deleted.

 Trigger Name: Specifies the unique name of the trigger you are creating or modifying. This
name is displayed in the Job Scheduler if you choose to associate this trigger with a schedule.
After you create the trigger name, it cannot be modified.

 Description: Specifies a description for the time trigger you are creating or modifying. The
description is optional and can be as detailed as you want.
If the number of characters in the description string exceeds the space in the Description field, a

 button is enabled that opens a string editor when clicked.
 Save: Clicking this button saves the defined time trigger and its attributes.
 Fire Starting In: Displays multiple fields specifying the time increment and frequency to be

used by the trigger to fire the job. If you select this type of time trigger, the Fire using CRON
Expression button becomes inactive.

NOTE: You can use the Fire Starting In control to create either a “one-shot” time trigger or a
“reoccurring” time trigger.
A one-shot time trigger fires just once after a specified period of time. To specify a one-shot
trigger, click Fire Starting in, specify the amount of time before firing, then specify 0 as the time to
Repeat Indefinitely.
A reoccurring time trigger fires after a specified period and then either fires repeatedly for an
indefinite number of times or it fires for a specified number of times. To specify a reoccurring,
indefinite trigger, click Fire Starting in, specify the amount of time before firing, then select Repeat
Indefinitely. To specify a reoccurring but finite trigger, click Fire Starting in, specify the amount of
time before firing, select Repeat Range, then specify the number of times you want the trigger to
fire.

 Fire using CRON Expression: Specifies the cron expression that enables the job to fire
automatically at a specified time or date. You need to be familiar with cron to use this field.
The Examples list box of selected cron expressions and their associated descriptions is located
just below this button. You can use a listed expression as is, or use it as a template to modify the
expression to meet your needs.
If you select this type of time trigger, the Fire Starting In and the Fire Using Event buttons become
inactive.
For an example of how a cron expression can be implemented in a trigger, see “Creating and
Assigning a Time Trigger for the New Schedule” on page 173. For detailed information about
cron syntax, see “Understanding Cron Syntax in the Job Scheduler” on page 166.

 Fire Using Event: Specifies a deployed event or an external event that enables the job to fire
when a specified event occurs. Deployed events are defined using an XML syntax. You can
specify a deployed event from Events (that is, listed in the Events drop down list) or you can
enter the name of an external event.
If the number of characters in the Fire Using Event description string exceeds the space in the
field, a button is enabled that opens a string editor when clicked.
164 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Job Arguments

This tab displays an area in the lower left corner of the Job Schedule Editor where possible job
arguments are listed. If you select an existing schedule in the Job Schedules Table, any optional job
arguments (jobargs) for the associated job are displayed in this area.

Figure 13-8 The Job Arguments Area of the Job Scheduler View

The jobargs are defined by the deployed job. Some jobs might already have a default value displayed,
but others must have values specified in order for the job to be able to run.

IMPORTANT: Job arguments displayed in blue are required. You must supply data in the
accompanying fields.

A job argument defines the values that can be passed in when a job is invoked. These values let you
statically define and control job behavior. To learn more about each job argument, mouse over each
jobarg line to display tool tip text.

The Job Scheduler uses the values you enter into the fields of this area to build a jobargs namespace in
the policy for this job.

Each job argument has an accompanying Lock check box. When Lock is not selected, the
accompanying job argument uses the default value specified in the job’s policy. When Lock is selected,
the value specified in the field is locked down and overrides the default value in the policy. A locked
value continues to be used even if the policy value is modified.

You can click Restore Jobargs to restore job arguments to the values specified in the job policy. This
function removes any changes you might have specified in the Job Scheduler and deselects all Lock
check boxes.

User Environment

This tab displays an area in the lower left corner of the Job Schedule Editor that includes the Pass User
Environment check box. Select this check box if you want to pass the assigned user’s environment
variables to the job when it runs. When environment variables are recorded on the user account,
selecting the Pass User Environment check box makes those environment variables available to the job
and joblet.

A user’s environment is recorded under the user.env fact on his or her account. This fact can be set
when a user logs in to the Orchestration Server and is persisted until changed. A user’s environment
variables can be uploaded with the zos command line tool at login time in one of two variations:

zos login --user=foo --env

This command uploads the entire environment to the Job Scheduler. The upload can also be seen
on the User object in the Orchestration Console.
The Orchestration Server Job Scheduler 165

zos login --user=foo --env=PATH

When the user logs in, he or she can specify one or more environment variables to use at login.
The example above would result in just the PATH environment variable being uploaded.
Multiple environment variables can be specified by delimiting with a comma, as in the following
example:
--env=PATH,LD_PATH,ID

NOTE: The user’s environment variables can also be passed to the server when the user implements
the zos command line tool when running a job (as opposed to logging in). The command passes the
environment variable only for that particular job run.

zos run jobname --env=environment_variable

Constraints

This tab displays a constraint editor that you can use to create additional constraints for the job being
scheduled. Typically, additional resource constraints (such as “start”) are useful to delay the start of a
job when it is triggered.

Any XML constraints listed in this tab needs to have a top-level XML <constraints> element, as in
the following example:

<constraints>
 <constraint type="resource">
 <contains fact="resource.groups" value="myResourceGroup" />
 </constraint>
</constraints>

13.1.3 Understanding Cron Syntax in the Job Scheduler

The cron triggers you can configure in the Orchestratin Server Job Scheduler use a Quartz crontrigger
class for deciding when to invoke job execution. This is based on the standard Quartz format that you
can find further described on the OpenSymphony (http://www.opensymphony.com/quartz/
wikidocs/CronTriggers%20Tutorial.html) Web site, or the KickJava (http://kickjava.com/src/org/
quartz/CronTrigger.java.htm) Web site.

This section includes the following information:

 “Format” on page 166
 “Special Characters” on page 167
 “Examples of Cron Syntax” on page 168
 “Cron Scheduling Precautions” on page 169

Format

A cron expression is a string comprised of 6 or 7 fields separated by white space. Fields can contain
any of the allowed values, along with various combinations of the allowed special characters for that
field. The fields are explained in the following table:
166 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://kickjava.com/src/org/quartz/CronTrigger.java.htm

Table 13-2 Fields in a Cron Expression

Cron expressions can be as simple as this:

* * * * ? *

Or cron expressions can be more complex, like this:

0 0/5 14,18,3-39,52 ? JAN,MAR,SEP MON-FRI 2002-2011

Special Characters

Cron syntax incorporates logical operators, which are special characters that perform operations on
the values provided in the cron fields.

Table 13-3 Special Characters in the Orchestration Server Cron Syntax

Field Name Mandatory? Allowed Values Allowed special
Characters

Seconds Yes 0-59 , - * /

Minutes Yes 0-59 , - * /

Hours Yes 0-23 , - * /

Day of the Month Yes 1-31 , - * ? / L W

Month Yes 1-12 or JAN-DEC , - * /

Day of the Week Yes 1-7 OR SUN-SAT , - * ? / L #

Year No EMPTY, 1970-2099 , - * /

Operator Purpose Example

asterisk (*) Specifies all possible values for a field An asterisk in the hour time field is
equivalent to “every hour.”

question mark
(?)

A question mark (?) is allowed in the
day-of-month and day-of-week fields. It
is used to specify “no specific value,”
which is useful when you need to
specify something in one of these two
fields, but not in the other.

If you want a trigger to fire on a particular
day of the month (for example, the 10th), but
you don't care what day of the week that is,
enter 10 in the day-of-month field, and ? in
the day-of-week field.

dash (-) Specifies a range of values 2-5, which is equivalent to 2,3,4,5

comma (,) Specifies a list of values 1,3,4,7,8

slash (/) Used to skip a given number of values */3 in the hour time field is equivalent to
0,3,6,9,12,15,18,21. The asterisk (*)
specifies “every hour,” but the /3 means
only the first, fourth, seventh.

You can use a number in front of the slash to
set the initial value. For example, 2/3
means 2,5,8,11, and so on.
The Orchestration Server Job Scheduler 167

NOTE: The legal characters and the names of months and days of the week are not case sensitive. MON
is the same as mon.

You can specify days in two fields: month day and weekday. If both are specified in an entry, they are
cumulative, meaning that both of the entries are executed.

Examples of Cron Syntax

The following table shows examples of full cron expressions and their respective meanings.

L (“last”) The L character is allowed for the day-
of-month and day-of-week fields.

Specifies either the last day of the
month, or the last xxx day of the month.

The value L in the day-of-month field means
“the last day of the month,” which is day 31
for January, or day 28 for February in non-
leap years. If you use L in the day-of-week
field by itself, it simply means 7 or SAT. But if
you use it in the day-of-week field after
another value, it means “the last xxx day of
the month.” For example, 6L means “the last
Friday of the month.”

TIP: When you use the L option, be careful
not to specify lists or ranges of values. Doing
so causes confusing results.

W (“weekday”) The W character is allowed for the day-
of-month field.

Specifies the weekday (Monday-Friday)
nearest the given day.

If you specify 15W as the value for the day-
of-month field, the meaning is “the nearest
weekday to the 15th of the month.” So if the
15th is a Saturday, the trigger fires on Friday
the 14th. If the 15th is a Sunday, the trigger
fires on Monday the 16th. If the 15th is a
Tuesday, it fires on Tuesday the 15th.
However, if you specify 1W as the value for
day-of-month, and the 1st is a Saturday, the
trigger fires on Monday the 3rd, because it
does not “jump” over the boundary of a
month’s days. The W character can only be
specified when the day-of-month is a single
day, not a range or list of days.

TIP: You can combine the L and W
characters for the day-of-month expression
to yield LW, which translates to “last
weekday of the month.”

pound sign (#) The pound sign (#) character is
allowed for the day-of-week field. This
character is used to specify “the nth” xxx
day of the month.

The value of 6#3 in the day-of-week field
means the third Friday of the month (day 6 =
Friday and #3 = the 3rd one in the month).

Other Examples: 2#1 specifies the first
Monday of the month and 4#5 specifies the
fifth Wednesday of the month. However, if
you specify #5 and there are fewer than 5 of
the given day-of-week in the month, no firing
occurs that month.

Operator Purpose Example
168 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Table 13-4 Results of Altered Cron Syntax on Execution Times

Cron Scheduling Precautions

You should remember the following items when you use cron scheduling:

 Always check the effect of adding the ? and * characters in the day-of-week and day-of-month
fields to make sure the expected behavior fires correctly.

 Support for specifying both a day-of-week and a day-of-month value is not complete. You must
currently use the ? character in one of these fields.

 Be careful when setting fire times to occur between 12:00 a.m. and 1:00 a.m. Changing to or from
daylight saving time can cause a skip or a repeat in the schedule firing, depending on whether
the clock moves backward or forward.

Cron Expression Example Description

0 0 12 * * ? Fire at 12:00 p.m. (noon) every day

0 15 10 ? * * Fire at 10:15 a.m. every day

0 15 10 * * ? Fire at 10:15 a.m. every day

0 15 10 * * ? * Fire at 10:15 a.m. every day

0 15 10 * * ? 2012 Fire at 10:15 a.m. every day during the year 2012

0 * 14 * * ? Fire every minute starting at 2:00 p.m. and ending at 2:59.p.m., every
day

0 0/5 14 * * ? Fire every five minutes starting at 2:00 p.m. and ending at 2:55 p.m.,
every day

0 0/5 14,18 * * ? Fire every five minutes starting at 2:00 p.m. and ending at 2:55 p.m.,
and fire every five minutes starting at 6:00 p.m. and ending at 6:55
p.m., every day

0 0-5 14 * * ? Fire every minute starting at 2:00 p.m. and ending at 2:05.p.m., every
day

0 10,44 14 ? 3 WED Fire at 2:10 p.m. and at 2:44 p.m. every Wednesday in the month of
March

0 15 10 ? * MON-FRI Fire at 10:15 a.m. every Monday, Tuesday, Wednesday, Thursday and
Friday

0 15 10 15 * ? Fire at 10:15 a.m. on the 15th day of every month

0 15 10 15 * ? Fire at 10:15 a.m. on the last day of every month

0 15 10 ? * 6L Fire at 10:15 a.m. on the last Friday of every month

0 15 10 ? * 6L 2011-2014 Fire at 10:15 a.m. on every last Friday of every month during the years
2011, 20012, 2013, and 2014

0 15 10 ? * 6#3 Fire at 10:15 a.m. on the third Friday of every month

0 0 12 1/5 * ? Fire at 12:00 p.m. (noon) every five days every month, starting on the
first day of the month

0 11 11 11 11 ? Fire every November 11th at 11:11 a.m.
The Orchestration Server Job Scheduler 169

13.2 Walkthrough: Scheduling a System Job
This section demonstrates how you can use the Orchestration Console to deploy and schedule an
existing system job named auditCleaner.job. This example job is included in the examples
directory of your Orchestration Server installation.

This section includes the following information:

 Section 13.2.1, “Deploying a Sample System Job,” on page 170
 Section 13.2.2, “Creating a New Schedule for the Job,” on page 171
 Section 13.2.3, “Defining the New Schedule,” on page 172
 Section 13.2.4, “Activating the New Schedule,” on page 176
 Section 13.2.5, “Running the New Schedule Immediately,” on page 176

13.2.1 Deploying a Sample System Job

Before a job can run, the Orchestration Server administrator must deploy it, which involves moving it
from a developed package state to a state where it is ready and available for users. Only the
administrator has the necessary rights to deploy a job.

There are four methods you can use to deploy a job:

 Deploy it from the Orchestration Console by right-clicking the Jobs container in the Explorer
panel.

 Deploy it from the Orchestration Console by selecting the Actions menu in the console.
 Deploy it from the zosadmin command line (zosadmin deploy path_to_job).
 Copy the deployable component to the “hot” deployment directory under the Orchestration

Server instance directory. Typically, this directory is located at /var/opt/novell/zenworks/
zos/server/deploy. Using this method, deployment proceeds within a few seconds. The server
monitors this directory.

A runnable job can also be scheduled, which means that the schedule for running the job and the
trigger or triggers that initiate or “fire” the schedule (or both) are configured and packaged with the
job.

For this walkthrough, you deploy one of several system jobs (auditCleaner.job) developed for
Cloud Manager Orchestration Server administrators to demonstrate how system jobs are deployed
and run. This job package, which is actually a .jar archive, includes only a .policy component and
a .jdl component. It does not have a .sched component. You can use the Job Scheduler in the
Orchestration Console to add the .sched component separately.

NOTE: A job developer can create and package jobs that include a .jdl file, a .policy file, a .trig
file (trigger), and a .sched file (schedule). The presence of the .sched file in the job package is also
typical of the predeployed discovery jobs installed with the Orchestration Server, which run without
intervention when the criteria for firing the schedule are satisfied. Such jobs are visible in the Job
Scheduler because they already include the .sched components.

Although this walkthrough demonstrates only the first method listed above for deploying, the other
methods are relatively simple, so no further examples are provided to illustrate them.

1 In the Explorer panel of the Orchestration Console, right-click the Jobs container, then click
Deploy Job to open the Select the Component File to Deploy dialog box.
170 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

2 Open the Look In drop-down list, then navigate to the location of the job you want to deploy.
Although a job developer can store jobs at any location on the network, the sample jobs shipped
with the Orchestration Server are limited to the directories where the product is installed. For
this walkthrough, navigate to the /opt/novell/zenworks/zos/server/components/
systemJobs directory.

3 Select auditCleaner.job, then click OK to deploy the job to the Jobs container.
The job appears in the all container and in the examples container in the tree.

13.2.2 Creating a New Schedule for the Job

When a job has been deployed, you can create a schedule to specify when you want it to run. In this
walkthrough, you create a schedule for the auditCleaner job by using the Scheduler tool in the
Orchestration Console.

1 In the toolbar in the Orchestration Console, click the Job Scheduler button to open the Job
Scheduler view.

2 In the Job Scheduler view, click New to open the Enter Unique Schedule Name dialog box.
3 Specify a name for the schedule you want to create for this job. For this walkthrough, specify the

name cleaner in the Schedule Name field, then click OK to return to the Job Scheduler view.
The Orchestration Server Job Scheduler 171

The new schedule is highlighted in the Job Schedules Table and is flagged with a pencil icon,
signifying that the schedule has not been committed yet. Continue with Section 13.2.3, “Defining
the New Schedule,” on page 172 to define this new schedule by adding the specific information
you want.

13.2.3 Defining the New Schedule

Defining a new job schedule consists of selecting its general properties, its specific properties, and the
triggers you want to be associated with it.

 “Choosing General Properties for a New Schedule” on page 172
 “Creating and Assigning a Time Trigger for the New Schedule” on page 173
 “Adding Specific Parameters to the New Schedule” on page 174

Choosing General Properties for a New Schedule

After you have created a new job schedule, its name cannot be changed, but you can add properties
to it that help to identify and classify it in a general way. Use the following steps to add these
properties:

1 In the Job Schedule Editor panel of the Scheduler view, select the Job drop-down list.
2 From the list of available jobs, select auditCleaner as the job to which this schedule applies.
3 In the Job Schedule Editor, select the User drop-down list.
4 From the list of available users, select zosSystem as the user who runs this job.

The zos user is the built-in user that is always present. It is commonly used for routine jobs like
this example.

5 In the Job Schedule Editor, select the Priority drop-down list.

6 From the list of available priorities, select high as the priority for this job schedule.
The maximum selectable priority is dependent on an attribute associated with the selected user.

7 Click the Save button on the toolbar of the Orchestration Console to save the general
properties you have selected for the new schedule.
The schedule is now committed, and the attribute columns in the Job Schedules Table are
populated with the name of the job that the schedule will run, the user it will run as, the priority
at which it will run, and its current status. Because the schedule has not been activated yet, it
remains in a Disabled state.
172 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

When you have chosen the general properties of the new schedule, you can either continue with
“Adding Specific Parameters to the New Schedule” on page 174 or proceed directly to “Creating and
Assigning a Time Trigger for the New Schedule” on page 173.

Creating and Assigning a Time Trigger for the New Schedule

A job already defined in a schedule can be triggered with two main themes: the occurrence of an
event or the arrival of a point in time. In this walkthrough, you define a time trigger for the cleaner
schedule.

In this example, there are no defined time triggers in the Job Scheduler, so you use the following
steps to define a time trigger.

1 In the Job Schedule view, click Edit Triggers to display the Triggers dialog box.
Time triggers are shareable across schedules. After a time trigger is defined, it is added to a list
of triggers in this dialog box. You can select a predefined trigger from this list when you create a
new schedule, or you can create a new time trigger, as the next steps demonstrate.

2 In the Triggers dialog box, click New to clear and activate the fields in the dialog box for the
creation of a unique time trigger.

3 In the Enter Unique Trigger Name dialog box, specify 24 hour as the unique name of this time
trigger, then click OK.

4 In the Description field, specify Runs every 24 hours at noon as the description for this time
trigger.

5 Click Fire Using CRON Expression to activate the fields for defining a cron expression.

6 Click the drop-down list of sample cron expressions, then select the default cron expression, 0 0
12 * * ?, which is listed first.
The sample expressions in the drop-down list show cron strings with accompanying
descriptions to remind you how a cron string is constructed. The examples are selectable and
editable and can be used in the schedule, just as you have done in this step.

NOTE: For detailed information about cron syntax, see “Understanding Cron Syntax in the Job
Scheduler” on page 166.

7 Click Save to save the trigger you just created, then click Close to return to the Job Scheduler
view.

8 From the Job Scheduler view, make sure that the cleaner schedule is selected, then click Choose
Triggers to display the Choose Triggers dialog box.

9 In the Choose Triggers dialog box, select 24 hour (the name of the trigger you created), click Add
to move the trigger definition to the Scheduled Job Triggers list, then click OK to return to the Job
Scheduler view.

NOTE: You can select and combine as many time triggers as you want to apply to a given
schedule. You can also combine time triggers with event triggers on a given schedule.

In the Triggers list of the Job Scheduler view, the 24 hour trigger is now associated with the new
schedule.
The Orchestration Server Job Scheduler 173

10 Click the Save button to update the Orchestration Server with the new schedule/trigger
association.

Adding Specific Parameters to the New Schedule

If necessary, you can now add specific parameters to the schedule to edit its job arguments, to choose
whether you want to pass the user environment variables to the schedule, or to specify policy
constraints to further focus the purpose of this schedule when it fires.

For the purpose of this walkthrough, none of these specific parameters is modified, although a
general overview of how to do so is explained.

The following specific parameters can be managed in the Job Scheduler Editor:

 “Job Arguments” on page 174
 “User Environment” on page 175
 “Constraints” on page 175

Job Arguments

As explained in Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 158, a job argument
defines the values that can be passed in to the process when a job is invoked. These values let you
statically define and control job behavior. The job arguments that appear in the Job Arguments tab of
the Schedule Editor depend on the job. The job might have no arguments.

By default, the auditCleaner job lists only one job argument, jobargs.days.

Figure 13-9 The Job Arguments Tab of the Job Schedule Editor

According to the tooltip text, this argument is the number of days of job history to keep, so this job
cleans up the history of the job in the Orchestration Server audit database after the job reaches the age
of 60 days. Data older than 60 days is to be deleted. If you want to, you can change this parameter, or
any other parameter in a job argument.

If the default value for a job argument parameter is missing, the job might fail, so you should inspect
these parameters carefully.
174 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

User Environment

As explained in Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 158, a user’s
environment variables are available in the Job Scheduler only if that user utilizes the zos command
line tool and elects to pass those environment variables to the server at login time or when he or she
runs a job (running the job creates the environment variables as facts in the job). The zos run
command passes the environment for that particular job run only.

In this walkthrough, the zosSystem user shows no user environment variables.

Figure 13-10 The User Environment Tab of the Job Scheduler Editor, No User Environment Variables Available

Because there are no environment variables listed, there are none to pass to the schedule, so it is not
necessary to select the Pass User Environment check box. By default, this check box is not selected,
even if environment variables are present for a user specified to run the job.

Sometimes a job is written to work from a user’s environment variables. In this case, if a user has not
logged in or has not run the job from the zos command line using the necessary environment option,
the schedule must pass those variables to the job when it is invoked.

If you associate a user who has user environment variables with this schedule, you would see a list of
those environment variables as they would be passed to the job.

Figure 13-11 The User Environment Tab of the Job Schedule Editor, User Environment Variables Available

Selecting the Pass User Environment check box in this scenario would create these variables as facts
used for this job invocation.

Constraints

As explained in Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 158, the Constraints
tab displays a constraint editor that you can use to create additional constraints for the job being
scheduled.

Any other constraints associated with the context of this job invocation (including but not limited to
this job), with the user you’ve selected, with that user’s group, with the jobs group, with the resources
that the job uses, or with the resource groups that the job uses, run in spite of the policy that you
define here. These additional constraints usually restrict or refine what the job does when this
schedule fires.
The Orchestration Server Job Scheduler 175

These constraints are passed to the job only when this schedule is invoked. For example, you could
add a start constraint to delay the start of a job, a resource constraint to run on only one of three
named machines, or a continue constraint to automatically time out the job if it takes too long to run.
Anything you can do with a regular job policy constraint, you can add as a special constraint here for
this particular schedule invocation.

Click the Save button to update the Orchestration Server with the new schedule.

13.2.4 Activating the New Schedule

When the new schedule has been created and its triggers defined, you need to take it from the
disabled state to an active state where it is ready to run.

1 In the Job Scheduler view, select the newly created job. The job shows that it is in a Disabled state.

2 Click Enable to enable the schedule.

The schedule is now enabled, but has not run yet.

13.2.5 Running the New Schedule Immediately

You can trigger the schedule immediately, rather than waiting for the triggers to fire.

1 In the Job Schedules Table of the Job Scheduler view, select cleaner (the name of the schedule you
want to run), click Run Now, then click the job monitor button on the toolbar (Jobs) to open the
Job Monitor view.

The joblet icon shows that the job is running.
2 Click the Job Scheduler button on the toolbar to open the Job Scheduler view.

The cleaner schedule is listed as an active job. This indicates that the schedule has started the
job as anticipated.

If you click the Refresh button , you can see that the job now has a Job ID.

If the job invocation fails, as in this example, a red exclamation icon is also displayed.
176 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

14 14The Policy Debugger

The Policy Debugger is a tabbed page available in several views of the Cloud Manager Orchestration
Console. This tool helps you to determine the reasons for the current state of a job. The following
figure shows the Policy Debugger tab opened in the Jobs view of the Orchestration Console.

Figure 14-1 The Jobs View of the Orchestration Console with the Policy Debugger Page Open

The Policy Debugger tab is also available in the VM Hosts view and in the Provisioner view of the
Orchestration Console.

 Section 14.1, “Constraints Table View,” on page 177
 Section 14.2, “Facts Table View,” on page 182
 Section 14.3, “Policy Debugger Use Cases,” on page 183

14.1 Constraints Table View
The left side of the Policy Debugger page is referred to as the Constraints Table view.
The Policy Debugger 177

Figure 14-2 The Constraints Table View

The appearance of this view can change, depending on the constraint type you select in the drop-
down menu. For a description of these types, see Section 14.1.2, “Constraint Type List,” on page 179.

The Constraints Table View is composed of several parts:

 Section 14.1.1, “Match Context Area,” on page 178
 Section 14.1.2, “Constraint Type List,” on page 179
 Section 14.1.3, “Verbose Check Box,” on page 179
 Section 14.1.4, “Capable Resources Summary,” on page 180
 Section 14.1.5, “Constraints Column of the Constraints Table View,” on page 180
 Section 14.1.6, “Policy Column of the Constraints Table,” on page 181

14.1.1 Match Context Area

The policy debugger provides the general identification of a job instance in the Match Context area of
the Constraints Table view. The Match Context defines everything associated with running a job on a
particular resource because it references facts, which are also referenced in policies. The policies
define how, when, and where the job runs.

Figure 14-3 The Match Context Area of the Constraints Table View in the Policy Debugger

That identifying facts in the Match Context include:

Matrix: The icon and a text string identifies the machine that matches the grid name given to the
Orchestration Server where this job is running.

User: The icon and a text string identifies the User object that matches the user who is running the
job.

Job: The icon and a text string identifies the deployed job that matches the one that is running on
the grid.

Job Instance: The icon and a fully qualified text string identifies the specific job instance that
matches the deployed job running on the grid.
178 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Resource: The Resource drop-down list shows all resources. The list appears in the Match Context if
the resource constraint type is selected. The resources in the list that are currently offline display with
a dimmed icon. If available, a listed resource has a colored dot by its side. The color of the dot (blue
or gray) and the resource type it accompanies has significance:

 A blue dot with the All Resources label indicates that at least one resource matches the
constraints and is capable of servicing the job.

 A gray dot with the All Resources label indicates that no resources match the constraints.
 A blue dot with a named, selected resource indicates that its constraints match and it is

capable of servicing the job.
 A gray dot by a named, selected resource indicates that its constraints do not match and

that it is not capable of servicing the job.

The following figure shows a list of eight resources. Four of those resources (lab.a, lab.b, lab.c and
lab.d) are online. Their constraints match, so they are capable of servicing the job.

Figure 14-4 Resource Drop Down List Showing Online and Offline Resources

14.1.2 Constraint Type List

Select one of the constraint types in the drop down list to specify a policy context. Constraint types in
the list are disabled (dimmed) if they do not apply to the job that you are debugging.

 accept
 start
 continue
 provision
 allocation
 resource
 vmhost
 repository
 health

14.1.3 Verbose Check Box

When you select the Verbose check box, the reason string specified in the policy is displayed in the
Constraints tree. For more information, see Section 14.1.5, “Constraints Column of the Constraints
Table View,” on page 180.
The Policy Debugger 179

14.1.4 Capable Resources Summary

Directly under the Resource List in the constraint view, a populated string summarizes the resources
that are capable of servicing the job. For example, 4 matching Resource of 10 online indicates
that four of the ten total online resources are capable of servicing the job.

14.1.5 Constraints Column of the Constraints Table View

The Constraints column of the constraints table view shows the logical hierarchy (that is, a “tree”
format) of the constraints that are defined by the policies associated with the job. You can identify the
status of the listed constraints by the icons that might be displayed in the far left column of the table:

No icon: The constraint passes the match. It is a “true” match. The figure below shows that the
resource lab.a is available to run the job because all of its constraints match. No red icons are
displayed next to any listed constraint.

Red dot icon: The constraint does not pass the match. The figure below shows that the resource
eng.a cannot run the job because its constraints do not match.

Red octagonal icon: The constraint does not pass the match and is blocking the job. The figure above
also shows the blocking constraint (red octagon).

Green dot icon: A blocking constraint has been disabled so that it behaves like a match. The figure
below shows the green dot icon next to that the constraint that was formerly blocked and can now
behave as a match.
180 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

If you right-click a constraint in the table, a popup menu with three options is displayed. This menu
lets you change the status of the constraint.

 Show Admin View: Select this option to open the Admin View for the specific resource
selected.

 Disable Constraint: Select this option to disable (attach a green dot icon to) a constraint.
Disabling a constraint with this function effectively makes it match, which is a condition that can
be useful if you want to perform a “what if” test without actually changing a policy.

 Enable All Constraints: Select this option if you have disabled one or more constraints during
testing and you want to restore them to the enabled state.

Cached Constraints in the Constraints Column

When you change the constraint type in the Constraints Type List, the background of the table
changes to green for some types. These are “cached” constraints that are saved with the job after it is
complete. Their purpose is to help you debug the policy.

Figure 14-5 Cached Constraints Displayed in the Constraints Table View

14.1.6 Policy Column of the Constraints Table

The Policy column of the Constraints Table displays the policy name that contributed the constraint.
Right-click a policy name to open a popup menu offering the option to open the policy editor for the
specified policy. The menu also includes constraint enabling or disabling options, just as the pop-up
menu for constraint column does.
The Policy Debugger 181

Figure 14-6 The Pop-up Menu Launched from the Policy Column

14.2 Facts Table View
The Facts Table view displays the facts referenced in the Constraint Tree view for a specified
Resource. Selecting a fact in the Constraint Tree automatically selects that fact in the table.

Figure 14-7 The Constraints Table View and the Accompanying Facts Table View

If you right-click a column head in this table, a menu is launched where you can select the columns
that you want to display.

Figure 14-8 Menu Used to Select the Columns Displayed in the Facts Table View of the Policy Debugger

14.2.1 All Facts Check Box

If you select the All Facts check box at the top of the Facts Table view, all of the facts (including matrix,
user, job, jobargs, jobinstance, and resource facts) associated with the Match Context are listed.

If you select All Resources in the Match Context (see Section 14.1.1, “Match Context Area,” on
page 178) and you also select the All Facts check box, the Facts Table view displays all the facts for all
resources for the specified Match Context.
182 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Figure 14-9 All Facts Check Box Selected with All Resources in Match Context

14.3 Policy Debugger Use Cases
The objective of this use case is to run a job that remmians in the waiting state and to use the policy
debugger to identify why it is in the state and to make the necessary changes to get the job to run. The
quickie.job is used along with a simple policy that specifies that the resources that are to be used
must be in a Resource group called debugger.

Use the following steps to re-create the use case.

1 In the Orchestration Console, create a user named debugger.
2 Deploy quickie.job from the /examples directory.
3 In the Orchestration Console, create a schedule named quickie, specifying the quickie job and

the debugger user.
4 In the Orchestration Console, create a policy and name it debuggerExample. The policy needs to

specify that the resource used belongs to the group called debugger.

5 In the Orchestration Console, associate the debuggerExample policy to the quickie job.
6 In the Job Scheduler view of the Orchestration Console, select the quickie schedule, then click

Run Now to run the quickie schedule.
7 In the Job Monitor view of the Orchestration Console, select the Policy Debugger tab and verify

that the job is in the waiting state.
8 In the Constraints Table view, open the Constraint Type drop-down list, then select Allocation.
9 In the Match Context area of the Constraints Table view, open the Resource drop-down list, then

select any resource to refresh the Constraints Table and Facts Table views.
The Policy Debugger 183

The Policy Debugger displays a red icon near the constraints that fail to match. The larger, red
octagonal icon shows the particular constraint that is “blocking” and preventing the job from
running on the resource. This is the constraint that is causing the job to be in a waiting state. The
Constraints Table also displays the policy name (debuggerExample) that is contributing the
constraint that is causing problems.

There are several ways to get the job to run:

 Create a Resource group called debugger, then place a resource in that group to satisfy the
constraint specified in the policy.

 Disassociate the policy (debuggerExample) from the job (quickie).
 In the Constraints Table, right-click the blocking constraint and select Disable Constraint.
184 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

A AGrid Object Health Monitoring

This section includes the following information:

 Section A.1, “Health Facts,” on page 185
 Section A.2, “Health Events,” on page 187
 Section A.3, “Health Debugger,” on page 187

A.1 Health Facts
The Resource grid object, the VM host grid object, the User grid object, and the Repository grid object
each have an attribute or Fact that denotes the health of the object.

 resource.health

 vmhost.health

 user.health

 repository.health

Empirically, object health is a simple Boolean value, with True indicating that the object is healthy.
This value can be controlled in a number of ways. An unhealthy object is displayed in the Cloud
Manager Orchestration Console with a red “plus” symbol to signal the object’s condition.

Figure A-1 Tree View of Repository Grid Objects in the “all” Group, Some Objects Unhealthy

You can define what constitutes the health or non-health of the grid object by setting this health fact.
The health fact can be set or cleared in several ways:

A.1.1 Explicitly Set or Cleared by the Administrator

The administrator can use tools in the Orchestration Console to explicitly set or clear the fact.

1 Select any grid object in the Orchestration Console, then click the Info/Groups tab in the
Workspace view. This is the “info” attribute editor. The attributes on this page let you edit facts.
Grid Object Health Monitoring 185

The object information panel of the page has a Healthy check box that you can select or deselect
to set the health of the object.

2 On the Constraint/Fact fact page of a grid object, right click the xxx.health fact name, then click
Edit/View Fact to open the Edit Fact dialog box.
You can set the health of the object by selecting or deselecting the health check box. Changing
the value in the Orchestration Console in this way has an immediate effect unless the value is
overridden by an attached policy (this follows the normal rules of policy inheritance).

A.1.2 Set by Using a Discovery Job

A discovery job is a job that is periodically scheduled to run on resources and to explicitly set the
health fact, much like it sets other discovered facts). In this case, the discovery job performs a setFact
(xxx.health) from JDL code.

A.1.3 Set by Using a Policy

This method has little practical use except for locking the value immediately to override the setting
(that is, the typical policy behavior) on the grid object:

 <policy>
 <fact name="resource.health" value="true" type="boolean" />
 </policy>

A.1.4 Set by Using a Computed Fact

Set by using a computed fact. This method can be used to monitor the health according to a
computed value. One applied scenario for this method might be a computed fact that performs a
statistical analysis of historical load data, perhaps provided by the Metrics facility.

A.1.5 Set Automatically by Using a Health Constraint

Set automatically by using a health constraint. This is the most practical use and is best illustrated
with examples.

Example 1: Define resources as “unhealthy” if their 10-minute load average is greater than 5.

 <policy>
 <constraint type="health">
 <lt fact="resource.metrics.loadaverage.history.10_min" value="5.0" />
 </constraint>
 </policy>

You could attach this policy directly to the Resource grid object or to a Resource group. Attaching it
to a Resource group is more practical.

Example 2: Define a user as unhealthy if he or she has no money in an account.
186 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 <policy>
 <constraint type="health">
 <ge fact="user.account.balance" value="0" />
 </constraint>
 </policy>

You could attach this policy directly to the User grid object, or to a User group. Attaching it to a User
group is more practical.

You can aggregate (that is, group together with “and” or “or”) health constraints by using normal
rules of policy aggregation.

By default, the Orchestration Server runs health constraints every 30 seconds. To alter this interval,
you must contact NetIQ Support.

A.2 Health Events
Each time the value of a health fact changes, an event is generated. This event can be subscribed to by
long-running Jobs or the event can be used to trigger Jobs in the Job Scheduler (see Chapter 13, “The
Orchestration Server Job Scheduler,” on page 155). The event names are different for each object type.
They are listed in the following table.

Table A-1 Event Names for Grid Objects

A.3 Health Debugger
Several objects modeled by the Orchestration Console have a health fact that can be used to visually
show the health of the object or to trigger a job (see Chapter 13, “The Orchestration Server Job
Scheduler,” on page 155) upon a state change. This fact can optionally be manually set, or more
usually automatically set through the periodic execution of the health constraint placed on that
object. When such a health constraint is active, you might need to debug to discover the reasons for
the changed state. The Health Debugger is a useful debugging tool.

The Health Debugger is a tabbed page (sometimes called an “admin view”) available in several views
of the Orchestration Console and functions much like the more generic “Policy Debugger.” This tool
helps you to determine the reasons for the current Health of a Grid object. The following figure
shows the Health Debugger tab opened in the Resource object view of the Orchestration Console.

Object Event Name

User USER_HEALTH

Resource RESOURCE_HEALTH

Repository REPOSITORY_HEALTH

VM host VMHOST_HEALTH
Grid Object Health Monitoring 187

Figure A-2 Orchestration Console Jobs View with the Health Debugger Page Open

The Health Debugger tab is also available in the VM Host object view, the Repository object view and
in the User object view of the Orchestration Console.

 Section A.3.1, “Constraints Table Panel,” on page 188
 Section A.3.2, “Facts Table View,” on page 191

A.3.1 Constraints Table Panel

The left side of the Health Debugger page is referred to as the Constraints Table view.

Figure A-3 The Constraints Table View

The appearance of this view can change, depending on the Constraint Type you select in the
Constraint drop down list. In effect, if you change from the health selection, you will be debugging
other constraints. For a description of these constraint types, see Section 14.1.2, “Constraint Type
List,” on page 179. Different objects selected for the view change the Match Context in which the
constraint is executed, which is useful for comparing how the constraint evaluates other objects.
188 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

The Constraints Table view is composed of several parts:

 “Match Context Area” on page 189
 “Verbose Check Box” on page 189
 “Capable Objects Summary” on page 189
 “Constraints Column of the Constraints Table View” on page 190

Match Context Area

The Health Debugger provides the general identification of a Grid object in the Match Context area of
the Constraints Table view. The Match Context defines every object that is available to the constraint
you are viewing.

Figure A-4 The Match Context Area of the Constraints Table View in the Health Debugger

In this example, the identifying Facts in the Match Context include:

Matrix: The icon and a text string identifies the machine that matches the grid name given to the
Orchestration Server where this object exists.

Object icon: The object icon and a text string identifies the object (VM host, Repository, or that
matches the user who is running the job. If the object icon has a red cross overlaid, it is unhealthy.

Object list: The object drop down list shows all named objects of the type selected in the Explorer
Tree. The objects in the list that are currently offline display with a dimmed icon. If available, a listed
object has a colored dot by its side. The color of the dot (blue or gray) and the object type it
accompanies has significance:

 A blue dot with the All <Object Type> label indicates that at least one object in the list
matches the constraints and is healthy.

 A gray dot with the All <Object Type> label indicates that no objects of this type match the
constraints.

 A blue dot with a named, selected object indicates that its constraints match and it is
healthy.

 A gray dot by a named, selected object indicates that its constraints do not match and that it
is not healthy.

Verbose Check Box

When you select the Verbose check box, the reason string specified in the policy is displayed in the
Constraints tree. For more information, see Section 14.1.5, “Constraints Column of the Constraints
Table View,” on page 180.

Capable Objects Summary

Directly under the Object list in the constraint view, a populated string summarizes the resources that
are capable of servicing the job. For example, 11 healthy Resources of 12 online indicates that
11 of the 12 total online Resources are healthy.
Grid Object Health Monitoring 189

Constraints Column of the Constraints Table View

The Constraints column of the constraints table view shows the logical hierarchy (that is, a “tree”
format) of the constraints that are defined by the Policies associated with the Job. You can identify the
status of the listed constraints by the icons that might be displayed in the far left column of the table:

No icon: no icon: The constraint passes the match. It is a “true” match. No red icons are displayed
next to any listed constraint.

Red dot icon: The constraint does not pass the match. The figure below shows that the resource
vmh5slesx cannot run the job because its health constraints do not match.

Red octagonal icon: For convenience, only one of the constraints is identified as the blocking
constraint. This is the constraint that the system has determined is responsible for the constraint as a
whole to fail (note that individual constraint lines can fail without causing the entire constraint to
fail).

Green dot icon: green dot icon: A failing constraint has been disabled so that it behaves like a match
(pass). The figure below shows the green dot icon next to that the constraint that was formerly failing
and can now be forced to behave as a match.
190 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

If you right-click a constraint in the table, a popup menu with three options is displayed. This menu
lets you change the status of the constraint. Disabling a constraint is useful if you want to temporarily
relax a condition without editing or redeploying the entire policy and potentially affecting other
objects that share the policy. A disabled constraint can be re-enabled later.

The constraint status change options include the following:

 Show Admin View: Select this option to open the Admin view for the specific object selected.
 Disable Constraint: Select this option to disable (attach a green dot icon to) a constraint.

Disabling a constraint with this function effectively makes it match, a condition that can prove
useful if you want to perform a “what if” test without actually changing a policy. Green

 Enable All Constraints: Select this option if you have disabled one or more constraints during
testing and you want to restore them to the enabled state.

NOTE: Health constraints are always re-evaluated in the debugger. The last system execution
(cached constraint) is not available for health constraints.

The Policy column of the constraints table displays the policy name that contributed the constraint.
Right-click a policy name to open a popup menu offering the option to open the policy editor for the
specified policy. The menu also includes constraint enabling or disabling options, just as the pop-up
menu for constraint column does.

Figure A-5 The Pop-up Menu Launched from the Policy Column

A.3.2 Facts Table View

The Facts Table view displays the facts referenced in the Constraint Tree view for a specified object.
Selecting a fact in the Constraint tree automatically selects that fact in the table.
Grid Object Health Monitoring 191

Figure A-6 The Constraints Table View and the Accompanying Facts Table View

If you right-click a column head in this table, a menu is launched where you can select the columns
that you want to display.

Figure A-7 Menu Used to Select the Columns Displayed in the Facts Table View of the Policy Debugger

All Facts Check Box

If you select the All Facts check box at the top of the Facts Table view, all of the facts (including matrix,
and <Object type> facts) associated with the Match Context are listed.

If you select All <Object Type> in the Match Context (see Section 14.1.1, “Match Context Area,” on
page 178) and you also select the All Facts check box, the Facts Table view displays all the <object
type> facts for the specified Match Context of the selected object.

Figure A-8 All Facts Check Box Selected with All VM Hosts in Match Context
192 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

B BEvents

This section contains the following information:

 Section B.1, “Event Object Visualization and Management in the Orchestration Console,” on
page 193

 Section B.2, “Event Debugger,” on page 195
 Section B.3, “Understanding the Orchestration Server Events System,” on page 198

B.1 Event Object Visualization and Management in the
Orchestration Console
The Events folder is displayed in the Explorer tree between the Computed Facts and Metrics folders.

Figure B-1 The Events Folder in the Orchestration Console Explorer View

Although the Cloud Manager Orchestration Server includes several built-in Events (see Section B.3.2,
“Built-in Events,” on page 199), these Events are not displayed in the Explorer view. Only custom
Events (defined in XML by the administrator and then deployed on the server) are displayed in the
tree.

When an Event object is deployed, its icon is displayed in the tree in the Events folder.

Figure B-2 An Event Object in the Events Folder

The icon in the Explorer tree might be overlaid with a write symbol to indicate that its XML
content has changed and needs to be saved. For more information about changing the XML content,
see Section B.1.4, “Event Editor,” on page 194.

This section includes the following information about how the Event object is managed in the
Orchestration Console:

 Section B.1.1, “Deploying a New Rule-Based Event,” on page 194
 Section B.1.2, “Deploying a Pre-written Rule-Based Event,” on page 194
 Section B.1.3, “Undeploying an Event,” on page 194
 Section B.1.4, “Event Editor,” on page 194
Events 193

B.1.1 Deploying a New Rule-Based Event

Use the following steps to create a new event.

1 In the Explorer view, right-click the Events folder, then select New Event to open the Create a
New Event dialog box.

2 Specify the name for the new Event, then click OK to create the new Event object.
The Orchestration Server then deploys the new Event object on the server, where it can be
managed. The Orchestration Console opens the Event Editor, where you can edit the XML
definition of this Event. For more information, see Section B.1.4, “Event Editor,” on page 194 and
Section B.3.3, “Rule-based Events,” on page 200.

B.1.2 Deploying a Pre-written Rule-Based Event

Use the following steps to deploy a pre-written Event (an XML .event file).

1 Right-click the Events container, then select Deploy Event to open the Select the Component File
to Deploy dialog box.

2 In the dialog box, navigate to the file system location of the Event file you previously created, or
to an example .event file from /opt/novell/zenworks/zos/server/examples/events, then
click OK to deploy the pre-written Event.
When you deploy the rule-based Event, the Orchestration Console opens the Event Editor,
where you can edit the XML definition of this Event. For more information, see Section B.1.4,
“Event Editor,” on page 194 and Section B.3.3, “Rule-based Events,” on page 200.

B.1.3 Undeploying an Event

When an Event has been deployed, it can be undeployed. Undeploying deletes the Event object
within the server, but it does not delete the source .event file, which still exists and can be
redeployed.

To undeploy an Event, right-click the Event object in the Explorer tree, then select Undeploy. You can
also simply select the object and press Delete.

B.1.4 Event Editor

The Event Editor opens when you select a deployed Event in the Explorer tree of the Orchestration
Console.
194 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Figure B-3 The Event Editor

Inside this editor, you can make changes to the XML content of the Event. Example Events contain
comments that explain how you can use them and the behavior you can expect to see as a result of
deploying them. For the changes you make to be effective, you need to click the Save tool.

For more information about the allowed XML syntax within an Event, see Section B.3.3, “Rule-based
Events,” on page 200.

B.2 Event Debugger
The Event Debugger is a tabbed page available from the Explorer view of an Event object when you
select an event and then click the Event Debugger tab. This tool helps you to determine the reasons
for the current state (triggered or reset) of an Event. The following figure shows the Event
Debugger view:
Events 195

Figure B-4 The Event Debugger

The information in this section describes the various parts of the debugger.

 Section B.2.1, “Constraints Table,” on page 196
 Section B.2.2, “The Facts Table,” on page 197

B.2.1 Constraints Table

The left side of the Event Debugger panel includes the Constraints Table. The rules that define the
<trigger> and <reset> of an Event are defined using the same XML constraint syntax used in
policies.

Figure B-5 The Constraints Table Area of the Events Debugger

The Constraints Table has several parts:

 “Match Context” on page 197
 “Event Type List” on page 197
 “Verbose Check Box” on page 197
 “Constraints List (Tree)” on page 197
196 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

Match Context

Depending on the Event, the debugger identifies the Grid objects (Job, Jobinstance, Resource,
Repository, User, or VMHost) that define the context of the trigger or reset rules specified in the
Event XML.

Figure B-6 The Match Context Area of the Constraints Table View in the Event Debugger

Event Type List

Select one of the Event types in the drop-down list to debug how either the <trigger> or <reset>
rules are being applied. Constraint types in the list are disabled (dimmed) if they do not apply to the
Event that you are debugging.

 trigger: The rules defining the conditions (through a constraint) in which an Event is generated.
 reset: The rules defining the conditions (through a constraint) in which an Event is reset (that is,

able to be triggered again).

Verbose Check Box

When you select the Verbose check box, additional constraint information is displayed.

Constraints List (Tree)

The Constraints tree, whichh is a column in the constraints table, lists the constraints that constitute a
particular rule in a hierarchical view.

Each constraint is flagged with an icon to signify whether it “passes” or not. A constraint flagged
with an exclamation point indicates a constraint causing the rule to not “pass.”

Right-click a constraint to display a menu where you can perform one of the following actions:

Show Admin View: Selects the currently evaluated Grid object in the Explorer Tree and displays its
Info/Groups administration information view.

Disable Constraint: Passes the constraint, regardless of how it evaluates.

Enable All Constraints: Re-enables any disabled constraints.

NOTE: The right-click menu is available only when you select specific constraints.

B.2.2 The Facts Table

The Facts Table view displays the facts referenced in the Constraint Tree view for a specified Event.
Selecting a rule containing a particular fact in the Constraint tree automatically selects that fact and
its current value in the table.
Events 197

Figure B-7 The Facts Table View

If you right-click a column head in this table, a menu is launched where you can select the columns
that you want to display.

Figure B-8 Menu Used to Select the Columns Displayed in the Facts Table View of the Policy Debugger

All Facts Check Box: If you select the All Facts check box at the top of the Facts Table view, all facts
for the selected Grid object, as well as those for the Server itself (matrix.* facts) are displayed.

If you right-click a fact, you have the option of adding a new fact, deleting the selected fact, or
viewing/editing the selected fact, if the fact is editable or can be deleted.

B.3 Understanding the Orchestration Server Events System
The the Orchestration Server Event System integrates with the Job Scheduler. Event notifications can
start jobs and can also invoke Event handler methods in long-running jobs. In turn, a job can react to
the Event by starting other server actions, by modifying object attributes, or by executing another
external process.

For example, an Event notification can occur when a VM Host has exceeded its configured load
limits. This Event can start a job that migrates VMs off of the loaded VM Host or VM Hosts.

The Orchestration Server supports two Event types:

 Built-in Events, such as change of status of the health of a resource's or a change in the online
status of the resource.

 Rule-based Events that are triggered when the attributes of an object satisfy the rules (constraint
conditions) defining the Event.

This section includes the following information:

 Section B.3.1, “Event Notification,” on page 199
 Section B.3.2, “Built-in Events,” on page 199
 Section B.3.3, “Rule-based Events,” on page 200
198 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

B.3.1 Event Notification

An Event notifies two other Cloud Manager Orchestration services, the Job Scheduler and the Job
Broker. The Job Scheduler starts jobs that are awaiting an Event to trigger them. The Job Broker
invokes a callback on any long-running job that has registered for notification of an Event.

See Chapter 13, “The Orchestration Server Job Scheduler,” on page 155 for more information about
setting up a Job Schedule.

B.3.2 Built-in Events

Built-in events occur when a managed object comes online/offline or has a health status change.

The Orchestration Server uses the following built-in Events to keep managed objects synchronized.

Table B-1 The Orchestration Server Built-in Events

For example, when a resource comes online (that is, the agent connects to the server), the
RESOURCE_ONLINE Event is fired and both scheduled jobs with a trigger for that Event and long-
running jobs with Event handlers are notified.

The RESOURCE_ONLINE built-in Event is used by the embedded discovery jobs, such as for discovering
operating system and CPU information (osInfo and cpuInfo jobs). Both osInfo and cpuInfo job
archives (.job) include a schedule file (.sched) specifying a trigger (.trig) that allows these jobs be
started when notification of the RESOURCE_ONLINE Event occurs.

Event Name Description

AGENT_VERSION_MISMATCH Resource Agent version mismatch (agent needs upgrade)

REPOSITORY_HEALTH Repository health status has changed

RESOURCE_HEALTH Resource health status has changed

RESOURCE OFFLINE Resource Agent has logged out of the server

RESOURCE_ONLINE Resource Agent has logged in to the server

SERVER_UP Server has fully started

USER_HEALTH User health status has changed

USER_ONLINE User has logged in to the server

VMHOST_ADDED VM Host has been added

VMHOST_HEALTH VM Host health status has changed

VMHOST_NOT_AVAILABLE No VM Host is available

VMHOST_REMOVED VM Host has been removed
Events 199

B.3.3 Rule-based Events

Rule-based Events are defined in an XML document. They are deployed to the Orchestration Server
and managed through the Orchestration Console. Rules can be a simple object attribute (fact)
equivalency check or they can use AND,OR, IF, ELSE logic, among other things, in an Event ruleset.

The rules follow the same syntax as the constraints that are defined in XML policy files for all Grid
Objects, such as Jobs, VM Hosts, etc.

The Orchestration Server Event Service evaluates the rules; if the rules pass, an Event notification
occurs.

The XML Schema document specification can be found in <install dir>/doc/xsds/
event_1_0_0.xsd.

The Event XML specification is composed of three sections.

 <context>

 <trigger>

 <reset>

NOTE: Both the <context> and <trigger> sections are required.

<context> section

The <context> section defines the context in which the Event rules are evaluated. With Events, you
specify what objects are in the Event rule context in this section. The available objects are Job,
Jobinstance, Resource, Repository, User, and VMHost. From these objects, you can specify one
object set to iterate over and optionally a single instance of the object.

<trigger> section

The <trigger> section defines the rules for when an Event notification occurs. The <trigger>
format is the same syntax as <constraints> used in policies.

<reset> section

The optional <reset> section defines the rules for when an Event is reset. If the <reset> rule is not
used, an Event is reset based on a timeout. The <reset> format is also the same syntax as in
<constraints> used in policies.

The resetInterval attribute is set on the <event> XML element. If "resetInterval" and <reset>
are not used, the default timeout for resetting is 10 minutes.

The following example, taken from the "vmhost.event" in <install dir>/examples/events),
defines that a notification occurs when a VM host becomes overloaded.
200 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

1<event>
2
3 <context>
4 <vmhost />
5 </context>
6
7 <trigger>
8 <gt fact="vmhost.vm.count" value="0" />
9 <gt fact="vmhost.resource.loadaverage" value="2" />
10 </trigger>
11
12 <reset>
13 <lt fact="vmhost.resource.loadaverage" value=".5" />
14 </reset>
15
16</event>

Lines 3-5: This section defines the context for the Event’s rule evaluation.

Line 4: The context specifies all VM host objects, so the Event Service iterates over all VM hosts. On
each VM host, the <trigger> rule will be evaluated, so in this case, the Event context is composed of
one or more VM hosts.

Lines 7-12: This section defines the Trigger rule to determine if this Event is to fire notifications or
not. If the trigger rule does not pass, no Event notifications occur.

Line 8: Consider only VM hosts that have at least one VM instance running.

Line 9: Check the running average of the VM host’s load average if it exceeds a threshold value. In
this case, run the check if the average is greater than 2.

Lines 12-14: This section defines the Reset rule to determine if a previously triggered VM host can be
reset and triggered again.

Line 13: Only reset if the running average of the VM host’s load average drops below a threshold.

When a VM host passes the trigger rule, the VM host does not pass the trigger rule again until the
reset rule (load average drops below threshold) passes.

See the repository.event example (<install dir>/examples/events/repository.event) for an
Event with a rule that evaluates the freespace fact on all repository objects.
Events 201

202 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

C CThe Metrics Facility

The the Orchestration Server Metrics Facility collects, aggregates, and allows simple fact-based
retrieval of metric values by jobs and computed facts (via JDL), policy constraints, and Event triggers
on a per-resource basis. This provides aggregated metrics generated by gmond without the need for
the gmetad Ganglia service. Note that gmetad can still be used in parallel for aggregating gmond
reported metrics for visualization purposes.

 Section C.1, “Metrics Facility Functionality,” on page 203
 Section C.2, “Ganglia Metrics,” on page 203
 Section C.3, “How Does the Metrics Facility Impact Orchestration Server Performance?,” on

page 204
 Section C.4, “RRD Definition Using Deployable .metric Files,” on page 205
 Section C.5, “Query of Aggregated Metric Values,” on page 206
 Section C.6, “MetricsManager MBean API,” on page 207
 Section C.7, “Using the Metrics Facility in the Orchestration Console,” on page 208

C.1 Metrics Facility Functionality
The Metrics Facility provides the following functionality:

 Collection of gmond provided metrics using the Orchestration Agent.
 Retrieval of instantaneous metric values via resource.metrics.<METRIC_NAME> fact space,

where <METRIC_NAME> is the name of the metric.
 Deployable Round Robin Database (RRD) (data aggregation) definition using XML .metric

files, which allows flexible definition of aggregation periods. For example, using
resource.metrics.<METRIC_NAME>.10_minute.average as a 10-minute aggregation period
separate from resource.metrics.<METRIC_NAME>.1_hour.average.

 Retrieval of an array of aggregated metric values using
resource.metrics.<METRIC_NAME>.xxx.values.

 Zero-configuration for core Ganglia metrics. The Orchestration Agent automatically discovers if
gmond is running on a resource, and the Orchestration Server collects and, if a .metric file is
configured, aggregates those metrics.

 Persistence of collected RRD data across server restart and high availability fail-over conditions.

C.2 Ganglia Metrics
Not all Ganglia metrics are suitable for aggregation, such as those of “String” type. By default, only
the 24 metrics listed in the following table are supported (either of type “Real” or type “Integer”):
The Metrics Facility 203

Table C-1 Supported Ganglia Metrics

C.3 How Does the Metrics Facility Impact Orchestration Server
Performance?
The Metrics Facility balances flexibility and minimizing the impact on overall Orchestration Server
performance. There is no continuous parsing of XML on the server. Instead, parsing of gmond-
generated XML is performed by each managed resource.

This section includes the following information:

 Section C.3.1, “I/O Contention,” on page 205
 Section C.3.2, “Too Many Open Files,” on page 205

Metric Type

bytes_in Real

bytes_out Real

cpu_aidle Real

cpu_idle Real

cpu_nice Real

cpu_system Real

cpu_user Real

cpu_wio Real

disk_free Integer

disk_total Integer

load_fifteen Real

load_five Real

load_one Real

mem_buffers Integer

mem_cached Integer

mem_free Integer

mem_shared Integer

mem_total Integer

pkts_in Real

pkts_out Real

proc_run Integer

proc_total Integer

swap_free Integer

swap_total Integer
204 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

C.3.1 I/O Contention

By default, RRD-based data aggregation is file-based. Because of the frequency of updates and
queries of RRD files, this poses a significant performance issue. The Metrics Facility minimizes I/O
contention by using in-memory caching and batched write operations to avoid I/O contention and
the resulting performance degradation.

C.3.2 Too Many Open Files

The the Orchestration Server Monitoring Server uses a “one RRD per resource” approach, where a
RRD contains the AVERAGE, MIN, and MAX RRAs for multiple metrics (DS). In contrast, the
Metrics Facility takes an “inside out” approach, which results in “one RRD per metric.” For 1,000
agents reporting 24 Ganglia metrics, this reduces the number of files dramatically (from 24,000 in the
“one RRD per metric, per resource” case, and 1,000 in the “one RRD per resource” case, to 24 in the
“one RRD per metric” case). This approach avoids a “too many open files” condition.

NOTE: A “too many open files” condition occurs when the default maximum file descriptors
available to a process launched from the Linux shell is exceeded.

C.4 RRD Definition Using Deployable .metric Files
Definition of the “aggregation” functions performed by the Metrics Facility’s internal RRD data
structures are customizable using deployable XML .metric definition files. This accommodates a
flexible configuration of the following:

 The Ganglia-reported metrics to include in aggregated data structures
 The data aggregation periods that are of specific interest

The deployable definition files, one per metric to be aggregated, consist of the following:

 The name of the “instantaneous” metric to be aggregated, for example, load_one
 An optional description of the metric to be aggregated.
 A “heartbeat” value that governs the updates to the contained RRAs.
 One or more named Periods (corresponding to the RRAs to be created) with an optional

description.
 For each Period, the number of data points to aggregate (steps), the number of aggregated data

points to archive (rows), and the “xff' (x-files factor) allowed for the metric.

NOTE: The xff determines how many of the samples can be NaN for the consolidated sample to
be considered NaN. Usually, this is set to 0.5, or 50%.).

When an RRD is defined through deployment of its definition file, three RRAs are created for each
Period: AVERAGE, MAX, and MIN. A new DS (datasource) is added to the RRD for each resource
reporting the metric to be aggregated. This requires the RRD file to be re-created each time a new
resource begins reporting a given metric and the previously aggregated values copied from the old
RRD to the new one. This approach enhances performance and flexibility, but the RRD file is not of
fixed size: Over time, the RRD grows or shrinks as new resources are added to the system or are
deleted from the Orchestration Server model.

NOTE: The RRD is actually re-created with a new DS added for each new resource and the “old”
RRA’s data copied into it.
The Metrics Facility 205

Deleting a Resource Grid object removes its DS from the RRD file (actually, from all RRDs with
metrics reported by that resource).

One optimization you can implement for storing the smallest Period (consisting of a single step) is to
create only a single RRA (vs. three), because the average of a single datapoint is equal to the
maximum and minimum of a single datapoint.

NOTE: The RRD files created by the Java rrd4j library are not binary compatible with RRD files
generated by the rrdtool used by gmetad. They are however portable across operating system
architectures (e.g., 32-bit bigendian vs. 64-bit little-endian) which is not possible with traditional RRD
files created using rrdtool.

C.4.1 XML Format for Deployable .metric Definitions

An example of the format of the deployable RRD definition is shown below.

<metric name="load_one" heartbeat="120"
 description="Ganglia oneminute load average">

 <period name="1_minute" steps="1" rows="60" xff=".5"
 description="1 hour worth of 1 minute (raw) data"/>

 <period name="5_minute" steps="5" rows="12" xff=".5"
 description="1 hour worth of 5 minute aggregations"/>

 <period name="10_minute" steps="10" rows="72" xff=".5"
 description="12 hours worth of 10 minute aggregations"/>

 <period name="1_hour" steps="60" rows="24" xff=".5"
 description="1 days worth of 1 hour aggregations"/>

</metric>

This example creates an RRD for the load_one metric, with four aggregation periods (RRAs) called
1_minute, 5_minute, 10_minute, and 1_hour. The default sample (RRD update) time is one minute,
so the 10_minute aggregation period has 10 steps. 72 “rows” of aggregated datapoints are retained in
the RRA before the oldest is dropped off, representing 12 hours (12 * 60 / 10) worth of data.

NOTE: The 1_minute period is not a true aggregation because the default sample (RRD update) time
is also one minute. In this case, the “raw” datapoints are stored for historical reference.

C.5 Query of Aggregated Metric Values
Aggregated metric values can be queried similar to the instantaneous values either from JDL, from
within a policy/event constraint, or from an array of multiple metrics values. This section includes the
following information:

 Section C.5.1, “Example of a JDL Query for Aggregated Metric Values,” on page 207
 Section C.5.2, “Example of a Policy Constraint or Event Constraint Using Aggregated Metric

Values,” on page 207
 Section C.5.3, “Example of Using Non-aggregated (“Raw”) Historical Metric Values,” on

page 207
206 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

C.5.1 Example of a JDL Query for Aggregated Metric Values

r = getMatrix().getResource(“local_vmhost”)

print "resource.id: %s" % (r.getFact("resource.id"))

print "load_one.10_minute.average: %s" %
(r.getFact("resource.metrics.load_one.10_minute.average"))

C.5.2 Example of a Policy Constraint or Event Constraint Using Aggregated
Metric Values

 <event>
 <context>
 <vmhost />
 </context>
 <trigger>
 <gt fact="vmhost.vm.count" value="0" />
 <gt fact="vmhost.resource.metrics.load_one.10_minute.average" value="2" />
 </trigger>
 <reset>
 <lt fact="vmhost.resource.metrics.load_one.10_minute.average" value=".5" /
>
 </reset>
 </event>

The consolidation functions (AVERAGE,MAX, and MIN) are supported for each defined aggregation
period. In RRD terminology, this means that for each metric, there are three RRAs defined for each
“period” element in the .metric deployable definition.

C.5.3 Example of Using Non-aggregated (“Raw”) Historical Metric Values

You can query for an array of “raw” values that constitute the aggregated datapoints for a given RRA
within the RRD data structure by appending .values to the factname representing the metric (and
period) of interest. For example, to print all the MIN values collected for the 10_minute aggregation
period, the JDL is

r = getMatrix().getResource(“local_vmhost”)

print "resource.id: %s" % (r.getFact("resource.id"))
print "load_one.10_minute.min.values: %s" %

(r.getFact("resource.metrics.load_one.10_minute.min.values"))

Similarly, to print the array of AVERAGE and MAX values collected, the JDL is

print "load_one.10_minute.average.values: %s" %
(r.getFact("resource.metrics.load_one.10_minute.average.values"))

print "load_one.10_minute.max.values: %s" %
(r.getFact("resource.metrics.load_one.10_minute.max.values"))

C.6 MetricsManager MBean API
The MetricsManager facility exposes a small number of methods for disabling and enabling a RRD
file creation and update, and for query of both instantaneous and aggregated metric values. The
facility also allows a UI to query for information needed for populating a pull-down list that could
include, for example, valid metric names for a specified resource or valid aggregation periods for
The Metrics Facility 207

such a metric. The API also currently provides a way to fetch a “running average” of the raw
datapoints for a metric (a cached value that does not require a fetch operation from an RRD) and
server-side generation of a simple graph of metric data (requires a fetch from an RRD file).

This section includes the following information:

 Section C.6.1, “MBean Methods Exposed by the MetricsManager Facility,” on page 208
 Section C.6.2, “The MetricsDeployer Facility,” on page 208

C.6.1 MBean Methods Exposed by the MetricsManager Facility

The following table lists the MBean methods that are exposed by the MetricsManager Facility.

Table C-2 MBean Methods Exposed by the MetricsManager Facility

C.6.2 The MetricsDeployer Facility

The MetricsDeployer deployment facility parses the .metric definition files and creates the
associated grid objects that are used to maintain the metadata related to the RRD used for
aggregation.

C.7 Using the Metrics Facility in the Orchestration Console
The Orchestration Console supports the Metrics Facility in the following ways:

 Metrics object: A Metrics object is deployed in the Explorer tree. Use the right-click menu to
display the “deploy” and “undeploy” actions. Pre-defined .metric files are located in the /opt/
novell/zenworks/zos/server/components/metrics folder, or you can create a new .metric
file and paste in the XML as shown in Section C.4.1, “XML Format for Deployable .metric
Definitions,” on page 206.

Metrics objects are listed by their deployment name, which may or may not be the same as the
name of the actual metric. This potentially allows multiple, separately deployable, RRD
definitions for a single “instantaneous” metric, with different aggregation periods defined.

MBean Method Description

setMetricsEnabled() A parameter of false disables the creation or update of RRD files.

getObjectNames() Returns a list of current deployed metric definitions

update() Updates RRDs with instantaneous values collected by the Metrics Facility.

getFact() Given the fully qualified fact name, fetches the value of a specified resource’s
fact.

getMetricNames() Fetches the metric names relevant for a specified resource .

getPeriodNames() Fetches the names of periods (RRAs) defined for a specified metric.

getRunningAverage() Fetches the running average of a metric for a specified resource.

getRrdGraphic() Used by the Orchestration Console to fetch a server-generated ImageIconInfo
object.
208 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

 Metrics Editor: Selecting the Metrics object opens a free-form XML editor in the admin view of
the client. The editor is similar to the Event” editor for viewing RRD definition XML.
The Metrics Facility 209

210 NetIQ Cloud Manager 2.1.5 Orchestration Console Reference

	NetIQ Cloud Manager 2.1.5 Orchestration Console Reference
	About This Guide
	Intended Audience
	Additional Documentation

	About NetIQ Corporation
	Contacting Sales Support
	Contacting Technical Support
	Contacting Documentation Support
	Contacting the Online User Community

	1 Interface Layout of the Orchestration Console
	2 Orchestration Console Menus and Tools
	2.1 Operations Menu Bar
	2.1.1 File
	2.1.2 Edit
	2.1.3 View
	2.1.4 Actions
	2.1.5 Provision
	2.1.6 Server
	2.1.7 Windows
	2.1.8 Help

	2.2 Orchestration Console Toolbar

	3 The Orchestration Server and the Server Admin Objects
	3.1 Orchestration Server Object
	3.1.1 The Orchestration Server Info/Configuration Page
	3.1.2 Orchestration Server Authentication Page
	3.1.3 Orchestration Server Policies Page
	3.1.4 Orchestration Server Constraints/Facts Page

	3.2 Server Admin Object

	4 The Job Object
	4.1 Job Groups
	4.2 The Job Info/Groups Page
	4.2.1 Info
	4.2.2 Groups

	4.3 The Job Configuration Page
	4.4 The JDL Editor Page
	4.5 The Job Library Editor Page
	4.6 The Job Policies Page
	4.7 The Job Constraints/Facts Page

	5 The Resource Object
	5.1 Resource Groups
	5.2 Resource Info/Groups Page
	5.2.1 Info Panel
	5.2.2 Groups Panel

	5.3 Provision Info Page
	5.4 Resource Log Page
	5.5 Resource Policies Page
	5.6 Resource Health Debugger Page
	5.7 Resource Constraints/Facts Page
	5.8 Resource Object Naming and Renaming

	6 The VM Host Object
	6.1 Info Page
	6.1.1 Show Inherited Fact Values Check Box
	6.1.2 VM Host Information Panel
	6.1.3 Provisioning Adapter Config Panel
	6.1.4 Guest VM Monitor Information Panel

	6.2 Policies Page
	6.3 Health Debugger Page
	6.4 Constraints/Facts Page
	6.5 Action History Page
	6.6 VM Host Object Naming and Renaming
	6.7 Unique VM Host Cluster Facts
	6.7.1 Orchestration Server Facts in the VM Host Cluster Object
	6.7.2 Orchestration Server Facts in a VM Host Residing in a Cluster
	6.7.3 Orchestration Server Facts in VMs Hosted in Clusters

	6.8 vCPU Slots for VM Hosts
	6.8.1 Configuring vCPUs on VM Hosts
	6.8.2 Configuring vCPUs on VM Host Clusters
	6.8.3 Configuring vCPUs on VMs

	7 The Virtual Disk Object
	7.1 Understanding the Virtual Disk Object
	7.1.1 Creating or Deleting a vDisk in the Orchestration Console
	7.1.2 Sharing Virtual Disks Among VM Hosts
	7.1.3 Moving Virtual Disks

	7.2 Viewing Virtual Disk Configuration in the Orchestration Console
	7.2.1 Virtual Disk Information Panel
	7.2.2 Virtual Disk Policies Tab
	7.2.3 Virtual Disk Health Debugger Tab
	7.2.4 Virtual Disk Constraints/Facts Tab
	7.2.5 Virtual Disk Object Naming and Renaming

	7.3 Managing Block Devices as VM Virtual Disks
	7.3.1 Prerequisites to Configure on Xen and KVM Hosts Before Setting Up Block Device Support
	7.3.2 How Block Device Support Works
	7.3.3 Viewing the Physical Disk Configuration in the Orchestration Console

	8 The Virtual NIC Object
	8.1 Understanding the Virtual NIC Object
	8.1.1 The Purpose of the Virtual NIC
	8.1.2 Creating or Deleting a vNIC in the Orchestration Console

	8.2 Viewing the Virtual NIC Configuration in the Orchestration Console
	8.2.1 Virtual NIC Info Panel
	8.2.2 Virtual NIC Policies Tab
	8.2.3 Virtual NIC Health Debugger Tab
	8.2.4 Virtual NIC Constraints/Facts Tab
	8.2.5 Virtual NIC Object Naming and Renaming

	9 The Network Group and its Virtual Bridge Objects
	9.1 Understanding the Network Group and Virtual Bridge Objects
	9.1.1 Virtual Bridge Object
	9.1.2 The Purpose of the Virtual Bridge
	9.1.3 Creating or Deleting a vBridge in the Orchestration Console
	9.1.4 Virtual Bridge Object Naming and Renaming

	9.2 Viewing the Virtual Bridge Configuration in the Orchestration Console
	9.2.1 Virtual Bridge Info/Groups Tab
	9.2.2 Virtual Bridge Policies Tab
	9.2.3 Virtual Bridge Health Debugger Tab
	9.2.4 Virtual Bridge Constraints/Facts Tab

	10 The Repository Object
	10.1 Right-Click Menu Actions on the Repository Object
	10.2 Repository Groups
	10.3 Repository Info/Groups Tab
	10.3.1 Info Panel
	10.3.2 Best Practices for Entering Repository File Paths
	10.3.3 Groups

	10.4 Repository Policies Tab
	10.5 Repository Health Debugger Tab
	10.6 Repository Constraints/Facts Tab
	10.7 The Repository Action History Tab
	10.8 Repository Object Naming and Renaming
	10.9 Shared Storage for Disk Images
	10.9.1 Setting Disk Discovery Facts
	10.9.2 Running the Discovery
	10.9.3 Sharing Disks Between VMs
	10.9.4 Attaching a Discovered Disk to a VM
	10.9.5 Using Attached Disks in the Guest OS

	11 The User Object
	11.1 User Groups
	11.2 User Info/Groups Tab
	11.2.1 Info
	11.2.2 Groups

	11.3 User Policies Tab
	11.4 User Health Debugger Tab
	11.5 User Constraints/Facts Tab
	11.6 The User Action History Tab

	12 Miscellaneous Objects Displayed in the Explorer Tree
	12.1 Policy Object
	12.1.1 Policy Constraints
	12.1.2 Policy Facts

	12.2 Computed Fact Objects
	12.3 Event Objects
	12.4 Metrics Objects

	13 The Orchestration Server Job Scheduler
	13.1 Understanding the Job Scheduler View
	13.1.1 Navigating The Job Schedules Table
	13.1.2 Creating or Modifying a Job Schedule
	13.1.3 Understanding Cron Syntax in the Job Scheduler

	13.2 Walkthrough: Scheduling a System Job
	13.2.1 Deploying a Sample System Job
	13.2.2 Creating a New Schedule for the Job
	13.2.3 Defining the New Schedule
	13.2.4 Activating the New Schedule
	13.2.5 Running the New Schedule Immediately

	14 The Policy Debugger
	14.1 Constraints Table View
	14.1.1 Match Context Area
	14.1.2 Constraint Type List
	14.1.3 Verbose Check Box
	14.1.4 Capable Resources Summary
	14.1.5 Constraints Column of the Constraints Table View
	14.1.6 Policy Column of the Constraints Table

	14.2 Facts Table View
	14.2.1 All Facts Check Box

	14.3 Policy Debugger Use Cases

	A Grid Object Health Monitoring
	A.1 Health Facts
	A.1.1 Explicitly Set or Cleared by the Administrator
	A.1.2 Set by Using a Discovery Job
	A.1.3 Set by Using a Policy
	A.1.4 Set by Using a Computed Fact
	A.1.5 Set Automatically by Using a Health Constraint

	A.2 Health Events
	A.3 Health Debugger
	A.3.1 Constraints Table Panel
	A.3.2 Facts Table View

	B Events
	B.1 Event Object Visualization and Management in the Orchestration Console
	B.1.1 Deploying a New Rule-Based Event
	B.1.2 Deploying a Pre-written Rule-Based Event
	B.1.3 Undeploying an Event
	B.1.4 Event Editor

	B.2 Event Debugger
	B.2.1 Constraints Table
	B.2.2 The Facts Table

	B.3 Understanding the Orchestration Server Events System
	B.3.1 Event Notification
	B.3.2 Built-in Events
	B.3.3 Rule-based Events

	C The Metrics Facility
	C.1 Metrics Facility Functionality
	C.2 Ganglia Metrics
	C.3 How Does the Metrics Facility Impact Orchestration Server Performance?
	C.3.1 I/O Contention
	C.3.2 Too Many Open Files

	C.4 RRD Definition Using Deployable .metric Files
	C.4.1 XML Format for Deployable .metric Definitions

	C.5 Query of Aggregated Metric Values
	C.5.1 Example of a JDL Query for Aggregated Metric Values
	C.5.2 Example of a Policy Constraint or Event Constraint Using Aggregated Metric Values
	C.5.3 Example of Using Non-aggregated (“Raw”) Historical Metric Values

	C.6 MetricsManager MBean API
	C.6.1 MBean Methods Exposed by the MetricsManager Facility
	C.6.2 The MetricsDeployer Facility

	C.7 Using the Metrics Facility in the Orchestration Console

