
Novell exteNd Composer™

USER’S GUIDE

www.novell.com
5.0

Legal Notices
Copyright © 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any
rights of ownership in the Software.

Novell, Inc.

1800 South Novell Place

Provo, UT 85606

www.novell.com

exteNd Composer User’s Guide

December 2003

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks
eDirectory is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
the redistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer
that follows these conditions in the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Software is derived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project is released under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intalio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redistributions must also contain a copy of this document. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExoLab Project (http://www.exolab.org/). THIS
SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

iii

Contents

About This Guide xiii

1 Welcome to exteNd Composer 1
The Novell exteNd Family . 2

Novell exteNd 5 Professional Edition . 2
Novell exteNd 5 Enterprise Edition . 2

The Novell exteNd Composer Product Line . 3
What Is Composer? . 4
Who Can Use Composer? . 5
Components and Services . 5
What Kinds of Applications Can You Build with Composer?. 7
Automated Business Process Management (Workflow) . 8
About the Composer Enterprise Connect Product Line . 9
Updating Your License(s) .10

Updating Design-Time License String(s) .10
Updating Runtime License String(s) .12

Where To Go for More Help .14

2 Planning Your Application 15
How Do I Design and Build an Application in Composer?16

What is an xObject? .16
What is a Service? .17
What is a Component? .17
What is a Resource? .18
What Is an XML Template? . .18

Basic Steps for Developing a Composer Service .18
Part One: Plan the Service (Before Using Composer) 19
Part Two: Build the Service . .21
Part Three: Deploy the Service . .22

How is Data Handled When a Service Executes? . .22
SOAP Messages .22
XML Signatures . .23

3 Getting Started with exteNd Composer 25
Launching exteNd Composer .25

Modifying the Java Virtual Machine for exteNd Composer 27
Exiting Composer . .28

Understanding the exteNd Composer Environment . .28
How to Get Started. .29
About the Composer Environment . .30

Novell exteNd Composer User’s Guideiv

Navigation, Message, and Content Frames . 31
Manipulating Composer’s MDI Windowing Environment. 32
Using Title Bar, Menus, Toolbars, and Status Bar . 33
Understanding Composer Icons . 37

Navigator Frame . 38
The Project Tab . 38
The Registries Tab. . 42

Configuring Composer’s Environment . 42
Setting Preferences . 43

General Preferences. . 43
Display Preferences . 44
Editing Preferences . 45
Designer Preferences . 45
.Entering Advanced Proxy Settings . 46

Project Settings . 48
Project Variables. . 48
Subprojects . 49

The xconfig.xml and xuserpref.xml files. . 50
Composer Online Help . 50

Using Online Help . 52
Navigating Online Help . 53

4 Creating and Managing Your Projects 57
What is a Project?. . 57

About Services. . 58
About Components . 58
About Resources . 58
About XML Templates . 58

Creating a New Project . 58
Opening Projects . 61

Opening a Project from within Composer . 61
Opening a Specific Project When Starting Composer from the Command Line 62
Opening a Project when the Recent Project is not Found 62

Deleting a Project . 63
Managing xObjects . 64

Creating an xObject . 64
Opening an xObject . 67
Importing an xObject. . 67
Displaying an xObject’s Properties . 68
Printing an xObject’s Properties . 69
Renaming an xObject . 69
Deleting an xObject . 70

Searching for xObjects or Text . 70

v

Viewing System Messages .71
Understanding Where Project Files are Stored .72

About Design Time and Deployed Project Files .73
Creating Project Variables . .73

Adding a Project Variable to a Project .74
Creating Project Variables Dynamically. .76

Subprojects within Projects .78
Imported xObjects versus Subprojects .80
Nesting of Subprojects .80
Scope and Visibility of xObjects and Variables in Subprojects 81

5 XML Templates 83
Sample XML Documents, Document Definitions, XSL Stylesheets, and Templates 83

About Sample XML Documents. .84
About XML Validation Documents (DTDs and Schemas). 85
About XSL Stylesheets .86
About XML Templates .86
About Template Categories . .87

Creating an XML Template .88
Creating XML Templates from WSDL .94
Importing an XML Template .96
Showing and Hiding XML Documents . .97
XML Template Editor. .98

Viewing an XML Document . 101
Editing an XML Template . 101
Saving Changes to XML Documents . 102
Printing an XML Document . 103
The XML Template Editor Context Menu . 103
Deleting an XML Template . 105
Moving an XML Template to a Different Category . 105
Renaming an XML Template . 105

Understanding Where XML Templates Are Stored on Your Hard Drive 106

6 Creating an XML Map Component 107
What is an XML Map Component? . 107

Using XML Template Sample Documents to Build an XML Map Component 108
What is a DOM? . 109

Understanding DOM Structure . 109
Using DOMs at Runtime . 111
DOM Behaviors during Runtime . 111
Creating Different Types of Messages . 111

Creating an XML Map Component. . 112
Namespaces and Output Parts . 115
Understanding the XML Map Component Editor. . 115

Novell exteNd Composer User’s Guidevi

About the Menu and Toolbar. 116
Using Window Layout and Show/Hide in the Component Editor. 119
About the Mapping Panes . 121
About the Input Mapping Pane. 122
About the Output Mapping Pane. 128
About the Action Model Pane . 129
Adding Actions to a Component . 130
Creating an Output Document without Using a Template 131

Using Temp and Fault Messages with a Component . 133
Creating a Temporary Message Part . 133
Creating a Fault Message Part . 135
Creating a Custom Fault Document . 136

Reloading an XML Document . 137
Loading a Sample Document . 139
Adding a Watch Variable . 140
Saving Your Component . 141
Saving a DOM as an XML Document . 141
Saving an XML File as a Template . 143
Inspecting and/or Editing XML Template Properties . 143
Avoiding Out-of-Memory Problems . 144
Using Performance Filters . 144
Viewing Component Properties . 146
Printing a Component . 147
Designing, Testing, and Running a Component . 148

7 Basic Actions 149
What is an Action? . 149
Using Composer Actions . 150

Creating an Action . 151
The Comment Action . 153
The Component Action . 154
The Decision Action. 157
The Declare Alias Action . 159
The Function Action. 160
The Log Action . 162

Log File Locations . 162
Log Priority Levels . 163

The Map Action . 166
About XPath and ECMAScript Expressions . 166
Adding a Map Action. 167

Advanced Mapping Options. 170
The Send Mail Action . 176

Mail via SMTP Simple Authentication . 177

vii

How to Create a Send Mail Action . 179
The Switch Action . 183

About Cases . 183
About the Default Case . 184

The Todo Action . 187

8 Advanced Actions 189
Apply Namespaces Action . 191

Map Actions, XML Templates, Namespaces, and Prefixes 194
The Convert Copybook to XML Action . 197
The Convert XML to Copybook Action . 199
The Simultaneous Components Action . 200
The Throw Fault Action . 202
The Transaction Action . 205
The Try/On Fault Action . 207
The XForm Process Action . 209
The XSLT Transform Action . 211
Data Exchange Actions . 213
The Composer Resource Action . 213
URL/File Read . 214
URL/File Write . 216
The Web Service (WS) Interchange Action . 217
The XML Interchange Action. . 220

Performance Enhancement Using “Filter Document” 224
Repeat Actions . 226
The Break Action. . 227
The Continue Action . 228
The Declare Group Action . 229
The Repeat For Element Action . 230
The Repeat for Group Action . 233
The Repeat While Action. . 236
The Split Document Action. . 237

Limitations of Stream-Based Document Processing 238
How the Split Document Action Works . 238
Special Considerations for Animation and Debugging 243
Creating the Split Document Action. . 244

9 Resources 247
Working with Resources . 248
Support for Language Versioning of Resources . 249
About Certificate Resources . 251
About Code Tables. . 252

About the Code Table Editor . 253
About Code Table Maps . 257

Novell exteNd Composer User’s Guideviii

Mapping the Code Tables . 259
Using a Code Table Map . 261

About Connections . 261
About Constant vs. Expression Driven Connections. 262
Using LDAP to Obtain Connection Parameters . 264
How to Create an HTTP Basic Authentication Connection Resource 267
How to Create an FTP Authentication Resource . 269
Mail Simple Authentication Connection Resource . 270

About Copybook Resources . 272
About Custom Script Resources . 274

Organizing and Using Custom Functions . 275
About the Custom Script Editor Window . 277
Creating and Validating a Function . 277
Adding a Function Tool Tip Description . 278
Viewing DOM Trees within the Script Editor . 279
Integrating Java Classes with Custom Scripts . 281
Working with a Java Class in ECMAScript. 284
Using the Expression Editor to Build Functions . 286

About Form Resources . 288
About Image Resources . 290

Image Resource Naming (and Renaming). 291
Context in the JAR . 291
How to Create an Image Resource . 292
How to Import an Existing Image Resource . 293
How to View an Image Resource . 294

About JAR Resources. 295
JAR Resource Naming (and Renaming) . 296
Context in the Composer Project . 296
Context in the Composer Project JAR . 297
How to Create a JAR Resource . 297
How to Import a JAR Resource . 299

About JSP Resources. 300
Creating a JSP-Based Service Trigger . 302

About WSDL Resources . 304
Obtaining a Stylized View of WSDL . 308
Adding Elements to a WSDL Document . 310
Type-Ahead (Code Completion) in the WSDL Editor 317
Validating a WSDL document . 318

About WSIL Resources . 318
About XML Resources . 321

How Do XML Templates and XML Resources Differ? 322
How to Import an XML Resource . 324
How to Access an XML Resource in a Component 325

ix

About XSD Resources . 326
Using Composer’s Schema Generator . 327
Using the XSD Resource Wizard . 328

About XSL Resources . 329
How to Create an XSL Resource . 330
How to Import an XSL Resource . 331

10 Custom Scripting and XPath Logic in exteNd Composer 333
What is ECMAScript? . 334
What Capabilities Does ECMAScript Offer? . 334
How Scripting Is Exposed in Composer’s User Interface 335
ECMAScript Access from XPath . 337
XPath Access from ECMAScript . 338
Scope of Custom Script Functions and Variables . 339
Looking at an ECMAScript Example . 339
Performance Considerations. . 341
What Is XPath? . 342

Who Is the Target Audience for XPath? . 342
When Would I Want to Use XPath?. . 343
How Is XPath Integrated into Composer?. . 343
Looking at an XPath Example . 344

XPath Functions . 345
Documentation Resources for XPath . 348

About XSL . 348
What is XSL? . 348
Who is the Target Audience for XSL? . 349
When Would I want to Use XSL? . 349
How is XSL Integrated into Composer?. . 349
Looking at an XSL Example . 349
Resources for XSL . 350

About Novell Scripting Extensions . 350
When Would I Want to Use Novell Scripting Extensions? 357
How Are Novell Scripting Extensions Integrated into Composer? 357
Extension Code Examples . 357

About DOMs . 358
What is DOM? . 358
What Does a DOM Do? What are the Key Features? 358
Who is the Target Audience for DOM Methods? . 358
When Would I Want to Use DOM Methods? . 358
How Are DOM Methods Integrated into Composer? 358
Looking at a DOM Methods Example . 359
Documentation Resources for DOMS. . 359

About Java Integration . 359

Novell exteNd Composer User’s Guidex

How Is Java Accessible in exteNd Composer? . 359
When Should You Use Java? . 360
Looking at a Java Integration Example . 360
Documentation Resources for Java . 361

11 Applying Actions to Common Tasks 363
About the Examples in this Chapter. 363
About Element and Data Mapping . 363
Mapping Leaf Elements . 364
Mapping a Parent and its Children (Deep Copy Mapping) 365
Transforming Elements . 367

Transforming Elements With the Content Editor . 367
Transforming Elements With Code Tables. 370
Transforming Elements With Functions . 371

Using Loops in Action Models. 372
The Repeat for Element Action . 373
The Repeat for Group Action . 375
The Repeat While Action . 378

Performing Aggregate Calculations . 380
Calculating a Sum . 380
Finding the Highest Total . 381
Finding a Specific Match for the Highest Total. 381

12 Testing and Debugging 383
What are the Animation Tools? . 384

The Basic Animation Tools . 384
Starting Animation . 386
Toggling a Breakpoint . 387
Running To a Breakpoint . 388
Stepping Into an Action . 389
Stepping Over an Action . 392
Pausing Animation . 393
Aborting Animation. 394

Execution Errors . 394
Clearing All Breakpoints . 395
Resetting All Documents. 396
Clearing a Document . 396

Testing Tips . 397
Using the ECMAScript alert() Function . 397
Using a Project Variable to Turn Debugging On or Off 398
Watch Lists . 398

Environmental Differences between Animation Testing and Deployment Testing 402

xi

13 Working with Services 405
Terminology . 405
What Are the Available Service Types? . 406

JMS Services . 406
Service Architecture . 407
Composer Web Services and WSDL . 407
Looking at an Example Web Service . 407
Looking at an Example JMS Service . 409

Creating a New Service . 410
About Specifying XML Templates for a Service. . 410
Creating a JMS Service . 413

Importing a Service . 413
Understanding the Service Editor . 414
Using the Service Editor . 415
Building a Service with Components. . 415

Looking at an Example Service Action Model. . 416
Service FAQ . 417
Loading Sample Documents as You Test a Service . 420

14 Working with Registries 421
Capabilities of the Registry Manager . 422
Registry Browsing . 426

Context Menu Items . 427
Action Buttons . 429
Searching by organization . 430
Searching by service . 434

Retrieving WSDL from the Registry . 437
Publishing to a registry . 438

15 Deploying Your Project 441
Planning your Deployment . 443
About Service Triggers. . 443

Triggers and Input Data. . 444
About Composer-Built Deployment EARs . 445
Deployment Options . 446
Deploying Directly from Composer. . 447

Server Profiles . 447
The Deployment xObject . 449

Configuring a Deployment . 454
Service Triggers . 454
Defining E-mail Triggers . 458
Defining EJB-Based Triggers . 461
Defining File-Based Triggers . 464
Defining JSP-Based Triggers . 467

Novell exteNd Composer User’s Guidexii

Defining Servlet-Based Service Triggers . 468
Defining SOAP Triggers . 470
Defining Timer-Based Service Triggers . 472

Specifying Other Project Resources for Deployment . 476
Deploying Your Project to the Server . 477
Deployment from exteNd Director. 480

Composer Web Service Wizard: SOAP Service Deployment 481
Composer Web Service Wizard: JSP and Servlet Triggers 485
Deploying EARs from Novell exteNd Director . 489

Director Wizards for Composer Code Generation . 490
Director Servlet Wizard . 490
Director JSP Wizard . 493
Java Class Wizard . 495
Compiling and Deploying Director-Generated Code 497

For More Information . 497
Composer Enterprise Server Documentation . 497

A The Composer JSP Tag Library 499
Preparing to Use the Tag Library . 499
Custom Tags Defined in composer-taglib.tld . 500

Tag API . 502
execute . 502
fault . 504
forEach. 506
hasnopart . 507
hasnovalue. 507
haspart . 508
hasvalue . 509
if . 510
value . 511
For More Information . 512

B Reserved Words 513

C Glossary 515

xiii

About This Guide

Purpose

This guide describes how to use Novell exteNd Composer, a visual design
environment for creating business-to-business integration applications, including
Web Services. This documentation provides information on the use of Composer’s
design-time features. Runtime functionality is more thoroughly described in the
Composer Enterprise Server Guide.

Audience

This guide is aimed at application designers who will be building J2EE
applications (including Web Services) using exteNd Composer.

Prerequisites

You should be familiar with XML-related standards (including Schema, XSL, and
XPath), the Document Object Model, and basic J2EE concepts involving file
packaging (JAR/EAR/WAR files). Some knowledge of ECMAScript is also
helpful, though not required, for using the product. If you are building Web
Services, you should be familiar with WSDL, SOAP, and related standards.

Additional documentation

For the complete set of Novell exteNd Director documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

This guide is organized as follows:

Chapter Description

Chapter 1, Welcome to
exteNd Composer

Gives an overview of exteNd Composer, its
capabilities, and design philosophy.

Chapter 2, Planning
your Application

Describes the necessary preparations for
designing and building an XML Integration
Application.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Novell exteNd Composer User’s Guidexiv

Chapter 3, Getting
Started in exteNd
Composer

Describes launching the product and the elements
of the Composer environment.

Chapter 4, Creating
and Managing your
Projects

Describes projects and their elements and
explains how to create them.

Chapter 5, XML
Templates

Describes XML templates, sample documents,
DTDs, XSL stylesheets, and XML categories and
when and how to use them.

Chapter 6, Creating an
XML Map Component

Describes XML Map Components, using XML
sample documents to build components, DOMs,
and how and why DOMs are used.

Chapter 7, Basic
Actions

Describes the core actions that are available in all
of Composer’s component editors, including map
actions, log actions, various flow-control actions,
and so on. Step-by-step procedures are given for
how to create each action.

Chapter 8, Advanced
Actions

Describes advanced actions including Declare
Group, Repeat for Group, Process XSL, Repeat
While, Throw Fault, Try/On Fault, and the various
data exchange actions.

Chapter 9, Resources Describes the various types of Composer
resources, including schema resources, WSDL,
code maps, code map tables, connections, and
custom scripts.

Chapter 10, Custom
Scripting and XPath
Logic in exteNd
Composer

Describes custom scripting using Composer’s
built-in ECMAScript facility. Also, a discussion of
how scripting can be used in conjunction with
XPath, DOMs, and Java. An API guide to
Composer’s built-in ECMAScript extensions is
presented, as well.

Chapter 11, Applying
Actions to Common
Tasks

Describes element and data mapping, leaf
element mapping, deep copy mapping,
transforming elements with code tables and
functions, performing loop actions, and performing
aggregate calculations.

Chapter Description

xv

About the PDF Documentation

Various navigational features are available when viewing this document in
Acrobat Reader:

The Bookmarks frame (left side of window) lists the contents of the
document, by chapter name, heading, and subheading. Every topic listed in
the content tree is a clickable link. To flip open the entire subtree under any
tree node, Control-click on the parent node. To toggle the visibility of the
Bookmarks frame, press F5.

Every item in the book’s Index is a clickable link that will take you directly
to the text discussion.

Chapter 12, Using the
Animation Tools for
Testing

Describes the animation tools and how to use
them to test services and components.

Chapter 13, Working
with Services

Describes how and what services are, how to build
them or import them, what the service editor is,
and how to build a service with components. This
chapter also contains an end-to-end example of
how to call an external Web Service based on
information contained in a WSDL resource.

Chapter 14, Working
with Registries

Tells how to use the features associated with
Composer’s “Registries” tab, including how to
search UDDI registries, publish to UDDI registries,
retrieve WSDL from registries, etc.

Chapter 15, Preparing
Your Project for
Deployment

Explains basic issues relating to the deployment of
Composer services to an app server.

Appendix A Adding
Java Extensions to
exteNd with
XCCLASSPATH

Describes how to make Java classpaths
accessible in the exteNd CLASSPATH.

Appendix B, Reserved
Words

Lists reserved words, which should not occur in
user-defined variable names or labels.

Appendix C, Glossary Definitions of key terms used in this Guide.

Chapter Description

Novell exteNd Composer User’s Guidexvi

Wherever a website address (URI) appears, you will usually find that
clicking on it will take you to the site in your browser. Even if the URI is not
in blue or underlined, it will generally be a hot link. You can test this by
hovering the mouse over the URI. The cursor will change from an arrow to a
finger cursor if the link is hot.

Cross-references within and between chapters are also clickable.

Use Control-N to navigate to a given page in the document. A dialog will
prompt you for the page number.

You can Copy PDF text to the clipboard in the normal way (by shift-
dragging to select text, then using Control-C). Many programs will allow
you to Paste (or “Paste Special”) clipboard contents as RTF (rich text
format), retaining certain formatting features. To select large portions of text
spanning PDF pages, first click the “Continuous Pages Mode” icon in the
button bar at the bottom of the Acrobat window: Then shift-drag to select
text (or Control-A to Select All) and Copy.

1

1

Welcome to exteNd Composer

Welcome to exteNd Composer Chapter 1

Web Services are fundamentally changing the way enterprises exchange
information and perform business transactions. But to succeed in web services
development, business analysts and developers must be able to work together on
sophisticated, large, distributed applications that meet strict requirements for
performance, security, scalability, and reliability, in the face of increasingly
stringent time-to-market demands.

The most important factor in making a successful transition to a services-based
architecture that leverages modern web technologies is the availability of
powerful, easy-to-use development tools. Such tools should be:

1 Purpose-built, from the ground up, for Web Services development

2 Tightly integrated by design—not a grabbag of unrelated pieces

3 Easy to learn and use, so that a diverse team of users—from business
analysts to system administrators to software engineers—can be productive
immediately in a concurrent-development setting

4 100% standards-aware in terms of all important Web Services technologies:
XML grammars (including SOAP), description and discovery technologies
(WSDL, WSIL, UDDI), transport layers (HTTP and others), directory
protocols (LDAP, DSML), and security-related standards, among others.

5 Compatible with diverse deployment and runtime environments: i.e., a
variety of application servers on a variety of operating systems

6 If Java is the programming language, the development environment should
be fully J2EE-aware—not just a 3GL IDE (integrated development
environment), but a front-to-back development, testing, packaging, and
deployment toolset with full awareness of JAR/WAR/EAR issues,
portal/portlet architectures, etc.

Novell’s exteNd product line meets all of these criteria.

Novell exteNd Composer User’s Guide2

The Novell exteNd Family
Novell exteNd is a family of Web Service development products for rapid
development of Web Service objects on J2EE (Java) application server platforms
The major pieces are available independently or as an integrated suite. The suite,
in turn, comes in two flavors: Professional Edition, and Enterprise Edition.

Novell exteNd 5 Professional Edition

The Novell exteNd 5 Professional Edition Suite is the base configuration of tools
that enable the application developer to develop and deploy enterprise-level Web
applications. The Professional Suite contains the following tightly integrated
components:

Novell exteNd Application Server (Sun-Certified J2EE application server)

Novell exteNd Composer with JDBC Connect and LDAP Connect.

NOTE: The Professional Edition suite does not support direct-to-app-server
deployment from the Composer GUI. (Deployment must be done from within
exteNd Director.) It also does not support transaction (JTA) awareness, EJB-
based service triggers, nor XForms awareness.

Fully functional eval versions of the Composer Connects for 3270, 5250,
CICS RPC, Data General, EDI, HP3000, HTML, JMS, SAP, Tandem,
Telnet, and Unisys (UTS and T27).

Novell exteNd Director (excluding the Content Management and Workflow
subsystems and the Autonomy-based search functionality). Director is a full
J2EE development environment with sophisticated packaging and
deployment capabilities, as well as robust subsystems for portal and portlet
application development.

MySQL 4.1 database server

Novell exteNd LDAP Utility directory server

Web Services SDK (a JAX-RPC implementation that includes compilers and
runtime environment for supporting SOAP-based Web Services)

The Novell exteNd Messaging Platform—support for standards such as JMS
(Java Messaging Service), the Common Object Request Broker Architecture
(CORBA), Java Transaction Service (JTS), and the Java Transaction API
(JTA).

Novell exteNd 5 Enterprise Edition

The Novell exteNd 5 Enterprise Edition Suite contains all of the same pieces as the
Professional Suite, with a few additions:

Welcome to exteNd Composer 3

Novell exteNd Composer Enterprise Edition, including the Business Process
Modeler (BPM) subsystem, plus support for direct-to-app-server
deployment, EJB trigger options, transaction control, and XForms
integration.

Full versions of the following Composer connectivity add-ins:

JDBC Connect

LDAP Connect

JMS Connect

HTML Connect

Telnet Connect

Support for the SAP Service type (triggering of Composer services via RFC
requests at an SAP gateway).

Novell exteNd Director Enterprise Edition, including the Content
Management and Workflow subsystems as well as the Autonomy-based
search functionality.

All of the other pieces mentioned in the previous section (MySQL, WSSDK,
Messaging Platform, and so on).

The Novell exteNd Composer Product Line
Novell exteNd Composer is a development (and runtime) environment designed
for rapid design and deployment of Web Services and XML integration
applications—applications that can connect to diverse back-end systems and data
sources.

The Composer product consists of the following pieces:

Novell exteNd Composer – A visual design-time tool for creating and
debugging Web Services and XML-enabled back-end integration
applications.

Novell exteNd Composer Enterprise Server – The runtime container layer
(for use on any compatible J2EE app server) that executes and manages
applications created in exteNd Composer.

Novell exteNd Connect Family – Individual add-in products that augment
the capabilities of exteNd Composer and Server to permit the XML-
enablement of systems that rely on specialized data sources, such as EDI,
CICS RPC, 3270/5250 terminals data streams, Telnet, and JMS. (The
exteNd Composer JDBC Connect, which allows communication with
relational databases, is bundled into the core Composer installation suite, as
is the LDAP Connect. Other Connect products are available separately.)

Novell exteNd Composer User’s Guide4

All exteNd Composer products are certified to run under the Novell exteNd
Application Server, Apache Tomcat, IBM’s WebSphere, and BEA WebLogic,
with support for operating systems ranging from Windows NT and Windows 2000
to Linux, Solaris, AIX, and HP-UX.

NOTE: Novell exteNd Composer Enterprise Server and exteNd Composer
Enterprise Connect products each have their own documentation. This Guide
covers only the core development environment (which we refer to herein as
Composer). See the separate JDBC Connect and LDAP Connect guides for
information on those component editors.

What Is Composer?
Composer offers a powerful, intuitive, point-and-click GUI (graphical user
interface) for rapid application development, giving the business analyst or
application developer a powerful tool for creating robust XML integration
applications in minimum time.

Composer offers, among other features:

An XML editor with code-completion features for WSDL, WSIL, and other
“specialty grammars”

A drag-and-drop-enabled XML mapping engine, with support for schemas,
DTDs, XSL, XPath, and DOM Level 2

An intuitive, visual editing environment for implementing standard control-
flow constructs, error trapping, logging, etc., without the need for extensive
Java programming expertise

Realtime step-into/step-over debugging and animation, so that applications
can be tested in real time without leaving the development environment

Support for “watch variables” at debug time

Support for To-Do lists

A multi-document interface (MDI), allowing you to work in more than one
document or component at one time

Realtime registry browsing, with support for WSDL publishing/retrieval
using UDDI registries

Autogeneration of WSDL with SOAP bindings

Built-in ECMAScript support (including a custom script editor and live
console) for users who need fine control over business logic or data
manipulation

Back-end system connectivity via exteNd Composer Connect add-ins for
3270, 5250, Telnet, JMS, JDBC, CICS RPC, EDI, etc.

Welcome to exteNd Composer 5

Deployment facilities for direct deployment of projects to the app server
(with context-driven customizations for Novell, WebSphere, or WebLogic
app servers)

Integration with exteNd Director (switch to the Director environment at any
time and import Composer projects into any WAR file or EAR project)

Composer also has XForm and JSP code generation features, and many other
capabilities that aren’t listed here for space reasons. This is just a partial list of
major features.

Who Can Use Composer?
Composer is targeted at business analysts, IT managers, Java developers, and
other stakeholders in the Web Services development process.

Composer is designed to be accessible to users of various skill levels. (It is not a
Java-programming IDE.) Business analysts with little or no programming
background can quickly master complex data transformations using Composer’s
drag-and-drop XML mapping features. Webmasters can use Composer’s JSP,
XForms, and UDDI browse/publish capabilities to assemble sophisticated web
apps with no need for additional tools. Java developers can use Composer to
develop sophisticated, reusable XML components that might rely heavily on
ECMAScript, SQL, LDAP, custom Java classes, and/or specialized packagings
(WAR/EAR/JAR files).

Because Composer’s GUI is rich with wizards, picklists, and drag-and-drop-
enabled features, users of all skill levels (regardless of domain expertise) can
become productive quickly. Sophisticated web applications that might take
months to develop using a “grabbag of tools” approach often can be rolled out in
weeks or days using Composer.

Components and Services
Composer application design is based on an Action Model architecture that
includes two main processing constructs: components and services.

Components are executable units of work that encapsulate business logic, usually
in the context of connectivity requirements.

For example, a typical JDBC component validates an incoming XML request
document, maps the document’s key pieces of data to an SQL inquiry, and maps
the SQL result set to an XML response document. All of the business logic and
data retrieval functionality of this type of operation can (and should) be
encapsulated at the component level.

Novell exteNd Composer User’s Guide6

Services, on the other hand, typically oversee the execution of components and
coordinate the flow of data between them. A typical service might wrapper a series
of components that receive an input XML document, perform sophisticated
document mappings/transformations, collect information from back-end data
sources, execute transactions on mainframes and AS/400s, process error
conditions, send context-sensitive e-mail or JMS notifications, and/or return one
or more XML response documents to the original requestor(s). By breaking up a
service’s tasks into discrete components, important benefits—in terms of testing,
debugging, code maintenance, encapsulation, and code reuse—can be realized.

Figure 1-1

You will typically use Composer to create components and services that perform
B2B integration tasks involving data retrieval and transformation through XML
technologies, including (optionally) SOAP and Web Services technologies. You’ll
deploy these components and services into a J2EE application server
environment, where their execution is mediated by exteNd Composer Enterprise
Server (the runtime half of Composer).

Welcome to exteNd Composer 7

What Kinds of Applications Can You Build with
Composer?

You can build many types of applications with Composer, but typically you will
create XML integration applications triggered by servlets, EJBs, custom Java
objects, or incoming messages on a JMS message queue. Your applications might,
in some cases, simply be used locally on the app server to provide services across
local processes, with no exposure to the outside world. In other cases, your
applications will be fully web-enabled. The interface(s) to your web-facing
applications might or might not involve SOAP or WSDL.

In general, with Composer, you can implement any kind of application where data
inputs and outputs involve XML.

If you are using the Enterprise Edition of Composer (which comes with the JMS
Connect), you can also build services that use messages for inputs and outputs.

NOTE: Messaging (involving Message Oriented Middleware, such as IBM’s
MQSeries) is a powerful data-sharing metaphor in its own right, allowing the use of
payloads other than XML. With Composer and JMS Connect, you can build
applications that use messages for input and XML for output; XML on the input side
and messages for output; or messaging within an XML-in/XML-out application; plus
other variations.

In the simple example depicted below, a buyer and a supplier connect their
respective business systems across the Internet using XML and Composer.

Your organization might want to build one or more of the following types of
applications using Composer:

Novell exteNd Composer User’s Guide8

1 Internal Application Integration Services. You may have many
applications between which you want to exchange data from diverse
sources. For example, you may want to connect an Oracle financial
application, an SAP manufacturing application, and an in-house-developed
order processing application together. Composer will help you achieve this.

2 External Web Service Applications. You may have a need to expose a
service to trading partners (or other users) via the Web. SOAP services and
WSDL-based Web Services can be constructed quickly and easily using
Composer. Once you’ve designed a service in Composer, Composer will
actually autogenerate WSDL for the service (and even publish it to a UDDI
registry, if you want).

3 Data Warehousing Applications. Composer works well with data mining
and warehousing technologies, since Composer’s key function is to map data
from disparate sources.

Automated Business Process Management (Workflow)
Packaging business applications as Web Services opens up new opportunities for
automating workflows. The Web Services Flow Language (one of several
emerging standards for workflow automation) provides a standard to which next-
generation BPM software will build. The basis for this next-generation technology
is workflow built on Web Services. SOAP and XML will be key technological
underpinnings of future workflow systems.

Composer plays directly to emerging standards and technologies involving
automated workflow. Next-generation workflow engines will “hook up” Web
Services (external or internal) to allow sophisticated long-running applications to
be built, relying on BPM concepts such as timeouts/retries, conditional links
between services, control flow between individual services involving parallel
execution, etc. Complex choreographies involving Web Services will be
attainable. (Some of the possible choreographies are described in RosettaNet
Partner Interface Processes.) Composer will be a valuable tool in creating WSFL-
ready applications.

Welcome to exteNd Composer 9

About the Composer Enterprise Connect Product Line
Composer is built upon a simple hub and spoke architecture. The hub is a robust
XML transformation engine that accepts XML documents, processes the
documents, and returns an XML document. The spokes, or Connect products, are
plug-in modules that “XML enable” sources of data that are not natively XML-
aware, bringing their data into the hub for processing as XML. These data sources
can be anything from legacy COBOL / VSAM managed information to Message
Queues to HTML pages.

The various Connect products can be categorized by the integration strategy each
one employs to XML enable an information source. The integration strategies are
a reflection of the major divisions used in modern systems designs for Internet-
based computing architectures. Depending on your B2Bi needs, exteNd can
integrate your business systems at the User Interface, Program Logic, or Data
levels.

In addition to JDBC and LDAP (which are core Connects, included with all
versions of Composer), there are additional Connect products:

JMS—Java-based messaging using the Java Message Service standard. This
Connect product provides connectivity between Composer applications and
any JMS-aware messaging system.

3270 and 5250—Seamless connectivity with two of the most common
terminal data stream types.

CICS RPC—Transparent ability to interact with COBOL systems via
remote procedure calls through CICS.

Data General—Connect with Data General hosts using DG emulation.

EDI—Create XML integration applications that are EDI-aware.

Novell exteNd Composer User’s Guide10

HP3000—Connect with HP3000 systems.

HTML—Screen-scrape web pages and/or remap HTML data to XML data.

Tandem—Connect with Tandem-based systems.

Telnet—Screen-scrape and interact with any Telnet data stream.

SAP—Launch Composer-built services when a BAPI-enabled SAP function
launches.

T27—Connect with Unisys T27 systems.

UTS—Connect with Unisys UTS systems.

NOTE: This guide describes the basic functionality of exteNd Composer. The
addition of each Connect increases the features available to you in Composer.
These additional features are described in separate user guides that accompany
each Connect.

Once you install a Connect product, the Composer GUI will become updated with:

New xObject categories corresponding to the Connection Resource types
and Component types specific to the product in question

Specialized component editors and realtime interactive Native Environment
Panels (emulation screens) appropriate to the target system

New action types

New menu choices and associated dialogs and wizards

These customizations and additions are automatic with the installation of the
Connect and integrate seamlessly into the existing Composer design-time
environment.

Updating Your License(s)
Should the need arise to update the license string(s) associated with Composer or
a Connect product, you can do so at any time, using an intuitive point-and-click
UI.

IMPORTANT: When changing a license string, remember that it is necessary to
change the string for the design-time environment as well as the server
environment. Both procedures are shown below.

Updating Design-Time License String(s)

To update a Composer product license string on the design-time machine:

1 Launch Composer.

2 Under the Help menu, select About Composer. A dialog appears.

Welcome to exteNd Composer 11

3 At the bottom of the “About” dialog, click the System button. A new dialog
appears:

4 At the top of this dialog, click the Licenses tab.

5 The columns of the table shown on this tab give useful information about the
name and status of each Composer product, including those that for some
reason didn’t load properly. To edit a license string, click the Edit... button
next to the appropriate string under the License column. A new dialog will
appear.

6 Enter a new string in the New License text field.

7 Click OK to dismiss the dialog.

Novell exteNd Composer User’s Guide12

NOTE: If the string you enter is not correct, you will get an alert dialog at this
point. Doublecheck the string and reenter it. If problems persist, Cancel out of
all dialogs to return to Composer, then contact Customer Support.

8 In the System Information dialog, check the Enabled checkbox next to the
field you edited, if it is not already checked.

9 Click OK (or use the Enter key on your keyboard) twice to return to
Composer.

10 Restart Composer to make your changes take effect.

11 If you have not already updated the same license string on the app server,
continue now to the following procedure.

Updating Runtime License String(s)

When changing license strings in the design-time environment, it is critical that
you make corresponding changes in the app-server environment so that Composer
Enterprise Server will treat the corresponding product(s) as enabled at runtime.

To update a Composer product license string on the app server:

1 Launch the app server, if it is not already running. This should also launch
Composer Enterprise Server, if it was previously installed.

2 Go to Composer’s default Administrative Console page, which is typically at
http://localhost/exteNdComposer/Console.

3 In the upper left corner of the main console page, hover the mouse over the
words “exteNd Composer.” (See illustration below.)

When you hover the mouse over the words “exteNd Composer,” the words
change color (to red) and new text, “Version/License Manager,” appears off
to the side.

4 Click once on “exteNd Composer.” A new page appears:

http://localhost/exteNdComposer/Console

Welcome to exteNd Composer 13

5 This is the main License Manager screen. In the center of the screen, you
will see version and license information for Composer Enterprise Server. To
see additional information (and edit license strings), click the Licenses
button. A new window appears:

Novell exteNd Composer User’s Guide14

6 This page shows name and status information for all installed components.
Each text field in the License column is editable. Enter a new string as
appropriate, then ensure that the correct Enabled/Disabled radio button is
active next to the text field in question.

7 Click the Update button next to the field in question.

8 Restart the server.

Where To Go for More Help
Perhaps the best way to understand Composer is to see it in action. The Composer
installation includes a fully functional project, in the Tutorial Solution, that you
can step through to see how the application handles a practical business operation.
See the \tutorial folder, under the main exteNd Composer installation folder.

For the most up-to-date documentation and tutorials (plus other resources), be
sure to consult http://developer.novell.com/extend/composer/.

http://developer.novell.com/extend/composer/

15

2

Planning Your Application

Planning Your Application Chapter 2

Novell exteNd Composer allows you to build robust XML integration
applications that can be deployed as Web Services. The applications you build
with Composer can tie together diverse back-end systems, effectively XML-
enabling data sources that are heterogeneous with respect to communications
protocol, file formats, and/or operating systems.

A Composer service can include components that map and transform XML
content, as well as other operations (such as sending email), while carrying out
any kind of business logic that can be handled with Java or J2EE technologies.

The number of different types of back-end systems you can reach with Composer
applications depends on how many Composer Connect products you have
installed. Composer’s core installation includes the JDBC Connect for reaching
into database systems. Other Connect products allow you to exchange data with
3270/5250 systems, take advantage of CICS RPC operations, use JMS messaging,
establish Telnet sessions, etc. You can also use EDI data and/or execute SAP
functions.

Composer offers an intuitive visual interface for creating integration applications
and testing them at design time via a powerful, interactive “step-through”
debugging facility. Using simple drag-and-drop operations, you can build
extremely sophisticated XML integration applications in minutes, without writing
a single line of Java code. When you’re done, your application can be deployed
quickly to a J2EE application server (whether Novell’s exteNd app server, or
another J2EE-compliant server).

Novell exteNd Composer User’s Guide16

How Do I Design and Build an Application in
Composer?

Your approach to using Composer begins the same way you begin any project: by
capturing the requirements and by understanding the building blocks available to
you to meet your requirements.

The building blocks that you’ll use in Composer are:

Services

Components

Resources

XML Templates

You can think of Components as implementing the smaller units of work that will
be collected into a Service. Resources are things like XML schemas, custom script
libraries, and connection profiles that one or more components might need at
execution time in order to do their work. Templates are typically XML stub
documents needed by components and services.

Care should be taken when designing and building your components so that you
can achieve the greatest amount of reuse. For example, you can create a
component that uses a common XML document to access information from a
legacy data source and call that component for each request. The component can
be designed to preprocess incoming requests to particular format needs so that
other components won’t have to do the same thing on a component-by-component
basis.

What is an xObject?

You’ll often see the word “xObject” used throughout this Guide. An xObject is
nothing more than a metadata definition of a Service, Component, Resource, or
Template created by Composer. All of the data and instructions used in a Service,
Component, or Resource are persisted to disk in XML form. Composer creates the
corresponding runtime object(s) via the persisted metadata. The object that gets
created is an xObject.

You won’t need to worry about the low-level internals of xObjects per se.
Composer handles that for you. From a terminology standpoint, you can think of
xObjects as the XML-storable objects that make up a Composer application:
namely, Components, Services, Resources, and Templates.

Planning Your Application 17

NOTE: If you’re curious to see what an xObject looks like inside, open any of the
XML files under your project’s \composer directory structure, using your favorite
XML editor. For example, to inspect a Connection Resource xObject, open any file
under \composer\connection.

What is a Service?

A Composer service is an xObject that calls one or more components designed to
perform a logical unit of work. A service accepts one XML document as input,
uses components to operate on the XML data, and then produces one output XML
document. Services map, transform, or transfer data between data sources on an
XML document level. Services are the runtime deployable units that integrate into
an enterprise scalable application server environment (For additional information
on deployment strategies, see the exteNd Server Guide). A service can execute
other services or components. Examples of services that you can build include:

Sending status information to a trading partner based on an XML request

Retrieving data from legacy data sources in response to a Web browser
request

Exchanging information between internal data sources

What is a Component?

A Composer component is a set of instructions or actions for processing XML
document elements and/or communicating with non-XML data sources.
Components accept one or more XML documents as input, performs activities on
an element level, and then produce one or more XML documents. You can build
simple or complex components of different types and link them together to carry
out complete business operations. They map, transform, or transfer data between
XML documents on an XML element level. They can also move data between
XML documents and external data sources such as live 3270 transactions and SQL
databases. Components can execute other components or services.

Components should be designed to perform discrete processes so that these
common processes can be shared between services. Examples of components
include:

Mapping an input request to a common standard

Accessing a relational database based on the common standard

Transforming XML documents from one standard to another

Novell exteNd Composer User’s Guide18

What is a Resource?

As you will see later, components and services contain Action Models that execute
the mapping, transformation, and transfer of data within XML documents.
However, there are instances when the operations required are more specialized
and complex than the Action Model’s capabilities. This is where resources are
used. Resources do not contain Action Models, nor do they contain input or output
XML documents. Resources work like utilities to help components and services
carry out their tasks.

Composer’s resources include:

Code Tables—Code Tables store commonly used business code tables
(e.g., State and Region tables)

Code Table Maps—Code Table Maps transform one set of codes from a
Code Table into another set of codes (e.g., State to Region mapping)

Connections—Connections establish communications with specific
sources of data in Connect transaction environments (e.g., JDBC
connections).

Custom Scripts—Custom Scripts represent a library of user-developed
functions using ECMAScript or Java language (e.g., String
manipulations, accessing Java Business Objects)

What Is an XML Template?

An XML template contains the sample documents, definitions, and stylesheets
that assist you in designing and testing the inputs and outputs to a component. In
Composer, you use XML templates as the inputs and outputs for the components
you build. It is important to note that XML templates are only used during design
time; exteNd Server uses live documents during the actual execution of a service.

Basic Steps for Developing a Composer Service
Your application development process should take into account the following
basic steps.

Plan your service(s) before using Composer and gather the sample XML
documents, definitions, and stylesheets you need

Build and test the service(s) in Composer

Deploy your service(s) to the server

Planning Your Application 19

Part One: Plan the Service (Before Using Composer)

Your Composer application is based on the processing of XML documents. In
planning your application you will want to write and analyze the requirements
before designing the services. You will:

Determine input/output requirements. Where is the data coming from and
where is it going to and in what format(s)?

Collect any existing XML documents including, if available, any standard
XML documents from industry groups and business partners

Create input and output XML documents if required

Write the Requirements

In writing your requirements, the following questions will be useful to answer:

What does the input document look like? Does it conform to an industry standard?
Do I need to define my own?

What does the output document need to look like? Where can I get samples? Are
DTDs or XSL stylesheets required?

What processing components are required? Will the application need an XML
Map component to transform XML data? Will the application need a JDBC
component to connect to one or more databases? Can I reuse any components or
resources that have already been built?

What additional resources does the application need? Are customized functions
required?

Analyze the Requirements

There are many aspects of your project that you must consider when in the design
stages.

You’ll need to know the data sources to which you need to connect. You must
know what data you’ll need, where it will come from, and what the transmission
mode will be. Among the other details you to consider are:

Authentication—Does the data source you plan on connecting to require
authentication information, such as user IDs and passwords? Will you need
authorization from an IT group? Will you need to coordinate with other
departments?

Security—Are there security issues? Firewalls?

Personnel—Will you need special help connecting to data sources? Is there
someone in your organization with the skills necessary to understand, help
create, and troubleshoot or debug the necessary external data source
connections?

Novell exteNd Composer User’s Guide20

Legacy Applications—Will you need to contend with terminal data
streams? Relational databases? Message queues?

Availability—Are the data sources with which you want to connect going to
be available whenever you want to connect with them? Can you connect as
often as you wish?

Transaction Control—Will your application need to incorporate
rollback/commit logic?

XML Documents—Are there existing XML documents or schemas you
need to obtain from industry groups, standards organizations, or business
partners?

Logging and Notifications—Does your application have special progress-
tracking or error-monitoring needs? Do notifications (via e-mail or JMS
messaging) need to be sent when certain conditions arise? Does your service
need to adhere to well-defined escalation procedures in case of problems
involving credit limits, dollar amounts, supply chain difficulties, etc.?

Trading-Partner Requirements—Is your service going to be used by
trading partners? Do they have their own security, audit-trail, timeout/retry,
and/or other requirements that may put constraints on your application’s
design?

Design the Service

Once you’ve analyzed the requirements, it’s time to design the service. Your
design may now begin to take into account Composer’s building blocks, as the
illustration shows.

Planning Your Application 21

Figure 2-1

As described earlier, a service is comprised of components and is the unit of
deployment in exteNd Server. You should have a good idea at this point how many
components you will need to build as part of your service. For example, if you
need to map data from one XML document to another and perform a code table
conversion, you will need a component to perform that task. If you need to make
a connection to a JDBC database and extract data, you’ll need a component to
accomplish that work too.

Part Two: Build the Service

In building the service, you will:

Create XML templates

Create needed resources for the service, such as Schema and WSDL
Resources, plus others

Create executable building blocks (called Components) for the service,
encapsulating the various stages of data retrieval and XML transformation
unique to your service

Create the service using the building blocks

Test the service

Document the service (if desired)

Novell exteNd Composer User’s Guide22

Part Three: Deploy the Service

You’ve created and tested your service. Now it’s time to deploy it to an app server
and put it into action. Composer includes a Deployment Wizard to step you
through the process of taking your design time service through to execution by
exteNd Server. Also, exteNd Director contains facilities for packaging Composer
runtime objects into WAR files as subprojects of a larger J2EE project.

NOTE: Basic (but essential) deployment considerations are discussed in Chapter
15 of this guide. A more detailed discussion of deployment-related issues and
procedures will be found in the Composer Enterprise Server User’s Guide
applicable to your app server.

How is Data Handled When a Service Executes?
Services and components pass information to one another during runtime
processing by way of XML input and output messages and message parts. The
messages and parts are parsed into DOM form (Document Object Model, used
here to mean the in-memory object representation of a document). The XML
output for one component or service is often the XML input for another
component or service; however, services and components don’t actually pass
these XML documents as disk files, but rather pass “in memory” DOM images of
the files. This is an important distinction, as these DOMs can be destroyed,
changed, and recreated during processing to achieve your data integration goals
without ever being written to disk or actually changing any disk files. Once an
XML document is parsed and loaded into memory, it can be manipulated by the
various mapping, transformation, and transfer features of the component editor
and transaction environment each one accesses.

SOAP Messages

SOAP (Simple Object Access Protocol) is an industry-standard XML messaging
methodology in which XML and/or non-XML payloads and attachments are sent
(typically) over HTTP. The protocol easily accommodates, although it does not
actually specify, many common conversational modalities.

A SOAP transmission consists of an XML document structured as a header
section and a body section, both of which are wrappered inside an envelope. The
envelope and its contents are referred to as a SOAP message. The SOAP message
may simply convey data, or it may contain the information necessary to invoke a
remote service (Remote Procedure Call).

Planning Your Application 23

SOAP is a convenient mechanism for encapsulating data and meta-information
about the data. Its advantages over unstructured, non-standard exchange of XML
data (such as sending arbitrary XML via HTTP POST) include the following:

SOAP is lightweight, which means it is simple, easy to implement, and adds
little to the payload’s size or handling requirements

It’s XML

It is well suited to simple text-based transports layers (such as HTTP)

It is extensible

It accommodates security layers unto itself (such as XML Signature and
XML Encryption), independent of the transport layer

Composer includes a number of SOAP-enablement features, including the ability
to send and receive SOAP messages from a service and the ability to control
custom header information, apply (or decode) digital signatures, and use arbitrary
attachments to SOAP messages.

For more information on SOAP-related functionality in Composer, see the
sections on “Planning your Deployment” and “The Web Service (WS)
Interchange Action” as well as Index entries for this book under “SOAP.”

XML Signatures

Composer provides support for XML security via mechanisms defined in the
XML Signature standard (see http://www.w3.org/TR/xmldsig-core/).

The XML Signature specification addresses business requirements for:

Data integrity (detection of content modification)

Non-repudiation (irrefutable proof that an order was placed, or a transaction
begun, by a specific party)

Certificate-based authentication (positive identification of transaction
participants)

Composer lets you build XML integration applications that support digitally
signed input as well as signed output, using the SOAP-header mechanisms spelled
out in the XML Signature specification. (See above URL.) You can specify, for
example, that a given Web Service must receive input that is digitally signed.

Refer to the discussion of the Web Service Interchange action (later in this guide)
or the discussion of Composer-service deployment options for more information.

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

Novell exteNd Composer User’s Guide24

25

3

Getting Started with exteNd Composer

Getting Started with exteNd
Composer Chapter 3

Novell exteNd Composer is a powerful design environment for creating, testing,
debugging, and packaging J2EE-based integration applications. It can run in
standalone mode or as a subprocess of exteNd Director. The features and
techniques described below are applicable in both running modes.

Launching exteNd Composer
You can start exteNd Composer in one of the following ways:

Doubleclick the exteNd Composer icon on your desktop

From the Windows Start menu, click Programs then Novell exteNd, then
Composer.

Open Windows Explorer, navigate to the \exteNd\Composer\bin directory,
and doubleclick XC.exe.

Start Composer from exteNd Director using the procedure described below.

To launch Composer from Director:

1 Open an EAR, WAR, or EJB-JAR project in Director, if you have not
already done so.

2 Use Director’s File menu to select New > Project. A dialog appears.

Novell exteNd Composer User’s Guide26

3 Choose the Composer tab.

4 Select (single-click) Composer Project if you are creating a new Composer
project from scratch. (It will become a subproject of the currently open
Director EAR/WAR/EJB-JAR project.) Otherwise, select Existing
Composer Project if you are interested in opening an existing Composer
project. Again, the project you open will be added, automatically, to your
current Director project.

5 Click OK. A new dialog appears.

Getting Started with exteNd Composer 27

6 Enter a name for the new project under Project Name.

7 Specify a Project Location. (Use the Browse button, if necessary.)

8 Specify a Deployment Context for your project. This can be any series of
alphanumeric strings separated by periods.

NOTE: Novell strongly recommends, as a best practice, that you include the
word Composer in the context string, as shown in the illustration above, so
as to provide clear, recognizable namespace separation of Composer
deployment artifacts from other artifacts created in other programs.

9 Check the Launch Composer checkbox. This will ensure that Composer
launches when the dialog is closed.

10 Click Finish. The dialog goes away, while Composer launches and comes to
the front.

Modifying the Java Virtual Machine for exteNd Composer

If you wish to start Composer with a Java Virtual Machine that is different than the
one that comes with exteNd, you will need to modify the xconfig.xml file in the
exteNd\Composer\Designer\bin directory. Locate the RUNTIME element in
xconfig.xml and within it, simply add an element titled “VM” as shown below.
The data for the element should contain the path to the java.exe or javaw.exe
executable you wish to use.

Novell exteNd Composer User’s Guide28

<RUNTIME>

<!-- other entries -->

<VM>d:\jdk14\jre\bin\java</VM>

</RUNTIME>

NOTE: When the VM param is added to xconfig.xml and Composer is started, a
Java console window remains opens behind Composer. You can use it to view
error messages, most of which are the same as those that will show up in the
Composer message log.

If you wish to add JVM startup parameters, add an element within RUNTIME
called “VM_PARAMS” with the JVM command line options you are interested
in. For example:

<RUNTIME>

<!-- other entries -->

<VM>d:\jdk14\jre\bin\java</VM>

<VM_PARAMS>-Xms256m -Xmx256m</VM_PARAMS>

</RUNTIME>

The Xms param sets the VM’s minimum (initial) heap size. The Xmx parram sets
the maximum size to which the heap will be allowed to grow dynamically. (These
and other VM params are well-documented by Sun.)

NOTE: Setting the starting heap size to the same value as the maximum allowed
heap size has a definite benefit. When the two are unequal (that is, when the JVM
is allowed to start with a smaller initial heap size than its final size), the heap
expands dynamically, as more runtime memory is required. But expansion is a slow
process, and during this heap expansion phase there is frequent garbage
collection, heap compaction, etc. Performance will generally be poor until max
heap size has been reached.

Exiting Composer

Exit out of Composer by selecting File > Exit from the main menu, or by typing
Alt+F4.

Understanding the exteNd Composer Environment
Composer offers a rich design-time environment for creating XML-based B2B
integration services. The services you build are deployed to a Java application
server (either Novell’s, or another J2EE server) and are executed by exteNd
Composer Enterprise Server. Composer lets you create, organize, and collect
together all of the resources needed (metadata, code, JARs, JSPs, and/or other
items) to deploy a web application.

Getting Started with exteNd Composer 29

Within Composer, you’ll find resource editors (e.g., component editors pertinent
to the type of resource in question), a custom script editor, and component editors
for creating action models. See the illustration below.

You use Composer component editors to create different types of components that
can access various data source and map or transform XML structures and data.

How to Get Started
Whether you are using Composer to build a relatively simple XML integration
service, or a sophisticated web service, your approach to the building process will
most likely follow these basic steps:

1 Become familiar with the Composer environment (explained in this
chapter).

2 Create a project. A project holds all objects for the application you’re
building. It is stored with a a file extension of “spf.”

NOTE: A single .spf file or project can contain many components and
resources of many different types, as well as services that use these
resources and components. You can deploy your projects straight from
Composer or use the exteNd Director to import them into EAR/WAR files.

exteNd XML editor
XML Map
Component editor

Novell exteNd Composer User’s Guide30

3 Create XML Categories that represent the way you want to organize the
sample documents you’ll use to build and test your application.

4 Create XML Templates that contain the sample documents.

5 Create Resources (e.g., Connections, Custom Scripts, XSD or WSDL
resources, etc.) that you need for the project.

6 Create Components that use the templates and resources.

7 Create a Service that executes your components.

8 Prepare the project for deployment.

About the Composer Environment

You use the Composer main window to create and organize objects. The
individual parts of the window are shown below. (The Navigator Frame has been
specially highlighted with a dotted-line box.)

Status bar

Title bar, Menu bar,
and Toolbar

Services, Components,
and Resources pane

Instance pane

Log/Watch/Todo/Find tabs

Project and Registries tabs

Navigator Frame

Message Frame

Content Frame

Getting Started with exteNd Composer 31

Navigation, Message, and Content Frames

The Composer window, by default, exposes three frames: a Navigation frame (on
the left), a Message frame (at bottom), and a Content frame (at right). The size of
each frame can be adjusted relative to the others by dragging the separator bars
that separate the frames. You can also adjust the size of the main window in the
usual ways (maximize, minimize, iconize, and stretch). For maximum flexibility
in managing “screen real estate,” you can also hide the Navigator and Message
frames individually. The Navigator frame’s visibility can be toggled using the
left/right arrows between the Navigator frame and the Content frame or by
pressing Control-Shift-N. The Message frame’s visibility can be toggled using
the up/down arrows between the Content frame and the Message frame or by
pressing Control-Shift-O.

Navigation Frame

The Navigator frame has two tabs at the bottom: a Project tab, and a Registries tab.
The Project tab allows you to view Composer objects in Category (top pane) and
Instance (bottom pane) views, as shown above. The Registries tab allows you to
search for and display registry entries in UDDI-type registries. For more
information on this feature, see Chapter 14.

Message Frame

The Message Frame, at the bottom of the Composer window, has four tabs: a Log
tab, a Watch tab, a ToDo tab and a Find tab.

Log - This tab allows you to see error messages and Log Action output in real time
during your Composer session, eliminating the need to open a log file manually or
check system console messages.

Watch -This tab holds the watch list so that users can examine the data values of
their variables during the execution or animation of a Composer Service or
Component. Watch is a debugging tool which is explained in more detail in
“Adding a Watch Variable” on page 140.

ToDo - This tab contains a tree list of ToDo Action items in your open component
or service. To find out more about ToDo actions, refer to the section entitled “The
Todo Action” on page 187.

Find - This tab allows you to view search results. See “Searching for xObjects or
Text” on page 70 for more information about using the Find command.

Content Frame

The Content Frame (upper right) displays component-editor content, including
DOM trees, action model, and Native Environment Pane.

Novell exteNd Composer User’s Guide32

Manipulating Composer’s MDI Windowing Environment

Composer features a multi-document interface (MDI) in which you can have
multiple editor windows open (and visible) simultaneously. As shown in the
preceding illustrations, by default multiple open windows are shown as a tabbed
interface. However, individual windows can be minimized, maximized, and
closed, like any other windows. In addition, they can be tiled, cascaded, or
arranged arbitrarily by clicking and dragging. You can use the Window commands
in the Composer main menubar to control the arrangement of multiple open
windows:

In addition, you can hide non-editor panes (such as Composer’s Navigator and
Message panes) by clicking on the appropriate icons in the upper right corner of
the main screen. This is useful when you are working on an Action Model and you
have no need to see the Log pane, navigator tree, etc.

NOTE: The hide/show all panes icons will be visible only when the current editor
window has been maximized. But you can always hide or show Navigator and
Message panes individually using the commands under the View menu; see
discussion below.

Hiding all non-editor panes explodes the current edit window to take up the whole
Composer window (except for the toolbar and menus). This is often useful when
an action model contains multiple subpanes containing numerous DOMs, or when
you are working in the custom script editor and need more “real estate.”

The View menu offers additional commands that adjust your Composer main
window configuration:

Show Navigator

Hide Nav and Output frames
(explode main content window) Minimize window Maximize window

Close this
windowand Output frames

Getting Started with exteNd Composer 33

Navigator Tabs is the same as typing Control-Shift-N. This toggles the
visibility of the Navigation Frame of the main Composer window.

Output Tabs is the same as typing Control-Shift-O. It toggles the visibility
of the Message Frame at the bottom of the window.

Document Tabs is the same as typing Control-Shift-D. It toggles the
visibility of the Document Tabs. The documents themselves will still be
visible, but the tabs separating them will appear or disappear as you toggle.

Using Title Bar, Menus, Toolbars, and Status Bar

You can manipulate objects in Composer using standard Windows menus and
toolbars. The following illustration shows the title bar, main menu, and toolbar
that appears when you first open Composer.

Title bar

The title bar displays the name of the current project you have open. A project is a
collection of exteNd Composer services that are developed, maintained, and
deployed together.

Menus

The following menu options are available.

Table 3-1

Composer Menu
Command Description

File Menu

New Used to create new xObjects and Projects. xObjects
include: services, components, resources, XML
templates, and XML categories. Resources include
code tables, code table maps, connections, and
custom scripts. See “Creating an xObject” on
page 64. Clicking on New followed by xObject brings
up a dialog from which you will select the kind of
object you wish to create.

Novell exteNd Composer User’s Guide34

Open Opens an xObject in the Detail pane. You can also
open an object by doubleclicking on it, or by pressing
Ctrl-O. See “Opening an xObject” on page 67.

Delete Removes an object from the Composer window and
deletes all associated files on disk. You can also
delete an object by highlighting it and pressing
Delete.

Open Project Opens an existing project.

Save Project As Saves a project under a different file name to a
location you specify.

Delete Project Deletes selected project from disk.

Deploy Project Prepares a project for deployment by starting the
Deployment Wizard.

Import xObject Adds an xObject to your project. See “Importing an
xObject” on page 67.

Properties Displays the properties of the highlighted object.
Properties include the object’s header information
(name and description) along with information
particular to the object type. See “Displaying an
xObject’s Properties” on page 68.

Print Prints the details of the highlighted object. You can
also print an xObject by pressing Ctrl-P. See “Printing
an xObject’s Properties” on page 69.

Recent Displays a list of recently opened xObjects and
projects from which you can select to open.

Exit Exits the Composer application. If any components
are open and have not been saved, you are prompted
to save them or ignore the changes. Composer can
also be closed by pressing Alt-F4.

Edit Menu

Undo Deletes the last operation, returning the opened
object to the state it was in prior to the operation. The
Undo option is only available in a component editor’s
Action Model pane. See “Creating an XML Map
Component” on page 107.

Composer Menu
Command Description

Getting Started with exteNd Composer 35

Cut Deletes the highlighted object(s) or action(s) from the
Composer window and puts them onto the Windows
Clipboard. (You can also use Ctrl-X to cut.)

Copy Puts a copy of the highlighted object(s) or action(s)
onto the Windows Clipboard. (Ctrl-C also copies.)

Paste Copies the contents of the Windows Clipboard into
the Composer window. (Ctrl-P will also paste.)

Delete Removes the highlighted object(s) or action(s) from
the Composer window and deletes associated files
for objects. (Pressing Delete with an object
highlighted will also work.)

Find Finds the first instance of a string in an object. The
Find option is available whenever you have an
xObject open. See also, Find on the Tools menu.

Find Next Finds the next instance of the string you entered in
the Find Text dialog box. The Find Next option (F3) is
available whenever you have an xObject open.

Replace Replaces a string with a new string you enter. The
Replace option is only available in a component
editor’s Action Model pane. See “Creating an XML
Map Component” on page 107.

View Menu

Navigator Tabs Toggles the display of the Navigator Frame on the left
side of the main Composer window.

Output Tabs Toggles the display of the Message Frame at the
bottom of the main Composer window.

Document Tabs Toggles the display of the tabs at the tops of the
component editor pane

XML Documents Allows you to modify the display of your XML
documents. Sub-headings include: Show/Hide,
Collapse All, Expand All, View as Tree/Text/Stylized.

Windows Layout Gives you the ability to select the orientation of the
various panels used in the component editor

Composer Menu
Command Description

Novell exteNd Composer User’s Guide36

Toolbar

In addition to the menu options, the toolbar contains the following buttons:

Table 3-2

Tools Menu The options in this menu change depending upon the
object type you select.

Find Finds xObjects in the project by name, a string it
contains, any XML templates it uses, or where a
component is used.

Next Occurence Find the next occurence of the last searched for
string. (F4 will also search for the next occurence.)

Previous
Occurence

Find the previous occurence of the last searched for
string. (You can also use Shift-F4.)

Preferences Allows you to customize General, Display, Editing
and Designer Settings such as establishing an XML
editor and Web browser, setting log file details, and
entering proxy server settings.

Project Settings Allows you to set project global variables and
manage subprojects

Profiles Allows you to create, edit and delete Registry Profiles
for UDDI, WSIL and ebXML registry types.

Window Menu Displays all open windows.

Help Menu

Help Topics Displays online help for Composer.

Novell on the Web Displays a submenu with links to help on the World
Wide Web.

My Project Displays an HTML help file you create for a project.

About exteNd
Composer

Displays program and version information about
Composer.

Button Description

New. A dialog box allows you to select the component type you
want to create.

Composer Menu
Command Description

Getting Started with exteNd Composer 37

Status Bar

In addition to the menu and toolbar, the Composer window has a status bar, at the
bottom of the window frame, that displays the state of the currently selected
object. When the status bar indicates READY, you can perform an operation on
the object.

Understanding Composer Icons

Composer uses icons to represent the different object types. The list below shows
the icons and their types.

Table 3-3

Open. A dialog box allows you to select the component type
and name you want to open.

Cut. Clicking this button removes an object from the Composer
window and puts in onto the Windows Clipboard.

Copy. Clicking this button puts a copy of the highlighted object
onto the Windows Clipboard.

Paste. Clicking this button puts the contents of the Windows
Clipboard into the highlighted object.

Delete. Clicking this button removes the highlighted object
from the Composer window and deletes its associated files.

Icon Object Type

The Service group

Web Service

The Component category

XML Map component

Button Description

Novell exteNd Composer User’s Guide38

Navigator Frame
The main Composer window has a Navigator Frame on the left, which in turn can
be used in two different modes depending on which tab you’ve selected at the
bottom. The two tabs that control the modes are labelled Project and Registries.

The Project Tab

When the Project tab is selected, the navigation frame contains a “Services,
Components, and Resources” pane (top portion) and an “Instance” pane (lower
portion).

NOTE: You can adjust the relative sizes of the two panes by dragging the small
horizontal divider (between them) up and down.

The contents of the lower pane will change as you select different items in the
upper pane. For example, if you click on the Web Service item in the upper pane,
the lower pane will be populated with the names of any existing web services in
your current project.

The Resource group

Code Table

Code Table Map

Connection

Custom Script

The XML Template Category

XML Template Group

XML Template

Icon Object Type

Getting Started with exteNd Composer 39

Services, Components, and Resources Pane

The Services, Components, and Resources pane contains the four main categories
of objects (also known as xObjects) that you’ll create with Composer: Services,
Components, Resources, and Templates.

Services

Services represent the high level units of work or business partner transactions that
occur on the application server after you have deployed a project to your
production system. They are used to combine various components you build to
create a logical unit of work within the application server environment. Services
are the primary objects within a project that are actually executed by exteNd
Composer Enterprise Server. Services are primarily concerned with deployment
related issues and can be differentiated by the input they receive (URL parameters
or XML documents), the type of object that triggers their execution (Servlets or
EJBs) and the output they return (XML or HTML documents).

Components

A component is an object that accepts one or more XML documents as inputs,
uses a collection of actions to operate on the inputs and returns an XML document
as output. A component is usually called by a service and can contain calls to
actions or other components. Components are differentiated by their ability to
XML enable external data sources. The basic XML Map component can enable
XML aware applications. The JDBC component can XML enable relational
database systems via JDBC; the 3270 Terminal component (installed separately
by the 3270 Connect) can XML enable mainframe transactions through the 3270
terminal data stream; etc.

Resources

Resources are xObjects that perform specialized operations. They are used by
services and components to help perform their tasks. Resource types include Code
Tables, Code Table Maps, Connections, and Custom Scripts.

Templates

An XML template contains the sample documents, definitions, and stylesheets
that assist you in designing and testing a component. You’ll create XML
categories to contain similar XML templates. Next you’ll create XML templates,
that will be used as the inputs and outputs for the components you build.

Novell exteNd Composer User’s Guide40

Working with xObjects

You can add an object to one of the four xObject categories using the New option
on the File menu. You can remove an object from a category by using the Delete
option on the context menu (described below). You cannot remove a main
category or add to the main categories in the xObject pane.

Each category has a plus or minus sign. The sign indicates the state of the icon in
the tree. If a plus sign appears, you can click it to expand the category to show all
child nodes under the category in question. Likewise, if a minus sign appears next
to the icon, you can click it to collapse the category, hiding all child nodes.

Using the Context Menu

The top pane has its own context menu, shown next, that can be accessed by
clicking the right mouse button inside the pane.

Using the context menu, you can create a new xObject, import an xObject, and
paste an xObject that has been copied to the Windows Clipboard. (These topics are
addressed separately in other sections.)

About the Instance Pane

The Instance pane lists all user-created objects that belong to a given xObject
category. When you click on an icon in the upper pane, its instance objects appear
in the lower (Instance) pane.

To change the view of the Detail pane:

1 Highlight an icon in the Category pane to display its contents.

2 From the View menu, select a view option. The options are Icons and List.
See “View Menu” on page 35.

Using the Instance Pane Context Menu

xObjects in the Detail pane have a context menu, shown below.

Getting Started with exteNd Composer 41

Menu items with functionality above and beyond the standard Windows-based
functionality (Cut, Copy, Paste, Delete, Print) are explained in the table below:

Table 3-4

Instance Pane
Context Menu
Command Description

Open Makes the highlighted object visible in the content
frame

Rename Changes the name of the highlighted object.

Properties Displays the properites of the highlighted object.
Depending on the type of object highlighted, this
could open a dialog with a tabbed interface
containing several panels.

Find Where Used For components and XML templates, this choice
opens the Find dialog and automatically searches the
project for other objects that reference the selected
object.

XML Templates have the following additional menu items

Edit Sample Displays a list of XML documents that are included in
the selected XML template and allows you to edit
them in an XML editor. This option is available only
when an XML template is selected.

Edit DTD Displays a list of Document Type Definition (DTD)
files and allows you to edit them. This option is
available only when an XML template is selected.

Novell exteNd Composer User’s Guide42

The Registries Tab

When you select the Registries tab at the bottom of the Navigator Frame, the
frame assumes this appearance:

There are two panes, labelled Organization and Service (with an adjustable divider
between them). These panes are used for searching and retrieving information
contained in UDDI registries. For more information, see Chapter 14.

Configuring Composer’s Environment
You can configure Composer in a variety of ways to meet your design-time
requirements. The Preferences and Project Settings tabs located under the Tools
menu are meant to assist you in customizing your user experience.

Getting Started with exteNd Composer 43

Setting Preferences
The Preferences dialog (available under the Tools menu) has four tabs: General,
Display, Editors and Designer. The function of each tab is described below.

General Preferences

Using the up/down (spin) control, set the Number of Recent Projects to
display under File>Recent

Similarly, set the Number of Recent Objects to display under File>Recent

Select a name and location for the System Log File by typing one in or
clicking on Browse.

Check Overwrite system log if you want the system log cleared each time
you start Composer.

Check Show Stack Trace to turn on the functionality to log the stack traces
to the log file.

Set the Log Threshold to a value from 1 to 10. This value is a threshold
value that controls which Log actions execute inside a component and which
system messages get written out. Only Log actions with a priority setting
equal to or greater than this number will execute. (See the“Log Priority
Levels” section in the “Basic Actions” chapter, page 163.)

NOTE: Set this value to 10 if you wish to see all system messages (error
messages); set it to a lesser value if you want to see only minimal system
messages.

Novell exteNd Composer User’s Guide44

Select the executable you wish to use as your HTML browser. This will
default to Internet Explorer.

Display Preferences

Check Use System Settings if you would like Composer to reflect your
default Windows look and feel for colors, menu font sizes, etc. Uncheck to
use the standard Composer look and feel.

Check Show Comments in Tree View if you want the be able to see XML
comments. Uncheck to hide comments when viewing as a tree.

Check Display Icons on Tabs if you wish to see icons on the Project and
Registry tabs. Uncheck to hide the icons.

By default, Display Animation Complete Messages is checked, indicating
that “Animation Complete” messages will be displayed. Uncheck if you do
not wish to see these messages.

Using the up/down (spin) control, set a number for the Directory Display
Length for most Recent. This is used for both recent projects and objects.

Getting Started with exteNd Composer 45

Editing Preferences

Type the fully qualified path of the selected XML Editor or click Browse to
locate the application on your disk or network.

Specify an XSL Editor as indicated above.

Specify a JSP Editor as indicated above.

Designer Preferences

Novell exteNd Composer User’s Guide46

The Use a proxy server check box pertains to the Data Exchange actions
during component execution in Composer. If the URL referenced in the
action goes through a proxy server, click the Use a proxy server check box,
then type in the Address and Port of the proxy server.

Click Advanced to set up Proxy Settings. (These are described in “.Entering
Advanced Proxy Settings” below.)

Under Startup Options, you can set a value for Minimum Memory and
Maximum Memory to be used on startup.

You can also check the Display Java Console box

If you have installed the Novell exteNd Enterprise Edition version of
Composer, you will see a group of controls relating to Transaction
Emulation. (These controls are not available in the Professional Edition
version.) Select the type of Transaction Emulation to use for design-time
testing purposes. (This is a design-time setting only. You control runtime
transaction behavior via individual actions.) Your choices are:

Servlet or Bean-Managed—Means that transacted action models or code
blocks will roll back or commit in accordance with explicit calls made via
Transaction Actions.

Container-Managed—Means that transaction scope is managed by the EJB
container. If Begin, Commit, or Rollback commands are issued within a
component, an IllegalStateException is thrown.

NOTE: See your Composer Enterprise Server Guide for a more detailed
explanation of transaction control as it applies to deployed services

.Entering Advanced Proxy Settings

If you check Use a proxy server in the Tools>Preferences>Designer dialog box,
you can enter advanced proxy settings. These settings establish the connections to
HTTP and FTP servers, and allow you to exclude certain addresses from using the
proxy server.

To enter advanced proxy settings:

1 From the Tools menu, select Preferences.

2 Select the Designer tab.

3 Make sure Use a proxy server is checked.

4 Click Advanced. The Proxy Settings dialog box displays.

Getting Started with exteNd Composer 47

5 Type an Address and Port for the HTTP and FTP servers. If both are the
same, fill them in for one server and check Use the same proxy server for
all protocols.

6 If you will be going to a site that requires NTLM authentication, check the

Requires NTLM Authentication checkbox. Then click the Set button. A
new dialog will appear:

Enter the appropriate information for UserID, Password, and Domain, then
dismiss the dialog by clicking OK.

7 Type the addresses you do not want using the proxy server(s). Separate the

addresses with a pipe character (|).

8 Click OK to return to the Preferences dialog box.

Novell exteNd Composer User’s Guide48

Project Settings
The Project Settings dialog (available under the Tools menu) has two tabs: Project
Variables and Subprojects. The function of both tabs is described below.

Project Variables

You can think of Project Variables as being global variables with project scope.
They are stored in their own XML document, which gets deployed with other
project resources at deploy time. This tab allows you to specify the names and
initial values of any global variables you want to use, with intra-project scope.
(These variables will apply in the deployed project as well as at design time.) The
variables are actually stored in an XML document at an XPath of
$PROJECT/USERCONFIG.

To create project variables:

1 From the Tools menu, select Project Settings. The Project Variables tab is
selected by default.

2 Click the plus-sign icon in the dialog’s mini-toolbar to add a variable. Click
minus to remove a selected variable.

3 After adding a new variable, enter its name under Element Name and an
initial value under Text Value. (Project variables must have String values.)

4 In the text field at the bottom of the dialog window, enter a deployment
context for your variables. This can be any number of labels separated by
periods. (See illustration above.)

Getting Started with exteNd Composer 49

NOTE: Do not use Java keywords such as protected, default, int, new, try,
etc., in your context string. For the complete list of reserved words, see
“Reserved Words” in the appendix.

5 Click OK to dismiss the dialog.

NOTE: For further information on Project Variables, see “Creating Project
Variables” on page 73.

Subprojects

The Subprojects tab of the Project Settings dialog is where you can add or delete
subprojects (other Composer-created .spf projects) to your current project.

The advantage to importing projects in this way is that it can be done without
actually making new copies of all the necessary files. This subject is discussed in
detail in Chapter 4, “Creating and Managing Your Projects”. Refer to that section
for instructions on using this tab of the Project Settings dialog.

Novell exteNd Composer User’s Guide50

The xconfig.xml and xuserpref.xml files
Your modifications to all the Preferences and Project Settings outlined in the
foregoing pages are actually stored in two XML files called xconfig.xml and
xuserpref.xml, located in Composer’s \bin directory. These files can be edited
directly, if you want, but in most cases the quickest, most convenient way to make
changes to them is to use the Preferences and Project Settings dialogs as described
above.

Composer Online Help
Composer has several forms of online help to assist you when using the program.

You can access context-based help at any time by using the F1 key on your
keyboard, or by using the Composer Help command under the main Help menu.

The commands available under the Help menu include those shown below. (Note
that the exact makeup of this menu is subject to change.)

Table 3-5

Help Type Description

Composer
Help (F1)

Launches the browser-based help system, giving you
help for the task on which you are currently working.
You can access Composer Help one of three ways.
Select Composer Help from the Help menu to display
a table of contents for the online help. From there, you
can select a topic to view. You can also press F1 at
any time to display help for the dialog box that is
currently selected. In addition, you can get context-
specific help from within dialogs by clicking the Help
button in the lower left corner of the dialog window (or
by hitting F1 while viewing the dialog).

Getting Started with exteNd Composer 51

NOTE: The first time you call up the help system, you may notice a brief delay
while the system is being loaded and cached into memory. This delay will not occur
on subsequent accesses of the help system.

Composer
QuickStart

Provides a QuickStart information path to get you
started on the right track using Composer to build and
deploy web-based applications.

exteNd
Overview

Links to an overview of exteNd, the visual integrated
services environment for enterprise information
systems that allows you to quickly deliver highly
interactive solutions that integrate existing business
systems.

Novell
exteNd
Website

Displays the Novell exteNd URL:
http://www.novell.com/products/extend/ for information
on all the exteNd products, including documentation
for the products.

About
exteNd
Composer

Displays the version number. Clicking on System will
open a tabbed interface, which displays further
information about Status, Licenses and Credits.
Clicking OK dismisses these informational tabs.

Help Type Description

Novell exteNd Composer User’s Guide52

Figure 2-1: The exteNd Composer Online Help System

Using Online Help

You can call for online help at any time by clicking F1. A new free-floating, non-
modal window like the one above will appear.

NOTE: If you were in a modal dialog at the time you press F1, you will normally
see context-sensitive help in the content pane of the help window.

Content tab

Index tab

Search tab

Nav frame Content frame

Program Help
Selector

exteNd website links Help for Help

Navigation
arrows

Getting Started with exteNd Composer 53

The content of Composer’s online help system comes from the product
documentation and basically duplicates the PDF documentation, only in HTML
form. The HTML files are organized in your installation directory (Program
files\Novell\extend5). To find the HTML files for a particular product’s help, go
to ...Docs\help\Composer\books\, where you will see all the .html files for each
Composer Product. You can view these HTML files with your favorite web
browser, if you want. You do not have to use Composer’s viewer.

Note that Composer’s online help viewer gives you access to all help topics,
covering all installed exteNd products (including Composer Connectors), in one
consolidated helpset. Aggregated help for the entire installed product is always
available, regardless of which exteNd application, which Composer component
editor you might be in, which wizard panel you might be using, etc.

If, for example, you were viewing help for the Composer HTML connect and a
question arose in your mind about the Application Server, you could simply
change your Help System to exteNd Application Server, as shown below:

Navigating Online Help

Composer’s help system offers three navigational options, represented by a
Contents tab, an Index tab, and a Search tab at the top of the left-hand (navigation)
frame. (See graphic, above.)

Content Browsing

Select the Contents tab to see a complete listing of all help topics covering all
installed Composer products.

The “book” icons represent folders. Click any book icon to expand the tree under
that folder level. (The content pane will not show useful content when a book icon
is selected. Select a topic beneath the book for detailed content.)

Novell exteNd Composer User’s Guide54

“Page” icons (containing a question mark) represent individual topics for which
detailed help is available. Single-click any page icon to see related content in the
content frame of the viewer.

NOTE: When focus is in the nav frame, you can traverse topics quickly by using
the up-arrow and down-arrow keys. You can also expand a folder (book icon) by
hitting the Return key.

Index

Select the Index tab to populate the nav frame of the help window with an
alphabetized index of topics. Single-click any topic in the list to see its content.

Select any symbol or letter from the listing at the top of the frame to see the
matching topic references in the index listing. This is usually faster than manually
scrolling through each symbol and letter.

Symbol/Letter selector

Content items for the
selected letter/symbol

Getting Started with exteNd Composer 55

Keyword Search

The fulltext search engine uses a natural language search technology where
matches returned from Searches are ranked for relevancy using “relaxation rules.”

The red circle in the first column of search indicates the relevancy rank, with
a completely filled in circle indicating the most relevance and less filled in
circles indicating less relevance.

The number next to the circle indicates the number of matches the search
engine found for the topic listed in the third column.

The third column displays the names of the topics that contained matches.
(See graphic, below.) The ranking and relevance ratings improve when
search queries are more complex and contain more information.

Single-click any “hit” in the nav frame to see related content in the content frame.
The viewer will automatically scroll any relevant section(s) of text into view; and
you will see that “hit words” are highlighted in mauve. See below.

The search engine also uses a word morphing technology to find words with
common roots. For example, when the term “build” is included in a search string,
matches that contain “built”, “builder”, “building”, and “builds” are returned.

Novell exteNd Composer User’s Guide56

Help likewise performs partial text searches. For example, entering the letter “x”
in the Index Find box will locate: examples, execution errors and XML
Integration. Help will also find close matches to a whole word so that searching
for execute finds “execute” and “executes.”

57

4

Creating and Managing Your Projects

Creating and Managing Your
Projects Chapter 4

What is a Project?
A project is a collection of Composer objects designed to perform XML based
B2B integration services. A project holds all the objects for the application you’re
building, and is the unit that is deployed to the exteNd Server. You may deploy as
many projects to an application server as you wish.

The illustration shows the parts of a project.

Figure 4-1

Novell exteNd Composer User’s Guide58

About Services

A service is used to combine the various components you build to create a logical
unit of deployment for exteNd Server. Services are the objects that are actually
executed within exteNd Server. A Web Service is started by a Service Trigger
object and accepts XML document(s) as input(s), returning XML documents as
output. A JMS Service accepts messages as input and is triggered by the arrival of
a message on a queue. For more information, see “Creating a New Service” on
page 410.

About Components

A component is an xObject that accepts one or more XML documents as inputs,
uses a collection of actions to operate on the inputs, and returns an XML document
as output.

A component is usually called within a service and can contain calls to actions or
other components. (Services are basically collections of components.)

For more information about how components work, how they are created, and
underlying design principles, see “Creating an XML Map Component” on
page 107.

About Resources

Resources are xObjects that perform specialized operations. They are used by
services and components to help preform their tasks. Resource types include Code
Tables, Code Table Maps, Connections, and Custom Scripts.

About XML Templates

An XML template contains the sample documents, schemas, and stylesheets that
assist you in designing and testing a component. You’ll create XML categories to
contain similar XML templates. Next you’ll create XML templates, then use the
templates as the inputs and outputs for the components you build. For more
information, see “About XML Templates” on page 86.

Creating a New Project
When you first start Composer, a sample project, called Tutorial, is loaded. When
you begin your own application, you should start by creating a new, empty project.

Creating and Managing Your Projects 59

To create a new project:

1 Select File, then New, then Project. The New Project dialog box appears.

2 Type in a Project Name. This is a required field. Composer adds the project
name extension, which is.spf.

3 Select Browse to locate the folder where you want your project to reside.
The Project Location dialog appears.

NOTE: If you have a project open, the Project Location dialog defaults to
the folder where the open project resides.

4 Navigate to the folder where you want your project to reside.

Novell exteNd Composer User’s Guide60

5 To create a new folder in which to save your new project, click the New

Folder icon. A folder called “New Folder” will appear in the list of
folders in the current directory. Click this new entry a single time to
highlight it, then click again to rename it to an appropriate Folder Name.

6 Click OK. The File Location dialog appears with the newly-created folder in
the Look In: field.

NOTE: The File Name in the Project Location dialog defaults to the project
name you designated in step 2.

7 Click OK. The New Project dialog appears with your newly-created Project
Name and Project Location displayed.

Creating and Managing Your Projects 61

8 Enter a deployment context string in the bottommost text field of the dialog.
The string should contain labels (no spaces) separated by periods, as in
“com.server.apps.”

NOTE: The context string should not contain Java-language keywords,
such as try, catch, finally, int, for, etc. For a complete list of Java keywords,
see the “Reserved Words” appendix.

9 Click OK. The Composer window appears with the name of the project you
just created in the title bar.

Opening Projects
You can open a project in the following ways.

Opening a Project from within Composer

To open an existing project:

1 Select File then Open Project. The Open Project dialog appears.

2 Click the Browse button. Optionally, you can type in the path of the project
you wish to open. The Project Location dialog appears.

Novell exteNd Composer User’s Guide62

3 Navigate to the directory where the project you’d like to open resides.

4 Select the project.

5 Click OK. The Open Project dialog appears with the path of the project you
just chose in the Project File field.

6 Click OK. The Composer window appears with the name of project you just
opened in the title bar.

NOTE: You can also open a project by selecting a project from the Recent
Projects list on the File menu.

Opening a Specific Project When Starting Composer from the Command
Line

As a startup option, you can launch Composer by running XC.exe in command-
line mode, and you can specify a project name parameter, such as:

C:\exteNd\Composer\Bin\xc myproject

In this example, XC.exe is run with a project file named myproject.spf.

Opening a Project when the Recent Project is not Found

When you launch Composer, the last project you worked on is automatically
loaded. If you moved the project files, or if you are trying to access another user’s
project that is inaccessible, Composer may not be able to find your project.

At startup, Composer uses the first command line parameter for the name of the
project file to open. If the command line parameter is omitted (or is invalid),
Composer uses DEFAULTPROJECTFILENAME from xconfig.xml as the
project name to open. If both the command line option is omitted or invalid and the
DEFAULTPROJECTFILENAME is omitted or invalid, then Composer displays
the Project Create/Open dialog.

Creating and Managing Your Projects 63

The Project Create/Open dialog allows you to create a new project, open an
existing project, or exit Composer altogether, as well as providing relevant error
information regarding the failure to open an initial project.

To locate a project at startup:

1 On the Project Create/Open dialog, do one of the following:

Select the New Project radio button to display the New Project dialog.

Select the Open Project radio button to locate your project.

Select the Exit exteNd Composer radio button to search for the project.
For more information about where project files are stored see
“Understanding Where Project Files are Stored” on page 72.

2 Click OK.

Deleting a Project
You can use exteNd Composer to delete an entire project and all its objects from
your disk drive, or since projects are stored in normal directory structures, you can
use standard windows delete functions. In either case, if you do so, the project will
be permanently destroyed and unrecoverable by exteNd.

To delete a project:

1 Select File then Delete Project. The Delete Project dialog appears.

Novell exteNd Composer User’s Guide64

2 In the Delete Project dialog do one of the following:

Provide the full path and project.spf file of the project to be deleted.

Select the Browse radio button to locate the project you want to delete.

3 Click OK. The Confirm Project Delete dialog appears.

4 Select Yes.

Managing xObjects
xObjects are the building blocks of all XML integration services. In order to build
project components, you can either:

Create xObjects

Open existing xObjects

Import xObjects from other projects

Do a combination of the three above

Creating an xObject

You can create xObjects from the menubar and use them in components.

To create an xObject:

1 From the File menu, select New, then select xObject. Alternatively, you can
click with your right mouse button on the type of xObject you wish to create
in the navigator pane and select New.

2 Tab to select the type of xObject to create. The choices are Process/Service,
Component, Resource, or Template.

3 If you select Process/Service, you can create a new Web Service. You may
have additional choices depending on what services you have installed.

Creating and Managing Your Projects 65

4 If you select Component, select a component type. The visible choices
depend upon which Connect products you have installed.

5 If you select Resource, select a resource type. There are several choices
available by default and again, the visible choices will depend on what
Connect products you have installed.

Novell exteNd Composer User’s Guide66

6 If you select Template, you have the choice to create a new Template
Category, or a new Template.

7 In any of the four cases, once your selection is complete, type a name for the
xObject.

8 Complete the rest of the xObject definition screens. Click Finish to complete
and save the xObject.

The xObject is placed under the category in Composer appropriate for its type.

Creating and Managing Your Projects 67

NOTE: The xObjects you create are themselves stored as XML files on your hard
disk in a directory of the same name as the category they’re in.

Opening an xObject

If there are existing xObjects in the current project, you can open them from the
main Composer window to edit or view the contents.

To open an xObject:

1 To open an existing xObject, from the File menu, select Open.
Alternatively, highlight any existing xObject in the Instance Pane and press
Ctrl+O. Either of these methods will display the Open xObject dialog box.

2 Select the xObject type you want to open.

3 Select the xObject.

4 Click OK.

The xObject is opened in its own window.

NOTE: To open an xObject directly, doubleclick on it in the Instance Pane, or
highlight it in the Instance Pane, click with your right mouse button and select
Open.

Importing an xObject

Besides opening xObjects, you can import them from another project or location.

NOTE: The xObjects you create are themselves stored as XML files on your hard
disk in a directory of the same name as the category they’re in. To import an
xObject, select the xObject’s XML file as detailed below.

To import an xObject:

1 From the File menu, select Import xObject. The Import xObject dialog box
appears.

Novell exteNd Composer User’s Guide68

2 Select the xObject type you want to import.

3 If you selected XML Template, select a category.

4 Type the path and filename of the xObject, or click Browse and search for
the xObject. You may also read in a file from a URL by explicitly preceding
your filename with “http://,” “https://” or “ftp.”

5 Type a name for the xObject or keep the original name.

6 Optionally, type any descriptive text, or keep the original text.

7 Click OK.

The xObject is placed under the category in Composer appropriate for its type.

Displaying an xObject’s Properties

All xObjects have properties associated with them. Properties include their name,
descriptions (header information), and other information specific to the xObject
type.

To display the properties of an xObject:

1 Highlight an xObject in the Detail pane.

2 From the File menu, select Properties.

3 Click the tabs in the Properties dialog box to view the Header and XML
properties.

NOTE: You can also click the right mouse button and select Properties from the
context menu.

Category is
enabled only
when you select
XML
Template

Creating and Managing Your Projects 69

Printing an xObject’s Properties

In addition to viewing the properties of an xObject, you can also print the
properties. When you print an xObject, the time and date of the print, along with
the name of the xObject and all Header and other information specific to the
xObject type is included.

If you print the properties of a component, all data concerning the component’s
DOM structures (See “What is a DOM?” on page 109) as well as its Action Model
(See “About the Action Model Pane” on page 129) are printed.

To print the properties of an xObject:

1 From the File menu, select Print. Alternatively, highlight any existing
xObject in the Instance Pane and press Ctrl+P. Either of these methods will
display the Print dialog box.

2 Select an xObject type.

3 Select an xObject.

4 Click OK.

5 Set any printer options and click OK.

You can also select an xObject first and print it.

To print a selected xObject:

1 Highlight an xObject in the Detail pane.

2 Click the right mouse button and select Print from the context menu.

3 Set any printer options and click OK.

Renaming an xObject

To rename an xObject, right-click the xObject and select Rename. Type a new
name into the text field.

Novell exteNd Composer User’s Guide70

NOTE: Changing the name of an xObject on its Properties page causes a Save
As operation, preserving the original and creating a duplicate with a new name. To
change just the name of an xObject, use the Rename option on the context menu.

Deleting an xObject

To delete an xObject, right-mouse click it, and select Delete. Confirm that you
want to delete the xObject.

Searching for xObjects or Text
The bigger your project gets, the more services, components, resources, and XML
Templates it will contain. You may find it difficult, at times, to locate information
with such an overwhelming number of objects at your fingertips. The Find tool is
designed to help you locate xObjects, text within objects, or objects that reference
a given XML Template or Component.

To find an xObject in your project:

1 Select Tools then Find. The Find dialog appears.

2 There are several different ways to select and specify the methods you wish
to search by.

Contained Text allows you to type a string to search for. This type of
search will inspect all xObjects registered with your project. The entire
text of the object will be searched, not just its name. Ignore Case can be
toggled on or off.

Creating and Managing Your Projects 71

Named allows you to inspect all the xObjects registered with a project by
name. An asterisk (*) can be used as a multi-position wildcard.

Uses Component allows you to search by component type and, if
desired, by name within component type. If you search within a Web
Service component, the search will inspect other components that have
actions containing calls to the Web Service you have selected. Similarly,
if you have the Process Manager installed, searching a Process
component will also inspect all sub-process activities that use the target
process.

Uses Resource allows you to search among resource type objects,
including Code Tables and Code Table Maps, Connections, JSPs, XML
Schemas, Custom Scripts, Service Providers, Service Provider Types,
WSDL and WSIL

Uses XML Template allows you to search among your XML templates.

Any combination of the above search methods can be used.

3 Click Search.

When located, the target xObject(s) are shown in list form in the Find tab of the
Composer main window. Any component or object in the search-results list can be
opened by doubleclicking it. As in the Category pane of the navigation frame, the
icon next to the xObject indicates its type (component, service, resource, or XML
Template).

Selecting Tools>Next Occurrence or pressing F4 will find the next result for the
specified search. Selecting Tools>Previous Occurrence or pressing Shift-F4
will find the previous result for the search.

Viewing System Messages
During the execution of a component, certain messages (e.g., internal system
messages from Composer, or text specified by Log actions) are written to a log
file, xcsyslog.txt. You can specify the location of this file by altering the contents
of the xconfig.xml file (which is in the \bin directory of your Composer design-
time installation). Look for the <LOGFILE> element in xconfig.xml and change its
contents to the desired pathname.

NOTE: The easy way to change the log file path is to enter a new path in the
General tab of the User Preferences dialog. Use the Preferences command under
the Tools menu to bring up this dialog. See “Configuring Composer’s Environment”
on page 42.

Novell exteNd Composer User’s Guide72

At animation time or when executing a component in Composer, system messages
(and Log Action output) will appear in real time in the Message pane at the bottom
of the main Composer window. Select the Log tab at the bottom of the window. (If
the Message pane is not visible, choose View > Output Tabs from the main
menu.)

Understanding Where Project Files are Stored

All exteNd objects (projects, XML categories, XML templates, components,
resources, services, etc.) that you create in Composer are stored in folders with
names that match the object type.

When you create a project, the project file (e.g., myproject.spf) is stored in a folder
named after the project (assuming you manually created a new folder for the
project). As you build your application by creating XML templates, resources, and
components, the created objects are stores as XML files within sub folders of your
project folder. So creating a service named “AcceptInvoice” creates an XML file
named “AcceptInvoice.xml” that contains all the actions performed by that
service. All XML template categories are stored under “XMLCategories” by
name of category. All XML Templates are stored under category by name of
template. All XML samples for a category (i.e., there could be more than one
template) are stored under “Imports” by name of sample document.

The illustration below shows an example of where files are stored.

Creating and Managing Your Projects 73

About Design Time and Deployed Project Files

All XML documents and support files are part of a project. After you deploy your
project, the project files are stored in a Java Archive file (a JAR file).

The following table shows what files constitute a project

Table 4-1:

Creating Project Variables
A project variable allows you to designate a value for an element and use the
specified element globally in all components and functions you create. Unlike
ECMAScript “globals,” which are scoped to the component in which they are
used, project variables are scoped to a service’s session, which means they can be
used by any number of components running inside a Composer service.

Project variables are implemented as values stored in an in-memory DOM called
$PROJECT. This DOM is in turn derived from a file that Composer creates for
every project called PROJECT.xml (which later gets deployed to the server).

NOTE: Changes to project variables that occur at runtime are not persisted
across service invocations. In a production environment, PROJECT.xml is read-
only. (To create persistent globals, you would need to read and write your own
scratch file using XML Interchange actions.)

Because they are global in scope, project variables can perform important
functions during both design-time development of your project and runtime
maintenance of your project after deployment.

Project File Name Description

[projectname].spf exteNd Composer project file. Stores startup information
for your project. This file is created when you create a
new project.

PROJECT.xml This is an optional file that Composer creates. It contains
project variables that you define. See “Creating Project
Variables” on page 73 for more information.

[projectname].jar A Java Archive that is created during deployment. For
more information, see the exteNd Server Guide.

*.xml, *.xsl All XML samples, definitions, and stylesheets you use in
designing your application are stored in folders under the
project folder.

Novell exteNd Composer User’s Guide74

At design time, project variables provide a convenient means of centralizing
project-wide values that might need to be used in multiple places in a project. At
deployment time, the project variable file (PROJECT.xml) provides a convenient
way of updating a project’s static variables. After deployment, you can
conveniently change the behavior of multiple deployed components and services
by updating just the deployed PROJECT.xml file on the application server.

Examples of items that might best be stored as project variables include:

Any URL referenced within components for items such as:

Log file paths

DTD and Schema paths

XSL stylesheets

XML Interchange URLs

Send Mail—Mail Server Identification

Authentication information needed for establishing connections with
databases or back-end systems

Message queue names

Versioning info applicable to your services and components

The process of updating the PROJECT.xml file is described in detail in exteNd
Server Guide.

Adding a Project Variable to a Project

You create the names of project variables that map to specific values. By making
the reference of certain information indirect through a project variable, you can
change the data in one place and be assured that all places where it is used will get
the same new values.

To add a project variable:

1 Select Tools then Project Settings from the Composer window. The Project
Settings dialog appears.

2 By default, the Project Variables tab will be displayed.

Creating and Managing Your Projects 75

3 Click the Add New Variable button. A blank field appears in the Project
Variable window.

4 Click in the blank Element Name field and type an element name. For
example, type the element “CompanyName.” Do not use spaces.

5 Click in the blank Text Value field and type a text value. For example,
“ACME Widget Co.”

6 Click OK.

The Element Name and Text Value that you just created are now stored in a project
XML file called PROJECT.xml. This file can be manually edited after you deploy
your project, if you need to change the variable value.

Add New

Delete Variable

 Variable

Novell exteNd Composer User’s Guide76

The Element Name and Value are automatically added to Composer dialog boxes
for your use in building components. For example, the variable is available for use
in functions.

Creating Project Variables Dynamically

In addition to creating permanent (static) project variables, you can also create
project variables dynamically within a component or a service.

The $PROJECT DOM is always present in the DOM lists (dropdown menus) that
display in the Map action dialog. It’s a very simple matter to create a project
variable and assign it a value, because you can map to the $PROJECT DOM the
same way you would map elements and element values to any other DOM
(including via drag-and-drop).

NOTE: You can view the contents of the $PROJECT DOM in tree, text, or stylized
form at any time by choosing Window Layout from Composer’s View menu and
making the $PROJECT DOM visible. See the discussion under “Using Window
Layout and Show/Hide in the Component Editor” on page 119 of this guide.

If you look at the structure of the PROJECT.xml file, you’ll see that the root
element is called USERCONFIG. User-defined variables are attached to this node
as child elements. The string values of the child elements are the values of the
project variables corresponding to the element names.

In addition to user-defined project variable names, you will also see Composer-
defined elements under USERCONFIG, because Composer uses the
PROJECT.xml file to persist certain project preference values.

Dynamically created project variables are, of course, volatile. You can use
dynamic project variables for the lifetime of the executing service (which may in
turn call many components that use it). When the service finishes executing, the
dynamic variables are destroyed, since they were created in memory.

A project
variable is
available for
use in building
components.

Creating and Managing Your Projects 77

You can reassign values to a project variable as many times as needed, by mapping
to its node in the $PROJECT DOM. An example of this follows.

To create a dynamic project variable and map a value to it:

1 Doubleclick a service in the instance pane. The Service editor window
appears.

2 In the main menubar, select Action, then Map. The Map dialog appears.

3 Click the Expression radio button in the Source section of the Map dialog.

Novell exteNd Composer User’s Guide78

4 Type in a value for your project variable in the Source field. If the value is a
string, don’t forget to enclose it in double quotes.

5 There are two ways to enter the target expression:

Click the Expression radio button in the Target section of the dialog and
type

PROJECT.createXPath(“USERCONFIG/MYPROJECTVAR”)

in the Target field, where MYPROJECTVAR is the name of the project
variable you wish to create—or:

Click the XPath radio button under Target, select PROJECT from the
dropdown menu, and in the field underneath type:

USERCONFIG/MYPROJECTVAR

in the target field, where MYPROJECTVAR is the name of the project
variable you wish to create. (See above illustration for the completed
dialog’s appearance.)

6 Click OK. The dynamic variable you just created now appears in the Action
pane of the Service editor window.

Subprojects within Projects
You can include other Composer projects within your current project—a feature
designed to foster rapid application development via reuse of existing xObjects.
When external projects are reused in this fashion, they are called subprojects. A
subproject’s xObjects are exposed in the current project’s Category and Instance
panes, in the usual way, except that a project prefix appears before the name of
each object, to identify the object as coming from a named subproject. An
example is shown below.

Creating and Managing Your Projects 79

To include a Subproject in a Composer Project:

1 Under the Tools menu on Composer’s main menubar, choose Project
Settings.

2 Select the Subprojects tab of the Project Settings dialog, as shown below.

Novell exteNd Composer User’s Guide80

3 Click the plus-sign icon in the upper left part of the dialog to add a
subproject. A dialog will appear, allowing you to browse your file system.
Choose any .spf file that was created by Composer; it will appear in the list
of subprojects.

NOTE: If the .spf you choose already contains a subproject of its own, you
will get an error dialog advising you that you cannot add subprojects
containing subprojects.

4 Click the Relative checkbox if you want to change the location of the
subproject to a relative path (to the main project.spf). If the project is on a
separate drive than the main project, then the Relative checkbox is disabled.

5 To remove a subproject, select it and then click the minus-sign icon.

6 Add as many subprojects as you like, by repeating Step 3.

7 Dismiss the dialog by clicking OK. Your subproject’s xObjects will appear
in the detail pane of Composer’s nav frame. They can be distinguished by
the appearance of a namespace/colon prefix on each xObject name.

Imported xObjects versus Subprojects

To achieve object reuse, you can import xObjects directly, one-by-one, into a
given project, rather than take advantage of subprojects. (See “Importing an
xObject” elsewhere in this chapter.) But the disadvantage of importing an xObject
is that it results in the original object’s underlying XML files being copied into the
current project. This can pose code maintenance problems, in that alterations or
updates of the original xObject will need to be made, also, in any copies of that
object that might exist in projects that imported the object. This is not true for
subprojects. When you include an external project within your current project, no
additional copies of the subproject’s source files are made. All “source code” stays
in one place, simplifying maintenance.

Nesting of Subprojects

Nesting of subproject beyond one level s is not supported. A given project can
have any number of subprojects, but they must all be at the same level (one level
deep). This also means that a project containing one or more subprojects cannot
serve as a subproject for another project. For example, consider the case where
Project A contains a subproject named Project B. A third project called Project C
could not use Project A as a subproject, although it could use Project B.

If you attempt to add a subproject to your current project, and that subproject
contains its own subprojects, you will get a warning as follows:

Creating and Managing Your Projects 81

Scope and Visibility of xObjects and Variables in Subprojects

The sharing of xObjects and variables among projects and subprojects is limited
by certain scoping rules that you should be aware of.

1 xObjects: A project can access a subproject’s components (and other
xObjects), but the subproject cannot access the parent project’s objects. For
example, if Project A contains Project B as a subproject, the components in
Project B (the “child” project) cannot address components or resources in
Project A (the parent).

2 Project variables: Variables derived from the $PROJECT DOM (see
“Adding a Project Variable to a Project” earlier in this chapter) belong to the
project in which they were created. Components and services in Project A
cannot “see” project variables belonging to Project B, nor vice versa.

3 ECMAScript variables and functions: The lifetime of script variables is
always scoped to the component. When a component goes out of scope, any
ECMAScript variables it may have used also go out of scope. Custom Script
resources in a subproject, on the other hand, are accessible to the main
project, via a built-in Composer ECMAScript extension called the
Projects object. For example, suppose that the current project, Project A,
contains a subproject, MyOtherProject; and suppose MyOtherProject
contains a Custom Script resource in which there is a function called
salesTax(). A component in Project A can use the salesTax() function by
calling:

Projects.MyOtherProject.salesTax()

Novell exteNd Composer User’s Guide82

83

5

XML Templates

XML Templates Chapter 5

Novell exteNd Composer relies heavily on the concept of organizing related
groups of XML, XSL, DTD, and/or XSD files into named templates.

Sample XML Documents, Document Definitions, XSL
Stylesheets, and Templates

In order to simplify working with XML data at design time, Composer lets you
defined XML Templates. The purpose of the XML Template is simply to organize
related documents into a single functional grouping. For example, it’s not unusual,
when designing an XML integration application, to have one or more sample input
documents that represent hypothetical “incoming data.” These input documents
might or might not conform to a particular schema (.xsd) or DTD. They might or
might not be associated with XSL stylesheets. You may or may not also want to
associate various kinds of fault documents with the service. In Composer, you
would typically organize input documents into one XML Template and create a
different XML Template (with any or all of the above-mentioned ancillary items)
to hold sample output documents. The “XML Template” wrapper identifies a
group of related documents: sample XML docs that go with particular stylesheets,
schema docs, and/or DTD files, and/or fault docs that need to be used in
association with each other.

At design time, the XML sample documents in your templates serve as exemplars,
or “hints,” to enable Composer to display proper document tree views in the
various GUI pieces that need to show your service’s inputs and outputs. In this
way, it becomes possible for Composer to translate simple UI gestures (like drag-
and-drop) into XPath and ECMAScript expressions that can be used to carry out
mappings and transformations at runtime. (Composer does the “hard work” of
generating XPath and DOM methods so that you don’t have to.)

Novell exteNd Composer User’s Guide84

About Sample XML Documents

A sample XML document is nothing more than a representative model of the data
your component or service will process: it contains the same elements, attributes,
and structures. For example, if your application will process Company ABC’s
invoices, you might use a sample invoice when building the application. The
sample (if it’s truly representative) will have exactly the same XML structure as
the invoices that will be processed.

One of the most important parts of planning and designing an XML integration
application is determining all of the possible kinds of sample documents your
components might need before you begin development.

The types of sample documents you may need are:

Sample input documents. These could include XML documents provided by
a standards organization (e.g., cXML, OAG, and OFX) containing the
elements and structure for the particular kind of data you want to process.

Sample output documents.

Sample intermediary (“temporary” or scratch-pad) documents.

Sample fault documents.

XSD (schema) or DTD documents. (These can be stored in a project as
separate resources; they are merely referenced in XML Templates.)

An important concept to note is that sample documents used in designing a
component are not used on the server at runtime. The samples in an XML
Template are really only design-time hints. They cannot be used as sources of
instance data. (For that, you’d probably want to use XML Resource documents.
See “About XML Resources” in the chapter on Resources.)

You supply both the
input and
output XML Templates

XML Templates 85

NOTE: If you need to initialize any data elements with hard-coded values, you can
do it programmatically in the action model, by mapping an ECMAScript string or
number to XPath locations, as needed. You can also load an XML Resource and
create mappings from it to (say) an input document using drag-and-drop gestures.

The sample document is a design aid that allows you to visualize the data
manipulations that need to happen at runtime. At animation time (during testing or
debugging) you can watch element data in the sample change locations or values,
or show up in output, etc., in real time, in response to XML Map actions,
ECMAScript operations, and so on. After watching the data change in real time
during step-through/step-over debugging, it’s easy to forget that the data values
are just design-time values—placeholders, if you will. At runtime, Composer
merely executes the map actions, XPath and ECMAScript operations, etc. that you
specified in development.

About XML Validation Documents (DTDs and Schemas)

Document Type Definition and XML Schema Definition files (DTDs and XSDs,
respectively) can be used to define and validate XML documents. Schemas and
DTDs define the grammatical rules of the document, such as which elements must
be present and what the structural relationships are between the elements.

Recall that a schema differs from a DTD in several ways, including:

The XSD file is a true XML file which itself conforms to a schema defined
by W3C. DTDs, by contrast, are not true XML files.

A schema can enforce data typing, so that if an element requires (for
example) data that takes the form of a date in CCYY-DD-MM format, such a
requirement can be specified (and strictly enforced).

A schema allows namespace declarations, so that elements can be uniquely
identified as belonging to a given document vocabulary.

Schemas are designed to be granular, providing for maximum reusability.

Schemas are flexible in terms of allowing an author to specify strict
enforcement of some grammar rules but lazy enforcement of other rules,
within the same document.

Schemas are extensible in that they allow authors to define all-new custom
data types.

For these and other reasons, schemas (XSD files) are gradually displacing DTD
files for definition and validation of XML documents.

Novell exteNd Composer User’s Guide86

Runtime Validation versus Design-Time Validation

Schema and DTD validation are enforced by Composer only at design time. At

runtime, no validations (other than a well-formedness check) are performed on

incoming or outgoing data. Nevertheless, you can force runtime validation to

occur by means of ECMAScript (used either in a Function action, or wherever

ECMAScript is permitted in Composer). For example, suppose you want your

service to validate the Input document. You would execute this expression:

result = Input.validate();

if (result == true)

// do something

else

// throw fault

If a schema is associated with Input in the XML Template for Input, that schema

will be used for validation when the above code executes. If no schema is

referenced anywhere, the validate() function simply performs a well-

formedness check and returns a boolean result.

NOTE: The validate() function will not use DTDs.

About XSL Stylesheets

As part of the set of files you use in a component, you can include an XSL

stylesheet. An XSL stylesheet defines the display properties of an XML

document. You create or obtain the stylesheet external to Composer. The

stylesheet may be useful for a component of your application that is creating a

page to be displayed in Web browser.

About XML Templates

An XML Template is created in Composer. As explained earlier, it contains the

sample documents, document definitions, and XML stylesheets that comprise a

set of files that can be used in components. You’ll create XML Templates early in

the component design phase, then use them to specify the inputs and outputs of the

components you build.

XML Templates 87

XML Templates exist primarily so that you can use and test many types of sample
data. It is possible to have two XML documents with different structures that both
have to be handled without error by the same component. For example, if you are
using an industry standard purchase order document as input, but one of your
customers uses a slightly different version of that document in his business (e.g.,
it has some optional elements missing), you can load your customer’s document
into a component for testing purposes. Your component must be able to handle the
different document versions, and you can test several cases by collecting all your
samples into a template that serves as an input for a component.

About Template Categories

Instances of XML Templates are collected into Template Categories. The
Template Categories have user-assignable names and appear as folders in the
XML Template Category pane of Composer’s navigation frame. The members of
a given category appear in the Instance pane under the Category pane. See below.

Your application can have many input and output documents, so you will want to
organize them within XML Template Categories. Within an XML Template
Category, you can organize templates in a way that makes sense for your
application. For example, you can create folders for:

Specific business processes (e.g., Accepting a Purchase Order, Sending an
Invoice, Receiving an Invoice)

Industry standard XML documents

User-created Template Categories

User-created Templates

Novell exteNd Composer User’s Guide88

Here is an example of what your organizational scheme might look like.

The purpose of the folders is to store your XML Templates, which might contain
sample XML documents, schema, and XSL stylesheets.

To create an XML Template Category:

1 Select XML Template Category in the Composer Category pane.

2 Click the right-mouse button and select New.

3 Type a name for the category and click OK.

Creating an XML Template
An XML Template resides within an XML Template Category. XML Templates
are simply groupings of related files; and the groupings are designed to be
reusable. (One template can be used by more than one component.) For example,
you can use a template as input for one component and as output for another
component. Several XML files can be associated with your template and used for
different purposes.

NOTE: XML output from one component is often used as input for the next
component in a service.

XML Templates 89

Your template might, for example, contain four XML files: one to be used as
Input, one as a Temp document (a sort of scratchpad to hold values that will
change throughout the course of your component), one as Output, and one as a
Fault document, which can hold values to be used in the case of an error condition
occurring. For more information on Temp and Fault Documents, refer to “Using
Temp and Fault Messages with a Component” on page 133.

To create an XML Template:

1 Select an XML Template Category in the Category Pane.

2 Click the right-mouse button on the category, and select New. The Create a
New XML Template Wizard appears.

First, create an
XML Template
Category . . .

Finally, use the XML
Template in an XML
Map (or other)
Component.

. . . then add a
custom XML
Template to it.

Novell exteNd Composer User’s Guide90

3 Type in a Name for this template.

4 From the pulldown menu under Category, select from among the existing
XML Template Categories that you have already created. (See “To create an
XML Template Category:” above.)

5 Under Description, enter a plain-text description of the intended usage of
the template. (Optional.)

6 Click Next. The document-selection panel of the wizard appears.

7 Click the blue ‘+’ icon; a file navigation dialog will appear. Use the dialog to
specify an XML file on disk that you wish to add to this template. Repeat
this step as necessary to add however many XML files you want. You can
add files to be used as Temp and Fault documents at this time, in addition to
Input and Output Parts. (Click the minus-sign icon to remove a given file
from the list.)

NOTE: If you do not specify existing files to be used as your XML samples,
an empty default file will be created. You will be able to give this file a name
following the last step of the wizard.

8 Under Default Samples, below Input, use the pulldown menu to select the
file you want to see as the default Input Message for any components that
use this template. (The pulldown menu will be populated with the names of
the files shown in the list you built in the preceding step.)

9 Below Output, use the pulldown menu to select the file you want to see as
the default Output Message for any components that use this template. (The
pulldown menu is populated with the names of the files shown in the list on
the left.)

10 Click Next. The document validation panel of the wizard appears.

XML Templates 91

11 To indicate the type of document validation you want to impose on your
template documents, click one of the three radio buttons: None, Enforce
DTD, or Enforce Schema. The appearance of the dialog will change
depending on which button is active. Note that Composer will attempt, based
on inspection of the XML template document(s) you specified in the
previous dialog, to set the correct radio button for you. You can override
Composer’s choice at any time. The radio buttons have the following
consequences:

None—Choose this option if your application does not require validation of
XML documents or if you would like to override the DTD or XSD
information specified in your template documents.

Enforce DTD—Documents will be validated against the DTD whose name
and/or URI are specified in the text fields shown.

NOTE: If the DTD will be determined dynamically at runtime, you can
supply the URI as an ECMAScript expression. If you plan to use a PUBLIC
DTD/Schema after deploying the project, you must fill in the PUBLIC Name of
DTD field.

Enforce Schema—Documents will be validated against the XSD or WSDL
file indicated. (See illustration below.)

Novell exteNd Composer User’s Guide92

NOTE: Composer will automatically search your sample documents to
discover all of the namespaces (if any) declared inside them and the .xsd
files to which they point. The namespaces and their associated schemas are
displayed automatically in the above dialog; in most cases, you will not have
to fill in the dialog yourself. If any namespaces are not displayed next to the
correct Schema Resource, select the appropriate Schema Resource from the
pulldown menu on the right. (That is, use the pulldown menu to associate the
correct schema with the correct namespace.)

12 Click Next to go to the next panel.

13 If the documents you are using contain namespace information, the
namespaces and corresponding prefixes will be summarized in this dialog. If
you need to add additional namespace declarations (perhaps for documents
that do not reference schemas), use the plus sign (+) icon to do so.

XML Templates 93

14 Click Next. The stylesheet selection pane of the wizard appears.

15 (Optional) Specify an XSL StyleSheet to associate with any Service Output
that is defined by this XML Template. An XSL Processing Instruction
pointing to this stylesheet will be added to the Service Output. If you have
previously created an XSL Resource (see “About XSL Resources” on page
329), select this option and select the stylesheet from the dropdown list. Use
Other Associated Stylesheet to specify the URL for any XSL file that exist
outside the project. (In this case, the file name should be closed in quotation
marks, since it will be treated as an ECMAScript string.)

16 If you specified an XSL stylesheet, the following occurs:

When you create a new service or component, and the template is used
for the Output Message, Composer will automatically add a Function
action to the new component’s Action Model. The Function action adds
a processing instruction to the Output XML document, specifying the
XSL stylesheet for the document.

The stylesheet referenced in the processing instruction is the one you
specified in this XML Template.

17 Click Finish to create the XML Template.

NOTE: If you did not use the + sign to add pre-existing files to your template
because you wished to create an empty one, at this point, the following dialog
window will appear, allowing you to type in a name for your default sample:

Novell exteNd Composer User’s Guide94

Creating XML Templates from WSDL
When an external WSDL is downloaded into exteNd Composer, you generally
need to have XML templates corresponding to message parts in the WSDL in
order to create working components. XML samples must be created which can be
validated against the WSDL. (These templates can then be used in components to
create actions then used in the WS interchange.) Composer can help with this. If
you have a WSDL Resource for a service, simply open the WSDL Resource:
Composer’s toolbar and menus will change as shown below, and you will be able
to create XML stub documents (template docs) at the click of a button.

There are two ways to generate XML Template docs from an open WSDL
Resource:

from the Resource menu, select Create XML Template

OR: Click the Create XML Templates button on the toolbar.

NOTE: The samples created will not contain element data. You may need to
populate various elements with sample data for test purposes. Note also that when
elements refer to ##any or ##other namespaces, the samples are incomplete and
you have to manually complete them.

Template documents can be create in this fashion for document-style as well as
RPC bindings.

Create XML
Templates

XML Templates 95

To create XML Templates from WSDL:

1 From the main menu, click on Resources>Create XML Templates, or click
on the button on the toolbar. A dialog will appear.

2 Select a Service/Port or Binding from the dropdown list as a source for
creating the XML Template.

3 Select an Operation from the dropdown list as a source for creating the
XML Template.

4 The bottom portion of the dialog box is divided into Input, Output and Fault
Messages. Follow the same procedure for each Part:

Check the box below Create if you will be creating the new template
from WSDL.

Select a Template Category from the dropdown list. New Categories
can be created.

Type in a Template Name.

Novell exteNd Composer User’s Guide96

The name listed under Sample defaults from the Part name. Enter a new
name if the default name is not the sample name you want.

5 Click OK to finish.

Importing an XML Template
If you’ve already created an XML Template for another project, you can import it
into the current project.

To import an XML Template:

1 In Composer’s Category Pane, select the XML Template Category to
which you want to associate the template instance.

2 Right-click and select Import from the context menu. A dialog appears.

NOTE: If the Import command is not highlighted, it’s because you have
chosen a Template Category that belongs to a subproject. This operation is
not allowed. If you need to import template docs into a subproject, close the
current project. Open the subproject on its own, add templates to it, save it,
and close it; then return to the project you were working on originally.

3 Select XML Template as the Type.

4 Select an XML Template Category from the drop down list.

5 Select the File Name location using Browse. You may also read in a file
from a URL by explicitly preceding your filename with “http://,” “https://”
or “ftp.”

XML Templates 97

6 Type in a Name.

7 Optionally supply a Description.

8 Click OK.

Showing and Hiding XML Documents
It can be convenient to toggle the visibility of XML document views when
working in Composer’s main window.

To toggle XML document visibility:

1 From Composer’s main menubar, choose:
View>XML Documents>Show/Hide.

A dialog will appear:

Novell exteNd Composer User’s Guide98

2 The Show/Hide dialog displays the names of the XML documents
associated with the open template or component.

NOTE: In a component, the Input and Output XML documents default to the
Show column. Message parts created as a result of a component action
default to hidden.

3 In the Hide column, select any XML documents you want to be displayed
and click the left arrow button. Conversely, in the Show column, select any
XML documents you want to be hidden and click the right arrow button.

4 Select the XML document you want to display as the top document and click
the up arrow button until the document is displayed as the uppermost
document in the Show column. Conversely, use the down arrow to move
the document down further in the list.

5 Continue to select XML documents in the Show column and use the up- and
down-triangle buttons to move the XML documents into the desired order
until they are displayed the way you like.

6 Click OK. The dialog closes and the Component editor’s data panes are
rearranged accordingly.

XML Template Editor
The XML Template Editor allows you to edit the template in Composer, rather
than using an external editor.

Viewing the documents in the Template Editor and Context Menus

The View option from the main menubar allows you to select the way you want
the XML information displayed in the Component Editor. You can choose from
tree, text or stylized. Each view has its own unique context menu accessed by the
RMB.

Tree View and Context menu options

The default view displays the message part as a tree, as shown below.

XML Templates 99

This view allows you to edit element and attribute values (that is, document data)
but not the XML structure.

The Context menu commands accessible via the right mouse button are shown
below.

Text View and Context menu options

In Text View, you can see and edit the complete XML file, including structural
elements.

Novell exteNd Composer User’s Guide100

Text view offers a convenient way to inspect non-content-model portions of the
Input, Temp or Output Parts, such as comments, processing instructions,
DOCTYPE declarations, and so forth.

The Context menu options accessed by RMB as shown below.

Stylized View and Context menu options

When the Stylized view is selected pane, your view of the message part contents
looks like this:

This view gives a “report” style overview of the XML contents so that you can see
at a glance what the content is for all attributes and elements. This view uses the
following algorithm to render XML.

If there is an associated stylesheet with this document component, evaluate the
expression and use that one.

If this fails, use the default stylesheet: com/sssw/b2b/dt/default.xsl

To change to a stylized view, click the RMB to access the Context menu as shown
below.

XML Templates 101

Working with an XML Template

Each XML Template you create resides in an XML Template category. To view
the name and creation date of the XML Template, select an XML Template
category. All XML Templates for the category are listed in the Detail pane of
Composer. Each template has a context menu, giving you ways to work with the
template.

Viewing an XML Document

Each XML Template contains one or more sample documents. You can open a
sample document in an XML editor (a separate application external to Composer).

To view a sample document in your XML editor:

1 Click the right-mouse button on an XML Template.

2 Select Edit Sample and select the sample document you wish to edit.
Whatever XML editor you identified during your Composer installation will
open (by default, Internet Explorer is used).

Editing an XML Template

You can modify the XML Template by adding and deleting sample documents,
schema, and XSL stylesheets.

Novell exteNd Composer User’s Guide102

To edit an XML Template:

Doubleclick the XML Template instance to open it in the Content Editor.
Once a sample file is open, right-click the mouse button to display a
contextual menu which gives you several options (see “The XML Template
Editor Context Menu” below) including Edit Data.

or

Single-click the XML Template in the Instance Pane, then click the right-
mouse button and select Properties from the context menu.

NOTE: Changing the name of the template on the Properties page causes a Save
As operation, preserving the original and creating a duplicate with a new name. To
change just the name of an XML Template, use the Rename option on the context
menu.

Saving Changes to XML Documents

Once you have made changes to your XML using the methods described above,
you will, of course, want to save them. There are four ways to save sample XML
documents i n Composer.

Select File>Save from the main menubar.

Select File>Save As from the main menubar. This brings up a tabbed dialog
window resembling the Properties screen shown above, allowing you to type
over the current name of the document with a new name.

Select File>Save All to save changes to all the XML documents you
currently have open in the Content Editor.

XML Templates 103

Within the Content Editor, right-click on an open document and select Save
XML As from the context menu (see “The XML Template Editor Context
Menu” below). This brings up the Save XML As Dialog window shown
below:

To use the Save XML As dialog:

1 Select a “Part”, or XML document name from the drop-down list.

2 If you want to save the open document as a sample, then choose Save as
Template Sample.

Select a Template Category

Select a Template Name

Type in a Sample Name

3 If you want to save the open document as a file, then choose Save as File.

Click on Browse to select a directory in which to store your file and give
it a name.

4 Click on OK to close the window and Save the XML.

Printing an XML Document

To print the XML document, Select File>Print from the main menubar. The
document component is formatted according to the template.

The XML Template Editor Context Menu

When you open an XML sample file in the Content Editor and right-click on it, a
menu appears allowing you to perform several functions.

Novell exteNd Composer User’s Guide104

These functions are explained in the table below:

Table 5-2

Edit Data Allows you to edit element and attribute values (that is,
document data)

Create Schema Brings up a dialog allowing you to create a new schema
resource

Add Sample File Brings up a dialog with a file directory so you can select
a pre-existing XML file to add to the template

Create Sample File Brings up a dialog which allows you to type in a name
for a new sample XML file.

Add to Display Allows you to display additional XML files which are part
of the current template but are not currently open in the
editor pane

View Change the view of the document (see “Viewing an
XML Document” above)

Launch Editor Opens the default XML editor you specified during
installation

Save XML As Opens the Save As dialog window, which allows you to
specify a part name, save the file as a sample or save
as a file

Validate Runs a validation routine to check that your XML is
sound

XML Templates 105

Deleting an XML Template

When you create an XML Template, Composer makes copies of the original
XML, document definition and XSL files and places them into an “Imports”
directory under the proper XML category. When you delete an XML Template,
you are going to delete the copies, not the original files. To delete an XML
Template, highlight it in the Detail Pane of the Navigator, right-mouse click it, and
select Delete. The file must be closed in order to delete it.

Moving an XML Template to a Different Category

To move an XML Template from one category to another:

1 Select the template you wish to move.

2 Click the right-mouse button and select either Cut or Copy.

3 In the Category pane of Composer, click on another XML category.

4 In the Details pane, click the right mouse button and select Paste.

Renaming an XML Template

To rename an XML Template:

1 Select the template you wish to rename.

2 Click the right mouse button and select Rename.

3 Type the new name.

4 Click OK.

NOTE: Be sure to rename a template using the above procedure. If you change
the name of the template on its Properties page, it causes a Save As operation,
preserving the original and creating a duplicate with a new name.

Find Opens the Find dialog allowing you to search for strings
in the XML data or structure

Find Next Repeats previous search

Novell exteNd Composer User’s Guide106

Understanding Where XML Templates Are Stored on
Your Hard Drive

XML Templates are stored as part of a project. For information on where project
files are stored, see “Understanding Where Project Files are Stored” on page 72.

NOTE: Copies of the samples, definitions and XML stylesheets used in the
template are stored in a folder. The original documents are not modified.

107

6

Creating an XML Map Component

Creating an XML Map Component Chapter 6

In many ways, the Composer XML Map Component is the simplest yet most
important of Composer’s component types. You will use it to perform XML
transformations of input documents to output documents. It is essential that you
understand how XML Map Components (and related resources) work if you are to
build useful Composer services.

This chapter introduces you to XML Map Components and describes how they
work within an exteNd Composer service. After reading this chapter, you will
understand what comprises an XML Map component, what it can do, and how to
design, create, and use an XML Map component.

What is an XML Map Component?

An XML Map component is an object that accepts one or more XML documents
as inputs, uses a collection of actions to operate on these inputs and returns an
XML document as output.

Figure 6-1

Novell exteNd Composer User’s Guide108

An XML Map component can perform simple data manipulation, such as
mapping and transferring data from one XML document to another. It can also
carry out sophisticated manipulations, such as transforming both the data and
structure of a document. You can even create XML Map components that process
XSL, send mail, and post and receive XML documents using the HTTP protocol.

The concept behind a component is to pass one or more XML documents in as
inputs, process these inputs, and return one output XML document. The output
XML document is then used as input for other components or returned as the final
output of a service. In this way, you can create components that work together in
a service to carry out complete business-to-business solutions.

Using XML Template Sample Documents to
Build an XML Map Component

The XML documents you use when building an XML Map component are
samples of the actual documents that will be processed in a running application.
Sample documents are added to Composer in XML template objects. You use
samples of documents whose structure and data representation are identical to the
documents that will be processed. The illustration below shows the difference
between documents you use for building purposes and those that are actually
processed by the component.

Figure 6-2

Creating an XML Map Component 109

The samples used to build a component are not actually used, or even referred to
by name, at runtime. They are simply templates that represent the structure and
data to be manipulated. The samples are temporary aids that help you construct
processing actions that perform the correct runtime manipulations. What exteNd
actually uses at runtime to process XML data is an object representation of the
XML document called a DOM.

What is a DOM?
In the XML Map component editor, a sample document is represented in a format
recommended by the W3C known as the document object model (DOM). A DOM
is an XML document constructed as an object in a software program’s memory. It
provides standard methods for manipulating the object. Using DOMs, Composer
lets you build XML documents, navigate within their structure, and add, modify
or delete elements and content. Anything found within an XML document can be
manipulated using a DOM method. Composer supports all DOM methods
recommended by the W3C ECMA to DOM Binding Specification (See
http://www.w3.org/).

NOTE: In some dialogs, Composer refers to DOMs as Messages.

Understanding DOM Structure

When the XML Map component editor is active, every sample document is
converted to a DOM.

DOMs are used because:

A DOM uses a standard way of naming and organizing XML structural
elements so that the elements can be selected easily and clearly

A structural element of a DOM can be operated on

A DOM is the structure that is created and manipulated at runtime

A DOM is organized hierarchically, which means it forms a tree structure. To
understand how a particular DOM is structured, it’s often useful to be able to view
the DOM from different perspectives. For example, sometimes it’s helpful to see
the raw text of the XML document underlying the DOM. Other times, you may be
interested in seeing a summary view of the data (rather than the element and
attribute names) in a document. Composer allows you to change views as
necessary in order to switch between tree, text, and summary presentations.

To change views, simply right-click inside any DOM window, then select the view
you want to see from the View submenu. The three available view types are shown
below.

http://www.w3.org
http://www.w3.org

Novell exteNd Composer User’s Guide110

Elements in a DOM are defined by tags in an XML document. For instance, in the
above example, there is an element tag in the XML document named
<INVENTORYSTATUS>. The tag has an end tag (</INVENTORYSTATUS). All
structural elements within <INVENTORYSTATUS> and
</INVENTORYSTATUS>, such as <SKU>, are represented at a lower (or in
DOM terminology, descendant) level in the DOM tree.

All element names are case-sensitive, meaning that <INVOICENO> is not the
same as <InvoiceNo>.

An element in a DOM tree is referred to as a node. A collection of nodes is
represented in a hierarchy and is referred to by the following naming conventions:

Table 6-1

Node Type Description

Root The topmost element in a DOM tree from which all other
elements are descendants. Only one is allowed.

Descendant Any node that is below (contained within) another node

Child The immediate descendant of a node

Sibling All nodes that share the same parent node

Ancestor Any node that is above (contains) another node

Parent The immediate ancestor of a node

Leaf Any node without a descendant

Creating an XML Map Component 111

Each element type in a DOM has its own icon, as identified below.

Using DOMs at Runtime

It is through DOMs that components pass and return data to one another in a
running application. At runtime, when a component is executed, it is passed a
DOM. The passed DOM becomes the Input Part to be operated on. As each of the
component’s mapping actions executes, the Output Part is created, element by
element.

DOM Behaviors during Runtime

The first time you open a component, the original samples are loaded into the
Input and Ouput DOMs. When you begin animation, the Input Part remains and
the Temp and Ouput DOMs are cleared from any data originally contained in
them. At the end of execution, data appears in all DOMs.

Creating Different Types of Messages

When you create an XML Map component, you select input and output XML
templates for it. However, within the Component Editor you can also:

Create an Output Part without using a template, as described in “Creating an
Output Document without Using a Template” on page 131

Create a Temporary Message Part, as described in “Creating a Temporary
Message Part” on page 133

Create a Fault Message Part, as described in “Creating a Fault Message Part”
on page 135

Dynamically create a DOM from an external XML document using the
XML Interchange action.

Element with
no data

Root Element

Element with
data

Attribute

Novell exteNd Composer User’s Guide112

Creating an XML Map Component

The first step in creating an XML Map component is to specify the XML
templates for the component. For more information, see “Creating an XML
Template” on page 88.

Once you’ve specified the XML templates, you can create your component, using
the template’s sample documents to represent the inputs and output processed by
your component.

NOTE: Various other component types (such as the JDBC Component, JMS
Component, etc.) are covered in detail in the appropriate Enterprise Connect
product user guides. The same basic principles are used in the creation and editing
of all components, however. Also, the various Basic Actions (see next chapter)
available in the XML Map Component are also available in all other Composer
component types.

To create an XML Map component:

1 From the Composer File menu, select New then xObject. Select the
Component tab and then XML Map. The New xObject dialog box appears.

2 Type a Name for the component.

3 Optionally, type Description information.

4 Click Next. A new panel appears as follows.

Creating an XML Map Component 113

5 Specify the Input and Output templates (also called Messages).

Type in a name for the template under Part if you wish the name to
appear in the Component Editor as something other than “Input” or
“Output.”

Select a Template Category if it is different than the default category.

Select a Template Name from the list of XML templates in the selected
Template Category.

To add additional input XML templates, click Add and repeat steps 2
through 4.

To remove an input XML template, select an entry and click Delete.

6 Select an XML template as an output using the same methods described in
the previous step.

NOTE: You can specify an output XML template that contains no structure
by selecting {ANY} as the Output template. For more information, see
“Creating an Output Document without Using a Template” on page 131.

7 Click Next to go the Temp and Fault XML template dialog. If desired,
specify a template to be used as a scratchpad under the “Temp Message”
pane of the dialog window. This can be useful if you need a place to hold
values that will only be used temporarily during the execution of your
component or are for reference only. Under the “Fault Message” pane, select
an XML template to be used to pass back to clients when a fault condition
occurs.

Novell exteNd Composer User’s Guide114

8 As above, to add additional XML templates, click Add and choose a Part
Name, a Template Category and Template Name for each. Repeat as many
times as desired. To remove an input XML template, select an entry and click
Delete. Temp and Fault Message Parts are discussed in more detail below,
beginning on page 133.

9 Click Next. For several of the component types, the Connection Info panel
will appear, allowing you to select a previously created Connection
Resource.

10 Click Finish. The component is created and the XML Map Component
Editor appears.

Creating an XML Map Component 115

Namespaces and Output Parts
You should be aware that when a new XML Map Component is created whose
Output template uses namespaces, a new Map action will automatically be placed
into the action list, mapping the namespace URI to an attribute in the Output Part.
It’s important not only that you not delete this Map action, but that you avoid
accidentally overwriting it. An overwrite can happen if you place a Component
action downstream of the namespace-URI Map action, and the Component action
returns its results to the Output Part. The solution in this case is to move (by Cut
and Paste) the original Map action to a spot downstream of the Component action.

Understanding the XML Map Component Editor
The XML Map Component Editor is where you specify the mapping,
transformation, and transfer of all input and output structure and data.

The XML Map Component Editor provides a logical working environment for the
inputs, output, and actions of your component. The XML Map component editor
is composed of multiple Mapping panes and a single Action Model pane. The
Mapping panes display the XML for your sample Input and Output message parts.
The Action Model pane displays actions that operate on the Mapping panes.

The following illustration shows the XML Map Component Editor with its menu
and toolbar, one input Part, one output Part, and several actions in the Action
Model pane.

Novell exteNd Composer User’s Guide116

About the Menu and Toolbar

The main menu in Composer and it’s sub-menus and toolbar options change
according to the type of component you currently have open in the Component
Editor. The following component-specific options occur on the main menubar
when an XML Map Component is open.

Action Model pane

Main

Status bar

Animation
toolbar

Input Part

Output Part

Toolbar

Creating an XML Map Component 117

Table 6-2

XMLMap
Component
Menu Options

File You can create, open and delete any type of component
from the File menu, just as you can from the Composer
File menu.

Some menu choices have implications that are particularly
significant for XML Map Components:

Save saves the inputs, output and actions in the component

Save As... saves the component under a new name and
allows you to change the inputs, output, and actions. See
“Saving Your Component” on page 141.

Save All... saves all components currently open

Save XML As . . . allows you to save the structure of the
message Part into an XML document. See “Saving a DOM
as an XML Document” on page 141.

Load XML Sample . . . allows you to load other sample
documents from a template into a message part for testing
the component. See “Loading a Sample Document” on
page 139.

Properties lets you view the component’s templates and
other information. See “Viewing Component Properties” on
page 146.

Print lets you print your component

Edit You can undo or redo an action, cut, copy, and paste text
anywhere in the component editor. In addition, you can do
the following:

Find finds an element in a mapping pane or text in the
Action Model. See “Finding a Document Element” on
page 127.

Find Next finds the next element in a mapping pane or text
in the Action Model. See “Finding the Next Document
Element” on page 128.

Replace replaces selected text in the Action Model only.
See “Replacing Text in the Action Model” on page 129.

Novell exteNd Composer User’s Guide118

View Navigator Tabs toggles the visibility of the nav frame at the
left of the Composer main window. Use this command to
hide or unhide the whole nav frame.

Output Tabs toggles the visibility of the Message frame at
the bottom of the Composer main window. Use this
command to hide or unhide the whole Message frame.

Document Tabs toggles the visibility of the XML Document
Tabs in the Component Editor.

XML Documents brings up a submenu with the following
choices:

Show/Hide allows you to change the order and visibility
of all message parts associated with the open
component (see “To set the visibilities of XML
documents:” below)

Collapse All hides all XML nodes except for the root
node in all mapping panes.

Expand All displays all XML nodes in all mapping panes.

(as Tree, as Text, as Stylized) displays controls how
XML contents are displayed in the Component Editor.

Window Layout allows you to specify which DOMs to
display and how to arrange the DOM and Action Model
panes within the component window. See “Using Window
Layout and Show/Hide in the Component Editor” on
page 119.

Component Execute—Runs the component from start to finish, for
testing purposes.

Reload XML Documents reloads the original samples from
the Input and Output templates, clearing whatever is
currently shown in the XML message panes. See
“Reloading an XML Document” on page 137.

Add Watch allows you to identify certain data items and
examine their data values during the execution of a
component as a debugging aid.

Action New Action contains all actions that you can add to the
Action Model.

Edit allows you to edit a selected action

Disable allows you to disable a selected action

XMLMap
Component
Menu Options

Creating an XML Map Component 119

Many of the menu items are on the toolbar. Rest your mouse on a toolbar item for
a brief description of it.

Using Window Layout and Show/Hide in the Component Editor

The panes of the component editor can be displayed, hidden, repositioned and
resized, making it easier for you to work with their contents. Use the Window
Layout option and the Show/Hide option from the View Menu.

To arrange the panes of the component editor:

1 Select Window Layout from the View menu. The Window Layout dialog
appears and allows you to adjust the placement of the panels in the Window.

2 Select the orientation of the XML documents and Action Model as follows:

If you want the panes to be top-to-bottom, select either XML Document
or Action Model from the upper-most pull-down menu. If you selected
XML Document for the upper pane, select Action Model from the lower-
most pull-down menu. If you selected Action Model for the upper pane,
select XML Document for the lower.

Animate This menu contains all processing animation tools that you
can use to test the component. The Toolbar contains
buttons that allow you to run animation tools. For more
information, see “Testing and Debugging” on page 383.

XMLMap
Component
Menu Options

Novell exteNd Composer User’s Guide120

If you want the panes to be left-to-right, select either XML Document or
Action Model from the left-most pull-down menu. If you selected XML
Document for the left pane, select Action Model from the right-most
pull-down menu. If you selected Action Model for the left pane, select
XML Document for the right.

3 Click OK.

4 If you’re not satisfied with the result, select View then Window Layout, and
then click the Reset button. The panes revert to the default setting.

To set the visibilities of XML documents:

1 Select View/XML Documents>Show/Hide. The Show/Hide dialog
displays the visibility status of XML documents.

NOTE: The Input and Output XML documents default to the Show column.
DOMs created as a result of a component action default to Hide.

2 Select any XML documents you want to be displayed from the Hide column
and click the left-triangle button. Conversely, select any XML Documents
that you don’t want to display from the Show column and click the right-
triangle button.

3 Select the XML document you want to display as the top document and click
the up-triangle button until the document is displayed at the level you want
in the Show column.

NOTE: If you selected a left-to-right orientation in the preceding procedure
(“To arrange the panes of the component editor:”, above), the order of your
XML documents appears from left-to-right: Higher-precedence documents
will appear on the left.

Creating an XML Map Component 121

4 Continue to select XML documents in the Show column and use the up and
down buttons as necessary until the XML documents are in the desired order.

5 Click OK. The Window Layout dialog closes and the Component editor is
rearranged accordingly.

Managing Document Panes from within the XML Panel

Individual XML document panels can be maximized, normalized or closed using
icons located within the header area of the document panel:

Clicking the Maximize icon will cause the document to take over the entire XML
Panel area, temporarily hiding any other open message Parts. Once a document
has been maximized, the icon will change to the Normalize icon, so you can
restore the document to its previous size.

Clicking the Close icon will hide the document from view. Closing all XML
documents leaves the XML Panel open but empty. To re-open a document when
the editor panel is in this state, click with the RMB. A context menu is displayed,
from which you can select a document to open.

About the Mapping Panes

The default XML Map component editor has the following window pane
configuration:

Maximize

Close

panel

panel

Close
panel

Normalize
panel

Novell exteNd Composer User’s Guide122

One or more Input Mapping panes (each displaying a representation of the
XML for one of the samples in their respective XML Template), one Output
Mapping pane

One Action Model pane

Temporary message part mapping panes, or XML returned as a result of
executing another component via a component action

Note that there is a color coding aspect of the mapping pane. Red indicates the first
direct mapping of an element, so that if you wanted to look at what elements in the
output tree have been mapped, you can identify that by the color red. Green
indicates the first occurrence of the element that has a repeat alias defined for it.

NOTE: You must use Window Layout discussed above to display a
dynamically created message part, such as mapping panes created
dynamically by the XML Interchange action.

About the Input Mapping Pane

The Input Mapping pane displays one sample document from the input XML
template as a document object in the Component Editor. (If your component
contains multiple templates, each input message is displayed in its own pane.) The
panes can be sized by dragging borders up, down, left, or right.

If your component contains multiple input XML templates, they are displayed
with the following names:

Table 6-3

The template display order is determined by the order you specified when
selecting XML templates at the time of the component creation. You can change
this order using the up and down arrows using View>XML
Documents>Show/Hide, as indicated above.

Display Order Document Name

First template Input

Second template Input1

Additional templates Inputn: (n = the template order minus one. For
instance, the the last input template is the fifth input
template, the DOM name will be Input4.)

Creating an XML Map Component 123

About DOM Elements and Data Values

Each input pane consists of two areas: the DOM tree and the Data values. The
following illustration shows an Input Part with several elements and data for those
elements.

Notice that when you select an XML element, the element name appears in the
status bar showing the fully qualified element name. Any data associated with the
element (from the XML document) appears in the Data area. Although the data is
not used when the component processes at runtime, the data is helpful for setting
up and testing the component. You can leave the data in the DOM elements, or you
can change the data. For more information on changing the data, see “Editing a
Value for a Document Element (Edit Data command)” on page 124.

About the Input Mapping Pane Context Menu

The Input Mapping pane has a context menu you can access to perform tasks on
the Input Parts. To access the context menu, click the right-mouse button
anywhere in the pane. The context menu is shown below.

Leaf node
(terminal node)

Root Element

Parent of
INVOICENO

Novell exteNd Composer User’s Guide124

Creating a Repeat for Element, Declare Alias, or Declare Group Action

You can create a Repeat for Element, Declare Alias, or Declare Group action on
an element that repeats in the Input Part. See “The Declare Alias Action” on
page 159.

You can also create a group of DOM elements which aids in transforming DOM
elements into a structure that is different from their original positions in the sample
document. When you create a group, you can perform aggregate operations
against a group. For instance, you can arrange DOM elements into a group by U.S.
state (e.g., Alabama, Arizona) then sum the total sales by each state.

Groups always work in conjunction with a Repeat for Group action. For more
information about creating and using groups, see “The Repeat for Group Action”
on page 233.

Editing a Value for a Document Element (Edit Data command)

You can select an element in an Input Part and set the value for it. This is helpful
when you run the animation tools to test the component.

NOTE: The value is temporary for the editing session.

To edit a value for a Document element:

1 Select an XML element from your document.

2 Click the right-mouse button in the input pane.

3 Select Edit Data.

4 Notice that the document element you selected appears in the dialog box.
Type in the value you wish to set for the element.

5 Click OK. The value appears in the Data area, next to the element you
selected.

Creating an XML Map Component 125

Add to Display

Use this context menu option to add additional XML documents to the display
area of the XML Panel. When you select Add to Display from the menu, a list
appears containing the currently unopened documents associated with the
component, as well as the PROJECT variable and _SystemFault. Select from this
list to open any of these items.

View Commands

You can view individual XML Message Parts as a Tree, as Text, or in stylized form
(using an XSL stylesheet).

Tree View

The default view displays the Message Part as a tree, as shown below.

This view allows you to edit element and attribute values (that is, document data)
but not the structure of the XML.

Text View

In Text View, you can see and edit the complete XML file, including structural
elements.

Display the Message Part as text by clicking on the right mouse button (anywhere
in the XML panel) and selecting View, then As Text. The XML then appears in
plain-text form, as shown here.

Novell exteNd Composer User’s Guide126

Text view offers a convenient way to inspect non-content-model portions of the
Input, Temp or Output Parts, such as comments, processing instructions,
DOCTYPE declarations, and so forth.

NOTE: The Text view, like the Tree view, is updated dynamically during animation
so you can see the results of individual Map actions as they are executed.

Stylized View

When the Stylized view is selected (by clicking with the RMB and selecting
View>As Stylized), you get a view of the XML message contents that looks like
this:

This view gives a “report” style overview of the XML contents so that you can see
at a glance what the content is for all attributes and elements.

NOTE: The default XSL stylesheet that Composer relies on for creation of this
view can be found inside the xcd-all.jar file in your \bin directory; its name is
default.xsl. You can edit or replace this file by extracting (unzipping) it from the jar
file and reinserting an editing version in the same place in the jar.

Show Comments

Another View function is Show Comments which allows you to toggle the
visibility of comments in the source XML file. Comments, signified by markers
<!-- and --> wrapping a section of content, constitute DOM nodes, but you
may not always want to view them, particularly if you have a lengthy document.

Creating an XML Map Component 127

Expanding a Document Tree

You can display all elements in a document tree by clicking the right-mouse button
and selecting View>Expand Tree.

Another way to expand the tree is by clicking on the plus icon just to the left of the
Part name (e.g., the word Input) at the top left-hand corner of the pane .

Collapsing a Document Tree

You can hide all elements in a document tree by clicking the right-mouse button
and selecting View>Collapse Tree.

Another way to collapse the tree is by clicking on the minus icon just to the left of
Part name (e.g., the word Input) at the top left-hand corner of the pane.

Reloading a Document Tree

You can reset a specific XML Message by bringing up the context menu and
selecting View>Reload Tree. This allows you to reload an individual document
tree within the XML Map component. You may wish to reload a tree if during
testing, you halted animation, leaving the document in an unfinished state.

Launch Editor

Selecting Launch Editor from the context menu opens your document in the
default XML editor you specified during installation.

Load XML Sample

The Load XML Sample function available in the context menu allows you to
load other sample documents from a template into a message part for testing the
component. See “Loading a Sample Document” on page 139.

Save XML As

Selecting Save XML As from the context menu allows you to save the structure
of the currently open Message Part into an XML document. See “Saving a DOM
as an XML Document” on page 141.

Finding a Document Element

You can search for element names and element data using the Find command
(which appears in the XML Panel context menu). The Find dialog allows you to
enter a value and search the document tree. You can search for partial words or
whole words only, and you can ignore the text case when searching. The Find Text
dialog box is shown below.

Novell exteNd Composer User’s Guide128

Finding the Next Document Element

You can search for the next occurrence of a word or string you searched for
previously. There is no dialog box when you select Find Next or press the F3 key.
Instead, Composer locates the next occurrence of the last find. If no match is
found, nothing happens.

Validating a Dom

You can validate the DOM against its DTD or schema definition file by picking
Validate from the context menu. Validating is useful during the construction and
testing of your component.

About the Output Mapping Pane

The Output Mapping pane displays the Output Part. The Output Mapping pane
also has a context menu, as shown.

The options on the Output Mapping pane context menu are similar to the ones on
the input mapping pane context menu, but with the differences described below.

Check to ignore the
case

Type a search string

Check to search for
whole words only

Select Data,
Element, or
both

Creating an XML Map Component 129

Mapping an Input Element to an Output Element

You can use the Map action by selecting it from the right-mouse context menu.

Setting a Value

The Edit Data option on the Output Part allows you to inspect the value of a node
but not change it.

About the Action Model Pane

All components have a single Action Model. The Action Model represents the
mappings, transformations, and other actions that will be performed on XML
documents during runtime processing. The Action Model Pane is also resizable
within the XML Map Component Editor window. Most of your activity that takes
place in the Action Model pane involves adding and editing actions.

About the Action Model Context Menu

If you right-click in the Action Model, you see the menu shown below.

From this menu, you can select actions and perform other tasks.

Replacing Text in the Action Model

You can replace a word or string using the Replace option on the right mouse
menu or on the component editor Edit menu.

To replace text:

1 Right click in the Action Model and select Replace (or select an action and
select Replace from the Edit menu).

Novell exteNd Composer User’s Guide130

2 Enter the search text and click OK.

3 Composer finds the first occurrence and asks you to confirm the
replacement. You can then replace the next or all occurrences.

Adding Actions to a Component

Once you have specified the Input and Output templates, the XML Map Editor
opens, and you are ready to start adding actions. Actions are the processing steps
that take place within the component. You will read more about actions in later
topics.

Within components, you add actions to map DOM elements, read and write data
from files, send e-mails, and other common tasks. A collection of actions is
referred to as an Action Model.

An action in the Action Model is displayed as a line and contains an icon for the
action type along with an abbreviated definition of the action. Some actions are
subordinate to other actions. For instance, you can create a Repeat action that
controls loop processing, then add actions inside the loop. The actions inside the
loop are subordinate to the Repeat action and appear indented beneath it. They
process as long as the Repeat action is true.

To add actions to the Action Model:

1 Position the cursor in the Action Model pane above where you want the next
action inserted.

2 Add an action using any of following methods. The new action is inserted
below the line you highlighted.

Drag and drop. You can add Map actions by dragging and dropping
elements from an Input Part to the output or temp DOMs. Simply click
on an element in the Input Part and drag it on top of the output or temp
DOM.

Creating an XML Map Component 131

Copy and Paste. You can copy an action in the Action Model pane and
paste it somewhere else in the pane, or into an Action Model pane of
another component.

The Action menu. Highlight a line in the Action Model pane and select
an action from the Action menu. The new action is placed directly under
the highlighted line.

The Action Model pane context menu. Click the right-mouse button
anywhere in the Action Model pane and its context menu appears.

The input and output mapping pane context menus. You can add
actions to the Action Model pane by selecting DOM tree elements and
then selecting actions from their respective context menus.

NOTE: You can reorder actions in the Action Model by dragging them to a new
position.

Once you’ve created the Action Model, and before you process the component
with live data, you should test the component. Perform testing by using
Composer’s Animation tools. With the Animation tools, you can set breakpoints,
start a animation, step into and over actions, and pause the animation.

Creating an Output Document without Using a Template

You can specify an output XML template that contains no structure by selecting
{SYSTEM}{ANY} as the Output template when you create the component. You can
then build the Output Message Part dynamically by mapping input Part elements
to output Part elements that do not yet exist.

For example, the following illustration shows a component with an input Part
containing elements, and an output Part that has no elements.

Notice there is nothing in the output document. To dynamically build an output
document, you can map input Part elements to a structure in the output Part that
does not exist. In the next illustration, the Seller in the input Part is mapped to a
line item called Buyer in the output Part.

Novell exteNd Composer User’s Guide132

The next illustration shows the resulting XML Document Panels.

You can create any output document structure by mapping an input document
element to an output XPath. Make sure you map to a fully-qualified document
name.

NOTE: In reality, Output and Temp Message Parts are always built dynamically.
The presence of a sample document is merely a productivity aid to help you define
actions.

If the Output Part you created can be used for building other components, you may
want to save it as an XML document and use it as a sample inside an XML
Template. See “Saving a DOM as an XML Document” on page 141 for more
information.

Creating an XML Map Component 133

Using Temp and Fault Messages with a Component
In addition to creating Input and Output Message Parts, you can also create
Temporary and Fault Message Parts. Temp Parts are used as work areas for
performing complex manipulations of between Input and Output Parts. Within a
Temp document pane, you can add elements from any of the Input Parts by using
any of the five mapping methods. See “About the Action Model Pane” on
page 129.

Fault Documents allow you to pass information back to clients when a fault
condition occurs in a component or service. In Composer, a Fault is, essentially, an
in-memory XML document or Message Part, defined along with a component,
just like Input, Output and Temp Parts. Fault Message Parts are used to store
information received when a Fault or Error occurs in your service or component.
It is a good programming practice to anticipate places in your program where
errors may occur and surround them with Try/On Fault and Throw Fault actions.
(See “The Throw Fault Action” on page 202 for an example demonstrating the use
Fault documents in fault-related actions.)

Creating a Temporary Message Part

The Temp Part differs from the Input and Output Parts in the directionality of
actions allowed. The Temp Part can be both a source and a target of mapping
actions, whereas the Input Parts are only sources and the Output Part is only a
target. You can add more than one temporary Part (you are only limited by
memory), and you can delete them whenever you wish. Also, you can assign your
own name to temporary Parts by typing over the Temp label. Temporary Message
Parts can either be defined during the creation of a component (see “To create an
XML Map component:” on page 112), or they can be added to an existing
component.

To add a temporary Message Part to an existing component:

1 From the File menu, choose Properties. The Properties dialog appears.

Novell exteNd Composer User’s Guide134

2 Click on the Messages tab.

3 Click on the Temp Documents tab.

4 Click the Add button at the far right. Selections for Part, Template Category
and Template Name become available.

5 Enter an Part (your own label) for the temporary message part.

6 Select an XML Category from the Template Category dropdown menu.

7 Select an XML Template from the Template Name dropdown menu.

8 Click OK.

9 Open the component. By default, the Component Editor will probably only
show the Input and Output parts. To make the Temp document visible, go to
the View menu and select Show/Hide to add the Temp Part you just created.

NOTE: Alternatively, you can click with the RMB in the Component Editor
and select Add to Display, then pick the Temp document from the list.

The XML Map Component Editor displays a Temp message pane, as shown in the
next illustration.

Creating an XML Map Component 135

NOTE: You can also create a document object dynamically without using a
template, as described in “Creating an Output Document without Using a Template”
on page 131.

Creating a Fault Message Part

The _SystemFault Document

You can define the XML yourself for your Fault document, using your favorite
editor, or you can use the default one provided by Composer, which is called
_SystemFault. The XML information contained in _SystemFault also gets written
to a global object called ERROR. The structure of the _SystemFault document is
shown below:

Beneath the FaultInfo root are the following elements:

DateTime which contains the Date and Time the fault occurred.

ComponentName which contains the name of the Component which
threw the fault.

MainCode which contains the main code number for the error.

SubCode which contains a sub-code number for the error.

Message which contains the error message you specifically define when
you set up a Throw Fault action (p.202). If you do not specify an error
message in your Throw Fault action, you will see “A user defined Fault
occurred!”. If the error occurred within a Try/On Fault action, and you
did not specify a Fault, this element will be populated with an Exception
message.

NOTE: By default, the Fault document will not be visible in the Component Editor.
To View it, click with your RMB, select Add to Display and choose _SystemFault.

Novell exteNd Composer User’s Guide136

Creating a Custom Fault Document

The procedure for adding Fault Message Parts to your component is very similar
to the procedure for adding Input, Output and Temp Parts. You begin by using
your favorite editor to create an XML document that will be used to hold fault
information. You can create as many Fault Message Parts as you need (you are
limited only by memory) and Fault documents can have any structure that makes
sense to your application.

You might want to use a custom Fault Part along with the _SystemFault document.
For example, you could use the DateTime, Component and Message elements
from _SystemFault to populate your own Fault document which woul also contain
information about the service itself, a log message indicating the last action that
was sucessfully executed and some information from the Input document that
might have been missed due to the application halting before completion. Below
is an example depicting a custom Fault message.

Once you’ve decided what Faults you need to capture and created the XML
structures to support them, the Parts can either be defined during the creation of a
component, or added to an existing component.

To add a Fault Part to an existing component:

1 From the File menu, choose Properties. The Properties dialog appears.

2 Click on the Messages tab.

Creating an XML Map Component 137

3 Click on the Fault Documents tab.

4 Click the Add button at the far right. Selections for Part, Template Category
and Template Name become available.

NOTE: If you do not specify a Fault Part, error information will go into the
basic fault document, called _SystemFault.

5 Enter a Part (your own label) for the fault message part.

6 Select an XML Category from the Template Category dropdown menu.

7 Select an XML Template from the Template Name dropdown menu.

8 Repeat as necessary for additional Fault documents.

9 Click OK.

10 Open the component. By default, the Component Editor will probably only
show the Input and Output parts. To make the Fault Part visible, go to the
View menu and select Show/Hide to add the Fault Part you just created.

NOTE: Alternatively, you can click with the RMB in the Component Editor
and select Add to Display, then pick the Fault document from the list.

Reloading an XML Document
If you have made changes to the document structures through mapping, and wish
to return the Message Parts to their original state, you can reload the XML
documents. When you reload the XML documents, all Parts, including Temp and
Fault (if these were created) are returned to the state defined by the input and
output XML documents. Keep in mind, however, the Map actions in the Action
Model pane remain.Thus, if you were to execute the component, all Map actions
will run.

The illustration below shows a component that contains several Map actions that
are reflected in the Input, Output, and Temp Parts.

Novell exteNd Composer User’s Guide138

Notice the detail in the XML and the Map actions in the Action Model pane. The
next illustration shows the same screen after the XML documents have been
reloaded.

Creating an XML Map Component 139

The documents are back to their original state but the Action Model pane remains
the same. Reloading XML documents is accomplished by selecting Reload XML
Documents from the Component menu.

Loading a Sample Document
You can load different sample documents into any of the DOMs and use the new
DOM structures for mapping elements or testing the Action Model. Loading a
different sample document from your template allows you to test if your Action
Model can handle all cases of XML documents your component might receive at
runtime.

When you load an XML sample, the DOM changes, but the Action Model remains
unchanged. When you are finished testing with the sample XML document, you
can reload the original XML document(s) by repeating the Load XML Sample
procedure.

To load a sample document:

1 From the File menu, select Load XML Sample. Alternatively, click with
the RMB in the XML Editor Panel and select Load XML Sample from the
context menu. The Load XML File dialog appears.

2 Select appropriate message Part from the Part dropdown box where you
want the new sample document loaded.

3 If you want to load a sample document that is not included in the original
XML template, click File Name and type the name of the file. Alternatively,
you can click Browse and find the file on your computer or network. You
may also read in a file from a URL by explicitly preceding your filename
with “http://,” “https://” or “ftp.”

4 If you want to load an XML file that is included in the original XML
template, click Sample and select the XML document.

Novell exteNd Composer User’s Guide140

5 Check Default if you want to make the selected sample the default XML
document for the selected Part in this component only. (This does not apply
to the file name option).

6 Click OK.

Adding a Watch Variable
During the execution of your component, it can be very useful to examine the
value of certain variables as a debugging aid. For this purpose, Composer offers a
Watch List, and the ability to create Watch variables to add to the list.

You can identify the following objects as Watch variables:

Input, Temp, and Output Document location paths

Location paths from PROJECT

Repeat Aliases

Node Aliases

ECMAScript expressions and variables

To add an item to the Watch Variable List

1 From the Component Menu, select Add Watch.

2 The Add Watch Dialog displays, giving you access to all the Variables,
ECMAScript Functions and Methods and Operators associated with your
project.

3 Doubleclick on the item you wish to add to the Watch list and click OK.

Creating an XML Map Component 141

4 During the execution of your component, click on the Watch tab in the
Output pane to view the status of the items in your Watch List.

The use of a Watch List, including examples of how this could be used as a
debugging aid, are discussed in greater detail in Chapter 12.

Saving Your Component
Save your component often to make sure your work is not lost due to hardware or
software failures. You can also save the component with a different name, making
a backup copy. When you save it with another name, you can also change the
XML properties, including the input and output XML templates.

To save the component with a new name:

1 From the File menu, select Save As.

2 In the Name field, type a new name.

3 To change input and output XML documents, click the XML Property Info
tab.

4 Change or add input XML documents.

5 Change the output XML document.

6 Click OK.

NOTE: If you have more than one component open at a time, clicking on
File>Save All (or pressing Ctrl-Shift-A) will save all the open components at once.
Similarly, File>Close All (Ctrl-Shift-F4) will save all components at once.

Saving a DOM as an XML Document
You can also save any DOM as an XML document. This creates (or overwrites) an
XML document that contains the structure and data of the DOM. The following
illustration shows an Output Part and the resulting XML document.

Novell exteNd Composer User’s Guide142

To save an in-memory DOM to an XML file:

1 From the File menu, select Save XML As. The Save XML As dialog box
appears.

2 Use the pulldown menu under Part to select the source DOM that you want
to save to disk. In the above example, Output is selected.

3 Check the Save as File radio button.

4 Type a path and name for the XML document, or click Browse and select a
path.

NOTE: If you select an existing XML document, it will be overwritten with
the source DOM’s structure and data.

Output Part
with data.

Resulting XML
document

Creating an XML Map Component 143

5 Click OK.

Saving an XML File as a Template
Any DOM that’s visible in the component editor can be saved as an XML
Template directly (rather than first saving the DOM to a file, then importing it into
a template). The target Template does not have to exist already; you can create one
on-the-fly.

To save a DOM to an XML Template:

1 From the File menu, select Save XML As. The Save XML As dialog box
appears (as shown above).

2 Use the pulldown menu under XML Document to select the source DOM
that you want to save as a template.

3 Check the Save as Template radio button.

4 If you are creating a template on-the-fly, enter a name for the Category (or
else pick an existing category from the pulldown menu provided).

5 If you are creating a template on-the-fly, enter a name under Template
Name (or else pick an existing XML Template name from the pulldown
menu).

6 Enter a Sample Name for this XML document. (This will be the name of the
file on disk. The file will be saved under
\xmlcategories\[CategoryName]\imports in your project directory.)

7 Click OK. You will see the new XML Template appear in the Instance Pane
of Composer’s nav frame.

During on-the-fly creation of an XML Template using the above technique, you
will not be prompted for any additional information (such as schema name or XSL
stylesheet) to associate with the new template. If you want to inspect or edit the
validation, stylesheet, or other properties of the new template, follow the
procedure outlined below.

Inspecting and/or Editing XML Template Properties
At any after an XML Template has been created, you can inspect or change its
properties. See“Editing an XML Template” on page 101.

Novell exteNd Composer User’s Guide144

Avoiding Out-of-Memory Problems
When you are working with large DOMs, it is advised that at design time, to avoid
memory errors, you add the following line to the xconfig.xml file. See the sample
xconfig file excerpt below.

Line to add (or edit): <VM_PARAMS>-Xms64m-Xmx128m</VM_PARAMS>

To adjust available memory for deployed services (in the runtime environment),
you will have to alter the VM command-line options for the app server’s VM.
Consult your app server documentation for information on how to do this.

You can avoid many out-of-memory problems (at runtime as well as design time)
by appropriate use of Performance Filters as described in the next section.

Using Performance Filters
The Define Performance Filter command (under the Component menu on
Composer’s main menubar) offers the potential for greatly improved performance
when processing large incoming documents. It also offers significant benefits in
terms of memory conservation, since a filtered document can require much less
memory at runtime than an unfiltered document.

Performance filters work by stripping superfluous document elements (and
attributes) from incoming XML documents. You specify which elements to
ignore; Composer does the rest. In essence, the input document is “rewritten” on
the fly in much-streamlined form, eliminating parts of the XML that are not
necessary for your service. This results in a smaller in-memory DOM.

Alter this
element’s
content

Creating an XML Map Component 145

Document filtering is useful because it is very common for a service to operate on
only a few XPath locations in a given type of document. For example, one service
might operate on the “Customer Info” nodes in an order form; a different service
might operate on the “Product Request Detail” nodes of the same order form; and
so on. It makes sense for each service to see and use only the portions of the
document that apply to that service.

To create a Performance Filter

1 Open a Service xObject, if one is not already open.

NOTE: Performance filters cannot be defined on Components. They can be
defined on Service xObjects only.

2 Under the Component menu on Composer’s main menubar, select Define
Performance Filter. A dialog appears.

Note that the document shown in tree-view form in this dialog is the Input
document for the service. (It is not possible to view other documents in this
dialog.)

3 Check the checkbox(es) next to the nodes you want to keep in the document.
Unchecked nodes will be stripped off (discarded) so that the parsed DOM
does not contain the elements in question. (See additional discussion below.)

Novell exteNd Composer User’s Guide146

4 Click OK to dismiss the dialog.

In the preceding illustration, the incoming document, with root node DoctorResp,
will have a /physician node with a /patients node under it at runtime, and the
/patients element, in turn, will have a PatientData element under it. Likewise, the
latter will have child nodes LastName and FirstName. But since Physician is not
checked, the incoming document will not have anything under the XPath:

DoctorResp/physician/patients/PatientData/Physician

NOTE: At design time, you will initially, upon opening a service, see the complete
(non-filtered) Input document, with all its nodes present in tree view, even if you
have defined a Performance Filter. But when you begin stepping through the action
model in animation mode, the document tree view will update to show the reduced
(filtered) runtime structure of the document.

Viewing Component Properties
You can inspect (and in some cases edit) various properties of a component at any
time.

To view or change component properties:

1 Select Properties from Composer’s File menu. The Properties Dialog will
appear. Note that the dialog has three tabs:

Header Info—This is the descriptive commentary you entered (or didn’t
enter) when you first created the component.

Messages—This is equivalent to the second dialog in the New XML
Map Component wizard: It shows the templates and template categories
used in this component.

Connections—This tab will be present only in components that are
associated with a particular Connection Resource. (For example, a JDBC
Component would have such a tab in its Properties.) The plain XML Map
Component does not have this information, and this tab does not appear.

Creating an XML Map Component 147

2 To view or edit descriptive commentary for this component, click the
Headers tab and enter the desired information.

3 To view or change XML template choices, click the Messages tab. You can
add or remove template documents and/or template categories as need be.

4 If your component uses special Connection Resources, click the
Connections tab to view Connection Resource info for this component. (Not
applicable to ordinary XML Map components.)

5 Click OK to dismiss the dialog.

6 Save your component.

Printing a Component
You can print the contents of a component. The printout contains:

Time and date you printed the component

Name and description of the component

All XML documents that make up the Input, Output, and Temp Parts

All actions in the Action Model

To print a component:

1 From the File menu, select Print.

2 Select a printer.

3 Click OK.

Novell exteNd Composer User’s Guide148

Designing, Testing, and Running a Component
The following table shows how sample documents are used when designing,
testing, and running a component.

Table 6-4

DOM
While designing in
Composer

While using
Animation Tools in
Composer

While executing
in Server

Input Samples can be
loaded and used as
design time aids for
building actions and
test data.

The default sample
document is loaded
and used to simulate
a runtime Input Part.

XML data is
passed in by
another
component, a
service, or a
Service Trigger.

Temp(n) Samples can be
loaded and used as
design time aids for
building actions and
test data.

The sample
document is not
loaded. The Part is
built by the Action
Model.

The Part is built
by the Action
Model

Output Samples can be
loaded and used as
design time aids for
building actions.

The sample
document is not
loaded. The Part is
built by the Action
Model.

The Part is built
by the Action
Model

Fault Samples can be
loaded and used as
design time aids for
building actions and
test data.

The sample
documents is not
loaded. The Part is
built by the Action
Model.

The Part is built
by the Action
Model

149

7

Basic Actions

Basic Actions Chapter 7

Up to this point, you’ve learned how to create XML templates and an XML Map
component that uses templates for inputs and outputs. Now it’s time to learn about
the actual work that takes place. This is where the action is.

NOTE: This chapter defines the basic actions available within the XML Map
component. The next chapter covers more powerful actions and Chapter 11,
“Applying Actions to Common Tasks” covers detailed examples of using some of
these actions.

What is an Action?
An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. For instance, the Send Mail action
sends an e-mail when you supply the recipient’s e-mail address as one of the
parameters.

Before looking at individual actions, you should first understand exteNd’s Action
Model. You may remember an earlier discussion that a component is a set of
instructions for processing XML documents or communicating with non-XML
data sources. This set of instructions is called an Action Model. In Composer, an
Action Model performs all data mapping, data transformation, and data transfer
within components and services.

An Action Model is made up of a list of actions. All actions within an Action
Model work together. As an example, the Action Model for a component might
read invoice data from a disk, retrieve the e-mail addresses from the invoices, and
send e-mail messages to notify the recipients that their invoices were received.

The Action Model mentioned above would be composed of several actions. These
actions:

Open an invoice document and read invoice data into memory

Extract the e-mail address from the invoice

Novell exteNd Composer User’s Guide150

Compose and send an e-mail

Update the invoice record to show that an e-mail was sent then close the file

Using Composer Actions
Composer provides actions with the basic XML Map component. These actions
are also available for all other component types, such as JDBC Components, JMS
Components, etc. Actions are grouped on the Action menu as Basic Actions and
Advanced Actions. The following table lists the suite of basic actions available in
Composer. The Advanced Actions are described in the next chapter.

Table 7-1

Basic Action Description

Comment Documents the Action Model. You can use comments
to clarify the processing, especially if Decisions and/or
Repeats are used in the Action Model.

Keyboard shortcut: Ctrl-E

Component Executes another component or service and defines
runtime DOMs to be passed to, and received from the
called component.

Keyboard shortcut: Ctrl-T

Decision Allows you to execute one of two sets of actions based
on a condition you specify. Processing branches along
a True or False path, depending on how your condition
is resolved as the component executes.

Keyboard shortcut: Ctrl-D

Declare Alias Allows you to assign an arbitrary label to any XPath, for
convenience purposes. The label expands to the full
XPath at runtime or animation time.

Function Executes either an ECMAScript script function or a
custom script you have previously created. You can
create custom scripts using Composer’s Custom Script
Resource Editor.

Keyboard shortcut: Ctrl-U

Log Writes information to various log files specified in the
component. There are three Log types: System Output,
System Log, and User Log.

Keyboard shortcut: Ctrl-L

Basic Actions 151

Creating an Action

There are four methods for creating a new action:

From the Action menu in the main menubar

From the Context menu available by right-clicking within the Component
Editor

Using keyboard shortcuts (available for the most commonly used actions
only, see table above)

Using Cut/Copy and Paste

In all cases, you must have the component open before you can create an action.

To create an action using the Action menu:

1 Open a component.

2 Click the mouse on (that is, highlight or select) a line in the Action Model
just above the place where you want a new action. The new action will be
inserted below the line you selected.

3 From Composer’s Action menu (main menubar), select New Action and
then the type of action you wish to create.

Map Transfers and optionally transforms element data from
one XML DOM to another.

Keyboard shortcut: Ctrl-M

Send Mail Automatically sends an e-mail to a specified e-mail
address during execution of the component.

Switch Allows program control to branch to a particular block of
actions based on a match between an input value and a
Case value. This is essentially a convenience action
that can be used to eliminate long, hard-to-read if/else
(Decision action) chains.

Todo Gives you a place to maintain a Todo list that organizes
and tracks your tasks.

Basic Action Description

Novell exteNd Composer User’s Guide152

4 If a dialog appears, type or select parameters pertinent to the action, as
required. (These are described individually in subsequent topics. See below.)
Then dismiss the dialog, as applicable.

To create an action using the Context menu:

1 Select a line in the Action Model where you want to place the action. The
new action will be inserted below the line you select.

2 Click the right mouse button to display the Context menu:

3 Select an action from the Context menu.

4 Interact as necessary with any dialogs that appear.

5 Dismiss the dialog(s).

Basic Actions 153

To create an action using a shortcut key:

1 Select a line in the Action Model where you want to place the action. The
new action will be inserted below the line you select.

2 Create your new action by pressing the key combination indicated in the
table above. For example, pressing Ctrl-L will add a Log action to your
model.

To Cut, Copy, or Paste an action:

1 Select (click on) the action in the Action Model pane.

2 Choose Cut, Copy, Paste, or Delete, as appropriate, from the Edit menu in
the main menubar, or from the context menu available via right-mouse-click.

3 Type Control-Z (or choose Undo from the Edit menu) if you want to undo
the operation.

In addition to adding actions, you can edit existing actions and disable actions
within an Action Model. When you disable an action, it does not execute, but it
remains in the Action Model, and you can enable it at a later time.

To edit an action:

1 Doubleclick any action in the Action Model and edit it.

2 Alternately, you can select the action in the Action Model pane.

3 From the Action menu, select Edit. A dialog box for the action type appears.

4 Make any necessary changes to the action.

5 Click OK.

To disable an action:

1 Select the action in the Action Model pane.

2 From the Action menu, select Disable. The action is grayed out.

3 Repeat steps 1 and 2, selecting Enable, to enable the action again.

The rest of this chapter describes each basic action and gives examples on how to
use them.

The Comment Action
You can use the Comment action to document your Action Model and clarify the
processing that takes place. You can add comments anywhere within an Action
Model. They perform no processing of their own.

Novell exteNd Composer User’s Guide154

To add a Comment action:

1 Open a component.

2 Select a line in the Action Model where you want to place a comment. The
new comment is inserted below the line you selected.

3 From the Action menu, select New Action, then Comment, or press Ctrl-E.
The Comment dialog appears.

4 Type your comment.

5 Click OK.

The Component Action
The Component action calls and executes another component or service with
runtime inputs and outputs that you specify. You can call any component in your
project. To call another component, you must specify four parameters to the
action:

Component Type

Component Name

Passed IDs

Returned ID

The Component Type is simply the category of component you wish to call. The
component types do not correspond to those listed in the Composer Category pane
under the Component heading. The following strings are valid values and are case
sensitive:

service

map

jdbc

3270

5250

cicsrpc

html

Basic Actions 155

jms

vt100

depending on whether or not you have the Connect installed that implements that
Component Type.

The Component Name is the name of the component you wish to call or target
component. The Component Name must be one that exists within the Component
Type you select.

The Passed ID are document names within the current component or service. You
can specify none, one, or more documents to pass into the target component. The
document names you specify here will be passed into the target component as its
Input documents.

The Returned ID is the name of a document within the current component or
service that will receive the results of the target component. You can use the name
of an existing document or force the creation of a new document by specifying a
name that does not already exist.

You can specify these parameters in one or two ways: Predefined or Dynamic. A
Predefined Component action populates the four parameters with values derived
from the current state of the project. Once specified, these values remain fixed for
all executions of the action unless you manually change them. A Dynamic
Component action populates the four parameters at runtime with values calculated
from expressions you create. This allows the Component action’s behavior to be
flexible and vary based on runtime conditions each time it is executed. One
Component action can execute a different component depending on various
runtime conditions, or pass in different Input documents, or receive results into
different result documents.

To add a Predefined Component action:

1 Open a component.

2 Select a line in the Action Model where you want to place a call to a
component. The new action is inserted below the line you selected.

3 From the Action menu, select New Action, then Component, or press Ctrl-
T. The Component dialog appears.

4 Select Predefined, by clicking on the radio button, if it is not already
selected.

Novell exteNd Composer User’s Guide156

5 Select the relevant Component Type from the drop down list.

6 Select a Component Name to execute (the list of Components is context
sensitive to the Component Type selected).

7 In the Passed ID field, select a source component DOM.

8 In the Returned ID field, select the source DOM into which the called
component will return its Output. If you wish to create a new DOM, you
may type the name in the Returned ID field.

9 Click OK.

To add a Dynamic Component action:

1 Open a component.

2 Select a line in the Action Model where you want to place a call to a
component. The new action is inserted below the line you selected.

3 From the Action menu, select New Action, then Component, or press Ctrl-
T. The Component dialog appears.

4 Select Dynamic, by clicking on the radio button, if it is not already selected.

5 Create an ECMAScript expression that evaluates to one of the following
valid Component Types: map, service, JDBC, 3270, 5250, CICSRPC, JMS,
HTML

NOTE: A Component Type will only be valid if the Connect implementing that
Type is installed in your version of Composer.

Basic Actions 157

6 Create an ECMAScript expression that evaluates to a valid component or
service name in your project.

7 Create an ECMAScript expression that evaluates to a valid document ID at
runtime in the current component or service. This document will be passed
to the target component or service as its Input document. If passing more
than one document, the expression must evaluate to a single string
containing a comma-separated list of document IDs (e.g. Input, Input 1,
Temp, MyDoc).

8 Enter an ECMAScript expression that evaluates to a document ID that will
receive the results of the target component.

The Decision Action
The Decision action creates an if. . . then branching between actions or group of
actions. You use a Decision action to select one branch or another, based upon a
condition you supply. The condition must use an ECMAScript comparison
operator, such as = =, <, >,!, >=, <=, (&), OR (||), or <>. The expression must
resolve to the Boolean true or false statement. For instance, you can check to see
if an invoice is older than a certain date and send an e-mail if it is.

To add a Decision action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Decision
action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action, then Decision, or press Ctrl-D.
The Decision dialog appears.

Novell exteNd Composer User’s Guide158

4 Type the expression using any of the ECMAScript comparison operators or
click the Expression Builder button and create a Decision script
(ECMAScript expression) that will evaluate to true or false at runtime.

5 Click OK. The Action Model displays the following Decision action, which
tests for the existence of an INVOICE node.

6 In the Action Model pane, select the TRUE icon.

7 Add one or more actions that will execute if the expression is true. you can,
of course, cut/copy actions via drag and drop from outside the true branch to
within the true branch.

8 Select the FALSE icon.

9 Add one or more actions that will execute if the expression is false.

You can nest other Decision actions inside the TRUE and/or FALSE branches of
the Decision action. The following illustration shows a complete decision in the
Action Model pane.

Basic Actions 159

The Declare Alias Action
The Declare Alias action allows you to apply your own arbitrary custom label to a
given XPath expression (valid within the scope of a given action model). You
would use this action to make your action model more readable and save typing.

To add a Declare Alias action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Declare Alias
action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action, then Declare Alias. The Declare
Alias dialog appears.

4 Type the name you intend to use in the Alias text field.

5 Choose either the XPath or the Expression radio button.

6 If you have chosen the XPath radio button, select a target DOM
(representing the document containing the target XPath) from the dropdown
menu. Then enter the XPath to the target node in the text field below.

7 If you have chosen the Expression radio button, type the appropriate
ECMAScript representation of the target XPath in the text field, or click the
Expression Builder icon (to the right of the text field) and use the Expression
Builder pick-lists to build an expression.

8 Click OK. The new action is added to your action model

Novell exteNd Composer User’s Guide160

In the above example, the Input Part has a node called
SHOW_PRODUCT/LIST_PRICE. Rather than type
$Input/SHOW_PRODUCT/LIST_PRICE repeatedly throughout the action
model, one could, for convenience, assign an alias (an arbitrary name) to the
XPath expression. In this case, the alias “aPrice” has been assigned to
$Input/SHOW_PRODUCT/LIST_PRICE. From this point on, throughout the
action model, one can use “aPrice” instead of
$Input/SHOW_PRODUCT/LIST_PRICE. At runtime, the alias will be expanded
to the complete XPath.

The Function Action
The Function action executes either an ECMAScript function or a custom script
function you have already created in the Custom Script Resource Editor. To
manipulate a DOM element, the script you call in the Function action must
reference a fully qualified DOM element name in the current component.

Custom Script functions you create and add to an Action Model can act upon any
XML tree element. For instance, you can create a function that changes the format
of a date element. You can create a function that performs a math function on the
contents of an element. You can also perform file system, database, or URL
functions that have no interaction with a Message Part. The Function Action can
also be used to call Java methods that you have registered in the Custom Script
Resources. This gives an ability to visually integrate complex (and simple) Java
processing directly onto the Action Model.

To add a Function action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Function
action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action, then Function, or press Ctrl-U.
The Function dialog appears.

Basic Actions 161

4 Type the function in the Function Call field or click the Expression Builder
button to build an ECMAScript expression (discussed below). Function calls
are case sensitive. Also, if the function requires parameters, make sure to
include them in the function call.

5 Click OK. Alternately, you can click on the Apply button to see the affect of
the Function action without closing the dialog. This allows you to make
repetitive edits to a Function action quickly see the results.

To use the Expression Builder:

1 Add a new function action as described in the previous section.

2 Click the Expression Builder button to open the Function Expression
Builder dialog.

3 Doubleclick variables, functions/methods, or operators to insert them into
the function. You can also type directly into the function.

NOTE: Make sure the function follows ECMAScript standards or it will not
compile or run correctly. It is usually more efficient to create functions within a
Custom Script resource and test them before using them. When creating a
Function action, you can simply refer to the Custom Script function name and
supply it any parameters.

4 Click Validate to verify the script before saving it.

5 Click OK to save the script.

6 Click OK again to add the function action.

Novell exteNd Composer User’s Guide162

NOTE: Since ECMAScript is an interpreted language, Validate doesn’t check any
runtime dependent expressions other than to see if they conform to valid
ECMAScript syntax.

The Log Action
Log actions are designed to provide customizable reporting capabilities (design-
time as well as runtime) for Composer applications. You can exercise fine control
over the degree of reporting desired, by the use of Log Level settings (see further
below); Log Actions needn’t simply be turned "on" or "off."

Some examples of where the Log Action might be used are:

To write out certain error information to the operator console when a Try On
Fault condition is reached.

To aid in debugging. (Since Log messages can be constructed as
ECMAScript expressions, you can log information about variables or DOM
contents whose values are known only at runtime.)

To capture specific information from each cycle of a Repeat for Element
loop.

To help create self-reporting components during development.

Log File Locations

The Log action writes information to any of various locations external to
Composer and exteNd Composer Enterprise Server. The actual locations are
specified by the action. There are three locations for log output: System Output,
System Log, and User Log (see below).

System Output

The System Output option writes out messages you specify in the Log Expression
field to the Java Virtual Machine process window at design time or the
Application Server console at runtime.

To create a Log message you can write any valid ECMAScript expression or use
the Expression Builder to generate a Log Expression. Each message logged is
preceded by a Date/Time stamp and the Component doing the logging. These
messages also appear in the Message frame of the main Composer window.

Basic Actions 163

System Log

The System Log option writes out messages you specify in the Log Expression
field to the filename specified in the <LOGFILE> element of the Composer
configuration file: xconfig.xml. You can change the name and location of the log
file from the Composer Tools menu by selecting Tools > Preferences from the
Composer menubar and going to the General tab.

User Log

The User Log option writes out messages you specify in the Log Expression field
to a file you specify in the User Log File field of the Log Action dialog (see
below).

To create a Log message, you can enter a static string or write any valid
ECMAScript expression (or use the Expression Builder to generate a Log
Expression). The results of the Log Expression will be written out to the Log as
text. Each message logged is preceded by a Date/Time stamp and the Component
doing the logging.

To create a User Log File you can also write any valid ECMAScript expression to
generate the file name, click the Expression Builder button to use the Expression
Builder.

Log Priority Levels

Individual Log Actions can be assigned priority levels (from 1 to 10). At runtime,
a Log Action’s priority level is compared against a reporting threshold value
which you set in the General tab of the Preferences dialog under the Tools menu.
Any Log Action whose priority is equal to or greater than the reporting threshold
will be executed (that is, its message will be logged to system output or to disk, as
appropriate), while Log Actions of lower priority will not have their messages
reported.

Priority levels for individual Log Actions can be set in the Log Action dialog. The
reporting threshold is set in the General tab of the Preferences dialog (as explained
below). Once a threshold value is set, only Log Actions of equal or greater priority
will execute. For example, if Log Action A has a priority setting of 4 and Log
Action B has a priority of 9, and the threshold setting in the Preferences dialog is
8, then at runtime only Log Action B will execute. Log Action A will be ignored.

NOTE: The reporting level can also be adjusted after deployment of your project,
via the exteNd Composer Enterprise Server console screen. Consult your
Composer Enterprise Server documentation for details.

Novell exteNd Composer User’s Guide164

To set the reporting threshold for logging:

1 Go to the Tools menu, then choose Preferences. The Preferences dialog
appears.

2 In the General tab, set the Log Threshold to a value from 1 to 10. The value
you set here is a threshold value, which means that only Log Actions with a
priority equal to or greater than this value will execute.

3 Click OK to dismiss the dialog.

To create a Log action:

1 Open a component.

2 Select a line in the Action Model.

3 From the Action menu, select New Action, then Log, or press Ctrl-L. The
Log dialog appears.

Basic Actions 165

4 In the Log to radio group, choose the location to which you want messages
written. (See explanation of locations further above.)

5 Use the Log Level spin control to select a priority level (1 to 10) for this Log
action. The default is 5. In general, you should assign high numbers to
messages with high importance. The priority you assign here will be
ompared to the threshold number you chose in the last section (see further
above). If the priority is equal to or greater than the threshold, the message is
logged; otherwise it is not.

6 Enter a String or ECMAScript expression in the Log Expression text field.
(You can use the Expression Builder—accessed by clicking the small icon to
the right of the text field—to build an expression via pick-list selections).

7 Check Clear the Log File if you want the data in the log file to be cleared
each time the component is executed.

More information about log files can be found in “Viewing System Messages” on
page 71.

Novell exteNd Composer User’s Guide166

The Map Action
The Map action is a DOM-node input/output mapping. It transfers (and optionally,
transforms) data from one document context to another document context. A
context has two parts. The first part usually identifies a DOM and the second part
identifies a location within the DOM. The basic document context in Composer is
expressed as a DOM name combined with an element location (referred to as a
location) identified through an XPath expression. The DOM name is usually
Input, Input1, Input(n), Temp, Output, or any named DOM you have loaded in the
component. The XPath expression identifying a location in a DOM has the path
elements delimited by “/”.

NOTE: A context in Composer can also be a Group name that itself is simply an
alias or short-hand for an XPath expression.

About XPath and ECMAScript Expressions

When you create a Map action, you can choose between two methods for
addressing locations in XML Documents: XPath and ECMAScript. The default
choice is XPath, and it is the basic method of addressing.

The Basic Method: XPath by Itself

The primary purpose of XPath is to address or locate parts of an XML document
(i.e., elements and attributes). XPath also provides basic facilities for
manipulation of strings, numbers and booleans through a simple expression
syntax. XPath addresses message Part nodes, including element nodes, attribute
nodes and text nodes.

XPath is based on pattern matching. You specify a pattern of element names that
resolve to the nodes in the target document. Most of the time, XPath returns a node
list containing the particular nodes that match your pattern. (Many XPath
expressions return only one node, but it is very common to return multiple nodes.)
Other times, XPath can return a primitive value (string, number, or boolean).

In all Composer dialogs that take an XPath expression, you can build the
expression with the aid of pick-lists in an Expression Builder. (See “To build an
expression using ECMAScript:” further below.)

The complete XPath specification can be seen at http://www.w3.org/TR/xpath.

NOTE: The XPath spec is also available under the \Doc directory of your
Composer installation.

http://www.w3.org/TR/xpath

Basic Actions 167

The Alternative Method: XPath within ECMAScript

The second method to address locations in DOMs is to use ECMAScript with
XPath. Choose this method if you wish to go beyond strict XPath addressing.
ECMAScript is an object oriented scripting language for manipulating objects in
a host environment (i.e., Composer). ECMAScript (ECMA-262 and ISO/IEC
16262) is the standards-based scripting language underpinning both JavaScript
(Netscape) and JScript (Microsoft). It is designed to complement and extend
existing functionality in a host environment such as Composer’s graphical user
interface. As a host environment, Composer provides ECMAScript access to
various objects (including DOM objects) for processing. ECMAScript in turn
provides a Java-like language that can operate on those objects.

Composer’s built-in ECMAScript interpreter recognizes a custom Composer
method called XPath(). It allows expressions such as:

Input.XPath(“Inventory/Books/Engineering”)

Construction of this type of expression is greatly facilitated by the user of
Composer’s Expression Builder facility. (See “To build an expression using
ECMAScript:” further below.)

Adding a Map Action

To add a Map action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Map action.
The new action is inserted below the line you selected.

3 From the Action menu, select New Action, then Map, or press Ctrl-M. The
Map dialog appears.

Novell exteNd Composer User’s Guide168

4 The Source type is XPath. Select a Part (Input, Output, or Temp) from the
pulldown menu, then type the appropriate XPath expression, locating the
element you want.

NOTE: Alternatively, you can click the Expression Builder to have
Composer assist you in building the XPath expression. See “Using the XPath
Expression Builder” on page 172.

Together, the Part name and XPath specify the Source context for the Map
action.

5 Repeat steps 4 and 5 for the Target.

6 Under Options, in the middle of the dialog, check Content Editor and/or
Code Table Map and/or Advanced to exercise finer control over the
mapping.

NOTE: More information on the Content Editor and Code Table Map
option is available in “Transforming Elements” on page 367. A discussion of
Advanced options appears below. Note that you will

7 Click OK. The Map action appears in the Action Model pane as shown.

NOTE: You can press the Apply button to see the affect of the Map action
without closing the dialog. This allows you to make repetitive edits to a Map
action and quickly see the results.

Basic Actions 169

Default Mapping Behavior

When you use the Map action to map elements and attributes within XML
Documents, certain default behaviors occur. The following table lists those default
behaviors.

Table 7-2

Many of these behaviors can be altered, on an action-by-action basis, through the
use of options exposed in the Advanced mapping dialog (see next section).

Leaf Elements that Contain Markup

A special situation can arise when an element is populated at runtime by a Java or
ECMAScript operation. It’s possible that the element might receive data that
contains markup—in other words, strings with illegal characters, such as < and >.
This presents a mapping challenge, in that if Composer were to merely map the
raw contents of such an element, unchanged, to a node in the Output DOM, the
output document would be malformed.

Map Type Default Behavior

Leaf Element to
Leaf Element

Transfers the element data only.

Leaf Element to
Branch Element

Transfers the element data only.

Branch Element to
Leaf Element

Transfers the entire branch including all child elements
and attribute data under the branch.

Branch Element to
Branch Element

Transfers the entire branch as above after removing the
target’s current branch.

A particular Leaf
Element in a list of
Leaf Elements, to
Element

Transfers the element data from the selected leaf (or
element instance) to the target element.

Attribute to
Attribute

Transfers the attribute data only.

Element to
Attribute

Transfers element data to attribute data.

Attribute to
Element

Transfers the attribute data only.

Novell exteNd Composer User’s Guide170

Composer resolves this issue by mapping any data that contains markup to a
CDATA section created on-the-fly in the target document.

NOTE: A somewhat different behavior applies at design time, when markup is
entered by hand. At design time, if you type markup data into a node (via right-
mouse-click/Edit Data), the markup characters are entitized on the fly. If you
examine the raw XML in Text View, you’ll see that any ’<’ characters entered by
hand are converted to < (and so on). The entitized data are then mapped
directly to output.

Advanced Mapping Options
When the Advanced checkbox is checked in the Map Action Dialog, the following
dialog appears. Note that the options you set in this dialog affect only the current
Map Action; not subsequent ones.

The options in this dialog give you finer control over how input Part nodes are
mapped to the output Part.

Copy Attributes

This grouping of controls allows you to specify how attributes are mapped. Three
radio buttons appear under this grouping.

Basic Actions 171

For Non-Leaf Root Nodes and Dependents—This button, checked by
default, represents the standard (default) mapping behavior of Composer:
When a non-terminal (non-leaf) element is mapped to output, the element—
minus its attributes—and its children are mapped to output. Attribute data
for the children are included, but not for the original (parent) element.

Never—This option means no attribute data (whether for parent or leaf
nodes) will be carried over during mapping.

Always—All attribute data, for all nodes, will be mapped to output.

Deep Copy

By default, Composer maps whole branches at a time (that is, the target node plus
all of its children). In some cases, you may want to turn off this “deep copy”
behavior so that you can copy just the parent element without its children.
Uncheck the checkbox labelled “Map the Dependents” if you want to disable
Composer’s standard deep-copy behavior.

Create Target

The Create Target option allows you to optionally create the destination node (or
branch) that you specified under Target in the Map Action dialog, based on
whether or not the source node (or branch) is present in the source DOM. The
default behavior is that Composer always creates the target, whether or not the
runtime source DOM contains the node(s) that you specified in the Source XPath
for mapping.

For example: In the Map Action dialog, you may have specified a Source XPath
that looks like

$Input/Root/MySourceElement

while under Target, you may have specified something like

$Output/Root/MyParentNode/SomeOtherElement

If the arriving Input document doesn’t have a node corresponding to
Root/MySourceElement, Composer will (by default) nevertheless create an
empty Root/MyParentNode/SomeOtherElement node in the output DOM. In
some cases, this might not be what you want. Using the radio buttons in the
Advanced Mapping dialog, you can change the default behavior.

NOTE: The Create Target options are disabled if Code Table Map was selected
in the Map Action dialog.

The options under this radio button grouping are:

Novell exteNd Composer User’s Guide172

• Only if Source Exists—This means that the Map Action will simply be skipped (no
target nodes created in the output DOM) if the node specified in the Source XPath
doesn’t exist in the input document.

• Raise Error—If the input document doesn’t contain the node specified in the Source
XPath, it will be considered an error at runtime, if this button is selected. You should
plan accordingly by wrapping your Map Action in a Try/OnError block so you can
handle the error.

• Always—Default behavior. (Target node is always created.) When this button is
selected, the nearby Default Value text field becomes enabled so that you can option-
ally enter a default data value for the target element.

Create Target as CDATA Section

This radio-button group allows you to control the way element data gets mapped
into CDATA sections. The options are:

Only if source contains markup—This choice means that if the source data
contains XML tags, HTML tags, or other types of markup where "illegal"
characters are used, the data will be placed, unmodified, in a CDATA section in the
target DOM. This is the default behavior of Composer.

Never—With this option set, source data is guaranteed not to be wrapped in a
CDATA section for output. Any illegal characters that occur in the source data will
be converted to properly escaped entities, such as > for >, on the output side.

Always—This means that whatever form the source data might take, it will get
wrapped in a CDATA section on output.

Using the XPath Expression Builder

When you are in the Map Action dialog, you can build your own XPath
expressions by choosing the Expression Builder button at the far right of the
appropriate text field. The XPath Expression Builder dialog that appears will
display pick-lists to help you construct valid XPath syntax in point-and-click
fashion. This can be especially handy when you wish to go beyond basic XPath
addressing and use some of the more powerful features of XPath.

exteNd Composer uses the XPath addressing syntax adopted by W3C. The XPath
syntax is similar to URI address syntax in basic appearance but includes many
subtle and powerful features for addressing and manipulating XML. Some of the
more common syntax rules are listed in the following table.

Basic Actions 173

Table 7-3

The complete list of operators can be seen at http://www.w3.org/TR/XPath.

To build an expression using XPath

1 Open a component.

2 Select the Map action from the Action menu.

XPath Syntax Description

/ The single forward slash represents an absolute path to
an element. /ABC selects the root element ABC.

// Double slashes represents all elements in a path. //ABC
selects all occurrences of ABC. //ABC//DEF selects all
DEF elements which are children of ABC.

* The asterisk selects all elements located by the
preceding path. *ABC/DEF selects all elements
enclosed by elements ABC/DEF. //* selects all
elements.

[] Square brackets specifies a particular element. /ABC[3]
selects the third element in ABC. This can also be used
as a filter (similar to a Where clause in SQL).
//ABC[“Table”] selects all elements that have the content
“Table.”

@ The At sign selects elements with a specified attribute.
/ABC@name selects all elements in ABC that have an
attribute called name.

| The vertical bar allows you to specify multiple paths.
//ACB|//DEF selects all elements in ACB and in DEF.

$ The dollar sign allows you to reference other documents
besides the current one.
INVOICEBATCH/INVOICE[SELLER/NAME=
$PROJECT/USERCONFIG/COMPANYNAME]

function() XPath has numerous functions that you can add to your
XPath addresses. For instance, //*[count(*)=2] selects
all elements that have two children.

math operator() XPath has numerous math operators that you can add
to your XPath addresses. For instance, /ABC|position()
mod 2 = 0] selects all even elements in ABC.

Novell exteNd Composer User’s Guide174

3 Ensure that the XPath radio button is selected.

4 Click the Expression Builder button. The Source XPath dialog displays.

5 Create an expression by doubleclicking on the items from the panes.

6 Verify that your expression’s syntax is correct (using the Validate button).

7 Click OK.

Using the ECMAScript Expression Builder

When you select the ECMAScript radio button in the Map action, the
ECMAScript Expression Builder appears and helps you construct valid
ECMAScript syntax. This is desirable when you want to go beyond strict XPath
addressing and use some of the more powerful features of Composer's
ECMAScript addressing.

The illustration below shows the ECMAScript Expression Builder.

Basic Actions 175

Objects in the pick-lists are ordered with most frequently used objects first. All
properties and methods for an object are also ordered. Properties are always listed
first alphabetically, followed by all the object’s methods alphabetically.

All of the items in the Functions/Methods pick-list and the Operators pick-list
have tool tips associated with them. To view a tool tip, simply hover your cursor
over the item you’d like to know more about. If you hover your cursor over the
items in the Variables pick-list, data associated with that item will be displayed.

NOTE: While you can create complex ECMAScript expressions, they must
evaluate to a document context consisting of a DOM and an address within the
DOM.

To build an expression using ECMAScript:

1 Open a component.

2 Select the Map action from the Action menu.

3 Select the radio button next to Expression.

4 Click the Expression Builder button. The Source Expression dialog
displays.

Novell exteNd Composer User’s Guide176

5 Create an expression by doubleclicking on the items from the panes.

6 Optionally click Validate to verify that your expression’s syntax is correct.
(This does not execute the expression. The expression is merely parsed.)

7 Click OK.

The Send Mail Action

The Send Mail action creates and sends e-mail messages dynamically during the

execution of a component. When you create a Send Mail action, you specify the
various parameters needed in order for Composer to know where and how to send
the e-mail. The parameters can be hard-coded or (alternatively) ECMAScript
expressions that evaluate at runtime.

Some possible uses of the Send Mail action include:

Sending an “order status” notice to a customer after he or she has placed an
order via the web.

Triggering human intervention in a service that requires such intervention as
part of normal workflow.

Notifying system administrators (or others) of critical error conditions
requiring immediate action. (The mail could even be routed to a pager or
other mobile device.)

Basic Actions 177

The e-mail you send with the Send Mail action can have attachments of any
arbitrary MIME type. Also, various Send Mail actions can use various mail
servers (with or without user name and password).

Mail via SMTP Simple Authentication

Although some in-house mail servers might not require a user name or password
for outbound mail, many SMTP servers issue an authentication challenge before
granting access. If your Send Mail actions will be using a mail server that requires
user ID/password authentication, you will need to create a Mail Simple
Authentication connection resource. This resource simply stores the network
address for the mail server you want to use, along with a user name and password.
The resource, once created, can be reused by any number of components and/or
services within your project.

It’s worth noting that you are not required to create one Mail via SMTP resource
for each server (or for each user name and password combo) you intend to use. All
parameters in the Mail via SMTP connection resource can be indirected through
ECMAScript, so that server names or user credentials (or both) are late-bound—
perhaps obtained by lookup from a directory or database, at runtime. Using
ECMAScript, you can apply your own business logic to decide which mail server
(or which credentials) to use in a given circumstance at runtime.

NOTE: See the discussion at “About Constant vs. Expression Driven
Connections” (in the chapter on Resources) for additional information on how
ECMAScript can be used for late binding of connection-resource parameter values.

To create a Mail Simple Authentication connection resource:

1 Under Resource in the navigation (explorer) frame, right-click on
Connection and choose New from the context menu as shown below:

Novell exteNd Composer User’s Guide178

2 In the wizard pane that appears (see below), enter an arbitrary Name for this
connection resource and (optionally) descriptive text.

3 Click Next. The second (and final) panel of the wizard appears:

4 Using the pulldown menu control, select Mail via SMTP Simple
Authentication as the Connection Type.

5 Next to SMTP Server, enter the name or IP address of the mail server you
intend to use.

Basic Actions 179

6 Next to User ID, enter the user name associated with the mail account you
wish to use.

7 Next to Password, enter the password associated with the user account in
question.

NOTE: Again, note that any of these parameters may be entered as
ECMAScript expressions. See the discussion at “About Constant vs.
Expression Driven Connections” (in the chapter on Resources) for additional
information on using ECMAScript here.

8 Click Finish.

How to Create a Send Mail Action

To create a Send Mail action:

1 Open a Component.

2 Select a line in the Action Model where you want to place the Send Mail
action. The new action will be inserted below the line you select.

3 From the Action menu, select New Action, then Send Mail. The Send Mail
dialog appears. Note the presence of three tabs: Message, Server, and
Attachments.

4 Select the Message tab if it is not already selected.

Novell exteNd Composer User’s Guide180

5 In the Mail Recipient field, type an ECMAScript expression to specify the
e-mail address of a recipient. The expression should evaluate to a string of
the general form name@domain.extension. If you are hard-coding a
string value, make sure the text is enclosed in quotation marks.

6 In the Mail Sender field, enter an ECMAScript expression to specify the
string you wish to show as the sender’s e-mail address. (It can be any
arbitrary string; it does not have to be an actual e-mail address.) Again, if
you are hard-coding a text value, make sure the text is enclosed in quotation
marks.

7 In the Mail Subject field, type a valid ECMAScript expression to specify
the e-mail subject or type a subject line. Again, if you are hard-coding a
string, make sure the text is enclosed in quotation marks.

8 In the Mail Body field, type a valid ECMAScript expression to specify the
e-mail body text (or type the body text enclosed in quotation marks).

9 Under Encoding, specify (using the pulldown menu) the type of encoding
your message should use. The default is ASCII.

10 Select (click on) the Server tab. The dialog changes appearance:

Basic Actions 181

11 Click the Mail Server radio button if you wish to specify an ECMAScript
expression that will resolve to your mail server’s address (as shown above).
Alternatively, click the Connection Name radio button if you wish to use a
server that has been specified in a “Mail via SMTP Simple Authentication”
connection resource. (See the discussion of this resource type at “Mail via
SMTP Simple Authentication” earlier in this section.) You would use the
latter option in cases where user authentication (via username and password)
is required in order to access the server.

12 If you want to include attachments with the e-mail, click the Attachments
tab. (Otherwise, click OK to return to the component editor.) The dialog
changes appearance:

Novell exteNd Composer User’s Guide182

13 Click the plus-sign (+) button to add an attachment.

14 Under Type, specify String or URL (using the pulldown menu control).

Specify String if you want the value in the Attachment column of the
table to be the (literal) attachment to the e-mail.

Specify URL if you want to indirect the attachment target through a URL
(using file: or http: protocol schemes).

15 Under Content-Type, specify the MIME type of the attachment. You can
either choose from the MIME types shown in the dropdown menu, or you
can enter your own MIME type in the editable field.

16 Under Attachment, enter the ECMAScript expression that will serve as the
attachment content (if you chose String under Type) or as the URL to the file
you wish to send. In the example above, the first attachment is a String
consisting of the data associated with the /message node of the component’s
Input document. The second attachment (a JPEG image) specifies a URL
string contained in the previously declared ECMAScript variable named
“image.” The variable in question could resolve at runtime to something like
“file:///d:/server-1/resourcestore/images/stockimage.jpg.”

Basic Actions 183

17 Click OK. A new Send Mail action appears in the action model of your
component:

The Switch Action
The Switch Action (inspired by the Java and C-language switch statement) is
designed to allow your application to branch to the appropriate custom logic based
on the value of a particular input variable or XPath expression. The Switch Action
is a convenience action that obviates the need for a series of nested Decision
Actions. It increases the readability of your action model significantly by
eliminating multiple actions and consolidating them into one coherent, easily
documented, easy-to-read action.

About Cases

The Switch Action compares a series of values or choices ("cases")—which may
be either static or dynamic—against an input value. If an exact match occurs
between the input value and one of the available choices, execution branches to
the action(s) listed underneath the choice. Just as with a series of if/else
statements, cases are tested in the order listed; and once a match is found,
execution of the match logic precludes execution of any other logic in the Switch
Action.

The custom logic associated with any Case can consist of a single action or a block
of actions; and the actions can include any of the standard (basic or advanced)
Composer actions, as well as actions specific to a particular Connect.

A Switch Example

Suppose your incoming XML document represents a retail order for goods, and
one of the tasks your application must perform is the determination of a shipping
method based on the customer’s location. The input to the Switch Action might be
an XPath expression like:

$Input/Order/Customer/Address/Country

The case values for the Switch Action, and the associated logic for each choice,
might look like:

CASE:"USA"
CALL shipMethod = (weight < 10) ? "FedEx" : "UPS";

CASE:"ANGOLA"
CALL shipMethod = "Air Gemini";

CASE:"ARGENTINA"

Novell exteNd Composer User’s Guide184

CALL shipMethod = "International First Services";
CASE:"AUSTRALIA"

CALL shipMethod = "Ansett International";
.
.
.
DEFAULT:

CALL shipMethod = "UPS";

At runtime, the value of the Input DOM element at
Order/Customer/Address/Country will be checked against each successive
Case value, starting with "USA," until a match is reached. In this example, if the
match occurs at "ANGOLA", the Function Action that assigns "Air Gemini" to the
(ECMAScript) variable shipMethod will execute, then the Switch Action will
exit immediately, and execution will continue with the first action (if any)
following the Switch Action.

NOTE: No explicit Break action need be inserted in any Case action group,
because the built-in "fall-through" behavior of Java and C-language case statement
is not a feature of Composer’s Switch Action. Once a match happens, fall-through
to the next Case never occurs.

The foregoing example could be equivalently written as a series of Decision
Actions. The pseudo-logic for the chain of Decision Actions would be:

country = inputValue
if (country == USA)

ship via A or B
else if (country == ANGOLA)

ship via C
else if (country == ARGENTINA)

ship via D
else if (country == AUSTRALIA)

ship via E
[etc]

else ship via Default shipper

The Switch construct eliminates the stairstep indentation and repetitive if/else
logic that characterize this kind of code. It also results in easier-to-read-and-
maintain code. In general, any time you are faced with a long series of
conditionals, you should consider using a Switch Action.

About the Default Case

The final "Case" under every Switch action is always labelled Default. This line is
generated automatically and cannot be removed. Actions placed under Default are
executed if and only if the Switch Action, at runtime, encounters no matching
Case in the list of Cases.

Basic Actions 185

NOTE: While you are not required to place actions under Default, it is good
programming practice to have at least some kind of fallback logic for the "no match"
case, even if it’s only a Log action or a Raise Error action.

To add a Switch action:

1 Open a component.

2 Select a line in the Action Model where you want to place a Switch Action.
The new action will be inserted below the line you selected.

3 From the Action menu, select New Action, then Switch. The Switch Action
dialog appears. (The text values in the dialog shown below are not defaults.
Values were entered for purposes of illustration only.)

4 Enter an XPath or ECMAScript expression in the top of the dialog under
Expression. This is the input value to the Switch Action.

5 In the combo box, enter the static string values or the ECMAScript
expressions that will be checked against the input value that you specified in
the previous step. Remember that at runtime, each Case value will be
checked in turn, in the order you list them. (Tip: For optimal performance,
list the most likely matches first.)

NOTE: New Case entries are, by default, added to the end of the existing
list. But you can change the order of the choices by highlighting a given
choice and clicking the Up and Down buttons as need be.

6 Click OK. The dialog goes away and the new Switch Action appears in your
action model. See example below.

Novell exteNd Composer User’s Guide186

Once you have added a Switch Action to your action model, you will see a list of
Case values. To associate your own custom logic with a given Case, click on the
Case, then add new actions one at a time as needed, by clicking the right mouse
button and choosing New Action from the context menu. Your Actions block can
contain any number of actions (of any type).

To add custom case-handling logic:

1 In the action model, find the Case to which you want to add processing
logic.

2 Click on the Actions line below the Case.

3 Right-click to bring up the context menu. Select New Action and pick from
any of the actions available on the submenus.

4 Repeat the previous step as needed to add additional actions.

Editing Switch Actions

The primary tool for editing Switch Actions is the Switch Action dialog, which
allows you to edit the input expression, reorder Cases, edit Case expressions, and
add or delete Case values. To access this dialog, just doubleclick on any Switch
Action within an action model.

Only a limited amount of editing can be done from the action model itself (without
opening the settings dialog). The following limitations apply:

Cut, Copy, Delete, and Paste operations on the Switch Action (top line) itself
result in the entire Switch block, including all matches and associated Action
lists, to be cut, copied, etc.

You can Cut or Delete a Case value that has been selected in the action
model, but you cannot add a new Case value (by pasting).

A Cut or Delete operation will cut/delete not only the Case itself but all
associated actions.

5 Actions in Case action lists can be edited in the normal ways.

Basic Actions 187

The Todo Action
Developing Web Services and XML-integration applications can be a very
complex undertaking. Composer provides the ability for you to maintain a Todo
list to help you organize and manage the many tasks associated with application
development.

To add a Todo action:

1 Open a component.

2 Select a line in the Action Model after which you want to place your Todo
list. The list item will be inserted below the line you selected.

3 From the Action menu, select New Action, then Todo. The Todo dialog
appears.

4 Enter a Description for the item that will be displayed in your Todo list.

5 If desired, enter a Note containing additional information. This text displays
as part of the item's tool tip when the mouse pointer is over the item.

6 Use the down arrow to select a Percent Done value for your task, or leave it
at 0. As tasks near completion, you should edit this action item and update
the percentage complete.

7 Click OK to add the item to your Action model.

Project-Wide Todo Lists

Todo Lists are not only available within components. They can also be associated
directly with a project.

To add a Todo list outside of a component:

1 Open a project.

Novell exteNd Composer User’s Guide188

2 Click on the Todo tab in the Message Frame (see “Navigation, Message, and
Content Frames” on page 31.

3 Right-click with your mouse and select Add Item to add a new Todo list
item. Create the item as indicated above.

Tracking Todo items using the Message Frame tab

Once it has been added to your component or project, you will be able to track the
progress of the Todo Item using the Todo tab on the Message Frame.

When viewing items in the Todo tab, you will be able to see at a glance how far
along you are in your list:

a blank checkbox indicates that the task has not begun

a gray checkmark indicates partial completion

a green checkmark indicates that the task has been completed

Todo items can be managed either from the Action Model or by right clicking on
them in the Todo tab of the Message frame. Items can be edited, added and deleted
and re-grouped in the list using the Indent and Outdent menu selections.

189

8

Advanced Actions

Advanced Actions Chapter 8

The previous chapter introduced you to the basic actions you can use when
building components. The actions discussed in this chapter are of a more advanced
nature than those discussed earlier. They include I/O-related actions, control-flow
constructs, and miscellaneous additional actions.

The actions discussed in this chapter can be created using commands under the
Action menu’s nested submenus. The submenus include Advanced, Data
Exchange and Repeat. They can also be accessed via right-mouse-click inside the
action model.

The menu structure looks like this:

Novell exteNd Composer User’s Guide190

The table below summarizes the Advanced actions. (The Data Exchange and
Repeat actions are discussed in their own sections further below.)

Table 8-1

NOTE: See Chapter 11, “Applying Actions to Common Tasks” for examples of
using some of these actions.

Advanced Action Description

Apply
Namespaces

Provides a way to override NameSpace prefixes, declare
a new one or ignore a NameSpace altogether.

Convert Copybook
to XML

Converts XML data into a ByteArray object using a
COBOL Copybook

Convert XML to
Copybook

Converts a ByteArray object into XML data using a
COBOL Copybook

Simultaneous
Components

Allows two or more components to be executed
simultaneously (that is, in multithreaded fashion).

Throw Fault Evaluates a condition which if true, writes the contents of
an expression to a fault document. If used alone, it
throws an exception, stops a component, and returns
control to the service. If used within the Execute branch
of a Try On Fault action, it is evaluated and control
passes to actions in the On Fault branch.

Transaction Allows you to invoke User Transaction commands (such
as begin, commit, and rollback) in components that will
be deployed as part of non-Container-managed
services, or setRollbackOnly in components that will be
part of Contained-managed EJB deployments.

Try On Fault Responds to actions that produce errors by executing a
set of actions depending on the type of Fault that occurs.
The Try On Fault action is essentially an error trapping
and solution action, and works in a fashion similar to
Switch.

XForm Process Allows you to preprocess an XForm document before
mapping it to output

XSLT Transform Transforms an XML file according to instructions in an
XSL file. The output is commonly used for rendering
XML files in the Web browsers.

Advanced Actions 191

Apply Namespaces Action
Ideally, a component will always receive valid XML documents (i.e. the
documents validate against their schema), map and transform data appropriately,
and send valid XML documents. But in the real world, this is not always the case.
Therefore, it is important to have some means of validating XML documents.

Schemas combined with Namespaces provide a mechanism that allow validation
enforcement. However, Schemas, Namespaces and Prefixes can easily become
problematic when performing XML transformations. For simple straight-through
processing involving document validation and marshalling, Composer's schema
support, XML Template features, and drag and drop mappings mean you won't
normally have to worry about managing Namespaces and Namespace Prefixes.
But there are many cases involving document transformations where documents
may need special treatment of Namespaces and Namespace Prefixes, such as
when

Business partners exchange valid documents belonging to the same
Namespace but each uses a different Namespace Prefix. For one party to
validate or work with the other's document, the Namespace Prefix of each
partner needs to be declared in the document.

An XML Template is not available to resolve a Prefix to a Namespace for a
document (i.e. the Input XML Template is System {Any}). Yet for Map
actions to work properly, the Prefixes used in the Map Source and Target
need to be resolvable to a Namespace.

And there are still other cases where you simply wish to ignore Namespaces
altogether. These and many other XML processing cases require a method of
modifying or overriding the Prefix and Namespace handling provided by
Composer's default Schema and XML Template support.

The Apply Namespaces Action provides a mechanism for managing Namespaces
and Namespace Prefixes in effect for XML documents within a component’s
Action Model. The action allows you to consolidate all your Namespace and
Prefix declarations for a document in one place as well as override those declared
in the XML Templates used by the component, or ignore Namespaces altogether.

The Apply Namespaces action can be applied to any Message Part (Input, Input1,
Temp, Temp1 or Output.) You may also have multiple Apply Namespaces actions
for a single Message Part, effectively changing Namespaces in effect based on
conditions specified in your Action Model. The Namespaces declared for any part
will be in effect until the end of the Action Model is reached or another Apply
Namespaces action for that Part is executed. In other words, only the most recent
Apply Namespaces action is in effect for any single Part.

Novell exteNd Composer User’s Guide192

When creating a new component, an Apply Namespaces action is created
automatically for the Output Part if it’s XML Template declares any Namespaces.
After component creation, you can manually create additional Apply Namespaces
actions for any or all Message Parts. In both cases, the Namespaces and Prefixes
initially specified when you first open the action dialog, are pulled directly form
the XML Template. You can then add, change or delete Namespaces and Prefixes
as needed within the action.

To Create an Apply Namespaces action:

1 Open a component that you want to apply the Namespace action.

2 From the Action menu, select New Action>Advanced>Apply
Namespaces. The Apply Namespaces dialog box appears as below.

3 Select from the dropdown list, For Part, where you want to apply the
NameSpace (i.e. Output). This control displays available Message parts to
which the list of Namespace declarations can be applied.

4 Click on the (+) icon to add a row, conversely, click on the (-) minus icon to
delete a row. When adding a NameSpace, enter the URI and Prefix in the
columns displayed.

Advanced Actions 193

NOTE: The Prefix table displays all the Namespace declarations in effect for
the document displayed in For Part control. After creating a new Apply
Namespaces action, the table may or may not contain a list of declarations for
a selected Part. The list of declarations is initially constructed from the
declarations defined in the XML Template’s Namespace Declarations panel.
If the XML Template for the Part is System{Any} or not Schema based, then
the list will be empty, unless declarations have been added in the Template’s
Namespace Declarations panel.

NOTE: Within the declaration list for a single Message Part, the Prefixes
must be unique. However, you are allowed to have duplicate Namespace URI
entries provided they are associated with unique Prefixes. This allows you to
declare multiple Prefixes that are associated with the same Namespace URI.

5 Options: Click in the checkbox to Ignore Namespaces when document is
used in a Map action Source option when you want Map Action Source
XPaths to find elements by their XML local name only.

NOTE: This provides for a less restrictive method of specifying Map actions
and is useful when Map actions under some processing circumstances may
contain the wrong or no Prefixes in their Source specifications. This allows
you to put the Apply Namespaces action inside a Decision action that tests
whether the Input Message contains Prefixes or not yet still have one set of
Map actions to Map the Input to another document. In other words, the
component normally expects the Input to contain Prefixes so you design all
your Map actions with Prefix names. For the occasional Input that has no
Prefixes, the Decision action activates the Apply Namespaces action defined
to ignore Namespaces for Input allowing the Map actions to work in either
case.

NOTE: This option performs the same function as the
setSkipNameSpaces() method available for any Part (i.e.
Input.setSkipNameSpaces(true)). Between this method and the Apply
Namespaces action, whichever was executed last in an action Model will be
in effect.

6 Options: Click in the checkbox to Declare These NameSpaces when
document is used in a Map Target when you want to declare a set of
Namespaces in the root element of an Output document built by your Action
model. This option is almost always checked for Output to insure that
prefixed elements created in the Output, as a result of Map actions, will
resolve to the proper namespaces.

NOTE: This allows a recipient of the Output to validate the document
properly. The Apply Namespaces action with this option checked could also
be used to add new declarations to an existing document that already
contains declarations.

Novell exteNd Composer User’s Guide194

7 Target Document Root Element Name specifies the name of the root element
to contain the Namespace declaration attributes. If the target Message Part is
based on a XML Template with Schema validation, then this control will be
filled in automatically by Composer. If the target Message part is not an
XML Template with Schema validation (e.g. System{Any}), then you must
enter a value.

8 Click OK and the new action will be added to the Map Action Pane in your
component.

Map Actions, XML Templates, Namespaces, and Prefixes

XML Templates and the Namespaces and Prefixes in XML documents processed
by a component may all have an impact on whether a Map action works as
expected. By default, for a Map action to work, the prefix / element name
combinations in the Source XPath are expanded to their full names. A similar
process occurs in the Message Part referred to by the Map action. If a match is
found between the Source specification and the Message Part, the data or content
model is mapped to the Target of the Map action. The most critical factor is
whether Prefixes are expanded to their Namespace when a Map Action's Source is
compared to an XML Message Part. If Namespace resolution is not performed
(i.e. turned off) then Map actions will always work.

By default, Composer performs Namespace resolution. There are however, two
ways to prevent Namespace resolution in Composer. The first technique is to use
the setSkipNameSpaces() method for a Part as in
Input.setSkipNameSpaces(true). The second technique is to add an Apply
Namespaces action and check Ignore Namespaces when document is used in a
Map Action Source control.

When Namespace resolution is performed, two additional conditions must be met
in order for a Map action to work. The Prefixes used in the Map action and the
Prefixes present in the document must: 1) be resolvable to Namespace URIs, and
2) the Namespace URIs must match. The first condition is a pre-requisite for the
second.

Advanced Actions 195

The first condition requires that the Prefixes used in the Map Action Source (what
you expect to receive) and the Prefixes used for elements in the runtime document
(what you actually receive) must be expanded and resolvable to Namespace URIs.
If either cannot be resolved, then the Map action fails. In order for a Map action
to work, the expanded form of its Source specification Prefixes must match the
expanded form of an element in the XML document being mapped (the second
condition). The Map action Prefix is expanded by resolving it to a Namespace
URI specified in the XML Template or in an Apply Namespaces action. Prefixes
for the element in the XML document are expanded by resolving to a Namespace
URI declared in the XML document (i.e. an xmlns:someprefix="someURI"
attribute in the root element). If the expected Namespace URI of the Map action
does not match the actual Namespace URI from the document, the Map action will
fail.

Example: Assigning Namespace Declarations to Output Messages

When a new component is created and its Output Message is based on an XML
Template containing Namespace declarations, Composer automatically adds an
Apply Namespaces action to the Action Model. When the component executes,
this action creates the appropriate root element, Namespace Prefix for the root
element, and root element Namespace declaration attributes in the Output XML
Message. Normally, this action is appropriately left at the start of the Action
Model. In addition, the action allows you to add new Namespace declarations to
the Output Message that are not declared in the XML Template. The following
graphic shows how a Declare Namespaces action is defined for a typical Output
message.

Novell exteNd Composer User’s Guide196

If a component or program that receives this component’s Output is designed to
work with the same Namespace but uses different Prefixes, you can use the Apply
Namespaces action to add an alternate Namespace Prefix in the Output Message.
Simply open the Apply Namespaces action and press the Add button. Copy the
Namespace URI you wish to associate with another Prefix and paste it into the
new line. Then specify the alternate Prefix.

NOTE: Note: When a Temp document is going to be used as the target of Map
actions, you need to define a similar Apply Namespaces action for it. Since Temp
documents can be both a Source and Target for a Map action, Composer does not
know your intentions and so does not create the action automatically for you.

Example: Ignoring Namespaces

In some cases namespaces and their associated Prefixes are irrelevant to the
mapping or transformational purposes of the component. Perhaps, a document
has already been validated but needs to be re-structured before being inserted into
a back end data store (e.g. a relational database via a JDBC component or a CICS
transaction via a CICS/RPC component). In this case the Map actions are
concerned only with re-structuring the Input XML message into a different
hierarchy which would be much easier and quicker to design by referencing local
names only in the document. In this case, an Apply Namespaces action can be
added that ignores Namespaces altogether. This allows you to construct Map
actions that omit any Namespace Prefixes in the Source XPath's you define. So
instead of expressing the Source of a Map action as

INV:INVOICEBATCH/INV:INVOICE/INV:INVOICEHEAD/INV:INVOICENO

you can write:

INVOICEBATCH/INVOICE/INVOICEHEAD/INVOICENO

which is also more readable.

Advanced Actions 197

The Convert Copybook to XML Action
This action to converts a ByteArray into XML data using a COBOL Copybook

Resource so as to map COBOL fields in the ByteArray to XML elements. The
XML can then be used like any other XML inside the component.

To create a Convert Copybook to XML Action

1 Open a component.

2 Select a line in the Action Model where you want to place a Convert
Copybook to XML action.

3 From the Action menu, select New Action>Advanced, then Convert
Copybook to XML. A dialog window appears:

Novell exteNd Composer User’s Guide198

4 Under Source, type in the name of an existing ByteArray whose data you
would like to convert to XML format.

5 Select a previously defined Copybook Resource (see “About Copybook
Resources” on page 272).

6 Under Target, select an XML Message Part to be used to receive the
converted ByteArray.

7 Click on Apply to see the results of your action, or click on OK to finish
creating the new action and it it to your action model.

NOTE: Experienced CICS RPC users will recognize that this action performs the
same function as the Auto Map Copybook feature available in the CICS RPC
Component Editor. The only difference is that no Map actions are created for the
user. In order for the mappings performed by the Convert action to work, the user
must have a properly formatted XML document that accurately represents the
structure of the Copybook. Creating an XML Sample for this is easy inside a CICS
RPC component or JMS Component. Simply use Auto Map in the CICS RPC
component to create an XML Template which can then be used as the target for this
action. Refer to the CICS RPC Component Editor User’s Guide for more
information on this topic.

Advanced Actions 199

The Convert XML to Copybook Action

This action converts XML data into a ByteArray object using a COBOL

Copybook Resource to properly map XML elements to COBOL fields in the
ByteArray. The ByteArray can then be used directly by an ECI Execute action in
a CICS RPC component or, perhaps, by a JMS Send action whose Body Message
Type is Copybook (JMS bytes). The created ByteArray object can then be
published globally using the Extended ECMAScript Component method named
exportObject() making it reference-able by other components by its name.

To create a Convert XML to Copybook Action

1 Open a component.

2 Select a line in the Action Model where you want to place a Convert XML to
Copybook action.

3 From the Action menu, select New Action>Advanced, then Convert XML
to Copybook. A dialog window appears:

4 Under Source, select an existing Message Part whose XML data is to be
converted into a ByteArray.

5 Select a previously defined Copybook Resource (see “About Copybook
Resources” on page 272).

6 Under Target, type in name for the ByteArray to receive the converted data.

7 Click on Apply to see the results of your action, or click on OK to finish
creating the new action and it to your action model.

Novell exteNd Composer User’s Guide200

NOTE: Experienced CICS RPC users will recognize that this action performs the
same function as the Auto Map Copybook feature available in the CICS RPC
Component Editor. The only difference is that no Map actions are created for the
user. In order for the mappings performed by the Convert action to work, the user
must have a properly formatted XML document that accurately represents the
structure of the Copybook. Creating an XML Sample for this is easy inside a CICS
RPC component or JMS Component. Simply use Auto Map in the CICS RPC
component to create an XML Template which can then be used as the source for
this action. Refer to the CICS RPC Component Editor User’s Guide for more
information on this topic.

The Simultaneous Components Action
The Simultaneous Components Action allows you to execute two or more
components simultaneously (which is to say, in their own separate threads of
execution). This is an important capability to have in an XML integration
application that relies on inquiries to legacy systems which might be relatively
slow to respond. For example: Imagine that your service needs to retrieve
information via CICS RPC and JDBC from two data sources. The CICS inquiry
might have a round-turn time of five seconds and the JDBC inquiry might require
four seconds. If the two inquiries are performed one after the other, the total time
spent waiting for data would be nine seconds. But if both back-end systems can be
queried at the same time, the total wait-time is cut to approximately five seconds.
This is a significant performance improvement.

The Simultaneous Components Action places a “Simultaneous Components”
header line in the action model, below which you can insert any number of
Component (or other) actions.

Advanced Actions 201

In the above illustration, the action list under “Simultaneous Components”
contains a call to a 3270 Component, a call to a JDBC Component, and a Send
Mail action. The two Component actions will be spawned in separate threads. The
Send Mail action will then be executed immediately (whether or not the 3270 and
JDBC components have returned).

NOTE: You can include any type of Action (Map, Decision, etc.) in the list beneath
a Simultaneous Components Action. But no action in the list should depend on
return values from any Component actions, because Component Actions are not
guaranteed to return before other actions in the block execute.

Downstream actions that are outside of the Simultaneous Components block can
depend on return values from spawned components, because the Simultaneous
Components action does not pass control to downstream actions until all spawned
components have returned. Synchronization is guaranteed to occur, in other
words, before execution continues beyond the Simultaneous Components block.

To create a Simultaneous Components action:

1 Open a component.

2 Select a line in the Action Model where you want to place a Simultaneous
Components action.

3 From the Action menu, select New Action>Advanced, then Simultaneous
Components. A Simultaneous Components header line appears in the action
model (per the illustration above).

4 Place any number of actions below the header line. (Right-click on the
header line and choose an action from the context menu, or Paste actions into
the Simultaneous Components block.)

NOTE: No actions other than Components Actions will be spawned as new
threads.

To place new actions outside of (downstream of) the Simultaneous Components
block, right-click on the line above the Simultaneous Components header line, and
choose a new action. The new action will be added below the Simultaneous
Components block. See below.

Right-click here

To add a new
action here
(outside the block)

Novell exteNd Composer User’s Guide202

The Throw Fault Action
The Throw Fault action allows you to write information to an XML message on
failure of an action, perform any number of “Before Throw” actions, and finally
halt execution of a component. Throw Fault is only executed when a condition that
you specify is true. The Message Part that gets written when a Throw Fault action
is executed is called a Fault document, and the XML within this message will also
be contained in a global object called ERROR. For a discussion on Fault Parts,
refer to “Creating a Fault Message Part” on page 135.

Throw Fault actions can be used in a number of different ways:

Using a Throw Fault Action by itself. You can easily specify a Fault
Condition and it’s accompanying error message within the Throw Fault
Action dialog. An example of this procedure is given below. When the
action is executed, the Fault Condition is evaluated and if true the following
occurs:

Any “Before Throw” actions you specify are executed. This can be very
useful as a way to leave your application in a particular state before
halting execution. You might want to, for example, send a mail message
stating that the execution did not complete.

The contents of the Error Message are written to the Fault document in a
node you specify, as well as to the global object ERROR.

The component execution is halted.

Using a Throw Fault Action within a Decision Expression in the
Decision action. You might want to specify your Fault Condition by
entering it in the Decision Expression of a Decision Action. Then you put
your Throw Fault statement in the True branch of the Decision action. Here
you can either specify additional conditions in the Throw Fault dialog’s
Fault Condition or leave it blank and simply specify the Fault document to
which the fault information should be written. When the action is executed
and all your conditions are true, the Throw Fault action is executed as
described above. If the Fault Condition in the Decision action or Throw
Fault action is false, the next action in the action model is executed.

Advanced Actions 203

Using a Throw Fault inside a Try / On Fault action. By putting either of
the above methods inside the Execute branch of a Try / On Fault action
(which is described in “The Try/On Fault Action” below), you prevent the
component from halting execution and have an opportunity to respond or
recover from the fault. You create your fault condition using one of the
previous two methods inside the Execute branch of a Try / On Fault action
after other actions whose output you want to test worked correctly. You can
specify any number of unique faults so that your component can branch into
several different directions depending on which fault actually occurs. This
works in a similar fashion to a Switch action. When the Throw Fault action
for the given fault fires, instead of halting execution of the component,
control passes into the appropriate On Fault branch of the Try / On Fault
action. Here you can specify other actions to remedy or respond to the error.

You can decide where it is appropriate to deal with error conditions and use Throw

Fault accordingly. For instance, during runtime, if you want a component to stop
running when an error condition is encountered, (and return control to the service
in which it is running) use Throw Fault alone. The action throws an exception,

which is displayed as a dialog box in Composer, and a stopped component on the
application server.

On the other hand, suppose a service calls another component from within a

Try/On Fault action (specifically under the Try branch). Inside the other
component, a Decision action inspects some data in an XML document. If the data

is valid, the component continues executing. If the data is not valid, the Throw
Fault action executes,writing to the Fault document , and the component stops

execution, returning control to the service. The Try/On Fault detects that a Throw
Fault occurred and logic transfers to the appropriate On Fault branch of the Try/On
Fault action. In the On Fault branch, you can process the Fault Message Part any

way you like. You might, for example, write a message out to a Log file.

To add a Throw Fault action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Throw Fault
action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action>Advanced, then Throw Fault.
The Throw Fault Action dialog box appears.

Novell exteNd Composer User’s Guide204

4 In the Fault Condition field, type a valid ECMAScript expression that, when
true, causes the action to throw a fault. (You can also click the Expression
Builder button and build an expression.)

5 Select Throw {System}{Fault} to write your error message to the
_SystemFault document. By default, the message you type in the Error
Message field will be placed in the Fault/FaultInfo/Message node of that
document. Specify another node if desired. You also have access to the
ECMAScript Expression Builder button so that you can build an
expression.

6 Select Throw Defined Fault if you wish to select a Fault document that is
one of the Message Parts you have associated with your component

7 Click OK.

The new Action is added to your model. Place any actions you wish to execute
before the application halts in the Before Throw Actions area.

Advanced Actions 205

The Transaction Action

The Transaction action allows you to insert begin, commit, or rollback commands

in your Action Model, thereby making it possible for you to exercise low-level
control over transaction boundary demarcation within components that use
transactions.

NOTE: This action is not available in Composer when installed as part of the
Professional Edition suite.

Any Transaction actions that you place in your action list will result in the
appropriate corresponding Java pass-throughs being generated in your service’s
application metadata. The details of how this occurs are beyond the scope of this
discussion. See the Transaction Management chapter of the Novell exteNd
Composer User’s Guide for the Novell exteNd application server. (If you are using
another application server, see the appropriate exteNd User’s Guide.)

NOTE: Successful use of Transaction actions requires an in-depth understanding

of Java transaction models. The services you create in exteNd Composer can be
deployed using Servlet triggers or Enterprise Java Bean (EJB) triggers. The choice
of deployment mode will have significant implications for transaction management.

To add a Transaction action:

1 Open a component.

2 Select a line in the Action Model where you want to place a Transaction
action. The new action will be inserted below the line you’ve selected.

3 From the Action menu, select New Action>Advanced, then Transaction.
The Transaction dialog appears.

Novell exteNd Composer User’s Guide206

4 Select from one of the available transaction command types.

NOTE: Radio buttons are enabled or greyed out depending on which
Transaction Mode you’ve selected in the Designer Tab of the Preferences
dialog available under the Tools menu. For example, in the above illustration,
the first three radio buttons are enabled while the Set Rollback Only button
is greyed out. This is because the current transaction emulation mode is
Servlet or Bean Managed. The Set Rollback Only button is available only in
the context of a Container-managed EJB deployment; it is not applicable to
Servlet or Bean-managed EJB deployments. To change emulation modes
(and cause a corresponding change in which radio buttons are enabled in the
Transaction dialog), click the Change button.

5 Click OK.

The following illustration shows a pair of Transaction actions as they appear in the
Action Model pane.

Advanced Actions 207

Once you have generated Transaction actions in your Action Model, you can test
them by executing the component in Composer (or by stepping through the action
list as part of an animation/debug session). Appropriate error messages will appear
based on any problems that might exist with your use of Transaction commands in
your Action Model. For example, if you have used two begin commands in your
action list with no intervening commit, you will see a warning dialog based on the
fact that nested transactions are not supported.

The Try/On Fault Action
The Try/On Fault action executes a set of actions when a fault occurs within the
Execute branch of the Try/On Fault action. Any number of defined faults can be
specified within the Execute branch. You can use the Try/On Fault action to trap
anticipated errors and run other actions to remedy or report on the fault. For
instance, you can use Try/On Fault to respond to an XML Interchange action that
fails to find a file.

When you add a Try/On Fault action, a dialog appears from which you select a
number of pre-defined Fault Part Names. These are the Fault Messages you
defined when you set up your component. Several lines are then added to the
Action Model pane: the beginning of the Try action, the Execute branch, a branch
for each Fault you specified and an “All other Faults” branch. When you are aware
of potential faults an action can produce, you put those actions under the Execute
branch. You then put error handling actions under each On Fault branch to handle
unique situations. If a fault does occur, the actions under the On Fault branch
execute.

Following the example given previously, if you anticipate a fault with the XML
I/O action, you put the action under the Execute branch. Under one On Fault
branch, you might add another XML I/O action that attempts to read the file from
an alternate location. Under another On Fault branch, you might add another XML
I/O action that looks for a file with a different extension.

To add a Try/On Fault action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Try/On Fault
action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action>Advanced, then Try/On Fault.

4 The Try On Fault Dialog appears:

Novell exteNd Composer User’s Guide208

5 Use the blue + icon to add Fault Part Names you have previously associated
with your component. Use the red - icon to remove them. Use the up and
down arrows to change the order of the faults.

NOTE: If you do not define any custom Fault Parts, corrective actions can
be placed in the default “All Other Faults” branch of the Try/On Fault action.

6 Click OK when you have finished defining your Fault Parts.

7 The Try On Fault action icon, with an Execute, one or more On Fault
Branches, and an All Other Faults branch appears in the Action Model
pane.

8 Add any actions that might cause potential errors under the Execute branch.

9 Add actions that resolve the error under the On Fault branch.

The following illustration shows a complete Try/On Fault action in the Action
Model.

Advanced Actions 209

NOTE: It is good programming practice to use Try/On Fault actions liberally
throughout your action model.

The XForm Process Action
NOTE: This action is not available in Composer when installed as part of the
Professional Edition suite. For XForm-related functionality in Novell exteNd
Professional Edition, you will use exteNd Director. See the Director documentation
for details.

The XForm Process action allows you to specify an XForm document and subject

it to various kinds of preprocessing before mapping it to output. Before using this
action, you would typically already have created an Form Resource (see the
chapter on Resources) in the current project, or you would (alternatively) be using
an XForm as your component or service’s Input message part. A typical scenario
would be one in which a JSP, in response to a user request, kicks off a Composer
service to handle a forms session. The key responsibility of the service would be
to serve out the appropriate XForm.

In normal usage, an XForm is not transmitted to the user (the client) in its raw
state, because an XForm is not renderable directly and embodies few assumptions
as to what the final “rendered form” will look like. The same XForm may have an
entirely different appearance on a desktop PC than it has on a palm device, for
example. The decision of how to final-encode the form for presentation to the user
is done at runtime, and the transformation from raw XForm to, say, XHTML must
be handled at the server level since web browsers and client devices have no native
support for XForm-rendering.

A typical roundtrip scenario might look like this:

Novell exteNd Composer User’s Guide210

1 A customer goes to Company A’s web site and decides to place an order. He
or she clicks the “Order Now” button on the web page.

2 The button click results in a redirect to a URL that triggers a Composer
service. Some user params (perhaps the user’s first and last name, pulled
from a cookie) are passed on the end of the URL.

3 The service calls a component that invokes an XForm Process action.

4 The XForm Process action:

Retrieves the proper Order Form from an Form Resource

Maps the user’s name to the appropriate “instance data” locations in the
form

Sends the form to the Novell exteNd XForm Processor to be converted to
the appropriate output format (whether XHTML, SMIL, WML, or
whatever)

And finally, appends, copies, or otherwise maps the transcoded
document produced by the XForm Processor to a suitable Output
message part

5 When the service has finished executing any additional business logic that
might be dictated by the request, it serves the output document (containing
the transcoded, prepopulated form) back to the user.

6 The user fills out the form and clicks the Submit button, triggering a redirect
or another XForm session, or whatever action is necessary.

NOTE: This discussion is not meant to be a primer on XForms. For more
information on XForm technology see http://www.w3.org/MarkUp/Forms/. For
further discussion of the XForm capabilities provided by exteNd, see the
documentation for exteNd Director.

To create an XForm Process action:

1 Open a component (if necessary).

2 Select a line in the Action Model where you want to place the XForm
Process action. The new action will be inserted below the line you selected.

3 From the Action menu, select New Action > Advanced, then XForm
Process. A dialog appears.

http://www.w3.org/MarkUp/Forms/

Advanced Actions 211

4 In the upper portion of the dialog, choose one of the radio buttons:

Choose the Form radio button if you want to specify an existing Form
Resource as the source document. The pulldown menu will be
prepopulated with the names of any Form Resources in your project.
Select the Form Resource of interest.

Choose the Part radio button if the XForm you want to use is already
loaded into a message part (e.g., Input, Input1, Temp). In this case,
choose from among the message parts shown in the pulldown menu, and
in the text field just below, enter the XPath expression that points to the
root of the XForm.

5 Under Target, specify (via either XPath or an Expression) the DOM node
that will be the root of your XForm. (The example shown in the above
illustration represents a typical use case where the target message part is
Output, and the root node of the output document is <html>.)

6 Optionally click the Apply button to execute the action.

7 Click OK to dismiss the dialog. The new action is added to your action
model.

The XSLT Transform Action

The XSLT Transform action takes a DOM and an XSL stylesheet you specify as
input and sends the output to another DOM in the component. This process is also
referred to as Server Side XSL Processing.

Novell exteNd Composer User’s Guide212

To create XSL output you need to specify three parameters of the action. The
Source Document Expression is a valid ECMAScript expression that results in the
name of a DOM or document handle (such as Input). The XSL URL expression is
a valid ECMAScript expression that points to an XSL Stylesheet. This parameter
is optional if the DOM already has an XSL Processing Instruction that specifies an
XSL Stylesheet. If an XSL Stylesheet is not specified in the DOM, then you must
specify this parameter. If you specify this parameter, and the DOM also has an
XSL Stylesheet processing instruction, then your parameter will override it.

The Target Document/Element Expression specifies which DOM is to receive the
results of the XSL processing.

To add a XSLT Transform action:

1 Open a component.

2 Select a line in the Action Model where you want to place the XSLT
Transform action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action>Advanced, then XSLT
Transform. The XSL Process dialog box appears.

4 Type the name of the Source Document you want rendered, or click the
Expression Builder button and create an ECMAScript expression that
resolves to a valid Part.

5 Type the name of the XSL stylesheet you want to use for transforming in the
XSL URL Expr field, or click the Expression Builder button and create an
ECMAScript expression that points to a valid stylesheet.

Advanced Actions 213

6 Type the name of the Target Part/Element you want to use, or click the
Expression Builder button and create an ECMAScript script expression that
specifies a Part.

7 Click OK.

The following illustration shows a complete XSLT Transform action in the Action
Model.

Data Exchange Actions
This submenu contains actions concerned with the reading and writing of files and
the interchange of data in web services and in XML.

The Composer Resource Action
The Composer Resource Data Exchange Action allows you to load an XML or
XSL resource into a Message Part.

Data Exchange Actions Description

Composer Resource Allows you to read in an XML or XSL resource

URL/File Read Allows a file format that is not XML to be read into
Composer.

URL/File Write Allows a file to be written into a format other than XML.

WS Interchange Executes a Web Service using messages and
operations defined in a WSDL resource.

XML Interchange Reads external XML documents into the component's
DOM or writes the component's DOM to an external
XML document. Read/write methods include: Get,
Put, Post, and Post with Response using the File,
FTP, HTTP, and HTTPS protocols.

Novell exteNd Composer User’s Guide214

To create a new Composer Resource action:

1 From the Action menu, select New Action>Data Exchange>Composer
Resource. The following dialog appears.

2 Under Source, select a Resource Type. The available choices are XML or
XSL.

3 Select a Resource Name. You must already have added the XSL or XML
file as a Resource in order for it to appear in this list. Refer to Chapter 9,
“Resources” for instructions on how to accomplish this.

4 Under Target, use XPath to select a Part to contain the results of your XML
or XSL, or click on Expression to enter the ECMAScript Expression Builder.

NOTE: Composer Resources will add the text of an XML or XSL document
to a Part you specify. It can then be manipulated like any other Part. However,
it will remain read-only.

5 Click OK to add the Composer Resource Action to your Model.

URL/File Read
If a file is in a format other than XML, use this action to read the file into an XPath location.

To create a new URL/File Read action:

1 From the Action menu, select New Action>Data Exchange>URL/File
Read. The following dialog appears.

Advanced Actions 215

2 In the Source File portion of the screen, enter the file’s URL. Since this is an
ECMAScript expression, a URL string must be enclosed in quotation marks.

3 If applicable for the file format, select an Encoding algorithm from the
dropdown menu.

NOTE: One common use case is shown above. The file in question might
be binary, in which case it would be appropriate to select “Binary to Base64”
from the dropdown. The appropriate decoding method can be specified in the
URL/File Write action (below).

4 Select a Connection Name. Any HTTP, HTTPS and FTP connections
resources you have created will appear in this list.

5 Specify a Connection Timeout value (in seconds), or leave as zero.
Whatever value you place here will override any value specified in your
connection resource.

6 In the Target File portion of the screen, select XPath>Input and enter the
XPath destination of the file contents. You can also select Expression by
clicking on the radio button. Doubleclick the Expression icon at right to
bring up the Expression Builder, if desired.

7 Click the Create Target as CDATA Section checkbox if you want the
contents of the file wrapped in a CDATA section. (This is not necessary for
binary files that are to be encoded as Base64 per the above example.) This
allows characters such as the angle brackets (< >) to be used inside an XML
document without being interpreted as part of a start or end tag.

Novell exteNd Composer User’s Guide216

URL/File Write
If a file needs to be in a format other than XML, use this action to write the file
from a DOM or message part.

NOTE: This action is, in every respect, the functional complement of the URL/File
Read action described above.

To create a new URL/File Write action:

1 From the Action menu, select New Action>Data Exchange>URL/File
Write. The following dialog appears.

2 In the Source File portion of the screen, Select Source XPath>Output.

3 Enter the XPath containing the file content. (Alternatively, select the
Expression radio button and enter an ECMAScript expression that specifies
the location of the file contents.)

4 In the Target portion of the screen, enter the URL where the file is to be
stored.

5 If applicable for the file format, select from the Encoding list box to specify
a decoding before the file is written.

6 Select a Connection Name. Any HTTP, HTTPS and FTP connections
resources you have created will appear in this list.

7 Specify a Connection Timeout value (in seconds), or leave as zero.
Whatever value you place here will override any value specified in your
connection resource.

Advanced Actions 217

The Web Service (WS) Interchange Action
In most cases, you will use Composer to build consumable services, but in some
situations, you may have a need for your service to act as a consumer of other
services.

The Web Service Interchange action allows your component to invoke a Web
Service according to calling conventions specified in a WSDL Resource. (See
“About WSDL Resources” on page 304 for more information about WSDL
Resources.) You will use this action in scenarios that might require your
component or service to act as a client in a web-service interaction involving a
remote service.

Note that before you can create a Web Service Interchange action, you must have
a WSDL Resource that describes the service.

To create a Web Service (WS) Interchange action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Web Service
Interchange action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action/Data Exchange, then WS
Interchange. The Web Service Interchange dialog appears.

4 Choose the desired WSDL Resource, Service Name (if applicable), Port,
and Operation from the dropdown menus provided. (These menus will be
prepopulated with choices taken from the information in your existing
WSDL Resources. For information, refer to the section on WSDL Resources
in Chapter 9, “Resources”)

Novell exteNd Composer User’s Guide218

5 Enter the Endpoint Location (usually a URL pointing at a servlet) for the
Web Service you wish to use, wrapped in quotation marks. (Alternatively,
enter an ECMAScript expression that will evaluate to an Endpoint Location
at runtime.)

NOTE: This is the only field on the WSDL tab of the dialog that you should
have to fill out by hand.

6 Click the Messages tab to bring up the following panel:

7 Specify the input and output messages for the particular service you are
going to invoke. The Message, Part, and Type/Element fields will be
prepopulated. Under Expression, enter the ECMAScript expression that
describes the source and target for each message. Usually, this will be an
expression that specifies an XPath location in an Input Part or Output Part.
Click the Expression Builder icon at the far right to go to the Expression
Builder dialog, where you can easily build the appropriate expression(s) via
point-and-click.

8 Click the Connection tab to bring up the next panel:

Advanced Actions 219

9 Choose an HTTP Connection Resource (as needed) from the Connection
Name dropdown menu.

NOTE: For ordinary HTTP connections, you can specify <none> here. The
intent of this field is to let you connect via HTTPS to a secure site using the
user ID and password information stored in an HTTP Connection Resource.

10 Specify a Connection Timeout value (in seconds), or leave as zero.
Whatever value you place here will override any value specified in your
connection resource.

11 The Parameter and Value fields in this dialog should already be populated,
based on the Operation and Message information given in other tabs of the
dialog. If the Value fields are empty, enter appropriate strings or expressions
for the type of SOAP action and/or the content type (MIME type) of the
exchange.

12 If you wish to specify additional HTTP header information, click the Plus
sign above the combo box to add new HTTP parameter fields.

13 Click the XML Signature tab to bring up the next panel: (Optional)

Novell exteNd Composer User’s Guide220

14 Use the prepopulated pulldown menu to select an existing Certificate
Resource in your project. (See “About Certificate Resources” for details on
how to create this kind of resource.)

15 Check the box if you would like to Validate the XML Signature on the way
out.

16 Click Apply to test the Web Service action in real time, or click OK to
dismiss the dialog.

The XML Interchange Action
The XML Interchange action reads external XML documents into a component’s
DOM and writes data from a component’s DOM out as XML files. There are four
types of XML Interchange actions:

GET

PUT

POST

POST with Response

When using the Get interchange, fill in the “Interchange URL Expression” field
with a URL that points to the XML document you want to bring into the
component. If you have created an HTTP or FTP Authentication connection
resource, you can specify it under “Connection Name.” Otherwise, the connection
information would need to be embedded in the URL. In the “Response Part” field,
you will specify a DOM which is to receive the XML. If the DOM name you
specify does not exist, it will be created.

Advanced Actions 221

When using the Put interchange, fill in the “Interchange URL Expression” with a
URL that points to the location to which you want to write the XML document.
Select a “Connection Name” from the list if you have already created an HTTP or
FTP Authentication connection resource. Otherwise, the connection information
will need to be embedded in the URL. For “Request Part”, you will specify the
name of a DOM in your component to send its data as XML.

When using the Post interchange, fill in the “Interchange URL Expression” with
a URL that points to the location to which you want to write the XML document.
Select a “Connection Name” from the list if you have already created an HTTP or
FTP Authentication connection resource. Otherwise, the connection information
will need to be embedded in the URL. For “Request Part”, you will specify the
name of a DOM in your component to send its data as XML.

When using the Post with Response interchange, you supply the same parameters
as for Post, with one additional parameter. You must also specify a “Response
Part” DOM to receive the Response XML document from the Post with Response
action. The difference between the two interchanges is that Post with Response
expects a response XML object back from the origin server.

To add an XML Interchange action:

1 Open a Component.

2 Select a line in the Action Model where you want to place the XML
Interchange action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action/Data Exchange then XML
Interchange. The XML Interchange Action dialog box appears.

Novell exteNd Composer User’s Guide222

4 Select an Interchange Type.

5 In the Interchange URL Expression field, type an expression that defines a
fully qualified URL for an XML document using any of the following
supported protocols:

file

ftp

http

https

Depending on the Interchange Type selected, this URL is the source or the
destination of the XML file for the XML Interchange action. For example:

file:///g:/xmldata/invoicebatch1.xml

ftp://accounting:password@123.456.789.987:21/invoices/inv1.xml

Since this is an ECMAScript expression, a URL string must be enclosed in
quotation marks.

6 Optionally click the HTTP Header Parameters button. The HTTP Header
Parameters dialog appears.

Advanced Actions 223

7 Click the plus (+) icon to add new header parameters. Enter a Parameter
name and the desired corresponding Value. Common HTTP header
parameters include “Content-Type,” “Content-Length,” and “Keep-Alive.”
You can add any number of Parameter-Value pairs in this dialog.

8 Click OK to close the HTTP Header Parameters dialog. The XML
Interchange dialog reappears.

9 Select a Connection Name. Any HTTP and FTP connections resources you
have created will appear in this list.

10 Specify a Connection Timeout value (in seconds), or leave as zero.
Whatever value you place here will override any value specified in your
connection resource.

NOTE: A value of zero means that no time limit is placed on the connection,
unless you are using an HTTP Connection Resource (which is optional for
non-authenticated connections). If a timeout value is specified in that
connection resource, it will be used.

11 In the Request Part field, specify the name of a DOM in your component to
send its data as XML. Request Part is used for Put, Post and Post with
Response Interchange types.

12 In the Response Part Field, specify the name of the DOM tree that will
receive XML. Response Part is used for Get and Post with Response.

13 Optionally check the checkbox next to the Filter Document pushbutton
(thereby enabling it). If document filtering (see discussion below) is desired,
click the pushbutton. A dialog will appear:

Novell exteNd Composer User’s Guide224

NOTE: The document shown in the dialog will be the one selected in
Response Part in the XML Interchange dialog.

The purpose of this dialog is to allow you to specify individual nodes that are
to be retained (rather than stripped off) the incoming XML document in real
time for purposes of improving performance and reducing RAM overhead.

Check the checkbox next to the nodes you want to keep in the document.
Unchecked nodes will be stripped off (discarded) prior to parsing the DOM.
(See additional discussion in the section following this one.)

When you have selected nodes that you wish to be kept, click OK to dismiss
the dialog.

14 Click OK. Alternatively, you can press the Apply button to see the affect of
the XML Interchange action without closing the dialog. This allows you to
make repetitive edits to a XML Interchange action and quickly see the
results.

Performance Enhancement Using “Filter Document”

The Filter Document button in the XML Interchange dialog (further above)
offers the potential for greatly improved performance when processing large
incoming documents. It also offers potential benefits in terms of memory
conservation, since a filtered document will require less memory.

The Filter Document button brings up a resizable dialog containing a tree view of
the document in question.

Advanced Actions 225

For XML Interchange actions, the document shown in this dialog will depend on
the interchange mode (GET versus POST with Response) as well as the target
message part you’ve selected in the combo boxes provided. (Note that you cannot
get to this dialog if PUT or POST have been selected, since in those cases there
will be no incoming document; only an outgoing one.) In the tree view display,
every element of the document will have a checkbox next to it. Any elements that
you check will be kept when the document is DOM-parsed for use in your
component. Any boxes that are unchecked will result in the associated elements
(and their attributes) being discarded, so that the parsed DOM is smaller than it
would otherwise be.

In the above illustration, the incoming document, with root node DoctorResp,
will have a /physician node with a /patients node under it, and the /patients
element, in turn, will have a PatientData element under it. Likewise, the latter
will have child nodes LastName and FirstName. But since Physician is not
checked, the incoming document will not have anything under the XPath:

DoctorResp/physician/patients/PatientData/Physician

Similarly, there will not be anything under /physician/NoOfInquiries,
/Department, etc., because those nodes were not checked.

Novell exteNd Composer User’s Guide226

It’s quite common to encounter scenarios in which only a few nodes or XPath
locations in a given input document are of interest to a particular component or
service. When this is the case, it makes sense to use the Filter Document dialog to
strip away unneeded portions of the input document. Careful use of document
filtering will allow you to create services that process documents efficiently and
quickly, with minimal RAM impact.

NOTE: You can apply document filtering (using the above dialog) to any input
document for any kind of service (not just documents arriving via the XML
Interchange action). See the discussion in Chapter 6, “Creating an XML Map
Component”, for further information on how to filter Input documents.

Repeat Actions
This submenu contains actions that implement looping and loop-control
constructs.

Repeat Actions Description

Break Stops execution of a Repeat for Element, Repeat for
Group, or Repeat While loop and continues execution with
the next action outside the loop.

Continue Stops execution of the current Loop iteration in a Repeat
for Element, Repeat for Group, or Repeat While loop, and
continues at the top of the same loop with the next
iteration.

Declare Group Allows you to create and name a group based on an
element that occurs multiple times. Groups are used in the
Repeat for Group action.

Repeat for
Element

Repeats one or more actions for each occurrence of a
specified element in your DOM tree. The Repeat For
Element action allows you to create a loop based on an
element that occurs multiple times.

Advanced Actions 227

The Break Action

The Break Action stops the execution of a Repeat for Element, Repeat for Group,
or Repeat While loop. The Action Model continues execution with the next action
outside the loop.

The use of a Break is appropriate when, for example, you are using a loop to
search a node list for one particular item. When the target item is found, there is no
need to continue iterating; hence a Break can be used to terminate the loop
immediately.

NOTE: A Break action will typically occur in one branch of a Decision action
(within a loop). You’ll place the Break action in either the True or False branch of
the Decision action, as appropriate.

To add a Break action:

1 Open a component that contains a Repeat action you wish to modify to
include a Break action.

2 Select a position inside the loop where you wish to place the Break action.
Generally, this will be in one leg or the other of a Decision action (as shown
below).

3 From the Action menu, select New Action>Repeat then Break. The Break
action appears immediately in the action model. (There is no setup dialog.)
See below.

Repeat for
Group

Repeats one or more actions for each member of a group.
A Repeat For Group action allows you to re-structure your
data and calculate aggregates on your data.

Split Document Allows a service or component to read (and process) a
large input document in sections, rather than all at once.
This can be an important strategy for reducing machine-
resource requirements at runtime. It can also result in
faster throughput.

Repeat While Repeats one or more actions by creating a loop. A While
Repeat action allows you to base a processing loop on any
valid ECMAScript expression.

Repeat Actions Description

Novell exteNd Composer User’s Guide228

The Continue Action
The Continue action causes execution of the current iteration of a Repeat for
Element, Repeat for Group, or Repeat While loop to stop and execution to begin
at the top of the loop, with the next iteration. The Continue action provides a way
to short-circuit downstream actions inside the loop while allowing the loop to
continue on to the next iteration.

A Continue action is appropriate in a situation where, for example, one item in a
list should be skipped over some reason, yet execution of the loop must continue.

NOTE: A Continue action will typically occur in one branch of a Decision action
(within a loop). You’ll place the Continue action in either the True or False branch
of the Decision action, as appropriate.

To add a Continue action:

1 Open a component that contains a Continue action you wish to modify to
include a Continue action.

2 Select a position inside the Loop actions where you wish to place the
Continue action. This will generally be inside one fork or the other of a
Decision action; see illustration below.

3 From the Action menu, select New Action>Repeat>Continue. A Continue
action appears in the action model.

Advanced Actions 229

The Declare Group Action

The Declare Group action allows you to create two special lists, each in reference
to a DOM. These group lists can then be used as the basis for a loop in the Repeat
for Group action. To create the lists, you supply a Group Name and specify an
XPath. Composer then creates the lists as follows: a Group list is created that
contains one entry for each unique value found among all the elements that match
the XPath. The Group list is referred to by the Group Name you supply. Then a
Detail list is created for each unique entry in the Group list that contains as many
entries as there are members in the Group (i.e., a non-unique list). The Detail list
is referred to by the Group Name you supply post-fixed with the label “(Detail).”

Grouping allows you to select a repeating element in your Input DOM and create
fewer elements based on the unique values across all instances (siblings) of that
repeating element. So instead of having multiple elements, you end up with one
element for each unique element value in your Output DOM.

To add a Declare Group action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Declare Group
action. The new action is inserted below the line you selected.

3 From the Action menu, select New Action>Repeat then Declare Group.
The Declare Group dialog box appears.

4 Type a name for the group.

5 Optionally, select a parent group. This is used if you want to create multiple
group levels.

6 Click Add. The Add Element dialog box appears.

Novell exteNd Composer User’s Guide230

7 Select a Part name and an element.

8 Click OK.

9 Repeat steps 6 through 8 to add more elements to the group.

10 Click Remove to delete elements from the group.

11 When you have all the elements you want in the group, click OK.

NOTE: An example of this can be found in the Action Examples sample
project installed on your computer.

The Repeat For Element Action
The Repeat action creates looping structures within an Action Model. Loops give
you the ability to repeat a set of one or more actions. There are three types of
loops: Repeat For Element, Repeat For Group, and Repeat While.

XML allows multiple instances of an element in a document (analogous to
multiple records in a database table). The number of instances can vary from
document to document and is defined in the Document Schema (DTD or XML
Schema). For instance, you might receive an XML document containing lineitems
for an invoice on a daily basis. Each day the XML document has a different
number of lineitems. Not knowing how many instances of “lineitem” are in the
XML document poses a problem if you want to transfer these item numbers from
the input XML document to an output XML document programatically. The
Repeat For Element action solves this problem.

Advanced Actions 231

The Repeat For Element action allows you to mark an element that occurs
multiple times. The action then sets up a processing loop that executes one or more
actions for each instance of the marked element until no more instances exist. In
the example above, the processing loop would contain a single Map action to
transfer the lineitem number and this action would be repeated until all lineitems
had been mapped.

The Repeat for Element action also uses the concept of an alias. An alias performs
two functions. It is an alternate name or shorthand for the marked repeating
element, which saves you the work of re-specifying long XPath expressions. In
some cases, the repeating element may be several levels down in the document
hierarchy. When you create Map actions in the Repeat loop that transfer child
elements of the marked element, using the alias is quicker than re-typing a long
XPath expression. An alias is also an indicator to Map actions within the Repeat
loop to use the next instance of the repeating element each time the loop processes.
A Map action within a Repeat for Element loop that does not use the alias always
refers to the first instance of the element in the source Part.

NOTE: Hovering the mouse over a Repeat alias in the Map dialog will display a
tool tip showing the XPath represented by the alias.

The Repeat For Element action allows you to process more than one action within
the loop. In the simplest case, the repeat loop might only contain one Map action
that transfers the value of the current element instance from the input Part to the
output Part. You can also define multiple actions in the processing loop, for
example: a Map action to transfer the current value and a Log action that writes to
a file, creating an audit of each transfer.

To use a Repeat For Element processing loop:

1 Create a Repeat For Element action.

2 Create actions (Map, Log, Decision, etc) within the Repeat For Element
processing loop.

To create a Repeat For Element action:

1 Select the first instance of a repeating element in an XML Document tree.

2 Right-click on the repeating element in the Part or, from the Action menu,
select New Action>Repeat, then Repeat for Element.

The Repeat for Element dialog appears.

Novell exteNd Composer User’s Guide232

3 Begin by identifying your Source.

Type in the Alias field. A good naming convention for an alias is to use
the element name with a prefix indicating sources or target and the type
of repeat action such as “S1Lineitem.”

Enter an XPath expression, or click the Expression Builder button and
build an XPath expression for the repeating element. The example above
show an XPath which points to a root node of “inv1” and it’s child node
“lineitem.”

4 The next step is to identify your Target.

Create another Alias, such as “TgtLineitem.”

Use the checkbox to indicate if you want to Always create new output
elements. This box would be used in situations where you had multiple
input documents containing similar node structures which you wanted to
merge into a single Output DOM with common node names. Refer to the
Action Model following the final step of this procedure for an example.

Enter an XPath expression, or click the Expression Builder button and
build an XPath expression for the repeating element. In this case, we are
using “mrgd/Lineitem.”

5 Click OK. Your Repeat for Element loop is added to the Action Model.

6 Highlight Loop Actions to begin adding Map actions or whatever other
actions are necessary for your component.

Advanced Actions 233

The following illustration shows an Action Model for a component containing two
Repeat For Element actions and the input and output XML documents that are
used by the component. This model contains two Repeat For Element groups
because the user has two very similar input DOMs containing an unspecified
number of lineitems. Map actions are used within the processing loop to transfer
the lineitems from the two input DOMs to the single output DOM.

The Repeat for Group Action
The format of an XML document that you receive is not always the format that
meets the requirements of your business process. For instance, an XML document
might contain invoices from different sellers. The data is received as individual
invoices, but in the context of a business-to-business transaction, you might need
to summarize the data and send the summary data to a manager, and at the same
time, send the invoice data to the Accounts Payable department.

A Repeat for Group action allows you to re-structure your data and/or establish a
framework to calculate aggregates on your data. Grouping allows you to select a
repeating element in your input Part and create fewer elements based on the
unique values across all instances (siblings) of that repeating element. Instead of
multiple seller elements across the invoices (some with the same seller value), you
end up with one element for each unique seller value in the output Part.

Novell exteNd Composer User’s Guide234

The Repeat For Group action sets up a processing loop based on one of two lists
created by the Declare Group action. The loop executes as many times as there are
entries in the list you use (either the Group list or Group (Detail) list). In the
above example, if you use the Group list, once you have one element per seller,
you can add Map actions to the processing loop to calculate how many invoices
each seller had. You can also list the individual invoice numbers beneath each
seller. By combining a Repeat for Group with Map commands, you can create a
new XML document whose structure and data are different from the original.

In a way similar to the Repeat for Element action, a Repeat for Group action also
uses the concept of an alias. The values for Source Group used in the Repeat for
Group dialog are the list names created by the Declare Group action. The list
names perform two functions. They are an alternate name or short-hand for the
XPath source of any Map actions within the loop. This saves you the work of re-
specifying long XPath expressions. The group list name when used in place of a
DOM name in a Map action source, is also an indicator to the Map action within
the Repeat loop to use the next instance in the group list each time the loop
processes. A Map action within a Repeat for Group loop that does not use the
group name always refers to the first instance of the element in the source Part.

The target aliases created in the Repeat for Group action also serve two functions.
They are an alternate name or short-hand for the XPath target of any Map actions
within the loop. This saves you the work of re-specifying long XPath expressions.
The target alias when used in place of a Part name is also an indicator to Map
actions within the Repeat loop to create a new instance of the Source in the target
Message Part. A Map action within a Repeat for Group loop that does not use a
target alias always overwrites the first instance created in the target Message Part
with subsequent instances from the Source group list.

To create a Repeat for Group action, you need to complete these three tasks:

Create a Declare Group action to create the group lists.

Create a Repeat for Group action specifying which group list to use.

Create Map actions inside the loop.

To add a Repeat for Group action:

1 Open a component.

2 From the Action menu, select New Action>Repeat, then Repeat for
Group. The Repeat for Group dialog box displays.

Advanced Actions 235

3 Under Source, select a Group name on which to base the Repeat for Group
action loop.

4 Optionally, type in a Where clause to filter the group list, or click the
Expression Builder button and create a Where expression.

5 Under Target, you can optionally create an Alias name to be used by Map
actions in their target expressions.

6 Create an XPath or Expression to be represented by the alias.

7 Click OK.

The following illustration shows a complete Repeat For Group action in the
Action Model pane.

Novell exteNd Composer User’s Guide236

The Repeat While Action
The Repeat While action repeats one or more actions as long as a condition that
you specify remains true. For instance, you can create a variable that contains the
total sales from line items within invoices. You can then create a Repeat While
action that reads invoices, totals the line items, and stops when the line item total
reaches a certain amount.

The target alias created in the Repeat While action serves two functions. It is an
alternate name or short-hand for the XPath target of any Map actions within the
loop. This saves you the work of re-specifying long XPath expressions. The target
alias when used in place of a DOM name in a Map action is also an indicator to
Map actions within the Repeat loop to create a new instance of the Source in the
target DOM. A Map action within a Repeat for Group loop that does not use a
target alias always overwrites the first instance created in the target DOM with
subsequent instances from the Source.

NOTE: Unlike the Repeat for Element and Repeat for Group, the Repeat While
does not have to be based on data in a DOM tree. The loop can operate
independently of data in the DOM tree.

To add a Repeat While action:

1 Open a component.

2 Select a line in the Action Model where you want to place the Repeat While
action. The new action is inserted below the line you select.

3 From the Action menu, select New Action>Repeat, then Repeat While.
The Repeat While dialog box appears.

Advanced Actions 237

4 Under Source, type an expression to test the While loop, or click the
Expression Builder button and build an expression.

5 Type a name for a variable that keeps track of the condition of the loop.

6 If you know the alias for the Target element, type in the Alias field.

7 If you do not know the alias, select either XPath and a Part element, or
Expression and type in a valid expression.

8 Enter a criteria statement, or click the Expression Builder button and build
an expression.

9 Click OK.

The following illustration shows a complete Repeat While action in the Action
Model pane.

The Split Document Action
When a service receives an input document, Composer’s default behavior is to
read the entire document into memory at once, then parse it into a DOM. Message
Parts (Input, Input1, Temp, etc.) are then passed between components—or from
service xObjects to components—as self-contained DOMs. This approach is
appropriate for most services. But in some circumstances, such as when a service
routinely encounters large documents, machine memory and parsing overhead
become significant issues. In such situations, it can make more sense to process
large documents in pieces.

The Split Document action is a special-purpose action designed to enable
piecewise processing of large XML documents. With the Split Document action,
input documents are treated as streams. A stream can be consumed in arbitrarily
defined chunks; the chunks, in turn, can be processed serially. The net result is a
much reduced demand on system RAM, and (potentially) higher throughput from
reduced DOM-handling overhead.

You should consider using the Split Document action when:

Novell exteNd Composer User’s Guide238

Your service can be expected to encounter large input documents (200+
Kbytes) containing repeating elements, or

Your service runs out of memory on the server due to large DOM sizes, or

Your deployed service has a performance bottleneck that you think may be
related to DOM parsing, or

The nature of your business logic (and/or your input documents) is such that
it would be more natural to process the data streamwise, in chunks, than to
create and debug a single large Repeat For Element loop.

Limitations of Stream-Based Document Processing

The Split Document action is subject to some important caveats. The most
obvious limitation is that the document in question should be piecewise-
processable; which is to say, it should contain repeating elements (identifiable
split points where the document can be separated into chunks). The split points are
defined in terms of an XPath expression representing the type of node on which to
break. (While it is technically possible to split a non-repeating XML Document
into two parts using the Split Document action, this would be an abnormal use
case and is not recommended.)

It’s important to understand that because the document is encountered in chunks,
and because each chunk is released from memory (goes out of scope) after it is
processed, any business logic that has to “know about” data in downstream parts
of the document (such as a footer section) while processing upstream parts can’t
be expected to work. In general, any dependencies that span “document chunks”
will, at the very least, require custom workarounds involving operations that
“keep track of” document characteristics as processing occurs.

NOTE: If global knowledge of document statistics is required—or if it is necessary
to use aggregate-oriented XPath methods like count(), last(), etc.—then stream-
based processing using the Split Document action is not appropriate, because the
entire document needs to be read into memory.

How the Split Document Action Works

The Split Document action should be used in the top-level Service xObject that
wrappers all of your service’s components. It also should be the first “DOM-
processing” action in that service’s action model. That is to say, no other action
preceding the Split Document action should reference the Message Part (typically
Input) that will be split.

Advanced Actions 239

The first action in the action model that references a document determines how
that document will be handled. If the first action to reference Input is a Map action
(or other non-Split-Document action), then Input will be treated as a single,
monolithic DOM. If, on the other hand, the first action to reference Input is a Split
Document action, the source document for Input will be treated as a stream. At
that point, no self-contained “DOM version” of the streamed document will ever
be available, for the life of that service instance.

NOTE: Within a given service, a particular document can be processed either as
a DOM or a stream, but not both. However, if an Input document is processed in
stream fashion, only that document is handled that way. Other documents (Temp,
Output, etc.) will be subject to the normal DOM parsing.

The Split Document action requires you to specify an XPath expression
representing the type of document element on which to split. Consider the
following hypothetical XML document, representing a batch of invoices.

<DATA>
<PrologInfo/>
 <BatchDate/>
<InvoiceBatch>

<Invoice/>
 <Line Item/>
 <Line Item/>
 <Invoice/>
 <Line Item/>
 <Line Item/>
 <Invoice/>
 <Line Item/>
 <Line Item/>
 <Invoice/>
 <Line Item/>
 <Line Item/>
 <Invoice/>
 <Line Item/>
 <Line Item/>
</InvoiceBatch>
<SummaryLog/>
 <NumberOf<Invoices/>
</DATA>

The natural “split point” for this document might be an XPath of

DATA/InvoiceBatch/Invoice

Using this XPath with a Split Document action, the above document would be
read in the following chunks:

<PrologInfo/>
 <BatchDate/>

Novell exteNd Composer User’s Guide240

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

followed by:

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

<SummaryLog/>

 <NumberOf<Invoices/>

There would be five chunks, total. The first and last chunks would be “special” in
the sense that they contain header and trailer (or prolog/epilog) data in addition to
the Invoice data. There is nothing special about how they were created, however.
The document was simply split wherever DATA/InvoiceBatch/Invoice
occurred.

NOTE: Each time a split occurs, the chunk that gets created contains the entire
subtree under the parsing node. If the chunk is the first chunk in a document that
contains prolog information before the first parsable node, then the first chunk will
contain all of the document (including prolog) up to and including the first parsable
node and its children. Similarly, if the document has information following the last
parse-tree, anything trailer-nodes will travel with the chunk.

Advanced Actions 241

Controlling the Size of Chunks

If the document in the foregoing example had contained thousands of invoices,
splitting it into one-invoice chunks probably would not be wise. (Component-
calling overhead could be expected to result in a performance hit.) For efficiency,
it would be better to break the document into larger-sized pieces. The Split
Document action allows you to do exactly that. You can override the default “strict
parsing” behavior shown above by specifying a value greater than one in the
“Occurrences per split” portion of the Split Document dialog. (See further below.)
This way, in a document containing a thousand invoices, one could split on every
ten or every hundred invoices. It would be up to the invoice-handling component
(the component to which “chunks” are passed) to loop through individual invoices
at the action-model level.

Suppose the document in the previous example were processed with a Split
Component action in which the “Occurrences per split” parameter is set to 2. The
resulting chunks would look like:

<PrologInfo/>

 <BatchDate/>

<InvoiceBatch>

<Invoice/>

 <Line Item/>

 <Line Item/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

followed by

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

followed by

<InvoiceBatch/>

 <Invoice/>

 <Line Item/>

 <Line Item/>

<SummaryLog/>

 <NumberOf<Invoices/>

Novell exteNd Composer User’s Guide242

Notice that once again, header elements come as part of the intial chunk, while
footer elements are contained in the final chunk. The first two chunks contain two
invoices each. The final chunk contains just one, since 5-modulo-2 is one. The
final chunk, in other words, contains the “remainder” (or leftover pieces) from the
splitting operation. This means that the Repeat loop in your chunk handler will
need to be able to deal gracefully with situations where a chunk contains less than
the expected number of pieces. One way to do this is to base the loop’s termination
condition not on a fixed number, like 2 or 10 or 100 (representing the
“Occurrences per split” value), but on an actual count of the number of target
nodes contained in the incoming chunk.

For example, the following ECMAScript expression would tell you how many
<Invoice> elements are in a given chunk, in the previous example:

Input.XPath('InvoiceBatch/Invoice').length

You can safely continue iterating until the loop counter variable reaches the
amount returned by this expression.

Loop Control and the Split Document Action

The Split Document action is itself a looping action: Composer places a “Loop
Action” block under the Split Document line in the action model automatically.
You will probably put a Component action within the Loop Action block, along
with pre- and post-processing logic for chunks, exception-handling code, etc.

Loop termination is handled automatically, in the sense that you do not have to
declare a counter variable (nor specify a termination condition). Composer simply
performs the appropriate number of stream-reads and splits, and stops when there
are no more “chunks” in the stream.

You can terminate the loop prematurely (or continue on to the next iteration at any
point in the loop) by, for example, placing a Break (or Continue) action in the True
branch of a Decision action. More sophisticated loop control can be achieved
using Try/On Fault (see “The Try/On Fault Action” above) in the service and
Throw Fault in the chunk-handler component, or by analyzing a custom Output
doc returned by the chunk handler, etc.

Chunks as Documents

Typically, you will place a Split Document action in a service that calls a chunk-
handling component (which might be an XML Map component, a JDBC
component, or any other component type). The service will call the component via
a Component action. The component will operate on the chunk’s contents, using
whatever business logic is necessary. The component may or may not hand an
Output document back to the original service; and the service itself may or may
not construct an Output document for the benefit of the invoker.

Advanced Actions 243

The service containing the Split Document action will typically be splitting the
Input message part. The Component action (calling the chunk handler) will in
turn specify “Input” as the input to the handler component. In effect, a chunk
becomes a DOM (a first-class document) in its own right. Any of the normal DOM
operations can be performed against it. It can be passed component-to-component,
written to disk, appended to other DOMs, mapped into or out of, etc.

Special Considerations for Animation and Debugging

When you open a service containing a Split Document action, the Input document
window will initially be empty. (Ordinarily, you would expect to see your Input
template document in tree view.) As you step through the action model in
animation mode, the document window will populate as soon as you execute the
Split Document action. The window will show the first “chunk” of the input
stream, based on a parsing of the Input template. If you continue to use Step Into,
each trip through the Loop Action block will re-load the Input window with the
appropriate chunk from the input stream. At any time, during any of these
iterations, you can Stop the animation and then perform drag-and-drop mapping of
data from Input to other message parts (such as Temp or Output) as needed.

After the Split Document action is complete, the last chunk of the document will
remain in the Input pane. Footer data can be mapped at that point (using drag-and-
drag or an ordinary Map action) to Output, or otherwise processed, as desired.

NOTE: At no time will the entire Input template document be visible in the
document window. Only pieces will be visible. If you need to see the entire
document, open the appropriate Template itself, outside the component.

An important behavior to be aware of at design time is that the document-handling
mode (stream versus DOM) is not set until you Save the component or service
you’re editing. In other words, if you add a Split Document action to an action
model and immediate animate it (without Saving), the stream processing behavior
will not be evident. You should Save the service or component after making any
change to the action model that would change the document-handling behavior
(stream vs. single DOM) of the service/component.

Novell exteNd Composer User’s Guide244

Another important principle to be aware of at design time is that if you happen to
place an action that references Input anywhere upstream of the Split Document
action in your action model (even if it’s merely a Function or Log action used for
debugging purposes), Input will be treated as a single large DOM at animation
time. When you then Step Into the Split Document action, an exception occurs,
because there is no stream. (The stream has already been fully consumed in order
to create the DOM.) As mentioned earlier, the Split Document action must be the
first action that references the document in question. Any other actions that
reference that document must occur downstream of Split Document in the action
model.

A final consideration to bear in mind is that although the Split Document action is
designed to facilitate working with large documents, you should not actually use a
large document as a sample at design time. Composer needs a large amount of
memory at design time when large sample documents are loaded. This is true even
though a particular service might use stream processing (via Split Document) to
process the document. For design time, you should use a relatively small sample
document—a reduced-size version of the “real thing,” just large enough to prove
out the action model. Use fullsize documents after deploying to the app server.

Creating the Split Document Action

The following procedure steps you through the process of creating and using a
Split Document action. It assumes that you have an Input sample document to
work from, representing (in structure, if not in actuality) a large, splittable XML
document. It also assumes that you have created a component to handle the
processing of individual document chunks (a “chunk handler”), and a Web Service
that calls that component.

To create a Split Document action:

1 Open the service in which you plan to use a Split Document action, if it is
not already open.

2 Place the cursor at the point in the action model where you intend to add the
new action. (Highlight or select the line preceding the intended location.)

NOTE: Be sure to heed the earlier warning about not placing the Split
Document action after (downstream of) any existing action that references
the document to be split (typically Input). If Input will be split, no action in the
action model should reference Input unless the action in question comes after
(downstream of) the Split Document action.

3 Either use the Action menu to create the new action, or right-mouse-click
and choose New Action > Repeat > Split Document... from the context
menu. A dialog appears.

Advanced Actions 245

4 Under Source, use the dropdown menu to select the message part (e.g.,
Input) representing the document to be split.

5 Also under Source, enter (in the text field provided) an XPath expression
representing the node axis on which to split the document. (Click the small
X-icon at the far right to bring up the XPath Expression Builder, if you’d like
to have Composer help you build the expression in point-and-click fashion.)

6 Under Occurrences per Split, enter a positive integer representing the
number of repeating pieces to include in a chunk. The default is one,
meaning that Composer will split the document on every occurrence of the
specified parsing node. To split on every third occurrence, enter 3. For every
fourth occurrence, enter 4. And so on.

7 (Optional) Check the Ignore Comments checkbox if you would like XML
comments to be automatically stripped from the input stream as the
document is processed. This is a performance-enhancing option designed to
speed the processing of (and reduce memory usage related to) documents
that might contain large quantities of comments (possibly machine-
generated).

8 (Optional) Check the Ignore Attributes checkbox if you would like
Composer to discard attribute data while reading the input stream. Again,
this is a potential performance-enhancer, meant to conserve memory and
reduce processing overhead when dealing with large documents.

9 Click OK. A new action is added to the action model of the service.

Novell exteNd Composer User’s Guide246

Note that a “Loop Action” block appears automatically under the Split
Document action.

10 Add a Component Action to the Loop Action block, so as to call the chunk
handling component that will process individual pieces of the input doc. (See
“The Component Action” for information on how to create and use this
action.) In the above example, an XML Map Component called “Mapping”
is called, with the service’s Input passed as input to the component.

NOTE: Remember that at execution time, Input (in this case) actually
represents a piece of the service’s input doc.

11 Optionally add any other pre- or post-processing actions your service might
need, in the Loop Action block.

12 Save your service.

IMPORTANT: Your Split Document action will not work (in animation
mode) unless you have first Saved your service.

247

9

Resources

Resources Chapter 9

A resource is a reusable xObject that a component may need in order to carry out
a task. For example, most XML integration applications communicate with a
“back end” system of some sort; and to do this usually requires establishing a
connection of some kind involving the specification of IP or JNDI addresses,
ports, driver location, user ID and password, etc. This type of info can be stored in
a reusable object and then accessed by a component at runtime. Resource xObjects
accomplish this.

A Resource consists of the resource itself (whether a JPEG image, a JSP, an XSL
stylesheet, or what have you) plus XML metadata about the resource, so that the
characteristics of the resource are known to Composer Enterprise Server and to
other runtime processes. At deployment time, all of your project’s resource are
packaged into the deployment archive (usually a JAR inside an EAR), and they
become available on the application’s classpath.

The core resource types available in Composer include those listed below.
(Asterisks are shown next to resource types that are not available in the
Professional Edition version of Composer.)

Certificate

Code Table

Code Table Map

Connection

Copybook

Custom Script

Form (XForm)*

Image*

JAR (Java archive)*

JSP (Java Server Page)*

Novell exteNd Composer User’s Guide248

WSDL

WSIL

XML*

XSD

XSL*

In addition to these core types, various Composer Connect products use additional
resource types specific to the connector. For example, the EDI Connect allows you
to specify EDI Document Metadata and EDI Interchange Metadata resources.

NOTE: The creation of Connect-specific resource types is explained in the
documentation for the connector. Only core Composer resource types are
discussed in the sections to follow.

Resource types have distinguishing icons (which are displayed in the Category
Pane of Composer’s main navigation frame). The resource categories and their
associated icons look like this:

Working with Resources
Custom-created resources of a given type appear in the Instance Pane when you
select (highlight) a particular resource category (Code Table, Connection, etc.) in
the Category Pane. Each resource instance is reusable by the various components
and/or services in your current project (and can be imported into other projects as
well).

Resources 249

At component creation time, the wizard for the component will prompt you for the
name(s) of the resource(s) you would like to be used by the component. This
means that resources need to be created first, so that components can use them.

All resources are created using the same basic procedure, indicated below.

To add a new Resource to a Project:

1 From Composer’s File menu, select New, then xObject. From the Resource
tab, select the desired category of Resource. See below.

2 Once you select your resource type, a wizard will appear, prompting you for
the name of your custom resource and other information pertinent to the type
of resource being created. Fill in the information requested by the wizard.

3 On the final screen of the wizard, click OK. The new resource is added to
the Resource Category in question, and its name is displayed in the Instance
Pane.

Support for Language Versioning of Resources
Composer supports a mechanism for dynamically selecting a language-
appropriate version of an XML resource at runtime based on filename hints. The
way it works is as follows. Suppose you have have two versions of an XML
Resource file named MyInvoice_en.xml and MyInvoice_jp.xml. The "_en" file
would contain Latin characters while the "_jp" file would have Japanese
characters. (The language specifier is the two-character ISO-639 code.) At
runtime, a Load Resource action can choose the appropriate language version of
the XML resource in question, based on the language settings specified in design
time.

Novell exteNd Composer User’s Guide250

To take advantage of this scheme, you must adhere to the following rules:

You must use file-naming protocol mentioned earlier. (Namely: Every file
name must end with an underscore followed by the two-character ISO-639
code for the language.)

You must create one resource for each individual file. The applicable
resource types are XSL, XML, and Form (i.e., XForm).

You will specify a Language option when creating a Composer Resource
action, or when specifying a stylesheet resource in a deployment object.

In Composer dialogs that offer a resource-picker dropdown list, such as the
Composer Resource action, you will see a Language button. If you press that
button, you will bring up the following dialog.

Choose one of the radio buttons:

None: Applies no preference.

Environment: Choose the language of the host machine.

Session: Chooses the language specified in the servlet request.

Depending on which button you choose, the resource picker will update
dynamically to show the list of available resource choices. Choosing None above
means that every available resource (of all languages) will be displayed in the
picklist. Choosing Environment or Session means the Resource Name list box
will be populated with only the unique names of resources for the selected
Resource Type after stripping the language and locale suffixes from the file
names. In other words, the list is filtered according to the language-awareness
preference chosen in the above dialog.

Resources 251

About Certificate Resources
Certificate Resources are used to hold Digital Signature information. Data that can
be stored in this kind of resource include a public key x509 certificate, a
corresponding private key, and a private key password.

The Certificate Resource can be used in several ways:

In the Web Service Interchange action, it can be used to digitally sign a
request.

In SOAP deployment, it can be used to signal the SOAP Server to digitally
sign the outgoing response. (This option can be set in the options-panel UI
for the SOAP HTTP trigger.)

In the HTML Connect, it can be used to authenticate to a server.

In the Process Manager, you can use a Certificate Resource to sign the
outbound request of a Web Service Send activity.

NOTE: Since the Certificate Resource is a first-class Composer resource, it can
be shared among components and services within a project.

To create a Certificate Resource:

1 In Composer’s navigator pane, right-click on Certificate (under Resource)
and choose New from the context menu. A dialog will appear.

2 Enter a Name for the resource.

Novell exteNd Composer User’s Guide252

NOTE: The name is required and may not contain the characters: / : ? " <
> . | Names are case- insensitive (i.e. MyObjectName is the same as
myobjectname).

3 Click Next. A new dialog appears.

4 Use the Browse button to navigate your local drive or network to locate a
suitable Client Certificate (x509).

5 Use the Browse button to navigate your local drive or network to locate a
corresponding Private Key file. This key will be used for encryption of
outbound digests and payloads. It will not be transmitted nor exposed to
processes other than those residing in your Composer project.

6 Enter a Private Key Password (as applicable) so that your private key can
be retrieved from the local keystore.

7 Click Finish. The resource is added to the navigator detail pane.

About Code Tables
In building your Composer applications you are often faced with the requirement
to repetitively transform data you receive. Typical examples for this type of
conversion include changing state codes (e.g., Alabama, Illinois) to regions for
classification or accounting codes as they are moved between systems. Composer
provides the capabilities to assist you with this type of conversion. For example, a
“Code 1” for a bookstore may represent the fiction category, or a department store
may use “Code M” to represent men’s clothing.

Resources 253

If you were to design your application so that the output XML only included
“Code 1” or “Code M,” with no other description, the result could be cryptic and
confusing. This is where a code table comes into play. A code table stores
commonly used business code tables and works in conjunction with a code table
Map to produce an output XML document that is more meaningful to the person
or business process receiving the output. In the case of the bookstore, the input
XML that included “Code 1,” might be mapped using a code table to produce an
output XML with a category “fiction.”

About the Code Table Editor

The Code Table Editor includes both menu options and a tool bar. In addition to
the menu options, the Code Table Editor includes a tool bar with the following
buttons:

Table 9-1

To create a code table:

1 Select File>New>xObject. From the Resource tab, select Code Table. The
Create a New Code Table xObject wizard appears.

Button Description

Save. Clicking this button saves changes to the open code table.

Cut. Clicking this button removes the highlighted data from the
Code Table Editor and puts in onto the Windows Clipboard.

Copy. Clicking this button puts a copy of the highlighted data onto
the Windows Clipboard.

Paste. Clicking this button puts the contents of the Windows
Clipboard at the position of the cursor, or replaces highlighted text.

Delete. Clicking this button removes data from the currently active
(or selected) cell of the Code Table Editor.

Add Row. Clicking this button adds a new, blank row into the Code
Table Editor.

Delete Row. Clicking this button deletes the currently active (or
selected) row from the Code Table Editor.

Novell exteNd Composer User’s Guide254

2 Type in a Name.

3 Optionally, you may type in Description information.

4 Click Next. The Code Table Editor appears with the name of your empty
code table in the title bar.

When you close the Code Table Editor, the name of your new code table appears
in the Resource category of the Composer window, under Code Table, as shown.

To open a code table:

1 Select File>Open. The Open xObject dialog appears.

Resources 255

2 Select Code Table from the xObject Type dropdown list.

3 Select the code table you wish to open from the xObject dropdown list.

4 Click OK. The code table you selected opens in the Code Table Editor.

NOTE: Optionally, you may select Code Table in the category pane of the
Composer window and doubleclick a code table from the detail pane.

To add data to a code table:

1 Open the code table to which you’d like to add data. The code table you
open appears in the Code Table Editor.

2 Click on the Add Row button. A blank row appears in the Code Table Editor
window.

Novell exteNd Composer User’s Guide256

3 Click in the cell where you want to add data.

4 Type in the new data:

In the Value field, type in the element data from the XML sample you are
using

In the Brief Description field, type a short description.

In the Long Description field, type the full description.

5 Repeat steps 3 and 4 until you’ve added all your data.

6 Select File>Save, or click the Save button.

NOTE: Alternate and faster ways to enter data are to copy data from a spread
sheet and paste it into the code table. Make sure your selection contains three
columns. The first column must contain data; the second and third columns are
optional. Open the spreadsheet, copy the three columns and as many rows as
needed. Open the code table and immediately press the Paste button. You can
also copy data from tables in a Microsoft Word® document using the same
technique.

To edit a code table:

1 Open the code table you’d like to edit.

2 Highlight the data you’d like to edit.

3 Use the Edit menu or the Code Table Editor tool bar buttons to cut, paste, or
copy your selected data.

4 Click the Save button when you are done editing.

Resources 257

About Code Table Maps
A code table map is a resource used to automatically transform one set of codes
into another set of codes. These maps are useful in translating and exchanging data
between XML samples within a component. For example, one company may use
numeric codes to store a status field while another uses alphabetic codes.

NOTE: You must create two individual code tables before you can create a code
table map, since a code table cannot map to itself (See “About Code Tables” on
page 252).

To create a code table map:

1 Select File>New>xObject. From the Resource tab, select Code Table
Map. The Create a new Code Table Map xObject wizard appears.

2 Type in a Name.

3 Optionally, you my type in Description information.

4 Click Next. The second page of the Create a New Code Table Map xObject
appears.

Novell exteNd Composer User’s Guide258

5 Select an Input Code Table. (These codes represent the data content as it
will be received into a component.)

6 Select an Output Code Table. (These codes represent the desired code
values.)

7 Select a Handling method. This feature allows you to instruct Composer on
how to deal with values from the input Code Table that have no
corresponding value in the output Code Table to which you are mapping. For
example, if there are six values in Code Table 1 and only five values in Code
Table 2, you must let Composer know how to deal with the additional value.
You have two choices:

Use Source Value—This choice simply uses the input value as the
output value. For example, an input of “Warehouse1” would simply map
to an output value of “Warehouse1.”

Use Default Value—This choice would default to the value you set in
the Default Value field. For example, you may enter “Not Applicable” in
the Default Value field.

8 Click Finish. The newly-created code table map appears.

Resources 259

When you close the Code Table Map Editor, the newly-created code table map
appears in the Resource category of the Instance Pane, under Code Table Maps, as
shown above.

Mapping the Code Tables

Once you’ve selected the Input and Output Code Tables, you need to map the
values. The code table map initially displays the In Value mapped to a Default
setting in the Out Value field. The In Value is grayed out, since it cannot be edited.
Once you click in a Default field, a dropdown list allows you to map the In Value
to any one of the values in the Out Value field. This enables you to map more than
one In Value to the same Out Value.

To open a code table map:

1 Select File>Open. The Open xObject dialog appears.

2 Select Code Table Map from the xObject Type dropdown list.

Novell exteNd Composer User’s Guide260

3 Select the code table map you’d like to open from the xObject dropdown
list.

4 Click OK. The code table map you’ve selected opens.

To map values in the code table map:

1 Open the code table map in which you’d like to map values.

2 Click the Out Value field in the first record. A dropdown list with all the
available values from the Output Code Table appears.

3 Select the desired value from the dropdown list.

4 Repeat Steps 2 and 3 for all records.

5 Select File>Save or click the Save button on the tool bar.

To edit a code table map:

1 Open the code table map to which you’d like to make edits (See “To open a
Code Table Map” above).

2 Click inside the Out Value cell to which you’d like to make edits.

3 Select the new value from the dropdown list.

4 Select File then Save or click the Save button on the tool bar.

Resources 261

Using a Code Table Map

Once you’ve created a code table map, you use it as you build components. For
example, in the XML Map component editor, you could create an action that
would map an element from an input DOM via a code table map to an output
DOM. The action might look like this:

By using the code table map in the Map action, you not only transfer the input
data, but also transform it before placing it in the output.

See Chapter 7, “Basic Actions” for more information.

About Connections
A Connection Resource is a reusable object that wrappers connection-related
information: typically an IP address, port number, and authentication credentials
in the simplest case. The Connection Resource also stores critical information
about driver names and/or JNDI names, LDAP distinguished names, time-out and
retry settings, code pages, and/or whatever endpoint specifications might be
needed to set up a connection with a given type of data store or stream.

Connection resources are needed not only for various data sources (such as
database connections) but also for the URL File/Read, URL File/Write and XML
Interchange actions—three of Composer’s core actions. These Data Exchange
actions allow you to transfer XML and non-XML documents via HTTP, HTTPS
or FTP. The FTP Authentication Resource allows you to perform a simple FTP
login and specify a connection time-out. The HTTP Connection Resource stores
user-authentication and security information needed to set up an HTTPS session.

Some of the user-supplied information in a Connection Resource can be bound
dynamically at runtime through the use of ECMAScript expressions. (See
discussion below.) Not every piece of user info in the Connection Resource need
be static.

Because Connection Resources specify detailed access information for the data
stream or endpoint in question, you will generally need to create one Connection
Resource for every type of data source that your component or service will use.
For example, if your application requires you to interact with a database as well as
a directory, you will need at least one JDBC Connection Resource and one LDAP
Connection Resource. (You do not necessarily need one resource for each data
store or system, however, since connection parameter values can be bound
dynamically via ECMAScript; see the next section.)

Novell exteNd Composer User’s Guide262

It’s worth noting that Connection Resources may be reused by multiple
components. They are true resources.

About Constant vs. Expression Driven Connections

You can specify Connection parameter values in one of two ways: as constants or
as expressions.

A constant based parameter uses the literal value you provide every time the
Connection is used. An expression based parameter allows you to specify the
value using an ECMAScript expression, which means the value might be different
each time the connection is used at runtime. This late binding allows for flexible
runtime behavior, since connection parameters can be determined using business
logic or looked up from a backing store (including, potentially, an LDAP
directory).

One very simple use of an expression driven parameter in an HTTP Connection
would be to define the User ID and Password as PROJECT Variables (e.g.
PROJECT.XPATH(“USERCONFIG/MyDeployUser”). This way when you
deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User ID and Password to use.

A more sophisticated use of expression-driven parameters would be a case in
which user credentials are looked up in a directory using LDAP queries. The
procedure for doing this is described in the section called “Using LDAP to Obtain
Connection Parameters” further below.

Setting Up an Expression-Driven Connection

Any parameter in a Connection Resource (not only User ID and Password, but IP
address, port number, etc.) can be expression-driven. The steps for setting this up
are outlined below.

To switch a parameter from Constant to Expression driven:

1 Click the RMB in the parameter field you are interested in changing.

2 Select Expression from the context menu. A flyout menu control will appear
to the far right of the field, containing two buttons: an ECMA Expression
button and an LDAP Expression button. If you will be looking up the
connection parameter value from a directory, select the LDAP button.
Otherwise, accept the ECMA Expression button (which is the default).

NOTE: For information on how to use the LDAP Expression button, see the
section called “Using LDAP to Obtain Connection Parameters” further below.

Resources 263

3 Click the ECMA Expression button. The expression editor appears:

4 Use the expression editor to build an ECMAScript expression that will
evaluate to a valid parameter value at runtime. (Note that most of the nodes
in the various picktrees will autogenerate ECMAScript code for you if
double clicked.) In the above example, a project variable (“adminID”) is
consulted for the UserID value in a connection.

5 Dismiss the expression editor (click OK) to return to the connection-
resource dialog.

6 Repeat the above steps as necessary for any other parameter fields to which
you wish to apply expressions.

Novell exteNd Composer User’s Guide264

Using LDAP to Obtain Connection Parameters

User names and passwords are often stored in a directory (such as Novell
eDirectory). The ability to look up user data at runtime is important in any
application that has access control requirements. Composer allows you to leverage
LDAP for this purpose. No matter what kind of back-end system you’re
connecting to, you can set up your Connection Resource in such a way that any or
all of the connection parameters are obtained via directory lookup at runtime (with
or without extra business logic to fine-tune connection particulars).

In order to obtain connection parameters by LDAP query, you must first create (or
already have in your project) an LDAP Connection Resource. This resource tells
Composer which directory to use, which port to go out on, the Base DN to use,
etc., so that a connection (secure or non-secure) can be established to the target
directory. (Detailed information on how to create an LDAP Connection Resource
is contained in the LDAP Connect User’s Guide.)

Once you have an LDAP Connection Resource, you can set up LDAP-driven
connection parameters for any Connection Resource, using the technique outlined
below.

To bind a connection parameter to a directory lookup:

1 In the “Create a New Connection Resource” dialog, right-mouse-click inside
the text field to which you wish to assign a directory-lookup value. A
context menu will appear.

2 Choose Expression from the menu. A flyout control (note the small triangle)
will appear at the far right of the text field in question.

3 Click the flyout and choose LDAP Expression. The button next to the
flyout changes to the LDAP Expression Editor button.

4 Click the LDAP Expression Editor button. The LDAP Expression Editor
window appears.

NOTE: You will get an error dialog at this point if you do not have at least
one LDAP Connection Resource in your project.

Resources 265

5 At the top of this dialog, choose the LDAP Connection you will use. (The
dropdown menu is pre populated with the names of LDAP Connection
Resources in your current project.)

6 Under Distinguished Name, enter the LDAP Distinguished Name of the
user or entity for which you are looking up data. If you don’t know the
proper LDAP syntax, use the DN Editor (also known as the LDAP Browser):

Click the small DN-and-pencil icon to the far right of the Distinguished
Name text field. A new screen appears:

Novell exteNd Composer User’s Guide266

Navigate the directory’s tree view until you get to the node (object) that
contains the information you need. Click the node to highlight it.

Click OK. You’re returned to the LDAP Expression dialog. Notice that
the DN field of the LDAP Expression dialog now contains the properly
formatted Distinguished Name for the object you intend to query.

7 Under “Object Classes,” select the type of object appropriate to the search
you want to use, if it is not already showing.

NOTE: This control will normally already be showing the name of the object
that corresponds to the DN you specified in the previous step. You should not
have to do anything.

8 Using the Attribute pulldown menu control, select the name of the attribute
that contains the data you wish to look up. (This control is prepopulated with
the names of all attributes defined on the object class chosen in the previous
step.)

9 Click OK to return to the Connection Resource setup dialog. An
appropriately formatted ECMAScript expression will be generated for the
connection-param field in question. The expression uses the Composer
extension method getLDAPAttr(). At runtime, the connection parameter
will be determined dynamically by LDAP lookup. You can test this
capability at design time, of course, either by clicking the Test button in the
connection setup dialog, or by running your component (the component that
uses this connection) in animation mode.

Resources 267

How to Create an HTTP Basic Authentication Connection Resource

Composer supports many types of connection resources, including LDAP, JDBC,
FTP Authentication, HTTP (in three flavors, depending on the type of
authentication specified), and SMTP in the core product; plus 3270, 5250, Telnet,
HP3000, CICS RPC, JMS, SAP, Tandem, Data General, and Unisys-terminal
connectivity in the various Connect products. Since the basic procedure for
creating connection resources is the same for most of these different types, the
following example (using HTTP Basic Authentication as the resource type) can be
considered typical.

NOTE: See the user guide for the Connect product in question if you would like
detailed information on how to create a connection resource for a particular back-
end system, device, or protocol. Also, see the discussion at “Mail via SMTP Simple
Authentication” (further below) for detailed instructions on how to create a mail-
server connection resource.

To create an HTTP Basic Authentication Connection Resource:

1 Select File>New>xObject. From the Resource tab, select Connection. The
Create a New Connection xObject wizard appears.

2 Type in a Name.

3 Optionally, type Description text.

4 Click Next. The second page of the Create a New Connection Resource
wizard appears.

5 Select HTTP Basic Authentication from the drop down list. This will be
used in conjunction with an XML interchange which uses HTTP
connections.

Novell exteNd Composer User’s Guide268

6 Enter a UserID and Password. These are not actually submitted during the
establishment of a connection. They are simply defined here (password is
encrypted). The user will have access to UserID and Password variables
from ECMAScript, allowing them to map UserID and Password as values
into the screen. This way, no one ever sees the passwords.

7 Choose a Client Certificate by clicking on the Browse button and selecting
the certificate file you want to use for this service connection.

8 Choose a Client Private key by clicking on the Browse button and selecting
the client key file for security.

9 Enter the Password for the Private key. Private key is a another level of
security for the owner of the Client Private Key.

10 Enter a Connection Timeout value in seconds.

11 Select the Default check box if you want this particular Connection to
appear as the default connection in the appropriate Component wizards.

12 Click Finish. The connection is created.

NOTE: For more details on Connection Resources, see the “Getting Started”
section in each Connect Guide.

Resources 269

How to Create an FTP Authentication Resource

Most FTP connections require a user name and password. The FTP
Authentication Resource wrappers basic credential information so that you can
reuse the credentials as needed in various components that might use FTP to read
or write remote documents. FTP access is supported, for example, in the XML
Interchange Action. (See previous chapter.) In the setup dialog for that action, you
can specify an FTP Authentication Resource to use when executing the action.

To create an FTP Authentication Connection Resource:

1 Select File>New>xObject. From the Resource tab, select Connection. The
Create a New Connection xObject wizard appears, as shown earlier (see
Step 1 of procedure above).

2 Type in a Name.

3 Optionally, type Description text.

4 Click Next. The second panel of the Create a New Connection Resource
wizard appears.

5 Select FTP Authentication from the drop down list. The panel changes
appearance:

Newly Created
Resources

Resource
Category

Novell exteNd Composer User’s Guide270

6 In the screen that appears, enter a User ID, Password, and Connection
Timeout value (in seconds).

NOTE: The timeout value represents the amount of time that will be spent
trying to obtain a connection, not the amount of time devoted to keeping the
connection open.

Mail Simple Authentication Connection Resource

E-mail account information can be stored in a Mail Simple Authentication
Connection Resource. Any of your services or components that make use of the
Send Mail action (see “Mail via SMTP Simple Authentication” for details) can
take advantage of a Mail Simple Authentication resource for obtaining account
information.

To create a Mail Simple Authentication connection resource:

1 Under Resource in the navigation (explorer) frame, right-click on
Connection and choose New from the context menu as shown below:

Resources 271

2 In the wizard pane that appears (see below), enter an arbitrary Name for this
connection resource and (optionally) descriptive text.

3 Click Next. The second (and final) panel of the wizard appears:

Novell exteNd Composer User’s Guide272

4 Using the pulldown menu control, select Mail via SMTP Simple
Authentication as the Connection Type.

5 Next to SMTP Server, enter the name or IP address of the mail server you
intend to use.

6 Next to User ID, enter the user name associated with the mail account you
wish to use.

7 Next to Password, enter the password associated with the user account in
question.

8 Click Finish.

About Copybook Resources

If you are accessing a COBOL CICS mainframe or using a JMS system, your
application may need to use a Copybook source file to define its data layout.
Similarly, if your Composer project uses any kind of file manipulation (via FTP,
EDI data exchange, etc.) you may have a need to work with COBOL Copybooks.
exteNd Composer has a Resource called Copybook that allows you to convert
XML data into a ByteArray that can be used as Input to CICS RPC or JMS
components. It can also be used to convert the ByteArray Output from these
components back into XML format using Convert actions, which are described in
Chapter , “Advanced Actions” beginning on page 197.

Resources 273

To create a Copybook resource:

1 Select File>New>xObject. From the Resource tab, select Copybook. The
Create a New Copybook wizard appears.

NOTE: Alternatively, you can select Copybook from beneath the Resource
tree in the Navigator pane and click on New.

2 Type in a Name. Add Description information if desired.

3 Click Next. The Copybook parameters screen appears.

4 Use Browse to search your file system for a COBOL Copybook.

Novell exteNd Composer User’s Guide274

5 In the Code Page field, from the drop down menu, select the appropriate
code page for the type of operating system character data standard your
machine uses (i.e., CP037 for EBCDIC or 8859_1 for ASCII).

6 In the Machine Type field, from the drop down menu, select the platform of
your CICS Region/Server (MVS, OS2, NT, AIX).

7 In the Floating Point Format field, from the drop down menu, select a
name dependent upon the machine type selected: IBM or IEEE.

8 In the Endian field, from the drop down menu, select the order of the
most/least significant bytes in integers (BIG if the most significant byte
precedes the least significant byte in memory, otherwise select LITTLE).

9 Click Finish to add the Copybook Resource to your list of available
Resources and open it in the Component Editor. An example of an open
Copybook Resource is shown below:

NOTE: Copybook Resources must be created prior to the use of any Convert
XML to Copybook or Convert Copybook to XML Actions.

About Custom Script Resources
A Custom Script Resource is a library of user-developed functions created in the
ECMAScript programming language. You can make the functions available to be
used throughout components and within other functions. Using custom scripts,
you can develop functions that perform:

Almost all the same functionality as the basic XML Map components, with
your own customizations

Resources 275

Data manipulations involving Strings, dates, numbers, regular expressions,
etc.

XML document manipulations using the W3C ECMAScript-to-DOM
Binding methods

Integration with standard or custom Java classes

NOTE: You must have a thorough understanding of the ECMAScript language in
order to create custom functions. The following sections are intended only as
general guidelines, not a tutorial in scripting. For more information on scripting in
Composer, see the next chapter.

Organizing and Using Custom Functions

You may prefer to organize functions into different libraries. For example, you
may have several math, string, or database functions that you’ll need for your
application. If you group similar functions (i.e., create all string functions in the
same library), you can also use the Custom Script Editor to declare global
variables that can be used by all functions within the same library.

As you create and validate functions, Composer makes them available in all
expression editors within component actions.

For example, if you write a custom function library called “String” containing ten
functions, they will appear in the Expression Editor under the Custom Scripts
label with the other standard functions.

To create a custom script:

1 Select File>New>xObject. Then, from the Resource tab, select Custom
Script. The “Create a new Custom Script xObject” dialog appears.

Novell exteNd Composer User’s Guide276

2 Type in a Name.

3 Optionally, you can type in Description information.

4 Click Next. The Custom Script editor appears with your newly-created
Custom Script name in the title bar.

Resources 277

About the Custom Script Editor Window

The Custom Script Editor window is divided into several panes. You can change
the view of the panes to include the content you need.

The illustration below shows the editor after several functions have been added.

Creating and Validating a Function

You create a function by typing it in from scratch. You can also use the Expression
Builder in creating your function. For more information, see “Using the
Expression Editor to Build Functions” on page 286.

To create and validate a function:

1 Type the word function in the function creation area.

2 On the same line, type the function name after the word function.

3 On the same line, type any function parameters, separated by commas, and
enclosed with parentheses.

4 Type a left curly brace and press Enter.

Validate button

List of Validated
Functions

Function name
and description

User functions
(script editor)

Interactive
console

Note: In the above view, the Output (Error Message) Pane has
been hidden with Control-Shift-O and the Navigation Frame has
been hidden with Control-Shift-N.

Novell exteNd Composer User’s Guide278

5 Type in the function statement(s).

6 Type a right curly brace and press Enter.

7 Add comments to the function, if desired.

Your function should look similar to the following example:

To validate the syntax of your function:

Click the Validate button.

If your function is valid, Composer adds the function name to the validated
function list. If your function contains an error, Composer presents a detailed error
message.

To test your function:

1 Type the function name complete with valid parameters in the test area.

2 Press Enter.

Before you can test your function, it must pass the syntax validation described in
the previous section.

Adding a Function Tool Tip Description

Once your function has been validated, and is added to the validated function list,
you can write a description for it. The description appears as a “tool tip” when
your mouse rests on the function name, wherever the function appears in
Expression Builders throughout Composer.

To add a description:

1 Create and validate a function.

2 In the Description text box, overwrite the default description with the text for
your function, as shown.

Resources 279

3 Select the Function is Public check box as desired. When you check this
box, two things happen:

The function can be used from any expression builder in any action.

The function appears in the expression builder pick-lists under the
“Custom Scripts” heading.

Viewing DOM Trees within the Script Editor

For many of the custom script functions that you create, you will want to reference
or work directly with data in specific XPath location in your XML documents. To
make this easier, the Custom Script Editor allows you to display XML documents
(in any of the three available views: text, tree, or stylized) in the editor. This makes
specifying XPath references easier by allowing you to drag and drop XML
elements into the body of your function definition.

To show an XML document in its own pane:

1 Be sure you have opened a Custom Script and are in the Script Editor
environment.

2 In Composer’s main menus, select File then Load XML Samples. (See
illustration below.)

Novell exteNd Composer User’s Guide280

When you choose this command, the Load XML Sample dialog will appear:

3 In the pulldown menu control labeled Part, choose which DOM (Input or
Output) to associate the file with.

4 Use the Browse button to bring up the file-navigation dialog. Navigate to the
XML file you wish to load, and dismiss the navigator. If you wish to load in
a file from a URL, you must explicitly type “http://,” “https://,” or “ftp://.”

5 Click OK to dismiss the Load XML Sample dialog. The file you chose
appears in its own pane.

Resources 281

6 Navigate to the directory of the XML document you wish to use and select a
file. An Input and Output Mapping Pane appear.

NOTE: If you want to use XML documents from your XML Templates, go to
the appropriate “Imports” directory below the “XMLCategories” directory in
your project (e.g.: /Tutorial/XMLCategories/OfficeSupply/Imports).

Integrating Java Classes with Custom Scripts

If you are building a custom script that needs to invoke Java methods or instantiate
custom Java classes, you can expand the view for the Custom Script Editor
window to show the information you need in a browsable class navigator. The
Java class browser scans your current CLASSPATH (as well as any JAR
Resources you have added to your project) and displays the classes, methods, and
properties it finds. This makes specifying and using Java constructors, methods,
and properties easier by allowing you to drag and drop these items into the body
of your function definition, or into the test (console) area, to test your functions.

To use Java classes:

1 Select View > Show Java Class Context from the Custom Script Editor
menubar.

XML document
appears in its own pane

Novell exteNd Composer User’s Guide282

After choosing this command, the Java Class panel appears in the main
editor.

2 In the Java Class panel:

Type a name in the Class Name field, or

Click the Browse button. After a brief delay, the Class Browser dialog
will appear, showing the Java packages available in the Composer
CLASSPATH.

Resources 283

3 Navigate the context tree to get to the class you want to use. (Click the small
plus signs to the left of the context nodes to expand them.)

4 Select the class you want to use, then click OK to dismiss the dialog. The
class becomes visible in the class-list area of the editor.

5 Expand the class (by double clicking it or clicking the adjacent plus sign) to
show its constructors, methods, and properties. See below.

6 (Optional) Drag and drop individual methods or properties into the editor
pane or the console to use the properties in question.

If you want, you can add your own classes into the Class Browser by either putting
them into the Composer CLASSPATH or extending Composer’s CLASSPATH to
include your classes.

Novell exteNd Composer User’s Guide284

NOTE: If you are using custom Java classes, be sure to install those
classes on the Application Server (or include them in your EAR/WAR files)
when you deploy the application. You can use exteNd Director to do this. See
the Director documentation for details.

Working with a Java Class in ECMAScript

The following example shows you how to create a script function named
RoundToDecimalPos() that uses the Java DecimalFormat class. In this
example, your function accepts two parameters, a number to round, and the
number of places to round.

To create a script function that uses Java:

1 With the Java class panel displayed, enter a function signature in the
function pane as shown.

2 In the Class Name control, select the Browse button. The Class Browser
dialog appears.

Resources 285

3 Navigate to Java > Text > DecimalFormat as shown above.

4 Click OK. The Custom Script window’s Class Name field is now populated.

5 (Optional) Enter a name in the Variable Name field.

Novell exteNd Composer User’s Guide286

6 Drag and drop the desired Constructor to the function pane. Fill in the
parameters for the constructor.

7 Edit your ECMAScript function as desired. One possible function is shown
below.

Using the Expression Editor to Build Functions

Rather than writing functions from scratch, you can use the Expression Editor to
build them. The advantage of using this feature is that the Expression Editor
exposes virtually all DOM methods, Composer extensions, built-in ECMAScript
methods, and DOM node targets, via point-and-click pick-lists. Building an
expression by the use of pick-lists is not only convenient and quick, but less prone
to result in typos. It’s also a useful reference, since the calling syntax for every
available method is shown in rollover tooltips for each leaf node in the picktree(s).

The Custom Script Editor displays two different views in the Expression Editor,
based on the view you select. The basic view lists the ECMAScript objects and
operators available for building your own functions, as shown.

Resources 287

If you select, View, then Show XML Documents in the Custom Script Editor, the
Expression Editor appears with an additional pick-list for selecting elements in the
DOMs, as shown.

To use the Expression Editor:

1 From the main menubar, select Tools then Expression Editor. The
Expression Editor appears.

Novell exteNd Composer User’s Guide288

2 Expand the trees in the Variables, Functions/Methods or Operators panes
and doubleclick on the elements to build your functions. Once you
doubleclick an element, it appears in the bottom Expression pane.

Alternatively, you can use the right-mouse button to bring up the Expression
builder in either the Function editing pane or the test area.

NOTE: For additional tips regarding ECMAScript, see the subsequent chapter
called “Custom Scripting and XPath Logic in exteNd Composer” in this guide.

About Form Resources
The Composer Form Resource gives you the ability to create XML-based forms
(XForms) for use within your project.

NOTE: When installed as part of the Novell exteNd Professional Edition suite,
Composer does not support this resource type. The following discussion applies
only to users of the Enterprise Edition product.

The Form wizard will guide you through the necessary steps to create the initial

instance data.

To create an XForm:

1 From Composer’s File menu, select New, then xObject, then from the
Resource tab, select XForm. (Alternatively, right-click on the XML
Schema Resource icon in the Category pane, and choose New.) The first
pane of the Form Resource wizard appears.

Resources 289

2 Provide a Name by which you will refer to the XForm, add descriptive
information if desired and click on Next to proceed to the next screen.

3 Select an Instance Data Source Type. Choices include:

Schema

XML Sample

WSDL

4 If you select a Data Source Type of Schema, you will need to indicate which
Schema Root should be used for the instance data.

Novell exteNd Composer User’s Guide290

5 If you select a Data Source Type of XML Sample, select the Location of the
XML Source using the dropdown lists under Project Resources for
templates that already exist as part of the project. The first box contains
Template Categories, the second contains Template Names, and the third box
will be populated with Sample Names.

Alternatively, you can Browse to select a local file or type in the fully
qualified URL to locate the XML Source for the XForm.

6 If you select a Data Source Type of WSDL, you must select a Service and
and an Operation that are associated with the instance data.

Then, select a WSDL Resource using the dropdown below Project Resource.
Alternatively, you may Browse to select a local file or type in a fully
qualified URL to locate the WSDL Source for the XForm.

7 Click on Finish to create the Form Resource object and open it in the Forms
editor.

NOTE: The forms editor interface is described in detail in the exteNd Director
documentation and help.

About Image Resources
It is sometimes useful to package image files into a Composer project. For
example, if your project contains Java Server Pages that reference GIF, JPEG, or
PNG files, it’s often convenient to package images within the same JAR or WAR
file as the JSP that uses them. The JSP can then refer to the images via a relative
URL (as described below).

NOTE: When installed as part of the Novell exteNd Professional Edition suite,
Composer does not support this resource type. This discussion therefore applies
only to users of the Enterprise Edition product.

The first time you create an Image resource, Composer creates a subdirectory
called \image in your project folder and puts a “src” folder under the image
directory. Every image resource you create results in two files:

An XML file describing the resource

A copy of the original image

The former appears in the \image subdirectory. The latter appears in the \src
subdirectory.

So for example, if your project is called MyProject and you created an Image
resource based on an image called Sample.jpg, you would be able to find the
following directory structure:

Resources 291

Inside the \image folder, you would also find a file called Sample.jpg.xml,
representing the xObject wrapper (the metadata) associated with the Sample.jpg
resource.

Image Resource Naming (and Renaming)

By default, when you create an Image resource, it acquires a name identical to that
of the image you are assigning to the resource. Nevertheless, you can rename the
Image resource after creating it (the same way you would rename any other
resource): Just right-mouse-click on the resource instance in the object pane in
Composer’s main view, and choose Rename from the popup menu that appears.
Then enter a new name for the resource. (Renaming the resource in this way
changes the name of the actual image file as well as the xObject.)

NOTE: As with other resource renaming operations, you will need to close the
resource in question (if it is open) before you can rename it.

Context in the JAR

At deployment time, your Image resource will be packaged inside a JAR file
(along with all the other xObjects in your project) and placed inside the
deployment EAR. Each physical image will have a default deployment context of

[Your project context]/image/src

Therefore, any Java Server Page that lives at root level in the JAR can refer to a
given image using a relative URL of /image/src/imagename. For example:

Novell exteNd Composer User’s Guide292

How to Create an Image Resource

Creating an Image resource is much like creating any other resource xObject,
except that in this case, the object’s default name is chosen for you.

To create an Image resource:

1 Either right-mouse-click on the word Image under Resources in Composer’s
navigation frame and choose the New command from the context menu (as
shown below), or go to the File menu and select File > New > xObject.
From the Resources tab, select Image and OK.

2 In the dialog that appears, choose the radio button labelled Create from
existing external file(s). See below.

3 If you know the location of the file, you can enter it directly in the text field
(either as a file-system address or a fully qualified URI beginning with
http:// or ftp://). Otherwise, click the Browse button and navigate to an
image file.

NOTE: Supported file types are GIF, JPEG, and PNG.

Resources 293

TIP: When using the file-chooser dialog (via Browse), you can Control-click
or Shift-click to select multiple images; then all will be brought into Composer
at once. Each image will retain its original name.

4 Click the Finish button. The dialog goes away and a new Image resource
appears in the instance pane of Composer’s navigator frame.

How to Import an Existing Image Resource

You may find that you want to import an existing Image resource from another
project into your current project. You can do this as follows.

To Import an Image resource from another project:

1 Right-mouse-click on the Image resource category (as shown in the last
section) and choose Import from the context menu. The Import dialog
appears:

2 Use the Browse button to go to a file-chooser dialog. Browse your network
or file system as necessary, and when you have located the Image resource
you wish to import, click Open to return to the above dialog. If you wish to
load in a file from a URL, you must explicitly type “http://,” “https://,” or
“ftp://.”

NOTE: Image resources are XML files. They will always be found in the
\image folder of a Composer project.

Novell exteNd Composer User’s Guide294

3 The name of the resource is shown in the Name field of the dialog. Use this
text field to change the resource’s name if you wish to do so at this time.
(You can also rename it later.)

4 Click OK. The resource is added to the instance pane of Composer’s
navigation frame.

How to View an Image Resource

Once you have created or imported Image resources into your project, you can
view an image by double clicking the resource in the instance pane (or by
highlighting it and using RMB, then Open). The image will be rendered in its own
tabbed window in the Composer desktop:

The size of the view (the magnification factor) can be controlled in various ways.
If you right-click on the image itself, a context menu appears:

Resources 295

In addition to using the various Zoom commands on the context menu, you can
control the magnification factor of the image view by means of the mouse and/or
keyboard:

To zoom in: Use the plus (+) key on the numeric keypad, or left-click anywhere
on the image.

To zoom out: Use the minus (-) key on the numeric keypad, or Control-left-click
anywhere on the image.

To restore the original view: Use the equal sign (=) key or Shift-left-click
anywhere on the image.

About JAR Resources
NOTE: When installed as part of the Novell exteNd Professional Edition suite,
Composer does not support this resource type. The following discussion applies
only to users of the Enterprise Edition product.

JAR resources provide you with the ability to add custom utility classes or
business objects to a Composer project. Custom scripts and components you
create within your project can then use these classes. The Custom Script editor’s
class browser provides access to the JAR resource, allowing you to drag and drop
Java objects in to your custom scripts. You may also use function calls within your
components to instanter objects of the imported class type, and invoke the class
methods.

NOTE: If you wish to add another Composer project as a subproject, do not use
the JAR Resource mechanism. Instead, use Tools > Project Serttings
> Subprojects to import another Composer project into your current project.

The first time you create a JAR resource, Composer creates a subdirectory called
\JAR in your project folder and puts an import folder under the JAR directory.
Every JAR resource you create results in two files:

An XML file describing the resource

A copy of the original JAR

The former appears in the \JAR subdirectory. The latter appears in the \import
subdirectory.

For example, if your project is called TutorialStudent and you created a JAR
resource based on a JAR called mycontacts.jar you would be able to find the
following directory structure:

Novell exteNd Composer User’s Guide296

Inside the \jar folder, you would also find a file called mycontacts.xml,
representing the xObject wrapper (the metadata) associated with the
mycontacts.jar resource.

JAR Resource Naming (and Renaming)

By default, when you create an JAR resource, it acquires a name identical to that
of the JAR file you are assigning to the resource. You can rename the JAR
resource after creating it, if you wish. From Composer’s main view click the right
mouse button on the resource instance in the object pane. Choose Rename from
the popup menu that appears. Then enter a new name for the resource. Renaming
the resource in this way changes the name of the actual JAR file as well as the
xObject.

NOTE: The JAR file resource must be closed in order to rename the resource.

Context in the Composer Project

To reference classes in the JAR resource you reference the context of the class
package. If the class is in the root of the jar no context is needed. In the example
below two jar object classes are referenced, the first myFirstStringProcessorObj
references a class at the root of the JAR. The second,
mySecondStringProcessorObj is referenced by its context, com.Novell. Notice
that in both cases the Packages keyword precedes the context. To avoid name
collisions between classes with identical method names, you should package your
classes within a context.

Resources 297

The following example depicts the function expression used to instantiate an
object of the myStringProcessor class residing in the com.Novell context.

Context in the Composer Project JAR

At deployment time, your JAR resources will be packaged inside a WAR file
(along with your project JAR) and placed inside the deployment EAR. Each
physical JAR will have a default deployment context of

/JAR/import

How to Create a JAR Resource

To create a JAR resource:

1 Either right-mouse-click on the word JAR under Resources in Composer’s
navigation frame and choose the New command from the context menu, or
from the File menu select File > New > xObject. Select the Resources tab
from the New xObject dialog (shown below), select JAR.

Novell exteNd Composer User’s Guide298

2 In the dialog that appears, the radio button labelled Create from existing
external file(s) is selected. See below.

3 If you know the location of the file, you can enter it directly in the text field
(either as a file-system address or a fully qualified URI beginning with
http:// or ftp://). Otherwise, click the Browse button and navigate to the
JAR file.

TIP: When using the file-chooser dialog (via Browse), you can Control-click
or Shift-click to select multiple jars; then all will be brought into Composer at
once. Each jar will retain its original name.

Resources 299

4 Click the Finish button. The dialog goes away and a new jar resource
appears in the instance pane of Composer’s navigator frame.

How to Import a JAR Resource

To Import a JAR resource:

1 Right-mouse-click on the JAR resource category and choose Import from
the context menu, alternatively you may select File > Import xObject from
the menu. The Import dialog appears:

2 Select JAR form the Type dropdown list.

3 Use the Browse button to go to a file-chooser dialog. Browse your network
or file system as necessary, and when you have located the JAR resource you
wish to import, click Open to return to the above dialog. If you wish to load
in a file from a URL, you must explicitly type “http://,” “https://,” or “ftp://.”

4 The name of the resource is shown in the Name field of the dialog. Use this
text field to change the resource’s name if you wish to do so at this time.
(You can also rename it later.)

Click OK. The resource is added to the instance pane of Composer’s navigation
frame.]

Novell exteNd Composer User’s Guide300

About JSP Resources
NOTE: When installed as part of the Novell exteNd Professional Edition suite,
Composer does not support the JSP Resource xObject. (You can, however, create
Composer-aware JSPs in Director. See the “Director JSP Wizard” discussion in the
chapter on Deployment.) The following discussion applies only to users of the
Enterprise Edition product.

You can create Java Server Pages directly in Composer (and then store them in
your project as JSP Resources), import JSPs from a local drive or URI, or import
existing JSP Resources from another Composer project. Once you create a JSP
Resource, it is deployed as part of your project’s deployment JAR.

Composer’s native JSP editor offers a convenient way not only to edit and create
JSPs but to generate JSP-based triggers for Composer services (using Composer’s
custom tag libraries). This is described further below.

To create a new JSP Resource from an existing file:

1 Either right-mouse-click on JSP under Resources in Composer’s navigation
frame and choose the New command from the context menu (as shown
below); or go to the File menu and select File > New > xObject. From the
the Resources tab, select Image and OK.

2 In the dialog that appears, choose the radio button labelled Create from
existing external file(s). See below.

Resources 301

3 If you know the location of the JSP file that you want to use in this resource,
manually enter it in the text field under File/URL to Import. Otherwise, use
the Browse button (and the file chooser) to navigate to the file and select it.

4 Click Finish. A new resource is added to the instance pane and the JSP in
question opens in Composer’s JSP editor as shown below.

Novell exteNd Composer User’s Guide302

Creating a JSP-Based Service Trigger

Composer can, if you wish, automatically generate a JSP that contains code for
triggering an existing service in your project. The following steps tell how.

To create a new JSP Resource containing service-trigger code:

1 Either right-mouse-click on JSP under Resources in Composer’s navigation
frame and choose the New command from the context menu (as shown in
the previous section); or go to the File menu and select File > New >
xObject. from the Resources tab, select JSP and OK.

2 In the dialog that appears, choose the radio button labelled Create JSP to
execute a Composer service. When you click this radio button, the dialog
will change to have the appearance shown below.

3 Under Name, enter a name for this JSP.

4 (Optional) Under Description, enter any descriptive text that might apply to
this resource.

5 Click the Next button. A new wizard panel appears:

Resources 303

6 Check the Execute a Composer Service checkbox if you want Composer to
generate the custom-tag code to trigger a particular service. (If you do not
check this box, you will simply be creating an empty JSP. Click Finish now
if your intent is to hand-write a new JSP.) When you check the checkbox, the
controls below it become enabled.

7 Under Service, select a service from the dropdown menu. The menu will be
pre populated with the names of services in your project.

8 Under Service Trigger Type, select one of the available values.

9 Click Finish. A new JSP containing code that executes your service will
appear in the editor pane as shown below.

Novell exteNd Composer User’s Guide304

About WSDL Resources
WSDL (Web Services Description Language) is an XML vocabulary for
describing web services. Using WSDL, it is possible to describe (in a standardized
manner) the interface, protocol bindings, and various other types of information
about web-based services, at a level of detail sufficient for businesses to begin to
interact online. The complete standard can be seen at http://www.w3.org/TR/wsdl

There are three ways to create or acquire WSDL Resources.

Use Composer’s XML editor to create your WSDL by hand.

Let Composer generate WSDL for you. (Composer can generate a WSDL
file automatically for any Web Service that you have added to your project.)
The procedure for this is described below.

Acquire WSDL from a registry (such as a UDDI public registry) by
downloading it directly into your project. This method will be discussed
further below.

To generate a WSDL Resource from an existing service or create one in the
XML editor:

1 From Composer’s File menu, select New, then xObject. From the Resource
tab, select WSDL.

http://www.w3.org/TR/wsdl

Resources 305

or

Right-click on the WSDL Resource icon in the Category pane, and choose
New. (This will associate the WSDL resource with an existing service.)

or

Right-click on the WSDL Resource listed in the Instance pane of the
Navigator and choose Create WSDL. (This method will also associate the
WSDL resource with an existing service.)

Any of these methods will cause the first pane of the WSDL Resource
wizard to appear.

2 As indicated by the radio buttons, you have the choice to Create WSDL from
an existing file, or describe a new Composer Service.

If you choose to create the WSDL from an existing file, simply browse
through your file system to locate the WSDL, and click Finish once you
have located it.

If you choose to describe a new Composer Service, select that radio
button and follow the steps below:

Novell exteNd Composer User’s Guide306

3 Enter a Name for the resource. (This will also show up in the name attribute
of the /service element in your WSDL.)

4 Optionally enter descriptive information.

5 Click Next. A new pane appears.

6 Check the Associate Web Service checkbox if you intend to create WSDL
based on an existing Web Service in your project.

Resources 307

NOTE: If you wish, instead, to hand-create your own WSDL in the XML
editor environment, leave the Associate Web Service checkbox unchecked
and click Finish. After the dialog goes away, right-click in Composer’s
content pane and select View As Text from the context menu, then begin
typing.

7 Select a Service from the pulldown menu.

8 Check the Generate SOAP Binding checkbox if you wish to have
Composer automatically create SOAP Binding information in your WSDL.
Choose the binding style that you want from the radio buttons labelled
Document and RPC.

9 Enter the URI that you want to appear in the location attribute of the
WSDL’s /service/port/address element.

10 Click Finish. The newly generated WSDL appears as a DOM tree in a
content window in Composer. Right-click on the DOM and choose View >
As Text to see a text view of the WSDL document, which you can then edit
manually if need be. See below.

To acquire WSDL from an external service via the Registry browser:

1 Click the Registries tab in Composer’s nav frame.

Novell exteNd Composer User’s Guide308

2 Begin a search (either of Organizations or Services) as described in
“Registry Browsing” on page 426.

3 Choose a service for which detail information is available in the Service
Pane.

4 Acquire the WSDL for that service as described in “Retrieving WSDL from
the Registry” on page 437. The tree view for the acquired WSDL will appear
automatically in the component editor’s content pane. (To choose other
views, right-click inside the content pane and select View As from the
context menu.)

5 Choose Save As from Composer’s File menu. Enter a name for the resource
and click OK.

6 The new WSDL Resource, based on the retrieved WSDL, appears in the
Instance pane of Composer’s nav frame. (The WSDL is also persisted to disk
at this point.)

Obtaining a Stylized View of WSDL

By default, when you first open a WSDL Resource, the document is displayed in
a syntax-colored text-edit view. But you can also see a stylized view of WSDL
documents, created by applying an XSL stylesheet to your document.

To see a stylized view of a WSDL document:

1 Open a WSDL Resource.

2 Right-click in the WSDL editor pane and choose View > As Stylized from
the context menu. After a short delay, tview changes to a stylized view.

Resources 309

In this case, the Summary stylesheet has been applied to the document. You
can apply a custom stylesheet instead, if you prefer; see procedure below.

To choose a custom stylesheet for the stylized view:

1 With the WSDL document already visible in Stylized form, right-mouse-click
inside the pane. A contextual menu appears. Click Select Stylesheet.

The following dialog will appear:

Novell exteNd Composer User’s Guide310

2 Choose the System radio button if you wish to select one of the existing
standard stylesheets (Details or Summary) as the basis for the stylized view.

Details provides a detail-oriented plain-text view of the WSDL
document (with no XML tags).

Summary provides a more concise view of WSDL contents.

3 Otherwise, choose the Custom radio button and enter the path to the
stylesheet of your choice (or use the Browse button to bring up a standard
file navigation dialog). If your path is in the form of a URL, you must
explicitly type “http://,” “https://,” or “ftp://.”

4 Check the Set as default checkbox if you want to apply the stylesheet
you’ve chosen as the default in Stylized views. Your preference is now set
across Composer sessions.

Adding Elements to a WSDL Document

Although Composer can automatically generate WSDL for you, there are times
when you may want or need to edit (or create) WSDL elements by hand.
Composer’s WSDL Editor (a WSDL-aware version of the Composer XML editor)
allows normal text insertion and cut-and-paste editing, the same as any text editor.
But you can also make use of special context features that are designed to let you
create standard WSDL document elements quickly and easily.

WSDL documents contain (either directly, or by importation) a minimum of four
standard element types: message, portType, binding, and service. These elements
build upon one another with cascading cross-references, so it is advisable that
when you create a WSDL file without the use of the dialogs, you create the
message section first, followed by the portType section, then the binding section
and finally the service section. The WSDL Editor offers dialog-based assistance in
creating each of these four types.

Adding a Message Element

In WSDL, the Message is an abstract, typed definition of the data being
exchanged. At runtime, the actual message is represented as a DOM.

To create a new Message element:

1 Open a WSDL Resource if one is not already open.

2 Be sure the WSDL document is in Text View mode. (Right-click anywhere
in the document and choose View > As Text.)

3 Click the right mouse button inside the Text View pane. A context menu
appears.

Resources 311

4 Select Insert WSDL Element > Message . . . to bring up the Insert New
Message dialog.

5 Click on the Add button to add a blank row in the parts table.

6 In the Name text field, enter the value of the name attribute for the main
<message> element.

7 In the Documentation field, enter any human-readable comment or
descriptive language you would like to associate with the definition
element.(Optional.)

8 Under Parts, in the Name column, enter the name attribute for the first
<part> element of your message section.

Novell exteNd Composer User’s Guide312

9 Select a Typing value from the pulldown menu (Element or Type).

10 Under Value, enter the element value for this part.

11 Click the Add button to add another part entry to this message.

12 To remove an entry, first click into the entry to highlight the row in question,
then click the Remove button to remove that entry.

13 Click OK. The dialog box closes and a new section is added to your
document:

<message name="GetLastTradePriceOutput">
<part name="body" element="xsd1:TradePriceResult"/>

</message>

Adding a Port Type Element

The WSDL Port Type is an abstract definition of the operations supported by a
service and the communications mode (one-way, request-response, etc.) that will
be used in the service.

To add a new Port Type to a WSDL document:

1 Place the mouse inside the Text View pane of the editor and click the right
mouse button. A contextual menu appears.

2 Select Insert > Port Type . . . to bring up the Insert New Port Type dialog.

3 Click on the Add button to add a blank row in the parts table.

4 In the Name field, enter the value of the name attribute for the <portType>
element you are creating.

Resources 313

5 In the Documentation field, enter any human-readable comment or
descriptive language you would like to associate with the definition
element.(Optional.)

6 Under Operations, enter a Name for this operation.

7 In the Type column, select One-Way, Request-Response, Solicit-Response,
or Notification, as appropriate, from the pulldown menu.

8 Under Formats, enter an input and output message or build the appropriate
messages using the Edit Operation dialog. To open the Edit Operation
dialog, click the Set. . . button at the end of the row. A new dialog appears.

9 The Edit Operation dialog has several control groupings. Only those that are
appropriate to the Operation in question (Request-Response, Solicit-
Response, etc.) are enabled. For example, if you chose Notification in the
Type column in Step 6 above, only the Output control group is enabled. For
each enabled group, a Name and Message appropriate to the operation is
required for Input and Output. However, Fault group is not required but
optional.

10 Click OK to close the Edit Operation dialog.

11 Click Add to add more operations to the current Port Type section.

12 To remove operations, select the operation you want to remove, then click
the Delete button.

Novell exteNd Composer User’s Guide314

13 Click OK to close the Insert New Port Type dialog. A new section is added
to your WSDL document:

<portType name="StockQuotePortType">

<operation name="GetTradePrice">

<input name="input"
message="tns:GetLastTradePriceInput"/>

<output name="output"
message="tns:GetLastTradePriceOutput"/>

</operation>

</portType>

Adding a Binding Element

The Binding specifies concrete protocol and data format specifications for the
operations and messages defined by a particular Port Type.

To add a new Binding to a WSDL document:

1 Place the mouse inside the Text View pane of the editor and click the right
mouse button. A contextual menu appears.

2 Select Insert > Binding . . . to bring up the Insert New Binding dialog.

3 In the Name field, enter the value of the name attribute for the <binding>
element you are creating.

Resources 315

4 In the Documentation field, enter any human-readable comment or
descriptive language you would like to associate with the definition
element.(Optional.)

5 Select the proper Port Type for this binding, using the pulldown menu next
to Port Type. The pulldown menu contains the names of Port Types that you
have previously created (if any) for this document; see “Adding a Port Type
Element” above.

6 If your WSDL document will specify a SOAP binding, check the SOAP
Binding checkbox, then select a Style (RPC or Document) from the
pulldown menu and enter a Transport value (or accept the default).

7 If an HTTP Binding will be used, check the HTTP Binding checkbox and
enter the appropriate Verb (GET or POST).

8 Click OK to dismiss the dialog. A new Binding section is added to your
WSDL document:

<binding name="StockQuoteSoapBinding"
type="tns:StockQuotePortType">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetLastTradePrice">
<soap:operation

soapAction="http://example.com/GetLastTradePrice"/>
<input>

<soap:body use="literal"
namespace="http://example.com/stockquote.xsd
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body use="literal"
namespace="http://example.com/stockquote.xsd"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>

Adding a Service Element

The Service element names the entry-point address (or addresses) for the service
in question. These addresses are in the form of URIs and constitute ports.

To add a new Service to a WSDL document:

1 Place the mouse inside the Text View pane of the editor and click the right
mouse button. A contextual menu appears.

2 Select Insert > Service . . . to bring up the Insert New Service dialog.

3 Click on the Add button to add a blank row in the service table.

Novell exteNd Composer User’s Guide316

4 In the Name field, enter the value of the name attribute for the <service>
element you are creating.

5 In the Documentation field, enter any human-readable comment or
descriptive language you would like to associate with this service element.
(Optional.)

6 In the Ports section, under Name, enter the name of this <port> element.

7 In the Binding column, select an existing binding from the pulldown menu.
The available bindings will reflect Binding sections that have already been
created for this document (if any).

8 In the Address Type column, specify None, SOAP, or HTTP, as appropriate,
using the pulldown menu.

9 Under Location, enter the URI via which your service will be available.

10 Click Add to add more rows (more port entries) to the Service.

11 To remove an entry, select the entry, then click the Delete button.

12 Click OK to close the dialog. A new Service entry is added to your WSDL
document:

<service name="StockQuoteService">

<port name="StockQuotePort"
binding="tns:StockQuoteBinding"> <soap:address
location="http://example.com/stockquote"/>

</port>

</service>

Resources 317

Type-Ahead (Code Completion) in the WSDL Editor

The WSDL editor incorporates a “smart type-ahead” feature that comes into play
whenever you type a less-than sign (i.e., the start of an element tag). A contextual
menu will pop up automatically, displaying available tag-name choices based on
the schema specified for the file and where you are in the document.

For example, if you are creating a WSDL document manually and you are near the
top of the document, typing ‘<‘ will cause a menu to appear near the cursor
location, with the following choices:

Notice that the element names in this menu correspond to legal tag names in
WSDL. To choose a menu item, just doubleclick it.

The menu choices are highly context-sensitive in that if you are deep in some
portion of an element tree and you type a less-than symbol, the choices that appear
in the type-ahead menu are constrained to just the values that would be legal in the
XPath context in which you are typing. For example, if you are inside a
<documentation> node anywhere in a WSDL file and you type ‘<‘, the type-
ahead menu will appear with only one choice, namely </documentation>,
because the only legal tag you could create at this point would be a closing tag.
(The WSDL schema does not permit child elements inside documentation
elements.)

Novell exteNd Composer User’s Guide318

You can, of course, always ignore the type-ahead menu altogether and enter
whatever you want, as the occasion requires. For example, you might want to enter
a comment.

NOTE: Type-ahead hints are based on the schema that applies to the document.
Obviously, if the document does not specify namespaces or schemas, there is no
way for the editor to “know” what the valid tag choices are, and you’ll get no type-
ahead menu.

Validating a WSDL document

When a WSDL document is open and its contents are visible in the editor, you can
validate it by changing the View to “As Text” and clicking the small green check-
mark icon in the top left corner of the WSDL document window. If the document
validates successfully, you will see a dialog:

Otherwise, you will see an error alert giving information identifying the
malformed statement(s) in the document.

NOTE: You should carefully review your WSDL even if the document validation is
successful. The W3C WSDL specification does allow for extensibility elements
throughout all levels of a WSDL document. So if you built the document without
using the dialogs, or did an extensive amount of cut and paste from other sources,
it’s possible the document will test as valid, but not necessarily be what you want.

About WSIL Resources
WSIL (Web Services Inspection Language) is a specification for the discovery
and publishing of Web services. It was designed to be more lightweight and
portable than the previous standard, UDDI (Universal Description, Discovery and
Integration), and in a sense, to pick up where UDDI leaves off. Although WSIL
has yet to be submitted to one of the standards bodies (W3C and OASIS) it is
gaining in popularity. To read the WSIL specification, see http://www-
106.ibm.com/developerworks/webservices/library/ws-wsilspec.html.

Resources 319

Like WSDL, WSIL is an XML vocabulary. Its focus, however, is on exposing
services rather than describing them. It is meant to facilitate discoverability of
Web Services.

There are two ways to generate WSIL Resources. One way is to acquire WSIL
from an external, existing file. A second way is to create a WSIL document using
Composer’s WSIL wizard and XML editor. The wizard will generate a stub file
containing empty <service> and <description> elements which you can
then fill in.

To generate a WSIL Resource from an existing file:

1 From Composer’s File menu, select New, then xObject. From the Resource
tab, select WSIL.

or

Right-click on the WSIL Resource icon in the Category pane, and choose
New.

Either of these methods will cause the first pane of the WSIL Resource
wizard to appear.

2 If you choose to create your WSIL from existing external files, type in the
fully qualified URL or click on Browse to locate a file on your local hard
drive or network.

3 Click Finish to open the WSIL file in the XML Content editor (see below).

To generate a WSIL Resource manually:

1 From Composer’s File menu, select New, then xObject. From the Resource
tab, select WSIL.

Novell exteNd Composer User’s Guide320

or

Right-click on the WSIL Resource icon in the Category pane, and choose
New.

2 Select Create Using Composer Editor.

3 Enter a Name for the resource.

4 Optionally enter descriptive information.

5 Click Finish. Begin entering your WSIL in the Content Editor Screen.

The XML Content Editor Pane, with an open WSIL resource, is depicted below:

Resources 321

As with a WSDL document, if you right-click on the content editor and choose
View > As Text, you will see a text view of the WSIL document, which you can
then edit manually, including the node names. Similarly, you can select View>As
Stylized for a Stylized view of the WSIL. Type-ahead code-completion and text
validation (described above) also apply to editing WSIL documents.

About XML Resources
Composer allows you to specify individual XML files as first-class resources
(xObjects). When you specify a file as an XML resource, a copy of the file is made
in a folder called \xml_resource under your project hierarchy. This file then gets
included in the deployment JAR (in that context) so that, for example, your Java
Server Pages can refer to the file with a relative URL in an href attribute. More
commonly, you’ll access XML resource documents in a component’s action
model by using the Composer Resource action (see previous chapter, and further
discussion below) to bring the document into an Input or Temp message part
(DOM).

Novell exteNd Composer User’s Guide322

How Do XML Templates and XML Resources Differ?

XML Resources are different from XML Template documents. An XML
Template is merely a design-time aid (a hint, if you will) that allows you to work
with a “scratch copy” of a particular type of document (which, in turn, may or may
not be based on a schema) at design time. Instance data in the template doc is
visible at design time but not at runtime. At runtime, the template doc is never
used as a data source.

An XML Resource, by contrast, is a physical document that can be used as a static
data store for “pre-canned” instance data of various kinds. Such data might consist
of legal notices (copyirghts, disclaimers, warranties, etc.); names and addresses of
key people who may need to be notified during the execution of a component;
lookup-table data with hierarchical structure (or data that’s too complex to use in
a Code Table resource, but too straightforward to warrant the connectivity
overhead of RDBMS storage); or common data needed by more than one service
in the project.

If the dataset in question is of reasonable size, you may be able to realize
significant performance benefits by using an XML Resource instead of a
relational database for data lookups.

Think of an XML Resource is as a lightweight structured data store—a low-
overhead container for hierarchically organized static (read-only) data.

To create an XMLResource:

1 Either right-mouse-click on the XML category under Resources in
Composer’s navigation frame, then choose the New command from the
context menu (as shown below); or go to the File menu and select File >
New > xObject, then the Resources tab, then XML and OK.

2 In the dialog that appears (see below), choose one of the two available radio
buttons as described below.

Resources 323

Choose the Create from existing external file(s) radio button if you
wish to use a preexisting XML file. (A copy of the file will be brought
into your project.) Then specify the file’s URI in the text field provided,
explicitly typing “http://,” “https://,” or “ftp://,” or use the Browse button
to navigate to the file of interest.

Alternatively, choose the Create using Composer Editor radio button if
you want to create the XML file yourself, by hand. If you select this radio
button, the dialog changes appearance:

Novell exteNd Composer User’s Guide324

At this point, you can enter a Name (and optionally, descriptive information)
for the resource.

3 Click Finish to exit the dialog. A new XML Resource appears in the
instance pane of Composer’s nav frame, and the file itself opens in tree view
in the editor pane.

How to Import an XML Resource

Unlike non-XML resource types (such as Image, JSP, and JAR), XML Resources
are not indirected through xObject metadata stored in a separate file. Therefore,
when you import an XML Resource, you are not restricted to importing xObjects
from other Composer projects. Instead, you are actually importing an XML file
directly (into a folder called \xml_resource under your project-folder hierarchy).
That is to say, the resource and the underlying data file are one and the same. So
although the steps below are slightly different from those in the previous section,
they essentially give the same result.

To Import an XML Resource:

1 Right-click on XML under Resources (as described above) and choose the
Import menu command.

2 The Import dialog appears. (See the discussion, and screen shot, at “To
Import an Image resource from another project:” earlier in this chapter.)
Enter the file name or URI of the XML file you want to import, or use the
Browse button to navigate to an XML file.

3 Click Finish. The newly imported XML file will be added to the instance
pane of the navigation frame, but the file itself will not automatically open in
the editor pane. (If you wish to open it for editing, you can either doubleclick
the file name in the XML resource instance pane, or right-mouse-click on it
and choose Open from the context menu.)

Resources 325

How to Access an XML Resource in a Component

To load an XML Resource into a Part (DOM) at runtime, use the Composer
Resource action type. The document and its data will be accessible via XPath or
ECMAScript like any other document. You can map its nodes to other Parts,
selectively pull data from certain elements, or even map the entire document to
Output. Of course, you should bear in mind that an XML Resource document is a
static resource (i.e., read-only). If you try to modify it or write to it using XPath or
ECMAScript, it may appear as though you are changing the document—and you
are—but the changes will last only for the life of the component instance in which
changes are made. In other words, changes are volatile and do not get saved or
carried over to future invocations of the component/service.

To load an XML Resource document into a Part:

1 In the action model, right-mouse-click at the point where you want to load
the XML resource. In the context menu that appears, select New Action >
Data Exchange > Composer Resource. See below.

2 In the dialog that appears, under Resource Type, use the pulldown menu to
select XML. (See below.)

Novell exteNd Composer User’s Guide326

3 Under Resource Name, select the (preexisting) XML Resource that you
wish to bring into your component. (The pulldown menu will be pre
populated with the names of all XML Resources that exist in the current
project.)

4 Under Target, select either the XPath or the Expression radio button.
Assign a target location for the XML Resource DOM.

NOTE: You can assign the contents of the XML resource doc to any node of
any existing DOM. If you want to assign it to a Temp Part, you will need to
create the Temp Part in advance, or else go to File > Properties >
Messages to add a Temp Part to the currently open component.

5 (Optional) Click Apply if you want to test the action now. You should see
the XML resource appear in the expected location, in the specified target
DOM.

6 Click OK to dismiss the dialog. A new Composer Resource action is added
to your action model, and from this point on in that model, you can map to or
(more likely) from the nodes of the XML resource doc.

About XSD Resources
XML Schema Definition (XSD) files are specified in their own resource type so
that they can be reused by various components, services, and Composer projects,
and also so they can be edited or modified over time without having to be re-
imported one at a time into every project or component that uses them.

Resources 327

There are two ways to create an XSD Resource for use in your project.

Generate XSD directly from a sample document using Composer’s schema
generator, or

Designate a preexisting XSD document as an XSD Resource using the
Create XSD Resource wizard

We will discuss each option in turn.

Using Composer’s Schema Generator

You can tell Composer to generate a schema (XSD Resource and corresponding
.xsd file) from any existing XML sample document. The procedure is as follows.

To generate a Schema (XSD) Resource from an existing XML document:

1 Add the XML document to an existing XML Template, or create a new
XML Template based on the XML sample document.

2 Open the XML Template containing your sample document. (Right-click on
the template instance’s name in Composer’s explorer frame, and choose
Open... from the context menu.)

3 Be sure the sample document is showing in Tree View in the document
window. (If you were looking at it in Text View, right-click on the editor
pane and choose View > As Tree from the context menu.)

4 Right-click inside the document, in Tree View, to bring up a context menu.

5 Select Create Schema... from the menu. A dialog appears:

Novell exteNd Composer User’s Guide328

6 Enter a Name for the new Schema Resource.

7 Click OK. Note that a new resource appears in the instance pane under the
XSD Resource category.

NOTE: You may need to edit your original sample document to use the
namespace prefixes shown in the generated schema before the sample will
validate against the schema.

Using the XSD Resource Wizard

If you wish to use an existing .xsd file as the basis of an XSD Resource, you can
do so by following this procedure.

To add a Schema (XSD) Resource based on an existing .xsd file, using the
resource wizard:

1 From Composer’s File menu, select New, then xObject, then from the
Resource tab, select XML Schema. (Alternatively, right-click on the XML
Schema Resource icon in the Category pane, and choose New.) The first
pane of the XML Schema Resource wizard appears.

Resources 329

2 If you wish to create the Schema using an external file, check the Create
from existing external file(s) button and type in a file or URL to import.
You can also Browse to navigate your file system to select a file on your disk
or network.

3 If you wish to create the Schema using the Composer Editor, check the
Create Using Composer Editor button.

Type a Name for the resource.

Optionally enter descriptive information about the resource.

4 Click Finish. If you chose to import an existing file, the file will be opened
in the Composer Component Editor. If you chose to create a schema
definition file manually, you will be able to create your schema in the
content window of Composer.

5 In either case, an XML Schema Resource is added to the Instance Pane.

6 Optionally right-click in the content pane and choose View As > Text to go
to the XML editor.

About XSL Resources
The XSL Resource offers a convenient way to package XSL stylesheets into your
project’s deployment JAR. You can refer to them via relative URLs from other
documents, or you can load an XSL Resource into a DOM, dynamically, using the
technique described at “How to Access an XML Resource in a Component”
further above.

Novell exteNd Composer User’s Guide330

How to Create an XSL Resource

To create an XSL Resource:

1 Either right-mouse-click on the XSL category under Resources in
Composer’s navigation frame, then choose the New command from the
context menu (as shown below); or go to the File menu and select File >
New > xObject, then the Resources tab, then XSL and OK.

2 In the dialog that appears (see below), choose one of the two radio buttons as
described below.

Choose the Create from existing external file(s) radio button if you
wish to use a preexisting XSL file. (A copy of the file will be brought into
your project.) Then specify the file’s URI in the text field provided, or
use the Browse button to navigate to the file of interest.

Alternatively, choose the Create using Composer Editor radio button if
you want to create the XSL file yourself, by hand. If you select this radio
button, the dialog changes appearance:

Resources 331

At this point, you can enter a Name (and optionally, descriptive information)
for the resource.

3 Click Finish to exit the dialog. A new XSL Resource appears in the instance
pane of Composer’s nav frame, and the file itself opens in text view in the
editor pane.

How to Import an XSL Resource

Unlike non-XML resource types (such as Image, JSP, and JAR), XSL Resources
are not indirected through xObject metadata stored in a separate file. Therefore,
when you import an XSL Resource, you are not restricted to importing xObjects
from other Composer projects. Instead, you are actually importing an XSL file
directly (into a folder called \xsl under your project-folder hierarchy). That is to
say, the resource and the underlying data file are one and the same. So although the
steps below are slightly different from those in the previous section, they
essentially give the same result.

To Import an XSL Resource:

1 Right-click on XSL under Resources (as described above) and choose the
Import menu command.

2 The Import dialog appears. (See the discussion, and screen shot, at “To
Import an Image resource from another project:” earlier in this chapter.)
Enter the file name or URI of the XSL file you want to import, or use the
Browse button to navigate to an XSL file.

Novell exteNd Composer User’s Guide332

3 Click Finish. The newly imported XSL file will be added to the instance
pane of the navigation frame, but the file itself will not automatically open in
the editor pane. (If you wish to open it for editing, you can either doubleclick
the file name in the XSL resource instance pane, or right-mouse-click on it
and choose Open from the context menu.)

333

10

Custom Scripting and XPath Logic in exteNd Composer

Custom Scripting and XPath Logic in
exteNd Composer Chapter 10

Novell exteNd Composer incorporates an onboard EMCAScript interpreter,
which allows you to extend the functionality of Composer applications in various
ways. For example, you can use scripting to:

Manipulate XML data directly, via DOM Level 2 methods

Execute Composer components programmatically

Call Java directly

Perform file I/O operations

Augment your Action Model with custom processing logic

Develop your own utility libraries for performing common data-
manipulation tasks

Bind data connections dynamically at runtime

Use alert() functions in debugging

Quickly prototype and test concepts that might ultimately be implemented in
Java

The XPath language also offers opportunities to exploit custom logic in your
Composer components. The XPath specification includes over two dozen
predefined functions that can be used to filter, qualify, aggregate, and/or locate
XML data.

This chapter discusses some of the techniques and capabilities applicable to the
use of custom ECMAScript and/or XPath logic in Composer and describes the
relationship of various W3C standards to XPath and ECMAScript.

Novell exteNd Composer User’s Guide334

What is ECMAScript?
ECMAScript is a lightweight, object-oriented scripting language for extending the
functionality of diverse host environments (such as web browsers, editors, and
IDEs) by enabling the use of custom logic. It is designed to complement or extend
existing functionality in a host program such as exteNd Composer. In the web-
browser world, ECMAScript is often called JavaScript or JScript.

ECMAScript is especially appropriate for a Java host environment, since:

1 It is an object-oriented language with a distinctly Java-like syntax.

2 Scripts written in ECMAScript can call Java constructors and methods
directly.

The extensibility of ECMAScript, its powerful string-handling tools (including
regular expressions), its DOM binding, and its ability to provide a bridge to Java,
make it an ideal language to augment the programming constructs and standards
used by exteNd Composer.

NOTE: You can find detailed information regarding ECMAScript at the European
Computer Manufacturers Association (ECMA) web site: http://www.ecma.ch/

What Capabilities Does ECMAScript Offer?
In addition to letting you incorporate finely tuned custom logic into your Action
Model, scripting gives you a great deal of flexibility in manipulating data, because
of the various DOM- and XPath-related objects and methods available in
Composer’s ECMAScript extensions. Also, as an extensible language, custom
user-defined objects can be created on-the-fly in ECMAScript and used in your
Composer components and services.

The usefulness of ECMAScript is especially apparent when dealing with in-
memory DOMs. Composer constructs XML documents as in-memory objects
according to the W3C DOM Level 2 specification. The DOM-2 specification, in
turn, defines an ECMAScript binding (see http://www.w3.org/TR/DOM-Level-2-
Core/ecma-script-binding.html), with numerous methods and properties that
provide ready access to DOM-tree contents. The standard Composer DOMs—
Input, Input1, Input(n), Temp, and Output—are objects recognized by
ECMAScript in Composer, and any of the W3C-defined ECMAScript extensions
that apply to DOMs can be accessed from Composer.

ECMAScript also provides bridges to other expression languages such as XPath.
In Composer’s case, this allows you to use the Novell-supplied method XPath()
on a DOM to address various elements within its document structure.

http://www.ecma.ch/
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html

Custom Scripting and XPath Logic in exteNd Composer 335

Another useful aspect of Composer’s ECMAScript binding is its inclusion of file-
I/O extensions (which are not a part of the core language). Using custom scripts,
you can easily read or write scratch files, persist information to disk, or perform
other common file-access tasks.

Composer’s ECMAScript binding also includes database extensions that permit
programmatic access to databases via JDBC. SQL statements can be passed as
strings and executed against any database to which a connection can be defined.

How Scripting Is Exposed in Composer’s User
Interface

Composer offers access to ECMAScript in many parts of the component editor
user interface, as described throughout this Guide. The most common form of
access is through the Expression Builder, which can be entered whenever you see
this icon:

This icon can be found in many Composer dialogs, such as the Map Action dialog,
Connection Resource dialogs, etc. If you click this icon, you bring up a dialog
similar to the following.

Novell exteNd Composer User’s Guide336

The Expression Builder dialog provides pick-lists of available objects, methods,
and properties in the top panes (all of which are resizable), with rollover tool tips
to help you build ECMAScript statements. Doubleclicking any item in any
picktree will cause a corresponding ECMAScript statement to appear in the small
edit pane in the lower portion of the window. In the example shown above, the
DOM picktree corresponding to PROJECT has been opened in the Variables pane,
and the node at

USERCONFIG/PROJECT_CONFIG/DESIGNER_EMULATION_MODE

has been doubleclicked. The ECMAScript expression that can access the contents
of this node in the PROJECT DOM appears automatically in the edit pane.

In the window’s button bar, there is a Validate button. Clicking this button will
result in the ECMAScript interpreter syntax-checking your expression(s) in real
time. If there are problems involving ECMAScript syntax, you will see an error
dialog immediately. You can then edit the expression(s) and revalidate as needed.
(Validation is, however, optional.)

NOTE: The Validate process does not execute your expression(s). It merely
checks syntax.

Expressions for Dynamic Parameter Values

Each Composer action typically requires one or more parameters needed to
perform the action. Wherever possible, Composer allows you to substitute
ECMAScript expressions for these parameters. You can enter a static string, or an
expression, or a series of expressions separated by semicolons. Since expressions
are evaluated at runtime, this enables you to defer the choice of a parameter value
until execution. This kind of late binding of parameter values is essential in cases
where input values simply aren’t known in advance.

Example: You might choose to hard -code a static string value for a Send Mail
action’s Recipient parameter. But you could also use ECMAScript to construct an
e-mail address from data inside an incoming XML document, creating a flexible
data-driven action with the ability to provide customization based on runtime
knowledge.

Most of Composer’s actions accept ECMAScript expressions for parameter
values. In most cases, an XPath expression is also accepted. You will usually be
able to choose from two radio buttons, labelled “XPath” and “Expression.” To
access the ECMAScript Expression Builder, choose the Expression radio button
and click the small Expression Builder icon next to the text field where the
parameter value should appear.

Custom Scripting and XPath Logic in exteNd Composer 337

Custom Script Libraries

ECMAScript is also integrated into Composer as a general resource called Custom
Scripts. The Custom Script resource provides an editing environment for creating
custom ECMAScript functions, which you can run and debug with a command-
line evaluator right inside the editor. The script editor also provides access to
sample XML documents (DOM trees) and has a Java class browser so that you can
easily write scripts that bridge to custom Java code. You can save libraries of
custom scripts as Custom Script resources and see them listed in the instance pane
of Composer’s navigation frame. Also, when you’ve assembled custom functions
into a Custom Script Resource, they automatically appear in all Expression
Builder dialog pick-lists.

See “About XSD Resources” on page 326 for more detailed information about
Custom Script resources and the script editor.

Function Actions

Another way in which ECMAScript functionality is exposed in Composer is
through the Function Action, which is one of the core actions available in all
component editors. You can insert a Function Action anywhere in your action
model, to initialize variables, call custom functions, etc. One of the handiest uses
of the Function Action is as a debugging aid. You can call the built-in alert()
function with any string argument (the content of a DOM node, for example) in
order to inspect the contents of a parameter value before and after an action or
block of actions. The alert() function will bring up a dialog showing the string.

NOTE: For obvious reasons, you should disable alert() calls prior to
deployment. This is strictly a design-time method with no applicability to the server
environment.

See “The Function Action” on page 160 for information on how to create and use
Function actions.

ECMAScript Access from XPath
Some dialog fields require an XPath expression. But in some instances, you may
find that you prefer the greater expressivity of ECMAScript over XPath, or your
logic requirements may not be accommodated by XPath’s relatively limited set of
built-in functions. In cases of this sort, you can still use ECMAScript: Access to
ECMAScript is available, in any field requiring XPath, via the userfunc
namespace.

For example, let’s say you’ve defined your own custom ECMAScript function
called getTotal():

Novell exteNd Composer User’s Guide338

function getTotal(a,b) {

return Number(a) + Number(b);

}

You could define this function either in a Custom Script resource in your project,
or inside a Function Action.

Suppose you want to call this function from an XPath statement, passing (as
arguments) values stored in two DOM nodes given by ORDER/SUBTOTAL and
ORDER/TAX. Here is how you would write the XPath:

userfunc:getTotal(ORDER/SUBTOTAL,ORDER/TAX)

Here is how this call might look in an XML Map Action dialog:

XPath Access from ECMAScript
Just as you can reach ECMAScript functions from XPath, you can also obtain
node objects, node data values, etc.via ECMAScript. Composer offers a variety of
ECMAScript extensions for manipulating DOM elements (discussed further
below). Probably the most often-used of these extensions is the XPath() method,
which takes an XPath-style path string as the sole argument:

var taxNode = Input.XPath(“ORDER/TAX”);

var taxAmt = taxNode.toString() * 1;

Custom Scripting and XPath Logic in exteNd Composer 339

Notice that the XPath() method, which is parented off a DOM root (in this case,
Input), always returns a node object, not the node’s value. To obtain the node’s
data value, apply the core-language ECMAScript method toString() to it. If
the resulting string value will be used as a number, cast it to a number either by
wrapping it in ECMAScript’s Number() constructor or by multiplying by one (as
shown).

NOTE: The most common error when using the XPath() method is to assume
that it returns a data value (string, number, etc.), when in fact it returns a or node
list. Use item(0).toString() to obtain the data value from the first node object
in the returned node list.

Scope of Custom Script Functions and Variables
Functions stored in Custom Script resources are available to any component or
service in your project, at any point in any action model. (Note, however, that after
you’ve written a custom function, the associated Custom Script resource must be
Saved before the function is available to a component.)

Global variables within Custom Script resources (that is, variables declared
outside of custom functions) are visible only to Custom Script resource functions
that use the variable(s). In other words, if you declare a variable, myVariable,
inside a Custom Resource called myFunctions, only the functions within
myFunctions will be able to see and use myVariable.

Variables declared within a component’s action model are scoped to the
component. That is, a variable declared at the top of an action model (in a Function
Action) is visible to any action downstream of the declaration, and lives for the
lifetime of the component, but that variable is not available to external
components.

To achieve inter-service scope of variables, use the putSessionValue() and
getSessionValue() methods described further below, in the section titled
“Component (xObject)” on page 354.

Looking at an ECMAScript Example
Inside the body of any custom function, you can treat a DOM as an ECMAScript
object and call valid methods on the object—such as toString(), which writes
the DOM out to a string as text.

NOTE: In addition to custom functions, all of the standard built-in ECMAScript
objects (Array, Boolean, Date, Function, Math, Object, Number, RegExp, String,
and the top-level Global object), and their associated methods and properties, can
be accessed from your expressions.

Novell exteNd Composer User’s Guide340

An example of a custom ECMAScript expression that you might use in a Function
action is:

var onHand = Input.XPath("INVENTORYSTATUS/ONHAND");

if (Number(onHand) < 10)

 Output.XPath("PRODUCTRESPONSE/INVENTORYSTATUS") =

"Time to reorder";

This script says to check the value in the Input DOM at the
INVENTORYSTATUS/ONHAND element node, and if it is less than 10, map the
string “Time to reorder” to the Output DOM at element
PRODUCTRESPONSE/INVENTORYSTATUS.

Note that in accordance with ECMAScript syntax rules, no data-type label need be
included in the declaration of the local variable onHand. The value retrieved in
onHand is likely to be a string, however. To cast it to a number, we apply the core
ECMAScript Number() function to it. This permits us to use the less-than
operator inside the conditional.

It’s entirely possible, of course, that onHand might end up being assigned a value
(such as an empty string) that cannot be cast to a number, in which case Number()
will return the problematic value NaN, which will then cause our conditional to
generate an exception. In order to handle this possibility without generating the
exception, one could do:

if (!isNaN(Number(onHand))) ?

if (Number(onHand) < 10)

[code here]

The isNaN() method is a core ECMAScript-language method which checks for
“numberness.”

As an alternative to the isNaN() tactic, one could wrap the example code in a
try/catch statement and handle any exception in the catch block. (The try/catch
construct is supported by ECMAScript.)

NOTE: For more ECMAScript examples, open (or import into your project) any of
the Custom Script resources included in the sample Composer project called
“Expressions.”

Custom Scripting and XPath Logic in exteNd Composer 341

Performance Considerations

ECMAScript is an interpreted language, which means that every line of script in
an expression must be parsed and translated to the Java equivalent before it can be
executed. This adds considerable overhead to the code and results in overall
slower execution of scripts than pure Java. Before using ECMAScript extensively
in your components and services, you should think about the possible
performance ramifications.

The following guidelines will help you achieve optimal performance in your
components and services:

Whenever a logical task can be accomplished using one of Composer’s
built-in Action types, you should implement the task in terms of ordinary
actions so that the majority of your logic runs in Java.

When a task can’t be accomplished using actions, consider whether it can be
accomplished via the use of a custom Java class (which you can call from
ECMAScript).

In cases where you either can’t perform a task in terms of actions or you
need the fine control offered by scripting, use ECMAScript.

Bear in mind that the key to good performance is always a good implementation:
choosing the correct algorithm, attention to reuse of variables, etc. Good code
written in a slow language will often outperform bad code written in a fast
language. Writing something in Java does not guarantee that it will be faster than
the equivalent logic written in ECMAScript, because Java has its own overhead
constraints involving, for example, constructor call-chains. (When you call a
constructor for a Java object that inherits from other objects, the constructors for
all ancestral objects are also called.)

ECMAScript’s core objects (String, Array, Date, etc.) have many built-in
convenience methods for data manipulation, formatting, parsing, sorting,
interconversion of strings and arrays, etc. These methods are implemented in
highly optimized Java code inside the interpreter. It is to your advantage to use
these methods whenever possible, rather than “roll your own” data-parsing or
formatting functions. For example, suppose you want to break a long string into
substrings, based on the occurrence of a delimiter. You could create a loop that
uses the String methods indexOf() and substring() to parse out the
substrings and assign them to slots in an array. But this would be a very inefficient
technique when you could simply do:

var myArrayOfSubstrings = bigString.split(delimiter);

Novell exteNd Composer User’s Guide342

The ECMAScript String method split() breaks a string into an array of
substrings based on whatever delimiter value you supply. It executes in native
Java and requires the interpreter to interpret only one line of script. Trying to do
the same thing with a loop that iteratively calls indexOf() and substring()
would involve a great deal of needless interpreter and function-call overhead, with
the attendant performance hit.

Skillful use of built-in ECMAScript methods will pay worthwhile performance
dividends. If you will be using scripts extensively, take time to learn about the fine
points of the ECMAScript language, because this can help you eliminate
performance bottlenecks.

What Is XPath?
XPath is the W3C standard that describes a syntax for addressing or locating
content within an XML document. XPath also provides a lightweight expression
language for manipulation of strings, numbers and booleans, so that users can
exercise fine control over the harvesting and aggregation of XML data.

XPath models an XML document as a tree of nodes with parents and children. The
nodes include element nodes, attribute nodes and text nodes. XPath uses an
addressing scheme that resembles the directory/file path-specification
conventions of some file systems, in that a slash separates parents from children.
The following familiar constructs apply:

/ (forward slash) – a separator between a parent and child element in the tree

. (dot) – the current location in the tree

.. (dot dot) – the parent location in the tree

An XPath address is often called an expression and is evaluated in reference to a
context. A context in Composer is usually a DOM such as Input, Input1, Input(n),
Temp or Output. A context in Composer can also be a Group name which itself is
simply an alias or shorthand for an XPath expression.

Who Is the Target Audience for XPath?

XPath is intended to be used by all users of Composer for almost all tasks needed
in processing XML documents. In some cases, as a programmer, you may find
XPath insufficient in its addressing capabilities. In these cases, you may choose
instead to use the more granular DOM methods, (described in “About DOMs” on
page 358) for addressing an XML document. If XPath and DOM both prove
inadequate then you can always choose to process an XML document directly
with a Java program.

Custom Scripting and XPath Logic in exteNd Composer 343

When Would I Want to Use XPath?

You can use XPath expressions whenever you want to reference an element (or
attribute) or group of elements (attributes) in an XML document. In particular, you
will use XPath expressions frequently in Map actions in order to specify inputs
and outputs for data transfer between XML documents. You will also use XPath in
Group declarations (which create a list of tree nodes matching an XPath
expression) and Repeat for Element actions, which create an alias name for a
repeating pattern of elements in a document.

You can also use XPath expressions in the custom ECMAScript expressions you
create. Composer provides a special bridge method called XPath() that allows
you to use XPath expressions within ECMAScript functions. A typical syntax is:

Input.XPath(“ROOT/PARENT/CHILD”)

Notice that the XPath() method is parented off the DOM object, which in this
example is named Input. Also notice that the argument to XPath() is a string. (It
can be either a literal, static string, or a string variable.)

How Is XPath Integrated into Composer?

XPath is the fundamental addressing mechanism in Composer. It is integrated
directly into Composer via the dialogs for such actions as Map, Repeat for
Element, and Group (plus many others). In these actions, an XPath is specified as
two parts: a context and an expression. The XPath context represents the “base
address,” relative to which evaluation of the rest of the expression should occur. In
most cases this is simply the name of a DOM (Input, Input1, Temp, Output, etc.),
which represents the root in an XML document (i.e., the Document object).

The expression part of an XPath specifies, in top-down order, the chain of
elements that leads to the node (or list of nodes) to be processed.

An XPath is created in Composer automatically by Map actions created via drag
and drop. You can specify XPath expressions yourself in Map Action dialogs
using the XPath Expression Builder, which provides pick-lists of valid XPath
statements. You can access the XPath expression builder by pressing the
Expression Builder button (shown below) whenever the XPath radio button is
selected in a dialog.

Composer integrates XPath with ECMAScript by the special method .XPath().
This allows you to address parts of an XML document using XPath syntax within
the ECMAScript language.

Expression Builder icon

Novell exteNd Composer User’s Guide344

Composer also provides the concept of groups in conjunction with XPath. When
you declare a group name, it is associated with an XPath pattern that occurs
multiple times in a document. This results in two special lists of nodes in the tree.
The first list is a Group containing one entry for each unique node value found in
the XML document based on the pattern. You can then set up a Repeat for Group
loop that processes actions once for each group.

The second list is a Group(Detail) containing one entry for each member of each
group (unique or not). You can then set up a Repeat for Group loop that processes
actions once for each group member

Looking at an XPath Example

XPath in the Map Action

In the above example, the context is the “Input” DOM. The XPath expression is
INVOICEBATCH/INVOICE/INVOICEHEAD/INVOICENO, specifying the
element location of INVOICE NO as a child of INVOICEHEAD, which is a child
of INVOICE, which is a child of INVOICEBATCH.

XPath in ECMAScript

Custom Scripting and XPath Logic in exteNd Composer 345

In the above example, the context is the XML document object “Input1” which
uses the method “.XPath()” to specify a location of
INVENTORY_STATUS/SKU and convert it to a text string (source XML). This
text string object can then be manipulated using ECMAScript methods.

XPath in Groups

In the above example, the group name “srgSELLERNAME,” creates a list of
nodes based on the unique data values in the XPath
“$Input/INVOICEBATCH/INVOICE/SELLERNAME.” This list of unique
nodes can then be processed by a Repeat for Group loop action to map data based
on the unique group values instead of the individual values of each member of
each group.

XPath Functions
By way of augmenting XPath’s literal-addressing capabilities, XPath’s designers
built an expression language into the specification, to allow sophisticated
filtering, introspection, and aggregation of node sets. XPath, in fact, predefines
more than two dozen convenience functions (see Table 10-2) that natively
recognize four data types: string, number, boolean, and node-set. The use of these
functions in conjunction with ordinary XPath addressing gives the XML
developer a powerful tool for manipulating XML data.

Table 10-2 Note that all of these functions are exposed in Composer’s
Expression Builders, complete with rollover (tooltip) help.

XPath Functions

Node-Set Functions

number last()

Novell exteNd Composer User’s Guide346

number position()

number count(node-set)

node-set id(object)

string local-name(node-set)

string namespace-uri(node-set)

String Functions

string name(node-set)

string string(object)

string concat(string, string, string*)

boolean starts-with(string, string)

boolean contains(string, string)

string substring-before(string, string)

string substring-after(string, string)

string substring(string, number, number)

number string-length(string)

string translate(string, string, string)

Boolean Functions

boolean boolean(object)

boolean not(boolean)

boolean true()

boolean false()

boolean lang(string

Number Functions

number number(object)

number sum(node-set) .

Table 10-2 Note that all of these functions are exposed in Composer’s
Expression Builders, complete with rollover (tooltip) help.

XPath Functions

Custom Scripting and XPath Logic in exteNd Composer 347

While a detailed discussion of the use of XPath functions is beyond the scope of
this Guide (see instead the complete XPath specification at
http://www.w3.org/TR/xpath), a few quick examples will illustrate the power and
elegance of the XPath expression language:

number floor(number)

number ceiling(number)

number round(number)

Table 10-3

XPath Expression Meaning

//* The node set consisting of all
nodes in the document

count(//*) The number of nodes in the
document

count(//*[contains(name(),'myNode
')])

The number of nodes in the
document whose name contains
the (sub)string “myNode”

name(//*) From the set of all nodes, find the
name of the first node of the
document, in document order.
(That is, find the root node’s
name.)

//*[name()='myNode']/@* Starting with the set of all nodes,
find a node whose name is
“myNode” and obtain the value of
the first attribute under that node,
in node order.

name(//*[name()='myNode']/@*) Obtain the name of the first
attribute node found in the node
‘myNode’

Table 10-2 Note that all of these functions are exposed in Composer’s
Expression Builders, complete with rollover (tooltip) help.

XPath Functions

Novell exteNd Composer User’s Guide348

For more XPath examples, see the “Action Examples” project that ships with
Composer.

Documentation Resources for XPath

You can find detailed information regarding XPath at the following Web
site: http://www.w3.org/TR/xpath.

The W3C XML Path Language (XPath) documentation is also provided in
the \Docs directory of your exteNd Composer installation.

About XSL
The following section describes writing custom scripts that use XSL .

What is XSL?

Extensible Stylesheet Language is a language for transforming XML documents
into other kinds of documents.As a stylesheet language, XSL includes an XML
vocabulary for specifying formatting.

Unlike HTML, element names in XML have no intrinsic presentation semantics.
Without a stylesheet, an XML delivery process has no way of knowing how to
render the content of an XML document other than as an undifferentiated string of
characters. XSL provides a comprehensive model and a vocabulary for writing
understandable stylesheets using an XML syntax.

The functionality of XSL is augmented by XSLT (XSL Transformations), which
is a non-presentation-oriented transformation language for manipulating XML
structure. XSLT makes use of the expression language defined by XPath for
selecting elements for filtering, conditional processing, and generating string
values either supplied from a source XML document or by the stylesheet author.

concat(//*[name()='myNode4']/@*,'
is what was found')

Combine the value stored in the
first attribute that occurs under
the element “myNode4” with the
string “ is what was found”.

Table 10-3

XPath Expression Meaning

http://www.w3.org/TR/xpath

Custom Scripting and XPath Logic in exteNd Composer 349

Who is the Target Audience for XSL?

Users who are interested in XSL are webmasters, eCommerce site builders, portal
builders, and anyone else in need of a graphical representation of XML documents
as part of business-to-business transactions.

Given an XML document, designers can use an XSL stylesheet to express how
that structured content should be presented; in other words, how the source
content should be styled, laid out, and/or paginated onto some presentation
medium, such as a window in a Web browser or a hand-held device, or a set of
physical pages in a catalog, report, pamphlet, or book.

When Would I want to Use XSL?

XSL is designed to permit XML delivery devices to display XML in a way that is
meaningful to humans. XML data exchanges often involve user interactions—
Web shopping experiences, data auditing, notifications, and other XML uses
requiring a graphical display of data. In short, you would use XSL whenever you
need to make XML presentation-enabled.

How is XSL Integrated into Composer?

XSL is integrated into Composer by means of the XSL Transform Action, which
is available in all components. To use the action, you need to specify parameters
for a source DOM, an XSL Stylesheet, and a destination DOM (e.g., Temp or
Output). See the next section for an illustration.

Composer also provides special XSL methods for use in Custom Scripts or
Function Actions:

transformNodeViaDOM()
transformNodeToObject(,)
transformNodeViaXSLURL()

See the API descriptions further below for details on these methods.

Web services that you create using exteNd can also be set up to output XSL-
transformed XML directly as HTML. See the Deployment chapter in the exteNd
Composer Enterprise Server Guide for your particular app server platform for
more information on deployment to HTML using Processing Instructions.

Looking at an XSL Example

The Process XSL action shown below uses the XSL stylesheet specified in the
XSL URL field to transform the input Part, placing the result into an XML
element called “MyHTML” in the output doc.

Novell exteNd Composer User’s Guide350

For additional examples of how to use XSL, be sure to see the “Action Examples”
project in your Composer installation.

Resources for XSL

You can find detailed information regarding XSL at the following WEB site:
http://www.w3.org/TR/xsl

XSL documentation (from W3C) is also provided in the \Docs directory in
your Composer installation hierarchy.

For working examples in Composer, see the “Action Examples” project in
your Composer installation.

About Novell Scripting Extensions
The Novell extensions to ECMAScript consist of a set of convenience methods for
general purpose scripting involving xObjects, DOMs, and other Composer
objects. All of the methods are exposed in the Expression Builder pick-lists. An
introduction to the API is given below.

General Purpose Extensions

The general purpose extensions are categorized by the type of objects they operate
on and consist of the following:

http://www.w3.org/TR/xsl

Custom Scripting and XPath Logic in exteNd Composer 351

Node

XML—This property returns a string representing the DOM.

createXPath(XPathType asPattern)—Creates the XPath pattern.

getXML ()—This property returns a string representing the DOM.

Document

text—This property returns a concatenated string of all the text nodes (content)
under it.

setDTD(node RootElementName, object PublicName, object URL)—
Sets DTD file for the document.

setValue(Object aValue)—Sets the Value of a Document from the passed
object, if it is in another document, then this method copies child nodes (elements
and attributes). If passed object is text, it is parsed to create a DOM.

toString()—Converts a DOM document to an XML formatted string.

transformNodeViaDOM(XSLDOM)—Transforms the document according to the
XSLDOM and returns a string. The parameter XSLDOM is an XSL stylesheet,
that may have been read into the component by an XML Interchange Action. This
method could be used in the source of a Map Action, or call it in a Servlet using
the Server Framework class IGXSXSLProcessor.

transformNodeToObject(XSLDOM, OutputDOM)—Transforms the
document according to the XSLDOM and returns results to Output DOM. The
parameter XSLDOM is an XSL stylesheet that may have been read into the
component by an XML Interchange Action. The parameter Output DOM is the
target DOM for the results. From a component, this method could be in a Function
Action, or from a Custom Script, you can use it once you have all three DOMs, or
call it in a Servlet, using the Server Framework class IGXSXSLProcessor.

transformNodeViaXSLURL(XSLURLLocation)—Transforms the document
according to the XSLURLLocation and returns a string. The parameter
XSLURLLocation is an XSL stylesheet. This method could be used in the Source
of a Map Action, or from a Custom Script you can use it once you have a DOM,
or call it in a Servlet using the Server Framework class IGXSXSLProcessor.

Novell exteNd Composer User’s Guide352

validate()—XPathTypes can be of type NodeList, String, Number, or Boolean.
Usually used to return a Nodelist matching the XPath pattern. Use brackets to
select a particular node from the list
[e.g.,.Input.XPath("INVOICE/LINEITEM[1]") or
Input.XPath("INVOICE/LINEITEM[last()]")]. Use the @ to select a node by
attribute (e.g. Input.XPath("INVOICE/LINEITEM[@myattr]"). To select by
attribute value...Input.XPath("INVOICE/LINEITEM[@myattr='abc']").

Nodelist XPath(XPathType asPattern)—XPathTypes can be of type
NodeList, String, Number, or Boolean. Usually used to return a Nodelist matching
the XPath pattern. Use brackets to select a particular node from the list
[e.g.,Input.XPath("INVOICE/LINEITEM[1]") or
Input.XPath("INVOICE/LINEITEM[last()]")]. Use the @ to select a node by
attribute [e.g. Input.XPath("INVOICE/LINEITEM[@myattr]")] To select by
attribute value...Input.XPath("INVOICE/LINEITEM[@myattr='abc']").

Element

text—This property returns the concatenated text of all the text nodes under it.

booleanValue()—Returns the boolean value (true | false) of this object if
possible.

countOfElement(String propertyName)—Returns a count of the named
child.

doubleValue()—Returns a double value for this object if possible.

exists(String propertyName)—Check for the existence of the named child.

getIndex()—Returns back the current index.

getParent()—Returns the parent element.

setIndex(int aiIndex)—Sets the iterator index value for this element.

setText(String asText)—Sets the text node associated with this element.

setValue(Object aValue)—Sets the Value of an Element from the passed
object, if it is another element then this method copies child nodes also (elements
and attributes).

toNumber()—Gets the text node and converts it to a number.

toString()—Gets the text node associated with this element.

Custom Scripting and XPath Logic in exteNd Composer 353

Nodelist XPath(XPathType asPattern)—XPathTypes can be of type
NodeList, String, Number, or Boolean. Usually used to return a Nodelist matching
the XPath pattern. Use brackets to select a particular node from the list, e.g.,
Input.XPath("INVOICE/LINEITEM[1]")
or\nInput.XPath("INVOICE/LINEITEM[last()]"). Use the @ to select a node by
attribute, e.g., Input.XPath("INVOICE/LINEITEM[@myattr]") To select by
attribute value...\nInput.XPath("INVOICE/LINEITEM[@myattr='abc']").

Attribute

text—This property returns the text value of the attribute.

setValue(Object aValue)—Sets the Value of an Attribute from the passed
object.

toString()—Gets the text node associated with this attribute.

Nodelist

avg(NodeList)—Returns a number equal to the average value in the NodeList.
The NodeList parameter of type XPath. If no parameter is supplied, then the
current NodeList/GroupName is used.

count([NodeList])—Returns a number equal to a count of the nodes in the
NodeList. The optional NodeList parameter is of type XPath. If no parameter is
supplied (the usual case), then the current NodeList/GroupName is used.

min([NodeList])—Returns a number equal to the lowest value in the
NodeList. The NodeList parameter of type XPath. If no parameter is supplied,
then the current NodeList/GroupName is used.

max([NodeList])—Returns a number equal to the highest value in the
NodeList. The NodeList parameter of type XPath. If no parameter is supplied,
then the current NodeList/GroupName is used.

sum([NodeList])—Returns a number equal to the sum of the values in
NodeList. The NodeList parameter of type XPath. If no parameter is supplied,
then the current NodeList/GroupName is used.

where(XPathType asPattern)—Gets a NodeList of nodes matching the XPath
pattern.

Novell exteNd Composer User’s Guide354

Component (xObject)

An object called theComponent is exposed within each Composer component
via the Expression Builder. (You can open the Expression Builder window by
clicking the Expression icon in any Function action, Map action, or other dialog in
which the icon appears.) The component-based methods are exposed in the pick-
list under Extended ECMAScript/Component, as shown below.

The object called Component has the following methods:

getName()—Returns the name of the currently executing component. To obtain
the name of the currently executing component, you would call:

Component.getName()

exportObject(key,value)—Allows you to store a reference to any
ECMAScript variable or Java object in a hash table so that other components
within a given service can look up the object and use it. (Otherwise, user variables
are scoped to the component in which they are declared and cannot be seen by
other components.) For example, suppose you have created a variable,
testString, and you wish to make it available to other components in the same
service:

// create an instance of the string:
testString = 'hello';

// now export it:
theComponent.exportObject("myExport", testString)

Custom Scripting and XPath Logic in exteNd Composer 355

Note that the hash key “myExport” is simply any arbitrary name. Other
components will need to use this name to look up the exported object
(testString). Within another component, you can do:

var copyOfString = theComponent.getExportValue("myExport");

The component that executes this code will then have access to the string
'hello' that was in the variable testString within the other component.

It is important to understand that variables or objects exported in this fashion are
scoped to the service instance in which they are created. This means:

When the service ends, the exported objects go out of scope.

Only components that run within the given service can “see” exported
variables.

NOTE: To achieve inter-service scope of session variables, use the
putSessionValue() and getSessionValue() methods described further
below.

It is also important to understand that at design time, exported variables will not
be in scope (will not be usable) unless the service or component that created them
is itself running. Suppose Service A creates a variable myVar and exports it as
'myExportedVariable'. Service A calls (executes) Component B. Inside
Component B is a Function Action that looks up the exported variable:

theVar = theComponent.getExportValue('myExportedVariable’)

In order for theVar to contain the correct value, Service A must already be
running and it must already have exported myVar. In other words, if you merely
animate Component B without running Service A, you’ll encounter a problem
since myVar is not in scope. The correct thing to do is to begin your animation
from Service A. Step through Service A until you reach the Component Action
that executes Component B. Use the Step Into button to step into the action model
for Component B. Then step through Component B. This way, both A and B are in
scope at the same time and any exported variables will be usable.

getExportValue(key)—Allows you to access a reference to any ECMAScript
variable or Java object that was previously exported by another component. (See
discussion above.)

Novell exteNd Composer User’s Guide356

putSessionValue(key,value)—Allows you to store a reference to a Java
object in a global variable so that it can be referenced from any other service or
component running in the same servlet session (which may span many HTTP
hits). Objects published in this fashion have servlet-level scope. (Session life is
dependent on the HTTP Server Session timeouts.) The first argument is a String
representing the name for the published object. The first argument is a String
representing the name you wish to associated with the published object. The
second argument is the object. (The syntax follows the convention for
exportObject, shown above.)

NOTE: This method will generate an exception if it is used in a Web Service that
was deployed using an EJB. Also, this method cannot be used in a JMS Service.

getSessionValue(key)—Allows you to obtain a reference to a Java object
that was previously published via the putSessionValue() method (above).
This method will return null if no object matching the key is found; otherwise, it
returns an Object.

NOTE: This method will generate an exception if it is used in a Web Service that
was deployed using an EJB. Also, this method cannot be used in a JMS Service.

removeSessionValue(key)—Allows you to destroy a reference to a Java
object that was previously published via the putSessionValue() method
(above).

NOTE: This method will generate an exception if it is used in a Web Service that
was deployed using an EJB. Also, this method cannot be used in a JMS Service.

LDAP Methods

getLDAPAttr(String connResource, String dn, String attr)—
Looks up a value stored in a particular attribute of a named object in an LDAP
directory, using the connection resource whose name is supplied in the first
argument. The second argument is the object’s LDAP distinguished name. The
third arg is the attribute of interest. The value returned may be numeric or String
data. Use ECMAScript’s typeof operator to determine if the value is of type
“number” versus type “string.”

The getLDAPAttr() method is available for use in any component, service, or
connection resource, whenever ECMAScript can be used. (In other words, its use
is not limited to LDAP Components.) Other ECMAScript extension methods
involving LDAP are available only within the LDAP Component editor. See the
separate LDAP Connect User’s Guide for more information on those methods.

Custom Scripting and XPath Logic in exteNd Composer 357

Connector-Specific Extensions

Additional custom ECMAScript objects and methods beyond those described here
are available in conjunction with most Connect products for exteNd. (For
example, JMS-specific methods are available for use in components and services
created using the JMS Connector.)

Consult the appropriate Connect documentation for details about connector-
specific ECMAScript objects and methods.

When Would I Want to Use Novell Scripting Extensions?

Use Composer’s general purpose extensions wherever you find them helpful and
/or where they are more robust than similar methods in XPath, DOM or XSL.

You might want to use some of Composer’s grouping or aggregation-related
extensions when you want to summarize common data that repeats but is scattered
about an XML file. For instance, an XML file may arrive with 50 randomly
organized invoices, generated by only seven departments in your organization.
Using Composer’s grouping capability and group-oriented methods, you can
easily organize the 50 invoices by the departments and summarize “invoice totals”
across each group.

How Are Novell Scripting Extensions Integrated into Composer?

The general purpose extensions are built right into ECMAScript and appear on the
Expression builder pick-lists alongside other objects, properties and methods.

Composer’s Group action is used to specify Groups by simply clicking a pick-list
to generate an XPath pattern that forms the basis for the group. There is a Repeat
for Group Action that allows you to process a set of actions for each member of
the Group or Group(Detail). The aggregate calculation methods are available in
the ECMAScript Expression Builder in the Map dialog.

The types of actions described here are available in all Connect component types.

Extension Code Examples

See the “Action Examples” project in the \Samples directory of your exteNd
Composer installation for examples of how to use ECMAScript in Composer to
accomplish a wide variety of tasks.

Novell exteNd Composer User’s Guide358

About DOMs

What is DOM?

The Document Object Model is an interface that allows programs and scripts to
dynamically access and update the content, structure and style of XML
documents. W3C’s Document Object Model (DOM) is a standard internal
representation of an XML document structure inside a software program and aims
to make it easy for programmers to access elements, attributes and data and delete,
add or edit their content and style.

What Does a DOM Do? What are the Key Features?

The DOM defines a set of standard methods and properties for creating and
operating on XML documents programmatically as objects. It provides methods
for manipulating all parts of an XML document including Elements, Attributes,
Text, Processing Instructions, etc.

The DOM also provides a set of methods for addressing or locating nodes in an
XML document.

Who is the Target Audience for DOM Methods?

The DOM methods and programming model is targeted at professional developers
who need absolute control over DOM manipulation. Working with DOM methods
gives developers control over primitive operations involved in constructing and
manipulating DOMs. A simple Map action in Composer might translate to tens of
lines of ECMAScript/DOM instructions.

When Would I Want to Use DOM Methods?

You may wish to use DOM methods when the basic Composer actions combined
with ECMAScript functionality cannot meet your XML document processing
needs.

How Are DOM Methods Integrated into Composer?

The methods and properties of the DOM for manipulating Composer DOMs are
available only in the Custom Script editor or ECMAScript expression builder in
Actions. You can access the ECMAScript Expression builder by pressing the
expression builder button (shown below) whenever the Expression radio button is
selected in a dialog.

Custom Scripting and XPath Logic in exteNd Composer 359

Looking at a DOM Methods Example

See the Custom Script function titled dbIOtoDOM() in the Database.es file
in the directory..\exteNd\Samples\CustomScripts.

See the sample project “Expressions” for a full treatment of all the DOM
methods/objects.

Documentation Resources for DOMS

You can find detailed information regarding DOM at the following WEB
site: http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/

The complete Document Object Model (DOM) Level 2 Specification
documentation is provided in the exteNd\Docs directory

About Java Integration
Java is more than merely a programming language. It’s a computing platform
designed to allow the same software to run on different kinds of devices: PCs,
Unix workstations, wireless devices, handheld computers, consumer electronics,
and embedded systems of various kinds. Using networks, it is possible to create
distributed applications using Java that tie together diverse devices into a single
working application.

In addition to being a computing platform in its own right, Java is a robust, object-
oriented computer language that forms the basis of the Java 2 Enterprise Edition
(J2EE) computing architecture, which is increasingly preferred by IT
organizations because of its adaptability, robustness, platform neutrality, and track
record of successful adoption by large companies. J2EE is also firmly connected
to emerging standards in the areas of XML and Web Services, which makes Java
an ideal enterprise-programming language.

How Is Java Accessible in exteNd Composer?

Java is integrated into Composer services through the ECMAScript scripting
environment, which provides a direct bridge to external Java objects. Composer
provides a Java class browser in the Custom Script editor with drag-and-drop
functionality, enabling you to quickly integrate Java objects and use their
constructors, properties, and methods within your scripts.

http://www.w3.org/DOM/

Novell exteNd Composer User’s Guide360

When Should You Use Java?

Most Composer users will be able to achieve their Web Services and XML
integration objectives without needing to augment Composer’s native
functionality through the use of custom Java classes. Nevertheless, there are
situations where it may be desirable to integrate Java objects into exteNd. For
example:

You want to access (reuse) existing Java business objects, some of which
may access data in other computing environments or programs

You want to provide an XML interface to your own Java business objects

You need to perform complex manipulations of XML documents that are
more effectively handled by Java than with Composer actions or
ECMAScript

You’ve prototyped a concept using ECMAScript and now want (for
reusability and/or performance reasons) to implement the same concept in
Java

Looking at a Java Integration Example

A simple use of Java in an XML application may be to perform a case-insensitive
comparison of data in two XML elements. In this case, you could create a Custom
Script function using the Java string object as follows:

// Case Insensitive Compare, returns 0 if strings are
equal, non-zero if not…

function nonCaseCompare(string1,string2)

{

var s1 = new Packages.java.lang.String(string1);

var s2 = new Packages.java.lang.String(string2);

return s1.compareToIgnoreCase(s2);

}

Then you might use the function in a Decision action to conditionally execute
different actions, as the illustration shows.

Custom Scripting and XPath Logic in exteNd Composer 361

Documentation Resources for Java

You can find detailed and definitive information regarding the Java platform and
the Java programming language at the following Web site: http://java.sun.com

http://java.sun.com
http://java.sun.com

Novell exteNd Composer User’s Guide362

363

11

Applying Actions to Common Tasks

Applying Actions to Common TasksChapter 11

Actions are the atomic units of work in all Composer components. They are
responsible for the control flow and logical constructs that make custom
applications possible. As you might expect, some actions are used more than
others, and certain design patterns reoccur frequently in Web Service applications
created with Composer. This chapter discusses some of the actions and design
patterns you’re most likely to encounter when using Composer.

About the Examples in this Chapter
The exteNd Composer design-side installation includes a few sample projects, one
of which is called ActionExamples.spf. The project contains sample documents
called InvoiceBatch*.xml. This chapter’s examples are based on using the
InvoiceBatch template as Input to XML Map components.

If you’d like to follow along as you read the examples, you can open
ActionExamples.spf from the Composer File menu. The file is located in:

..\exteNdComposer\Samples\ActionExamples\ActionExamples.spf

You can find other Action Model examples like the ones in this chapter in the
Tutorial project.

About Element and Data Mapping
One of the powerful tools in exteNd Composer is element mapping. You can map
elements between DOM trees with different structures, allowing you to pass data
between XML documents.

NOTE: For a summary of the basic mapping behavior in Composer, see the table
“Map Type” on page 169.

Novell exteNd Composer User’s Guide364

Mapping Leaf Elements
Many of the element mappings you create with Composer will be between leaf
elements (terminal nodes) of two DOMs. For instance, you might map a product
SKU in the Input Part to a product part number in the Output Part. When the
service executes, the transfer between the two Parts takes place and the SKUs
from the input XML document are written to the part numbers in the output XML
document.

One method of mapping two leaf elements is to select them in the Input and
Output panes of the XML Map Component Editor and add a Map action.

NOTE: By default, Composer’s Map actions transfer element data, but not
attribute data.

To map leaf elements using the Action menu:

1 Open a component.

2 Select a line in the Action Model pane where you want to place the Map
action. The new Map action will be inserted below the line you selected.

3 In the Input pane, expand the Input Part until you see the leaf element you
want to map.

4 Select the leaf element.

5 Repeat steps 3 and 4 in the Output pane.

6 From the Action menu, select New Action, then Map.

7 When the Map dialog box appears, click OK. The mapping from input
element to output element is created automatically.

You can also use Composer’s drag and drop feature to map an input leaf element
to an output leaf element, as explained next.

To map leaf elements using drag and drop:

1 Open a component.

2 Select a line in the Action Model pane where you want to place the Map
action. The new map action will be inserted below the line you selected.

3 In the Input pane, expand the Input Part until you see the leaf you want to
map.

4 In the Output pane, expand the Output Part until you see the leaf you want to
map.

5 Select the Input leaf element.

Applying Actions to Common Tasks 365

6 While holding the left mouse button down, drag the Input leaf element on
top of the Output leaf element.

7 Release the mouse button. The Map action appears in the Action Model
pane.

Mapping a Parent and its Children (Deep Copy
Mapping)

The second way you can map elements is to map a parent element to the target
Part. When a parent element is mapped, all of its child elements and their attributes
are included in the mapping. For instance, suppose you select a parent element
named Line_Item, and it has child elements that include Item_SKU,
Item_Description, Item_Quanity, and Item_Cost. Suppose you map the
Line_Item element to an element in the Output Part named PO_Line. The
resulting map action transfers the Line_Item element and all its child nodes to
the PO_Line element in Output, retaining the original branch’s structure.

NOTE: The default mapping behavior of Composer’s Map action can be
overridden. See

To map a parent element and all its children:

1 Open a component.

2 Select a line in the Action Model pane where you want to place the Map
action. The new Map action will be inserted below the line you selected.

3 In the Input pane, expand the Input Part until you see the parent element you
want to map.

4 Select the parent element.

5 Repeat steps 3 and 4 in the Output pane.

6 From the Action menu, select New Action then Map.

7 When the Map dialog box appears, click OK.

You can also use Composer’s drag and drop feature to map an input parent element
to an output parent element, as explained in “To map leaf elements using drag and
drop:” on page 364.

The third way to map elements is to map a parent element without its descendant
elements. In essence, you are mapping the high-level data and ignoring the data
and its descendants. For instance, if you map an element named Invoice and it
contains descendant elements, the Output Part will only receive data pertaining to
the invoice element.

Novell exteNd Composer User’s Guide366

To map a parent element without its child elements:

NOTE: Since the default Map action behavior is to transfer descendant elements,
you need to create and apply an ECMAScript method to the element name to map
only the element.

1 Open a component.

2 Select a line in the Action Model pane where you want to place the Map
action. The new Map action is inserted below the line you selected.

3 In the Input pane, expand the Input Part until you see the parent element you
want to map. Select it.

4 Do the same in the Output pane.

5 From the Action menu, select New Action then Map.

6 When the Map dialog box appears, select Expression and click the
Expression builder button in the Source.

7 Type the following in front of the XPath fragment: Input.XPath(“

8 Enter the XPath fragment.

9 Type the following at the end of the XPath fragment: “).toString()

10 Click OK twice.

The following illustration shows a Map action for a parent element without its
child elements.

Applying Actions to Common Tasks 367

Transforming Elements
There will be times when you want to map two elements that have different
formatting. For instance, the element leaf in the Input DOM might be formatted
with four numbers and uppercase characters (1234CAT) while the output element
leaf might be formatted with lowercase characters and six numbers (cat001234).

Composer provides three methods for transforming element formatting so data
can be mapped appropriately between DOMs. The three methods are all available
from the Map Action:

The Content Editor

Code Table Maps

Functions

Transforming Elements With the Content Editor

The Content Editor allows you to change the format and content of the input
element to match that required by the output element. Using the Content Editor,
you can slice the input data into small parts, move the parts to different locations
relative to one another, add new parts, omit some parts, and apply functions to
individual parts.

To access the Content Editor:

1 Open a component.

2 Select the two elements to map from different Parts.

3 From the Action menu, select New Action then Map. The Map dialog box
appears.

Novell exteNd Composer User’s Guide368

4 Click the checkbox beside the Content Editor button. This enables the
Content Editor button.

5 Click the Content Editor button. The Content Editor appears.

6 Optionally click the New Sample button and enter a sample string.

Dismiss the dialog.

7 In the Sample field, move the top slider to the position where you want the
first cut to take place and the bottom slider to the position where you want
the end cut to take place. The sliders determine how to take a substring from
the input data.

8 Click Apply. The substring is copied to the Result field as a separate object.

9 Repeat steps 6 through 8 for each part of the sample you want, in the result
in the order you want. In this way, you can build a new string out of portions
(substrings) of the original input.

To change the format of an object in the Result field:

1 Select an object.

2 Click Modify. The Content Region Modify dialog box appears.

Applying Actions to Common Tasks 369

NOTE: The Start Cut at Character(s) field displays that character in the
string where the first cut will take place. The first Occurrence field displays
when the cut will take place. In the previous illustration, the first cut will take
place at the first occurrence of the letter T. The End Cut at Character(s) field
displays that character in the string where the last cut will take place. The
second Occurrence field displays when the cut will take place. The Offset
field displays the number of characters from the beginning of the original
string where the object will start. The Length fields displays the length of the
object.

3 The Script Expression field supports the ECMAScript expression builder.
Any content region created by the Content Editor can have the full
functionality of the expression builder applied to it.

NOTE: The %r is a local variable representing the content region to which
you would like to apply a function. For example, if you want to apply the
uCase() function to the content region, you would write the Script Expression
as: uCase(%r).

4 You can assign a constant to an object by highlighting it, checking the
Constant box, and typing a constant string.

5 Click OK to apply any format changes.

When you are finished mapping string formats with the Content Editor, click OK
to save the changes and close the Content Editor.

Novell exteNd Composer User’s Guide370

Transforming Elements With Code Tables

Mapping with Code Tables allows you to automatically transform one set of codes
used in the Input Part into another set of codes used on the Output Part. In order
for you to transform elements with Code Tables, you must have already created
Code Tables and Code Table Maps.

To transform elements with Code Tables:

1 Open a component.

2 Select two elements to map.

3 From the Action menu, select New Action then Map. The Map dialog box
appears.

4 Click the checkbox beside the Code Table Map button.

5 Click Code Table. The Code Table Map dialog appears.

Applying Actions to Common Tasks 371

6 Select a Code Table Map.

7 Click OK to assign the Code Table Map.

8 Click OK again to save the Map action.

Transforming Elements With Functions

You might come across situations where the Content Editor is not sufficient to
transform element format structures. For instance, you might want to extract the
month number from a date format (i.e. 5/23) and convert it to the month name
(May 23). You can perform custom transformations by creating ECMAScript and
XPath custom functions and applying them to element expressions.

Composer comes with a library of sample custom script functions organized in the
following categories:

String

Math

File

General

Date

Database

You can import a category of functions from the
\exteNd\Samples\CustomScripts subdirectory.

To apply an ECMAScript custom function to an XPath expression:

1 Open a component.

2 Select an input and output element to map.

3 From the Action menu, select New Action then Map. The Map dialog box
appears.

4 Open the XPath expression builder.

5 Use the pick-lists to navigate to the custom script function you want and
double click.

Novell exteNd Composer User’s Guide372

6 Edit the expression as necessary to make it syntactically correct.

7 Click OK to add the Map action.

NOTE: When transforming element data within a Map action using a function,
make sure that the result of the function returns a fully qualified DOM element
name.

If you want to transform an element’s data outside of a Map action, use the
Function action. See “The Function Action” on page 160.

“Userfunc:” is a bridge Novell extension method that allows you to use
ECMAScript function on XPath expressions. XPath also has limited set of native
functions categorized as Node-set, String, Boolean, and Number. These functions
do not require the use of the userfunc: keyword. For more information, refer to the
“XML Path Language(XPath)” doc provided in the exteNd/Docs/XPath directory.

Using Loops in Action Models
In the chapter on Advanced Actions, you read about the three Repeat actions and
how they are used to perform iterative processing within an Action Model. This
section further explains the Repeat actions and shows how they are used to read,
map, and write data Input and Output Parts.

The Repeat action has three types of loops. They are:

Repeat for Element

Repeat for Group

Applying Actions to Common Tasks 373

Repeat While

The Repeat for Element Action

XML allows multiple instances of an element in a document. The number of
instances can vary from document to document. For instance, you might receive
an XML document containing invoices on a daily basis. Each day the XML
document has a different number of invoices. Not knowing how many instances of
the invoice are in the XML document poses a problem if you want to transfer the
invoice number from each invoice in the input XML document to an output XML
document. The Repeat for Element action solves this problem.

The Repeat for Element action allows you to mark an element that occurs multiple
times. The action then sets up a processing loop that executes one or more actions
for each instance of the marked element until no more exist. In the example above,
the processing loop would contain a single Map action to transfer the invoice
number.

The Repeat for Element processing loop allows you to process more than one
action. In the simplest case, the repeat loop might only contain one Map action that
transfers the value of the current instance from the Input DOM to the Output
DOM. You can also set multiple actions in the processing loop: a Map action to
transfer the current value and a Log action that writes to a file, creating an audit of
each transfer.

The first step in adding a Repeat for Element action is to position the cursor in the
Action Model pane where you want the repeat processing to take place.

To add a Repeat for Element action:

1 Open a component.

2 Select a line in the Action Model pane where you want to place the For
Element Repeat action. The new action is inserted below the line you
selected.

3 In the Input DOM, select the first instance of the element that repeats.

4 Using the context menu, select Repeat for Element. The Repeat for
Element dialog box appears.

Novell exteNd Composer User’s Guide374

5 Type an alias name for the Source element.

6 Accept the default XPath, or select Expression, and type in a valid
expression.

7 Repeat steps 4 through 6 for the Target.

8 Check the Always create new output elements box if you have repeating
actions which should add new elements rather than updating existing ones.

9 Click OK.

Once the Repeat For Element action is created, you can add a Map (or any other)
action within the loop. For instance, to simply transfer the invoice number element
from an input XML document to an output XML document, define a Map action
as shown in the following illustration:

Applying Actions to Common Tasks 375

Notice the use of the repeat alias as the XPath context. The alias is defined in the
Repeat action and resolves to an actual DOM name and path.

The Source field specifies that data from the location in the Input Part
(seINVOICES/INVOICEHEAD/INVOICENO) will be transferred to a location
in the Output Part (teMYINVOICES/INVOICENO).

The Repeat for Element action and the Map action should appear in the Action
Model pane as shown in the next illustration.

The Repeat for Group Action

The format of an XML document that you receive is not always the format that
will meet the requirements of your business process. For instance, an XML
document might contain invoices from different sellers. The data is received as
individual invoices, but in the context of a business-to-business transaction, you
might need to summarize the data and send the summary data to a manager, and at
the same time, send the invoice data to the Accounts Payable department.

Novell exteNd Composer User’s Guide376

A Repeat For Group action allows you to re-structure your data and establish a
framework to calculate aggregates on your data. Grouping allows you to select a
repeating element in your Input Part and create fewer elements based on the
unique values across all instances (siblings) of that repeating element. Instead of
multiple seller elements across the invoices (some with the same seller value), you
end up with one element for each unique seller value in our Output Part.

The Repeat For Group action sets up a processing loop that executes for each
unique value in the group. Once you have one element per seller, you can add Map
actions to the processing loop to calculate how many invoices each seller had. You
can also list the individual invoice numbers beneath each seller. By combining a
Repeat For Group processing loop with Map commands, you can create a new
XML document whose structure and data are different from the original.

To create an action Repeat For Group, you need to complete these three tasks:

Create a group to identify the repeating element.

Create an action Repeat For Group.

Create Map actions inside the loop.

To create a group:

1 Select the element in the Input Part on which you want to repeat.

2 Click the right mouse button and select Declare Group. The Declare Group
Info dialog box appears.

3 In the Group Name field, type in the alias name you wish to use to reference
the group by in your Map actions.

4 If you want to create multiple group levels, select a group in the Parent
Group field.

5 The Group Elements/Attributes field specifies the full name of the element
you selected. If you wish, you can add other elements to this list, thus
creating groups based on the concatenation of two or more values in
different elements.

Applying Actions to Common Tasks 377

6 Click OK to save the group. A Declare Group line appears in the Action
Model.

Once you have created a group based on an Input Part element, you can create a
Repeat For Group action.

To create the Repeat for Group action:

1 Select a line in the Action Model where you want to place the Repeat for
Group action. The new action is inserted below the line you selected.

2 From the Action menu, select New Action>Repeat then Repeat for Group.
The Repeat for Group dialog box appears.

3 The Source fields specify the basis for the processing loop. Select the group
you wish to use as the basis for the loop.

4 The optional Where Script Expression field allows you to selectively omit
some repeating elements from the group processing. Type an expression, or
click the Expression Builder button, and write an ECMAScript expression
that determines which elements participate in the group.

5 The optional Target fields allow you to specify the position in the Output
Part to place data mapped within the Repeat for Group action. Give the
Target an alias, select a Part and specify an XPath. This alias is used as the
target context for Map actions within the loop.

6 Click OK to complete the Repeat for Group action.

Once the Repeat for Group action is created, you can add one or more Map actions
within the loop. The following illustration shows a Map action using groups as the
Input and Output Part elements.

Novell exteNd Composer User’s Guide378

Notice the use of the dot. It indicates the current location, which is whatever the
context “sgTHESELLERNAME” resolves to (defined in a Declare Group action
earlier in the Action Model).

The Repeat for Group action and the Map action should appear in the Action
Model pane as shown in the next illustration.

The Repeat While Action

The Repeat While action creates a processing loop based on any criteria you wish
to define. This gives you a different kind of flexibility in creating repeat loops than
do the Repeat for Element and Repeat for Group actions, both of which base their
looping on data in a document or DOM.The Repeat While action allows you to
base your processing loop on any valid XPath or ECMAScript expression.

Dot
.

Applying Actions to Common Tasks 379

For example, you could base the execution of your loop on an ECMAScript
expression that looks at the system clock to determine when to break out of the
loop. In another example, you could base your loop on the existence of files in a
directory. In this case, the actions within the loop will process the files and the loop
will only break when no more files are present.

To create a Repeat While action, you need to perform the following tasks:

Select a place in the Action Model pane where you wish to place the Repeat
While action.

Create the action.

Create one or more actions inside the Repeat While action.

To add a Repeat While action:

1 Select a line in the Action Model where you want to place the Repeat While
processing loop. The loop is inserted below the line you selected.

2 From the Action menu, select New Action>Repeat then Repeat While. The
Repeat While dialog box appears.

3 The While Script Expression field is where you type an ECMAScript
expression. When it evaluates to false, the execution of the loop will stop.
You can also press the Expression Builder button and type an expression or
select from a list of pre-written expressions.

4 The Index Variable field allows you to create a name for a loop counter.
This counter is incremented each time the loop executes. You can capture its
value in the While Expression to further control the loop processing.

Novell exteNd Composer User’s Guide380

5 Optionally, you can enter Target information. Enter an alias and select either
XPath and a DOM element, or Expression and type in a valid expression.
You can also click the Expression Builder button and build an expression.

6 Click OK to complete the Repeat While processing loop.

Once the Repeat While processing loop is created, you can add one or more Map
actions within the loop. The following illustration shows a Repeat While loop with
two Map actions.

Performing Aggregate Calculations
The aggregate calculations include the following examples which can be found in
the component named: [008] aggregate calculations in the Action Examples
project.

Calculating a sum

Finding the highest total

Finding a specific match for the highest total

Calculating a Sum

Suppose you have a component that is handling the processing of invoices, and
you want to calculate the sum of line item totals (before taxes) across all invoices.

A simple ECMAScript expression using an XPath syntax does the trick. Create a
Map action and select the Expression radio button for Source. Type the following
ECMAScript expression:

$Input.XPath(“//LINETOTAL”).sum()

For the Target, select Output, and specify an XPath to receive the result:

MYINVOICEBATCH/LINEITEMTOTALa.

The Source expression uses the XPath // pattern symbol to select all Input nodes
regardless of parentage labeled LINETOTAL, and then applies a Novell aggregate
method: sum().

Applying Actions to Common Tasks 381

NOTE: Because no XML template was specified for the Output, it will be built
dynamically (i.e, if a Map Action does not find the element specified in the “Map To”
control, it will be created).

Here is an example of what the action looks like:

Finding the Highest Total

Suppose you have a component that is handling the processing of invoices, and
you want to find the highest total of the invoice amounts.

To find the maximum of an element across multiple INVOICEs, you can specify
the “max” method in a Source specification. This establishes the context for the
max() function. Then you can continue the specification down to the point of the
DOM tree where the element you are interested in finding the max of resides
“TOTALS.INVOICETOTAL.”

Here is an example of what the action looks like:

Finding a Specific Match for the Highest Total

Continuing with the previous invoice example, suppose you want to select the one
invoice that matches the highest total.

To look across all INVOICEs but only select one of them, you can specify the
“where” method in a Source specification, (the where method implies that you
will be processing each INVOICE). The specification continues by comparing
TOTALS\INVOICETOTAL for each INVOICE against the “max” of all the
TOTALS.INVOICETOTALs. The max is found and compared against the value
of each INVOICE. Once the match is found, the specification continues to retrieve
the INVOICENO.

Here is an example of what the action looks like:

Novell exteNd Composer User’s Guide382

383

12

Testing and Debugging

Testing and Debugging Chapter 12

Novell exteNd Composer provides many aids to testing and debugging. In fact, in
most cases you’ll find it possible to do end-to-end animation (complete roundtrip
testing) of all services in your project without having to deploy to the app server.
Document input/output, XML transformations, transaction-control logic, logging,
etc., can be tested in real time using “live” connections to back-end systems. Since
Composer’s design-time/debug-time environment executes against exactly the
same Java classes that are used in the Composer Enterprise Server environment,
you can have high confidence that if a service is trouble-free in the design-time
setting, it will operate reliably on the app server.

Among the powerful testing and debugging features offered by Composer are:

Robust step-into/step-over animation capability, allowing you to execute a
component’s action model one line at a time (and pause or abort animation at
any time)

Assign unlimited breakpoints and use run-to-breakpoint animation to get
quickly from one breakpoint to another

Create “watch lists” of variables and XML elements whose values you want
to observe in real time, at various points in an execution cycle

Highly fine-tunable logging capability

Fault documents and a “Throw Fault” action for flexible exception handling.

Try/On Fault action allows you to trap exceptions, handle them gracefully,
and continue executing

“To-do lists” for keeping track of pending-action items

Conditional enablement of debug code

Indirection of test values through Project variables

These features and strategies for their use will be discussed in this chapter.

Novell exteNd Composer User’s Guide384

What are the Animation Tools?
Composer’s service and component editors provide animation tools that allow you
to test and troubleshoot actions interactively within your services and
components. You can execute a service or component’s Action Model step-by-
step and watch the result of each action. Not only will you see any errors as they
happen, but you can verify that connections and data have behaved as you had
planned.

For concentrating one particular section of an Action Model, the animation tools
allow you to toggle one or more breakpoints. When used in conjunction with the
run-to-breakpoint tool, breakpoints allow you to quickly run through action-
model sections that work properly, coming to a stop at exactly a particular action,
From there, you can step through each action in sequence. You can also,
optionally, step over loops, Component Actions, and other code blocks that would
otherwise be tedious to “step into.”

The Basic Animation Tools

The animation tools are available on the service and component editor Action
Model tool bars. In addition to the Action Model tool bars, the editors provide
menu options on Composer’s Animate menu, as well as corresponding keyboard
commands. The table below describes the various tools and their functions.

Table 12-1

Animation
Toolbar
Button Description

Start Animation—Clicking this button starts the animation
process. Optionally, you may select Animate>Start Animation
or press the F5 key.

End Animation—Clicking this button stops the animation
process. Optionally, you may select Animate>End Animation
or press the Shift + F5 keys.

Testing and Debugging 385

Step Into—Clicking this button executes the currently selected
action and highlights the next sequential action. If the currently
selected action is a Component, Repeat, Decision, or Try/On
Fault action, then the next highlighted action becomes the
details of those actions. For a Repeat Loop pressing Step Into
will execute each action in the loop as well iterate through each
loop. For a Decision Action, Step Into will process the next
action in the True or False branch. For the Try/On Fault action,
Step Into will process the next action inside the execute, and
possibly the On Fault branch. For a Component action, a
separate window will open and you will “step into” that
component. Optionally, you may select Animate> Step Into or
press the F7 key.

Step Over—Clicking this button executes the currently
selected action and highlights the next sequential action.
Unlike the Step Into button, clicking this button does not
highlight and execute the details of Component, Repeat,
Decision, or Try/On Fault actions. For a Component action a
separate window will NOT open when another service or
component is called. It simply executes the call and moves
onto the next sequential action; you essentially “step over” the
called service or component, or Repeat, Decision, or Try/On
Fault action. Optionally, you may select Animate> Step Over
or press the F8 key.

Toggle Breakpoint—Clicking this button sets the highlighted
action in the Action Model as a breakpoint. You may set more
than one breakpoint. Other ways to Toggle a breakpoint
include selecting Animate>Toggle Breakpoint, pressing the
F2 key and clicking with the RMB while in the action model.

Run To Breakpoint/End—Clicking this button runs the
animation to the next breakpoint or to the end of the Action
Model. Optionally, you may select Animate>Run To
Breakpoint/End or press the F9 key.

Pause Animation—Clicking this button pauses the animation.
Optionally, you may select Animate>Pause Animation or
press the F6 key.

Animation
Toolbar
Button Description

Novell exteNd Composer User’s Guide386

Starting Animation

When you first open a service or component, the Start Animation and Toggle
Breakpoint tools are the only “enabled” tools; the others are dimmed. Once you
click the Start Animation button, the remainder of the Action Animation tools
become enabled and you can click them at any point. If you want to halt the
animation temporarily, you can use the Pause button. Likewise, if you want to
abort the animation, you can do so at any time by clicking the red “End
Animation” button.

CAUTION: Although Copy, Paste, and action editing operations (including
adding new actions) are all available at animation time, we recommend that you not
edit the action model during animation. If you do, exceptions and/or unpredictable
behavior may occur. If you need to edit the action model, use the Stop button to
abort the animation first, then apply your edits; then begin the animation again.

To start the animation:

1 Open a service or component. The service or component appears in its
respective editor.

2 Click the Start Animation button in the Action pane’s tool bar, or press F5
on the keyboard. All of the tools on the action tool bar become active, except
for the Start Animation button, which is now dimmed.

Start Animation
Button

Activated tools

Testing and Debugging 387

3 Follow the instructions in the sections below to perform the desired
Animation activity.

Toggling a Breakpoint

The Toggle Breakpoint tool allows you to set a breakpoint in the Action Model
where you’d like the process to stop. This is especially helpful if you have a
lengthy Action Model with long sections that work properly. You can set the
breakpoints at the beginning of each action that is causing a problem and then step
through the action to troubleshoot it.

To toggle a breakpoint:

1 Open a service or component. The service or component opens in its
respective editor.

2 Adjust the Action pane as necessary to view its content.

3 In the Action pane, select the action where you’d like the breakpoint to be.
This is where the animation will stop.

4 Click the Toggle Breakpoint button on the Action Model tool bar, or press
F2 on the keyboard. The action you select changes to a red background with
white text.

5 If desired, repeat steps 3 and 4 to select additional Breakpoints.

6 If it is not grayed out, click the Start Animation button on the Action Model
tool bar. (If Start Animation is grayed out, you can choose another animation
tool to complete the animation process from the current breakpoint.) The
following changes occur when you click Start Animation:

The Start Animation button becomes inactive

The remainder of the buttons on the Action Model tool bar become active

Toggle
Breakpoint

Novell exteNd Composer User’s Guide388

The cursor moves to the beginning of the Action Model and highlights
the object’s name, for example, “ProductInquiry.”

The action you selected as your breakpoint changes to a white
background with red text

7 Follow the instructions in the sections below to perform additional
animation processes.

Running To a Breakpoint

The Run to Breakpoint tool works in conjunction with the Toggle Breakpoint tool
to let you control the animation process. When you have a lengthy Action Model
it is helpful to be able to control how long you want the animation process to run
and at which point you’d like the process to stop. The Run to Breakpoint allows
you to do just that.

To run the animation to a breakpoint:

1 Open a service or component. The service or component you open appears
in its respective editor.

2 Adjust the editor’s panes as necessary to view the Action pane’s content.

3 Select the action that you’d like to be the breakpoint for your test.

4 Click the Toggle Breakpoint button on the Action pane tool bar, or press F2
on the keyboard.

5 Click the Start Animation button on the Action pane tool bar, or press F5
on the keyboard. The Action pane of the service or component you’ve
opened should look similar to this:

Testing and Debugging 389

6 Click the Run to Breakpoint button on the Action pane tool bar, or press F9
on the keyboard. The animation process runs all of the actions prior to the
breakpoint, then stops and highlights the breakpoint in red, as shown.

7 Follow the instructions in the sections below to continue the animation
process.

Stepping Into an Action

The Step Into tool runs the highlighted action in the Action Model and then moves
to the next action in the sequence, even if it is inside another component. (In other
words, if the next action is a Component Action, the target component opens and
animation continues at the first action in that component’s action model. You can
use the Step Into tool to step through each action in the entire Action Model, or
you can use it in conjunction with the Run to Breakpoint tool. Execution stops at
the next breakpoint or when the action model ends, whichever comes first.

Run to Breakpoint button

Novell exteNd Composer User’s Guide390

A possible scenario for using a breakpoint would be if you have ten actions that
you know work properly but have doubts about the eleventh. You could set the
eleventh action as a breakpoint, execute the Run to Breakpoint tool, and then step
through the eleventh (and subsequent) action(s) by executing the Step Into tool.

NOTE: When a service or component is called from an Action Model and a
separate editor opens to display the called object, you must step through that
object’s Action Model to completion, at which point it closes and you return to the
original Action Model.

To run the Step Into tool:

1 Open a service or component. The service or component appears in its
respective editor.

2 Adjust the panes as necessary to view the Action Model’s content.

3 Click the Start Animation button on the Action pane tool bar, or press F5
on the keyboard. The Animation tools become active and the object’s name
is highlighted in the Action Model.

4 Click the Step Into button on the Action tool bar, or press F7 on the
keyboard. The first action becomes highlighted.

Testing and Debugging 391

5 Click the Step Into button again. The action executes and the next action
becomes highlighted.

6 Continue to work through the Action Model by clicking the Step Into button
after each action executes and the subsequent action becomes highlighted.

7 When an action that calls another service or component becomes
highlighted, click the Step Into button. The following results:

A new window opens and displays the appropriate editor (i.e., service or
component).

The Action pane displays with all tools (except “Start Animation”)
active.

8 Click the Step Into button on the Action pane tool bar of the called
component.

9 Continue to click the Step Into button to execute all of the actions in the
called component. When you’ve executed all of the actions, the window
closes and you are returned to the point in the original Action Model where
you left off and the next action is highlighted.

10 Continue to click the Step Into button to execute all of the actions in the
original service or component. When you are done, a message appears.

NOTE: An Action Model may call one or more components, and each
component may call components as well. In each occurrence of a called
component, the animation tools work exactly the same. For example, you
may want to Toggle a Breakpoint within a called component and then perform
a Run to Breakpoint in the original service or component. The Action Model
begins to execute its actions, opens the called component, and then stops at
the breakpoint you’ve set.

Novell exteNd Composer User’s Guide392

Stepping Over an Action

The Step Over tool is useful when you don’t want to step into the details of the
Component, Repeat, Decision, or Try/On Fault actions.

For a Component action, it means you avoid the potentially timeconsuming
opening of a separate editor to continue animating through the target component.
The Step Over tool simply executes the target component and then highlights the
next action in the Action Model.

Similarly, for blocks of code wrapped in Try/On Fault, Repeat, or other control-
flow actions, using Step Over means you can execute an entire block of code at
once without stepping individually through each action (which could get tiresome
inside a loop).

You’ll often find it handy to use the Step Over tool in conjunction with the Run to
Breakpoint tool. For example, you could toggle a Breakpoint, execute the Run to
Breakpoint tool, and then use the Step Over tool to execute the action you’ve
designated as the breakpoint. The Step Over tool can save a great deal of time
when testing lengthy Action Models, since you can avoid tediously stepping
through individual actions that might not be of interest to you.

To use the Step Over tool:

1 Open a service or component. The service or component appears in its
respective editor.

2 Adjust the panes as necessary to view the Action Model’s content.

3 Click the Start Animation button on the Action pane tool bar. The
Animation tools become active and the object’s name is highlighted in the
Action Model.

Testing and Debugging 393

4 Step through the Action Model with the Step Into button until you reach a
loop or other line of code that precedesan indented code block.

5 Click the Step Over button on the Action tool bar, or press F8 on the
keyboard. The first action after the block of indented code becomes
highlighted. (All of the indented code will execute normally and you will be
taken straight to the next “outdented” action, without needing to step through
the indented action lines individually.)

6 Continue to work through the Action Model by clicking the Step Over
button as necessary.

7 Continue to click the Step Into and/or StepOver buttons to execute all of the
actions in the Action Model. When complete, a message appears.

Pausing Animation

The Pause Animation tool allows you to pause the execution of an action in the
Action Model. This is especially helpful in cases where Action Models contain
lengthy loops.

Novell exteNd Composer User’s Guide394

To pause the animation:

1 During the execution of an action, click the Pause Animation button on the
Action pane’s tool bar, or press F6 on the keyboard.

2 To resume the animation process, click the Step Into, Step Over, or Run to
Breakpoint (if a breakpoint has been set) as desired.

CAUTION: Although Copy, Paste, and action editing operations are available
when animation is paused, we recommend that you not edit the action model
during animation. If you do, exceptions may occur.

Aborting Animation

The Stop Animation tool simply stops the animation process. Once you stop the
animation, you cannot restart from the place where you left off: you must restart
from the beginning of the Action Model.

To stop the animation:

1 While the animation is in progress, click the Stop Animation button on the
Action pane’s tool bar, or press Shift + F5 on the keyboard. The following
message appears.

2 Click OK.

Execution Errors
If an action does not execute correctly, an error message appears.

Testing and Debugging 395

You can click the Details button to read more about the problem encountered. This
will give you the full Java stack trace.

Error messages are also written to the System Log, which is viewable from the
Composer View menu.

NOTE: Composer’s Log (or Output) pane will also show messages. To get the
most comprehensive reporting of messages to the Log tab, set the Log Threshold
to one in the General tab under Tools > Preferences. Also, check the Show Stack
Trace checkbox in the same dialog.

Clearing All Breakpoints

Once you have your action model working properly you will want to run through
it from start to finish without interruption. To do this, you’ll need to eliminate any
breakpoints you had previously set. All your breakpoints can easily be removed at
once using the Clear All Breakpoints menu option. This can be accessed in two
ways:

1 From the Animate menu, select Clear All Breakpoints

Novell exteNd Composer User’s Guide396

2 While in the Action Panel of the Component Editor, right-click to bring up
the contextual menu. Select Clear All Breakpoints.

Resetting All Documents

You may find it desirable or necessary, during a testing or debugging session, to
reset the component’s input, output, temp, and fault documents to their original
states. You can do this manually by using the Reload XML Documents command
under the Component menu on the main menubar.

Clearing a Document

You can completely clear a document, including its root node, programmatically,
using ECMAScript. Insert a Function Action that contains code similar to the
following:

Temp.removeChild(Temp.firstChild);

Execute the statement using the Execute button on Composer’s main toolbar, or
use the Apply button in the Function Action dialog. You will see the contents of
the Temp document (in this case) “zero out.”

NOTE: The removeChild() method and the firstChild property are
standard DOM ECMAScript extensions defined by W3C. You can use these and
other methods to remove, add, or modify any portion of a document’s structure in
any action that uses ECMAScript. See Chapter 10, “Custom Scripting and XPath
Logic in exteNd Composer”, for more information.

Testing and Debugging 397

Testing Tips
You may find it useful to leverage one or more of the following techniques when
testing and debugging action models:

The ECMAScript alert() function, as well as
java.lang.System.out.println()

Project variables as a way of conditionally enabling debug code

Watch list (data values that you want to watch at animation time)

Try / On Fault actions

Fault documents

Each of these is discussed below.

Using the ECMAScript alert() Function

You may want to inspect a data value before and/or after running a map or other
type of action. To do so, you can create Function actions that contain the
ECMAScript alert() function. The alert function displays a message box with a
value you specify.

In the following example, an alert function action has been constructed so as to
display a confirmation value of true.

Novell exteNd Composer User’s Guide398

NOTE: You will want to disable any actions that use the alert() function prior
to deploying your project to the app server environment. The alert()
functionality is of use in design-time testing only. It should not be allowed to execute
after deployment to the app server.

Using a Project Variable to Turn Debugging On or Off

If your component or service contains many debugging related actions, you can
ensure they do not run when your project is deployed. One way to do so is to create
a project variable that can be used in a Decision action to decide whether to
execute your debugging actions. Then place all your debugging-related actions
inside Decision actions in your components.

Another tactic is to use a direct call into one of Composer’s internal methods to
determine whether the current environment is a runtime one versus a design one:

gDebugMode =
!Packages.com.sssw.b2b.rt.GNVxObjectFactory.isRuntime();

This is an example of using ECMAScript to call a custom Java method. The result
here is that the (component-scoped) variable gDebugMode contains true if the
component is running in Composer at design (or animation) time, but false if the
component is running in a deployed project on a server.

An example of using this “sentinel variable” to decide whether it’s okay to call
alert() is shown below:

NOTE: Log Actions are also invaluable for debugging and can be controlled
easily via the General tab of the Preferences dialog. See “The Log Action”
beginning on page 162.

Watch Lists

You can watch specific data values change at animation time by adding one or
more variables or data nodes to a watch list.

The watch list is visible when you bring the Watch tab (in the output pane, at the
bottom of Composer’s main window) to the front.

Testing and Debugging 399

The Watch list is essentially an in-memory XML document (DOM) to which
“watched” data items can be added or deleted. Watch-data updates in real time as
you step through a component or service. Of course, the Watch view is strictly a
design-time aid: It does not exist at runtime (on the server).

Watch-List Persistence and Scope

You can create a Watch list for each component and switch back and forth between
components; each list is scoped to its own component.

If you add a Watch list variable or variables to a component, then re-Save the
component, the Watch list will be there again the next time you open the
component. The list is persisted along with the component.

You can also Save a Watch list as an XML file at any time. (Use the Save As XML
menu command that appears in the context menu when you right-click the
WATCH node.) This can be useful for troubleshooting purposes, since it lets you
compare Watch list values at the same point in two different execution runs in two
different design sessions.

Types of Variables You Can Watch

You can add two types of variables to the Watch view: ECMAScript variables and
DOM nodes (for example: elements). If the DOM node is not a leaf node, it can be
added to the Watch list either as a single node or with all its children. (The Watch
target can be defined using XPath.)

NOTE: Watch lists are read-only. You can add and remove items in the Watch
window, but you cannot change the values of those items yourself.

How to Add Items to a Watch List

You can add items to the Watch tree in any of three ways:

By using the Add Watch... menu command under Component (in
Composer’s menubar), as shown below.

Novell exteNd Composer User’s Guide400

By using the Add Watch command in the context menu that appears when
you right-mouse-click on any node in the Watch view itself. Note that in
addition to the Add Watch command, the context menu provides Delete
Watch and other commands, as shown here:

By using drag-and-drop: Just pull any node of any XML document that’s
visible in tree-view mode down to the Watch window and let go out of the
mouse. The node(s) in question will be added to the Watch list.

NOTE: The drag-and-drop method is useful for document nodes only. To
add ECMAScript variables to the Watch window, you must use the Add
Watch menu command. See example below.

Step-by-Step Example

The following steps show how to add a variable to a watch list, animate through a
Component so as to see the variable change value, and delete an item from the list.

1 Open a Component if one is not already open.

2 Click the Watch tab (at the bottom of the Composer main window) to bring
it forward.

3 Right-mouse-click the root node (“WATCH”) of the Watch view. A context
menu appears. (See illustration above.)

4 Select Add Watch from the context menu. A dialog appears:

Testing and Debugging 401

This dialog is an expression builder: It lets you construct an ECMAScript
expression that evaluates to an XPath value. You can do this in point-and-
click fashion by choosing appropriate items in the pick-lists in the top three
panes of the dialog. For example, if you want to add the Input element at
INV:INVOICEBATCH/INV:INVOICE to your Watch list, using the above
example, you would simply open the Input tree nodes as shown and
doubleclick the appropriate node. The corresponding ECMAScript statement
appears automatically in the text-edit field, as shown above.

NOTE: If you are interested in watching an ECMAScript variable, simply
type the variable’s name. (You must enter it by hand since ECMAScript user
variables are not shown in the pick-lists.)

5 Optionally use the Validate button to check the syntax of the expression.

6 Close the dialog by clicking OK.

7 Notice that the node or variable in question has been added to the Watch
view. If the variable is a DOM node with children, doubleclick the node (or
single-click the plus sign next to it) to toggle the node open, exposing its
children and their values.

8 Now click the Start Animation button to begin stepping through your action
model.

Novell exteNd Composer User’s Guide402

9 As you step through actions that change the values associate with the Watch
variable(s), notice how the values change.

10 To delete the Watch variable, right-mouse-click the node in question and
choose Delete Watch from the context menu. The item disappears.

Environmental Differences between Animation Testing
and Deployment Testing

There are significant environmental differences between Animation testing in
Composer and Deployment testing. Both types of testing are needed to adequately
verify the components and services you build. The differences are detailed in the
table below.

Table 12-2

Testing in Composer Deployment Testing

OS Win98 or WinNT or Win
2000

WinNT, Sun Solaris, etc.

Platform JRE (Java Runtime
Environment)

Application Server JRE

Component or
Service Startup

Directly from Composer By Service Triggers only
(i.e., deployment
Servlets or EJBs).

xObject access From disk files From a JAR file in
Application Server

Runtime Context Test individual components
or components running
within a service

Always from within a
service

Service and
Component
Inputs

Input documents frequently
come from sample XML
documents on the local
machine as well as DOMs
from other services or
components

Input documents are
passed into the services
and components via
Service Triggers, or
DOMs from other
services or components

Testing and Debugging 403

Project Variables
for:
* Log File Paths
* DTD URLs
* XSL URLs
* Send Mail
Server
* XML Inter-
change URLs

Usually point to locations on
local machine (but could be
on Servers or Web)

Should point to locations
on production Servers
and Web

Testing Tools In addition to Log actions,
you can use dialog boxes
(ECMAScript alert()
function) to display runtime
values

No dialog boxes can be
used

JDBC Connection Doesn’t use Server
Connection Pools

Uses Server-provided
Connection pools

HTTP and LDAP
Connections

May or may not be pointing
to local machine(s) or test
servers

Should be pointing to
production server(s)

Testing in Composer Deployment Testing

Novell exteNd Composer User’s Guide404

405

13

Working with Services

Working with Services Chapter 13

A service is Composer’s basic unit of execution: It is a Composer object (an
xObject) that wrappers the various components you build, so as to create a logical
unit of processing within the application server environment—one that’s initiated
with a request and results in a response. A service typically responds to a request
by executing one or more components in a sequential and/or conditional manner
(and can even execute other services). It can be, but doesn’t have to be, exposed
on a URL and triggered by a servlet.

Because the service xObject is the entry point for all web apps built with
Composer, it’s important that you understand the design philosophy behind
services and how Composer’s runtime architecture handles services. This chapter
will tell you what you need to know in order to build and use services effectively.

Terminology
The term Web Service, as used in this discussion, is generic. It refers to any
Composer-created service running on the app server, whether triggered by a
servlet request in an HTTP session, arrival of e-mail, direct invocation by a
custom Java class, or some other mechanism. It may (but doesn’t always have to)
refer to a web-facing service that is described by WSDL.

A SOAP service, in Composer, is not a service type per se, but a way of specifying
how a service needs to be invoked (and how its data needs to be marshalled or
unmarshalled) on the server. In Composer, you specify SOAP-HTTP as a trigger
type. A specialized type of servlet is used to trigger the service.

Novell exteNd Composer User’s Guide406

It’s also important to note that a given service can be associated with different
trigger types. For example, it is possible (though perhaps not likely) that you
would deploy a service with several triggers: a servlet-based trigger that handles
data passed via HTTP GET; another servlet (on another URL) that handles data
arriving via a form field using HTTP POST; and another that expects data passed
in a String object, programmatically, via a custom application running locally on
the server.

What Are the Available Service Types?

In exteNd, there are two types of services: Web Services, and JMS Services. (JMS
stands for Java Messaging Service, a Sun-defined interface for message oriented
middleware.) Your project, deployed (typically) as an EAR file, might contain one
or more of either or both kinds of services. The two service types are referenced
by two different icons under the “Service” heading of Composer’s navigation
frame (see below).

JMS Services

The JMS Service type will not be visible to you in Composer if you have not
installed the Novell exteNd Composer JMS Connect (which comes as part of the
Novell exteNd Enterprise Edition suite). The Web Service category, however, is
always visible.

The defining characteristic of a JMS Service is how it is triggered. If a service that
uses enterprise messaging will be triggered via the web, it must be created as a
Web Service. If it will be triggered by arrival of a message, it must be created as a
JMS Service.

Working with Services 407

Service Architecture

A service is actually a specialized type of exteNd component. As mentioned
earlier, a service has an action model and can perform most of the tasks that
components perform, including XML mapping, looping, logging, fault-trapping,
conditional processing based on Decision and Switch actions, etc. For reasons of
good design, you should limit these tasks to an exception basis only, delegating
business logic to underlying components. The main actions you should use in a
service are Component, Log, Decision, Function, Try/On Fault, and Throw Fault.
(See “Building a Service with Components” on page 415 for examples of how a
service uses these actions.) Anything connectivity-related, data-related, or
implementing business logic, should happen at the component level.

NOTE: You can execute any number of components of any type (JDBC, XML
Map, LDAP, etc.) in a service; and you can fire off those components
synchronously (in serial, one-by-one fashion) or asynchronously (all at once). Also
bear in mind that a service can invoke another service.

Using the service as the basic unit of processing in an application server should be
a major goal in the design of your Composer applications.

Composer Web Services and WSDL

A Composer Web Service can be, but doesn’t have to be, a WSDL-described
service deployed on a URL. In simplest terms, a Composer Web Service is merely
a component that calls other components. What makes it a “service”instead of a
component is that the Web Service xObject can be triggered via a servlet or Java
object on the server, whereas Component xObjects are not triggerable this way.
(Components are called by services.) What makes a service a “Web Service” in the
conventional sense of the term is exposure of the service as an endpoint as
described in an associated WSDL file.

A Composer Web Service can implement any of the interaction patterns alluded to
by WSDL: notification, one-way, request-response, or solicit-response. It can be
deployed on a public URL or it can be executed as a local app. It can be associated
with WSDL, or not; and it can accept SOAP requests, or not.

Looking at an Example Web Service

The following picture shows the parts and function of a Web Service and is
explained below.

Novell exteNd Composer User’s Guide408

Figure 13-1

In the drawing, the large rectangular grey box represents a Web Service. The
shaded oval shapes with numbered text represent actions in the Action Model. The
input and output XML files (squares) and the called components (small rectangles
outside the service) are visible.

The purpose of this service is to receive an invoice (in an industry standard format)
and to notify the sender that the invoice was received. Accomplishing the service
requires some manipulation of the invoice, which is received as an XML
document.

Here is how the service works.

1 The service is invoked by its Service Trigger (an object created at
deployment time, designed to start a service in response to some external
event). The servlet can be started by a business partner's application server
issuing an HTTP Post to the servlet; or, alternatively (as shown by the longer
grey arrow), the servlet could be invoked programmatically by a Java
process on the host server.

2 The first job of the service, in this example, is to execute a Log action to
write a file to record the activities of the service as they are executed.

3 The service then executes a Component action to call the Convert to My
Format component.

4 The Convert to My Format component uses an industry standard invoice
format as input and returns an XML file formatted to the company’s internal
format (My Format), as output.

5 The service executes another Component action to call the Send Email
component. The My Format file is the input for the Send Email component.

Working with Services 409

6 The Send Email component executes several actions (extracts an email
address from the invoice using the XML Interchange action, sends an email
using the Send Mail action, and so on) and returns an XML file, eMail.

7 The Company standard format file is output by the service.

Looking at an Example JMS Service

The following graphic shows the parts and functions of a JMS Service.

It is important to note that the JMS Service does not differ substantially from the
Web Service discussed earlier; it differs mainly in that it is invoked by the arrival
of a message on a queue (or topic, in Publish/Subscribe parlance). The JMS
Service implements a MessageListener object whose onMessage() method is
called automatically when a message arrives at a queue or topic with which the
listener has registered. The onMessage() method executes the service.

The JMS Service must, by its nature, contain one (and only one) Receive Message
action, created using the JMS Connect. The Receive Message action allows the
service to gain access to the incoming message’s data and properly acknowledge
its receipt.

The remainder of the Action Model is the same for this service as for the preceding
Web Service.

NOTE: This example is relevant only if you have purchased and installed the
Novell Composer JMS Connect.

Novell exteNd Composer User’s Guide410

Creating a New Service
You create a new service just like you create a new XML Map component. If you
have not yet created any XML Map components, you must create any required
XML templates before creating a service. For more information, see “Creating an
XML Template” on page 88.

About Specifying XML Templates for a Service

When you create a service, you specify input and output templates, just as you do
for a component. If your service is designed to call components, rather than
process data directly, the input template you choose for the service will often be
the same template that the first component uses. The output template will often be
the same one that is output for the final component in the sequence.

If you intend to create a SOAP service that uses custom SOAP headers, you
should create XML Templates for the headers separately

To create a new Web Service:

1 From the Composer window File menu, choose New, then xObject, then
from the Process/Service tab, select Web Service.

The Create a New Web Service Component wizard appears.

2 Type in a Name and an optional Description.

You can use the optional description fields to describe the tasks the service
performs.

3 Click Next to display the Input/Output Templates panel.

Working with Services 411

4 Specify the input and output templates as follows. See “About Specifying
XML Templates for a Service” on page 410 for some tips.

Type in a name under Part if you wish the Message Part name to appear
in the Component Editor as something other than “Input” or “Output.”

Select a Template Category if it is different than the default category.

Select a Template Name from the list of XML templates in the selected
Template Category.

To add additional input XML templates, click Add and repeat steps 2
through 4.

To remove an input XML template, highlight an entry and click Delete.

5 Select an XML template as an output.

6 Click Next. The Temp/Fault Templates panel displays.

Novell exteNd Composer User’s Guide412

If desired, specify a template to be used as a scratchpad under the “Temp
Message” pane of the dialog window. This can be useful if you need a place
to hold values that will only be used temporarily during the execution of
your component or are for reference only. Under the “Fault Message” pane,
select an XML template to be used to pass back to clients when an error
condition occurs.

7 As above, to add additional XML templates, click Add and choose a Part
Name, a Template Category and Template Name for each. Repeat as many
times as desired. To remove an input XML template, select an entry and click
Delete.

8 Click Next. The Input/Output Headers panel displays:

Working with Services 413

Using the methods described above for adding Input, Output, Temp and
Fault Documents, specify Input and Output Header Parts for your service if
it will be used with a SOAP Service Trigger.

9 Click Finish. The component is created, and the Service Editor appears.

If your templates have namespace declarations, Composer will generate a
Declare Namespaces action for you automatically, at the top of your new
Action Model.

Creating a JMS Service

Creation of JMS Services occurs via a wizard that has much in common with the
Web Service wizard. For step-by-step instructions, see the exteNd JMS Connect
User’s Guide.

Importing a Service
The import feature allows you to create a copy of an Composer service created in
another project. Once imported, you can customize the service for use within the
current project.

To import a service:

1 Right-click on the Service item in the exteNd Composer window, or choose
Import xObject from the main File menu.

The Import xObject window appears.

Novell exteNd Composer User’s Guide414

2 Select Web Service as the Type, if it is not selected.

3 In the File Name field, type in the name of the service you wish to import, or
use the Browse button to find it. If you import a file from a URL, you must
explicitly type “http://,” “https://,” or “ftp://.”

4 Modify the Service Name if desired.

5 Type in Descriptive information if desired.

6 Click OK to import the service.

Understanding the Service Editor

The Service Editor is (usually) where you specify the execution of components
and services as well as perform error logging, decisions, and functions. You can
also map, transform, and transfer input and output structure and data.

The Service Editor provides a logical working environment for visualizing and
manipulating the inputs, output, and actions of your service. The Service Editor is
composed of multiple mapping panes and a single Action Model pane. The
mapping panes display the DOMs of your sample input and output documents.
The Action Model displays actions that operate on the DOMs.(This environment
is essentially the same as the XML Map Component editor.)

Working with Services 415

Using the Service Editor
The Service Editor has all the same functions as the XML Map Component Editor.
For more information on using the Service Editor, see the following topics:

“Creating an Output Document without Using a Template” on page 131

“Creating a Temporary Message Part” on page 133

“Reloading an XML Document” on page 137

“Loading a Sample Document” on page 139

“Saving Your Component” on page 141

“Saving a DOM as an XML Document” on page 141

“Viewing Component Properties” on page 146

“Printing a Component” on page 147

Building a Service with Components
A service is usually made up of one or more Component actions, each of which
performs a specific task to map, transfer, and/or transform data for use by the next
component or service called in the application.

You use the Component action to call and execute a component or service with
runtime input DOMs and outputs DOMs that you specify.

Novell exteNd Composer User’s Guide416

To add a Component action:

1 Select a line in the Action Model where you want to place a call to a
component or service. The new action is inserted below the line you select.

2 From the Action menu, select New Action then Component. The Action
Component Information dialog box appears.

3 Select Predefined, by clicking on the radio button, if it is not already
selected. (See Chapter 7 for a discussion of Predefined versus Dynamic
Component Actions.)

4 Select a Component Type from the pulldown menu on the upper left.

5 Select a Component Name to execute.

6 In the Passed ID field, select a Message Part.

7 In the Returned ID field, select either Output or Temp for the Message Part.

8 Click OK.

Looking at an Example Service Action Model

When you add Component actions to a service, they appear in the Action Model
pane of the Service Editor. A service’s Action Model represents the sequence in
which components are called.

An example Action Model is shown below.

Working with Services 417

The Action Model functions has some logging functions and executes
components as follows:

1 The first component action calls a component (ProductLookup). It
specifies the DOM to be passed as the input document handle (Input)
through which the component receives data from the service, and specifies
the DOM to receive the component’s output (ProductLookupOutput).

2 The second component action calls a component (InventoryLookup). It
specifies the DOM to be passed as the input document handle (Input)
through which the component receives data from the service, and specifies
the DOM to receive the component’s output (InventoryLookupOutput).

3 The third component action calls a component
(MergeProductAndInventory). It passes the DOMs ProductLookupOutput
and InventoryLookupOutput which the component receives data from the
service as its Input and Input1 DOMs, and specifies a service DOM to
receive the component’s Output (Output).

Service FAQ

How Do I Pass Data Between Different Types of Components?

exteNd provides a variety of Connect components that access different computing
environments. The inputs and outputs of all component types are simply XML
documents, This means that the communication between different component
types is straightforward and simple.

There are two basic methods for passing data between components. The first
method uses a service to pass and receive the inputs and output from individually
called components. In this method, the components don’t interact directly, but
instead use the service as their point of contact. The second method uses the
components to call one another directly. Which method you choose depends on
how you design your services and the types of tasks they perform.

Novell exteNd Composer User’s Guide418

Can Composer Services Accept More than One Input Document?

It depends how the service is deployed. If it is deployed as a SOAP service, your
SOAP server may pass multiple input documents to your service (if multiple
inputs are specified in your service’s WSDL). In all other cases involving the four
canonical Composer service trigger types—Params (URL/Form), XML (MIME
multipart), XML (HTML form field), and XML (HTTP POST)—only one XML
document can be accepted as input.

For information on deployment, see your Composer Enterprise Server User’s
Guide.

Can a Component Be Executed that is not Called Directly by a Service?

If you create a project with one service which calls two components, it is an
acceptable design to have the first component call a third component before
returning its output to the service which then calls the second component.
Technically speaking, the third component is not “contained within a service” or
called directly from it. The key idea to understand about a service is that only a
service can be called by a “Service Trigger” object on the application server.
Components don’t have to be directly linked to a service, but if a component is not
called somehow in the chain of events, it will never execute.

A Service Trigger object is the Java Servlet, EJB, or MessageListener (in the case
of JMS) that you create with exteNd’s deployment framework. This object is
triggered by a URL either embedded in a Web page or called from another
program on the Web. Once triggered, the Servlet or EJB starts an Composer
service.

Again, for information on deployment, service triggers, framework objects, etc.,
see your Composer Enterprise Server User’s Guide.

How Do I Call a Service Deployed in a Different JAR File?

Projects are deployed as JAR files, and normally, if any services or components in
your project need to call on other services and/or components, the “called”
services/components will reside in the same JAR file. But on occasion, you may
find it convenient (or necessary) to have a service call another service that exists
in a different JAR file (that is, another deployed project). You can do this by means
of the XML Interchange action.

The XML Interchange action allows your component or service to output an XML
document via HTTP GET, PUT, or POST protocols. By supplying the URL for
another Composer service, you can have your XML Interchange action fire the
servlet trigger for the service in question. See the diagram below.

Working with Services 419

In this diagram, Web Service 2 in Project A wishes to call Web Service 3 in Project
B. Although Web Service 2 can call Web Service 1 directly, since it resides in the
same project JAR, it cannot reach Web Service 3 directly. Instead, it must execute
an XML Interchange action, which fires the service trigger for the remote service.

How Do I Log Activity in a Single File for Each Component Called from within a
Service?

Log Actions write information about the activities of components within services.
To create a single log file in which to record the activities of all components within
a service, simply specify the same file name in the Log to: field for every Log
Action used in the service and each component. Refer to “The Log Action” on
page 162 for more information about Log Actions.

NOTE: When specifying the same file name for multiple log actions, make sure
you do not select the Clear the Log File checkbox. Doing so will erase the log file
before each log action writes to it. You may, however, want to select this option for
the first Log Action encountered in the service; this clears the log so you can
troubleshoot or animate an action model multiple times without continuously
appending messages to the end of the file.

Novell exteNd Composer User’s Guide420

Loading Sample Documents as You Test a Service
Similar to using components, the XML template(s) you use as the Input(s) to your
service may contain multiple sample documents. During testing, as you step
through the actions in the service, you can load the appropriate sample documents
to verify that the service can handle each instance.

For more information, see “Loading a Sample Document” on page 139.

421

14

Working with Registries

Working with Registries Chapter 14

This chapter discusses the registry browsing functionality provided in the exteNd
Composer. There are currently three different models in popular use for registry
browsing: UDDI, ebXML Registry Services and WSIL. Composer supports all
three of these specifications. They are compared briefly below, with reference
made to sources of additional information.

The current business registry standard covering Web Services is UDDI (Universal
Description, Discovery and Integration), which was designed to give businesses a
uniform way to describe their services, discover other companies' services, and
understand the methods necessary to conduct e-business in an automated or semi-
automated way with remote partners. If you need to learn more about UDDI, the
complete standard can be obtained at http://www.uddi.org.

In addition to UDDI, Composer supports ebXML Registry Services. ebXML
stands for (Electronic Business using eXtensible Markup Language). The ebXML
Registry and Repository, like UDDI, was developed to enable the storing and
sharing of information between parties to allow e-business collaboration.
Composer’s implementation of ebXML is made possible using JAXR (Java XML
Registries). The specification for ebXML can be found at:
http://www.ebxml.org/specs/#technical_specifications.

Finally, Composer also supports WSIL (Web Services Inspection Language), yet
another specification for the discovery and publishing of Web services. In the past
few years since its inception, UDDI has been criticized for its lack of moderation
and an inadequate quality of service (Web Services Architect, “WSIL: Do we need
another Web Services Specification?”). WSIL was designed to be more
lightweight and portable, and, in a sense, to pick up where UDDI leaves off.
Although this standard has yet to be submitted to one of the standards bodies
(W3C and OASIS) it is certainly widely-used and gaining in popularity. To find
out more, see http://www-106.ibm.com/developerworks/webservices/library/ws-
wsilspec.html.

http://www.w3.org/TR/wsdl

Novell exteNd Composer User’s Guide422

UDDI, ebXML and WSIL form the basis for the registry management
functionality described in the pages below. Familiarity with these standards, as
well as a general understanding of the publishing and discovery of web services
will be assumed here. Your web service may use one or all of these models,
depending on the nature of the application you are developing.

Capabilities of the Registry Manager
The exteNd Composer incorporates a Registry Manager, accessible via the
Registries tab at the bottom of the Composer main navigation frame. There is also
a facility for defining registries through the Profiles capability (available via
Tools> Profiles... in the Composer main menubar).

The capabilities of the Registry Manager include:

Adding/removing registries

Selecting registries to include in the search process

Viewing business information on selected businesses in a given registry

Viewing information on Web Services offered by a given business

Searching for businesses or services within a registry or group of registries,
optionally using extended query parameters

Publishing new services to a registry

Registries are specified by URL and can be local or web-based. You can add or
delete registries via the Profiles dialog (Tools menu, Profiles).

To edit or delete a registry:

1 Select Tools> Profiles . . . from the exteNd Composer main menubar. The
Profiles dialog appears.

Working with Registries 423

2 If you are editing an existing entry, select it from the Profile name pulldown
menu, then click the Edit button. The Edit a Registry Profile dialog will
appear, as shown below. After editing your selection, click on OK to save.

Novell exteNd Composer User’s Guide424

NOTE: If you have changed the name during editing, a new registry is
created. If you do not want to keep the old one, then you must delete it.

3 If you are deleting an existing entry, select it from the Profile name pulldown
menu, then click the Delete button. A message will appear to confirm if your
selection is the one you intend to delete. After deleting your selection, click
on Close to save.

To define a new UDDI or ebXML registry:

1 From the Tools menu, select Profiles.

2 In the Profiles dialog window, click on New. The Create a New Registry
Profile dialog will appear.

3 Enter a name for the profile in the Profile name field (required).

Working with Registries 425

4 Select the Registry type from the pulldown menu. The choices are: ebXML,
UDDI and WSIL (which is described in a separate procedure, since the fields
required for WSIL are unique). If you select ebXML or UDDI, the screen
will look like the one above.

5 In the Inquiry URL field, enter the URL through which the registry can be
queried (required).

6 In the Publish URL field, enter the URL via which new services can be
published to the registry.

7 Enter the User name and Credential information, if any, that the registry
provider assigned to you for publishing access.

8 Check the Include in Registry Search checkbox if you wish to include this
registry automatically in the default search set.

9 Click OK to close the dialog.

To define a new WSIL registry:

1 From the Tools menu, select Profiles.

2 In the Profiles dialog window, click on New. The Create a New Registry
Profile dialog will appear.

3 Type in a Profile name.

4 Select the WSIL Registry type from the pulldown menu.

5 Use the blue + icon to add additional WSIL registries.

Novell exteNd Composer User’s Guide426

6 Type in a name for the Organization.

7 Type in the fully qualified WSIL URL, ending in “inspection.wsil.”

8 To delete an organization, use the red - icon.

9 Enter the User name and Credential information, if any, that the registry
provider assigned to you for publishing access.

10 Check the Include in Registry Search checkbox if you wish to include this
registry automatically in the default search set.

11 Click OK to close the dialog.

Once you have defined an ebXML, UDDI or WSIL Registry Profile in the above
fashion, you will be able to use it in the Registry Browser tab on the Navigation
Pane of the Composer main window. You can also publish services to the registry.

Registry Browsing
Registry browsing is available via the Registries tab in the Navigation Pane of the
Composer main window. There are two subpanels within the navigation pane: one
for organizations (top) and one for services (bottom). To the right is the Editor
Pane. See illustration.

Content
Organizations

Services

WSDL/WSIL/ebXML

Working with Registries 427

Context Menu Items

Context menus, specific to each pane in the Registry Manager, are available when
using the Composer.

Organization Context Menu

To view the context menu for Organization, place your cursor in a field in the
Organization pane and click the RMB (right mouse button). The context menu
appears as shown.

The function of the context menu items are as follows:

Copy Text—Allows you to copy text from the currently selected business tree
node to another area or file.

Clear Tree—Allows you to clear the pane of business information that you
retrieved from your search.

Delete Organization—Allows you to delete the selected organization from the
registry.

Advanced Search—Allows you to set advanced search criteria via the Set
Browsing Criteria dialog.

Services Context Menu

To view the context menu for Services, place your cursor in a field in the service
pane and click the RMB (right mouse button). The context menu appears as
shown.

The function of the context menu items are as follows:

Copy Text—Allows you to copy text from the currently selected tree node to
another area or file.

Novell exteNd Composer User’s Guide428

Clear Tree—Allows you to clear the service pane of information that you
retrieved from your search.

Retrieve WSDL—Allows you to retrieve the WSDL for the currently selected
service from the registry. This can also be done via the Retrieve button. If the
service you selected has no WSDL definition, a message will notify you of this
condition.

Delete Service—Allows you to delete a service that you highlighted in either the
business or service Registry.

Advanced Search—Allows you to set advanced search criteria via the Set
Browsing Criteria dialog.

Content Pane Context Menu

To view the context menu for Content pane, place your cursor in a field in the
pane and click the RMB (right mouse button). The context menu appears as
shown.

The functions of the context menu items are as follows:

Edit Data—Allows you to change text from the information contained in the pane
to another area or file.

View—There are three choices for viewing the information in the Content pane.
They are: Tree, Text and Stylized. Click on your preference and the information
will appear in the pane as such.

Validate—Runs a validation routine to ensure that your XML is sound.

Expand Tree—Displays all nodes in the pane.

Collapse Tree—Hides all nodes except the root node in the pane.

Reload Tree—Allows you to load the original tree.

Working with Registries 429

Find—Allows you to search, via a dialog box, for a specific word or part of a word
within the tree.

Find Next—Allows you to search, via a dialog box, for the next word or part of a
word within the tree.

Action Buttons

The following illustration shows the location of the various action buttons on the
Organization and Service panes.

Novell exteNd Composer User’s Guide430

Searching by organization

Searching for an organization (or organizations) is a simple matter of entering a
complete or partial business name in the text field next to Organization, then
clicking on the Search button (or “Go” button, shaped like a downturned arrow).
A list of matching organizations will appear in tree-view form, in which each top-
level node in the tree is a registry, each child of a registry is an organizationname,
and underneath each business is detail information consisting of Descriptions,
Categories, and Services. You can also enter a group of organization names
separated by a vertical bar (pipe character), which allows you to search for
multiple groups of businesses. For example, Silverton|Silicon etc.

To search organizations by keyword

1 To search on an organization name or partial name (or other keyword), enter
text into the keyword field, then click the Go button (which looks like a
downturned arrow). The search will begin. Note that while a search is
underway, the Abort button (normally greyed out) is red.

2 Searches can take several minutes. If you want to interrupt a search
prematurely, click the Abort button. Partial search results will show up in
the Organization pane.

3 Wait until the search is complete. You will know it is complete when results
have shown up in the Organization pane and the Abort button has returned to
its normal, greyed-out (disabled) appearance.

To set advanced search criteria

1 If you want to set advanced search criteria, do not enter anything in the text
field; merely click the Advanced Search Button (shaped like binoculars).

The following dialog box appears.

Working with Registries 431

2 You can select only one of the search-criteria groups at a time. The available
options are:

Organization Name: Enter enter a complete or partial organization name or
list of names separated by a vertical bar (|) in the text field next to Starting
with.

Identifier: If you choose this option, a new field called Identifier will
appear. From the pulldown list, select one of the following: D-U-N-S, or
Thomas Register (catalog names). Enter a key from the catalog (partial or
complete) in the text field next to Starting with. This entry can contain
numeric values and dashes.

Locator: When you choose this option, a new field called Locator appears.
From the pulldown list select one of the following: NAICS (North American
Industry Classification System), UNSPSC (United Nations Standard
Products and Services Classification) or GEO (geographical). Enter a key
from the catalog (partial or complete) in the text field next to Starting with, if
you selected NAICS or UNSPSC. This entry can contain numeric values.
Enter a country (region) abbreviation for GEO.

Alternatively, click the button at the far right of the control, to bring up a
“key picker” in which you can doubleclick full or partial key names from a
prepopulated list. See below.

Novell exteNd Composer User’s Guide432

Service Type Name: This allows the search of organizations associated with
a particular UDDI tModel. Enter a key word for this tModel in the text field
next to Starting with.

Discovery URL: Enter an IP address or portion of an IP address for the URL
in the text field next to Starting with.

3 Select the Registry Profile(s) you want to use for this search. The Profiles
box contains a list of Registries from which you can search. Registries you
have previously selected in the Profiles dialog box (see description above)
will already be highlighted. However, you may override them by selecting or
de-selecting one or all of the registries within the list. If you decide to return
to your original (default) registries, click the Reset button at the bottom of
the dialog pane.

4 Under Sort By, you. can select how you want to sort—by Name, or by
Date—in either Asc (Ascending) or Desc (Descending) order. The most
common technique is to sort on Name (alphabetically) by ascending order or
on Date (numerically) by descending order. Sorting by Date works within
groups of businesses with identical names.

5 Under Options, you can select Ignore Case and/or Exact Match by clicking
in the appropriate checkbox.

6 Click OK. The dialog goes away and your search begins.

Working with Registries 433

After a search, a tree of matching businesses will be built in the Organization pane;
the Service subpane will be cleared.

NOTE: Clicking a Service entry in the Organization tree causes that Service’s
detail information (binding, etc.) to appear in tree form in the lower Service pane.
See below.

Novell exteNd Composer User’s Guide434

Searching by service

Searching for a service (or group of related services) is a matter of entering a
complete or partial service name or keyword in the text field next to Service, then
clicking on the Search button (or “Go” button, shaped like a downturned arrow).
A list of matching services will appear in tree-view form, in which each top-level
node in the tree is the registry that was searched; each immediate child of a registry
is a service name; and children of the service node(s) contain detail information
consisting of the Organization name associated with the service, a Description of
the service, and bindings for the service.

Wildcards in Registry Searches

The Composer registry search engine supports the use of the percent sign (%) as a
wildcard symbol, meaning one or more of any character. This is a particularly
useful tool when you want to search for business or service names that contain a
particular word but might not start with that word.

NOTE: The default search logic is “Start With.” Thus a search on “Books” will turn
up “BooksRUs” but not “ABC Booksellers” nor “Used Books”. The way to override
this behavior is to search instead on “%Books%”, which will turn up all three.

The Composer registry search engine also supports the use of the | symbol as a
logical-OR symbol, meaning “look for hits that contain any combination of these
words.” You can chain together any number of keywords this way. For example:

%Booking% | %Travel% | %Airline%

would return all names that contain at least one of the words, no matter where in
the name that word might appear.

To search services by keyword

1 To search on a service name or partial name (or other keyword), enter text
into the keyword field, then click the Go button (which looks like a
downturned arrow). The search will begin. Note that while a search is
underway, the Abort button (normally greyed out) is red.

2 Searches can take several minutes. If you want to interrupt a search
prematurely, click the Abort button. Partial search results will show up in
the Service pane.

3 Wait until the search is complete. You will know it is complete when results
have shown up in the Service pane and the Abort button has returned to its
normal, greyed-out (disabled) appearance.

Working with Registries 435

To set advanced search criteria

1 If you want to set advanced search criteria, click the Advanced Search
Button (shaped like binoculars).

The following dialog box appears.

2 As indicated by the presence of radio buttons, you can select only one of the
search-criteria groups at a time. The available options are:

Service Name: Click on the radio button next to Service Name. Enter enter a
keyword in the text field next to Starting with.

Locator: If you select this search criteria, a new pulldown menu appears
from which you must select a Locator. You have the following choices: :
NAICS (North American Industry Classification System), UDDITYPE,
UNSPSC (United Nations Standard Products and Services Classification) or
GEO (geographical). Enter a key from the catalog (partial or complete) in
the text field next to Starting with, if you selected NAICS or UNSPSC. This
entry can contain numeric values. Enter a country (region) abbreviation for
GEO.

Novell exteNd Composer User’s Guide436

Service Type Name: Allows the search of businesses associated with a
particular tModel. Enter a key word for this Model in the text field next to
Starting with.

3 Select the Registry Profile(s) you want to use for this search. The Profiles
box contains a list of Registries from which you can search. Registries you
have previously selected in the Profiles dialog box (see description above)
will already be highlighted. However, you may override them by selecting or
de-selecting one or all of the registries within the list. If you decide to return
to your original (default) registries, click the Reset button at the bottom of
the dialog pane.

4 Under Sort By, you. can select how you want to sort—by Name, or by
Date—in either Asc (Ascending) or Desc (Descending) order. The most
common technique is to sort on Name (alphabetically) by ascending order or
on Date (numerically) by descending order. Sorting by Date works within
groups of businesses with identical names.

5 Under Options, you can select Ignore Case and/or Exact Match by clicking
in the appropriate checkbox.

6 Click OK. The dialog goes away and your search begins.

After a search, a tree of matching services is built in the Service pane; the
Organization pane is cleared. Clicking a service node in the lower (Service) tree
causes that business’s detail information to appear in tree form in the upper
(Organization) pane.

Working with Registries 437

Retrieving WSDL from the Registry
After you have found the service that you searched for, now you can retrieve the
WSDL definition for this service from the Registry. Just highlight the desired
service node and click the Retrieve WSDL button, or click with the RMB and
select Retrieve WSDL from the context menu. If a definition for the service exists,
you see the Contents pane fill with the WSDL information in a tree format (see
illustration). If no WSDL exists for the service, an alert dialog will appear,
advising you of that fact.

NOTE: You can tell whether a given service listing has WSDL or not by looking at
the service icon to its left. A ring icon with a globe in it means the service has
WSDL. A ring icon with no globe means it is not a WSDL web service.

Novell exteNd Composer User’s Guide438

You can view the information in the Contents Pane as text or in stylized form by
simply clicking on the RMB and selecting the view you wish to see.

Publishing to a registry
When you have created WSDL using the Composer editor, you can publish it to a
registry by following the procedures outlined below.

To publish WSDL to a registry

1 Click on the Publish to Registry button on the toolbar as shown below.

Working with Registries 439

2 A dialog screen, WSDL Publishing Options, appears.

3 Registry Profile: Select the registry from the pulldown list you wish to
publish.

Organization Name: Allows you to lookup organizations and select which
one to associate the service with. If you click the Lookup button, the
following dialog appears:

WSDL Publish URL: Shows the URL to which the service will be
published to. You can edit this if you desire.

Novell exteNd Composer User’s Guide440

4 Click OK and if your service was successfully entered into the registry you
selected, you will see a message like the one shown below.

441

15

Deploying Your Project

Deploying Your Project Chapter 15

When you’ve completed the design, building, and testing of your project, the next
step is to deploy it to the application server, where it will execute.

Some of the major topics discussed in this chapter include:

Deploying Directly from Composer (Enterprise Edition only)

Deployment from exteNd Director (all editions)

Director Wizards for Composer Code Generation

Server Profiles

The Deployment xObject

Defining SOAP Triggers (Composer UI for)

Composer Web Service Wizard: SOAP Service Deployment (Director UI
for)

Both editions of the Novell exteNd suite (Professional and Enterprise) offer tools
for deploying Composer projects. In the Professional Edition suite, you will use
exteNd Director to carry out your deployments. In the Enterprise Edition suite,
you also have the option of deploying projects directly from Composer to any
supported app server (Novell exteNd, WebSphere, WebLogic, Tomcat) without
the need to switch between Composer and Director environments.

The sections immediately following this one will tell you about:

Architectural considerations relevant to deployment

How Composer handles packaging of EAR files and resources

Composer’s design-time UI for creating and managing deployment artifacts
(applicable to the Enterprise Edition suite)

Composer-related deployment aids and wizards available in Novell exteNd
Director (applicable to all editions of the Novell exteNd suite)

Novell exteNd Composer User’s Guide442

App-server-specific issues, including administration issues pertinent to deployed
Composer services, are discussed in a separate document: the Composer
Enterprise Server User’s Guide. Consult that guide if you have concerns about
issues that are not addressed in this chapter.

NOTE: This discussion assumes some prior knowledge of J2EE deployment
concepts, such as JAR (Java archive), WAR (Web archive), and EAR (Enterprise
application archive) packaging, deployment descriptors, etc. If such concepts are
unfamiliar to you, you may want to consult books or articles on J2EE deployment
architecture before proceeding.

Deploying Your Project 443

Planning your Deployment
Before deploying a Composer service, you should consider:

Packaging requirements—Do you want to deploy services individually,
straight from Composer, into the app-server environment; or will you instead
be packaging whole projects (containing multiple services) into WAR or
EAR files created in Novell exteNd Director (or possibly some other
environment)?

Triggering needs—How will your service(s) be fired off? The trigger object
can be a servlet, an EJB, an EJB triggered through a servlet, a custom Java
class that calls your service programmatically (directly), or a JSP that uses
Composer tag library routines. If you have the JMS ConnecForm Resourcet
installed, you can also fire a service from a (JMS) MessageListener object
that “listens” for incoming requests on a queue. If you have the SAP
Connect, you can trigger a service off an SAP function. (See the appropriate
Connect user guides for more information.)

How arriving data might be packaged—Will the incoming data be in the
form of urlencoded param/value pairs appended to a URI (i.e., HTTP Get)?
Will your service trigger handle incoming XML via HTTP Post with multi-
part MIME attachment? Will your service be a SOAP service? Will the
SOAP payload be encrypted or digitally signed?

Shared resources—Do you want to deploy some resources, such as WSDL,
JSP, JAR, XSL, or XSD files, as published resources so that other Composer
services can share them?

These are just some of the considerations will affect how you deploy your
Composer-created services. For some types of services, you will also want to
consider connection pooling, container-based transaction management, directory
storage of passwords and public key info, and perhaps other items as well.

About Service Triggers
A service trigger is a process (such as a servlet or bean) that initiates execution of
a Composer service in response to some kind of input. The input may arrive via
HTTP, but could also be an e-mail arriving via SMTP or a JMS message arriving
at a queue. Various kinds of Composer triggers are available to handle various
kinds of requests arriving via various transports. Composer can create triggers for
you, or you can generate them using exteNd Director’s code wizards. s

The following trigger types are supported by Composer:

E-mail—A process on the server polls a mailbox at a specified interval and
kicks off a Composer service when an e-mail meeting certain size limits
arrives in the mailbox.

Novell exteNd Composer User’s Guide444

EJB—The trigger is an Enterprise Java Bean (which responds to
programmatic requests).

EJB with servlet—The trigger is an EJB invoked by a servlet. The servlet
“listens” on a URL, handles HTTP requests, and uses the bean to mediate
interaction with a Composer service.

File—A process on the server watches for the arrival of files in a particular
location on a physical drive. When a file arrives, the Composer service fires.

JMS—The trigger is a JMS listener. Arrival of a message at a topic node
causes the Composer service to fire. (This trigger type is available only in
the Novell exteNd Enterprise Edition version of Composer.)

JSP—The trigger is a Java Server Page containing scriplets that can call a
Composer service directly.

SAP Service—Execution of an SAP function causes a Composer service to
fire.

Servlet—Arrival of a request over HTTP causes the trigger to invoke a
Composer service.

SOAP HTTP—Arrival of a SOAP request causes the service to fire.

Timer—A daemon process on the server causes a Composer service to fire
at a set interval.

In addition to these “event-oriented” trigger types, it is possible for a custom Java
class to invoke a Composer service directly. Novell exteNd Director has wizards,
in fact, that can generate the necessary code. (See “Director JSP Wizard” and
“Java Class Wizard” below.)

Triggers and Input Data

In a contractual sense, triggers have two responsibilities: They not only listen for
specific events (whether it’s the arrival of an HTTP request, arrival of e-mail, etc.)
and take action on them; but they also must harvest and “hand off” XML data to
the Composer service. To do the hand-off, the trigger has to know how to collect
the data over the transport in question and package it in a form Composer can
understand. Various helper classes (included in the Composer Server installation)
are available to help a trigger servlet marshall/unmarshall data appropriately.
(Those classes are described in more detail in the discussion at “Converter
Classes” in the appendix on JSP tag-library methods.)

Deploying Your Project 445

For example, a servlet can acquire data as part of an HTTP GET, or as part of
HTTP POST. In the simplest case, user data consists of name/value pairs attached
to the end of a URL (i.e., a request arriving by HTTP GET). But data can arrive in
other ways as well, such as a SOAP request; XML via HTTP POST where XML
is embedded in a form field; XML via HTTP POST with XML constituting the
entire content portion of the stream; or XML via HTTP POST as multipart-mime
attachments. Composer will also let you define triggers that fire when e-mail is
received. In that special case, XML arrives in the form of an e-mail attachment.

In the discussions that follow, familiarity with the basic trigger types available in
Composer is assumed. If you are not already familiar with Composer’s trigger
architecture, consult the Composer Enterprise Server User’s Guide.

About Composer-Built Deployment EARs
At deployment time, Composer packages all of the deployable services in a
project into an EAR (Enterprise application archive). This is the so-called
“deployment EAR.” Its contents are as shown below.

When you deploy directly from Composer, the following steps happen
automatically (in the order shown):

1 Composer packages your deployable resources—including the metadata
(XML) describing your services—into a Project JAR. This JAR, along with
the files mentioned below, is written to a staging directory (typically a
subdirectory in your project directory).

2 Composer creates a WAR file containing two items: a manifest that points to
the foregoing JAR, and a web-xml file that describes all of the trigger
servlets that apply to your deployed services (as well as URL bindings for
them), so that the app server knows how to find and expose your services.

Novell exteNd Composer User’s Guide446

3 The JAR and WAR files are packaged into a deployable EAR.

4 The EAR is uploaded from the staging area to your app server.

The last step varies in implementation depending on the type (and version) of app
server to which you are deploying. In some cases, Composer will create and
execute a batch file that carries out the steps needed to put the EAR (and any
deployment descriptors) on the app server. In other cases, Composer Enterprise
Server will “pull” the deployment EAR onto the server. In all cases, Composer
will (as part of Step 4) launch your web browser and lead you through a short
series of forms, where you will provide any user-ID, password, or other
information the server may need in order for the deployment to finish normally.

It may or may not be necessary to restart the server after deploying the EAR (this
varies by app server; consult your app server’s documentation).

NOTE: You should ensure that the app server and Composer Enterprise Server
are running before undertaking any kind of Composer deployment.

Deployment Options
When it comes to building and deploying the deployment EAR, there are several
options.

The first option is to use Composer’s native design-time UI to package and install
deployable objects for a given project. (This requires the standalone version of
Composer, or the exteNd Suite Enterprise Edition. It is not an option in the
Professional Edition suite.) The “Composer-direct” method is the easiest and
quickest way to deploy Composer-built web applications.

The second option is to use exteNd Director’s utility-tools UI for building and/or
customizing a deployment EAR. This option should be considered when your
Composer project needs to be bundled into an EAR with other Java objects (such
as portal components) as part of a large deployment.

A third option is to build JARs, WARs, and/or EARs manually (or with a third-
party tool) and install your deployment objects “by hand,” following the
procedures recommended by your app-server vendor. This option should be
considered only when you need low-level control over the deployment process for
one reason or another.

We’ll discuss the first two options in depth, beginning with Composer-direct
deployment.

Deploying Your Project 447

Deploying Directly from Composer
If you are using Composer Enterprise Edition, you can deploy projects directly
from Composer. (The Professional Edition does not support this capability. If you
will be using Professional Edition, you should skip this section and proceed
directly to “Deployment from exteNd Director” further below.)

The basic steps involved in deploying your project from the Composer design-
time environment are:

1 Create a Server Profile

2 Create a Deployment Object

3 Set up Service Triggers and Resources for your Web Service

4 Prepare Objects for Deployment

5 Deploy the EAR to the server

Server Profiles

Server profiles define a target server and the necessary server-specific information
required for deplyoment to that server. Creation of a server profile is a necessary
prerequisite for deployment of a Composer project to the app server (regardless of
app server type: Tomcat, Novell exteNd App Server, WebSphere, or WebLogic).

NOTE: Server profiles are not project-level resources. They are stored in a
properties file and are available for use with all projects you create using a given
installation of Director or Composer.

Before creating your server profile, you should make sure that the application
server to which you will be deploying is running and has the exteNd Composer
Enterprise Server (and any necessary Connects) installed and running as well.

To create a Server Profile

1 Select Tools>Profiles from the Composer menu.

2 From the Profiles dialog, select the Servers tab.

Novell exteNd Composer User’s Guide448

3 Click on New... to create the new Server profile. A dialog appears:

4 Specify a Profile Name. The name you type will be used to identify this
particular profile when you deploy your project.

5 Select a Server Type from the drop-down list. The choices are:

Deploying Your Project 449

WebSphere 5.0

Novell exteNd 5.1

Tomcat 4.1

WebLogic 8.1

WebLogic 6.1

Novell exteNd 4.0

The fields in the “Server Specification Information” area of the dialog will
change according to which Server Type you specify in this field.

6 In all cases, you will need to provide a Server Name. In the example above,
localhost:80 was entered, since this refers to a locally installed exteNd
Application Server.

If you selected a WebSphere or WebLogic Server, you will also need to
identify Target Servers.

If you select an exteNd Application Server, you will also need to specify
a database name to be used for deployment.

For Tomcat Servers, no other Server Specification information is
required.

7 Enter a User Nameand Password if your server requires authentication.

8 Click the checkbox if you would like to use this Server Profile as your
default.

9 Click OK to create the new server profile.

NOTE: To modify existing server profiles, go to Tools > Profiles and select the
Servers tab. Select the profile you wish to change and click on Edit. Similarly, if
you wish to delete a Server profile, click on the Delete button.

The Deployment xObject

Deployment objects, like Services, Components and Resources, are another
species of Composer xObject. They contain metadata about your deployment:
information about which service triggers to create and which resources to deploy.

NOTE: This discussion does not apply to the Professional Edition suite. The
Deployment xObject is available in Composer only in the Enterprise Edition suite.
If you are using the Professional Edition, you will create and manage deployment
artifacts in the Director environment. See “Deployment from exteNd Director”
further below.

Like other xObjects, Deployment objects are accessed through Composer’s
Navigator Pane.

Novell exteNd Composer User’s Guide450

The procedure for creating a Deployment xObject will probably feel familiar to
you, since it involves a wizard that operates much like Composer’s other xObject-
creation wizards.

To create a Deployment Object:

1 Click with your right-mouse button on Deployment in the Navigator Tree
and select New. (Alternatively, use File > New > xObject, and select
Deployment on the Component panel.)

2 The first screen of the New Deployment Wizard appears:

Deploying Your Project 451

3 Provide a Name for the Deployment object.

4 Optionally, provide a Description.

5 Click Next to proceed to the next screen:

6 Specify a Deployed Object Name (this will default to the name you entered
on the previous screen).

7 Specify a Base URL by entering the URL-prefix where your service triggers
and other resources (JSPs, images, etc) will be available.

8 Finally, browse your file server to designate a Staging Directory to hold
your deployment objects and descriptor files.

Novell exteNd Composer User’s Guide452

9 Click Next to proceed to the next screen:

10 Specify a Resource URL Prefix to be used to access any resources used by
your project which you would like to be publicly available.

11 You can also designate a Resource Security Role, if you are using J2EE 1.3
(or higher), to prevent users from surreptitiously accessing resources

NOTE: The security role is ignored for Composer Services in the project
that use the resource.

12 Click Next to proceed to the final screen of the Deployment Object creation
wizard:

Deploying Your Project 453

13 This panel provides you with an opportunity to override project variables
that exist in the project (and any subprojects called by it) and set them to the
values they will need at runtime. The table is pre-populated with the project
variables and their values currently defined in the project.

14 Click Finish to create the deployment object and have it appear in your work
area in the form of a Deployment Content Tree, as shown below:

Editing Existing Deployment Object Properties

Like all other xObjects, once a Deployment object is created, you can access a
tabbed dialog containing all the wizard panels by selecting a Deployment object
and using the RMB to select Properties. Values can be modified, as necessary,
using the Properties dialog. An example of the tabbed interface is shown below.

Novell exteNd Composer User’s Guide454

Configuring a Deployment
The discussions below describe how to set up and carry out various kinds of
deployment operations from the Composer design-time environment using
standalone Composer or the Enterprise-Edition suite (not Professional Edition).

NOTE: If you are using the exteNd Suite Professional Edition, you should skip the
following discussion and go directly to the discussion at “Deployment from exteNd
Director” further below.

IMPORTANT: Before attempting any of the following procedures, you should
already have created an applicable server profile (see “Server Profiles” above), as
well as a Deployment Object (see discussion at “The Deployment xObject”) to
contain this project’s deployment contents. You should also have already created
(and added to your Deployment Object) any special resources needed by your
service(s), such as WSDL resources for SOAP services.

Service Triggers

One of the most important configuration choices regarding the deployment of
services is deciding what kind of triggering mechanism to associate with the
service. Composer can create many different kinds of trigger objects. All you do
is decide which kind(s) of triggers to associate with which individual services, and
specify a few parameters appropriate to each trigger.

Note that you can associate more than one trigger type with a given service. You
can also associate more than one service with a given trigger type.

Deploying Your Project 455

In the sections to follow, you’ll learn about:

Defining EJB-Based Triggers (including EJB-with-Servlet)

Defining E-mail Triggers

Defining File-Based Triggers

Defining JSP-Based Triggers

Defining Servlet-Based Service Triggers

Defining SOAP Triggers

Defining Timer-Based Service Triggers

NOTE: For information on how to set up JMS-based or SAP-gateway-based
service triggers, see the separate JMS Connect User’s Guide or the SAP Connect
User’s Guide, as appropriate.

Drag-and-Drop Creation of Service Triggers

Most of the procedures described in this chapter use the drag-and-drop GUI
metaphor extensively. Drag-and-drop affords an easy, quick method of associating
triggers with services. But it should be noted that the same associations can also
be created using menu commands instead of drag-and-drop. (See next section.)

The drag-and-drop procedure is easy:

Open a Deployment object

Select the Web Service category in Composer’s navigator

Drag a particular service instance over to the Deployment tree and drop it on
the trigger type of interest

Novell exteNd Composer User’s Guide456

Creating Service Triggers Using Menu Commands

To create a Service Trigger, simply right-click on the object in the Navigator pane.
There are caveats, however. In order to create a Service Trigger, the following two
conditions must be met:

A deployment xObject must be open and active in the native environment
panel editor.

The object that was right-clicked on must actually be able to be used to
create a service trigger.

If these conditions are met, then the items listed in the sub-menu will be the
service triggers that can be created using the object that was right-clicked on.

NOTE: A service must have an associated WSDL resource to be deployable as
SOAP HTTP and thus for the menu item to appear.

Deploying Your Project 457

Clicking on one of these items will create the appropriate entry in the deployment
tree pane (as if the user had dragged it there manually) and cause its property sheet
to appear in the deployment properties pane.

You can also create a Service Trigger using the Create Service Trigger submenu
in the Component menu (in Composer’s main menubar), as illustrated below.

When you make a selection from one of the trigger options shown in the submenu,
a small dialog appears:

Novell exteNd Composer User’s Guide458

Use the pulldown menu control to select the service to which the trigger will be
bound. Then click OK.

NOTE: The JMS and SAP service-trigger options are not available unless the
relevant Connect products are installed.

Defining E-mail Triggers

You can configure a Composer service to fire when an e-mail arrives in a
particular mailbox. The e-mail becomes the payload, such that if you were (for
example) to write Input.getXML() to System.out, using a Function Action,
you would see the entire message appear in your system console, in XML format,
similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<Message>
 <X-Auth-OK>joeblow@smtp-send.myrealbox.com</X-Auth-OK>

 <Return-Path><jblow@myrealbox.com></Return-Path>
 <Received>from JBLOW-DT1 jblow@smtp-send.myrealbox.com
[12.23.52.5]

 by smtp-send.myrealbox.com with NetMail SMTP Agent
$Revision: 3.42 $
on Novell NetWare;

 Mon, 29 Sep 2003 13:09:23 -0600</Received>
 <Message-ID><13140405.1064862444476.JavaMail.JBlow@JBLOW-
DT1>
</Message-ID>

 <Date>Mon, 29 Sep 2003 15:07:24 -0400 (EDT)</Date>
 <From>joeblow@myrealbox.com</From>
 <To>joeblow@myrealbox.com</To>

 <Subject>Trigger Test Mail</Subject>
 <Mime-Version>1.0</Mime-Version>
 <Content-Type>text/plain; charset=ASCII</Content-Type>

 <Content-Transfer-Encoding>7bit</Content-Transfer-Encoding>
 <Body charset="ASCII" encoding="7bit" subtype="plain"
type="text">This is a test message
</Body>

</Message>

Before creating an e-mail trigger, you should know:

Deploying Your Project 459

The IP address of the target mail server (e.g., pop3.myrealbox.com)

The protocol (POP3 or IMAP)

The name of the mailbox (typically INBOX)

The account-holder’s name (such as the “myname” in
myname@mydomain.com) and any associated password

The account name and password info should exist in the form of a Mail Simple
Authentication connection resource. (Instructions for creating this type of
connection resource can be found under “Mail Simple Authentication Connection
Resource” in the discussion of Connection Resources.) If you have not created a
resource of this kind to hold your account info, do so before using the procedure
shown below.

You should also have some idea of how often you would like the target mailbox to
be checked, and whether or not e-mails larger than a certain size should be
ignored.

Note that as e-mails are detected and processed, they are consumed (removed)
from the mailbox. Any e-mails that are detected but not processed (due to size
constraints—see below) will be left in the box unread.

To associate an E-mail Trigger with a service:

1 In the Navigation Category pane, under Services, click on Web Services.

2 Find the service you wish to deploy in the instance pane and highlight it by
clicking.

3 Drag the service onto the E-mail node of the Deployment tree, under Service
Triggers. When you let go of the mouse, a property sheet similar to this one
should appear:

Novell exteNd Composer User’s Guide460

4 Select IMAP or POP3 from the Protocol menu.

5 Enter the name of the Mailbox (typically INBOX).

6 Under Polling Interval, enter a numeric value representing the time, in
seconds, to wait between checks of the mailbox.

NOTE: If the box contains e-mail and the trigger fires, Composer waits until
the service finishes executing before checking the box again. So in other
words, if the service should happen to take two seconds to execute, and the
polling interval is 10 seconds, it might take as long as 12 seconds for the box
to be checked again after the previous e-mail has been detected.

7 Under Message Size, enter a numeric value representing the size, in
kilobytes, of the largest e-mail that will be processed. Any e-mail that is
smaller in size than this number will be processed: the service will fire and
the mail will be passed to it (and removed from the mailbox in the process).
Any e-mail larger in size than this value will simply be ignored.

8 Save your Deployment object.

Deploying Your Project 461

Defining EJB-Based Triggers

Associating an EJB trigger with a service can be done in two slightly different
ways. One way is simply to designate an EJB (session bean) as the object through
which service access occurs. In this case, there is no URL to hit: instantiation of
the EJB has to occur programmatically (perhaps through a custom trigger object
of your own design). The only deployment parameters you can set in this case are
the JNDI name, session type, and transaction attribute. Your service, after
deployment, becomes available through normal JNDI/EJB mechanisms, but
otherwise has no “web-facing” layer.

The other way of deploying a service to the EJB container is to choose the “EJB
with Servlet” trigger option and let Composer produce the EJB as well as a servlet
that knows how to access the EJB. In this case, Composer “front-ends” your EJB-
based service with a web-tier component (a servlet) that can act on HTTP requests.

To associate an EJB (or EJB-and-Servlet) with a service:

1 In the Navigation Category pane, under Services, click on Web Services.

2 Find the service you wish to deploy in the instance pane and highlight it by
clicking.

3 Drag the service onto the EJB or EJB with Servlet node of the Deployment
Profile tree, under Service Triggers.

If you drop the service onto the EJB trigger node, you will get a property
sheet that has fields only for three items: JNDI Path, Session Type, and
Transaction Attribute. See explanations below.

If you drop the service onto the EJB with Servlet category node, the
property sheet that appears will have the aforementioned three items as
well as several more:

Novell exteNd Composer User’s Guide462

4 Specify a Servlet URL, as applicable.

5 Fill in the JNDI Path that will be used to find the object.

6 (Enterprise Edition only) For Transaction Attribute, select the applicable
JTA transaction behavior from the dropdown list. Choices include:

Bean-managed

Mandatory

Never

Not supported

Required

Requires New

Supports

7 Select an Output Type of XML, HTML via PI or XHTML.

8 If a Stylesheet Resource is to be used for transforming this service’s output,
select the appropriate Stylesheet Resource from the pulldown menu
provided.

Deploying Your Project 463

NOTE: You will typically use this option when the Output Type specified in
the previous step is XHTML.

9 If you are using a stylesheet (per the previous step) and you have
implemented multiple language versions of the stylesheet, and you wish to
specify the language version to use, click the Language button. A dialog will
appear.

Choose one of the radio buttons:

None: Applies no preference.

Environment: Choose the language of the host machine.

Session: Chooses the language specified in the servlet request.

NOTE: Please refer to “Support for Language Versioning of Resources” for
a more detailed discussion of this dialog and its intended use.

10 If this is a J2EE 1.3 (or higher) application, optionally specify a Security
Role.

NOTE: Security roles are a J2EE-defined mechanism for managing access
control. The implementation of this layer is app-server-dependent. It is not
implemented by Composer. For more information on J2EE security role
concepts, consult the Sun web site and/or your app-server documentation.

11 If this is a J2EE 1.3 (or higher) application, optionally indicate a Run as
Role.

12 Save your deployment-object changes.

Novell exteNd Composer User’s Guide464

Defining File-Based Triggers

The File trigger enables you to set up a scenario in which the appearance of a new
file on a particular path on the local hard drive will fire a service. This can be
useful for situations in which documents that need to be processed on a timely
basis (as part of a workflow) can be handled in automated fashion.

When a File trigger is used, a process on the server monitors a given folder (or
subdirectory) on the local hard drive, checking for the appearance of new files at
regular intervals. (You can specify any interval you want.) As documents appear
in the target directory, the trigger detects them and sends them, one by one, to your
Composer service. Each time a file is detected, the following events take place:

The file is read into memory.

A copy of the file is written to a destination directory. You will specify a
destination directory when you set up your trigger at design time (see setup
procedure below). The destination might, for example, be called \dest. At
runtime, each time a file is processed, Composer creates a new folder within
the \dest folder. The new folder’s name will be its timestamp: e.g.,
2003.09.30_08.54.48. Thus, a copy of the original file (bearing the original
name) is written to \dest\2003.09.30_08.54.48.

Depending on the type of file-handling you specified in your trigger, your
service will receive, in Input, either the contents of the detected file or a URI
that points to a copy of the file. The file-handling options you can specify are
as follows:

Content as XML—The file itself is assumed to be well-formed XML.
The unmodified file becomes the Input message part to your service.

Embed Content in XML—The file contents are copied into a CDATA
section of an XML skeleton file. That XML file becomes the Input
message part in your service.

File Reference—A URI (relative path) that points to the new copy of the
file is placed in an otherwise-empty Input message part.

The original file is deleted from the source directory (the directory that the
trigger process monitors).

The timer restarts. That is, if the polling interval is ten seconds, the clock
will start at zero again as soon as the service has finished running.

File-Handling Options

You can set up a File trigger to pass data to your service in any of three ways.

Deploying Your Project 465

Content as XML

When you specify this option, each new file that appears in the target directory is
assumed to consist of well-formed XML.

Embed Content in XML

The Embed Content in XML option is appropriate when arriving files are not in
XML format. (For example: EDI files.) Composer merely wraps the content of the
file in a CDATA section, so that your service’s Input document looks like:

<?xml version="1.0" encoding="UTF-8"?>

<Root>

<![CDATA[the input file’s raw content appears here]]>

</Root>

By default, the root element is named Root. But you can override this behavior, as
shown further below.

NOTE: Binary content is not appropriate for CDATA, since binary streams can
contain XML-illegal characters. If you will be processing binary files, or files that
may contain illegal characters, you should not use the “Embed Content in XML”
option. Instead, use “File Reference,” and read the file via a URL/File-Read action
inside a component, with base64-encoding enabled. (If you need the data in raw
form, rather than base64-encoded, you will need to perform the necessary file I/O
operations yourself, in a custom Java class.)

File Reference

When you use the “File Reference” option, your Input will look similar to:

<?xml version="1.0" encoding="UTF-8"?>

<Root>..\dest\2003.09.30_09.10.15\myIncomingFile.dat</Root>

Again, by default, the root element is named Root. But you can override this
behavior.

NOTE: All pathnames are relative to the app-server \bin directory by default. You
can override this behavior, however.

To create a File-based trigger:

1 In the Navigation Category pane, under Services, click on Web Services.

2 Find the service you wish to deploy and highlight it in the instance pane by
clicking.

3 Drag the service onto the File node of the Deployment tree, under Service
Triggers. When you let go of the mouse, a property sheet similar to this one
should appear:

Novell exteNd Composer User’s Guide466

4 Under Source Directory, enter a URI pointing to a directory on a local
storage drive that should be checked for arriving files. The URI can be a
relative path (in which case it will be treated as relative to the \bin directory
of your app-server installation), or it can be a fully qualified path, such as
d:\temp.

NOTE: The source directory need not already exist before you deploy the
service.

5 Use the dropdown menu under Input Type to specify how each file’s
contents should be handled. (See the discussion under “File-Handling
Options” above.)

Content as XML—Arriving files are assumed to be well-formed XML.
The unmodified file becomes the Input to your service.

Embed Content in XML—File contents are copied into a CDATA
section of an XML file. That XML file becomes the Input message part
in your service.

File Reference—A URI (relative path) that points to the new copy of the
file is placed in an otherwise-empty Input message part.

6 Choose an Encoding. The default is UTF-8.

7 If you are using Embed or File-Reference handlers, enter the name you
would like Composer to use for the root node of the Input document. The
default is Root. Change this to any XML-legal element name.

8 Under Polling Interval, enter the number of seconds Composer should wait
between inspections of the Source Directory.

Deploying Your Project 467

NOTE: Polling is suspended when your service is executing. It resumes
again when the service has finished running.

9 Under Destination Directory, enter the path to the directory that will
receive copies of processed files as described earlier. (Composed will create
datestamped folders in this directory at runtime: one per file processed.)

10 Save your Deployment object.

Testing Considerations

The file-I/O portions of a service that uses the File trigger cannot be tested using
ordinary design-time debugging techniques, since the polling, file-handling, and
output functions of the trigger will only work on the server. Deployment to a
server is a necessary part of testing File-triggered services.

Of course, regular “action model” actions can be tested and debugged as usual in
the components that implement your service’s business logic. In order for your
action model to operate against realistic Input data, you may need to “dummy up”
some specimen XML documents of the type Composer will create in actual
operation. (See the XML examples shown under “File-Handling Options” further
above.) Use sample documents for action-model debugging; then deploy the
service and test.

Defining JSP-Based Triggers

If you are “front-ending” your service with a JSP, you can specify the JSP-to-
service binding using the following procedure. Note that you should already have
created a JSP Resource for the Java Server Page in question, prior to beginning
this procedure. (For information on how to create JSP Resources, see “About JSP
Resources” in the section on Resources.)

To associate a JSP with a service:

1 In the Navigation Category pane, under Resources, click on Java Server
Pages.

2 Find the particular JSP you wish to use as a trigger in the instance pane and
highlight (select) it by clicking.

3 Drag the selected JSP Resource onto the JSP node of the Deployment Profile
tree, under Service Triggers.

Novell exteNd Composer User’s Guide468

4 The JSP Resource you selected now appears as a node under the JSP node in
the trigger tree, and the JSP Properties sheet is displayed in the editor pane
on the right (see illustration).

5 Optionally enter a name to use in Security Role.

NOTE: Security Roles are valid for J2EE 1.3 only.

6 Fill in a base URL for deployment.

7 Save your deployment-object changes.

Defining Servlet-Based Service Triggers

In many cases, you will simply trigger a service off a servlet that handles requests
on a given URL. (The servlet can be exposed through a JSP or not. In this case, we
will assume not. If you wish to bind a JSP to a particular service, see the discussion
at “Defining JSP-Based Triggers” elsewhere.) The servlet may be configured to
handle data arriving via HTTP GET or POST; and in the latter case, the XML data
might be contained in a particular form field, or it might arrive as multi-part mime
content, or it may comprise the content stream of the HTTP POST.

To define a servlet-based trigger for a service:

1 In the Navigation Category pane, under Services, click on Web Services.
The names of existing services will appear in the instance pane.

Deploying Your Project 469

2 In the instance pane, find the service you wish to deploy and highlight
(select) it by single-clicking.

3 Drag the selected service onto the Servlet node of the Deployment tree,
under Service Triggers, as shown above.

4 The service you selected now appears as a node under the Servlet branch,
and the Servlet Properties sheet is displayed in the editor pane.

Novell exteNd Composer User’s Guide470

5 Fill in a URL for deployment. This will form the tailmost fragment of the
URL for your service. The complete URL will be something like:

http://localhost:80/[MyDataBase]/[MyDeploymentEAR]/myurl

where [MyDataBase] is the database in which the deployment will occur on
the app server (Novell exteNd app servers only); [MyDeploymentEAR] is
the name of your Composer project (Professional Edition) or Deployment
xObject (Enterprise Edition); and myurl is the value you entered above.

6 Select an appropriate Servlet Type from the dropdown list as the source of
data which will be used as input to the service. The choices are:

Params (URL/Form)

XML (MIME/Multi-Part)

XML (HTML Form Field)

XML (HTTP/Post)

7 Select an Output Type denoting the MIME type of the response data for the
service. Valid types include:

XML

HTML via PI

XHTML

8 Optionally enter a Security Role name.

NOTE: Security Roles are valid for J2EE 1.3 only.

9 Under Run As Role, type the name of a Role to use while running the
service.

10 Save your deployment-object changes.

Defining SOAP Triggers

The procedure for associating a SOAP trigger with a Web Service involves a
process similar to the ones described above.

NOTE: The following procedure assumes familiarity with SOAP, WSDL, and XML
Signature concepts. If you are not familiar with these technologies, consult the
http://www.w3.org web site and/or other resources as necessary before
proceeding.

To associate a SOAP trigger with a service:

1 In the Navigation Category pane, under Services, Click on Web Services.

2 Find the service you wish to deploy in the instance pane and highlight it by
clicking.

http://www.w3.org

Deploying Your Project 471

3 Drag the service onto the SOAP HTTP node of the Deployment Profile tree,
under Service Triggers. The property-sheet pane changes to the following
appearance:

4 In the property sheet, enter a URL name for the service. This is the final
portion of the URL (not the complete URL).

NOTE: An HTTP GET on this URL will return the WSDL for this service. An
actual SOAP request on the URL will trigger the service.

IMPORTANT: The value you enter here will be reflected through to the
<service> element of your service’s WSDL after deployment. Changes will
also be reflected in child elements <port> and <soap:address>. In other
words, the <service> element is updated dynamically to use the URL you
specify here.

5 Select the appropriate WSDL Resource if it is not already displayed.

6 Select the appropriate Binding if it is not already displayed. (Some WSDLs
define more than one binding; when this is the case, you can choose the
binding that applies to the URL you specified earlier. In the vast majority of
cases, you will simply accept the default value shown.)

7 Specify the Operation that this service will handle.

8 Optionally enter a Security Role (for J2EE 1.3+ applications).

Novell exteNd Composer User’s Guide472

9 Optionally use the dropdown list to select a Certificate Resource (if any)
from the ones currently associated with the project. This is necessary only if
the service will sign outgoing responses using the XML Signature scheme.
(See “About Certificate Resources” for more information on Certificate
Resources and their usage.)

10 If the service requires inbound SOAP requests to be digitally signed, check
the Validate XML Signature checkbox.

NOTE: If you check this checkbox, it means that every inbound request
must contain digital signature information in the SOAP header, in accordance
with the XML Signature standard. If a request does not contain such a
signature, a SOAP fault will result.

11 Save your deployment-object changes.

Defining Timer-Based Service Triggers

A Timer trigger causes a particular Composer service to be executed on a periodic
basis, independent of any events. This type of triggering mechanism lends itself to
many use-cases. For example:

You may want a service to generate daily or weekly reports: activity reports,
inventory reports, payroll, financials, etc.

You may have “batch jobs” that need to run every night.

You may have a need to run maintenance jobs on a scheduled basis, such as
scanning a database for stale data every 48 hours, pruning “opt-outs” from a
mailing list every day, etc.

Scheduled Tasks versus Repetitive Tasks

Composer’s Timer trigger supports two types of periodic invocation: two notions
of repeat-processing. At one level is the idea of scheduling: tying the execution of
a process to one or more fixed dates on a calendar. This is calendar-based
recurrence, or simply recurrence. Composer supports recurrence in the general
case. You can schedule a job to occur once (i.e., recur zero times), at a given
date/time, or you can schedule it to occur at multiple dates/times (which might not
be evenly spaced). The key intuition is that the job follows a schedule which
begins on a certain date and recurs zero or more times at other dates.

The second notion of timing supported by the Timer trigger is periodic invocation
of a process until a certain number of invocations has occurred. The use case here
is “This service needs to execute X times, with a wait-time between executions of
Y seconds” (or minutes, days, etc.), independent of calendar date. The implied
parameters are an execution count and an execution interval.

Deploying Your Project 473

By combining these two notions of timing, it’s possible to achieve a high degree
of customization of execution schedules. For example:

To execute a service once an hour during business hours (e.g., 9:00 to 5:00),
you can schedule the service to recur daily, beginning at 9:00, with an
execution count of nine and an execution interval of 60 minutes.

To execute a service once an hour, continuously, schedule it as a daily
recurring item, with an execution count of 24 and an execution interval of 60
minutes.

Composer allows you to configure recurrences based on daily, weekly, or monthly
invocations. In the weekly case, you can further specify recurrence by one or more
specific days (such as every Sunday, or Tuesdays-and-Saturdays, or Monday-
Wednesday-Friday). When the recurrence is monthly, you can further specify that
invocation occurs on the first day of the month, the last day of the month, or a
specific day.

To create a Timer-based trigger:

1 In the Navigation Category pane, under Services, click on Web Services.

2 Find the service you wish to deploy and highlight it in the instance pane by
clicking.

3 Drag the service onto the Timer node of the Deployment tree, under Service
Triggers. When you let go of the mouse, a property sheet similar to this one
should appear:

4 If you want the trigger to begin on a certain date, click the Calendar button.
A dialog will appear, similar to the one below.

Novell exteNd Composer User’s Guide474

Use the various controls in this dialog to select the date and time for initial
invocation of the service. Then click OK to dismiss the dialog. The date and
time you chose will appear in the Date and Time field of the trigger’s
property sheet.

5 If this is to be a recurring process, click the Recurrence button. (It will be
labeled “Non-recurring” until you have specified more information.)

NOTE: The Recurrence button will be enabled only if a date is showing in
the Date and Time field. If the button is disabled, go back to the previous
step.

When you click the Recurrence button, a dialog will appear as shown below.

Deploying Your Project 475

6 Click the Recurring radio button. Other controls in the dialog become
enabled.

7 Click the Daily, Weekly, or Monthly radio button as appropriate. Additional
controls become enabled.

Under Weekly: Check any checkboxes that apply. Your service will
execute every week on the days you have checked.

Under Monthly: Check any checkboxes that apply. Your service will
execute on the days specified.

8 Under Time (near the bottom of the dialog), enter a time (in 24-hour-clock
format) representing the time of day when the service should kick off. If
desired, use the Select Time button to bring up a time chooser dialog with
spin controls for specifying hour and minutes.

9 Under End Date, enter a date (in YYYY-MM-DD format) representing the
final date beyond which no more executions will occur. If desired, use the
Select Date button to bring up a date chooser dialog with point-and-click
controls for specifying a calendar date.

10 Click OK to return to the Timer-trigger property sheet.

Novell exteNd Composer User’s Guide476

11 Under Execution Count, enter the total number of repetitions for execution
of this service.

12 Under Execution Interval, enter the time interval to wait between
executions. (Composer will wait this amount of time, after the service
finishes, to execute it again.) Append ‘s’ to the numeric value for seconds;
‘h’ for hours; ‘d’ for days. For example, 8h means “eight hours.” The default
(if no units are specified) is seconds.

13 Save your Deployment object.

Note that it is possible for you to specify recurrences, execution intervals, and
counts that, taken together, make little sense (such as daily recurrence of a process
that is to repeat 10 times at 25-hour intervals). Composer won’t complain: It will
simply add points to the execution timeline, and try to execute your service when
each point arrives. The results may or may not be what you expect. It’s up to you
to sanity-check your trigger’s parameters.

Specifying Other Project Resources for Deployment
Resource objects listed in the object detail pane can be added to a deployment by
simply dragging them onto the appropriate tree node in the deployment-object tree
pane. This will add a new child to the category in question. You will be able to
drop resources only onto targets that are appropriate for the category. When you
hover over a disallowed drop target, the cursor changes to a circle-slash symbol.

The drag-and-drop UI metaphor makes resource deployment simple and quick.
For example: To deploy an image resource, just drag an image resource from the
object detail pane to the "Image" node of the deployment tree pane. Since
resources have no associated properties, the deployment properties pane would be
blank in this case. Default URLs are automatically assigned based on both the
resource type and the base URL that were defined when creating the deployment
object.

Under some circumstances, you can highlight a resource in the instance pane and
then right-click on it to expose a context menu from which to deploy the object.
Two conditions must be met:

The resource you’ve selected must be one that can be “made publicly
available” (published to the outside world) in a deployment object. For
example, Image resources can be published on a URL. But Custom Script
resources generally would not be since they are used internally by
Composer.

A Deployment Object must be open in the editor pane.

Deploying Your Project 477

If (and only if) these conditions are met, then right-clicking on a resource will
bring up a context menu, in which the last (bottommost) command is a Publish
command.

Deploying Your Project to the Server
Once all the required services and resources have been added to the Deployment
xObject, and all trigger associations have been specified, the actual deployment of
your project to the app server can occur.

NOTE: The features described in this section are available only in Composer
Enterprise Edition.

To deploy your project:

1 Choosing Deploy Project from Composer’s File menu.

2 This will take you to a dialog that allows you to associate a Deployment
xObject with a server profile.

3 Select a Deployment Object from the dropdown list.

Novell exteNd Composer User’s Guide478

4 Select a Profile Name from the dropdown list of server profiles.

5 Click on Deploy to deploy your project.

6 You will see a status bar indicating the progress of the deployment:

7 When the progress thermometer is finished, your web browser will launch
and you will see a screen similar to the following. (This example assumes
that you are deploying to the Novell app server. Somewhat different screens
apply in the case of other app servers.)

8 Enter the name and password information appropriate to your app server in
the spaces provided, then click the Next button. A new screen will appear.

Deploying Your Project 479

9 If you are deploying to a Novell 5.x app server, this screen prompts you for
the name of the database into which the project EAR will be deployed. The
default is SilverMaster.

10 Click the Next button. A third and final browser screen appears.

Novell exteNd Composer User’s Guide480

11 Copy and paste the deployment-archive name (i.e., the file name shown in
italics near the top of the page) into the text field shown. (Alternatively, use
the Browse button to browse your file system until you’ve located the
deployment archive you wish to deploy.) This is the delpoyment EAR that
Composer created in a staging area (the staging area described earlier in “To
create a Deployment Object:”, above).

12 Click the Finish button. A status report page will appear:

This page will tell you whether the project deployed normally, or an error
was encountered. In case of error, there will usually be a complete stack-
trace listing information that can be helpful in troubleshooting the cause of
the problem. (Note that a delay of more than a few minutes in navigating
between the browser screens described above can cause connections to time
out. In that case, repeat the deployment procedure as needed.)

Deployment from exteNd Director
You can package your project into a deployable EAR archive using exteNd
Director, if you do not want (or are unable) to use Composer’s native deployment
facilities.

Deploying Your Project 481

NOTE: For users of the Professional Edition exteNd suite (which does not expose
the Deployment xObject features discussed earlier), the deployment procedures
outlined here represent the only way to deploy Composer applications built in the
Professional Edition suite. If you are a user of the Enterprise Edition suite, you may
choose to deploy either from Director (as outlined here) or directly from Composer
(as outlined above).

The basic procedure is straightforward:

Launch Director

Create or open an EAR-based project Director project

Add your Composer .spf file as a Subproject to the already-open EAR
project.

In Director, use File > New > Web Services > Composer Web Service to
initiate the wizard that will lead you through the creation of “service trigger”
artifacts for a given Web Service in your project. (This step will need to be
repeated for each service in your project.)

Deploy the EAR using Director’s regular deployment wizard.

Director also has code-generation features to help you create a variety of different
kinds of skeleton files containing Java code to trigger Composer services directly.
(This is discussed further below.) By editing the generated source code, you can
quickly embellish, override, or extend Composer’s “plain vanilla” service triggers
to suite your needs.

NOTE: In addition to the discussion here, be sure to see the Novell exteNd
Director documentation for additional information on the many J2EE deployment
capabilities of Director.

Composer Web Service Wizard: SOAP Service Deployment

If your Director project contains a Composer (sub)project, you can use Director
wizards to specify deployment parameters for a service that is to be triggered by a
SOAP servlet. The procedure is as follows.

To prepare a Composer service for deployment as a SOAP service:

IMPORTANT: In order for the following steps to succeed, you must have
an EAR, WAR, or EJB-JAR project open in Director. WSDL must also exist
for the service in question. (See “To generate a WSDL Resource from an
existing service or create one in the XML editor:” in the Resources chapter of
this guide for information on how to generate WSDL automatically.)

1 In Director, choose Control-N or File > New > File. The new-file dialog
opens.

Novell exteNd Composer User’s Guide482

Choose the Web Services tab.

2 In the Web Services tab, select Composer Web Service and click OK. The
first panel of the Composer Web Service wizard appears.

Deploying Your Project 483

3 Use the pulldown menu control to select a Service Trigger Type of “Web
Service.”

4 Use the pulldown menu control to select a Target Project.

5 Click the Next button. A new wizard screen appears.

6 Use the pulldown menu controls to select a Composer Project and a Service
within that project.

7 Using the pulldown menu, choose a WSDL resource that describes this
service.

8 Click the Next button. A new wizard screen appears.

Novell exteNd Composer User’s Guide484

9 Enter a path next to URL Path describing the location of the service. (This
may or may not be prepopulated.)

10 Next to Service Name, select the appropriate service name if it is not already
showing.

11 Next to Port, select the appropriate port description if it is not already
showing.

12 Choose an Operation from among those listed in the WSDL. (This list will
be prepopulated.)

13 Optionally choose a Certificate Resource.

14 Optionally check the Validate Request XML Signature checkbox if you
want to require that every consumer of this web service provide a digital
signature as part of the SOAP request (using XML Signature standard
techniques).

15 Click the Finish button. A summary dialog will appear, explaining what was
done.

Deploying Your Project 485

Composer Web Service Wizard: JSP and Servlet Triggers

If your Director project contains a Composer (sub)project, you can use Director
wizards to specify deployment parameters for a service that is to be triggered by a
servlet or JSP. The procedure is as follows.

To create a servlet or JSP to trigger a Composer Web Service:

IMPORTANT: In order for the following steps to succeed, you must have
an EAR, WAR, or EJB-JAR project open in Director.

1 In Director, choose Control-N or File > New > File. The new-file dialog
opens.

Choose the Web Services tab.

2 In the Web Services tab, select Composer Web Service and click OK. The
first panel of the Composer Web Service wizard appears.

Novell exteNd Composer User’s Guide486

3 Use the pulldown menu control to select a Service Trigger Type.
Depending on the type of project you have open and what it contains, and
whether you are using Professional Edition or Enterprise Edition, you may
see any or all of the following choices:

The following discussion assumes that you will be choosing “Servlet/Java
Server Page.”

4 Use the pulldown menu control to select a Target Project.

5 Click the Next button. A new wizard screen appears.

Deploying Your Project 487

6 Use the pulldown menu controls to select a Composer Project and a Service
within that project.

7 Click the Next button. A new wizard screen appears.

Novell exteNd Composer User’s Guide488

8 Under Trigger Options, use the Type pulldown menu to choose from the
available trigger types.Enter a Name for the trigger.

9 Next to Input Type, select the option that corresponds to the manner in
which your service will receive its XML input document(s):

Params (URL form)

XML (HTTP/POST)

XML (MIME/multipart)

XML (HTML form field)

10 Use the Output Type selector to choose the appropriate output format for
your servlet: XML or HTML.

11 In the URL Path field, enter an arbitrary string representing the URL name
of the servlet. For example, if your servlet were to handle requests on the
following URL, you would enter “abcdef”:

http://myserver:80/mydatabase/myear/abcdef

12 If you selected Params “(URL Form)” as the Input Type, above, you will see
two fields under Trigger Input Document.

Deploying Your Project 489

Enter an arbitrary string representing the Root Name (name of the
document root node) for the input document that will be created on-the-
fly as part of the marshalling of HTTP-GET params into XML.

Next to Namespace, optionally enter a unique prefix to use for
uniqueness in the input document.

13 Click the Finish button. A summary dialog will appear, explaining what was
done:

14 Dismiss this summary dialog by clicking the OK button.

Deploying EARs from Novell exteNd Director

Once you have configured all of your project’s Composer services in terms of
deployment parameters, you can deploy the archive using Project > Deploy
Archive (Control-F5) on Director’s main menubar.

The following topics are discussed in more detail in Director’s documentation:

Deploying archives

Building archives

Validating archives

../../Director/books/utoolsDeployment.html
../../Director/books/utoolsProjects.html
../../Director/books/utoolsProjects.html#Validatingarchives

Novell exteNd Composer User’s Guide490

Director Wizards for Composer Code Generation
Director has wizards that can help you with the creation of custom service-trigger
code of various kinds. Code generation exists for JSPs, servlet code, and custom
Java classes that implement direct execution of Composer services.

Director Servlet Wizard

You can generate servlet source code for a Composer service trigger using
Director’s File > New servlet wizard. This wizard differs slightly from the one
previously described (see above) in that you do not need to have a Director project
open in order to use this wizard. So for example, if you merely want to generate
the source code file for later use, you can do so with the following procedure,
without first having to open an EAR or WAR project.

To create servlet code for triggering a Composer service:

1 In Director, choose Control-N or File > New > File. The new-file dialog
opens.

2 Select the General tab.

3 Select the Servlet option, and click OK. A dialog appears.

4 Enter a name next to Class name.

5 Choose the output-content type of the servlet by using the pulldown menu
next to Content type.

Deploying Your Project 491

6 Using the pulldown menu next to Template, select Composer servlet
template.

7 Click Next. A new screen appears.

8 If you are adding this servlet to an open project, choose the Add to open
WAR project radio button as shown in the illustration. (This button will be
greyed out if you do not have a project open.) Otherwise, use the second
radio button if you merely want to create a file and write it to disk.

9 Specify Base directory, Package, and File directory information in the
lower portion of the dialog, as needed.

10 Click Next. A new wizard screen appears.

Novell exteNd Composer User’s Guide492

11 Select the servlet methods, if any, that you wish to override, using the
checkboxes provided.

12 Click Next. A new wizard screen appears.

13 (Optional) Use the Add button to specify interfaces that your servlet class
will implement, if any.

Deploying Your Project 493

14 Click Next.

15 Click Finish. Director generates the servlet source code and displays it in the
code editor.

Note that when you generate servlet code this way with no project open, it is up to
you to add appropriate entries to the web.xml file for any web application in
which you wish to use the servlet. (Director will do this for you automatically if
you have a WAR project open already, before starting the wizard.)

Director JSP Wizard

You can use Director’s JSP wizard to create a Java Server Page that contains tag-
library calls designed to invoke Composer services. The procedure is outlined
below.

To create a JSP for triggering a Composer service:

1 In Director, choose Control-N or File > New > File. The new-file dialog
opens.

2 Select the General tab.

3 Select the JSP option, and click OK. A dialog appears.

Novell exteNd Composer User’s Guide494

4 Specify a name for the page, in the field labeled JSP name.

5 Optionally specify a Page title.

6 Select the intended output Content type.

7 Use the Template pulldown menu control to select the template upon which
the generated JSP will be based:

Standard JSP Template—Creates a non-Composer JSP

Composer JSP template (bean)—Creates a JSP that delegates
Composer service execution to a bean.

Composer JSP template (tab library)—Creates a JSP in which service
execution occurs through custom tags defined in the Composer tag
library.

8 Click Next. A new screen appears.

Deploying Your Project 495

9 Specify project, directory, and package info for the servlet.

10 Click Next (or Finish, as applicable) to exit the wizard. Director will create
the JSP code and open the new JSP in the code editor.

11 Hand-edit the generated JSP as desired.

Java Class Wizard

You may find it necessary or convenient, in some situations, to invoke a Composer
service directly from a Java class rather than via traditional HTTP-based servlet or
JSP sessions. Novell exteNd Director contains wizards that can autogenerate a
Java stub class that contains methods for calling a Composer service directly.

The following procedure explains how to create a Java class that
programmatically executes a Composer service, using the built-in Director
wizard.

To create a Java class that invokes a Composer service:

1 If you have not already done so, open a Composer project or a Director
project that contains a Composer subproject.

2 In Director, choose Control-N or File > New > File. The new-file dialog
opens.

3 Select the General tab.

4 Select the Java option, and click OK. A dialog appears.

Novell exteNd Composer User’s Guide496

5 Enter an arbitrary Class name for the generated class.

6 If the new class should inherit from another class, enter the appropriate Base
class name; otherwise, leave the Base class field blank.

7 Accept the default (enabled) state of the Class radio button.

8 Next to Template, select Composer Java class template as shown above.

9 Use the checkboxes provided, as required, to customize the generation of the
Java class in terms of visibility, default constructor, creation of a main()
method, etc.

10 Click Next. A new wizard panel appears, prompting you for the names of
any interfaces you want your class to implement. Add interface names as
desired.

11 Click Next. A new wizard panel appears, prompting you for the names of
any additional classes or packages to import. Add names as desired.

12 Click Next. A wizard panel prompts you for information about the project,
directory, and package(s) with which to associate the new class.

13 Click Finish. Director generates source code and displays it in the editor.

The code generated by Director is straightforward. Commented areas show where
to insert information pertinent to your service (such as the service’s name). The
generated code instantiates a GXSServiceComponentBean and uses it to invoke
your service.

Deploying Your Project 497

NOTE: For further information about GXSServiceComponentBean and other
Composer runtime framework classes, consult the relevant Javadoc and source
code archives located in your AppServer/Composer/api_xs directory.

Compiling and Deploying Director-Generated Code

In Director, use Project > Compile (when a Java source file is open in the editor)
and/or Project > Build to make “generated” items ready for deployment. See the
discussion of archive-related tasks in Director’s documentation.

A properly configured EAR can be deployed directly from Director using Project
> Deploy Archive. See the discussion of deployment-related tasks in Director’s
documentation.

For More Information

Composer Enterprise Server Documentation

The deployment characteristics for the supported application server environments
vary somewhat across product versions and vendors. Accordingly, server-specific
instructions for deploying Composer projects are given in separate documents: the
Composer Enterprise Server User’s Guide for the Novell exteNd Application
Server and corresponding titles for WebSphere and WebLogic servers. Consult
those guides for detailed discussion of deployment issues, including:

How to resolve CLASSPATH and security issues.

How to administer running services.

How to use the Composer Enterprise Server Framework API to create
custom trigger objects or manipulate Composer objects programmatically.

Additional information about the Composer Enterprise Server runtime
architecture, and the runtime architecture of Composer services in general.

../../Director/books/utoolsDeployment.html
../../Director/books/utoolsDeployment.html
../../Director/books/utoolsProjects.html#DefiningtheJavacompiler
../../Director/books/utoolsProjects.html#DefiningtheJavacompiler

Novell exteNd Composer User’s Guide498

499

A

The Composer JSP Tag Library

The Composer JSP Tag Library Appendix A

Novell exteNd Composer comes with a tag library file, composer-taglib.tld,
designed to make it easy for you to call Composer services, and manipulate
associated DOM data, within your own Java Server Pages. The tags defined in this
file are especially suited to JSP-driven applications in which XML data must be
collated, formatted, or post-processed immediately before being sent to the
client’s browser.

In many cases, you will not need to do any hand-coding in order to use
Composer’s custom taglib, because many of the wizard-generated JSPs created by
Director and Composer contain custom-tag calls. (For details on how to generate
JSPs using these wizards, see the discussions at “Director JSP Wizard” and/or
“Creating a JSP-Based Service Trigger”.) In other cases, you will find it desirable
to tap the full power of the tag library, which does require hand-coding. The
discussion below summarizes the features available in the custom tag library and
the syntax for using the various tags.

Preparing to Use the Tag Library

When you use Composer’s built-in wizards to generate JSPs containing custom
tags, then deploy your project using Composer’s deployment UI, Composer takes
care of certain “packaging” issues for you. But when you create your own JSPs
from scratch and deploy a WAR/EAR manually, you must carry out the following
steps yourself in order to ensure that your web app is fully custom-tag-enabled.

NOTE: The following steps apply only if you are hand-creating your own JSP.
When you use the Composer and Director JSP wizards, these steps are taken care
of for you.

To tag-enable your JSP-based web app:

1 Near the top of your JSP(s), insert the following line:

<%@ taglib uri=”/composer” prefix=”composer” %>

Novell exteNd Composer User’s Guide500

The uri attribute corresponds to a uri definition in the taglib entry of
your WAR file’s web.xml file. (See next two steps.)

The prefix attribute allows you to specify a namespace prefix that you
can combine with other tags specified in the tag library file.

2 In your WAR file, be sure to include the composer-taglib.tld file. A
minimal WAR file composition is shown below.

3 In your web.xml file, be sure there is a taglib element referencing the uri
from Step 1 above as well as the location of the tag library. For example:

<web-app>

. . .

<taglib>

<taglib-uri>/composer</taglib-uri>

<taglib-location>/WEB-INF/composer-
taglib.tld</taglib-location>

</taglib>

. . .

</web-app>

Custom Tags Defined in composer-taglib.tld

The composer-taglib.tld file defines the following custom tags:

TAG NAME PURPOSE

execute Executes a Composer service

fault Provides the ability to handle Composer fault
documents

forEach Provides the ability to loop over DOM nodes in
a nodeset contained in an output document

The Composer JSP Tag Library 501

Each of these tags relies on attribute values that, in effect, pass argument values to
the underlying Java methods. Those attributes and their usage are discussed
further below, in the individual discussions of the tags.

hasnopart Provides conditional processing based on the
nonexistence of a particular output message
part

hasnovalue Provides conditional processing based on a
particular node being empty

haspart Provides conditional processing based on the
existence of a particular output message part

hasvalue Provides conditional processing based on a
particular node being non-empty

if Evaluates children if specified XPath condition
is true

value Obtains the data value of a particular node

Novell exteNd Composer User’s Guide502

Tag API

execute

NOTE: Required attributes are shown in boldface type.

Inside your JSP, you will call your Composer service using the execute tag. The
only required attribute is the service attribute, which specifies the fully qualified
(full-context) service name. This attribute identifies the service for Composer’s
benefit but does not provide any access to the service elsewhere in the JSP (in
other tags). If you want to refer to the service in another tag, you can define an
alias for it using the name attribute.

For example, suppose you’ve built a Composer service called ListInventory (in a
deployment context of com.inventory) and you want to refer to that service in
downstream tags as inventory. To execute the ListInventory service, you would
do:

<composer:execute name="inventory"
service="com.inventory.ListInventory" />

This line will execute your service, using the default “InputFromHttpParams”
converter class that Composer uses when no other converter is specified. This is
equivalent, in other words, to the Params (URL/Form) trigger mode.

ATTRIBUTE PURPOSE

converter Converter class to be used when marshalling
input data (see text for discussion)

faultHandled Flag to indicate whether Composer faults will
be handled inside the page using
<composer:fault> tags. The default value is
“false.”

name Arbitrary identifier for use within the JSP, to
refer to the service in question.

root Name of the root element of the input message
part.

service Name of the Composer service to invoke.

xmldoc When the GXSInputFromJavaObject converter
class is used, this attribute must be specified
and must contain the name of the Java String
(or String array) variable that points to the input
document(s) to be passed to the service.

The Composer JSP Tag Library 503

You can specify the manner in which your service should obtain its input via the
use of the converter attribute.

IMPORTANT: You should manually inspect all JSPs prior to deployment to verify
that the deployment context matches the context used in the service attribute of
the execute tag. (See example above.) To do this: In Composer Enterprise
Edition, open your Deployment xObject, then use File > Properties to bring up the
Properties dialog for the deployment. Inspect the deployment context (as shown
under “Deployment Context in the Project JAR” on the Deploy tab of the Properties
dialog). This context must match the context used in the service attribute of the
execute tag, in any JSP that executes a Composer service.

Converter Classes

Composer Enterprise Server can marshall XML data in a number of ways, using
helper classes that are part of the Composer installation. When calling a service
from a JSP using the <composer:execute> tag, you can specify any of five
different kinds of data marshalling.

Possible values for the converter attribute are:

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpParams

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpContent

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpMultiPartRequest

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpSpecificParam

com.sssw.b2b.xs.service.conversion.GXSInputFromJavaObject

These classes are part of the Composer Enterprise Server installation runtime. You
do not have to install them, package them, or register them in any special way to
use them from your Composer web app.

The mode of operation of each of these classes is described below (and also in the
Composer Enterprise Server documentation):

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpParams

This converts HttpServletRequest parameters (i.e. those supplied either as
URI parameters or form fields submitted) into an XML document. The document
will use the root name that the service was defined with, unless you have specified
the root name using the execute tag’s root attribute.

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpContent

This opens an InputStream from the supplied HttpServletRequest and
retrieves the content of the request buffer, which it expects to be in XML format.

Novell exteNd Composer User’s Guide504

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpMultiPartRequest

This class expects an HTML form with content type multipart/form-data. It
will look for a specific file parameter (“xmlfile”) and use that as the XML input
document. If the mime type for the file thus found is not text/xml, then this
class will create an XML document and place the contents of the file in a CDATA
section within the XML document.

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpSpecificParam

This class takes the contents of a form field and uses it as the input XML
document. By default, the form field containing the XML is expected to be named
“xmlfile.”

com.sssw.b2b.xs.service.conversion.GXSInputFromJavaObject

This class expects the input XML document to be passed as raw XML contained
in a Java String.The class’s methods are overloaded in such a way that if your
service is designed to handle more than one input document, you can pass multiple
XML strings in a String array, in which case each String will be passed to your
service as a message part.

fault

NOTE: Required attributes are shown in boldface type.

You can place a <composer:fault> element in the JSP to wrapper JSP code that
should execute when a fault condition occurred in your service. The tag acts as a
conditional expression: If a fault part is returned as the result of execution of a
service using a <composer:execute> tag, the instructions between the start and
end tag of the <composer:fault> element are executed. If no fault condition
occurred during execution of the service, then the instructions bracketed by the
<composer:fault> tags are ignored.

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to faults thrown
by a <composer:execute> tag whose 'name'
attribute has an identical value

part Can be used to specify a user-defined custom
fault document by name. If not specified, this
attribute will take on a default value of
“_SystemFault.”

The Composer JSP Tag Library 505

For example, to handle a standard Composer System Fault that might be returned
from one Composer service and a custom fault returned from a second Composer
service executed by a JSP, you might use JSP code similar to the following:

…

<composer:execute name="myServ1"
service="com.context.myService" xmldoc="myInput" />

<composer:execute name="myServ2"
service="com.context.myOtherService"/>

<HTML>

 <HEAD><TITLE>My Page<</TITLE></HEAD>

<BODY>

…

<composer:fault name="myServ1" part="_SystemFault">

A Fault has occurred!<P/>

Component: <composer:value name="localName"
xpath="FaultInfo/ComponentName" /><P/>

Date: <composer:value name="localName"
xpath="FaultInfo/DateTime" /><P/>

MainCode: <composer:value name="localName"
xpath="FaultInfo/MainCode" /><P/>

SubCode: <composer:value name="localName"
xpath="FaultInfo/SubCode" /><P/>

Message: <composer:value name="localName"
xpath="FaultInfo/Message" /><P/>

</composer:fault>

…

<composer:fault name="myServ2" part="myCustomFault">

 Doh! A fault happened in my other service!

</composer:fault>

…

</BODY>

</HTML>

Note that a JSP may have more than one set of <composer:fault> tags. All tag
sets that satisfy a specified name and part will be executed if a fault condition
occurs in the service at runtime.

Novell exteNd Composer User’s Guide506

forEach

NOTE: Required attributes are shown in boldface type.

The forEach tag provides a looping construct so that you can iterate over the
nodes in a nodelist at tag-execution time. The only required attribute is the xpath
attribute, which should be an XPath expression that resolves to a nodelist. The
expression will be evaluated against the service specified by name and the
message part (or DOM) specified in part. If no extra attributes are defined, the
most recently executed service’s Output part is used.

The following example shows how you could loop over a set of ITEM nodes in a
message part called Output1 produced by a service whose alias (defined by the
name attribute in an execute tag) is inventory:

<composer:forEach name="inventory" part=”Output1”

xpath="/MYROOT/INVENTORY/ITEM">

 <composer:value xpath="./ITEMNAME" />

 <composer:value xpath="./SKU" />

 <composer:value xpath="./QTY" />

 <composer:value xpath="./PRICE" />

</composer:forEach>

A node value (XML data corresponding to the elements under /ITEM) will be
placed in the page where each value tag occurs.

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to the service
whose name attribute (as defined within an
execute tag elsewhere in the JSP) has an
identical value.

part Scopes the tag behavior to a particular
message part associated with the service
specified by name (above).

xpath An XPath expression to be evaluated against
the document associated with part and name
attributes (or with the Output message part, if
no part attribute is specified). This expression
should be one that returns a nodelist (as
defined by the Document Object Model).

The Composer JSP Tag Library 507

hasnopart

NOTE: Required attributes are shown in boldface type.

The hasnopart tag can be used to enclose a block that should execute only when
a particular service (identified by name) has no Output part.

See haspart (below) for additional information and a code example.

hasnovalue

NOTE: Required attributes are shown in boldface type.

This tag can be used to enclose a block of markup that should only be evaluated if
a particular node in a particular output message part contains no data. In other
words, this tag can be used in cases where it is necessary to handle an empty node.
It is complementary in function to the hasvalue tag (discussed further below).

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to the service
whose name attribute (as defined within an
execute tag elsewhere in the JSP) has an
identical value.

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to the service
whose name attribute (as defined within an
execute tag elsewhere in the JSP) has an
identical value.

part Scopes the tag behavior to a particular
message part associated with the service
specified by name (above).

xpath An XPath expression to be evaluated against
the document associated with part and name
attributes (or with the Output message part, if
no part attribute is specified). This expression
should be one that returns a DOM node that
may contain data.

Novell exteNd Composer User’s Guide508

haspart

NOTE: Required attributes are shown in boldface type.

This tag enables conditional processing based on the existence of a particular
output message part from a particular service. Its behavior is similar to that of the
hasvalue tag in that a number of HTML statements, JSP markup blocks, and/or
<composer:> tags can be embedded between the < composer:haspart>
opening tag and </composer:haspart> closing tag, and the embedded tags
will be processed only if the specified part exists.

For example, the following JSP code fragment will display an HTML table and
XML data retrieved from "myService" if and only if the service actually produced
a part named "myFirstPart".

<composer:haspart name="myServiceName" part="myFirstPart">
 <table>
 <tr>
 <td>some data</td>
 <td>
 <composer:value name="myServiceName"

part="mySecondPart" xpath="root/element/element"/>
 </td>
 </tr>
 </table>
</composer:haspart>

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to the service
whose name attribute (as defined within an
execute tag elsewhere in the JSP) has an
identical value.

part Scopes the tag behavior to a particular
message part associated with the service
specified by name (above).

The Composer JSP Tag Library 509

hasvalue

NOTE: Required attributes are shown in boldface type.

The hasvalue tag enables conditional processing based on a given XPath node (in
a particular message part, from a given service’s output) being non-empty. This
makes it possible for you to “skip over” a particular node if it is empty, but process
or display it if it contains data. For example, consider the following usage:

<composer:value xpath="./CUSTOMER/NAME" />

<composer:hasvalue xpath="./CUSTOMER/ADDRESS">
 <composer:value xpath="./CUSTOMER/ADDRESS" />

</composer:hasvalue>
<composer:value xpath="./CUSTOMER/CITY" />

<composer:value xpath="./CUSTOMER/STATE" />

<composer:value xpath="./CUSTOMER/ZIP" />

Data from the /ADDRESS node, in this example, will show up in the JSP’s output
only if that node is non-empty. Otherwise, it is skipped.

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to the service
whose name attribute (as defined within an
execute tag elsewhere in the JSP) has an
identical value.

part Scopes the tag behavior to a particular
message part associated with the service
specified by name (above).

xpath An XPath expression to be evaluated against
the document associated with part and name
attributes (or with the Output message part, if
no part attribute is specified). This expression
should be one that returns a DOM node that
may contain data.

Novell exteNd Composer User’s Guide510

if

NOTE: Required attributes are shown in boldface type.

The <composer:if> tag allows conditional evaluation of a block of markup
based on the boolean value of an XPath expression. Consider the following
example:

<composer:if xpath="string(./CUSTOMER/STATE)="CA"">

<composer:value xpath="./CUSTOMER/STATE" />

</composer:if>

In this example, if /STATE is “CA”, the state value will be written out to output,
wrapped in boldface tags.

A corresponding if block based on modification of the XPath to use inequality
(instead of equality) can be used inline with the above block to achieve an “else”
branch, so that states that are not “CA” are not boldfaced.

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to the service
whose name attribute (as defined within an
execute tag elsewhere in the JSP) has an
identical value.

part Scopes the tag behavior to a particular
message part associated with the service
specified by name (above).

xpath An XPath expression to be evaluated against
the document associated with part and name
attributes (or with the Output message part, if
no part attribute is specified). This expression
should be one that evaluates to a boolean
value.

The Composer JSP Tag Library 511

value

NOTE: Required attributes are shown in boldface type.

The value tag allows you to retrieve data from a DOM node at a specified location
in a specified message part from a named service. The node location must be
specified via an XPath expression. For example:

<composer:value xpath=”/MYROOT/INVENTORY/DATE” />

The data at /MYROOT/INVENTORY/DATE will be placed in the JSP output. This
example presumes that /MYROOT/INVENTORY/DATE is a single, discrete node
representing a single piece of XML data. When a nodeset is returned, you should
iterate over the individual nodes by means of the forEach tag, then apply the
value tag to each individual node:

<composer:forEach name="inventory"
xpath="/MYROOT/INVENTORY/ITEM">

 <composer:value xpath="./ITEMNAME" />

 <composer:value xpath="./SKU" />

 <composer:value xpath="./QTY" />

 <composer:value xpath="./PRICE" />

</composer:forEach>

In this example, it is assumed that /MYROOT/INVENTORY/ITEM returns a set of
nodes, each one in turn containing ITEMNAME, SKU, QTY, and PRICE child
nodes. The above JSP fragment outputs a listing of the relevant data for each
ITEM.

ATTRIBUTE PURPOSE

name Scopes the behavior of the tag to the service
whose name attribute (as defined within an
execute tag elsewhere in the JSP) has an
identical value.

part Scopes the tag behavior to a particular
message part associated with the service
specified by name (above).

xpath An XPath expression to be evaluated against
the document associated with part and name
attributes (or with the Output message part, if
no part attribute is specified). This expression
should be one that returns a DOM node
containing data.

Novell exteNd Composer User’s Guide512

Notice that the opening forEach tag specifies a name attribute with a value of
inventory. This is the local (within this JSP) name of the service whose Output
DOM we are accessing at this point. You might very well execute more than one
service from a single JSP page, then access data from each resulting Output DOM.
The name attribute allows you to operate on different Output DOMs within the
same JSP session.

For More Information

The xcs-src.jar file in the \xc_api folder of your Composer installation (under
\Common) contains the actual Java source code for the Composer tag library. It
also contains source code for various trigger classes, converter classes, and
deployment-related interfaces and support classes that Composer relies on at
runtime. Javadoc API documentation for these classes is available in the same
folder.

513

B

Reserved Words

Reserved Words Appendix B

The following terms are reserved words in exteNd Composer and should be
avoided in any user created terms or objects.

Input, Temp, Output

Input1, Temp1

Input(n), Temp(n)

ERROR

Math, Date, String, Array, etc. (ECMAScript reserved words)

theComponent

SQLCODE, SQLSTATE, UPDATECOUNT, LASTSQL

USERID PASSWORD

In addition to the above-listed terms, it is good practice not to use Java-language
keywords in deployment context strings, user variable names, etc. Reserved words
in Java include the following:

Java Keywords

abstract boolean break

byte case catch

char class const

continue default do

double else extends

final finally float

for goto if

Novell exteNd Composer User’s Guide514

implements import instanceof

int interface long

native new package

private protected public

return short static

strictfp super switch

synchronized this throw

throws transient try

void volatile while

515

C

Glossary

Glossary Appendix C

Action

An action is similar to a programming statement: it takes input in the form of parameters and performs
specific tasks.

Action Model

An Action model is a visual representation of a sequence of actions. An Action model is located in a
component editor.

Alias

A name given to an element identified by an XPath expression for use in Repeat actions. An alias
ensures that the next repeating element matching the XPath expression is processed separately with
each iteration of a Repeat loop.

Animate

The process of visually executing a component in Composer, step-by-step, for debugging problems
or testing new inputs.

Attribute

An Attribute is the part of an XML document that is associated with an element and provides
descriptive information about the element. An Attribute is also an Object type in the DOM
specification.

CDATA

A declaration inside an XML document that prevents any character data inside the CDATA section
from being interpreted as XML markup language. This allows characters such as the angle brackets (
< >) to be used inside an XML document without being interpreted as part of a start or end tag.

Character Data

The data contained within an XML document. Character data is any non-markup data. Character data
in XML documents are composed of characters from the Unicode character set. See also CDATA.

Novell exteNd Composer User’s Guide516

Code Table

A code table stores commonly used business codes and their associated descriptions. Two Code
Tables work in conjunction with a Code Table Map to produce a translation from one set of values to
another set of codes.

Component

A component is an object that accepts one or more XML documents as inputs, uses a collection of
actions to operate on the inputs, and returns an XML document as output. Components of various
types (see Connect products) can also interface with external non-XML data sources such as
relational databases, 3270 / CICS transactions, etc.

Connection

A Connection is a resource used to establish communications with an external data source or with a
server that uses HTTP authentication.

Content Editor

A dialog box available in the Map Action designed to perform XML element level transformations of
data. The Content Editor can splice and re-splice data by character or character position, insert
constants, and apply functions.

Custom Script

A collection of user-defined ECMAScript functions in a Composer project.

Deployment

The process of packaging and installing an exteNd Composer project into an application
server/exteNd Server environment for production use.

Composer

Composer is a visual productivity tool used to create exteNd Services and Components that perform
XML transformations and external data source connections. Composer creates applications that
enable non-XML information sources and environments to inter-operate through the exchange of
XML encoded data.

Connect

An enterprise connector is an installable Composer component editor (and related
resources). It allows you to integrate XML data with an enterprise data source or legacy
platform that does not support XML, by providing the user with a visual representation of
the environment. An example of an enterprise connector is the JDBC Component editor.

Document

An XML document is typically referred to as a document. The document is also an object type in the
DOM specification. Document is often used synonymously with DOM.

Glossary 517

Document Handle

The name assigned to an XML document’s DOM. Default document handles are Input, Input1,
Input(n), for input XML Templates; Temp, Temp1, Temp(n) for Temp documents; and Output for all
Service and Component results. Custom Document Handle names can be created via Component
actions (the Returned ID field), Temp documents (Identifier field), and the XML Interchange action.

Document Type Definition (DTD)

A DTD specifies how elements inside an XML document relate to each other. It defines semantic
rules about the document, as well as elements to which an XML document must conform in order to
be considered a valid document of that type.

DOM

A document object model (DOM) is an XML document constructed as an object in a software
program’s memory. It provides standard methods for manipulating the object. In Composer, DOM is
often synonymous with XML Document. DOMs are represented as hierarchical trees with a single
root node.

ECMAScript

ECMAScript (based on JavaScript) is an object-oriented scripting language for manipulating objects
in a host environment. As a host environment, Composer provides ECMAScript access to various
objects (primarily XML documents) for processing. ECMAScript in turn provides a Java-like
language that can operate on these objects.

Element

An Element is a fundamental part of an XML document containing the majority of the document's
data. The Element is also an object type in the DOM specification.

Entity

An entity in an XML document is a specially formatted placeholder that represents something else.
(That is, references to entities are replaced with their entity content.) In XML and HTML, there are
certain predefined entities, such as > for ‘>’ and < for ‘<‘. User-defined entities are also
allowed.

ERROR

A global variable accessible by any component running in the context of a Service. The value in
ERROR is set by the Error Expression in the RAISE ERROR action.

Expression Builder

The Expression Builder is an interface in Composer that helps you construct valid ECMAScript and
XPath syntax.

Novell exteNd Composer User’s Guide518

GET

An HTTP Request Method used in the XML Interchange action. The GET method means retrieve
whatever information (in the form of an entity) is identified by the Request-URI.

Group

A Group represents the list of unique values across an element that occurs multiple times in an XML
document. Groups are used to control Group Repeat loops by determining how many times the
Repeat Loop will iterate (i.e., once for each unique value). Map actions inside a Group Repeat based
on a group executes only once for each unique value. A Group is created with a Declare Group action.
Groups are referenced by an alias name that is associated with the XPath of an element that repeats.

Group(Detail)

A Group(Detail) represents the list of all values across an element that occurs multiple times in an
XML document. Group(detail)s are used to control Group Repeat loops by determining how many
times the Repeat Loop will iterate (i.e., once for every value). Map actions inside a Group Repeat
based on Group(Detail) executes once for every value in the group. A Group(Detail) is created
automatically with a Declare Group action. Group(Detail)s are referenced by an alias name that is the
same as the group appended with the text “(Detail).” Group(Detail) Repeat Loops must always be
used inside a Group Repeat loop.

Group Name

An alias for an XPath expression used to define a group for a Repeat action.

Input

Input is the term used to describe how a component accepts data. You specify the format for inputs for
a component by selecting one or more XML templates when you create the component. All
components accept one or more XML documents as inputs.

In Value

The data in a code table map you wish to translate to a different value in another code table.

Input DOM

The Input DOM(s) of a component is the XML document containing XML encoded information that
you wish to map into an external data source and/or transform into another XML document type. The
Input DOM(s) is passed into a component by the service (or component) that calls it. Components can
accept one or more Input DOMs. Services can accept only one Input DOM from a Service Trigger,
but can accept more than one from another component.

JMS

Java Messaging Service: A Sun-defined Java API for implementing a standard set of messaging
operations and constructs. Most popular message-oriented middleware (MOM) products are either
JMS-aware or pure JMS implementations.

Glossary 519

JDBC

Java Database Connectivity. The Sun-designed Java API for accessing relational database data.

Map

A generic term used to indicate the association of a source of data with a target of data for the purpose
of copying data from the source to the target. For instance, an XML Map component associates and
copies data between source and target XML documents. A Map action associates and copies data
between source and target elements or attributes.

Mapping Panes

Mapping panes represent sources of data that can exchange information via the Map action in a
component. Mapping Panes display the DOMs associated with the current component’s sample input
and output documents and display representations of external data sources such as relational
databases or 3270 screen transactions.

Markup

Markup in XML documents consists of reserved metadata symbols and constructs such as start-tags,
end-tags, empty-element tags, comments, processing instructions, etc. XML relies on certain tokens,
such as angle brackets, to have special meaning. When these symbols appear in XML data, they
generally cause the XML document to be invalid. Converting them to entity form (see Entity, above)
is one way to pass these “reserved characters” through as XML data. Another way is to wrap markup
in a CDATA section (see CDATA, above).

MessageListener

An object that is created when a JMS Service is deployed. The MessageListener object registers with
a (preexisting) message queue or topic so that a message arriving at the queue automatically “fires”
the JMS Service. This provides a messaging-based trigger mechanism for Composer services.

Namespace

A mechanism to ensure that names used in an XML DTD are unique so that names from different
DTDs can be combined in the same document.

Node

A node is the basic object used to build a DOM. DOMs consist of a collection of connected nodes,
some of which are XML elements, some of which are attributes, some of which are comments, etc.
The node is also an object type in the DOM specification. (Note: attributes, documents and elements
are all nodes.)

NodeList

An object returned by an explicit XPath expression (e.g., Input.XPath
("INVOICEBATCH/INVOICE/INVOICEDATE")) that contains one or more nodes. Nodelists are
usually used in ECMAScript expressions. Only nodelist methods and properties may be applied to a

Novell exteNd Composer User’s Guide520

nodelist. To apply any node or element methods to a nodelist, you must first select a single node using
the nodelist method item().

Output

Output is the term used to describe how a component returns data. You specify the format for output
for a component by selecting an XML template when you create the component. All components
return a single XML documents as outputs.

Output DOM

The Output DOM of a component (or service) is the XML document containing the results of any
transformations performed in the component. The Output DOM is the XML document that is returned
to the service (or component) that called the component. Components and services can only return
one Output DOM.

Out Value

The data in a code table map that will be the new value for an associated In Value (see In Value).

POST

An HTTP Request Method used in the XML Interchange action. The POST method is used to request
that the origin server accept the entity enclosed in the request as a new subordinate of the resource
identified by the Request-URI in the Request-Line. The actual function performed by the POST
method is determined by the server and is usually dependent on the Request-URI.

POST with Response

An HTTP Request Method used in the XML Interchange action. Same as POST above except that the
XML Interchange action is expecting a response XML object back from the origin server.

Project

A project is a collection of exteNd objects designed to perform XML integration services. A project
holds all the objects for the application you're building.

Project File

When you create a project, Composer creates a project file which is stored as <project name>.spf in
the folder you choose. The project file contains start-up information for your project.

Project JAR

When you deploy an exteNd Composer project, all the objects in the project are stored in a single JAR
(Java Archive) file, which is installed in the application server for production use.

Project Variable

A name–value pair created in Composer for adding replaceable parameters at the project level for
Composer services. Project variables are maintained in a separate file (project.xml) which when

Glossary 521

replaced in a deployed application can change its behavior without re-deploying the entire project.
Project variables are accessed via a system DOM called PROJECT/USERCONFIG.

Public

An attribute of a custom script function. Public means the function is directly accessible from any
action that takes an expression as a parameter and makes the function name appear in the Expression
Builder pick-lists. Non-public functions can only be called by other functions.

PUBLIC

A variant specification for the XML DOCTYPE instruction. PUBLIC is used to specify a DTD
intended for widespread use and accessibility.

PUT

An HTTP Request Method used in the XML Interchange action. The PUT method requests that the
enclosed entity be stored under the supplied Request-URI.

Resource

A resource is an xObject that performs a specialized operation to help services and components carry
out tasks. Resource types include Code Tables, Code Table Maps, Connections, and Custom Scripts.
At deployment, resources also refer to XML DTDs/Schema files and XSL stylesheets that may be
deployed separately from the Project JAR.

ROW TARGET

The XPath location that serves as the parent element for rows returned by a SQL statement. For each
row returned, a ROW TARGET element is created and each column in the row becomes a child
element of the ROW TARGET.

Schema

A schema is similar to an XML document definition in that it helps to validate data. But, unlike a
document definition, a schema is created in a language that is extensible (i.e. XML). Using a schema,
you can define precisely which element names are permitted in a document and, within each element,
which sub-elements, attributes, and relations are allowed.

Service

A service is used to combine the various components you build to create a logical unit of work within
the application server environment. It is initiated with a request XML document and requires a
response XML document. The work that is performed and the responsibility of each component
depends on the design of your application. A service typically executes various components in a
sequential and/or conditional manner and can even execute other services. Other service-level tasks
may include general error handling and execution logging operations.

Novell exteNd Composer User’s Guide522

Service Trigger

A Service Trigger is a Java Servlet or Enterprise Java Bean created when deploying a project from
Composer. It submits a Service to exteNd Server for execution. A Service Trigger is also associated
with an URL and converts inbound data into XML documents as input to the Service it triggers.

System

A reserved XML template category for immutable XML templates such as {ANY}.

SYSTEM

A variant specification for the XML DOCTYPE instruction. SYSTEM is used to specify a DTD
intended for private use by an XML document.

UDDI

Universal Description, Discovery and Integration—a public-registry standard that gives businesses a
way to describe their services and discover other companies' services online.

Unicode

A double-byte character set including thousands of useful characters from around the world. See also
UTF-8.

URI

Uniform Resource Identifier. An extension to URLs that allows more detailed access to information
within an URL.

URL

An URL is a Uniform Resource Locator that specifies the syntax and semantics of text strings used to
locate and access resources via the Internet. The basic URL is constructed of a scheme identifying the
communications protocol and a scheme-specific part identifying the resource; <scheme>:<scheme-
specific-part>.

Userfunc

A keyword used in XPath expressions indicating that the following term is a Custom Script function
that should not be evaluated as part of the XPath.

UTF-8

A character encoding scheme of the Unicode character set whose first 128 characters are compatible
with 7-bit ASCII characters allowing many common text editors to create XML.

W3C

The World Wide Web Consortium at http://www.w3.org. A standards body organized to lead the
World Wide Web to its full potential by developing common protocols that promote its evolution and
ensure its interoperability.

http://www.w3.org
http://www.w3.org

Glossary 523

WSDL

Web Services Definition Language—a standard for describing business services in XML. WSDL
gives Web Service providers a way to understand the methods necessary to conduct e-business online,
in an automated or semi-automated way, with remote partners.

XML Category

An XML category contains XML templates. You create XML categories to organize XML templates
used in a project.

XML Document Definition

An XML document definition is the standard validation method created by the W3C. It defines the
rules of the document, such as which elements are present and what structural relationship exists
between the elements. A document definition helps to validate the data when the receiving application
does not have a built-in description of the incoming data.

XML Meta Data

xObjects created in exteNd Composer are stored on disk as XML files. These files are often referred
to as a project’s meta data.

XML Sample Document

An XML sample document is a representative model of the data your application will process in a
production environment. Sample documents are used to help build accurate Action Models.

XML Template

An XML template contains sample documents, a document definition, and an XML stylesheet
associated with a particular document type. You create XML templates in Composer, then use them
to describe the inputs and outputs of the components you build.

xObject

An xObject is a building block of all exteNd data integration services. xObjects include services,
components, resources, and XML templates.

XPath

XPath is a language for addressing parts of an XML document. It is a W3C-recommended standard
and is used as the primary XML addressing language in exteNd.

XPointer

XPointer is a language to be used to identify fragments within any URI-reference that locates a
resource of Internet media type.

Novell exteNd Composer User’s Guide524

XSL Stylesheet

An XSL stylesheet defines the display properties of an XML document. You create or obtain the
stylesheet external to Composer. A stylesheet is useful for a component that is creating a page to be
displayed in a Web browser.

XSL

XSL is a stylesheet language for transforming XML documents into other XML documents.

525

Index

Symbols
.. 342
$PROJECT DOM 76
. (XPath symbols) 342
/ (XPath symbols) 342
| (pipe character), UDDI 434

A
About-dialog 11
action

adding to a component 130
applying to common tasks 363
apply namespaces 192
comment 153
Component 155
Convert XML to Copybtook 199
creating 151
Decision 157
Declare Alias 159
Declare Group 229
Declare Group, adding 229
definition of 149, 515
disabling 153
dynamic parameter values for 336
editing 153
examples 363
File Read 214
function 160
log 162
map 166
Repeat for Element 373
repeat for element 124, 230
Repeat for Element, adding 373
Repeat for Group 233, 375
repeat for group, creating 377
RepeatWhile 236
repeat while 378
repeat while, adding 379
send mail 176
Simultaneous Components 200
Switch 183

Throw Fault 202
Todo 187
Transaction 205
Try/On Fault 207
using the Action menu 151
using the Context menu 152, 153
Web Service Interchange 217
XML interchange 220
XSLT Transform 211, 349

Action Buttons for the Registry Manager 429
Action Examples project 350
action menu 151

using to map leaf elements 364
Action Model 130
action model

context menu 129
definition of 515
replacing text 129
using loops 372

action model pane
definition 129

Actions
Convert Copybtook to XML 197

Add a new Binding to a WSDL document 314
Add a new Port Type to a WSDL documen 312
Add a new Service to a WSDL document 315
Adding a Binding element 314
Adding a Message element 310
Adding a Port Type element 312
Adding elements to a WSDL file 310
Advanced Action 190
advancedm apping options 170
advanced proxy settings 46
advanced search criteria, Registry Manager 435
aggregate calculation

finding a specific match for highest total 381
finding the highest total 381
finding the sum 380
performing 380

alert() method 337
alias 231

definition of 515
for XPath fragment 159

animate, definition of 515
animation tools

buttons 384
clearing all breakpoints 395

526

environmental differences between animation
and deployment testing 402

pausing 393
receiving an execution error 394
running to a breakpoint 388
starting 386
stepping into an action 389
stepping over an action 392
stopping 394
testing tips 397
toggling a breakpoint 387
what they are 384

API
XPath functions 345

applications
internal 8
planning 15

Apply Namespace Action 191
Apply Namespaces 190, 191
Apply Namespaces action 192
attachments, Send Mail 181
Attribute 353
attribute, definition of 515
autocreation of mapped nodes 171
automatic schema generation 327

B
binary content in XML 465
Binding element, WSDL 314
binoculars 435
Break Action 227
bridging to Java 284
ByteArray 197, 199, 272

C
Calculating a Sum 380
Capabilities 422
Capabilities of the Registry Manager 422
cascading windows 32
Case, Switch statement 183
CDATA, binary content not allowed 465
CDATA, definition of 515
CDATA, mapping of 172
Certificate Resources 251

character data, definition of 515
CLASSPATH 281
Clearing a Document 396
Clear the Log File 419
COBOL Copybook Resources 272
code completion 317
Code Page 274
code table

adding data 255
creating 253
definition of 516
editing 256
mapping 259
opening 254
transforming elements 370

code table editor 253
code table map

about 257
creating 257
editing 260
mapping values 260
opening 259
using 261

Code Table resources 252
collapse XML documents 118
comment action 153
Component 354
component

about 58
adding actions 130
definition of 516
printing 147
saving 141
viewing properties 146
what it is 17

Component action 155
component editor

using window layout 119
components, definition of 39
Composer, closing 28
composer-taglib.tld 499
Composer Web Service Wizard 485
connection

creating 267
definition of 516

Connection Resources 261
ECMAScript in 262

527

HTTP Basic Authentication 267
LDAP lookup of params 264
SMTP Simple Authentication 177

Constant and Expression Driven Connections 262
Content as XML 464, 466
Content as XML (File trigger) 465
content editor

accessing 367
definition of 516
transforming elements 367

context, deployment 48
context, XPatrh 342
Context Menu 40
context menu

action 152, 153
action model 129
detail pane 41

Context Menu Items 426
Context Menu Items for the Registry Manager 427
Continue Action 228
Continue action 228
Convert Copybook to XML Action 197
converter class 502
converter classes 503
Convert XML to Copybook action 199
Copy Attributes 170
Copybook 197, 199
Copybook Resource 272
Copybook Resources 272
core resource types 247
Create a new Message element 310
Create a New Registry Profile 424, 425
Create Target 171
Create Target as CDATA Section 172
Create WSDL using RMB 305
Creating a JMS Service 413
Credits, available through the Help menu 51
custom functions, organizing and using 275
custom Java classes 284
Custom Script editor 276
Custom Scripting (Chap. 10) 333
custom script resources 274
custom scripts

creating 275
definition of 516
DOM 358
integrating with Java class 281

Java 359
Novell extensions 350
XPath 342
XSL 348

D
Data Exchange Actions 213
data mapping 363
data passing 417
data values 123
data warehouses 8
debugging with alert() 337
debug mode, toggling 398
Decision action 157
Declare Alias action 159
Declare Group action 229
Deep Copy 171
deep copy mapping 364
Default Case 184
Default Mapping Behavior 169
default.xsl 126
Define Performance Filter command 144
Delete xObject 34
deleting an XML Template 105
Deleting a Registry Profile 424
deploying a service 22
deployment 441

context 48
from Composer directly 447
Javadoc 512
overview 497
resources 476
server profiles and 447
URLs 470

deployment, definition of 516
deployment context 48
deployment EAR 445
Deployment objects (xObject type) 449
deployment process 443
Designer Preferences 45
design time 73
detail pane

context menu 41
Director

Java class wizard 495
JSP wizard 493

528

servlet wizard 490
directory storage of connection params 264
Display Preferences 44
Display Stack Trace option 43
Document 351
document (XML), definition of 516
document definitions 83
document filtering 144, 226
document handle, definition of 517
Document Tabs 33
Document Type Definition (DTD)

definition of 517
DOM

text view 125
tree view 125

DOM Behaviors during Runtime 111
DOM memory requirements, reduction of 144,

226
DOM node mapping 364
DOMs

an example 359
collapsing a tree 127
creating an output DOM using a template 131
definition of 517
documentation resources 359
elements and data values 123
expanding a tree 127
finding an element 127
finding the next element 128
in custom scripts 358
key features 358
large 144
reloading a DOM tree 127
saving as an XML file 141
saving to file 142, 143
stylized view 125
using at runtime 111
what it does 358
what they are 109, 358
when to use 358

DOM tree
collapsing 127
expanding 127
reloading 127

drag and drop 130
drag and drop mapping 364
drag-and-drop service triggers 455

Dynamic Component 156
dynamic creation of target nodes 171
dynamic parameters for actions 336
dynamic project variables, creating 76

E
EAR contents (deployment) 445
EBCDIC 274
ebXML, (Electronic Business using eXtensible

Markup Language). 421
ECMAScript

advanced method 167
alert() 337
an example 339
definition of 517
DOM binding 358
editor window 277
expression builder 174
isNaN() 340
isRuntime() method 398
Java usage in 359
Number() 340
Packages construct 360
parameter values and 336
performance considerations 341
scope issues 339
split() 341
syntax checking 336
try/catch 340
using the alert() function 397
what it does 334
what it is 334
XPath() 343
XPath within 344

Edit a Registry 423
edit data 129
Editing Preferences 45
edit menu 34
editor

service 414
XML map component 115

editor, Custom Script 276
editor, custom script 277
EJB trigger 461
Element 352
element mapping 363, 364

529

elements
about 123
definition of 517
transforming 367

E-mail trigger 458
Embed Content in XML 464, 466
Embed Content in XML (File trigger) 465
Endian 274
Enforce DTD 91
Enforce Schema 91
entities 169
entity, definition of 517
ERROR, definition of 517
errors

memory 144
executing a service 22
Execution Count 476
execution error 394
Execution Interval 476
Exiting out of Composer 28
expanding XML documents 118
exploding the main content window 32
exportObject(key,value) 354
Expression Builder 336
expression builder, definition of 517
expression editor

using 287
using to build functions 286

expression language, XPath 345

F
Fault Messages, Fault Docs 135
File-Based Triggers 464
file menu 33
File Read action 214
File Reference 464, 466
File Reference (File triggers) 465
File trigger 464

file handling options 464
File Write 216
Filter Document 224
filtering, document 144, 226
Find 70
Find command 70
Find Qualifiers, UDDI search 432, 436
Find tab 71

Find tool 127
floating point formats 274
forEach tag 506
Form Resources 288
FTP Authentication 269
function

applying to an XPath expression 371
creating and validating 277
testing 278
tool tip description, adding 278
transforming elements 371
using the expression editor to build 286
validating syntax 278

function, validating 277
function action 160

adding 160
function expression builder

using 161
functions

XPath 345

G
gDebugMode 398
General Preferences 43
general purpose extensions 350
GEO locator 435
GET, definition of 518
getSessionValue(key) 356
global search and replace 129
GNVXObjectFactory.isRuntime() 398
group (detail), definition of 518
group, creating 376
group, definition of 518
group name, definition of 518
GXSInputFromHttpContent 503
GXSInputFromHttpMultiPartRequest 503
GXSInputFromHttpParams 503
GXSInputFromHttpSpecificParam 503
GXSInputFromJavaObject 503, 504
GXSServiceComponentBean 496

H
help 50

menu 36

530

Help > About 11
helper classes for data marshalling 503
HTML, transforming XML to 349
HTTP Basic Authentication 267
HttpServletRequest 503

I
Ignore Namespaces option 193
illegal characters, mapping of 172
Image Resources 290
IMAP 459
Imported xObjects 80
importing

XML Resource 324
XML Templates 96
XSL Resource 331

input, definition of 518
input documents, multiple 418
input DOM, definition of 518
input element 129
Input.getXML() 458
input mapping pane 122, 123
Instance Pane 40
Instance Pane Context Menu 40
internal applications integration services 8
In Value, definition of 518
invoking two components at once 200
isNaN() 340
isRuntime() 398

J
JAR Resources 295
Java

documentation resources 361
example 360, 398
in custom scripts 359
when to use 360

Java class
accessing 284
browser 281
integrating with custom scripts 281
showing content 281

Java class wizard 495
Javadoc (deployment-related) 512

Java Messaging Service 406
Java Server Page (see also "JSP") 493
Java stub class 495
JAXR (Java XML Registries) 421
JDBC

definition of 519
JMS Service 409
JMS Services 406
JPEG image resources 290
JSP

automatic code generation 302
Director wizard for 493
fault handling 505
taglib 494, 499
with beans 494

JSP Resources 300
JSP triggers 467

K
keywords, Java 48
keyword search, UDDI 434

L
labels for XPath 159
large documents 144
large DOMs 144
LDAP

connection-param lookup via 264
LDAP Expression Editor 264
leaf elements 364
leaf elements, mapping 364
libraries, custom script 337
License numbers, available through the Help

menu 51
license string(s) 10
license string updating 10
locators, for UDDI search 435
log action 162

creating 164
system log 163
system output 162
user log 163

log file, clearing 419
Log Levels 163

531

Log Level setting 43

M
Mail via SMTP Simple Authentication 177
map, Code Table 257
map, definition of 519
map action

adding 167
definition of 166

mapping
advanced options 170
deep copy behavior 171
default behaviors 169
target node autocreation 171

mapping an input element to an output element 129
Mapping a Parent and its Children 365
Mapping a parent element without its child

elements 366
mapping CDATA 172
mapping leaf elements 364
mapping pane 128

about 121
context menu 123
definition of 519
input 122

markup, conversion to entities 169
markup, definition of 519
markup, mapping of 172
marshalling 503
memory, how to increase 144
memory conservation 144, 226
menu commands, complete listing of 33
Message element, WSDL 310
MessageListener 409
message oriented middleware 406
Message Parts

temporary 133
Messages

Fault 135
multipart/form-data 504
multiple input documents 418
multithreading, components and 200

N
namespace, definition of 519
namespaces 115

ignoring 196
namespaces, Output DOM 115
NaN 340
nested subprojects 80
node 110

automatic creation in mapping 171
definition of 519
ECMAScript extension methods 351

nodelist 352, 353
nodelist, definition of 519
nodes, XPath addressing of 342
Novell Extensions

in custom scripts 350
when to use 357

NTLM Authentication 47
Number() 340

O
Obtaining a stylized view 308
onMessage() method 409
on-the-fly entitizing 169
out of memory 144
output 128
output, definition of 520
Output DOM

namespace issues 115
output DOM 131
output element 129
output mapping pane 128
Out Value, definition of 520
override Starts With search logic 434

P
Packages (Java access in scripts) 360
packaging issues (deployment) 445
parameter values, dynamic 336
parent, mapping to a child 364
performance 200

ECMAScript and 341
performance filters 144, 226

532

persistent globals 73
pick lists 175
POP3 459
Port Type element, adding to WSDL 312
POST, definition of 520
Post with Response 221
POST with response, definition of 520
Preferences 43
printing a component 147
priority levels (logging) 163
private key 251
programmatic execution of components 333
project

creating 57
creating new 58
definition of 520
deleting 63
finding an xObject within a project 70
locating at startup 63
managing 57
opening 61
opening when recent project is not found 62
what it is 57

project file
definition of 520
deployed 73
naming 73
where they are stored 72

Project JAR 445
project JAR, definition of 520
Project Settings 48
Project Tab 38
project variable

adding 74
creating 73
definition of 520
dynamic 76
using to turn debugging on or off 398

Project Variables 48
PROJECT.xml 76
Properties dialog 102, 146
proxy settings 46
Proxy Settings dialog 46
PUBLIC, definition of 521
public, definition of 521
Publish/Subscribe 409
Publishing to a registry 438

PUT, definition of 521
putSessionValue(key,value) 356

R
RAM allocation 144
recent project 62
Recent xObjects 34
Recurrence (Timer trigger) 474
Registry browsing 426
registry searching, wildcards and 434
reloading an XML doc 137
reload XML documents 118
removeSessionValue(key) 356
Repeat Actions 226
repeat for element

creating 124
Repeat for Element action 373
repeat for element action 230
repeat for group

adding 234
Repeat for Group action 233, 375
repeat for group action

creating 377
Repeat While action 236
repeat while action 378

adding 379
replacing text 129
requirements

analyzing 19
requirements for planning service 19
Resetting All Documents 396
resource 58

creating 247
definition of 521
description 18

resources
Certificate 251
COBOL Copybook 272
Code Table 252
Code Table Map 257
Custom Script 274
Form (XForm) 288
Image 290
JAR 295
JSP 300
schema 326

533

WSDL 304
WSIL 318
XSL 329

resources, Connection 261
result field, changing the format of an object

within 368
Retrieving WSDL from the Registry 437
ROW TARGET, definition of 521
running to a breakpoint 388
runtime

using DOMs 111

S
sample document

loading 139
sample documents 327
Save XML As 103, 142, 143
saving a DOM 141, 142, 143
scheduled versus repetitive tasks 472
schema 91

automatic generation of 327
schema, definition of 521
Schema Generator 327
Schema Resources 326
schemas 191
schemas and DTDs 85
scope/visibility of variables 81
scope of script variables 339
script editor window 277
search 70

within a DOM 127
searches 70
searching

UDDI registries 434
Searching by business in the Registry Manager 430
Searching by service in the Registry Manager 434
search logic 434
Send Mail action 176
sentinel variable 398
server profiles 447
service 58

action model, an example 416
building 21
building with components 415
calling from JSP 502
creating 405

creating new 410
data passing 417
deploying 22
description 17
designing 20
editor 414
editor, using 415
example 407
executing a component that is not called

directly 417, 418
execution 22
importing 413
loading sample documents as you test 420
logging activity in a single file for each component

called 419
multiple input documents to 418
passing data between different types of

components 417
requirements 19
specifying XML templates 410
what they are 5
WSDL 407

service, definition of 521
service element, WSDL 315
services 39
Services, Components, and Resources Pane 39
service trigger, definition of 522
service triggers 443

drag-and-drop UI 455
EJB 461
E-mail 458
File 464
JSP 467
JSP-based 302
servlet 468
SOAP HTTP 470
Timer 472, 473
XML data and 444

Service Types 406
servlet

converter classes 503
servlet triggers 468
servlet wizard 490
session variables 355
setting a value 129
Show/Hide 97
Simultaneous Components Action 200

534

SMTP Simple Authentication 177
SOAP services 470
SOAP trigger 470
Sort By, Registry search 432, 436
source code, taglib 512
spawned components 200
split() 341
staging directory 445
Status, available through the Help menu 51
stepping into an action 389
stepping over an action 392
Stylized View 308
stylized view 100, 126
Stylized view of a WSDL document 308
Subprojects 49, 78
Switch Action 183
Switch example 183
synchronization of spawned components 201
syntax checking, ECMAScript 336
SYSTEM, definition of 522
System, definition of 522
System button on About dialog 11
_SystemFault document 135
system log 163
system log, preferences 43
system messages

Log Levels and 43
system output 162

T
Tag API (Composer JSP taglib) 502
taglib

forEach tag 506
tag library API 499
Template Categories 87
template importing 96
Templates 39
templates

workiing with 101
templates, XML

deleting 105
instance pane 87
moving 105
renaming 105
viewing 101

temporary Message Parts 133

Temp XML Document 113, 412
testing a component 148
text search

in DOMs 128
in xObjects 70

text view 126
theComponent (script global) 354
threading of components 200
thresholds, logging 163
Throw Fault action 202
tiling windows 32
Timer trigger 472, 473

Recurrence parameter 474
tModel 432
Todo Action 187
Todo items

tracking 188
toggling a breakpoint 387
tools menu 36
To publish to a registry 438
To search businesses by keyword in the Registry

Manager 430
To search services by keyword in the Registry

Manager 434
Transaction action 205
Transaction Attribute 462
transforming elements 367

using content editor 367
transformNodeViaDOM() 349
transformNodeViaXSLURL() 349
tree view 125
triggering 406
triggers (see service triggers) 444
try/catch 340
Try/On Fault action 207

U
UDDI

search techniques 434
tModel 432

UDDI (Universal Description, Discovery and
Integration 421

Unicode, definition of 522
unlocking Connects 10
UNSPSC 435
updating license strings 10

535

URI, definition of 522
URL, definition of 522
URL File Read 214
URLs, deployment and 470
USERCONFIG 76
Userfunc

372
Userfunc, definition of 522
user log 163
Using DOMs at Runtime 144
UTF-8, definition of 522

V
Validate button 336
Validating a WSDL document 318
validation of input docs 91
variables, session 339, 355
view menu 35
view options, DOM 125
VM_PARAMS 144

W
W3C, definition of 522
Web Service

creation in Director 485
web service

calling via WS Interchange 217
interchange action 217

Web Service Interchange action 217
Web Services 407
Web Services (Chapter 13) 406
web-xml 445
web.xml 500
% wildcard (UDDI) 434
wildcard search (illustration) 436
wildcard searching using * 71
wildcards in UDDI search 434
window arrangement 32
window controls 32
window layout 119
window menu 36
wizards

Director 495
JSP (Director) 493

servlet (Director) 490
Web Service (Director) 485

WSDL 217
adding elements to 310
binding element 314
message element 310
portType element 312
publishing to registry 438
retrieval, UDDI and 437
retrieving from registry 437
service element 315
stylized view 308
type-ahead, in editor 317
validation 318

WSDL and Composer services 407
WSDL editor 310
WSDL Resources 304
WSIL (Web Services Inspection Language) 421
WSIL Resources 318
WS Interchange action 217

X
x509 certificate 251
xc_api folder 512
xconfig.xml 50
xcs-src.jar 512
XForm Resources 288
XML

content, adding 279
converter classes 503
Resource 322
templates 18
validation of 85

XML category
definition of 523

XML document
collapse 118
expand 118
reload 118
reloading 137
samples 83
viewing 101

XML document definition, definition of 523
XML documents

viewing in Custom Script editor 279
XML Interchange

536

performance filters in 224
XML interchange action 220

adding 221
XML map component

creating 107, 112
definition 107
editor 115
using XML template sample documents to build

one 108
XML meta data, definition of 523
XML sample document, definition of 523
XML Schema Resources 326
XML template 58, 86

creating 88
definition of 523
deleting 105
description 18
editing 101
importing 96
moving to a different category 105
organizing 83
renaming 105
using samples to build an XML map

component 108
where they are stored on your hard drive 106
working with 101

xObject
creating 64
definition of 523
deleting 70
Deployment 449
displaying properties 68
importing 67
managing 64
printing properties 69
renaming 69
searching for 70

xObjects, imported 80
XPath

applying a function 371
basic method 166
context 342
custom labels (alias) 159
definition of 523
documentation resources 348
example 344
examples (Table) 347

expression builder 172
functions 345
in custom scripts 342
in ECMAScript 344
in groups 345
in the map action 344
syntax 173
target audience 342
when to use 343

XPath() method in Composer 343
XPath syntax rules summary 173
XPointer, definition of 523
XSD 85, 91

automatic generation from sample 327
XSD resources, creating 326
XSL 86

an example 349
definition of 524
documentation resources 350
in custom scripts 348
style sheet, definition of 524
style sheets 83
target audience 349
templates 83
what it is 348
when to use 349

XSL Resource 329
XSL stylesheet, stylized DOM view 126
XSLT (XSL Transformations) 348
XSLT Transform action 211, 349
xuserpref.xml 50

	Contents
	1 Welcome to exteNd Composer 1
	2 Planning Your Application 15
	3 Getting Started with exteNd Composer 25
	4 Creating and Managing Your Projects 57
	5 XML Templates 83
	6 Creating an XML Map Component 107
	7 Basic Actions 149
	8 Advanced Actions 189
	9 Resources 247
	10 Custom Scripting and XPath Logic in exteNd Composer 333
	11 Applying Actions to Common Tasks 363
	12 Testing and Debugging 383
	13 Working with Services 405
	14 Working with Registries 421
	15 Deploying Your Project 441
	A The Composer JSP Tag Library 499
	B Reserved Words 513
	C Glossary 515

	About This Guide
	Welcome to exteNd Composer
	The Novell exteNd Family
	Novell exteNd 5 Professional Edition
	Novell exteNd 5 Enterprise Edition

	The Novell exteNd Composer Product Line
	What Is Composer?
	Who Can Use Composer?
	Components and Services
	What Kinds of Applications Can You Build with Composer?
	Automated Business Process Management (Workflow)
	About the Composer Enterprise Connect Product�Line
	Updating Your License(s)
	Updating Design-Time License String(s)
	Updating Runtime License String(s)

	Where To Go for More Help

	Planning Your Application
	How Do I Design and Build an Application in Composer?
	What is an xObject?
	What is a Service?
	What is a Component?
	What is a Resource?
	What Is an XML Template?

	Basic Steps for Developing a Composer Service
	Part One: Plan the Service (Before Using Composer)
	Write the Requirements
	Analyze the Requirements
	Design the Service

	Part Two: Build the Service
	Part Three: Deploy the Service

	How is Data Handled When a Service Executes?
	SOAP Messages
	XML Signatures

	Getting Started with exteNd Composer
	Launching exteNd Composer
	Modifying the Java Virtual Machine for exteNd Composer
	Exiting Composer

	Understanding the exteNd Composer Environment
	How to Get Started
	About the Composer Environment
	Navigation, Message, and Content Frames
	Navigation Frame
	Message Frame
	Content Frame

	Manipulating Composer’s MDI Windowing Environment
	Using Title Bar, Menus, Toolbars, and Status Bar
	Title bar
	Menus
	Toolbar
	Status Bar

	Understanding Composer Icons

	Navigator Frame
	The Project Tab
	Services, Components, and Resources Pane
	Working with xObjects
	Using the Context Menu
	About the Instance Pane
	Using the Instance Pane Context Menu

	The Registries Tab

	Configuring Composer’s Environment
	Setting Preferences
	General Preferences
	Display Preferences
	Editing Preferences
	Designer Preferences
	.Entering Advanced Proxy Settings

	Project Settings
	Project Variables
	Subprojects

	The xconfig.xml and xuserpref.xml files
	Composer Online Help
	Using Online Help
	Navigating Online Help
	Content Browsing
	Index
	Keyword Search

	Creating and Managing Your Projects
	What is a Project?
	About Services
	About Components
	About Resources
	About XML Templates

	Creating a New Project
	Opening Projects
	Opening a Project from within Composer
	Opening a Specific Project When Starting Composer from the Command Line
	Opening a Project when the Recent Project is not Found

	Deleting a Project
	Managing xObjects
	Creating an xObject
	Opening an xObject
	Importing an xObject
	Displaying an xObject’s Properties
	Printing an xObject’s Properties
	Renaming an xObject
	Deleting an xObject

	Searching for xObjects or Text
	Viewing System Messages
	Understanding Where Project Files are Stored
	About Design Time and Deployed Project Files

	Creating Project Variables
	Adding a Project Variable to a Project
	Creating Project Variables Dynamically

	Subprojects within Projects
	Imported xObjects versus Subprojects
	Nesting of Subprojects
	Scope and Visibility of xObjects and Variables in Subprojects

	XML Templates
	Sample XML Documents, Document Definitions, XSL Stylesheets, and Templates
	About Sample XML Documents
	About XML Validation Documents (DTDs and Schemas)
	Runtime Validation versus Design-Time Validation

	About XSL Stylesheets
	About XML Templates
	About Template Categories

	Creating an XML Template
	Creating XML Templates from WSDL
	Importing an XML Template
	Showing and Hiding XML Documents
	XML Template Editor
	Viewing the documents in the Template Editor and Context Menus
	Working with an XML Template
	Viewing an XML Document
	Editing an XML Template
	Saving Changes to XML Documents
	Printing an XML Document
	The XML Template Editor Context Menu
	Deleting an XML Template
	Moving an XML Template to a Different Category
	Renaming an XML Template

	Understanding Where XML Templates Are Stored on Your Hard Drive

	Creating an XML Map Component
	What is an XML Map Component?
	Using XML Template Sample Documents to Build�an�XML�Map�Component

	What is a DOM?
	Understanding DOM Structure
	Using DOMs at Runtime
	DOM Behaviors during Runtime
	Creating Different Types of Messages

	Creating an XML Map Component
	Namespaces and Output Parts
	Understanding the XML Map Component Editor
	About the Menu and Toolbar
	Using Window Layout and Show/Hide in the Component Editor
	Managing Document Panes from within the XML Panel

	About the Mapping Panes
	About the Input Mapping Pane
	About DOM Elements and Data Values
	About the Input Mapping Pane Context Menu
	Creating a Repeat for Element, Declare Alias, or Declare Group Action
	Editing a Value for a Document Element (Edit Data command)
	Add to Display
	View Commands
	Launch Editor
	Load XML Sample
	Save XML As
	Finding a Document Element
	Finding the Next Document Element
	Validating a Dom

	About the Output Mapping Pane
	Mapping an Input Element to an Output Element
	Setting a Value

	About the Action Model Pane
	About the Action Model Context Menu
	Replacing Text in the Action Model

	Adding Actions to a Component
	Creating an Output Document without Using a Template

	Using Temp and Fault Messages with a Component
	Creating a Temporary Message Part
	Creating a Fault Message Part
	The _SystemFault Document

	Creating a Custom Fault Document

	Reloading an XML Document
	Loading a Sample Document
	Adding a Watch Variable
	Saving Your Component
	Saving a DOM as an XML Document
	Saving an XML File as a Template
	Inspecting and/or Editing XML Template Properties
	Avoiding Out-of-Memory Problems
	Using Performance Filters
	Viewing Component Properties
	Printing a Component
	Designing, Testing, and Running a Component

	Basic Actions
	What is an Action?
	Using Composer Actions
	Creating an Action

	The Comment Action
	The Component Action
	The Decision Action
	The Declare Alias Action
	The Function Action
	The Log Action
	Log File Locations
	Log Priority Levels

	The Map Action
	About XPath and ECMAScript Expressions
	The Basic Method: XPath by Itself
	The Alternative Method: XPath within ECMAScript

	Adding a Map Action
	Default Mapping Behavior

	Advanced Mapping Options
	Using the XPath Expression Builder
	Using the ECMAScript Expression Builder

	The Send Mail Action
	Mail via SMTP Simple Authentication
	How to Create a Send Mail Action

	The Switch Action
	About Cases
	A Switch Example

	About the Default Case
	Editing Switch Actions

	The Todo Action
	Project-Wide Todo Lists
	Tracking Todo items using the Message Frame tab

	Advanced Actions
	Apply Namespaces Action
	Map Actions, XML Templates, Namespaces, and Prefixes
	Example: Assigning Namespace Declarations to Output Messages
	Example: Ignoring Namespaces

	The Convert Copybook to XML Action
	The Convert XML to Copybook Action
	The Simultaneous Components Action
	The Throw Fault Action
	The Transaction Action
	The Try/On Fault Action
	The XForm Process Action
	The XSLT Transform Action
	Data Exchange Actions
	The Composer Resource Action
	URL/File Read
	URL/File Write
	The Web Service (WS) Interchange Action
	The XML Interchange Action
	Performance Enhancement Using “Filter Document”

	Repeat Actions
	The Break Action
	The Continue Action
	The Declare Group Action
	The Repeat For Element Action
	The Repeat for Group Action
	The Repeat While Action
	The Split Document Action
	Limitations of Stream-Based Document Processing
	How the Split Document Action Works
	Controlling the Size of Chunks
	Loop Control and the Split Document Action
	Chunks as Documents

	Special Considerations for Animation and Debugging
	Creating the Split Document Action

	Resources
	Working with Resources
	Support for Language Versioning of Resources
	About Certificate Resources
	About Code Tables
	About the Code Table Editor

	About Code Table Maps
	Mapping the Code Tables
	Using a Code Table Map

	About Connections
	About Constant vs. Expression Driven Connections
	Setting Up an Expression-Driven Connection

	Using LDAP to Obtain Connection Parameters
	How to Create an HTTP Basic Authentication Connection Resource
	How to Create an FTP Authentication Resource
	Mail Simple Authentication Connection Resource

	About Copybook Resources
	About Custom Script Resources
	Organizing and Using Custom Functions
	About the Custom Script Editor Window
	Creating and Validating a Function
	Adding a Function Tool Tip Description
	Viewing DOM Trees within the Script Editor
	Integrating Java Classes with Custom Scripts
	Working with a Java Class in ECMAScript
	Using the Expression Editor to Build Functions

	About Form Resources
	About Image Resources
	Image Resource Naming (and Renaming)
	Context in the JAR
	How to Create an Image Resource
	How to Import an Existing Image Resource
	How to View an Image Resource

	About JAR Resources
	JAR Resource Naming (and Renaming)
	Context in the Composer Project
	Context in the Composer Project JAR
	How to Create a JAR Resource
	How to Import a JAR Resource

	About JSP Resources
	Creating a JSP-Based Service Trigger

	About WSDL Resources
	Obtaining a Stylized View of WSDL
	Adding Elements to a WSDL Document
	Adding a Message Element
	Adding a Port Type Element
	Adding a Binding Element
	Adding a Service Element

	Type-Ahead (Code Completion) in the WSDL Editor
	Validating a WSDL document

	About WSIL Resources
	About XML Resources
	How Do XML Templates and XML Resources Differ?
	How to Import an XML Resource
	How to Access an XML Resource in a Component

	About XSD Resources
	Using Composer’s Schema Generator
	Using the XSD Resource Wizard

	About XSL Resources
	How to Create an XSL Resource
	How to Import an XSL Resource

	Custom Scripting and XPath Logic in exteNd Composer
	What is ECMAScript?
	What Capabilities Does ECMAScript Offer?
	How Scripting Is Exposed in Composer’s User Interface
	Expressions for Dynamic Parameter Values
	Custom Script Libraries
	Function Actions

	ECMAScript Access from XPath
	XPath Access from ECMAScript
	Scope of Custom Script Functions and Variables
	Looking at an ECMAScript Example
	Performance Considerations
	What Is XPath?
	Who Is the Target Audience for XPath?
	When Would I Want to Use XPath?
	How Is XPath Integrated into Composer?
	Looking at an XPath Example
	XPath in the Map Action
	XPath in ECMAScript
	XPath in Groups

	XPath Functions
	Documentation Resources for XPath

	About XSL
	What is XSL?
	Who is the Target Audience for XSL?
	When Would I want to Use XSL?
	How is XSL Integrated into Composer?
	Looking at an XSL Example
	Resources for XSL

	About Novell Scripting Extensions
	General Purpose Extensions
	LDAP Methods
	Connector-Specific Extensions
	When Would I Want to Use Novell Scripting Extensions?
	How Are Novell Scripting Extensions Integrated into Composer?
	Extension Code Examples

	About DOMs
	What is DOM?
	What Does a DOM Do? What are the Key Features?
	Who is the Target Audience for DOM Methods?
	When Would I Want to Use DOM Methods?
	How Are DOM Methods Integrated into Composer?
	Looking at a DOM Methods Example
	Documentation Resources for DOMS

	About Java Integration
	How Is Java Accessible in exteNd Composer?
	When Should You Use Java?
	Looking at a Java Integration Example
	Documentation Resources for Java

	Applying Actions to Common Tasks
	About the Examples in this Chapter
	About Element and Data Mapping
	Mapping Leaf Elements
	Mapping a Parent and its Children (Deep Copy Mapping)
	Transforming Elements
	Transforming Elements With the Content Editor
	Transforming Elements With Code Tables
	Transforming Elements With Functions

	Using Loops in Action Models
	The Repeat for Element Action
	The Repeat for Group Action
	The Repeat While Action

	Performing Aggregate Calculations
	Calculating a Sum
	Finding the Highest Total
	Finding a Specific Match for the Highest Total

	Testing and Debugging
	What are the Animation Tools?
	The Basic Animation Tools
	Starting Animation
	Toggling a Breakpoint
	Running To a Breakpoint
	Stepping Into an Action
	Stepping Over an Action
	Pausing Animation
	Aborting Animation

	Execution Errors
	Clearing All Breakpoints
	Resetting All Documents
	Clearing a Document

	Testing Tips
	Using the ECMAScript alert() Function
	Using a Project Variable to Turn Debugging On or Off
	Watch Lists
	Watch-List Persistence and Scope
	Types of Variables You Can Watch
	How to Add Items to a Watch List
	Step-by-Step Example

	Environmental Differences between Animation Testing and Deployment Testing

	Working with Services
	Terminology
	What Are the Available Service Types?
	JMS Services
	Service Architecture
	Composer Web Services and WSDL
	Looking at an Example Web Service
	Looking at an Example JMS Service

	Creating a New Service
	About Specifying XML Templates for a Service
	Creating a JMS Service

	Importing a Service
	Understanding the Service Editor
	Using the Service Editor
	Building a Service with Components
	Looking at an Example Service Action Model

	Service FAQ
	How Do I Pass Data Between Different Types of Components?
	Can Composer Services Accept More than One Input Document?
	Can a Component Be Executed that is not Called Directly by a Service?
	How Do I Call a Service Deployed in a Different JAR File?
	How Do I Log Activity in a Single File for Each Component Called from within a Service?

	Loading Sample Documents as You Test a Service

	Working with Registries
	Capabilities of the Registry Manager
	Registry Browsing
	Context Menu Items
	Organization Context Menu
	Services Context Menu
	Content Pane Context Menu

	Action Buttons
	Searching by organization
	Searching by service
	Wildcards in Registry Searches

	Retrieving WSDL from the Registry
	Publishing to a registry

	Deploying Your Project
	Planning your Deployment
	About Service Triggers
	Triggers and Input Data

	About Composer-Built Deployment EARs
	Deployment Options
	Deploying Directly from Composer
	Server Profiles
	The Deployment xObject
	Editing Existing Deployment Object Properties

	Configuring a Deployment
	Service Triggers
	Drag-and-Drop Creation of Service Triggers
	Creating Service Triggers Using Menu Commands

	Defining E-mail Triggers
	Defining EJB-Based Triggers
	Defining File-Based Triggers
	File-Handling Options
	Testing Considerations

	Defining JSP-Based Triggers
	Defining Servlet-Based Service Triggers
	Defining SOAP Triggers
	Defining Timer-Based Service Triggers
	Scheduled Tasks versus Repetitive Tasks

	Specifying Other Project Resources for Deployment
	Deploying Your Project to the Server
	Deployment from exteNd Director
	Composer Web Service Wizard: SOAP Service Deployment
	Composer Web Service Wizard: JSP and Servlet Triggers
	Deploying EARs from Novell exteNd Director

	Director Wizards for Composer Code Generation
	Director Servlet Wizard
	Director JSP Wizard
	Java Class Wizard
	Compiling and Deploying Director-Generated Code

	For More Information
	Composer Enterprise Server Documentation

	The Composer JSP Tag Library
	Preparing to Use the Tag Library
	Custom Tags Defined in composer-taglib.tld
	Tag API
	execute
	Converter Classes
	com.sssw.b2b.xs.service.conversion.GXSInputFromHttpParams
	com.sssw.b2b.xs.service.conversion.GXSInputFromHttpContent
	com.sssw.b2b.xs.service.conversion.GXSInputFromHttpMultiPartRequest
	com.sssw.b2b.xs.service.conversion.GXSInputFromHttpSpecificParam
	com.sssw.b2b.xs.service.conversion.GXSInputFromJavaObject

	fault
	forEach
	hasnopart
	hasnovalue
	haspart
	hasvalue
	if
	value
	For More Information

	Reserved Words
	Glossary
	Action
	Action Model
	Alias
	Animate
	Attribute
	CDATA
	Character Data
	Code Table
	Component
	Connection
	Content Editor
	Custom Script
	Deployment
	Composer
	Connect
	Document
	Document Handle
	Document Type Definition (DTD)
	DOM
	ECMAScript
	Element
	Entity
	ERROR
	Expression Builder
	GET
	Group
	Group(Detail)
	Group Name
	Input
	In Value
	Input DOM
	JMS
	JDBC
	Map
	Mapping Panes
	Markup
	MessageListener
	Namespace
	Node
	NodeList
	Output
	Output DOM
	Out Value
	POST
	POST with Response
	Project
	Project File
	Project JAR
	Project Variable
	Public
	PUBLIC
	PUT
	Resource
	ROW TARGET
	Schema
	Service
	Service Trigger
	System
	SYSTEM
	UDDI
	Unicode
	URI
	URL
	Userfunc
	UTF-8
	W3C
	WSDL
	XML Category
	XML Document Definition
	XML Meta Data
	XML Sample Document
	XML Template
	xObject
	XPath
	XPointer
	XSL Stylesheet
	XSL

	Index

