
Novell exteNd Composer™

LDAP Connect

USER’S GUIDE
5.0

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any
rights of ownership in the Software.

Novell, Inc.

1800 South Novell Place

Provo, UT 85606

www.novell.com

exteNd Composer LDAP Connect User’s Guide

January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks
eDirectory is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
the redistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer
that follows these conditions in the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Software is derived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project is released under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intalio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redistributions must also contain a copy of this document. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExoLab Project (http://www.exolab.org/). THIS
SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

5555

Contents

About This Guide 7

1111 Welcome to LDAP Connect for exteNd Composer 9
About exteNd Composer and the Connect Architecture . 9

Hub and Spoke Architecture .10
About exteNd’s LDAP Connect .11
What Are Directories? .12
How Is Information Stored in a Directory? . .13
What is LDAP? . .15
What Does LDAP Do? . .16

LDAP Verbs. .17
What is DSML? .18
What Kinds of Applications Can You Build Using the LDAP Connect? 19
LDAP and Security . .19

Access Control .20
For More Information. .21

2222 Getting Started with the LDAP Component Editor 23
About Connection Resources . .23
About Expression-Driven Connection Parameters .24
LDAP Connection Parameters .25
Security Settings .26

Creating an LDAP Connection Resource .27
Connection Troubleshooting . .30

Exception After Successful Connection. .32
Silent Failover. .33
Editing Connection Resources After They’re Created 34

3333 Creating an LDAP Component 35
The LDAP Application Model . .36

Before Creating an LDAP Component . .37
Special Features of the LDAP Component Editor .40

LDAP Native Environment Pane .41
Drag-and-Drop Operations .44
Special Menu Commands. .46

4444 DSML Actions 47
Working with DSML .47

Multiple Requests in a Single DSML Document .49

LDAP Connect User’s Guide6666

The Create DSML Action . 50
Add . 51
Compare . 59
Delete . 61
Modify . 62
Rename . 63
Search . 64

The Execute DSML Action . 68
Using Other Actions in the LDAP Component Editor . 69

5555 Working with LDAP and DSML 71
DSE Query Example . 71

Connection Resource for Anonymous Bind . 72
Component and Action Model . 72
Dealing with Errors. . 76

ECMAScript and the LDAP Connect . 80
LDAP Extension Methods . 81
Access Control List (ACL) Methods . 81
Access to Novell LDAP Classes . 83

ECMAScript Example Involving LDIF . 83

AAAA LDAP Glossary 89

BBBB LDAP Result Codes 93

7777About This Guide

About This Guide

Purpose

This guide describes how to use the LDAP Connect.

Audience

This book is for developers and systems integrators who are planning to use
exteNd Composer to develop directory-aware services (including Web Services)
and components.

Prerequisites

This book assumes prior familiarity with exteNd Composer’s work environment
and deployment options. Some familiarity with the Lightweight Directory Access
Protocol is also assumed.

Additional documentation

For the complete set of Novell exteNd documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8888 LDAP Connect User’s Guide

9

1

Welcome to LDAP Connect for exteNd Composer

Welcome to LDAP Connect for
exteNd Composer Chapter 1

Welcome to the Novell exteNd LDAP Connect User’s Guide. This Guide is a
companion to the exteNd Composer User’s Guide, which details how to use all the
standard features of Composer except for those specific to the Connect
Component Editors. So, if you haven’t looked at the Composer User’s Guide yet,
you should familiarize yourself with it before using this Guide.

Novell exteNd Composer provides separate Component Editors for each Connect.
The special features of each component editor are described in separate Guides
like this one.

If you have been using exteNd Composer, and are familiar with the core editors
(such as the XML Map Component Editor), then this Guide will help you become
productive with the LDAP Component Editor in minimal time.

About exteNd Composer and the Connect Architecture
Novell exteNd Composer is a tool for building (and deploying) your own XML-
enabled integration applications.

Composer comes in two parts. The design-side part (which is what we mean when
we say “Composer” in this guide) is an integrated development environment
(IDE) for creating your own custom applications. The runtime part (called
Composer Enterprise Server, or “Composer Server” for short) is the server-
resident execution engine for your apps. (You do not need access to Composer
Server in order to design, test, and debug your services, however.)

The services you build and deploy using Composer can be triggered (invoked) in
any number of ways. A common option is to have a service invoked by a servlet
that “listens” on a URL. (For more information on invocation and deployment
options, see the exteNd Composer User’s Guide as well as the Composer Server
Guide for your particular app server).

LDAP Connect User’s Guide10

This guide will show you how to build LDAP Components that you can use in
your Composer-built services. Typically, you will:

Create a project (a Composer or Workbench.spf file).

Create an LDAP Component and its associated resources (such as a
Connection Resource).

Optionally create other components (XML Map, JDBC, etc.) that carry out
additional “business logic” operations.

Create a service (or “Service Component”) that calls your other components.
The service, in other words, “wrappers” your lower-level components.

Package and deploy your service in JAR, WAR, or EAR form as appropriate.

The service provides the invocation layer for a component (or group of
components). It can be exposed as a WSDL-described Web Service, or it can run
locally, with no public-facing interface, on the app server.

Hub and Spoke Architecture

Novell exteNd Composer is built on a simple hub-and-spoke architecture. The hub
is a robust XML transformation engine that accepts XML documents, processes
the documents, and returns an XML document created according to the particular
requirements of the business process in question. The spokes, or Connects, are
add-in modules that “XML-enable” sources of data that are not XML-aware. That
is, Connects make it possible for non-XML data—whether from legacy COBOL-
VSAM managed information systems, Telnet or other terminal streams, message
queues, EDI, etc.—to be captured in XML form (or the reverse: repackage XML
data so the endpoint system can understand it). Composer Connects are natively
able to read, write, and transform XML using industry-standard parsers and
transcoders.

All of this is done in a non-intrusive/non-invasive manner, such that there is no
impact on existing systems or infrastructure. (For example, there is no need to load
any new software on existing systems, aside from the app server itself.)

Welcome to LDAP Connect for exteNd Composer 11

Composer comes with two core Connects, for JDBC and LDAP. (JDBC is the
subject of a separate User’s Guide.)

Other Connects are available for CICS RPC, Telnet, 3270, 5250, HP3000,
Tandem, Data General, JMS, SAP, EDI, and HTML data sources. These additional
Connects are not part of the core Composer installation but represent value-adds
that can be purchased separately.

About exteNd’s LDAP Connect
Just as the JDBC Connect lets you build and deploy XML integration applications
that are database-aware, the LDAP Connect lets you build components and
services that are directory-aware. Your component or service acquires the power
to act as an LDAP client. It can make queries against (or even update the contents
of) any directory—regardless of vendor—that supports the LDAP protocol.

LDAP Connect User’s Guide12

The key to the power and flexibility of Composer’s LDAP Connect is its ability to
work with DSML (Directory Services Markup Language), which is an industry-
standard XML grammar for encoding directory requests and responses. (See the
more detailed discussion further below.) Since DSML is just a dialect of XML, it
shares all of XML’s advantages in terms of being human-readable, machine-
parsable, transportable, firewall-friendly, etc. The data in a DSML document is
easily accessed, transformed, and repurposed.

NOTE: You will not need to create, or keep on hand, actual DSML documents in
order to work with the LDAP Connect. Composer will create the necessary DSML
for you, on the fly.

We will have more to say about DSML later on.

What Are Directories?
A directory is a structured data store. As such, it has many of the characteristics of
a relational database (which is perhaps the best known type of structured data
store). But a directory differs from a traditional database in a number of key ways:

Whereas a database is designed to accommodate large chunks of potentially
volatile data (data that may be subject to frequent updates), a directory is
more suited to handling small, highly granularized bits of data that don’t
need frequent updating.

Directories allow administrators to aggregate data in vertical object
hierarchies built on flexible naming and containment rules. (Traditional
databases follow a less vertical approach to organizing data.)

Every data element (or entry) in a directory is directly addressable via a
unique ID (known as its distinguished name). The address of a directory
entry is constructed (and deconstructed) piecewise, much the same way a
URL is, so that there can be relative versus fully qualified names. In a
database, data elements are not directly addressable.

As with a database, data in a directory can be queried as well as written (updated)
or removed. Databases can be queried via one flavor or another of SQL
(Structured Query Language). With directories, queries follow a syntax described
in RFCs 2251 and 2254. The query “language” for LDAP is well standardized.

Welcome to LDAP Connect for exteNd Composer 13

The diagram above shows how applications communicate with the two basic types
of structured data stores (directories and databases). Applications go through
LDAP to query and/or update directories. They go through SQL and appropriate
drivers to access data in a database.

How Is Information Stored in a Directory?
Directories store data as entries. Collections of entries are usually called objects.
Objects can contain other objects as entries.

The data within directory objects consists of attribute-value pairs. Some attributes
are said to be single-valued; others are multi-valued. For example, a person might
have more than one phone number: In this case, the attribute under which phone
numbers are stored for this person would probably be a multi-valued attribute.
This would be specified in the directory’s schema. (A directory schema is not to
be confused with an XML schema. The two are completely distinct.)

When entries contain other entries, the containing entry is called a container
object.

A contained entry is said to be the subordinate entry of the container. The
container, on the other hand, is said to be the superior of the contained entry.

NOTE: An entry can be both a container (superior) as well as a subordinate to
another entry, much the same way that a DOM node can be both a parent and a
child.

LDAP Connect User’s Guide14

Nesting of entries is a key characteristic of directories and gives them a treelike
structure. (In fact, you will often hear the term Directory Information Tree, or DIT,
in reference to a directory.) The tree structure lends itself, in turn, to XML
representation.

The above graphic shows how the directory structure for a small company might
look. In this example, the top-level node in TinyCompany has an Organization
(O) attribute of TinyCompany. Under TinyCompany are containers for the
Engineering, Accounting, and Marketing departments. (These are labelled as such
in terms of OU or Organization Unit attributes.) Accounting has two
organizational units under it (Accounts Payable and Accounts Receivable.) So far,
all of these entries have been containers. At the leaf-node level, we reach the CN
Common Name) entries for the various personnel under the containers. Note that
Marketing has no employees at the moment. But they do have a printer.

Any item in the tree can be addresses by a concatenation (or federation) of
namespaces: Judy Yo can be addressed unambiguously by means of:

cn=Judy Yo,ou=R&D,ou=Engineering,o=TinyCompany

This “fully qualified” name is called a distinguished name (usually abbreviated
“DN” or “dn”). It is analogous to a fully qualified path or URI.

NOTE: Order is important in a DN. Unlike URL or file-system naming schemes,
the ordering inside a DN (going left to right) flows from lowest level to highest level
of organization (or from child to parent)—always upwards along the ancestor chain.

Welcome to LDAP Connect for exteNd Composer 15

Because order is important, it would be wrong to rewrite the above DN as

cn=Judy Yo,ou=Engineering,ou=R&D,o=TinyCompany

This DN states the hierarchy of relationships incorrectly, since R&D belongs
under Engineering. The DN shown here would not resolve correctly given the
object hierarchy shown in the foregoing graphic.

We will talk more about naming and other conventions in later chapters.

What is LDAP?
LDAP (Lightweight Directory Access Protocol) is a messaging protocol for
communicating with directories. It implements a compact subset of the
functionality specified in the more elaborate Directory Access Protocol. Full DAP
is a feature-rich, far-reaching, rigorous (“heavyweight”) protocol for
communicating with X.500 directory servers. By comparison, LDAP is a
lightweight protocol with a reduced feature set and relatively modest learning
curve for those wishing to use it. You can think of LDAP as a kind of complexity-
reduced version of DAP based on ordinary TCP/IP for messaging as opposed to
DAP’s use of the less-common OSI network protocol stack.

In many circles, LDAP has come to mean more than just the network protocol
described in RFC 3377. When people talk about LDAP, they may be talking about:

The LDAP functional model: that is to say, the kinds of operations you can
perform on a directory

The LDAP namespace model: The ways in which data groupings can be
distinguished or identified by name

The LDAP data model, which defines the kinds of information that can be
stored in a directory, and rules for organizing that data

Many of these concepts stem from International Telephone Union (ITU) Technical
Recommendation X.500: "The Directory: Overview of Concepts, Models and
Service"(1993). LDAP remains, at its core, a network protocol (like HTTP), but its
semantics are tightly bound to the conceptual framework defined by ITU’s X.500,
X.501, and X.511 standards.

With LDAP, you can establish communications with (or “bind to”) a directory,
access (read) information in the directory, and/or update (write information to) the
directory.

The LDAP v3 specification is at http://www.ietf.org/rfc/rfc2251.txt.

For additional information on LDAP, consult http://www.openldap.org.

http://www.openldap.org
http://www.ietf.org/rfc/rfc2251.txt

LDAP Connect User’s Guide16

What Does LDAP Do?
LDAP is a protocol for communicating with directories. Like any network
protocol, LDAP has its own “handshake” conventions and a vocabulary of
keywords with implied semantics. There are 20 verbs, total (see the section
following this one), describing various types of operations:

Bind—The bind operation establishes an LDAP session between a client
application and a directory server. (This operation also allows a client
application to pass authentication information to the server.)

Unbind—The unbind operation terminates an LDAP session and signals to
the server that the “connection” can be discarded.

Search—The search operation allows an LDAP-enabled client application
to exploit the lookup services offered by a directory server. Depending on
the parameters in the client application's search request, the server will
return information from a single entry, from all of the entries below a
particular entry on the directory tree, or from an entire branch of the
directory tree.

NOTE: In addition to allowing client applications to define the scope of a
particular search, LDAP 3 parameters allow a client application to define
search filters; a size limit for the number of entries returned; and a time limit
within which the search should be performed.

Modify—The modify operation allows a client to modify the value of an
attribute for a particular entry. Parameters of the modify operation allow a
client application to add values for attributes, to delete values for attributes,
and to change values for attributes. For example, a client application might
request an add, delete, or replace operation.

Add a telephone number to the telephoneNumber attribute of a
particular user entry.

Delete a telephone number from the telephoneNumber attribute.

Replace the existing telephone number with a new telephone number.

Modify Distinguished Name (DN). The modify-DN operation allows a
client application to change an entry's distinguished name by changing
the leftmost element of that name. (Distinguished names are discussed
further below.)

Compare—The compare operation allows a client application to compare a
stated attribute value with the value of an attribute in a particular entry. For
example, a client application might verify a particular user's password using
the compare operation.

Abandon—The abandon operation allows a client application to abandon an
operation that has not yet been completed.

Welcome to LDAP Connect for exteNd Composer 17

LDAP 3 also defines an indirection capability—that is, a means by which a
directory can refer a client application to another LDAP 3 directory. For example,
suppose a client application were to request information about a particular entry
from LDAP Directory A, but Directory A could not find the requested entry. If
Directory A knew that Directory B that might contain the desired info, A could
refer the client to B, and the search could continue (possibly along an extended
series of referrals).

When the host silently implements its own referral-following scheme, it’s called
chaining. In LDAP, the client has no knowledge of nor (generally speaking) any
control over chaining, since it’s totally under the server’s control.

Referral-following, on the other hand, is under the client’s control: The client must
decide whether to act on each referral as it is received, and what kind of security
to use on each “hop.”

NOTE: The current version of the LDAP Connect for exteNd Composer does not
provide native support for referral-following. You can, however, build your own
action-model logic to accomplish this, using ordinary looping constructs and
dynamic connection-resource parameter values.

LDAP Verbs

The above discussion presented LDAP operations in “non-programmer” terms. At
a lower level, LDAP operations are specified by LDAP verbs.

The current list of LDAP verbs (including those that are unique to Version 3 of the
spec) looks like this:

BindRequest
BindResponse
UnbindRequest
SearchRequest
SearchResponse (v2 only; not in v3)
SearchResultEntry (v3)
SearchResultDone (v3)
SearchResultReference (v3)
ModifyRequest
ModifyResponse
AddRequest
AddResponse
DelRequest
DelResponse
ModifyDNRequest
ModifyDNResponse
CompareRequest
CompareResponse
AbandonRequest
ExtendedRequest (v3)
ExtendedResponse (v3)

LDAP Connect User’s Guide18

These verbs are presented here merely to give you an idea of the kinds of
operations that are possible in LDAP. You do not need to understand how to work
with these verbs directly in order to use the Composer LDAP Connect.

For more information on the uses and meanings of these commands, refer to the
developer documentation at http://developer.novell.com/ndk/.

What is DSML?
Directory Services Markup Language, or DSML, allows directory information
and/or directory queries to be represented as an XML document.

NOTE: If you are already experienced with LDAP, you can think of DSML as the
XML analog of an LDIF file. (LDIF is the LDAP Data Interchange Format, a text
format for specifying directory entries and LDAP queries. LDIF is described in
RFC 2849)

The DSML specification (see http://www.oasis-open.org) was created in order
to make it easy for XML-based enterprise applications to leverage resource
information stored in directories, using firewall-friendly mechanisms like SOAP
(Simple Object Access Protocol).

DSML allows XML and directories to work together. It provides a generalized
mechanism by which XML-based applications can access directory-based
information. The goal of DSML is simply to make it possible for an ever-growing
number of XML-based enterprise applications to be directory-aware.

NOTE: You do not need to understand DSML in order to use the Composer LDAP
Connect. Many of the LDAP Connect’s features are wizard-driven. Based on your
input to the wizard dialogs, Composer’s LDAP Connect will build any necessary
DSML documents or DOMs for you, dynamically.

http://www.oasis-open.org
http://developer.novell.com/ndk/

Welcome to LDAP Connect for exteNd Composer 19

What Kinds of Applications Can You Build
Using the LDAP Connect?

With the aid of the LDAP Connect and Composer, you can build “directory
awareness” into your XML integration applications (whether they’re Web
Services or private apps running in a local context). Your LDAP-aware app can
push data into or pull data from any LDAP-accessible data store, using XML as
the interchange format. (DSML is the XML dialect that is actually used.) And you
can do this without having to know anything about DSML. For example, you can
write a component (perhaps part of a larger web service) that retrieves the phone
number, e-mail address, and title of a company employee from a company
directory. If the information your app needs resides in two or more directories, you
can merge the information from separate directories before displaying it to the
user or passing it to another component in your application.

LDAP and Security
LDAP applications typically use SSL and TLS (Transport Layer Security) for
authentication of LDAP endpoints and encryption of LDAP session data.

TLS is a generic wrapper for various kinds of transport-layer security. The
participants in a TLS session agree, at the beginning of a session, to use one of
several available security mechanisms (a typical choice being Secure Socket
Layer technology); then the participants use that mechanism to conduct a “secure
session.”

When TLS is enabled, all communications are encrypted; no passwords (and no
data) are ever sent in the clear.

Host authentication is also a component of TLS. By default, the host sends its
X.509 certificate information to the client and the client verifies (authenticates)
the host, confirming that the host in question is indeed the LDAP server that the
client was expecting.

NOTE: There are other possible authentication handshakes, including
authentication of the client by the host without authentication of the host by the
client, as well as two-way mutual authentication; but the LDAP Connect for exteNd
Composer currently supports only the most common handshake scenario, in which
the server provides its certificate info to the client.

Additional discussion of LDAP Connect security will come later (in “Getting
Started with the LDAP Component Editor”).

For more information on Transport Layer Security, see RFC 2246 at
http://www.faqs.org/rfcs/rfc2246.html.

http://www.faqs.org/rfcs/rfc2246.html

LDAP Connect User’s Guide20

Access Control

Access control is different from “security” of the kind discussed above: Rather
than addressing authentication and encryption, access control has to do with
authorization, operational privilege levels (read-only vs. read-write), inheritance
rules for privileges, object and attribute visibilities, etc., and assignment,
management, and enforcement of these properties on a per-user and per-group
basis.

ITU X.501 addresses (in a characteristically abstract way) directory access control
concepts, but does not specify access control mechanisms in enough architectural
detail to enable directory vendors to implement access control in a standard way.
Therefore, access control features have necessarily tended to be implemented in
vendor-specific ways. There is no one “standard” way to implement access
control.

Novell’s eDirectory offers a rich, flexible, robust access control architecture
centered on an attribute called ACL (for “Access Control List”). The ACL
attribute is an optional, multivalued attribute that (in eDirectory and NDS) is
defined on the Top object class. Since all objects derive from Top, all object
classes can avail themselves of the ACL attribute.

The ACL attribute is an attribute on the object that is being accessed. Each ACL
value specifies who can access the object; what type of rights the accessor has
been granted; and whether children of the accessor inherit those rights. When an
object has been granted rights to another object, the accessor is called a trustee of
the target object.

Since the ACL attribute is multivalued, any object that uses an ACL attribute can
store any number of values in it. Typically, there is one value per trustee.
Therefore, an ACL might contain a great many values. But some trustees might
actually be container objects representing large groups. The rights of an entire
group of directory objects can be controlled through a single ACL entry.

ACL-based access control is based on very simple principles, but the
ramifications of those principles are far-reaching. For a technical overview of
ACL concepts, you should consult the NDS Technical Overview documentation
(in particular, the chapter on eDirectory Security) available online at
http://developer.novell.com/ndk. ACL is also discussed later in this guide, in the
discussion of “Access Control List (ACL) Methods.”

http://developer.novell.com/ndk/doc/ndslib/index.html?page=/ndk/doc/ndslib/dsov_enu/data/h6tvg4z7.html
http://developer.novell.com/ndk

Welcome to LDAP Connect for exteNd Composer 21

For More Information
The web has many good LDAP and directory resources. A good place to start is
http://developer.novell.com/edirectory/ndsldap.htm, which has links to many
LDAP-related articles, specifications, and developer resources.

Links to the RFCs covering LDAP, along with other resources, can be found at
http://nldap.com/nldap/. Some of the RFCs include the following:

RFC 2251 - LDAP (v3)

RFC 2252 - LDAP (v3): Attribute Syntax Definitions

RFC 2253 - LDAP (v3): UTF-8 String Representation of Distinguished
Names

RFC 2254 - The String Representation of LDAP Search Filters

RFC 2255 - The LDAP URL Format

RFC 2256 - A Summary of the X.500(96) User Schema for use with
LDAPv3

A public LDAP test directory is maintained by Novell at http://nldap.com. You
can use it to set up a private container for test purposes, if you don’t have a local
LDAP server against which to test your LDAP Connect components and services.

Information on the X.500 directory standard (and DAP) can be found at the web
site of the International Telecommunication Union, http://www.itu.int. (Note:
ITU’s standards must be purchased before they can be downloaded.)

http://developer.novell.com/edirectory/ndsldap.htm
http://nldap.com/nldap/
http://www.itu.int

LDAP Connect User’s Guide22

23

2

Getting Started with the LDAP Component Editor

Getting Started with the LDAP
Component Editor Chapter 2

The steps involved in creating a Composer component using the LDAP Connect
are fundamentally no different from those involved in creating any other kind of
component. The steps are:

1 Decide on any XML Templates you may need for your component.

2 Create a Connection Resource to allow your component to bind to an LDAP
host. (The procedure for this is explained in detail below.)

3 Create a new Component.

4 Create Actions specific to the Component.

5 Test the action model by running the Component in animation mode.

6 Fix any problem discovered during animation.

7 Save your work.

8 Create a deployable Service that calls the Component. (Components cannot
be deployed directly; the unit of deployment in a Composer project is the
Service.)

9 Deploy your service to a staging area or to an app server environment (such
as Novell exteNd App server, IBM WebSphere, or BEA Weblogic).

In the sections that follow, we’ll look closely at Step 2: creating a Connection
Resource. See the later discussion under “Creating an LDAP Component” for a
detailed explanation of how to use LDAP-specific Actions.

About Connection Resources

Before you can create a working LDAP Component, you need to create a
Connection Resource for it. (If you try to create an LDAP Component and there
are no LDAP Connection Resources in your resource list, you will be prompted
with a dialog that offers to take you to the Connection Resource wizard.)

LDAP Connect User’s Guide24

The LDAP Connection Resource contains the information needed to allow a
component to connect to an LDAP host (or directory server). You will generally
create a separate resource for every different host you want to establish a
connection with, or for every unique set of credentials (or timeout settings) that
you want to use with a given host.

NOTE: The various parameters associated with a given connection resource can
be late-binding if you specify expression-driven connection parameters in your
resource, as described below.

About Expression-Driven Connection Parameters

You can specify Connection parameter values in one of two ways: as constants or
as expressions.

A constant-based parameter uses the literal value you supplied in the Connection
wizard every time the Connection is used. An expression-based parameter means
that you set the value using a programmatic (ECMAScript) expression, which is
evaluated at runtime. The “late binding” of parameters afforded by the latter
method makes it possible for you to supply a different User DN or password each
time the connection resource is used. That is, the connection params can be chosen
programmatically, at runtime.

Suppose you want to pull login credentials from a file or database at runtime. You
can set up your connection resource to use expressions that look up the necessary
info from files or databases via ECMAScript File I/O extensions or via Java
directly. The use of expressions allows a Connection’s behavior to be flexible and
vary dynamically in accordance with runtime conditions.

To switch a parameter from Constant to Expression driven:

1 Click the right mouse button inside the parameter field you are interested in
changing.

2 Select Expression from the context menu that appears. A small editor button
(icon) will become visible to the right of the parameter field.

Getting Started with the LDAP Component Editor 25

3 Click on the button and use the Expression Builder dialog to create an
ECMAScript expression that evaluates to a valid parameter value at runtime.

LDAP Connection Parameters

To create an LDAP connection, you will need to supply, at a minimum, the server
IP address and the port number on which the session will occur. These two items
are all that is needed to bind anonymously to a host that permits anonymous binds.
(An anonymous bind in LDAP is analogous to an anonymous FTP session.) The
IP address might be something like 127.0.0.1 or “localhost” at design-time (but
presumably something else at runtime; perhaps switched by an expression-driven
IP address parameter). The Port Number is typically 389 for a non-secure session
and 636 for an SSL session, because this is how most directory servers are
configured, but in fact you can supply any value here that might apply.

For non-anonymous binds, you will need to supply a User DN (user distinguished
name), and a password. The User DN represents (in the words of RFC 2251) “the
name of the directory object that the client wishes to bind as.” It is typically the
distinguished name of a person or entity in the directory, such as “cn=John Doe,
ou=Mailroom,o=Rising Star Industries.”

When a given server exposes more than one tree, the server needs to know which
tree (more accurately, which subtree) the client wants to bind to. This information
is given in the form of a Base DN.

LDAP Connect User’s Guide26

For example, consider a directory server operated by the fictitious international
conglomerate Acme, Inc. The Acme directory server might have three top-level
container objects—three “trees”—representing complete directory structures for
Acme Pacific, Acme U.S., and Acme Europe, as shown below.

If an LDAP client wants to bind to the Acme directory, the server will need to
know which tree (Pacific., U.S., or Europe) the client wishes to bind to. In this
example, if an Acme human resources manager in Spain wants to bind to the tree
for Acme Europe, he would specify “o=Acme Europe” as the Base DN.

NOTE: In LDAP, the Root object is not really an entry in the tree and is not
addressable directly. The Root is more formally known as the root DSE, or DSA
Specific Entry. (A DSA is a directory system agent, which is an X.500 term for a
directory server.) The DSE can be queried for “meta” information about the
directory server (in LDAP version 3).

Security Settings

The LDAP Connect for Composer supports encrypted sessions (and server
authentication using X.509 digital certificate technology) through the use of SSL.

To enable encryption and authentication, you must check the TLS (Transport
Layer Security) checkbox on the connection setup dialog. In most cases, you will
also want to set the Port Number (in the same dialog) to 636, because LDAP
servers generally expect to carry out encrypted sessions on that port.

NOTE: The Port Number shown in the dialog does not automatically change to
636 when you set the TLS checkbox. You must enter the Port Number manually.
(Likewise, merely entering a port value of 636 does not cause the TLS checkbox to
come on.)

Getting Started with the LDAP Component Editor 27

When the TLS box is checked, all information moving across the connection will
be encrypted; no information will be sent in the clear. Also, the host (or directory
server) will be presented a certificate challenge. The host will respond with its
X.509 certificate info. Composer will check that certificate info against the
Certificate Authority data stored in the agrootca.jar file (which is a Java
archive that ships with Composer, containing Certificate Authority info for
numerous industry standard certificate issuers; see the Composer User’s Guide for
details).

NOTE: You can find agrootca.jar in your Composer-installation \lib folder. Use
WinZip to open, inspect, and/or add new certificates to this file. Be sure to consult
your app server’s documentation to learn how to add X.509 certificates, and any
other security resources that your applications might need, to your app server’s
runtime environment.

The SSL3 security mechanisms supported by Composer’s LDAP Connect are “all
or nothing” (not dynamically switchable). In other words: the ability to begin an
LDAP session in clear-text mode, then drop into “secure” mode on the fly (as part
of the same session, using the same Connection Resource), is not supported in this
version of the LDAP Connect.

Creating an LDAP Connection Resource
The process of creating an LDAP Connection Resource is straightforward.

To create a LDAP connection resource:

1 From Composer’s main menubar, select File > New > xObject, then open
the Resource tab and select Connection.

The “Create a New Connection Resource” Wizard appears.

LDAP Connect User’s Guide28

2 Type a Name for the connection object. (This is the name that will show up
later in the Navigator pane of Composer’s main window when you are
browsing resources in the Connection category.)

3 (Optional) Enter text in the Description area of the dialog.

4 Click Next. A new dialog appears.

5 Select LDAP Connection from the Connection Type pulldown menu.

Getting Started with the LDAP Component Editor 29

6 Next to Host or IP Address, enter the name or IP address of the directory
server with which you intend to connect. (For testing, this might be
localhost.)

NOTE: This parameter, and all subsequent text fields in this dialog, can be
set dynamically using ECMAScript expressions. See “About Expression-
Driven Connection Parameters” earlier in this chapter.

7 If your connection will be using a port other than the default of 389, enter the
appropriate value next to Port Number. (If the connection will be a TLS
connection using SSL, and you are not sure what value to enter here, enter
636, which is the standard port for LDAP-over-SSL.)

TIP: You can specify a port as part of the IP address (previous step) using
colon notation, such as localhost:389. If you do decide to use the all-in-
one IP-address:port notation, enter 0 (zero) in the Port Number field.

8 Enter a valid Base DN (tree name), if applicable. This value might look
something like t=DEVNET-TREE.

9 Enter a valid User DN (user distinguished name). See earlier discussion for
information about distinguished names.

NOTE: If you are attempting an anonymous (no-password) bind, you can
enter any value here.

10 No password is required for an anonymous bind. In all other cases, enter a
valid Password for the given User DN.

CAUTION: This password will be sent in the clear if the connection is not
TLS-enabled.

11 Unless your LDAP host requires a different value, accept the default Version
value (LDAP version) of 3.

12 Check the TLS checkbox if this is to be a secure connection (SSL3). Note
that for X.509 certificate-based authentication to work, you must have the
appropriate Certificate Authority entries in your agrootca.jar file (in
Composer’s \lib directory). Also, the appropriate certificate setups must exist
on the server. Consult your app server documentation for details.

13 Optionally enter a Time Limit value representing the maximum number of
milliseconds your component is willing to wait for establishment of a
connection with the server. The default is no limit.

14 Optionally enter an integer value in Size Limit, representing the maximum
number of tree entries (nodes) you are willing to accept for purposes of
rendering tree-views of the directory at design time. The default value is
1000, which means that Composer can display a maximum of 1000 child
nodes under any given parent node (entry) in the tree browser.

LDAP Connect User’s Guide30

Two things could happen if you enter a very large number here:

Performance could suffer as Composer tries to pull down and render all
the requested entries

The remote host might reach a preset limit on how many entries it can
serve, and return an error (in which case Composer will not be able to
display entries under the node in question)

It is recommended that you accept the default value of 1000, unless you
know for sure that you will need to browse a tree node that contains a
particularly large number of child nodes.

NOTE: This is a design-time consideration only. At runtime, on the server,
this setting does nothing.

15 Click Test to see if the connection defined in your resource really works. A
success or failure alert dialog will appear after a few seconds. (The test can
take 30 seconds or more to “time out” if no connection can be made. To
lessen the wait, enter a Time Limit value as described in the previous step.)

NOTE: You can continue editing the resource if your connection fails. You
can also Save the resource and edit it later.

16 Optionally check the Default checkbox (underneath the Test button) if you
want this connection to be used as the default connection each time you
create a new LDAP Component. (You can override this behavior at any
time.)

17 Click Finish. The newly-created resource connection object appears in the
Composer Connection Resource detail pane.

Connection Troubleshooting
If you see an error dialog (instead of an alert with the message “Connected
Successfully”) when you press the Test button, click the Details button of the
dialog to see a full stack trace for the exception. See illustration below.

Getting Started with the LDAP Component Editor 31

The stack trace message often provides useful clues for isolating the cause of the
problem. In the example shown above, the connection was refused. On closer
examination, it can be seen that the IP address specifies (at the end, after a colon)
a port number of 390. The correct port number for the server was 389. Hence, no
connection could be obtained and an LDAPException was thrown.

Here are some issues to bear in mind if you encounter trouble:

Anonymous binds: If you can’t establish an anonymous bind, remember
that the host server might not be set up to allow anonymous binds—the same
way that an FTP server may not be set up to allow “anonymous FTP”
sessions. If the server doesn’t allow anonymous binding, you must
authenticate to the server in some fashion (whether by simple password and
User DN over port 389, or full SSL on port 636, or some other way).

LDAP Connect User’s Guide32

ECMAScript expressions: When expression-driven parameters are used
(see “About Expression-Driven Connection Parameters” further above),
literal string values must be wrapped in quotation marks. Conversely, if you
are not using expression-driven parameters, do not wrap param values in
quotation marks.

TLS: Be sure to uncheck this checkbox when a secure connection is not
needed; and when it is checked, verify that you’ve specified a “secure port”
(such as 636). Also verify, when using a secure connection, that your
Certificate Authority .jar file contains the correct entries and is installed
properly. (Look for a file called agrootca.jar in your Composer installation.
The fully qualified path to this file must be specified in the <XCCERTFILE>
element of your xconfig.xml file, not only in the design-time installation but
also the runtime, or server, installation. Also, you may have to take
additional steps to be sure this file can be found by your app server at
runtime. See your app server documentation for details on how to set up
X.509 certificates and certificate authority files.)

Exception After Successful Connection

It is possible to see a “Connected Successfully” alert, followed by an error dialog,
when testing a connection. The success message means the host IP address and
port number that you supplied were valid and a connection was established with
the host. The subsequent exception message means a problem was encountered
after connecting (such as a timeout, or an unknown Base DN).

NOTE: LDAP makes a subtle distinction between connecting and binding.
Establishing a connection merely means that a the host and client were able to
begin an LDAP session over TCP/IP, without reference to any particular target
objects in a directory. A bind occurs when the host sees fit to associate a given
combination of User DN and credentials with a given object in the server, in the
context of session access.

By way of analogy: Suppose 10-year-old Danny knocks on the door of the next-
door-neighbor’s house. An adult opens the door. The child asks the adult: “Can
Tommy come out and play?” In this example, Danny is analogous to an LDAP
client and the adult is the LDAP host. When the door opens, a connection is
established. The adult (server) then has to decide whether the child (client) should
have access to Tommy (the target object). If the adult knows Danny (i.e., Danny
can be authenticated in some way), and Danny has access rights to Tommy (i.e.,
it’s the right time of day, Tommy is done with his homework, etc.), then the two
children might be allowed to play (to “bind”). But if the adult has never seen
Danny before or doesn’t trust him, or if access rules preclude Tommy’s
availability, then Danny will be turned away, even though the front door did open
and a conversation took place.

Getting Started with the LDAP Component Editor 33

Silent Failover

Directories quite often form the heart of mission-critical systems, and as a result,
things like system outages (no matter how brief) and normal maintenance-related
takedowns tend to be extremely disruptive. For that reason, directory trees are
often replicated across servers, so that if a client tries to connect with Server A, but
Server A is down, it can try Server B.

If you know the IP address of one or more backup servers that can be used if the
primary server you’re interested in is either physically down or simply bogged
down due to high demand, you can construct your LDAP Connection Resource in
such a way as to provide silent failover capability.

Suppose your primary server is at server1.acme.com, but there are replicas of the
directory also on server2.acme.com and server3.acme.com. When you create
your connection resource, enter all three addresses (separating each with a space
character) in the “Host or IP Address” field:

In the example shown, you’ll see that not only have three addresses been entered
in “Host or IP Address,” but a value of 200 milliseconds has been specified under
Time Limit (at the bottom of the dialog). When a component uses this resource, it
will first try to connect to server1.acme.com (on the specified port of 389). If that
server is down, or takes longer than 200 milliseconds to respond, a new
connection attempt will be tried on the next address: server2.acme.com. If that
server doesn’t respond within 200 milliseconds, server3.acme.com will be tried.
Finally, if none of the servers can be connected to, an exception is thrown.

LDAP Connect User’s Guide34

NOTE: All three servers, in this example, will be tried on port 389, because that’s
the value that was entered in the Port Number field of the dialog. If the servers are
not all using the same port, it is still possible to build a failover connection by using
colon notation in the IP addresses: server1.acme.com:389,
server2.acme.com:636, etc. If you do this, however, you should enter 0 (zero) in
the Port Number field of the dialog.

Editing Connection Resources After They’re Created

You can go back and change a connection resource at any time. Simply locate the
resource by name in the Navigator pane (at the Composer window’s left edge) and
doubleclick it to bring up a tabbed dialog containing the information you typed
into the wizard when you created the resource originally. (See previous
illustration.) Choose the tab of interest and type new information into the
appropriate fields. Click OK to keep your changes, or Cancel to revert back to the
resource’s original settings.

35

3

Creating an LDAP Component

Creating an LDAP Component Chapter 3

The LDAP Connect for Novell exteNd Composer allows you to build XML
integration applications that are directory-aware. In practical terms, this means
you can leverage well-established LDAP APIs for:

Searching and retrieving entries from a directory

Adding new entries to the directory

Updating entries in the directory

Deleting entries from the directory

Renaming entries in the directory

Binding operations

Abandoning operations

LDAP’s search function emulates the more complex X.500 operations such as list
and read. The metaphor is the same: You specify a base object to be searched and
the portion (or scope) of the tree to search. A filter specifies the conditions that
must be met in order for the search to capture a particular entry. (The LDAP search
operation offers identical functionality to DAP's, but is encoded in a simpler
form.)

NOTE: While in theory the LDAP API allows applications to perform operations
either synchronously or asynchronously depending on whether the client wants to
wait for an operation to complete before receiving the results of a previous
operation, in actuality all operations in the LDAP Connect for exteNd Composer are
synchronous.

LDAP Connect User’s Guide36

In the LDAP Connect, you will issue LDAP queries in DSML (Directory Services
Markup Language) form, using an industry-standard query-response syntax,
rather than writing your own custom Java code to package and unpackage queries
using an LDAP SDK. What makes DSML particularly attractive is that it is XML:
You can map data into or out of it easily using ordinary Composer actions. What
makes the LDAP Connect particularly powerful is its ability to autogenerate
DSML for you, on the fly, so that you don’t have to know low-level DSML
internals.

The LDAP Application Model

LDAP applications typically perform five steps:

1 Open a connection to the LDAP server. This step involves initializing the
session, setting session preferences and binding to the server. Usually the
session preferences involve defining things like:

maximum number of entries returned in a search

maximum number of seconds spent on a search

how referrals are handled

security preferences

2 Authenticate to the server. The client can authenticate either anonymously
with public rights, or through simple (clear-text) password authentication, or
with full encryption. Novell's LDAP Services v3 uses SSL3 for full
encryption and authentication.

3 Perform the operations and obtain the results. This step usually involves
searching the directory, but may also involve modifying the directory data as
well.

4 Process the results. This step involves making use of the returned
information in some fashion, via custom business logic.

5 Close the session. This means unbinding from the server and disposing of
the session handle. (In Composer, this step occurs automatically when your
component goes out of scope.)

Creating an LDAP Component 37

Before Creating an LDAP Component
As with all exteNd components, the first step in creating a new LDAP component
is to determine whether you need any XML templates. (For more information, see
Creating a New XML Template in the separate Composer User’s Guide.)
Providing you’ve created a Connection Resource in advance (discussed earlier),
you can then create an LDAP Component, using your templates’ sample
documents to represent the inputs and outputs processed by your component.

To create a new LDAP component:

1 In Composer’s main menubar, go to the File menu and select
New > xObject, then open the Component tab and select LDAP. The
“Create a New LDAP Component” Wizard appears.

NOTE: If your project currently contains no LDAP Connection Resources,
you will be prompted to create one at this point, and you will go through the
Connection Resource creation process before you reach the above dialog.

2 Enter a Name for the new LDAP Component.

3 Optionally, add your own Description text.

4 Click Next. A new dialog appears.

LDAP Connect User’s Guide38

5 Specify one or more Input templates as follows:

Select a Template Category if yours will be different than the default
category.

Using the dropdown menu immediately to the right., select a Template
Name from the list of XML templates in the selected Template
Category.

To add additional input XML templates, click Add and repeat these
steps.

To remove an input XML template, click inside an entry and click Delete.

6 Select an XML template for Output.

NOTE: You can specify an empty XML template by selecting
{System}{ANY} as the Output template. You might do this if you wanted to
generate a custom Output DOM dynamically using ECMAScript or XPath
inside a Map Action. (For more information, see the Composer User’s Guide,
particularly the chapter on creating an XML Map Component.)

7 Click Next. A new dialog appears.

Creating an LDAP Component 39

8 In this dialog, you may (optionally) add Temp documents for use as
“scratchpad DOMs” in your component. You may also add Fault documents
as needed. Use the Add and Delete buttons to add or remove documents as
desired.

9 Click Next. The connection panel of the wizard appears.

10 Select a Connection from the pull-down list. (The list will be prepopulated
with the names of existing LDAP Connection Resources.)

NOTE: You can later change this selection and use a different connection
resource, if you want. You are not “locked into” using this connection.

LDAP Connect User’s Guide40

TIP: The fields of the connection resource will be greyed out in this dialog.
If you need to edit the connection resource, open it separately after you are
done creating the component.

11 Click Finish. The Composer main window appears, with a blank action
model pane. The Native Environment Pane in the upper right should have a
Tree tab as well as a Schema tab. (Schema here refers to an LDAP directory
schema, not an XML schema.) When the Tree tab is selected, you should see
a tree view of the target directory. See below.

At this point, you can begin creating actions in your action model, or you can
simply Save your work and come back to the component later.

Special Features of the LDAP Component Editor
The LDAP Component Editor includes all the functionality of the XML Map
Component Editor. It contains mapping panes for Input and Output XML
documents as well as an Action pane. All of the regular Composer actions (such
as XML Map, Function, Log, Decision, Send Mail, etc.) are available to you along
with the two LDAP-specific actions, Create DSML and Execute DSML. (These
actions will be discussed in detail in the next chapter.)

Creating an LDAP Component 41

LDAP Native Environment Pane

The LDAP Component Editor includes a Native Environment Pane (see graphic
above) with a Tree tab offering a browseable tree view of the directory to which
your component’s Connection Resource points, as well as a Schema tab
(discussed in more detail below). If you are familiar with Novell’s ConsoleOne
tree browser, the Tree tab’s browser operates in much the same way.

The Native Environment Pane’s default location is in the upper right corner of the
main Composer window. You can change its location, however, by using the
View > Window Layout menu command:

This command will bring up a dialog in which you can specify North, West, East,
and South positionings of the Native Environment Pane, XML document
windows, and Action Model pane.

Tree Tab

The Tree tab of the Native Environment Pane (see illustration below) offers an
interactive design-time visual aid for finding and verifying the location of objects
in the target directory. This view will populate automatically when you open a
component. Its contents are based on the host specified in the component’s
Connection Resource.

LDAP Connect User’s Guide42

NOTE: You cannot drag or drop items into nor out of the directory tree view.

Schema Tab

The Schema tab (see illustration below) is a read-only design-time aid for
inspecting object/attribute relationships as defined by the schema for this
particular tree. If your component will contain actions that modify the schema,
you can verify the changes visually simply by inspecting this tab. (“Schema” here
refers to the directory schema, not an XML schema.)

Creating an LDAP Component 43

To see all of the attributes defined on a given object, simply click any object name

in the top scrollpane of the tab; the list of attribute names in the bottom scrollpane
updates accordingly in real time.

For additional information on the Composer work environment, consult the

separate Composer User’s Guide.

Request and Response Tabs

Two special tabs—the Request and Response tabs—appear in the Native

Environment Pane when an Execute DSML Action is selected (highlighted) in the
action-model pane. These tabs (see below) present a tree view of the DSML

request/response DOMs that were used by the Execute DSML action during

execution.

LDAP Connect User’s Guide44

NOTE: The tabs are initially empty. To populate the tab with the appropriate
DOMs, run your action model in animation mode (or by using the Execute All button
in Composer’s main toolbar), then select/highlight the Execute DSML action.

The request and response DSML DOMs are volatile (transitory) and cannot serve
as drag sources nor drop targets. To map to or from these DOM elements, use a
Create DSML action to map a batchRequest element to Input (as described in
the next chapter), or use an Execute DSML action to map a batchResponse
element to Temp, Output, etc.—then drag-and-drop between DOMs (or map DOM
contents in whatever way you choose).

Working with DSML DOMs will be described in more detail in the next chapter.

Contextual Tabs

Additional tabs (with names Add, Attributes, Compare, Filter, Modify, Rename,
and Search) will appear dynamically when you add Create DSML actions of
various “flavors” to your action model. The appearance and usage of each of these
will be discussed later.

Drag-and-Drop Operations

Composer’s UI allows you to drag and drop DOM nodes from one DOM tree to
another, or in some cases, from a DOM tree to a field in the Native Environment
Pane. This is a convenient, quick way to specify data-mapping rules that would
otherwise require hand-coded XPath or ECMAScript expressions.

Creating an LDAP Component 45

DOM-to-DOM

DOM-to-DOM drag-and-drop allows you to specify data mappings across
documents. (For example, you can specify the transfer of data from a particular
spot in a DSML response document to a special location in a custom DOM.)

When you click on a DOM element in (for instance) the Input DOM, in tree view,
and drag it into another DOM window, then release the mouse when it is over a
particular element, Composer maps a copy of the source’s data, attributes, and
children (including their attributes, etc.) into the target element (the “drop target”).
At the same time, Composer automatically adds a Map Action, corresponding to
the mapping that just occurred, to your component’s action model.

In many cases, the map-all-descendants behavior just described is what you will
want. But in some cases, you may need different mapping behavior. For more
precise control over data mappings, you will want to create Map Actions manually
and use the Map Action dialog (and its Advanced button) to achieve the desired
mapping(s).

NOTE: These techniques are described in detail in the Composer User’s Guide.
Consult that guide for more information.

DOM-to-NEP (Native Environment Pane)

In many instances, you can click on a DOM element in (for instance) the Input
DOM, then drag that element to a text field in the Native Environment Pane and
let go, thereby populating the target field with a reference to a particular XML
element.

Consider the following example:

LDAP Connect User’s Guide46

In this example, the user is constructing a search filter and is taking advantage of
drag-and-drop to bind a node in the Input document to a parameter in the filter
expression. The user has clicked the cn node under ADDREQUEST in Input, and
dragged it to the empty field in the Native Environment Pane. When the mouse is
released, the appropriate ECMAScript expression, namely
Input.XPath("ADDREQUEST/sn"), will appear in the target field of the search
expression. Thus, the filter (as constructed) will match entries where
objectClass equals inetOrgPerson and sn equals the value in
Input/ADDREQUEST/sn.

Special Menu Commands

Menu commands specific to the LDAP Connect include two new actions (Create
DSML and Execute DSML, both under Action > New Action) as well as two
commands under the Component menu:

The Refresh LDAP Schema command updates the contents of the Schema tab
(discussed above). This command has no runtime significance. It is potentially
useful at design time in cases where you’ve modified the target directory’s schema
in some way and want to see the change(s) reflected through to the Schema tab
contents in Composer.

Likewise, the Refresh LDAP Tree command (which has no runtime effect) is
useful when you have modified the contents of a directory at design time by
executing DSML requests—such as Add or Rename—and want to see the changes
reflected in the Tree tab in the Native Environment Pane.

47

4

DSML Actions

DSML Actions Chapter 4

An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific operations. It’s an atomic unit of execution in
a Composer component, the same way an expression is in Java or ECMAScript.

The list of actions you create in your component is called an Action Model. The
Action Model is the logical core of your integration app: It is where data mapping,
data transformation, and data transfer between directories and XML documents
occurs. It’s the ordered list of statements that comprise your app.

Some of the actions available in Composer are data-specific; others involve
control flow constructs like looping, conditional branching, exception vectoring,
etc. The LDAP Connect provides two main LDAP-related actions: Create DSML
and Execute DSML. The usage of these actions will be described in detail in the
sections to follow.

Working with DSML
DSML (Directory Services Markup Language) is an XML grammar for
presenting LDAP queries and storing responses to queries. In some respects, it
takes the place of LDIF, which is a text-based file interchange format for LDAP
queries and objects.

In Composer, when you want to query a directory using DSML, you have two
choices:

If you have a ready-to-go DSML file (perhaps received as input from the
servlet that triggered your service), you can use it in an Execute DSML
action. Composer will use the DSML to form the appropriate LDAP query,
and execute that query against the target directory server.

If you do not have a readymade DSML query document, use a Create DSML
action. Composer will create the necessary DSML for you.

LDAP Connect User’s Guide48

In the latter case, you will use point-and-click UI tools to choose the parameters
for your query; Composer will then build a DSML DOM that uses your param
values and display it in a DOM window. You can drag or drop data into or out of
that DOM window just as with any other Composer DOM window.

When a query result comes back from the server, it comes back to your component
as DSML. You can specify the target DOM for this information (Output, Temp,
etc.) and you can manipulate this DOM, once again, just as you would any other
DOM.

The following illustration will give some idea of the overall structure of a DSML
request and response.

In this case, the response document has been mapped to Output, but it could just
as easily have been mapped to Temp or some other DOM.

DSML Actions 49

DSML mimics the mnemonics and operational linguistics of LDAP, so that
operations specified in DSML map very closely to LDAP SDK method
signatures. So for example, every response contains an element called
resultCode, with XML attributes of code and desc. The code attribute value
is zero on success, or else (on failure) is one of the result code values shown in
Appendix B of this documentation (i.e., which in turn come from Novell’s JLDAP
SDK). The desc value is a string representing the plaintext explanation of what
caused the error (such as “Invalid DN Syntax,” which is associated with a result
code of 34).

Multiple Requests in a Single DSML Document

It is possible to accumulate multiple requests within a single DSML document so
that on a single server query, the server can be told to perform a series of Add
operations, or Add and Delete operations, etc., in batchwise fashion.

The way this is done is to construct multiple back-to-back Create DSML actions,
all of them mapping to the same root node (batchRequest) in the same
document (typical Input). Each time a Create DSML action executes, it appends
a new request to the specified root node. The DOM will continue to grow as
necessary. Finally, this DOM is submitted as a single query when an Execute
DSML action occur (presumably at the end of the list of Create DSML actions).
The request executes as a batch; and a batch response is produced.

When a query response contains more than one search result, the results are
accumulated under a searchResultEntry element node in the response
document.

It is possible for a response to contain multiple results even if the request involved
only one Create DSML action, since Search requests often use filters that contain
wildcards, resulting in multiple “hits.”

LDAP Connect User’s Guide50

In the example shown above, there are numerous attr elements under the
searchResultEntry element. The original query, which used wildcards, asked
for an array of attributes. That’s what was returned. Notice the many name-value
pairs.

The Create DSML Action
The Create DSML Action supports the following LDAP operations:

Add—adds an entry to the directory

Compare—produces a boolean value based on a comparison of values
(often useful for verifying the existence of a particular object or object type
in a directory, so as to facilitate logical operations like “if this container
doesn’t already have an attribute called ‘paymentHistoryRef’, modify the
schema to add such an attribute”)

Delete—removes an entry from the directory

Modify—changes (edits) a value in the directory

Rename—renames an entry or moves it

Search—searches for entries based on filter criteria

These operations are shown in the Create DSML Request dialog’s pull-down
menu, under DSML Action:

DSML Actions 51

Each of these options will be discussed in turn.

Add

To construct a Create DSML Action that performs an Add request

1 Right-mouse-click inside the action-model pane (or use Composer’s Action
menu, in the main menubar) and select New Action > Create DSML from
the menu, as shown here:

2 In the dialog that appears, choose Add from the pull-down menu.

LDAP Connect User’s Guide52

3 Use the pull-down menu under Request Map to specify a target DOM (or
target Message). The menu will be prepopulated with the names of DOMs
(Messages) you specified when you originally created the component.

4 In the text field underneath the DOM-name pull-down menu, enter an XPath
expression representing the target node for the creation of the request. (In
most cases, you can simply accept the default value of batchRequest.)

IMPORTANT: If you are going to pass this DOM straight through as a
DSML query, do not change the root node’s name. The root must be called
batchRequest in order for this to remain a valid DSML document.

5 Dismiss the dialog by clicking OK. You should see the tabs in the Native
Environment Pane update. Also, a new action with the label “Create DSML
Add Request” will appear in the action model.

DSML Actions 53

6 In order for this action to create a meaningful DSML request, it needs to
know the Base DN of the Add request (representing the target node of the
directory tree) as well as the Object Class of the new entity being added. You
will supply this information in the Add tab of the Native Environment Pane
(as shown above). Select the Add tab if it is not already selected.

7 Enter a quoted string next to Base DN, representing the name of the
container object in which the Add will take place.

NOTE: Composer will help you build this reference: Click the DN icon to the
right of the text-entry field to bring up the Expression Builder dialog. This
dialog contains a tree representation of the directory like that available in the
Tree tab of the Native Environment Pane. As you doubleclick items in the
picktree, Composer automatically generates an appropriately formatted DN
string for the target tree node.

LDAP Connect User’s Guide54

8 Using the (prepopulated) pull-down menu under the label Object Class,
choose the object type that applies to the object you will be adding to the
tree. When you do this, the table of Attributes in the bottom part of the tab
automatically updates to show the required naming attributes of the object-
class in question.

9 The bottom portion of the panel will be prepopulated with Attributes (but not
values) appropriate to the container or Object Class in question. Some
attributes are required for the object class in question; these are shown with a
solid-colored background. Some attributes (whether they’re required or
merely optional) are eligible for use as naming attributes; these are shown
with a small vertical key icon.

NOTE: The key iconology and background shading are available only when
the LDAP server in question is powered by Novell eDirectory. In all other
cases, items in the Attribute list are shown in plain-text form.

All possible combinations of visual hints are shown in the illustration below:

The cn and sn attributes are required for the inetOrgPerson object. This
is indicated by the solid background shading in the cn and sn cells (as well
as by the fact that these two attributes cannot be deleted from the Attribute
column).

Two additional attributes, in this example, have been added by the user (via
the blue “plus sign” button): Those attributes are ACL and uid. Note that
they have white backgrounds, indicating that they are not required attributes
for the object class in question.

DSML Actions 55

The uid attribute (as well as the required cn attribute) has a key icon next to
it, indicating that uid can be used as a naming attribute for an instance of
inetOrgPerson. (That is, the uid or User ID field can be part of the
person’s Distinguished Name and Relative Distinguished Name.)

NOTE: A hover-help tip explains the status of any item if you let the mouse
linger over the item:

10 To designate an attribute for use as part of the item’s Relative Distinguished
Name, check the RDN checkbox to the left of the attribute in question. The
mere presence of a key doesn’t make the attribute part of the new entry’s
RDN: You must check the checkbox.

11 If you wish to add members to the list of attributes, click the plus sign (+)
icon to add Attribute cells. (Then choose an attribute from the pulldown
menu that appears in the new cell.) To remove any entry, just click into
(apply focus to) the entry in question and click the minus sign (-) to remove
it.

12 Be sure to associate a Value with each Attribute. The value you enter must be
a valid ECMAScript string, or an expression that will evaluate to a string. If
you are entering literal data, you should wrap the value in quotation marks
(i.e., enter “John” rather than just John).

NOTE: You may optionally click the ‘E’ icon (at the right) to bring up the
Expression Builder dialog, and from there, you can either type or doubleclick
on picktree items to build an expression interactively.

Add Request (Detailed Example)

Suppose you have set up a container (an organizationalUnit object) called
user under o=mondocorp.

Now suppose you are interested in adding a new inetOrgPerson named Joey
Jacobs to the user object. You also want to store certain additional information
about Joey, including a UserID value and the name of Joey’s assistant. To add the
new entry to the directory, you would construct a Create DSML action (in Add
mode) as described previously, setting up your Native Environment Pane to look
something like this:

LDAP Connect User’s Guide56

These settings say: “Add an inetOrgPerson with common name (cn) of Joey
and surname (sn) of Jacobs, with the assistant and uid values shown, to the
user organizationalUnit (ou), in the organization container called
mondocorp.”

The checkboxes indicate which pieces of information to use in forming the new
entry’s Relative DN. In this example, the new RDN will be
cn=Joey,uid=132845901 and it will go under the container whose Base DN is
ou=user,o=mondocorp, so the new entry’s full distinguished name would be:

cn=Joey,uid=132845901,ou=user,o=mondocorp

When the Create DSML action executes, it will create DSML for this request and
put it in Input (or whichever DOM you specified in the Create DSML Request
dialog). The request still hasn’t been issued to the server, however. To do that,
you’ll need to create an Execute DSML action. (If your request is in the Input
DOM, just add an Execute DSML action and accept the defaults in the dialog.)
Your action model will look like:

Test the actions by clicking the Execute All button in the Composer main toolbar:

DSML Actions 57

The actions will execute and you should see the Output DOM populate. A result
code of 0 in the Output means that operation was a success.

To verify that the operation was, indeed, a success, go to the main menu and
choose Component > Reload XML Documents:

Now click the Execute All toolbar icon again (re-run the component). You should
see an error message in the Output DOM this time:

The errorMessage element contains a message to the effect that the entry you’re
trying to make already exists, indicating that the original test of the action model
was successful (Joey Jacobs was added to the tree).

NOTE: This illustrates an important principle of X.500 directory architecture,
which is that no two siblings (instance objects on the same level of the tree) can
have the same identity. In other words, you can’t add the same object twice, as we
tried to do here. You will get an error on the second Add.

You can also verify Adds by using a third-party LDAP client—such as a web
browser—to query the directory.

LDAP Connect User’s Guide58

Most web browsers are LDAP clients and will honor the ldap:// URL protocol. If
you wanted to verify the add request that was carried out in the foregoing example,
you could simply type the following URL into the address window of Microsoft
Internet Explorer:

ldap://[server-domain]/ou=user,o=mondocorp?cn?sub?objectClass=inetorgperson

The URL in effect says “Using the ldap: protocol, go to the server at [server-
domain] and bind anonymously to the user container, then search the subtree
under that container for inetOrgPerson objects and retrieve the attribute values
corresponding to cn (common name).”

If you make MSIE go to this URL, an Address Book window will open, showing
the search result:

Indeed, a new entry with common name John appears in the list.

DSML Actions 59

Compare

The Compare operation is valuable when you are trying to test a directory entry for
existence. The procedure for setting up a Compare request is similar to that for
doing an Add (as discussed above).

To construct a Create DSML Action that performs a Compare request

1 Right-mouse-click inside the action-model pane (or use Composer’s Action
menu, in the main menubar) and select New Action > Create DSML from
the menu.

2 Use the pull-down menu control to select Compare.

3 If you are in doubt as to what to put for Request Map values, accept the
defaults shown. Click OK, and the action will be added to the action model.

4 Click the Compare tab in the Native Environment Pane if it is not already
the frontmost tab.

5 Next to Entry DN, enter the distinguished name of the object against which
you will be making comparisons. (Include quotation marks around this string
as shown in the illustration below.)

LDAP Connect User’s Guide60

6 Click the small funnel-shaped Filter icon (next to plus and minus icons). A
dialog with a scrolling list will appear.

7 Select (highlight by single-clicking) the object class corresponding to the
entry whose existence you want to test.

8 Dismiss the Select Filter dialog by clicking the OK button.

9 In the Attribute-Value table in the lower part of the Native Environment
Pane, use the pull-down menu to select an attribute name. This list of
attributes corresponds to the allowable attributes for the object class you
selected in the preceding step.

10 Click the plus-sign icon as needed to add more entries to the Attribute-Value
table. (Optional)

11 For each Attribute name, enter a corresponding value under Value.

NOTE: The Value should be wrapped in quotation marks if it is not a
programmatic (ECMAScript) expression.

The action is now ready to test.

Compare Request Example

In the Add request example previously, we added John Doe to a container node
called lapdog in a test directory. (Refer to that example for setup details.) To test
for the existence of an entry with common name John and surname Doe, in the
organizationUnit object called lapdog, one would

Construct a Create DSML action exactly as described above

DSML Actions 61

Set up the Compare tab as shown above

Add an Execute DSML action to the action model (accepting the defaults in
the Execute DSML setup dialog)

Run the action model either in step-through (animation) mode or by using
the Execute All button in Composer’s main toolbar

The following graphic shows what the component windows look like after
executing the model:

Delete

The Delete operation is useful for removing entries from a directory.

The procedure for setting up a Delete request is similar to that for doing an Add
(as discussed previously).

To construct a Create DSML Action that performs a Delete request

1 Right-mouse-click inside the action-model pane (or use Composer’s Action
menu, in the main menubar) and select New Action > Create DSML from
the menu.

2 Use the pull-down menu control to select Delete.

3 Click the Delete tab in the Native Environment Pane to bring it forward, if it
is not already the frontmost tab.

4 In the Delete tab, next to Entry DN, enter the unique DN (distinguished
name) of the entry you wish to delete.

LDAP Connect User’s Guide62

The action is now ready to use. Executing it will append an appropriate
request to the DSML target document.

Modify

The Modify operation is useful for adding, deleting, or replacing values in a
directory. For example, if your directory already contains an entry for John Doe
but does not contain an entry for his instant messaging ID, you could use the “add”
flavor of the Modify request to add his IM handle to the directory. This is
illustrated in the following procedure.

To construct a Create DSML Action that performs a Modify request

1 Right-mouse-click inside the action-model pane (or use Composer’s Action
menu, in the main menubar) and select New Action > Create DSML from
the menu.

2 Use the pull-down menu control to select Modify.

3 Click the Modify tab in the Native Environment Pane to bring it forward, if
it is not already the frontmost tab.

4 In the Modify tab, next to Entry DN, enter the unique DN (distinguished
name) of the entry you wish to modify.

5 Click the small funnel-shaped Filter icon (next to plus and minus icons). A
Select Filter dialog with a scrolling list will appear.

DSML Actions 63

6 In the scrolling list, click on the object class corresponding to the entry you
want to modify.

7 Dismiss the Select Filter dialog by clicking its OK button.

8 In the Modify tab of the Native Environment Pane, click the plus-sign icon
to add an Operation to the Operation-Attribute-Value table.

9 Select the type of operation you wish to perform (add, delete, or replace)
from the pull-down menu as shown above.

10 In the Attribute column, use the pull-down menu to choose the attribute that
corresponds to the one whose value you intend to add, delete, or replace.
(The attribute list is prepopulated with attributes that are appropriate to the
object class you chose in the Select Filter dialog earlier.)

11 In the Value column, enter the appropriate value for the attribute.

The action is now ready to use. Executing it will append an appropriate
request to the DSML target document.

Rename

The Rename operation can either rename or move an entry in a directory,
depending on how it is used.

The screenshot in the following procedure illustrates changing the common name
(cn) for someone named John to a cn of Johann.

To construct a Create DSML Action that issues a Rename request

1 Right-mouse-click inside the action-model pane (or use Composer’s Action
menu, in the main menubar) and select New Action > Create DSML from
the menu.

2 Use the pull-down menu control to select Rename.

3 Click the Rename tab in the Native Environment Pane to bring it forward, if
it is not already the frontmost tab.

4 In the Rename tab, next to Old DN, enter the unique DN (distinguished
name) of the entry you wish to rename or move.

5 Next to New RDN, enter the new relative DN for this entry. (You do not
need to use quotation marks around the value if the k icon is showing at the
right. See the explanation of this icon in the procedure for Add, above.)

LDAP Connect User’s Guide64

6 Optionally enter a new parent-container DN next to New Parent DN, if you
are moving the entry.

7 Optionally check the Delete Old RDN checkbox if you are moving the entry
to a new location and don’t want to keep the old copy in the old location.

The action is now ready to use.

Search

The Search operation can be used to retrieve data from a directory. LDAP defines
a query filter syntax involving logical operations that can be combined to build
complex conditional search criteria. The syntax is covered in RFC 2254 and won’t
be recapitulated here since Composer can automatically generate the correct
expression syntax for you based on your use of UI controls. (See below.)

NOTE: If you are familiar with the rule-builder GUIs offered in e-mail clients for
constructing mail filtering conditions, the same principles (and GUI metaphors)
apply here.

To construct a Create DSML Action that issues a Search request

1 Right-mouse-click inside the action-model pane (or use Composer’s Action
menu, in the main menubar) and select New Action > Create DSML from
the menu.

2 Use the pull-down menu control to select Search.

3 Click the Search tab in the Native Environment Pane to bring it forward, if it
is not already the frontmost tab.

DSML Actions 65

4 In Base DN, enter the distinguished name of the container object where you
want the search to start. (Be sure to wrap this string in quotation marks.)

5 For Scope, choose one of the three available values:

baseObject—means to limit the search to the base object (specified in
Base DN) only

singleLevel—mean the search will be scoped to the base object plus its
immediate (one-level-deep) children

wholeSubtree—means the search will include the base object as well as
all children under the Base DN object, no matter how many levels deep
the children might be

6 For Deref Alias, choose one of the following values from the pull-down
menu:

derefAlways— means that aliases (entries that contain a pointer to
another entry) are always dereferenced, both when finding the starting
point for the search, and also when searching the entries beneath the
starting entry

derefFindingBaseObject— means that aliases should be dereferenced
(resolved) when finding the starting point for the search, but not when
searching under that starting entry

derefInSearching— means aliases should be dereferenced when
searching the entries beneath the starting point of the search, but not
when finding the starting entry

neverDerefAliases— means not to look at aliased entries

LDAP Connect User’s Guide66

7 For Size Limit, enter a numeric value representing the maximum number of
“hits” the component is willing to receive from the server. (Note that the
server may also have its own response-batch-size limits, which can’t be
controlled from the client, generally speaking.) The default value of zero
means there is no limit on the number of items that can be returned and the
component will simply block until all results come in.

TIP: Use the flyout menu to select k for constant or ECMA Expression if you
want to enter a programmatic (ECMAScript) expression that resolves to a
number at runtime. See description under the “Add” procedure further above.

8 For Time Limit, enter a numeric value representing the maximum number
of seconds (not milliseconds) the component is willing to wait while the
server processes the request. This tells the server that it should stop
searching and return an error Leaving this value blank (or zero) means there
is no upper limit on wait time; the client (your component) is content to wait
forever.

TIP: Needless to say, it is not a good idea to wait forever. Enter a prudent
value here.

9 Optionally check the Types Only checkbox if you want the search to return
the names of any attributes found, but not their associated values.

10 Click the Filter tab to bring it forward.

11 Use the various controls to build rules for filtering the search. (See below.)

DSML Actions 67

The settings in this particular graphic show a rule that says: “objectClass
equals organizationalUnit AND surname equals Smith; AND common name
does not equal Myrtle.”

12 Click the Attributes tab to bring it forward.

13 Use the pull-down menu under Filter by object class to select an object
class name, thereby exposing a list of the allowable attribute types for that
object class in the Available subpane (lower left).

14 Use the plus and minus icons to move attribute names from the Attribute
column to the Selected column or vice versa.

LDAP Connect User’s Guide68

In this example, the isManager and fullName attributes have been
selected from the list of allowable organizationalPerson attributes.
What this means is that the search results will contain isManager and
fullName attributes (and their values) for the “hits,” if any.

The Execute DSML Action
The Execute DSML action converts a DSML-packaged request to a low-level
LDAP request, and executes it (synchronously) against the server. It retrieves any
response data received from the server and maps it to the XML document of your
choice (typically the Output DOM or a Temp DOM).

To set up a valid Execute DSML action, you have to tell Composer where the
DSML request document (which should be an in-memory DOM) can be found,
and where to map the DSML response that comes back after a request is made.

To create an Execute DSML Action

1 Right-mouse-click inside the action-model pane (or use Composer’s Action
menu, in the main menubar) and select New Action > Execute DSML from
the menu. A dialog appears.

DSML Actions 69

2 In some cases, there is no need to alter the default settings in this dialog and
you can close the dialog immediately by clicking OK. What this does is tell
Composer: “Just use the DSML in Input for the request, and map the
response to Output.” If this is not what you want, specify the correct
Request and Response DOMs (and target nodes) using the radio buttons,
pull-down menu controls, and text fields provided. (For example, you might
want to map the response to Temp, Temp1, or some other “scratchpad
DOM” rather than straight to Output.)

NOTE: These controls will be familiar to you if you have created Map
Actions in Composer before. Consult the Composer User’s Guide for
information on how to specify XPath-to-XPath mappings if you have not done
this before.

3 Click OK to dismiss the dialog. The new Execute DSML action is added to
your action model.

Using Other Actions in the LDAP Component Editor
In addition to the DSML-related actions described so far, you have all the
standard Basic and Advanced Composer actions at your disposal as well. The
complete listing of Basic Composer Actions can be found in Chapter 7 of the
Composer User’s Guide. Chapter 8 contains a listing of the more Advanced
Actions available to you.

LDAP Connect User’s Guide70

71

5

Working with LDAP and DSML

Working with LDAP and DSML Chapter 5

This chapter is designed to familiarize you with LDAP programming idioms as
they apply to the LDAP Connect for Composer, and show how various advanced
LDAP and Composer features can be used together, with emphasis on testing and
debugging.

DSE Query Example
A useful discovery mechanism (and audit capability) afforded by LDAP is the
ability to query the DSE root, or DSA-specific entry, of a directory server. (DSA
means directory system agent, which is X.500 jargon for a directory server.)

If a server supports LDAP version 3, the DSE root can be queried for “meta”
information about the server. The DSE root entry isn’t really an addressable
object, per se, but it can be queried through a special syntax (which we’ll see in a
minute).

By querying the DSE entry, you can find out (among other things):

Supported security mechanisms

Supported extensions

Implementation (vendor version) info

The number of simple-authentication and strong-authentication binds that
have occurred since server startup

The location of the schema for the subtree

The following example shows the steps involved in building a component that
queries the DSE entry of Novell’s public server at www.nldap.com. But instead
of recapitulating the detailed step-by-step procedure for building each action and
each resource (already covered in previous sections), we’ll concentrate on the
larger workflow issues related to building an LDAP Component, such as how to
test and debug the component as part of the design session.

LDAP Connect User’s Guide72

Connection Resource for Anonymous Bind

First, we need to have a connection resource. The LDAP Connection Resource for
this example will use the following settings. Notice that no password is given. The
bind is thus (by definition) anonymous.

Component and Action Model

Next, we’ll create a new LDAP Component called DSETest, containing two
actions: a Create DSML Action (of the Search request type) and an Execute
DSML Action.

The search parameters for a DSE root dump are straightforward: All that’s needed
is a base-level search on an empty Base DN, with a filter set to:

(objectClass=*)

We will set the Native Environment Pane’s Search tab something like this:

Working with LDAP and DSML 73

NOTE: This example purposely contains a bug. The settings shown above will
cause an error. (Can you spot the problem?)

The Search tab will look like:

We want to receive information on all attributes, hence we will enter nothing in the
Attributes tab. (Just accept the defaults.) Notice that the Selected pane (below,
right) is empty. When this list is empty, the server, by default, returns all attributes
that apply to the “hits” turned up by the query.

LDAP Connect User’s Guide74

For test purposes, we will simply map DSML (from the Create action) into Input
and map our response straight to Output. Therefore, the action model will initially
look like this:

To test the actions, we can simply click the Execute All tool icon in the main
toolbar.

When the component executes, the Output DOM populates with data. But on close
inspection, we see that there has been a problem. The Output document looks
rather short and the resultCode is not zero:

Working with LDAP and DSML 75

The error description (at the bottom of the Output DOM) is “Invalid DN Syntax.”
And this is reflected in the Input DOM tree, next to dn, under searchRequest,
where the data value is org.mozilla.javascript.Undefined@3cd5b5.

The problem: The Base DN value in the Search tab has to be valid ECMAScript.
We left the field blank. Instead, we should have specified an empty string: two
quotation marks with nothing in between them.

The fix is easy: Go back and put two quotation marks in the Base DN field. But
before pressing the Execute All button again, we need to clean out the existing
DOMs. To do this, go to the main menubar and choose
Component > Reload XML Documents:

LDAP Connect User’s Guide76

The DOM windows will reset to their original (empty) state.

NOTE: If you fail to reset the DOMs, the next round of execution will cause the
Create DSML action to simply append more data (another request) onto the
existing Input document. After the component executes, your Output document will
contain the responses for two requests: the original (unsuccessful) request and the
one that was appended to Input.

When we rerun the component, this time it works without error. The Output DOM
is quite long and contains many attr elements corresponding to DSE root entries:

Dealing with Errors

As the above example shows, unsuccessful LDAP or DSML operations don’t
result in errors, per se, at the action-model level. If an LDAP exception occurs in
the context of a query, it’s merely reported back to the client in the DSML
document under the resultCode element. Your application may want to know
about the exceptional condition and take special action; or it may simply need to
pass the information on through. If it needs to know about the unsuccessful nature
of the query, you will need to add logic to deal with this.

Working with LDAP and DSML 77

As an example, suppose you want your application to log unsuccessful DSML
requests. One way to implement this would be to include logic in the action model
to the effect: “If the result was anything other than success, log the reason to
System output [or a logfile].”

Here is how you could accomplish this:

To log query failure notices\

1 Position the cursor inside the action pane (action model) at the point where
you want a new action to appear.

2 Use the Action menu in the main menu bar to select
New Action > Function. The Function Action dialog appears.

3 Click the small ‘E’ icon to open the Expression Builder dialog.

4 In the Expression Builder, click into the Output node tree until you have
exposed the resultCode node and its children. Doubleclick the code
attribute node. An ECMAScript expression appears in the text-edit pane.

LDAP Connect User’s Guide78

NOTE: This example assumes that you have a DSML document already
loaded in your Output DOM. Construct and run a Create DSML and Execute
DSML action, if need be, so that you will have a fully browseable Output DOM
(similar to that shown) in the Expression Builder picktree.

The expression gives the XPath syntax for the resultCode, wrapped in a call
to the Composer extension method XPath(). The Expression Builder
gives you a visual, point-and-click way of building XPath-related
ECMAScript expressions so that you don’t have to type them in (and debug
them) manually.

5 Type “theResultCode = ” (minus quotes) in front of the ECMAScript
expression. (This is just a shorthand way of storing the result code value in a
script variable.)

6 Click OK to go back to the Function Action dialog. The edit window of the
dialog should contain the statement:

theResultCode =

Output.XPath("batchResponse/searchResponse/searchResultDone/res
ultCode/@code");

(It should be all one line. Ignore the linewrap.)

7 Click OK or type Enter to dismiss the Function Action dialog. A new action
appears in the action model.

Use the Action menu in the main menu bar to select
New Action > Decision. The Decision Action dialog appears.

Working with LDAP and DSML 79

8 Type “theResultCode != 0” (as shown above) into the box. This is the truth
condition for the Condition. If theResultCode is zero (success), the
condition is false. Any value other than zero will make the condition true.

9 Click OK or type Enter to dismiss the dialog. A new Decision action appears
in the action model.

10 TRUE and FALSE statements will appear on their own lines after the
Decision action. Single-click on the TRUE line.

11 Use the Action menu in the main menu bar to select New Action > Log. The
Log Action dialog appears.

LDAP Connect User’s Guide80

12 Choose one of the radio buttons under Log to, to specify a destination for
any messages logged by this action. We’ve chosen System Output for test
purposes, since (in Composer) this means the log message will show up in
the Log tab at the bottom of the main Composer window, where it can be
seen easily during design-time testing. For runtime purposes, you would
probably want to (re)set this to a User or System Log.

13 Enter whatever descriptive text you would like to appear in the log message
for this action. (Remember, this is in the TRUE branch, which means this
message will be logged whenever the query result was non-zero—i.e., non-
successful.) In this example, we used the Expression Builder to help
construct an ECMAScript statement that finds the plaintext error message in
the Output DSML document.

14 Click OK to dismiss the dialog.

15 Single-click on the FALSE line in the action model under the Decision
action, and repeat the foregoing steps to create a Log Action for the FALSE
branch, if desired. (This is the branch corresponding to success, not failure,
of a query.)

The action model, at this point, should look something like this:

16 In the main menu bar, choose Component > Reload XML Documents (to
purge your DOM windows), then Execute the component, or its individual
actions, to test it.

17 Save your work.

ECMAScript and the LDAP Connect
Composer’s ECMAScript binding provides a powerful and flexible tool for
performing programmatic operations of various sorts, including straight-through
calls to Java objects. Since the LDAP Connect for Composer uses Novell’s
JLDAP library (already included in the CLASSPATH for your projects), you can
easily call straight into the Java-level LDAP API. An example of this is shown
further below.

Working with LDAP and DSML 81

LDAP Extension Methods

When you are using the LDAP Component editor to create or edit an action model,
several LDAP-related Composer extension methods are available for use in
Function actions and other places where script expressions are permitted. The
method you will use most often is getLDAPAttr(), described below.

getLDAPAttr(String connResource, String dn, String attr)—
Looks up a value stored in a particular attribute of a named object in an LDAP
directory, using the connection resource whose name is supplied in the first
argument. The second argument is the object’s LDAP distinguished name. The
third arg is the attribute of interest. The value returned may be numeric or String
data. Use ECMAScript’s typeof operator to determine if the value is of type
“number” versus type “string.”

Access Control List (ACL) Methods

Access Control Lists are used in Novell eDirectory as a way of managing access
to directory information based on identities and privileges. Access control is
implemented by an optional, multivalued attribute called ACL, which is defined
on the top-level directory object called “top.” Since all directory objects inherit
from the top object, all objects can use the ACL attribute.

Each value stored in a tree entry’s ACL attribute represents information about a
trustee (a different object) whose access to the entry is to be controlled. In other
words, the ACL stores information about client objects (accessors) rather than
about the data-store object itself.

Composer’s LDAP Component Editor does not expose UI tools for managing
ACLs and privilege sets—for good reason. ACLs are at the heart of directory
security. ACL-editing capability is not something you’d want to expose in a web
service. Nevertheless, there may be situations in which it is necessary or desirable
to set trustee characteristics on an object “under the covers,” as part of the normal
execution of a service. You can do this in Composer with ECMAScript.

Two ECMAScript extension methods are available for creating ACL (Access
Control List) values that can be attached to objects in an eDirectory tree.

NOTE: These methods are relevant only to Novell eDirectory and NDS-compliant
directory servers.

ndsACL.createEntryACL(boolean abBrowse, boolean abAdd,
boolean abDelete, boolean abRename, boolean abSupervisor,
boolean abInherit, String asTrusteeDN)

LDAP Connect User’s Guide82

Creates a properly formatted ACL value that can be added to the (optional,
multivalued) ACL attribute of any object in a Novell eDirectory tree. The return
value of this method represents a specific set of Access Control List privileges
applicable to a particular “asTrusteeDN” accessor. The first six parameters are
true/false flags indicating the rights to be granted. The “abInherit” argument
determines whether children of the trustee object should inherit the rights of the
parent.

ndsACL.createAttrACL(boolean abCompare, boolean abRead,

boolean abWrite, boolean abSelf, boolean abSupervisor,

boolean abInherit, String asTrusteeDN,

String asProtectedAttrName)

Similar to the previous method, but creates access control policy for a given
attribute on an existing object.

The general procedure for using these methods is:

In a Function action, execute the method of interest, obtaining the return
value in an ECMAScript variable. For sake of this discussion, assume that
the variable’s name is aclEntry.

In the LDAP Component Editor, add a Create DSML Action to the action
model. Specify “Modify” as the query type.

In the native environment tabs for the action just created, add an Add
operation to the Modify, targeting the particular DN (directory entry) of
interest. Add an ACL attribute on this DN, with an ACL value of aclEntry
(your ECMAScript variable).

Execute the DSML query.

An example will help make this clearer: Suppose you have, in your eDirectory
tree, an inetOrgPerson whose common name (CN) is Bob. You want Bob’s
telephoneNumber attribute to be exposed to another inetOrgPerson, named
Jill. To do this, you would create an access control value using
ndsACL.createAttrACL(), specifying Jill’s DN as the trustee DN and
telephoneNumber as the protected attribute name. In a Modify operation, you
add the access control value to Bob’s ACL attribute. (Remember, ACL is a
multivalued attribute. Bob may have scores or even hundreds of values stored
under his ACL attribute.) Jill would then have certain specific access rights to
Bob’s telephone number.

Working with LDAP and DSML 83

CAUTION: ACLs are a critical component of eDirectory security. You should
have a thorough understanding of ACL concepts before attempting to use the
above methods. Misuse of ACL methods can cause security to be compromised at
many different levels of a directory tree. Do not attempt ACL modifications unless
you are confident that you thoroughly understand NDS security concepts and their
implications.

For a technical overview of ACL concepts, consult the NDS Technical Overview
document (in particular, the chapter on eDirectory Security) available online at
http://developer.novell.com/ndk.

Access to Novell LDAP Classes

The Novell Java LDAP (JLDAP) library classes, which are publicly available as
part of the Novell NDK, are already a part of Composer (design-time as well as
runtime) and are already in the classpath. Therefore you can write code of the
following sort in Composer’s Custom Script Resource editor (or in the Expression
Builder dialogs, etc.):

myConn = new Packages.com.novell.ldap.LDAPConnection();

Notice that in ECMAScript, access to the Java classloader occurs via the Packages
keyword. Hence, to access any class that is visible on the classpath, you need only
prepend “Packages” to the qualified class name, as shown above. Since
ECMAScript variables do not require a data type declaration, it is perfectly legal
to execute the above line of code as-is. It both declares and initializes the variable
myConn in one operation.

ECMAScript Example Involving LDIF
This section shows an example of how to use ECMAScript to call Novell LDAP
classes directly, so as to accomplish tasks that would otherwise not be possible in
the LDAP Component Editor. The example shown below involves LDIF.

Prior to the advent of DSML, directory users relied heavily (and still do) on the
text-based LDIF (LDAP Data Interchange Format) file type for persisting LDAP
objects and queries. (The LDIF specification is published in RFC 2849.) LDIF is
convenient for many of the same reasons XML is: It’s human readable, structured
according to relatively simple rules, platform-neutral, etc. Many administrative
tools are able to handle LDIF natively.

It is useful to compare the DSML and LDIF versions of a query result. The DSML
version might look something like this:

http://developer.novell.com/ndk/doc/ndslib/index.html?page=/ndk/doc/ndslib/dsov_enu/data/h6tvg4z7.html
http://developer.novell.com/ndk

LDAP Connect User’s Guide84

<?xml version="1.0" encoding="UTF-8"?>
<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <searchResponse requestID="160">
 <searchResultEntry dn="cn=admin,ou=lapdog,ou=user,o=NOVELL"
requestID="160">
 <attr name="cn">
 <value>admin</value>
 </attr>
 <attr name="loginTime">
 <value>20030315051622Z</value>
 </attr>
 <attr name="objectClass">
 <value>inetOrgPerson</value>
 <value>organizationalPerson</value>
 <value>person</value>
 <value>top</value>
 <value>ndsLoginProperties</value>
 </attr>
 <attr name="securityEquals">
 <value>ou=lapdog,ou=user,o=NOVELL</value>
...
[etc.]

The LDIF version of the same thing would look like this:

version: 1

dn: cn=admin,ou=lapdog,ou=user,o=NOVELL
cn: admin
loginTime: 20030315051622Z
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top
objectClass: ndsLoginProperties
securityEquals: ou=lapdog,ou=user,o=NOVELL
. . .
[etc.]

The structure of an LDIF file is not unlike that of a simple flat file with one record
per line and each record representing an attribute-value pair delimited by a colon.
(The syntax isn’t quite that simple, but close enough for this discussion.)

For audit purposes, it’s sometimes convenient to obtain an “LDIF dump” of a
particular tree object. It doesn’t take much ECMAScript to do this.

To programmatically query a directory and write the results to an LDIF file, start
by creating a Custom Script Resource (using Composer’s main menu bar, go to
File > New > xObject then open the Resource tab and select Custom Script).
Inside the custom script editor window, enter a custom function like that shown
below.

function query2Ldif(ldapHost,
loginDN,
password,
searchBase,
scope,
searchFilter,

Working with LDAP and DSML 85

attribs,
fileName)

{
 var jldap = Packages.com.novell.ldap;
 var ldapPort = jldap.LDAPConnection.DEFAULT_PORT;
 var ldapVersion = jldap.LDAPConnection.LDAP_V3;
 var typesOnly = false;

 var lc = new jldap.LDAPConnection();

// An ECMAScript array reference cannot
// be passed to a Java method that expects

 // a Java array. So we have to copy our
// 'attribs' array into a legit Java array:

 var javaStringArray =
 java.lang.reflect.Array.newInstance(

java.lang.String,
attribs.length);

 for (var i = 0; i < attribs.length; i++)
 javaStringArray[i] =

new java.lang.String(attribs[i]);

// bind to server
 lc.connect(ldapHost, ldapPort);
 lc.bind(ldapVersion, loginDN, password);

 // set up file I/O objects
 var fos = new java.io.FileOutputStream(fileName);
 var writer = new jldap.util.LDIFWriter(fos);

// send query
 var results = lc.search(searchBase,

scope,
searchFilter,
javaStringArray,
typesOnly);

// write the results
 while (results.hasMore())
 writer.writeEntry(results.next());

// clean up
 writer.finish();
 fos.close();
 lc.disconnect();

 java.lang.System.out.println("LDIF file written.");
}

This function is purposely somewhat monolithic in order to show all of the
intended functionality in one complete series of related steps. (In the real world,
you’d probably factor this function out into two smaller functions: a function that
does the bind and issues the query, and another that writes the query result out to
an LDIF file.)

LDAP Connect User’s Guide86

The eight arguments represent the standard parameters needed to bind an LDAP
directory plus those needed to form a query.

The first line inside the function is:

var jldap = Packages.com.novell.ldap;

This lets us use a shorthand notation (of jldap) for the longish context string that
begins with Packages. (ECMAScript offers access to Java methods through the
Packages indirection mechanism.) After we’ve established this shorthand, we can
do

var lc = new jldap.LDAPConnection();

instead of

var lc = new Packages.com.novell.ldap.LDAPConnection();

and save ourselves some typing every time we need to get to a JLDAP object.

Once an LDAPConnection object has been instantiated, we can go ahead and bind
to the tree:

lc.connect(ldapHost, ldapPort);
 lc.bind(ldapVersion, loginDN, password);

These are standard JLDAP calls, documented in the Novell NDK Javadocs.

Next, we set up our file-I/O objects:

var fos = new java.io.FileOutputStream(fileName);
 var writer = new jldap.util.LDIFWriter(fos);

The file will be written to whatever path was supplied in the fileName argument.

Querying the server requires one line of code:

// send query
 var results = lc.search(searchBase,

 scope,
searchFilter,
javaStringArray,
typesOnly);

The search results can be enumerated and written out very simply:

while (results.hasMoreElements())
 writer.writeEntry(results.nextElement());

Finally, we close all files, streams, and connections:

writer.finish();
 fos.close();
 lc.disconnect();

Working with LDAP and DSML 87

Testing the Script

To test the script, we can put the following text in a Function Action and run it:

query2Ldif('www.nldap.com'

 'anonymous',

 '', /* no password */

 '', /* no search base DN */

 0, /* 0 for base-object scope */

 '(objectClass=*)', /* filter == all objects */

new Array('*'), /* attrib array */

 'c:\\temp\\test.ldif')

When the Function Action with the script runs, it queries the Novell public server
for its DSE root information. An LDIF file is written to disk.

The LDIF file can be inspected with a simple text editor. It contains (in part):

This LDIF file was generated by the LDIF APIs of Novell's Java LDAP SDK
version: 1

dn:
errors: 21428
subschemaSubentry: cn=schema
directoryTreeName: DEVNET-TREE
securityErrors: 972
compareOps: 218
bindSecurityErrors: 850
outBytes: 2279628812
vendorVersion: eDirectory v8.7.0 (10410.57)
simpleAuthBinds: 383333
supportedFeatures: 1.3.6.1.4.1.4203.1.5.1
supportedFeatures: 2.16.840.1.113719.1.27.99.1
repUpdatesIn: 0
abandonOps: 572
supportedSASLMechanisms: EXTERNAL
supportedSASLMechanisms: DIGEST-MD5
supportedSASLMechanisms: NMAS_LOGIN
referralsReturned: 0
removeEntryOps: 6683
searchOps: 654935
addEntryOps: 20253
strongAuthBinds: 32
modifyEntryOps: 888
vendorName: Novell, Inc.
listOps: 0
modifyRDNOps: 9
chainings: 300
...
[etc.]

LDAP Connect User’s Guide88

89

A

LDAP Glossary

LDAP Glossary Appendix A

Alias

A directory entry that names another directory entry.

Anonymous Bind

A connection to a directory server established without a password (and usually also without a user
ID). The rights granted under an anonymous bind are usually restrictive.

Asynchronous Request

Any request made without expectation of an immediate response. Usually, a client that makes an
asynchronous request will begin other processing immediately, without waiting for a response from
the server. This is in contrast to a synchronous request, in which the client issues a request and then
blocks until a response has been received from the host.

Authentication

The process of verifying the identity of a participant in a conversation. (“Is this person who he says
he is?”)

Base DN

The partially qualified name (or container context) specifying the “starting point” for a search or for
access to a directory.

Bind

To obtain access to a directory based on a set of credentials. (When access is granted based on empty
credentials, it is said to be an anonymous bind.)

CA

Certification Authority. An entity that issues digital certificates and/or can vouch for the authenticity
of a certificate.

LDAP Connect User’s Guide90

cn

Common name.

dn

see Distinguished Name

Entry

In a generic sense, an entry in a directory is analogous to a record or row in a database. The node
holding the name Robert can also hold information about the person, such as his manager’s name,
e-mail, instant messaging name, and so forth. The whole node is an entry.

Attribute

An attribute is associated with a value. For example, a cn (common name) attribute might be
associated with a value of Robert. Objects in a tree are collections of attributes and their associated
values.

Chaining

A name-resolution facility whereby the server, acting as a proxy for the client, locates non-local DIT
entries by following referrals. This type of referral-following is not under the control of the client.

Container

A directory object that can contain other objects.

DAP

Directory Access Protocol (X.519)

Directory Information Tree (DIT)

The entire information tree of the directory itself is called the DIT (Directory Information Tree).

Distinguished Name (DN)

A distinguished name is a fully qualified name that uniquely identifies an entity in a directory. For
example, a user of a website might be entered into a directory with a unique DN of
cn=Theo87,ou=Visitors,o=Blogsville. There can be only one entry with that particular
DN. (Notice that the order and reading direction of the DN are critical. The DN is parsed left-to-right
with the “leaf” or terminus portion—in this case, cn=Theo87—coming first.)

DSA

Directory Server Agent—the X.500 term for a directory server or (L)DAP host.

LDAP Glossary 91

DSE

DSA-specific-entry—a root-level entry in a directory, describing server capabilities.

DSML

Directory Services Markup Language—an XML grammar for encoding directory information and
requests.

JLDAP

Java LDAP library—an open-source LDAP SDK developed by Novell.

LDIF

LDAP Data Interchange Format

Object

A collection of attributes and values—an instance of an object class. (See Object Class, below.)

Object Class

The formal definition of an object (as contained in the directory schema), including the number and
types of required and optional attributes, the OID, the object type (abstract, structural, or auxiliary),
and the object class name.

OID (Object Identifier)

A string, in dotted-decimal form, that identifies an object type.

Referral

A name-resolution hint. A server can send a referral to a client to help the client locate information
that is not local to the current host. It is up to the client whether to follow the referral or not.

Relative Distinguished Name (RDN)

RDN (Relative Distinguished Name) is a portion of an entity’s fully qualified DN, containing (or
equal to) the terminal or “leaf-node” identifier for the entity, such as cn=Rich.

RFC

Request for Comment. A mechanism by which the Internet Engineering Task Force (IETF) publishes
web-protocol specifications.

LDAP Connect User’s Guide92

Schema

The schema of an LDAP directory gives the layout of the information it contains and specifies how
the information is grouped. It therefore allows clients or external interfaces to discover structural
features of the directory and how the tree can be accessed in terms of search, addition, deletion,
modification, and so on. Refer to RFC 2256 for information on the LDAP object classes and
attributes.

Scope

The bounds within which an operation is valid. For an LDAP search request, scope can be one of base,
first child level, or subtree. If a search is scoped to base level, only entries within the base-DN
container will be searched. If the search is scoped to first child level, the container and its immediate
children will be searched. “Subtree” scope means the container, its child objects, and all children-of-
children, etc. (down to terminal entries) will be searched.

Subordinate Entry

An object or entry that is contained by a “container object.”

TLS

Transport Layer Security—a non-proprietary industry standard for implementing encrypted,
authenticated communications over network connections. It can accommodate, but is not limited to,
conventional SSL (Secure Socket Layer) methodologies.

X.500

A document, published by the International Telecommunications Union, that describes the
fundamental concepts underlying the notion of a directory. Often, X.500 is used as a synonym for “the
non-lightweight directory protocos” (otherwise known as DAP), but in fact the DAP protocol is
specified in X.519, and the complete ITU directory “specification” is distributed across a dozen or so
X.500-series publications.

93

B

LDAP Result Codes

LDAP Result Codes Appendix B

Value Result Code

0 SUCCESS (success)

1 OPERATIONS_ERROR (operationsError)

2 PROTOCOL_ERROR (protocolError)

3 TIME_LIMIT_EXCEEDED
(timeLimitExceeded)

4 SIZE_LIMIT_EXCEEDED
(sizeLimitExceeded)

5 COMPARE_FALSE (compareFalse)

6 COMPARE_TRUE (compareTrue)

7 AUTH_METHOD_NOT_SUPPORTED
(authMethodNotSupported)

8 STRONG_AUTH_REQUIRED
(strongAuthRequired)

10 REFERRAL (referral)

11 ADMIN_LIMIT_EXCEEDED
(adminLimitExceeded)

12 UNAVAILABLE_CRITICAL_EXTENSION
(unavailableCriticalExtension)

13 CONFIDENTIALITY_REQUIRED
(confidentialityRequired)

14 SASL_BIND_IN_PROGRESS
(saslBindInProgress)

LDAP Connect User’s Guide94

16 NO_SUCH_ATTRIBUTE (noSuchAttribute)

17 UNDEFINED_ATTRIBUTE_TYPE
(undefinedAttributeType)

18 INAPPROPRIATE_MATCHING
(inappropriateMatching)

19 CONSTRAINT_VIOLATION
(constraintViolation)

20 ATTRIBUTE_OR_VALUE_EXISTS
(AttributeOrValueExists)

21 INVALID_ATTRIBUTE_SYNTAX
(invalidAttributeSyntax)

32 NO_SUCH_OBJECT (noSuchObject)

33 ALIAS_PROBLEM (aliasProblem)

34 INVALID_DN_SYNTAX (invalidDNSyntax)

35 IS_LEAF (isLeaf)

36 ALIAS_DEREFERENCING_PROBLEM
(aliasDereferencingProblem)

48 INAPPROPRIATE_AUTHENTICATION
(inappropriateAuthentication)

49 INVALID_CREDENTIALS
(invalidCredentials)

50 INSUFFICIENT_ACCESS_RIGHTS
(insufficientAccessRights)

51 BUSY (busy)

52 UNAVAILABLE (unavailable)

53 UNWILLING_TO_PERFORM
(unwillingToPerform)

54 LOOP_DETECT (loopDetect)

64 NAMING_VIOLATION (namingViolation)

65 OBJECT_CLASS_VIOLATION
(objectClassViolation)

Value Result Code

LDAP Result Codes 95

Local errors, resulting from actions other than an operation on a server.

66 NOT_ALLOWED_ON_NONLEAF
(notAllowedOnNonLeaf)

67 NOT_ALLOWED_ON_RDN
(notAllowedOnRDN)

68 ENTRY_ALREADY_EXISTS
(entryAlreadyExists)

69 OBJECT_CLASS_MODS_PROHIBITED
(objectClassModsProhibited)

71 AFFECTS_MULTIPLE_DSAS
(affectsMultipleDSAs

80 OTHER (other)

Value Result Code

81 SERVER_DOWN

82 LOCAL_ERROR

83 ENCODING_ERROR

84 DECODING_ERROR

85 LDAP_TIMEOUT

86 AUTH_UNKNOWN

87 FILTER_ERROR

88 USER_CANCELLED

90 NO_MEMORY

91 CONNECT_ERROR

92 LDAP_NOT_SUPPORTED

93 CONTROL_NOT_FOUND

94 NO_RESULTS_RETURNED

95 MORE_RESULTS_TO_RETURN

Value Result Code

LDAP Connect User’s Guide96

96 CLIENT_LOOP

97 REFERRAL_LIMIT_EXCEEDED

100 INVALID_RESPONSE

101 AMBIGUOUS_RESPONSE

112 TLS_NOT_SUPPORTED

Value Result Code

97

Index

Index

A
Abandon operation 16
Access Control List (ACL) 81
Action Model, definition of 47
actions 47

creating DSML Actions 50
Execute DSML 68
Map 44

Add request 51
Address Book example 58
agrootca.jar 27, 29, 32
anonymous bind 31, 72
attributes 13

adding, deleting, changing, and comparing
values 16

single-valued vs multi-valued 13
authentication 19, 36

B
Base DN 53
baseObject (scope) 65
batch processing of DSML actions 49
batch requests 49
Binding

Bind operation 16
bind vs. connect 32
connecting to the LDAP server 36

C
CA (certificate authority) 27
certificates 27
client authentication 19
colon notation 34
Compare operation 16
Compare request 59
Component Editor

about 40
Schema view 42
Tree view 41

Components
creating 37

Composer (Enterprise) Server 9
connection parameters

constant-based 24
expression-driven 24

Connection Resource
creating 23, 27
silent failover of 33
testing 30

Connection Resources
editing 34
troubleshooting 30

connect vs. bind 32
constant-based connection parameters 24
container objects 13
createAttrACL() 82
createEntryACL() 81
creating DSML Actions 50

D
data mapping (DOM to DOM) 44
debugging 30
Decision action 79
Delete Old RDN 64
Delete request 61
Deref Alias in Search requests 65
derefAlways 65
derefFindingBaseObject 65
derefInSearching 65
Directories 12

definition of 12
querying 12
schema 13

Directory Access Protocol (DAP)
definition of 15

Directory Information Tree 14
DN (Distinguished Name) 14
DOM

98

mapping data 44
resetting 76

drag-and-drop mapping 44
DSE 71
DSML

(Directory Services Markup Language),
definition of 18

LDIF versus 83
DSML Actions

Add request 51
Compare request 59
Delete request 61
Execute DSML 68
Modify request 62
Rename request 63
Search request 64

E
ECMAScript 80
ECMAScript expressions 32
eDirectory 81
entries 13

container objects 13
nesting 14

errorMessage 57
errors, handling 76
example using ECMAScript 83
Execute DSML aciton 68
Expression Builder 77
expression-driven connection parameters 24

F
failover 33
filters 67

G
ganged requests 49

I
indirection capability 17
IP address 25, 29, 33

IP address formats 34

J
JLDAP 49, 80

L
LDAP

data model 15
verbs 17

ldap
URL protocol 58

LDAP (Lightweight Directory Access Protocol)
definition of 15

LDAP Components, creating 37
LDIF 83
Log Action 79
logging 77

M
Map actions 44
Modify operation 16
Modify request 62
moving an entry 63
MSIE 58
multiple requests 49

N
Native Environment Pane 41
NDS security 83
neverDerefAliases 65
NO_SUCH_ATTRIBUTE 94
Novell eDirectory 82
Novell public server 71

O
objectClass 72
objects 13

99

P
Port Number 25, 26, 29, 33
port numbers 34
public LDAP server 71

Q
query

add 51
batched requests 49
compare 59
delete 61
LDAP URL 58
modify 62
move 63
rename 63
search 64

R
Refresh LDAP Schema command 46
Refresh LDAP Tree command 46
reload XML documents 76
Rename request 63
replication 33
Request Map 52
resultCode, XPath to 76
root query 71
rules, filter 67

S
Schema Tab 42
scope constraints 65
Search operation 16
Search request 64
Security

authentication 36
SSL and TLS 19

security and access control 81
silent failover 33
singleLevel (scope) 65
Size Limit in Search requests 66
SSL certificates 27
subordinate entries 13

subtree searches 65
syntax, filter 67

T
templates, creating 38
test server, Novell 71
Time Limit

Connection Resources 29
Search requests 66

TIME_LIMIT_EXCEEDED 93
TLS 29

connection resources and 32
enabling encryption and authentication 26

TLS (Transport Layer Security) 19
Tree Tab 41
troubleshooting, Connection Resources 30
trustee 82

U
Unbind operation 16
URLs, ldap 58
User DN

(Distinguished Name), definition of 25

V
verbs 17

W
wholeSubtree 65

X
X.509 27
XCCERTFILE 32
xconfig.xml 32
XML data mapping 44
XML templates, creating 38

100

	Contents
	1 Welcome to LDAP Connect for exteNd Composer 9
	2 Getting Started with the LDAP Component Editor 23
	3 Creating an LDAP Component 35
	4 DSML Actions 47
	5 Working with LDAP and DSML 71
	A LDAP Glossary 89
	B LDAP Result Codes 93

	About This Guide
	Welcome to LDAP Connect for exteNd Composer
	About exteNd Composer and the Connect Architecture
	Hub and Spoke Architecture

	About exteNd’s LDAP Connect
	What Are Directories?
	How Is Information Stored in a Directory?
	What is LDAP?
	What Does LDAP Do?
	LDAP Verbs

	What is DSML?
	What Kinds of Applications Can You Build Using�the�LDAP Connect?
	LDAP and Security
	Access Control

	For More Information

	Getting Started with the LDAP Component Editor
	About Connection Resources
	About Expression-Driven Connection Parameters
	LDAP Connection Parameters
	Security Settings
	Creating an LDAP Connection Resource
	Connection Troubleshooting
	Exception After Successful Connection
	Silent Failover
	Editing Connection Resources After They’re Created

	Creating an LDAP Component
	The LDAP Application Model
	Before Creating an LDAP Component
	Special Features of the LDAP Component Editor
	LDAP Native Environment Pane
	Tree Tab
	Schema Tab
	Request and Response Tabs
	Contextual Tabs

	Drag-and-Drop Operations
	DOM-to-DOM
	DOM-to-NEP (Native Environment Pane)

	Special Menu Commands

	DSML Actions
	Working with DSML
	Multiple Requests in a Single DSML Document

	The Create DSML Action
	Add
	Add Request (Detailed Example)

	Compare
	Compare Request Example

	Delete
	Modify
	Rename
	Search

	The Execute DSML Action
	Using Other Actions in the LDAP Component Editor

	Working with LDAP and DSML
	DSE Query Example
	Connection Resource for Anonymous Bind
	Component and Action Model
	Dealing with Errors

	ECMAScript and the LDAP Connect
	LDAP Extension Methods
	Access Control List (ACL) Methods
	Access to Novell LDAP Classes

	ECMAScript Example Involving LDIF
	Testing the Script

	LDAP Glossary
	LDAP Result Codes

