
Novell exteNd Composer™

Process Manager

USER’S GUIDE
5.0

www.novell.com

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any
rights of ownership in the Software.

Novell, Inc.

1800 South Novell Place

Provo, UT 85606

www.novell.com

exteNd Composer Process Manager User’s Guide

January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks
eDirectory is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
the redistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer
that follows these conditions in the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Software is derived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project is released under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intalio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redistributions must also contain a copy of this document. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExoLab Project (http://www.exolab.org/). THIS
SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

5555

Contents

About This Guide 9
Getting Started with Process Manager: 5-Minute Tutorial 14
How Do I Deploy It?. .20

1111 Welcome to Composer and Process Management 21
What Is Process Management? .22
Why Automated Process Management?. .23
Process Design versus Application Design .23

Modularity . .24
Example of a Simple Straight-Through Process .25

Process Management and Emerging Technologies . .26
How Does a Process Differ from a Service? . .26
Process Management Terms and Concepts . .30

Activities, Messages, and Links. .30
Sequencing, Timing, and Process-Level Logic .34

Control Flow Logic .34
Deferred Mode versus Immediate Mode .36
Map Policy and Data Merging. .38
Timeouts and Retries . .39

Data Flow Patterns. .39
Lifecycle Events .40
Process Manager Architectural Layers .41
Process Manager FAQ. .44

2222 Preparing to Model a Process 47
Process Server Execution Model .47

The Design-Time View .50
Flow Control Strategies .53

Branch Logic .53
Join Logic . .55
Looping . .56
How Safe Looping Can Be Accomplished .58

Process Architecture in Review .66
Taking a Best-Practices Approach . .68

3333 Creating and Testing Processes 71
Example: A Simple Straight-Through Process . .71

Description .72
Process-Building Basics . .72
Creating a New Process . .73

Process Manager User’s Guide6666

About Service Provider Resources . 75
About Service Provider Type Resources . 79
Creating Activities . 81
Creating Links. . 83
Message Mapping. . 86

Message Naming . 86
How to Define Message Mappings . 86
Data Mapping for Start and End Activities . 89
Selecting a Process Input Template . 90

Applying Flow Logic at the Activity Level . 90
Timeouts and Retries . 92
Map Policy . 94

Fault Messages and Fault Handling . 95
System Faults . 95
Timeout Faults . 96

Fault Handling. . 97
Animation and Testing . 100
Aids to Debugging. 104

Watching System Messages at Animation Time . 104
Inspecting Messages . 106

4444 The Process Designer User Interface 109
Main Features. 109

The Process Designer Window . 109
Graph Elements . 112

Menu Commands . 114
Process Properties . 121
Object Properties . 122
Activity Properties . 123
Composer Component . 123

Activity Tab . 123
Messages Tab . 126
UI Tab . 127

Web Service Send . 128
Web Service Send Activity Tab . 129

Web Service Receive . 131
Web Service Receive Activity Tab . 131

Subprocess . 132
Synchronize Subprocesses . 133
Link . 134

Link Tab . 134
UI Tab for Links . 135

Graph Object Properties . 136

7777

Process Messages Tab . 136
Graph UI Tab . 137

Selected Node Properties on UI Tab. . 138
UI Tab (Selected Node Properties) . 139

Text Object Properties . 140
UI Tab. . 141

Layout Properties . 142
General Layout Tips . 144

Customizing the Canvas . 145

5555 Advanced Topics 149
Web Service Receive . 149

Implementation Independence . 152
Synchronize Subprocesses Activity . 154

Data Mapping in the Synchronize Subprocesses Activity 157
Fault Handling . 159

Waiting Activities . 160
“Waiting Activity” Actions . 161

6666 Waiting Activities and Addressees 165
Understanding How Processes Are Triggered . 165
Process-Related Actions . 166
The Process Execute Action . 167

How to Create a Process Execute Action . 168
Deployment and the Process Execute Action. . 170

Find Waiting Activity Action . 171
Finding a Waiting Activity . 173
The Find Waiting Activity Dialog . 174

Release Waiting Activity Action . 177
The Release Waiting Activity Dialog . 178

Human Participation in Processes . 179
Addressees . 180
The Role of the Web Service Receive Activity . 181

Browse Waiting Activities Action . 182
Where to Use the Browse Waiting Activities Action. 183
Creating a Browse Waiting Activities Action . 184

Lock/Unlock Waiting Activity . 186
Prerequisites for Locking/Unlocking an Activity . 187
Creating a Lock/Unlock Waiting Activity Action . 187

The Reassign Addressee Action . 189
Reassigning an Addressee . 190
Creating a Reassign Addressee Action . 190

Process Manager User’s Guide8888

7777 Runtime Administration of Processes 193
Server Console Usage . 193

Process Manager Console: Main Tab . 194
Process Manager Console: Status Tab . 200
Process Manager Console: Log Tab. 202
Detail View for a Process Instance . 203

AAAA Testing 209
Environmental Differences between Design-Time Testing and Server Testing. 209

BBBB Performance Tuning 211
Configuration Options . 211

Cache . 211
Sleep Time. 211
Cutoff Period . 211
Total In-Memory Process Instances . 211

CCCC Process Management Glossary 213

9999About This Guide

About This Guide

Purpose

This guide describes how to use the eXtend Composer Process Manager to build
potentially largescale, long-running, automated processes that rely, in whole or in
part, on Web Services. The guide is intended to be an adjunct to (not a replacement
for) the eXtend Composer User’s Guide.

Audience

This guide is aimed at persons tasked with design and deployment of coordinated
systems of automated activities (that is, business process models). Anyone
participating in the development of such systems should read this guide.

Prerequisites

You should be familiar with XML-related standards (including Schema, XSL, and
XPath), the Document Object Model, and WSDL metaphors and motivations, in
addition to basic J2EE concepts involving file packaging (JAR/EAR/WAR files).

Additional documentation

For the complete set of Novell exteNd user guides and other documentation, see
the Novell Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

This document is organized as follows:

Chapter Description

Chapter 1, Welcome to
Composer and Process
Management

Gives a definition and overview of the Process
Manager and key process-modelling concepts.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Process Manager User’s Guide10

About the PDF Documentation

The PDF documentation can be viewed using Acrobat Reader 3.0 or higher. The
current version of Reader (5.1 as of this writing) can be obtained free at:

http://www.adobe.com/products/acrobat/readstep.html

Chapter 2, Preparing to
Model a Process

Briefly describes Process Manager design-time
concepts and user-interface features.

Chapter 3, The Process
Designer User Interface

Outlines the key factors that should be
considered when designing a process, and
presents various scenarios. A brief example is
explained in walkthrough fashion.

Chapter 4, Creating and
Testing Processes

Explains process deployment options and how
to use the Process Administrator console to
manage process instances.

Chapter 5, Advanced
Topics

Discusses scenarios involving the Web Service
Receive activity and the Synchronize
Subprocesses activity, with information, also,
about ways to implement human-centric
workflows involving queued work items.

Chapter 6, Getting Ready
for Deployment

Explains concepts pertaining to packaging and
deployment of processes.

Chapter 7, Runtime
Administration of
Processes

An introduction to the administrative consoles
that can be used to monitor and control running
processes.

Appendix A, Testing A discussion of important differences between
design-time and server-side testing.

Appendix B, Performance
Tuning

This appendix explains the parameters that may
be adjusted for obtaining better Process Server
performance in an environment where
performance is critical.

Appendix C, Glossary Defines a variety of process management
terms.

Chapter Description

http://www.adobe.com/products/acrobat/readstep.html

11

Navigation

Various navigational features are available when viewing this document in
Acrobat Reader:

The Bookmarks frame (left side of window) lists the contents of the
document, by chapter name, heading, and subheading. Every topic listed in
the content tree is a clickable link. To flip open the entire subtree (all
children) under any tree node, Control-click the parent node. To toggle the
visibility of the Bookmarks frame itself, press F5.

Every item in the book’s Table of Contents (page iii) is a clickable link that
will take you directly to the text discussion. This is true also for Index
entries.

Wherever a web address (URL) appears, you will usually find that clicking
on it will take you to the web site in your browser. Even if the URI is not in
blue or underlined, it will generally be a hot link. You can test this by
hovering the mouse over the URI. The cursor will change from an arrow to a
finger cursor if the link is hot.

Cross-references within and between chapters are also clickable. Again, this
will be apparent from the cursor’s appearance when you hover over a cross-
reference.

Use Control-N to go directly to a given page in the document. A dialog will
prompt you for the page number.

Use Control-F to execute a text search.

Copying and Pasting Text

To copy PDF text to the clipboard, first enable the Text Selection tool
(shortcut: ‘V’ on the keyboard), then click-drag to select text.

To select large portions of text spanning several PDF pages, first click the
“Continuous Pages Mode” icon in the button bar at the bottom of the
Acrobat window (see below). Then shift-drag to select text (or use Control-
A to Select All). You can then Copy the selected text to the clipboard.

To keep text styling intact when Pasting clipboard selections into Word or
other applications, choose Paste Special (if available) from the target
application’s Edit menu. In Microsoft Word, for example, this will allow you
to paste clipboard text in RTF (Rich Text Format), retaining the text’s styles.

Process Manager User’s Guide12

Printed Documentation

The PDF version of this document is also available in printed and bound form (at
nominal cost) from SilverStream. Contact ebizintegration@silverstream.com
for details.

Server-Side Installation and Setup

You will need to configure Composer Process Server’s database options manually
after doing the server-side install of Process Manager. To complete your
installation, follow the steps shown below.

Prerequisites

Before undertaking the database-setup procedure, you should make sure the
following conditions are met:

A SilverStream, WebSphere, or WebLogic application server must be
installed.

A Sybase, Oracle, or IBM DB2 database system must be installed. (Check
the Composer Process Manager Release Notes for the latest database
compatibility matrix.)

The application server must be set up to access an existing or new database:

Using your database system's administration facility, create a new
database.

If necessary, create an ODBC data source for the database.

Using your application server's administration facility, add the newly
created database as a data source for the application server, including a
connection pool.

Setting Up a Process Manager Database

The Process Server uses a database for runtime storage of critical process data.
You will need to designate a database to use for this purpose; then you must “bind”
the Process Server to this database using the following procedure.

NOTE: Before performing the following steps, be sure you have created a
dedicated database for the Process Manager as indicated in the previous section
(“Prerequisites,” above).

To set up a Process Manager Database:

1 Start your application server.

ebizintegration@silverstream.com

13

2 Install the Composer Process Manager onto the application server if it is not
already installed.

3 Using a Web Browser, access the Process Manager Console on the
application server (i.e.:
http://<hostname>:<port>/eXtendComposerProcess/). See “Process
Database Info” on page195 for console screen shots and additional
information.

4 Confirm the unconfigured state of the Process Engine:

The Process Engine Status should read: "Shut Down"

The Process Database Info should read: "Invalid Configuration"

5 Press the Configure button and the Process Database Configuration screen
appears. (See “Process Database Info”, starting on page 195.)

6 Select the type of database for the Process Manager to use: Sybase, Oracle,
or IBM DB2.

7 Enter the application server specific Pool Name for the database the Process
Manager will use. For example:

SilverStream: Databases/<database name>/DataSource

WebSphere: jdbc/<DBPoolName>

WebLogic: an arbitrary JNDI data source name

WebSphere and WebLogic both use the JNDI Name specified by the user
when creating the Connection Pool. So if the user creates a Connection Pool
called ProcessPool with a JNDI name of ProcessJNDI, the user will enter
ProcessJNDI in the Pool Name field of Composer’s Process Console on the
Process Database Configuration screen (see picture, page 196).

8 Enter the User Name (e.g. "dba") and Password for the database (e.g.
<sql>).

NOTE: When configuring the Process engine's database using the Process
Database Configuration screen (see page 196), the Username and
Password for a SilverStream or WebSphere server will be the database
Username/Password (for example, "dba/sql" for a Sybase database). But for
WebLogic, the Username/Password needed to configure the Process
database is the WebLogic server username/password ("system/weblogic," for
example).

9 Press the Save button. If successful, the Initialize button appears.

10 To set up the Process Manager database tables, press the Initialize button.

11 If successful, the Status will read "Connected - Ready".

12 Press the Return to Main button to access the Process Manager Console.

Process Manager User’s Guide14

13 To start the Process Manager engine, press the Start button. If successful,
the Status under Process Engine Info should read: "Running".

14 For the Silverstream application server only, access the Server Management
Console and synchronize the Process Manager database once the Process
Manager engine is running.

NOTE: To reinitialize the database or change to another database, you must stop
the engine first, and repeat the above steps.

Getting Started with Process Manager: 5-Minute Tutorial

Creating a process in Process Manager is easy and straightforward. The steps
below describe the basic procedure.For a fuller discussion of relevant concepts,
you will obviously want to consult the chapters called “The Process Designer User
Interface” and “Creating and Testing Processes” (as well as other relevant portions
of this guide).

The basic procedure is always the same:

Place activities on the process graph

Link them together

Specify relevant data mappings

To create a Process:

1 Launch Composer. In the File menu, select New > xObject, then open the
Process/Service tab, as shown below, and select Process.

15

2 The “Create a New Process Component” dialog will appear. Enter a Name
for your process.

3 Click Next to bring up the second (and final) dialog of the wizard.

4 The second dialog allows you to choose XML Templates for your process
input and output messages. Select these as you normally would when setting
up any other Composer Component. (See the Composer User’s Guide.)

5 Dismiss the dialog. A blank canvas (representing the area where you will
draw your process) appears in what would ordinarily be the Native
Environment Pane.

Process Manager User’s Guide16

6 The Object Properties pane should be visible (as above). If it is not, toggle its
visibility using the Object Properties command under the View menu. Note
that you can tear off (or undock) this pane if you want to drag it out of the
way at any time.

7 Click on the Activity Tool to select it. (See below.) The cursor will change
appearance.

8 Click anywhere on the blank canvas. A new activity is created, with blue
stretch-handles positioned around its boundary.

17

9 With the new activity still selected (i.e., in focus), use Copy and Paste to
create another copy of it (or use the Activity Tool again to create another
activity on the canvas). You should now have two activities: A1 and A2.

10 Select the Link Tool on the toolbar. Connect the two activities with a link in
the manner shown below.

11 Now it is time to associate the activities with components (concrete
implementations). Bring the Object Properties pane into view (with View >
Object Properties) if it is not already visible. Click on the first activity. The
Object Properties pane will update to show the current properties for that
activity.

Process Manager User’s Guide18

12 From the dropdown menu next to Component Type, select the type of
component you would like to use as the implementation of your first activity:
XML Map, JDBC, etc.

13 From the dropdown menu next to Component Name, select an actual
component. (This list will be prepopulated with the names of components
that already exist in the current project.) The graphic below shows what your
object properties should now look like, assuming you chose a JDBC
Component named InventoryLookup.

14 Click the Messages tab of the Object Properties pane.

15 We want to associate input with this activity, so click the blue Plus Sign in
the Messages tab. A dialog appears.

16 Because this is the first activity in the process, we will want to specify
ProcessInput as the message Source. (This will be the default.) ProcessInput
will have the data structure corresponding to the XML Template that you
specified for input in Step 3 earlier.

19

17 Since the Target of our maps is A1 (or whatever the currently selected
activity is named), we will want to specify A1Input as the target message and
Input as the target message part (as shown). You can think of the Input part
as corresponding to the Input DOM in your component.

18 Repeat Steps 10 through 16 for Activity A2 (the second activity you
created). Remember, once again, that you are mapping data into (not out of)
the selected activity (A2). This time, the Source for the current activity’s
input will be the previous activity’s output (A1Output). Therefore, your data
mapping will probably look like:

19 The output of this simple process will simply be the second activity’s output.
This requires one more data mapping, to specify, explicitly, the mapping
from A2 to ProcessOutput. To set this up, click on an empty portion of the
canvas (to deselect all activities). Then go back to the Object Properties
pane. You will see that it has changed to reflect the properties of the process-
as-a-whole.

20 Click the blue Plus Sign and create the data mapping shown below.

21 Save your work.

Congratulations: You have created your first Process!

Now might be a good time to animate through the process to be sure it does what
you expect it to do. Using the Animation Tool on the toolbar (see below), you can
begin stepping through the process from beginning to end.

Process Manager User’s Guide20

Additional toolbar tools allow you to Step Into or Step Over the components that
make up your activity implementations. If you Step Into one of those components,
animation continues in real time at the action-model level. That is, you can step
into or over any of the actions in the component, thus executing the component in
stepwise fashion. When the final action executes, the component will return and
you will be back at the process-graph level, where you can continue animating to
the next activity, etc.

How Do I Deploy It?

Since a Process is just a Composer xObject (like any component or service created
with Composer), it is deployed as part of a project, following the same procedure
as with other projects (using the same Deployment Wizard). Obviously, the target
app server must have both Composer Server and Process Server installed before
your deployed processes can be run. Be sure you have done your server-side
installs of all Composer products before deploying.

Just as components must be called from services, processes must also be invoked
from Composer services. To do this, you simply place a Process Execute action in
the action model of any service. Then deploy the service. (The service’s input
message can be passed straight through to the process. See the discussion of “The
Process Execute Action” later in this guide.) If the service is deployed on a public
URL, incoming requests will trigger new instances of the associated process.
Those instances, and the status of all associated activities, can be monitored via
Process Server Consoles. (See “Runtime Administration of Processes” elsewhere
in this guide.)

For more information about deploying Composer services, be sure to consult the
eXtend Composer Server User’s Guide appropriate to your app server
environment.

21

1

Welcome to Composer and Process Management

Welcome to Composer and Process
Management Chapter 1

Welcome to the SilverStream eXtend Composer Process Manager. This Guide is a
companion to the eXtend Composer User’s Guide, which explains the core
features of Composer. The rest of this guide assumes familiarity with core
Composer functionality, so if you haven’t looked at the Composer User’s Guide
yet, please familiarize yourself with it before using this Guide.

Before you begin working with the Process Manager, you must have it installed in
your existing Composer environment. Likewise, before you can run any server-
based processes, you must already have installed the Composer Process Server
software on your application server.

To be successful with the Process Manager, you should be familiar with the
following:

Business Process Management (BPM) concepts

The particular app server environment (e.g., SilverStream, WebSphere, or
WebLogic) into which you will be deploying

XML, XSD (schema), and XPath

WSDL (the Web Services Description Language)

Java WAR (Web Archive) files

The use of eXtend Composer (and the eXtend Developer Workbench) to
create and deploy services

Basic structured-programming concepts and object-oriented design patterns

It will also help if you already have some knowledge of the Web Services Flow
Language. The complete specification can be seen at

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

This chapter presents an overview of key BPM (or “workflow”) concepts so that
you can better understand the relationship of Web Services, J2EE applications,
and Composer applications to automated workflows.

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Process Manager User’s Guide22

What Is Process Management?
The aim of Business Process Management is to model business operations as well-
defined systems of tasks in which participants interact according to a prescribed
choreography to achieve a desired goal.

The top-level unit of work in such a model is usually called a process,
emphasizing the dynamic nature of the underlying interactions. Because of the
directed flow of work through such a system, the resulting model is often said to
encapsulate a workflow.

A non-automated workflow might look something like the following.

Figure 1-1

In this hypothetical flow model, various parties (inside and outside the company)
accomplish various tasks in a well-defined sequence. The input that triggers the
overall process might be a phone call; the output might be a signed contract. The
process has identifiable players with defined roles and responsibilities. If each
participant does its job, the desired objective will be achieved.

An automated business process attempts to model the same interactions in terms
of enterprise applications (each one, again, with its own roles and
responsibilities). For maximum flexibility, the applications might be (but need not
always be) implemented as Web Services. To accommodate human input, some of
the applications might have a user-facing presentation layer. In some cases, the
entire model might be realized in software, with no need for human intervention.

Welcome to Composer and Process Management 23

Why Automated Process Management?

The ultimate aim of BPM is to make possible the automation of complex and/or
long-running business processes. The benefits of process automation go far
beyond the obvious one of reducing demands on human resources. They include:

Scalable throughput—Capacity no longer hinges on personnel headcount.
Logjams during “busy times” can be avoided.

Consistency—Once business rules are formalized as part of a process, they
are adhered to reliably. TPA (Trading Partner Agreement) provisions can be
enforced and company performance documented.

Adaptability—Processes can be designed to automatically detect and route
around unexpected bottlenecks.

Upgradability—Processes can be rewired quickly to adapt to changes in
business requirements. Individual components of a process can be modified
or “changed out” without necessitating a total rewrite of the process itself.

Powerful audit capabilities—Comprehensive reporting across activities,
process instances, and business units is possible without the need to pull
together disparate data sets from a variety of sources.

Better ability to respond to customer needs—Processes can be initiated by
the customer or trading partner in real time and executed on a 24/365
availability basis. Turnaround times can in some cases be shortened from
days to hours, or hours to minutes.

New opportunities for Business Process Improvement—The powerful
audit and reporting capabilities afforded by BPM can yield new categories of
process-related analytics that expose inefficiencies and opportunities for
improvement within the organization.

Process Design versus Application Design

Process design and application design start from different points of reference. The
design of an enterprise application usually involves a narrowly focused, data-
centric view of a problem and a correspondingly scoped data-oriented solution.
Process design, on the other hand, is motivated by the need to fulfill a business
objective: patent an invention, process a claim, conduct an auction. The input to
the process may be a phone call; the output might be 55-gallon drums on a truck.
Carrying out the process may require completion of many tasks. Data
requirements may vary greatly along the chain of tasks.

Process Manager User’s Guide24

Process design is more than just “data in, data out.” It requires thinking about the
Big Picture, including not only which applications one might use in modelling a
process, but the time order in which those applications must run; the guarantees
made by, and responsibilities of, the applications that make up a process; the
possible interdependencies of the applications; and the various ways in which a
process might terminate prematurely even though no application has failed.

Modularity

The concept of modularity is key to process modelling. For example:

The various constituent activities that make up a given business process (or
workflow model) can, themselves, be processes. This is sometimes called
recursive composition.

A particular activity may play a role in multiple processes (which may be
unrelated to each other). For example, the “credit check” activity of
Process A might also be used by Process B and Process C. This is activity
reuse.

The implementation of an activity can be changed without affecting the
process model itself. For example, new business logic, reflecting a change in
company policy (or perhaps a change in algorithms), can be instituted in the
“credit check” activity of a process; but the process itself doesn’t have to be
modified.

NOTE: The principle of dividing large, custom-built chunks of work into smaller
general-purpose chunks of work is well known to application developers as
factoring. The goal of factoring is to promote reuse of costly resources.

The activities that make up a process may involve public-facing Web Services, or
they may be limited to “behind-the-firewall” services running on a local app
server. External trading partners may or may not be participants, and the process
can be long-running, with lots of “callbacks” into the system, or it could be of
relatively short duration (i.e., straight-through processing).

Welcome to Composer and Process Management 25

Example of a Simple Straight-Through Process

An example of an automated business process is shown in the following graphic.

Figure 1-2

In this scenario, a membership organization accepts member applications online.
The applicant, upon submitting HTML form data to the organization’s web site,
triggers an automated process consisting of four activities:

1 The first activity checks the application for completeness and perhaps looks
in a database to see if the applicant is already a member.

2 The second activity processes the user’s electronic payment information.

3 Once payment has been received, relevant information about the new
member is entered into the main membership database.

4 The final activity sends a personalized welcome message to the new member
via e-mail.

In this admittedly simple example, any of the four component activities of the
New Member Enrollment Process might represent an automated process in its
own right. One of the activities (Process Payment) might very well rely on a Web
Service offered by a business partner. Others might be local to the app server.

Process Manager User’s Guide26

Process Management and Emerging Technologies
Modelling a high-level business function in terms of tasks that can be linked
together via software is a powerful metaphor that plays well to the strengths of the
Web Services model in particular and distributed computing in general. With the
advent of technologies like XML, SOAP, WSDL, and UDDI, it becomes practical
to design and deploy powerful, robust, sophisticated business applications that
rely on the coordinated efforts of smaller, task-oriented units of work that can be
“wired together” without respect to each unit’s implementation details.
(Separation of interfaces from implementations is a key feature of Web Services
architectures.)

The eXtend Composer Process Manager leverages many of today’s most
important enterprise-computing technologies, including:

XML (eXtensible Markup Language) for data portability

SOAP (Simple Object Access Protocol) for platform-neutral handling of
payloads and remote procedure calls

WSDL (Web Services Definition Language) for describing the public
interfaces to services

J2EE (Java 2 Enterprise Edition) standards, for interoperability, security,
scalability, and platform independence

In addition, Composer’s Process Manager runtime engine utilizes key features of
the proposed Web Services Flow Language (WSFL) standard.

How Does a Process Differ from a Service?
Processes are dynamic, stateful systems characterized by a rules-driven flow of
data between participating activities. From an input-output point of view, a
process receives input data, transforms and/or augments that data, and produces
output data, much like any other service. And in fact, if the process is exposed as
a Web Service (described by WSDL), it looks to the world like any other Web
Service.

What makes a process different from a conventional Web Service is that it ties
together—and orchestrates the flow of control and data between—relatively large
units of work to accomplish a particular business function. A process is, in this
sense, a meta-service that directs the interaction of other services (including,
potentially, services that are external to the organization).

Some of the important differences between a conventional Composer service and
a process are summarized in the table below (and discussed in further detail in the
sections to follow).

Welcome to Composer and Process Management 27

Table 1-1:

Conventional Service Process

Short duration Long-running

Performance is important Rapid execution typically not as important

Execution depends on the
server being “up”

Processes that rely on external services
can continue executing while a server is
down

Serial execution of logic.
Relatively little reliance on
asynchronous processes

Asynchronous processing and parallel
execution of activities are commonplace

Few opportunities for
unexpected data overwrite

Multiple activity outputs can map to the
same target messages (or message
parts). Hence, overwrite is a potential
concern, and policies to deal with “who
writes where and when” must be defined
explicitly

Control-flow stoppages are
handled as exceptions

Flow may “route around” blockage points,
in some cases. In other cases,
timeout/retry policies may kick in

Data flow and control flow
are tightly coupled

Data and control are less tightly coupled

No “sleep” mechanism A long-running process may go to sleep
during idle periods. Over the process’s
lifetime, it may go to sleep and wake up
many times

Straightforward testing
requirements

Control-flow paths may be too numerous
to test; extensive coordination with
business partners may be required

Administration centers on
performance tuning and
configuration issues

Administration centers on lifecycle events,
status monitoring

Process Manager User’s Guide28

Large versus Small Units of Work

The units of work in a process are relatively large. (They encompass whole
applications or services.) Likewise, operations on data tend to be conducted at a
coarse (rather than fine) scale, occurring at the level of whole documents or
document aggregates, rather than at the level of, say, nodes or nodesets. Fine-scale
data manipulations occur inside the activities that make up the process.

Long-Running versus Straight-Through

One key distinguishing characteristic of a process (as opposed to an ordinary
application or service) is that it is typically long-running. This means the process
could have an execution time measured in hours, days, or even weeks, due to
reliance on partner interactions, scheduled batch operations, human intervention
at various levels, etc. For example, a process that obtains bids from contractors
might very well require weeks to run to completion, whereas a credit-check
application is expected to execute quickly, in real time. The credit-check task is
best implemented as a discrete, standalone app: It processes information in
straight-through fashion while the caller waits for a reply. By contrast, an RFP
process involving (potentially) dozens of bidders, each with its own internal
procedures and constraints, constitutes a large-scale, long-running process, which
might be difficult or impossible to implement robustly as a monolithic, self-
contained Web Service.

Wait States and Persistence

Persistence of state information is important for automated processes not only
from a recovery standpoint but for efficient use of resources. A long-running
process has to be able to deal with suspensions and resumptions of service,
whether brought about administratively or through hardware downtime
(scheduled or otherwise).

Composer’s Process Manager persists process-instance info to database storage,
so that processes can be put to sleep as needed and woken up again in response to
appropriate events (such as the arrival of data from a just-finished activity), thus
freeing valuable RAM and CPU resources during long waits.

NOTE: State info is persisted at every stage of process execution (not just when
a process goes to sleep), so that a server restart, for example, is not disruptive.

Welcome to Composer and Process Management 29

Parallel Execution

Processes typically involve more than simple “straight-through” processing. If
each task in a process requires, say, three days to complete, a straight-through
execution chain would mean that the process could require nine days to run. This
could be very inefficient if the tasks are not directly dependent on one another.
Splits and merges (parallel execution and resynchronization) are a common
feature, therefore, of process control flows.

These concepts become clearer with an example. The following figure depicts a
process that relies on parallel execution of tasks.

Figure 1-3

In this example, an incoming request (which could be a SOAP request, form data
received via HTTP POST, etc.) triggers a process instance to handle the request.
Activity A performs the initial processing, then calls two more activities (B and C)
to do additional processing. The output of Activities B and C form the input to
Activity D. Finally, the latter sends output to the requester.

It’s important to note that this diagram could cover a wide range of scenarios. For
example:

The request might come from inside the firewall or outside; and it could
invoke the process asynchronously, or wait for the process to return
(synchronous execution).

Process Manager User’s Guide30

The process might or might not be designed to send output to the original
requester. The output might actually be directed elsewhere.

Activity A might call B and/or C asynchronously, or synchronously.

The process might be designed such that if Activity B does not respond
within a given timeout period, a retry will occur.

Activities B and C could be Web Services operated by remote business
partners.

Activity D might be designed to execute as soon as B or C finishes
(whichever is first), or it might be required to block until both B and C have
delivered data. In the latter case, D might be required to choose data from B
or C, but not both.

Any of the four activities shown could be processes in their own right. Or
they could be Web Services, or Composer components; or any combination
of the above.

Process Management Terms and Concepts
To be productive quickly with Composer’s Process Manager, it’s important that
you understand certain key terms and concepts. This section explains the terms
and concepts you’ll most need to know when working with the Process Manager.

Note that most of the process automation idioms discussed below—as
implemented by Composer’s Process Manager—derive directly from the Web
Services Flow Language (WSFL). For a more rigorous explanation of key terms,
consult the WSFL specification at:

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Many of the fundamental concepts behind Composer’s vision of process
automation stem, also, from WSDL (the Web Services Description Language).
For a detailed discussion of WSDL, see

http://www.w3.org/TR/wsdl

NOTE: The more you understand WSDL and Web Services, the easier it will be
for you to understand Composer’s vision of business process automation.

Activities, Messages, and Links

Composer implements processes in terms of activities and links. Activities are the
units of work that carry out the steps of the process; they may be Web Services,
applications, or other processes. Links establish the possible control-flow paths
between activities. Data moves through the process model via messages that are
passed (in whole or in part) from one activity to another.

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Welcome to Composer and Process Management 31

Activities

Activities represent the fundamental unit of work inside an automated process. In
a Process Manager process model, an activity can be:

A Composer component

A Web Service

Another process

NOTE: The notion of a Web Service puts no restrictions on implementations. A
Web Service can be implemented in any language, on any kind of platform, as long
as it has an interface that can be described in WSDL.

In some cases, the components and services that you intend to use in a process
model will have already been deployed on your server (or might already exist on
the Web somewhere). That is to say, a process might simply “wire together”
preexisting services. In other cases, you will develop components or services from
scratch in order to meet process requirements. (Obviously, you can’t test or deploy
the process until all activities have been fully implemented.)

Start Activities and End Activities

The trigger for a process provides data that can be mapped (as messages) to one or
more start activities. The final activities of a process model are said to be end
activities. (There can be more than one start activity to a workflow; and also more
than one end activity.) Start and end activities are like any other activities, except
that a start activity has no incoming control link and an exit activity has no
outgoing control link.

It’s possible that some start activities might not have any outgoing control links.
For example, one of a process model’s startup activities might be a JMS
messaging component (built using Composer’s JMS Connect) that sends
notifications to various queues asynchronously. If no downstream activities
depend on data from the messaging activity, the messaging activity becomes both
a start and an end activity.

Tasks, Activities, and Implementations

Composer’s vision of process modelling makes a subtle but important distinction
between tasks, activities, and implementations.

Process Manager User’s Guide32

At the most abstract level, a task is a business function (which, in the real world,
might go by a name like “Obtain Payment History,” “Issue Purchase Order,” or
“Determine Back-Order Status”). Some business tasks are performed by humans;
others are automated. Twentieth-century enterprise computing was concerned
mainly with finding ways to automate or semi-automate business tasks.

Activities carry out tasks. The word “activity” implies a task that can be realized
in software, but it does not imply anything about the actual implementation. One
might know in advance what an activity’s required inputs and outputs will be, but
this simply means that the activity’s interface needs are known. It doesn’t mean
underlying implementation details are known.

Implementations of activities can take many forms. This is the key intuition
behind Web Services: Collaboration depends on interfaces, not implementations.
Composer’s Process Manager takes full advantage of the Web Services model,
allowing any service that has a WSDL-described interface to be used as an activity
in a process. No restrictions are put on how activities are implemented. An activity
might be a C++ program running on a business partner’s web server, or it could be
a custom EJB running on your own server, or a Composer JDBC component, etc.

Messages

Activities operate on messages which, in turn, are composed of logical parts. The
parts have name and type characteristics as defined in a schema. (The types can be
canonical XSD data types, or complex types of your own, defined in custom
schemas.) You can think of message parts as corresponding to the input and output
data for activities.

Welcome to Composer and Process Management 33

If you are accustomed to thinking of service inputs and outputs as XML
documents or DOMs, the message metaphor simply extends the input-doc/output-
doc idiom to include the notion of collaboration between participants. A message
implies an interface—a predefined set of operations on specific kinds of data. The
key intuition is that a message, far from being a static container of data, carries
with it an implicit operational semantic arising from the fact that messages and
their parts can be named and therefore designated in operations associated with an
interface.

NOTE: The concept of “data as message” is fundamental in WSDL. If you are not
familiar with Web Service Description Language concepts involving messages,
message parts, types, etc., you will find it helpful to read the WSDL spec.

The message metaphor is extremely powerful, because it is concrete enough, in
practice, to allow applications to specify their interface needs (and so make
interoperability possible), yet abstract enough to keep participants from having to
know anything about their respective implementation details. This means that
applications can be developed entirely independent of one another, in different
times and places, by different programmers, yet interoperate with one another as
the need arises.

By exploiting the message metaphor, Composer’s Process Manager achieves the
goal of keeping interfaces and implementations isolated, for maximum flexibility
in “wiring activities together.”

Message Parts

Composer’s Process Manager “understands” the message-part semantics of
WSDL-described services, in cases where activities are associated with WSDL.

Where activities consist of regular Composer components, message parts needn’t
be explicitly defined in a schema. Component Input and Output DOMs are treated
(by default) as messages.

Links

Links define the allowable control-flow paths in a process model. Unless an
activity is a start activity or an end activity (see below), it will have one or more
incoming links and zero or more outgoing links.

NOTE: The mere existence of a link does not mean that the link will actually be
followed at runtime. Transition-condition logic actually determines this. (See
discussion to follow.)

In an operational sense, links tell the Process Manager runtime engine “what to do
next” when an activity finishes.

Process Manager User’s Guide34

Links also provide a convenient metaphor for visualizing control flow between
activities in a design-time environment, since links can be drawn as lines or arrows
connecting boxes or icons that represent activities.

Sequencing, Timing, and Process-Level Logic
A process is more than just a collection of links and activities. The links in a
process model are like the roads in a highway system: They define all the possible
paths that can be traversed, but not how they will actually be traversed. In the real
world, the pattern of traffic flow through a road system is affected by traffic laws,
clearance limits on overpasses, etc. Likewise, the flow of execution through a
process model is dependent on various designed-in rules and constraints that apply
at runtime.

Factors that affect runtime flow patterns include:

Link-traversal logic—Rules applied at the level of link transition
conditions. (See below.)

Synchronization logic—Rules that govern the triggering of activities that
have more than one incoming link. In some cases, a “join” activity will want
all potential input activities to finish executing before the join is evaluated.
In other cases, the target activity may be designed to begin executing as soon
as the first input (from any incoming activity) arrives.

Retry and timeout policies—Some business interactions are required to
adhere to elaborate try/timeout/retry requirements. For example: “Query this
vendor and wait a maximum of two hours for acknowledgement. Query
again, up to a total of three times.” Every activity can have (but doesn’t have
to have) a timeout/retry policy.

These and other flow control factors are discussed in the sections immediately
below.

Control Flow Logic

Control flow is mediated by logic that you can apply at three key points in a
process: link transition conditions, activity exit conditions, and join conditions.

Link Transition Conditions

The logic that determines whether or not a given link is actually traversed at
runtime is called a transition condition. The transition logic returns a boolean
value based, typically, on inspection of the data coming into the link. If the
transition condition evaluates to true, the link is traversed; otherwise it is not.

Welcome to Composer and Process Management 35

Note that links are not required to have transition logic. By default, a link is
traversed straight-through.

In the example shown previously (see Figure 1-3), the arrows between Activities
constitute links. Each link could have an associated transition condition
(expressed via XPath). Data at Activity A might or might not trigger Activity B
depending on (for example) the type of data received or particular values
contained in the data.

Activity Exit Conditions

Every activity can have an exit condition. The exit condition is a logical
expression that yields a boolean value. That value signifies whether or not the
associated activity completed normally. If the exit condition evaluates to true at
runtime, the outgoing link(s) can be followed. If it is false, the original activity
will be reexecuted; but outgoing links will not be followed. (If an activity has no
outgoing links, there is no exit condition.)

Join Conditions

When two or more links meet at the same target activity, logic needs to be applied
in order for execution to continue. This logic takes the form of a join condition in
conjunction with a map policy.

The join condition is an expression that returns true or false based on examination
of the truth values of incoming links. (The truth value is the final value of the link
condition.)

NOTE: While exit and link conditions are expressed in XPath, join conditions are
specified in straightforward fashion using AND, OR, NOT, and parentheses (for
grouping).

When an activity has a join condition, the join logic is consulted to determine how
to proceed. Consider the following scenarios.

Bids have been solicited from three suppliers. Company policy requires that
bids must be received from all three suppliers before the rest of the process
can be undertaken. The join condition specifies a logical-AND between link
values. This pattern is called an AND-join.

A company allows each of its employees to choose between two retirement
plans. Each plan has associated with it an activity that generates appropriate
paperwork for the employee. The paperwork contains data that will be
passed to a join activity. The join condition specifies something like:

(Plan1 AND NOT Plan2) OR (NOT Plan1 AND Plan2)

This is an exclusive-OR (i.e., XOR) join.

Process Manager User’s Guide36

An activity receives input from any of several links. Any or all of the inputs
can be used. This pattern is an OR-join.

The easiest way to visualize the relationship between the various kinds of flow
logic is to think of the join condition as the “input-side” logic of an activity and the
exit condition as the “output-side” logic.

The join condition exists for the primary purpose of implementing
synchronization logic of the OR/XOR/AND type. Data from one or more
activities can be inspected and used as the basis for deciding whether the next
activity executes or doesn’t execute.

The exit condition is strictly a mechanism for determining whether the associated
activity (once it finishes executing) has produced data suitable for use by the next
activity (or activities). If an exit condition evaluates to true, it means the activity’s
data output met the minimum criteria for continuation to any outgoing links. All
outgoing links will be followed if the exit condition is met. No links will be
followed if it is not met.

Transition conditions determine whether the next activity can be entered at all,
using output from the source activity. Since there is no way for a link to “know”
anything about other link targets, transition logic tends to be relatively simple (in
many cases merely defaulting to true).

NOTE: Conditional branching can be implemented at the link level. See the
discussion under “Branch Logic” in the next chapter.

Deferred Mode versus Immediate Mode

Joins can be fully synchronized (i.e., dependent on all source activities having
finished executing), or asynchronous (allowing continuation as soon as data from
any input activity arrives). By default, all joins occur in Deferred Mode, which
means that all of a join’s input activities must finish before the join condition can
be evaluated. In this mode, a join condition will be evaluated exactly once.

Welcome to Composer and Process Management 37

For cases where the desired behavior is for a join activity to fire prior to the
completion of all source activities, there is Immediate Mode. In this mode, the join
condition is evaluated every time a source activity finishes. If there are multiple
incoming links to a join, the join condition could be set to fire as soon as the first
“true” link is known.

Composer Process Manager allows setting Deferred or Immediate Mode on an
activity-by-activity basis.

Dead Links and Synchronization Failure

If a join condition is waiting on the truth value of an incoming link, but the link’s
condition is never evaluated (because flow was halted at some upstream point),
the join will hang. Consider the following scenario:

In this flow graph, a join occurs at Activity5. In Deferred Mode, the join condition
will not be evaluated until the truth conditions of Link3 and Link4 are both known.
But assume that after Activity2 finishes normally, the link condition at Link2
evaluates to false. In that case, Activity4 will never fire; and if Activity4 never
fires, Link3 will never be evaluated. (Link3 thereby becomes a dead link, and any
segment of the flow graph that depends on it constitutes a dead path.) The net
result is that the join at Activity 5 hangs.

Process Manager User’s Guide38

To avoid this kind of synchronization failure, the Process Manager runtime engine
performs a lookahead any time a condition expression evaluates to false. The
lookahead is conducted as follows:

Starting at the false link (or false join condition, as applicable), the engine
traverses all downstream links until either a join activity or an end activity is
reached, whichever occurs first. At this point, traversal stops.

Each link on the traversal path is set to false.

If the traversal path ends at a join, the engine determines whether the join
condition can be evaluated (based on other link truth values and the join
mode); if so, it is immediately evaluated with the incoming (dead) link
having a value of false. Should the join condition then be true, the join is
considered to be “alive” and no further dead-link traversal need occur. If the
join is false—meaning that its outgoing links are dead—its status must be set
to false, and the lookahead must continue downstream from that point.

This “dead-path elimination” procedure ensures that no false condition can cause
a downstream join to hang. It is carried out automatically, as needed, by the
runtime engine.

Map Policy and Data Merging

When multiple activities direct their output at a single activity, the potential exists
for source activities to overwrite each other’s data at the input to the target activity.
A map policy specifies the mapping order and overwrite policy that will be
followed for resolving conflicts.

There are three policy choices:

First writer wins (FWW)—This means that the first data to be mapped into
the activity’s input template will be used as input to the join activity. Any
subsequent messages cannot overwrite.

Last writer wins (LWW)—The last data to arrive are mapped without
regard to how any previous data were mapped.

Map Order—Data mappings will occur in a user-specified order, without
regard to time-of-arrival.

See “Map Policy” in the chapter called “Creating and Testing Processes” later in
this guide.

Welcome to Composer and Process Management 39

Timeouts and Retries

An activity (whether it is part of a join or not) can have explicitly defined
timeout/retry behavior. That is to say, if the activity doesn’t produce usable output
within a specified timeout period, a retry can be attempted, up to some maximum
number of retries. Retries can be repeated at a user-specified interval.

NOTE: Timeout/Retry behavior is available on a per-activity basis but is entirely
optional.

Timeouts and retries are an important part of many standard business interactions
and are formalized, in some cases, by industry standards, such as the Partner
Interface Processes defined by RosettaNet. Composer’s Process Designer allows
timeout and retry options to be set on an activity-by-activity basis.

Data Flow Patterns
In automated business processes, as in human-mediated ones, the flow of data is
coupled to the flow of control, but not always tightly. Some activities, for
example, require data from outside the normal chain of control; the last activity to
execute might need some piece of data from the first activity that executed, which
could be many control links away. Other activities require data on the input side
but have no “output data” per se. (The “output” of the activity might be physical
goods loaded onto a truck.) There are many real-world situations in which data
flow and control flow take different paths.

Composer’s Process Manager allows data and control to follow their own paths,
subject to one restriction: When an activity requires data from an activity to which
it is not directly linked, the source activity must be reachable if one were to “swim
upstream” (never downstream) through the control path, as shown in the
following diagram.

Process Manager User’s Guide40

In the example shown above, data can flow along the path from A to C to D, and
it is also permissible for D to obtain data directly from A, because A lies on the
(entirely one-way) path from A to C to D. But it is not permissible for D to obtain
data from B. (The path from B to A to C to D involves first moving upstream from
B to A, then downstream from A to C to D.)

It is not safe for D to obtain data from B, because the link topology does not ensure
that B completes before D. One of the guarantees made by control links is that any
activity on the “upstream” terminus of a link must execute before the activity on
the downstream end can execute. In the above example, B might take three days
to execute, but C might execute in a matter of seconds. The only safe way to get
data from B to D is to create a control link between the two activities, thus making
D a “join” activity.

Without getting too heavily into the details of data propagation, it should be
mentioned in passing that data transfer (or mapping) across activities follows its
own unique set of rules, distinct from the control-flow rules that Process Designer
depicts with icons and arrows. (Flow graphs created in the Designer show control
flow rather than data flow.) Data routing is easier to understand than control flow,
but some unique twists apply; see the next chapter for details.

Lifecycle Events

A process can respond to any of several lifecycle events, so-called because they
affect the overall execution of the process.

allowed

Welcome to Composer and Process Management 41

Spawn—A spawn event invokes or instantiates a process in an
asynchronous mode. The spawning agent does not want to wait (block) for
the process to return, so after the process is activated the caller expects to
return to whatever it was doing as soon as the spawned process returns a set
of instance data (a “receipt”) to the caller, indicating that a unique process
instance has been invoked successfully. The caller can, if necessary, later use
this data to query the process for status updates, etc.

Call—When an entity calls a process, the caller expects to receive data back
from the process in real time (which is to say, synchronously). The call
invokes the process, and the process runs to completion before returning.
The output of the process is directed back at the caller.

Suspend—A suspend stops, but does not destroy, an ongoing process.
Control flow is temporarily interrupted. This type of lifecycle event typically
occurs in an administrative context.

Resume—The inverse of suspend. A process that was previously suspended
continues operation. Again, this is an event of primarily administrative
importance.

Inquire—Queries a process for status information.

Terminate—Aborts a process instance.

Process Manager Architectural Layers
Processes you create using the eXtend Composer Process Manager are
implemented and managed at three different levels.

Design Level: The design layer has the responsibility of managing the visual or
user-interface representation of a process. This layer lets you define activities,
connect activities via links, determine message mappings, and assign logic to
transition points (links, joins, and exit conditions), using a rich set of visual design
tools. The process model that you create here becomes the basis for the metadata
representation of the process (see below) that the runtime engine uses for creating
and managing process instances.

Metadata Level: At the non-visual level, a process model is stored in metadata
form as an XML description of activities, links, input and output messages, etc.
This metadata description provides all of the information needed to instantiate the
process in a runtime environment. No presentation-related information is needed
at this level.

Runtime Level: The runtime layer manages the execution of process instances. It
maintains state information, manages lifecycle events, implements timeout/retry
behavior, mediates the flow of data and control between activities, and performs
housekeeping tasks involving (among other things) persistence of instance data to
a database. Administrative access to processes occurs via this layer.

Process Manager User’s Guide42

The graphic below summarizes the relationship of these layers.

The layers drive each other from the top down (never from the bottom up). For
example, the visual or design layer drives the creation of the process’s metadata
representation, but the metadata layer never dictates a particular presentation.
Likewise, the metadata layer sets the rules for the runtime layer, but the runtime
engine never modifies the metadata; the metadata constitutes a blueprint of the
process.

The design-time and runtime responsibilities of the layers (and their constituents)
are shown in greater detail in the graphic below.

Welcome to Composer and Process Management 43

Notice that the process ultimately “sits on top of” and relies, for its concrete
runtime implementation, on already-deployed services and components. (Some of
these could be remote Web Services.) Deploying a process that uses prebuilt
services can be likened to deploying a management framework whose sole job is
to invoke existing applications according to special rules.

Existing applications might play roles in any number of processes. For example,
there might be a Process A that uses Activities X, Y, and Z; and a Process B that
uses Activities X, Z, and Q. If Activity Z is a Web Service with a public URI, it
might actually play a role in a remote process in use at another company.

The plug-and-play nature of Web Services brings great power and flexibility to
process management and is key to understanding how to use Composer’s Process
Manager effectively.

Process Manager User’s Guide44

Process Manager FAQ
By now, you are probably starting to have many questions about the ways in which
processes can be modelled using Composer’s Process Manager and what the
limitations are, if any, on process design. The answers to many questions will
become clearer in subsequent chapters, but for now, here are a few quick answers
to Frequently Asked Questions.

Can I Create or Edit Composer Components within Process
Manager?

Yes. The Process Manager design-time editor runs entirely within Composer. You
can have multiple components, services, and processes open at the same time and
switch between windows freely. In fact, in animation mode, you can step over and
into process activities, and if a given activity’s underlying implementation was
built in Composer, you can step into the activity-implementation’s action model
and step through it before returning to the process itself. You have the ability to
debug action models and process models all in the same environment.

Can I Begin Designing a Process Even if Some Activities Have not
Yet Been Implemented?

Yes. You can put placeholder activity icons on the process canvas and name them,
draw links between them, etc., arbitrarily. To perform useful message-part
mappings, of course, you will need to designate actual components or services for
each activity, but even then, the components do not have to be completely built. If
an activity is a Web Service, its mappings can be specified in the process model
even before the service is built, so long as WSDL exists for the service.

Can I Run a Process in the Design-Time Environment for Test
Purposes?

Yes. You can run a process within Composer, in animation mode, much the same
way that you would execute a Composer Component in animation mode. This is a
unique capability among workflow and process automation tools. In other
workflow products, you may be able to create a “skeleton” process fairly quickly,
but you usually cannot implement activity-layer functionality without leaving the
design-time environment to do low-level programming; and when the activity
layer has been implemented, you generally can’t test it in the original design
environment. With Composer Process Manager, you can design, test, and debug
activities as well as processes without leaving the design environment,
dramatically shortening the development cycle.

Welcome to Composer and Process Management 45

Is It Possible to Import WSFL Flow Models Created in Another
Environment?

No. Composer’s Process Manager is not designed to import workflow models
from other sources. WSFL is too immature a specification at this point to provide
all the functionality required by users, and it’s unlikely, therefore, that two vendors
would implement two WSFL solutions in a compatible manner. In addition, the
presentation (graphing) layer of Composer Process Manager is not directly driven
by the metadata layer; in other words, no particular graphical representation of a
process is inherent in a WSFL metadata model, and the Process Designer would
not have any a priori notion of how to display your graph.

Can I Edit My Process-Model Metadata in an XML Editor?

You should never have to hand-edit the metadata descriptions of process models
produced by Composer’s Process Manager. Direct editing of the metadata is not
recommended.

Does Process Manager Support Parallel Split, Exclusive Choice, and
other Branching Constructs?

Yes. By allowing the designer to place boolean logic on the entry and exit sides of
activities (in join and exit conditions) as well as on individual links, WSFL is able
to accommodate arbitrarily complex flow patterns without having to define
special-purpose constructs. So the short answer is that Composer Process
Manager (following WSFL’s lead) does not define special branch or join flow
primitives. But you can easily achieve any desired branch/join behavior by means
of appropriate transition conditions.

Does Process Manager Support Looping?

Yes, although backwards-facing links are not allowed. Links that connect
downstream activities to source activities produce what’s called a cyclic graph,
which is not supported by WSFL because of the potential for reentrancy-related
problems. (These problems are discussed more fully in the next chapter, along
with the looping constructs actually supported by Process Manager.)

Process Manager User’s Guide46

Can I Use the Process Manager for Document Routing and User
Agent Functionality?

Queue-based workflows with human-facing activities can be created using
Process Manager (see the “Advanced Topics” chapter). The concepts of queues
containing work items, work-item priority, addressees (individuals) with roles,
timeouts, locks, and administrative control over and browsing of queues are all
supported by Process Manager. Also, the various actions that support these
features are available for use across all component types (and all Component
Editors) in Composer.

Will Automated Processes Put Huge Demands on My System?

No. The load and performance characteristics of a system running processes under
Composer’s Process Server are determined by the activities that make up the
process. The Process Server itself incurs very little processing overhead because
one instance of the Process Server controls any number of running processes.
Also, since processes are typically long-running, it’s usually the case that most of
the pieces of an in-progress process instance spend the majority of their time in a
sleep state. During these waiting periods, activities exist in persistent storage so
that they do not actually consume CPU cycles.

Can I Start and Stop a Server While a Process is Running?

Yes, because process state information is persisted for each process instance on an
ongoing basis. Also, processes are generally long-running and spend most of their
time asleep. Suspension of a running process instance is supported by WSFL and
by Process Manager. You can suspend any process at any time via the Process
Server Console.

Must All Activities Be Implemented as Web Services?

No. Your activities can take the form of Composer Components or Web Services.

Must Processes be Exposed as Web Services?

No. They can be, but they don’t have to be.

47

2

Preparing to Model a Process

Preparing to Model a Process Chapter 2

This chapter attempts to make the abstract concepts of Chapter 1 more concrete
by, first of all, examining runtime flow mechanics (as implemented by the
Composer Process Server), then by showing how various use cases and design
patterns can be implemented in Process Designer.

Process Server Execution Model
An understanding of the Process Server’s basic execution algorithm in
fundamental to understanding how to design a process.

The Process Server (or runtime engine) executes a process instance in the
following manner.

1 If the process was called asynchronously via a Spawn event, the Process
server—upon instantiating a new process—returns a ProcessID (a “return
receipt”) to the caller immediately. Otherwise, if the process was invoked
with a Call, it is assumed that the caller will block until the process finishes.

2 The Process Server determines which of the process model’s activities
constitute start activities.

3 The input data to the process (one or more message parts) are mapped to the
start activities.

4 Start activities are invoked.

5 Whenever any activity (whether it is a start activity or not) finishes, the
Process Server consults the exit condition of the activity and evaluates the
associated XPath expression. If the exit condition evaluates to false, the
activity is executed again (with the same input as before). Execution repeats
until a timeout occurs, or the exit condition is true, whichever occurs first.
See diagram below.

Process Manager User’s Guide48

6 If the exit condition of a completed activity is true, the Process Server
determines which control links (if any) are connected to the outbound side of
the activity, and the transition conditions of those control links are evaluated.

7 Data is mapped to the next activity (or activities).

Preparing to Model a Process 49

8 For each control link whose transition condition was true, the Process Server
evaluates the join condition of the link target. This evaluation takes place
once, after all link conditions have been evaluated, if the join is in Deferred
Mode (the default). If the join mode is Immediate, the join condition is
evaluated multiple times: once each time a link’s truth value has been
computed. (In others words, as soon as a link condition has been evaluated—
if even if the value is false—the engine will evaluate the join condition.)

9 If the join condition evaluates to true, the target activity fires; otherwise it
does not.

NOTE: Regardless of synchronization mode (Immediate/Deferred), the
target of a join will not fire until and unless the join condition is, at some point,
true.

10 When the target activity of any link has finished executing, the cycle begins
again at Step 5 above. Execution continues until there is nothing to do (i.e.,
the truth values of all end-activity exit conditions are known).

The following graphic shows typical process-startup mechanics for a process
instance that has been invoked via spawn. (That is, the caller has elected to invoke
the process in a “fire and forget” manner.)

Process Manager User’s Guide50

The Design-Time View

The runtime engine needs to know which activities a given process model will use,
how they are linked together, what the data mappings are between them, etc. All
of this information must be specified at design time in a process graph. You will
use the Process Design to do this.

The Process Designer is a visual editing environment for creating graphical
representations of processes, and for specifying data relationships between
activities in a process. The tools that allow you to do this involve a combination of
point-and-click layout tools plus text-based property sheets, which operate like
non-modal dialogs. In addition to these GUI features (which are unique to the
Process Designer), you have Composer’s standard menu commands, navigator
frame, multi-document content frame, and output frame, just as you’d use when
creating Composer components and services. In other words, the Process
Designer runs entirely within Composer.

The Process Designer view of a simple two-activity process looks like:

The activity icons, in this case, represent Composer Components. A link connects
the two activities. The fact that the link icon is diamond-shaped means a custom
transition condition has been specified for the link. (Links without custom
conditions have no diamond icon and just show the word “Link”.)

We say that Activity1, in this diagram, is the Source Activity, whereas Activity2 is
the Target Activity.

Just looking at this graph, it’s not apparent whether Activity1 has a custom exit
condition; whether a retry protocol applies to either activity; whether a mapping
policy (such as Last Writer Wins) applies on the input to Activity2; and so on—to
say nothing of how message parts are actually mapped from one activity to the
other. The graph depicts control-flow relationships in a clear, direct, intuitive
fashion, yet seems to hide data-related information.

Preparing to Model a Process 51

Data-link information is available via a non-modal (and dockable) Object
Properties palette containing tabs for component-, message-, and UI-based
information, as shown below.

Notice that in this graph, Activity1 has focus (as indicated by the handles around
its periphery), and therefore the Object Properties panel (or “property sheet”)
displays information appropriate to Activity1. If one were to give Activity2 focus
(by clicking on it with the mouse), the Object Properties panel would update to
show information specific to that activity. Likewise, clicking on Link1 would
cause the panel to show information specific to the link. These panel updates
happen in real time, automatically, so that information is available for any graph
element at any time. The information is not simply read-only, however. The fields
in the Object Properties panel are where you specify data-related and activity-
level attribute values.

In the Component tab (shown here), you can view activity-level information: the
activity name and type, the type of Component (in this case, a Web Service), the
Component’s name, its Exit and Join conditions (if any), retry information, and
map policy. Some of these values can be set using dropdown menus already
populated with correct choices, as shown above. Others are text fields where you
can type values directly into the panel.

By clicking on the Messages tab, you can view data-related information for the
activity that has focus.

Process Manager User’s Guide52

The top part of this panel shows the process-specific name for the activity’s input
and output messages as well as the concrete Type and Message descriptions given
in the WSDL for the service (i.e., the activity’s implementation). In other words,
the Type and Message fields are automatically filled out with values taken from
the WSDL portType segment.

The lower part of the panel is where you can specify exactly which Source
message parts map to which Target message parts (using XPath). The above
graphic applies to Activity2 in the previous flow graph and shows how input to
Activity2 will be composed. The Source XPath, in this case, specifies that the
Output message part from Activity1 will be mapped directly to Activity2’s Input
part. This means that when Activity2 fires, it will use as its input the Activity1
output. Obviously, this is a simple case. There could potentially be many intricate
XPath mappings from Activity1’s output message parts to Activity2’s input parts.

The Object Properties panel will be discussed in greater detail later. For now, it’s
enough that you know that the Object Properties panel is where you can specify:

Activity name

Activity type (Web Service Send, Web Service Receive, Composer
Component, Subprocess, or Synchronize Subprocesses)

Exit condition for the activity

Join condition for triggering the activity

Timeout and retry settings

Map policy (or overwrite policy) for situations where data from multiple
incoming sources map to the same target message part(s)

XPath-to-XPath mappings of data from source message parts to target
message parts

Preparing to Model a Process 53

Flow Control Strategies
Because the WSFL model attempts to “granulate” flow logic at the level of links
and joins (rather than aggregating flow decision-making into higher-level
constructs like “XOR-split”), it’s not always obvious how one can specify
conditional branches and other common control-flow patterns using a WSFL-
based approach (as followed by Composer Process Manager). Nevertheless, it is
possible to model virtually any kind of flow logic you can imagine using the
Composer Process Designer.

This section looks at some of the more common flow idioms and how they can be
implemented with the Process Designer.

Branch Logic

Many workflow experts are accustomed to thinking in terms of branch logic as
well as join logic. We will consider branching patterns in this section and join
patterns in the next.

Conditional Branch (XOR-Split)

WSFL has no built-in notion of conditional branching per se, which means
activities cannot, on their own, decide which link(s) to use when there is more than
one link on the outbound side of an activity. Instead, the decision of which link to
follow is determined by the links themselves. But no individual link can “know”
what the transition conditions of other, parallel links might be. A link can only
decide whether its path should be followed, based on the output of the previous
activity.

Nevertheless, this flow-constraint mechanism is sufficient to model a conditional
branch. For example:

Process Manager User’s Guide54

In this scenario, Activity1 produces output containing bid information from a
company. The link condition at A says that link A will be followed if /Bid is less
than 1000. The condition at B says that link B will be followed if /Bid is greater
than or equal to 1000. Clearly, if one link is followed, the other one will not be; so
this represents an exclusive-OR split (or XOR split)—a conditional branch.

AND Split

The AND-split case (where every outgoing link is always followed) represents
default behavior in Process Manager models.

An AND split, as defined here, is the case where every outgoing link will fire its
target activity. This just means that every link has a value of true.

Non-Exclusive OR Split

There may be cases where an activity with multiple outgoing links could
(depending on the output data) fire any number of target activities. For example,
“Fire Activity 1 if such-and-so is true; also Fire Activity 2 if this-and-such is true;
also Fire Activity 3 if so-and-so is true.” The number of activities that might
actually fire at runtime could be zero, one, two, or three.

Again, this case is easily handled by distributed link logic. Every link can “look
at” the source activity’s output and apply suitable XPath logic in order to arrive at
a decision of whether to fire/not fire. In the end, the appropriate number of target
activities fire.

Compound Branch Logic

It’s possible to combine the above patterns to handle complex cases such as
“Traverse links A, B, and C always, but traverse D conditionally and traverse E
only if D wasn’t followed.” To implement the case just stated, you would:

Hard-wire links A, B, and C to true.

Set a condition on D (using suitable XPath) of “if this node value is exactly
such-and-such, fire the target activity.”

Set a condition on E of “if [the same node that was tested in D] isn’t exactly
such-and-such, fire the target.”

In pseudocode, the net result (in terms of the links that will fire their target
activities) is:

(A AND B AND C) AND (D OR E)

Other complex cases are possible as well. But before getting involved too deeply
in compound branching strategies, it’s important to step back and understand why
such complex constructions are best avoided altogether.

Preparing to Model a Process 55

In programming, complexity is a sign that a procedure or a block of code needs to
be factored into smaller logical units. In Java code, conditionals involving many
ANDs and ORs chained together are rare, because usually the desired actions can
be carried out in a single switch/case block or a series of if/elses with simple
conditions. If data dependencies are too complex to allow this, the dependencies
themselves need to be broken out in such a way that the logic can be made simple.
Data entanglements shouldn’t be allowed to dictate tangled logic.

U.S. income-tax law provides many good examples of tangled logic involving
complex data dependencies. The Internal Revenue Service must nevertheless
produce tax forms that mere human beings can fill out correctly every year. They
do this by, first of all, factoring out major dependencies into subject groupings,
each with its own dedicated form (or “Schedule”). Within each form, there are
major subdivisions (parts) that group calculations. The major parts are broken
down, finally, into simple if/else statements. Some of the if/else statements point
to other Schedules that must be completed before the if/else can be evaluated.
(Each of those Schedules is a series of if/else statements grouped into parts.)
Obviously, each tax form could, in theory, present all of its if/else logic in a single
compound expression at the top of the form. But such a single-statement procedure
wouldn’t be human-readable.

Complex branch requirements should be a signal to you that the model you’re
creating needs to be factored into simpler logical units.

Join Logic

Link logic determines whether a target activity can be fired; not whether it actually
will fire. The final decision as to whether an activity fires rests with the join
condition.

In Deferred Mode (the default), no join condition can be evaluated—and therefore
no join activity can be fired—until the truth value of every one of the activity’s
incoming links is known. When all link values are known, the join condition is
evaluated. Only if the join condition is true can the target activity then fire.

In Immediate Mode, the join condition is evaluated every time a link’s truth value
is determined by the runtime engine. So if there are four inbound links to a target
activity, it is possible that the activity’s join condition will be evaluated four
separate times. As soon as it is clear that the join condition is true (and can’t
change), the target activity is invoked.

Process Manager User’s Guide56

NOTE: As explained in the previous chapter, join logic is the only logic touchpoint
in the process model where XPath is not used. Links and exit conditions have
access to upstream data and base their decision-making on XPath evaluations.
The join condition knows only the truth values of incoming links; it does not use
XPath and is not data-driven.

A join condition tends to look something like:

(Link1 OR Link2)

This is a simple non-exclusive OR condition. It means the join is true if one link
or both links are true.

An exclusive-OR condition (i.e., the condition is true if one and only one link is
true) would look like:

(Link1 AND NOT Link2) OR (NOT Link1 AND Link2)

In this case, either link could fire the activity, but if both links were true the
activity would not fire. For this condition to work as intended, the join mode
would have to be Deferred.

You can think of join conditions as a mechanism for deciding how many (and
which precise combinations of) link values it takes to fire a target activity. This is
important, because links have no way of knowing whether other (sibling) links
exist, or which siblings evaluated to true. This knowledge exists only at the join.

Looping

On occasion, you may find that you want to iterate on a given activity until a
certain condition is met. For example, you may have some kind of batch operation
to do. Your normal inclination might be to draw a link from a target back to one of
its sources. But this kind of control flow (reentrant flow) is not allowed in WSFL,
nor in the Process Designer. If you attempt to create a cyclic graph, you will see
the following alert:

Iteration of an activity must be done by the implementation of the activity (or by
the implementation of the calling activity) rather than at the process-logic level.

Preparing to Model a Process 57

The reason looping is not allowed in a process model is that it opens the door to
any number of ill-defined situations that would be difficult to manage. For
example, consider the control-flow graph shown below, which has a loop-link
from D back to B. The runtime engine must make some difficult decisions:

B is a join node with input from two activities: A and D. In Deferred Mode,
B must wait for both incoming links to have truth values before its join
condition can evaluate. But since D requires the prior execution of B and C,
it can’t execute unless D executes. The model hangs while B waits for D to
execute. The join at B would only work in Immediate mode.

C will execute multiple times as part of the B-C-D loop. Each time it
executes, the link from C to E is followed (in addition to the C-to-D link)
and E will fire repeatedly if its link evaluates to true. Therefore E can
unintentionally become part of the loop. To avoid this, the link logic for E’s
input link would have to “know” about the iteration status of the loop.

If E is executed multiple times, it might trigger G multiple times; therefore,
G also has to know about the loop. (And so on, for all activities downstream
of E.)

If the loop makes it back to C while before E returns from its first
invocation, should a new instance of E be spawned?

When D executes each time through the loop, should it fire F on every cycle?

Even if these issues were resolved, the prospect of testing (then debugging) a
model of the above sort could be daunting.

Process Manager User’s Guide58

How Safe Looping Can Be Accomplished

A number of looping paradigms are possible in Process Manager. Some rely on
WSFL’s inherent retry-on-false-exit-condition mechanism; others delegate
looping to activity implementations; and there is a special Process Manager
activity to help with asynchronous fan-outs.

Mapping an Activity to Itself

While Process Manager does not permit control links to be used for looping, it
does allow you to designate an activity’s output as the data source to use for input
in the event of a retry. This affords a type of looping, since standard WSFL and
Process Manager behavior is to try an activity whenever the activity’s exit
condition is false. By mapping output back to input, the activity can loop on its
own output as needed, until an exit condition of true is reached, at which point the
looping stops and control proceeds down outgoing links. Diagrammatically, the
scenario can be represented this way:

Activity2 has an input message named Activity2InOut and an output message of
the same name. If Activity2 exits with an exit condition of false, it reexecutes
using Activity2InOut. But Activity2InOut’s data was modified on the initial
execution of the activity as part of a loop. (Perhaps new info from a database
lookup was appended to the Data doc.) In any case, the exit condition on Activity2
might be an XPath expression that inspects a flag value in the output DOM. The
flag value would signal the need either to iterate again or break out of the loop.

Preparing to Model a Process 59

To implement this kind of mapping requires that you give the loop activity’s
output and input messages the same name, as shown here:

On the first invocation of Activity2, Activity2InOut gets populated with data from
Activity1Output/Output. When Activity2 reexecutes due to a false exit condition,
Activity2InOut (already populated with data) simply gets fed back in to the
activity.

NOTE: When setting up this kind of mapping, do not forget to apply an exit
condition (one that will successfully terminate the loop) to the loop activity.
Otherwise, an infinite loop can result.

Iterating Against an External Data Store

The type of looping described above is useful when an output document
containing loop results needs to be built incrementally, with new data added to
output on each trip through the loop. But there are also times when work items
merely need to be pulled off a queue and processed one at a time (one work item
per trip through the loop), with no consolidation, per se, of data for a final output
doc.

Imagine that a process has a start activity that produces, as output, a batch of work
items. Each item needs to be processed individually by a given application
designed for the purpose. This means the processing application must be invoked
multiple times (once per work item). A possible process model is shown below.

Same name

Process Manager User’s Guide60

In this scenario, Activities 2 and 3 are Composer JMS Components, but they could
also be JDBC Components using a database instead of a queue; the concept can be
adapted to other external stores as well. The idea is that Activity2 receives a batch
of data (packaged as a WSDL message) as input. Activity2 unbundles (and
possibly performs some kind of preprocessing on) the input. It also pushes every
work item onto a message queue. Activity3 will inspect that queue.

In this example, the output from Activity2 contains a JMSDestination (in an
element inside a message part) representing the location of the queue that
Activity3 should operate against. No “work-item count” need be passed to
Activity3. (Activity3 has been designed simply to fetch and process one work
item.)

Activity3 does the following:

1 It executes exactly one JMS Receive action. The action either succeeds in
pulling a waiting message off the queue or finds that the queue is empty.

2 If a message is successfully pulled off the queue, its data is processed and the
activity exits with an exit condition of false, so that it executes again.

3 If no message was available (i.e., the JMSMessageID came back empty), the
activity exits with condition of true.

Preparing to Model a Process 61

The exit condition for Activity3 is based on whether the JMS Receive succeeded.
If a message was processed, the exit is false so that Activity3 executes again. If no
message was processed (i.e., the activity had nothing to do, because the queue was
empty), the condition is true and Activity3 passes control to the next activity in the
process flow.

This pattern does not involve a cyclic graph and does not violate WSFL’s
restriction against backward links, because there is no control link that “points the
wrong way”—no reentrancy. Repeated execution of Activity3 occurs because its
exit condition is false until a certain criterion is met. The arrows labelled “JMS
Send” and “JMS Receive” represent data flow outside the process model. The data
do not enter into any message maps.

Delegating Loop Behavior to an Activity Implementation

An alternative to the foregoing strategy is to hide loop behavior within an
activity’s implementation. For example, you could create a Composer service that
uses Execute Component and Repeat While actions to call a given component
repeatedly in a while loop. This strategy does not require the Process Server to
manage any aspect of loop iteration.

The flow graph is the same as before except that the Composer Component called
InventoryLookup is called not by the process engine but by the action model of
Activity2, as shown above.

Fan-Out

Rather than processing work items one at a time, you might find it advantageous
to process them in parallel. Concurrent processing often results in significant
performance gains.

Process Manager User’s Guide62

The spawning of multiple concurrent processes is called a fan-out. The design
pattern looks like this:

The Fan-Out Activity, on receiving a batch of work, unbundles the work items and
spawns multiple instances of the appropriate target subprocess: one instance per
work item. The subprocess might be called something like
“DetermineQuantityOnHand” and the batch might be a collection of SKU
numbers. One instance of DetermineQuantityOnHand is created for each SKU
number.

Every subprocess instance is invoked via the WSFL-defined spawn mechanism,
which means each instance runs in its own thread: i.e., parallel instances execute
concurrently and finish whenever they happen to finish.

For this scenario to work, there has to be a “Fan-In” activity that collects output
from every subprocess instance and waits until all instances are finished before
passing control to the next activity in the process graph. The activity that does this
is shown as the Consolidator activity in the above diagram.

As each subprocess instance finishes, it hands data to the merge component, which
collects that data and merges it (typically) into one final document. When all
subprocess instances have been accounted for, the merge component’s exit
condition becomes true and control passes to the next point in the graph.

Preparing to Model a Process 63

There are two problems with implementing this pattern in a flow graph. The first
is that WSFL provides no native mechanism for creating arbitrary numbers of
outbound links at runtime. The second is that, even supposing that links could be
created in quantities known only at runtime, there is no native provision for
specifying the kind of late-binding join logic that would be needed to handle the
synchronization.

Fortunately, these problems can be overcome.

Component-Controlled Fan-Out/Fan-In

One strategy is to hide the fan-out in a component’s implementation. Imagine that
a component’s action model contains a Repeat While loop that iterates over a
batch, calling a Process Execute action on each work item. By specifying an
execution method of “spawn” in the Process Execute action, every process is
launched in its own thread, in fire-and-forget manner. The workhorse process
instances (the “fanee processes”) can be designed in such a way that they post their
results to a database, JMS message queue, or other external store. Synchronization
would be handled by a second component (a “consolidator”). The “sync
component” could follow either a listener metaphor or a periodic-polling
metaphor. If the latter pattern is used, polling could take place in a continuous
loop, or (less CPU-intensively) on a timed basis, where the component sleeps
between data queries. The listener metaphor, on the other hand, can readily be
implemented using a JMS Service.

Recursive Fan-Out/Fan-In

Fan-outs can be modelled in WSFL using a recursive graph. That is, a fan-out can
be modelled as a process that calls itself until a suitable number of “fanee”
activities has been invoked (at which point the results are accumulated via joins).
Diagrammatically, a recursive fan-out process might look like this:

Process Manager User’s Guide64

The algorithm can be summarized as:

1 Take in a batch of work. If the “batch” contains more than one work item,
split it into two smaller batches (that is, traverse Link5 shown above) and
fire new instances of ourselves using the smaller batches as input. (That is,
traverse Link3 and Link4 and fire two new instances of DoBatch.) This
recursive invocation of new instances of DoBatch continues until incoming
batches are no longer splittable.

2 If an incoming batch contains exactly one work item, traverse Link1. The
target of Link1 is the component (ProcessWorkItem) that actually processes
the work item.

3 The output of the ProcessWorkItem activity is handed to OutputBatch, which
does any required post-processing and returns.

4 When a recursively called DoBatch instance returns, it traverses its outgoing
link (Link6 or Link7, whichever applies). A deferred join then occurs at
MergeBatch.

Preparing to Model a Process 65

5 The MergeBatch component accumulates data arriving from Link6 and
Link7 into one output message, which is sent to OutputBatch. The
return/merge/return/merge cycle continues until every processed work item
has been accumulated into one consolidated message (document).

6 Finally, the topmost instance of DoBatch returns the consolidated document.

Note that the link logic at the top of the graph effectively makes the split coming
out of TakeInBatch an exclusive-OR split. (This also has the effect of making
Link2 and Link8 mutually exclusive.) The algorithm is basically one of “split or
work.” The ProcessWorkItem activity is not hit until the batch has been split into
individual work items (at which point a corresponding number of instances of
ProcessWorkItem fire up). The output docs are merged two-by-two, then four-by-
four, etc., until the final output of the process is one consolidated document.

This is an example of a well-factored design that uses simple, discrete operations
to accomplish a dynamically sized task. The flow can be diagrammed explicitly
using ordinary WSFL constructs and hides nothing (other than business logic) in
activity-level implementations. All data travels through ordinary data links (no
special “off the graph” communication through external stores); all processing is
concurrent; and all joins are synchronous.

Synchronize Subprocesses Activity

One of the native Activity types in Composer Process Manager is a specialized
activity called Synchronize Subprocesses. This activity exists in order to provide
“fan-in” capability (synchronization and consolidation of returns from
asynchronous subprocesses).

A graph that uses the Synchronize Subprocesses activity will implement the
following pattern:

Process Manager User’s Guide66

Activity1 is a Composer Component that performs a fan-out by spawning multiple
subprocess instances inside a Repeat While loop, as part of the component’s
implementation. (This can be done via the Process Execute action, which has
spawn as well as call modes.) Activity1 constitutes the fan-out. Activity2, the
Synchronize Subprocesses activity (which has its own distinct icon), constitutes
the fan-in.

When a subprocess is invoked via spawn, the Process Server returns a Flow
Instance ID to the caller. Activity1 collects Flow Instance IDs for each subprocess
that it invokes and passes the list of IDs to the Synchronize Subprocesses activity.

The Synchronize Subprocesses activity’s implementation consists of a Composer
XML Map, JDBC, or other Component. This component receives, as input, the list
of Flow Instance IDs mentioned above, plus a collation document. The latter is
used at runtime to accumulate data returned by “fanee” subprocesses. The Process
Server mechanics for this are described in a later chapter, but the key notion is that
the fan-in component is notified (called by the runtime engine) each time a fanee
returns, and the associated work-item data is added to the collation doc. When
every fanee is accounted for, the component exits with a condition of true and its
output (a completed batch of work) is mapped forward to the next activity or
activities in the model.

Process Architecture in Review
Below is a brief recap of key concepts. You should keep these concepts in mind as
you create models in Process Designer.

Activities can be of five types:

Composer Component

Subprocess

Web Service Receive

Web Service Send

Synchronize Subprocesses

There are two flavors of Web Service activity. The Web Service Send type handles
WSDL Solicit-Response and Notify patterns, whereas the Web Service Receive
type handles WSDL Request-Response and One-Way operations.

Synchronize Subprocesses is a specialized type of activity (unique to Process
Manager) that provides for synchronization of fan-outs.

A Subprocess is simply any Composer process that is being used as an activity
inside a larger process. The use of processes as activities makes possible
hierarchical modelling of business workflows.

Preparing to Model a Process 67

A process model can coordinate the flow of data and control between a
heterogeneous mix of local and offsite applications (including Web Services
administered by business partners).

A Start Activity has no inbound links. An End Activity has no outgoing links. All
other activities have one or more incoming links and zero or more outgoing links.

Data dependencies between activities are implemented by means of data links. In
Process Designer, data links are not drawn by the user; they are created
automatically when you map one activity’s output message part(s) to another
activity’s input message part(s).

Time-order dependencies between activities are enforced by means of control
links. A control link connects a source activity to a target activity. The link
guarantees that the target cannot execute before the source does. A corollary of
this is that cyclic graph patterns (where downstream activities have links pointing
to upstream activities) is not allowed.

Synchronization of work is accomplished through joins.

Conditional flow of data is under the control of link logic (transition conditions).

Conditional triggering of an activity based on the completion of “feeder” activities
is under the control of join logic (join conditions). In Deferred Mode, the join
condition is not evaluated until the truth values of all incoming links are known.
In Immediate Mode, the join condition evaluates every time a source link
evaluates.

Data-overwrites can be controlled through the use of map policies (in cases where
two source activities might target the same XPath location in the input to the next
activity). The policy can be Last Writer Wins (arrival-order overwrite), First
Writer Wins (first mapping is permanent; late data is ignored), and literal map-
order.

Retry behavior is under the control of activity exit conditions and/or timeout
values. If an exit condition is false, the activity reexecutes using the original input.
The activity keeps reexecuting until the exit condition is true or a timeout occurs,
whichever comes first.

Link and exit conditions must be specified using XPath. Join conditions cannot
use XPath; they are specified via boolean expressions involving link truth values.

The Process Server is the runtime engine that manages the execution of process
instances. It persists state information, instance data, etc. at all points in a
process’s life cycle.

Processes can be monitored and administered (suspended, resumed, etc.) via the
Process Server Console.

Process Manager User’s Guide68

WSFL defines (and Process Manager supports) lifecycle events spawn, call,
suspend, resume, enquire, and terminate.

Suspend, resume, and terminate events can be controlled administratively via the
Process Server Console. The enquire event (meant for status queries) is not
labelled as such in the console; rather, complete status information is displayed in
a Process Status view, available at any time. Spawn and call are under the control
of a process’s initiator, which might be a SOAP server responding to a request, a
component that has executed a Process Execute action, etc.

Taking a Best-Practices Approach
The key feature of a WSFL-based process model is its reliance on units of work
that know nothing about each other’s implementation details, yet can interact
cooperatively based on known interfaces. In this type of system, the units of work
(activities) have no knowledge of—and should need no knowledge of—the
context in which they are being used. Everything an activity needs to know is
contained in the input message to the activity.

A good process model leverages this principle of separation of interfaces from
implementations. This not only makes for efficient code reuse but opens the door
to interoperability across technologies, platforms, partners, etc. It also greatly
eases troubleshooting, testing, and maintenance.

Characteristics of a well-designed process model include:

A well-factored activity layer. No single activity tries to “do too much.” No
activity is monolithic in functional requirements.

Every activity has been designed to run standalone, with no special
knowledge of its neighbor activities.

Every activity has clear-cut data-input needs and correspondingly clear data-
output responsibilities.

Activity-to-activity data dependencies are explicitly described in message
mappings.

Business logic is completely hidden inside activity implementations. No
business logic is attempted in any message maps.

NOTE: Message mappings between activities should exhibit coarse
granularity. Element-level transformations of the underlying XML (i.e., fine-
granularity document manipulation) should be done inside activity
implementations, not in the process model.

Preparing to Model a Process 69

The flow graph is easy to read and comprehend. If a graph starts to grow
beyond a handful activities or joins, consider factoring out related activities
into subprocesses. A model with dozens of splits, joins, activities, etc., may
be extremely difficult to test or debug, whereas if the same model can be
factored into three or four subprocesses, each with only three or four
activities, the subprocesses can very likely be tested standalone, then
combined into a final, unified model that is robust.

Process Manager User’s Guide70

71

3

Creating and Testing Processes

Creating and Testing Processes Chapter 3

In this chapter, we’ll take a look at how to construct a process, specify data
mappings, apply logic to links, control joins, and animate (step through or
execute) a process in the design-time environment.

If this is your first time using the Process Designer, you should read this chapter
before building your first process.

Example: A Simple Straight-Through Process
So that you can see how quickly a process model can be built and tested using the
Composer Process Designer, we’ll go step-by-step through the construction of a
simple straight-through process, as represented by the graph shown below:

Process Manager User’s Guide72

Description

The ProductInquiryProcess model handles a request for product information. The
input to the process is an XML DOM containing a SKU (product ID) number. The
output of the process is an XML DOM containing detailed information about the
product in question. The needed product information is pulled from two sources
(two databases) via JDBC.

Our process uses four activities, all of them Composer Components. The roles and
responsibilities of the activities are as follows:

AcceptInquiry (XML Map Component)—Takes in an input DOM containing
SKU information and simply writes that information straight to an output DOM,
along with a tracking number.

InventoryLookup (JDBC Component)—Using the output of AcceptInquiry,
this component performs a database lookup against an inventory control system to
obtain Category and Status information about the product whose SKU number
was passed in.

ProductLookup (JDBC Component)—Using the output of AcceptInquiry, this
component performs a database lookup against a marketing database to obtain
detailed product info, including price, color, text description, and so on.

MergeProductAndInventory (XML Map Component)—This component
merges the incoming data from the two JDBC components. Its output constitutes
the overall process output.

NOTE: If you are familiar with the Composer Tutorial, the above components
(except for AcceptInquiry, which is specific to this process) are the same ones that
are used in the Composer Tutorial.

Process-Building Basics
Until you have gained familiarity with the Process Designer, we recommend that
you construct your first process models following the steps shown below.

To create a Process Model:

1 Create the new, blank process graph.

2 Optionally, create any Service Provider or Service Provider Type resources
you may need.

3 Create and position all activity icons.

4 Connect the activities with links.

5 Create the message mappings between activities.

Creating and Testing Processes 73

6 Specify any link conditions that might apply at various points in the process.

7 Specify any exit conditions that might apply.

8 Specify any join conditions that might apply.

9 Set any other attributes (Timeout/Retry values, Map Policy, etc.) that might
apply to any activity in the process model.

10 Build, test, and debug all individual activity implementations (that is, the
underlying Composer Components, Web Services, or Subprocesses that
constitute the executables for the activities), if you have not already done so.

11 Finally, test the model.

Creating a New Process
If you have created Composer Components and Services before, you will find the
procedure for creating a new process quite familiar.

To create a new process:

1 Launch Composer, if it is not already running.

2 From the File menu, select New> xObject, then open the Process/Service
tab, as shown below and select Process.

A dialog appears, prompting you for a process name.

Process Manager User’s Guide74

3 Enter a Name for the process. Optionally enter any additional descriptive
info that you want to associate with this process.

4 :Click Next. A new dialog appears.

5 As an aid to the design-time testing of your process, add whatever XML
Templates you would like to use for process inputs and output. (These
documents will not actually be used after deployment of the process to a
server. They are design-time aids only.)

NOTE: XML Templates are used by almost every component type in
Composer. If you are not familiar with the creation and use of templates,
consult the chapter on XML Templates in the Composer User’s Guide.

Creating and Testing Processes 75

Usually, the template(s) you would specify here would be identical to the
ones used by the start activity of your process (assuming that the start
activity is a Composer component). In this case, you want a template, or
templates, that are capable of providing sample input data to the process.

6 Click Finish. The Process Designer window opens, with an empty canvas.
See below.

About Service Provider Resources
A Service Provider is the party responsible for performing a particular activity
within a business process. Composer allows you to identify Servicer Providers for
use with your process.

NOTE: You must have WSDL resources and Service Provider Types (see below)
in place before creating new Service Provider Type Resources.

To identify a new Service Provider:

1 From Composer’s File menu, select New, then xObject. From the Resource
tab, select Service Provider.

or

Process Manager User’s Guide76

Right-click on the Service Provider Resource icon in the Category pane,
and choose New.

2 Provide a name and, optionally, a description to identify the Service
Provider.

3 Click Finish to create the Service Provider and open it in the Editor pane.

4 Click on Add to create a new Service Provider, which causes the Service
Provider Type Selector to appear.

5 Use the right and left arrows to select or deselect the appropriate Service
Provider Types and click on OK when your selection is complete.

Creating and Testing Processes 77

6 This will return you to the Editor pane, where the Service Provider Type will
now appear, and the Name and Operations fields of the Operations tab will
be completed.

7 Click on Mapped to Implementation and select the appropriate
implementation. Choices include: WSDL, Component and Process. The
dialog will differ depending on your choice. Below is an example of the
dialog when WSDL has been chosen as the implementation method.

Process Manager User’s Guide78

8 In all cases, you will need to provide fill in the Endpoint information:

Specify a Timeout Value or use the XPath Expression Builder to identify
one.

Specify a Retry Count.

Specify a Retry Interval.

Identify your HTTP Header Params by clicking on Edit.

Creating and Testing Processes 79

9 If the implementation method is WSDL, the Authentication Tab must also
be filled in.

Select either an Endpoint-Defined or Service-Provider-Defined
Connection.

Fill in a Userid and Password as appropriate.

Identify a Client Certificate, Client Private Key and Private Key
Password as appropriate.

Type in a valu, in seconds, to be used for the Connection Timeout.

10 Click OK when you have finished selecting the appropriate choices for each
field to return to the editor pane.

11 Select File>Save, or click the Save button to save your Service Provider.

About Service Provider Type Resources
Service Providers can be classified into Types. Each Service Provider Type
describes its interface(s) using WSDL. According to the WSFL specification
(http://www-106.ibm.com/developerworks/webservices/library/ws-ref4/),
“Service providers must properly implement the appropriate Web service
interface in order to be classified as the appropriate type of service provider to
handle a particular activity in the business process.”

WSFL requires the process designer to explicitly specify the roles as part of the
process implementation. Composer allows you to do this by creating Service
Provider Type Resources.

Process Manager User’s Guide80

The serviceProviderType element identifies each type of role with the context of a
given business process model and the specific Web service interfaces (in the form
of WSDL-defined portTypes) that must be implemented by a Web service
provider in order to fulfill that role.

NOTE: You must have WSDL resources in place to create new Service Provider
Type Resources.

To create a new Service Provider type:

1 From Composer’s File menu, select New, then xObject. From the Resource
tab, select Service Provider Type.

or

Right-click on the Service Provider Type Resource icon in the Category
pane, and choose New.

2 This will cause the Create a New Service Provider Type dialog to appear.

3 Click on Finish to add the new Service Provider Type to the list and to open
it in the Editor panel.

To add Service Provider Types in the Editor:

1 Click on Add to create a new Service Provider Type.

Creating and Testing Processes 81

2 Select your WSDL Resource from the dropdown list.

3 Select the Port Type.

4 Select the Operation to perform.

5 Select the Operation Type (i.e., Send, Receive).

6 Repeat the previous steps until you’ve added all your data.

7 Select File>Save, or click the Save button.

Creating Activities
Even if your activity implementations (Composer Components, Subprocesses,
etc.) have not yet been built, you can begin laying down activity icons at any time.
For this example, we will assume that the activities consist of prebuilt Composer
Components.

To create an Activity:

1 Choose the appropriate Activity Tool type from the toolbar. To see a flyout
icon list, click the small triangle next to the current activity tool:

Process Manager User’s Guide82

2 Click on the canvas. A new activity appears.

NOTE: To reposition the activity icon on the canvas, first choose the
Pointer Tool, then click and drag the activity icon. You can control snap-to-
grid behavior by using the Grid submenu under Composer’s View menu.

3 Repeat the preceding steps as necessary to create additional activities for the
process model.

To associate an implementation with an Activity:

1 Select the activity by single-clicking on its icon.

2 Under Composer’s View menu, choose Object Properties in order to bring
the Object Properties panel into view. See graphic below.

3 Select the Activity tab (or Subprocess tab, etc., as applicable, depending on
the type of activity) of the Object Properties panel.

4 Select the appropriate Activity Type (Composer Component, Subprocess,
etc.) from the pulldown menu provided, if the type that it showing is not
what you expected.

NOTE: For purposes of this discussion, we will assume that the activity
implementation is a Composer Component.

5 Next to Component Type, select the desired type of component (JDBC,
XML Map, or whatever applies).

Creating and Testing Processes 83

6 Next to Component Name, use the pulldown menu to select among the
already built components in the current project that match the Component
Type specified in the previous step. (If your current Composer project has
four XML Map Components and you have selected XML Map as the
Component Type in Step 4, you will see the names of your four XML Map
Components in the pulldown menu.)

To rename an Activity:

1 Select (click on) the activity with the Pointer Tool. Resize-handles (small
blue squares) will appear around the activity icon, indicating that the icon
has focus.

2 Click directly on the activity’s name. A text-entry field will appear, with the
activity name highlighted:

3 Type the new name for the activity.

4 Click off to the side to deselect (remove focus from) the activity.

NOTE: Activities carry their own names, separate from their underlying
implementations.

Creating Links
Once your activities have been placed on the canvas, you will want to connect
them via control links. As explained in Chapter 1, control links control the flow of
execution in a process. We will discuss data flow further below in the section on
Message Mapping.

To create a Link:

1 Select the Link Tool from the Process Designer toolbar.

2 Click on an activity. Doing so will designate the activity as the source for the
link.

Process Manager User’s Guide84

3 Without letting up on the mouse button, drag the cursor from the source
activity to any activity that you want to be the target activity. As you drag
around the canvas, the link arrow will “rubber-band” out as it tracks the
mouse.

4 With the cursor directly over the target activity, release the mouse button.
The link will change color and redraw immediately to show the connection
between the two activities’ bounding boxes.

Link Transition Logic

Because link conditions are specified in XPath and therefore require knowledge of
the source activity’s output message structure, it is usually best not to specify link
conditions until after all data mappings have been specified. (See discussion
further below.) Nevertheless, if you already understand the data relationships
between source and target activities, you can specify a link condition at any time.

To specify a Link Condition:

1 Select a link by clicking on it.

2 Bring the Object Properties panel into view if it is not already visible.
(Toggle its visibility using the Object Properties command under
Composer’s View menu.)

3 Select the Link tab if it is not already selected.

Creating and Testing Processes 85

4 Next to Condition, type an XPath expression that will evaluate to a boolean
value.

NOTE: If you enter nothing, the runtime engine will assume that the value of
the link is true by default.

5 Close the Object Properties panel if desired. Notice that the link’s onscreen
representation has changed to include a diamond, indicating that XPath logic
has been associated with the link.

Links That Point the “Wrong Way”

If you attempt to draw a link connecting a target activity to one of its upstream
sources (i.e., a backwards-facing link), you will get an error:

Cyclic graphic patterns (reentrant loops) are not supported by Composer Process
Manager. See discussion in Chapter 2 for details (“Looping”, page 56).

Process Manager User’s Guide86

Message Mapping
The transfer of data from one activity to another occurs via data links. Unlike
control links, data links are not “drawable.” They have no visual symbology on a
process graph. Instead, data links are established via message maps. These maps
are simply XPath-to-XPath correlations between a source activity’s output and a
target activity’s input. In other words, they are defined much the same way as Map
Actions in an ordinary Composer XML Map Component.

Message Naming

Composer Process Manager uses a default naming scheme to label message
sources and targets. When you place the first activity on a new canvas, Process
Manager assigns a default name of Activity1 to the activity. (Subsequent activities
are named Activity2, Activity3, etc.) Accordingly, Process Manager assigns a
default name of Activity1Input to Activity1’s input message and the name
Activity1Output to the activity’s output message. Even if you later change the
name of Activity1 to CodeRedFireAlarm, the name of its input and output
messages do not change, unless you change them manually (see procedure below).
They continue to have the default names of Activity1Input and Activity1Output.

DOMs are associated with messages, and DOM names (Input, Input1, Temp,
Output, etc.) are referenced off the message name. From there, normal XPath rules
apply. For example:

Activity1Output/Output/PRODUCTREQUEST/SKU

means the XPath node /PRODUCTREQUEST/SKU on the Output DOM of the
message named Activity1Output. You will see how this works in subsequent
examples and screenshots.

How to Define Message Mappings

To send data from a source activity to a target activity, you need to define at least
one message map.

NOTE: All message maps are defined at the target activity (the “receiver” of
incoming data), as described below.

To define a Message Map:

1 Select (click on) an activity. This is the activity whose data source(s) you
will specify.

Creating and Testing Processes 87

2 Bring the Object Properties panel into view if it is not already visible.
(Toggle its visibility using the Object Properties command under
Composer’s View menu.)

3 Select the Messages tab. The tab have an appearance similar to this:

4 In the upper half of the panel, you will see Type, Name, and Message
information, with the default Names showing for input, output, and fault
messages. You can enter a new Name for any message at this time if desired.

NOTE: Fault messages are discussed separately, later in this chapter.

5 In the lower half of the panel, you can define Source-to-Target message
mappings using XPath. Click the Plus icon to add a mapping. A dialog
appears.

6 Using the pulldown menu immediately under Source XPath Expression,
select the message that you want to use as the data source for this mapping.
The prepopulated list will contain output message names from all available
(legal) data sources. (In other words, you can choose to map data from any
activity that can be reached by back-traversal of links. This includes the
ProcessInput message itself.)

Process Manager User’s Guide88

7 In the Source XPath Expression text field area, enter any desired XPath
statement to specify a source element, nodetree, whole DOM, etc., coming
from the activity shown in the “from Activity” pulldown menu. (This menu
will be greyed out if there is only one incoming link to the current activity.
On join targets, this menu will be prepopulated with the names of all
available incoming messages.)

NOTE: It is a common case to specify “Output” (the source activity’s Output
DOM) as the sole incoming message part, as shown here.

8 (Optional) If you would like to generate XPath using Composer’s
Expression Builder, click the small “pencil and X” icon to the right of the
text field. This will bring up the XPath Expression Builder window:

The upper panes of this editor window are prepopulated with message trees,
XPath native script methods, etc., for your convenience in building XPath
expressions. Doubleclick any node in any tree to make the correct sub-
expression appear in the edit field. Click OK to go back to the Edit Map
dialog.

9 In the Target XPath Expression text field area, enter any desired XPath
statement to specify a target to receive data from the input message.

NOTE: It is a common case to specify “Input” (the target activity’s Input
DOM) as the target message part. This is equivalent to mapping Source data
to the Input DOM of the activity.

10 Click OK to dismiss the dialog.

Creating and Testing Processes 89

The Source and Target mapping information that you just specified are now
visible in the Messages tab of the Object Properties window, as shown above. (A
summary view of the info is also available in a rollover tooltip if you let the mouse
loiter over these fields.)

Mappings of this sort continue throughout the chain of activities shown in the
process graph. You will need to perform this mapping procedure at least once for
every activity that receives data.

Data Mapping for Start and End Activities

To specify the input to your process’s start activity (or activities), simply click on
the start activity, bring the Object Properties panel into view, and specify a
mapping from ProcessInput to the start activity, using the procedure given above.

If your start activity is named Activity1, the resulting map specification might
look like:

To specify a mapping from an end activity to ProcessOutput, click anywhere on
bare canvas, bring the Object Properties panel into view, and specify a mapping
from the end activity’s output message to the ProcessOutput message. The result
might look like:

Process Manager User’s Guide90

Selecting a Process Input Template

As mentioned earlier (in the discussion of how to create a new process), you can
specify an input template document for ProcessInput (for design-time testing
purposes) during the initial creation of the process. If you did not specify any
XML Templates at that time, or you now want to use a different template, simply
go to the File menu and select the Properties... command. A dialog will appear.
Select the Messages tab within that dialog. There, you will be able to add or
remove templates as desired.

Applying Flow Logic at the Activity Level

Activity flow logic (join conditions and exit conditions) can be specified in the
Object Properties panel. These conditions are optional: By default, the runtime
engine will assume that an empty condition is true.

To specify an Exit Condition:

1 Select (click on) an activity.

2 Bring the Object Properties panel into view if it is not already visible.
(Toggle its visibility using the Object Properties command under
Composer’s View menu.)

3 Select the Activity tab (or Subprocess, etc., as applicable to the selected
activity).

4 Next to Exit Condition, enter an XPath expression. This condition must
evaluate to true or false at runtime. If it evaluates to false, the activity will
execute again using the original input data. (See discussion in Chapter 2.)
The activity will continue to reexecute until the exit condition is true or a
timeout occurs.

Creating and Testing Processes 91

To specify a Join Condition:

1 Select (click on) a join activity—that is, any activity that has more than one
incoming link.

2 Bring the Object Properties panel into view if it is not already visible.
(Toggle its visibility using the Object Properties command under
Composer’s View menu.)

3 Select the Activity tab (or Subprocess, etc., as applicable to the selected
activity).

4 Next to Join Condition, enter a join expression based on the truth values of
incoming links. This condition must evaluate to true or false at runtime.
Optionally use the Expression Builder to build the join condition. Click the
blue icon at the right edge of the text field. The Expression Builder dialog
appears.

Process Manager User’s Guide92

5 The Links tree in the upper left is prepopulated with the names of available
incoming links. Link-expression syntax helpers are in the upper right.
Doubleclick on any leaf node in any tree to build an expression in the text-
edit field below. Then dismiss the dialog.

Recall that a join activity cannot fire until the join condition is true. In Deferred
Mode (default), a join condition is evaluated exactly once, when the truth values
of all incoming links are known. In Immediate Mode (which you can select on the
Object Properties panel), the join condition is evaluated as truth values become
known, and as soon as it is true, the join activity fires regardless of whether all
source activities have finished executing.

NOTE: If, during a design session, you assign a join condition to an activity and
later remove one or more incoming links, the join logic may no longer function as
intended. Be sure to remember to update join conditions any time the input links to
a join have been removed or replaced.

Timeouts and Retries

Timeout, Retry Count, and Retry Interval parameters are supported by Process
Manager so as to allow for complex choreographies between partners involving
timings and roundtrip interactions that are not addressed by simple
Request/Response and Solicit/Response scenarios.

NOTE: It’s important to keep in mind that Retry Count and Retry Interval come
into play only when a Timeout value has been specified. Otherwise, Retry Count
and Retry Interval are ignored.

See the discussion of fault trapping further below for a more detailed explanation
of how and under what conditions timeout faults can occur.

To specify Timeout and Retry Parameters

1 Click on an activity for which you wish to set Timeout and Retry
parameters.

2 Bring the Object Properties panel into view if it is not already visible.
(Toggle its visibility using the Object Properties command under
Composer’s View menu.)

Creating and Testing Processes 93

3 Select the Activity tab.

4 Next to Timeout, enter a value in days, minutes, or seconds (suffix values
‘d’,’m’, or ‘s’, respectively). Example: To specify 7 days, enter “7d”.

NOTE: If you use a unit specifier, you must enclose the entire value in
quotation marks. If you enter a number without units (and without quotation
marks) it will be interpreted as seconds.

5 If you entered a Timeout value, optionally enter a number in the text field
next to Retry Count. This is the number of times the activity will be retried
after the first try times out. If you do not enter a number, zero retries will be
attempted.

6 In the text field next to Retry Interval, enter a value representing the wait
time between retries (in seconds). The default is zero, meaning that as soon
as the activity times out, it will be retried with no wait. If the Retry Interval
is non-zero, Process Manager will wait the specified amount of time between
the timeout and the retry.

Process Manager User’s Guide94

Map Policy

Map Policy comes into play when multiple data sources (incoming messages)
have parts that map to the same location in the target activity’s input message(s).
For example, consider a process in which Activity1 and Activity2 have links to a
join activity, Activity3. If Output/ShipmentMode from Activity1Output maps to
Activity3Input/Input/ShipVia, and Output/Carrier from Activity2Output also
maps to Activity3Input/Input/ShipVia, the potential exists for a collision. The
result depends on whether you want to keep the last-arriving data (allowing
overwrites in time order, as they occur) or keep only the first-arriving data. To
specify this, you must set the Map Policy to LWW (Last Writer Wins) or FWW
(First Writer Wins), as appropriate.

NOTE: Recall that an activity does not have to be a join activity in order to receive
data from multiple upstream sources. Therefore, it’s possible for map policies to
come into play even when there is only one incoming control link to a target activity.

LWW, FWW, and Map Order

The choices for Map Policy are LWW (Last Writer Wins) or FWW (First Writer
Wins), or Map Order. The meanings of the first two choices are self-evident. Map
Order requires further explanation.

Map Order means that regardless of the timestamp on incoming messages, XPath-
to-XPath mappings will occur in the order in which the mappings are specified in
the Messages tab of the activity’s property sheet, going top to bottom.
Timestamps, in other words, are ignored. Messages are cached when they arrive,
and then—when mapping takes place—every message part is mapped according
to the literal order in which you have specified the mappings.

You would typically use this option as a way of dealing with overwrites when you
care more about where messages are coming from than you do about their actual
arrival order. For example, if several activities feed into a join, and one particular
source activity should always have write-preference over other feeder activities,
then you could use Map Order to give the preferred source a higher precedence
(for overwrite) than the others.

To set a Map Policy:

1 Click on an activity for which you wish to set a Map Policy.

2 Bring the Object Properties panel into view if it is not already visible.
(Toggle its visibility using the Object Properties command under
Composer’s View menu.)

3 Select the Activity tab.

Creating and Testing Processes 95

4 Use the pulldown menu next to Map Policy to specify Last Writer Wins
(LWW), First Writer Wins (FWW), or Map Order.

Fault Messages and Fault Handling

Faults generated by Process Manager are of two general kinds: System and
Timeout. Both are generated as special messages. The fault messages take the
place of the Activity Output message for the activity that raised the fault. In other
words, an activity implementation that faults out is not considered to produce
Output. An activity will therefore either produce an Output message or Fault
message, but not both.

System Faults

The runtime engine raises a System fault under the following circumstances:

An activity implementation generates an unhandled exception

A subprocess activity returns a fault message

The runtime engine encounters a message or message type that it doesn’t
know how to handle

A Timeout fault occurred and was not handled by an activity designed for
that purpose. (In this case, two faults are actually generated: one Timeout
and one System.)

When a System fault occurs, the process instance produces a message called
_SystemFault, with a part name called (also) _SystemFault. The DOM view of the
message looks like:

Process Manager User’s Guide96

Every System fault contains MainCode, SubCode, Message, ProcessID,
and ActivityName elements. The content of each element is visible in a rollover
tooltip as shown above for the Message element. Notice that the
Fault/Message element contains a Nested Message. The value of this Nested
Message is whatever custom string value you put in any Log or Raise Error action
(assuming the implementation is a Composer service or component).

Regardless of the cause, a fault (of any kind) will result in termination of a running
process, unless the fault is handled by an activity designed for that purpose. In this
respect, faults are similar to exceptions. If no handler exists, the fault “bubbles up”
to the process engine and the process simply allows the process instance to exit
with a fault message. Any activity instances in existence at the time of the
unhandled fault are aborted.

Fault Codes

MainCode values currently implemented include:

SubCode values currently implemented include:

Timeout Faults

The runtime engine enforces the following behavior when a Timeout value exists
on an activity:

When the activity is launched, a timer begins.

If the activity completes with an exit value of true prior to the timeout
period, control passes to outgoing link(s).

SYSTEM_FAULT_MAINCODE -1

TIMEOUT_FAULT_MAINCODE -2

COMPONENT_FAULT_SUBCODE 1

UNHANDLED_MESSAGE_SUBCODE 2

Creating and Testing Processes 97

If the activity completes with an exit value of false prior to the timeout
period, the activity is reexecuted immediately (which is the normal action for
all activities that finish with a false exit condition).

If the activity hasn’t finished running when the timeout is reached, the
runtime engine halts the activity and consults the Retry Count parameter. If
the Retry Count is non-zero, the Retry Interval parameter (if applicable) is
consulted, and the runtime engine waits for the time specified in Retry
Interval; then it resets the Timeout clock and reexecutes the activity using
the original data mappings. This execute-wait-retry cycle is repeated until
the Retry Count has been reached, at which point the engine raises a Timeout
fault.

If a Timeout fault is not handled by an activity, it will cause the runtime engine to
terminate the process.

The Timeout fault message has this appearance, in tree view:

The message elements are self-explanatory. The MainCode value is -2 for
Timeout (as explained above).

Fault Handling

Because faults can be handled by custom-designed activities (which in turn can be
implemented as Web Services, Composer Components, etc.), fault logic can be as
sophisticated as it needs to be. You can designate one fault handler activity for
each activity that needs one (its implementation could even consist of the same
Composer component in each case); or you could have a single fault-handling
activity that handles all faults for the entire process. An example of the latter is
shown in the graph below. Every activity has a link to
MyAllPurposeFaultHandler, which handles faults for the entire process.

Process Manager User’s Guide98

The triangle shape on each link signifiies that the link has been designed to handle
fault flow. The procedure below tells how to create the necessary control and data
links to handle faults.

To attach a fault handler to an activity:

1 Create the implementation of the fault handler activity, if you have not
already done so. (Since this activity will generally be local to the app server,
it usually makes sense to implement it as a Composer Component.)

2 Place the activity icon for the fault handler on the process graph.

3 Draw a link from the appropriate source activity (the activity that generates
the fault) to the fault-handler activity.

4 Click on the link you just drew, to select it.

5 Bring the Object Properties panel into view, if it is not already visible.

6 Click the Link tab. You should now be looking at something similar to the
following:

Creating and Testing Processes 99

7 Next to Source Result, use the pulldown menu to select the appropriate fault
type. In this case, _TimeoutFault was chosen.

NOTE: On the graph, the link will acquire a triangle icon at this point.

8 If a special condition applies to this link, enter an appropriate XPath
expression.

9 Save your work.

To create data mappings into a fault handler:

1 Click on the fault-handler activity to select it.

2 Bring the Object Properties panel into view.

3 Click the Messages tab.

4 In the bottom portion of the tab, click the Plus-sign icon to add a message.
The following dialog appears.

5 Select SystemFault or TimeoutFault, as appropriate, from the top left
pulldown menu, under Source XPath Expression.

6 In the pulldown menu next to from Activity, select the source activity for
this message.

Process Manager User’s Guide100

NOTE: All possible source activities will be listed—that is, any upstream
activity that is reachable by simple one-way back-traversal of links. When you
select one of these activities, you are creating a data link from that activity to
the fault handler. The source activity you choose from this list does not have
to be directly connected to the target activity by a control link, but in most
cases, you will want such a flow-control connection, since a data link, by
itself, isn’t enough to fire a fault handler. Bottom line: If you data-map a fault
message to an activity input, be sure, also, to draw a control link from the
source activity to the fault activity so that the fault activity will actually fire.

7 Dismiss the dialog by clicking OK.

8 Repeat Steps 4 through 7 for each activity that will feed into this fault
handler.

Animation and Testing
A unique and powerful feature of the Process Manager is that it allows you to run
and debug processes (step into or over activities, etc.) in the design-time
environment. And because Process Designer runs within Composer itself, you can
step directly into any Composer Components that make up the implementation(s)
of activities. Once inside the component, you can step through the action model
just as you would during a component design session, watch DOMs change in real
time, set breakpoints, etc. You can debug activities at the same time that you test
and debug your process.

You can either animate or execute a process via the special toolbar buttons
provided for this purpose:

The difference between Execute and Animate is that Execute runs the process
from start to finish without interruption, whereas Animate allows you to step
through the process.

Process Designer gives valuable visual feedback during animation. Whether you
Execute or Animate a process, you can see individual control links highlight
(become thicker) as control passes from one highlighted activity to the next, and if
a link cannot be followed (because its condition is false), that link’s representation
changes from a solid line to a dashed line. Therefore it’s easy to see, at a glance,
which links are being followed and which activities are executing.

Creating and Testing Processes 101

To animate a process:

1 (Optional) Clear the output pane (where system messages appear) at the
bottom of the Composer main window. To do this, click inside the pane, type
Control-A (Select All), and hit Backspace.

2 If you have not already assigned a ProcessInput data template to the
process for test purposes, select Properties from the File menu, then click
the Messages tab. Otherwise, skip to Step 6 below.

3 Choose and/or Add an Input Message by selecting from available XML
Templates using the pulldown menus in the upper half of the dialog.
Likewise, choose an Output template if needed.

4 Dismiss the Properties dialog by clicking OK.

5 Create data mappings between ProcessInput and your start activity. (The
procedure for this was discussed previously. See “Data Mapping for Start
and End Activities” earlier in this chapter.)

6 Click the Animate button in the Process Designer toolbar. The start activity
will highlight. (See below.) Also notice that a new toolbar appears at the
bottom of the graph window. The icons, from left to right, are Animate
(dimmed when active), Stop, Step Into, Step Over, Run to Breakpoint, Set
Breakpoint, and Pause:

Process Manager User’s Guide102

7 If you wish to step into the activity implementation, click the Step Into
button. This will open the activity’s underlying component in the appropriate
component editor environment within Composer. You can then step through
the component’s action list as you normally would in Composer. After you
step through the last action in the action list, the process graph window will
reappear.

Start activity gains focus when
animation is begun.

Creating and Testing Processes 103

8 If you wish to step over the currently highlighted activity, click the Step
Over button. The appropriate link(s) will be followed and links will change
appearance either to a double-thickness solid line (for true links) or a dotted
line (for false links). Execution will stop at the target activity (or activities).
You can then use Step Over or Step Into again, and so on.

9 To run to the end of the process, click the Run to End icon. When the
process is finished running, a small alert dialog will appear, explaining
whether the process finished normally or errored out in some manner.

Note that as you step through the chain of control, various links will highlight and
change appearance to reflect the actual path followed during execution. For
example, in the graph shown below, animation has proceeded past the start activity
to the next activity in the flow. One of the two outgoing links from the start activity
has been followed (namely, the dark, solid link on the left); the other link (with a
dotted line appearance; right) was not followed, because its transition condition
was false.

Dotted line indicates that
this link was not traversedThis link was followed

Animation has proceeded
to this point

Not yet traveled This link has been set to false
automatically by the runtime
engine (dead-path elimination)

Green “marching arrows”
mean that this activity’s
implementation is
currently executing

Process Manager User’s Guide104

Notice that because the link from AcceptInquiry to ProductLookup was not
followed, the link from ProductLookup to MergeProductAndInventory is also
shown as a dotted line (even though execution has not proceeded to this point yet),
through dead path elimination. The process engine knows that if the link from
AcceptInquiry to ProductLookup is false, there is no way the link from
ProductLookup to MergeProductAndInventory can ever be followed—hence this
downstream link can be (and in fact must be) set to false as well. The reason this
must occur is that the join condition at MergeProductAndInventory will never
evaluate if it is waiting on the truth value of a feeder link that will never evaluate.
(See the discussion of “Dead Links and Synchronization Failure”, Chapter 1.)

Aids to Debugging

Process Designer provides many ways to monitor the step-by-step execution of a
process. For example, valuable realtime feedback is given (in plain text form) in
the Log pane of the Composer window, and you can look at any activity’s input or
output DOMs (or even the ProcessInput and ProcessOutput) along with DOM
views of fault messages, to see exactly what data values were produced at various
points in the flow.

Watching System Messages at Animation Time

Any time you execute or animate a process in Process Designer, system messages
will appear in the Log pane at the bottom of the main Composer window. See
below.

Creating and Testing Processes 105

The information in this pane is quite detailed. Every activity startup, link
evaluation, join evaluation, activity completion, activity error—every event—is
logged so that you can go back through the chain of events and see exactly what
executed and when, and what failed and why.

NOTE: Two numbers (one of them in parentheses) precede every message. The
first number is the ProcessID for the current instance. The second number, in
parens, is the event code for the event in question (6 for activity start, 7 for activity
complete, and so on).

If a fault occurs, you can easily identify the offending activity; and you will also
see the complete fault message (in XML form):

If an activity was implemented as a Composer Component or Subprocess, you can
doubleclick on the activity in question (right on the process graph), and the
component will open in the appropriate component editor. You can then make
changes to the component, save it, and return to the Process Designer for another
animation session.

NOTE: When you have made changes to an action model, be sure to Save the
component (save the changes) before reexecuting the process. Otherwise you will
get the same error(s) again.

Process Manager User’s Guide106

Inspecting Messages

Any message produced at any point in a process can be displayed in DOM view,
text view, or stylized view in its own pane. This includes ProcessInput,
ProcessOutput, _TimeoutFault, and _SystemFault messages as well as all activity
input and output messages.

To make a message visible (or to hide an existing one):

1 From the main menu bar, select View > XML Documents > Show/Hide:

2 In the dialog that appears, use the left-right arrow buttons to move
messages to the Hide or Show columns as necessary.

NOTE: The prepopulated list on the right will contain the names of only
those messages that were actually produced or used in the execution of the
process. If a process terminates early, it is possible that some activities’
messages won’t be listed.

3 (Optional) Use the up-down arrow buttons to reorder the Show items as
desired.

4 Dismiss the dialog by clicking OK.

5 The messages that you designated under Show will now appear in their own
data panes. See below.

Creating and Testing Processes 107

Note that you can obtain different views of any DOM by doing a right-
mouse-click on the DOM in question, then choosing View > As Text (or
Tree, or Stylized) from the context menu, as shown above.

Message in
Text View

Message in
DOM View

Process Manager User’s Guide108

109

4

The Process Designer User Interface

The Process Designer User InterfaceChapter 4

This chapter describes the user interface functionality of Composer Process
Designer, which is the design-time environment in which you will create your
process models.

Main Features
The Process Designer is a visual editing environment for creating process models
represented by directed-edge graphs. In this environment, you can quickly create
and arrange activities (represented by icons), draw links between activities, and
designate data mappings, link conditions, etc., between and among activities. The
point-and-click nature of the drawing environment allows for rapid creation of
flow graphs.

An important feature of Process Designer is that any process can be run in
animation mode at design time, so that process models can be designed, tested,
and debugged in a single session. In animation mode, you can step into or over
activities, set breakpoints, watch data transformations as they occur, see log
messages, observe the behavior of splits and joins, etc., all in real time. You can
also drill down on activity implementations, make changes to action models in
components, edit message maps or documents, modify link or join logic, and so
forth, interactively, without leaving the session. This capability greatly speeds
development.

The Process Designer Window

The Process Designer runs inside Composer (along with other component
editors), so the overall environment should look familiar to any Composer user.
(See graphic, below.)

When Process Designer is the front editor, three new panes are visible:

Process Manager User’s Guide110

 The Process Model Pane (also called the canvas), where you draw the
process model graph. This is the largest pane.

 The Object Properties Pane, in which you can specify property values for
various elements of the process model (e.g., activities, links, text labels, and
shapes).

 The Overview Pane, which contains a “bombsight view” of the main
canvas. By holding the mouse down and dragging the blue rectangle within
this mini-window, you can pan across the main canvas, setting the visual
focus to a particular region instantly, without using scrollbars.

Toolbar

Composer Process Designer adds several new tools to the Composer toolbar, as
shown below.

The Process Designer User Interface 111

Tool Icon Usage

Selection Tool This pointer allows you to select
items by clicking on them. Once
selected, an item can be dragged to
any spot on the canvas. (You can
shift-click to select multiple elements
individually.)

Drag The drag tool allows you to pull the
entire canvas around, so that you can
“pan across” the canvas and bring
any region of interest into view.

Text Box Click on the canvas with this tool to
create a text label inside a rectangle.

Activity This tool allows you to place new
activity elements on the canvas.

Link This tool lets you connect any two
activities with an arrow, representing
a control-flow link.

Shape You can place resizable filled
rectangles or ovals on the canvas
with this tool.

Process Manager User’s Guide112

Graph Elements

Graph elements include activities, links, text boxes, and shapes (rect and oval).
The creation tools for these elements can be accessed via the Process menu on the
main Composer menubar or via tool icons on the main toolbar. They operate in
point-and-click fashion.

NOTE: The appearance characteristics (colors, borders, text justification, etc.) for
each of the different graph-element types discussed below can be adjusted by
means of controls located in the UI tab of the Object Properties pane. (You can
toggle this pane’s visibility by means of the Object Properties command under the
View menu.)

Activities

Activities can be of five types, as depicted above. The various activity types are
briefly described below.

Magnification A dropdown menu allows you to
choose from several preset viewing
magnifications. You can also enter a
custom magnification factor into the
text field next to the dropdown.

Execute,
Animate, Stop
Animation, and
Reset

These buttons allow you to start or
stop a process (for testing purposes)
within the design-time environment.
The Reset button (lower left) is
greyed out until an animation has
finished running; pressing it resets
the graphic appearance of the flow
diagram.

Tool Icon Usage

Reset

The Process Designer User Interface 113

To create an instance of one of these activity types in your graph, simply select the
corresponding tool icon from the main toolbar (or the flyout icon list under the
icon), then click anywhere on the main canvas.

Activity Type Description

Component
Activity

The Component Activity provides for runtime
interaction with a Component or Service to interact with
one or more external systems using one or more
Composer Components (e.g. JDBC, 3270, 5250, CICS
RPC, JMS, HTML, Telnet, EDI or XML Map as well as
Composer JMS Services or Composer Web Services).
One can drill down on a Component Activity to view
and edit the Composer Component’s action model.

Web Service
Receive Activity

The Web Service Receive Activity provides for runtime
interaction with a published Web Service and
correlates a received message with a current process
instance.

Web Service
Send Activity

The Web Service Send Activity provides for runtime
interaction with a published Web Service. It enables
the Process Manager user to select the Web Service’s
WSDL Resource, Service Name, Binding, Operation,
Endpoint Locator and Connection. This is similar to the
WS Interchange Action introduced in Composer 3.0.

Subprocess
Activity

A Subprocess Activity represents any process created
in Process Designer. This effectively means a process
can call another process. It allows for a layered,
hierarchical flow architecture. One can doubleclick on
a subprocess Activity to view and edit the subprocess
graph.

Synchronize
Subprocesses

This is a specialized activity type that allows the
merging of information returned from a repetitively
executed subprocess.

Process Manager User’s Guide114

Links

The Link tool allows you to connect activities with a directed edge (arrow). Its
operation is very simple. First, select the tool from the toolbar. Then click on any
activity; this becomes the source activity for the link. With the mouse still down,
drag out a line to the desired target activity. (Be sure the line extends not just to
the activity, but actually over the middle of the activity icon.) When you let go of
the mouse, an arrowhead will appear on the “target end” of the link and the two
activities will be linked in terms of control flow. At this point, if you use the
Selection cursor to drag either activity around the canvas, the link will
automatically expand and/or reorient as necessary so that both activities remain
connected.

Text Boxes

The Text tool allows you to place text boxes on the canvas. When you click on the
canvas, a rectangle will appear with the word “Untitled.” You can then change the
text in the box, set its background and outline colors, etc., by entering appropriate
settings in the UI tab of the Object Properties pane.

Text boxes are simply arbitrary text labels that you can use at various spots around
the canvas to document activity characteristics, control-flow intents, etc., or to
indicate titles, author info, revision dates, and so on. Text boxes can be
repositioned (by dragging) at any time and have no effect on control flow. Their
use is optional.

By using the controls in the UI tab of the Object Properties pane, you can change
a text box’s appearance, not only with regard to colors, resizability, margins and
centering, etc., but also involving text size, font, and style.

Shapes

The Shapes tool will let you put rectangles, ovals, or your own .jpg or .gif graphics
anywhere on the canvas. These elements are strictly decorative and have no effect
on process runtime dynamics.

Menu Commands

In Composer, when the Process Manager is the front editor, a number of process-
specific menu commands appear in Composer’s menus. The File, View, Process,
and Layout menu structures are illustrated and discussed below.

The Process Designer User Interface 115

The only addition to Composer’s File menu is the Print Graph command.

Menu Submenu Command Description

File Print Graph Print This selection allows you to print the
complete or selected graph and
descriptions

File Print Graph Print Setup This selection allows you to determine
what portion of the process should be
printed – see dialog below for more
information.

File Print Graph Print
Preview

This selection allows you to preview
the selected items before printing.

File menu:

Process Manager User’s Guide116

Menu Submenu Command Description

View XML
Documents

Brings up submenu allowing you to
change visibility, order and view of
XML documents

View Zoom Many The Zoom tool lets you to set the view
magnification (on a percentage basis)
for the canvas. Several preset values
are available via pulldown menu. You
can also specify any arbitrary
percentage by selecting Custom
Zoom.

View Show/Hide
Grid

Toggles the grid’s visibility (see
below).

View Grid Style Grid Type You can choose to either have a blank
background or (in conjunction with the
Grid Size option) a grid view. The
default is None.

View Grid Style Grid Size When in grid view mode, this
command sets the spacing between
lines or dots.

View Snap to
Grid

Align process objects to grid lines

View menu:

The Process Designer User Interface 117

.The Process Menu commands are explained below.

View Overview
Window

Toggles the visibility of the Overview
pane (“bombsight view”) while creating
or editing a layout.

View Object
Properties

Toggles the visibility of the Object
Properties pane while creating or
editing a layout. This pane is where
data mappings (messages) are
specified.

View Enable
Docking

Allows modal windows described
above to be docked if they are brought
near an edge of the graph. The
default is On.

Menu Submenu Command Description

Process Execute Runs a process from start to
finish.

Process Clear
Execution
Status

This menu command
duplicates the functionality of
the Reset button on the far
right side of the toolbar; it
resets the graphics state(s) of
all icons, links, etc. to the
original pre-animation state(s).

Process menu:

Process Manager User’s Guide118

Process Reload XML
Documents

Performs the same function
as Reload in the Component
menu item when in a
Component Editor.

Process Add Watch Allows you to identify certain
data items and examine their
data values during the
execution of a component as
a debugging aid.

Process Create
Activity

Composer
Component

Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Component
Activity.

Process Create
Activity

Subprocess Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Subprocess.

Process Create
Activity

Synchronize
Subprocesses

Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Synchronize
Subprocesses Activity.

Process Create
Activity

Web Service
Receive

Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Web Service
Receive Activity.

Process Create
Activity

Web Service
Send

Changes the active tool to the
Activity tool and puts the tool
in Composer Component
mode so that a click on the
canvas will create a new Web
Service Send Activity.

Process Create Link Changes the active tool to the
Link tool.

The Process Designer User Interface 119

Process Create
Graphic

Rectangle Changes the active tool to the
Graphics tool and configures it
so that a click on the canvas
will create a resizable
rectangle.

Process Create
Graphic

Oval Changes the active tool to the
Graphics tool and configures it
so that a click on the canvas
will create a resizable oval.

Process Create
Graphic

Rounded
Rectangle

Changes the active tool to the
Graphics tool and configures it
so that a click on the canvas
will create a resizable,
rounded rectangle.

Process Create
Graphic

Diamond Changes the active tool to the
Graphics tool and configures it
so that a click on the canvas
will create a resizable
diamond shape.

Process Create
Graphic

Picture Changes the active tool to the
Graphics tool and configures it
so that a click on the canvas
will cause an image file (.jpg
or .gif) to be placed. You can
specify the actual image file in
the UI tab of the canvas’s
property sheet (see end of this
chapter).

Process Create Text Changes the active tool to the
Text tool.

Process Select Changes the current tool to
the arrow cursor (for selection
of graph items).

Process Pan Changes the current tool to
the Hand tool to allow canvas
panning for fast navigation of
large graphs.

Process Manager User’s Guide120

Process Marquee
Zoom

This option is useful only
when the Overview Window
(View > Overview Window)
is in view. When this option is
active, you can click outside
the blue marquee box to zoom
the canvas to larger
magnification.

Process Interactive
Zoom

Similar to the above, but
allows you to drag the corner
handles of the marquee box
(blue box) to “resize the view.”

Process Navigate
Edges

Changes the active tool in
such a way that you can click
on any activity and see the
graph animate (without
executing any activities) along
link paths. No executables are
run.

Process Sticky Tools Allows you to select a tool
once and have it remain the
selected tool. This will allow
you to drop multiple activities
on the canvas or draw multiple
links without selecting the Link
tool multiple times.

Menu Command Description

Layout menu:

The Process Designer User Interface 121

Process Properties
General info for a whole process can be accessed via File > Properties. The dialog
that appears has two tabs, Header Info and Messages. The Header Info tab gives
Name and comment-type information about the process in question. The
Messages tab contains XML Template information for the input and output
messages of the process.

Layout Global Layout Default layout mode: Entire graph is cached in
memory at design time.

Layout Incremental
Layout

Optional layout mode that uses memory more
efficiently.

Layout Circular
Layout

Arranges nodes in a hub-and-spoke manner.
See discussion elsewhere under “Layout
Properties”.

Layout Hierarchical
Layout

Applies the familiar “organizational chart” style
of diagramming, in which top-down
relationships are emphasized.

Layout Orthogonal
Layout

Constrains nodes and links to a row-and-
column motif.

Layout Symmetric
Layout

Edge crossings are minimized and node
distributions are made uniform so that
symmetrical relationships are emphasized.

Layout Tree Layout Applies the familiar “family tree” layout to a
graph, similar to the hierarchical style
described above, except that links are not
parallel and seldom run perfectly horizontal or
vertical.

Layout Properties Brings up a preferences dialog for fine-tuning
the above settings.

Process Manager User’s Guide122

Object Properties
Each type of object depicted in a directed edge graph created in Process Designer
has its own set of properties. The properties are context-sensitive: they vary
according to the type of object that you have selected on the canvas. To see the
current properties for any object, simply select an object (by clicking on it using
the Pointer tool) and toggle Object Properties under the View menu (if the Object
Properties palette is not already visible).

The Object Properties palette (equivalently referred to as the property sheet for an
object) is where you can specify such important activity attributes as:

 Exit Condition

 Join Condition

 Timeout

 Retry Count

 Retry Interval

 Map Policy

And more (see below)

The following sections describe what the property sheets for the various process
elements look like when the appropriate type of object has focus.

The Process Designer User Interface 123

Activity Properties

The Process Manager supports five activity types, each with its own set of object
properties: Composer Component, Web Service Send, Web Service Receive,
Subprocess, and Synchronize Subprocesses. The property sheets for each are
discussed in some detail below.

Composer Component

The Component Activity Object Properties panel has three tabs: Activity;
Messages, and UI. Their appearances are illustrated below; their functionality is
discussed in the tables that follow.

Note that all Object Properties tabs and panels are context-aware: Their contents
update automatically to reflect the attributes of the activity that you have selected
on the canvas. Likewise, any changes you make in any of the property settings will
take effect in real time, as soon as the field in question loses focus. (You may have
to click outside of a property field in order for a change to take effect.)

Activity Tab

Property
Control
Type Usage

Activity Name Text field This is the name shown under the
activity icon on the canvas.

Process Manager User’s Guide124

Activity Type Dropdown A dropdown list allows you to change
the activity type of the currently
selected activity. The dropdown shows
the five categories of activity type.

Component Type Dropdown A dropdown displays a list of available
Composer Component types (XML
Map, Web Service, JDBC Component,
and so on).

Component Name Dropdown The dropdown displays a list of
Component Names corresponding to
any components of the chosen
Component Type (above) that you have
already built in the current project.

Exit Condition Text Field An Exit Condition is a Boolean XPath
expression, the purpose of which is to
determine whether the Activity has
finished normally.

The Exit Condition’s expression can
refer to the output message of the
Activity or to output of any activity that
ran before the Activity on the same
control path.

If the Exit Condition evaluates to true,
the activity is treated as “Complete.” If
the Activity is complete, the process
resumes normal flow of control;
otherwise, the Activity is executed
again.

The Activity will be executed X number
of times where X is the Retry Count
defined below.

The Retry Interval defines the time
between execution retries.

The Process Designer User Interface 125

Join Condition

(appears only on
join targets)

Text Field A Join Condition is a Boolean
expression in simple OR/AND/NOT
syntax, the purpose of which is to
synchronize parallel work based on the
truth values of incoming links.

An Activity is called a Join Activity if it
has more than one incoming link. The
Join Activity will fire if and only if the
Join Condition is true. The default, if no
condition is explicitly specified, is true.

Join Evaluation

(appears only on
join targets)

Dropdown The choices are Deferred and
Immediate. For the meaning of these
options, see Chapter 1.

Timeout Text Field The Timeout attribute defines a time
interval in which an Activity must
complete its work. Once a time-out
occurs, the Retry Count (if any) will
apply and the activity will be
reexecuted.

After a timeout occurs, the Process
Server will wait a certain length of time
(specified in the Retry Interval) before
kicking off the next retry. The Retry
Interval, below, defines the wait time
before an activity can be retried.

Timeout and Retry settings are
optional. The default is zero retries and
a retry interval of zero.

Retry Count Text Field The number of times to retry an Activity.

Retry Interval Text Field The length of time to wait between
retries, should a retry be necessary.

Map Policy Text Field Last Writer Wins, First Writer Wins, or
Map Order. Note that this value is
important only when there is the
potential for two activities to overwrite
each other’s data (i.e., two source
activities contend for the same XPath
locations in the target activity’s input
message).

Process Manager User’s Guide126

Messages Tab

Property Control Type Usage

Messages Three columns:

• Type (non-
editable)

• Name

• Message (non-
editable)

If WSDL exists, “Type” and
“Message” are pulled from the
WSDL’s Port Type Operations Input
and Output elements. “Name”
defaults to the default Activity Name
appended by the type (e.g.
Activity2Output).

Maps: + and - icons Add and Delete mappings from last
activity’s output to current input.

Source Button The Source XPath expression
(applies to output from previous
activity in the graph)

Target Button The Target XPath expression (applies
to currently selected activity’s input)

The Process Designer User Interface 127

UI Tab

Property Control Type Usage

Show
Label

Checkbox Determines whether a text label (name)
appears below the currently selected
activity object.

Picture Text Field The path to the image (Gif or JPEG) that
will be used for the display of the currently
selected activity object. Use this to point
to custom icon art, if desired. (This is for
design time only. Your art will not be
deployed in any jar files.)

Font Dialog appears Clicking on the Value field causes the
“Choose Font” dialog to be displayed.
This dialog has three dropdowns which
allow for the selection of a font, style
(Plain, Bold, Italic, Bold Italic) and point
size.

Text
Color

Color picker Displays the color to be used for text
associated with the current object.
Clicking on this bar causes a color picker
dialog to appear.

Process Manager User’s Guide128

Web Service Send
The Web Service Send activity has its own unique object properties, which are
reflected in the Activity tab on the Object Properties panel.

NOTE: The Messages and UI tabs for this activity are the same as for the
Component activity described above. Only the Activity tab will be described below.

Text
Justificat
ion

Dropdown menu Left

Center (default)

Right

Color Color picker This is the background color for the
selected object. Clicking on this bar
causes a color picker dialog to appear.

Transpar
ent

Checkbox Checked = Transparent object,
Unchecked = Opaque

Border
Color

Color picker Border color for the selected object.
Clicking on this bar causes a color picker
dialog to appear.

Show
Border

Checkbox Checked = Border Displayed; Unchecked
= Border not displayed.

Resizabil
ity

Dropdown: Choices are:

No Fit

Tight Fit

Tight Width

Tight Height

Tight Fit Preserve Aspect

Preserve Aspect

Width Text Field Item width. 40.0 (Default)

Height Text Field Item height. 32.0 (Default)

X Center Text Field Position X coordinate

Y Center Text Field Position Y coordinate

The Process Designer User Interface 129

Web Service Send Activity Tab

Property Control Type Usage

Activity
Type

Dropdown A dropdown list of Activity Types

Activity
Name

Activity 1…n
(default)

The name of the Activity.

WSDL
Resource

Dropdown A dropdown list of the available WSDL
Resources within the Composer project.

Service
Name

Dropdown A dropdown list of the available Web
Services within the WSDL Resource.

Service Port
or Binding

Dropdown A dropdown list of the Binding Names
within the WSDL Resource.

Operation Dropdown A dropdown list of the Operation Names
within the WSDL Resource.

Endpoint
Locator

XPath
Expression

Enter the Endpoint Location (usually a
URL pointing at a servlet) for the Web
Service you wish to use, wrapped in
quotation marks. (Alternatively, enter an
XPath expression that will evaluate to an
Endpoint Location at runtime.)

Connection Connection A dropdown list of Connections.

Process Manager User’s Guide130

Messages and UI Tabs for Web Service Send

The settings on these tabs work the same as described for the Component Activity
(already discussed).

HTTP
Params

Pushbutton This displays the ‘HTTP Header
Parameters’ dialog, where you can
specify content-length and other common
HTTP parameters.

Exit
Condition

Text Field See discussion under “Exit Condition”,
page 124.

Join
Condition
(as
applicable)

Text Field See discussion under “Join Condition”,
page 124.

Join
Evaluation

Dropdown Like the Join Condition field, this field will
only appear when the target activity is a
join activity. The dropdown choices
(Immediate, Deferred) determine the
join’s evaluation mode.

Timeout Text Field See discussion under “Exit Condition” on
page 124.

Retry Count Numeric Field See discussion under “Retry Count”,
page 125.

Retry
Interval

Text Field See discussion under “Retry Interval”,
page 125.

Map Policy Text Field See discussion under “Map Policy”, page
125.

The Process Designer User Interface 131

Web Service Receive

Web Service Receive Activity Tab

Property
Control
Type Usage

Activity Type Dropdown A dropdown list of available Activity
Types

Activity Name Activity
1…n
(default)

The name of the Activity.

Implementation
Type

Dropdown One of: Web Service, JMS Service, or
External.

WSDL Resource Dropdown A dropdown list of the available WSDL
Resources within the Composer project.

WSDL Port Type Dropdown The port type for this service.

WSDL Operation Dropdown A dropdown list of the Operation Names
within the WSDL Resource.

Correlation ID Text Field Arbitrary user-defined value, used to
uniquely identify a transaction

Process Manager User’s Guide132

Messages and UI Tabs for Web Service Receive

The settings on these tabs operate the same as described earlier for the Component
Activity (see above).

Subprocess

Addressee Text Field Arbitrary string label, typically to define
the “owner” (name of an individual)
associated with this particular
transaction or activity

Priority Text Field Some arbitrary numeric value relating,
typically, to the importance of this activity
or work item

Exit Condition Text Field See discussion under “Exit Condition”,
page 124.

Join Condition
(as applicable)

Text Field See discussion under “Join Condition”,
page 124.

Timeout Text Field See discussion under “Exit Condition”
on page 124.

Retry Count Numeric
Field

See discussion under “Retry Count”,
page 125.

Retry Interval Text Field See discussion under “Retry Interval”,
page 125.

Map Policy Text Field See discussion under “Map Policy”,
page 125.

The Process Designer User Interface 133

All properties on all tabs of the Object Properties panel for Subprocess have
exactly the same names (and operate the same way) as for the Composer
Component properties, except for the Create Operation property, which is one of
spawn or call, to reflect whether the subprocess should be invoked
asynchronously (“fire and forget”) or synchronously (poll until response comes).

Synchronize Subprocesses

The Synchronize Subprocesses activity type is a specialized activity that
coordinates the “fan-in” of multiple results from fanned-out subprocesses. See the
discussion of “Synchronize Subprocesses Activity” in a later chapter.

Property Control Type Usage

Activity Type Dropdown A dropdown list of available Activity
Types

Activity Name Activity 1…n
(default)

The name of this Activity.

Component
Type

Dropdown A list of available components in this
Composer project.

Fault Handling Dropdown Two choices: Fail on Any Fault, or Fail If
All Fail.

Subprocess
List

Text Field
(XPath)

XPath locations of the ProcessInfo data
for fanned out subprocesses.

Exit Condition Text Field See discussion under “Exit Condition”,
page 124.

Process Manager User’s Guide134

Link
The Link Object Properties has two tabs: Link and UI.

Link Tab

Join Condition
(as applicable)

Text Field See discussion under “Join Condition”,
page 124.

Timeout Text Field See discussion under “Exit Condition”
on page 124.

Retry Count Numeric Field See discussion under “Retry Count”,
page 125.

Retry Interval Text Field See discussion under “Retry Interval”,
page 125.

Map Policy Text Field See discussion under “Map Policy”,
page 125.

Property Control Usage

Link Name Text Field The link’s name. This name is also used
in join-condition expressions.

Source Result Dropdown Designates the source activity of the link.

Condition Text Field Specifies the XPath condition for the link.

The Process Designer User Interface 135

UI Tab for Links

Property Control Usage

Show Label Checkbox Toggles the visibility of the link name.

Font Text Field Clicking this field will cause a dialog
to appear. In the dialog, you can set
various font properties.

Text Color Color Picker Allows you to set the color of the text
(link name) associated with a link.

Text
Justification

Dropdown Menu Center, Left Justify, Right Justify.

Transparent Checkbox Toggles the link’s transparency on/off.

Border Color Color Picker Allows you to select the color of the
outline of the link.

Show Border Checkbox Toggles the border (draw/no-draw).

Resizability Dropdown Menu Allows you to specify various link
drawing policies.

Width Text Field Allows you to specify the overall width
of the link.

Height Text Field Allows you to specify the overall
height of the link.

Process Manager User’s Guide136

Graph Object Properties
The Process Object (or graph) property sheet has a Messages tab and a UI tab. To
see the graph’s properties, click anywhere on the bare canvas, then bring the
Object Properties palette into view (use the View menu’s Object Properties
command). You will use this window to set overall process input, output, and fault
message mappings, and customize the appearance of the graph.

Process Messages Tab

The Messages tab is where you will typically specify the end-activity-to-process-
output data mapping(s). For example, if Activity4 on your graph is the end activity
for the process (the final activity to execute), and you want the process to return a
message containing Activity4’s output, this is where you would specify the
ProcessOutput mapping. See example below.

In the above example, the activity Return_Ack is the end activity for the process.
Its output is mapped to $ProcessOutput/Output, as shown at the bottom of
the Object Properties pane. The first step in setting up this pane was to click on the
bare canvas (thus deselecting all activities, links, and other graphic elements).
This makes the Object Properties pane reflect the properties of the process-as-a-
whole. (Notice the input and output messages are simply ProcessInput and
ProcessOutput.)

The Process Designer User Interface 137

Graph UI Tab

The graph lUI tab has two purposes: It allows you to define custom appearance-
related settings for the overall graph, and it provides summary information about
the number of nodes on the graph, the number of links, labels, etc.

Remember that this set of properties is reachable only when you click on bare
canvas.

NOTE: For additional information about how to customize the appearance of a
graph, see the section “Layout Properties” further below.

The following table describes the properties available in the UI tab of the process
Object Properties panel.

Attribute Value Description

Nodes 0—n This field is not editable. It provides a
numeric count of the graph’s Nodes.

Edges 0—n This field is not editable. It provides a
numeric count of the graph’s Edges.

Labels 0—n This field is not editable. It provides a
numeric count of the graph’s Labels.

Subgraphs 0—n This field is not editable. It provides a
numeric count of the graph’s Subgraphs.

Process Manager User’s Guide138

Selected Node Properties on UI Tab
The Selected Node Properties UI tab is for inspecting or setting appearance
attributes on objects shown on the graph. Single-click an object to select it, then
select the UI tab from the Object Properties pane; then choose Selected Node
Properties from the dropdown menu control at the top of the tab. See below.

Background
Color

Displays
the color
itself. The
default is
white.

This is the background color.

Picture Check Box Checked = display a picture on the graph, Not
Checked = don’t display a picture on the
graph.

Picture
Filename

The
filename of
the Picture.

The full path name of the picture file which
may be a JPEG or a Gif.

Picture Style World
Offset or
Device
Offset

World Offset displays the picture in the middle
of the diagram. Device Offset displays the
picture at the offset defined by the Picture X
Offset and the Picture Y Offset.

Tile Picture Check Box Checked = tile the picture, Not Checked =
display the picture at the offset.

Picture X
Offset

0.0 Used to change the onscreen x-offset.

Picture Y
Offset

0.0 Used to change the onscreen y-offset.

The Process Designer User Interface 139

UI Tab (Selected Node Properties)

Attribute Value Description

Name Activity1…n
(Default)

This is the name of the Activity. It
defaults to Activity1…n.

Font Dialog

• SanSerif (default)

• Serif

• MonoSpaced

• DialogInput

Clicking on the Value field causes
the ‘Choose Font’ dialog to be
displayed. This dialog has three
dropdowns which allow for the
selection of a font, font style (Plain,
Bold, Italic, Bold Italic) and Font
Size.

Text Color Displays the color
itself. The default is
black.

Click on the Value field causes the
‘Choose Color’ dialog to be
displayed.

Text
Justification

Left

Center (default)

Right

This is a dropdown.

Color Displays the color
itself. The default is
yellow.

This is the background color. Click
on the Value field causes the
‘Choose Color’ dialog to be
displayed.

Process Manager User’s Guide140

Text Object Properties
The UI tab for Text objects, Shapes, etc., has a Selected Node Properties pane with
attributes similar to those described above. The table below describes the
properties in detail.

Transparent Checkbox Checked = Transparent,
Unchecked = Opaque

Border Color Displays the color
itself. The default is
black.

Click on the Value field causes the
‘Choose Color’ dialog to be
displayed.

Show Border Checkbox Checked = Border Displayed;
Unchecked = Border not displayed.

Resizability Dropdown:

• No Fit

• Tight Fit

• Tight Width

• Tight Height

• Tight Fit Preserve
Aspect

• Preserve Aspect

Width Text Field 40.0 (Default)

Height Text Field 40.0 (Default)

X Center Text Field X coordinate

Y Center Text Field Y coordinate

The Process Designer User Interface 141

UI Tab

Attribute Value Description

Name Untitled This is the Name of the text object as
well as the Text/Caption/Label itself.

Margin
Width

3.0 (default) This is the width of the margin to the
left and right of the text.

Margin
Height

1.0 (default) This is the height of the margin to the
top and bottom of the text.

Font Dialog

• SanSerif
(default)

• Serif

• MonoSpaced

• DialogInput

Clicking on the Value field causes the
‘Choose Font’ dialog to be displayed.
This dialog has three dropdowns,
which allow for the selection of a font,
font style (Plain, Bold, Italic, Bold
Italic) and Font Size.

Text Color Displays the color
itself. The default
is black.

Click on the Value field causes the
‘Choose Color’ dialog to be
displayed.

Text
Justification

Left

Center (default)

Right

This is a dropdown.

Color Displays the color
itself. The default
is white.

This is the background color. Click
on the Value field causes the ‘Choose
Color’ dialog to be displayed.

Transparent Checkbox Checked = Transparent, Unchecked
= Opaque

Border Color Displays the color
itself. The default
is black.

Click on the Value field causes the
‘Choose Color’ dialog to be
displayed.

Show
Border

Checkbox Checked = Border Displayed;
Unchecked = Border not displayed.

Process Manager User’s Guide142

Layout Properties
Process Designer will (if you wish) automatically reformat your graph according
to any of five flow-diagramming algorithms:

Circular—Arranges nodes in a hub-and-spoke manner whenever possible,
with spokes having identical lengths. This type of layout is appropriate when
clustering is the predominant architectural feature (e.g., as in depicting a
LAN or WAN layout).

Hierarchical—This is the familiar “organizational chart” style of
diagramming, in which top-down relationships are emphasized. (You can,
however, configure this layout option to show left-to-right or other flow
polarities.) This layout option is appropriate for graphs in which hierarchical
relationships need to be emphasized.

Resizability Dropdown:

No Fit

Tight Fit

Tight Width

Tight Height

Tight Fit &
Preserve
Aspect

Preserve
Aspect

Width Text Field 48.0 (Default) This field is not
enabled. The width will change as
the text is changed from the default
‘untitled’ and as the margin widths
and fonts are changed.

Height Text Field 19.0 (Default) This field is not
enabled. The height will change as
the margin height and fonts are
changed.

X Center Text Field X coordinate

Y Center Text Field Y coordinate

The Process Designer User Interface 143

Orthogonal—This style constrains nodes and links to a row-and-column
motif. Links are constrained to run parallel to x- and y-axes. Also note that
nodes with more than one incoming link may be magnified in appearance
relative to other nodes. This layout strategy is appropriate for situations
where a grid or lattice relationship between elements needs to be
emphasized, as opposed to hierarchical relationships.

Symmetric—In this style of graphing, edge crossings are minimized and
node distributions are made uniform so that symmetrical relationships can be
emphasized.

Tree—This diagram style is appropriate when the predominant need is to
show parent/child relationships. It uses the familiar “family tree” type of
layout, very similar to the hierarchical style described above, except that
links are not parallel and seldom run perfectly horizontal or vertical.

All of the above diagramming styles can be extensively customized by means of
preferences exposed in the Layout > Properties dialog. To bring up this dialog,
go to Composer’s main menubar and choose Properties from the Layout menu.

The dialog has six tabs: a General Preferences tab, and five tabs corresponding to
the five autolayout styles just described. Each tab contains a wealth of controls and
settings to allow you to exercise fine control over the many constraints that
characterize a particular style of graphing.

Process Manager User’s Guide144

General Layout Tips
The following tips are aimed at helping you achieve maximum productivity with
Process Designer.

Snap and Grid Behavior

By default, everything you draw or position snaps to an invisible 5-pixel-by-
5-pixel grid. But you can override this behavior at any time by holding the
Alt key down. (You can override it permanently by setting Grid Size to one,
using View > Grid Style > Grid Size > Custom Size.)

You can toggle the visibility of the grid by using the View menu’s Hide
Grid or Show Grid commands. (There is actually only one command; its
name changes dynamically depending on which mode you just entered.)
Grid Size and Style (dots versus lines) can also be set at any time through
View menu commands .

You can instantly align graph nodes to the grid, at any time, by using View >
Snap to Grid. You will see graph items suddenly “jump” to the closest grid
lines.

Multiple Undo

Multiple Undo/Redo is available for all layout gestures.

Sticky Tools

Normally, a tool reverts to the arrow cursor after one use. For example, if you
select the Activity Tool, then click on the canvas to put down a new activity icon,
the tool will immediately revert to the arrow (or Selection Tool) when you let go
of the mouse. You can override this behavior and make the tool mode persist
across mouse clicks by turning on the Sticky Tools option. Look under the Process
menu for Sticky Tools.

Overview Window

Exceptional control over pan and zoom can be had by using the Overview
Window (see below). Toggle this pane’s visibility by using View > Overview
Window.

Two behaviors are available from the overview window:

You can drag the blue “viewport rect” around the overview pane to pan the
canvas in real time.

You can click-drag just outside the viewport rect to interactrively zoom the
canvas to a bigger or smaller size.

Notice that the cursor changes appearance depending on the position of the mouse
(inside or outside the viewport rect).

The Process Designer User Interface 145

Customizing the Canvas

Note that you can customize the canvas in various ways. For example, you can
specify a background image; change the appearance of any activity to use a
custom image; and/or add any number of decorative images or logos to the canvas,
and use Send to Back or Bring to Front to “stack” images in any order. These
features allow you to build presentation-quality process graphs for use in
meetings, demonstrations, etc.

NOTE: To access canvas properties, click anywhere on bare canvas, then
choose the UI Tab in the Object Properties panel.

Using Custom Backgrounds

One way in which the canvas can be customized is to add a custom background,
consisting of a .gif or .jpg image. The following illustration shows a canvas that
contains a .jpg background.

Outside the viewport rect, the
cursor has the magnifying

Inside the viewport rect, the
cursor changes to the Hand Tool,
which you can use to Pan the canvas

glass appearance

Process Manager User’s Guide146

To add a picture to a canvas:

1 Click anywhere on bare canvas.

2 Toggle the Object Properties panel into view.

3 Choose the UI Tab.

4 Click the white area to the right of Picture Filename. A navigation dialog
will appear.

5 Navigate your hard disk or network and find a .jpg or .gif file that you wish
to use as a graph background picture.

6 In the UI Tab, check the Picture checkbox to apply the image to the canvas.

7 Optionally check the Tile Picture checkbox if you wish to tile the canvas
with the image.

8 Next to Picture Style you will find a dropdown menu. Select one of the two
choices available on this menu:

World Offset—Choosing this option means that the image will shrink or
grow with the canvas as you choose different zoom settings and maintain
its relative position to other objects on-canvas. This is the normal
behavior for all Process Designer graphics.

Device Offset—Choosing this option means that the image will not
shrink, grow, nor change position as you pan or zoom.

The Process Designer User Interface 147

9 Optionally adjust Picture X-Offset and/or Picture Y-Offset values to place
the picture exactly where you want it on the graph. (You may enter positive
or negative values here as required.)

Autolayout Options

As explained earlier, Process Designer will reformat your graph according to
various diagramming algorithms, if you desire. The auto-diagramming option you
are most likely to use is the Hierarchical layout option. This option (Layout >
Hierarchical Layout) will reformat a graph to a top-down (or left--to-right, or
other) hierarchy view, with or without X/Y alignment of links, and with or without
merging of parallel links.

Various constraint options are available for Hierarchical Layout (as for the other
autolayout modes). To access the settings, use the Layout menu’s Properties
command, which brings up the Layout Properties dialog:

Process Manager User’s Guide148

Take special note of the Edge Routing control group at the lower right. You must
check the Orthogonal Routing checkbox if you want links to be X/Y-axis
aligned. If you want stems of parallel links (coming into or out of a common node)
to be depicted as a single stem, you should check the Merge Edge Channels
checkbox.

149

5

Advanced Topics

Advanced Topics Chapter 5

This chapter discusses concepts and scenarios that go beyond the simple “straight-
through processing” use cases that have been discussed so far. In particular, we
will examine the Web Service Receive activity and the Synchronize Subprocesses
activity. The Web Service Receive activity is useful in implementing design
patterns that rely on incoming notifications or requests as part of an ongoing
process. The Synchronize Subprocesses activity, on the other hand, is useful for
collecting and resynchronizing the results from a previous fan-out (or parallel
division of workflow to multiple subprocess instances) by an upstream activity.

To get the most out of this chapter, you should be familiar with WSDL-based Web
Services, Composer action models, and concepts involving message mapping,
fault messages, and link logic.

Web Service Receive
The Web Service Receive activity type allows you to implement the WSDL
Request-Response and One-Way port type patterns. These are patterns in which
the “endpoint” activity (representing the Web Service that will fire) does nothing
until triggered by an incoming request. The target activity’s implementation is, in
this sense, passive—unlike the Notification and Solicit-Response scenarios, in
which the underlying service is the requestor instead of the requestee.

The Web Service Receive activity must fulfill all the normal obligations of an
activity in a process model. That means it has to be able to function as a link target,
with timeout and retry behavior, fault behaviors, etc.

Process Manager User’s Guide150

In this example, Activity 1 (a Subprocess activity) “fires” Activity2 (a Web
Service Receive activity) via link L1. When and if Activity2 exits with a condition
of true, its outgoing link (to Activity3) will be followed, but not until then. If
Activity2 does not come back with an exit condition of true within the Timeout
period (in this case, 7200 seconds: two hours), Activity2 will generate a
_TimeoutFault.

Advanced Topics 151

A key concept to understand is that the runtime engine doesn’t run the service
under Activity2. It merely provides appropriate input messages (as with any
activity) at the proper time and collects the output message at the appropriate time.
Incoming requests to the server cause the Web Service Receive’s implementation
to be invoked or run through appropriate triggering mechanisms (involving
servlets, JMS listeners, or whatever), independently of the process engine itself. In
other words, the web-service app that underlies the WSR activity is just a web
service on a server, like any other web service, and its URL might be hit at any
time, but the process engine only cares about (and will only respond to) that web
service within the context of a given process, with all its timeout constraints, etc.
Should a business partner hit the URL when the WSR activity is not active, the
partner will likely just get a SOAP fault message back.

A typical WSR usage might be one in which a process is designed to send requests
to various vendors, collect the first valid response, and continue on to do some
kind of processing. Using the pattern shown in the above diagram, the roundtrip
scenario could look like this:

The implementation for Activity1 might be an app that issues a request for
quote (RFQ) via notifications to one or more external business partners who
have web services designed to handle such requests.

Activity2 might be configured in such a way that the notified business
partners have two hours to reply with a quote. If no reply is received (from
any partner) within two hours, the activity generates a Timeout Fault.

Activity2’s underlying implementation might be a web service that wakes
up the process engine immediately upon receiving a valid quote.

Activity2 exits immediately if a reply is handled (transferring control to the
next activity); or else exits with a Timeout Fault after two hours. (We’re
disregarding the System Fault case for purposes of this example.)

Activity3 might notify a person or department (or another app, etc.) that a
bid was received from so-and-so.

Note that this is not a fan-out/fan-in scenario, but a “first responder wins” type of
scenario. If you were going to notify multiple partners and collect multiple
responses, you would want to use the Synchronize Subprocesses Activity
(described further below).

Multiple Implementations for a Single WSR Activity

It is possible to have multiple web services act as “the implementation” of a single
Web Service Receive activity. This is because a Web Service Receive activity is
built on top of a web service that waits to receive something—waits to be “hit.”

Process Manager User’s Guide152

In the example shown above, a Web Service Receive activity (situated between
two activities, A1 and A2) is able to respond to any of three different web services
that have been deployed as implementations for the activity. When the WSR
activity “fires,” the process simply waits for one of the three web services
represented by URLs reply.target1, reply.target2, and reply.target3 to receive
input from a business partner. Each of the web services is a Composer application
that contains a Find Waiting Activity action (as discussed in more detail in the next
chapter). When one of the web services executes its Find Waiting Activity
action—followed by a Release Waiting Activity action—the process continues of
to the next activity, A3, assuming no fault conditions.

NOTE: If any business partner “hits” one of the three web services during a time
when the WSR activity is not active (e.g., hasn’t been fired; or has fired and timed
out), the partner will receive an error message of some kind. In most cases, this will
be a SOAP fault.

Implementation Independence

The Process Manager imposes no restrictions on what the implementation for a
Web Service Receive activity should look like. This is true for Web Services in
general. The authors of WSDL put no limitations on how a Web Service should be
implemented, and there are also no restrictions on the transport mechanism used.
A Web Service needn’t use HTTP, for example, and payloads needn’t be passed
via SOAP.

Advanced Topics 153

The Process Manager, likewise, allows your Web Service Receive activity’s
implementation to take various forms: Composer web service, JMS service, or
External (arbitrary implementation, not built in Composer). These choices are
provided in a pulldown menu control on the Activity tab of the Object Properties
dialog (see below).

Of course, for a Web Service to be a true Web Service, it should have a WSDL
definition associated with it. Composer consults the WSDL when determining
how to manage message maps for the Web Service Receive activity. In addition,
since this is a Web Service Receive activity, the underlying service should
implement either the WSDL One-Way or Request-Response port-type scenario.
(The distinguishing characteristic of these two patterns is that the service
implementing them is never the initiator of a transaction. The service is a receiver;
you can think of the service as “listening” on a port.)

To use a Web Service Receive activity:

1 Design and implement the Web Service that will serve as the activity
implementation. It should have its own WSDL Resource. (For information
on how to create services and WSDL Resources in Composer, consult the
eXtend Composer User’s Guide).

2 If you created the Web Service inside another project, import the Web
Service and its resources into the current project, which will contain your
Process.

3 Create or open the Process in which you want to use the Web Service
Receive activity.

4 Using the Web Service Receive variant of the Activity Tool (on the Process
Designer toolbar), place a Web Service Receive activity icon on the process
graph.

5 Draw links to and from the Web Service Receive activity the same way you
would for any other kind of activity.

6 Bring the Object Properties pane into view (using View > Object
Properties, if necessary).

7 In the Object Properties pane, click the Activity tab.

8 Next to Component Type in the properties list, use the pulldown menu to
select one of External, JMS Service, or Web Service, as appropriate. See
illustration.

Process Manager User’s Guide154

9 Next to Web Service Name, use the pulldown menu to select the Web
Service that you built in Step 1. (This list is prepopulated with the names of
all Web Services in the current project.)

10 Set any other properties that you want to specify on the Activity tab.

11 Switch to the Messages tab.

12 Add any data mappings that you want to add, using the Plus-sign icon.

13 Save your work.

In order for a process to make use of the Web Service Receive activity, there must
obviously be an underlying implementation consisting of a web service that
communicates via the One-Way or Request-Response pattern(s) described in
WSDL. This service must, in turn, be capable of communicating its “finished”
status (and in most cases, some kind of XML data) back up to the process engine.
Such communication requires the use of Find Waiting Activity and Release
Waiting Activity actions in a service’s action model, as described in the next
chapter.

NOTE: If you intend to use the Web Service Receive activity type, be sure to read
about Find Waiting Activity and Release Waiting Activity actions in the next chapter.

Synchronize Subprocesses Activity
The Synchronize Subprocesses activity is similar to the Web Service Receive
activity in that it, too, assumes an implementation that waits passively for
incoming data and that may be invoked numerous times before it finally exits.
Unlike the Web Service Receive activity, a Synchronize Subprocesses activity
must use a Composer Component (an XML Map Component, for example) as its
implementation.

The purpose of the Synchronize Subprocesses activity is to allow data from
numerous input activities to be collected into a single activity, in situations where
the number of inputs is not known until runtime. In other words, this represents a
scenario that (due to an indeterminate number of links) can’t be drawn on a
process graph. It is sometimes called a “fan-out/fan-in” scenario.

Advanced Topics 155

The fan-out activity in this diagram might represent a start activity in a process
that receives a batch of work items. The number of work items, however, is not
known until runtime. Suppose a subprocess called DoWork can process exactly
one work item, then pass it on to the next activity. Ideally, you’d want the start
activity to be able to fan out N work items to N instances of DoWork, have those
instances execute in parallel, then collect all the results of the various DoWork
instances at a central Fan-In Activity, as shown.

The problem is that this pattern can only be drawn if the maximum number of
possible instances of DoWork (the maximum batch size) is known in advance. If it
were possible to know, for instance, that a batch can never hold more than 12 work
items, then you could place 12 activity icons on the graph, representing 12
launchable instances of DoWork, and connect links from the Fan-Out activity to
each instance of DoWork (as well as outgoing links from each DoWork to a Fan-
In Activity.) A simple XPath condition on each link could determine (by looking
at the output from the Fan-Out activity) whether a given link should fire based on
whether the appropriate source XPath contains data.

An explicit graph of the type just described will work. It wouldn’t be pretty to look
at, and the data mappings would be tedious to spell out, but it would work. The
problem is that six months from now, someone could decide that the maximum
batch size needs to be 200 instead of 12. Or, there may be no limit to the batch size.
What then?

The Synchronize Subprocesses activity is designed to handle resynchronization of
the results of a fan-out. The process engine performs certain services on behalf of
the Synchronize Subprocesses activity, and the activity’s implementation must be
designed with certain runtime behaviors in mind. The salient points to bear in
mind are:

Process Manager User’s Guide156

The Fan-Out Activity (which can be any of the standard Process Manager
activity types) invokes N instances of a Subprocess activity. The instances
are spawned from Process Execute actions inside the Fan-Out’s action
model, as part of a loop.

Because the “work activities” are subprocesses and are spawned (rather than
called synchronously), each subprocess returns a ProcessID to the Fan-Out
activity immediately.

The Fan-Out activity implementation should collect the ProcessIDs under a
known XPath in Output. That XPath must, in turn, be specified in the
property sheet for the Synchronize Subprocesses activity as shown here:

The component that provides the underlying implementation of the
Synchronize Subprocesses activity need not know about the list of
ProcessIDs. The runtime engine will call the implementing component the
appropriate number of times, based on this list; then it will pass control
(when every subprocess has finished) to the next link or links in the chain,
barring a fault condition. Thus, the implementing component does not need
to know that it is being used as part of a loop.

Each time the fan-in implementation is fired, the Input message part will
contain the output from a subprocess that just finished. It is up to the
Synchronize Subprocesses implementation (the fan-in component) to
process the newly acquired data as needed. Usually, this will mean
accumulating it onto Output, for reasons explained below.

When all subprocesses have returned, the activity returns (barring a fault
condition) and the parent process continues down the normal control chain.

Advanced Topics 157

Data Mapping in the Synchronize Subprocesses Activity

The Synchronize Subprocesses activity will always have at least three message
parts: Input, Input1, and Output. The activity implementation will have DOMs
corresponding to these part names as well, but the parts have unique roles and an
implementation should be designed with those roles clearly in mind.

Input

From the implementation’s point of view, the Input message part is where
subprocess output will be received. Each time a spawned subprocess returns, its
output gets passed to the merge component’s Input. (The “merge component”
here means the Synchronize Subprocesses activity implementation: an XML Map
component, JDBC component, or whatever.)

In the case of most other activity types, data from the previous activity’s Output
is passed into the target implementation’s Input DOM. In the Synchronize
Subprocesses case, however, this is not true, because the activity that fires the
Synchronize Subprocesses activity is not really the data source of interest. See
below.

The Synchronize Subprocesses activity implementation (or merge component) is
interested in data provided by the subprocess instances that were spawned. It
looks to Input to find that data. Each time the merge component is fired, it sees a
single work-item’s worth of data in Input.

Process Manager User’s Guide158

Input1

The Synchronize Subprocesses activity implementation will typically map the
Input1 DOM straight to the Output DOM before doing anything else. That is to
say, there will usually be an XML Map action at the top of the implementation’s
action model that looks like:

This is because the merge component’s Output part will be fed back into Input1
on every subsequent invocation of the component. See discussion below.

Output

In order to allow the Synchronize Subprocesses activity implementation to
accumulate or consolidate “work items” into a single document, by adding
subprocess returns one at a time to an incrementally built DOM, the Synchronize
Subprocesses activity recycles its implementation’s Output back to Input1. In
other words, on invocation N, the implementation receives, in Input1, the
Output from invocation N–1. (On invocation zero, Input1 is empty.)

See diagram below.

Advanced Topics 159

Fault Handling

You can choose to have the Synchronize Subprocesses activity raise a Fault
message according to one of two policies: Fail on Any Fault, or Fail if All Fail. In
the first instance, the activity faults out as soon as any one of the feeder activities
(the data-producing subprocesses) gives a fault. In the second case, all of the
spawned subprocesses must return before a fault is generated. In either case, if the
Synchronize Subprocesses activity results in a fault, the process of which it is a
part will terminate unless the fault is handled (just as it normally would).
Therefore, as a safeguard against a single fanned-out subprocess instance failing
your whole process, you should take time to “think through” a robust fault-
handling scheme.

Process Manager User’s Guide160

Waiting Activities
Any time an activity (such as a subprocess or Web Service Receive activity) is in
a wait state, waiting to receive a response to some request that was made
asynchronously by another activity, it is said to be a waiting activity. In the wait
state, the activity is not “running” in the normal sense of the word; it is not in
memory. The activity implementation might be a Web Service that operates
according to the Request-Response or One-Way port types of WSDL. It gets fired
when a request comes in via HTTP to the server, or via a message sent to a JMS
message listener, etc. After the service is finished, the activity for which it is the
implementation (the waiting activity) needs to “wake up” and notify the process
engine so that the proper process instance can continue to execute the appropriate
flow pattern.

But an activity implementation, being merely an application or service of some
sort, doesn’t necessarily know (nor should it know) that it is being used in a
stateful process. The application (the activity implementation) might be a generic,
reusable, multi-role application or component that gets invoked by external clients
as well as by local applications. It may be a part of several different process
models. At any one time, there might be dozens of process instances using the
component as an activity implementation. When an instance of the component
fires, it has no idea who called it or why; it doesn’t magically know if it is being
used as an activity implementation in a running process. See below.

Advanced Topics 161

If an activity is waiting for its underlying implementation to produce output, the
underlying service or component has to have some way of hooking back into the
correct process instance, because numerous process instances (possibly belonging
to different process models) might be using the same implementation. A
correlation value of some kind must be passed into the waiting activity’s
implementation so that the implementation can get the activity out of the wait state
and let the proper process instance resume navigation.

NOTE: The particulars of how and when to specify a correlation value will be
discussed in the next chapter.

The scenario, then, is this:

The activity that makes the original outbound notification to an external
serviceor business partner must pass a correlation value to the service. This
can be a custom CorrelationID in conjunction with the Process name, or it
can be a ProcessID in conjunction with the Activity name. (See the next
chapter for details.)

The web service that serves as the implementation for the Web Service
Receive Activity must get the correlation value back from the external
service (business partner).

The web service (WSR implementation) must be a Composer service with
an action model that contains a Find Waiting Activity action. (New Action >
Process > Find Waiting Activity.) The correlation value(s) will be used in
this action as a means of looking up the appropriate waiting activity in the
appropriate process.

Once the Find Waiting Activity action has successfully executed, it must be
followed by a Release Waiting Activity action. (New Action > Process >
Release Waiting Activity.)

“Waiting Activity” Actions

When the Process Manager has been installed as part of a Composer installation,
all component editors for all component types (JDBC, XML Map, JMS, Telnet,
etc.) have six Process-related actions available for use in any action model:

Browse Waiting Activities

Find Waiting Activity

Lock/Unlock Waiting Activity

Process Execute

Reassign Addressee

Release Waiting Activity

Process Manager User’s Guide162

These actions are available off the Process submenu in the New Action menu. You
can use them in the action model for any type of Composer component or service
(XML Map component, JDBC component, etc.), but if they’re used in a
component, the component should be wrappered in a Composer web service.

Five of the six activities are related to Waiting Activity functionality. All such
functionality assumes the presence of an activity whose implementation follows a
One-Way or Request-Response type of communication pattern. These are patterns
in which the web service waits, passively, for an external request.

Find Waiting Activity and Release Waiting Activity actions will be used together
in most scenarios that involve waiting activities, regardless of the nature of the
associated business tasks. That’s because both are needed in order to “wake up” a
Web Service Receive activity once it has been enabled.

When process flow reaches a WSR activity at runtime, the process goes to sleep
and only wakes up again when:

a Composer web service executes a Release Waiting Activity action
targeting the WSR activity, or

the WSR activity times out

In other words, the coupling between a WSR activity and its underlying
implementation is quite loose. A Web Service Release activity can be thought of
as simply a place in the process flow where the process goes to sleep until it is
woken up either by an alarm clock (i.e., the activity times out) or by a web service
that knows how to wake the process up again.

For an in-depth discussion of Waiting Activity actions and their usage, see the next
chapter.

Advanced Topics 163

Waiting Activities and Human Interaction

The actions called Browse Waiting Activities, Lock/Unlock Waiting Activity, and
Reassign Addressee add optional functionality designed to make it possible to use
waiting activities in a human-intervention type of workflow, where human
operators perform tasks in response to notification by activities. It is common in
this type of flow for notifications to be sent to human operators, who will
ultimately post work back to the process via waiting activities. This type of
scenario is discussed in greater depth in the following chapter.

The concept of an Addressee is exposed in some of the “waiting activity” action
dialogs. This allows work items (that is, message parts, or node branches within
parts) to be assigned to specific individuals according to their roles, as part of a
running process. The individuals in question can be notified of arriving work via
an activity designed for that purpose; and the process instance can call on a Web
Service Receive activity (or other “waiting activity”) to receive various
individuals’ work back into the system.

The notion of work-item Priority is also exposed in this system.

NOTE: Addressee and Priority are initially specified in the Object Properties panel
of the Web Service Receive activity. (The Addressee and Priority properties will not
be visible in other activity types. A Web Service Receive activity must be selected
in order to see these properties.)

Work items can be marked as locked for exclusive use by one individual,
programmatically, through the Lock/Unlock Waiting Activity action.

Work items can be reassigned to different individuals via the Reassign Addressee
action.

In addition, waiting activities representing the work queues of specific individuals
can be browsed or tallied using the Browse Waiting Activity action.

Through the creative use of these actions, you can develop sophisticated (yet
robust and easy to test) workflow systems involving work queues, work items
with varying priorities, human operators with roles, and so on.

Process Manager User’s Guide164

165

6

Waiting Activities and Addressees

Waiting Activities and Addressees Chapter 6

This chapter discusses a wide variety of issues relevant to invocation and control
of processes and activities, including the various actions that can be used inside
components to implement “human intervention” scenarios involving work lists.
To get the most out of this chapter, you should already be familiar with Composer
project deployments and standard J2EE packaging and deployment constructs,
such as EAR/WAR files, web.inf files, contexts, servlets, and so on; and you
should be familiar with the basic Composer service trigger types. For more
information on the latter subject, be sure to consult your Composer Server User’s
Guide for the app server environment (WebSphere, Weblogic, SilverStream) into
which you will be deploying.

Understanding How Processes Are Triggered
In order for a process to be invoked, it needs to be associated with a Process
Execute action (see “The Process Execute Action” further below) in a calling
component. The calling component can be any valid Composer component type
(XML Map, JDBC, HTML, Telnet, or whatever). At some point, however, the
component must itself be called by a service, and the service must be triggered by
one of the standard Composer service trigger types. From the top down, then, the
activation sequence is:

HTTP/SOAP request fires servlet (typically)

Servlet (service trigger) fires Composer service (web service)

Composer service fires Composer component(s)

Composer component fires Process

Activities start and stop within the Process instance’s lifetime

In its simplest form, the activation chain looks something like:

Process Manager User’s Guide166

Here, a Composer service is shown calling/spawning a Process directly. But as
mentioned earlier, any component type (XML Map, JDBC, etc.) can also call or
spawn a Process. The way this is done is via a Process Execute action (discussed
in further detail below).

Process-Related Actions
The Process Manager adds six process-related actions to the component editor
menus.

The actions can be thought of as supporting three basic types of functionality:

Waiting Activities and Addressees 167

Process invocation via an action: This is accomplished by the Process
Execute action. Within a given project, any Composer component or service
(whether inside or outside of a Process) can launch any process in that
project via this action.

Reentry into a Process: The Find Waiting Activity and Release Waiting
Activity actions make it possible for a service that implements a Web Service
Receive activity to get the attention of the process engine after it has finished
running.

Human-accessible work queues: The Browse Waiting Activities,
Lock/Unlock Waiting Activities, and Reassign Addressee actions provide
support for scenarios involving delegation of tasks to individuals in an
organization.

The Process Execute Action
The Process Execute action allows you to launch a Process using runtime inputs
and outputs that you specify. By using this action in a component’s action model,
you can invoke any Process in the current project.

The Process Execute action is similar to Composer’s regular Component action
(which fires components), except that it covers two possible methods of execution
(namely, Call and Spawn) and optionally allows you to register the
called/spawned process as a subprocess of a parent process.

If the process is started via a Call, then the action model containing the Process
Execute action (the source component) will block any further action processing
until the called process returns. This is the same behavior as for the regular
Component action.

If the process is started via Spawn, then the process is executed in a “fire and
forget” mode wherein the spawner does not wait for the spawnee to return.
Instead, the spawned process returns (immediately) a “receipt” consisting of a
unique identifier for the process and a timestamp. (See below.) This information
can be used by other process actions such as the Browse Waiting Activities or Find
Waiting Activity actions.

Data Returned by a Spawned Process

When you spawn a process, you are invoking the process asynchronously, in “fire
and forget” manner. The spawned process will hand back a message containing
certain information about the process instance that was spawned (which can be
useful later). The “return receipt” information handed back by a spawned process
looks like:

Process Manager User’s Guide168

The information returned includes the ProcessID associated with the particular
process instance that was just started, and the date of birth of the process instance,
in Process/Info/CreationDate.

How to Create a Process Execute Action

To create a Process Execute action:

1 Open the Composer component or service from which you wish to invoke a
process. Click inside its action model at the point where you want to insert
the action.

2 In the Action menu, choose New Action > Process > Process Execute, as
shown above. (You can also reach this command from the context menu,
available by right-clicking in the action pane.) A dialog appears.

3 Using the pulldown menu in the top left corner of the dialog, choose the
Execute Method: Spawn (fire and forget) or Call (block until results come
back).

Waiting Activities and Addressees 169

4 From the pull down menu under Process Component, select the process that
you want to invoke. The menu will be prepopulated with the names of all
process xObjects in the current project.

5 Under Passed Part, select (from the dropdown list that appears when you
click in this field) the name of the component DOM that will be the data
source for the process.

6 Under Returned Part, select (from the dropdown list that appears) the name
of the DOM that will receive information back from the process. For a
spawn action, see discussion below.

7 If you are spawning this process as part of a fan-out (in anticipation of later
using a Synchronize Subprocesses activity to sync back up), check the
Spawn as Subprocess... checkbox and indicate (via XPath expression)
where the parent process’s ProcessID can be found.

NOTE: This is an advanced option that is useful primarily when you are
working with the Synchronize Subprocesses activity type. Leave this
checkbox unchecked unless the current component is an activity
implementation for a process and you are using the Synchronize
Subprocesses activity type somewhere else in the same process.

8 Click OK to dismiss the dialog.

More about the Process Execute Dialog

Passed Part represents the runtime name(s) of the source component parts that
will be passed into the target process as its ProcessInput message. When you
select a process to execute from the drop down list box, the parts it is expecting as
defined by its input XML Template will appear. You then simply match up the
current component parts to pass with their process counterparts. The Passed Parts
do not have to match the template parts in name. However, to insure that the
process receives all the data it needs, the number of parts passed should equal the
number of parts expected.

The output from a Process Execute action is returned to a Part in the current
component that you specify. If the process is executed via a Call, then the process
output will be placed in the Returned Part. If the process is executed via Spawn,
then a Process Info receipt is placed in the Returned Part.

Process Manager User’s Guide170

Spawn as Subprocess of Parent ID

The checkbox called “Spawn as a subprocess of Parent ID,” underneath the
Returned Part section of the Process Execute dialog, is visible only when Spawn
is selected as the Execute method. The controls just below the checkbox appear,
also, when Spawn mode has been chosen. These controls allow you to correlate a
spawned process with a given parent process, so that the process engine can keep
track of subprocess returns. This is important only in the context of a Synchronize
Subprocesses activity implementation.

NOTE: If you are not implementing a “fan-out” type of scenario culminating in a
fan-in via a Synchronize Subprocesses activity, you do not need to concern
yourself with this discussion.

The parent Process ID that is attached to each process when it is spawned by the
Process Execute action allows the engine to return each spawned process’s results
to the correct parent process. Since there may be many instances of the parent
process running at one time, this mechanism prevents one instance of a parent
process from receiving the results of a different instance.

For a more detailed discussion of a fan-in/fan-out scenario using the Synchronize
Subprocess activity, see “Synchronize Subprocesses Activity” in the preceding
chapter.

Deployment and the Process Execute Action

The unit of deployment in all Composer projects is the Web Service xObject.
Thus, as with all other Composer components (e.g. JDBC, EDI, XML Map, 3270,
etc.), any Process you wish to expose to a business partner must be executed from
inside a Web Service component.

In the simplest case, you can deploy a Process by placing a single Process Execute
action inside a Web Service, which you then deploy as you normally would. You
merely need to make sure that the Web Service’s input message (and its
constituent parts) matches the input(s) for the Process. Then it is a simple matter
to call the process via the Process Execute action and pass in the parts.

In a more complex deployment, the Process Execute action may be part of a larger
action model that either prepares the initial process message or runs multiple other
components and/or processes as well.

Waiting Activities and Addressees 171

Find Waiting Activity Action
You will typically use the Find Waiting Activity action inside the implementation
for a Web Service Receive activity. (It is usually followed by a Release Waiting
Activity action. See discussion further below.) The Find Waiting Activity action
allows you to retrieve runtime information from the process engine for a Web
Service Receive activity that is waiting to be fired by (for example) a business
partner. The retrieved information, along with the business partner’s message, is
then used to generate an output message for the activity.

A Release Waiting Activity action generally follows every Find Waiting Activity
action. The Release Waiting Activity action causes output to be passed to the Web
Service Receive activity and signals its “exit readiness” to the process engine, thus
allowing the process flow to continue.

Recall that in the Process Manager, the Web Service Receive activity allows a
process (or branch of a process) to halt the flow of control at that activity in order
to wait for a Web Service to receive information that is necessary to continue the
process flow.

The implementation for the Web Service Receive will typically be an exteNd
Composer web service with a published WSDL endpoint for the business partner
to contact. After being contacted, this Web Service needs a way to find its
associated Web Service Receive activity in the correct process instance, pass it the
business partner’s message, and signal the process engine that the activity is
complete (see Release Waiting Activity described later). The Find Waiting Activity
action fills the need of locating the proper Web Service Receive activity.

NOTE: It’s important to keep in mind throughout this discussion that activities and
activity implementations are not the same thing. Activities are abstract entities that
have certain attributes and states meaningful only to the process environment. An
activity implementation is the business application that carries out some task in
software. An activity has certain properties associated with it—these are shown in
the property sheets which make up the tabs in the Object Properties panel. But in
general, an activity doesn’t know anything about the implementation, or underlying
app, that carries out the actual work required to accomplish a given business task.
Conversely, an implementation doesn’t know that it is being used in a process.

Process Manager User’s Guide172

A Scenario

Consider the following scenario: You have defined a process that places an order,
sends a confirmation to a business partner asking for final approval to execute the
order, and then waits to hear back from the partner. The partner sends a message
referencing the order number back to you, at which point the order process
continues. A Web Service Receive activity is used for the part of the process that
waits to be contacted by the business partner (see No. 1 in the diagram below).
This activity’s implementation is usually a standard Web Service. That Web
Service, in turn, uses a Correlation ID to keep everything instance-bound. The
business partner will have been given this ID by an upstream activity in the
process (the activity that queried the partner). The following diagram shows what
happens when the partner finally answers back.

Waiting Activities and Addressees 173

When the business partner sends a confirmation message to Web Service A (which
implements the Web Service Receive activity in the above diagram),Web Service
A needs to find and “wake up” its associated activity and process. Fortunately,
Web Service A contains a Find Waiting Activity action that does precisely this
(see 2, above). Using the Find Waiting Activity action, the web service finds the
Web Service Receive activity that has been waiting for the business partner’s
response. That activity’s input message and PendingActivity document can be
utilized in creating an output message for the activity (see 3 above). Using the
PendingActivity document, the Web Service executes a Release Waiting Activity
action and passes output back to the Web Service Receive activity (see 4 above),
which exits and allows the process to continue.

Finding a Waiting Activity

A waiting activity can be found using one of two methods. One method uses a
combination of Process Name and Correlation ID; the other uses Activity Name
and ProcessID.

The Correlation ID method is most common for business interactions with
business partners on opposite sides of a firewall (i.e. two separate companies). The
Correlation ID is simply any unique value—such as a timestamp, work order
number, confirmation number, etc.—created earlier in the process and
communicated to the business partner. The Find Waiting Activity action will
extract the CorrelationID from a location in the Input document that you specify,
then submit this ID to the process engine to find.

The second lookup method bases its inquiry on a unique key constructed by
combining an Activity Name (i.e. the name of the Web Service Receive activity of
which the component is a part) and the ProcessID of the process instance in
question. The Find Waiting Activity dialog (below) allows you to enter this
information.

The second lookup method is more common in cases where requesting and
responding parties are both inside a common firewall.

With either lookup method, it is essential that the business partner provide the
needed ID information in the input message to the Web Service. That ID
information will consist either of a Correlation ID, or a combination of Process ID
and Activity Name.

Process Manager User’s Guide174

The Find Waiting Activity Dialog

The Find Waiting Activity dialog consists of two tabs of controls. The Find tab is
where you specify criteria used to find a waiting activity. The Message tab allows
you to specify where to place the information returned from the process engine
regarding the activity you find.

Find tab

The Find tab will take on a different appearance depending on which of the two
radio buttons is selected in the top part of the dialog. When “Process Name and
Correlation ID” is selected, the dialog takes on the following appearance:

If you are finding an Activity by Process Name and Correlation ID, select a
process name from the dropdown list. Then specify an XPath expression
identifying where, in the message received from the business partner, Composer
will find the CorrelationID. (Alternatively, click the Expression radio button and
specify an ECMAScript expression that will evaluate to the needed ID.) The
message part containing the business partner’s message will normally be Input,
but others are allowed. Note that the element containing the CorrelationID does
not need to be named “CorrelationID.” A valid XPath expression might be:
PurchaseOrder/Header/POID.

Waiting Activities and Addressees 175

When finding an activity by Activity Name and Process ID (using the radio
button labelled “Activity Name and Process ID”), specify an XPath expression
identifying where, in the message received from the business partner, Composer
can expect to find the Activity Name (i.e. the name of the Web Service Receive
activity). The message part containing the business partner’s message will
ordinarily be Input, but others are allowed. Note that the element containing the
Activity Name does not need to be named “Activity Name.” A valid XPath
expression might be: ServiceTicket/Header/InquiryType. Also, in similar
fashion, specify the location of the ProcessID.

Message tab

When an activity is found, the process engine will return two XML documents to
the Web Service that issued the Find Waiting Activity action. The first document
is the original input message (consisting of 1 or more parts) to the Web Service
Receive activity before it began waiting for a contact from a business partner.
This allows the activity’s implementation to work on the activity message or use it
as a reference with the message received from the business partner.

The second document returned by the process engine is runtime information about
the waiting activity (see details below).

Process Manager User’s Guide176

The first section of the Message tab allows you to map the activity’s original input
message into the Web Service so you can work on it. Two radio buttons control
the options available to you:

The Parts radio button allows you to map each part of the activity’s input
message to a part in the Web Service. This will be the choice for most
applications.

The Message radio button allows you to map the entire activity input
message (including all its parts) to a single part in the Web Service. If no
parts are available for use, you will need to add Temp documents to the Web
Service.

The second section of the Messages tab allows you to specify what part in the Web
Service will receive the waiting activity’s process information from the process
engine. Select a part from the dropdown list. If no part is available for use, you
will need to add a Temp document to the Web Service.

The PendingActivity document

The second document returned by the Find Waiting Activity action is used by a
Release Waiting Activity action to signal the completion of the Web Service
Receive activity and allow the process flow to continue to execute. The document
returned by the process engine that describes a waiting activity contains a root
element named PendingActivity.

The PendingActivity document contains the following child elements:

ProcessID—This is the unique number associated with the process instance
in which the found Web Service Receive activity exists. This data is used by
the Release Waiting Activity action to restart the waiting activity.

Waiting Activities and Addressees 177

QueueDate—This is a date/time stamp indicating when the Web Service
Receive activity starting waiting for contact from a business partner.

ActivityName—The name of the Web Service Receive activity that is
waiting.

ProcessName—The name of the process to which the Web Service Receive
activity belongs.

CorrelationID—The unique key used to identify and find the Web Service
Receive activity. The value is specified as a property of the Web Service
Receive activity and is set by the process when the activity executes and
begins waiting.

Addressee—The name of a user who is supposed to contact this Web
Service Receive activity. This data is usually used in assigning work to
people in work queue applications that involve user intervention/interaction
with a long-running process. The value is specified as a property of the Web
Service Receive activity and is set by the process when the activity executes
and begins waiting. This data is usually used in processes that run
completely behind the firewall.

Priority—This data is used in assigning work to people in work queues and
allows an application querying the process engine to sort waiting activities
by relative importance. The value is specified as a property of the Web
Service Receive activity and is set by the process when the activity executes
and begins waiting. This data is usually used in processes that run
completely behind the firewall.

LockedBy—This label is typically the name of a user in a work queue who
has flagged this activity instance as being locked for exclusive use by one
individual. No actual lock is created; rather, it is a semaphore or flag value
for work-queue applications querying the process. The value is set by a
Lock/Unlock Waiting Activity action.

LockedUntil—A date value indicating when the lock will be removed. The
value is set by a Lock/Unlock Waiting Activity action.

Release Waiting Activity Action
The Release Waiting Activity action is used inside the implementation (usually a
Web Service) for a Web Service Receive activity. The action is usually preceded,
at some point in the implementation’s action model, by a Find Waiting Activity
action. The action passes data to the waiting Web Service Receive activity; and
that data becomes the output message, signalling the activity’s completion to the
process engine. The passed data is usually information from a business partner
that contacted the Web Service. Thus, the Release Waiting Activity action is the
callback mechanism used by a Web Service to produce an output message for, and
signal the completion of, a Web Service Receive activity inside a process.

Process Manager User’s Guide178

Before an Activity can be released, you must produce a message part that contains
a PendingActivity document indicating the Process and Web Service Receive
activity you wish to release. This can be accomplished via a Find Waiting Activity
action (see the previous section). In addition, you will need one or more parts that
will be passed back to the waiting Web Service Receive activity as its output
message. Once you have a PendingActivity document and one or more parts to
serve as activity output, you can release an activity.

The Release Waiting Activity Dialog

The Release Waiting Activity dialog has three sections to it.

The first section allows you to specify a part in the Web Service that contains a
PendingActivity document describing the process and activity you wish to release.
This part must have been populated previously by a Find Waiting Activity action.

The second section is where you map parts in the Web Service to output message
parts in the waiting Web Service Receive activity.

The third section is optional and allows you to return output to the activity but flag
it as a fault message causing the process flow out of the Web Service Receive
activity to follow fault links.

Under “Part containing Waiting Activity’s Process Information,” just select a part
name from the drop down list.

NOTE: In order for a part to show in the list, it must contain a PendingActivity
document.

Waiting Activities and Addressees 179

The second section of the dialog allows you to specify data from the Web Service
that will become the waiting activity’s output message. The Parts option allows
you to map one or more parts in the Web Service to one or more parts in the Web
Service Receive activity’s output message. This will be the choice for most
applications. The Target Part name you enter will be created in the activity’s
output message for you. The Message option allows you to map a single part in
the Web Service as the entire activity output message (including all its parts).

The third section in the dialog allows you to specify (optionally) that the returned
data is to be flagged as a fault inside the process. Use the expression builder to
specify a fault message name corresponding to one that was defined for the Web
Service Receive activity on its Messages tab.

Human Participation in Processes
Most processes require some kind of human interaction, if for no other purpose
than the initial triggering of the process. In some scenarios, human involvement in
all phases of a particular business task can be essential. Purchase orders may
require personal approval; product inquiries may require personal e-mail
responses or phone calls; large transactions may require escalation to a particular
individual; and so on.

You can use Composer’s Process Manager to implement a wide variety of
sophisticated human-centric workflows. The Process Manager has features that
make it easy to:

Assign (and reassign or reroute) work to individuals

Assign priorities to work items

Mark work items as locked or unlocked for exclusive use by an individual

Browse a process for worklists, filtered by individual(s)

Retrieve individual work items

Integrate back-end systems into the workflow

Integrate easy front-end access to work lists via JSP or HTML

To create human entry-points into a process, you will generally use Web Service
Receive activities to expose outward-facing web-service applications (i.e., the
implementations of the Web Service Receive activities). The user-facing services
could be exposed via JSP or HTML pages; or they might be exposed by other
means.

Process Manager User’s Guide180

Your user-facing services can be designed to allow users to browse work queues,
find and lock work items, unlock work items, reassign work, and/or push work
back into the system. The actions that make these operations possible include the
Find Waiting Activity and Release Waiting Activity actions already discussed
above, as well as the Browse Waiting Activities, Lock/Unlock Waiting Activity,
and Reassign Addressee activities discussed below.

Addressees

Human participants in a process are known, in Process Manager, as Addressees.
The runtime engine associates an Addressee with a particular document or work
item via the Addressee property on the Object Properties panel for the Web
Service Receive activity type.

NOTE: Addressee is a property of Web Service Receive activities only. You will
not see this field in the Object Properties panel for other activity types.

The Addressee value is specified as an XPath expression. This affords a great deal
of flexibility, since the Addressee can be in a passed-in message part, or it can be
determined dynamically at runtime, or it can be hard-coded to a particular string
value. Thus, you can accommodate any of the following common scenarios:

The sales person to whom the order should go is determined by a JSP
scriplet or EJB at the time the order is submitted online. The ProcessInput
message already contains the necessary Addressee name at process
invocation.

An order arrives via the Web and kicks off a process. The Addressee is
determined dynamically—”just in time”—by business logic in a
preprocessing component, and it appears in the output message of an
activity.

Waiting Activities and Addressees 181

All orders must eventually be approved by John Smith. Therefore, a Web
Service Receive activity is hard-wired to an Addressee value of “John
Smith.”

The Role of the Web Service Receive Activity

The Web Service Receive activity is the main touchpoint for human input into
automated processes built with the Process Manager.

When a Web Service Receive activity “fires,” three things happen:

Its Addressee property becomes associated with a string value (usually,
although not necessarily, representing a real person’s name)

The underlying implementation for that activity (namely, a user-facing Web
Service that follows the WSDL One-Way or Request-Response pattern)
becomes operational

The Process Engine puts the Web Service Receive activity (not its
implementation!) into a waiting state

A person (i.e., a worker or an administrator; the Addressee) can then use a work-
group application implemented in JSPs to execute Composer components or
services to:

1 Browse all the waiting activities addressed to a particular person (using a
Browse Waiting Activities action),

2 Lock waiting activities to prevent other users from approving an order (using
a Lock/Unlock Waiting Activity action) while they are being reviewed by an
Administrator,

3 Unlock an order, allowing it to be approved (using a Lock/Unlock Waiting
Activity action),

4 Retrieve orders and mark them as approved (using a Find Waiting Activity
action), and/or

5 Complete the approval and allow the process to proceed to the next activity
(by finally calling a Release Waiting Activity action).

Process Manager User’s Guide182

Notice that only the Release Waiting Activity action can actually complete a Web
Service Receive activity (that is, cause it to exit). So by definition, the
implementation to a Web Service Receive activity (i.e. a Web Service) must
contain a Release Waiting Activity action. The other process actions (Browse
Waiting Activities, Lock/Unlock Waiting Activity, Reassign Addressee, and even
Find Waiting Activity) can be used in a variety of components not directly
connected to a process. Such components might use these actions to add oversight
and “see-into” functionality to external applications, giving users a means to view
and manage waiting activities.

Browse Waiting Activities Action
The Browse Waiting Activities action can be used in any service or component
(even one outside the process), as long as the process and the service/component
are deployed as part of the same Composer project. The sole purpose of the
Browse Waiting Activities action is to allow an application to obtain a list (or lists)
of pending activities, filtered by Addressee.

When you execute a Browse Waiting Activities action, you are merely supplying
the Process Server with a name, or a list of names. The Process Server, in turn,
examines all Web Service Receive activities in all instances of all processes, and
hands back a list of activities waiting to be acted on by the individuals (or
departments, etc.) in question.

The list that the Process Server returns in response to a browse is a
PendingActivity document. This document contains such information as the
ProcessID and Activity Name for the pending activity, as well as other
information that can be used, if desired, to find and do work on behalf of a waiting
activity. (See “The PendingActivity document” further above for additional
discussion of the PendingActivity document structure.)

Waiting Activities and Addressees 183

Where to Use the Browse Waiting Activities Action

The Browse Waiting Activities action is usually utilized in scenarios where a long-
running process requires the intervention of, or interaction with, a live person
through another application such as a JSP. (See the eXtend Composer
Silverstream Server Guide section titled "Creating a JSP that calls a Composer
Service" for more detail.) For example, you may have a heavily trafficked process
that processes orders one-at-a-time. The process contains an activity that accepts
a single order and passes it to a Web Service Receive activity, where the process
stops and waits for the order to be approved by a particular person. That person, in
turn, will use a JSP (Java Server Page) to input his approval. In this kind of
scenario, the Addressee (the person who approves the order) needs to be able to
find out about (or discover) work waiting to be done, and also push work into the
system as it gets done. The discovery part can be accomplished via a Browse
Waiting Activities action in a service (not necessarily internal to the process) that
can be triggered off a JSP. The “data push” part can be done via a service that
implements the Web Service Receive activity type. This service would use a Find
Waiting Activities action to look up individual work items, and a Release Waiting
Activity action to execute the “push.”

How It Works

A waiting activity (no matter which process it is in) can be located by Addressee
alone, using the Browse Waiting Activities action. But for this to work, the
associated Web Service Receive activity must have a non-empty Addressee
property. To specify a value for Addressee, just open the Process graph in Process
Designer, click on the Web Service Receive activity in question, bring the Object
Properties panel into view, and enter a legal XPath value next to Addressee. (See
screen shot under “Addressees” above.) The XPath should point either to an input
message part that contains an Addressee string, or a hard-coded string value.

A second Web Service Receive activity property named Priority can also be set in
the Object Properties panel. Priority is an arbitrary number that allows the
application to sort or filter retrieved work items before displaying them to the user.
You can assign any value(s) you want here, or leave the value empty.

Process Manager User’s Guide184

In most applications, a Browse Waiting Activities action will be followed by other
process actions like Lock/Unlock Waiting Activities, Reassign Addressee, and/or
Find (or Release) Waiting Activity. For instance, one possible scenario might be
as follows. An administrator for a work group selects multiple waiting activities
for a group of users (using the Browse Waiting Activities action). The
administrator places a lock on all the selected activities to prevent users from
working on the work items (using a Lock/Unlock Waiting Activities action) while
they are under review. The administrator reassigns some work items among the
users (using the Reassign Addressee action), finds and works on the high priority
work items (using the Find Waiting Activities action) and completes them (using
a Release Waiting Activity action), and then unlocks the activities not worked on
(again using a Lock/Unlock Waiting Activities action).

Comparing Browse and Find

The Browse Waiting Activities action differs from the Find Waiting Activities
action in the following characteristics:

Browse can search for waiting activities by Addressee only, whereas Find
can search only by Process Name/CorrelationID or Activity
Name/ProcessID.

Browse can return information on multiple activities, whereas Find returns
information on just a single waiting activity.

Browse maps its results to a message part or XPath location, whereas Find
maps its results to a part only.

Browse does not return the input messages to the found activities, whereas
Find does return the waiting activity's input message. So by using a Browse
coupled with a Find, an administrator can look into the details of a waiting
activity such as looking at the actual order.

NOTE: Both Browse and Find are nondestructive. No waiting activity is marked
as finished until a Release Waiting Activity action has been called on it.

Creating a Browse Waiting Activities Action

To create a Browse Waiting Activities action, go into a component and right-click
in the action model; then select New Action > Process > Browse Waiting
Activities from the context menu. A dialog will appear.

Waiting Activities and Addressees 185

The Browse Waiting Activities dialog contains two basic control groups. The first
control group offers a way to point to a list of Addressees in a message part in the
component. The value(s) contianed in the nodelist will be used as the search
key(s) for finding waiting activities. For example, in the dialog above, the
Addressee XPath points to the list of Approvers shown below.

The second control group allows you to specify where to place the results of the
browse. Specify a part name (such as Temp) and an XPath location within the
part. The results of the browse will be placed as child elements of the XPath you
specify.

Process Manager User’s Guide186

A successful browse will return one or more PendingActivity documents (as
shown above), each containing child elements describing the waiting activity. If
the browse finds no waiting activities, then only the XPath you specify will be
created and there will be no PendingActivity children elements beneath it.

NOTE: Unlike the Find Waiting Activity action, the Browse Waiting Activities
action does not return the input message for the found activity. In order to retrieve
the input message, you must loop through each PendingActivity element using a
Repeat for Element action, and perform a Find Waiting Activity action on the
activities of interest. (The PendingActivity branches contain all the information
required by a Find Waiting Activity action to retrieve any given activity.)

Lock/Unlock Waiting Activity
The Lock/Unlock Waiting Activity action flags a waiting Web Service Receive
activity as being in use or clears that flag, indicating the waiting activity is
available to be worked on. The flag consists of the two elements /LockedBy and
/LockedUntil in the PendingActivity document associated with a waiting Web
Service Receive activity. A non-null value in the LockedBy element indicates the
waiting activity is unavailable for use. When a lock is flagged, the LockedUntil
element contains a date/time stamp indicating when the lock or flag will be cleared
automatically by the process engine.

It is important to note that the Lock/Unlock Waiting Activity action does not
physically lock the waiting activity. It simply marks the activity as being in use.
Even when flagged as being in use, a Find Waiting Activity/Release Waiting
Activity set of actions can work on and complete the activity. It is up to the
designer of the work group application to honor the lock.

Waiting Activities and Addressees 187

NOTE: Locked activities are not excluded from Browse results. The
PendingActivity information returned by a Browse will show all applicable activities,
including both locked and unlocked ones.

The Lock/Unlock Waiting Activity action is typically utilized in applications
where a long-running process requires the intervention of, or interaction with, a
live person through another application such as a JSP. (See the Composer
Silverstream Server Guide section titled "Creating a JSP that calls a Composer
Service" for more detail.) These work-group applications commonly use work
queues filled with work items assigned to addressees.

Prerequisites for Locking/Unlocking an Activity

Before you can lock or unlock a waiting activit,y you must have a ProcessID and
Activity Name with which to locate the waiting activity. A Lock/Unlock
WaitingActivity action will generally be preceded in an action model by a
successful Browse Waiting Activities or Find Waiting Activity action. The result
of either action is a PendingActivity document from which you can reference the
necessary ProcessID and Activity Name.

If the activity you are trying to lock or unlock is no longer present in the process
engine, Composer will throw an exception, so it is good practice to anticipate this
(for example by placing Lock/Unlock Waiting Activity actions inside a Try/On
Error action).

If the Lock/Unlock Waiting Activity action is successful (i.e., no exception is
thrown), nothing is returned and the next action in the action model executes.

Creating a Lock/Unlock Waiting Activity Action

To create a Lock/Unlock Waiting Activities action, go into a component and right-
click in the action model; then select New Action > Process > Lock/Unlock
Waiting Activities from the context menu. A dialog will appear.

Process Manager User’s Guide188

The Lock/Unlock Waiting Activity dialog has 5 sets of controls:

The first control group contains two radio buttons that determine whether the
action is to set a lock or clear an existing one.

The second control specifies the ProcessID you wish to target. Specify an
XPath within a PendingActivity document down to the ProcessID element.

The third control specifies the Activity Name you wish to target. Specify an
XPath within a PendingActivity document down to the Activity Name
element.

The fourth control is the LockedBy flag. Specify a meaningful value for the
people or processes who might inspect it by executing a Browse or Find
against the waiting activity while you have it flagged as locked.

The fifth control is the Lock Duration. Specify a time interval that will be
used to calculate a date/time stamp to place in the LockedUntil element of
the PendingActivity document associated with the waiting activity. The time
interval default unit of measurement is seconds, so entering the text 60 will
leave the lock flag in place for 60 seconds, after which the flag will be
cleared automatically. Other units of measure include minutes (specified
inside single quotes as: '60m'), hours (specified inside single quotes as:
'60h'), and days (specified inside single quotes as: '60d').

Waiting Activities and Addressees 189

NOTE: If you select the Lock Waiting Activity radio button, values for all controls
are required. If you select the Unlock Waiting Activity radio button, values for the
Process ID and Activity Name controls only are required.

The Lock dialog settings shown in the screen shot further above might give the
following result when another user (say, Mary) browses waiting activities:

The Reassign Addressee Action

The Reassign Addressee action allows you to change the value of the Addressee
attribute assigned to a waiting Web Service Receive activity. In most cases, the
original value of the Addressee will be set by the Process Manager when a Web
Service Receive activity enters its waiting state. Once in its wait state, the current
Addressee can be changed to another value by the Reassign Addressee action.
You also have the option of reassigning the the current Addressee for one Web
Service Receive activity, or all of that person’s Web Service Receive activities.
(For example, you might want to reassign all of Mary’s work to Joe while Mary is
out sick.)

Remember that the Addressee is an optional attribute that can be assigned to a
Web Service Receive activity. The presence or absence of a value does not
inherently affect the processing of the Web Service Receive activity except as a
flag or tag to an external work group application.

Process Manager User’s Guide190

The Reassign Addressee action is typically used in applications where a long-
running Composer process requires the intervention of, or interaction with, a live
person through another application such as a JSP-driven application or form.
Work group applications allowing human interaction commonly use work queues
filled with work items assigned to addressees.

Reassigning an Addressee

Before you reassign the addressee to a waiting activity, you must decide if the
action will reassign all or just one of the activities associated with a particular
Addressee. If you want the action to reassign all activities, then you need only
define two parameters for the action: an XPath or ECMAScript expression
identifying the current Addressee, and an XPath or ECMASCript expression
identifying the new Addressee.

If you want to reassign a single specific activity of the current Addressee, then you
will also need to supply a ProcessID and Activity Name. To do this, the Reassign
Addressee action must be preceded in an action model by a successful Browse
Waiting Activities or Find Waiting Activity action. The result of the Browse or
Find will be a PendingActivity document from which you can reference the
necessary ProcessID and Activity Name.

After the Reassign Addressee action executes, whether successful or
unsuccessful, nothing is returned. To verify the success of the action, perform
another Browse.

Creating a Reassign Addressee Action

To create a Reassign Addressee action, go into a component and right-click in the
action model; then select New Action > Process > Reassign Addressee from the
context menu. A dialog will appear.

Waiting Activities and Addressees 191

The Reassign Addressee dialog has several groups of controls. The first control
identifies the current Addressee (the one whose work will be reassigned) while the
second control identifies the new Addressee. For each one, enter an XPath
location from a part in the current action model or an ECMAScript expression that
will resolve to the correct Addressee name. (The value for each will typically be
passed into the component in which the Reassign Addressee action is used.)

The All Activities and Specified Activity radio buttons in the middle of the dialog
determine whether all activities for the current Addressee will be reassigned (as in
the case where all of Mary’s work needs to be reassigned to Joe), or just one
specific activity. If Specified Activity is chosen, the control groups called Activity
Name and Process ID become enabled and you must enter an XPath or
ECMAScript expression identifying the specific Activity to reassign, along with
the specific ProcessID containing that activity. In order to supply these values,
you will generally have performed a Browse Waiting Activities or Find Waiting
Activity action.

Process Manager User’s Guide192

193

7

Runtime Administration of Processes

Runtime Administration of
Processes Chapter 7

This chapter discusses the use of the Process Server Console to manage deployed
processes.

Server Console Usage
From the Composer Enterprise Server main console page (shown below), click the
“Process Console” icon in the top row of buttons:

NOTE: Composer Enterprise Server and the Process Server should be installed
and running on your application server prior to attempting to access these
consoles.

After clicking the Process Console button, a new screen should appear in a new
browser window, as shown in the section below. Notice the presence of four tabs
(Main, Statistics, Status, and Log). These tabs are discussed in the sections to
follow.

Process Manager User’s Guide194

Process Manager Console: Main Tab

The console’s Main tab reveals a screen comprised of the following sections:

Process Statistics Summary

Process Engine Info

Process Database Info

Jump to Process

Delete Process Info

Manage Activity Queue

Each of these sections is described below:

Runtime Administration of Processes 195

Process Statistics Summary

The Process Statistics Summary section displays the count of Active, Cached, and
Completed processes. The latter refers to the number of process instances that
have run since the Process Server was started (i.e., the Start date given in the next
section), whether they ended in success or a fault of some kind.

Process Engine Info

The Process Engine Info section shows whether the process engine is running and,
if it is running, the date and time at which it was started. If the process engine is
running, the Process Engine Status is “Running” and the button below is labeled
“Stop Engine.” If the process engine is not running, the Process Engine Status is
“Suspended” and the button below is labeled “Start Engine.”

Process Database Info

The Process Database Info section displays general information regarding the
process database. (See the first few pages of this guide, as well as the product
Release Notes, for information on setting up this database.) This is the database
Process Manager uses to persist “state data” for long-running processes.

Type—the type of database (e.g. Oracle, DB2, ASA, etc.)

Pool Name—the name of the connection pool

Status—the status may be:

Not Connected to Database

Can’t Connect to Database

Connected—Not Initialized

Connected—Ready

Configure—the Configure button will be displayed only when the Process
Engine is stopped. Pressing the Configure button in the Process Database
Info section will display the Process Database Configuration page, from
which you can configure the database (see below).

Process Manager User’s Guide196

To configure the database, select a database type from the dropdown list (e.g.
Oracle, DB2, ASA, etc.) and enter a pool name. You may save the
configuration by pressing the Save button. Once the Configuration is saved,
you can initialize the database by pressing the Initialize Database button.
The Initialize Database button is displayed only when the status is
Connected—Not Initialized.

Jump to Process

The Jump to Process section of the main console enables you to display the status
of a specific process by entering the ID of the process and pressing the Go button.

Delete Process Info

Process records can be completely deleted via the Delete Process Info section. You
may delete all information for process instances that were terminated (e.g.
completed or otherwise terminated) by a specified date. To do this, enter the
“Terminated By” date and press the Delete button. For example, if you enter
2002-02-01 and press the Delete button, all records for process instances
completed or otherwise terminated on or February 1, 2002 will be permanently
deleted.

Runtime Administration of Processes 197

NOTE: When a process finishes running or is manually terminated, only the
process instance's input documents and output documents will be maintained. Any
interim documents created by the process instance will be purged, automatically,
upon termination of the process instance.

Manage Activity Queues

You may administer activity queues by pressing Manage Activity Queues button
on the Main tab. Doing so will display a page with two tabs that provide queue
statistics and queue status.

Queue Statistics

The Queue Statistics tab displays a table that contains a sorted list of addresses in
the activity queue and a count of the work items assigned to that addressee. These
statistics are automatically refreshed every 60 seconds.

Queue Status

The Queue Status tab (see illustration below) displays a table with the following
columns:

Addressee—the Addressee name

Priority—the priority

PID—the Process ID

Process Manager User’s Guide198

Corr ID—the correlation ID

Process Name—the name of the process

Activity—the name of the Activity

Created—the creation date of the Activity instance

Expires—the expiration date of the Activity instance

Owner—Owner of the lock

Lock Until—the date which the lock expires

The PID column contains hot links to the Process Detail info for the process
instances. (This will open in a new browser window.) The Process Detail windows
are discussed in a later section.

If the activity does not have a timeout, the Expires column is blank.

If the Activity has been locked via the Lock Waiting Activity Action, the Owner
column displays the name of the Owner of the Locked Activity and the Lock Until
column displays the date to which the activity has been locked. If the Activity does
not have a Lock, the Owner and Lock Until fields are blank.

Runtime Administration of Processes 199

Optionally, you may filter Queue Status by Addressee by entering an Addressee
name. You may also choose to display only those activities that were queued
within a specific range of dates by entering the range of dates in the From and To
fields.

Navigation

The Queue Status tab, like other Composer Process Manager Console pages,
displays up to twenty (20) records per page. If there are more than 20 records, a
controls at the bottom the page allow you to move to the first page, the previous
page, the next page, or the last page.

Process Manager Console: Statistics Tab
The Process Manger Console’s Statistics tab provides a list of all processes and a
count of Running and Completed process instances for each process. (See below.)
On the Totals line at the bottom, you will see (from left to right) the total number
of Processes (not process instances, but different process models), Running
process instances, and Completed process instances. The processes are listed
alphabetically by name on the left. Each name is a hot link that will take you to a
Status page listing a status table filtered by the process name.

Process Manager User’s Guide200

Process Manager Console: Status Tab

The Process Manager Console’s Status tab gives you a view of the overall
execution status of all processes, filterable by process name and date range, with
control over which field to sort by. The filter controls are at the bottom of the page.

As always, 20 result lines are displayed at a time. To page through the available
results, click the First, Prev, Next, or Last links at the lower right corner of the
page.

This view is not updated in real time. Therefore, a Refresh button is provided near
the bottom right corner.

Runtime Administration of Processes 201

Process ID and Parent ID numbers are clickable links. You can “drill down” on
a specific process instance by clicking the appropriate Process ID link. Clicking a
link will open a new browser window in which the Process Detail page, described
later, is presented.

Status Filter

The Status Filter control group (bottom of page) allows you to control how
processes are displayed in the Status tab view. You can choose, for example, to
display process instances for a specific named process using the Process drop-
down control.

Using the Sort By control, you can sort the list of displayed processes by Process
Name, Process ID, the Create Date/Time, the Modify Date/Time or the Status.

Process Manager User’s Guide202

By entering dates in the From and To fields, you can display processes that were
started and, optionally, completed within a specified range of dates. Check the
Include Completed check box if you want to display records of finished
processes.

After selecting your filter options, press the Refresh button to display a new list of
processes based on your current Filter and Sort settings.

Process Manager Console: Log Tab

The Process Manager Console’s Log tab displays log messages in the following
format, sorted by Date and Time:

You may filter the view of the log by clicking on the checkboxes at the bottom of
the page:

After making your desired choices, press the Refresh button.

Runtime Administration of Processes 203

Detail View for a Process Instance

When you click a link for a process instance (such as any of the links in the ID
column of the Status Tab in the main process console), you will see an Activity
Detail view for that process instance pop open in a new browser window. (Using
multiple browser windows, you can monitor multiple process instances
simultaneously.)

The detail viewfor a process instance has three tabs: Activities Detail, Messages
and Log.

Process Detail: Activities Detail Tab

Activities Detail is the first tab on the detail page and is the default view when the
window first opens.

In this tab, you’ll see the Name, ID, Start Date/Time, Completed Date/Time, and
Status of the individual activities that comprise the process instance. The process
instance will be listed as either Running or Complete. If the process is running,
buttons will be present enabling you to Suspend or Terminate the running process
instance.

Process Manager User’s Guide204

The columns in the Activities Detail tab view have the following meanings.:

Process Detail: Messages

The Messages tab gives you a view of the process instance’s messages (i.e., input
and output documents). The messages are sorted by name.

Activity This is the name of the Activity. The Activity names are
hyperlinked to the Activity Data Monitor. The Activity Data
Monitor displays Input and Output documents and their data
values.

Activity
Type

This is the type of activity – Web Service, Subprocess,
Composer Component or End Point.

Started This is the date and time when the activity started.

Completed This is the date and time when the activity was completed.

Status This column displays the Status of the activity.

Completed After the associated operation has
completed, continuation of the activity
depends on its exit condition. If this
evaluates to false, the activity is
iterated, by either continuing with
‘enabled’ or ‘running’ depending on the
associated operation. If the exit
conditions evaluates to true, the
activity reaches the ‘Completed’ state.

Running The Activity’s state once it is started.

Terminated The Acvity’s status when the process
completes before the Activity.

Enabled The flow engine decides that this
activity instance could now possibly be
executed and puts it into the ‘Enabled’
state. Depending on the nature of the
activity and its associated operation, it
might remain in that state until it is
started through an explicit requests
(e.g. for in or in-out operations), or the
flow engine will start it right away (e.g.
for out or out-in requests).

Runtime Administration of Processes 205

The Messages tab displays the following information:

Message
Name

The name of the message.

Message Type The message type may be either Input or Output

Creation Time The time the message was created.

View Text The View Text link displays the message in a new browser
window, as shown below.

Process Manager User’s Guide206

Process Detail: Log

The Log tab summarizes logged events of various types. See below.

Runtime Administration of Processes 207

At the bottom of the window (scroll down as necessary), you’ll find checkboxes
that you can use to control the types of events summarized in the table.

Select the checkboxes of interest, then click the Refresh button to bring up a
listing of logged events (appropriately filtered).

Process Manager User’s Guide208

209

A

Testing

Testing Appendix A

Environmental Differences between Design-Time
Testing and Server Testing

There are significant environmental differences between animation-based “step
through” testing in Composer and server-side (deployment) testing. Both types of
testing are needed, obviously, to verify the processes and services you build. Some
environmental differences that you should be aware of are detailed in the table
below.

Requirement Testing in Composer Testing on the Server

Console views
and
administrative
monitoring

Not available in a non-
deployed, design-time
environment

Administrative consoles are
available

Logging Messages go to Output
pane of main Composer
window

Messages visible in Log tab
of console

Testing of long-
running
processes

Not practicable in a
design-time setting
(some processes may
take days or weeks)

Can and should be done
here

Data persistence No database required Database must be
configured for Process
Server’s use

Process Manager User’s Guide210

Visual depiction
of running
process’s state

Available at animation
time (canvas view
updates as process
runs)

No canvas (graph) views in
this release

Process instance
info

Process IDs start at one
at the beginning of each
design session, then
increment as new
process instances are
executed. With each
launch of Process
Designer, the Process
ID numbering is reset to
begin again at one.

Process IDs are generated
continuously and never
reset to one.

Runtime
variables for:
* Connection
names

* Client
credentials

* Log File Paths
* DTD URIs
* XSL URIs
* Send Mail
Server
* XML Inter-
change URIs

Often point to locations
on local machine, for
design and test
purposes

Should be set to point to
locations on production
Servers and Web

Triggering Processes can be
executed either from a
Process Execute action
inside an animating
component, or directly
from one of the
animation toolbar
buttons

Every process must be
deployed with a service that
can kick it off

Requirement Testing in Composer Testing on the Server

211

B

Performance Tuning

Performance Tuning Appendix B

Configuration Options
Process Server performance can be tuned in various ways. The necessary adjustments are
accomplished by editing the xc_process_config.xml file. For a SilverStream app server
install, this file would be located in (for example)
D:\Silverstream3.7\eXtendComposer\lib.

Cache

The Process Server cache is managed by changing the values of <PROCESS_CACHE>.

Sleep Time

The value of the <SLEEP> element controls the number of seconds the Process Server waits
in a delay loop before checking to see if any in-memory processes have exceeded their
<CUTOFF> period. (See below.)

Cutoff Period

The value of the <CUTOFF> element controls the maximum number of seconds a process is
allowed in memory without any activity. If the <CUTOFF> for any in-memory process is
exceeded at the end of a <SLEEP> period, then the process will be purged from memory. It
is, however, still in persistence in the database and can still reenter an executable state,
albeit more slowly than if in memory.

Total In-Memory Process Instances

The value of the <SIZE> element controls the the maximum number of processes that will
be allowed in memory before swapping occurs.

Process Manager User’s Guide212

213

C

Process Management Glossary

Process Management Glossary Appendix C

Activity

An activity is a unit of work within a process model, representing a business task. On an operational
level, an activity is a named operation with a signature that specifies the inputs, outputs, and possible
faults associated with the operation. The activity is separate from its implementation. The
implementation (which can be any Composer component type, or any Component service) performs
a task on behalf of the activity.

Addressee

The Addressee property (which exists only on the Web Service Receive activity type) provides a way
to tag activity instances with a label, typically corresponding to the name of an individual in the
organization.

Asynchronous

A mode of operation in which work is done independently and in parallel with other work. (That is,
there are no time-order dependencies between parties.) In software terms, an asychronous task
executes in its own thread. The term “fire and forget” is often used when referring to a process that
has been spawned asynchronously. See also Thread and Spawn, below.

Business Process Management (BPM)

Business Process Management is the study of ways to model business functions in terms of their
component activities and participant roles.

BPML

Business Process Modeling Language: an XML grammar for describing workflow, created and
managed by the Business Process Management Initiative (http://www.bpmi.org). It is roughly
comparable in scope to WSFL. Process Manager follows WSFL closely; it does not adhere to BPML.

http:\\www.bpmi.org
http:\\www.bpmi.org
http:\\www.bpmi.org

Process Manager User’s Guide214

Call

A call event is one of two lifecycle events that can invoke an instance of a process. (The other such
event is spawn; see below.) Unlike a spawned process, which returns an instance ID immediately, a
called process does not return until the process flow has completed. A call operation implies
synchronous processing, whereas a spawn operation is equivalent to “fire and forget.”

Choreography

A particular set of sequenced operations is often colloquially referred to (in a business-process
context) as a choreography. See also PIP, below.

Control Link

A control link is the WSFL construct that defines a single step in the flow of control from one activity
to another.It specifies the “activity traversal order” so that the workflow engine knows how to get
from a given activity to the next one in sequence.

Correlation ID

In Process Manager, a Correlation ID is an arbitrary user-specified string or number that can be used
to associate data in a given message part with a transaction context. Correlation ID is a common term
for this kind of user-defined label, but it is not a formal WSDL or WSFL concept.

Cyclic Graph

A cyclic graph is a graph that permits links from downstream nodes back to upstream nodes, forming
a loop. Such graph patterns are not allowed in Process Manager.

Data Link

A data link is an atomic unit of data flow, specifying one or more data sources along with one or more
data targets. The sources and targets are activities within the running process. While in most cases
data flow will mirror control flow, it is possible that data can bypass certain activities in a flow or
arrive at a target by a more direct path than might be specified in the control flow. Hence, data links
do not always follow control links.

Dead-Path Elimination

Dead-path elimination refers to the special lookahead operation that the Process Server conducts
every time a conditional expression (a link condition, for example) evaluates to false. When flow
along a given path is no longer possible due to a false link condition, all downstream links must be
marked as false so that joins can be evaluated in the course of operation. (The path goes from being
dead to being known-false.) If this were not done, downstream joins could hang indefinitely.

Process Management Glossary 215

Exit Condition

An exit condition is a boolean value (determined by runtime evaluation of user-supplied XPath logic)
that indicates whether a given activity executed normally. Outgoing control links cannot be followed
until and unless the exit condition is true. If the exit condition is false, the activity will execute again
(if allowed by the timeout and retry settings).

Factoring

In programming, factoring is the attempt to split code into smaller, more generic (and thus reusable)
units of work.

Fan-Out

A type of execution pattern in which a collection of N discrete works items gives rise to an
asynchronous invocation of N instances of a particular process designed to work on the work items.

FlowInstanceID

Every WSFL process that is invoked via a spawn operation is required to return a unique
FlowInstanceID to the caller immediately. This ID can be a timestamp or can be an arbitrary string,
but it must uniquely identify a particular instance of a running process. This value is used as the input
value of other lifecycle operations (such as enquire; see Lifecycle Interface, below).

Flow Model

The flow model is the XML representation of the directed graph that models the business process. In
other words, it is the all-encompassing set of activities, control links, and data links that comprise a
given process. A flow model makes the choreography of a process explicit, such that an execution
engine can instantiate the process at runtime and understand how to manage the flow of control over
the process’s lifecycle.

Graph

An abstract visual representation of a system of nodes. In Process Manager terms, a graph of a
process is what you draw on the Process Designer canvas.

Implementation

The concrete realization in software of an activity. Every activity must have an implementation.

Join Condition

When two or more activities target the same successor activity, the decision of whether the successor
activity can be invoked may depend on factors that can be evaluated only when upstream activities
have finished executing. The runtime engine makes this decision based on user-supplied logic in a
join condition. The join condition takes as input the respective boolean values (or “truth values”) of
incoming links. It performs some user-specified set of logical operations on the link values and

Process Manager User’s Guide216

returns true or false. A true condition means that the join target will be invoked. False means that
control flow ends at the join. Note that unlike link and exit logic (which both use XPath), join logic is
expressed in a simple pseudocode-like boolean logic. The join condition, in other words, has no
knowledge of messages or message parts (nor any data whatever). It only knows about link boolean
values.

Lifecycle Interface

The Lifecycle Interface is the WSDL-defined web service interface that describes the basic set of
operations that all WSFL processes must support. These operations include spawn, call, suspend,
resume, enquire, and terminate. These operations are global in scope (they apply to the process-as-a-
whole) and can be managed administratively.

Link Condition

A link condition is an XPath expression that resolves to a boolean value. Its value determines whether
a given link can be traversed by the process engine at runtime. The XPath expression typically utilizes
data from an upstream activity’s output.

Long Running

Some processes can take days or weeks to run to completion. Such processes are called long-running.

Map Policy

A map policy specifies how data should be mapped in the special case where two or more data links
target the same message part(s). A policy of Last Writer Wins (LWW) means that newly arriving data
will overwrite older data. A policy of First Writer Wins (FWW) means that once any data have been
written, data arriving later will be ignored. Map Order means that for any given incoming message,
XPath-to-XPath mappings will occur in the order listed in the Messages tab of the activity’s property
sheet, completely ignoring timestamps.

Message

In WSFL and WSDL, a message is an abstract definition of a bundled set of data. The logical parts
that are bundled together as part of the message structure are known as message parts (see below).
Activities operate on messages; hence, the interface to an activity can be specified in terms of its input
and output messages.

Message Part

In WSFL and WSDL, a message part is a logical unit of a message. In Process Manager terms, the
parts correspond to XML documents that activity implementations can inspect, modify, and transform
into new parts of new messages.

Process Management Glossary 217

Metadata

Data about data. In Process Manager terms, the metadata representation of a process is a non-visual
XML representation of a given process’s actual structure and attributes. The metadata blueprint of a
process is used by Process Server to construct process instances at runtime.

Notification

A one-way operation is a web service execution pattern in which the service proactively sends a
message, with no expectation of a response. It is “fire and forget” pattern. However, it is often used in
conjunction with the One-Way pattern (see below) in order to complete an asynchronous roundtrip
communication with a partner. In such a case, the web service that implements the Notification
pattern will typically embed correlation information in the outgoing message, so that information
received in a later One-Way operation can be “matched up” with the transaction context of the
Notification. See also One-Way, below.

One-Way

A one-way operation is a web service execution pattern in which the endpoint receives a message (but
does not send one back to the initiator). The one-way web service is a passive receiver. See also
Notification.

Operation

In WSDL, an operation is a specified sequence of message transfers (described in terms of named
input messages and output messages). See also Port Type, below.

PIP®

RosettaNet Partner Interface Processes: a set of de facto industry standards that define business
interaction patterns between trading partners. The interaction patterns include sequencing and
timeout rules for various kinds of common business transactions. The patterns, because of their
intricate sequencing (time domain) requirements, are often called choreographies.

Port Type

In WSDL, a port type is a named set of operations. (An operation, in turn, is a specification of a
particular time-order sequence of particular messages.) Four port types are supported by WSDL:
One-Way, Request-Response, Solicit-Response, and Notification. (See individual definitions of these
items.)

Process

A description of the activities, control-flow patterns, and data-flow relationships involved in
performing a particular business task. WSFL (see below) describes processes as web services
compositions. It is assumed, in WSFL, that processes (or workflows) are automated.

Process Manager User’s Guide218

ProcessID

A number that uiniquely identifies a process instance (a running process) within the Process Server at
runtime.

Request-Response

A request-response operation is a web service execution pattern in which the service receives a
message, then sends a (correlated) message back to the initiator. The request-response web service is
a passive receiver. It responds with an output message.

RosettaNet

A non-profit industry organization dedicated to “the adoption and promotion of open content and
open transaction standards in electronic commerce across the Information Technology (IT),
Electronic Components (EC) and Semiconductor Manufacturing (SM) supply chains.” See
http://www.rosettanet.org/ for details.

Semaphore

A flag value meant to signal the availability or unavailability of (typically) a function or file, in the
context of the file’s lock status.

Service Provider

A service provider is the party responsible for performing a particular activity within a business
process.

Service Provider Type

In order to maintain separation between the definition of a business process and its implementation,
WSFL defines activities as being implemented by abstract service provider types rather than by
specific service providers (which can later be mapped to the types). The service provider type and its
associated interface are defined by a WSDL document. Service providers must properly implement a
given web service interface in order to handle a particular activity in the business process.

SOAP

Simplified Object Access Protocol: a lightweight XML-based protocol for exchange of information
in a distributed environment. The protocol definition consists of three parts: an envelope that defines
a framework for describing what is in a message and how to process it, a grammar for specifying
application-defined datatypes, and a grammar for representing remote procedure calls and responses.

Solicit-Response

A solicit-response operation is a web service execution pattern in which the service sends a message
proactively, then receives a response. In this scenario, the web service is an initiator of a transaction.
Since a response from a participant is required as part of the pattern, this type of web service is

http://www.rosettanet.org/

Process Management Glossary 219

assumed to execute synchronously. (That is, on sending its message, it blocks until the reply message
comes back.) See also Request-Response, above.

Spawn

Spawn is a WSFL-defined lifecycle operation that allows one-way (asynchronous) invocation of a
process. (The corresponding synchronous launch event is the call event. See further above.) When a
process is spawned, it returns a result (the Process ID) immediately.

Subprocess

A process that has been called by another process.

Synchronize Subprocesses Activity

The Synchronize Subprocesses Activity is one of Process Manager’s core activity types. It is a
special-purpose activity type designed to aid in the collection and collation of data from multiple
spawned instances of a component. The implementation to the activity is often called a “merge
component,” because it typically merges incoming data. The Synchronize Subprocesses Activity thus
constitutes the “fan-in” piece in a fan-out/fan-in scenario.

System Fault

The runtime engine raises a System fault when an activity implementation generates an
unhandled exception; or a subprocess activity returns a fault message; or the runtime
engine encounters a message or message type that it doesn’t know how to handle; or a
Timeout fault occurred and was not handled by an activity designed for that purpose. (In this
case, two faults are actually generated: one Timeout and one System.) When a System fault occurs,
the process instance produces a message called _SystemFault, with a part name called (also)
_SystemFault.

Thread

An execution context with no time-order dependencies on other operations occurring in other
contexts.

Transition Condition (Link Logic)

As a process is run, the execution engine must be able to recognize when a particular activity is
finished, identify the next activity in the flow, and make a decision as to whether the next activity
should be invoked or not invoked, based on user-specified transition logic. A transition condition
determines whether flow should continue along the current path. The transition condition is specified
in XPath and always evaluates to true or false.

UDDI

Universal Description, Discovery and Integration specification (maintained by
http://www.uddi.org).A scheme for exposing business services via web-based registries.

http://www.uddi.org/
http://www.uddi.org/

Process Manager User’s Guide220

Waiting Activity

Any time an activity (such as a subprocess or Web Service Receive activity) is in a wait state, waiting
to receive a response to some request that was made asynchronously by another activity, it is said to
be a waiting activity.

Web Service Receive

The Web Service Receive Activity is one of the core Process Manager activity types. It is a passive,
“listening” activity type meant to implement the Request-Response or One-Way transaction patterns
described by WSDL.

Web Services Composition

A process model based on web services. Essentially, any WSFL process.

Workflow

In the context of BPM, a workflow is a process. WSFL favors the term process because its authors
anticipate that most automated workflows will rely, ultimately, on Web Services. (In more traditional
workflow systems, activities tend to center around human-mediated activities.)

WSDL

Web Services Description Language: An XML format for describing web services as a set of
endpoints operating on messages. The operations and messages are described abstractly, then bound
to a concrete network protocol and message format to define an endpoint. Related concrete endpoints
are combined into abstract endpoints (services). Services are thus defined using six major elements:
types, message, portType, binding, port, and service.

WSFL

Web Services Flow Language: An XML format for describing workflow processes as linked
activities. The activities may be web services, or other workflow processes.

221

Index

A
action

Browse Waiting Activities 182
Lock/Unlock Waiting Activity 186
Process Execute 168
Reassign Addressee 189
Release Waiting Activity 171, 177

activities
creating 81
finding 173

activity
end 31
fan-out 63, 155
fault handler 97
lookup 173
renaming 83
source vs. target 50
start 31
Synchronize Subprocesses 154
types 31
waiting 162
Web Service Receive 131, 153
Web Service Send 128

activity detail 203
activity icons 112
activity implementation 171
Activity Tool 81
Addressee 163, 177, 180, 199
administration 193

Addressee views 199
lock info 199
Process Database Info 195
Process Engine Info 195
queue 197
statistics 195

algorithm, execution 47
algorithm, process execution 47
alignment to grid 144
Alt key and grid alignment 144
AND Split 54
animation 100
animation and deployment testing 209
architectural summary 66

asynchronous fan-out 61
autodiagramming 147
autolayout 147

B
background image 146
batch processing 155
best practices 68
bombsight view 110, 144
BPM, justification for 23
branch logic 53
breakpoints 101
Browse Waiting Activities 163
Browse Waiting Activities action 182, 184
Business Process Management (BPM) 21

C
call 41, 168
Call vs. Spawn (Process Execute) 167
canvas

background images 146
customization 145

choreography, retry 92
circular layout 142
collisions, data-mapping 94
Comparing Browse and Find 184
COMPONENT_FAULT_SUBCODE 96
compound branch logic 54
concurrent processing 61
condition

join 91
conditional branching 53
conditions

exclusive-OR 56
exit 47, 90

configuration of database 13
Configure Database 195
configuring the engine’s database 14
connection pools 13
Consoles, Process Manager 194
Correlation ID 173
CORR ID 198
custom grid size 144
customization 145

222

Cutoff Period 211
cyclic graph 85

D
database

configuring Process Engine 195
synchronization 14
WebLogic setup 13
WebSphere setup 13

data links 67, 86
data mapping 86
data merging 38
DB2 12, 13
dead links 37
dead path elimination 37
debugging 100, 104
Deferred Mode 36, 37, 49, 55, 57, 92
Delete Process Info 194, 196
deployment 170
Device Offset 146
DoBatch 64
document purging 197
DOM view 106
dynamic fan-out 61

E
edge routing 148
End Activities 31
engine 195
engine (see also Process Server) 195
engine database 13
environmental differences 209
error, link creation 57
Exit Condition

specifying 90
exit condition 35, 47

specifying 90
Expression Builder 88, 91
external data store 59

F
factoring 24

Fail on First Fault 159
fan-out 155, 170
Fan-Out/Fan-In 61

recursive 63
fan-out component 63
FAQ 44
fault 105
Fault Codes 96
Fault Handling 97, 159
fault handling 95
Fault Messages 95
filter 201
filter criteria (admin) 201
Find Waiting Activity. 161
First Writer Wins 95
First writer wins (FWW) 38
FWW 94

G
grid behavior 144
GVXMLProperties_process 74

H
Hierarchical Layout 147
hierarchical modelling 66
human interaction scenarios 163
human participation in processes 179

I
icons, activity 112
images, background 146
Immediate Mode 36, 49, 92
Immediate Mode, 55
implementation, activity 82

tasks vs. 31
Initialize Database 195
Initialize database 14
initialize database 196
Input1 DOM 158
input message

named same as output 58
inquire (lifecycle event) 41

223

installation, databases and 14
Internal Revenue Service 55
Invalid Configuration message 13
iterating on an external data store 59

J
JMS Components 60
JMSDestination 60
JMSMessageID 60
JMS Receive action 60
JMS Service 63
JNDI Name, connection pools and 13
join condition 35, 56
Join Logic 55
jpeg or .gif image on canvas 146
JSP 179, 182, 183, 187
Jump to Process 196

L
Last Writer Wins 95
Last writer wins (LWW) 38
layout modes 147
lifecycle events 40
link

conditions, specifying 84
creation 83

link condition 84
links 33

auto-alignment 147
backward-facing 85
creating 83
data 86
triangle shape 98
XPath 84

Link tool 114
Lock/Unlock Waiting Activity 163
Lock/Unlock Waiting Activity action 186
Lock Duration 188
LockedBy 177, 186, 188
LockedUntil 177, 186
lock until 198
Lock Waiting Activity 198
log 203, 206
logged events 207

logic, link 84
log messages 104
Log Tab 202
lookup methods, activity 173
looping 56, 58

asynchronous 61
reentrancy and 85

LWW 94

M
MainCode 96
Manage Activity Queue button 197
Map Order 38, 94
mapping 86

start activity 89
mapping an activity to itself 58
Map Policy 38, 94
merge component 62, 157
Merge Edge Channels 148
message

fault, contents of 105
parts 33
show/hide 106
Timeout fault 97

message maps 86
message naming 86
message parts 33
messages 32, 203
Messages Tab 126
metadata description 41
multiple Undo 144

N
naming conventions

message 86
navigation of consoles 199
New Process 73
Non-Exclusive OR Split 54

O
Object Properties 51

Addressee 163

224

Object Properties panel 52, 84, 110, 122
ODBC data source 12
Oracle 13
ORSplit 54
Orthogonal Layout 143
orthogonal routing 148
overview of Process Manager 66
overview pane 110
Overview Window 144
overwrite policy 94
owner 198

P
panning 144
parallel processing 61
Parent ID 170
Passed Part, 169
PendingActivity document 176, 182, 186
pending processes (admin) 199
performance 46
picture, adding to canvas 146
policy, overwrite 94
portType 52
Priority 163, 177
process

create 73
human interaction with 179
input template 90
invoking via action 167
new 73
triggers 165

process architecture summary 66
Process Database Configuration 14
process database info 195
Process Designer GUI 109
process engine database 195
Process Execute action 167, 168
ProcessID 47
ProcessInput, mapping to 89
Process Manager Architectural Layers 41
Process Model Pane 110
ProcessOutput, mapping to 89
Process Properties 117
Process Server

database 13
Process Server Execution Model 47

Process Statistics Summary 195
ProductInquiryProcess 72
property sheets 50
purging of documents 197

Q
queue 197
QueueDate 177
queues 167
Queue Status Tab 197
QuickFilter 201

R
Reassign Addressee 163
Reassign Addressee action 189
recursive process graph 63
reentrancy 57
reentrant loops 85
Release Waiting Activity 161
Release Waiting Activity action 171, 177
rename activity 83
Request-Response pattern 149
resume 41
resynchronization 155
resynchronizing database 13
Retry Count 92, 93
Retry Interval 92, 97
Retry Interval, 93
Returned Part 169
runtime execution algorithm 47
Run to Breakpoint 101

S
scenarios, work-group 181
sequencing 34
server start/stop 46
Service Providers

adding types 80
Set Breakpoint 101
setup, database 14
Shapes tool 114
SilverStream app server 14

225

Sleep Time 211
snap behavior 144
SOAP trigger 165
spawn 41, 49, 168
Spawn (Process Execute) 167
Spawn as Subprocess... 169
Spawn as Subprocess of Parent ID 170
split-or-work strategy 65
start/end activity mapping 89
Start Activities 31
statistics 195, 197, 199

filter/sort 201
status, queue 197
Status Tab, ,admin console 200
Step Into/Over 101
Sticky Tools 144
SubCode 96
Subprocess 113
summary of WSFL workings 66
summary statistics (admin) 195
suspend 41
Sybase 13
Sychronize Subprocesses Activity 65
Symmetric Layout 143
synchronization 63
synchronization failure 37
synchronization logic 34
synchronize database 14
Synchronize Subprocesses Activity 113, 154, 169
SYSTEM_FAULT_MAINCODE 96
System Faults 95
System log 104

T
Tasks vs activities 31
templates

process input 90
terminate 41
Terminated By 196
testing and debugging 100
Text tool 114
threaded subprocesses 62
Tile Picture 146
Timeout 39, 92, 97
_TimeoutFault 99, 150
TIMEOUT_FAULT_MAINCODE 96

Timeout Faults 96
toolbar 110
tools

link 114
sticky mode 144
text 114

tools,shape 114
transition condition 34
Tree Layout 143
triangle link icon 98
trigger types 165
troubleshooting

database synchronization 14

U
UNHANDLED_MESSAGE_SUBCODE 96
user access to queued work 179

V
viewport rect 144

W
Waiting Activities 160
Waiting Activity 162
WebLogic-specific setup info 13
Web Service Receive 113, 131, 149, 153, 171,

173, 179, 181
Web Service Send 113, 128
Web Services Flow Language 30
WebSphere-specific setup info 13
workflow 22
workflow, human 163
workflow models, human-centric 179
workgroups 179
workhorse process 63
work items 163, 197
work queues 167
World Offset 146
WSDL 33, 52, 153
WSFL 21

best practices 68
looping and 56

226

summary of key points 66

X
XML Template 90
XOR join 35
XOR-Split 53
XPath 35, 88

in links 84
XSL 210
x-y alignment of links 147

Z
zooming, interactive 144

	Contents
	1 Welcome to Composer and Process Management 21
	2 Preparing to Model a Process 47
	3 Creating and Testing Processes 71
	4 The Process Designer User Interface 109
	5 Advanced Topics 149
	6 Waiting Activities and Addressees 165
	7 Runtime Administration of Processes 193
	A Testing 209
	B Performance Tuning 211
	C Process Management Glossary 213

	About This Guide
	Getting Started with Process Manager: 5-Minute Tutorial
	How Do I Deploy It?

	Welcome to Composer and Process Management
	What Is Process Management?
	Why Automated Process Management?
	Process Design versus Application Design
	Modularity
	Example of a Simple Straight-Through Process

	Process Management and Emerging Technologies
	How Does a Process Differ from a Service?
	Large versus Small Units of Work
	Long-Running versus Straight-Through
	Wait States and Persistence
	Parallel Execution

	Process Management Terms and Concepts
	Activities, Messages, and Links
	Activities
	Start Activities and End Activities
	Tasks, Activities, and Implementations
	Messages
	Links

	Sequencing, Timing, and Process-Level Logic
	Control Flow Logic
	Link Transition Conditions
	Activity Exit Conditions
	Join Conditions

	Deferred Mode versus Immediate Mode
	Dead Links and Synchronization Failure

	Map Policy and Data Merging
	Timeouts and Retries

	Data Flow Patterns
	Lifecycle Events
	Process Manager Architectural Layers
	Process Manager FAQ
	Can I Create or Edit Composer Components within Process Manager?
	Can I Begin Designing a Process Even if Some Activities Have not Yet Been Implemented?
	Can I Run a Process in the Design-Time Environment for Test Purposes?
	Is It Possible to Import WSFL Flow Models Created in Another Environment?
	Can I Edit My Process-Model Metadata in an XML Editor?
	Does Process Manager Support Parallel Split, Exclusive Choice, and other Branching Constructs?
	Does Process Manager Support Looping?
	Can I Use the Process Manager for Document Routing and User Agent Functionality?
	Will Automated Processes Put Huge Demands on My System?
	Can I Start and Stop a Server While a Process is Running?
	Must All Activities Be Implemented as Web Services?
	Must Processes be Exposed as Web Services?

	Preparing to Model a Process
	Process Server Execution Model
	The Design-Time View

	Flow Control Strategies
	Branch Logic
	Conditional Branch (XOR-Split)
	AND Split
	Non-Exclusive OR Split
	Compound Branch Logic

	Join Logic
	Looping
	How Safe Looping Can Be Accomplished
	Mapping an Activity to Itself
	Iterating Against an External Data Store
	Delegating Loop Behavior to an Activity Implementation
	Fan-Out
	Component-Controlled Fan-Out/Fan-In
	Recursive Fan-Out/Fan-In
	Synchronize Subprocesses Activity

	Process Architecture in Review
	Taking a Best-Practices Approach

	Creating and Testing Processes
	Example: A Simple Straight-Through Process
	Description

	Process-Building Basics
	Creating a New Process
	About Service Provider Resources
	About Service Provider Type Resources
	Creating Activities
	Creating Links
	Link Transition Logic
	Links That Point the “Wrong Way”

	Message Mapping
	Message Naming
	How to Define Message Mappings
	Data Mapping for Start and End Activities
	Selecting a Process Input Template

	Applying Flow Logic at the Activity Level
	Timeouts and Retries
	Map Policy
	LWW, FWW, and Map Order

	Fault Messages and Fault Handling
	System Faults
	Fault Codes

	Timeout Faults

	Fault Handling
	Animation and Testing
	Aids to Debugging
	Watching System Messages at Animation Time
	Inspecting Messages

	The Process Designer User Interface
	Main Features
	The Process Designer Window
	Toolbar

	Graph Elements
	Activities
	Links
	Text Boxes
	Shapes

	Menu Commands
	Process Properties
	Object Properties
	Activity Properties
	Composer Component
	Activity Tab
	Messages Tab
	UI Tab

	Web Service Send
	Web Service Send Activity Tab
	Messages and UI Tabs for Web Service Send

	Web Service Receive
	Web Service Receive Activity Tab
	Messages and UI Tabs for Web Service Receive

	Subprocess
	Synchronize Subprocesses
	Link
	Link Tab
	UI Tab for Links

	Graph Object Properties
	Process Messages Tab
	Graph UI Tab

	Selected Node Properties on UI Tab
	UI Tab (Selected Node Properties)

	Text Object Properties
	UI Tab

	Layout Properties
	General Layout Tips
	Snap and Grid Behavior
	Multiple Undo
	Sticky Tools
	Overview Window
	Customizing the Canvas
	Using Custom Backgrounds
	Autolayout Options

	Advanced Topics
	Web Service Receive
	Multiple Implementations for a Single WSR Activity
	Implementation Independence

	Synchronize Subprocesses Activity
	Data Mapping in the Synchronize Subprocesses Activity
	Input
	Input1
	Output

	Fault Handling

	Waiting Activities
	“Waiting Activity” Actions
	Waiting Activities and Human Interaction

	Waiting Activities and Addressees
	Understanding How Processes Are Triggered
	Process-Related Actions
	The Process Execute Action
	Data Returned by a Spawned Process
	How to Create a Process Execute Action
	More about the Process Execute Dialog
	Spawn as Subprocess of Parent ID

	Deployment and the Process Execute Action

	Find Waiting Activity Action
	A Scenario
	Finding a Waiting Activity
	The Find Waiting Activity Dialog
	Find tab
	Message tab
	The PendingActivity document

	Release Waiting Activity Action
	The Release Waiting Activity Dialog

	Human Participation in Processes
	Addressees
	The Role of the Web Service Receive Activity

	Browse Waiting Activities Action
	Where to Use the Browse Waiting Activities Action
	How It Works
	Comparing Browse and Find

	Creating a Browse Waiting Activities Action

	Lock/Unlock Waiting Activity
	Prerequisites for Locking/Unlocking an Activity
	Creating a Lock/Unlock Waiting Activity Action

	The Reassign Addressee Action
	Reassigning an Addressee
	Creating a Reassign Addressee Action

	Runtime Administration of Processes
	Server Console Usage
	Process Manager Console: Main Tab
	Process Statistics Summary
	Process Engine Info
	Process Database Info
	Jump to Process
	Delete Process Info
	Manage Activity Queues
	Navigation

	Process Manager Console: Status Tab
	Status Filter

	Process Manager Console: Log Tab
	Detail View for a Process Instance
	Process Detail: Activities Detail Tab
	Process Detail: Messages
	Process Detail: Log

	Testing
	Environmental Differences between Design-Time Testing�and Server Testing

	Performance Tuning
	Configuration Options
	Cache
	Sleep Time
	Cutoff Period
	Total In-Memory Process Instances

	Process Management Glossary
	Index

