Novell exteNd Composer™
Process Manager

www.novell.com
5.0

USER’S GUIDE

Novell

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all timesremain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any

rights of ownership in the Software.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Composer Process Manager User’s Guide
January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks

eDirectory isatrademark of Novell, Inc.

exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
theredistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', "Xaan" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "ASI1S" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THEIMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESSFOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rightsreserved. Redistribution and usein source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer
that follows these conditionsin the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Softwareisderived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project isreleased under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intaio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation (" Software'), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redi stributions must al so contain acopy of thisdocument. 2. Redistributions
in binary form must reproduce the above copyright notice, thislist of conditions, and the following disclaimer inthe
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExolL ab Project (http://www.exolab.org/). THIS
SOFTWARE ISPROVIDED BY INTALIO AND CONTRIBUTORS “"ASIS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Contents

About This Guide

Welcome to Composer and Process Management
What Is Process Management?

Process Management Termsand Concepts. o o v oo
Activities, Messages, and Links. e
Sequencing, Timing, and Process-Level Logic
Control Flow Logic e e e e
Deferred Mode versus Immediate Mode L.
Map Policy and Data Merging. e
Timeoutsand Retries e
Data Flow Patterns. e
Lifecycle Events e
Process Manager Architectural Layers e
Process Manager FAQ. e

Preparing to Model a Process

Process Server Execution Model
The Design-Time View 0 e e e e

Flow Control Strategies e e e
Branch Logic e e
JoinLogiC. e e
LOOPING o e e e
How Safe Looping Can Be Accomplished

Process Architecture in Review L L L

Taking a Best-Practices Approach. e

Creating and Testing Processes

Example: A Simple Straight-Through Process.
Description L e

Process-Building Basics L

Creatinga New ProCcess o o i o e e

About Service Provider RESOUICES o v v i e e e e 75

About Service Provider TYpe RESOUICES v v v i i e e e e e 79
Creating Activities. e 81
Creating LINKS. e e e 83
Message Mapping. e e e e e 86
Message Naming e e e 86
How to Define Message Mappings i e 86
Data Mapping for Start and End Activities oL 89
Selectinga Process Input Template 20
Applying Flow Logic at the Activity Level, 90
Timeouts and Retries L 92
Map Policy e 94
Fault Messages and FaultHandling 95
System Faults e e 95
Timeout Faults. e 96
Fault Handling. e e e 97
Animationand Testing e e 100
Aidsto Debugging. e 104
Watching System Messages at Animation Time. 104
Inspecting Messages e e e e 106
The Process Designer User Interface 109
Main Features. e e e e 109
The Process Designer Window 109
Graph Elements e e e 112
Menu Commands e e e e 114
Process Properties e e e e 121
Object Properties e e e 122
Activity Properties. e e e e e 123
Composer Component e e e e e e 123
Activity Tab e 123
Messages Tab e e 126
UlTab . . . e e 127
Web Service Send 128
Web Service Send Activity Tab 129
Web Service Receive 131
Web Service Receive Activity Tab. 131
Subprocess L e e 132
Synchronize SUDProcesses e e e e 133
LinkK . . o e e e 134
Link Tab e 134
UlTabforLinks 135
Graph Object Properties e e 136

Process Manager User’s Guide

Graph Ul Tab e e e 137
Selected Node Propertieson Ul Tab. 138
Ul Tab (Selected Node Properties) v i v i 139
Text Object Properties e e 140
UlTab. . . . e 141
Layout Properties e e e 142
General Layout TIPS o o o e e e 144
Customizingthe Canvas e e 145
Advanced Topics 149
Web Service Receive L 149
Implementation Independence e 152
Synchronize Subprocesses Activity L 154
Data Mapping in the Synchronize Subprocesses Activity. 157
FaultHandling e 159
Waiting Activities. e 160
“Waiting Activity” Actions e e e 161
Waiting Activities and Addressees 165
Understanding How Processes Are Triggered. 165
Process-Related Actions. L 166
The Process Execute Action. o e 167
How to Create a Process Execute Action. 168
Deployment and the Process Execute Action. 170
Find Waiting Activity Action L 171
Finding a Waiting Activity L 173
The Find Waiting Activity Dialog 174
Release Waiting Activity Action L. 177
The Release Waiting Activity Dialog 178
Human Participation in Processes e 179
Addressees L 180
The Role of the Web Service Receive Activity 181
Browse Waiting Activities Action. Lo L 182
Where to Use the Browse Waiting Activities Action. 183
Creating a Browse Waiting Activities Action 184
Lock/Unlock Waiting Activity 186
Prerequisites for Locking/Unlocking an Activity. L. 187
Creating a Lock/Unlock Waiting Activity Action. 187
The Reassign Addressee Action. e 189
Reassigning an Addressee Lo e 190
Creating a Reassign Addressee Action. 190

A

Runtime Administration of Processes

ServerConsoleUsage e e e e
Process Manager Console: MainTab
Process Manager Console: StatusTab
Process Manager Console: Log Tab.
Detail View fora Process Instanceo

Testing
Environmental Differences between Design-Time Testing and Server Testing.

Performance Tuning

Configuration OptionNs. e e e
Cache e
Sleep Time. e
Cutoff Period. e
Total In-Memory Process Instances o

Process Management Glossary

Process Manager User’s Guide

About This Guide

Purpose

This guide describes how to use the eXtend Composer Process Manager to build
potentially largescale, long-running, automated processes that rely, in wholeor in
part, on Web Services. The guideisintended to be an adjunct to (not areplacement
for) the eXtend Composer User’s Guide.

Audience

Thisguideisaimed at persons tasked with design and deployment of coordinated
systems of automated activities (that is, business process models). Anyone
participating in the devel opment of such systems should read this guide.

Prerequisites

You should be familiar with XML -related standards (including Schema, XSL, and
XPath), the Document Object Model, and WSDL metaphors and motivations, in
addition to basic J2EE conceptsinvolving file packaging (JAR/EAR/WAR files).

Additional documentation

For the complete set of Novell exteNd user guides and other documentation, see
the Novell Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

This document is organized as follows:

Chapter Description

Chapter 1, Welcome to Gives a definition and overview of the Process
Composer and Process Manager and key process-modelling concepts.
Management

About This Guide 9

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Chapter Description

Chapter 2, Preparing to Briefly describes Process Manager design-time
Model a Process concepts and user-interface features.

Chapter 3, The Process Outlines the key factors that should be

Designer User Interface considered when designing a process, and
presents various scenarios. A brief example is
explained in walkthrough fashion.

Chapter 4, Creating and Explains process deployment options and how
Testing Processes to use the Process Administrator console to
manage process instances.

Chapter 5, Advanced Discusses scenarios involving the Web Service

Topics Receive activity and the Synchronize
Subprocesses activity, with information, also,
about ways to implement human-centric
workflows involving queued work items.

Chapter 6, Getting Ready Explains concepts pertaining to packaging and

for Deployment deployment of processes.

Chapter 7, Runtime An introduction to the administrative consoles
Administration of that can be used to monitor and control running
Processes processes.

Appendix A, Testing A discussion of important differences between

design-time and server-side testing.

Appendix B, Performance This appendix explains the parameters that may

Tuning be adjusted for obtaining better Process Server
performance in an environment where
performance is critical.

Appendix C, Glossary Defines a variety of process management
terms.

About the PDF Documentation

The PDF documentation can be viewed using Acrobat Reader 3.0 or higher. The
current version of Reader (5.1 as of thiswriting) can be obtained free at:

http://www.adobe.com/products/acrobat/readstep.html

10 Process Manager User’s Guide

http://www.adobe.com/products/acrobat/readstep.html

Navigation

Various navigational features are avail able when viewing this document in
Acrobat Reader:

The Bookmarks frame (left side of window) lists the contents of the
document, by chapter name, heading, and subheading. Every topic listed in
the content treeis aclickable link. To flip open the entire subtree (all
children) under any tree node, Control-click the parent node. To toggle the
visibility of the Bookmarks frame itself, press F5.

Every item in the book’s Table of Contents (pageiii) isaclickable link that
will take you directly to the text discussion. Thisistrue also for Index
entries.

Wherever aweb address (URL) appears, you will usually find that clicking
on it will take you to the web sitein your browser. Even if the URI isnot in
blue or underlined, it will generally be a hot link. You can test this by
hovering the mouse over the URI. The cursor will change from an arrow to a
finger cursor if thelink is hot.

Cross-references within and between chapters are also clickable. Again, this
will be apparent from the cursor’s appearance when you hover over a cross-
reference.

Use Control-N to go directly to agiven page in the document. A dialog will
prompt you for the page number.

Use Control-F to execute a text search.

Copying and Pasting Text

*

To copy PDF text to the clipboard, first enable the Text Selection tool
(shorteut: V' on the keyboard), then click-drag to select text.

To select large portions of text spanning several PDF pages, first click the
“Continuous Pages Modge” icon in the button bar at the bottom of the
Acrobat window (see below). Then shift-drag to select text (or use Control-
A to Select All). You can then Copy the selected text to the clipboard.

) W 4| 62501626 M @axilin | O =] 8 4] | B
{
i
Continuous

To keep text styling intact when Pasting clipboard selections into Word or
other applications, choose Paste Special (if available) from the target
application’s Edit menu. In Microsoft Word, for example, thiswill allow you
to paste clipboard text in RTF (Rich Text Format), retaining the text’s styles.

11

12

Printed Documentation

The PDF version of this document is also availablein printed and bound form (at
nominal cost) from SilverStream. Contact ebizintegr ation@silver stream.com
for details.

Server-Side Installation and Setup

You will need to configure Composer Process Server’s database options manually
after doing the server-side install of Process Manager. To complete your
installation, follow the steps shown bel ow.

Prerequisites

Before undertaking the database-setup procedure, you should make sure the
following conditions are met:

+ A SilverStream, WebSphere, or WebL ogic application server must be
installed.

+ A Sybase, Oracle, or IBM DB2 database system must be installed. (Check
the Composer Process Manager Release Notes for the latest database
compatibility matrix.)

+ Theapplication server must be set up to access an existing or new database;

+ Using your database system's administration facility, create anew
database.

+ If necessary, create an ODBC data source for the database.

+ Using your application server's administration facility, add the newly
created database as a data source for the application server, including a
connection pool.

Setting Up a Process Manager Database

The Process Server uses a database for runtime storage of critical process data.
Youwill need to designate adatabase to usefor this purpose; then you must “ bind”
the Process Server to this database using the following procedure.

NOTE: Before performing the following steps, be sure you have created a
dedicated database for the Process Manager as indicated in the previous section
(“Prerequisites,” above).

> To set up a Process Manager Database:

1 Start your application server.

Process Manager User’s Guide

ebizintegration@silverstream.com

9

Install the Composer Process Manager onto the application server if it is not
already installed.

Using a Web Browser, access the Process Manager Console on the
application server (i.e.:
http://<hostname>:<port>/eXtendComposerProcess/). See “Process
Database Info” on pagel95 for console screen shots and additional
information.

Confirm the unconfigured state of the Process Engine:
+ TheProcess Engine Status should read: " Shut Down"
+ TheProcess Database Info should read: "Invalid Configuration"

Press the Configur e button and the Process Database Configuration screen
appears. (See “Process Database Info”, starting on page 195.)

Select the type of database for the Process Manager to use: Sybase, Oracle,
or IBM DB2.

Enter the application server specific Pool Name for the database the Process
Manager will use. For example:

+ SilverStream: Dat abases/ <dat abase nane>/ Dat aSour ce
+ WebSphere: j dbc/ <DBPool Name>
+ WebLogic: an arbitrary INDI data source name

WebSphere and WebL ogic both use the INDI Name specified by the user
when creating the Connection Pool. So if the user creates a Connection Pool
called ProcessPool with a INDI name of ProcessINDI, the user will enter
ProcessINDI in the Pool Name field of Composer’s Process Console on the
Process Database Configuration screen (see picture, page 196).

Enter the User Name (e.g. "dba"') and Passwor d for the database (e.g.
<ggl>).

NOTE: When configuring the Process engine's database using the Process
Database Configuration screen (see page 196), the Username and
Password for a SilverStream or WehSphere server will be the database
Username/Password (for example, "dba/sql" for a Sybase database). But for
WebLogic, the Username/Password needed to configure the Process
database is the WebLogic server username/password ("system/weblogic," for
example).

Press the Save button. If successful, the Initialize button appears.

10 To set up the Process Manager database tables, press the I nitialize button.
11 If successful, the Satuswill read "Connected - Ready".

12 Pressthe Return to Main button to access the Process Manager Console.

13

13 To start the Process Manager engine, press the Start button. If successful,
the Status under Process Engine Info should read: "Running".

14 For the Silverstream application server only, access the Server Management
Console and synchronize the Process Manager database once the Process
Manager engine is running.

NOTE: To reinitialize the database or change to another database, you must stop
the engine first, and repeat the above steps.

Getting Started with Process Manager: 5-Minute Tutorial

Creating a process in Process Manager is easy and straightforward. The steps
below describe the basic procedure.For afuller discussion of relevant concepts,
youwill obviously want to consult the chapters called “ The Process Designer User
Interface” and “ Creating and Testing Processes’ (aswell asother relevant portions
of this guide).

The basic procedure is always the same:

+ Place activities on the process graph
+ Link them together
+ Specify relevant data mappings

> To create a Process:

1 Launch Composer. In the File menu, select New > xObject, then open the
Process/Ser vice tab, as shown below, and select Process.

Process Arimate Lawout Tool=

Execute

Reload XML Documeant=s

Acid Watah. ..

Create Actiwity -
Create Linlkc

Create Graphic -
Create Text

Select E=cape
Fanr

Margques Zooim

ImnteEractive Zoom

Hawvigate Edge=s

Sticlky Tool=

14 Process Manager User’s Guide

2 The"“Create aNew Process Component” dialog will appear. Enter aName
for your process.

Create a New Process Component x|

Please entera name and, aptionally, a description for the Process Component. The narme will appear in the
Composer Detail Pane and in choice lists for X0bjects in Composer. The name may not contain the
characters: [:?" == | Names are case sensitive.

Hame:

SampleProcess

Description:

Furpose:
Input:
Cutput:
Remarks:

| | NextJ_cancet |

3 Click Next to bring up the second (and final) dialog of the wizard.

Create a New Process Component x|

Specify ane or more XML Templates to help design Input ta this Component or¥Web Service and only one ta
design Output. The sarmple XML Documents in each Template are design tirme aids to help vou build Action
Models for the cormponent. The sarmples are not actually used at runtirme after deployment to your application
server. The |dentifier is fixed and represents the name used to refer to the *¥ML Document during component
execution. Selecting Systern {ANY?} allows you to use an emply template (i.e. accept any document as Input).

Input Message
Part | Template Category | Template Mame

|
Input | {System} |Z|| {AMYY |Z\|

Dutput Message

Part | Template Category | Template Mame
Output | isystem} [J[tanvy

|
M)

[Back H Finish][Cancel]

4 The second dialog allows you to choose XML Templates for your process
input and output messages. Select these as you normally would when setting
up any other Composer Component. (See the Composer User’s Guide.)

5 Dismissthedialog. A blank canvas (representing the area where you will
draw your process) appearsin what would ordinarily be the Native
Environment Pane.

15

r exteMd Composer: ProcessSubmithpprove [Process: WoirkCycle]

File Edit ¥iew Process Anirmate Layout Tools Window Help

0 =

8= 1 O XII_WA Gi- s L -foe 2GSl

=]
Novell

-~ (&) Process! =

D ¢ senice

- () IMS Service
2 wieb Service

o [Cornponent

- B 3270 Logon

- [E) 3270 Terminal

5240 Lagon

5250 Terminal ~ —

CICS RRPC

EDI

HTHL

JDBC

JMS

E Telnet Logon

[Telnat Ter mal_'_'l
4 »

2% e a0

& Object Properties x|

Messages | U||

Process Messages

Type MName Message
input __ |Processinput
output [ProcessOutput
ault SystemFault compos

dp = A W 'ProcessOutput Map

| source | Target

1 |$HECREViEWAp |$PmcessOutpu

t

A
|

Project I Regislnesl

N

e

Log [Find]

Object Properties
pane

Process design
canvas

[tart o action list

6 The Object Properties pane should be visible (asabove). If itisnot, toggleits
visibility using the Object Properties command under the View menu. Note
that you can tear off (or undock) this pane if you want to drag it out of the

way at any time.

7 Click on the Activity Tool to select it. (See below.) The cursor will change

appearance.

x" exteMd Composer: ProcessSubmitApprove [Process: WorkCycle]

File Edit View Process Animate Layout Tools Window Help

Ge@a>0AaXs DA

s [-fioos =

& Object Properties
Messages | UI|

x|

Frocess Messages

| Type

Mame

Message

Processinput

|anut
output

FProcessOutput

[fault

SystemFault

Compos...

b =m A P 'ProcessOutput’ Map

Source |

Target |

1 [sReae

RAvimwin

|$Prnr:r-!s:s::0||tn|| |

1

Activity Tool

Activity
CUTSOr = D

8 Click anywhere on the blank canvas. A new activity is created, with blue
stretch-handles positioned around its boundary.

Process Manager User’s Guide

x’ exteNd Composer: ProcessSubmithpprove [Process: WorkCycle]
File Edit View Process Animate Layout Tools Window Help

GEe@&8/0 0 X% & A g-"~ O-fwoe

& Object Properties

Activity | Messages | V] |

Property

Yalue

Activity Type

Composer CGo..

Activity Mame]

Component Type

3270 Logon

Component Mame

Exit Condition

Timeout

Retry Count

Retry Interval

Man Policy

Man Order

9 With the new activity till selected (i.e., in focus), use Copy and Paste to
create another copy of it (or use the Activity Tool again to create another
activity on the canvas). You should now have two activities: A1 and A2.

10 Select the Link Tool on the toolbar. Connect the two activitieswith alink in
the manner shown below.

o -

Link Tool

3

Activity 1

Activity?

%:%\

Link cursor

<

Click on source activity
using the Link Tool

<

Drag mouse toward
atarget activity

<

Release mouse when arrow head
is directly over target activity

11 Now it istime to associate the activities with components (concrete
implementations). Bring the Object Properties paneinto view (with View >
Object Properties) if it isnot aready visible. Click on thefirst activity. The
Object Properties pane will update to show the current properties for that

activity.

17

12 From the dropdown menu next to Component Type, select the type of
component you would like to use as the implementation of your first activity:
XML Map, JDBC, etc.

13 From the dropdown menu next to Component Name, select an actual
component. (Thislist will be prepopulated with the names of components
that already exist in the current project.) The graphic below showswhat your
object properties should now look like, assuming you chose a JDBC
Component named | nventoryL.ookup.

&Ohiect Properties ﬂ o oo
P -
Actwlwl Messages' UI| n_(jn

Property Walue i
Activity Type Composer Component b o o
Activity Mame 1M1

Component Type |JDBC
Component Mame |InventoryLookup
Exit Condition
Timeout
Retry Count
Retry Interval
Map Policy Map Crder

gl s
W

14 Click the M essages tab of the Object Properties pane.

15 We want to associate input with this activity, so click the blue Plus Sign in
the Messages tab. A dialog appears.

& Object Properties x|
Activity Messages | UI|
Messages 4 | .
il Edit Hap | %]
input
outpu
Eﬁ_ Source ®Path Expression:
fault |Pr0cess|nput LI
r‘i . |Input @
— [Target XPath Expression:
1
A1 Input |
Help OK Cancel

16 Becausethisisthefirst activity in the process, we will want to specify
Processlnput as the message Sour ce. (Thiswill be the default.) Processlnput
will have the data structure corresponding to the XML Template that you
specified for input in Step 3 earlier.

18 Process Manager User’s Guide

17 Sincethe Target of our mapsis Al (or whatever the currently selected
activity is named), we will want to specify Allnput asthe target message and
Input as the target message part (as shown). You can think of the Input part
as corresponding to the Input DOM in your component.

18 Repeat Steps 10 through 16 for Activity A2 (the second activity you
created). Remember, once again, that you are mapping data into (not out of)
the selected activity (A2). Thistime, the Source for the current activity’'s
input will be the previous activity’s output (A1Output). Therefore, your data
mapping will probably look like:

o o AN P "AZInput’ Maps

Source Target
1 1541 Outputioutput FAZInputinput

19 Theoutput of thissimple processwill simply be the second activity’s output.
This requires one more data mapping, to specify, explicitly, the mapping
from A2 to ProcessOutput. To set this up, click on an empty portion of the
canvas (to deselect al activities). Then go back to the Object Properties
pane. You will see that it has changed to reflect the properties of the process-
as-awhole.

20 Click the blue Plus Sign and create the data mapping shown below.

e wm A WP "ProcessOutput Maps

Source Target
1 1 BAZ0utputOutput ($ProcessOutputiOutput

21 Saveyour work.
Congratulations: You have created your first Process!
Now might be agood time to animate through the process to be sure it does what

you expect it to do. Using the Animation Tool on the toolbar (see below), you can
begin stepping through the process from beginning to end.

Start Animation

19

Additional toolbar tools allow you to Step Into or Step Over the components that
make up your activity implementations. If you Step Into one of those components,
animation continuesin real time at the action-model level. That is, you can step
into or over any of the actionsin the component, thus executing the component in
stepwise fashion. When the final action executes, the component will return and
you will be back at the process-graph level, where you can continue animating to
the next activity, etc.

How Do | Deploy It?

20

SinceaProcessisjust aComposer xObject (likeany component or service created
with Composer), it is deployed as part of a project, following the same procedure
aswith other projects (using the same Deployment Wizard). Obviously, the target
app server must have both Composer Server and Process Server installed before
your deployed processes can be run. Be sure you have done your server-side
installs of all Composer products before deploying.

Just as components must be called from services, processes must also be invoked
from Composer services. To do this, you simply place a Process Execute actionin
the action model of any service. Then deploy the service. (The service'sinput
message can be passed straight through to the process. See the discussion of “ The
Process Execute Action” later in thisguide.) If the serviceis deployed on apublic
URL, incoming requests will trigger new instances of the associated process.
Those instances, and the status of all associated activities, can be monitored via
Process Server Consoles. (See“ Runtime Administration of Processes’ el sewhere
in thisguide.)

For more information about deploying Composer services, be sure to consult the
eXtend Composer Server User’s Guide appropriate to your app server
environment.

Process Manager User’s Guide

Welcome to Composer and Process
Management

Welcometo the Slver Sream eXtend Composer Process Manager. ThisGuideisa
companion to the eXtend Composer User’s Guide, which explains the core
features of Composer. The rest of this guide assumes familiarity with core
Composer functionality, so if you haven't looked at the Composer User’s Guide
yet, please familiarize yourself with it before using this Guide.

Before you begin working with the Process Manager, you must haveit installed in
your existing Composer environment. Likewise, before you can run any server-
based processes, you must already have installed the Composer Process Server
software on your application server.

To be successful with the Process M anager, you should be familiar with the
following:
+ Business Process Management (BPM) concepts

+ The particular app server environment (e.g., SilverStream, WebSphere, or
WebL ogic) into which you will be deploying

+ XML, XSD (schema), and XPath
+ WSDL (the Web Services Description Language)
+ JavaWAR (Web Archive) files

+ Theuse of eXtend Composer (and the eXtend Devel oper Workbench) to
create and deploy services

+ Basic structured-programming concepts and object-oriented design patterns

It will dso help if you aready have some knowledge of the Web Services Flow
Language. The complete specification can be seen at

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

This chapter presents an overview of key BPM (or “workflow™) concepts so that
you can better understand the relationship of Web Services, J2EE applications,
and Composer applications to automated workflows.

Welcome to Composer and Process Management 21

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

What Is Process Management?

22

Theaim of Business Process Management isto model busi ness operationsaswell-
defined systems of tasks in which participants interact according to a prescribed
choreography to achieve adesired goal.

The top-level unit of work in such amodel is usually called a process,
emphasizing the dynamic nature of the underlying interactions. Because of the
directed flow of work through such a system, the resulting model is often said to
encapsul ate a wor kfl ow.

A non-automated workflow might look something like the following.

Figure 1-1

Business Process

Dept. A Dept. B Dept. C
- B—0 []—>
Legal
[]—]— .
Accounting

Business Partner

In this hypothetical flow model, various parties (inside and outside the company)
accomplish various tasksin awell-defined sequence. The input that triggers the
overall process might be a phone call; the output might be a signed contract. The
process has identifiable players with defined roles and responsibilities. If each
participant doesits job, the desired objective will be achieved.

An automated business process attempts to model the same interactionsin terms
of enterprise applications (each one, again, with its own roles and
responsibilities). For maximum flexibility, the applications might be (but need not
always be) implemented as Web Services. To accommodate human input, some of
the applications might have a user-facing presentation layer. In some cases, the
entire model might be realized in software, with no need for human intervention.

Process Manager User’s Guide

Why Automated Process Management?

The ultimate aim of BPM is to make possible the automation of complex and/or
long-running business processes. The benefits of process automation go far
beyond the obvious one of reducing demands on human resources. They include:

+ Scalablethroughput—Capacity no longer hinges on personnel headcount.
Logjams during “busy times’ can be avoided.

+ Consistency—Once business rules are formalized as part of a process, they
are adhered to reliably. TPA (Trading Partner Agreement) provisions can be
enforced and company performance documented.

+ Adaptability—Processes can be designed to automatically detect and route
around unexpected bottlenecks.

+ Upgradability—Processes can be rewired quickly to adapt to changesin
business requirements. Individual components of a process can be modified
or “changed out” without necessitating a total rewrite of the process itself.

+ Powerful audit capabilities—Comprehensive reporting across activities,
process instances, and business units is possible without the need to pull
together disparate data sets from a variety of sources.

+ Better ability to respond to customer needs—Processes can beinitiated by
the customer or trading partner in real time and executed on a 24/365
availability basis. Turnaround times can in some cases be shortened from
days to hours, or hours to minutes.

+ New opportunities for Business Process | mprovement—The powerful
audit and reporting capabilities afforded by BPM can yield new categories of
process-related anal ytics that expose inefficiencies and opportunities for
improvement within the organization.

Process Design versus Application Design

Process design and application design start from different points of reference. The
design of an enterprise application usually involves a narrowly focused, data-
centric view of a problem and a correspondingly scoped data-oriented solution.
Process design, on the other hand, is motivated by the need to fulfill abusiness
objective: patent an invention, process a claim, conduct an auction. The input to
the process may be a phone call; the output might be 55-gallon drums on atruck.
Carrying out the process may require completion of many tasks. Data
reguirements may vary greatly along the chain of tasks.

Welcome to Composer and Process Management 23

Modularity

Process design is morethan just “datain, dataout.” It requires thinking about the
Big Picture, including not only which applications one might use in modelling a
process, but the time order in which those applications must run; the guarantees
made by, and responsibilities of, the applications that make up a process; the
possibl e interdependencies of the applications; and the various waysin which a
process might terminate prematurely even though no application has failed.

The concept of modularity is key to process modelling. For example:

+ Thevarious constituent activities that make up a given business process (or
workflow model) can, themselves, be processes. Thisis sometimes called
recursive composition.

« A particular activity may play arolein multiple processes (which may be
unrelated to each other). For example, the “credit check” activity of
Process A might also be used by Process B and Process C. Thisis activity
reuse.

+ Theimplementation of an activity can be changed without affecting the
process model itself. For example, new businesslogic, reflecting achangein
company policy (or perhaps a change in algorithms), can be instituted in the
“credit check” activity of a process; but the process itself doesn’t have to be
modified.

NOTE: The principle of dividing large, custom-built chunks of work into smaller
general-purpose chunks of work is well known to application developers as
factoring. The goal of factoring is to promote reuse of costly resources.

The activities that make up a process may involve public-facing Web Services, or
they may be limited to “behind-the-firewall” services running on alocal app
server. External trading partners may or may not be participants, and the process
can be long-running, with lots of “callbacks’ into the system, or it could be of
relatively short duration (i.e., straight-through processing).

24 Process Manager User’s Guide

Example of a Simple Straight-Through Process

An example of an automated business processis shown in the following graphic.

New Member
Enrollment Process

User submits
application form
online

:‘ Validate Application ‘

Y

‘ Process Payment ‘

A J

‘ Enter Member Info ‘
into Database

Y

User receives Send Welcome Letter
welcome letter = to Applicant ‘
via e-mail
Figure 1-2

In this scenario, a membership organization accepts member applications online.
The applicant, upon submitting HTML form data to the organization’s web site,
triggers an automated process consisting of four activities:

1 Thefirst activity checks the application for completeness and perhaps looks
in adatabase to seeif the applicant is aready a member.

2 Thesecond activity processes the user’s el ectronic payment information.

Once payment has been received, relevant information about the new
member is entered into the main membership database.

4 Thefinal activity sends a personalized wel come message to the new member
viae-mail.

In this admittedly simple example, any of the four component activities of the
New Member Enrollment Process might represent an automated processin its
own right. One of the activities (Process Payment) might very well rely on aWeb
Service offered by abusiness partner. Others might be local to the app server.

Welcome to Composer and Process Management 25

Process Management and Emerging Technologies

Modelling a high-level business function in terms of tasks that can be linked
together via software is a powerful metaphor that playswell to the strengths of the
Web Services model in particular and distributed computing in general. With the
advent of technologieslike XML, SOAP, WSDL, and UDDI, it becomes practical
to design and deploy powerful, robust, sophisticated business applications that
rely on the coordinated efforts of smaller, task-oriented units of work that can be
“wired together” without respect to each unit’s implementation details.
(Separation of interfaces from implementations is a key feature of Web Services
architectures.)

The eXtend Composer Process Manager leverages many of today’s most
important enterprise-computing technol ogies, including:
+ XML (eXtensible Markup Language) for data portability

+ SOAP (Simple Object Access Protocol) for platform-neutral handling of
payloads and remote procedure calls

+ WSDL (Web Services Definition Language) for describing the public
interfaces to services

+ J2EE (Java 2 Enterprise Edition) standards, for interoperability, security,
scalability, and platform independence

In addition, Composer’s Process Manager runtime engine utilizes key features of
the proposed Web Services Flow Language (WSFL) standard.

How Does a Process Differ from a Service?

26

Processes are dynamic, stateful systems characterized by arules-driven flow of
data between participating activities. From an input-output point of view, a
process receivesinput data, transforms and/or augments that data, and produces
output data, much like any other service. And in fact, if the processis exposed as
aWeb Service (described by WSDL), it looks to the world like any other Web
Service.

What makes a process different from a conventional Web Serviceisthat it ties
together—and orchestratesthe flow of control and data between—relatively large
units of work to accomplish a particular business function. A processis, in this
sense, ameta-service that directs the interaction of other services (including,
potentially, servicesthat are external to the organization).

Some of the important differences between a conventional Composer service and
aprocess are summarized in the table bel ow (and discussed in further detail in the
sections to follow).

Process Manager User’s Guide

Table 1-1:

Conventional Service

Process

Short duration

Long-running

Performance is important

Rapid execution typically not as important

Execution depends on the
server being “up”

Processes that rely on external services
can continue executing while a server is
down

Serial execution of logic.
Relatively little reliance on
asynchronous processes

Asynchronous processing and parallel
execution of activities are commonplace

Few opportunities for
unexpected data overwrite

Multiple activity outputs can map to the
same target messages (or message
parts). Hence, overwrite is a potential
concern, and policies to deal with “who
writes where and when” must be defined
explicitly

Control-flow stoppages are
handled as exceptions

Flow may “route around” blockage points,
in some cases. In other cases,
timeout/retry policies may kick in

Data flow and control flow
are tightly coupled

Data and control are less tightly coupled

No “sleep” mechanism

A long-running process may go to sleep
during idle periods. Over the process’s
lifetime, it may go to sleep and wake up
many times

Straightforward testing
requirements

Control-flow paths may be too numerous
to test; extensive coordination with
business partners may be required

Administration centers on
performance tuning and
configuration issues

Administration centers on lifecycle events,
status monitoring

Welcome to Composer and Process Management

27

Large versus Small Units of Work

The units of work in aprocess arerelatively large. (They encompass whole
applications or services.) Likewise, operations on data tend to be conducted at a
coarse (rather than fine) scale, occurring at the level of whole documents or
document aggregates, rather than at thelevel of, say, nodes or nodesets. Fine-scale
data manipulations occur inside the activities that make up the process.

Long-Running versus Straight-Through

One key distinguishing characteristic of a process (as opposed to an ordinary
application or service) isthat it istypically long-running. This means the process
could have an execution time measured in hours, days, or even weeks, dueto
reliance on partner interactions, scheduled batch operations, human intervention
at various levels, etc. For example, a process that obtains bids from contractors
might very well require weeks to run to completion, whereas a credit-check
application is expected to execute quickly, in real time. The credit-check task is
best implemented as a discrete, standalone app: It processesinformation in
straight-through fashion while the caller waits for areply. By contrast, an RFP
process involving (potentially) dozens of bidders, each with its own internal
procedures and constraints, constitutes alarge-scal e, long-running process, which
might be difficult or impossible to implement robustly as a monolithic, self-
contained Web Service.

Wait States and Persistence

28

Persistence of state information isimportant for automated processes not only
from arecovery standpoint but for efficient use of resources. A long-running
process has to be able to deal with suspensions and resumptions of service,
whether brought about administratively or through hardware downtime
(scheduled or otherwise).

Composer’s Process Manager persists process-instance info to database storage,

so that processes can be put to sleep as needed and woken up again in response to
appropriate events (such as the arrival of datafrom ajust-finished activity), thus
freeing valuable RAM and CPU resources during long waits.

NOTE: State info is persisted at every stage of process execution (not just when
a process goes to sleep), so that a server restart, for example, is not disruptive.

Process Manager User’s Guide

Parallel Execution

Processes typically involve more than simple “ straight-through” processing. If
each task in a process requires, say, three days to complete, a straight-through
execution chain would mean that the process could require nine daysto run. This
could be very inefficient if the tasks are not directly dependent on one another.
Splits and merges (parallel execution and resynchronization) are acommon
feature, therefore, of process control flows.

These concepts become clearer with an example. The following figure depicts a
process that relies on parallel execution of tasks.

Figure 1-3
Process
J
D | f-‘xctwnty A |
INPUT ' J
J / \ |
l J
I Actmt}r B Actlwty c l
l l
| \ / |
l l
D -+ | Activity D ‘ f
QUTPUT | l
]

In this example, an incoming request (which could be a SOAP request, form data
received viaHTTP POST, etc.) triggers a process instance to handl e the request.
Activity A performstheinitial processing, then callstwo more activities (B and C)
to do additional processing. The output of Activities B and C form the input to
Activity D. Finally, the latter sends output to the requester.

It'simportant to note that this diagram could cover awide range of scenarios. For
example:

+ Therequest might come from inside the firewall or outside; and it could

invoke the process asynchronoudly, or wait for the process to return
(synchronous execution).

Welcome to Composer and Process Management 29

+ The process might or might not be designed to send output to the original
requester. The output might actually be directed el sewhere.

+ Activity A might call B and/or C asynchronously, or synchronously.

+ The process might be designed such that if Activity B does not respond
within a given timeout period, aretry will occur.

+ ActivitiesB and C could be Web Services operated by remote business
partners.

+ Activity D might be designed to execute as soon as B or C finishes
(whichever isfirst), or it might be required to block until both B and C have
delivered data. In the latter case, D might be required to choose data from B
or C, but not both.

+ Any of the four activities shown could be processesin their own right. Or
they could be Web Services, or Composer components; or any combination
of the above.

Process Management Terms and Concepts

To be productive quickly with Composer’s Process Manager, it's important that
you understand certain key terms and concepts. This section explains the terms
and concepts you'll most need to know when working with the Process Manager.

Note that most of the process automation idioms discussed below—as
implemented by Composer’s Process M anager—derive directly from the Web
Services Flow Language (WSFL). For a more rigorous explanation of key terms,
consult the WSFL specification at:

http://lwww-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Many of the fundamental concepts behind Composer’s vision of process
automation stem, also, from WSDL (the Web Services Description Language).
For a detailed discussion of WSDL, see

http://lwww.w3.org/TR/wsdl

NOTE: The more you understand WSDL and Web Services, the easier it will be
for you to understand Composer’s vision of business process automation.

Activities, Messages, and Links

30

Composer implements processesin terms of activities and links. Activitiesarethe
units of work that carry out the steps of the process; they may be Web Services,
applications, or other processes. Links establish the possible control-flow paths
between activities. Data moves through the process model via messages that are
passed (in whole or in part) from one activity to another.

Process Manager User’s Guide

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Activities

Activities represent the fundamental unit of work inside an automated process. In
a Process Manager process model, an activity can be:

+ A Composer component
o A Web Service

+ Another process

NOTE: The notion of a Web Service puts no restrictions on implementations. A
Web Service can be implemented in any language, on any kind of platform, as long
as it has an interface that can be described in WSDL.

In some cases, the components and services that you intend to use in a process
model will have already been deployed on your server (or might already exist on
the Web somewhere). That isto say, a process might smply “wire together”
preexisting services. In other cases, you will develop components or servicesfrom
scratchin order to meet process requirements. (Obviously, you can't test or deploy
the process until all activities have been fully implemented.)

Start Activities and End Activities

Thetrigger for aprocess provides data that can be mapped (as messages) to one or
more start activities. The final activities of a process model are said to be end
activities. (There can be more than one start activity to aworkflow; and also more
than one end activity.) Start and end activities are like any other activities, except
that astart activity has no incoming control link and an exit activity has no
outgoing control link.

It's possible that some start activities might not have any outgoing control links.
For example, one of a process model’s startup activitiesmight beaJMS
messaging component (built using Composer’s IMS Connect) that sends
notifications to various queues asynchronously. If no downstream activities
depend on data from the messaging activity, the messaging activity becomes both
astart and an end activity.

Tasks, Activities, and Implementations

Composer’svision of process modelling makes a subtle but important distinction
between tasks, activities, and implementations.

Welcome to Composer and Process Management 31

Messages

Determine Quantity of
I oo~ Task Widgets on Hand
I
j
2
@ - LI | Inventory Que et
e Activity SKU No. Y 2 | Quantity

CIEEET N

I LOG "wn™ + "Companent starting.." + "rin" TO System Cuy
G Exetute SOL; SELECT * FROM InventorySystem VWHERE SK
5 WAP $TomnpANVENTORYSTATUS SHU 0

L MAP $TempANVENTORYSTATUS CATEGORY Via Code Takle

---- Implementation

55 mee ™
Y L0 "wn™ + "End of Comgponent.” « "in" T System Cutpul

ff— cONCrete
o~
G
e

At the most abstract level, atask is a business function (which, in the real world,
might go by a name like “ Obtain Payment History,” “Issue Purchase Order,” or
“Determine Back-Order Status’). Some business tasks are performed by humans;
others are automated. Twentieth-century enterprise computing was concerned
mainly with finding ways to automate or semi-automate business tasks.

Activities carry out tasks. The word “activity” implies atask that can be realized
in software, but it does not imply anything about the actual implementation. One
might know in advance what an activity’s required inputs and outputs will be, but
this simply means that the activity’s interface needs are known. It doesn’t mean
underlying implementation details are known.

Implementations of activities can take many forms. Thisisthe key intuition
behind Web Services: Collaboration depends on interfaces, not implementations.
Composer’s Process Manager takes full advantage of the Web Services model,
allowing any servicethat hasaWSDL -described interfaceto be used asan activity
inaprocess. No restrictionsare put on how activitiesareimplemented. An activity
might be aC++ program running on abusiness partner’ sweb server, or it could be
acustom EJB running on your own server, or a Composer JDBC component, etc.

Activities operate on messages which, in turn, are composed of logical parts. The
parts have name and type characteristics as defined in a schema. (Thetypes can be
canonical XSD datatypes, or complex types of your own, defined in custom
schemas.) You can think of message partsas corresponding to the input and output
datafor activities.

32 Process Manager User’s Guide

Message Parts

Links

If you are accustomed to thinking of service inputs and outputs as XML
documents or DOMSss, the message metaphor simply extends the input-doc/output-
doc idiom to include the notion of collaboration between participants. A message
implies aninterface—a predefined set of operations on specific kinds of data. The
key intuition is that a message, far from being a static container of data, carries
with it an implicit operational semantic arising from the fact that messages and
their parts can be named and therefore designated in operations associated with an
interface.

NOTE: The concept of “data as message” is fundamental in WSDL. If you are not
familiar with Web Service Description Language concepts involving messages,
message parts, types, etc., you will find it helpful to read the WSDL spec.

The message metaphor is extremely powerful, because it is concrete enough, in
practice, to allow applicationsto specify their interface needs (and so make
interoperability possible), yet abstract enough to keep participants from having to
know anything about their respective implementation details. This means that
applications can be devel oped entirely independent of one another, in different
times and places, by different programmers, yet interoperate with one another as
the need arises.

By exploiting the message metaphor, Composer’s Process Manager achievesthe
goal of keeping interfaces and implementationsisolated, for maximum flexibility
in “wiring activities together.”

Composer’s Process Manager “understands’ the message-part semantics of
WSDL -described services, in cases where activities are associated with WSDL.

Where activities consist of regular Composer components, message parts needn’t
be explicitly defined in aschema. Component Input and Output DOMs are treated
(by default) as messages.

Links define the allowable control-flow pathsin a process model. Unless an
activity isastart activity or an end activity (see below), it will have one or more
incoming links and zero or more outgoing links.

NOTE: The mere existence of a link does not mean that the link will actually be
followed at runtime. Transition-condition logic actually determines this. (See
discussion to follow.)

Inan operational sense, linkstell the Process Manager runtime engine “what to do
next” when an activity finishes.

Welcome to Composer and Process Management 33

Links also provide a convenient metaphor for visualizing control flow between
activitiesin adesign-time environment, sincelinks can be drawn aslinesor arrows
connecting boxes or icons that represent activities.

Sequencing, Timing, and Process-Level Logic

A pr
proc

ocess ismore than just acollection of links and activities. Thelinksin a
ess model areliketheroadsin ahighway system: They define al the possible

paths that can be traversed, but not how they will actually be traversed. In the real

worl

d, the pattern of traffic flow through aroad system is affected by traffic laws,

clearance limits on overpasses, etc. Likewise, the flow of execution through a
process model isdependent on various designed-in rules and constraintsthat apply

aru

ntime.

Factors that affect runtime flow patternsinclude:

*

Link-traver sal logic—Rules applied at the level of link transition
conditions. (See below.)

Synchronization logic—Rules that govern the triggering of activities that
have more than one incoming link. In some cases, a“join” activity will want
all potential input activitiesto finish executing before the join is evaluated.
In other cases, the target activity may be designed to begin executing as soon
asthefirst input (from any incoming activity) arrives.

Retry and timeout policies—Some business interactions are required to
adhere to elaborate try/timeout/retry requirements. For example: “ Query this
vendor and wait a maximum of two hours for acknowledgement. Query
again, up to atotal of threetimes.” Every activity can have (but doesn’t have
to have) atimeout/retry policy.

These and other flow control factors are discussed in the sectionsimmediately
below.

Control Flow Logic

Control flow is mediated by logic that you can apply at three key pointsin a
process: link transition conditions, activity exit conditions, and join conditions.

Link Transition Conditi

ons

34

Thelogic that determines whether or not agiven link is actually traversed at
runtimeis called atransition condition. The transition logic returns aboolean
value based, typically, on inspection of the data coming into the link. If the
transition condition evaluates to true, the link is traversed; otherwiseit is not.

Process Manager User’s Guide

Note that links are not required to have transition logic. By default, alink is
traversed straight-through.

In the example shown previously (see Figure 1-3), the arrows between Activities
constitute links. Each link could have an associated transition condition
(expressed via X Path). Data at Activity A might or might not trigger Activity B
depending on (for example) the type of datareceived or particular values
contained in the data.

Activity Exit Conditions

Join Conditions

Every activity can have an exit condition. The exit conditionisalogical
expression that yields a boolean value. That value signifies whether or not the
associated activity completed normally. If the exit condition evaluates to true at
runtime, the outgoing link(s) can befollowed. If it isfalse, the original activity
will be reexecuted; but outgoing links will not be followed. (If an activity has no
outgoing links, there is no exit condition.)

When two or morelinks meet at the sametarget activity, logic heedsto be applied
in order for execution to continue. Thislogic takesthe form of ajoin conditionin
conjunction with amap policy.

Thejoin condition isan expression that returnstrue or fal se based on examination
of the truth values of incoming links. (The truth value isthefinal value of thelink
condition.)

NOTE: While exit and link conditions are expressed in XPath, join conditions are
specified in straightforward fashion using AND, OR, NOT, and parentheses (for

grouping).

When an activity hasajoin condition, thejoin logicis consulted to determine how
to proceed. Consider the following scenarios.

+ Bidshave been solicited from three suppliers. Company policy requires that
bids must be received from all three suppliers before the rest of the process
can be undertaken. The join condition specifies alogical-AND between link
values. This patternis called an AND-jain.

+ A company allows each of its employees to choose between two retirement
plans. Each plan has associated with it an activity that generates appropriate
paperwork for the employee. The paperwork contains data that will be
passed to ajoin activity. The join condition specifies something like:

(Planl AND NOT Pl an2) OR (NOT Planl AND Pl an2)

Thisisan exclusive-OR (i.e., XOR) join.

Welcome to Composer and Process Management 35

+ Anactivity receives input from any of several links. Any or all of the inputs
can be used. This pattern is an OR-jain.

The easiest way to visualize the rel ationship between the various kinds of flow
logicistothink of thejoin condition asthe“input-side” logic of an activity and the
exit condition as the “output-side” logic.

JOIN CONDITION
NOILIANOD 1IX3

Thejoin condition exists for the primary purpose of implementing
synchronization logic of the OR/XOR/AND type. Datafrom one or more
activities can be inspected and used as the basis for deciding whether the next
activity executes or doesn’t execute.

The exit condition is strictly a mechanism for determining whether the associated
activity (onceit finishes executing) has produced data suitable for use by the next
activity (or activities). If an exit condition evaluatesto true, it meansthe activity’s
data output met the minimum criteriafor continuation to any outgoing links. All
outgoing linkswill be followed if the exit condition is met. No links will be
followed if it is not met.

Transition conditions determine whether the next activity can be entered at all,
using output from the source activity. Since thereis no way for alink to “know”
anything about other link targets, transition logic tendsto be relatively simple (in
many cases merely defaulting to true).

NOTE: Conditional branching can be implemented at the link level. See the
discussion under “Branch Logic” in the next chapter.

Deferred Mode versus Immediate Mode

36

Joins can be fully synchronized (i.e., dependent on all source activities having
finished executing), or asynchronous (allowing continuation as soon as data from
any input activity arrives). By default, all joins occur in Deferred Mode, which
meansthat al of ajoin’sinput activities must finish before the join condition can
be evaluated. In this mode, ajoin condition will be evaluated exactly once.

Process Manager User’s Guide

For cases where the desired behavior isfor ajoin activity to fire prior to the
completion of al sourceactivities, thereisImmediate Mode. Inthismode, thejoin
condition is evaluated every time a source activity finishes. If there are multiple
incoming linksto ajoin, the join condition could be set to fire as soon as the first
“true”’ link is known.

Composer Process Manager allows setting Deferred or Immediate Mode on an
activity-by-activity basis.
Dead Links and Synchronization Failure

If ajoin condition iswaiting on the truth value of anincoming link, but thelink’s
condition is never evaluated (because flow was halted at some upstream point),
the join will hang. Consider the following scenario:

i
Activited
) "
activity2 Activityd
false @ @ true
'4? ‘?
fj ()
Activityd Activity3
2
= true
B
Acti?rﬁnﬁ

Inthisflow graph, ajoin occursat Activity5. In Deferred Mode, thejoin condition
will not be evaluated until thetruth conditions of Link3and Link4 are both known.
But assume that after Activity2 finishes normally, the link condition at Link2
evaluatesto false. In that case, Activity4 will never fire; and if Activity4 never
fires, Link3 will never be evaluated. (Link3 thereby becomes a dead link, and any
segment of the flow graph that depends on it constitutes a dead path.) The net
result isthat thejoin at Activity 5 hangs.

Welcome to Composer and Process Management 37

To avoid thiskind of synchronization failure, the Process Manager runtime engine
performs alookahead any time a condition expression evaluatesto false. The
lookahead is conducted as follows:

+ Sarting at the false link (or false join condition, as applicable), the engine
traverses al downstream links until either ajoin activity or an end activity is
reached, whichever occursfirst. At this point, traversal stops.

+ Eachlink onthe traversal pathis set to false.

+ If thetraversal path ends at ajoin, the engine determines whether the join
condition can be evaluated (based on other link truth values and the join
mode); if so, it isimmediately evaluated with the incoming (dead) link
having a value of false. Should the join condition then be true, thejoinis
considered to be “alive” and no further dead-link traversal need occur. If the
joinisfalse—meaning that its outgoing links are dead—its status must be set
to false, and the lookahead must continue downstream from that point.

This* dead-path elimination” procedure ensures that no false condition can cause
adownstream join to hang. It is carried out automatically, as needed, by the
runtime engine.

Map Policy and Data Merging

38

When multiple activities direct their output at asingle activity, the potential exists
for source activitiesto overwrite each other’sdataat theinput to the target activity.
A map policy specifies the mapping order and overwrite policy that will be
followed for resolving conflicts.

There are three policy choices:

+ Firstwriter wins (FWW)—This means that the first data to be mapped into
the activity’sinput template will be used as input to the join activity. Any
subsequent messages cannot overwrite.

o Last writer wins (LWW)—The last data to arrive are mapped without
regard to how any previous data were mapped.

+ Map Order—Data mappings will occur in a user-specified order, without
regard to time-of-arrival.

See “Map Policy” in the chapter called “ Creating and Testing Processes” later in
this guide.

Process Manager User’s Guide

Timeouts and Retries

An activity (whether it is part of ajoin or not) can have explicitly defined
timeout/retry behavior. That isto say, if the activity doesn’t produce usable output
within a specified timeout period, aretry can be attempted, up to some maximum
number of retries. Retries can be repeated at a user-specified interval.

NOTE: Timeout/Retry behavior is available on a per-activity basis but is entirely
optional.

Timeouts and retries are an important part of many standard business interactions
and are formalized, in some cases, by industry standards, such as the Partner
Interface Processes defined by RosettaNet. Composer’s Process Designer allows
timeout and retry optionsto be set on an activity-by-activity basis.

Data Flow Patterns

In automated business processes, asin human-mediated ones, the flow of datais
coupled to the flow of control, but not always tightly. Some activities, for
exampl e, require datafrom outside the normal chain of control; thelast activity to
execute might need some piece of datafrom thefirst activity that executed, which
could be many control links away. Other activities require data on the input side
but have no “output data” per se. (The “output” of the activity might be physical
goods loaded onto atruck.) There are many real-world situations in which data
flow and control flow take different paths.

Composer’s Process Manager allows data and control to follow their own paths,
subject to onerestriction: When an activity requiresdatafrom an activity towhich
itisnot directly linked, the source activity must be reachableif onewereto“swim
upstream” (never downstream) through the control path, as shown in the
following diagram.

Welcome to Composer and Process Management 39

A data flow
CONLrol FIOW —

C
n allowed I

NOT ALLOWU
A 4

In the example shown above, data can flow along the path from A to C to D, and
itisalso permissible for D to obtain data directly from A, because A lies on the
(entirely one-way) path from A to C to D. But it isnot permissible for D to obtain
datafrom B. (The path from B to A to C to D involvesfirst moving upstreamfrom
B to A, then downstreamfrom A to Cto D.)

Itisnot safefor D to obtain datafrom B, because thelink topology doesnot ensure
that B completes before D. One of the guarantees made by control linksisthat any
activity on the “upstream” terminus of alink must execute before the activity on
the downstream end can execute. In the above example, B might take three days
to execute, but C might execute in amatter of seconds. The only safe way to get
datafrom B to D isto create acontrol link between the two activities, thus making
D a“join” activity.

Without getting too heavily into the details of data propagation, it should be
mentioned in passing that data transfer (or mapping) across activities followsits
own unigue set of rules, distinct from the control-flow rulesthat Process Designer
depictswith iconsand arrows. (Flow graphs created in the Designer show control
flow rather than dataflow.) Datarouting is easier to understand than control flow,
but some unique twists apply; see the next chapter for details.

Lifecycle Events

40

A process can respond to any of severa lifecycle events, so-called because they
affect the overall execution of the process.

Process Manager User’s Guide

+ Spawn—A spawn event invokes or instantiates a processin an
asynchronous mode. The spawning agent does not want to wait (block) for
the process to return, so after the processis activated the caller expectsto
return to whatever it was doing as soon as the spawned process returns a set
of instance data (a“receipt”) to the caller, indicating that a unique process
instance has been invoked successfully. The caller can, if necessary, later use
this datato query the process for status updates, etc.

+ Call—When an entity calls a process, the caller expectsto receive data back
from the processin real time (which isto say, synchronously). The call
invokes the process, and the process runs to completion before returning.
The output of the processis directed back at the caller.

+ Suspend—A suspend stops, but does not destroy, an ongoing process.
Contral flow istemporarily interrupted. Thistype of lifecycle event typically
occurs in an administrative context.

+ Resume—Theinverse of suspend. A process that was previously suspended
continues operation. Again, thisis an event of primarily administrative
importance.

+ Inquire—Queries a process for status information.
+ Terminate—Aborts a process instance.

Process Manager Architectural Layers

Processes you create using the eXtend Composer Process Manager are
implemented and managed at three different levels.

Design Level: Thedesign layer has the responsibility of managing the visual or
user-interface representation of aprocess. Thislayer lets you define activities,
connect activities via links, determine message mappings, and assign logic to
transition points (links, joins, and exit conditions), using arich set of visual design
tools. The process model that you create here becomes the basis for the metadata
representation of the process (see bel ow) that the runtime engine usesfor creating
and managing process instances.

M etadata L evel: At the non-visual level, aprocess model is stored in metadata
formasan XML description of activities, links, input and output messages, etc.
This metadata description providesall of the information needed to instantiate the
process in aruntime environment. No presentation-related information is needed
at thislevel.

RuntimeL evel: Theruntimelayer manages the execution of processinstances. It
maintains state information, manages lifecycle events, implements timeout/retry
behavior, mediates the flow of data and control between activities, and performs
housekeeping tasksinvolving (among other things) persistence of instance datato
adatabase. Administrative access to processes occurs viathis layer.

Welcome to Composer and Process Management 41

The graphic below summarizes the relationship of these layers.

Process Manager Layers

| Visual Layer |

et g l
ole

ng:supplierchoic, |

iceProvider-"local

Metadata Representation |

l

Runtime Layer |

<implements
«<internal se:

The layers drive each other from the top down (never from the bottom up). For
example, the visual or design layer drives the creation of the process's metadata
representation, but the metadata layer never dictates a particular presentation.
Likewise, the metadata layer sets the rulesfor the runtime layer, but the runtime
engine never modifies the metadata; the metadata constitutes a blueprint of the
process.

The design-time and runtime responsihilities of the layers (and their constituents)
are shown in greater detail in the graphic below.

42 Process Manager User’s Guide

BUSINESS PROCESS

(represents a business need)

is defined in

Process Model
(visual picture of things that

need to happen)

I Sub-Processes I

provides
metadata
blueprint for

| composed of I

N is managed by

Process Server
(runtime engine)

[
lwh:'ch invokes & mmrofsl

W

Process Instances
(running processes)

I com,::n‘ssd of I

W ¥
Activities wh:cge at runiime e—s Activity
{dafined within come Instances

Composer Process
Manager)

Already-deployed
Web Services,
Composer Components

Notice that the process ultimately “sits on top of” and relies, for its concrete

runtimeimplementation, on already-depl oyed services and components. (Some of

these could be remote Web Services.) Deploying a process that uses prebuilt

services can be likened to deploying a management framework whose solejob is

to invoke existing applications according to special rules.

Existing applications might play rolesin any number of processes. For example,
there might be a Process A that uses Activities X, Y, and Z; and a Process B that
usesActivities X, Z, and Q. If Activity Z isaWeb Service with apublic URI, it

might actually play arolein aremote processin use at another company.

The plug-and-play nature of Web Services brings great power and flexibility to
process management and is key to understanding how to use Composer’s Process

Manager effectively.

Welcome to Composer and Process Management

Process Manager FAQ

44

By now, you are probably starting to have many questions about thewaysinwhich
processes can be modelled using Composer’s Process Manager and what the
limitations are, if any, on process design. The answers to many questions will
become clearer in subsequent chapters, but for now, here are afew quick answers
to Freguently Asked Questions.

Can | Create or Edit Composer Components within Process
Manager?

Yes. The Process Manager design-time editor runsentirely within Composer. You
can have multiple components, services, and processes open at the same time and
switch between windowsfreely. In fact, in animation mode, you can step over and
into process activities, and if agiven activity’s underlying implementation was
built in Composer, you can step into the activity-implementation’s action model
and step through it before returning to the processitself. You have the ability to
debug action models and process models all in the same environment.

Can | Begin Designing a Process Even if Some Activities Have not
Yet Been Implemented?

Yes. You can put placehol der activity icons on the process canvas and hame them,
draw links between them, etc., arbitrarily. To perform useful message-part
mappings, of course, you will need to designate actual components or servicesfor
each activity, but even then, the components do not have to be completely built. If
an activity isaWeb Service, its mappings can be specified in the process model
even before the serviceis built, so long as WSDL exists for the service.

Can | Run a Process in the Design-Time Environment for Test
Purposes?

Yes. You can run a process within Composer, in animation mode, much the same
way that you would execute a Composer Component in animation mode. Thisisa
unique capability among workflow and process automation tools. In other
workflow products, you may be ableto create a“ skeleton” process fairly quickly,
but you usually cannot implement activity-layer functionality without leaving the
design-time environment to do low-level programming; and when the activity
layer has been implemented, you generally can’'t test it in the original design
environment. With Composer Process Manager, you can design, test, and debug
activities as well as processes without leaving the design environment,
dramatically shortening the development cycle.

Process Manager User’s Guide

Is It Possible to Import WSFL Flow Models Created in Another
Environment?

No. Composer’s Process Manager is not designed to import workflow models
from other sources. WSFL istoo immature a specification at this point to provide
all thefunctionality required by users, and it’sunlikely, therefore, that two vendors
would implement two WSFL solutions in a compatible manner. In addition, the
presentation (graphing) layer of Composer Process Manager isnot directly driven
by the metadata layer; in other words, no particular graphical representation of a
process isinherent in aWSFL metadata model, and the Process Designer would
not have any a priori notion of how to display your graph.

Can | Edit My Process-Model Metadata in an XML Editor?

You should never have to hand-edit the metadata descriptions of process models
produced by Composer’s Process Manager. Direct editing of the metadata is not
recommended.

Does Process Manager Support Parallel Split, Exclusive Choice, and
other Branching Constructs?

Yes. By allowing the designer to place boolean logic on the entry and exit sides of
activities (injoin and exit conditions) aswell asonindividual links, WSFL isable
to accommodate arbitrarily complex flow patterns without having to define
special-purpose constructs. So the short answer is that Composer Process
Manager (following WSFL's lead) does not define special branch or join flow
primitives. But you can easily achieve any desired branch/join behavior by means
of appropriate transition conditions.

Does Process Manager Support Looping?

Yes, although backwards-facing links are not allowed. Links that connect
downstream activities to source activities produce what's called a cyclic graph,
which is not supported by WSFL because of the potential for reentrancy-related
problems. (These problems are discussed more fully in the next chapter, along
with the looping constructs actually supported by Process Manager.)

Welcome to Composer and Process Management 45

46

Can | Use the Process Manager for Document Routing and User
Agent Functionality?

Queue-based workflows with human-facing activities can be created using
Process Manager (see the “ Advanced Topics’ chapter). The concepts of queues
containing work items, work-item priority, addressees (individual s) with roles,
timeouts, locks, and administrative control over and browsing of queues are all
supported by Process Manager. Also, the various actions that support these
features are available for use across all component types (and all Component
Editors) in Composer.

Will Automated Processes Put Huge Demands on My System?

No. Theload and performance characteristics of asystem running processes under
Composer’s Process Server are determined by the activities that make up the
process. The Process Server itself incurs very little processing overhead because
one instance of the Process Server controls any number of running processes.
Also, since processes are typically long-running, it's usually the case that most of
the pieces of an in-progress process instance spend the majority of their timeina
sleep state. During these waiting periods, activities exist in persistent storage so
that they do not actually consume CPU cycles.

Can | Start and Stop a Server While a Process is Running?

Yes, because process state information is persisted for each processinstance on an
ongoing basis. Also, processes are generally long-running and spend most of their
time asleep. Suspension of arunning processinstance is supported by WSFL and
by Process Manager. You can suspend any process at any time viathe Process
Server Console.

Must All Activities Be Implemented as Web Services?

No. Your activities can take the form of Composer Components or Web Services.

Must Processes be Exposed as Web Services?

No. They can be, but they don’t have to be.

Process Manager User’s Guide

Preparing to Model a Process

This chapter attempts to make the abstract concepts of Chapter 1 more concrete
by, first of all, examining runtime flow mechanics (as implemented by the
Composer Process Server), then by showing how various use cases and design
patterns can be implemented in Process Designer.

Process Server Execution Model

An understanding of the Process Server’s basic execution algorithm in
fundamental to understanding how to design a process.

The Process Server (or runtime engine) executes a process instancein the
following manner.

1

If the process was called asynchronously via a Spawn event, the Process
server—upon instantiating a new process—returns a ProcesslD (a“return
receipt”) to the caller immediately. Otherwise, if the process was invoked
with aCall, it is assumed that the caller will block until the process finishes.

The Process Server determines which of the process model’s activities
constitute start activities.

The input data to the process (one or more message parts) are mapped to the
start activities.

Start activities are invoked.

Whenever any activity (whether it is a start activity or not) finishes, the
Process Server consults the exit condition of the activity and evaluates the
associated X Path expression. If the exit condition evaluatesto false, the
activity is executed again (with the same input as before). Execution repeats
until atimeout occurs, or the exit condition is true, whichever occursfirst.
See diagram below.

Preparing to Model a Process 47

Join Condition

> Activity
= implementation
[
false . g
Exit Condition
true
Tink condition
true
other
activities
Deferred mode? Immediate mode?
Wait for all Evaluate join
link values condition now
to be known

-
>

Join Condition

Activity
implementation

Exit Condition

6 If theexit condition of a completed activity istrue, the Process Server
determines which control links (if any) are connected to the outbound side of
the activity, and the transition conditions of those control links are eval uated.

7 Datais mapped to the next activity (or activities).

Process Manager User’s Guide

10

For each control link whose transition condition was true, the Process Server
evaluates the join condition of the link target. This evaluation takes place
once, after al link conditions have been evaluated, if thejoinisin Deferred
Mode (the default). If the join mode is Immediate, the join condition is
evaluated multiple times: once each time alink’s truth value has been
computed. (In otherswords, as soon as alink condition has been evaluated—
if even if the value is false—the engine will evaluate the join condition.)

If the join condition evaluates to true, the target activity fires; otherwise it
does not.
NOTE: Regardless of synchronization mode (Immediate/Deferred), the

target of a join will not fire until and unless the join condition is, at some point,
true.

When the target activity of any link has finished executing, the cycle begins

again at Step 5 above. Execution continues until there is nothing to do (i.e.,
the truth values of all end-activity exit conditions are known).

The following graphic shows typical process-startup mechanics for a process
instance that has been invoked viaspawn. (That is, the caller has elected to invoke

the

returned
immediately
Process o J N
begins with | Start Activity I >
Start Activity e \/

processin a“fire and forget” manner.)

Process Invocation via Spawn

Process is

called 1, Process Server

Process ID l

Preparing to Model a Process 49

The Design-Time View

50

The runtime engine needsto know which activitiesagiven processmodel will use,
how they are linked together, what the data mappings are between them, etc. All
of thisinformation must be specified at design time in a process graph. You will
use the Process Design to do this.

The Process Designer is avisual editing environment for creating graphical
representations of processes, and for specifying data relationships between
activitiesin aprocess. Thetoolsthat allow you to do thisinvolve acombination of
point-and-click layout tools plus text-based property sheets, which operate like
non-modal dialogs. In addition to these GUI features (which are unique to the
Process Designer), you have Composer’s standard menu commands, navigator
frame, multi-document content frame, and output frame, just as you’' d use when
creating Composer components and services. In other words, the Process
Designer runs entirely within Composer.

The Process Designer view of a simple two-activity processlooks like:

v
Activity1

S

g
Activity?

The activity icons, in this case, represent Composer Components. A link connects
the two activities. The fact that thelink icon is diamond-shaped means a custom
transition condition has been specified for thelink. (Links without custom
conditions have no diamond icon and just show theword “Link”.)

We say that Activityl, inthisdiagram, isthe Source Activity, whereas Activity2is
the Target Activity.

Just looking at this graph, it's not apparent whether Activity1 has a custom exit
condition; whether aretry protocol appliesto either activity; whether a mapping
policy (such as Last Writer Wins) applies on the input to Activity2; and so on—to
say nothing of how message parts are actually mapped from one activity to the
other. The graph depicts control-flow relationshipsin a clear, direct, intuitive
fashion, yet seemsto hide data-related information.

Process Manager User’s Guide

Data-link information is available via a non-modal (and dockable) Object
Properties pal ette containing tabs for component-, message-, and Ul-based
information, as shown below.

¥ Object Properties

Companent | Messages| Ui

u u] Property Walue
(; [Activity Name Activityl
L = [Activity Type Composer Component
ACtiVity1 Companent Type Wieh Service
L ® [Component Name ActivityLogoenis
Exit Condition
Loin Condition
Timeout
Retry Count
Retry Interval
Map Policy g /
ri
7 \
[Telnet Logon - -
jreinet Terminal ProductinguinwebSeniceclient
vin Receive Purchase Order
(‘)j (<ML hMap - N) hd
Activity2

Notice that in this graph, Activity1 hasfocus (as indicated by the handles around
its periphery), and therefore the Object Properties panel (or “property sheet”)
displaysinformation appropriate to Activityl. If one wereto give Activity2 focus
(by clicking on it with the mouse), the Object Properties panel would update to
show information specific to that activity. Likewise, clicking on Link1 would
cause the panel to show information specific to the link. These panel updates
happen in real time, automatically, so that information is available for any graph
element at any time. Theinformation is not simply read-only, however. Thefields
in the Object Properties panel are where you specify data-related and activity-
level attribute values.

In the Component tab (shown here), you can view activity-level information: the
activity name and type, the type of Component (in this case, a Web Service), the
Component’s name, its Exit and Join conditions (if any), retry information, and
map policy. Some of these values can be set using dropdown menus already
populated with correct choices, as shown above. Others are text fields where you
can type values directly into the panel.

By clicking on the Messages tab, you can view data-related information for the
activity that has focus.

Preparing to Model a Process 51

52

¥ Object Properties E

hessages

Type MName Message
input Activity2Input
output Activity2 O utput
ault SystemFault
ault TimeoutFault

Enter maps to "Activity2Input':

o o=

Source Target
FActivity! DutputiOutput FActivity2Inputinput

The top part of this panel shows the process-specific namefor the activity’sinput
and output messages aswell asthe concrete Type and M essage descriptions given
inthe WSDL for the service (i.e., the activity’simplementation). In other words,
the Type and Message fields are automatically filled out with values taken from
the WSDL portType segment.

Thelower part of the panel iswhere you can specify exactly which Source
message parts map to which Target message parts (using X Path). The above
graphic appliesto Activity2 in the previous flow graph and shows how input to
Activity2 will be composed. The Source XPath, in this case, specifies that the
Output message part from Activity1 will be mapped directly to Activity2's Input
part. This means that when Activity?2 fires, it will use asitsinput the Activityl
output. Obvioudly, thisisasimple case. There could potentially be many intricate
XPath mappings from Activity1's output message parts to Activity2'sinput parts.

The Object Properties panel will be discussed in greater detail later. For now, it's
enough that you know that the Object Properties panel iswhere you can specify:

+ Activity name

+ Activity type (Web Service Send, Web Service Receive, Composer
Component, Subprocess, or Synchronize Subprocesses)

+ Exit condition for the activity
+ Join condition for triggering the activity
+ Timeout and retry settings

+ Mappolicy (or overwrite palicy) for situations where data from multiple
incoming sources map to the same target message part(s)

+ XPath-to-XPath mappings of data from source message parts to target
message parts

Process Manager User’s Guide

Flow Control Strategies

Because the WSFL model attemptsto “granulate” flow logic at the level of links
and joins (rather than aggregating flow decision-making into higher-level
constructs like “XOR-split”), it's not always obvious how one can specify
conditional branches and other common control-flow patterns using a WSFL-
based approach (as followed by Composer Process Manager). Nevertheless, itis
possible to model virtually any kind of flow logic you can imagine using the

Composer Process Designer.

This section looks at some of the more common flow idioms and how they can be
implemented with the Process Designer.

Branch Logic

Many workflow experts are accustomed to thinking in terms of branch logic as
well asjoin logic. We will consider branching patternsin this section and join

patternsin the next.

Conditional Branch (XOR-Split)

WSFL has no built-in notion of conditional branching per se, which means
activitiescannot, on their own, decidewhich link(s) to usewhenthereis morethan
one link on the outbound side of an activity. Instead, the decision of which link to
follow is determined by the links themselves. But no individual link can “know”
what the transition conditions of other, parallel links might be. A link can only
decide whether its path should be followed, based on the output of the previous

activity.

Neverthel ess, this flow-constraint mechanism is sufficient to model a conditional

branch. For example:

Exit
Condition:

true
Activity1

Link Condition:

output [number(Bid)<1000]

A

A4 » Activity 2
output [number(Bid)>=1000]
<\B/ > Activity 3

Preparing to Model a Process 53

AND Split

In this scenario, Activityl produces output containing bid information from a
company. Thelink condition at A saysthat link A will be followed if /Bid isless
than 1000. The condition at B saysthat link B will be followed if /Bid is greater
than or equal to 1000. Clearly, if onelink isfollowed, the other onewill not be; so
this represents an exclusive-OR split (or XOR split)—aconditional branch.

The AND-split case (where every outgoing link is always followed) represents
default behavior in Process Manager models.

An AND split, as defined here, is the case where every outgoing link will fireits
target activity. Thisjust meansthat every link has avalue of true.

Non-Exclusive OR Split

There may be cases where an activity with multiple outgoing links could
(depending on the output data) fire any number of target activities. For example,
“Fire Activity 1if such-and-soistrue; also Fire Activity 2 if this-and-suchistrue;
also Fire Activity 3if so-and-soistrue.” The number of activities that might
actualy fire at runtime could be zero, one, two, or three.

Again, thiscaseis easily handled by distributed link logic. Every link can “look
at” the source activity’s output and apply suitable X Path logic in order to arrive at
adecision of whether to fire/not fire. In the end, the appropriate number of target
activitiesfire.

Compound Branch Logic

It's possible to combine the above patterns to handle complex cases such as
“Traverselinks A, B, and C always, but traverse D conditionally and traverse E
only if D wasn't followed.” To implement the case just stated, you would:

+ Hard-wirelinks A, B, and C to true.

+ Setacondition on D (using suitable XPath) of “if this node value is exactly
such-and-such, fire the target activity.”

+ Setacondition on E of “if [the same node that was tested in D] isn't exactly
such-and-such, fire the target.”

In pseudocode, the net result (in terms of the links that will fire their target
activities) is:

(A AND B AND C) AND (D OR E)
Other complex cases are possible as well. But before getting involved too deeply

in compound branching strategies, it'simportant to step back and understand why
such complex constructions are best avoided altogether.

54 Process Manager User’s Guide

Join Logic

In programming, complexity isasign that a procedure or ablock of code needsto
be factored into smaller logical units. In Java code, conditionals invol ving many
ANDs and ORs chained together are rare, because usually the desired actions can
be carried out in a single switch/case block or a series of if/elses with simple
conditions. If data dependencies are too complex to alow this, the dependencies
themselves need to be broken out in such away that the logic can be made simple.
Data entanglements shouldn’t be allowed to dictate tangled logic.

U.S. income-tax law provides many good examples of tangled logic involving
complex data dependencies. The Internal Revenue Service must nevertheless
produce tax forms that mere human beings can fill out correctly every year. They
do this by, first of all, factoring out major dependenciesinto subject groupings,
each with its own dedicated form (or “ Schedule”). Within each form, there are
major subdivisions (parts) that group cal culations. The major parts are broken
down, finally, into simple if/el se statements. Some of the if/else statements point
to other Schedules that must be completed before the if/el se can be evaluated.
(Each of those Schedulesis a series of if/el se statements grouped into parts.)
Obvioudly, each tax form could, in theory, present all of itsif/elselogicinasingle
compound expression at thetop of theform. But such asingle-statement procedure
wouldn’'t be human-readable.

Complex branch requirements should be asignal to you that the model you're
creating needs to be factored into simpler logical units.

Link logic determineswhether atarget activity can befired; not whether it actually
will fire. Thefinal decision asto whether an activity fires rests with the join
condition.

In Deferred M ode (the default), no join condition can be evaluated—and therefore
no join activity can be fired—until the truth value of every one of the activity’s
incoming links is known. When al link values are known, the join condition is
evaluated. Only if thejoin condition istrue can the target activity then fire.

In Immediate Mode, thejoin condition is evaluated every timealink’struth value
is determined by the runtime engine. So if there are four inbound links to atarget
activity, it is possible that the activity’sjoin condition will be evaluated four
separate times. Assoon asit is clear that the join condition istrue (and can’t
change), the target activity isinvoked.

Preparing to Model a Process 55

Looping

NOTE: As explained in the previous chapter, join logic is the only logic touchpoint
in the process model where XPath is not used. Links and exit conditions have
access to upstream data and base their decision-making on XPath evaluations.
The join condition knows only the truth values of incoming links; it does not use
XPath and is not data-driven.

A join condition tends to look something like:
(Linkl OR Link2)

Thisisasimple non-exclusive OR condition. It meansthejoinistrueif onelink
or both links are true.

An exclusive-OR condition (i.e., the conditionistrue if one and only onelink is
true) would look like:

(Linkl AND NOT Link2) OR (NOT Link1 AND Link2)

In this case, either link could fire the activity, but if both links were true the
activity would not fire. For this condition to work as intended, the join mode
would have to be Deferred.

You can think of join conditions as a mechanism for deciding how many (and
which precise combinations of) link valuesit takesto fire atarget activity. Thisis
important, because links have no way of knowing whether other (sibling) links
exist, or which siblings evaluated to true. This knowledge exists only at the join.

On occasion, you may find that you want to iterate on a given activity until a
certain condition ismet. For example, you may have somekind of batch operation
todo. Your normal inclination might beto draw alink from atarget back to one of
itssources. But this kind of control flow (reentrant flow) isnot allowed in WSFL,
nor in the Process Designer. If you attempt to create a cyclic graph, you will see
the following aert:

Link Error

The new: link you are trying to construct creates a loop.
The action is cancelled.

MOTE: To repeat Activities, vou can use Exit Conditions
or Subprocesses for groups of Activities.

Iteration of an activity must be done by the implementation of the activity (or by
the implementation of the calling activity) rather than at the process-logic level.

56 Process Manager User’s Guide

Thereason looping is not allowed in a process model isthat it opens the door to
any number of ill-defined situations that would be difficult to manage. For
example, consider the control-flow graph shown below, which has aloop-link
from D back to B. The runtime engine must make some difficult decisions:

A
;
-

m
|

|'|'|<—lU

@

+ Bisajoin node with input from two activities: A and D. In Deferred Mode,
B must wait for both incoming links to have truth values before itsjoin
condition can evaluate. But since D requires the prior execution of B and C,
it can't execute unless D executes. The model hangs while B waitsfor D to
execute. Thejoin at B would only work in Immediate mode.

+ Cwill execute multiple times as part of the B-C-D loop. Each time it
executes, the link from C to E is followed (in addition to the C-to-D link)
and E will fire repeatedly if its link evaluates to true. Therefore E can
unintentionally become part of the loop. To avoid this, the link logic for E's
input link would have to “know” about the iteration status of the loop.

+ If Eisexecuted multiple times, it might trigger G multiple times; therefore,
G aso hasto know about the loop. (And so on, for all activities downstream
of E)

+ If theloop makesit back to C while before E returns from its first
invocation, should a new instance of E be spawned?

+ When D executes each time through the loop, should it fire F on every cycle?

Even if these issues were resolved, the prospect of testing (then debugging) a
model of the above sort could be daunting.

Preparing to Model a Process 57

How Safe Looping Can Be Accomplished

A number of looping paradigms are possible in Process Manager. Somerely on
WSFL'sinherent retry-on-fal se-exit-condition mechanism; others delegate
looping to activity implementations; and there is a special Process Manager
activity to help with asynchronous fan-outs.

Mapping an Activity to Itself

58

While Process Manager does not permit control links to be used for looping, it
does allow you to designate an activity’s output as the data source to use for input
in the event of aretry. This affords atype of looping, since standard WSFL and
Process Manager behavior isto try an activity whenever the activity’s exit
condition isfalse. By mapping output back to input, the activity can loop on its
own output as needed, until an exit condition of trueisreached, at which point the
looping stops and control proceeds down outgoing links. Diagrammatically, the
scenario can be represented this way:

DATA MAPS

-
FROM $ProcessInput/Input 49)
TO $activitylInput/Input Activityl
T
FROM S$Activityloutput/output (3) — — —_—
TO $Activity2Inout/Data 3 — —
Activity2

exit | exit false
true

exit false

.
9) ex1t false

Activity3

FROM SActivity2Inout/Data
TO $Activity3Input/Input

Activity2 has an input message named Activity2lnOut and an output message of
the same name. If Activity2 exits with an exit condition of false, it reexecutes
using Activity2lnOut. But Activity2InOut's data was modified on the initial
execution of the activity as part of aloop. (Perhaps new info from a database
lookup was appended to the Datadoc.) In any case, the exit condition on Activity2
might be an XPath expression that inspects a flag value in the output DOM. The
flag value would signal the need either to iterate again or break out of the loop.

Process Manager User’s Guide

To implement this kind of mapping requires that you give the loop activity's
output and input messages the same name, as shown here:

¥ Object Properties E3
Activity Messages | UI|
hessages
Type Marme Message

et Activity2InOut

Same name ertstpret—— A ctivity2InC ut
fault SystemFault composerfault
fault TimeoutFault composerfault

o e "Activity] Input’ maps:

Source Target
B chivity1 OutputiOutout FActivityZInOutiData

Onthefirst invocation of Activity2, Activity2InOut gets popul ated with datafrom
ActivitylOutput/Output. When Activity2 reexecutes due to a fal se exit condition,

Activity2InOut (already populated with data) simply gets fed back in to the
activity.

NOTE: When setting up this kind of mapping, do not forget to apply an exit
condition (one that will successfully terminate the loop) to the loop activity.
Otherwise, an infinite loop can result.

Iterating Against an External Data Store

Thetype of looping described above is useful when an output document
containing loop results needs to be built incrementally, with new data added to
output on each trip through the loop. But there are a so times when work items
merely need to be pulled off aqueue and processed one at atime (one work item

per trip through the loop), with no consolidation, per se, of datafor afina output
doc.

Imaginethat aprocesshasastart activity that produces, as output, a batch of work
items. Each item needs to be processed individually by a given application
designed for the purpose. This means the processing application must be invoked
multiple times (once per work item). A possible process model is shown below.

Preparing to Model a Process 59

- |?
q j Startup Activity

has output containing

Ac{ivitﬂ a bateh of work items
Link1
- I?
() Activity2 (a JMS Component)

L unbundles work items and
ACIMI‘;;Z pushes them onto a JMS queue

Link3

@C Activity3 (a JM3 Component)
@J’f/@ (j obtains one item off the queue
and processes i
Activity3

Inthisscenario, Activities 2 and 3 are Composer JM S Components, but they could
also be JIDBC Components using adatabase instead of a queue; the concept can be
adapted to other external storesaswell. Theideaisthat Activity2 receivesabatch
of data (packaged asaWSDL message) as input. Activity2 unbundles (and
possibly performs some kind of preprocessing on) the input. It also pushes every
work item onto a message queue. Activity3 will inspect that queue.

In this example, the output from Activity2 contains a JMSDestination (in an
element inside a message part) representing the location of the queue that
Activity3 should operate against. No “work-item count” need be passed to
Activity3. (Activity3 has been designed simply to fetch and process one work
item.)

Activity3 does the following:

1 It executes exactly one IMS Receive action. The action either succeedsin
pulling awaiting message off the queue or finds that the queue is empty.

2 If amessageissuccessfully pulled off the queue, itsdatais processed and the
activity exits with an exit condition of false, so that it executes again.

3 If no message was available (i.e., the IMSMessagel D came back empty), the
activity exits with condition of true.

60 Process Manager User’s Guide

The exit condition for Activity3 is based on whether the JIM S Receive succeeded.
If amessage was processed, the exit isfalse so that Activity3 executesagain. If no
message was processed (i.e., the activity had nothing to do, because the queue was
empty), the conditionistrue and Activity3 passes control to the next activity inthe
process flow.

This pattern does not involve a cyclic graph and does not violate WSFL's
restriction against backward links, because thereis no control link that “ pointsthe
wrong way” —no reentrancy. Repeated execution of Activity3 occurs because its
exit condition is false until a certain criterion ismet. The arrows labelled “IMS
Send” and “ IM S Receive” represent dataflow outsidethe processmodel. Thedata
do not enter into any message maps.

Delegating Loop Behavior to an Activity Implementation

Fan-Out

An alternative to the foregoing strategy isto hide loop behavior within an
activity’simplementation. For example, you could create a Composer service that
uses Execute Component and Repeat While actionsto call a given component
repeatedly in awhile loop. This strategy does not require the Process Server to
manage any aspect of loop iteration.

Q {8 %ML Map: ProcessBatch I =] B3
Activity1 = Inputl . Data 1= Output Diata
= <> Drders
. 2 BatchCount 34

Lk Y EEFEX X

5 Loop Actions
() CALL nes
.. 38 Execute Inventorylookup Pass{input) Return Output

Kl | 2l

implementation

Activity2

Theflow graph isthe same as before except that the Composer Component called
InventorylLookup is called not by the process engine but by the action model of
Activity2, as shown above.

Rather than processing work items one at atime, you might find it advantageous
to process them in parallel. Concurrent processing often resultsin significant
performance gains.

Preparing to Model a Process 61

62

The spawning of multiple concurrent processesis called afan-out. The design
pattern lookslike this:

'Fan-Out Activity |

//\\

sub- process sub-process | |sub process | | sub process |
instance 1 instance 2 instance 3 ee e |nslance n
| Fan-In Activity |

The Fan-Out Activity, on receiving abatch of work, unbundlesthework itemsand
spawns multiple instances of the appropriate target subprocess: one instance per
work item. The subprocess might be called something like
“DetermineQuantityOnHand” and the batch might be a collection of SKU
numbers. One instance of DetermineQuantityOnHand is created for each SKU
number.

Every subprocess instance is invoked viathe WSFL -defined spawn mechanism,
which means each instance runsin its own thread: i.e., parallel instances execute
concurrently and finish whenever they happen to finish.

For this scenario to work, there hasto be a“Fan-In" activity that collects output
from every subprocess instance and waits until all instances are finished before
passing control to the next activity inthe process graph. The activity that doesthis
is shown as the Consolidator activity in the above diagram.

Aseach subprocessinstancefinishes, it hands datato the merge component, which
collects that data and mergesit (typically) into one final document. When all
subprocess instances have been accounted for, the merge component’s exit
condition becomes true and control passesto the next point in the graph.

Process Manager User’s Guide

There are two problems with implementing this pattern in aflow graph. The first
isthat WSFL provides no native mechanism for creating arbitrary numbers of
outbound links at runtime. The second is that, even supposing that links could be
created in quantities known only at runtime, there is no native provision for
specifying the kind of late-binding join logic that would be needed to handle the
synchronization.

Fortunately, these problems can be overcome.

Component-Controlled Fan-Out/Fan-In

One strategy isto hide the fan-out in acomponent’simplementation. Imagine that
acomponent’s action model contains a Repeat While loop that iterates over a
batch, calling a Process Execute action on each work item. By specifying an
execution method of “spawn” in the Process Execute action, every processis
launched inits own thread, in fire-and-forget manner. The workhorse process
instances (the“fanee processes’) can be designed in such away that they post their
resultsto adatabase, JM S message queue, or other external store. Synchronization
would be handled by a second component (a*“consolidator”). The “sync
component” could follow either alistener metaphor or a periodic-polling
metaphor. If the latter pattern is used, polling could take placein a continuous
loop, or (less CPU-intensively) on atimed basis, where the component sleeps
between data queries. The listener metaphor, on the other hand, can readily be
implemented using a JM S Service.

Recursive Fan-Out/Fan-In

Fan-outs can be modelled in WSFL using arecursive graph. That is, afan-out can
be modelled as a process that callsitself until a suitable number of “fanee”
activities has been invoked (at which point the results are accumulated viajoins).
Diagrammatically, arecursive fan-out process might look like this:

Preparing to Model a Process 63

64

Process: "DoBatch"

3

TakelnBateh

N

Links
Batch s\tﬂe‘b 1

. 2

o

DivideBatch

/N

Ba?/ﬁze ==1
Link3

Links

Frocessilfotdtem

LinkZ2

e’

N

Link

tergaBatch

Ny

10

)

DoBatch

/

LinkT

OutputB atch

The algorithm can be summarized as:

1 Takein abatch of work. If the“batch” contains more than one work item,
split it into two smaller batches (that is, traverse Link5 shown above) and
fire new instances of ourselves using the smaller batches asinput. (That is,
traverse Link3 and Link4 and fire two new instances of DoBatch.) This
recursive invocation of new instances of DoBatch continues until incoming

batches are no longer splittable.

2 If anincoming batch contains exactly one work item, traverse Link1. The
target of Link1 isthe component (Process\Workltem) that actually processes

the work item.

3 Theoutput of the ProcessWorkltem activity is handed to OutputBatch, which

does any required post-processing and returns.

4 When arecursively called DoBatch instance returns, it traversesits outgoing
link (Link6 or Link7, whichever applies). A deferred join then occurs at

MergeBatch.

Process Manager User’s Guide

5 The MergeBatch component accumulates data arriving from Link6 and
Link7 into one output message, which is sent to OutputBatch. The
return/merge/return/merge cycle continues until every processed work item
has been accumulated into one consolidated message (document).

6 Finally, the topmost instance of DoBatch returns the consolidated document.

Note that the link logic at the top of the graph effectively makes the split coming
out of TakelnBatch an exclusive-OR split. (This also has the effect of making
Link2 and Link8 mutually exclusive.) The algorithmis basically one of “split or
work.” The ProcessWorkltem activity is not hit until the batch has been split into
individual work items (at which point a corresponding number of instances of
ProcessWorkitem fire up). The output docs are merged two-by-two, then four-by-
four, etc., until the final output of the processis one consolidated document.

Thisisan example of awell-factored design that uses simple, discrete operations
to accomplish a dynamically sized task. The flow can be diagrammed explicitly
using ordinary WSFL constructs and hides nothing (other than business logic) in
activity-level implementations. All data travels through ordinary datalinks (no
special “off the graph” communication through external stores); all processing is
concurrent; and all joins are synchronous.

Synchronize Subprocesses Activity

One of the native Activity typesin Composer Process Manager is a specialized
activity called Synchronize Subprocesses. This activity existsin order to provide
“fan-in” capability (synchronization and consolidation of returnsfrom
asynchronous subprocesses).

A graph that uses the Synchronize Subprocesses activity will implement the
following pattern:

3

Activityl

Link1

=3
=a
ActivityZ

Preparing to Model a Process 65

ActivitylisaComposer Component that performs afan-out by spawning multiple
subprocess instances inside a Repeat While loop, as part of the component’s
implementation. (This can be done via the Process Execute action, which has
spawn aswell as call modes.) Activityl constitutes the fan-out. Activity2, the
Synchronize Subprocesses activity (which hasits own distinct icon), constitutes
the fan-in.

When a subprocessis invoked via spawn, the Process Server returns a Flow
Instance ID tothecaller. Activityl collects Flow Instance I Dsfor each subprocess
that it invokes and passesthelist of IDsto the Synchronize Subprocesses activity.

The Synchronize Subprocesses activity’s implementation consists of a Composer
XML Map, JIDBC, or other Component. Thiscomponent receives, asinput, thelist
of Flow Instance 1Ds mentioned above, plus a collation document. The latter is
used at runtimeto accumul ate datareturned by “fanee” subprocesses. The Process
Server mechanicsfor thisare described in alater chapter, but the key notion isthat
the fan-in component is notified (called by the runtime engine) each time afanee
returns, and the associated work-item datais added to the collation doc. When
every faneeis accounted for, the component exits with a condition of true and its
output (a completed batch of work) is mapped forward to the next activity or
activitiesin the model.

Process Architecture in Review

66

Below isabrief recap of key concepts. You should keep these conceptsin mind as
you create models in Process Designer.

Activities can be of five types:

+ Composer Component

+ Subprocess

+ Web Service Receive

+ Web Service Send

+ Synchronize Subprocesses

Therearetwo flavors of Web Service activity. The Web Service Send type handles

WSDL Solicit-Response and Notify patterns, whereas the Web Service Receive
type handles WSDL Request-Response and One-Way operations.

Synchronize Subprocessesis a specialized type of activity (unique to Process
Manager) that provides for synchronization of fan-outs.

A Subprocessis simply any Composer process that is being used as an activity

inside alarger process. The use of processes as activities makes possible
hierarchical modelling of business workflows.

Process Manager User’s Guide

A process model can coordinate the flow of data and control between a
heterogeneous mix of local and offsite applications (including Web Services
administered by business partners).

A Start Activity has no inbound links. An End Activity has no outgoing links. All
other activities have one or more incoming links and zero or more outgoing links.

Data dependenci es between activities are implemented by means of data links. In
Process Designer, data links are not drawn by the user; they are created
automatically when you map one activity’s output message part(s) to another
activity’sinput message part(s).

Time-order dependencies between activities are enforced by means of control
links. A control link connects a source activity to atarget activity. The link
guarantees that the target cannot execute before the source does. A corollary of
thisisthat cyclic graph patterns (where downstream activities have links pointing
to upstream activities) is not allowed.

Synchronization of work is accomplished through joins.
Conditional flow of datais under the control of link logic (transition conditions).

Conditional triggering of an activity based on the completion of “feeder” activities
isunder the control of join logic (join conditions). In Deferred Mode, thejoin
condition is not evaluated until the truth values of all incoming links are known.
In Immediate Mode, the join condition evaluates every time a source link
evaluates.

Data-overwrites can be controlled through the use of map policies (in caseswhere
two source activities might target the same XPath location in the input to the next
activity). The policy can be Last Writer Wins (arrival-order overwrite), First
Writer Wins (first mapping is permanent; late dataisignored), and literal map-
order.

Retry behavior is under the control of activity exit conditions and/or timeout
values. If an exit condition isfalse, the activity reexecutes using the original input.
The activity keeps reexecuting until the exit condition istrue or atimeout occurs,
whichever comesfirst.

Link and exit conditions must be specified using X Path. Join conditions cannot
use X Path; they are specified via boolean expressions involving link truth values.

The Process Server is the runtime engine that manages the execution of process
instances. It persists state information, instance data, etc. at al pointsin a
process'slife cycle.

Processes can be monitored and administered (suspended, resumed, etc.) viathe
Process Server Console.

Preparing to Model a Process 67

WSFL defines (and Process Manager supports) lifecycle events spawn, call,
suspend, resume, enquire, and terminate.

Suspend, resume, and ter minate events can be controlled administratively viathe
Process Server Console. The enquire event (meant for status queries) is not
labelled as such in the consolg; rather, complete statusinformationisdisplayedin
aProcess Status view, available at any time. Spawn and call are under the control
of aprocess'sinitiator, which might be a SOAP server responding to arequest, a
component that has executed a Process Execute action, etc.

Taking a Best-Practices Approach

68

The key feature of a WSFL -based process model isits reliance on units of work
that know nothing about each other’s implementation details, yet can interact
cooperatively based on known interfaces. In thistype of system, the units of work
(activities) have no knowledge of—and should need no knowledge of—the
context in which they are being used. Everything an activity needsto know is
contained in the input message to the activity.

A good process model leverages this principle of separation of interfaces from
implementations. This not only makes for efficient code reuse but opens the door
to interoperability across technologies, platforms, partners, etc. It also greatly
eases troubleshooting, testing, and maintenance.

Characteristics of awell-designed process model include:

+ A wedl-factored activity layer. No single activity triesto “do too much.” No
activity is monolithic in functional requirements.

+ Every activity has been designed to run standalone, with no special
knowledge of its neighbor activities.

+ Every activity has clear-cut data-input needs and correspondingly clear data-
output responsibilities.

+ Activity-to-activity data dependencies are explicitly described in message
mappings.

+ Businesslogic is completely hidden inside activity implementations. No
business logic is attempted in any message maps.

NOTE: Message mappings between activities should exhibit coarse
granularity. Element-level transformations of the underlying XML (i.e., fine-
granularity document manipulation) should be done inside activity
implementations, not in the process model.

Process Manager User’s Guide

Theflow graphis easy to read and comprehend. If a graph startsto grow
beyond a handful activities or joins, consider factoring out related activities
into subprocesses. A model with dozens of splits, joins, activities, etc., may
be extremely difficult to test or debug, whereas if the same model can be
factored into three or four subprocesses, each with only three or four
activities, the subprocesses can very likely be tested standal one, then
combined into afinal, unified model that isrobust.

Preparing to Model a Process 69

70 Process Manager User’s Guide

Creating and Testing Processes

In this chapter, we' Il take alook at how to construct a process, specify data
mappings, apply logic to links, control joins, and animate (step through or
execute) a process in the design-time environment.

If thisisyour first time using the Process Designer, you should read this chapter
before building your first process.

Example: A Simple Straight-Through Process

So that you can see how quickly aprocess model can be built and tested using the
Composer Process Designer, we'll go step-by-step through the construction of a
simple straight-through process, as represented by the graph shown below:

‘ ProductinquiryProcess |

G

Acceptinguiry

Yo’ (j

Inveniorg’tLookup

\ ProductLookup
i
e

MergeProductAndinventory

Creating and Testing Processes 71

Description

The ProductInquiryProcess model handlesarequest for product information. The
input to the processisan XML DOM containing a SKU (product D) number. The
output of the processisan XML DOM containing detailed information about the
product in question. The needed product information is pulled from two sources
(two databases) via JDBC.

Our processusesfour activities, all of them Composer Components. Therolesand
responsibilities of the activities are asfollows:;

Acceptinquiry (XML Map Component)—Takesin an input DOM containing
SKU information and simply writes that information straight to an output DOM,
along with a tracking number.

InventoryL ookup (JDBC Component)—Using the output of Acceptinquiry,
thiscomponent performs adatabase |ookup agai nst an inventory control systemto
obtain Category and Status information about the product whose SKU number
was passed in.

ProductL ookup (JDBC Component)—Using the output of Acceptinquiry, this
component performs a database |ookup against a marketing database to obtain
detailed product info, including price, color, text description, and so on.

M ergeProductAndlnventory (XML Map Component)—This component
merges the incoming data from the two JDBC components. Its output constitutes
the overall process output.

NOTE: If you are familiar with the Composer Tutorial, the above components
(except for Acceptinquiry, which is specific to this process) are the same ones that
are used in the Composer Tutorial.

Process-Building Basics

72

Until you have gained familiarity with the Process Designer, we recommend that
you construct your first process mode s following the steps shown bel ow.

> To create a Process Model:
1 Create the new, blank process graph.

2 Optionally, create any Service Provider or Service Provider Type resources
you may need.

3 Createand position al activity icons.
Connect the activities with links.

N

5 Create the message mappings between activities.

Process Manager User’s Guide

6 Specify any link conditions that might apply at various points in the process.
7 Specify any exit conditions that might apply.

8 Specify any join conditions that might apply.
9

Set any other attributes (Timeout/Retry values, Map Policy, etc.) that might
apply to any activity in the process model.

10 Build, test, and debug all individual activity implementations (that is, the
underlying Composer Components, Web Services, or Subprocesses that
constitute the executables for the activities), if you have not already done so.

11 Finally, test the model.

Creating a New Process

If you have created Composer Components and Services before, you will find the
procedure for creating a new process quite familiar.
> To create a new process:

1 Launch Composer, if it is not already running.

2 Fromthe File menu, select New> xObject, then open the Process/Service
tab, as shown below and select Process.

New XObject x|

Choose X0bject type

|' Process/Service][Component |[Resource |[Template |

gy IMS Service .@\ Process
= Create a new JMS Service ¥ Create a new Process
X Web Service

Create a new \Web Service

[0k Cancel

A dialog appears, prompting you for a process name.

Creating and Testing Processes 73

Create a New Process Component x|

Please enter a name and, optionally, a description for the Process Component. The name will appear in the
Composer Detail Pane and in choice lists for XObjects in Composer. The name may not contain the
characters: 17" == | Names are case sensitive

Iame:

SampleProcess

Description:

Purpose
Input
Cutput:
Rermarks

| [Mext][Cancel]

3 Enter aName for the process. Optionally enter any additional descriptive
info that you want to associate with this process.

4 :Click Next. A new dialog appears.

Create a New Process Component xl

Specify one ar mare XML Templates to help design Input to this Component orWeb Service and only ane to
design Output. The sample XML Docurments in each Template are design time aids to help vou build Action
Models for the component. The samples are not actually used at runtime after deployment to your application
senver. The Identifier is fixed and represents the name used ta refer to the XML Document during component
execution. Selecting System {ANY} allows you to use an empty template {.e. accept any document as Input).

Input Message
Part | Template Category | Template Mame
Input [tsystem; [+ [ty

Il
&

Ltput Message

Part | Template Category | Template Name |
utput | System) [+ tanevy [~
l Back H Finish][Cancel]

5 Asanaid to the design-time testing of your process, add whatever XML
Templates you would like to use for process inputs and output. (These
documents will not actually be used after deployment of the processto a
server. They are design-time aids only.)

NOTE: XML Templates are used by almost every component type in

Composer. If you are not familiar with the creation and use of templates,
consult the chapter on XML Templates in the Composer User’s Guide.

74 Process Manager User’s Guide

Usually, the template(s) you would specify here would be identical to the
ones used by the start activity of your process (assuming that the start
activity isa Composer component). In this case, you want atemplate, or
templates, that are capable of providing sample input data to the process.

6 Click Finish. The Process Designer window opens, with an empty canvas.
See below.

W exteNd Composer: ProcessSubmitApprove [Process: SubmitApprovework]

File Edit View Process Animate Layout Tools Window Help
GE@8T0X8 A g-~ O-fm -
B9 Brdcess)

g) Senice .

o @D JmS Service \

L B0) Web Senice Click on the Process
o Component xObject Category here

m 3270 Logon
. [E) 3270 Terminal
.. M 5250 Logon
. [) 5250 Terminal
- %j clcerPC [—
- ¢ EDI
0 HTML
29 JoBeC
T Jms

LR Telnet Logon |
4
. [) Telnet Terminal

s

Available Processes are
shown here

WEF VB Man |2 Input Data

K
Mame / |

MyMewProcess

II>|57I;|L

ProcuctinguiryProcess
=) Output Data

RecursiveFanCut

[l

ATast1

Project

About Service Provider Resources

A Service Provider isthe party responsible for performing aparticular activity
within abusiness process. Composer allowsyou to identify Servicer Providersfor
use with your process.

NOTE: You must have WSDL resources and Service Provider Types (see below)
in place before creating new Service Provider Type Resources.
> To identify a new Service Provider:

1 From Composer’s File menu, select New, then xObj ect. From the Resour ce
tab, select Service Provider.

. or

Creating and Testing Processes 75

76

Right-click on the Service Provider Resource icon in the Category pane,

and choose New.

2 Provide aname and, optionally, a description to identify the Service

Provider.

3 Click Finish to create the Service Provider and open it in the Editor pane.

¥ exteNd Composer: TutorialEnd [Service Provider: Samp o [B4
File Edit WView Tools Window Help BDO - &F x
D@8 %00 X db ome| Prea Novell
...... Java Server Page El [13 Sarm| eS\rcPro\rider] Provider
______ @ ML Schema Implementf Service Provider Types:
...... Iefne | Description |
------ f3 Service Provider Ty Adda
------ @ wsoL ~ Service
| < I I |I| Provider
[Maimne ” =
SampleSveFTovider perations | Authentication
| Operation | Mapped To Implementation
Feady
4 Click on Add to create a new Service Provider, which causes the Service
Provider Type Selector to appear.
Add/Remove Service Provider Type Implementatio X|
Implemented Service Provider Types: Available Service Provider Types:
My SveProvider Type
[ok cance

5 Usetheright and left arrows to select or deselect the appropriate Service
Provider Types and click on OK when your selection is complete.

Process Manager User’s Guide

6 Thiswill return you to the Editor pane, where the Service Provider Typewill
now appear, and the Name and Operations fields of the Operations tab will

be completed.

¥ exteNd Composer: TutorialEnd [Service Provi o]]
File Edit View Tools Window Help HO - & x
D@8 00X/ g o= Novell

13 SampleSveProvider

Implements Service Provider Types:

Mame | Description
ySvcProviderType I

Operations || Authentication

Operation Mapped To Implementation
1 ProductinguiryS0OAPOperation

2 Productinguiry

Feady

7 Click on Mapped to Implementation and select the appropriate
implementation. Choices include: WSDL, Component and Process. The
dialog will differ depending on your choice. Below is an example of the
dialog when WSDL has been chosen as the implementation method.

Creating and Testing Processes 77

Mapped To Implementation x|

Operation: ProductinguirySOAPOperation

Type: Send

Implemented Via: IWSDL |Z|
WSDL | Endpoint | | Authentication |

WSDL Resource:

|- setect wsnL - [~

Service Mame:

[I~

Service Port or Binding:

[|~

Operation:

| -

Endpoint Location:

| B -
ok][cancet]

8 Inall cases, you will need to providefill in the Endpoint information:

apped To Implementation x|

Operation: ProductinguirySOAPOperation

Type: Send
Implemented Via: bNSDL |+ |
WSDLI Endpaint Authentication

Property I Value
Timeout e .
Retry Count &
Retry Interval &
HTTF Params Edit...

ok cancel
+ Specify aTimeout Valueor use the X Path Expression Builder to identify
one.
+ Specify aRetry Count.
+ Specify aRetry Interval.

+ ldentify your HTTP Header Params by clicking on Edit.

78 Process Manager User’s Guide

9 If theimplementation method is WSDL, the Authentication Tab must also
befilled in.

Mapped To Implementation |

Operation: Productinguiry
Type: Receive
Implemented Via: 'WSDL |v |

['wsbL][Endpoint || [Authentication |

Connection I__ Maone —

User ID I

Password I

Client Certificate | | |

Client Private Key | | |

Private Key Password I

Connection Timeout(sec) I

+ Select either an Endpoint-Defined or Service-Provider-Defined
Connection.

+ FillinaUserid and Password as appropriate.

+ ldentify aClient Certificate, Client Private Key and Private Key
Passwor d as appropriate.

+ Typeinavalu, in seconds, to be used for the Connection Timeout.

10 Click OK when you have finished sel ecting the appropriate choices for each
field to return to the editor pane.

11 Select File>Save, or click the Save button to save your Service Provider.

About Service Provider Type Resources

Service Providers can be classified into Types. Each Service Provider Type
describesitsinterface(s) using WSDL. According to the WSFL specification
(http://www-106.ibm.com/devel oper wor ks/webser viceslibrary/ws-ref4/),
“Service providers must properly implement the appropriate Web service
interface in order to be classified as the appropriate type of service provider to
handle a particular activity in the business process.”

WSFL requires the process designer to explicitly specify the roles as part of the
process implementation. Composer allows you to do this by creating Service
Provider Type Resources.

Creating and Testing Processes 79

The serviceProviderType element identifies each type of role with the context of a
given business process model and the specific Web service interfaces (in theform
of WSDL-defined portTypes) that must be implemented by a Web service
provider in order to fulfill that role.

NOTE: You must have WSDL resources in place to create new Service Provider
Type Resources.

> To create a new Service Provider type:

1 From Composer’s Filemenu, select New, then xObject. From the Resource
tab, select Service Provider Type.

. or

Right-click on the Service Provider Type Resource icon in the Category
pane, and choose New.

2 Thiswill cause the Create aNew Service Provider Type dialog to appear.

Create a New Service Provider Type Resource |

Enter a name and, optionally, a description far the Service Provider Type Resource. The name will
appearin the Composer Detail Pane and in choice lists for xObjects in Composer. The name may
not contain the characters:\/: % <= .| Names are case insensitive {i.e. MyObjectihame is the same
as myabjectname)

Mame:

SampleSucProvider

Description:

- Enter Service Provider Type Description here --

| |[Finish][Cancel]

3 Click on Finish to add the new Service Provider Typeto thelist and to open
it in the Editor panel.

> To add Service Provider Types in the Editor:

1 Click on Add to create a new Service Provider Type.

80 Process Manager User’s Guide

Ip
X | & = o, |

EHEO - &8 x
Navell

|f & wydPerovider] Types

WSO Resource Port Type Operation

Operstion Type

ProcuctinduiryS0AP * *

Send

ProcuctinduiryS0OAP_RPC ProductinguiryS0AP_RP... |Productinguiryt I=1ns:...|;|

Receive

Add
Provider
Types

Select your WSDL Resour ce from the dropdown list.
Select the Port Type.
Select the Oper ation to perform.

Select the Operation Type (i.e., Send, Receive).

N o a0 b~ WDN

Select File>Save, or click the Save button.

Creating Activities

Evenif your activity implementations (Composer Components, Subprocesses,

Repeat the previous steps until you' ve added all your data.

etc.) have not yet been built, you can begin laying down activity iconsat any time.
For this example, we will assume that the activities consist of prebuilt Composer

Components.

> To create an Activity:

1 Choose the appropriate Activity Tool type from the toolbar. To see aflyout
icon list, click the small triangle next to the current activity tool:

af |
g} Composer Component
@ Subprocess
;\“E]) Synchronize Subprocesses
5 web Service Receive
'9 Weh Service Send

Creating and Testing

Processes

81

82

2 Click onthe canvas. A new activity appears.

NOTE: To reposition the activity icon on the canvas, first choose the
Pointer Tool, then click and drag the activity icon. You can control snap-to-
grid behavior by using the Grid submenu under Composer’s View menu.

Repeat the preceding steps as necessary to create additional activities for the
process model.

» To associate an implementation with an Activity:

1 Select the activity by single-clicking on itsicon.

2 Under Composer’s View menu, choose Object Propertiesin order to bring

3

4

the Object Properties panel into view. See graphic below.

View Process Animate Layout Tools Window Help
v lMavigator Tabs CEriShift+h
v Output Tabs CriShift+0
v Document Tabs CtriShift+D

Filter xObjects 3

“ML Documents ¥ Object Pre 1'
Window Layout... arr——

- = [Activity | Messages|[~ Ul |

e Property “Walue

Show Grid |v
Grid Style lActivity Mame OutOfStockReply

Snap to Grid Component Type 3270 Logan

Overview Window Component Mame

v Object Properties

v Enable Docking

Select the Activity tab (or Subprocesstab, etc., as applicable, depending on
the type of activity) of the Object Properties panel.

Select the appropriate Activity Type (Composer Component, Subprocess,
etc.) from the pulldown menu provided, if the type that it showing is not
what you expected.

NOTE: For purposes of this discussion, we will assume that the activity
implementation is a Composer Component.

Next to Component Type, select the desired type of component (JDBC,
XML Map, or whatever applies).

Process Manager User’s Guide

6

Next to Component Name, use the pulldown menu to select among the
already built components in the current project that match the Component
Type specified in the previous step. (If your current Composer project has
four XML Map Components and you have selected XML Map asthe
Component Type in Step 4, you will see the names of your four XML Map
Componentsin the pulldown menu.)

» To rename an Activity:

1

Select (click on) the activity with the Pointer Tool. Resize-handles (small
blue squares) will appear around the activity icon, indicating that the icon
has focus.

Click directly on the activity’s name. A text-entry field will appear, with the
activity name highlighted:

Type the new name for the activity.
Click off to the side to deselect (remove focus from) the activity.

NOTE: Activities carry their own names, separate from their underlying
implementations.

Creating Links

Once your activities have been placed on the canvas, you will want to connect
them viacontrol links. Asexplained in Chapter 1, control links control the flow of
execution in a process. We will discuss data flow further below in the section on

Message Mapping.

» To create a Link:

1

Select the Link Tool from the Process Designer toolbar.

r} - E - e:e\
Link Tool Link cursor

Click on an activity. Doing so will designate the activity asthe source for the
link.

Creating and Testing Processes 83

3 Without letting up on the mouse button, drag the cursor from the source
activity to any activity that you want to be the target activity. Asyou drag
around the canvas, the link arrow will “rubber-band” out asit tracks the

mouse.

4 With the cursor directly over the target activity, release the mouse button.
Thelink will change color and redraw immediately to show the connection
between the two activities' bounding boxes.

Click on source activity
using the Link Tool

Drag mouse toward
a target activity

0 <
Activity1
h
Activity2

Release mouse when arrow head
is directly over target activity

Link Transition Logic

Becauselink conditions are specified in X Path and therefore require knowledge of
the source activity’s output message structure, it is usually best not to specify link
conditions until after all data mappings have been specified. (See discussion
further below.) Nevertheless, if you already understand the data rel ationships
between source and target activities, you can specify alink condition at any time.

> To specify a Link Condition:

1 Select alink by clicking onit.

2 Bring the Object Properties panel into view if it isnot already visible.
(Toggle its visihility using the Object Properties command under
Composer’s View menu.)

¥ Object Properties E3
Linkl UI|

FProperty YWalue
Link Mame L2
Source Result Activity! Output -
Canditian countiOutputirm=3 ¥

3 SdecttheLink tabif it is not already selected.

84 Process Manager User’s Guide

4 Nextto Condition, type an XPath expression that will evaluate to a boolean
value.

NOTE: If you enter nothing, the runtime engine will assume that the value of
the link is true by default.

5 Closethe Object Properties panel if desired. Notice that the link’s onscreen
representati on has changed to include adiamond, indicating that X Path logic
has been associated with the link.

"
Activity

iy

10
Acfwity?
Links That Point the “Wrong Way”

If you attempt to draw alink connecting atarget activity to one of its upstream
sources (i.e., a backwards-facing link), you will get an error:

Link Error E

The new linkyou are trying to construct creates a loop.
The action is cancelled.

MOTE: To repeat Activities, yau can use Exit Conditions
or Subprocesses for groups of Activities.

Cyclic graphic patterns (reentrant loops) are not supported by Composer Process
Manager. See discussion in Chapter 2 for details (“Looping”, page 56).

Creating and Testing Processes 85

Message Mapping

The transfer of data from one activity to another occurs via data links. Unlike
control links, datalinks are not “drawable.” They have no visual symbology on a
process graph. Instead, data links are established via message maps. These maps
are ssimply XPath-to-X Path correlations between a source activity’s output and a
target activity’sinput. In other words, they are defined much the sasme way asMap
Actionsin an ordinary Composer XML Map Component.

Message Naming

Composer Process Manager uses a default naming scheme to label message
sources and targets. When you place the first activity on anew canvas, Process
Manager assigns adefault name of Activityl to the activity. (Subsequent activities
are named Activity2, Activity3, etc.) Accordingly, Process Manager assigns a
default name of Activityllnput to Activityl's input message and the name
ActivitylOutput to the activity’s output message. Even if you later change the
name of Activityl to CodeRedFireAlarm, the name of itsinput and output
messages do not change, unlessyou change them manually (see procedure bel ow).
They continue to have the default names of Activityllnput and ActivitylOutput.

DOMs are associated with messages, and DOM names (Input, Inputl, Temp,
Output, etc.) arereferenced off the message name. Fromthere, normal X Path rules
apply. For example:

Acti vi tylQut put/ Qut put / PRODUCTREQUEST/ SKU

means the X Path node / PRODUCTREQUEST/ SKU on the Output DOM of the
message named Activity1Output. You will see how this works in subsegquent
examples and screenshots.

How to Define Message Mappings

86

To send data from a source activity to atarget activity, you need to define at least
one message map.

NOTE: All message maps are defined at the target activity (the “receiver” of
incoming data), as described below.

» To define a Message Map:

1 Select (click on) an activity. Thisis the activity whose data source(s) you
will specify.

Process Manager User’s Guide

Bring the Object Properties panel into view if it isnot already visible.
(Toggleits visihility using the Object Properties command under
Composer’s View menu.)

Select the M essages tab. The tab have an appearance similar to this:

¥ Obiject Properties [|
Component Messages | UI|

Messages

Type Mame Message

input Activity2Input

output Activity2 Output

ault SysternF ault composerfault

ault TimeoutFault composerfault

Enter maps to "Activity2Input":

=F

Source Target

In the upper half of the panel, you will see Type, Name, and M essage
information, with the default Names showing for input, output, and fault
messages. You can enter anew Name for any message at thistimeif desired.

NOTE: Fault messages are discussed separately, later in this chapter.

In the lower half of the panel, you can define Source-to-Target message
mappings using X Path. Click the Plusicon to add a mapping. A dialog

appears.

Edit Map

Source ¥Path Expression:

|W0rkC\,rcI elnCut ;I frarm Activity: IWorkCycIe hd l

|O utput

Target XPath Expression:

|Processoutput |
[output g
Help Cancel

Using the pulldown menu immediately under Source XPath Expression,
select the message that you want to use as the data source for this mapping.
The prepopulated list will contain output message names from all available
(legal) data sources. (In other words, you can choose to map data from any
activity that can be reached by back-traversal of links. Thisincludesthe
Processinput message itself.)

Creating and Testing Processes 87

7 Inthe Source XPath Expression text field area, enter any desired XPath
statement to specify a source element, nodetree, whole DOM, etc., coming
from the activity shown in the “from Activity” pulldown menu. (This menu
will be greyed out if thereis only one incoming link to the current activity.
Onjoin targets, this menu will be prepopulated with the names of all
available incoming messages.)

NOTE: Itis a common case to specify “Output” (the source activity’s Output
DOM) as the sole incoming message part, as shown here.

8 (Optiona) If youwould like to generate XPath using Composer’s
Expression Builder, click the small “pencil and X” icon to the right of the
text field. Thiswill bring up the X Path Expression Builder window:

ﬁ Select Source Tree Node XPath
HPath Context: (Other Variables: FunctionsiMethods:
-S> Activity8Output <> PROJECT _+| | @-custom Scripts -
LS Output =< > Processinput [-Numeric
(I <> Process
B> Input -string(object)
: =-<> PRODUCTREQ -concat(string, string, str
------ xmins -starts-with{string, string
= 1| -contains(string, string)

----< > SystemFault
----< > TimeoutFault
-S> Bctivity7Input

: . -substring-after(string, sl »
-S> hetivity70utput JJL | 5

....'-f. > ActivityBinput

-char At{pos)
~substring-before(string,

....< > ActivityBOutput (Operators:
-S> pctivitydinput T | ®-Math
....'-f. > Activity10Output [-Relational
....< > Activitylinput _I_.I [+-Logical

4 | »

$ProcessinputinpuifPRODUCTREQUESTISKU

Help Validate OK Cancel

The upper panes of this editor window are prepopul ated with message trees,
XPath native script methods, etc., for your convenience in building X Path
expressions. Doubleclick any node in any tree to make the correct sub-
expression appear in the edit field. Click OK to go back to the Edit Map
dialog.

9 Inthe Target XPath Expression text field area, enter any desired XPath
statement to specify atarget to receive data from the input message.

NOTE: Itis a common case to specify “Input” (the target activity’s Input
DOM) as the target message part. This is equivalent to mapping Source data
to the Input DOM of the activity.

10 Click OK to dismissthe dialog.

88 Process Manager User’s Guide

* W Object Properties

Component Messages | |

') Messages
a . Type Marme Message
Activity2 input Activity2Input
: B - loutput Activity2 Cutput
On the graph, fault SysternFault composerfault
Activity2 is [faut TirmeoutFault cormposerfault
selected |

Enter maps to "Activity2 Input":
o o=
Activity1's Output DOM Source | Target

has been mapped to —> $Activity] OutpuYOUtaLt $ActivityZInputinput
Activity2's Input DOM |

The Source and Target mapping information that you just specified are now
visible in the Messages tab of the Object Properties window, as shown above. (A
summary view of theinfoisalso availablein arollover tooltip if you let the mouse
loiter over thesefields.)

Mappings of this sort continue throughout the chain of activities shown in the
process graph. You will need to perform this mapping procedure at least once for
every activity that receives data.

Data Mapping for Start and End Activities

To specify the input to your process's start activity (or activities), simply click on
the start activity, bring the Object Properties panel into view, and specify a
mapping from Process!nput to the start activity, using the procedure given above.

If your start activity is named Activity1, the resulting map specification might
look like:

Enter maps to "Activity! Input”;
(|
Source Target
FProcessinputinput FACtivity Inputiinput

To specify amapping from an end activity to ProcessOutput, click anywhere on
bare canvas, bring the Object Properties panel into view, and specify a mapping
from the end activity’s output message to the ProcessOutput message. The result
might look like:

Creating and Testing Processes 89

Enter maps to "ProcessOutput”:

Cp cm
Source Target
FActivityd Qutput FProcessOutput

Selecting a Process Input Template

Asmentioned earlier (in the discussion of how to create anew process), you can
specify an input template document for Processinput (for design-time testing
purposes) during theinitial creation of the process. If you did not specify any
XML Templates at that time, or you now want to use a different template, simply
go to the File menu and select the Properties... command. A dialog will appear.
Select the M essages tab within that dialog. There, you will be able to add or
remove templates as desired.

Applying Flow Logic at the Activity Level

90

Activity flow logic (join conditions and exit conditions) can be specified in the
Object Properties panel. These conditions are optional : By default, the runtime
engine will assume that an empty condition istrue.

> To specify an Exit Condition:
1 Select (click on) an activity.

2 Bring the Object Properties panel into view if it is not aready visible.
(Toggle its visihbility using the Object Properties command under
Composer’s View menu.)

3 Select the Activity tab (or Subprocess, etc., as applicable to the selected
activity).

4 Next to Exit Condition, enter an X Path expression. This condition must
evaluate to true or false at runtime. If it evaluates to false, the activity will
execute again using the original input data. (See discussion in Chapter 2.)
The activity will continue to reexecute until the exit condition istrue or a
timeout occurs.

Process Manager User’s Guide

& Object Properties El
ACTW“‘&" Messagesl UI|

Froperty Yalue
Activity Type Composer Component h
Activity Mame ImventoryLookup
Component Type JDBC i
Component Name TE:InventoryLookup -
Exit Condition contains(OUtputfSTATUS "0k E
Timeout w
Retry Count 74
Retry Interval 7
Map Policy Ly ;“

» To specify a Join Condition:

1 Select (click on) ajoin activity—that is, any activity that has more than one

2

incoming link.

Bring the Object Properties panel into view if it isnot already visible.
(Toggleits visihility using the Object Properties command under
Composer’s View menu.)

Select the Activity tab (or Subprocess, etc., as applicable to the selected

activity).

Next to Join Condition, enter ajoin expression based on the truth values of
incoming links. This condition must evaluate to true or false at runtime.
Optionally use the Expression Builder to build the join condition. Click the
blue icon at the right edge of the text field. The Expression Builder dialog

appears.
¥ Join Condition
Links: OperatorsiOther:
E---L_inkﬁ =-Operators
----- L3
E-Parens
~{ left paren
“-) right paren
L3 AMD L4
Help oK Cancel

Creating and Testing Processes

91

5 TheLinkstreein the upper left is prepopulated with the names of available
incoming links. Link-expression syntax helpers are in the upper right.
Doubleclick on any leaf node in any tree to build an expression in the text-
edit field below. Then dismiss the dialog.

Recall that ajoin activity cannot fire until the join condition istrue. In Deferred
Mode (default), ajoin condition is evaluated exactly once, when the truth values
of all incoming links are known. In Immediate M ode (which you can select on the
Object Properties panel), the join condition is evaluated as truth values become
known, and as soon asit istrue, the join activity fires regardless of whether all
source activities have finished executing.

NOTE: If, during a design session, you assign a join condition to an activity and
later remove one or more incoming links, the join logic may no longer function as
intended. Be sure to remember to update join conditions any time the input links to
a join have been removed or replaced.

Timeouts and Retries

92

Timeout, Retry Count, and Retry Interval parameters are supported by Process
Manager so asto allow for complex choreographies between partnersinvolving
timings and roundtrip interactions that are not addressed by simple
Request/Response and Solicit/Response scenarios.

NOTE: It's important to keep in mind that Retry Count and Retry Interval come
into play only when a Timeout value has been specified. Otherwise, Retry Count
and Retry Interval are ignored.

See the discussion of fault trapping further below for a more detailed explanation
of how and under what conditions timeout faults can occur.

» To specify Timeout and Retry Parameters

1 Click onan activity for which you wish to set Timeout and Retry
parameters.

2 Bring the Object Properties panel into view if it is not already visible.
(Toggle its visihility using the Object Properties command under
Composer’s View menu.)

Process Manager User’s Guide

ProductinguiryProcess

3

Acceptlnguiry
" L ¥ Object Properties
- d ABNVW' Messages' UI|
InventaryLookup Property Yalue

" " Activity Type Composer Component -

Activity Mame InventoryLookup
Component Type 0BG -
Component Mame |InventorsLookup -
Exit Condition trued b7y
Timeout 10, I
‘ﬂ Retry Count o W b7y
TimeoutHandlerForLookup [Ty (TEREL 0 P
Map Policy LAty -
|

Select the Activity tab.

Next to Timeout, enter avalue in days, minutes, or seconds (suffix values
‘d’,;’m’, or's, respectively). Example: To specify 7 days, enter “7d”.
NOTE: If you use a unit specifier, you must enclose the entire value in

guotation marks. If you enter a number without units (and without quotation
marks) it will be interpreted as seconds.

If you entered a Timeout value, optionally enter a number in the text field
next to Retry Count. Thisis the number of times the activity will be retried
after the first try times out. If you do not enter a number, zero retries will be
attempted.

In the text field next to Retry I nterval, enter a value representing the wait
time between retries (in seconds). The default is zero, meaning that as soon
as the activity times out, it will be retried with no wait. If the Retry Interval
is non-zero, Process Manager will wait the specified amount of time between
the timeout and the retry.

Creating and Testing Processes 93

Map Policy

Map Policy comesinto play when multiple data sources (incoming messages)
have parts that map to the same location in the target activity’s input message(s).
For example, consider a processin which Activityl and Activity2 havelinksto a
join activity, Activity3. If Output/ShipmentMode from Activity1Output mapsto
Activity3lnput/Input/ShipMia, and Output/Carrier from Activity20utput also
maps to Activity3lnput/Input/ShipVia, the potential existsfor a collision. The
result depends on whether you want to keep the last-arriving data (allowing
overwritesin time order, as they occur) or keep only the first-arriving data. To
specify this, you must set the Map Policy to LWW (Last Writer Wins) or FWW
(First Writer Wins), as appropriate.

NOTE: Recall that an activity does not have to be a join activity in order to receive
data from multiple upstream sources. Therefore, it's possible for map policies to
come into play even when there is only one incoming control link to a target activity.

LWW, FWW, and Map Order

The choicesfor Map Policy are LWW (Last Writer Wins) or FWW (First Writer
Wins), or Map Order. The meanings of thefirst two choices are self-evident. Map
Order requires further explanation.

Map Order means that regardless of the timestamp on incoming messages, X Path-
to-XPath mappings will occur in the order in which the mappings are specified in
the Messages tab of the activity’s property sheet, going top to bottom.
Timestamps, in other words, are ignored. Messages are cached when they arrive,
and then—when mapping takes place—every message part is mapped according
to the literal order in which you have specified the mappings.

You would typically usethisoption asaway of dealing with overwriteswhenyou
care more about where messages are coming from than you do about their actual
arrival order. For example, if several activitiesfeed into ajoin, and one particular
source activity should always have write-preference over other feeder activities,
then you could use Map Order to give the preferred source a higher precedence
(for overwrite) than the others.

> To set a Map Policy:

1 Click on an activity for which you wish to set aMap Policy.

2 Bring the Object Properties panel into view if it is not aready visible.
(Toggleits visibility using the Object Properties command under
Composer’s View menu.)

3 Select the Activity tab.

94 Process Manager User’s Guide

4 Usethe pulldown menu next to Map Poalicy to specify Last Writer Wins
(LWW), First Writer Wins (FWW), or Map Order.

Exit Condition iy
Timeaut 7y
Retry Count W
Retry Interval W
nap Palicy Map Order -
LWy
Fhthy

Fault Messages and Fault Handling

Faults generated by Process Manager are of two general kinds. System and
Timeout. Both are generated as special messages. The fault messages take the
place of the Activity Output message for the activity that raised the fault. In other
words, an activity implementation that faults out is not considered to produce
Output. An activity will therefore either produce an Output message or Fault
message, but not both.

System Faults
The runtime engine raises a System fault under the following circumstances:

« An activity implementation generates an unhandled exception
+ A subprocess activity returns afault message

+ Theruntime engine encounters a message or message type that it doesn’t
know how to handle

+ A Timeout fault occurred and was not handled by an activity designed for
that purpose. (In this case, two faults are actually generated: one Timeout
and one System.)

When a System fault occurs, the process instance produces a message called
_SystemFault, with apart namecalled (also) _SystemFault. The DOM view of the
message looks like:

Creating and Testing Processes 95

I=) _SystemFault Data
- > _SystemFault
<> Fault
<> MainCaode

_SystemFaultiFaultiessage
-1 |Data: 1 APROCESS016000:Eror occurred executing component:

L2 ActivityMame |InventaryLookup

Every System fault contains Mai nCode, SubCode, Message, ProcesslD,
and Act i vi t yName elements. The content of each elementisvisibleinarollover
tooltip as shown above for the Message element. Notice that the

Faul t / Message element contains a Nested Message. The value of this Nested
Message iswhatever custom string value you put in any Log or Raise Error action
(assuming the implementation is a Composer service or component).

Regardlessof the cause, afault (of any kind) will result intermination of arunning
process, unlessthe fault ishandled by an activity designed for that purpose. Inthis
respect, faultsare similar to exceptions. If no handler exists, thefault “ bubblesup”
to the process engine and the process simply allows the process instance to exit
with afault message. Any activity instances in existence at the time of the
unhandled fault are aborted.

Fault Codes

Mai nCode values currently implemented include:

SYSTEM_FAULT_MAINCODE -1

TIMEOUT_FAULT_MAINCODE -2

SubCode values currently implemented include:

COMPONENT_FAULT_SUBCODE 1

UNHANDLED_MESSAGE_SUBCODE 2

Timeout Faults

The runtime engine enforces the following behavior when a Timeout val ue exists
on an activity:

+ When the activity islaunched, atimer begins.

+ If theactivity completes with an exit value of true prior to the timeout
period, control passesto outgoing link(s).

96 Process Manager User’s Guide

+ If theactivity completes with an exit value of false prior to the timeout
period, the activity isreexecuted immediately (which isthe normal action for
all activities that finish with afalse exit condition).

+ If theactivity hasn't finished running when the timeout is reached, the
runtime engine halts the activity and consults the Retry Count parameter. |f
the Retry Count is non-zero, the Retry Interval parameter (if applicable) is
consulted, and the runtime engine waits for the time specified in Retry
Interval; then it resets the Timeout clock and reexecutes the activity using
the original data mappings. This execute-wait-retry cycle is repeated until
the Retry Count has been reached, at which point the engine raises a Timeout
fault.

If aTimeout fault isnot handled by an activity, it will cause the runtime engineto
terminate the process.

The Timeout fault message has this appearance, in tree view:

= _TimeoutFault Data
B> Timeoutf aul
5-€ > Fault
c:- MainCode -2

- > Message
L > FauliTime Maon Feb 11 16:31:05 EST 20
. > Reason Activity reached allowable tim
> Processid 15
'C = ActivityMarme [InventoryLookup
": = StarfTime Mon Feb 11 16:31:05 EST 20
L > TimeoutPeriod|s

The message elements are self-explanatory. The Mai nCode valueis-2 for
Timeout (as explained above).

Fault Handling

Because faults can be handled by custom-designed activities (which in turn can be
implemented as Web Services, Composer Components, etc.), fault logic can be as
sophisticated asit needs to be. You can designate one fault handler activity for
each activity that needs one (its implementation could even consist of the same
Composer component in each case); or you could have asingle fault-handling
activity that handles all faults for the entire process. An example of the latter is
shown in the graph below. Every activity hasalink to

MyAll PurposeFaultHandler, which handles faults for the entire process.

Creating and Testing Processes 97

98

G

Acceptlnquiry

G v
& @

ProductLookup InventoryLookup

MergeProductAndInventory

A % A

ph
2
MyAllPurposeFaultHandler

Thetriangle shape on each link signifiiesthat thelink has been designed to handle
fault flow. The procedure below tells how to create the necessary control and data
linksto handle faults.

> To attach a fault handler to an activity:

1 Create the implementation of the fault handler activity, if you have not

aready done so. (Since this activity will generally belocal to the app server,
it usually makes sense to implement it as a Composer Component.)

Place the activity icon for the fault handler on the process graph.

Draw alink from the appropriate source activity (the activity that generates
the fault) to the fault-handler activity.

Click on thelink you just drew, to select it.
Bring the Object Properties panel into view, if it is not already visible.

Click the Link tab. You should now be looking at something similar to the
following:

Process Manager User’s Guide

Gh Object Properties

JE.S
Linkl Ull
Property Yalue
Link Mamea L4
Source Result [_TimeoutFault i
Candition W

7 Next to Source Result, use the pulldown menu to select the appropriate fault
type. Inthiscase, _Ti meout Faul t was chosen.

NOTE: On the graph, the link will acquire a triangle icon at this point.

8 If aspecia condition appliesto thislink, enter an appropriate X Path
expression.

9 Saveyour work.

> To create data mappings into a fault handler:

Click on the fault-handler activity to select it.

2 Bring the Object Properties panel into view.
3 Click the Messagestab.
4 Inthe bottom portion of the tab, click the Plus-sign icon to add a message.

The following dialog appears.
Edit Map

Source ¥Path Expression:

|_TimeoutFauIt LI fram Activity: [Productloaokup 'l
| Productlookup
Acceptinguiry
Target XPath Expression: InventaryLoakup
[TimeOutHandlerForLoop |
| 4
Help Delete oK Cancel

5 Sdect SystemFault or TimeoutFault, as appropriate, from the top left
pulldown menu, under Source XPath Expression.

6 Inthe pulldown menu next to from Activity, select the source activity for
this message.

Creating and Testing Processes 99

NOTE: All possible source activities will be listed—that is, any upstream
activity that is reachable by simple one-way back-traversal of links. When you
select one of these activities, you are creating a data link from that activity to
the fault handler. The source activity you choose from this list does not have
to be directly connected to the target activity by a control link, but in most
cases, you will want such a flow-control connection, since a data link, by
itself, isn’t enough to fire a fault handler. Bottom line: If you data-map a fault
message to an activity input, be sure, also, to draw a control link from the
source activity to the fault activity so that the fault activity will actually fire.

7 Dismissthedialog by clicking OK.

Repeat Steps 4 through 7 for each activity that will feed into this fault
handler.

Animation and Testing

100

A unique and powerful feature of the Process Manager isthat it allows you to run
and debug processes (step into or over activities, etc.) in the design-time
environment. And because Process Designer runswithin Composer itself, you can
step directly into any Composer Components that make up the implementation(s)
of activities. Once inside the component, you can step through the action model
just asyou would during acomponent design session, watch DOMschangein real
time, set breakpoints, etc. You can debug activities at the same time that you test
and debug your process.

You can either animate or execute a process via the special toolbar buttons
provided for this purpose;

Execute —>» & ® [} «—— Stop Animation

!

Animate

The difference between Execute and Animate is that Execute runs the process
from start to finish without interruption, whereas Animate allows you to step
through the process.

Process Designer gives valuable visual feedback during animation. Whether you
Execute or Animate a process, you can see individual control links highlight
(becomethicker) as control passesfrom one highlighted activity to the next, and if
alink cannot befollowed (becauseits condition isfalse), that link’s representation
changes from a solid line to adashed line. Thereforeit’s easy to see, at aglance,
which links are being followed and which activities are executing.

Process Manager User’s Guide

» To animate a process:

1

(Optional) Clear the output pane (where system messages appear) at the
bottom of the Composer main window. To do this, click inside the pane, type
Control-A (Select All), and hit Backspace.

If you have not already assigned a Pr ocessl nput datatemplate to the
process for test purposes, select Properties from the File menu, then click
the M essages tab. Otherwise, skip to Step 6 below.

Properties
Header Info. Messages |

InputiOutput |

Input Message

Part Template Category Template Name
Input SubmitApprove][wioRKDETAIL =] il
Delete |

Output Message

Output Jsubmitapprove _|[WORKDETAL |

Help oK Cancel

Choose and/or Add an Input Message by selecting from available XML
Templates using the pulldown menus in the upper half of the dialog.
Likewise, choose an Output template if needed.

Dismiss the Properties dialog by clicking OK.
Create data mappings between Processinput and your start activity. (The

procedure for this was discussed previously. See “ Data Mapping for Start
and End Activities’ earlier in this chapter.)

Click the Animate button in the Process Designer toolbar. The start activity
will highlight. (See below.) Also notice that a new toolbar appears at the
bottom of the graph window. The icons, from left to right, are Animate
(dimmed when active), Stop, Sep Into, Sep Over, Run to Breakpoint, Set
Breakpoint, and Pause:

Creating and Testing Processes 101

102

Step Over
Set Breakpoint

Start Animation
Ny d/
aE@EE-2@ Il

/ N

Stop Animation Pause
Step Into

Run to Breakpoint (or End)

Start activity gains focus when
animation is begun.

@ g

Inventoryl ookup ProductLookup

MergeProductAndinventory
|
B EXEXX

7 If you wish to step into the activity implementation, click the Sep Into
button. Thiswill open the activity’s underlying component in the appropriate
component editor environment within Composer. You can then step through
the component’s action list as you normally would in Composer. After you
step through the last action in the action list, the process graph window will

reappear.

Process Manager User’s Guide

8 If youwish to step over the currently highlighted activity, click the Sep
Over button. The appropriate link(s) will be followed and links will change
appearance either to a double-thickness solid line (for true links) or a dotted
line (for false links). Execution will stop at the target activity (or activities).
You can then use Step Over or Step Into again, and so on.

9 Torunto the end of the process, click the Run to End icon. When the
process isfinished running, a small alert dialog will appear, explaining
whether the process finished normally or errored out in some manner.

Notethat as you step through the chain of control, variouslinkswill highlight and
change appearance to reflect the actual path followed during execution. For
exampl e, inthe graph shown bel ow, animation has proceeded past the start activity
to the next activity in theflow. One of thetwo outgoing linksfrom the start activity
has been followed (namely, the dark, solid link on the |eft); the other link (with a
dotted line appearance; right) was not followed, because its transition condition
wasfalse.

Dotted line indicates that

/ this link was not traversed

This link was followed g
Accepilnquiry

“
~

Animation has proceeded

to this point < .

b Y

~
Green “marching arrows” L'

mean that this activity’s
| implementation is Q
InventoryLookup currently executing ProductLookup
,
I"
'l
i"
Not yet traveled — ‘,’T'his link has been set to false
automatically by the runtime
ﬂ engine (dead-path elimination)

MergeProductAndinventory

Creating and Testing Processes 103

Notice that because the link from Acceptinquiry to ProductLookup was not
followed, the link from ProductLookup to MergeProductAndinventory is also
shown asadotted line (even though execution has not proceeded to this point yet),
through dead path elimination. The process engine knows that if the link from
Acceptinquiry to ProductLookup isfalse, thereisno way the link from
ProductLookup to MergeProductAndl nventory can ever be followed—hence this
downstream link can be (and in fact must be) set to false aswell. The reason this
must occur isthat the join condition at MergeProductAndlnventory will never
evaluateif it iswaiting on the truth value of afeeder link that will never evaluate.
(Seethediscussion of “Dead Links and Synchronization Failure”, Chapter 1.)

Aids to Debugging

Process Designer provides many ways to monitor the step-by-step execution of a
process. For example, valuable realtime feedback is given (in plain text form) in
the Log pane of the Composer window, and you can look at any activity’sinput or
output DOMs (or even the Processinput and ProcessOutput) along with DOM
views of fault messages, to see exactly what data values were produced at various
pointsin the flow.

Watching System Messages at Animation Time

104

Any time you execute or animate a process in Process Designer, system messages
will appear in the Log pane at the bottom of the main Composer window. See
below.

[o— —

10(2): The process has started (ProductinguinProcess)
10: executing data link: Processinputseceptinguiry (Processinputacceptinguirg
10{8): The activity has started (Acceptinguin

++++++ Thu Feb 14 11:20014 EST EDDP USER LOG FROM Acceptinguiry

activityReturn{1 0, Acceptinguing
10: Evaluating condition far link L2 (L2}
10: fallowing contral link: L2 {L2)
10: Evaluating condition far link L1 (L1}
10: fallowing contral link: L1 §L13
10{73: The activity has completed {Acceptinguing
10: executing data link; AcceptinguingdnventaryLookup (AcceptinguirdnventoryLookup
10{8Y: The activity has started (InventoryLoakup)
10: executing data link: AcceptinguiryProductLookup (AcceptinquiryProductlookup)
10(6): The activity has started (Productl ookue)
Log

Process Manager User’s Guide

Theinformation in this paneis quite detailed. Every activity startup, link
evaluation, join evaluation, activity completion, activity error—every event—is
logged so that you can go back through the chain of events and see exactly what
executed and when, and what failed and why.

NOTE: Two numbers (one of them in parentheses) precede every message. The
first number is the ProcessID for the current instance. The second number, in
parens, is the event code for the event in question (6 for activity start, 7 for activity
complete, and so on).

If afault occurs, you can easily identify the offending activity; and you will also
see the compl ete fault message (in XML form):

12({8): The activity has started {InventoryLookup)
12 executing data link: AcceptinguiryProductlookup (AcceptinguirgProductLookup)
12(6): The activity has started (Productlookup)
com.sssw.h2b.ee process. . GHNVFrocessException: Errar occurred executing component;;
---=nested Error after call to myFunction{ in InventoryLookup
12: Error during activity execution: Error occurred executing component: {(InventoryLookup)
activityReturn(1 2, InventoryLookup)
1207): The activity has completed {InventoryLookup)
12(4): The process has completed (ProductinguinProcess)
12 Process "ProductinguingProcess" ended with fault message:
=?xmlversion="1.0" encoding="UTF-8"7=
=_SystemFault=
=Fault=
=MainCode=-1</MainCode=
=8uhCode=1=i5ubCode=
=Message=1 tPROCESS016000:Error occurred executing component:
2 Mested Message: n002401:Error after call to myFunctiond in InventoryLookup=/Message=
=Processld=12</Processld=
=ActivityMame=InventoryLookup=iActivityName=
=iFault=
=/_SysterFaults]
(ProductinguiryProcess)

If an activity wasimplemented asa Composer Component or Subprocess, you can
doubleclick on the activity in question (right on the process graph), and the
component will open in the appropriate component editor. You can then make
changes to the component, save it, and return to the Process Designer for another
animation session.

NOTE: When you have made changes to an action model, be sure to Save the
component (save the changes) before reexecuting the process. Otherwise you will
get the same error(s) again.

Creating and Testing Processes 105

Inspecting Messages

Any message produced at any point in a process can be displayed in DOM view,
text view, or stylized view in its own pane. Thisincludes Processl nput,
ProcessOutput, _TimeoutFault, and _SystemFault messages aswell asall activity
input and output messages.

» To make a message visible (or to hide an existing one):

1 From the main menu bar, select View > XML Documents > Show/Hide:

Showy Hide
£h | _TimeoutFault Input
| processOutput 4 PROJECT
Processinput Activity1 Output
Activity2input
Qutput
Activity! Input
Activity3input

Activityd Output
Activity 20utput
Activity 30utput

Help Reset IR Cancel

2 Inthedialog that appears, use the left-right arrow buttons to move
messages to the Hide or Show columns as necessary.

NOTE: The prepopulated list on the right will contain the names of only
those messages that were actually produced or used in the execution of the
process. If a process terminates early, it is possible that some activities’
messages won't be listed.

3 (Optional) Use the up-down arrow buttons to reorder the Show items as
desired.

4 Dismissthediaog by clicking OK.

5 The messagesthat you designated under Show will now appear in their own
data panes. See below.

106 Process Manager User’s Guide

i=) _TimeoutFault Data

v ProcessOutput

<e¥ml wersion="1.0" encoding="UTF-8"2> 1=
“MESSAGE
“Dutput:=
. =BES:FRODUCTRESPOHSE xmlns:BFES="http: /|
Messa_ge n <RES: SKI=-<fRES : SKI-
Text View

<RES : CATEGORY = fRES : CATEGORY >

<FES : HAME:</RES : HAME ! As Tree
<RES :DESCRTPTION:</RES :DESCRT | SeleCiall
4 | walidate #s Stylized

D Processinput Data AL Line Mumbers
B> MESSAGE Eopy
Message in B-<>Info -
DOM View T A Y
H H = i [Ty Lok A4 A4 -S0-4T
| ﬁ Activity2Input [ata Find Mest
T Activibe? Ot 7 Replace...

Note that you can obtain different views of any DOM by doing a right-
mouse-click on the DOM in question, then choosing View > As Text (or
Tree, or Stylized) from the context menu, as shown above.

Creating and Testing Processes 107

108 Process Manager User’s Guide

The Process Designer User Interface

This chapter describes the user interface functionality of Composer Process
Designer, which is the design-time environment in which you will create your
process models.

Main Features

The Process Designer isavisual editing environment for creating process models
represented by directed-edge graphs. In this environment, you can quickly create
and arrange activities (represented by icons), draw links between activities, and
designate data mappings, link conditions, etc., between and among activities. The
point-and-click nature of the drawing environment allows for rapid creation of
flow graphs.

An important feature of Process Designer isthat any process can berunin
animation mode at design time, so that process models can be designed, tested,
and debugged in asingle session. In animation mode, you can step into or over
activities, set breakpoints, watch data transformations as they occur, seelog
messages, observe the behavior of splitsand joins, etc., al inreal time. You can
also drill down on activity implementations, make changes to action modelsin
components, edit message maps or documents, modify link or join logic, and so
forth, interactively, without leaving the session. This capability greatly speeds
development.

The Process Designer Window
The Process Designer runs inside Composer (along with other component
editors), so the overall environment should look familiar to any Composer user.
(See graphic, below.)

When Process Designer is the front editor, three new panes are visible:

The Process Designer User Interface 109

Toolbar

110

process model graph. Thisisthe largest pane.

shapes).

The Overview Pane, which contains a“bombsight view” of the main
canvas. By holding the mouse down and dragging the blue rectangle within

The Process Model Pane (also called the canvas), where you draw the

The Object Properties Pane, in which you can specify property values for
various elements of the process model (e.g., activities, links, text labels, and

this mini-window, you can pan across the main canvas, setting the visua
focus to a particular region instantly, without using scrollbars.

¥ exteNd Composer: ProcessSubmitApprove [Process: WorkCycle]
File Edit Wiew Process Animate Layout Tools Window Help

@800 X8 TA dg-~ 0-fs 5SS HE Novell
T Process] 21 & overview window x| =

o € Senvice
o OB JWS ervice
) Web Senice
= &# Component
B 3270 Logon
- [@) 3270 Terminal
L 5250 Logan
[E) 5250 Terminal
g cicspee
- [EDI
@ HmiL
39 Joac
T s
L) TeinetLogon
2 Telnet Termin:
M ML Wan _PJ:I

T I—
Name I

Copy (1) of ReceiveRFE

ProcessOrder
ReceveCredtRequest
Receiverfe

Project | Registies

& Object Properties |
MIMNI massages | Ui

Propeny | Valua
|Activity Type Subprocess
[actiity Narme a1
Process Name SubmitApprove...
Create Operation |Call g
Exit Condition | ®
Timeout by
Retry Count #|
Retry Interval #]
Map Policy [Wap order =1

Ll

SendUnavailableNotice

9
ReceiveOrder
START ACTVITY

Link2

me

ProcessOnder Dn Smith 1

DUOFSto

% Ing
Verifyinventory

v=rmusm=rsmmcr=un

SendNuCrEM“dlg

|

‘ |

_Loo [Find]

|Ready

Composer Process Designer adds several new tools to the Composer toolbar, as

shown below.

Process Manager User’s Guide

r

Drag

Magnification

l_ Activity l

Reset Canvas
Appearance

M 9QAD-~ O-Jox FSSHE<

Linl(]

T

. Execute
Selection
Tool Shape Animate
Text Box Stop
Animation
Tool Icon Usage

Selection Tool

This pointer allows you to select
items by clicking on them. Once
selected, an item can be dragged to
any spot on the canvas. (You can
shift-click to select multiple elements
individually.)

Drag

The drag tool allows you to pull the
entire canvas around, so that you can
“pan across” the canvas and bring
any region of interest into view.

Text Box

Click on the canvas with this tool to
create a text label inside a rectangle.

Activity

This tool allows you to place new
activity elements on the canvas.

Link

This tool lets you connect any two
activities with an arrow, representing
a control-flow link.

Shape

You can place resizable filled
rectangles or ovals on the canvas
with this tool.

The Process Designer User Interface 111

Tool Icon Usage

Magnification —————— - A dropdown menu allows you to
100% ¥ choose from several preset viewing
magnifications. You can also enter a
custom magnification factor into the
text field next to the dropdown.

Execute, These buttons allow you to start or
Animate, Stop c q stop a process (for testing purposes)
Animation, and within the design-time environment.
Reset The Reset button (lower left) is

@ Reset greyed out until an animation has

finished running; pressing it resets
the graphic appearance of the flow
diagram.

Graph Elements

Graph elementsinclude activities, links, text boxes, and shapes (rect and oval).
The creation tools for these elements can be accessed via the Process menu on the
main Composer menubar or viatool icons on the main toolbar. They operatein
point-and-click fashion.

NOTE: The appearance characteristics (colors, borders, text justification, etc.) for
each of the different graph-element types discussed below can be adjusted by
means of controls located in the Ul tab of the Object Properties pane. (You can
toggle this pane’s visibility by means of the Object Properties command under the
View menu.)

Activities

b

-.T_;; Composer Component
TS Subprocess

%}P Synchronize Subprocesses
CF wieh Serice Receive

'ﬂ Wieh Semvice Send

Activities can be of five types, as depicted above. The various activity types are
briefly described below.

112 Process Manager User’s Guide

Activity Type

Description

Component
Activity

The Component Activity provides for runtime
interaction with a Component or Service to interact with
one or more external systems using one or more
Composer Components (e.g. JDBC, 3270, 5250, CICS
RPC, JMS, HTML, Telnet, EDI or XML Map as well as
Composer JMS Services or Composer Web Services).
One can drill down on a Component Activity to view
and edit the Composer Component’s action model.

Web Service
Receive Activity

The Web Service Receive Activity provides for runtime
interaction with a published Web Service and
correlates a received message with a current process
instance.

Web Service
Send Activity

The Web Service Send Activity provides for runtime
interaction with a published Web Service. It enables
the Process Manager user to select the Web Service’s
WSDL Resource, Service Name, Binding, Operation,
Endpoint Locator and Connection. This is similar to the
WS Interchange Action introduced in Composer 3.0.

Subprocess
Activity

A Subprocess Activity represents any process created
in Process Designer. This effectively means a process
can call another process. It allows for a layered,
hierarchical flow architecture. One can doubleclick on
a subprocess Activity to view and edit the subprocess
graph.

Synchronize
Subprocesses

This is a specialized activity type that allows the
merging of information returned from a repetitively
executed subprocess.

To create an instance of one of these activity typesin your graph, ssimply select the
corresponding tool icon from the main toolbar (or the flyout icon list under the
icon), then click anywhere on the main canvas.

The Process Designer User Interface 113

Links

The Link tool allows you to connect activities with adirected edge (arrow). Its
operation isvery simple. Firgt, select the tool from the toolbar. Then click on any
activity; this becomes the source activity for the link. With the mouse still down,
drag out a line to the desired target activity. (Be sure the line extends not just to
the activity, but actually over the middle of the activity icon.) When you let go of
the mouse, an arrowhead will appear on the “target end” of the link and the two
activitieswill be linked in terms of control flow. At this point, if you use the
Selection cursor to drag either activity around the canvas, the link will
automatically expand and/or reorient as necessary so that both activities remain
connected.

Text Boxes

The Text tool allowsyou to place text boxes on the canvas. When you click on the
canvas, arectangle will appear with theword “Untitled.” You can then change the
text in the box, set its background and outline colors, etc., by entering appropriate
settingsin the Ul tab of the Object Properties pane.

Text boxesare simply arbitrary text |abelsthat you can use at various spots around
the canvas to document activity characteristics, control-flow intents, etc., or to
indicate titles, author info, revision dates, and so on. Text boxes can be
repositioned (by dragging) at any time and have no effect on control flow. Their
useisoptional.

By using the controls in the Ul tab of the Object Properties pane, you can change

atext box’s appearance, not only with regard to colors, resizability, margins and
centering, etc., but also involving text size, font, and style.

Shapes
The Shapestool will let you put rectangles, ovals, or your own .jpg or .gif graphics

anywhere on the canvas. These el ements are strictly decorative and have no effect
on process runtime dynamics.

Menu Commands

In Composer, when the Process Manager is the front editor, a number of process-
specific menu commands appear in Composer’s menus. The File, View, Process,
and L ayout menu structures are illustrated and discussed below.

114 Process Manager User’s Guide

File menu:

File Edit View Process Animate Layout Tools Wini

e 4
Open Ctr+0

Close Ctri+F4

Close Al CtrHshift+F4
Delete

Open Project...
Save Project As...
Delete Project...
Deploy Project...

Save Ctrks

Save As...

Save Al CtriShift+4
Save XML As...

Load XML Sample. ..

Import xObject...

Properties...

Print... Ctri+P

Print Graph] Print...
Recent 4 Print Setup...
Exit Alt+F4 Print Preview

The only addition to Composer’s File menu isthe Print Graph command.

Menu Submenu Command Description

File Print Graph | Print This selection allows you to print the
complete or selected graph and
descriptions

File Print Graph | Print Setup | This selection allows you to determine
what portion of the process should be
printed — see dialog below for more

information.
File Print Graph | Print This selection allows you to preview
Preview the selected items before printing.

The Process Designer User Interface 115

View menu:

Wiew Frocess Amimate Layout Tools Window Help
v [lavigator Tabs Ctrl+Shift+
v Output Tabs Ctrl+5hift+0
v Document Tabs CLri+shift+D
XML Documents 4
Window Layout...
Zoom 4
Show Grid
Grid Style 4 Grid Type »
Snap to Grid Grid 528 P | g 5 Units
Cverview Window] ;(] Units
v Object Properties ;l] rits
v Enable Docking 5[] Units
Custom 5ize...
Menu Submenu Command Description
View XML Brings up submenu allowing you to
Documents change visibility, order and view of
XML documents

View Zoom Many The Zoom tool lets you to set the view
magnification (on a percentage basis)
for the canvas. Several preset values
are available via pulldown menu. You
can also specify any arbitrary
percentage by selecting Custom
Zoom.

View Show/Hide Toggles the grid’s visibility (see

Grid below).

View Grid Style Grid Type | You can choose to either have a blank
background or (in conjunction with the
Grid Size option) a grid view. The
default is None.

View Grid Style Grid Size | When in grid view mode, this
command sets the spacing between
lines or dots.

View Snap to Align process objects to grid lines

Grid

116

Process Manager User’s Guide

View Overview Toggles the visibility of the Overview
Window pane (“bombsight view”) while creating
or editing a layout.

View Object Toggles the visibility of the Object
Properties Properties pane while creating or
editing a layout. This pane is where
data mappings (messages) are

specified.
View Enable Allows modal windows described
Docking above to be docked if they are brought
near an edge of the graph. The
default is On.

Process menu: Process Animate Layout Tools

Execute

Reload XML Documents

Add Watch...

Create Activity b
Create Link

Create Graphic]
Create Text

Select Escape
Pan

Marquee Zoom

Interactive Zoom

Mavigate Edges

Sticlky Tools

.The Process Menu commands are explained below.

Menu Submenu Command Description
Process | Execute Runs a process from start to
finish.
Process | Clear This menu command
Execution duplicates the functionality of
Status the Reset button on the far

right side of the toolbar; it
resets the graphics state(s) of
all icons, links, etc. to the
original pre-animation state(s).

The Process Designer User Interface 117

Process

Reload XML
Documents

Performs the same function
as Reload in the Component
menu item when in a
Component Editor.

Process

Add Watch

Allows you to identify certain
data items and examine their
data values during the
execution of a component as
a debugging aid.

Process

Create
Activity

Composer
Component

Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Component
Activity.

Process

Create
Activity

Subprocess

Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Subprocess.

Process

Create
Activity

Synchronize
Subprocesses

Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Synchronize
Subprocesses Activity.

Process

Create
Activity

Web Service
Receive

Changes the active tool to the
Activity tool and configures it
so that a click on the canvas
will create a new Web Service
Receive Activity.

Process

Create
Activity

Web Service
Send

Changes the active tool to the
Activity tool and puts the tool
in Composer Component
mode so that a click on the
canvas will create a new Web
Service Send Activity.

Process

Create Link

Changes the active tool to the
Link tool.

118 Process Manager User’s Guide

Process | Create Rectangle Changes the active tool to the
Graphic Graphics tool and configures it
so that a click on the canvas
will create a resizable

rectangle.
Process | Create Oval Changes the active tool to the
Graphic Graphics tool and configures it

so that a click on the canvas
will create a resizable oval.

Process | Create Rounded Changes the active tool to the
Graphic Rectangle Graphics tool and configures it
so that a click on the canvas
will create a resizable,
rounded rectangle.

Process | Create Diamond Changes the active tool to the
Graphic Graphics tool and configures it
so that a click on the canvas
will create a resizable
diamond shape.

Process | Create Picture Changes the active tool to the
Graphic Graphics tool and configures it
so that a click on the canvas
will cause an image file (.jpg
or .gif) to be placed. You can
specify the actual image file in
the Ul tab of the canvas'’s
property sheet (see end of this

chapter).

Process | Create Text Changes the active tool to the
Text tool.

Process | Select Changes the current tool to

the arrow cursor (for selection
of graph items).

Process | Pan Changes the current tool to
the Hand tool to allow canvas
panning for fast navigation of
large graphs.

The Process Designer User Interface 119

120

Process

Marquee
Zoom

This option is useful only
when the Overview Window
(View > Overview Window)
is in view. When this option is
active, you can click outside
the blue marquee box to zoom
the canvas to larger
magnification.

Process

Interactive
Zoom

Similar to the above, but
allows you to drag the corner
handles of the marquee box
(blue box) to “resize the view.”

Process

Navigate
Edges

Changes the active tool in
such a way that you can click
on any activity and see the
graph animate (without
executing any activities) along
link paths. No executables are
run.

Process

Sticky Tools

Allows you to select a tool
once and have it remain the
selected tool. This will allow
you to drop multiple activities
on the canvas or draw multiple
links without selecting the Link
tool multiple times.

L ayout menu:

Global Layout
Incremental Layout

Layout Tools Window |

Circular Layout
Hierarchical Layout
Orthogonal Layout
Symmetric Layout

Tree Layout

Properties. ..

Menu

Command

Description

Process Manager User’s Guide

Layout Global Layout | Default layout mode: Entire graph is cached in
memory at design time.
Layout Incremental Optional layout mode that uses memory more
Layout efficiently.
Layout Circular Arranges nodes in a hub-and-spoke manner.
Layout See discussion elsewhere under “Layout
Properties”.
Layout Hierarchical Applies the familiar “organizational chart” style
Layout of diagramming, in which top-down
relationships are emphasized.
Layout Orthogonal Constrains nodes and links to a row-and-
Layout column motif.
Layout Symmetric Edge crossings are minimized and node
Layout distributions are made uniform so that
symmetrical relationships are emphasized.
Layout Tree Layout Applies the familiar “family tree” layout to a
graph, similar to the hierarchical style
described above, except that links are not
parallel and seldom run perfectly horizontal or
vertical.
Layout Properties Brings up a preferences dialog for fine-tuning
the above settings.

Process Properties

General infofor awhole process can be accessed viaFile> Properties. Thedialog
that appears has two tabs, Header Info and Messages. The Header Info tab gives

Name and comment-type information about the process in question. The
Messages tab contains XML Template information for the input and output
messages of the process.

The Process Designer User Interface

121

File Edit ‘iew Process Animate

Iew
Open
Close
Close All

3
Cri+0
Ctri+F4
CLr+shift+F4

Delete

Open Project...

Save Project As...

Delete Project...

Deploy Project...

Save Ctri+s

Save As...

Save Al CEri+Shift+A

Save XML As. .
Load XML Sample. ..

Import xObject. ..
Properties...

Print... CEri+p
Print Graph L3
Recent 13
Exit Alt+F4

[Headar Infa| Messages |

[inputsoutput |

nput Message

Part | Template Category Template Nome

Inpat TEOffice Supply v || ProcuctRequest

Jutput Message

Part Template Category | Tempiate Mame

Delete

Output {System} || (ANY}

Help @

g
i

g
2
L3

Object Properties

122

Each type of object depicted in adirected edge graph created in Process Designer

hasits own set of properties. The properties are context-sensitive: they vary
according to the type of object that you have selected on the canvas. To see the
current properties for any object, simply select an object (by clicking on it using

the Pointer tool) and toggle Obj ect Propertiesunder the View menu (if the Object

Properties palette is not already visible).

The Object Properties pal ette (equivalently referred to asthe property sheet for an

object) iswhere you can specify such important activity attributes as:

+ Exit Condition
+ Join Condition
+ Timeout

+ Retry Count

¢ Retry Interva
+ Map Policy

+ And more (see below)

The following sections describe what the property sheets for the various process
elementslook like when the appropriate type of object has focus.

Process Manager User’s Guide

Activity Properties

The Process Manager supports five activity types, each with its own set of object
properties: Composer Component, Web Service Send, Web Service Receive,
Subprocess, and Synchronize Subprocesses. The property sheetsfor each are
discussed in some detail below.

Composer Component

Activity Tab

The Component Activity Object Properties panel has three tabs: Activity;

Messages, and Ul. Their appearances are illustrated below; their functionality is
discussed in the tables that follow.

Note that all Object Properties tabs and panels are context-aware: Their contents
update automatically to reflect the attributes of the activity that you have selected
onthecanvas. Likewise, any changesyou makeinany of the property settingswill
take effect in real time, as soon asthefield in question losesfocus. (You may have
to click outside of a property field in order for achange to take effect.)

& Object Properties x|
Activity IMessages' UI|

Property Walue
Activity Name Activity2
Activity Type Composer Component | T
Component Type HhL Map -
Component Mame StraightThru -
Exit Conditian ount{OutputROOT™=1 E’
nin Condition [7-4
Join Evaluation deferred =
Timeout
Retry Count 2
Retry Interval
Map Policy FAiy -

Control
Property Type Usage
Activity Name Text field This is the name shown under the
activity icon on the canvas.

The Process Designer User Interface

123

124

Activity Type

Dropdown

A dropdown list allows you to change
the activity type of the currently
selected activity. The dropdown shows
the five categories of activity type.

Component Type

Dropdown

A dropdown displays a list of available
Composer Component types (XML
Map, Web Service, JDBC Component,
and so on).

Component Name

Dropdown

The dropdown displays a list of
Component Names corresponding to
any components of the chosen
Component Type (above) that you have
already built in the current project.

Exit Condition

Text Field

An Exit Condition is a Boolean XPath
expression, the purpose of which is to
determine whether the Activity has
finished normally.

The Exit Condition’s expression can
refer to the output message of the
Activity or to output of any activity that
ran before the Activity on the same
control path.

If the Exit Condition evaluates to true,
the activity is treated as “Complete.” If
the Activity is complete, the process
resumes normal flow of control;
otherwise, the Activity is executed
again.

The Activity will be executed X number
of times where X is the Retry Count
defined below.

The Retry Interval defines the time
between execution retries.

Process Manager User’s Guide

Join Condition Text Field A Join Condition is a Boolean
expression in simple OR/AND/NOT
syntax, the purpose of which is to
synchronize parallel work based on the
truth values of incoming links.

(appears only on
join targets)

An Activity is called a Join Activity if it
has more than one incoming link. The
Join Activity will fire if and only if the
Join Condition is true. The default, if no
condition is explicitly specified, is true.

Join Evaluation Dropdown The choices are Deferred and
Immediate. For the meaning of these

appears only on
(app y options, see Chapter 1.

join targets)

Timeout Text Field The Timeout attribute defines a time
interval in which an Activity must
complete its work. Once a time-out
occurs, the Retry Count (if any) will
apply and the activity will be
reexecuted.

After a timeout occurs, the Process
Server will wait a certain length of time
(specified in the Retry Interval) before
kicking off the next retry. The Retry
Interval, below, defines the wait time
before an activity can be retried.

Timeout and Retry settings are
optional. The default is zero retries and
a retry interval of zero.

Retry Count Text Field The number of times to retry an Activity.

Retry Interval Text Field The length of time to wait between
retries, should a retry be necessary.

Map Policy Text Field Last Writer Wins, First Writer Wins, or
Map Order. Note that this value is
important only when there is the
potential for two activities to overwrite
each other’s data (i.e., two source
activities contend for the same XPath
locations in the target activity's input
message).

The Process Designer User Interface 125

Messages Tab

4 Object Properties x|
Activity Messages | UI|

Messages

| Type Mame Message
Jinput WActivityZInput

output wetivity2 Output

fault SystemFault composerfault
fault TimeoutFault composerfault

Enter maps to "Activity2lnput":
g =m A P ActivityZinput’ Maps
| Source Target

|$Activihﬂ?0utputf0utp ut Factivity2 Inputinput
[sactivity30utpuboutput [SActivity2inputinput
I

Property Control Type Usage

Messages Three columns: If WSDL exists, “Type” and
« Type (non- “Mess:’ﬂge” are pulled from the
editable) WSDL's Port Type Operations Input

and Output elements. “Name”

* Name defaults to the default Activity Name
* Message (non- appended by the type (e.qg.
editable) Activity2Output).

Maps: + and - icons Add and Delete mappings from last

activity’s output to current input.

Source Button The Source XPath expression
(applies to output from previous
activity in the graph)

Target Button The Target XPath expression (applies
to currently selected activity’s input)

126 Process Manager User’s Guide

Ul Tab

& Object Properties ll

Activityl Messages Ul

|Se|ected Mode Propetties -

Praperty Value

Show Lahel v

Ficture imagesireport.gif

Fant SansSerif

Text Calar I

Text Justification [Center =

Colar []

Transparent]

Border Color []

Show Border ']

Resizability Mo Fit |

wiidth &5

Height B4

H Center 1825

' Center -195

Property Control Type Usage

Show Checkbox Determines whether a text label (name)

Label appears below the currently selected
activity object.

Picture Text Field The path to the image (Gif or JPEG) that
will be used for the display of the currently
selected activity object. Use this to point
to custom icon art, if desired. (This is for
design time only. Your art will not be
deployed in any jar files.)

Font Dialog appears Clicking on the Value field causes the
“Choose Font” dialog to be displayed.
This dialog has three dropdowns which
allow for the selection of a font, style
(Plain, Bold, ltalic, Bold Italic) and point
size.

Text Color picker Displays the color to be used for text

Color associated with the current object.
Clicking on this bar causes a color picker
dialog to appear.

The Process Designer User Interface

127

Text Dropdown menu Left
Justificat Center (default)
ion)
Right
Color Color picker This is the background color for the
selected object. Clicking on this bar
causes a color picker dialog to appear.
Transpar | Checkbox Checked = Transparent object,
ent Unchecked = Opaque
Border Color picker Border color for the selected object.
Color Clicking on this bar causes a color picker
dialog to appear.
Show Checkbox Checked = Border Displayed; Unchecked
Border = Border not displayed.
Resizabil | Dropdown: Choices are:
Ity No Fit
Tight Fit
Tight Width
Tight Height
Tight Fit Preserve Aspect
Preserve Aspect
Width Text Field Item width. 40.0 (Default)
Height Text Field Item height. 32.0 (Default)
X Center Text Field Position X coordinate
Y Center | Text Field Position Y coordinate

Web Service Send

The Web Service Send activity hasits own unique object properties, which are
reflected in the Activity tab on the Object Properties panel.

NOTE: The Messages and Ul tabs for this activity are the same as for the
Component activity described above. Only the Activity tab will be described below.

128 Process Manager User’s Guide

Web Service Send Activity Tab

& Object Properties

Activity | Messages | v} |

Froperty

Value

Activity Type

Weh Service Send

Activity Mame

A2

Implementation Type

W3DL Described

WSDL Resource

=none=

Sernvice Mame

=none=

Port

=none=

Operation

=none=

Endpoint Locator

Connection

=none=

HTTF Params Edit..

Exit Condition

Timeout

Retry Count

Retry Interval

Activity Availability Always...

Wap Policy Wap Order

Property Control Type Usage

Activity Dropdown A dropdown list of Activity Types

Type

Activity Activity 1...n The name of the Activity.

Name (default)

WSDL Dropdown A dropdown list of the available WSDL

Resource Resources within the Composer project.

Service Dropdown A dropdown list of the available Web

Name Services within the WSDL Resource.

Service Port | Dropdown A dropdown list of the Binding Names

or Binding within the WSDL Resource.

Operation Dropdown A dropdown list of the Operation Names
within the WSDL Resource.

Endpoint XPath Enter the Endpoint Location (usually a

Locator Expression URL pointing at a servlet) for the Web
Service you wish to use, wrapped in
guotation marks. (Alternatively, enter an
XPath expression that will evaluate to an
Endpoint Location at runtime.)

Connection Connection A dropdown list of Connections.

The Process Designer User Interface 129

HTTP Pushbutton This displays the ‘HTTP Header

Params Parameters’ dialog, where you can
specify content-length and other common
HTTP parameters.

Exit Text Field See discussion under “Exit Condition”,

Condition page 124.

Join Text Field See discussion under “Join Condition”,

Condition page 124.

(as

applicable)

Join Dropdown Like the Join Condition field, this field will

Evaluation only appear when the target activity is a
join activity. The dropdown choices
(Immediate, Deferred) determine the
join’s evaluation mode.

Timeout Text Field See discussion under “Exit Condition” on

page 124.

Retry Count

Numeric Field

See discussion under “Retry Count”,
page 125.

Retry Text Field See discussion under “Retry Interval”,
Interval page 125.
Map Policy Text Field See discussion under “Map Policy”, page

125.

Messages and Ul Tabs for Web Service Send

130

The settings on these tabs work the same as described for the Component Activity

(already discussed).

Process Manager User’s Guide

Web Service Receive

ntu'zOhject Properties ll
ACTiVi'Nl Messagesl UI|
FProperty Walue
Activity Type Web Service Receive
Activity MName iy}
Implementation Type WSDL Described -
WSDL Resaurce Productingiury -
W3SDL Port Type FProductingiurPorType -
WSDL Operation ProductingiunCperationd ... =
Carrelation 1D "
Addresses 7y
Priarity "
Exit Condition 7y
Timeout 00 "
Retry Count 7y
Retry Interval "
Activity Availability Alays. ..
| IMap Policy Map Qrder
Web Service Receive Activity Tab
Control
Property Type Usage
Activity Type Dropdown | A dropdown list of available Activity
Types
Activity Name Activity The name of the Activity.
1...n
(default)
Implementation Dropdown | One of: Web Service, JMS Service, or
Type External.
WSDL Resource Dropdown | A dropdown list of the available WSDL
Resources within the Composer project.
WSDL Port Type Dropdown | The port type for this service.
WSDL Operation Dropdown | A dropdown list of the Operation Names
within the WSDL Resource.
Correlation ID Text Field | Arbitrary user-defined value, used to
uniquely identify a transaction

The Process Designer User Interface 131

Addressee Text Field | Arbitrary string label, typically to define
the “owner” (name of an individual)
associated with this particular
transaction or activity

Priority Text Field | Some arbitrary numeric value relating,
typically, to the importance of this activity
or work item

Exit Condition Text Field See discussion under “Exit Condition”,
page 124.

Join Condition Text Field | See discussion under “Join Condition”,

(as applicable) page 124.

Timeout Text Field See discussion under “Exit Condition”
on page 124.

Retry Count Numeric See discussion under “Retry Count”,

Field page 125.

Retry Interval Text Field | See discussion under “Retry Interval”,
page 125.

Map Policy Text Field | See discussion under “Map Policy”,
page 125.

Messages and Ul Tabs for Web Service Receive

The settings on these tabs operate the same as described earlier for the Component

Activity (see above).
Subprocess
4 Object Properties |
P«CtiVitYl Messages' UI|
FProperty Walue
Activity Type Subprocess -
Activity Mame wctivityd
Process Name RecursiveFanout =
Create Operation Call -
Exit Condition b7y
Timeout 74
Retty Caunt b7y
Retry Interval 74
Map Policy Lty hd

132 Process Manager User’s Guide

All properties on al tabs of the Object Properties panel for Subprocess have
exactly the same names (and operate the same way) as for the Composer
Component properties, except for the Create Operation property, which is one of
spawn or call, to reflect whether the subprocess should be invoked
asynchronoudly (“fire and forget”) or synchronously (poll until response comes).

Synchronize Subprocesses

Messagesl UI|
Property Yalue

Activity Type Synchronize Subprocesses | *
Activity Name Wetivity2

Component Type [#ML Map -
Component Mame |[Acceptinguiry -
Fault Handling Fail an Any Fault -
Subprocess List W
Exit Condition I
Tirmeout W
Retry Count I
Retry Interval W
Map Policy L -

The Synchronize Subprocesses activity type is a specialized activity that

coordinatesthe“fan-in” of multiple resultsfrom fanned-out subprocesses. Seethe

discussion of “ Synchronize Subprocesses Activity” in alater chapter.

Property Control Type Usage

Activity Type Dropdown A dropdown list of available Activity
Types

Activity Name | Activity 1...n The name of this Activity.

(default)

Component Dropdown A list of available components in this

Type Composer project.

Fault Handling | Dropdown Two choices: Fail on Any Fault, or Fail If
All Fail.

Subprocess Text Field XPath locations of the ProcessInfo data

List (XPath) for fanned out subprocesses.

Exit Condition | Text Field See discussion under “Exit Condition”,
page 124.

The Process Designer User Interface

133

Join Condition | Text Field See discussion under “Join Condition”,
(as applicable) page 124.
Timeout Text Field See discussion under “Exit Condition”

on page 124.

Retry Count

Numeric Field

See discussion under “Retry Count”,
page 125.

Retry Interval Text Field See discussion under “Retry Interval”,
page 125.
Map Policy Text Field See discussion under “Map Policy”,

page 125.

Link

The Link Object Properties has two tabs: Link and Ul.

Link Tab

¥ Object Properties

Linkl UI|

Froperty Walue

Link Mame Link1

Source Result Activityl Output hd

Caondition count{OutputROOT™)==1 @

Property Control Usage

Link Name Text Field The link’'s name. This name is also used

in join-condition expressions.

Source Result Dropdown Designates the source activity of the link.

Condition Text Field Specifies the XPath condition for the link.
134 Process Manager User’s Guide

Ul Tab for Links

¥ Obiject Properties [|

Link |

|Selected Lahel Properties |
Property Value

Show Label]

Font SansSerif

Text Colar 1

Text Justification Center 5|

Colar []

Transparent o

Border Color e

Show Border

Resizahility Tight Fit =]

idth

Height

_—

Property Control Usage

Show Label Checkbox Toggles the visibility of the link name.

Font Text Field Clicking this field will cause a dialog
to appear. In the dialog, you can set
various font properties.

Text Color Color Picker Allows you to set the color of the text
(link name) associated with a link.

Text Dropdown Menu Center, Left Justify, Right Justify.

Justification

Transparent Checkbox Toggles the link’s transparency on/off.

Border Color Color Picker Allows you to select the color of the
outline of the link.

Show Border Checkbox Toggles the border (draw/no-draw).

Resizability Dropdown Menu Allows you to specify various link
drawing policies.

Width Text Field Allows you to specify the overall width
of the link.

Height Text Field Allows you to specify the overall

height of the link.

The Process Designer User Interface

135

Graph Object Properties

The Process Object (or graph) property sheet has aMessagestab and a Ul tab. To
see the graph’s properties, click anywhere on the bare canvas, then bring the
Object Properties palette into view (use the View menu’s Object Properties
command). You will usethiswindow to set overall processinput, output, and fault
message mappings, and customize the appearance of the graph.

Process Messages Tab

136

The Messages tab is where you will typically specify the end-activity-to-process-
output datamapping(s). For example, if Activity4 onyour graph isthe end activity
for the process (the final activity to execute), and you want the processto return a
message containing Activity4's output, this is where you would specify the
ProcessOutput mapping. See example below.

- S 1

¥ Object Properties E

Messages | LJI|

Frocess Messages
| Type Mame Message
4 linput Processinput
g [output FrocessOutput
- . -
Format_fick !!fa'-”t SystermFault composeriault
l e mm A P ProcessOutput’ Maps
& Source Target
Feturn_Ack FReturn_AckOutputOutput |($ProcessOutputrQutput

In the above example, the activity Return_Ack isthe end activity for the process.
Its output is mapped to $Pr ocessQut put / Qut put , as shown at the bottom of
the Object Properties pane. Thefirst step in setting up this panewasto click onthe
bare canvas (thus deselecting al activities, links, and other graphic elements).
This makes the Object Properties pane reflect the properties of the process-as-a-
whole. (Notice the input and output messages are simply Process| nput and
ProcessOutput.)

Process Manager User’s Guide

Graph Ul Tab

The graph U1 tab has two purposes: It allows you to define custom appearance-
related settings for the overall graph, and it provides summary information about

the number of nodes on the graph, the number of links, labels, etc.

W Object Properties E

Messages

|Graph Properies

Froperty

Value

Maodes

Edges

Labels

Subgraphs

Background Calor

Picture

v

Picture Filename

Picture Style

Wiorld Offset =

Tile Picture

v

Picture ¥ Offset

1]

Picture ¥ Offset

1]

Remember that this set of propertiesis reachable only when you click on bare

canvas.

NOTE: For additional information about how to customize the appearance of a
graph, see the section “Layout Properties” further below.

Thefollowing table describes the properties available in the Ul tab of the process

Object Properties panel.

Attribute Value Description

Nodes 0—n This field is not editable. It provides a
numeric count of the graph’s Nodes.

Edges 0—n This field is not editable. It provides a
numeric count of the graph’s Edges.

Labels 0—n This field is not editable. It provides a
numeric count of the graph’s Labels.

Subgraphs 0—n This field is not editable. It provides a
numeric count of the graph’s Subgraphs.

The Process Designer User Interface

137

Background | Displays This is the background color.
Color the color
itself. The
default is
white.
Picture Check Box | Checked = display a picture on the graph, Not
Checked = don't display a picture on the
graph.
Picture The The full path name of the picture file which
Filename filename of | may be a JPEG or a Gif.
the Picture.

Picture Style | World World Offset displays the picture in the middle
Offset or of the diagram. Device Offset displays the
Device picture at the offset defined by the Picture X
Offset Offset and the Picture Y Offset.

Tile Picture Check Box | Checked = tile the picture, Not Checked =
display the picture at the offset.

Picture X 0.0 Used to change the onscreen x-offset.

Offset

Picture Y 0.0 Used to change the onscreen y-offset.

Offset

Selected Node Properties on Ul Tab

The Selected Node Properties Ul tab isfor inspecting or setting appearance
attributes on objects shown on the graph. Single-click an object to select it, then
select the Ul tab from the Object Properties pane; then choose Selected Node
Properties from the dropdown menu control at the top of the tab. See below.

138

Process Manager User’s Guide

¥ Obiject Properties [|

ul |

|Se|ected Mode Properties j
Property Yalue

Marme

Picture CUARTIPROCESS/U serLibiMew ..

Font SansSerif

Text Color I

Text Justificat... [Center =

Colar []

Transparent

Border Color

v
|
5

Show Border

Resizahility [NoFit =
Width i1

Height f4.5

H Center 155

" Center 305

Ul Tab (Selected Node Properties)

Attribute Value Description

Name Activityl...n This is the name of the Activity. It
(Default) defaults to Activityl...n.

Font Dialog Clicking on the Value field causes
« SanSerif (default) the ‘Choose Font’ dialog to be

] displayed. This dialog has three
* Serif dropdowns which allow for the
» MonoSpaced selection of a font, font style (Plain,
« Dialoglnput B_old, Italic, Bold Italic) and Font
Size.

Text Color Displays the color Click on the Value field causes the
itself. The defaultis | ‘Choose Color’ dialog to be
black. displayed.

Text Left This is a dropdown.

Justification | center (default)
Right

Color Displays the color This is the background color. Click
itself. The defaultis | on the Value field causes the
yellow. ‘Choose Color’ dialog to be

displayed.

The Process Designer User Interface

139

Transparent Checkbox Checked = Transparent,
Unchecked = Opaque
Border Color | Displays the color Click on the Value field causes the
itself. The defaultis | ‘Choose Color’ dialog to be
black. displayed.
Show Border | Checkbox Checked = Border Displayed;
Unchecked = Border not displayed.
Resizability Dropdown:
* No Fit
* Tight Fit
* Tight Width
 Tight Height
 Tight Fit Preserve
Aspect
* Preserve Aspect
Width Text Field 40.0 (Default)
Height Text Field 40.0 (Default)
X Center Text Field X coordinate
Y Center Text Field Y coordinate

Text Object Properties

The Ul tab for Text objects, Shapes, etc., has a Sel ected Node Properties panewith

attributes similar to those described above. The table bel ow describes the
propertiesin detail.

140

Process Manager User’s Guide

Ul Tab

Attribute Value Description
Name Untitled This is the Name of the text object as
well as the Text/Caption/Label itself.
Margin 3.0 (default) This is the width of the margin to the
Width left and right of the text.
Margin 1.0 (default) This is the height of the margin to the
Height top and bottom of the text.
Font Dialog Clicking on the Value field causes the
. SanSerif ‘Choo;e Font’ dialog to be displayed.
(default) Thl§ dialog has three dropdowns,
) which allow for the selection of a font,
* Serif font style (Plain, Bold, Italic, Bold
» MonoSpaced Italic) and Font Size.
« Dialoglnput
Text Color Displays the color Click on the Value field causes the
itself. The default ‘Choose Color’ dialog to be
is black. displayed.
Text Left This is a dropdown.

Justification

Center (default)
Right

Color Displays the color | This is the background color. Click
itself. The default | on the Value field causes the ‘Choose
is white. Color’ dialog to be displayed.

Transparent Checkbox Checked = Transparent, Unchecked

= Opaque

Border Color

Displays the color
itself. The default
is black.

Click on the Value field causes the
‘Choose Color’ dialog to be
displayed.

Show
Border

Checkbox

Checked = Border Displayed;
Unchecked = Border not displayed.

The Process Designer User Interface 141

Resizability Dropdown:

+ No Fit

« Tight Fit

« Tight Width

+ Tight Height

+ Tight Fit &
Preserve
Aspect

+ Preserve
Aspect

Width Text Field 48.0 (Default) This field is not
enabled. The width will change as
the text is changed from the default
‘untitled’ and as the margin widths
and fonts are changed.

Height Text Field 19.0 (Default) This field is not
enabled. The height will change as
the margin height and fonts are
changed.

X Center Text Field X coordinate

Y Center Text Field Y coordinate

Layout Properties

Process Designer will (if you wish) automatically reformat your graph according

to any of five flow-diagramming algorithms:

+ Circular—Arranges nodes in a hub-and-spoke manner whenever possible,
with spokes having identical lengths. Thistype of layout is appropriate when

clustering is the predominant architectural feature (e.g., asin depicting a
LAN or WAN layout).

+ Hierarchical—Thisisthe familiar “ organizational chart” style of

diagramming, in which top-down relationships are emphasized. (You can,

however, configure this layout option to show left-to-right or other flow

polarities.) Thislayout option is appropriate for graphsin which hierarchical

relationships need to be emphasized.

142

Process Manager User’s Guide

+ Orthogonal—This style constrains nodes and links to a row-and-column
motif. Links are constrained to run paralel to x- and y-axes. Also note that
nodes with more than one incoming link may be magnified in appearance
relative to other nodes. This layout strategy is appropriate for situations
where agrid or lattice relationship between el ements needs to be
emphasized, as opposed to hierarchical relationships.

+ Symmetric—In this style of graphing, edge crossings are minimized and
node distributions are made uniform so that symmetrical relationships can be
emphasized.

+ Tree—Thisdiagram style is appropriate when the predominant need is to
show parent/child relationships. It uses the familiar “family tree” type of
layout, very similar to the hierarchical style described above, except that
links are not parallel and seldom run perfectly horizontal or vertical.

All of the above diagramming styles can be extensively customized by means of
preferences exposed in the L ayout > Propertiesdialog. To bring up this dialog,
go to Composer’s main menubar and choose Properties from the L ayout menu.

ﬁ Layout Properties of Order_Process_Deszign

Genearal |Hierarchical| Orthogonall Symmetric:l Treel Circularl

Spacing Labeling
Lahel Layout:
v Mode Labels

@ Constant Spacing

" Proportional Spacing

Graph Margin Spacing I Edge Labels

Lett: ID_ Cwerlap Per wil: |u_
Top: o

Right o
Battarn: o

Help OK Cancel

Thedialog has six tabs: a General Preferences tab, and five tabs corresponding to
thefiveautolayout stylesjust described. Each tab containsawealth of controlsand
settings to allow you to exercise fine control over the many constraints that
characterize a particular style of graphing.

The Process Designer User Interface 143

General Layout Tips

Thefollowing tips are aimed at helping you achieve maximum productivity with
Process Designer.

Snap and Grid Behavior

Multiple Undo

Sticky Tools

Overview Window

+ By default, everything you draw or position snaps to an invisible 5-pixel-by-
5-pixel grid. But you can override this behavior at any time by holding the
Alt key down. (You can override it permanently by setting Grid Size to one,
using View > Grid Style > Grid Size > Custom Size.)

+ You can togglethe visibility of the grid by using the View menu’s Hide
Grid or Show Grid commands. (Thereis actually only one command; its
name changes dynamically depending on which mode you just entered.)
Grid Size and Style (dots versus lines) can also be set at any time through
View menu commands.

+ Youcaninstantly align graph nodesto the grid, at any time, by using View >
Snap to Grid. You will see graph items suddenly “jump” to the closest grid
lines.

Multiple Undo/Redo is available for al layout gestures.

Normally, atool revertsto the arrow cursor after one use. For example, if you
select the Activity Tool, then click on the canvas to put down anew activity icon,
thetool will immediately revert to the arrow (or Selection Tool) when you let go
of the mouse. You can override this behavior and make the tool mode persist
across mouse clicks by turning on the Sticky Toolsoption. Look under the Process
menu for Sicky Tools.

Exceptional control over pan and zoom can be had by using the Overview
Window (see below). Toggle this pane'svisibility by using View > Overview
Window.

Two behaviors are available from the overview window:

+ You can drag the blue “viewport rect” around the overview pane to pan the
canvasin real time.

+ You can click-drag just outside the viewport rect to interactrively zoom the
canvasto abigger or smaller size.

Noticethat the cursor changes appearance depending on the position of the mouse
(inside or outside the viewport rect).

144 Process Manager User’s Guide

Overview Window x| . _
| Outside the viewport rect, the

cursor has the magnifying
glass appearance

L___Inside the viewport rect, the
cursor changes to the Hand Tool,
which you can use to Pan the canvas

Customizing the Canvas

Note that you can customize the canvasin various ways. For example, you can
specify a background image; change the appearance of any activity to use a
custom image; and/or add any number of decorativeimages or logosto the canvas,
and use Send to Back or Bring to Front to “stack” imagesin any order. These
features allow you to build presentation-quality process graphsfor usein
meetings, demonstrations, etc.

NOTE: To access canvas properties, click anywhere on bare canvas, then
choose the Ul Tab in the Object Properties panel.

Using Custom Backgrounds

One way in which the canvas can be customized is to add a custom background,
consisting of a.gif or .jpg image. The following illustration shows a canvas that
contains a.j pg background.

The Process Designer User Interface 145

146

El Overview Window %]

:“nohiempmpenies ﬂ
Messages Ul

IGraph Properties

Property
Modes
Edges
Labels
Subgraphs
Background Co.. C—3
Picture
Picture Filename
Picture Style Wyo.. =
Tile Picture
Picture X Offset |0
Picture ¥ Offset |0

Value

AuctionNautique "
DNlinERAUCEioNn Process l
©
| i 1 G s
& iy <
9
Create_Orders_fo
1
4
C. I_Order rocess_Intemnal_Order

Update_Status_Intemna

Update_Status

> To add a picture to a canvas:

Click anywhere on bare canvas.

Toggle the Object Properties panel into view.

Click the white areato the right of Picture Filename. A navigation dialog

Navigate your hard disk or network and find a .j pg or .gif file that you wish
to use as a graph background picture.

In the Ul Tab, check the Picture checkbox to apply the image to the canvas.

Optionally check the Tile Picture checkbox if you wish to tile the canvas

1
2
3 Choosethe Ul Tab.
4
will appear.
5
6
7
with theimage.
8

Next to Picture Syle you will find a dropdown menu. Select one of the two
choices available on this menu:

+ World Offset—Choosing this option meansthat theimagewill shrink or
grow with the canvas as you choose different zoom settingsand maintain
its relative position to other objects on-canvas. Thisis the normal
behavior for all Process Designer graphics.

+ Device Offset—Choosing this option means that the image will not
shrink, grow, nor change position as you pan or zoom.

Process Manager User’s Guide

9 Optionaly adjust Picture X-Offset and/or Picture Y-Offset valuesto place
the picture exactly where you want it on the graph. (You may enter positive
or negative values here as required.)

Autolayout Options

Asexplained earlier, Process Designer will reformat your graph according to
variousdiagramming al gorithms, if you desire. The auto-diagramming option you
aremost likely to use isthe Hierarchical layout option. This option (L ayout >
Hierarchical Layout) will reformat a graph to atop-down (or left--to-right, or
other) hierarchy view, with or without X/Y alignment of links, and with or without
merging of parallél links.

A2

. S W
\ / :
Ad

3 Hierarchical Hierarchical

Layout Layout
Freehand (with orthogonal (with orthogonal edge
Layout edge routing) routing and "Merge
Edge Channels
turned on)

Various constraint options are available for Hierarchical Layout (asfor the other
autolayout modes). To access the settings, use the L ayout menu’s Properties
command, which brings up the Layout Properties dialog:

The Process Designer User Interface 147

ﬁ Layout Properties of diamond

General Hierarchical | Orthogonall Symmetricl Treel Circularl

Otientation Spacing Incremental Layout
" Left Ta Right [v “ariahle Level Spacing [v] Active
" Bottom To Top € Proportional Spacing [Respect Flow
" RightTo Left & Constant Spacing I" Reduce Crossings
' Top To Bottom Bl Levele: H Edge Routing
Between Maodes: I? ¥ Orthogonal Routing
[T Presere Clipping Sides T IF
Level Alignment = 200 Vertcal Spacing: b
© Center ¥ Avoid Port Shating ¥ Merge Edge Channels
& Top Layaut Guality
' Bottom C Draft € Default & Proof | [Undirected Layout
Help OK Cancel

Take specia note of the Edge Routing control group at the lower right. You must
check the Orthogonal Routing checkbox if you want linksto be X/Y-axis
aligned. If youwant stemsof parallel links (cominginto or out of acommon node)
to be depicted as a single stem, you should check the M erge Edge Channels

checkbox.

148 Process Manager User’s Guide

Advanced Topics

This chapter discusses concepts and scenariosthat go beyond the simple“ straight-
through processing” use cases that have been discussed so far. In particular, we
will examinethe Web Service Receive activity and the Synchroni ze Subprocesses
activity. The Web Service Receive activity isuseful in implementing design
patterns that rely on incoming notifications or requests as part of an ongoing
process. The Synchronize Subprocesses activity, on the other hand, is useful for
collecting and resynchronizing the results from a previous fan-out (or parallel
division of workflow to multiple subprocess instances) by an upstream activity.

To get the most out of this chapter, you should be familiar with WSDL -based Web
Services, Composer action models, and concepts involving message mapping,
fault messages, and link logic.

Web Service Receive

The Web Service Receive activity type alows you to implement the WSDL
Request-Response and One-Way port type patterns. These are patternsin which
the “endpoint” activity (representing the Web Service that will fire) does nothing
until triggered by an incoming request. The target activity’simplementation s, in
this sense, passive—unlike the Notification and Solicit-Response scenarios, in
which the underlying service is the requestor instead of the requestee.

The Web Service Receive activity must fulfill al the normal obligations of an
activity inaprocess model. That meansit hasto beableto function asalink target,
with timeout and retry behavior, fault behaviors, etc.

Advanced Topics 149

EEEE EEEN i
business partners
lllll lllll P

RFQs bids

firewall
- - AN |l BN N BN =N ==

@ —L1

Activity 1

Activity3

Activity 2

¥ Object Properties

Messages' UII

Froperty Yalue
Activity Type Web Service Receive -
Activity Mame Activity2
Caorrelation 1D $ProcessinputinfalF lowlD E’
Addresses
Priarity b7y
component Type Web Service b
Wieb Service Mame ActivityLogoerWSReceiver -
Exit Condition
Timeout 72005 b7y
Retry CGount
Retry Interval b7y
Map Policy (R b

In this example, Activity 1 (a Subprocess activity) “fires” Activity2 (a Web
Service Receiveactivity) vialink L1. When and if Activity2 exitswith acondition
of true, its outgoing link (to Activity3) will be followed, but not until then. If
Activity2 does not come back with an exit condition of true within the Timeout
period (in this case, 7200 seconds:. two hours), Activity2 will generate a

_Ti neout Faul t .

150 Process Manager User’s Guide

A key concept to understand is that the runtime engine doesn’t run the service
under Activity2. It merely provides appropriate input messages (as with any
activity) at the proper time and collectsthe output message at the appropriatetime.
Incoming requests to the server cause the Web Service Receive'simplementation
to beinvoked or run through appropriate triggering mechanisms (involving
servlets, IMSlisteners, or whatever), independently of the processengineitself. In
other words, the web-service app that underliesthe WSR activity isjust aweb
service on aserver, like any other web service, and its URL might be hit at any
time, but the process engine only cares about (and will only respond to) that web
service within the context of a given process, with all itstimeout constraints, etc.
Should abusiness partner hit the URL when the WSR activity is not active, the
partner will likely just get a SOAP fault message back.

A typical WSR usage might be oneinwhich aprocessisdesigned to send requests
to various vendors, collect thefirst valid response, and continue on to do some
kind of processing. Using the pattern shown in the above diagram, the roundtrip
scenario could look like this:

+ Theimplementation for Activityl might be an app that issues a request for
guote (RFQ) via notifications to one or more external business partners who
have web services designed to handle such requests.

« Activity2 might be configured in such away that the notified business
partners have two hours to reply with aquote. If no reply is received (from
any partner) within two hours, the activity generates a Timeout Fault.

+ Activity2's underlying implementation might be aweb service that wakes
up the process engine immediately upon receiving avalid quote.

+ Activity2 exitsimmediately if areply is handled (transferring control to the
next activity); or else exits with a Timeout Fault after two hours. (We're
disregarding the System Fault case for purposes of this example.)

+ Activity3 might notify a person or department (or another app, etc.) that a
bid was received from so-and-so.

Note that thisis not afan-out/fan-in scenario, but a“first responder wins’ type of
scenario. If you were going to notify multiple partners and collect multiple
responses, you would want to use the Synchronize Subprocesses Activity
(described further below).

Multiple Implementations for a Single WSR Activity

It ispossibleto have multiple web services act as“theimplementation” of asingle
Web Service Receive activity. Thisis because aWeb Service Receive activity is
built on top of aweb service that waits to receive something—waits to be “hit.”

Advanced Topics 151

Process Implementations Outside World

- 2 providers
10
Al I
EEEN
@) http://reply.target! €—— lllll
Mb service 1 I
&’ —_— @) http:/ireply target? €——— ““I
WSR corvi
ity web service 2 I
@) http://reply.targetd g -.-.I
= [111!
weh service 3
[

o

2

In the example shown above, a Web Service Recelive activity (situated between
two activities, Al and A2) isableto respond to any of three different web services
that have been deployed as implementations for the activity. When the WSR
activity “fires,” the process simply waits for one of the three web services
represented by URL sreply.targetl, reply.target2, and reply.target3 to receive
input from a business partner. Each of theweb servicesisaComposer application
that containsa Find Waiting Activity action (as discussed in more detail in the next
chapter). When one of the web services executes its Find Waiting Activity
action—followed by a Release Waiting Activity action—the process continues of
to the next activity, A3, assuming no fault conditions.

NOTE: If any business partner “hits” one of the three web services during a time
when the WSR activity is not active (e.g., hasn’t been fired; or has fired and timed
out), the partner will receive an error message of some kind. In most cases, this will
be a SOAP fault.

Implementation Independence

152

The Process Manager imposes no restrictions on what the implementation for a
Web Service Receive activity should look like. Thisistrue for Web Servicesin
general. Theauthors of WSDL put no limitations on how aWeb Service should be
implemented, and there are al so no restrictions on the transport mechanism used.
A Web Service needn’'t use HTTRP, for example, and payl oads needn’t be passed
via SOAP.

Process Manager User’s Guide

The Process Manager, likewise, allows your Web Service Receive activity's
implementation to take various forms. Composer web service, IMS service, or
External (arbitrary implementation, not built in Composer). These choices are
provided in a pulldown menu control on the Activity tab of the Object Properties
dialog (see below).

Of course, for aWeb Service to be atrue Web Service, it should have aWSDL
definition associated with it. Composer consults the WSDL when determining
how to manage message maps for the Web Service Receive activity. In addition,
since thisis a Web Service Receive activity, the underlying service should
implement either the WSDL One-Way or Request-Response port-type scenario.
(The distinguishing characteristic of these two patternsisthat the service
implementing them isnever theinitiator of atransaction. The serviceisareceiver;
you can think of the service as“listening” on aport.)

To use a Web Service Receive activity:

1 Design and implement the Web Service that will serve as the activity
implementation. It should have its own WSDL Resource. (For information
on how to create services and WSDL Resourcesin Composer, consult the
eXtend Composer User’s Guide).

2 If you created the Web Service inside another project, import the Web
Service and its resources into the current project, which will contain your
Process.

3 Create or open the Process in which you want to use the Web Service
Receive activity.

4 Using the Web Service Receive variant of the Activity Tool (on the Process
Designer toolbar), place a Web Service Receive activity icon on the process

graph.

5 Draw links to and from the Web Service Receive activity the same way you
would for any other kind of activity.

6 Bring the Object Properties paneinto view (using View > Object
Properties, if necessary).

7 Inthe Object Properties pane, click the Activity tab.

8 Next to Component Typein the propertieslist, use the pulldown menu to
select one of External, IMS Service, or Web Service, as appropriate. See
illustration.

Advanced Topics 153

Addrasses

Eriarity:

(|Component Type Weh Service

eh Service Mame ActivityLoggenSReceiver
Exit Condition

Timeout 72005

9 Next to Web Service Name, use the pulldown menu to select the Web
Service that you built in Step 1. (Thislist is prepopul ated with the names of
all Web Servicesin the current project.)

10 Set any other properties that you want to specify on the Activity tab.
11 Switch to the M essagestab.

12 Add any data mappings that you want to add, using the Plus-sign icon.
13 Saveyour work.

In order for aprocessto make use of the Web Service Receive activity, there must
obviously be an underlying implementation consisting of aweb service that
communicates via the One-Way or Reguest-Response pattern(s) described in
WSDL. This service must, in turn, be capable of communicating its “finished”
status (and in most cases, some kind of XML data) back up to the process engine.
Such communication requires the use of Find Waiting Activity and Release
Waiting Activity actionsin a service's action model, as described in the next
chapter.

NOTE: If you intend to use the Web Service Receive activity type, be sure to read
about Find Waiting Activity and Release Waiting Activity actions in the next chapter.

Synchronize Subprocesses Activity

154

The Synchronize Subprocesses activity is similar to the Web Service Receive
activity in that it, too, assumes an implementation that waits passively for
incoming data and that may be invoked numerous times before it finally exits.
Unlike the Web Service Receive activity, a Synchronize Subprocesses activity
must use a Composer Component (an XML Map Component, for example) asits
implementation.

The purpose of the Synchronize Subprocesses activity isto allow datafrom
numerous input activities to be collected into asingle activity, in situations where
the number of inputsis not known until runtime. In other words, this represents a
scenario that (due to an indeterminate number of links) can’t be drawn on a
process graph. It is sometimes called a“fan-out/fan-in” scenario.

Process Manager User’s Guide

| Fan-Out Activity |

DoWork DoWork DoWork DoWork
| Fan-In Activity |

Thefan-out activity in this diagram might represent a start activity in a process
that receives a batch of work items. The number of work items, however, is not
known until runtime. Suppose a subprocess called DoWork can process exactly
one work item, then passit on to the next activity. Ideally, you' d want the start
activity to be able to fan out N work itemsto N instances of DoWbrk, have those
instances execute in paralldl, then collect all the results of the various DoWbrk
instances at a central Fan-In Activity, as shown.

The problem is that this pattern can only be drawn if the maximum number of
possibleinstances of DoWbr k (the maximum batch size) isknown in advance. If it
were possibleto know, for instance, that abatch can never hold more than 12 work
items, then you could place 12 activity icons on the graph, representing 12
launchabl e instances of DoWbrk, and connect links from the Fan-Out activity to
each instance of DoWbrk (as well as outgoing links from each DoWork to a Fan-
In Activity.) A simple XPath condition on each link could determine (by looking
at the output from the Fan-Out activity) whether agiven link should fire based on
whether the appropriate source X Path contains data.

Anexplicit graph of thetypejust described will work. 1t wouldn't be pretty to look
at, and the data mappings would be tedious to spell out, but it would work. The
problem isthat six months from now, someone could decide that the maximum
batch size needsto be 200 instead of 12. Or, there may be no limit to the batch size.
What then?

The Synchronize Subprocesses activity isdesigned to handle resynchronization of
the results of afan-out. The process engine performs certain services on behalf of
the Synchronize Subprocesses activity, and the activity’s implementation must be
designed with certain runtime behaviorsin mind. The salient pointsto bear in
mind are:

Advanced Topics 155

156

[L]
Merge_Inquins_Resultz Fault Handling Fail on Any Fault
[[] — =

— ?g} (TGO The Synchronize Subprocesses activity
Credit_Ched Retry Count 1

*

The Fan-Out Activity (which can be any of the standard Process Manager
activity types) invokes N instances of a Subprocess activity. The instances
are spawned from Process Execute actions inside the Fan-Out’s action
model, as part of aloop.

Because the “work activities” are subprocesses and are spawned (rather than
called synchronously), each subprocess returns a Processl D to the Fan-Out
activity immediately.

The Fan-Out activity implementation should collect the ProcessiDs under a
known XPath in Qut put . That XPath must, in turn, be specified in the
property sheet for the Synchronize Subprocesses activity as shown here;

ACtiViNl Messages | UI|
Product_Inquiry Fropetty Walue
Activity Type Synchronize Subprocesses
Activity Mame Merge_Inguiry_Results
= [Component Type =ML Map
% Component Mame [Accumulate Inventory Info

l% lSubprocess List EProduct_IngquiryOutputiOutputiSpawnProcessiPracessiinfofProcessiD I

[ERT Conanon ‘

needs to be able to find the complete
Retry Intenval list of ProcessIDs for all spawned processes
Interr hap Policy (R

Fill —_

The component that provides the underlying implementation of the
Synchronize Subprocesses activity need not know about the list of
Processl Ds. The runtime engine will call the implementing component the
appropriate number of times, based on thislist; then it will pass control
(when every subprocess has finished) to the next link or linksin the chain,
barring a fault condition. Thus, the implementing component does not need
to know that it is being used as part of a loop.

Each time the fan-in implementation isfired, the | nput message part will
contain the output from a subprocess that just finished. It is up to the
Synchronize Subprocesses implementation (the fan-in component) to
process the newly acquired data as needed. Usually, this will mean
accumulating it onto Qut put , for reasons explained bel ow.

When all subprocesses have returned, the activity returns (barring a fault
condition) and the parent process continues down the normal control chain.

Process Manager User’s Guide

Data Mapping in the Synchronize Subprocesses Activity

Input

The Synchronize Subprocesses activity will always have at least three message
parts: | nput , | nput 1, and Qut put . Theactivity implementation will have DOMs
corresponding to these part names as well, but the parts have unique roles and an
implementation should be designed with those roles clearly in mind.

From the implementation’s point of view, the Input message part is where
subprocess output will be received. Each time a spawned subprocess returns, its
output gets passed to the merge component’s | nput . (The “merge component”
here means the Synchronize Subprocesses activity implementation: an XML Map
component, JDBC component, or whatever.)

In the case of most other activity types, datafrom the previous activity’s Qut put
is passed into the target implementation’s | nput DOM. In the Synchronize
Subprocesses case, however, thisis not true, because the activity that firesthe
Synchronize Subprocesses activity is not really the data source of interest. See
bel ow.

fﬁI‘ Spawned Subprocess Instances
Get_Order Response —. A

el

Output from this
source is not
whal the tanget
cares about!

F
Yy e
Merge_Inquing_Results
{Synchronize Subprocesses Activity)

The Synchronize Subprocesses activity implementation (or merge component) is
interested in data provided by the subprocess instances that were spawned. It
looksto I nput tofind that data. Each time the merge component isfired, it seesa
single work-item’sworth of datain | nput .

Advanced Topics 157

Inputl

Output

158

The Synchronize Subprocesses activity implementation will typically map the

I nput 1 DOM straight to the Qut put DOM before doing anything else. Thatisto
say, there will usually bean XML Map action at the top of the implementation’s
action model that looks like:

| &5 MAP $input1l. TO $Outputi, |

Thisis because the merge component’s Qut put part will befed backinto | nput 1
on every subsequent invocation of the component. See discussion below.

In order to alow the Synchronize Subprocesses activity implementation to
accumulate or consolidate “work items’ into a single document, by adding
subprocess returns one at atime to an incrementally built DOM, the Synchronize
Subprocesses activity recyclesitsimplementation’s Qut put back to |l nput 1. In
other words, on invocation N, the implementation receives, in | nput 1, the

Qut put from invocation N-1. (On invocation zero, | nput 1 isempty.)

See diagram below.

Process Manager User’s Guide

Fault Handling

hain Process
{1, 2,n = order of operations)

FanQut Activity
Input Qutput
(List of
Crd PIL
(Orden =) y
1 3
¥
Order : [
ith ';'fé:f
Linetemy
r,

Foreach Lineltem
inthe order spanm
the "Lookupiwailabilite"
Process, and map
each Processinfo
to Output

Composer Camponent
EXeCUtEs once.

)

The first time the implementation for
Fanln executes, its Input! part comes
from the Activity's Input! part. Qn all
subseqguent executions, the implementation's
Input! comes from the Activity's Output.
Inputt is optional, and used to initialize the
Qutput on the first execution anly.

Activities

Farallel subprocesses
finish asynchronoushy

’ (Synchranize Subprocessy

Fanln Activity

Inputy Input1 Output

h
Subprgeess List= FanOut]
utput

l Input Input1J Output

6,9, n maps

As each subprocess finishes,
this implementation is
executed to consalidate

the lookup results.

Composer Component
executes as many times as
there are parallel subprocesses

You can choose to have the Synchronize Subprocesses activity raise a Fault
message according to one of two policies: Fail on Any Fault, or Fail if All Fail. In
the first instance, the activity faults out as soon as any one of the feeder activities
(the data-producing subprocesses) gives afault. In the second case, al of the
spawned subprocesses must return before afault isgenerated. In either case, if the
Synchronize Subprocesses activity resultsin afault, the process of whichitisa
part will terminate unless the fault is handled (just asit normally would).
Therefore, as a safeguard against a single fanned-out subprocess instance failing
your whole process, you should take time to “think through” arobust fault-

handling scheme.

Advanced Topics 159

Waiting Activities

160

Any time an activity (such as a subprocess or Web Service Receive activity) isin
await state, waiting to receive aresponse to some request that was made
asynchronously by another activity, it is said to be awaiting activity. In the wait
state, the activity isnot “running” in the normal sense of theword; itisnotin
memory. The activity implementation might be a\Web Service that operates
according to the Request-Response or One-Way port types of WSDL. It getsfired
when arequest comesin viaHTTP to the server, or viaamessage sent to aJMS
message listener, etc. After the service isfinished, the activity for which it isthe
implementation (the waiting activity) needs to “wake up” and notify the process
engine so that the proper processinstance can continue to execute the appropriate
flow pattern.

But an activity implementation, being merely an application or service of some
sort, doesn't necessarily know (nor should it know) that it isbeing used in a
stateful process. The application (the activity implementation) might be ageneric,
reusable, multi-role application or component that getsinvoked by external clients
aswell asby local applications. It may be a part of several different process
models. At any onetime, there might be dozens of processinstances using the
component as an activity implementation. When an instance of the component
fires, it has no ideawho called it or why; it doesn’t magically know if it is being
used as an activity implementation in arunning process. See below.

Many running instances Many running instances
of Process "DoRFQ" of application A
) ?
DoRFQ —
ProcessiD = 1 uses -
. —» (A) =
_ uses [ActivityAF»> @ 24
|_— —» -
DoRFQ (uses application A) ? e
ProcessID = 2 @ -
- ®
—® B
uses
DoRFQ ?
ProcessiD=3 > _ Which Activity A
—_— ’ (in which DoRFQ)

do I return to?
firewall

Process Manager User’s Guide

If an activity iswaiting for its underlying implementation to produce output, the
underlying service or component has to have some way of hooking back into the
correct processinstance, because numerous processinstances (possibly belonging
to different process models) might be using the same implementation. A
correlation value of some kind must be passed into the waiting activity’s
implementation so that the impl ementation can get the activity out of thewait state
and |et the proper process instance resume navigation.

NOTE: The particulars of how and when to specify a correlation value will be
discussed in the next chapter.

The scenario, then, isthis:

+ Theactivity that makes the original outbound notification to an external
serviceor business partner must pass a correlation value to the service. This
can be a custom Correlationl D in conjunction with the Process name, or it
can be a Process| D in conjunction with the Activity name. (See the next
chapter for details.)

+ Theweb service that serves as the implementation for the Web Service
Receive Activity must get the correlation value back from the external
service (business partner).

+ Theweb service (WSR implementation) must be a Composer service with
an action model that contains a Find Waiting Activity action. (New Action >
Process > Find Waiting Activity.) The correlation value(s) will be used in
this action as a means of looking up the appropriate waiting activity in the
appropriate process.

+ Oncethe Find Waiting Activity action has successfully executed, it must be
followed by a Release Waiting Activity action. (New Action > Process >
Release Waiting Activity.)

“Waiting Activity” Actions

When the Process Manager has been installed as part of a Composer installation,
all component editorsfor all component types (JDBC, XML Map, IMS, Telnet,
etc.) have six Process-rel ated actions available for usein any action model:

+ Browse Waiting Activities

+ Find Waiting Activity

+ Lock/Unlock Waiting Activity
+ Process Execute

+ Reassign Addressee

+ Release Waiting Activity

Advanced Topics 161

162

These actions are availabl e off the Process submenu inthe New Action menu. You
can use them in the action model for any type of Composer component or service
(XML Map component, JDBC component, etc.), but if they'reusedin a
component, the component should be wrappered in a Composer web service.

Action | Animate Tools Window Help

hew Action b Advanced 3
Data Exchange 4
Frocess 4 Browse Waiting Activities. ..
Repeat » Find Waiting Activity...
Comment... Ctri+E Lock fUnlock Waiting Activity...
Component,.. CtriT Process Execute...
Decision... Ctri+D Reassign Addressee, .,
Declare Alias... Release Waiting Activity...
Function... Ctri+l)
Log... Ctri+L
Map... CEri+M
Send Mail...
Switch. .,
Todo. ..

Five of the six activities are related to Waiting Activity functionality. All such
functionality assumesthe presence of an activity whoseimplementation followsa
One-Way or Request-Response type of communi cation pattern. These are patterns
in which the web service waits, passively, for an external request.

Find Waiting Activity and Release Waiting Activity actionswill be used together
in most scenarios that involve waiting activities, regardless of the nature of the
associated business tasks. That’s because both are needed in order to “wake up” a
Web Service Receive activity once it has been enabled.

When process flow reaches a WSR activity at runtime, the process goesto sleep
and only wakes up again when:

+ aComposer web service executes a Release Waiting Activity action
targeting the WSR activity, or

+ the WSR activity times out

In other words, the coupling between aWSR activity and its underlying
implementation is quite loose. A Web Service Release activity can be thought of
as simply aplace in the process flow where the process goes to sleep until it is
woken up either by an alarm clock (i.e., the activity timesout) or by aweb service
that knows how to wake the process up again.

For anin-depth discussion of Waiting Activity actionsand their usage, seethe next
chapter.

Process Manager User’s Guide

Waiting Activities and Human Interaction

The actions called Browse Waiting Activities, Lock/Unlock Waiting Activity, and
Reassign Addressee add optional functionality designed to makeit possibleto use
waiting activities in a human-intervention type of workflow, where human
operators perform tasks in response to notification by activities. Itiscommonin
this type of flow for natifications to be sent to human operators, who will
ultimately post work back to the process viawaiting activities. Thistype of
scenario is discussed in greater depth in the following chapter.

The concept of an Addressee is exposed in some of the “waiting activity” action
dialogs. Thisalowswork items (that is, message parts, or node branches within
parts) to be assigned to specific individuals according to their roles, as part of a
running process. The individualsin question can be naotified of arriving work via
an activity designed for that purpose; and the processinstance can call on aWeb
Service Receive activity (or other “waiting activity”) to receive various
individuals' work back into the system.

The notion of work-item Priority is also exposed in this system.

NOTE: Addressee and Priority are initially specified in the Object Properties panel
of the Web Service Receive activity. (The Addressee and Priority properties will not
be visible in other activity types. A Web Service Receive activity must be selected
in order to see these properties.)

Work items can be marked as locked for exclusive use by oneindividual,
programmatically, through the Lock/Unlock Waiting Activity action.

Work items can be reassigned to different individuals viathe Reassign Addressee
action.

In addition, waiting activities representing the work queues of specificindividuals
can be browsed or tallied using the Browse Waiting Activity action.

Through the creative use of these actions, you can devel op sophisticated (yet
robust and easy to test) workflow systemsinvolving work queues, work items
with varying priorities, human operators with roles, and so on.

Advanced Topics 163

164 Process Manager User’s Guide

Waiting Activities and Addressees

This chapter discusses awide variety of issuesrelevant to invocation and control
of processes and activities, including the various actions that can be used inside
components to implement “human intervention” scenarios involving work lists.
To get the most out of this chapter, you should already be familiar with Composer
project deployments and standard J2EE packaging and depl oyment constructs,
such as EAR/WAR files, web.inf files, contexts, servlets, and so on; and you
should be familiar with the basic Composer service trigger types. For more
information on the latter subject, be sure to consult your Composer Server User’s
Guide for the app server environment (WebSphere, Weblogic, SilverStream) into
which you will be deploying.

Understanding How Processes Are Triggered

In order for aprocessto be invoked, it needs to be associated with a Process
Execute action (see “ The Process Execute Action” further below) inacalling
component. The calling component can be any valid Composer component type
(XML Map, JDBC, HTML, Telnet, or whatever). At some point, however, the
component must itself be called by a service, and the service must be triggered by
one of the standard Composer service trigger types. From the top down, then, the
activation sequenceis:

+ HTTP/SOAP request fires servlet (typically)

+ Servlet (service trigger) fires Composer service (web service)
+ Composer service fires Composer component(s)

+ Composer component fires Process

+ Adctivities start and stop within the Process instance's lifetime

Initssimplest form, the activation chain looks something like:

Waiting Activities and Addressees 165

service trigger

(Deployment WAR file)
fires

My Project

» () Sewice
*caﬂs
or spawns

©5) Process

Here, a Composer service is shown calling/spawning a Process directly. But as
mentioned earlier, any component type (XML Map, JDBC, etc.) can also call or
spawn a Process. The way thisis doneis viaa Process Execute action (discussed

in further detail below).

Process-Related Actions

The Process Manager adds six process-related actions to the component editor

menus.

Action Animate Tools Window Help

lewAction b pdvanced
Data Exchange
Process
Repeat

- v v -

Comment...
Component. ..
Decision...
Declare Alias. ..
Function...
Log...

Map...

Send Mal...
Switch...

Todo...

Ctr+E
Ctr+T
Ctri+D

Ctri+l
Ctri+L
Chri+i

Browse Waiting Activities. ..
Find Waiting Activity...

Lock Alnloclk Waiting Activity...
Process Execute. ..

Reassign Addressee. ..

Release Waiting Activity...

The actions can be thought of as supporting three basic types of functionality:

166 Process Manager User’s Guide

+ Processinvocation via an action: Thisisaccomplished by the Process
Execute action. Within a given project, any Composer component or service
(whether inside or outside of a Process) can launch any processin that
project viathis action.

+ Reentryinto a Process: The Find Waiting Activity and Release Waiting
Activity actions make it possible for a service that implements a\Web Service
Receive activity to get the attention of the process engine after it has finished
running.

+ Human-accessible work queues. The Browse Waiting Activities,
Lock/Unlock Waiting Activities, and Reassign Addressee actions provide
support for scenarios involving delegation of tasksto individualsin an
organization.

The Process Execute Action

The Process Execute action allows you to launch a Process using runtime inputs
and outputs that you specify. By using this action in acomponent’s action model,
you can invoke any Processin the current project.

The Process Execute action is similar to Composer’s regular Component action
(which fires components), except that it coverstwo possible methods of execution
(namely, Call and Spawn) and optionally allows you to register the
called/spawned process as a subprocess of a parent process.

If the processis started viaa Call, then the action model containing the Process
Execute action (the source component) will block any further action processing
until the called processreturns. Thisisthe same behavior asfor the regular
Component action.

If the processis started via Spawn, then the processis executed in a“fire and
forget” mode wherein the spawner does not wait for the spawnee to return.
Instead, the spawned process returns (immediately) a“receipt” consisting of a
unique identifier for the process and atimestamp. (See below.) Thisinformation
can be used by other process actions such asthe Browse Waiting Activitiesor Find
Waiting Activity actions.

Data Returned by a Spawned Process

When you spawn a process, you are invoking the process asynchronously, in “fire
and forget” manner. The spawned process will hand back a message containing
certain information about the process instance that was spawned (which can be
useful later). The“return receipt” information handed back by a spawned process
looks like:

Waiting Activities and Addressees 167

= Output Data

=< > MESSAGE

=< > Frocess

=< > |nifin
> Process|D 1
L 2 CregtionDate FriFeh 15154249 EST 2

How to Create a Process Execute Action

> To create a Process Execute action:

The information returned includes the Pr ocess| D associated with the particular
process instance that was just started, and the date of birth of the processinstance,
inProcess/ I nfo/ Creati onDat e.

1 Openthe Composer component or service from which you wish to invoke a

process. Click inside its action model at the point where you want to insert

the action.

In the Action menu, choose New Action > Process > Process Execute, as
shown above. (You can also reach this command from the context menu,
available by right-clicking in the action pane.) A dialog appears.

Process Execute E

Execute method: Frocess Component:

|Spawn j |SubmitAppr0veW0rk LI
Fassed Part To Part Template Categary Template Mame

Input Input SubmitApprave WORKDETAIL

Returned Part Fram FPa Template Categary

Template Mame

Qutput Qutput SubmitApprave WORKDETAIL
[Spawn as Subprocess of Parent ID
FParent Process [D:
" |Input ;I i
| %
Help oK Cancel

3 Using the pulldown menu in the top left corner of the dialog, choose the

Execute Method: Spawn (fire and forget) or Call (block until results come

back).

Process Manager User’s Guide

4 From the pull down menu under Process Component, select the process that
you want to invoke. The menu will be prepopul ated with the names of all
process xObjects in the current project.

5 Under Passed Part, select (from the dropdown list that appears when you
click in thisfield) the name of the component DOM that will be the data
source for the process.

6 Under Returned Part, select (from the dropdown list that appears) the name
of the DOM that will receive information back from the process. For a
spawn action, see discussion below.

7 If you are spawning this process as part of afan-out (in anticipation of later
using a Synchronize Subprocesses activity to sync back up), check the
Spawn as Subprocess... checkbox and indicate (via X Path expression)
where the parent process's Process| D can be found.

NOTE: This is an advanced option that is useful primarily when you are
working with the Synchronize Subprocesses activity type. Leave this
checkbox unchecked unless the current component is an activity
implementation for a process and you are using the Synchronize
Subprocesses activity type somewhere else in the same process.

8 Click OK to dismissthe dialog.

More about the Process Execute Dialog

Passed Part represents the runtime name(s) of the source component parts that
will be passed into the target process as its Process nput message. When you
select aprocess to execute from the drop down list box, the partsit is expecting as
defined by itsinput XML Template will appear. You then simply match up the
current component partsto passwith their process counterparts. The Passed Parts
do not have to match the template partsin name. However, to insure that the
process receives all the data it needs, the number of parts passed should equal the
number of parts expected.

The output from a Process Execute action is returned to a Part in the current
component that you specify. If the processis executed viaa Call, then the process
output will be placed in the Returned Part. If the processis executed via Spawn,
then a Process Info receipt is placed in the Returned Part.

Waiting Activities and Addressees 169

Spawn as Subprocess of Parent ID

The checkbox called “ Spawn as a subprocess of Parent ID,” underneath the
Returned Part section of the Process Execute dialog, is visible only when Spawn
is selected as the Execute method. The controls just below the checkbox appear,
also, when Spawn mode has been chosen. These controls allow you to correlate a
spawned process with agiven parent process, so that the process engine can keep
track of subprocessreturns. Thisisimportant only in the context of a Synchronize
Subprocesses activity implementation.

NOTE: If you are not implementing a “fan-out” type of scenario culminating in a
fan-in via a Synchronize Subprocesses activity, you do not need to concern
yourself with this discussion.

The parent Process I D that is attached to each process when it is spawned by the
Process Execute action allows the engine to return each spawned process'sresults
to the correct parent process. Since there may be many instances of the parent
process running at one time, this mechanism prevents one instance of a parent
process from receiving the results of adifferent instance.

For amore detailed discussion of afan-in/fan-out scenario using the Synchronize
Subprocess activity, see “ Synchronize Subprocesses Activity” in the preceding
chapter.

Deployment and the Process Execute Action

170

The unit of deployment in all Composer projectsisthe Web Service xObject.
Thus, aswith all other Composer components (e.g. JDBC, EDI, XML Map, 3270,
etc.), any Process you wish to expose to a business partner must be executed from
inside a Web Service component.

Inthe simplest case, you can deploy aProcess by placing asingle Process Execute
action inside aWeb Service, which you then deploy as you normally would. You
merely need to make sure that the Web Service'sinput message (and its
congtituent parts) matches the input(s) for the Process. Then itisasimple matter
to call the process via the Process Execute action and pass in the parts.

In amore complex deployment, the Process Execute action may be part of alarger
action model that either preparestheinitial process message or runs multipleother
components and/or processes as well.

Process Manager User’s Guide

Find Waiting Activity Action

You will typically use the Find Waiting Activity action inside the implementation
for aWeb Service Receive activity. (It isusually followed by a Release Waiting
Activity action. See discussion further below.) The Find Waiting Activity action
allows you to retrieve runtime information from the process engine for a Web
Service Receive activity that iswaiting to be fired by (for example) a business
partner. The retrieved information, along with the business partner’s message, is
then used to generate an output message for the activity.

A Release Waiting Activity action generally follows every Find Waiting Activity
action. The Release Waiting Activity action causes output to be passed to the Web
Service Receiveactivity and signalsits“ exit readiness’ to the process engine, thus
allowing the process flow to continue.

Recall that in the Process Manager, the Web Service Receive activity allowsa
process (or branch of aprocess) to halt the flow of control at that activity in order
to wait for aWeb Serviceto receive information that is necessary to continue the
process flow.

Theimplementation for the Web Service Receive will typically be an exteNd
Composer web service with a published WSDL endpoint for the business partner
to contact. After being contacted, this Web Service needs away to find its
associated Web Service Receive activity in the correct processinstance, passit the
business partner’s message, and signal the process engine that the activity is
compl ete (see Release Waiting Activity described later). The Find Waiting Activity
action fillsthe need of locating the proper Web Service Receive activity.

NOTE: It'simportant to keep in mind throughout this discussion that activities and
activity implementations are not the same thing. Activities are abstract entities that
have certain attributes and states meaningful only to the process environment. An
activity implementation is the business application that carries out some task in

software. An activity has certain properties associated with it—these are shown in
the property sheets which make up the tabs in the Object Properties panel. But in
general, an activity doesn’t know anything about the implementation, or underlying
app, that carries out the actual work required to accomplish a given business task.
Conversely, an implementation doesn’t know that it is being used in a process.

Waiting Activities and Addressees 171

A Scenario

business partner

Consider thefollowing scenario: You have defined a process that places an order,
sends a confirmation to abusiness partner asking for final approval to execute the
order, and then waits to hear back from the partner. The partner sends a message
referencing the order number back to you, at which point the order process
continues. A Web Service Receive activity is used for the part of the process that
waits to be contacted by the business partner (see No. 1 in the diagram below).
Thisactivity’simplementation is usually a standard Web Service. That Web
Service, inturn, uses a Correlation ID to keep everything instance-bound. The
business partner will have been given thisID by an upstream activity in the
process (the activity that queried the partner). The following diagram shows what
happens when the partner finally answers back.

3 oA
oll (3
= o ®
| Web Service A
i I conf [Find Waiting Activity
il @O0 _ M
HEER
I Input
-)
Pending
Process Engine

QUTPUT
MESSAGE

| Release Waiting Activity |

Activity Tépe: Web Svc Receive

INPUT Process|D: 12

MESSAGE CorrelationlD: A12R047
Implementation: Web Service A

172 Process Manager User’s Guide

When the business partner sends a confirmation message to Web Service A (which
implements the Web Service Receive activity in the above diagram),Web Service
A needsto find and “wake up” its associated activity and process. Fortunately,
Web Service A contains a Find Waiting Activity action that does precisely this
(see 2, above). Using the Find Waiting Activity action, the web service findsthe
Web Service Receive activity that has been waiting for the business partner’s
response. That activity’s input message and PendingActivity document can be
utilized in creating an output message for the activity (see 3 above). Using the
PendingActivity document, the Web Service executes a Release Waiting Activity
action and passes output back to the Web Service Receive activity (see 4 above),
which exits and allows the process to continue.

Finding a Waiting Activity

A waiting activity can be found using one of two methods. One method uses a
combination of Process Name and Correlation I1D; the other uses Activity Name
and ProcessID.

The Correlation D method is most common for business interactions with
business partnerson opposite sidesof afirewall (i.e. two separate companies). The
Correlation ID is simply any unique value—such as atimestamp, work order
number, confirmation number, etc.—created earlier in the process and
communicated to the business partner. The Find Waiting Activity action will
extract the Correlationl D from alocation in the Input document that you specify,
then submit this ID to the process engine to find.

The second lookup method basesits inquiry on a unique key constructed by
combining an Activity Name (i.e. the name of the Web Service Receive activity of
which the component is a part) and the Processl D of the processinstance in
question. The Find Waiting Activity dialog (below) allows you to enter this
information.

The second lookup method is more common in cases where requesting and
responding parties are both inside a common firewall.

With either lookup method, it is essential that the business partner provide the
needed ID information in the input message to the Web Service. That ID
information will consist either of aCorrelation 1D, or acombination of Process|D
and Activity Name.

Waiting Activities and Addressees 173

The Find Waiting Activity Dialog

Find tab

The Find Waiting Activity dialog consists of two tabs of controls. TheFindtabis
where you specify criteriaused to find awaiting activity. The Messagetab allows

you to specify where to place the information returned from the process engine
regarding the activity you find.

The Find tab will take on a different appearance depending on which of the two
radio buttonsis selected in the top part of the dialog. When “Process Name and
Correlation ID” is selected, the dialog takes on the following appearance:

Find Waiting Activity

Find | Messagel
Find by

& Process Mame and Correlation D
0 Activity Mame and Process 1D

Process Name:

|Submitapproveitiark =]

Carrelation D

[= Expression:
)4

Help oK Cancel

If you are finding an Activity by Process Name and Correlation ID, select a
process name from the dropdown list. Then specify an XPath expression
identifying where, in the message received from the business partner, Composer
will find the CorrelationI D. (Alternatively, click the Expression radio button and
specify an ECMA Script expression that will evaluate to the needed ID.) The
message part containing the business partner’s message will normally be Input,
but others are allowed. Note that the element containing the Correlationl D does
not need to be named “ CorrelationlD.” A valid XPath expression might be:

Pur chaseOr der / Header / PO D.

174 Process Manager User’s Guide

Message tab

Find Waiting Activity

Find | Messagel
Find by:

£ Process Name and Corralation ID

€& Activity Mame and Process (D

Activity Mame:

& HPath: |Input LI ' Expression:

|ServiceTicketfHeaderIInquinnype @

Process ID:

@ XPath: [nput LI ' Expression:

|ServiceTicketl’Headerlinquir\fNumber @

Help OK Cancel

When finding an activity by Activity Name and Process D (using the radio
button labelled “ Activity Name and Process 1D"), specify an XPath expression
identifying where, in the message received from the business partner, Composer
can expect to find the Activity Name (i.e. the name of the Web Service Receive
activity). The message part containing the business partner’s message will
ordinarily be Input, but others are allowed. Note that the element containing the
Activity Name does not need to be named “ Activity Name.” A valid XPath
expression might be: Ser vi ceTi cket / Header / | nqui ryType. Also, insimilar
fashion, specify the location of the ProcessID.

When an activity isfound, the process engine will return two XML documentsto
the Web Service that issued the Find Waiting Activity action. The first document
istheoriginal i nput message (consisting of 1 or more parts) to the Web Service
Receive activity before it began waiting for a contact from a business partner.
Thisallowsthe activity’ simplementation to work on the activity message or useit
as areference with the message received from the business partner.

The second document returned by the process engineis runtimeinformation about
the waiting activity (see details below).

Waiting Activities and Addressees 175

Find Messagel
Accept the Waiting Activity's Input Message As:
& Pats e om

Source Part Target Part
Input Cutput =]

' Message

Target Part for Waiting Activity's Process Information:

| [~
Help OK Cancel

Thefirst section of the Message tab allows you to map the activity’soriginal input
message into the Web Service so you can work on it. Two radio buttons control
the options available to you:

+ ThePartsradio button allows you to map each part of the activity’s input
message to a part in the Web Service. Thiswill be the choice for most
applications.

+ The Message radio button allows you to map the entire activity input
message (including all its parts) to asingle part in the Web Service. If no
parts are available for use, you will need to add Temp documents to the Web
Service.

The second section of the M essagestab allowsyou to specify what part in the Web
Service will receive the waiting activity’s process information from the process
engine. Select apart from the dropdown list. If no part isavailable for use, you
will need to add a Temp document to the Web Service.

The PendingActivity document

176

The second document returned by the Find Waiting Activity action isused by a
Release Waiting Activity action to signal the completion of the Web Service
Receive activity and allow the process flow to continue to execute. The document
returned by the process engine that describes awaiting activity contains aroot
element named PendingActivity.

The PendingActivity document contains the following child elements:

+ Processl D—Thisisthe unique number associated with the process instance
in which the found Web Service Receive activity exists. Thisdataisused by
the Release Waiting Activity action to restart the waiting activity.

Process Manager User’s Guide

+ QueueDate—Thisis a date/time stamp indicating when the Web Service
Receive activity starting waiting for contact from a business partner.

+ ActivityName—The name of the Web Service Receive activity that is
waiting.

+ ProcessName—The name of the process to which the Web Service Receive
activity belongs.

+ Correlationl D—The unique key used to identify and find the Web Service
Receive activity. The valueis specified as a property of the Web Service
Receive activity and is set by the process when the activity executes and
begins waiting.

+ Addressee—The name of a user who is supposed to contact this Web
Service Receive activity. Thisdatais usually used in assigning work to
people in work queue applications that involve user intervention/interaction
with along-running process. Thevalueis specified as a property of the Web
Service Receive activity and is set by the process when the activity executes
and beginswaiting. This datais usually used in processes that run
completely behind the firewall.

+ Priority—Thisdatais used in assigning work to people in work queues and
allows an application querying the process engine to sort waiting activities
by relative importance. The valueis specified as a property of the Web
Service Receive activity and is set by the process when the activity executes
and beginswaiting. Thisdatais usually used in processes that run
completely behind the firewall.

+ LockedBy—Thislabel istypically the name of auser in awork queue who
has flagged this activity instance as being locked for exclusive use by one
individual. No actual lock is created; rather, it is a semaphore or flag value
for work-queue applications querying the process. Thevalueis set by a
Lock/Unlock Waiting Activity action.

+ LockedUntil—A date valueindicating when the lock will be removed. The
valueis set by a Lock/Unlock Waiting Activity action.

Release Waiting Activity Action

The Release Waiting Activity action is used inside the implementation (usually a
Web Service) for aWeb Service Receive activity. The actionisusually preceded,
at some point in the implementation’s action model, by a Find Waiting Activity
action. The action passes data to the waiting Web Service Receive activity; and
that data becomes the output message, signalling the activity’s completion to the
process engine. The passed datais usually information from a business partner
that contacted the Web Service. Thus, the Release Waiting Activity action isthe
callback mechanism used by aWeb Service to produce an output message for, and
signal the completion of, a Web Service Receive activity inside a process.

Waiting Activities and Addressees 177

Before an Activity can bereleased, you must produce amessage part that contains
a PendingActivity document indicating the Process and Web Service Receive
activity youwishtorelease. Thiscan beaccomplished viaaFind Waiting Activity
action (seethe previous section). Inaddition, you will need one or more partsthat
will be passed back to the waiting Web Service Receive activity asitsout put
message. Once you have a PendingActivity document and one or more parts to
serve as activity output, you can release an activity.

The Release Waiting Activity Dialog

178

The Release Waiting Activity dialog has three sectionsto it.

Thefirst section allows you to specify a part in the Web Service that contains a
PendingA ctivity document describing the processand activity youwishtorelease.
This part must have been populated previously by a Find Waiting Activity action.

The second section iswhere you map parts in the Web Service to output message
partsin the waiting Web Service Receive activity.

Thethird sectionisoptional and allowsyou to return output to the activity but flag
it as afault message causing the process flow out of the Web Service Receive
activity to follow fault links.

Releasze Waiting Activity

Fart containing Waiting Activity's Process Information:
I'I'emp1 LI
Return Waiting Activity's Cutput Message As:

& Pats Gp .

Source Part Target Part
Imput [=]output
O Message
[T Resultis Fault
Fault Name:
| 7 4
Help OK Cancel

Under “Part containing Waiting Activity’s Process Information,” just select a part
name from the drop down list.

NOTE: In order for a part to show in the list, it must contain a PendingActivity
document.

Process Manager User’s Guide

The second section of the dialog allows you to specify data from the Web Service
that will become the waiting activity’s output message. The Parts option allows
you to map one or more parts in the Web Service to one or more partsin the Web
Service Receive activity’s output message. Thiswill be the choice for most
applications. The Target Part name you enter will be created in the activity’s
output message for you. The M essage option allows you to map asingle part in
the Web Service as the entire activity output message (including all its parts).

Thethird section in the dialog allows you to specify (optionally) that the returned
dataisto be flagged as afault inside the process. Use the expression builder to
specify afault message name corresponding to one that was defined for the Web
Service Receive activity on its Messages tab.

Human Participation in Processes

Most processes require some kind of human interaction, if for no other purpose
thantheinitial triggering of the process. In some scenarios, humaninvolvementin
all phases of a particular business task can be essential. Purchase orders may
require personal approval; product inquiries may require personal e-mail
responses or phone calls; large transactions may require escalation to a particular
individual; and so on.

You can use Composer’s Process Manager to implement awide variety of
sophisticated human-centric workflows. The Process Manager has features that
make it easy to:

+ Assign (and reassign or reroute) work to individuals

+ Assign prioritiesto work items

+ Mark work items aslocked or unlocked for exclusive use by an individual
+ Browse aprocess for worklists, filtered by individual(s)

+ Retrieveindividual work items

+ Integrate back-end systems into the workflow

+ Integrate easy front-end access to work lists viaJSP or HTML

To create human entry-pointsinto a process, you will generally use Web Service
Receive activities to expose outward-facing web-service applications (i.e., the
implementations of the Web Service Receive activities). The user-facing services
could be exposed via JSP or HTML pages; or they might be exposed by other
means.

Waiting Activities and Addressees 179

Addressees

Your user-facing services can be designed to allow users to browse work queues,
find and lock work items, unlock work items, reassign work, and/or push work
back into the system. The actions that make these operations possible include the
Find Waiting Activity and Release Waiting Activity actions already discussed
above, aswell as the Browse Waiting Activities, Lock/Unlock Waiting Activity,
and Reassign Addressee activities discussed below.

Human participantsin a process are known, in Process Manager, as Addressees.
The runtime engine associates an Addressee with a particular document or work
item via the Addressee property on the Object Properties panel for the Web
Service Receive activity type.

¥ Object Properties

essages' UI|

Property c dalle
Activity Type | Wieb Service Receive | -
ctivity Mame s .
Implementation Type YWieb Service -
Web Service Name GetorkLists hd
Addresses b7y
FTTUTTLY ?
Exit Candition b7y
Timeout 74
Retry Count b7y
Retry Interval 74
Map Folicy Map Order i

NOTE: Addressee is a property of Web Service Receive activities only. You will
not see this field in the Object Properties panel for other activity types.

The Addressee valueis specified as an XPath expression. Thisaffordsagreat deal
of flexibility, since the Addressee can be in a passed-in message part, or it can be
determined dynamically at runtime, or it can be hard-coded to a particular string

value. Thus, you can accommodate any of the following common scenarios:

+ The sales person to whom the order should go is determined by a JSP
scriplet or EJB at the time the order is submitted online. The Processlnput
message already contains the necessary Addressee name at process
invocation.

+ Anorder arrives viathe Web and kicks off a process. The Addressee is
determined dynamically—"just in time’—by business logicin a
preprocessing component, and it appears in the output message of an
activity.

180 Process Manager User’s Guide

*

All orders must eventually be approved by John Smith. Therefore, a Web
Service Receive activity is hard-wired to an Addressee value of “John
Smith.”

The Role of the Web Service Receive Activity

The Web Service Receive activity isthe main touchpoint for human input into
automated processes built with the Process Manager.

When aWeb Service Receive activity “fires,” three things happen:

*

Its Addressee property becomes associated with a string value (usually,
although not necessarily, representing areal person’s name)

The underlying implementation for that activity (namely, a user-facing Web
Service that follows the WSDL One-Way or Request-Response pattern)
becomes operational

The Process Engine puts the Web Service Receive activity (not its
implementation!) into awaiting state

A person (i.e., aworker or an administrator; the Addressee) can then use awork-
group application implemented in JSPs to execute Composer components or

services to:

1 Browseall the waiting activities addressed to a particular person (using a
Browse Waiting Activities action),

2 Lock waiting activitiesto prevent other users from approving an order (using
aLock/Unlock Waiting Activity action) while they are being reviewed by an
Administrator,

3 Unlock an order, allowing it to be approved (using a Lock/Unlock Waiting
Activity action),

4 Retrieve orders and mark them as approved (using a Find Waiting Activity
action), and/or

5 Complete the approval and allow the process to proceed to the next activity

(by finally calling a Release Waiting Activity action).

Waiting Activities and Addressees 181

T Gomeser)
Camposer

component Process
with Enai
o # Browse Waiting = + ngme
and
Lockiunlack Order | Waiting
JSP Mg | Activity
[Composer I)
\Weh Service Addresses: Mary
- > wilh A - Joh
Find Waiting ddresses: John
and Addresses: Mary
Release Waiting »

Noticethat only the Release Waiting Activity action can actually complete a Web
Service Receive activity (that is, causeit to exit). So by definition, the
implementation to a Web Service Receive activity (i.e. aWeb Service) must
contain a Release Waiting Activity action. The other process actions (Browse
Waiting Activities, Lock/Unlock Waiting Activity, Reassign Addressee, and even
Find Waiting Activity) can be used in avariety of components not directly
connected to aprocess. Such components might usethese actionsto add oversight
and “see-into” functionality to external applications, giving usersameansto view
and manage waiting activities.

Browse Waiting Activities Action

182

The Browse Waiting Activities action can be used in any service or component
(even one outside the process), aslong as the process and the service/component
are deployed as part of the same Composer project. The sole purpose of the
BrowseWaiting Activitiesactionisto allow an application to obtain alist (or lists)
of pending activities, filtered by Addressee.

When you execute a Browse Waiting Activities action, you are merely supplying
the Process Server with aname, or alist of names. The Process Server, in turn,
examines al Web Service Receive activitiesin all instances of all processes, and
hands back alist of activities waiting to be acted on by the individuals (or
departments, etc.) in question.

Thelist that the Process Server returnsin response to abrowseisa
PendingActivity document. This document contains such information as the
ProcessID and Activity Name for the pending activity, as well as other
information that can be used, if desired, to find and do work on behalf of awaiting
activity. (See“ The PendingActivity document” further above for additional
discussion of the PendingActivity document structure.)

Process Manager User’s Guide

Where to Use the Browse Waiting Activities Action

How It Works

TheBrowse Waiting Activitiesactionisusually utilized in scenarioswherealong-
running process requires the intervention of, or interaction with, alive person
through another application such as a JSP. (See the eXtend Composer
Silverstream Server Guide section titled "Creating a JSP that calls a Composer
Service" for more detail.) For example, you may have a heavily trafficked process
that processes orders one-at-a-time. The process contains an activity that accepts
asingle order and passesit to a Web Service Receive activity, where the process
stops and waitsfor the order to be approved by a particular person. That person, in
turn, will use a JSP (Java Server Page) to input his approval. In thiskind of
scenario, the Addressee (the person who approves the order) needsto be able to
find out about (or discover) work waiting to be done, and also push work into the
system as it gets done. The discovery part can be accomplished viaa Browse
Waiting Activities action in a service (not necessarily internal to the process) that
can be triggered off aJSP. The “data push” part can be done via a service that
implements the Web Service Receive activity type. This servicewould useaFind
Waiting Activities action to look up individual work items, and a Release Waiting
Activity action to execute the “ push.”

A waiting activity (no matter which processit isin) can be located by Addressee
alone, using the Browse Waiting Activities action. But for thisto work, the
associated Web Service Receive activity must have a non-empty Addressee
property. To specify avaluefor Addressee, just open the Process graphin Process
Designer, click on the Web Service Receive activity in question, bring the Object
Properties panel into view, and enter alegal XPath value next to Addressee. (See
screen shot under “ Addressees’ above.) The XPath should point either to an input
message part that contains an Addressee string, or a hard-coded string value.

A second Web Service Receive activity property named Priority canalsobesetin
the Object Properties panel. Priority isan arbitrary number that allows the
applicationto sort or filter retrieved work items before displaying them to the user.
You can assign any value(s) you want here, or leave the value empty.

Waiting Activities and Addressees 183

In most applications, aBrowse Waiting Activities action will befollowed by other
process actions like Lock/Unlock Waiting Activities, Reassign Addressee, and/or
Find (or Release) Waiting Activity. For instance, one possible scenario might be
asfollows. Anadministrator for awork group selects multiple waiting activities
for agroup of users (using the Browse Waiting Activities action). The
administrator places alock on al the selected activities to prevent users from
working on the work items (using a L ock/Unlock Waiting Activities action) while
they are under review. The administrator reassigns some work items among the
users (using the Reassign Addressee action), finds and works on the high priority
work items (using the Find Waiting Activities action) and compl etes them (using
aRelease Waiting Activity action), and then unlocks the activities not worked on
(again using a Lock/Unlock Waiting Activities action).

Comparing Browse and Find

The Browse Waiting Activities action differs from the Find Waiting Activities
action in the following characteristics:

+ Browse can search for waiting activities by Addressee only, whereas Find
can search only by Process Name/Correlationl D or Activity
Name/ProcessID.

+ Browse can return information on multiple activities, whereas Find returns
information on just a single waiting activity.

+ Browse mapsits results to a message part or X Path location, whereas Find
maps its results to a part only.

+ Browse does not return the input messages to the found activities, whereas
Find does return the waiting activity's input message. So by using a Browse
coupled with aFind, an administrator can look into the details of awaiting
activity such aslooking at the actual order.

NOTE: Both Browse and Find are nondestructive. No waiting activity is marked
as finished until a Release Waiting Activity action has been called on it.
Creating a Browse Waiting Activities Action

To create aBrowse Waiting Activities action, go into acomponent and right-click
in the action model; then select New Action > Process > Browse Waiting
Activities from the context menu. A dialog will appear.

184 Process Manager User’s Guide

Browse Waiting Activities

Addressee(s):

% HPath: I-NorkGroup

¢ Expression:

LsersifpproverListthpprover

Target for Activity Info List:

% XPath: I'I'emp3

}24

 Expression:

[Browseout

}2¢

Help

OK Cancel

The Browse Waiting Activitiesdial og containstwo basic control groups. Thefirst
control group offersaway to point to alist of Addresseesin amessage part in the
component. The value(s) contianed in the nodelist will be used as the search
key(s) for finding waiting activities. For example, in the dialog above, the
Addressee X Path pointsto thelist of Approvers shown below.

=) YWarkGroup

Data

=-<>Users
= > Approverlist
- 3 Appraver
: .3 pnprover
[5- > ReviewerList
¢: > Reviewer
LD Reviewer

Mary

Susan

John

Johin

The second control group allows you to specify where to place the results of the
browse. Specify a part name (such as Temp) and an X Path |ocation within the
part. Theresults of the browse will be placed as child elements of the XPath you

specify.

Waiting Activities and Addressees 185

IS Temp3 Data

54 > PendingActivity
...... <> ProcessiD 59813
...... <> QueueDate Mon Mar 11 12:46:51 EST 2002
------ =& Activitylame |ApproveOrder
...... <> ProcessMame [AcceptdpproveOrders
...... == CurnelzalionlD (1029384756
...... <> Addresses Wary
...... <= = Priority 1
...... <> LockedBy
------ <> LockedUntil
(-2 PendingAc tivity
...... <> ProcessiD 55711
...... <2 QueueDate Mon kar 11 11:24:55 EST 2002
------ <> Activitytlame [ApproveOrder
...... <> ProcessMame [AcceptApproveOrders =

A successful browse will return one or more PendingActivity documents (as
shown above), each containing child elements describing the waiting activity. If
the browse finds no waiting activities, then only the X Path you specify will be
created and there will be no PendingActivity children elements beneath it.

NOTE: Unlike the Find Waiting Activity action, the Browse Waiting Activities
action does not return the input message for the found activity. In order to retrieve
the input message, you must loop through each PendingActivity element using a
Repeat for Element action, and perform a Find Waiting Activity action on the
activities of interest. (The PendingActivity branches contain all the information
required by a Find Waiting Activity action to retrieve any given activity.)

Lock/Unlock Waiting Activity

186

The Lock/Unlock Waiting Activity action flags awaiting Web Service Receive
activity asbeing in use or clears that flag, indicating the waiting activity is
available to be worked on. Theflag consists of the two elements/LockedBy and
/LockedUnt i | inthe PendingActivity document associated with awaiting Web
Service Receiveactivity. A non-null valueintheLockedBy element indicatesthe
waliting activity isunavailablefor use. When alock isflagged, the LockedUnt i |
element contai nsadate/time stamp indicating when thelock or flag will be cleared
automatically by the process engine.

It isimportant to note that the Lock/Unlock Waiting Activity action does not
physically lock the waiting activity. It simply marksthe activity as being in use.
Even when flagged as being in use, a Find Waiting Activity/Rel ease Waiting
Activity set of actions can work on and complete the activity. Itisup tothe
designer of the work group application to honor the lock.

Process Manager User’s Guide

NOTE: Locked activities are not excluded from Browse results. The
PendingActivity information returned by a Browse will show all applicable activities,
including both locked and unlocked ones.

The Lock/Unlock Waiting Activity action istypicaly utilized in applications
where along-running process requires the intervention of, or interaction with, a
live person through another application such as a JSP. (See the Composer
Silverstream Server Guide section titled "Creating a JSP that calls a Composer
Service" for more detail.) These work-group applications commonly use work
gueues filled with work items assigned to addressees.

Prerequisites for Locking/Unlocking an Activity

Before you can lock or unlock awaiting activit,y you must have a ProcessID and
Activity Name with which to locate the waiting activity. A Lock/Unlock
WaitingActivity action will generally be preceded in an action model by a
successful Browse Waiting Activities or Find Waiting Activity action. The result
of either action is a PendingActivity document from which you can reference the
necessary ProcesslD and Activity Name.

If the activity you are trying to lock or unlock is no longer present in the process
engine, Composer will throw an exception, so it is good practice to anticipate this
(for example by placing Lock/Unlock Waiting Activity actionsinside a Try/On
Error action).

If the Lock/Unlock Waiting Activity action is successful (i.e., no exceptionis
thrown), nothing is returned and the next action in the action model executes.

Creating a Lock/Unlock Waiting Activity Action

To create a L ock/Unlock Waiting Activities action, go into acomponent and right-
click in the action model; then select New Action > Process > L ock/Unlock
Waiting Activities from the context menu. A dialog will appear.

Waiting Activities and Addressees 187

188

Lock/Unlock Waiting Activity |
& Lock YWaiting Activity
' Unlock Waiting Activity

Frocess ID

i ¥Path: I'I'emm LI ' Expression:

|PendingActiviMPmcesle @

Activity Mame

' XPath: |Input LI @& Expression:

I'RecCreateChangell" ¢

Locked By

i XPath: |Input LI ' Expression:

WORKITEMREQUEST/ADDRESSEE [

Laock Duration

' XPath: |Input LI & Expression:
120 E
Help BK Cancel

The Lock/Unlock Waiting Activity dialog has 5 sets of controls:

*

Thefirst control group contains two radio buttons that determine whether the
action isto set alock or clear an existing one.

The second control specifies the Processl D you wish to target. Specify an
XPath within a PendingActivity document down to the ProcesslD element.

Thethird control specifiesthe Activity Nameyou wish to target. Specify an
XPath within a PendingActivity document down to the Activity Name
element.

Thefourth control isthe L ockedBy flag. Specify ameaningful value for the
people or processes who might inspect it by executing a Browse or Find
against the waiting activity while you have it flagged as locked.

Thefifth control isthe Lock Duration. Specify atimeinterval that will be
used to calculate a date/time stamp to place in the LockedUntil element of
the PendingActivity document associated with the waiting activity. Thetime
interval default unit of measurement is seconds, so entering the text 60 will
leave the lock flag in place for 60 seconds, after which the flag will be
cleared automatically. Other units of measure include minutes (specified
inside single quotes as: '60m"), hours (specified inside single quotes as:
'60h"), and days (specified inside single quotes as. '60d").

Process Manager User’s Guide

NOTE: If you select the Lock Waiting Activity radio button, values for all controls
are required. If you select the Unlock Waiting Activity radio button, values for the
Process ID and Activity Name controls only are required.

The Lock dialog settings shown in the screen shot further above might give the
following result when another user (say, Mary) browses waiting activities:

=) Temp3 Data
- = BrowseQut

=4 > PandingAc tivity
A2 ProcesslD A5813
-2 QueueDate Mon har11 12:47:22 EST 2002
-S> ArtivityMame |ApproveCrder |
-2 Proces shame [Acceptipprovedrders
LA 2 CorrelationlD 1028384756
AL Addres see LET
2 Prin L ——
L ;_gckedElga Administrator

> LockedUntil [Mon Mar 11 01:10.22°EST 2002
- = Pending —
A ProcessiD 85711
AL 2 QueleDate Man Mar 11 12:49:12 EST 2002
L= prtivityMame |ApproveOrder hd

|»

The Reassign Addressee Action

The Reassign Addressee action allows you to change the value of the Addressee
attribute assigned to awaiting Web Service Receive activity. In most cases, the
original value of the Addressee will be set by the Process M anager when a Web
Service Receive activity entersitswaiting state. Onceinitswait state, the current
Addressee can be changed to another value by the Reassign Addressee action.
You also have the option of reassigning the the current Addressee for one Web
Service Receive activity, or all of that person’s Web Service Receive activities.
(For example, you might want to reassign all of Mary’swork to Joewhile Mary is
out sick.)

Remember that the Addresseeis an optional attribute that can be assigned to a
Web Service Receive activity. The presence or absence of a value does not
inherently affect the processing of the Web Service Receive activity except asa
flag or tag to an external work group application.

Waiting Activities and Addressees 189

The Reassign Addressee actionistypically used in applications where along-
running Composer process requires the intervention of, or interaction with, alive
person through another application such as a JSP-driven application or form.
Work group applications allowing human interaction commonly use work queues
filled with work items assigned to addressees.

Reassigning an Addressee

Before you reassign the addressee to a waiting activity, you must decideif the
action will reassign all or just one of the activities associated with a particular
Addressee. If you want the action to reassign all activities, then you need only
define two parameters for the action: an XPath or ECMA Script expression
identifying the current Addressee, and an XPath or ECMASCript expression
identifying the new Addressee.

If youwant to reassign asingle specific activity of the current Addressee, then you
will also need to supply aProcessID and Activity Name. To do this, the Reassign
Addressee action must be preceded in an action model by a successful Browse
Waiting Activities or Find Waiting Activity action. The result of the Browse or
Find will be a PendingActivity document from which you can reference the
necessary ProcessID and Activity Name.

After the Reassign Addressee action executes, whether successful or
unsuccessful, nothing is returned. To verify the success of the action, perform
another Browse.

Creating a Reassign Addressee Action

190

To create a Reassign Addressee action, go into acomponent and right-click in the
action model; then select New Action > Process > Reassign Addressee from the
context menu. A dialog will appear.

Process Manager User’s Guide

Reassign Addressee

Original Addressee:

@ ¥Path: |Input ;[' Expression:
b
MNew Addresses:
@ ¥Path: [nput j ' Expression:
%
Al Activities
 Specified Activity
Activity Mame:
¥ |Input ;l " Expression:
| %
Process ID:
@ ¥Path: [nput Ll ' Expression:
| 124
Help OK Cancel

The Reassign Addressee dialog has several groups of controls. Thefirst control
identifiesthe current Addressee (the onewhosework will be reassigned) whilethe
second control identifies the new Addressee. For each one, enter an X Path
location from apart in the current action model or an ECM A Script expression that
will resolve to the correct Addressee name. (The value for each will typically be
passed into the component in which the Reassign Addressee action isused.)

TheAll Activitiesand Specified Activity radio buttonsinthe middle of thedialog
determine whether all activitiesfor the current Addressee will bereassigned (asin
the case where all of Mary’swork needs to be reassigned to Joe), or just one
specific activity. If Specified Activity ischosen, the control groupscalled Activity
Name and Process | D become enabled and you must enter an X Path or

ECMA Script expression identifying the specific Activity to reassign, along with
the specific Processl D containing that activity. In order to supply these values,
you will generally have performed a Browse Waiting Activities or Find Waiting
Activity action.

Waiting Activities and Addressees 191

192 Process Manager User’s Guide

Runtime Administration of
Processes

This chapter discusses the use of the Process Server Console to manage deployed
processes.

Server Console Usage

From the Composer Enterprise Server main consol e page (shown below), click the
“Process Consol€” icon in the top row of buttons:

onzole - Microzoft Internet Explorer M=
Taolz Help | Address I@ hittp: /7 CT utarial/exteM dComposer/Console Vl ff? Go |
ot

iefresh Home

[E‘ m&’ocess(hnmle Nove”_

General Properties and Settings

WM Free Memory: 12 Wb
Log Level: |1
Apply Log Level

Cache Status

NOTE: Composer Enterprise Server and the Process Server should be installed
and running on your application server prior to attempting to access these
consoles.

After clicking the Process Console button, a new screen should appear in anew
browser window, as shown in the section below. Notice the presence of four tabs

(Main, Statistics, Satus, and L og). These tabs are discussed in the sections to
follow.

Runtime Administration of Processes 193

Process Manager Console: Main Tab

The console’s Main tab reveal s a screen comprised of the following sections:

+ Process Statistics Summary
+ Process Engine Info

+ Process Database Info

+ Jump to Process

+ Delete Process Info

+ Manage Activity Queue

Each of these sectionsis described below:

Z} Process Main Console - Microsoft Internet Explorer M=K

File Edt ‘iew Favortes Tooks Help | Adess | e ncaihost AT toralieweNdCamposer Pracess]| @ 6o |
= = <] i

Back - Farard - Stop Refresh Home

exteNd Composer

Novell.

Process Manager

'iii' Statistics | Status | Log |

Process Statistics Summary Jump to Process

Active: 0| Process I

Cached: 0

Completed: 380 Jum|

Process Engine Info Delete Process Info

status: Runining Terminated by _trrm-dd

Started: 2002-11-04 09:21:19:93 (v)
Delete

Stop Engine

This will delete all records for process instances that
completed or were otherwise terminated on or before

Process Database Info the "Terminated By' date,

Type: ASE

Pool name: Databases/XCPROCESS/DataSource | Manage Activity Queues

Status: Connected - Ready Activity queues provide information on Web Sendce
Receiwe Activities that are waiting to be contacted by a
partner's complimentary process or a person via a Web
page.
_Manage Queues |

|@ ,_,_,_ -F;E Local intranet A

194 Process Manager User’s Guide

Process Statistics Summary

The Process Stati stics Summary section displaysthe count of Active, Cached, and
Completed processes. The latter refersto the number of process instances that
have run since the Process Server was started (i.e., the Start date given in the next
section), whether they ended in success or afault of some kind.

Process Engine Info

The Process Engine Info section showswhether the process engineisrunning and,
if it isrunning, the date and time at which it was started. If the processengineis
running, the Process Engine Statusis “Running” and the button below is|abeled
“Stop Engine.” If the process engine is not running, the Process Engine Statusis
“Suspended” and the button below islabeled “ Start Engine.”

Process Database Info

The Process Database Info section displays general information regarding the
process database. (Seethe first few pages of this guide, as well as the product
Release Notes, for information on setting up this database.) Thisis the database
Process Manager usesto persist “state data’ for long-running processes.
+ Type—thetype of database (e.g. Oracle, DB2, ASA, etc.)
+ Pool Name—the name of the connection pool
+ Satus—the status may be:

+ Not Connected to Database

+ Can't Connect to Database

+ Connected—Not Initialized

+ Connected—Ready

+ Configure—the Configure button will be displayed only when the Process
Engineis stopped. Pressing the Configure button in the Process Database
Info section will display the Process Database Configuration page, from
which you can configure the database (see below).

Runtime Administration of Processes 195

/3 Process Main Console - Microsoft Internet E xplorer

File Edit “iew Favorites Toolz Help |Agdresslej VI @Go|
= » @ rat

Back " FEarimard Stop Refresh Home

exteNd Composer

—— Novell.

Process Manager

Process Database Configuration

Type: Im
Pool name: |DatabasestCPROCESSfDataSource
Username: |dba
Password: I“’“‘
Status: Connected - Ready
<< Back
st I L
/&) Done [Ealoamae

+ Toconfigurethe database, select adatabase type from the dropdown list (e.g.
Oracle, DB2, ASA, etc.) and enter a pool name. You may save the
configuration by pressing the Save button. Once the Configuration is saved,
you can initialize the database by pressing the I nitialize Database button.
The Initialize Database button is displayed only when the statusis
Connected—Not Initialized.

Jump to Process

The Jump to Process section of the main consol e enables you to display the status
of aspecific process by entering the ID of the process and pressing the Go button.

Delete Process Info

Processrecords can be compl etely del eted viathe Del ete Process Info section. You
may delete all information for process instances that were terminated (e.g.
completed or otherwise terminated) by a specified date. To do this, enter the
“Terminated By” date and pressthe Delete button. For example, if you enter
2002-02-01 and press the Delete button, all records for process instances
completed or otherwise terminated on or February 1, 2002 will be permanently
deleted.

196 Process Manager User’s Guide

NOTE: When a process finishes running or is manually terminated, only the
process instance's input documents and output documents will be maintained. Any
interim documents created by the process instance will be purged, automatically,
upon termination of the process instance.

Manage Activity Queues

You may administer activity queues by pressing M anage Activity Queues button
on the Main tab. Doing so will display a page with two tabs that provide queue
statistics and queue status.

Queue Statistics

The Queue Statistics tab displays atable that contains a sorted list of addressesin
the activity queue and a count of the work items assigned to that addressee. These
statistics are automatically refreshed every 60 seconds.

/3 Process Main Console - Microsoft Internet Explorer

File Edit “iew Fawoites Tools Help |Agdress I@ hittp: 44 'I @Go|
- = @ a4t

Each: - Eamrand - Stop Refresh Home

exteNd Composer

Novell.

Process Manager - Activity Queues

Queue Statistics Wl F1TEI

Activity Queues
Queue Hame Activities

Systern 19
35ystem

Total Queues: 1 Activities:

|@ l_ l_ l_ {E,'g Local intranet i

Queue Status

The Queue Status tab (see illustration below) displays a table with the following
columns:;

+ Addressee—the Addressee name
+ Priority—the priority
+ PID—the Process ID

Runtime Administration of Processes 197

198

+ Corr |ID—the correlation ID

+ Process Name—the name of the process

+ Activity—the name of the Activity

+ Created—the creation date of the Activity instance

+ Expires—the expiration date of the Activity instance
+ Owner—Owner of the lock

+ Lock Until—the date which the lock expires

| Address [s Ip/eET mpaser/CCT ~| @60

o . @ [
Back Fouui St Refiesh Home

/3 Process Main Console - Microsoft Intemet Explorer [[O[=]

exteNd Composer
Novell.

Process Manager - Activity Queues

Queue Statistics Queue Status

Addressee Pri PID CorrlD Process Name Activity Created Expires Owner Lock Until
SSystem 5 189 SPendingSubprocessReturn:191 WorkCyele 2002-06-12 15:15:93:00

SSystem 5 205 SPendingSubprocessReturn:207 WorkCyele 2002-06-12 16:54:37:00

SSystem 5 205 SPendingSubprocessReturn:208 WorkCyele 2002-06-12 16:57:40:00

SSystem 5 209 SPendingSubprocessReturn:211 WorkCyele 2002-06-13 08:51:57:00

SSystem 5 209 SPendingSubprocessReturn:Z12 WorkCyele 2002-06-13 03:54:22:00

SSystem 5 249 SPendingSubprocessReturn:251 WorkCyele 2002-06-17 09:10:01:00

SSystem 5 256 SPendingSubprocessReturn:259 WorkCyele 2002-06-17 16:44:28:00

SSystem 5 260 SPendingSubprocessReturn:262 WorkCyele 2002-06-18 08:30:39:00

SSystem 5 260 SPendingSubprocessReturn:Zed WorkCyele 2002-06-13 03:34:13:00

SSystem 5 260 SPendingSubprocessReturn:263 WorkCyele 2002-06-18 08:31:48:00

SSystem 5 271 SPendingSubprocessReturn:273 WorkCyele 2002-06-18 11:37:52:00

SSystem 5 274 SPendingSubprocessReturn:276 WorkCyele 2002-06-18 12:08:36:00

SSystem 5 277 SPendingSubprocessReturn:279 WorkCyele 2002-06-18 12:23:36:00

SSystem 5 277 SPendingSubprocessReturn:280 WorkCyele 2002-06-18 12:24:33:00

SSystem 5 285 SPendingSubprocessReturn:287 WorkCyele 2002-06-13 16:14:09:00

SSystem 5 288 SPendingSubprocessReturn:290 WorkCyele 2002-06-18 16:37:23:00

SSystem 5 295 SPendingSubprocessReturn:297 WorkCyele 2002-06-18 17:23:49:00

SSystem 5 298 SPendingSubprocessReturn:300 WorkCycle 2002-06-19 14:46:38:00

SSystem 5 363 SPendingSubprocessReturn:365 WorkCyele 2002-07-31 10:44:36:00

Queue Filter Shawdng 1 to 19 of 13

Addressee From (yyyy-mm-dd] To (yyyy-mm-dd)

[[Refresh

The PID column contains hot links to the Process Detail info for the process
instances. (Thiswill openinanew browser window.) The Process Detail windows
are discussed in alater section.

If the activity does not have atimeout, the Expires column is blank.

If the Activity has been locked viathe Lock Waiting Activity Action, the Owner
column displaysthe name of the Owner of the L ocked Activity and the L ock Until
column displaysthe dateto which the activity hasbeenlocked. If the Activity does

not have a Lock, the Owner and Lock Until fields are blank.

Process Manager User’s Guide

Navigation

Optionally, you may filter Queue Status by Addressee by entering an Addressee
name. You may also choose to display only those activities that were queued
within a specific range of dates by entering the range of dates in the From and To
fields.

The Queue Status tab, like other Composer Process Manager Console pages,
displays up to twenty (20) records per page. If there are more than 20 records, a
controls at the bottom the page allow you to move to the first page, the previous
page, the next page, or the last page.

Process Manager Console: Statistics Tab

The Process Manger Console’s Statistics tab provides alist of al processesand a
count of Running and Compl eted processinstancesfor each process. (Seebelow.)
On the Totals line at the bottom, you will see (from left to right) the total number
of Processes (not process instances, but different process models), Running
process instances, and Completed process instances. The processes are listed
alphabetically by name on the left. Each nameisahot link that will takeyouto a
Status page listing a status table filtered by the process name.

Runtime Administration of Processes 199

/4 Process Main Console - Microzoft Internet Explorer

File Edt Miew Favorites Tool Help

| Address I@ hittp: #4gearter-IpA<CT utorial/ext 'l @GD |

s @ ¢

Back T Famsand . Stop Refresh Home

exteNd Composer

Novell.

Process Manager

Process

Running Completed
G SubProcess - Call WSR by Processhame and CorrelationlD 0

G WS Feceive called by Processhame and CorrelationlD

G1 5ubProcess - Call WSE by ProcessMame and CorrelationlD

G1WS Receive called by Processhlame and CorrelationlD

G2 SubProcess - Call WSRE by Activity Name and ProcessID

G2 W5 Receive called by Activity Mame and Process|iD

Productinguing

Productinguiryl ookup
Submitfpprove
SubmitApproveiark

YW Fan Qut then Synch Subprocess [n

W Fan Out Wiorker
WorkCycle

i1

2

I3

4

5

Totals:

5

ool o

oa)

15
15
23
57

105

- s s s s

]

ol oo o O 0o O oo O oo o o o o

Z7h

Main m Status | Log |

El
I_ I_ l_ -E'E Local intranet i

Process Manager Console: Status Tab

200

The Process Manager Console’s Status tab gives you aview of the overall

execution status of all processes, filterable by process name and date range, with
control over which field to sort by. Thefilter controls are at the bottom of the page.

Asaways, 20 result lines are displayed at atime. To page through the available
results, click the First, Prev, Next, or Last links at the lower right corner of the

page.

Thisview isnot updated inreal time. Therefore, aRefresh button isprovided near

the bottom right corner.

Process Manager User’s Guide

Status Filter

4 Process Main Console - Microsolt Intenet Explorer

File Edit Yiew Favorites Tools Help |Agdress €] http:// goanter2-Ip/<C Tutorial/enteNdComposer/PracessConsole -| @to ‘
= -2 at
Back Fararnd Stop Refresh Home
exteNd Composer
Novell
Frocess Manager o
Main | Statistics Log
Process [[v] Parent ID Started Completed Status
Productinquiny 105 2002-05-01 12:52:16:00 2002-05-01 12:52:24:00 Completed
Productinquirylookup 106 105 2002-05-01 12:52:18:00 2002-05-01 12:52:23:00 Completed
Productinquiny 107 2002-05-01 13:08:39:00 2002-05-01 13:09:04:00 Completed
Productinquirylookup 108 107 2002-05-01 13:08:39:00 2002-05-01 13:08:41:00 Completed
Productinquiny 109 2002-05-01 13:48:36:00 2002-05-01 13:48:49:00 Completed
Productinquirylookup EELOE IS 2002-05-01 13:48:37:00 2002-05-01 13:48:38:00 Completed
Productinquiny a1 2002-05-01 13:54:21:00 2002-05-01 13:54:42:00 Completed
Productinquirylookup B Rl 2002-05-01 13:54:22:00 2002-05-01 13:54:25:00 Completed
Productinquiny 113 2002-05-03 13:13:35:00 2002-05-03 13:13:46:00 Completed
Productinquirylookup BT Gkl 2002-05-03 13:13:37:00 2002-05-03 13:13:45:00 Completed
Productinquiny 115 2002-05-03 13:46:51:00 2002-05-03 13:46:56:00 Completed
Productinguirylookup i S, 2002-05-03 13:46:53:00 2002-05-03 13:46:55:00 Completed
Productinguiny 17 2002-05-03 13:49:28:00 2002-05-03 13:49:32:00 Completed
Productinguirylookup el = Rl 2002-05-03 13:49:29:00 2002-05-03 13:49:31:00 Completed
Productinguiny 119 2002-05-03 14:16:15:00 2002-05-03 14:16:22:00 Completed
Productinguirylookup 2 Rl 2002-05-03 14:16:16:00 2002-05-03 14:16:20:00 Completed
Productinguiny 121 2002-05-03 14:21:28:00 2002-05-03 14:21:32:00 Completed
Productinguirylookup 22 EP 2002-05-03 14:21:29:00 2002-05-03 14:21:31:00 Completed
Productinguiny 123 2002-05-03 14:26:40:00 2002-05-03 14:26:45:00 Completed
Productinguirylookup 124 123 2002-05-03 14:26:42:00 2002-05-03 14:26:45:00 Completed
Status Filter Showdng 1 to 20 of 276 | Mext Lt
Procass Sort by From To I Include Completed —
[
I LI I LI I I dd) Refresh
4 3
[& [| |22 Localintranet 4

Process | D and Parent 1D numbers are clickable links. You can “drill down” on
aspecific processinstance by clicking the appropriate Process D link. Clickinga
link will open anew browser window in which the Process Detail page, described
later, is presented.

The Satus Filter control group (bottom of page) allows you to control how
processes are displayed in the Status tab view. You can choose, for example, to
display process instances for a specific named process using the Process drop-
down control.

Using the Sort By control, you can sort the list of displayed processes by Process
Name, Process ID, the Create Date/Time, the Modify Date/Time or the Status.

Runtime Administration of Processes 201

By entering datesin the From and To fields, you can display processes that were
started and, optionally, completed within a specified range of dates. Check the
Include Completed check box if you want to display records of finished

processes.
After selecting your filter options, pressthe Refresh buttonto display anew list of
processes based on your current Filter and Sort settings.

Process Manager Console: Log Tab

The Process Manager Console’s Log tab displays log messagesin the following
format, sorted by Date and Time:

43 Process Main Console - Microzoft Internet Explorer

Fie Edt Yiew Favoites Tools Help |AQC|IESS I’Gj bittp: ¢ #gearter2-p A< C T utorial/exteM dComposer 'l o Go |
=@ ot
Back Farsard Stop Refresh Home
exteNd Composer
Novell.
Process Manager
Main | Statistics | Status
Date & Time ;:vent Event Source Description
2002-03-25 Error restoring process [39]:
172112600 cam.sssw, b2k ee. process rt. GNYProcessException: Corrupt
R state file; invalid date for activity: Activity3
2002-05-01 Error during activity execution: Error occurred executing
12:52:24:00 OuiDiSETe ey component:
2002-05-03 Error during activity execution: Error occurred executing
13:13:46:00 OurfatackReply component:
2‘092-95-03 InStockF oy Error dgrmg activity execi*'an: Error occurred 7 =acuting
3:46:5¢ compo*

Cp

You may filter the view of the log by clicking on the checkboxes at the bottom of
the page:

Log Filter Showing 1 to 20 of 401 | Mext Last
™ Motice I~ Debug W Errar I Process [Activity . Refresh |

After making your desired choices, press the Refresh button.

202 Process Manager User’s Guide

Detail View for a Process Instance

When you click alink for a process instance (such as any of thelinksin the ID
column of the Status Tab in the main process console), you will see an Activity
Detail view for that processinstance pop open in a new browser window. (Using

multiple browser windows, you can monitor multiple process instances
simultaneously.)

The detail viewfor a process instance has three tabs: Activities Detail, M essages
and L og.

3 Framesel for Composer Process Detail Activity Console - Microsoft Internet Explorer

File Edit View Favorites Took Help |AQC|T9SS I@ http:z’z’gcarterZIpx’XCTutorial!exteNdComposer!C'l @ Go |
= = @ tat

Back | Fomard Stop Refresh Home

exteNd Composer

== Novell

Process Manager

Activity Detail for Process: ProductinquiryLookup
ID ParentID Started Completed Status

373 372 2002-08-01 16:33:48:00 2002-08-01 16:33:49:00 Completed

Action Result Status
Narmal

Activities Detail

Showing 1to 3
of 3
Activity Activity Type Started Completed Status
Composer 2002-08-01 2002-03-01
Froductlookup Component 16:33:48:674 16:33:49:65 Complete
. 2002-03-01 2002-03-01
Inventorylookup Web Service 16:33:48:734 16:33:40:775 Complete
Composer 2002-03-01 2002-03-01
MergeProductandinventory (oo n ol 16:93:49:975 16:73:49:495 Complete
_ =
|@ l_l_’_ Eg Local intranet S

Process Detail: Activities Detail Tab

Activities Detail isthefirst tab on the detail page and isthe default view when the
window first opens.

Inthistab, you'll see the Name, ID, Start Date/Time, Completed Date/Time, and
Status of the individual activitiesthat comprise the processinstance. The process
instance will be listed as either Running or Complete. If the processis running,

buttonswill be present enabling you to Suspend or Terminate the running process
instance.

Runtime Administration of Processes 203

The columnsin the Activities Detail tab view have the following meanings.:

Activity This is the name of the Activity. The Activity names are
hyperlinked to the Activity Data Monitor. The Activity Data
Monitor displays Input and Output documents and their data

values.
Activity This is the type of activity — Web Service, Subprocess,
Type Composer Component or End Point.
Started This is the date and time when the activity started.

Completed This is the date and time when the activity was completed.

Status This column displays the Status of the activity.

Completed After the associated operation has
completed, continuation of the activity
depends on its exit condition. If this
evaluates to false, the activity is
iterated, by either continuing with
‘enabled’ or ‘running’ depending on the
associated operation. If the exit
conditions evaluates to true, the
activity reaches the ‘Completed’ state.

Running The Activity's state once it is started.

Terminated The Acvity’s status when the process
completes before the Activity.

Enabled The flow engine decides that this
activity instance could now possibly be
executed and puts it into the ‘Enabled’
state. Depending on the nature of the
activity and its associated operation, it
might remain in that state until it is
started through an explicit requests
(e.g. for in or in-out operations), or the
flow engine will start it right away (e.g.
for out or out-in requests).

Process Detail: Messages

The Messages tab gives you aview of the processinstance’s messages (i.e., input
and output documents). The messages are sorted by name.

204 Process Manager User’s Guide

#} Frameset for Composer Process Detail Activity Console - Microsoft Internet Explorer

D Parent ID
73 32

Fle Edt View Favoites Took Help | Adress [&) ity rgcarter2 p<CT toisl/esteNdComposer/ CCDelail 6>Go|
= =] at
Back Farard! Stop RAefresh Home

teNd C 0S

Process Manager

Messages Detail for Process: ProductinquiryLookup

Started

Activities Detail

Message Name

Messages

2002-08-01 16:33:48:00

Log

Completed

2002-08-01 16;33:4%:00

Status
Completed

tessage Type Creation Time

Action Result Status

Narmal

Showing 1to0 9 of 9

Processinput Input 2002-08-01 16:33:48:504 Wiew Text
SProcessState Lnknoran 2002-08-01 16:33:40: 565 Wiew Text
ProcessOutput Input 2002-08-01 16:33:49:555 Wiew Text
Productlookuplnput Input 2002-03-01 16:33:48:644 Wiew Text
MergeProductAndinventoryOutput Output 2002-03-01 16:33:49:495 Wiew Text

InventoryLlookuplnput Input 2002-08-01 16:33:48:734 Wiew Text
MergeProductdndinventarynput Input 2002-08-01 16:33:49:365 Wiew Text
ProductlookupOutput Output 2002-08-01 16:33:45:894 “iew Text
InventoryLlookupOutput Output 2002-08-01 16:33:49:225 Wiew Text

||
’7 ’7’7 EE Local intranet A

]

The M essages tab displays the following information:

Message
Name

The name of the message.

Message Type | The message type may be either Input or Output

Creation Time | The time the message was created.

View Text The View Text link displays the message in a new browser

window, as shown below.

Runtime Administration of Processes

205

http://ckeller-lp/Process/eXtendComposerProcess/getMessageConten

<7urml version="1.0" encoding="UTF-8" 7=
- <EngineResponse:>

- <Message>
— <![CDATA[
<?xml version="1.0" encoding="UTF-3"2>
<MESSAGE>
<output:
<PRODUCTRESPCNSE:
<3KU>DADTT77</SET>

<CATEGORY>Kitchen</CATEGORY>
<MAME>Oak Butcher Block</NANE:
<DESCRIPTICN=>FProfessional grade butcher block with kniw
<MANUFACTURER:>Dadio</MANUFACTURER>
<LISTPRICE>295</LISTFRICE>
<IMAGEFILE>BEblock. jpg</ IMAGEFILE>
<IMAGEWIDTH>411</IMAGEWIDTH>
<IMAGEHEIGHT=>Z7 1</ IMAGEHEIGHT>
<INVENTORYSTATUS>In Stock</ INVENTORYITATUS:
</PRODUCTRESPONIE>
<f Output>
</MEZSAGE>
11=
=/Message=
=/EngineResponse:>

=
4 | »

Process Detail: Log

206

The Log tab summarizes logged events of various types. See below.

rameset for Composer Process Detail Acti icrosoft Internet Explorer
file Edit Yiew Favortes Tools Help ‘ﬁ-\édrESS Iﬁﬂ hittp:#/gearter2-p<CTutorial fexteN dCompa 'I @ Go |
= D i
Back Farward Stop Refresh Home
exteNd Composer
Novell
Frocess Manager
Log Detail for Process: PreductinquirylLookup
ID Parent ID Started Completed Status Action Result Status
375 374 2002-08-01 16:59:53:00 20020801 16:59:57:00 Completed Naormal
Act ies Detail | Messages
Date & Time Event Type Event Source Description
20020801 P :
16:53:54:00 S{gftisds Productinquirylookup The process has started
2002-08-01 q Bl
16:53:54.00 DL executing data link: DL
20020801 Activity -
165015400 Startad Productlookup The activity has started
2002-08-01 A o
16:59:54:00 DL1 executing data link: DL1
2002-08-01 Activit -
16:53:54.00 Sfa::;c?’ InventorylLookup The activity has started
24903;.0.?:0(\1(\ activityReturn(375, Productlookup) ;I
[&] [2= Localintranet 4

Process Manager User’s Guide

At the bottom of the window (scroll down as necessary), you'll find checkboxes
that you can use to control the types of events summarized in the table.

Log Filter Showing 1 to 19 of 19
¥ HNotice I Debug W Errar W Process W Activity _ Refresh |

Select the checkboxes of interest, then click the Refresh button to bring up a
listing of logged events (appropriately filtered).

Runtime Administration of Processes 207

208 Process Manager User’s Guide

Testing

Environmental Differences between Design-Time
Testing and Server Testing

There are significant environmental differences between animation-based “ step
through” testing in Composer and server-side (deployment) testing. Both types of
testing are needed, obvioudly, to verify the processes and servicesyou build. Some
environmental differencesthat you should be aware of are detailed in the table

below.

Requirement

Testing in Composer

Testing on the Server

Console views
and
administrative
monitoring

Not available in a non-
deployed, design-time
environment

Administrative consoles are
available

Logging

Messages go to Output
pane of main Composer
window

Messages visible in Log tab
of console

Testing of long-
running
processes

Not practicable in a
design-time setting
(some processes may
take days or weeks)

Can and should be done
here

Data persistence

No database required

Database must be
configured for Process
Server’s use

Testing

209

Requirement

Testing in Composer

Testing on the Server

Visual depiction
of running
process’s state

Available at animation
time (canvas view
updates as process
runs)

No canvas (graph) views in
this release

Processinstance
info

Process IDs start at one
at the beginning of each
design session, then
increment as new
process instances are
executed. With each
launch of Process
Designer, the Process
ID numbering is reset to
begin again at one.

Process IDs are generated
continuously and never
reset to one.

Runtime
variables for:
* Connection
names

* Client
credentials

* Log File Paths
*DTD URIs

* XSL URIs

* Send Mail
Server

* XML Inter-
change URIs

Often point to locations
on local machine, for
design and test
purposes

Should be set to point to
locations on production
Servers and Web

Triggering

Processes can be
executed either from a
Process Execute action
inside an animating
component, or directly
from one of the
animation toolbar
buttons

Every process must be
deployed with a service that
can kick it off

Process Manager User’s Guide

Performance Tuning

Configuration Options

Process Server performance can be tuned in various ways. The necessary adjustments are
accomplished by editing the xc_process_config.xml file. For a SilverStream app server
install, this file would be located in (for example)

D:\Silver stream3.7\eXtendComposer\lib.

Cache

The Process Server cache is managed by changing the values of <PROCESS CACHE>.

Sleep Time

The value of the <SLEEP> element control sthe number of secondsthe Process Server waits
in adelay loop before checking to seeif any in-memory processes have exceeded their
<CUTOFF> period. (See below.)

Cutoff Period

The value of the <CUTOFF> element controls the maximum number of seconds aprocessis
allowed in memory without any activity. If the<CUTOFF> for any in-memory processis
exceeded at the end of a <SLEEP> period, then the processwill be purged from memory. It
is, however, till in persistence in the database and can still reenter an executable state,
albeit more slowly than if in memory.

Total In-Memory Process Instances
Thevalue of the<SI ZE> element controlsthe the maximum number of processesthat will

be allowed in memory before swapping occurs.

Performance Tuning 211

212 Process Manager User’s Guide

Process Management Glossary

Activity

An activity isaunit of work within a process model, representing a business task. On an operational
level, an activity is anamed operation with a signature that specifiestheinputs, outputs, and possible
faults associated with the operation. The activity is separate from itsimplementation. The
implementation (which can be any Composer component type, or any Component service) performs
atask on behalf of the activity.

Addressee
The Addressee property (which exists only on the Web Service Receive activity type) providesaway

to tag activity instances with alabel, typically corresponding to the name of an individual in the
organization.

Asynchronous
A mode of operation in which work is done independently and in parallel with other work. (That is,
there are no time-order dependencies between parties.) In software terms, an asychronous task

executesin its own thread. The term “fire and forget” is often used when referring to a process that
has been spawned asynchronously. See also Thread and Spawn, below.

Business Process Management (BPM)

Business Process Management isthe study of ways to model business functionsin terms of their
component activities and participant roles.

BPML
Business Process Modeling Language: an XML grammar for describing workflow, created and

managed by the Business Process Management Initiative (http://www.bpmi.org). It is roughly
comparablein scopeto WSFL. Process Manager follows WSFL closely; it does not adhereto BPML.

Process Management Glossary 213

http:\\www.bpmi.org
http:\\www.bpmi.org
http:\\www.bpmi.org

214

Call

A call event is one of two lifecycle events that can invoke an instance of a process. (The other such
event is spawn; see below.) Unlike a spawned process, which returns an instance ID immediately, a
called process does not return until the process flow has completed. A call operation implies
synchronous processing, whereas a spawn operation is equivalent to “fire and forget.”

Choreography

A particular set of sequenced operationsis often colloquialy referred to (in a business-process
context) as a choreography. See also PIP, below.

Control Link

A control link isthe WSFL construct that definesasingle step in theflow of control from one activity
to another.It specifies the “ activity traversal order” so that the workflow engine knows how to get
from a given activity to the next one in sequence.

Correlation ID

In Process Manager, aCorrelation ID is an arbitrary user-specified string or number that can be used
to associate datain a given message part with atransaction context. Correlation 1D isacommon term
for thiskind of user-defined label, but it isnot aformal WSDL or WSFL concept.

Cyclic Graph

A cyclic graphisagraph that permits links from downstream nodes back to upstream nodes, forming
aloop. Such graph patterns are not allowed in Process Manager.

Data Link

A datalink isan atomic unit of dataflow, specifying one or more data sources along with one or more
datatargets. The sources and targets are activities within the running process. While in most cases
dataflow will mirror control flow, it is possible that data can bypass certain activitiesin aflow or
arrive at atarget by amore direct path than might be specified in the control flow. Hence, datalinks
do not aways follow control links.

Dead-Path Elimination

Dead-path elimination refers to the special |ookahead operation that the Process Server conducts
every time a conditional expression (alink condition, for example) evaluatesto false. When flow
along agiven path isno longer possible due to afalse link condition, all downstream links must be
marked as fal se so that joins can be evaluated in the course of operation. (The path goes from being
dead to being known-false.) If this were not done, downstream joins could hang indefinitely.

Process Manager User’s Guide

Exit Condition

An exit condition isaboolean value (determined by runtime eval uation of user-supplied X Path logic)
that indicates whether agiven activity executed normally. Outgoing control links cannot be followed
until and unlessthe exit condition istrue. If the exit condition is false, the activity will execute again
(if allowed by the timeout and retry settings).

Factoring

In programming, factoring is the attempt to split code into smaller, more generic (and thus reusable)
units of work.

Fan-Out

A type of execution pattern in which a collection of N discrete works items givesrise to an
asynchronous invocation of N instances of a particular process designed to work on the work items.

FlowlInstancelD

Every WSFL processthat isinvoked viaa spawn operation is required to return aunique
Flowlnstancel D to the caller immediately. This ID can be atimestamp or can be an arbitrary string,
but it must uniquely identify aparticular instance of arunning process. Thisvalueisused asthe input
value of other lifecycle operations (such as enquire; see Lifecycle Interface, below).

Flow Model

The flow model isthe XML representation of the directed graph that models the business process. In
other words, it isthe al-encompassing set of activities, control links, and data links that comprise a
given process. A flow model makes the choreography of a process explicit, such that an execution
engine can instantiate the process at runtime and understand how to manage the flow of control over
the process'slifecycle.

Graph

An abstract visual representation of a system of nodes. In Process Manager terms, agraph of a
processiswhat you draw on the Process Designer canvas.

Implementation

The concrete realization in software of an activity. Every activity must have an implementation.

Join Condition

When two or more activities target the same successor activity, the decision of whether the successor
activity can be invoked may depend on factors that can be evaluated only when upstream activities
have finished executing. The runtime engine makes this decision based on user-supplied logicin a
join condition. The join condition takes as input the respective boolean values (or “truth values”) of
incoming links. It performs some user-specified set of logical operations on the link values and

Process Management Glossary 215

216

returnstrue or false. A true condition means that the join target will be invoked. Fal se means that
control flow ends at thejoin. Note that unlike link and exit logic (which both use XPath), joinlogicis
expressed in asimple pseudocode-like boolean logic. The join condition, in other words, has no
knowledge of messages or message parts (nor any data whatever). It only knows about link boolean
values.

Lifecycle Interface

The Lifecycle Interface is the WSDL -defined web service interface that describes the basic set of
operations that all WSFL processes must support. These operations include spawn, call, suspend,
resume, enquire, and terminate. These operations are global in scope (they apply to the process-as-a
whole) and can be managed administratively.

Link Condition

A link conditionisan X Path expression that resolvesto aboolean val ue. Its value determineswhether
agivenlink can betraversed by the process engine at runtime. The XPath expressiontypically utilizes
data from an upstream activity’'s output.

Long Running

Some processes can take days or weeks to run to completion. Such processes are called long-running.

Map Policy

A map policy specifies how data should be mapped in the special case where two or more data links
target the same message part(s). A policy of Last Writer Wins (LWW) meansthat newly arriving data
will overwrite older data. A policy of First Writer Wins (FWW) means that once any data have been
written, data arriving later will be ignored. Map Order meansthat for any given incoming message,
XPath-to-X Path mappings will occur inthe order listed in the Messages tab of the activity’s property
sheet, completely ignoring timestamps.

Message

In WSFL and WSDL, amessage is an abstract definition of abundled set of data. The logical parts
that are bundled together as part of the message structure are known as message parts (see below).
Activities operate on messages; hence, theinterfaceto an activity can be specified in terms of itsinput
and output messages.

Message Part

In WSFL and WSDL, amessage part isalogical unit of amessage. In Process Manager terms, the
parts correspond to XML documentsthat activity implementations can inspect, modify, and transform
into new parts of new messages.

Process Manager User’s Guide

Metadata

Data about data. In Process Manager terms, the metadata representation of a processis anon-visual
XML representation of a given process's actual structure and attributes. The metadata blueprint of a
processis used by Process Server to construct process instances at runtime.

Notification

A one-way operation is aweb service execution pattern in which the service proactively sends a
message, with no expectation of aresponse. It is“fireand forget” pattern. However, itisoftenused in
conjunction with the One-Way pattern (see below) in order to complete an asynchronous roundtrip
communication with a partner. In such a case, the web service that implements the Notification
pattern will typically embed correlation information in the outgoing message, so that information
received in alater One-Way operation can be “matched up” with the transaction context of the
Notification. See also One-Way, bel ow.

One-Way

A one-way operation isaweb service execution pattern in which the endpoint receives amessage (but
does not send one back to the initiator). The one-way web service is a passive receiver. See also
Notification.

Operation

In WSDL, an operation is a specified sequence of message transfers (described in terms of named
input messages and output messages). See also Port Type, below.

PIP®

RosettaNet Partner Interface Processes. a set of de facto industry standards that define business
interaction patterns between trading partners. The interaction patterns include sequencing and
timeout rules for various kinds of common business transactions. The patterns, because of their
intricate sequencing (time domain) requirements, are often called choreographies.

Port Type

In WSDL, aport typeis anamed set of operations. (An operation, in turn, is a specification of a
particular time-order sequence of particular messages.) Four port types are supported by WSDL :
One-Way, Request-Response, Salicit-Response, and Notification. (Seeindividua definitions of these
items.)

Process

A description of the activities, control-flow patterns, and data-flow relationshipsinvolved in
performing a particular business task. WSFL (see below) describes processes as web services
compositions. It isassumed, in WSFL, that processes (or workflows) are automated.

Process Management Glossary 217

218

ProcessID

A number that uiniquely identifies aprocessinstance (arunning process) within the Process Server at
runtime.

Request-Response

A request-response operation is aweb service execution pattern in which the service receives a
message, then sends a (correlated) message back to the initiator. The request-response web serviceis
apassivereceiver. It responds with an output message.

RosettaNet

A non-profit industry organization dedicated to “the adoption and promotion of open content and
open transaction standards in €l ectronic commerce across the Information Technology (1T),
Electronic Components (EC) and Semiconductor Manufacturing (SM) supply chains.” See
http://www.r osettanet.or g/ for details.

Semaphore

A flag value meant to signal the availability or unavailability of (typically) afunction or file, in the
context of thefile'slock status.

Service Provider

A service provider is the party responsible for performing a particular activity within abusiness
process.

Service Provider Type

In order to maintain separation between the definition of a business process and its implementation,
WSFL defines activities as being implemented by abstract service provider types rather than by
specific service providers (which can later be mapped to the types). The service provider type and its
associated interface are defined by aWSDL document. Service providers must properly implement a
given web service interface in order to handle a particular activity in the business process.

SOAP

Simplified Object Access Protocol: alightweight XML-based protocol for exchange of information
in adistributed environment. The protocol definition consists of three parts. an envelope that defines
aframework for describing what isin a message and how to processit, agrammar for specifying

application-defined datatypes, and agrammar for representing remote procedure calls and responses.

Solicit-Response

A solicit-response operation is aweb service execution pattern in which the service sends a message
proactively, then receives aresponse. In this scenario, the web serviceisan initiator of atransaction.
Since aresponse from a participant is required as part of the pattern, this type of web serviceis

Process Manager User’s Guide

http://www.rosettanet.org/

assumed to execute synchronously. (That is, on sending its message, it blocks until the reply message
comes back.) See also Request-Response, above.

Spawn

Spawn is aWSFL-defined lifecycle operation that allows one-way (asynchronous) invocation of a
process. (The corresponding synchronous launch event isthe call event. See further above.) When a
processis spawned, it returns aresult (the Process I D) immediately.

Subprocess

A process that has been called by another process.

Synchronize Subprocesses Activity

The Synchronize Subprocesses Activity is one of Process Manager’s core activity types. Itisa
specia -purpose activity type designed to aid in the collection and collation of data from multiple
spawned instances of a component. The implementation to the activity is often called a“ merge
component,” becauseit typically mergesincoming data. The Synchronize Subprocesses Activity thus
constitutes the “fan-in” piece in afan-out/fan-in scenario.

System Fault

The runtime engine raises a System fault when an activity implementation generates an
unhandled exception; or a subprocess activity returns afault message; or the runtime
engine encounters a message or message type that it doesn’t know how to handie; or a
Timeout fault occurred and was not handled by an activity designed for that purpose. (Inthis
case, two faults are actually generated: one Timeout and one System.) When a System fault occurs,
the process instance produces a message called _SystemFault, with apart name called (also)
_Systenfaul t.

Thread

An execution context with no time-order dependencies on other operations occurring in other
contexts.

Transition Condition (Link Logic)

Asaprocessis run, the execution engine must be able to recognize when a particular activity is
finished, identify the next activity in the flow, and make a decision as to whether the next activity
should be invoked or not invoked, based on user-specified transition logic. A transition condition
determines whether flow should continue aong the current path. Thetransition condition is specified
in XPath and aways evaluatesto true or false.

UDDI

Universal Description, Discovery and Integration specification (maintained by
http://www.uddi.org).A scheme for exposing business services viaweb-based registries.

Process Management Glossary 219

http://www.uddi.org/
http://www.uddi.org/

220

Waiting Activity

Any time an activity (such asasubprocess or Web Service Receive activity) isin await state, waiting
to receive aresponse to some request that was made asynchronously by another activity, itissaid to
be awaiting activity.

Web Service Receive

The Web Service Receive Activity is one of the core Process Manager activity types. It isapassive,
“listening” activity type meant to implement the Request-Response or One-Way transaction patterns
described by WSDL.

Web Services Composition

A process model based on web services. Essentially, any WSFL process.

Workflow

In the context of BPM, aworkflow is a process. WSFL favors the term process because its authors
anticipate that most automated workflows will rely, ultimately, on Web Services. (In more traditional
workflow systems, activities tend to center around human-mediated activities.)

WSDL

Web Services Description Language: An XML format for describing web services as a set of
endpoints operating on messages. The operations and messages are described abstractly, then bound
to aconcrete network protocol and message format to define an endpoint. Related concrete endpoints
are combined into abstract endpoints (services). Services are thus defined using six major elements:
types, message, portType, binding, port, and service.

WSFL

Web Services Flow Language: An XML format for describing workflow processes as linked
activities. The activities may be web services, or other workflow processes.

Process Manager User’s Guide

Index

A

action
Browse Waiting Activities 182
Lock/Unlock Waiting Activity 186
Process Execute 168
Reassign Addressee 189
Release Waiting Activity 171, 177
activities

creating 81

finding 173
activity

end 31

fan-out 63, 155

fault handler 97

lookup 173

renaming 83
sourcevs. target 50
start 31
Synchronize Subprocesses 154
types 31
waiting 162
Web Service Receive 131, 153
Web ServiceSend 128
activity detail 203
activity icons 112
activity implementation 171
Activity Tool 81
Addressee 163, 177, 180, 199
administration 193
Addresseeviews 199
lockinfo 199
Process Database Info 195
ProcessEnginelnfo 195
queue 197
statistics 195
agorithm, execution 47
agorithm, process execution 47
alignmenttogrid 144
Alt key and grid alignment 144
AND Split 54
animation 100
animation and deployment testing 209
architectural summary 66

asynchronous fan-out 61
autodiagramming 147
autolayout 147

B

backgroundimage 146

batch processing 155

best practices 68

bombsight view 110, 144

BPM, justification for 23

branchlogic 53

breskpoints 101

Browse Waiting Activities 163

Browse Waiting Activitiesaction 182, 184
Business Process Management (BPM) 21

C

call 41,168
Call vs. Spawn (Process Execute) 167
canvas
background images 146
customization 145
choreography, retry 92
circular layout 142
collisions, data-mapping 94
Comparing Browseand Find 184
COMPONENT_FAULT_SUBCODE 96
compound branch logic 54
concurrent processing 61
condition
join 91
conditional branching 53
conditions
exclusive-OR 56
exit 47,90
configuration of database 13
Configure Database 195
configuring the engine's database 14
connection pools 13
Consoles, Process Manager 194
CorrelationID 173
CORRID 198
customgridsize 144
customization 145

221

Cutoff Period 211
cyclicgraph 85

D

database
configuring Process Engine 195
synchronization 14
WebLogic setup 13
WebSpheresetup 13
datalinks 67, 86
datamapping 86
datamerging 38
DB2 12,13
deadlinks 37
dead path elimination 37
debugging 100, 104

Deferred Mode 36, 37, 49, 55, 57, 92

Delete ProcessInfo 194, 196
deployment 170

Device Offset 146
DoBatch 64

document purging 197
DOM view 106

dynamic fan-out 61

E
edgerouting 148
End Activities 31
engine 195
engine (see also Process Server) 195
enginedatabase 13
environmental differences 209
error, link creation 57
Exit Condition
specifying 90
exit condition 35, 47
specifying 90
Expression Builder 88, 91
externa datastore 59

F
factoring 24

222

Fail on First Fault 159

fan-out 155, 170

Fan-Out/Fan-In 61
recursive 63

fan-out component 63

FAQ 44

fault 105

Fault Codes 96

Fault Handling 97, 159

fault handling 95

Fault Messages 95

filter 201

filter criteria (admin) 201

Find Waiting Activity. 161

First Writer Wins 95

First writer wins (FWW) 38

FVW 94

G

grid behavior 144
GVXMLProperties process 74

H

Hierarchical Layout 147

hierarchical modelling 66

human interaction scenarios 163
human participation in processes 179

I
icons, activity 112
images, background 146
Immediate Mode 36, 49, 92
Immediate Mode, 55
implementation, activity 82
tasksvs. 31
Initilize Database 195
Initialize database 14
initialize database 196
Inputl DOM 158
input message
named same as output 58
inquire (lifecycleevent) 41

installation, databasesand 14
Internal Revenue Service 55
Invalid Configuration message 13
iterating on an external datastore 59

J

JMS Components 60
IMSDestination 60
JMSMessagelD 60

JMS Receiveaction 60

IMS Service 63

JNDI Name, connection poolsand 13
join condition 35, 56
JoinLogic 55

jpeg or .gif imageon canvas 146
JsP 179, 182, 183, 187

Jump to Process 196

L

Last Writer Wins 95
Last writer wins (LWW) 38
layout modes 147
lifecycleevents 40
link
conditions, specifying 84
creation 83
link condition 84
links 33
auto-alignment 147
backward-facing 85
creating 83
data 86
triangle shape 98
XPath 84
Link tool 114
Lock/Unlock Waiting Activity 163
Lock/Unlock Waiting Activity action 186
Lock Duration 188
LockedBy 177,186, 188
Lockeduntil 177, 186
lock until 198
Lock Waiting Activity 198
log 203, 206
logged events 207

logic, link 84

log messages 104

LogTab 202

lookup methods, activity 173

looping 56, 58
asynchronous 61
reentrancy and 85

Lww 94

M

MainCode 96
Manage Activity Queue button 197
Map Order 38, 94
mapping 86

start activity 89
mapping an activity toitself 58
Map Policy 38,94
merge component 62, 157
Merge Edge Channels 148
message

fault, contentsof 105

pats 33

show/hide 106

Timeout fault 97
message maps 86
message naming 86
message parts 33
messages 32, 203
Messages Tab 126
metadata description 41
multipleUndo 144

N

naming conventions

message 86
navigation of consoles 199
New Process 73
Non-Exclusive OR Split 54

@)

Object Properties 51
Addressee 163

223

Object Propertiespanel 52, 84, 110, 122
ODBC datasource 12

Oracle 13

ORSplit 54

Orthogonal Layout 143
orthogonal routing 148
overview of Process Manager 66
overview pane 110

Overview Window 144
overwritepolicy 94

owner 198

P
panning 144
paralel processing 61
ParentID 170
Passed Part, 169
PendingActivity document 176, 182, 186
pending processes (admin) 199
performance 46
picture, adding to canvas 146
policy, overwrite 94
portType 52
Priority 163, 177
process
create 73
human interactionwith 179
input template 90
invoking viaaction 167
new 73
triggers 165
process architecture summary 66
Process Database Configuration 14
process databaseinfo 195
Process Designer GUI 109
process engine database 195
Process Execute action 167, 168
ProcessiD 47
Processinput, mappingto 89
Process Manager Architectural Layers 41
ProcessModel Pane 110
ProcessOutput, mappingto 89
Process Properties 117
Process Server
database 13
Process Server Execution Model 47

224

Process Statistics Summary 195
ProductinquiryProcess 72
property sheets 50

purging of documents 197

Q

queue 197
QueueDate 177
queues 167

Queue Status Tab 197
QuickFilter 201

R

Reassign Addressee 163
Reassign Addressee action 189
recursive process graph 63
reentrancy 57

reentrant loops 85

Release Waiting Activity 161
Release Waiting Activity action
rename activity 83
Request-Response pattern 149
resume 41

resynchronization 155
resynchronizing database 13
Retry Count 92, 93

Retry Interval 92, 97

Retry Interval, 93

Returned Part 169

runtime execution algorithm 47
Run to Breakpoint 101

S

scenarios, work-group 181
sequencing 34
server start/stop 46
Service Providers

adding types 80
Set Breakpoint 101
setup, database 14
Shapestool 114
SilverStream app server 14

171, 177

Sleep Time 211
snap behavior 144
SOAPtrigger 165
spawn 41, 49, 168
Spawn (Process Execute) 167
Spawn as Subprocess... 169
Spawn as Subprocess of Parent ID 170
split-or-work strategy 65
start/end activity mapping 89
Start Activities 31
statistics 195, 197, 199

filter/sort 201
status, queue 197
Status Tab, ,admin console 200
Step Into/Over 101
Sticky Tools 144
SubCode 96
Subprocess 113
summary of WSFL workings 66
summary statistics (admin) 195
suspend 41
Sybase 13
Sychronize Subprocesses Activity 65
Symmetric Layout 143
synchronization 63
synchronization failure 37
synchronization logic 34
synchronize database 14
Synchronize Subprocesses Activity 113, 154, 169
SYSTEM_FAULT_MAINCODE 96
System Faults 95
Systemlog 104

T

Tasksvsactivities 31
templates

processinput 90
terminate 41
Terminated By 196
testing and debugging 100
Texttool 114
threaded subprocesses 62
TilePicture 146
Timeout 39, 92, 97
_TimeoutFault 99, 150
TIMEOUT_FAULT_MAINCODE 96

Timeout Faults 96
toolbar 110
tools
link 114
sticky mode 144
text 114
tools,shape 114

transition condition 34

TreeLayout 143
trianglelinkicon 98
trigger types 165
troubleshooting

database synchronization

U

UNHANDLED_MESSAGE_SUBCODE 96
user accessto queued work 179

Vv

viewport rect 144

W

Waiting Activities 160

Waiting Activity 162

WebL ogic-specific setupinfo 13

Web Service Receive 113, 131, 149, 153, 171,

173, 179, 181

Web ServiceSend 113, 128
Web Services Flow Language 30
WebSphere-specific setupinfo 13

workflow 22

workflow, human 163
workflow models, human-centric 179

workgroups 179

workhorse process 63

work items 163, 197
work queues 167
World Offset 146
WSDL 33,52, 153

WSFL 21
best practices 68
loopingand 56

225

summary of key points 66

X
XML Template 90
XORjoin 35
XOR-Split 53
XPath 35, 88
inlinks 84
XSL 210
x-y alignment of links 147

Z

zooming, interactive 144

226

	Contents
	1 Welcome to Composer and Process Management 21
	2 Preparing to Model a Process 47
	3 Creating and Testing Processes 71
	4 The Process Designer User Interface 109
	5 Advanced Topics 149
	6 Waiting Activities and Addressees 165
	7 Runtime Administration of Processes 193
	A Testing 209
	B Performance Tuning 211
	C Process Management Glossary 213

	About This Guide
	Getting Started with Process Manager: 5-Minute Tutorial
	How Do I Deploy It?

	Welcome to Composer and Process Management
	What Is Process Management?
	Why Automated Process Management?
	Process Design versus Application Design
	Modularity
	Example of a Simple Straight-Through Process

	Process Management and Emerging Technologies
	How Does a Process Differ from a Service?
	Large versus Small Units of Work
	Long-Running versus Straight-Through
	Wait States and Persistence
	Parallel Execution

	Process Management Terms and Concepts
	Activities, Messages, and Links
	Activities
	Start Activities and End Activities
	Tasks, Activities, and Implementations
	Messages
	Links

	Sequencing, Timing, and Process-Level Logic
	Control Flow Logic
	Link Transition Conditions
	Activity Exit Conditions
	Join Conditions

	Deferred Mode versus Immediate Mode
	Dead Links and Synchronization Failure

	Map Policy and Data Merging
	Timeouts and Retries

	Data Flow Patterns
	Lifecycle Events
	Process Manager Architectural Layers
	Process Manager FAQ
	Can I Create or Edit Composer Components within Process Manager?
	Can I Begin Designing a Process Even if Some Activities Have not Yet Been Implemented?
	Can I Run a Process in the Design-Time Environment for Test Purposes?
	Is It Possible to Import WSFL Flow Models Created in Another Environment?
	Can I Edit My Process-Model Metadata in an XML Editor?
	Does Process Manager Support Parallel Split, Exclusive Choice, and other Branching Constructs?
	Does Process Manager Support Looping?
	Can I Use the Process Manager for Document Routing and User Agent Functionality?
	Will Automated Processes Put Huge Demands on My System?
	Can I Start and Stop a Server While a Process is Running?
	Must All Activities Be Implemented as Web Services?
	Must Processes be Exposed as Web Services?

	Preparing to Model a Process
	Process Server Execution Model
	The Design-Time View

	Flow Control Strategies
	Branch Logic
	Conditional Branch (XOR-Split)
	AND Split
	Non-Exclusive OR Split
	Compound Branch Logic

	Join Logic
	Looping
	How Safe Looping Can Be Accomplished
	Mapping an Activity to Itself
	Iterating Against an External Data Store
	Delegating Loop Behavior to an Activity Implementation
	Fan-Out
	Component-Controlled Fan-Out/Fan-In
	Recursive Fan-Out/Fan-In
	Synchronize Subprocesses Activity

	Process Architecture in Review
	Taking a Best-Practices Approach

	Creating and Testing Processes
	Example: A Simple Straight-Through Process
	Description

	Process-Building Basics
	Creating a New Process
	About Service Provider Resources
	About Service Provider Type Resources
	Creating Activities
	Creating Links
	Link Transition Logic
	Links That Point the “Wrong Way”

	Message Mapping
	Message Naming
	How to Define Message Mappings
	Data Mapping for Start and End Activities
	Selecting a Process Input Template

	Applying Flow Logic at the Activity Level
	Timeouts and Retries
	Map Policy
	LWW, FWW, and Map Order

	Fault Messages and Fault Handling
	System Faults
	Fault Codes

	Timeout Faults

	Fault Handling
	Animation and Testing
	Aids to Debugging
	Watching System Messages at Animation Time
	Inspecting Messages

	The Process Designer User Interface
	Main Features
	The Process Designer Window
	Toolbar

	Graph Elements
	Activities
	Links
	Text Boxes
	Shapes

	Menu Commands
	Process Properties
	Object Properties
	Activity Properties
	Composer Component
	Activity Tab
	Messages Tab
	UI Tab

	Web Service Send
	Web Service Send Activity Tab
	Messages and UI Tabs for Web Service Send

	Web Service Receive
	Web Service Receive Activity Tab
	Messages and UI Tabs for Web Service Receive

	Subprocess
	Synchronize Subprocesses
	Link
	Link Tab
	UI Tab for Links

	Graph Object Properties
	Process Messages Tab
	Graph UI Tab

	Selected Node Properties on UI Tab
	UI Tab (Selected Node Properties)

	Text Object Properties
	UI Tab

	Layout Properties
	General Layout Tips
	Snap and Grid Behavior
	Multiple Undo
	Sticky Tools
	Overview Window
	Customizing the Canvas
	Using Custom Backgrounds
	Autolayout Options

	Advanced Topics
	Web Service Receive
	Multiple Implementations for a Single WSR Activity
	Implementation Independence

	Synchronize Subprocesses Activity
	Data Mapping in the Synchronize Subprocesses Activity
	Input
	Input1
	Output

	Fault Handling

	Waiting Activities
	“Waiting Activity” Actions
	Waiting Activities and Human Interaction

	Waiting Activities and Addressees
	Understanding How Processes Are Triggered
	Process-Related Actions
	The Process Execute Action
	Data Returned by a Spawned Process
	How to Create a Process Execute Action
	More about the Process Execute Dialog
	Spawn as Subprocess of Parent ID

	Deployment and the Process Execute Action

	Find Waiting Activity Action
	A Scenario
	Finding a Waiting Activity
	The Find Waiting Activity Dialog
	Find tab
	Message tab
	The PendingActivity document

	Release Waiting Activity Action
	The Release Waiting Activity Dialog

	Human Participation in Processes
	Addressees
	The Role of the Web Service Receive Activity

	Browse Waiting Activities Action
	Where to Use the Browse Waiting Activities Action
	How It Works
	Comparing Browse and Find

	Creating a Browse Waiting Activities Action

	Lock/Unlock Waiting Activity
	Prerequisites for Locking/Unlocking an Activity
	Creating a Lock/Unlock Waiting Activity Action

	The Reassign Addressee Action
	Reassigning an Addressee
	Creating a Reassign Addressee Action

	Runtime Administration of Processes
	Server Console Usage
	Process Manager Console: Main Tab
	Process Statistics Summary
	Process Engine Info
	Process Database Info
	Jump to Process
	Delete Process Info
	Manage Activity Queues
	Navigation

	Process Manager Console: Status Tab
	Status Filter

	Process Manager Console: Log Tab
	Detail View for a Process Instance
	Process Detail: Activities Detail Tab
	Process Detail: Messages
	Process Detail: Log

	Testing
	Environmental Differences between Design-Time Testing�and Server Testing

	Performance Tuning
	Configuration Options
	Cache
	Sleep Time
	Cutoff Period
	Total In-Memory Process Instances

	Process Management Glossary
	Index

