Novell
exteNd
Composer

5.2 ®
‘ JMS CONNECT USER’S GUIDE

Novell

Legal Notices

Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Titleto the Software and its documentation, and patents, copyrights and all other property rights applicablethereto, shall at all timesremain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Softwareis protected by copyright
laws and international treaty provisions. Y ou shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. Y ou do not acquire any rights of
ownership in the Software.

Patent pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

exteNd Composer JMS Connect User’s Guide
June 2004

Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks

ConsoleOne is aregistered trademark of Novell, Inc.
eDirectory isatrademark of Novell, Inc.
GroupWiseis aregistered trademark of Novell, Inc.
exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
iChain is aregistered trademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.
Novell eGuide is atrademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names"Apache" and " Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSSOF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR

Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows these conditionsin the documentation
and/or other materials provided with the distribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: " This product includes software devel oped by the IDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJavaViews, Visua Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License

Version1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditionsand the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software devel oped by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "IndianaUniversity Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE ISPROVIDED "ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos

This Softwareisderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C

W3C® SOFTWARE NOTICE AND LICENSE

Thiswork (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.Thefull text of thisNOTICE in alocation viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modificationsto thefiles, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASI1S," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FORANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGESARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at al times remain with copyright holders.

Contents

ADOUL ThisS BOOK.o 7
1 Welcometo exteNd Composer and JMS ittt e 9
AbOoUt eXIEN CONNECES. . . . ot e e e e e e e 9
What IS the IMS ConNeCt? e e e e 10
What Needs D0ES JMS AdAresSS?o ittt e e e e e e 11
What IS Enterprise MeSSaging?. . . . o ..ttt ittt it e e e e e e 11
What Are MeSsage QUEUES?.ottt et ittt e e e e e e e e e e e e 12

Will My Message-Based Application Be SIOW? 12

Is Messaging Reliable? e e 13

Can Messages Be Part of Transactions?t e e e e e 13
What IS Point-t0-PoiNt MESSagiNg? o o oottt e e e e e e e e 13
What Is Publish/Subscribe Messaging? 14
What About Delivery GUaranteeS? ot e e e e 15
How Are Messages StrUCIUrEA?o e e e e e e e 15
Header INformation 15

BOAY T PO . . o oo e e e e 16

How Are Messages Retrieved?o e e 16
Message FIlteriNgo 17
Request-Response Versus Store/FOorward.t e 17
What DOES JMS NOt COVEI?ottt e e e e e e e e e e e e e e 18
About exteNd’s IMS COMPONENT. . . . oottt et et et e e e e e e e 18

2 Getting Started with the JIMS Component Editor i e e e 19
Creating @ JMS CoNNECLION RESOUICEottt e e e e e et e e e e e e e e e 19
About Expression-Driven CONNECHIONSottt e e e e 19

AbouUt QUEUE CONMNECHIONS ittt et e e e e e e 20

ADbOUt TOPIC CONNECHIONS e e e e e e e e e e 25
Creating XML Templates for Your COmMPONENt ottt e e e e e e e e 29

3 Creating @ JMS COMPONENTottt ettt et e e e e e e e et e e et e 31
Before Creating @ JMS COMPONENT. oottt e et e e e e e e e e e e 31
About the IMS Component Editor WINAOWo e e e e 34
About the Native ENVIrONMENt Paneo e e 36

4 Creating JMS ACHiONSttt 37
ADOUL ACHIONS. . . .t e 37
Actions Unique to the JMS Component Editor e 37
OPtIONS Tab . . oo e 38
Message Body Tab e e 38
Message Header Tab e 39

The Send Message ACHON.t e 39
Priority, Mode, and TiIme 10 LIVeo e 40
Destination QUEUE/TOPIC.t e e e e e e e 40

R UM AdOrESSt 42

The Browse MeSSages ACHONottt et et e e e e e e e 46

The Receive MeSSage ACHONot e e e e e 50

A
B

6

The Message Transaction ACHION e e e e e e 54

What Happens When 1 Issue a COmMMIt? e e e e 55
What Happens When I Issue a Rollback? e e e 55
What Happens if | Leave the Session Unresolved? e e 55
What Actions Are Included in @a Message Transaction?ttt e 55
What Can | Use Message Transactions FOr?. e e 56
Using Other Actions in the IMS Component Editor e e e 57
WOrKing With MESSagESot e e 59
Mapping Data into the Message Header it e e e e e e 59
Limitations on Header Mapping oottt e e e 60
Mapping Data to CUSIOM Properties.ot e e e e e e 61
Limitations on Property Mapping oottt i e e 62
WoOrking With XML MESSA0ESottt e et e e e e e e e e e e e e e e e 62
Working with CopybooK MESSagES.ot e e 65
CopYbOOK MESSagE SOIUP . . . v vt ittt it e e e e 66
Copybooks and the Native Environment Pane. e 67
Copybook-Specific Context Menu [temMS 68
Mapping Data Between Copybook and DOMS. o e e e 69
Working with Message Filters (Selectors).o e 71
Limitations ON Filteringo oo e 72
Filtering by BOdy TYPe . . . o oot e e e 72
ReqUeSt-RESPONSE MESSAGING. v vttt ettt e e ettt e e e et e 73
Temporary QUEUESottt ettt et e e e e e e e 73
ECMAScript and the IMS CONNECL. e e e e e 75
ECMASCript Method SUMMArY e e e e e e 77
TRE IMS SEIVICE . . . ottt e e e e 79
ADOUL the JMS SEIVICE . . .o o e e e e e e e 79
MUIIDIE LIS ENErS . . e e e e e e e e 80
Creating @ JMS SEeIVICEottt e e e e 80
Deployment of the JMS ServiCe e e e 83
How Do | Manage Deployed JMS SerViCES? . . . oottt e e e e e e e e e 83
JM S GlOS S A .« v vt ottt e e e 85
MESSAGE SEIECION SYNTAX . . vt ittt e e e e 89
LIt EralSo e 89
10 1= 111 1= £ 89
EXPrESSIONS . . .ttt e 20
(0] 4] = T4 1Yo} o1 920
NUILVAIUES . . e e 91
Special CoNSIAEratioNSo e e 91
Message Headers and Properties. e 93
Header Fields Defined by JMSo e 93
JMSCorrelationID o e 93
IMSDElVEIrYMOE o e e 93
JMSDESHINALION . . . ot e 93

IM S XD At ON .« . .t e e 93
JMSMESSAQEID 94

IV S P IO Ity . . . e 94
JMSRedeliVered.o e 94
IM S REPIY T 0. .« . e e 94

IM ST IS AMI .« . o oottt e 94

I S T P oot e 94
MESSagE PrOPertiESo 95
JMS-Defined Properties 95
Provider-Specific Properties. e 95
User-Defined Properties. oo e e e e 96

JMS Connect User’s Guide

About This Book

Purpose

This guide describes how to use the IMS Component Editor, which is the design-
time portion of the exteNd Composer JM S Connect.

Audience

Thisbook isfor systems analysts, programmers, and others who intend to build
applications or services that require a M essage Oriented Middleware component,
where the host MOM system in question is compatible with Sun Microsystems
Java Message Service API.

Prerequisites

This book assumes prior familiarity with the exteNd Composer design-time
environment and Composer application-building metaphors. You should also be
familiar with MOM and JM S concepts.

Additional documentation

For the complete set of Novell exteNd exteNd Director documentation, see the
Novell Documentation Web Site:

http://www.novell.com/documentation-index/index.jsp.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8

JMS Connect User’s Guide

Welcome to exteNd Composer and JMS

Welcome to the Novell exteNd JMS Connect User’s Guide. This Guide is acompanion to the exteNd
Composer User’s Guide, which details how to use all the features of Composer except for the various
Connect Component Editors. So, if you haven't looked at the Composer User’s Guide yet, please
familiarize yourself with it before using this Guide.

exteNd Composer provides separate Component Editors for each Connect, such as the IMS Connector.
The special features of each Component Editor are described in individual Guides like this one.

Before you begin working with the IMS Connect, you must have it installed into your existing exteNd
Composer. Likewise, before you can run any Services built with this connector in the exteNd Server
environment, you must have already installed the corresponding Server software for this connector into
exteNd Server.

NOTE: To be successful with this Component Editor, you should be familiar with Message Oriented
Middleware (MOM) concepts and the particular MOM environment (e.g., MQSeries) into which you will be
deploying. While the pages that follow offer a brief introduction to important enterprise-messaging
concepts, a truly comprehensive approach is beyond the scope of this guide. In any event, the discussion
offered here is in no way meant to substitute for the documentation supplied by your JMS provider.

About exteNd Connects

Novell exteNd is built upon a simple hub and spoke architecture. (Seeillustration below.) Thehubisa
robust XML transformation engine that accepts XML documents, processes the documents, and returns
an XML document. The spokesor Connects are plug-in modulesthat “XML enable” sources of datathat
are not XML -aware, bringing their datainto the hub for processing as XML. These data sources can be
anything from legacy COBOL/V SAM managed information to Message Queuesto HTML pages.
exteNd Connects can be categorized by the integration strategy each one employsto XML enable an
information source. The integration strategies are areflection of the major divisions used in modern
systemsdesignsfor Internet based computing architectures. Depending on your B2Bi needs, exteNd can
integrate your business systems at the User Interface, Program Logic, and/or Datalevels.

Welcome to exteNd Composer and JMS 9

Mainframes

== RPC ‘@ 4 r‘
3270 @

CICS RPC 5250

ﬁ XML
COmposer
r HTML
[JoBC |

Enterprise
Messaging

Databases

Hub and spoke architecture allows exteNd to provide enterprise-wide XML integration via
Connects (EEs).

What Is the JIMS Connect?

JavaMessaging Service (IMS) isaJava-based interfacefor using M essage Oriented Middleware (MOM)
services, such as provided by IBM’s MQSeries or Progress Software’s SonicM Q. In order for distributed
applications running on Java application servers to make full use of messaging systems, Java-language
clients and Java middle-tier services must have acommon way to “speak to” enterprise messaging
products. IMS provides that capability.

User
Interface

Novell exteNd can integrate business systems at the User Interface, Program Logic, and/or
Data levels.

10 JMS Connect User’s Guide

The exteNd JM S Connect allows you to create Components that can send, receive, and/or browse
messages in queues administered by a IM S-based MOM system, using transacted or non-transacted
sessions. JM S-enabled exteNd services are able to enjoy the dual benefits of asynchronous processing
and transport-layer independence that characterize enterprise messaging. Using the IMS Connect, you
will be able to create powerful, flexible applications that make optimal use of system resources while
carrying out potentially complex operationsinvolving remote invocation of objects, assured “once only”
delivery of notifications, and/or distributed transactions.

What Needs Does JMS Address?

The IM S standard was built with several goalsin mind:

+ Provide an Application Programming Interface suitable for creating and manipulating messagesin
formats compatible with existing MOM products.

+ Support many different message-content types, including messages containing Java objects.

+ Facilitate the devel opment of heterogeneous applications that span operating systems, machine
architectures, transport mechanisms, and computer |anguages.

JMSisabroadly applicable Java API that is intended to be layered over awide range of existing and
future M essage Oriented Middleware systems, much the same way that INDI (the Java Name and
Directory Interface) is layered over existing name and directory services.

The complete IMS specification isavailable at http://java.sun.com/products/jms/.

What Is Enterprise Messaging?

An enterprise messaging system provides for the transport and storage of messages. Messages, in this
context, are packets of information that are produced and/or consumed primarily by enterprise
applications (rather than humans). They may contain key-value pairs, XML documents, serialized Java
objects, or arbitrary byte streams.

Oneof the main attractions of Message Oriented Middlewareisitsability to serve as an abstraction layer
that hides the details of message transport and delivery from diverse clients that may need to
communicate across networks that use different communication protocols. By acting asa
communications gateway, MOM shields clients from connectivity issues that would otherwise impede
development of distributed applications.

Another aspect of enterprise messaging that makes products like MQSeries and SonicMQ so useful is
their ability to link processes in asynchronous fashion. Asynchronous processing means that the
exchange of data between parties does not depend on either party being in direct, realtime contact with
the other. The alternative to asynchronous processing is synchronous processing, wherein ahost and a
client (or apeer and a peer) must be in continuous conversation with each other for the entire duration of
asession, without interruption. (An example of a synchronous interchange would be the use of aRemote
Procedure Call in a CICS environment.) While synchronous operations are required for some types of
interactions, there are many kinds of business processes that do not require synchronous communication
between participants. For such processes, asynchronous interaction generally makes the most efficient
use of resources and can dramatically improve system productivity.

Welcome to exteNd Composer and JMS 11

http://java.sun.com/products/jms

A synchronous process is analogous to arestaurant in which every customer orders his meal directly
through a conversation with the chef and the kitchen takes no other orders while the current customer’s
meal is being cooked. Customers line up and must wait, one by one, for every meal to be individually
prepared. Asynchronous processing would be analogous to the more familiar scenario of waiters and
waitresses conveying orders between customers, kitchen, and bar concurrently. In the latter case, the
waiters serve as amessaging channel to the kitchen, where orders are * queued up” and finished mealsare
dispersed on an as-available basis. In this example (as in many business processes), much better
efficiencies are possible with asynchronous order processing than with synchronous order processing.

The time-domain decoupling afforded by messaging systems helps make robust, fail-safe operation
possible. One party can be busy—or even offline—when the other party sends (or receives) its message.
The sender can continue processing without needing to wait for an acknowledgement from the receiver.
A network or server can go down, yet not affect the transmission or receipt of amessage.

What Are Message Queues?

Asynchronous messaging depends on the fact that messages are sent not to clients, per se, but to queues,
which exist independently of the client processes that use them.

A queueisaholding areaor repository in which data elements (messages, in this case) are stored for
eventual retrieval. InaMOM environment, client applications needn’t know how message queues are
structured, maintained, or stored; the details of queue management are handled by the MOM vendor (or
“IJMSprovider”). Like server nodes, queuesare often clustered for purposes of reliability, scalability, and
load balancing.

While FIFO (first-inffirst-out) and LIFO (last-in/first-out) queues are familiar constructs in computing,
no order of retrieval is presumed in a message queue. Rather, the retrieval order is open. This means
custom prioritization schemes can be applied to messages so that retrieval order (i.e., consumption order)
isdependent on aclient’s needs. Properly exploited, thisfeature can lead to more efficient overall system
operation. Processing of low-priority messages can be deferred to a time when system resources are
available; low-priority items needn’t interfere with the processing of high-priority ones.

The process of inspecting messages without removing them from the queue is called browsing.

NOTE: The length of time messages are held in a queue, the maximum number of messages a queue
can handle, and the manner in which resource overruns are handled are not defined by the JMS standard.
Consult your MOM vendor’s documentation to learn more about these issues.

Will My Message-Based Application Be Slow?

12

While some latency occursin all messaging systems, this does not mean that applications that use
messaging are, of necessity, slow. The asynchronous processing made possible by messaging affordsthe
possibility of multitasking inside an application, which could (depending on the application) actually
boost throughput. For example, while a customer adds items to his shopping cart, the shopping-cart app
can trigger an inventory-checking component, while another component can cal cul ate shipping charges,
while another component pulls customer information out of adatabase, etc., all operations taking place
concurrently.

The choi ce of messaging model (Point-to-Point versus Publish/Subscribe) hasimportant implicationsfor
latency. See “What |'s Point-to-Point Messaging?’ and “What |s Publish/Subscribe Messaging?’ further
below.

JMS Connect User’s Guide

Is Messaging Reliable?

While the quality-of-service guarantees offered in Message Oriented Middleware solutions can vary
greatly, and while real-world reliability often depends on administrative issues (such as cluster size and
availableresources), all IM S-based messaging services are required to offer assured, once-only delivery
of messages as an option for applications where reliability is paramount. IMS also allows for
configurationsthat provide alessrobust quality of service, so that in cases where speed of delivery might
be more important than assured, once-only delivery, atailored solution can be built. Thereliability of
JM S-based messaging solutionsis thus configurable.

In general, strong reliability guarantees are a common feature of JM S-based systems.

Can Messages Be Part of Transactions?

One of the things that makes JM S messaging attractive from areliability standpoint is that message
sessions can (optionally) incorporate transaction control. A transacted session groups an arbitrary set of
produced and/or consumed messages into asingle logical unit of work. When atransaction commits, all
of itsinputs (in terms of messages) are acknowledged and all outputs are sent. When atransacted
message session rolls back, any produced messages are destroyed and any messages consumed during
the session are recovered.

An an example, suppose an application builds agroup of five messages. A requirement of the application
isthat the entire group of five messages must be sent as a batch; or else none of the five must be sent.
Using aJM S Component, the application could be structured such that messages are built and sent
individually, but if a connection closes prematurely (or any other error condition happens, involving any
of the five messages), the entire group is rolled back.

NOTE: JMS does not require that MOM products support distributed transactions. But if such support
exists, JMS does require that such support be implemented via the JTA (Java Transactions API)
XAResource interface. Consult your JMS provider’s documentation to see what kind of distributed
transaction support, if any, is available in your MOM environment.

NOTE: Since distributed transactions are controlled via JTA, the use of message-session commit or
rollback commands in this context will cause a JMS TransactionlnProgressException to be thrown.

What Is Point-to-Point Messaging?

Two main messaging paradigms are implemented by MOM vendors: Point-to-Point (PTP) messaging,
and Publish/Subscribe (which is discussed further below). Some vendors implement one or the other;
some implement both.

NOTE: Point-to-point does not imply a synchronous connection in the context of messaging (as it does
in some other contexts, such as discussions of RPC).

In the PTP model, any JM S client can—in theory—send messages to any other IM S client, subject only
to administrative constraints. PTP is an asynchronous, queue-based, peer-to-peer model in which queues
aretypically created administratively and have indefinite lifespans. A queueisaways availableto
receive and hold messages sent to it whether the client or clients using that queue are online or not.

With PTP, aqueue functions much like amailbox. One application might send messages to a queue;
another application might retrieve messages from the same queue. A common case isthat a client will
have all its messages delivered to a single queue.

Welcome to exteNd Composer and JMS 13

Point-to-Point

Messaging
Jqueue
—
N .
I
I
|
Application #1 Application #2

The Point-to-Point model is a queue-based, peer-to-peer model in which queues act,
essentially, as mailboxes. Client applications can post to a queue, or (as with Application #2
above) browse, retrieve messages one-by-one, or continuously poll the message queue.
Optionally, clients can implement a MessageListener that will act on messages as they are
received.

What Is Publish/Subscribe Messaging?

14

The Publish/Subscribe (or pub/sub) messaging model—implemented by some (but not all) MOM
vendors—differs from Point-to-Point in the following ways:

+ Queuesaretypicaly shared by multiple clients.

+ Queues are organized hierarchically into nodes called topics. (Thisisatypical implementation
scheme, although in fact IMS places no restrictions on what a topic can represent.)

+ Eachtopic acts as akind of mini-message-broker that accumulates and distributes messages
addressed to it.

Publish/Subscribe

| client | client
_\ topic hierarChY/' _

i
I~ e~ S

e I client
" client / / \ o

| client ' D client

In a Publish/Subscribe system, queues are usually organized hierarchically into nodes
called topics. Clients may subscribe and/or publish to any number of topics.

Clientsin thiskind of system use message producer/consumer objects called TopicPublishersand
TopicSubscribers. A client may subscribe to more than one topic; and a client may be both a subscriber
and a publisher.

JMS Connect User’s Guide

TopicSubscribers can be durable or non-durable. If aclient needs to have access to all messageson a
given topic (including ones that may be published when the subscriber is offlineg), a durable
TopicSubscriber must be used. Otherwise, the client will have access only to messages that are queued
during the lifetime of a given message-retrieval session.

NOTE: Messages are served to subscribers in serial fashion. Because topics are shared resources (and
because only one subscriber can be serviced at a time), the potential for latency is somewhat greater in
pub/sub messaging than in PTP.

What About Delivery Guarantees?
JMSS supports two modes of message delivery.
+ ThePERSISTENT mode instructs the message broker to write the message to a secure store to

insure that the message is not lost in transit due to a system failure.

+ TheNON_PERSISTENT mode does not require the IM S provider to log the message to stable
storage; thus, the message can, in theory, be lost. (The tradeoff here is one of performance. Thereis
less overhead with aNON_PERSISTENT message.)

A IMS provider isrequired to deliver aNON_PERSISTENT message at-most-once. This means that
while amessage may sometimes be lost, it will never be delivered twice.

By contrast, the delivery guarantee for PERSISTENT messages is once-and-only-once. Thismeansa
provider failure must not cause a message to be lost in transit; and the message must not be delivered
more than once.

NOTE: Once-and-only-once delivery has the important limitation that it cannot and does not guarantee
against message loss due to message expiration, resource overruns, or administrative destruction criteria.
Configuring a message system for maximum reliability requires a thorough understanding of
administrative issues surrounding the particular MOM solution in use.

How Are Messages Structured?

Enterprise messaging products treat messages as persistible, lightweight entities that consist of aheader,
abody, and (in the case of JM S-aware products) a property list.The header containsfields used for
message routing and identification. The body contains the application databeing sent. Propertiesprovide
amechanism for adding arbitrary descriptors (actually implemented as extra header fields) to messages
so that clients—or their providers—can select or “filter” messages on the basis of application-specific
criteria.

Header Information

Among the message characteristics defined in the header are an expiration time (which setsthe message's
useful life); message priority (based on a number ranking, from zero to nine); and delivery mode
(PERSISTENT or NON_PERSISTENT).

The header fields defined by IMS are;

+ JMSCorrelationlD
+ JIMSDestination

+ JIMSDdiveryMode
+ JMSExpiration

+ JMSPriority

¢ JMSMessagelD

Welcome to exteNd Composer and JMS 15

*

*

*

*

JM STimestamp
JM SRedelivered
IJMSReplyTo
JMSType

In addition to these predefined header fields (which every IMS message is required to have), there are
IM S-defined property fields (many of which are optional), provider-specific properties, and user
properties.

The semantics of the various header and property fields are discussed in detail in Appendix C.

Body Types

JMSS defines five message body types:

1

M apM essage—a message in which the body consists of a set of key-value pairs, wherein the keys
are Java Srings and the values are Java primitive types. Entries may be accessed by sequential
enumeration or randomly by name. (The ordering of key-value pairsis undefined.)

TextM essage—a message in which the body is ajava.lang.Sring.

StreamM essage—a message Whose body consists of a stream of Java primitive values (which are
filled and read sequentially).

Obj ectM essage—a message containing a Serializable Java object. (For collections of objects, one
of the collection classes defined in JDK 1.2 can be used.)

BytesM essage—a message comprising any arbitrary stream of uninterrupted bytes. (This category
isintended for encoding a binary payload, or a special payload to match a vendor’s native message
format.) In Composer, the content of a BytesM essage should be Base64-encoded.

NOTE: Regardless of type, all IMS messages are read-only once posted to a queue.

The JM S Connect allows you to define message payloads using any of the five canonical IM S body
types. In addition, the IM S Connect offers two predefined message types (which are actually wrappers
for two of the predefined IM S body types):

*

*

XML—AIllows you to send or receive an XML document (based on any XML template of your
choosing) as a message. The complete DOM representation of the XML document is available to
you for mapping and/or manipulation via ECMA Script and X Path; and you can add new nodes to
the template document. This message type wrappers the JM S-defined TextM essage type.

Copybook—Allows you to send or receive a COBOL copybook (as a BytesM essage).

See Chapter 4 for more information.

How Are Messages Retrieved?

JMSS provides two mechanismsfor client retrieval of messages:

16

1

Synchronous message retrieval, wherein atimeout value can be specified for terminating the
session should no response occur.

2 Asynchronous retrieval viaa Messagelistener object whose onMessage () method contains

application logic for processing incoming messages.

NOTE: Here, the terms “synchronous” and “asynchronous” refer to the queue/client communication
session rather than any relationship between sender and client. Senders can always post to queues,
whether or not receiving clients are online; in that sense, all messages are asynchronously received.

JMS Connect User’s Guide

In synchronous retrieval, atimeout value can be specified in milliseconds. If no expiration valueis
specified, the “receive” session will block indefinitely, until a message arrives. On the other hand, if a
zero wait timeis specified, queued messages that meet the applicable selection criteria (if any) will be
retrieved—and the session terminated—immediately.

Asynchronous retrieval treats messages like events and allows clients to be notified immediately (and
take action on) messages as they arrive. Application logic triggered by an onMessage () handler
processes messages transparently, with aminimum of latency. A broadcaster/listener metaphor appliesin
this case.

Oneway tothink of itisthat in asynchronous-retrieval scenario, the client ispulling datafrom the queus;
in the asynchronous case, the queue is pushing data at the client.

Message Filtering

Some applications need to filter and/or categorize the messages they send or receive. In some instances,
thereceiving application can simply inspect the message body and decide—from the message contents—
whether the message should be acted upon, or discarded. But it is often more efficient for selection
criteriato be exposed in the message header, so that the message body need not be parsed in order to
determine if the message is one that should be acted upon.

Exposing message selection hintsin the header portion of a message isacommon tactic when multiple
receiving apps are pointed at the same queue. The application that is best suited to handling agiven
message type can harvest just the messages it needs, while other applications can act on messages better
suited for them. Administratively, it is more efficient to set up one queue (with multiple receivers
accessing it) than to set up multiple queues, each with a dedicated receiver.

Another factor to consider isthat when potential selection criteriaare visible (viathe header) toaJMS
provider, the provider can avoid delivering messages to clients that might not need them. In effect,
filtering can be delegated to the IMS provider. (This strategy isimportant in Publish/Subscribe

messaging.)
JM S defines amessage selector that can be used for screening messages on a queue. The selector isan

expression (with syntax similar to SQL 92) that evaluates to true or false when header field and/or
property values are substituted for their corresponding identifiersin the selector.

The exteNd JM S Connect implements sel ectorsin the M essage Filter tab of the Native Environment pane
for all Browse and Receive actions; this alows you to filter incoming messages according to whatever
criteriayou select.

See Chapter 4 and Appendix B for more information.

Request-Response versus Store/Forward

A request-response scenario involves an application sending a message in anticipation of receiving a
reply. For example, acredit-clearing application might package customer information into amessage and
send that message to a queue, where areceiving application retrieves the message, performs the
necessary database queries and other processing, then repliesto the original message.

Thisisdifferent from the store/forward or “fire and forget” type of scenario inwhich amessage producer
simply places a message on a queue and terminates (or goes on to other processing). Messages that are
sent in this fashion are sometimes called datagrams.

Welcome to exteNd Composer and JMS 17

The JM S Connect supports both kinds of scenarios. However, the request-response scenario must (inthis
version of the connector) be implemented using individual Send Message and Receive Message actions.
(That is, there isno one action type that encapsul ates arequest-response session.) If the request message
and response message share the same queue, the associated send and receive actions can occur serialy in
the same JM S Component. But if the outgoing message will be placed on a different queue than the
incoming reply, then two separate IM'S Components must be created, since only one queue can be used
per IM S Component.

See Chapter 4 for additional information.

What Does JMS Not Cover?

The JM S standard defines numerous message-system behaviors and data types but does not address
administrative concerns, performance tuning, security, configuration issues, nor avariety of other IMS-
provider functions.

Among the areas not addressed by IMS are:
+ Load balancing

+ Scalability

+ Transparent failover

+ System-wide error naotifications or warnings
o User authentication

« Securetransport of messages (privacy)

+ Communications protocols
+ Message type definitions stored in arepository

Consult your MOM vendor’s documentation for information about any of these features.

About exteNd’s JMS Component

18

The JMS Connect creates IM S Components which can beincorporated into exteNd services. Much like
the XML Map Component, the IMS Component is designed to map, transform, and transfer data between
incoming or outgoing messages and XML templates. It is specialized to make IMS callsinto IM S-aware
messaging systems; automatically fill out needed header information based on information you supply
viaa setup wizard; and handle details of packaging message contents according to constraints imposed
by IMS.

Like any data-exchange operation, the IMS Component relies on a Connection Resource. The
Connection Resourcein turn specifies important information regarding ports, channels, user identity,
password, queue location, and so forth. Once you' ve set up a JMS Connection Resource, you can use it
to set up aJM S Component that sends messages to (or retrieves messages from) the queue specified in
the resource.

JMS Connect User’s Guide

Getting Started with the JIMS Component Editor

Aswith other exteNd Connects, creating a usable IM S Component actually begins with creatinga JMS
Connection resource, via which communication can occur with a message queue or topic. You will also
want to prepare any XML template documents (XML skeletons, DTDs, and/or XSL stylesheets) with
which your component will work. Getting these items ready is the subject of this chapter.

Creating a JMS Connection Resource

Before you can make use of a JM'S Component, you must create a Connection Resource to access the
gueue or topic your component will be sending messages to or receiving messages from.

Every Connect, including the IM S Connect, uses its own Connection Resource type. The different
Connection Resources (for JDBC, JMS, ECI, etc.) require varying numbers and types of parameters,
appropriate to the external data source in question. The setup wizard changes appearance dynamically to
reflect this.

Once you create a Connection Resource, you can reuse it for various JM S components that you create,
rather than creating anew connection each time. Also, aConnection Resource, once created, can to some
degree be self-configuring in that its datafields can be linked to ECM A Script expressionsthat control the
parameter val ues associated with the connection (see below).

About Expression-Driven Connections

The “ Create a New Connection Resource” wizard will let you specify connection parametersin two
ways: as Constantsor as Expressions. By default, thewizard's parameter-entry fiel ds are constant-based,
which means that the value you enter for any given parameter is utilized, unchanged, every time the
connection is used. An expression-based parameter, by contrast, gets its value programmatically, at
runtime, viaan ECM A Script expression which you supply in the wizard at design time. The value of an
expression-driven parameter, therefore, can be different each timeaconnection isused, depending on the
conditions prevailing at runtime.

For example, one very simple use of an expression-driven parameter in a JM S Connection would be to
define the Connection User name as a PROJECT Variable. (From Composer’s main menubar, choose
Tools, then Configuration, then select the Project Variablestab.) Then you could assign the val ue of
the PROJECT Variable to the Connection User parameter. This way, when you deploy the project, you
use the“ Project Variable Remapping Panel” feature of the Deployment Wizard to update the Connection
User name to avalue appropriate for the final production environment.

As ancther example, suppose Queuel in your MOM environment is scheduled for maintenance on the
15th day of every month, in which case Queue2 should be used instead. You could assign an expression
to the Queue Name parameter of the connection:

(new Date) .getDate() == 15 ? "Queuel" : "Queue2"

Getting Started with the JIMS Component Editor 19

You can a so use an ECM A Script expression to read information from afile on disk, call aJavaobject in
the Application Server, etc. Thus, the use of expressions to provide parameter information brings great
flexibility and power.

» To switch a parameter to Expression-driven mode

1 Position the cursor in the field that you want to attach an expression to. (Note that this does not
apply to the Connection Type field nor to checkboxes.)

2 Click the right mouse button to bring up a context menu.

Create a Mew Connection Resource [%]

Enter information to attach to a JMS gqueue via JNDI Commaon JNDI parameters are provided. Your provider
may not require all these parameters. Consult your JMS Provider's manual for the right queue access

settings. Enter specific parameters in the "Provider Parameters” field {(each name=value pair separated by a
vettical bar"|"). Use the Test button to check your connection andfor gueue. You may save Connections that

Tail.
Test |

- [Default

Connection Type IJMS JMDI Quede Connection

Queue Mame I

) (I
Connection Factory Mame I G
User D I Focte
Password | Select Al
Subcontextl BT

Transacted [it M/
Use Server Initial Context [7] FERIECE:.

Initial Context Factory Icom sunjndifsc Clear All wiF acto _'I

Constant

] e

YRR

Help ¥ Exprassion Back Finish Cancel

3 Select Expression from the menu. A blue Expression Editor icon appears to the right of the
parameter field.

4 Type an ECMAScript expression into the field, or click the Expression Editor button and use the
pick listsin the Expression Editor to build an expression that eval uatesto avalid parameter value at
runtime.

About Queue Connections

20

In Message Oriented Middleware systems, queues are administered resources that JIM S gains accessto
viaits own administered objects. JIM S administered objects encapsul ate information about destinations
and connections in such away that client apps can use these objects through interfaces that remain
portable.

JMS requires that administered objects (ConnectionFactories and Destinations) be placed in a INDI
namespace. Therefore, the connection resources needed by an application can always be obtained via
JNDI. But if the name(s) of the provider’s ConnectionFactory objects are known to a given Java
application, that application can create its own connection(s) without going through JNDI.

exteNd offers aconnection-via-JNDI facility by default (since INDI access to administered objectsis
guaranteed to be availablein every IMS MOM). But in the case of IBM’s MQSeries, exteNd also offers
the option of obtaining queue connections directly using MQSeries classes (which is to say, without
going through JNDI). This offersthe user easier setup options, with amore vendor-tail ored user interface.

NOTE: If a vendor-specific “direct connection” facility is available, it will be listed as a pulldown-menu
choice in exteNd Composer’s “Create a New Connection Resource” Wizard. You can also verify the
availability of provider-specific connection facilities by checking the contents of <PROVIDERS> under the
JMS <COMPONENT_FACTORY> node of your xconfig.xml file. (The xconfig.xml file is located in your
Composer/bin directory).

JMS Connect User’s Guide

> To create a JMS Queue Connection Resource Using JNDI

NOTE: The settings in the following graphics are typical for a JNDI connection to a JBrokerMQ
destination.

1 Seect File>New>xObject, then open the Resour ce tab and select Connection. The “Create a
New Connection Resource” Wizard appears.

Create a New Connection Resource x|

A Connection resource is used to establish communications with an Connectar data source orwith a server
using HTTF authentication. You need to create connections for each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Compaoser Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not contain the characters: ;7" = = || Mames are case insensitive.

lame:

SarmpledMs)

Description:

Furpoze:
Input:
Cutput:
Remarks

o) cancet

2 TypeaName for the connection object.
3 Optionally, type Description text.

4 Click Next.
Create a New Connection Resource x|
Enter information to attach to a JMS gueue via JNDI. Commaon JMDI parameters are provided. Your provider
may not require all these parameters. Consult your JMS Provider's manual for the right gueue access
settings. Enter specific parameters in the "Provider Parameters” field {each name=value pair separated by a
vertical har "), Use the Test button to checkyour connection andfor queue. You may save Connections that
fail.
Connection Type ‘JMS JMDI Queus Connection |L|
Queue [ame IqueueD \E| [Default
Connection Factory Mame IconnectiDnFactDr\f
User 1D I
Password I
Subcontext I L
Transaction Mode ‘false: Mone |L|
Use Server Initial Context [
Initial Context Factory |com_sun_jndi.cusnaming.CNCb{Factor\f ™
[Back][Finish][Cancel]

5 Using the Connection Type pulldown menu, select IM S JINDI Queue Connection (for Point-to-
Point messaging). The contents of the pane will update to reflect the setup information needed for
the particular connection type you’ ve chosen.

6 Enter the name of the queue you want to usein the first field (called Queue Name).

7 Inthe Connection Factory Name field, enter the QueueConnectionFactory if you are creating a
gueue connection, or TopicConnectionFactory if you are creating a topic connection.

8 Enter Connection User and Connection Password info, as applicable. (Optional)
9 Enter the INDI Subcontext, if needed. (Optional)

10 Under Transaction Mode, enter False: None, True: Local or XA: Server if you intend to issue
session-level Commit or Rollback commandsin your IMS Component.

Getting Started with the JIMS Component Editor 21

22

11

12

13

14

15

16

17

18

19

NOTE: Issuing JMS Commit or Rollback statements in a IMS Component’s action model without
the proper Transaction Mode selected will result in exceptions being thrown.

Check the Use Server Initial Context box if you would like your service, once deployed, to obtain
a ConnectionFactory locally, on the server, at runtime. This means you do not have to carry out
steps 15 to 19 below in order for the deployed service to obtain a queue or topic connection.
However, if you intend to send and receive live messages over the connection at design time, you
should also complete al applicable steps below, because Composer needs to be able to find the
ConnectionFactory objectsit needs on the remote host. The following settings are aimed at helping
Composer establish connections remotely.

Using the vertical scrollbar to the right of the text fields, scroll down to expose the remaining
fieldsin the dialog. See below.

Create a New Connection Resource E

Enter information to attach to a JMS gueue via JNDI. Comman JMNDI parameters are provided. Your provider
rmay not require all these parameters. Consult your JMS Provider's manual for the right queue access
settings. Enter specific parameters in the "Provider Parameters” field {each name=value pair separated by a
vettical bar*["). Use the Test buttan to check your cannection andfar gueue. You may save Connections that
fail.

(STl T il MEa R 05 JMDI Clueue Connection n
_I Test

Use Serer Initial Context [[Defauit
Initial Cantext Factory Icom sun.jndifscontext RefF SCantextF acto

Pravider URL |

JNDI Authentication | Scroll down

Security Principal I ﬂ_ to expose __’

Security Credentials | adlf:llletilzgal

Provider Parameters |

-

[Back l[Finish][Cancel]

Inthe Initial Context Factory field, enter the name of your system’s INDI context factory, such as
com.sun.jndi.fscontext.RefFSContextFactory. (Contact your administrator to obtain this
information.)

Inthe Provider URI field, enter the URI representing the location of the IMS provider’s (or MOM
vendor’s) JINDI context resources. For example, this may |ook something like

iiop://localhost: 3506 or file:///D/M QSeries/javalfscontext.

(Optional) Inthe INDI Authentication field, enter any required INDI Authentication string (as
provided by your administrator).

(Optional) In the Security Principal field, enter any required JNDI Security Principal’s name (as
provided by your administrator).

(Optional) Inthe Security Credentialsfield, enter any required INDI Security Credential string (as
provided by your administrator).

(Optional) Inthe Provider Parametersfield, enter any provider-specific name/value pairs that are
necessary for the MOM environment in which you are operating. Separate name/value pairs by a
pipe character (]). For example, parameters for an LDAP provider could be;

java.naming.security.authentication = value |
java.naming.security.credentials = value | java.naming.security.principal
= value

NOTE: Spaces are shown here for clarity. Do not use spaces in your provider-param string.

Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create JM S Components.

JMS Connect User’s Guide

20 Click Test to seeif your connection is successful. The Test Options dialog appears.

Connection Test Options X|

Ready ta test the connection. As part afthe connection test
you may send and receive a live message. This may cause
problems ifthere are other clients connected to the destination.
Select"es" to send and receive a live message as part of the
test. Select"Mao" to justtestthe connection.

[

21 The Test Optionsdialog asksif you want to send a live message as part of the test of the
connection’s integrity. Clicking the Yes button causes Composer to send a live message (of type
TextMessage, with a unique Correlationl D) to the queue or topic for which you're establishing a
connection.

“[ne][cancel |

NOTE: Use care not to send this test message in a production environment (i.e., using a live
queue, with potentially many listeners) unless you are reasonably certain that any existing
applications in that environment won't be adversely affected.

Click No if you wish to create the necessary connection objects but not send any test message.

22 Click Finish. The newly-created connection resource xObject appears in Composer’s Connection
Resource detail pane.

> To create an MQSeries Queue Connection Resource

1 Select FilesNew>xObject, then open the Resour ce tab and select Connection. The “ Create aNew
Connection Resource” Wizard appears.

Create a New Connection Resource ll

A Connection resource is used to establish communications with an Connector data source orwith a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not contain the characters: i *" = = | Mames are case insensitive

Hame:

Sampledils)

Description:

FPurpose
Input:
Output:
Remarks:

) et J(_coreet

2 TypeaName for the connection object.
3 Optionally, type Description text.

Getting Started with the JIMS Component Editor 23

24

4 Click Next to go to the Connection Info pane of the Wizard.

Enter the information required to attach to an MGQSeries topic via JMS Bridge. All the specific MGSeries
parameters are provided as they are defined. You will need to enterthe Topic name and host name of the
gueue manager. For all other parameters refer to the user documentation. Checking 'Default' makes this
Cannection the initial selection when requesting a JMS MQSeries Topic Connection. Use the Test buttan to
checkyour connection. You may save connections that fail the test.

Cannection Type B ueue Connection n Test |
Gueue Mame | - [Default
User ID |

FPassword |

Host Mame |
Port |
Clueue Managerl

Channel |

Temparary Model Queue | j

Help Back Finish Cancel

5 Using the Connection Type pulldown menu, choose JM S M QSeries Queue (for Point-to-Point
messaging). The contents of the pane will update to reflect the setup information needed for the
particular connection type you’ ve chosen.

Enter the name of the queue you want to usein the first field (called Queue Name).

Optionally enter a username in the Connection User field.

Optionally enter your password in the Connection Password field.

Inthe Host Name field, enter the name of your system’s MQSeries Host Machine Name. (Contact
your administrator, if need be, for thisinformation.)

10 Inthe Port field, enter the MQSeries Host Machine Port Number. (Contact your administrator, if
need be, for thisinformation.)

11 Inthe Queue Manager field, enter the M QSeries Queue Manager name for this queue (as provided
by your administrator).

12 Inthe Channel field, enter the MQSeries Host Machine Channel Name (as provided by your
administrator).

13 If you want to specify atemporary model queue, do so in the Temporary Model Queue field.

14 Usingthevertical scrollbar provided, scroll down to expose the remaining fields of the dialog. (In
this case, two checkboxes are exposed.) See below.

Create a New Connection Resource x

Enter the information required ta attach to an MQSeries topic via JMS Bridge. All the specific MQSeries
parameters are pravided as they are defined. You will need to enter the Topic name and host name of the
queue manager. For all ather parameters refer to the user documentation. Checking ‘Default' makes this
Connection the initial selection when requesting a JMS MQSeries Topic Connection. Use the Test hutton to
checkyour connection. ¥ou may save connections that fail the test.

Connection Type BIGS ueue Connection n Test |

Host Narme | 2l Defaut

© 00 N O

Fort |

Glueue Managerl
Channel |

Ternporary Model Queue I

BM CCSID | =l
Transacted [
Maon-JMS client [-
Help Back Finish Cancel

15 Under Transaction Mode, enter False: None, True: Local or XA: Server if you intend to issue
session-level Commit or Rollback commandsin your IMS Component.

JMS Connect User’s Guide

NOTE: Issuing JMS Commit or Rollback statements in a IMS Component’s action model without
the proper Transaction Mode selected will result in exceptions being thrown.

16 Check the Non-JM S Client checkbox if you wish the connection to be set up using MOM-native
facilities. (In this case, this means that M QSeries objects will be obtained directly, using vendor-
proprietary calls.)

17 Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create IM S Components.

18 Click Test to seeif your connection is successful. The Test Options dialog appears.

Connection Test Options x|

Ready to testthe cannection. As part of the connection test
you may send and receive a live message. This may cause
problems if there are other clients connected to the destination.
Select™es" to send and receive a live message as part ofthe
test. Select"Mo" to just testthe connection.

[7

19 The Test Options dialog asksif you want to send a live message as part of the test of the
connection’s integrity. Clicking the Yes button causes Composer to send a live message (of type
TextMessage, with a unique Correlationl D) to the queue or topic for which you're establishing a
connection.

[No][Cancel]

NOTE: Use care not to send this test message in a production environment (i.e., using a live
gueue, with potentially many listeners) unless you are reasonably certain that any existing
applications in that environment won't be adversely affected.

Click No if you wish to create the necessary connection objects but not send any test message.

20 Click Finish. The newly-created connection resource xObject appears in Composer’s Connection
Resource detail pane.

About Topic Connections

When aqueueis used in a Publish/Subscribe context (see“What |'s Publish/Subscribe Messaging?’), itis
called atopic. The differences between queues and topics are primarily administrative rather than
functional. Therefore, al of the comments regarding Queue Connections in the preceding section apply
equally to Topic Connections as well, except for the fact that in a Publish/Subscribe context, browsing is
not defined. If you need to use a Browse action, you must connect to a queue, not atopic.

> To create a JNDI Topic Connection Resource

1 Select File>New>xObject, then open the Resour ce tab and select Connection. The “Create a
New Connection Resource” Wizard appears.

2 Follow Steps 2, 3, and 4 for filling out the first panel in the wizard as described further above under
“To create a JM S Queue Connection Resource Using INDI” on page 21.

Getting Started with the JIMS Component Editor 25

26

3

12

13

Click Finish on thefirst panel of the wizard. A new panel appears:

Create a New Connection Resource x|
Enter information required to attach to a JMS topic via JNDI. Common JMDI parameters are provided. rour
provider may not require all the listed parameters. Consultyour JM3 Provider's manual for the right sefting to
access your gueue. Enter provider specific parameters in the "Provider Parameters” field {each name=value
pair separated by a vertical bar"|"). Selecttransacted to have session level cantrol of transactions. Check
'Default’ makes this Connection the initial selection when requesting a JMS JNDI Topic Connection

Connection Type |JMS JMDI Topic Connection |L|
Topic Mame IlopicD |E| [Default
Durable Subscriber I
Client 1D [
Connection Factary Mame IconnectiunFactDr\f
User ID I B
Password I
Subcontext I
Mo Local Messages [~
[Back][Finish H Cancel]

Using the Connection Type pulldown menu, select JIMS JNDI Topic Connection (for Pub/Sub
messaging). The contents of the pane will update to reflect the setup information needed for this
connection type.

Enter the name of the Topic in thefirst field (called Topic Name).

Enter a Durable Subscriber name. (Optional)

Enter aClient ID.

In the Connection Factory Name field, enter the TopicConnectionFactory name.
Enter Connection User and Connection Password info, as applicable. (Optional)
Enter the INDI Subcontext, if needed. (Optional)

Check the No L ocal M essages checkbox if you want to keep your component or service from
receiving messages that it may be sending to atopic that it is listening on. (In other words, check
this box if you want to keep a component from receiving its own messages.)

Scroll down to expose the rest of the panel’s fields. See below.

Create a New Connection Resource x|

Enter information required to attach to a JMS topic via JNDI. Commaon JHNDI parameters are provided Your
provider may not require all the listed parameters. Consultyour JMS Provider's manual for the right setting to
access your queue. Enter pravider specific parameters in the "Provider Parameters” field {each name=value
pair separated by a vertical bar"|"). Selecttransacted to have session level control of transactions. Check
‘Default' makes this Connection the initial selection when requesting a JMS JHDI Topic Connection.

Connection Type |JMS JNDI Topic Connection |~ |
Transaction Mode |false: Mane [>] (] (O pefault

Use Server Initial Context [

Initial Context Factory Icom_sun_jnd\.cosnaming.CNCb&FactoW

Pravider URL fiiop:filocalhost 3506

JNDI Authentication |

Security Principal I

security Credentials I

[=] J

Provider Parameters I

[Back][Finish][Cancel]

Under Transaction Mode, enter False: None, True: Local or XA: Server if you intend to issue
session-level Commit or Rollback commandsin your IMS Component.

NOTE: Issuing JMS Commit or Rollback statements in a JMS Component’s action model without
the proper Transaction Mode selected will result in exceptions being thrown.

JMS Connect User’s Guide

14

15

16

17

18

19

20

21

22
23

Check the Use Server Initial Context box if you would like your service, once deployed, to obtain
a ConnectionFactory locally, on the server, at runtime. This means you do not have to carry out
steps 15 to 19 below in order for the deployed service to obtain a queue or topic connection.
However, if you intend to send and receive live messages over the connection at design time, you
should complete all applicable steps below, because Composer needs to be able to find the
ConnectionFactory objects it needs on the remote host. The following settings are aimed at helping
Composer establish connections remotely.

IntheInitial Context Factory field, enter the name of your system’s INDI context factory, such as
com.sun.jndi.fscontext.RefFSContextFactory. (Contact your administrator to obtain this
information.)

Inthe Provider URI field, enter the URI representing the location of the IMS provider’s (or MOM
vendor’s) JINDI context resources. For example, this may |ook something like

iiop://localhost: 3506 or file:///D/M QSeries/javalfscontext.

(Optional) Inthe INDI Authentication field, enter any required INDI Authentication string (as
provided by your administrator).

(Optional) In the Security Principal field, enter any required JNDI Security Principal’s name (as
provided by your administrator).

(Optional) Inthe Security Credentialsfield, enter any required INDI Security Credential string (as
provided by your administrator).

(Optional) In the Provider Parametersfield, enter any provider-specific name/value pairs that are
necessary for the MOM environment in which you are operating. Separate name/value pairs by a
pipe character (]). For example, parameters for an LDAP provider could be:

java.naming.security.authentication = value | java.naming.security.credentials
= value | java.naming.security.principal = value

NOTE: Spaces are shown here for clarity. Do not use spaces in your provider-param string.

Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create JM S Components.

Optionally click the Test button to test the connection.
Click Finish to exit the wizard.

> To create an MQSeries Topic Connection Resource

1

Select File>New>xObject then open the Resour ce tab and select Connection. The“Create aNew
Connection Resource” Wizard appears.

Follow Seps 2, 3, and 4 for filling out the first panel in the wizard as described further above under
“To create a IM'S Queue Connection Resource Using JINDI”.

Click Finish on thefirst panel of the wizard. A new panel appears:

Enter the information required to attach to an MQSeries queue via JMS Bridge. All the specific M@Series
parameters are provided as they are defined. You will need to enter the Queue name and hast name of the
fgqueue manager. For all other parameters refer to the user docurmentation. Checking 'Default’ makes this
Connection the initial selection when regquesting a JMS MQSeries Topic Connection. Use the Test button to
checkyour connection. You may save connections that fail the test.

Connection Type BLEE s Topic Connection n Test |

Taopic Name | - [Default
Durahle Subscriberl
client D |
User|D |
Password |
Host Mame I
Port |

Glueue Managerl _‘l
Help Back | Finish Cancel

Getting Started with the JIMS Component Editor 27

28

© 0 N O U b

11

12
13

14

15

16

17
18

Enter the name of the Topic in thefirst field (called Topic Name).
Enter a Durable Subscriber name. (Optional)

Enter aClient ID. (Optional)

Enter User I D and Password info, as applicable. (Optional)
Enter the Host Name. (Optional)

Enter the Port. (Optional)

Enter the MQSeries Queue Manager name, if you want to specify one. (See your MQSeries
documentation for advice on when and when not to enforce queue-manager associations.)

Scroll down to expose the rest of the fields in this panel of the wizard. See below.

Enter the infarmation required to attach to an MGSeries queue via JMS Bridge. All the specific MQSeries
parameters are provided as they are defined. You will need to enter the Gueue name and host name ofthe
queue manager. For all ather parameters refer to the user documentation. Checking Default’ makes this
Connection the initial selection when requesting a JMS MQ@Series Topic Connection. Use the Test buttan to
check your connection. You may save connections that fail the test.

Connection Type HES es Tapic Connection Test |
Host Narme | 2 e

Fort |
Queue Managerl
Channell
IBM CCEID | |
Mo Local Messages [
Transacted [
Non-JMS client [-

Help Back Finish Cancel

Optionally enter aChannel.

Check the No L ocal M essages checkbox if you want to keep your component or service from
receiving messages that it may be sending to atopic that it is listening on. (In other words, check
this box if you want to keep a component from receiving its own messages.)

Check the Transacted checkbox (which is unchecked by default) if you intend to issue session-
level Commit or Rollback commandsin your JMS Component.

NOTE: Issuing JMS Commit or Rollback statements in a IMS Component’s action model without
the Transacted checkbox being checked will result in exceptions being thrown.

Check the Non-JM S Client checkbox if you will be using provider-native message delivery on this
topic (ignoring IM S header information). This option would be of interest if your component were
sending messages intended for areceiver that was using only MQSeries-native (non-JM S-aware)
messaging features.

Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create JM S Components.

Optionally click the Test button to test the connection.

Click Finish to exit the wizard.

JMS Connect User’s Guide

Creating XML Templates for Your Component

In addition to a connection resource, aJM'S Component may also use XML stub documents, associated
DTDs, and/or XSL stylesheetsto aid in the mapping of message information. If you intend to use such
documents, you should add them to an XML Template resource at thistime so that you have sample
documents for designing your component. (See Chapter 5, Creating XML Templates, in the exteNd

Composer User’s Guide for more information.)

Also, if your component design callsfor any other xObject resources such as custom scripts or codetable
maps, it is best to create these before creating the IMS Component. For more information, see Creating
Custom Scripts in the Composer User’s Guide.

Getting Started with the JIMS Component Editor 29

30 JMS Connect User’s Guide

Creating a JMS Component

This chapter outlines the process of creating aJMS Component for usein an exteNd web service. At the
same time, the semantics and usage of message header fields and properties are discussed in the context
of IMS messaging; and tips are given for making the most effective use of JM S-based exteNd web
services. You should familiarize yourself with this chapter before creating and deploying web services
that rely on components created with the IM S Connect.

Before Creating a JMS Component

Creating a JM S component requires that you know the answers to the following questions:

*

Which XML template documents (and/or COBOL copybooks) will you to need in order to map
datainto or out of messages? (For more information on XML Template resources, see Creating a
New XML Template in the Composer User’s Guide.)

Which JM'S Connection resource will your component(s) use? As part of the process of creating a

JMS component, you can select an existing JM S connection, or you can create anew one. (If you

create the connection beforehand, then it isavailableto al new JMS components.) See the previous
chapter for step-by-step information on how to set up a JIMS Connection resource.

Will you be creating a Browse Messages action? (See “ The Browse Messages Action”.) If so, you
will need to choose a queue connection as your connection resource. Browsing is not defined on
topic connections.

Will your service be triggered by messages arriving at a queue/topic? If so, you will need to deploy
your service asa JMS Service. (See Chapter 6, “The IMS Service”.)

Will your message session be transacted? If you intend to issue Commit or Rollback commands,
you must enable transactions in the particular IM S Connection Resource you intend to use (by
checking the “ Transacted” checkbox in the Connection Resource setup wizard). For more
information, see the discussion of the “ Transacted” checkbox on page 23.

Will you be sending messages, or receiving them? You can send as well as receive messagesinside
of asingle IMS Component—but only if the same queue (or connection resource) is used. If you
will be sending or receiving to/fromtwo or more different queues or topics, you must create
separate components: one for each connection resource.

Creating a JMS Component 31

> To create anew JMS Component:

1 Select File>New>xObject then open the Component tab and select IMS. The “Create a New
JM'S Component” Wizard appears.

Create a New J¥5 Component |

This wizard will guide you through the creation of a JMS Component. Please enter a name and, optionally, a
description forthe JMS Component. The name will appear in the Composer Detail Pane and in choice lists
when you are prompted for objects in Compaoser. The name may not contain the characters: [%" == |
Mames are case ingensitive (i.e. MyChjectblame is the same as myohjectnarme).

Iame:

SarmplelMs

Description:

Purpose:
Input:
Cutput:
Remarks:

| |[Next][cancel

2 Enter aName for the new JMS Component.
3 Optionally, type Description text.

4 Click Next. The XML Templates Info panel of the “ Create a New JMS Component” Wizard
appears.

Create a New J¥S Component ZI

Specify one or more XML Templates to help design Input to this Component or Weh Service and only one to
design Output. The sample XML Documents in each Template are design time aids to help you build Action
Models forthe component. The samples are not actually used at runtime after deployment to your application
server. The |dentifier is fived and represents the name used to refer tao the XML Document during component
execution. Selecting Systerm {ANY} allows you to use an empty template (i e accept any document as Input)

Input Message

Part | Template Category | Template Name

|
Input | Bystem} [] gmnry [~

Ltput Message
Part | Tempiste category | Template Name

|
Output |system} [v] vy [~

[Back][Next][Cancel]

5 Specify the Input and Output templates as follows.

+ Typeinanamefor the template under Part if you wish the name to appear in the DOM as
something other than “Input”.

+ SelectaTemplate Category if it is different than the default category.
+ Select aTemplate Name from the list of XML templates in the selected Template Category.

+ Toadd additional input XML templates, click Add and choose a Template Category and
Template Name for each.

+ Toremoveaninput XML template, select an entry and click Delete.
6 Select an XML template for use as an Output Part using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY?} as the Input or Output template. For more information, see “Creating an Output Part
without Using a Template” in the User’s Guide.

32 JMS Connect User’s Guide

7 Click Next. The XML Temp/Fault Template Info panel of the New HP3000 Terminal Component

Wizard appears.
£

Specify one or more Temp and Fault XML Templates to help desian temporary parts and fault handling for
this Component orWieb Senice. Use Temp documents for creating intermediate results or holding values
for reference. Specify XML Templates io serve as Faull documents to be passed backto clients under error

conditions.

Temp Message

Part Template Category Template Name

Fault Message

Part | Template Category | Template Name |
_SystemFautt |{Sys1&m} |:\|{Fault} |:||
[Back][Next][Cancel]

8 If desired, specify atemplate to be used as a scratchpad under the “ Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used

temporarily during the execution of your component or are for reference only. Specify the

templates asindicated in Step 6 above.

9 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when

an error condition occurs.

10 Asabove, to add additional temp or fault XML templates, click Add and choose a Template
Category and Template Name for each. Repeat as many times as desired. To remove an XML

template, select an entry and click Delete.

11 Click Next. The Connection Info panel of the “ Create a New JMS Component” Wizard appears.

Create a New JMS Component

Specify which Connection vou wish to use for this Component or Service. To change any connection
parameters, you must change them in the Connection Resource object or create a new Cannection

Resource of the same type with different parameters.

Connection |SampIeJMS |L|

Topic Mame I

Durable subscriber I

client 1D |

Connection Factory Mame I

User ID I

Password I

Subcontext I

Mo Local Messages

™

[Back][Finish][Cancel]

12 Select a Connection type from the pulldown list. (The pulldown list choices reflect the available

JMSS Connection Resources that were created earlier. For more information on creating IMS

Connection Resources, see “ Creating a JM S Connection Resource” on page 19).

Creating a JMS Component

33

13 Click Finish. The component is created and the IMS Component Editor appears.

Flle Edit View Component Action Animate Tools Window Help bo - & x
DER@&8/x00Xx4ae Novell
I 5| EXrm

Q Telnet Logon
- [C) Telnet Terminal
o 3BT EML Map

= @@ Resource

. B Code Tahle

- g GCude Tahle Map |2 _Outout
- @ Connection
v‘@ EDI Document bet
- §f EDIInterchange M:

<> ¥ML Schema _l_vl (<] BEE@ I
rE— 1 =
FrodLookupRery j [|
Project [Regisires] g
LogIFde
[Ready

About the JIMS Component Editor Window

34

The IM S Component Editor is similar in appearance to the XML Map Component Editor window (and
in fact includes all the functionality of the XML Map Component Editor, plus additional Action types
specific to messaging). Like all other Component Editors, the IMS Component Editor window includes
an Action Model pane (which istypically in the lower right corner, although it doesn’'t haveto be), a
Native Environment pane (upper right), and mapping panes for input, output, and/or temporary DOMs.

The Native Environment page appears as agrey pane until you create or highlight a Message Action, at
which time it displays a message status pane containing either two or three tabs, depending on whether
the current Message Action involves browsing, sending, or receiving.

@ Input Data
©-<> DUT_REC
| &3> 0UT_8KU
(<> OUT_SKU_REC
(€ > OUT_SKU_RECR

Input pane
put p A

(= Output Data ‘ E@E [Lg E=) 0 "

Output
pane

Action Model pane Native Environment pane

JMS Connect User’s Guide

If you activate the Action menu (or do aright-mouse-click inside the Action Model pane) and select New
Action, you will seethat al of the same actionsthat are availablein the XML Map Component are also
available in the IMS Component, but with four new action types:

+ Browse Messages

+ Message Transaction
+ Recelve Message

+ Send Message

Gl Anirmate Tools Window Help

Mewe Action »
Edit
iEaklE

Browse Messages

Message Transaction k |
Receive Message

Send Message

Advanced
Diata Exchange
Frocess

v v v v

Repeat

Comment...
Companent..
Decision...
Declare Alias...
Function...
Log...

Map...

Send Mail...
Switch...

The four IM S-specific actions are the subject of the next chapter.

Creating a JMS Component 35

About the Native Environment Pane

36

The IM S Component Editor’s Native Environment pane (which isinitialy grey) will display various
types of information associated with a message whenever aJM'S Message Action is highlighted in the
Action Model pane. The available categories of information (indicated by tabs at the top of the pane)
include Message Body, Message Header, and Message Filter. The first two categories are common to all
message actions (Send, Receive, and Browse). The Message Filter category, however, isvisible only for
Receive and Browse.

D Input ety “ Message Body Message Header' Message Filter
E-<>QUT_REC -
L€>0UT SKU "&) Receive_HDR “Data
: ! L
...<>OUT_BKU_REC <> MSDeliveryhode J
B <> OUT_SKU_RECR [#-< > JM3Destination

[> JMSExpiration
[£-<> JMIMazsagelD
<> JMSPriority

1< > JM3Redelivered
[0 > JMSRephTo

(- > JMSTimestamp

<> MSType

- > PROPERTIES

2 Output Data <>

[> IMSXUsetD
<> MEHAppID

(A< > IMSHDeliveryG
(- > MSXGrauplD
[2> IMEXGroupSe
<> WMSHCOonsUmE

- 2> MSHRovTime

f e e |MC DAt

SEEEEIN
- SampleJMSComponent
[= Receive XMLTextvia

(B cceive Message Actions

L |

In the above illustration, the M essage Header tab has been selected (with a Receive Message action
highlighted in the Action Model pane). The Native Environment pane has been enlarged to show all
available message headers and properties. For information on message header and property field usage,
see “Message Headers and Properties’ on page 93.

When the Message Body tab is selected, the Native Environment Pane will display content in a manner
appropriate to the body type. For example, if the message contains an XML document, the Native
Environment Panewill display aDOM tree; whereasif the message containsa COBOL copybook, it will
display the contents of the copybook. See “ Actions Unigue to the IM S Component Editor” (starting on
page 37) for additional information.

When the Message Filter tab is selected, the Native Environment Pane will display a selector-edit area.
See “Working with Message Filters (Selectors)” on page 71 for more information.

JMS Connect User’s Guide

Creating JMS Actions

About Actions

An action issimilar to a programming statement in that it performs a specific, well-defined task, often
with input in the form of parameters. Related actions are often chained together to form asingle
functional unit. In exteNd, thisfunctional unit isthe Component; actionsthat make up the Component are
part of an action list or Action Model. (Please see the chapters in the Composer User’s Guide devoted to
Actions.)

The IMS Component Editor allows you to create actions that involve sending, receiving, or browsing
messages, optionally as part of atransaction. The powerful XML mapping capabilities of exteNd
Composer allows you to map XML information between messages and DOMs with ease, while also
permitting the transformation of datawith businesslogic. JIM S Components created in exteNd Composer
thus bring sophisticated messaging capabilitiesto XML integration applications.

Within aComponent, an Action Model ismade up of alist of related actionsthat work together to achieve
adesired result. Asan example, inaJMS Component, an Action Model might contain actions that read
order data from a queue, map the datato atemporary XML document, perform data transformations on
specific line items, and map the converted data to an output XML document.

The Action Model mentioned above would be composed of several discrete actions. These actions
would:

+ Perform a Read Message action, perhaps with the aid of filtering
Map message contents to a temporary XML document
Transform data items using a Code Table

+ Optionally execute other Components

+ Maptheresultsto an Output XML document

*
*

Actions Unique to the JMS Component Editor

The IMS Component editor contains all the core functionality of exteNd Composer’s XML Map
Component editor, plus four connector-specific action types:

+ Browse Message

+ Message Transaction

+ Receive Message

+ Send Message

Except for the Message Transaction action type (which simply allows you to place Commit and/or

Rollback statementsin aJMS Component; see “ The Message Transaction Action” further below), the
various message actions al share a common setup dialog. The setup dialog has three tabs:

Creating JMS Actions 37

+ AnOptionstab (Iabelled Send Options, Browse Options, or Receive Options, as appropriate to the
action type)

+ Message Body tab
+ Message Header tab

The Browse and Receive dial ogs also have aFilter tab (discussed under “ The Browse Messages Action”
and “The Receive Message Action” further below).

Options Tab

The Options tab exposes options specific to the type of action in question (Send, Browse, or Receive).
For example, the Send Message action has an Options panel that looks like this:

Send Message

Send Options | Message Elodv' Message Headerl

Send Priarity. Delivery Mode: Titne To Live {ms):

J4 | |PERSISTENT =l

[werride Connection Queue
(] B

P

[Specify ReplyTo Queue

(] B
e
Help 0K Cancel

The options shown in this tab are action-specific, but not message-type-specific. That isto say, the
appearance of thistab will not be different for a BytesM essage than for a MapM essage.

Message Body Tab

The M essage Body tab brings up a pane containing setup parameters that differ depending on the
message type:

Send Message [%]
Send Options Message Bodyl Message Headerl

Body [nfoemetiof Setup:

ML (IMS Text)
Copybook (JMS Bytes)
M3 Bytes

LIMS Wap

WMS Ohject . .

M Stearn Dialog content in
s Tent this area is dependent

J upon the message type
\What you choose here

... determines
what appears here =——

Help oK Cancel

38 JMS Connect User’s Guide

This pane contains a M essage Type pulldown menu as shown above, allowing accessto the XML and
Copybook types plus the five predefined IM S message types. Depending on what you select here, the
Body Information Setup panein thelower portion of the dialog will change. (Seethe sectionsthat follow
for amore complete description of the various fields and their usage.)

Message Header Tab

The M essage Header tab brings up a pane that |ooks the same for all message action types:

Send Message
gend Optinnsl Message Body Message HEEUEF'
Assign a mapping name Header Docurment Marme:
to the header here |Send_HDR|
Click here to add
a custom property — 3 E? e
) * Fraperty Marme Propery Type
Click here to remove
a custom property
Help oK Cancel

Thistab is where you can optionally create custom properties (equivalent to custom header fields) to
supplement the built-in header fields defined by IMS.

Under Header Document Name, you must provide a name that can later be used as atarget label for
purposes of mapping values to property fields in the Native Environment pane. (Fields cannot be
assigned values directly in thisdialog.) The default name, in the case of the Send Message action, is
Send_HDR.

The Send Message Action

The Send M essage action can be used to post messagesto aqueue or topic. The message priority, delivery
mode (persistent or non-persistent), and Time to Live can be specified on an action-by-action basis. In
addition, you can specify the destination queue or topic on an action-by-action basis and you can
optionally specify a named queue in the IM SReplyTo field of the outgoing message's header.

The button groupsin the Send Optionstab of the Send M essage action require separate discussion. There
are three button groups. The top group allows you to specify settings related to quality of service. The
middle group alows you to specify a destination queue or different from the one you specified in the
Connection Resource for the component. The bottom group isfor letting you specify a“return address’
for your outbound message. Each button group will be discussed in turn.

Creating JMS Actions 39

Priority, Mode, and Time to Live

The top button group in the Send Options panel allows you to specify propertiesimportant to quality of
service:

+ Send Priority—Letsyou assign a priority to the message, from one to nine. The JM S-defined
default priority is four. Use the pulldown menu to override the default. (Note that the
implementation detail s associated with message priority are not specified by the IMS standard.)

+ Delivery Mode—Allows you to specify whether the message will be persisted to storage en route
to its destination (for maximum reliability) or delivered more quickly but without recoverability.

+ Timeto Live—Letsyou assign amaximum lifetime to the message, in milliseconds. If azero value
is specified, the message will not expire.

Destination Queue/Topic

The default destination queue for your Send Message action will be the one specified inthe IMS
Connection Resource for the component. (To change the default destination from withinaJMS
Component, choose File > Component > Connection I nfo and select a different queue from the
pulldown menu.)

If you want to override the default behavior, you can specify destination queues or topicsfor Send actions
on an action-by-action basis. To override the default behavior, simply check the Override Connection
Queue/Topic checkbox in the Send Options panel of the Send M essage dial og:

Send Message
Send Options I Message Elud\,r] Message Header]

Send Priarity, Delivery Mode: Time Ta Live {ms):
|4 ~| |PERSISTENT =] o

[Owertide Connection Queue

& Named: 74

" Prior Receive's ReplyTa [Mar-JMS client

Specify FeplTo Queue

'

~

Help oK Cancel

Checking the Override Connection Destination box (see above) enables two radio buttons underneath.

+ The Named radio button allows you to enter a queue or topic name in the accompanying text field
(as aquoted string) or specify the queue/topic using ECMA Script. The ability to specify ascript
here means that you can base the choice of queue or topic on custom logic involving conditionals
and/or values obtained at runtime. To create a script that specifies the named queue, click the
Expression icon to the right of the text field; thiswill bring up the Expression Editor dialog. Type
your script in the Expression Editor (or build it with the aid of the picklists shown there) and click
OK. Your script will appear in the text field. Obvioudly, the script must ultimately evaluate to a
string representing the name of a particular queue or topic.

NOTE: When you are using an IBM MQSeries queue, you can specify a fully qualified queue URI
in the Use Named text field, such as:

queue://gmanager/queuel ?CLIENTTYPE=0

40 JMS Connect User’s Guide

+ The second radio button in the “Override” button group, Prior Receive's ReplyTo, will (if
selected) cause the outgoing message to go to the queue or topic specified in the IMSReplyTo field
of the last received message having a non-empty JMSReplyTo field. You would select thisradio
button if your Send Message action is specifically aimed at replying to an incoming message (a
prior Receive Message action in the same component).

NOTE: The JMSReplyTo field that is referenced for purposes of this radio button is the last
JMSReplyTo field associated with the last received message (within this component) that has a non-
empty JMSReplyTo field. For example: If your component has three Receive Message actions—A,
B, and C (in that order)—and the IMSReplyTo field was empty on B and C but non-empty for
Message A, setting the Use Prior Receive’s ReplyTo radio button will cause your Send Message
action to use the queue specified by Message A. If all three messages were to have non-empty
ReplyTo fields, and you wanted to reply to Message A, you would not set the Use Prior Receive
radio button. Instead, you would select Use Named and specify an Expression that grabs the
JMSReplyTo element from the header DOM of Message A.

MQSeries-Specific Behavior

In the Override Connection button group, a special Non-JM S Client checkbox will appear if your
connection resource specifies an IBM M QSeries message queue. You can check this box if you are
sending a message to anon-JM S message consumer, which isto say, auser of native M QSeries services.
When this option is used, the assumption is that the receiving process is a non-Java message consumer
that has no knowledge of (for example) IMS rules for header encoding and decoding. Therefore, when
you use this option, you should not assume that any header information will be received by the message
recipient, or that the recipient would know what to do with such information even if it was received. You
should not, for example, specify user-defined header properties of any kind, nor map values into
JMSCorrelationl D nor IM SType header fields.

Notwithstanding the above, it's important to remember that the queue manager (which is IM S-aware)
will still use certain header values even if the message is intended for anon-JM S client. In general, any
header fieldsthat have to do with quality of service (such as IM SDeliveryMode or JIM SExpiration) will
be honored by the queue manager, even if Non-JM S Client is checked.

Note that when you are using an IBM M QSeries queue, you can specify afully qualified queue URI in
the Use Named text field of the Override Connection Queue control group, such as:

queue: //gmanager/queuel?CLIENTTYPE=0

Creating JMS Actions 41

Return Address

The lowermost button group in the Send Options panel gives you control over the value that the
JMSReplyTo header field will have in your outgoing message.

Send Meszage
Send Options } Message Elcndy] Message Header]

Send Priority: Delivery Mode: Time To Live {ms):
4 | |[PERSISTENT =]

v Override Connection Quede

{* MNarmed:

" Prior Receive's ReplTo Man-JMS client

¥ Specify ReplyTo Queue

@ Mamed:

" Temporary

Help OK Cancel

By default, the IMSReplyTo field in an outgoing message is empty. You will typically change this
behavior if youwant your outgoing messageto trigger areply onthe part of areceiver, or if your outgoing
message might elicit areply (such asan error report) at least some of the time. To override the default
behavior (and specify areturn address in the IMSReplyTo field), first check the Specify ReplyTo
checkbox (see above), then select one of the two radio buttons underneath.

There are two possible reply scenarios. asynchronous and synchronous. (It'simportant to remember that
in neither case can your component be assured of receiving areply.) The radio buttons are meant to
accommodate these two scenarios.

+ The Named radio button implies an asynchronous scenario. When you select thisradio button, you
are specifying a queue or topic name in the outbound message’s IMSReplyTo field. In essence, you
are saying to the receiver: “If areply issent, be sureit goesto this address.” You must type a queue
name (or topic name) manually, enclosed in quotes, in the associated text field; or create an
ECMA Script expression that evaluates to a queue/topic name.

+ TheTemporary radio button is designed to be used in cases where you expect to receive areply in
a synchronous manner. When you select this radio button, atemporary queue is created for
purposes of receiving an immediate reply, and the outbound message has the temporary queue
name in its IMSReplyTo header field so that the receiving process knows where to send its
response. (The temporary queue will exist only for the lifetime of your component. See
“Temporary Queues’ in the next chapter.)

42 JMS Connect User’s Guide

> To create a Send Message action

1
2

3

Create or open a JM S Component (as described in the previous chapter).
Highlight aline in the Action Model where you want to place the Send Message action. The new
action will be inserted below the line you highlight.

From the Action menu, select New Action, then Send M essage. The Send Message setup dialog
appears, with the Send Options panel displayed.

Send Message [|
Send Options | Message Elody' Message Headerl

Send Priarity. Delivery Mode: Time To Live {ms):

J4 | |PERSISTENT =l

[Override Connection Queus
i« >4

> m

[Specify ReplyTo Queue

[>4
&
Help OK Cancel

From the Send Priority pulldown menu, select a priority ranking (from 0 to 9) for your message.
Zero represents the lowest priority; 9, the highest.

NOTE: The details of how this priority value is implemented are not defined by the JMS
specification. Consult your MOM vendor’s documentation for details.

From the Delivery M ode pulldown menu, select PERSISTENT or NON_PERSISTENT. (See
“What About Delivery Guarantees?’ on page 15 for more information on the meaning of these
terms.)

Enter amillisecond valuein Time To Liveto give your message afinite lifespan; or else enter zero,
if you do not want your message to expire. (See “Message Headers and Properties’ on page 93 for
more information on this setting.)

If you wish to send your message to a queue or topic other than the one specified in your
connection resource, click the Override Connection Queue checkbox and select the appropriate
radio button as described in the discussion above under .

If you wish to specify avaluein the IM SReplyTo field of your outgoing message' s header, click the
Specify ReplyTo checkbox and select the appropriate radio button as described in the discussion
above.

Creating JMS Actions 43

44

9 Click the Message Body tab. A new pane appears.

Send Message E
Send Options Message ElDd!’l WMessage Headerl
Message Type:

KWL (IMS Text)

Body Infarmation Setup:

Body Document Marme:
J5end

Template Categary:

Template Narme:

|{System}

| fian

Help

OK

Cancel

10 Select one of the seven available message types from the M essage Type pulldown menu. (In this
example, the XML typeis selected, indicating that the posted message will contain an XML-
formatted text document.)

11 IntheBody Information Setup portion of the dialog, enter information as necessary. This portion of
the dialog will vary in appearance depending on the Message Type selected. In this example, the
Message Type is XML ; hence, you are prompted to enter information for Body Document Name
(i.e., the name you want to apply to the Message Body DOM), Template Category (the XML
Template resource name), and Template Name (name of the XML stub document you want to apply
to the Message Body, if appropriate). See “ Using Other Actions in the IM S Component Editor” on
page 57 for additional information.

12 If you would like to add your own custom Properties to the message header, click on the M essage
Header tab. The Message Header pane appears.

Send Message E

Send Optionsl Message Body Message HBadBrl
Header Document Mame:
Jsend_HDR]
op o=
Property Narme Property Type
Help oK Cancel

13 Enter aHeader Document Name (or accept the default name, which begins with Send_HDR).
This name will be shown in the Native Environment Pane as the name of the header tree, for
purposes of mapping valuesto fields.

JMS Connect User’s Guide

14 Click the plus (+) icon to add a Property. Type the name of the custom property under Property

15

16

Name and click in the Property Type column to bring up a menu of available data types. Choose
the data type appropriate to your property. In the above example, a single custom property called
SKU_PREFIX has been created, specified as a String.

NOTE: You must go to the Native Environment Panel to specify values for your properties. This
dialog merely creates the empty properties.

Click the plus (+) icon as many times as needed to add extra properties. Fill out the Name and Type
information for each one.

Click OK. The IMS Component editor main window appears, containing the new Send action in
the action list.
kB Input Data Message Body Headerl
5-< > PRODUCT
LB ISEN-0506000162 |® send_HDR |pata
e v L <> .IMSPriorty |+
ook [H-< > IMSReplTa
DESCRIFTION : - > IMSTimestamp
MANUFACTURER OReilly <>
LIST_PRICE 3898< ;MSTWE
- 5-<>PROPERTIES
E<> g
[+ > UMSHUseHD
.4 > IMSXApPID
Ly TYPE STRING
1 > IMSKGrouplD
(- > JMSHGroupSer
<> JMSHProducerT
i > IMSXState -
5 Input! Data FEEEISI
B > BOOKBUYER [=B° rodLookupFul
Ingram
NAME Py
ACCOUNTND 33715075 - "
iy 44 E E.!efore Send Actions
KL ISBN-0596000152 L5 MAP $inputl. TO $Send.
T send
| After Send Actions

Note that when the Message Header tab is selected in the Native Environment pane (above), a User
property called SKU_PREFIX isvisible. Thisisthe custom property we created in the setup dialog.

Before Send vs. After Send

When a Send Message action has been created, the action list shows “Before Send Maps’ and “ After
Send Maps’ lines. The reason there are two map listsis that some JM S-defined header fiel ds are empty
beforethe Send action is executed; after the Send, the samefields contain data supplied either by the IM S
provider or by the IMS Component’s internal methods. In particular, the fields that are populated after

Send time are:

+ JMSDestination

+ JIMSDeliveryMode
+ JMSExpiration

+ JMSPriority

o JMSMessagelD

o JMSTimestamp

¢ JMSRedelivered

Any datamapped into these header locations prior to sending amessage will be overwritten at Send time.
These fields should be considered read-only; and the datain them should be considered valid only after
a Send.

Creating JMS Actions 45

The header fields that are writable are;

+ JMSCorrelationlD
+ JMSType

You can double-click in these fields (in the Native Environment Pane) to enter datamanually, or you can
use them as drop targetsin drag-and-drop mapping from DOMSs.

NOTE: The JMSReplyTo field is writable, but not through drag-and-drop or direct editing. To populate this
field, you must use the controls provided in the Send Options tab of the Send Message dialog.

The following graphic shows what the Native Environment pane might look like after a message has
been sent (that isto say, after fields have been auto-popul ated):

| Message Body Message Headerl

| Send_HDR |Data
== > MBGHEADER
E-< > IMSCorrelationiD
----": = IMSDeliveryMode PERSISTEMNT
----‘-’- 2> IMSDestination gueueiiclg_default_opal
-+ > IMSExpiration Wed Dec 31 19:00:00 EST 19649
----‘-’- > IMBMessagelD 10:414d512051 4451617061 Gc2e6TESAdBeC] B9a6391 3a0
....4.‘. = IMSPriority 4
¥ > IMSRephTo
----‘-’-:'.JMSTimestamp Thu Dec 07 11:42:35 EST 2000
....4: > IMSType
&< > PROPERTIES

If you wish to use the datain read-only fields for logging purposes, debugging, mapping to an Output
DOM, etc., you should add the relevant Map actions bel ow the “ After Send Maps’ line in the Action
model. If you have input-DOM data that you wish to map to a header field (such as IM SCorrelationl D),
you can use the drag-and-drop method to create mappings between input DOM elements and header
fields as described on page 59.

The Browse Messages Action

46

A browse operation allows your application to inspect messages from a queue without causing those
messages to be removed from the queue. That isto say, after a browse operation, all messages are still
available on the queue for any consuming application to obtain.

In response to a browse request, a queue manager will return ajava.util.Enumeration containing all
available messages, unless a Message Filter (or “selector”) has been specified, in which case only those
messages matching the selector statement will be returned. (For information on using selectors, see
“Working with Message Filters (Selectors)” on page 71.)

InaJM S Component, the Browse M essages action is used to browse messages from aqueue. By defaullt,
the queue that will be browsed is the one specified in the IM S Connection Resource for the component.
(To change the default queue from within a JM S Component, choose

File > Component > Connection I nfo and sel ected adifferent queue from the pulldown menu.) You can
also override the default on an action-by-action basis (see below).

NOTE: Browsing is a Point-to-Point operation only. In Publish/Subscribe, browsing is not defined. Your
connection resource should be configured to use a queue (not a topic) if you will be using the Browse
Messages action.

JMS Connect User’s Guide

> To create a Browse Messages action
1 Create or open aJMS Component (as described in the previous chapter).

2 Highlight alinein the Action Model where you want to place the Browse M essages action. The
new action will be inserted below the line you highlight.

3 From the Action menu, select New Action, then Browse M essages. The Browse Message dialog
appears, with the Browse Options panel displayed.

Browse Meszages [x|

Browse Options | Message Elndgrl Wessage Headerl Message Filterl

[Override Connection Queus
& | =

-

Help o] 4 Cancel

4 (Optionad) If you would like to browse a message queue other than the one specified in your
component’s connection resource, check the Override Connection Queue checkbox (whichis
unchecked by default).

+ Click the Use Named radio button if you wish to specify a queue name manually. (Type the
gueue name in the accompanying text field, surrounded in quotes, or build an ECMA Script
expression that evaluates to a queue name.)

+ Click theUse Sent M essage ReplyTo Field radio button if you wish to browse aqueuethat was
specified in the last Send Message action. (To obtain the destination queue name, exteNd will
search for the last received message that had a non-empty IMSReplyTo field. This may or may
not be the same as the last received message.)

5 |If desired, specify aFilter expression in the text field under Filter. (See Appendix B, “Message
Filter Syntax,” for moreinformation.) Thisis an ECMA Script expression, so be sure to wrap
strings in quotes.

Creating JMS Actions 47

6 Click the Message Body tab. A new panel appears.

Browse Options Message ElUd!‘l Message Headerl Message Filterl
Message Type:
|XML (M3 Texd) ;I ¥ Errar on Unexpected Message Type
Body Information Setup:
Body Docurment Mame:
|Elmwse
Template Category: Template Mame:
[svstern) =] Jearery =
Help 0K Cancel

7 From the M essage Type pulldown menu, select the message type that corresponds to the kind of
message your component is designed to process. This will preconfigure the Message Body to
receive and store incoming datain aformat that's acceptable to your application’s requirements.

NOTE: This choice does not tell exteNd Composer to filter out unwanted message types. A browse
operation, under JMS, always returns an enumeration of all available messages, regardless of body
type.

8 Uncheck the Error on Invalid Message Type checkbox (checked by default) if you do not want
exteNd Composer to throw an exception when an unexpected message body type is encountered.
Normally, aJMS process is designed to “understand” and handle one specific IM S message type
(such as IMSText), which usually means that if an unexpected message type (such as JVM SBytes
instead of JM SText) is encountered, processing errors eventually occur. Usually, it is better for
processing problems to be discovered earlier rather than later; hence, the default state of this
checkbox is checked. It is quite possible, however, especially for testing purposes, that you might
want your JIMS Component to handle all available messages regardless of body type. In that case,
you’'d want to uncheck the box.

9 IntheBody Information Setup portion of the dialog, enter whatever information might be
appropriate to the Message Type. (This portion of the dialog will change in appearance according to
the Message Type that you' ve chosen.) In this example, the Message Typeis XML ; hence, you are
prompted to enter information for Body Document Name (i.e., the name you want to apply to the
Message Body DOM), Template Category (the XML Template resource name), and Template
Name (name of the XML stub document you want to apply to the Message Body, if appropriate).
See “Using Other Actionsin the IMS Component Editor” on page 57 for additional information.

48 JMS Connect User’s Guide

10 Click the Message Header tab. A new panel appears.

Browse Optionsl Message Body Message HBGUBV' Message FiIterI
Header Document Name:
|Elr0wse_HDR
op o=
Property MNarme Property Type
MESSAGETYPE STRIMG
Help 0K Cancel

11 Enter aMapping Name (or accept the default, which begins with Browse HDR). This name will
be shown in the Native Environment Pane as the name of the header tree, for mapping purposes.

12 Click the plus (+) icon to add a Property. Type the name of the custom property under Property
Name and click in the Property Type column to bring up a menu of available data types. Choose
the data type appropriate to your property.

NOTE: The purpose of this procedure is to build a property list that corresponds to the anticipated
property list of the incoming message(s). If any incoming messages have property fields that aren’t
accounted for here, the extra fields will be ignored and any associated data will be lost.

13 Click the plus (+) icon as many times as needed to add extra properties. Fill out the Name and Type
information for each one.

14 Click the M essage Filter tab. A new panel appears.

Browse Meszsages [|
Browse Options | Message Elod\,f| Message Header Message Filter |
Header Data: Operators/kKeywords:
#-JMS Fields F-Math
#-JMS Properties - Relational
=-User Properties -Logical
Filter:
Help oK Cancel

15 If you want to apply a IMS Message Filter to your Browse operation, enter it (and/or build it using
the picklist items) in the text areain the lower half of the dialog. (See “Working with Message
Filters (Selectors)” on page 71 for more information.)

Creating JMS Actions 49

16 Click OK. The JMS Component editor main window appears, with the new Browse action shown
in the action list. (Seeillsutration.)

B Input

Data

Message Egdyl Message Header Message Fllterl

== & PRODUCT

Sk
HAME
DESCRIFTION
MANUFACTURER
LIST_PRICE

ISBMN-0596000162

Java and XML

Book

CReilly

39.95

B Inputl

Data

Header Data:

= JMS Fields

. ~-JMSCorrelationlD
~JMSDeliveryMode
- JMSMessagelD
- JMSPriority
- JMSTimestamp
~JMSType
S Properties

ators/Keywords
Math

#-Relational

+-Logical

#-Functions

= > BOOKBUYER
MNAME
ACCOUNTMO
ATy
SkU

Ingrarm
337158075

Filter:

PMSType:'hnnk order'

44

CrEEEYXX]

ISBM-0596000162

‘ [=--browse_testQ1
... ff9 CALLvar messageCount = 1;

S Output Ciata | E]ﬂ Browse XML Text via chrisQ1

|-::-|....Bmwse Message Actions

Iterating through Messages

When you create anew Browse action, the line“ Browse Messages: Type=..." appearsintheactionlist,
followed by aline“Browse Message Maps,” followed (in turn) by aline that begins:

WHILE JMSMESSAGE.hasMessages ()

Because a JM S browse operation always returns a list of every avail able message (subject to filtering
constraints; see“Working with Message Filters (Selectors)” on page 71), the IM S Connect automatically
constructsawHILE loop as part of every Browse Messages action. Thisloop iterates through each
available message. As part of your action model, you can place whatever Map actions (or other
processing) you might need, within the loop. You can also exercise loop control (using the component
editor’s Break and Continue commands) as you would for any other loop.

Note that as with the Receive Message action (described below), the Native Environment pane for the
Browse Messages action contains M essage Body, Message Header, and Message Filter tabs. Working
with these tabs is the subject of the next chapter.

The Receive Message Action

50

A receive operation allows your application to retrieve a message from a queue. The act of receiving a
message causes that message to be destructively removed from the queue. The only exception to this
occurs when a message session is transacted and a rollback takes place; in that instance, although a
Receive Message action takes place, the message is ultimately not consumed. It remains on the queue.

In response to areceive request, a queue or topic manager will return the first available message, except
when aMessage Filter (or “selector”) has been specified, in which case only the first avail able message
that matches the selector statement will be returned.

InaJM S Component, the Receive M essage action is used to obtain amessage from aqueue or topic. The
queue or topic that will be used isthe one specified in the IM S Connection Resource for the component.
(To change queue/topic from within a JMS Component, choose File > Component > Connection Info
and selected a different queue or topic from the pulldown menu.)

NOTE: Since the Receive Message action retrieves, at most, a single message at a time, you will need
to construct a Repeat/While loop in order to receive all messages from a queue or topic. The Repeat While
action should be designed in such a way that looping terminates when the IMSMessagelD header field is
empty.

JMS Connect User’s Guide

> To create a Receive Message action

1
2

3

Create or open a JM'S Component (as described in the previous chapter).

Highlight alinein the Action Model where you want to place the Receive M essage action. The new
action will be inserted below the line you highlight.

From the Action menu, select New Action, then Receive M essage. The Receive Message dialog
appears, with the Receive Options panel showing.
Receive Message
Receive Options | Message Elnd\,rl Message Headerl Message Filterl

[+ Error on no Message

¥ Specify Receive Timeout
¥ User Specified (ms): |1DDU 74

0 Infinite

[Override Connection Queus

o 4
P
Help OK Cancal

Check the Error on No M essage checkbox (which is checked by default) if you want an exception
to be thrown whenever no message is received within the timeout period. Note that the default
timeout period (unless one is user-specified; see step 6) isNO_WAIT, or zero.

NOTE: If this box is left checked, you should wrap your Receive action in a Try/On Error action and
execute appropriate recovery steps in the On Error branch. But whether you check the checkbox or
not, you should anticipate (and make sure your application can gracefully handle) the possibility that
the queue is empty when your Receive action executes.

Check the Specify Receive Timeout checkbox (unchecked by default) if you wish to specify a
timeout value other than the default of NO_WAIT (zero). If the checkbox is not checked, the action
will simply check the queue or topic and retrieve a message if oneis available, then return
immediately without waiting. To force the action to block for a specified time, you must check this
checkbox and specify await time.

+ Select the User Specified radio button if you want to enter your own timeout value. Enter the
timeout value (in milliseconds) in the accompanying text field, or create an ECM A Script
expression that evaluates to a suitable number.

+ Sdlect theInfiniteradio button if you want the Receive action to block indefinitely (until a
message is received).

Check the Override Connection Queue checkbox (unchecked by default) if you want to specify a

gueue or topic other than the one given in the component’s connection resource.

+ Select the Use Named radio button (the default) if you want to explicitly specify a given queue
or topic. Type the queue or topic name in the accompanying text field, in quotation marks, or
enter an ECM A Script expression that eval uates to a queue or topic name.

+ SelecttheUsePrior Message ReplyTo Field radio button if you want to use the queue or topic
named in the IMSReplyTo field of the last sent message that contains a non-empty JMSReplyTo
header field.

Creating JMS Actions 51

52

NOTE: If your action is waiting for a reply to a previously sent message, you should have specified
an appropriate timeout value in Step 6 above. Some testing may be required in order to determine
the timeout value that provides the best ratio of safety to performance.

7 Click the Message Body tab. A new panel appears.

Receive Message E

Receive Options Message BDle Message Headerl Message FiIterI
Message Type:
|ums Bytes |

Body Infarmation Setup:

Body Document Mame:;

Reaceive

Cancel

Help

From the M essage Type pulldown menu, select the message type that corresponds to the kind of
message your component is designed to receive. Thiswill preconfigure the Message Body to
receive and store incoming datain aformat that's acceptable to your application’s requirements.

NOTE: It's important that your application take steps to ensure that only messages of the
appropriate body type are received. Ordinarily, this will not be a problem since message-producing
applications typically send their messages only to consuming applications that have been designed
to receive them. Should your application happen to receive messages with a body type incompatible
with the type you select in the Receive Message dialog, an exception will be thrown. If your
application will be receiving messages from a queue that contains many different kinds of message
body types, it is advisable that you design a Message Filter (selector statement) that can distinguish
just the messages that are appropriate for your application.

Under Body Document Name, enter the name you wish to associate with the body of theincoming
message, for purposes of DOM context (or accept the default, which begins with “Receive”).

NOTE: This portion of the dialog will change in appearance according to the Message Type that
you've chosen.) In the screen shot shown above, the Message Type is XML; hence, you are
prompted to enter information for Body Document Name (i.e., the name you want to apply to the
Message Body DOM), Template Category (the XML Template resource name), and Template
Name (name of the XML stub document you want to apply to the Message Body, if appropriate). See
“Using Other Actions in the JMS Component Editor” on page 57 for additional information.

JMS Connect User’s Guide

10 Click the Message Header tab. The Message Header pane appears.

Receive Message
Receive Optionsl Messade Body Message Headerl Messade Filter|
Header Document Marme:
|Recei\re_HDR
op
Froperty Mame Froperty Type I
Help 0K cancel

11 Enter aMapping Name (or accept the default name, which begins with “Receive HDR”). This
name will be shown in the Native Environment Pane as the name of the header tree, for mapping
purposes.

12 Click the plus (+) icon to add a Property. Type the name of the custom property under Property
Name and click in the Property Type column to bring up a menu of available data types. Choose
the data type appropriate to your property.

NOTE: The purpose of this procedure is to build a property list that corresponds to the anticipated
property list of the incoming message. If the incoming message has property fields that aren’t
accounted for here, the extra fields will be ignored and any associated data will be lost.

13 Click the plus (+) icon as many times as needed to add extra properties. Fill out the Name and Type
information for each one.

14 Click the M essage Filter tab. A new panel appears.

Receive Optiunsl Message Elnd\,rl Message Header Message Filterl
Header Data: Qperatorsfeynwards:
#-JMS Fields -Math

#-JMS Properties - Relational
-Provider Properties [+-Logical

Filter:

JMEType = JMSByies'

Help Ok Cancel

Creating JMS Actions 53

15 If you want to apply a IMS Message Filter to your Browse operation, enter it (and/or build it using
the picklist items) in the text areain the lower half of the dialog. (See “Working with Message

Filters (Selectors)” on page 71 for more information.)

16 Click OK. The JM S Component editor main window appears, and a new Receive action is
displayed in the action list (see illustration).

IE) A pata Message BDUV' Message Headerl Message Filter

B > PRODUCT -
KU |SBN-059B0001 B2 [Recetez Jpsta
MAME Java and XML <> PRODUCT
DESCRIPTION Book ||| SKU ISBN-0598000162
MANUFACTURER oreily ||| = MAME Java and XML
LIST_PRICE 3885 [DESCRIPTION Book

ot MANUFACTURER OReilly
LIST_PRICE 36.95

Inputl Data

B > BOOKBUYER
MNAME Ingram
ACCOUNTND 33715075
aTr 44

QEEEESI
esMessageReceiveTest1
fpg CALL liBodySize = 1000
fpg CALL liBodySize = 687000
ﬂ Receive JMSBytes via queue, Filter=
=-Receive Message Actions

.. 555 MAP JMSMESSAGE.getJMSBytesBoty) TO $Outputroot/git
55 MAP “filexiDTEMPliy jiftest.gir” TO $Outputiroot

SKU ISBN-0596000162

Cutput Data

JMSType ="JMSBytes’

When you create a new Receive action, the line “Receive Message . . .” appearsin the action list,
followed by aline“Receive Message Maps.” Under “Receive Message Maps,” you can insert any Map
actions or other processing needed to make use of information contained in the received message.

Unlike a Browse M essages operation, a Receive Message action islimited to retrieving one message at
atime. Therefore, the IMS Connect does not include awHILE loop as part of every Receive Message
action.

NOTE: To iterate through all available messages, you should enclose your Receive Message action (and
any associated processing) within a Repeat While action that terminates when the IMSMessagelD field is
empty.

Note that as with the Browse Messages action (described above), the Native Environment Pane for the
Receive Message action contains M essage Body, M essage Header, and M essage Filter tabs. Working
with these tabs is covered in the next chapter.

The Message Transaction Action

54

The Message Transaction action allows you to group two or more message-related actions into one
logical unit of work that is executed (or not executed) atomically. When atransaction commits, all of its
inputs (in terms of messages) are acknowledged and all outputs are sent. When a transacted message
session rolls back, any produced messages are destroyed and any messages consumed during the session
arerecovered.

In order to utilize the Message Transaction calls within aJMS Component, it's essential that the session
occur in Transacted mode. The way one configures thisis by setting the “ Transacted” checkbox in the
JM S Connection resource for the component. (The procedure for doing thisis explained below. Also see
“Creating aJMS Connection Resource” in Chapter 2.) When the JIM S session associated by the IMS
Component isin Transacted mode, you can safely use Commit and Rollback statements (viathe Message
Transaction action) in your Action Model.

JMS Connect User’s Guide

What Happens When | Issue a Commit?

When you issue a Commit, every message action (starting either from the beginning of the Action Model
or the last Commit or Rollback statement, as appropriate) is executed, which means every message
produced up to that point is sent and every message consumed up to that point is acknowledged. (On a
receive operation, message acknowledgement signals the queue manager that it is okay to destructively
remove the message from the queue.)

What Happens When | Issue a Rollback?

WhenyouissueaRollback, every message action (starting either from the beginning of the Action Model
or the last Commit or Rollback statement) is nullified, which means every message produced up to that
point is destroyed (not sent) and every message consumed up to that point is recovered (i.e., allowed to
remain on the queue, asif nothing had happened).

What Happens if | Leave the Session Unresolved?

An ambiguous state can arise if atransacted session uses no Commit or Rollback statements at all; or if
an Action Model that contains several properly committed (and/or rolled back) actions endswith a
message action that isneither committed nor rolled back. Interestingly, MOM vendorsdiffer significantly
in their handling of this situation. Some automatically commit unresolved actions; others roll back
anything that is not committed.

The exteNd JM S Connect enforces an automatic-rollback protocol in situations where transactions are
left uncommitted. (Thisis similar to the behavior of the JIDBC Connect, where checking “ Allow SQL
Transactions” in the connection resource setup dial og causes automatic rollback to occur if thefinal SQL
statement in atransacted JDBC Component uses neither a commit nor arollback. See Chapter 2 of the
JDBC Connect guide.) That isto say, any message actions that have occurred since the last Commit or
Rollback statement will be rolled back when the session closes. Due to the way JM S “wrappers” MOM
services, this behavior takes precedence over the MOM’s normal behavior. No matter whether your
MOM defaults to automatic commit or automatic rollback, the IM S Connect guarantees one consi stent
behavior: automatic rollback of uncommitted messages.

What Actions Are Included in a Message Transaction?

Because the IM S Component allows the use of non-message-related Transaction actions
(New Action > Advanced > Transaction) aswell as Message Transaction actions, it's important to
understand the difference between the two.

The Message Transaction action calls commit () and rollback () methodsthat are scoped tothe IMS
session. Therefore, these methods cover message-related processes only. For example, while aMessage
Transaction command could roll back the sending of amessage, it could never roll back a database
operation conducted by an external call to aJDBC Component from within the Action Model of aJMS
Component. If your Action Model contains a Receive Message action, followed by a Component action
(involving acall to aJDBC Component), followed by a Send Message action, and you want to roll back
everything (including the database operation) in the event of an error condition, you would need to
demarcate the transaction using New Action > Advanced > Transaction (which isavailablein all
Components) rather than New Action > M essage Transaction (which is specific to the IMS
Component). The latter would roll back message operations only.

Creating JMS Actions 55

What Can | Use Message Transactions For?

56

A typical use of JM Stransaction demarcationistoforce“all or none” behavior in aset of related message
actions. For example, suppose a set of messages (involving an order acknowledgement, a vendor
notification, and aback-end query) must all be sent at once, or else not sent at all. Complex businesslogic
may beinvolved in the determination of whether the sending of the messages should be authorized. Using
atransacted JIM S Component, the session could be set up such that messages are “ sent” by default, but
on any error condition or unsuccessful return from any point in the process, any Send Message (and/or
Receive Message) operations are simply rolled back.

Another possible use of atransacted session involves nondestructive reading of messages. Normally,
when an application reads amessage off aqueue, that messageispermanently and irrecoverably removed
from the queue. But if a IMS application reads a message in a transacted session, it can inspect the
contents of the message before deciding whether or not to roll the session back. If the session isrolled
back, the message will remain on the queue asif nothing happened. Why is this more useful than simply
browsing? (Recall that browsing, unlike receiving, does not destructively consume messages.) Consider
the case of an application that needs to inspect the body of a message before deciding whether to take
action on that message. With browsing, the workflow would be:

1 Browse

2 Inspect message contents.

3 If the message needs processing, read it from the queue (so asto ensure its removal from the
gueue); and process the message contents. Otherwise, do nothing.

Notice that the application must first do a browse, then aread operation. This represents two trips to the
queue. With atransacted session, the workflow is:

1 Read the message off the queue.

2 Inspect message contents.

3 If the message requires processing, take action. Otherwise, roll back the session.

Inthiscase, thereisonly onetrip to the queue (to read the message). If the messageisnot suitable, rolling

back leaves the message on the queue asif nothing had happened. No matter whether the messageis
usable or not, there has been only one trip to the queue.

> To create a Message Transaction action

1 Checkto be surethe IMS Connection resource is transaction-enabled. In the navigation pane of the
exteNd Composer main screen, click Connection, then Resource; then doubleclick the appropriate
JM'S Connection resource in the detail pane. Select the Connection Info tab of the Properties
dialog. The following screen appears:

Header Infa, Connection Info |
Connection Type |.JMS JMDI Queue Connection LI Test |

Queue Name [PROJECT ¥Path(USERCONFIGIa3name' (B2 4| [T Defaut

Connection Factory Name |connecti0nFactory

User D |

FPassword |
Subcontext |ii0p:II1 0.130.100.10:3506/queue

Transacted
Use Server Initial Context [
Initial Cantext Factary |c0m.Sun.jndi.cosnaming.CNCb{Factory

Provider URL IiiDp:.l’H 0.130100.10:3506

JNDI Authentication |

Security Principal | ;l

Help oK Cancel

JMS Connect User’s Guide

Notice the Transacted checkbox in the lower part of the dialog. This box must be checked if you
are going to employ Message Transaction commands in your JMS Component. If the box is | eft
unchecked, Message Transaction calls in your component will cause exceptions to be thrown.

2 Fromthe main menu, select Action, then New Action, then M essage Transaction. A dialog box

Messzage Transaction E1

& Commit Transaction

0 Rollback Transaction

Help OK Cancel

3 Select Commit Transaction or Rollback Transaction as appropriate.

NOTE: There is no need to issue a Begin statement. The Begin is implicit, based on your having
checked the “Transacted” checkbox in the connection resource (see above). Checking this
checkbox places the entire JMS session within a transacted context.

4 Click OK. The appropriate statement isinserted in the action list.

Using Other Actions in the JMS Component Editor

In addition to the Send Message, Browse Message, Receive Message, and M essage Transaction actions,
you have all the standard Basic and Advanced Composer actions at your disposal aswell. The complete
listing of Basic Composer Actions can be found in Chapter 7 of the Composer User’s Guide. Chapter 8
contains a listing of the more Advanced Actions available to you.

Creating JMS Actions 57

58 JMS Connect User’s Guide

Working with Messages

The primary purpose of the IMS Connector isto allow you to leverage the power of Message Oriented
Middleware (MOM) in your exteNd services, making possible many types of interactions between front-
and back-end portions of abusiness application. To fully exploit this capability requires that you
understand, in some detail, the ways in which messages can convey various forms of content viaJM S
Components. This chapter explains the process of putting messages to work.

In this chapter, you will learn:

*

How to map datainto and out of IMS Message Headers

How to map data into and out of Custom Properties

How to map data from and to DOMs and message bodies

How to work with the special XML and Copybook message types

How to employ Message Filters (JM S Selectors) to receive or browse messages selectively, based
on application-defined criteria
How to use exteNd's IM S-related ECM A Script extensions to manipulate message data

Before reading this chapter, you should have already read “ Getting Started with the IM S Component
Editor” beginning on page 19, “ CreatingaJM S Component” on page 31, and “ Creating IMS Actions’ on
page 37; and you should already be familiar with exteNd Composer, as well as the concept of Map
actions.

Mapping Dat

a into the Message Header

When you click on the Message Header tab in the Native Environment pane, atree view of the IMS
header is displayed:

Message Body Message Headerl

[sendz_HOR |Data

SRS SHEADER)
..-=<>.JMSCurreIatiunlD
...e(:‘.JMSDEIiVEWMDdE
- > JMSDestination
- 3 IMSExpiration
..A::'.JMSMessagelD
- 3> IMSPriotity
<> IMSReplyTo
- > UM Tirme starnp
- > IMSTpe
&< > PROPERTIES

O-<> Mg
. E-S> IMSKUserlD

-3 IS HAppID

> IMEKGrouplD

| E-S2> IMSHGroupSey

> IMSHPrdunerTHID ll

I8

Working with Messages 59

This header (which contains property info aswell as IM S-defined header fields) constitutes a unique
DOM for mapping purposes. In the example shown above, the header DOM has been named Send_HDR.
(This name was set in the message action setup dial og; see page 44.) The Send HDR DOM can serve as
atarget for mapping data into the message header. It can also serve as the data source for mapping to
elements of an output DOM.

Because IM S defines a number of preexisting fields, a message-header DOM treeis associated with all
messages (and appears automatically in the Native Environment pane whenever you select the Message
Header tab); hence, you can use the drag-and-drop technique to map data from any portion of any input
DOM straight into the message header (subject to the limitations outlined below), or in the opposite
direction. Simply click on aninput node, in any visible DOM pane, and drag over to the desired spot in
the message header, then rel ease the mouse button. The appropriate Map action is added to the Action
Model automatically.

Limitations on Header Mapping

O

JMSCorrelationID

JMSType

Most JM S-defined header fields are read-only (or intended for use by the IMS provider) and therefore
unavailable for use as drop targets. Only JM SCorrelationl D and JM SType are intended to be mapped
into by drag-and-drop. (If you attempt to drag an item into any other fields, you will see the “forbidden
drag operation” symbol shown at left, along with the warning “Write-restricted drop target” in the status
line of the component editor window.) JM SReplyTo iswritable, but only through Send Options in the
Send dialog (see discussion below). For more information about IM S header fieldsand their meanings,
see Appendix C.

TheJM SCorrelationl D field isintended to serve asatracking or control field for use by applications. A
typical use of JM SCorrelationl D isto serve as an identification string for request/response purposes.
For instance, in the example shown further below (see “ Actions Unique to the IM S Component

Editor” beginning on page 37), the sending app may want to identify the business transaction represented
by the current message with an unambiguous tracking number that may have significance for
nonrepudiation. Using a Function action, one could assign a unique value, at runtime, to the

JM SCorrelationl D field consisting of the current ECM A Script date in milliseconds, plus the
BOOKBUY ER/NAME value (from the Inputl DOM), separated by a hyphen:

(Number (new Date)) .toString() + '-' + Inputl.XPath ("BOOKBUYER/NAME")

At runtime, thiswill cause avaluesimilar to ' 976128839742-Ingram' t0 appear in the outgoing
message’'s JM SCorrelationl D header field. A receiving application could take note of this value and
placeit in its outgoing messages. In thisway, individual elements of a distributed application are ableto
identify this customer order as a unique order and operate on it in coherent fashion.

NOTE: JMS specifies that application-assigned JMSCorrelationID values must not begin with ‘ID’,
since that prefix is reserved for the use of IMS providers.

The IM STypefield can hold any string. A typical use of JM SType on outgoing messagesisto hold
sentinel values that receiving apps (pointing at the same queue) can inspect for filtering purposes.
Depending on the nature of the application, you might choose to map this value from an input DOM, use
a Code Table, base the value on an ECM A Script expression, hard-code a particular value, etc.

60 JMS Connect User’s Guide

JMSReplyTo

The IMSReplyTo field iswritable, but not through drag-and-drop or direct editring. To put a“return
address” value in thisfield, use the Send Options tab in the Send Message dialog (as explained in the
previous chapter). In the Send Options tab, there is acheckbox called Specify ReplyTo Queue/Topic.
When this checkbox is checked, you can enter a queue name (in quotes) in the associated text field, or
specify an ECMA Script expression that will evaluate to a queue name at runtime.

Mapping Data to Custom Properties

Any custom properties that you defined when creating the message action will appear automatically in
the Message Header DOM tree. You can map datato these propertiesin any of the usual ways: drag-and-
drop, ECMAScript, etc.

In the example further below, we have a custom property called SKU_PREFIX. Suppose we' d like to
map aportion of the Input DOM’s PRODUCT/SK U datainto thisitem: in particular wewant just thefirst
portion of the SKU, up to (but not including) the first hyphen. One way to accomplish thiswould beto
highlight the SKU_PREFIX node of the Message Header tree, then do aright-mouse-click and select
Map . .. in order to bring up the Map dialog window.

Map]|

Source

€ wpath: frnput =zl @ Expression:
[string(input<Path(PRODUCTISKUY). salit(-)(0] 74

Cptions
[= m |

Target
& ¥Path: |Sen|:|_HDR ;l " Expression;

|MSGHEADERIF‘ROPERTIESIUSERISKU_F’REFI}{ 4

Help Apply OK Cancel

Under Source, we've clicked the Expression radio button and entered an ECM A Script expression of:
String (Input.XPath ('PRODUCT/SKU')) .split('-") [0]

Here, we usethe String object’'ssplit () method to split the SKU string at every hyphen. Thesplit ()
method returns an array, the zeroth member of which isthefirst substring, up to the first occurrence of
the delimiter (in this case, the hyphen). Hence, this expression, when applied to the string “I SBN-
0596000162", returns “1SBN.”

A receiving application, perhapstailored to handle just messageswithaSKU_PREFIX valueof “1SBN,”
could selectively pull messages of thistype from aqueue, ignoring all others. Filtering of thissort isdone
with Message Selectors.

Working with Messages 61

Limitations on Property Mapping

All user-defined Properties are read/write-enabled, which means that they can serve as drop targets for
drag-and-drop mapping. The only restriction on this involves attempts to map incompatible data types.
For example, if you attempt to drag a String value to a Property that has been defined asan Integer value,
you will see the “invalid drag operation” icon aswell as a status message (in the lower |eft corner of the
component editor window) of “Invalid drag value for drop target: INTEGER.” Thisistruefor all header-
field drag-and-drop operations: exteNd Composer will perform automatic type-checking during drag
operations and prevent you from violating type constraints.

Working with XML Messages

62

A common use of messaging isto send an XML document (or documents) to aqueue. For example, orders
takeninreal timeover theweb might be handed off to aback-end fulfillment system viaamessage queue.
The back-end application could retrieve orders on afixed schedule or by polling or listening for ordersas
they arrive.

In the following example, a publishing company is receiving book orders viathe web from wholesales
and distributors. The requirement isfor aJM S component that can take information from two XML
sources (one representing customer-submitted information and the other representing product
information obtained via a database |ookup) and transform the information into anew XML document,
which will ultimately be sent to a message queue.

First, a Send Message action is created using the XML message type (as described in the previous
chapter; see “Creating IMS Actions”).

[&nput patz Message Body | Wessage Header|
<>
= PRC;%CT | SR e
NAME .é‘ilvnakand Hhil
DESCRIPTION oReil
MANUFACTURER) 95"
LIST_PRICE -
E-) Input! Data e E’>§ E;g “?ﬁ 0 “
< > BOOKBUYER =-SampleJMSComponent
I MNAME Ingrarm
ACCOUNTNO 33715075 = EL y
arr 4 g --Before Send Actions
SKU ISBN-0586000162 - zena
“...After Send Actions

With the Message Body tab of the Native Environment pane sel ected, the body of the messageisinitially
empty.

Notice that this particular component uses two input DOMs: Input (containing product information) and
Inputl (containing customer information). These DOMs could originate in many ways. The Input DOM
might represent data pulled from a database viaa JDBC Component. Information in the Inputl DOM
could be customer information that arrived viathe web (or via a message that was processed by another
JMS Component).

NOTE: In this example, an Output DOM is not shown, because the Message Body will contain this
component’s output. (Display of the default Output DOM has been suppressed using
View > Window Layout > XML Layout.)

JMS Connect User’s Guide

Mapping Data into the Message Body

On certain occasions, you may want to map an entire XML document into amessage body; in other cases,
you might just want to map a portion of an XML document into a message body. We will discuss each
caseinturn.

Mapping an Entire XML Document into a Message Body

With the M essage Body tab sel ected in the Native Environment Pane, right-mouse-click inside the empty
Body areato bring up a context menu; then select M ap from the menu.

Edit Data... !

Yalidate

Expand Tree
Collapse Tree

Feload Tree

The standard XML Map Action dialog will appear:

Map | |
Source
& HPath: |Input ;I " Expression:
! ®
OrEIEme Enter a period here to
- map the Input DOM ||— |
to the outgoing
message Ody.
Target
& HPatp®|Send? LI " Expression:
. B
Help Apply 0K Cancel |

The default source DOM will be Input. (Use the pulldown menu to select another DOM, if you do not
want to use Input.) Inside the Source text field of the Map dialog, enter aperiod (.), signifying that you
want to map the entire source DOM to the target.

The default target will be Send (or whatever the name of the outgoing message is, as specified when the
Send action was created). Inthetext field under Send, enter aperiod. Dismissthedialog. You should now
see aMap action in your action model that looks like:

-4 Send ¥MLTextvia christ
(5 Before Send Actions

You can also map al of amessage from Receive to Output as part of a Receive action using the same
procedure. The result of thiswould be:

£ T34 Receive XMLText via chrisQd

.- Receive Message Actions

Working with Messages 63

Mapping a Portion of an XML Document into a Message Body

To map aportion of an XML document into the M essage Body, start by doing aright-mouse-click inside
the empty area of the Native Environment pane (with the Message Body tab selected). Thisbringsup a
contextual menu.

Select the Map . . . command. Thiswill bring up the Map dialog.

Map E

Source

¥ ¥Path: Ilnput | {" Furroccion-

| Click here to go to the g

XPath expression builder. '%

Options

2 | P = |

Target

% MPath: |Senn:|2 j " Expression:

| 7 4
Help Apply oK Cancel

Inthe Map dialog, Input is shown as the default Source DOM and Send is shown as the default Target.
(You can choose different Source and Target DOMs using the pulldown menus.) If you know the X Path
fragment that you want to use as the source, type it in the box provided; otherwise, click on the blue
Expression Editor icon at right. Clicking the Expression Editor icon brings up the Expression Editor

dialog for the Source X Path.
H¥Path Context: OtherVariahles: Functions/ethods:
-2 Input <> Input || =-custom Scripts
L KU -S> Input1 -Numeric
NAME -S> Qutput [#-String
DESCRIPTION <> Sent4HDR #-Boolean
MANUFACTURER > Send2_HDR #-Node Set
HE LIST_PRICE > Browse
> Receive
> Raceive! HDR Operatars:
> Browse_HDR [#-Math
> PROJECT 1 | #-Relational
-E ':‘b Repeat Aliases = [#I-Logical
Help Yalidate oK Cancel

With the aid of the pick listsin the top portion of thisdialog, you can build an XPath fragment and/or an
ECMA Script expression simply by pointing and clicking. In this case, we' ve expanded the tree view of
the Input DOM (in the upper left) to show the complete Input tree structure. Doubleclicking the SKU
item in the tree causes PRODUCT/SKU (i.e., the XPath fragment for that portion of the tree) to appear
automatically in thelower portion of the dialog. Whenweclick OK, the X Path information appearsin the
appropriate place in the Map dialog.

64 JMS Connect User’s Guide

To cause PRODUCT/SKU information to be mapped from Input to an XPath location of
ORDERINFO/SKU in the message body, we type ORDERINFO/SKU in the Target portion of the Map
dialog:

Map | ¥]

Source

¥ XPath: ||nput j 0 Expression:

|PRODUCTISKU I ¢

Options
r | 1 1 |

Target

& ¥Path: [send x| Expression:

|ORDERINFC/SKU| 4

Help Apply OK Cancel

When we click OK, the map dial og disappears and we' re able to see the result of our mappinginthe IMS
Component Editor main window:

D Input Data Message Bodv' Message Header |
<> PRODUCT [— —
S EKU |SEN-0596000162 2n [pata
MAME ava and ML ORDERINFO | |
BESERIPTION B0k |lsErr0536000162 |
: MAMUFACTURER [OReilly
o LIST_PRICE 39.95
5 Input Data c Bﬁ EE "\'ﬁ O “
- > BOOKBUYER =] IMSC
; NAME Ingrarm o
! Send ¥MLText via chris@1
ACCGOUNTNO 33715075 2 e
s aTr 14 efore Send Actions
. U |SBN-0536000162 BESIAP SInputPRODUCT/SKU TO $Send/ORDERI

-.After Send Actions

This procedure can be repeated as many times as necessary to popul ate the message body with data.
Alternatively, you can use Function actions (in conjunction with ECM A Script DOM methods) to create
XML nodes in the message body programmatically.

Working with Copybook Messages

Oneof the most powerful features of the IMS Connect isitsability to send, receive, and browse messages
whose payloads consist of COBOL copybooks. Being able to use copybooks in messages allows the
application Composer to leverage awide range of legacy system interactionsin exteNd services. Thisis
especially true when the CICS RPC Connect is used in conjunction with the IM S Connect. For example,
acopybook received asamessage in aJM'S Component can be transformed in accordance with business
needs and used as the input to an RPC session, all within the same service.

Working with Messages 65

Copybook Message Setup

Code Page

When you create a Send Message, Receive Message, or Browse M essages action and you specify
“Copybook (IMS Bytes)” in the pulldown menu for Message Type, the bottom portion of the setup dialog
(under Body Information Setup) will contain fields that allow you to associate a copybook with the
message action.

Send Message E

Send Options Message ElDd!’l Message Headerl
Message Type:

Copyhook (JMS Bytes) n

Body Information Setup:

COBOL Copybaok Info

Copybook Handle
- Edit Copybook Handle -

Copybook File
- Select Copyhook File -

Browse |

Copyhook Data Parameters:

Code Page Floating Point Format

[cpoaz | |iem =1

Machine Type Endian

25 REE |

Help OK Cancel

Under Copybook Handle, you can type an arbitrary text string that identifies the copybook for mapping
purposes in the IMS Component editor.

The copybook’s file name should show under Copybook File. If it does not, click the nearby Browse
button and find the copybook you wish to use; its name will then appear in the Copybook File area.

Under Copybook Data Parameters, you will find four pulldown menus that allow you to choose the
Code Page type, Floating Point format, Machine Type, and byte order (Endian), as appropriate to the
target environment.

Supported character encodings vary somewhat according to the version of the Java 2 runtime
environment that is present. The Code Page pulldown menu will list al of the character encodings
supported by the Java runtime being used.

Floating Point Format

Machine Type

Endian

The two floating-point formats supported by the IM S Connect are IEEE-754 and IBM formats.

Machine Type refersto the target platform that will ultimately receive or process the copybook in
question. The available choicesare MV S, OS/2, NT, or AlX.

Thetwo choices, BIG or LITTLE, refer to the native byte-order representation of the target platform.
Intel architecturesuse alittle-endian addressing schemein which theleast significant byte of amulti-byte
entity is represented at the lowest memory address. Most other machine architectures are big-endian.

66 JMS Connect User’s Guide

Copybooks and the Native Environment Pane

When you arein the IMS Component editor main window and you select (or highlight) amessage action
involving acopybook, the Native Environment pane displaysinformation contained in the copybook that
you selected in the message-action setup dial og.

(B Input Data__|[Body | Header | M Filter |
== > CA_COMMAREA “::) SR ||Data

<> op_PROCESS_FLAG S DT CACOVNARER)
...... <> CA_PAGE_NBR e :

______ <> CA_VALIDATE_FLAG E1-05 CA—PROCESS-FLAGI FI'IC K

------ <P CA_VALID_DATA_SW
------ <> CA_VALID_ORDER_NE
------ <> CA_VALID_CUST_MBF

ag
a8 CAPAGE

CA-UPDATE 'L

------ <> CA_VALID_PAY_TYPE_ ‘e B8 CA-PAGE-2Z 7
------ <> GA_VALID_PAY_INFO_ 06 GA-PAGE-NBR PIC 29 DISPLAY VALUE I [0
------ < > CA_RESF 08 CA-VALIDATE-FLAG PIC XWVALUE IS N _N
...... = CA_MSG 88 CAVALIDATE o
= > CA_LINE_ITEMS o B8 CA-ALREADY-VALIDATED ‘N
...... > CA_VALID_STATUS S 105 CAVALID-DATA-SW PIC X WVALUE 1S " Y
D output Data «@ BEE O I

- > CA_COMMAREA, i
: - Receive Copyhook via gueuel, Filter= Age >= Input.XPath{"MSGH
L.<> oA PROCESS_FLAG |— || © W Py q 4 P {

<> G _PAGE_NER ERecewe Message Actions
= CA_VALIDATE_FLAG —— .= MAP ordlink.getField("CA-PROCESS-FLAG™) TO $0utputiC

S CA_VALID_DATA_SW ——— 525 WAP ordiink.getField("CA-PAGE-NBR™) TO $Output/CA_CC
LA Al In mRLER ML

Inthis case, a Receive Message action has been highlighted. The associated copybook is displayed inthe
Native Environment Pane in the upper right. There are three display modes for coypbooksin the Native
Environment Pane:

+ Copybook
+ Copybook + Data (shown above)
+ HexData

To select adifferent view, perform aright-mouse-click inside the Native Environment Pane and choose a
View from the contextual menu:

(VeI
Fepeat:
=]
Copybook
=]z | T =i = v Copybook + Data
Expand Tree Hex Data
Collapse Tree

Print Copybook
Find...
Find MNext

Working with Messages 67

The Hex Data view creates a standard hexadecimal data view of the copybook contents.

Message Body | Message Headerl Message Filterl

[ordiink

0000: 2030304E 59202020 20303030 30303036 | OONY 0000o00s |
00Ll0: 38592020 20202020 20202020 20202020 | &8Y |
0020: 20202020 20202020 Z0E02020 20202020 | |
0030: 20202020 20202020 20202020 20202020 | |
|
|

0040: 20202020 20202020 20202020 20202020 |

0050z 20202020 20202020 Z0202020 20204E00 | .
00G0: 00000000 00000000 Q0000000 00000000 | eseievnnnnns |
0070z 00000000 00000000 Q0000000 00000000 | eseievnnnnns |
0030z 00000000 00000000 00000000 00000000 |..e e seievnnnans |
0090: 00000000 00000000 00000000 00000000 | e e evannnns |
00A0: 00000000 00000000 Q0000000 00002030 |...veeeennnnns 0l
O0BO: 30303030 30202020 20202020 20202020 |00000 |

LT AMAAAARA AAAEAEAR AARAAASA SAAAS AR ' '

Thisview is neither editable nor mappable; it is designed primarily as a troubleshooting and debugging
aid.

Copybook-Specific Context Menu Items

The contextual menu that appears when you perform a right-mouse-click within a copybook’s Native
Environment Pane contains a number of copybook-specific commands, as explained below.

Native Pane Menu Description

Decision Enabled when a REDEFINE statement in the copybook is highlighted. When
you click on Decision, a dialog box appears prompting you to enter a
Decision expression that determines when to use the Redefined data
descriptors.

Repeat Enabled when an OCCURS statement in the copybook is highlighted. When
you click on Repeat, a dialog box appears prompting you to enter information
specifying the Target for the Repeat action.

Map Active in the input or output pane. When you highlight a statement and click
on Map, a dialog box appears prompting you to enter information.

View - Copybook Active in the native environment pane. When you highlight a statement and
click on View/Copybook, the pane will reflect the copybook format

View - Copybook and Active in the native environment pane. When you highlight a statement and

Data click on View/Copybook and Data, the pane will reflect the copybook and any
data mapped into the copybook or placed there as output from executing the
program.

View Hex Data Active in the native environment pane. When you highlight a statement and

click on View/Hex Data, the pane will reflect the copybook and any data
mapped into the copybook or placed there as an output from executing the
program in Hexidecimal format.

Select Occurrences Enabled when an OCCURS statement in the Copybook is highlighted. Since
each occurrence of the OCCURS clause is not displayed, when you click on
Select Occurrences, a dialog box appears prompting you to select which
occurrence you wish to see the data for. Enter a number.

NOTE: The array and/or data structure is numbered from 0-5.

68 JMS Connect User’s Guide

Native Pane Menu Description

Expand Tree Displays all Copybook nodes beneath the selected data descriptor.

Collapse Tree Hides Copybook nodes beneath the selected data descriptor.

Copy Enabled when in the View/Hex Data format. Allows you to highlight a block of
text and copy it then paste.

Print Copybook Allows you to print the copybook.

Find Allows you to perform a search within the copybook in all data views.

Find Next Allows you to search the next item in all data views.

Mapping Data Between Copybook and DOMs

When a copybook isvisiblein the Native Environment Pane, in any view except the Hex Data view, you
can use the drag-and-drop technique to map XML DOM elementsto copybook fields or vice versa.
Mapping into the copybook will ordinarily be done from Input DOMs as part of Send Message actions.
Mapping out of the copybook will ordinarily be done with an Output DOM as atarget, for Browse or
Receive actions.

NOTE: The JMS Connect performs certain behind-the-scenes checks as part of every drag-and-drop
operation. If a particular operation is forbidden, you will see the “forbidden drag operation” symbol, as well
as an error message in the Component Editor’s status line, and no “drop” will occur when you release the
mouse button.

M appings between DOMs and copybook fields can also be created using the Map . . . command in the
Action > New Action menu (from the main menubar) or the Map . . . command of the contextual
menus. To access a contextual menu, right-mouse-click on any element in aDOM or copybook. The
advantage of using the contextual-menu technique isthat the Map dialog will contain appropriate X Path
information for the DOM/copybook element you clicked on, already filled out.

M appings can also be created programmatically, using ECM A Script, inside Function actions.

Auto Map Copybook

Using the mapping techniques described above, you may have to perform numerous keyboard and/or
mouse operationsto create required mappingsto or from DOM elements and copybook fields. When the
copybook is more than afew lineslong, this quickly becomes atedious affair. To make it easier to create
large numbers of mappings, the IMS Connect provides an Auto Map Copybook command under the
Component menu (on the main menubar):

Sy Action Animate
Execute |
Reload XML Documents

Auto Map Copybook...

Selecting this command brings up the following dialog:

Working with Messages 69

70

Auto Map Copybook E

Create Documents and Map Actions: & MM to Copybook
 Copyhook to XML

Source: Target:

[Input =l |nDaTa =l

[Create Mew XML Template For Mapping

Template Category: Template Mame:
[Custom =l pocount_mouirT_RER |
Help 0K Cancel

This dialog allows you to create batch mapping actions between DOMs and copybooks (in either

di

rection) quickly and easily. Optionally, it allows you to create anew XML template document, based

on a copybook, which can be saved permanently in the event you want to reuseiit.

NOTE: The Auto Map Copybook dialog will appear only if a copybook is showing in the Native
Environment Pane. (This, in turn, requires that a copybook-related message action be highlighted in the
Component Editor’s action list.)

> To create a batch mapping of XML elements to copybook fields (or vice versa)

1

Select the appropriate radio button in the upper right portion of the Auto Map Copybook dialog
(XML to Copybook, or Copybook to XML).

Select the desired Sour ce and Tar get documents from the two pulldown menus.

Click OK. The Component Editor Window appears and new Map actions are shown in your Action
Model.

NOTE: You may want to inspect the Map action list that is thus created and remove any actions that are
not relevant to your project.

> To create a new XML Template document based on a copybook

1

JMS Connect

Select the appropriate radio button in the upper right portion of the Auto Map Copybook dialog
(XML to Copybook, or Copybook to XML). Selecting XML to Copybook indicates that you
wish to create an Input document and Map Actions to move data into the Copybook. Selecting
Copybook to XML indicates that you wish to create an Output document and Map Actions to
move host program output data from the Copybook to the Ouput document.

Select the desired Sour ce and Tar get documents from the two pulldown menus.

In the lower portion of the dialog, check the Create New XML Templatefor M apping checkbox.
Thisindicates that in addition to the batch-mapping operation (described above), you wish to create
anew XML Template document. Checking the checkbox will activate the lowermost itemsin the
dialog: Template Category and Template Name.

Select aTemplate Category if it is different than the default category, or enter a New Template
Category Name over an existing entry.

Select a Template Name from the list of XML templates, or enter a New Template Name over an
existing entry.

Click OK. The Component Editor Window appears with the Input Template created. (Also, the new
template document appears on disk in the xmlcategories folder under your project’s main folder,
and the new template category appears under XML Templates in the navigation pane of
Composer’s main window.)

User’s Guide

Working with Message Filters (Selectors)

The IMS standard allows message filtering (that is, selective retrieval of messages) to occur based on
user-determined criteria. Filtering occurs viaa JM S message selector, which isa String containing a
statement (with SQL-like syntax) that will evaluate to true or false. The selector statement will normally
refer to one or more JM S message header fields and/or custom properties. (Message sel ectors cannot
reference message body values.) Based on data exposed in the message header, the message will either
be selected for retrieval, or not selected.

Selector setup occursin the IMS Connect by way of the Native Environment Pane. The Browse

M essages and Receive M essage actions (for all message types) cause aM essage Filter tab to beincluded
in the Native Environment Pane, along with tabs for Message Body and Message Header. The Message
Filter tab exposes atext-edit field where you can place asel ector expression. The expression can betyped
manually or constructed, inwhole or in part, by doubleclicking pick-list entriesfrom the upper part of the
tab.

Asan example, consider the following Message Filter:

Message Bodv' Message Header Message Filter
Header Data: OperatorsikKeywords:
E-JMS Fields - Math
. ~~JMSCorrelationlD =-Relational
~-JMSDelveryMode [b = Equal
--JWSMessaged [l - <> Not Equal
~JMSPriority || <Less than
~-JMSTimestamp || > Greater than
CoeJMSType [l e <=Less or equal
---JMS Propertes || i »= Greater or equal
#-Provider Properties [LIKE
----- BETWEEN
----- IS NULL
""" 1S HOT NULL
*-Logical
Filter:
MESPriarity = 5 AND JMSType = International

In this example, the selector expression requires that JM SPriority be greater than 5 and that IM SType
exactly equal the string * International’. In the upper part of the tab, under Header Data, the IMS Fields
node of the picktree is expanded to revea the available header fields. (Not all of the ten IM S-defined
header fields can be used for filtering; see “Limitations on Filtering” below.) IM SType is highlighted;
doubleclicking it places“ IMSType” in the Filter field, at the cursor’s|ocation. Operators and keywords
can likewise be “picked” using the pick listsin the upper right, to form an expression (or part of an
expression) without typing.

Using the filter expression example shown, any Browse Messages action will retrieve from the queue
only those messages with a IM SType of “International” and a priority greater than 5. All other messages
will be ignored.

In aReceive M essage action, the filter would result in the first available message that meets the criteria
being removed from the queue.

Other selector expression examples can be found in Appendix B.

NOTE: You should escape any colon characters (“:") in your selector expressions with a backslash, since
exteNd treats colons in SQL statements and JMS selectors as a marker, indicating the presence (after the
colon) of an evaluatable script expression.

Working with Messages 71

Limitations on Filtering

JM S imposes arestriction on which header fields can be used for filtering.Header field referencesinside
selector statements are restricted to the following fields:

+ JMSCorrelationl D

+ JIMSDdiveryMode (integer)
o JMSMessagelD

+ JMSPriority (integer)

+ JMSTimestamp (long)

¢ JMSType

Datatypes can beimportant in sel ector statements, sinceif the comparison of non-liketypesisattempted,
the statement will always return false. In the above list, all fields are Strings, except for IMSPriority,
which is of type integer, and IMSTimestamp, which is of type 1ong.

NOTE: Normally, IMSDeliveryMode is an integer, but in a selector context it will have the String value
‘PERSISTENT’ or ‘'NON_PERSISTENT".

Custom, application-defined property fields can be used as the basis of selector statements. But if a
selector references a property that does not exist, the value of the operation will be unknown. That's
because SQL semanticstreat NUL L values as unknowns; and any operation involving an unknown value
produces an unknown value. For aselector that referencesaNULL valueto be useful, it must return true
or false. The only way this can happenisif you usethe ISNULL or ISNOT NULL operator to convert
an unknown value into a boolean result.

Filtering by Body Type

72

You should be aware that IMS makes no provision for filtering by message body type (BytesM essage,
StreamM essage, etc.) per se. If aclient application requires access to thisinformation, the relevant body-
type info should be exposed in a custom property or header field by the sending application. A IMS
receiver has no a priori way of knowing what the body type of a messageis.

Notwithstanding this, in order for the IMS Connect to know what to do with the contents of an arriving
message, it is necessary for some value to be selected in the Message Type field of the Receive Message
(or Browse Messages) setup dialog’'s Message Body tab (seeillustration, page 52). Thevaluegiveninthe
Receive Message setup dialog will not be used for filtering, however, since thereis no way for aJMS
application to filter messages by body type (asjust explained).

NOTE: It's important that your application take steps to ensure that only messages of the appropriate
body type are received. Ordinarily, this will not be a problem since message-producing applications
typically send their messages only to consuming applications that have been specifically designed to
receive them. Nevertheless, should your application happen to receive messages with a body type
incompatible with the type you select in the Receive Message dialog, exceptions will be thrown.

If your application will be receiving/browsing messages from a queue that contains many different kinds
of message body types, it is advisable that you expose body-type info in a message property or header
field and design aMessage Filter (sel ector statement) that the receiving app can useto distinguish just the
messages that are appropriate from those that are not.

JMS Connect User’s Guide

Request-Response Messaging

Roundtrip request-response messaging is a common scenario in applications that use messaging. Some
typical use cases are;

+ Your application sends a message to a queue or topic with the expectation of receiving an
immediate reply (or replies). For example, a manufacturer may want to purchase a particular kind
of part; to do this, it may broadcast arequest for abid on the item by publishing a messageto a
topic. Listeners on that topic may be set up to respond immediately with an acknowledgement (or
an actual hid).

« Your application sends a message to a queue or topic without any expectation of getting aresponse;
but for purposes of error notification, your app specifies a ReplyTo destination in the outgoing
message. (The ReplyTo queue might be in an entirely different domain, and might be set up solely
to accumulate error reports.) Thus, your app sends messages out to one queue, but asks that error
reports be sent to another queue.

+ Your applicationisa JMS Service that listens on a queue or topic and is designed to process the
incoming message, then reply to it.

In each case, the sender needsto supply aqueue or topic namein the IMSReplyTo header field of the sent
message. This can be done using the Send Options tab of the Send Message dialog; see the section called
“Return Address’ under “The Send Message Action” in the previous chapter.

In the case where your application is responding to a query, you can set up your Send Message action so
that it automatically uses the queue or topic that was present in the IMSReplyTo field of the last received
message. |n the Send Options tab of the Send Message dialog, thereis aradio button called Use Prior
Message ReplyTo Field, provided for this purpose. (See “ Destination Queue/Topic” under “ The Send
Message Action” in the previous chapter.)

Temporary Queues

When your application is soliciting an immediate response, and you intend to block until areply is
received (or until aspecified timeout valueisreached), it is often convenient to create atemporary queue
dedicated to receiving the reply. The advantages of using atemporary queue are:

+ Isolation from other processes (no client other than the one receiving your message knows about
the temporary queue). This can simplify application design by minimizing or even eliminating the
need for message filters.

+ From aresource and administration standpoint, temporary queues are cheap, since they are created
on the fly and destroyed immediately after they have served their purpose.

To specify that atemporary queue be used for repliesto amessage, check the Use Temporary radio button
in the Send Options tab of the Send Message dialog. (See“ Return Address’ under “The Send Message
Action” in the previous chapter.) A temporary queue will be created for you automatically and its name
will be placed in the IMSReplyTo field of your outgoing message. The queue will then exist for the
lifetime of your component.

Multiple Temporary Queues

In cases where multiple outgoing messages will be sent in the lifetime of a single component, multiple
temporary queues will be created. By default, the IMS Connectwill create a unique temporary queue
every time an outgoing message is created (if the Use Temporary radio button has been set). If you want
multiple outgoing messages to specify the same temporary queuein their ReplyTofields, youcandoitin
the following fashion:

Working with Messages 73

1 Createyour first Send Message action in the usual way, checking the Use Tempor ary radio button
in the Send Optionstab. (See “Return Address’ under “ The Send Message Action” in the previous
chapter.)

2 Inyour next Send Message action, do not check the Temporary radio button (since this will cause
a new, unique temporary queue to be used). Instead, check the Named radio button.

Send Message
Send Options l Message Elody] Message Header]

Send Priotity,. Delivery Mode: Time To Live {ms):
4 | |FERSISTENT =] o

v Owerride Gonnection Gueus

* Mamed:

" Prior Receive's ReplyTo Man-JmMS client

¥ Specify ReplyTo Gueue

* Named:

' Temporary

Help oK Cancel

3 Click the Expression icon to the right of the text field. The Expression Builder dialog appears.

¥ Advanced... [
Wariahles: Functionsivethods; Operators;
5-<> send HDR #-Custom Scripts =-Math
£-= * MSGHEADER [#-Document [#-Relational
.= JMSCorrelationlD ---ECM.n.Script 1 Logical
- JMSDeliveryMode ---Extended ECMASCcript [-String
1= > JMSDestination [#-JMS-MQSERIES

<> JMSExpiration
+- =~ JMSMessagelD
#-< > JMSPriority

: . JMSType
+|*~ = PROPERTIES

Send_HDR.¥Path("MSGHEADERIIMSRenlyTa")

Help Validate OK Cancel

4 Inthe Variable picktree (upper left), open the send header node (default name Send_HDR) for the
first sent message. Expand the M SGHEADER node to reveal all of the IMS header field names.

5 Doubleclick the IM SReplyTo entry in the picklist. An ECMA Script expression appearsin the edit
field below.

6 Click OK to go back to the Send Message dialog.

7 Set any other message parametersthat you might need to specify for this message, then click OK to
close the Send Message dialog.

8 Repeat steps 2 through 7 for each subsequent Send Message action in your component that will use
the original temporary queue.

JMS Connect User’s Guide

ECMAScript and the JMS Connect

The JM'S Connect exposes anumber of IM S-related ECM A Script extensions that you can use in your
own Function and Map actionsto extend the functionality of your IM S Components and services. For the
most part, the extensions comprise “get” and “set” methods for manipulating the body content of

messages.

Accessto IMS-related ECMA Script extensionsis available viapick listsin the Expression Builder
dialog. (The Expression Builder, in turn, is available from the Map action and Function action dialogs.
See examplebelow.) You should note that the methods exposed viathe Expression Builder’spick listsare
exposed in context-sensitive fashion. For example, if you are working with a Copybook Message, the
methods exposed via the picktree will correspond to copybook-related operations, whereas if your
Message action involves aBytes M essage, the exposed ECM A Script methodswill relateto working with
the IM S Bytes M essage body type.

In the example below, we show how to attach content to a JM S Bytes Message using ECM A Script.
Unlike most other message types, the Bytes M essage type has no user interface for mapping (no Body tab
in the Native Environment Pane). Hence, ECM A Script is the only way to attach content to the body of a

Bytes Message.

NOTE: The JMS Object Message also has no user interface for mapping. You must use ECMAScript to
attach content to an Object Message. (Typically, you will rely on ECMAScript’'s Packages mechanism to
call Java code to retrieve Serializable objects associated with Object Messages. See Chapter 10 of the
exteNd Composer User’s Guide.)

> To work with JMS-related ECMAScript extensions in the Expression Editor

1 Create a Send Message (or other IMS) action. Select a body type corresponding to the type of
content your message will have. For this example, a Bytes Message will be used, but the principles
demonstrated here will apply to all body types.

2 With the Message action highlighted, create a new Map action. In the example below, we have
selected Action from the main menu, then New Action, then M ap, to create a new Map action.

Map E

Source
& MPath: |Recei\re_HDR =] | & Expression: | —
Options
r | O |o |
Target
" ®Path: |Output ;| & Expression: | —
Help: Apply oK Cancel

3 Click the Expression radio button for Source aswell as Target.

4 Type the Source expression representing the source of your message-body data, or (alternatively)
click the Expression Editor icon next to the text-edit areafor Source. The Expression Editor
window appear will appear.

NOTE: In this example, we will map data from the PRODUCT/NAME XPath of our Input DOM, but
you can also map from other sources. For example, you could use the File constructor and
readall () method to obtain data from a file on disk. (The “Extended ECMAScript” pick list
contains File I/O and other methods.)

Working with Messages 75

5 Typethe Target expression, or build it using the Expression editor. Click the Expression Editor
icon next to the text-edit area for Target. The Expression Editor window appears.

¥ Target Expression
Wariahles: Functions/Methods: Operators:
@<= Input [#-Custom Scripts 5 Math
B Input1 #-Document =-Relationa
< = Output -ECMASCript #-Logical
< > INDATA - Extended ECMAScript [#-String
<= Send E-JMS-MQSERIES
< 7 Send_HDR E-Message Handle
+]-°< 2 PROJECT . -JMSMESSAGE
&< > Repeat Aliases [-Message Methods
E-Send JMSBytes Methods
=
Y

JMSMESSAGE set/MSBytesBody()

Help

Validate OK Cancel

In the upper middle part of the Expression Editor, click the IM S-M QSERIES item to expand the
picktree to reveal nodes labeled Message Handle, M essage Methods, and Send JM SBytes Methods.
NOTE: If you do not see any JMS-related nodes in the picktree, it is because your Map or Function

action was not associated with a Message action. Be sure to highlight a Message action (or related
section of the action list, such as “Before Send Maps”) prior to creating the Map or Function action.

¥ Target Expression
Wariahles: Functions/Methods: Operators:
<> Input - Custom Scripts =-Math
<> Input1 - Document = Relationa
<2 Output E-ECMASCript #-Logical
< > INDATA [#-Extended ECMAScript [+ String
<= Send E-JMS-MQSERIES
< 7 Send_HDR E-Message Handle
<> PROJECT . - JMSMESSAGE
&=~ Repeat Aliases +-Message Methods
E-Send JMSBytes Methods
o
B

JMSMESSAGE set/MSBytesBody()

Help

Validate OK Cancel

7 Expand the various nodes of the tree under IMS-MQSERIES. You will see terminal nodes with
names like JM SM ESSAGE, getJM SM essage(), and setJM SBytesBody(). Doubleclick these
names (and/or other leaf nodes in other picklist windows) as necessary to build the desired
ECMA Script expression. The relevant labels appear in the text-edit portion of the window as you
doubleclick.

8 Dismissall dialogs by clicking OK. Your Map action appears in the component’s Action list.

To attach content to a message using ECM A Script, use the target expression:

JMSMESSAGE . setJMSBytesBody () ;

76 JMS Connect User’s Guide

No arguments are necessary. This*“ setter” method will take data from the Source part of the Map action,
convert it to the appropriate format (abyte array, inthe case of aBytes M essage), and attach it to the body
of the message. Corresponding “getter” methods operate in similar fashion, although some of these
methods require arguments. The calling conventions are set forth below.

ECMAScript Method Summary

Available IM S-related ECM A Script extensions and usage are asfollows. Most methodswill becalled on
the IM SM ESSA GE handle; the exceptions are Copybook methods (called on the Copybook handle) and
CopybookField methods (called on CopybookField objects).

Message getJdMSMessage ()

When called on the IM SMESSAGE handle, this method returns a IM S Message object. To work with a
specific type of IMS Message body, caste the returned message to the appropriate type. For example:

TextMessage 1Msg = (TextMessage)getJdMSMessage ()

String getJMSMsgBody ()
Call this method on IM SMESSAGE to obtain the body of a message as a String.

String getdMSMsgType ()

Call this method on IM SMESSAGE to obtain the body type of a message as a String. The return value
will be one of IMSText, IMBytes, IMSMap, IMSObject, or IMSIream. Notice that no special XML or
Copybook typeis ever returned since these are not JIM S-defined types.

CopybookField getField(String cobolDataDesc)
Example:
Suppose you have the following copybooks:
COMMAREA
05 INDATA
10PARTID
05 OUTDATA
10PARTID

Perhaps you' re interested in referencing the first PARTID (under INDATA), but you don’t want the
PARTID under OUTDATA. To resolve the duplicate nameissue, reference the parent cobolbatabDesc
as follows (assuming a Copybook Handle of MY COPY BOOK):

MYCOPYBOOK.getField ("PARTID IN INDATA")

The returned CopybookField object has two methods: toString () and setvalue ().

void setValue (Object aValue)

This method sets the value for a CopybookField object.

String toString()

Returns the value set for the CopybookField object.

Working with Messages 77

String getJMSBytesBody (int aiBufSize)

Getsthevaluefor aJM S BytesM essage object's body asa String representation. The aibuf Size parameter
isthe size of the body in bytes. Returns a String.

setJMSBytesBody ()
Setsthe body for a M S BytesM essage object.

String getJIMSBytesBodyAsBytes (int aiSize)

Returns a Java byte]] Object of size specified by aiSize.

setJMSBytesBodyAsBytes ()
Returns a Java byte[] Object.

String getdMSMapField(String asName, String asType)

Getsthe value for aJMS MapM essage object body field. Returns a String.

setJMSMapField (String asName, String asType)

Sets the name and type of a JM'S MapM essage object body field.

Serializable getJMSObjectBody ()

Getsthe value for aJM 'S ObjectM essage object body (after a Receive Message action). Returns a
Serializable object.

void setJMSMsgProperty (String asName, String asType, String asValue)
Setsa JM S header of a given name and typeto agiven value.
setJMSObjectBody (Serializable aObject)

Setsthe body of aJM S ObjectM essage object.

String getdMSStreamField(String asName, String asType)

Getsthe value for aJM S StreamM essage object body field. Returns a String.

setJMSStreamField (String asName, String asType)

This method sets the value of a M S StreamM essage object body field.

String getdMSTextBody ()

Getsthe value for aJMS TextM essage object body. Returns a String.

78 JMS Connect User’s Guide

The JMS Service

JM S defines amechanism, called the MessageL.istener object, whereby message consumers can be
asynchronously notified whenever a message has been published to a queue or topic. Thisgivesa
receiving application the ability to treat incoming messages as events: Instead of the application having
to go out and pull messages off atopic, messages are—in effect—pushed toward the application by the
gueue or topic manager.

To take advantage of this capability, the IMS Connect introduces a new type of exteNd Composer
xObject called the IMS Service (which appears as a category under Service in the main Composer
window).

File Edit “iew Compaonent
D@80
%8 Process

2 € Senice

C e g0 Jms Service
e B8 Weh Service

About the JMS Service

Like other exteNd services, the IMS Service can call external Components, perform XML Interchange
actions, carry out Log actions, execute Function actions, etc. (See “ Creating a Service” in the Composer
User’s Guide.) But the IM S Service differs from other servicesin anumber of important ways:

¢ TheJMS Serviceistriggered by an incoming message (from a queue or topic).

+ Toassure proper processing of the incoming message, the JM S Service must contain one (and only
one) Receive Message action.

NOTE: With exteNd version 2.7 and subsequent, you can put Send Message actions inside a JMS
Service, so that a listener can reply to incoming messages directly (instead of having to call another
component).

It'simportant to note that JM S Components do not, in general, need to be packaged inside IMS Services.
The distinguishing characteristic of aJMS Serviceis not its content but its triggering mechanism. The
JMS Serviceisdesigned to betriggered by the arrival of amessage at a queue or topic. Servicesthat are
designed to be triggered from HTTP servlets should be created as Web Services, eveniif they use IMS
Components. See “ Creating a Service” in the most recent edition of the Composer User’s Guide.

The JMS Service 79

Multiple Listeners

A useful capability offered by the IMS Connector isthe ability to deploy a IM S Service with multiple
listeners. This makes it possible to have multipleinstances of the same JM S Service running at the same
time.

Creating amultiple-listener serviceis merely amatter of designing aJM S Service and deploying it using
the same deployment facilitiesthat you normally use. (See the deployment chapter of the main Composer
User’s Guide.) Once deployed, listeners can be administered from an HTM L -based console window (see
discussion further below under “How Do | Manage Deployed JM S Services?’).

Creating a JMS Service

The IMS Serviceis created much like any other service. Before creating a M S Service, however, you
should already have created a JM S Connection resource for the queue or topic from which your service
will be receiving messages. (See “ Creating a JM S Connection Resource” for more information.) If you
omit this step, you will see an error message similar to the one below:

Object Creation Emor E3

The component type you are trving to create, "JMS Service”,
has no appropriate Connection Resources available.
Do vyouwant to create a new one?

No

Click Yesin thisdiaog if you wish to create anew JV'S Connection resource on the fly.

Thefollowing discussion assumes that you have already created a connection resource for use with your
JMS Service.

> To create a new JMS Service

1 From Composer’s main menu, select File, then New>xObject, then open the Process/Ser vice tab
and select JM S Service.

New XObject x|

Choose X0Object type
| Process/Service]| Component || Resource || Template |

JMS Service 26 Weh Service
“ Create a new JMS Service ¥ Create a new Weh Service

80 JMS Connect User’s Guide

2 Inthefirst panel of the“Create a New JMS Service Component” wizard, type the Name you want
the service to have and (optionally) Description information.

Create a New J¥S Service X

AJMS Service is triggered by the arrival of an incoming rr on ar quUELE OF I topic in
a systermn that supports message-oriented middleware (MOM). Enter a name and, optionally, a description
forthis JM3 Service. The name will appear in the Composer Detail Pane and in choice lists when you are
prompted for objects in Composer. The narme may not contain the characters: 10 7 "< = | Mames are
cage insensitive (e, MyObjecthlame is the same as myobjectnarme).

ame:

newIMZSerice

Description:

Purpose:
Input:
Output:
Remarks:

[|[Next][Cancel

3 Click Next to display the Templates panel.

Create a New VS Service x|

Specify one or more XML Templates to help design Input to this Component or'Weh Service and only one ta
design Cuiput. The sample XML Documents in each Template are design time aids to help you build Action
Models forthe component. The samples are not actually used at runtime after deployment to your application
server. The Identifier is fixed and represents the name used to refer to the XML Document during component
execulion. Selecting System {ANY} allows you to use an empty template {i.e. accept any document as Inpuf)

Input Message

Part | Template Category | Template Name

\
Input |imvstem) [oy I~

Output Message
Part | Template category | Template Name

[
Output |t=ystem) [] fmny [v]|

[Back H Next][Cancel]

*

*

Specify the Input and Output templates as follows.

Type in aname for the template under Part if you wish the nameto appear inthe DOM as
something other than “Input”.

Select a Template Category if it is different than the default category.
Select a Template Name from the list of XML templatesin the selected Template Category.

To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.

To remove an input XML template, select an entry and click Delete.

5 Seect an XML template for use as an Output Part using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY?} as the Input or Output template. For more information, see “Creating an Output Part
without Using a Template” in the User’s Guide.

The JMS Service 81

82

6 Click Next. The XML Temp/Fault Template Info panel of the New HP3000 Terminal Component

Wizard appears.
Create a New I¥MS Service x|
Specify one ar more Temp and Fault XML Templates to help design tempoarary parts and fault handling for
this Component oreh Service. Lse Temp documents for creating intermediate results or holding values
for reference. Specify XML Templates to serve as Fault documents to be passed back to clients under errar
conditions.
Temp Message
Part Template Category Template Name |
Fault Message
Part | Template Category | Template Mame |
SystemFault |{Sys‘tem} |||{Fauﬂ} |_\|
[Back J[_ MNext][Cancel |

7 If desired, specify atemplate to be used as a scratchpad under the “Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Specify the
templates asindicated in Step 6 above.

8 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.

9 Asabove, to add additional temp or fault XML templates, click Add and choose a Template
Category and Template Name for each. Repeat as many times as desired. To remove an XML
template, select an entry and click Delete.

10 Click Next to bring up the final panel of the wizard.

Create a New JMS Service x|

Specify which Connection you wish to use forthis Component or Service. To chanoe any connection
parameters, you must change themn in the Connection Resource object or create a new Connection
Resource of the same type with different parameters

Connection |SampIeJMS |L|

Topic Mame I

[>]

Durable Subscriber I

Client 1D |

Connection Factory Mame I

User D |

Password I

Subcontext I

Mo Local Messages —
[~

[Back][Finish][Cancel]

11 Select a Connection from available queues and/or topics shown in the pulldown menu.

NOTE: Fields underneath the Connection menu will be greyed out (disabled). If you need to
change the information displayed in any of these fields, you can do so by opening the appropriate
Connection Resource from Composer’s main window (after first dismissing this dialog).

JMS Connect User’s Guide

12 Click Test to seeif your connection is successful. The Test Options dialog appears.

Connection Test Options |

Ready to test the connection. As part ofthe connection test
you may send and receive a live message. This may cause
problems ifthere are other clients connected to the destination.
Select"ves" to send and receive a live message as part ofthe
test. Select"Mo" to justtest the connection.

[-¥es—][No][Cancel |

13 The Test Options dialog asksif you want to send a live message as part of the test of the
connection’s integrity. Clicking the Yes button causes Composer to send a live message (of type
TextMessage, with a unique Correlationl D) to the queue or topic for which you're establishing a
connection.

NOTE: Use care not to send this test message in a production environment (i.e., using a live
queue, with potentially many listeners) unless you are reasonably certain that any existing
applications in that environment won't be adversely affected.

Click No if you wish to create the necessary connection objects but not send any test message.
14 Click Finish. The JIMS Service component is created and the Service Editor window appears.

Deployment of the JMS Service

A project containing JM S Service objectsis deployed the same way as any other project, using the same
deployment facilities built into Composer or Director. Seethe deployment chapter of the main Composer
User’s Guide for details.

How Do | Manage Deployed JMS Services?

Once a project containing JM S Services has been deployed, the MessageL.istener objects for the various
services will be actively listening for messages each time you (re)start your server. To start/stop these
servicesindividually, or to remove them from the server altogether, you need to gain accessto the exteNd
JMSS Services Console. This browser-based console will alow you to seealist of IMS Services (along
with the descriptive info you supplied in the deployment wizard), the status of each service (active or
inactive), the running tally (Count) of messages received, and other administrative information. You will
also see buttons labeled Start/Stop and Remove (one per service).

> To gain access to the exteNd JMS Services Console
1 Besureyour application server isrunning.
2 Launch your web browser and go to
http://[hostname]/extendComposer/jmsConsole
where [hostname] is the name (and :port) of your server; for example, “localhost:80.”
3 The console window appears, listing any JM S Services that have been deployed.

The JMS Service 83

84

|| Ble Edt Yiew Favoiles Toos Help

4 JMS Service Listener Servlet - Microsoft Internet Explorer

Back Fonard

Address | =] @Bo
« _ 9 0 @ G 3By & fa}
Stop Refesh Search Favoiites History Mail Size Discuss Home

SitverStream
eXtend - JMS Console

-

comp s

Start/ | Group | In Use (e L
Stop | Count | Count
Receives
com.comp30.MQ_ListenerQ3 | messages on Yes ﬂl] o 1 1 Ready | Remove
Q3 (MQSeries)

In Use

Messages Remove
. Status -
Received Service

Count

Refresh Console

4]

Copyright® 1999 - 2007 SiverStream Software, nc. All Rights Reserved

| »
4

&] Done

25| Local intranet

4 Tostop aJMS Service, hit the appropriate Stop button. (The button will then change to Start.)

NOTE: If messages are in the process of being handled by a service at the time of the Stop
command, there may be some delay before the service actually exits. Hit the Refresh button
periodically until the “Running” column of the console says No for the service(s) in question. The
exact amount of latency you can expect when stopping a service is impossible to predict, since it
depends on traffic conditions and vendor-specific JIMS implementation details. You should consult
your provider’s documentation for information that may be helpful in suspending execution of a

pub/sub topic.

5 Toremove aJMS Service permanently, hit the appropriate Remove button.

Notethat if amessage iswaiting on aqueue or topic, hitting Start on the console page (to reinitiate a
service) will cause the service’'s onMessage () method to be called immediately, but the Count field of
the consol e (which normally displaysarunning total of messagesreceived) will not update automatically.
To make the Count display correctly, hit the browser’s Refresh button after Starting a service.

JMS Connect User’s Guide

JMS Glossary

Administered Object JM S definestwo administered objects: Destinationsand ConnectionFactories.
The former kind of object associates a topic name or queue with a physical resource; the latter
exposes the methods by which a client can connect to aJM S provider’s service daemon. Both kinds
of objectsinvolve resources that are under administrative control. IMS clients are able to find
administered objects by looking them up in a namespace using JNDI.

Asynchronous Delivery In Publish/Subscribe messaging, asynchronous delivery occurs when the
message broker (or topic manager) calls the MessageListener’'s onMessage () method. Inthe
synchronous case, by contrast, the receiving application obtains messages by requesting them.

BytesMessage Oneof thefive JM S-defined message types. The body of thistype of message consists
literally of abyte array; hence, it can represent any kind of payload.

CICS Customer Information Control System: An IBM protocol for conducting and monitoring
transactions with mainframes.

Commit Inatransacted message session, calling thesession’scommit () method causes any produced
messages to be (irreversibly) sent and any consumed messages to be acknowledged (and thus
removed from the queue). See also Transaction and Rollback.

Connection A connection represents the collection of server-side and client-side objects needed to
establish and manage sessions. Connections can be of the QueueConnection type or the
TopicConnection type. Creation of connections occurs viaa ConnectionFactory object (accessible
viaJNDI).

Copybook A record structure consisting of individually defined COBOL data descriptors.

Datagram Although not a IM S-defined term, the word datagramis frequently used in messaging. It
generally refersto a short message, often an administrative notification of some kind, sent in “fire
and forget” manner (i.e., with no expectation of any reply).

Destination JMS Queues and Topicsextend javax.jms.Destination. Thus, aJMS
destination is equival ent to aqueue or topic. Destinations are created administratively and bound to
aJNDI name at the time of creation.

DOM Document Object Model. Anindustry standard way of describing or representing the
containment hierarchy for an XML or HTML file.

Durable Subscriber A message receiver in a Publish/Subscribe setting (see “ Publish/Subscribe,”
below) can register to receive messages even when offline. Such a subscriber is said to be durable,
since the receiver’s status persists beyond any given session.

Endian Term used to describe the order in which bytes are stored in computer memory. Big-endianis
an order in which the most significant value in the sequenceis stored at the lowest memory address
(the opposite of little-endian). Intel hastraditionally used alittle-endian architecture, where most
other chip makers have favored a big-endian architecture.

JMS Glossary 85

86

JMS JavaMessaging Service. A Sun-developed Javainterface for message services, defining indsutry-
standard objects and behaviors for Message Oriented Middleware. A IM S-compliant MOM
implements the interfaces defined in IMS.

JMS Provider Any MOM system that implements the IM S interface.

JNDI JavaNaming and Directory Interface: a standard extension to the Java platform, giving Java
applications a unified interface to multiple naming and directory services.

JTA JavaTransaction API: aJava API for delimiting distributed transactions.

MapMessage One of five IMS-defined message types, consisting of name/value pairs. The keys are
Java Srings and the values are Java primitive types.

MessageListener A Javainterface that applications can implement in a Publish/Subscribe system
that allows the application to receive automatic notification of incoming messages.

MOM Message Oriented Middleware. A software system (e.g., IBM’'s MQSeries software) that
implements enterprise messaging.

Native Environment Pane A paneinthe JMS Component Editor that displays various attributes
(such as header fields and body content) associated with a message.

NON_PERSISTENT Oneof thetwo JM S-defined delivery modes (the other being PERSISTENT; see
below), guaranteeing at-most-once delivery. Because the message is not written to nonvolatile
storage at any point, system outages can result in loss of the message when this mode is used;
however, overhead islower with this mode than with PERSISTENT.

ObjectMessage One of the five IM S-defined message types, in which the body contains a serialized
Javaaobject.

PERSISTENT One of the two JM S-defined delivery modes (the other being NON_PERSISTENT).
Use of the PERSISTENT mode guaranteesthat amessage will be delivered once and only once. The
message is written to nonvolatile storage to avoid any possibility of lossin transit.

Point-to-Point (PTP) One of two main messaging paradigms in popular use (the other being
Publish/Subscribe messaging). In PTP systems, queues are not organized by topic but instead
typically “belong” to dedicated receivers (client apps), who treat queues much like mailboxes.
Clients send messages to and receive messages from other clients with aminimum of administrative
intervention. Receiving apps may optionally implement selectors (or filters) that allow for
preferential retrieval of messages based on special criteria.

Publish/Subscribe One of two main messaging paradigmsin popular use (the other being Point-to-
Point messaging). In Publish/Subscribe, queues are often called topics. (See below.) They differ
from ordinary queues in that topics are designed to be shared by numerous “listeners,” whereasin
Point-to-Point messaging a queue is customarily associated with one receiving app (or at least a
small, well-defined number of users). Because topics are shared, a message is not removed from a
topic until every registered listener has received it. Also, filtering (which in Point-to-Point
messaging is done via message sel ectors) isunder administrative control in Pub/Sub systems, rather
than being under the control of receiving apps. Clients that post messages to a topic are said to be
“publishers,” while clients that consume those messages are “ subscribers.”

JMS Connect User’s Guide

Queue InJMS-based messaging systems, messages are sent not to clients but to queues—which isto
say, storage repositories set up to handle messages. Interposing queues between senders and
receiversassuresthat even when aclient isunavail able, messages addressed to the client are still able
to be cached for later retrieval. Queues are typically created administratively and exposed to
message clients as static resources.

RPC Remote Procedure Call: A protocol in which a program or procedure is remotely invoked viaa
synchronous session with a mainframe or server.

Rollback Inatransacted message session, calling the session’srollback() method causes any produced
messages to be discarded (not sent) and any consumed messages to be left on the queue asif nothing
happened. See also Commit and Transaction.

Selectors In Point-to-Point messaging, a client can use a selector to filter messages based on header
content. The selector isbasically a conditional statement (i.e., a statement that evaluates to true or
false) involving aheader or property value, written in asyntax similar to SQL92. (See Appendix C.)

Session A sessionisalightweight IMS object for producing and consuming messages. A session
retains retrieved messages until they have been acknowledged. All send and receive actions are
scoped to sessions.

SQL92 Animplementation of Structured Query Language (commonly used for database queries); the
basisfor IM S message selector syntax.

StreamMessage One of the five IM S-defined message types, wherein the body of the message
consistsof Javaprimitivevalues. The body of thistype of messageisintended to beread sequentially
using methods like readL.ong (), readString(), €tC.

TextMessage One of five IMS-defined message types. The body of a TextMessageis a String.

Time-to-Live Theeffectivelifespan of amessage. Message expiration is cal culated on the basis of the
time when the message was sent plus the Time-to-Live value.

Topic In Publish/Subscribe messaging (see “ Publish/Subscribe” above), messages queues are often
called topics. In essence, atopicis aqueue; it differs from a queue mostly intheway itis
administered. Topics are typically shared by many users and may form nodesin a content hierarchy
(although thisis not arequirement of IMS). Many users may “publish” to one or more topics.
Conversely, a given topic may have many “ subscribers.”

Transaction JMS message Sessions can group one or more receive, send, or browse actionsinto a
transaction, which means all operations are conducted as a unit. If atransaction succeeds, al of its
constituent operations succeed. If atransaction fails, all operations are “rolled back” to restore the
original statethat existed before the session began. Note that JIM'S commit and rollback methods are
scoped to the IM S session and therefore do not affect other program operations.

JMS Glossary 87

88 JMS Connect User’s Guide

Literals

Identifiers

Message Selector Syntax

A message selector isa Sring containing an expression that, if it evaluatesto TRUE, will resultin
messages being selected, or if FAL SE results in messages being neglected. The syntax of the IMS
selector expression isbased on asubset of SQL92. The order of evaluation of a message selector isfrom
|eft to right within precedence level; but parentheses can be used to alter the evaluation order. For
consistency, predefined selector literals and operator names are shown in upper case below (but are
nevertheless case-insensitive).

A selector can contain tokens, operators, and expressions conforming to the rules outlined hereunder.

A string literal isenclosed in single quotes. If astring literal isto contain an included single quote, it can
be represented by a doubled single quote: for example, 'its and 'it"s. Aswith Java Sring literals, the
Unicode character encoding is presumed.

An exact numeric literal isanumeric value without adecimal point, such as59, -257, +82, etc. Numbers
in the range of Javalong are supported. Exact numeric literals use the Javainteger literal syntax.

An approximate numeric literal is anumeric value in scientific notation, such as 7E4, -27.9E2 or a
numeric valuewith adecimal suchas7.,-95.7, +16.2; numbersin the range of Javadouble are supported.
Approximate literals use the Javafloating point literal syntax.

A boolean literal can have avalue of TRUE or FALSE.

Identifiers can be either header field references or property references. An identifier is a character
sequence that begins with a Java-identifier start character and is followed by characters that are Java-
identifier part characters. An identifier start character is any character for which the method
Character.isJavaldentifier Sart() returnstrue. Thisincludes underscore and $. Anidentifier part
character is any character for which the method Character.isJaval dentifier Part() returnstrue.

Identifiers cannot be NULL, TRUE,nor FALSE.
Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, nor IS.
Identifiers are case-sensitive.

Message header field references are restricted to IMSDeliveryMode, IMSPriority, IMSMessagel D,
JMSTimestamp, JIMSCorrelationl D, and JMSType.

JMSMessagel D, IMSCorrelationl D, and IMSType values may be null and if so aretreated asa NULL
value.

Any name beginning with 'IMSX" is a IM S-defined property name.

Any name beginning with 'JMS ' is a provider-specific property name.

Message Selector Syntax 89

Any name that does not begin with 'IMS ' is an application-specific property name. If anon-existent
property is referenced, itsvalueis NULL. If it does exist, its value is the corresponding property value.

Whitespace is the same as that defined for Java: space, horizontal tab, form feed and/or line terminator.

Expressions

A selector isaconditional expression. Any selector that eval uates to true matches; a selector that
evaluates to false or unknown does not match.

Arithmetic expressions are composed of arithmetic operators, identifiers with numeric values, numeric
literals and/or other arithmetic expressions.

Conditional expressions are composed of comparison operators, logical operators, identifiers with
boolean values, boolean literals, and/or other conditional expressions.

Standard bracketing () for ordering expression evaluation is supported.
Logical operatorsin precedence order: NOT, AND, OR
Comparison operators. =, >, >=, <, <=, <> (notequal)

Only like type values can be compared. One exception isthat it isvalid to compare exact numeric values
and approximate numeric values. (The necessary type conversion is conducted according to the rules of
Javanumeric promotion.) If the comparison of non-like type valuesis attempted, the selector is always
false.

Sring and Boolean comparisons are restricted to = (equal) and <> (not equal). Two strings are equal if
and only if they contain the same sequence of characters.

Arithmetic operatorsin precedence order:

e t+,-unary
e *,/multiplication and division
+ +,-addition and subtraction

NOTE: Arithmetic operations must use Java numeric promaotion.

Comparisons

90

+ arithmetic-exprl [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3
Example:
age BETWEEN 15 and 19 isequivalentto age >= 15 AND age <= 19
age NOT BETWEEN 15 and 19 isequivalenttoage< 15 OR age > 19
« identifier [NOT] IN (string-literal1, string-literal2,...), where identifierisa Sring or NULL value.

Example:

Country IN (' UK', 'US', 'France')

istrue for 'UK' and false for 'Peru'’. It is equivalent to the expression:

(Country = ' UK') OR (Country = ' US') OR (Country = ' France')
Example:

Country NOT IN (' UK', 'US', 'France')

isfalsefor 'UK' and true for 'Peru'’. It is equivalent to the expression:

NOT ((Country = ' UK') OR (Country = ' US') OR (Country = ' France'))

NOTE: If identifier in an IN or NOT IN operation is NULL, the value of the operation is unknown.

JMS Connect User’s Guide

+ identifier [NOT] LIKE pattern-value [ESCAPE escape-character]
where:

+ identifier hasa Sring value

+ pattern-valueisastring literal where' ' (underscore) stands for any single character
+ % standsfor any sequence of characters (including the empty sequence)

+ dl other characters stand for themselves.

The optional escape-character is a single-character string literal whose character is used to escape
the special meaning of the' ' and '%' in pattern-value.

Examples:

phone LIKE '12%3' istruefor '123' or '12993" and false for '1234'

phone NOT LIKE '12%3' isfalsefor'123' and '12993' and true for '1234'
word LIKE 'l se' istruefor 'lose and falsefor 'loose

underscored LIKE '\ %' ESCAPE '\' istruefor' foo' and falsefor 'bar

NOTE: If identifier in a LIKE or NOT LIKE operation is NULL, the value of the operation is
unknown.

+ identifier ISNULL testsfor anull header field value, or a missing property value.
+ identifier ISNOT NULL tests for the existence of a non null header field value or property value.

Thefollowing message sel ector selects messages with amessage type of car and color of red and weight
greater than 3500 Ibs:

"JMSType = 'car' AND color = 'red' AND weight > 3500"

Null Values

Asnoted above, header fieldsand property values may be NULL. The evaluation of selector expressions
containing NULL valuesisdefined by SQL 92 NULL semantics. |.e., SQL treatsaNULL value as
unknown. Comparison or arithmetic with an unknown value always yields an unknown value. The IS
NULL and ISNOT NULL operators convert an unknown header or property valueintoTRUE or FALSE
values.

Special Considerations

When used in a message selector, IMSDeliveryMode will have the value 'PERSISTENT' or
'NON_PERSISTENT".

Date and time val ues should use the standard Javalong millisvalue. When including adate or time literal
in amessage selector, it should be an integer literal for amillisvalue. The standard way to produce millis
valuesisto use java.util.Calendar. Although SQL supports fixed decimal comparison and arithmetic,
JMS message selectors do not. (Thisisthe reason for restricting exact numeric literals to non-decimals.)

SQL comments are not supported.

Message Selector Syntax 91

92 JMS Connect User’s Guide

Message Headers and Properties

Header Fields Defined by JMS

In IMS, all messages support the same set of predefined header fields, which are described below. Note
that most header fieldswill have their values set automatically at runtime either by exteNd Composer or
the MOM vendor.

JMSCorrelationlID

A IMS client can use the IMSCorrelationl D header to associated one message with another (for
reguest/response situations). Thisfield can hold an arbitrary string value, obtained by mapping a node
value from an Input DOM, or perhaps created dynamically with the aid of ECMA Script, etc. Use of this
field is not mandatory.

JMSDeliveryMode

Thisheader field containsthedelivery mode (PERSISTENT or NON_PERSISTENT) specified whenthe
message was sent. At the start of a send session, this header field isignored; after the send has been
accomplished, it holds the delivery mode specified by the sending method.

Thisfield will befilled out for you, using the persistency value you chose in the Send M essage setup
wizard. (See next chapter.)

JMSDestination

The IMSDestination header field isignored at the time a message is sent; after the send, it contains the
destination object specified by the sending message.

You do not need to enter anything manually in thisfield, since the necessary connectioninformation (i.e.,
choice of destination queue) was automatically set when you first created the IMS Component.

JMSExpiration

You will not need to enter anything manually into thisfield. The Send M essage setup wizard will prompt
you for (among other things) a Time-to-Live for the outgoing message. During the “ send” session, when
the messageis actually ready to be sent, exteNd will calculate the message’s expiration time as the sum
of the Time-to-Live value and the current UTC time (both values in milliseconds). After the send is
completed, the message's IM SExpiration header field will contain this sum. If the Time-to-Live value
was zero when the Send M essage action was created, the message will have no expiration value (which
meansit will not expire).

NOTE: In most IMS-based MOMs, clients never receive expired messages.

Message Headers and Properties 93

JMSMessagelD

JMSPriority

The JMSMessagel D value uniquely identifiesamessageintheMOM environment. It is set automatically
by the IMS provider and isread-only (and only after a message has been sent).

The IMSPriority field holds a string value containing one of ten values (‘0" through ‘9") reflecting the
message’s priority. Thisfield valueisfilled out automatically with the value you supplied in the Send
Message setup wizard. A value of ‘0’ to ‘4’ indicates arange of normal priorities (with ‘4’ being the
default); ‘5’ to ‘9" are gradations of expedited priority.

NOTE: The manner by which priority settings determine message ordering in a queue is not defined by
JMS. Consult your MOM vendor’s documentation for information about how this feature might affect
message ordering.

JMSRedelivered

JMSReplyTo

JMSTimestamp

JMSType

If aclient application receives a message that has the IMSRedelivered marker set, it is possible that the
gueue manager tried to deliver the message earlier, but the message was not acknowledged by the client
(perhaps dueto asystemfailure). Thisfield isunder the control of the queue manager or message broker.
Itisnot under application control.

The IMSReplyTo field is designed to contain a Destination supplied by aclient when amessage is sent.
It represents the destination where areply to the message (if any) should be sent.

NOTE: This header field is not currently exposed as a write-enabled item in exteNd Composer’s JMS
Component Editor.

This field contains the time that a message was handed off to a provider to be sent. It may or may not be
the actual transmission time, depending on whether (for instance) the message’s“ send” session is under

transactional control.

This user-settable field contains an arbitrary string supplied by a client when a message is created. The
sender can assign any value to IMSType that a receiver might find useful. For example, application-
defined JMSType val ues could facilitate message filtering by making it possible for various receiversto
handl e various specific message types.

NOTE: Some JMS providers store message type definitions in a repository and may expect runtime
values in IMSType that correspond to these type definitions. If this is the case with your MOM
environment, use symbolic values for IMSType that correspond to legal values defined in the applicable
repository. (Consult your MOM documentation for details.)

94 JMS Connect User’s Guide

Message Properties

M essage properties serve, in effect, as extra header fields. IMS allows for three broad categories of
properties; IM S-defined properties, provider-specific properties, and user-defined properties. IMS
Connect supports all three categories, although JM S does not require applications to support properties
(other than IMSXGroupl D and IMSXGroupSeq; see below).

Property values (if not null) must be of type boolean, byte, short, int, long, float, double, or Sring. The
allowable values for specific predefined properties are described further below.

Property values, if present, are set by the sender prior to sending amessage. When amessage isreceived
by aclient, all properties are read-only. Any attempt by the client to set a property value on aretrieved
message will result in a MessageNotWriteabl eException being thrown.

JMS-Defined Properties

JIM S defines (and the IM S Connect exposes) anumber of IM S-specific property fieldsthat can optionally
be populated by message clients and/or providers. These IM S-defined properties, which are prefixed
with *IMSX’, include:

o IMSXUserID (String) — Arbitrary string identifying the user who is sending the message. (Thisis
intended to be set by the provider during a send operation.)

o JMSXAppID (String) — Identity of the sending application. (Thisis intended to be set by the
provider during a send operation.)

+ IMSXDeliveryCount (int) — The number of message delivery attempts. (Set by provider.)

+ JMSXGrouplD (String) — The (client-settable) identity of the message group that thismessageisa
member of. Intended for use by clients who are sending messages in batches.

+ JMSXGroupSeq (int) — The (client-settable) sequence number of this message within a group.

o IMSXProducerTXID (String) — Identifier of the transaction within which this message was
produced (set by the provider).

o IMSXConsumerTXID (String) — Identifier of the transaction within which this message was
consumed (set by the provider).

o JMSXRcvTimestamp (long) — The time when a message was delivered to its ultimate consumer
(set by provider).

+ JIMSXState (int) — One of 1 (waiting), 2 (ready), 3 (expired), 4 (retained). Not relevant to the
client app; for internal use of the provider.

Provider-Specific Properties

JMSallows providersto definetheir own public property names, with aprefix of “JIMS_<vendor name>"
(e.g., ous_1BM isthe prefix for IBM-defined properties). Although the IMS Connect exposes these
fieldsin JIM S message header tree views, they arerealy intended for the IMS provider’s use.

When IBM’s M QSeriesisthe provider, exteNd’'s IM S Connect exposes three vendor-specific properties:
JMS_IBM MsgType, JMS IBM PutApplType, and JMS_ IBM Format.After amessage has been
received by a JMS Component, these fields will typically be populated with MQSeries-specific control
information. On outgoing messages, you can either supply appropriate valuesin these fields yourself, or
|eave them blank. See the MQSeries Application Programming Reference for information on the
semantics of these fields.

Message Headers and Properties 95

User-Defined Properties

JMS allows usersto define their own custom properties, and the IM S Connect exposes this functionality
in the IM S Component Editor as described further below. There is no restriction on the number or kinds
of user-defined property fields that can be attached to a message, except that the names of user-defined
properties must (like all headers and properties) obey the syntax rules for message selector identifiers.

96 JMS Connect User’s Guide

Index

A

acknowledgement 55

Action Model 37

Action Model pane 34

actions 37

administered objects 20, 85
After Send Maps 45
ambiguous transaction state 55
assured once-only delivery 13
asynchronous delivery 85
asynchronous processing 11
asynchronous retrieval 16
asynchronous triggering 79
at-most-once 15
authentication 18, 22, 27
automatic-rollback protocol 55

B

batch mapping XML elements 70
Before Send Maps 45
blocking/polling 17
body type
filtering for 52
body types 16
Break command 50
broadcaster/listener 17
Browse Messages action 46
queues and 31
browser console 83
browsing 46
browsing vs. reading 56
Bytes Message 75
BytesMessage 16

C

Cics 11

CICSRPC Enterprise Enabler 65

COBOL 65, 85

COBOL copybook See copybook

colon 71

commit 13, 22, 25, 26, 28, 55
automatic 55

comparison operators 90

component editor 34

connection resource

creating 19
ConnectionFactories 20
connections 20

MQSeries Topic 27

provider-specific 23

queue 20

topic 25
context-sensitive picklists 75
Continue command 50
copybook 16, 36, 85
custom header property 61
custom properties 39
custom property 49

D

datatypes 62

database operation 55
datagram 17, 85
delivery guarantees 15
deployment issues 83
destination 85
destinations 20
destinations, changing 40
destructive removal 50
distributed transactions 13
drag-and-drop 60

drop targets 60

DTDs 29

durable subscriber 15, 85

E

ECMAScript 59, 60, 64
getters & setters 76
method summary 77
ECMA Script extensions 75
error notifications 18
Error on No Message checkbox 51
exceptions 22, 25, 26, 28, 52, 72
TransactionlnProgressException 13
Expand Tree 69
Expression Editor 64
expression, selector 90
Expression-Driven Connections 19

97

F

failover 18
FIFO (first-in/first-out) 12
filter 17, 61
filtering
body type 72
limitations on 72
fireand forget 17
forbidden drag operation 60

G

getField() 77

getIM SBytesBody() 78
getIMSMapField() 78
getIM SObjectBody() 78
getIM SStreamField() 78
getter methods 77

H

hasMessages() 50
Header Document Name 44

header, message
before send 45
mapping datainto 59, 60
Host Name 24
HTTP servlets 79
hub and spoke architecture 9

IBM 10, 20
IBM message properties 95
identifier, selector 89

Initial Context Factory, INDI 22, 27

ISNULL 91

iterating through all messages 50

Iterating through M essages 50

J

javautil.Enumeration 46
JDBC 55
JMS Component

creating anew 32
JM'S Connection resource 80
IMS Service 79
JMS Services

removing 83

starting and stopping 83
JM'S Services Console 83
JMS standard 11

what’s not covered by 18
JMS _IBM_Format 95
JMS_IBM_MsgType 95
JMS_IBM_PutAppl Type 95

98

JMSCorrelationlD 15, 46, 60, 72, 93
JMSDeliveryMode 15, 45, 72, 93
JIMSDestination 15, 45, 93
JMSExpiration 15, 45, 93
JMSMESSAGE 50
IMSMessagel D 15, 45, 50, 72, 94
loop termination based on 54
IJIMS-MQSERIES 76
IMSPriority 15, 45, 71, 72, 94
IMSRedelivered 16, 45, 94
JMSReplyTo 16, 94
JMSTimestamp 16, 45, 72, 94
JMSType 16, 60, 71, 72, 94
JMSXAppID 95
IMSXConsumerTXID 95
JMSXDeliveryCount 95
IMSXGrouplD 95
JMSXGroupSeq 95
JMSXProducerTXID 95
JMSXRevTimestamp 95
IMSX State 95
IJMSXUserID 95
JNDI 20
JTA (Java Transactions APl) 13

L
latency 12, 15, 17
limitations

on property mapping 62
literals, selector 89
little-endian 66
load balancing 18
loop control 50
looping on Receive 50

M

mailbox 13
Map command 64
MapM essage 16
Mapping Name 49
mapping, headers and 60
message
iteration 50
structure 15
message acknowledgement 55
Message Body DOM 48
message broker 14
Message Filter 46, 50, 52, 71
Message Filter tab 17
message properties 95
message queues 12
message sel ector See selector
M essage Transaction action 54, 56
Message Transaction dialog 57
M essage Type pulldown menu 48
MessageListener 16, 79, 83

messages
asynchronous retrieval of 16
copybook 16
filtering 17
iteration 50
lifespan of 12
maximum number on aqueue 12
read-only nature of 16
selectors 17
type definitions 18
XML 16
millisecond values 43
model queue 24
MQSeries 9, 10, 11, 20, 24, 95
MQSeries Host Machine 24
M QSeries queue 23
multiple listeners 80
multitasking 12

N

Native Environment pane 34, 36, 46
NON_PERSISTENT 72
NON_PERSISTENT mode 15
nondestructive read 56

Non-JMS Client 25

nonrepudiation 60

O

Object Message 75
ObjectMessage 16
once-and-only-once 15
onMessage() 17

0S/2 66

Override Connection Queue 47

P

password 24
performance issues 12
PERSISTENT 72
PERSISTENT mode 15
pick lists 75
Point-to-Point

browsing and 46
Point-to-Point (PTP) 13, 86
priority 15
privacy 18
Progress Software 10
properties 15, 95
properties, custom 45
Property Name 49
Property Type 49
Provider URL 22, 27
providers 20
provider-specific properties 95
PTP See Point-to-Point

Publish/Subscribe 86
Publish/Subscribe (pub/sub) 14
browsing not defined 46

pulling vs. pushing data 17

Q

quality-of-service 13
Queue Manager 24
queues
browsing 46
changing 46
clustered 12
empty 51
in pub/sub 14
temporary model 24
using two or more 31

R

receive

blocking during 17
Receive Message action 50
Receive Message Maps 54
reliability 13, 15
Remote Procedure Call 11
Repeat While action 50
replying to messages 73
repository 18
request-response 17, 60
request-response messaging 73
resource overruns 12, 15
rollback 13, 22, 25, 26, 28, 50, 55
RPC 13, 87

S

sample documents 29
scalability 18
scope of transaction control 55
Security Principa 22, 27
Select Occurrences 68
selector 17, 46, 50, 52
grammar 89
Send Message action 39
serializable Java object 16
setIM SBytesBody() 78
setIMSMapField() 78
setJM SMsgProperty() 78
setJM SObjectBody() 78
setIMSStreamField() 78
setter methods 77
setValue() 77
shopping-cart app 12
SonicMQ 10, 11
SQL92 17, 91
stopping IMS Service listeners 84
store/forward 17

99

StreamMessage 16
stub documents 29
stylesheets 29

T

Temp XML Document 33, 82
temporary model queue 24
Test Options dialog 25
TextMessage 16
timeout value 17
topic connections 25

browsing not allowed 31
TopicPublishers 14
topics 14
TopicSubscribers 14
Transacted checkbox 21, 24, 26, 28, 31, 57
transaction control 13, 54

scope of 55
TransactionlnProgressException 13
Try/On Error action 51

U

unresolved transactions 55

Use Prior Message ReplyTo Field 73
Use Sent Message ReplyTo Field 47
username 24

w

WHILE loop 50

X

XAResourceinterface 13
xconfig.xml 20

XML Map Component 34
XML stub document 44, 48
XML templates 29, 48
XPath 60, 64

XPath() method 61

XSL 29

100

	About This Book
	1 Welcome to exteNd Composer and JMS
	About exteNd Connects
	What Is the JMS Connect?
	What Needs Does JMS Address?
	What Is Enterprise Messaging?
	What Are Message Queues?
	Will My Message-Based Application Be Slow?
	Is Messaging Reliable?
	Can Messages Be Part of Transactions?
	What Is Point-to-Point Messaging?
	What Is Publish/Subscribe Messaging?
	What About Delivery Guarantees?
	How Are Messages Structured?
	Header Information
	Body Types

	How Are Messages Retrieved?
	Message Filtering
	Request-Response versus Store/Forward
	What Does JMS Not Cover?
	About exteNd’s JMS Component

	2 Getting Started with the JMS Component Editor
	Creating a JMS Connection Resource
	About Expression-Driven Connections
	About Queue Connections
	About Topic Connections

	Creating XML Templates for Your Component

	3 Creating a JMS Component
	Before Creating a JMS Component
	About the JMS Component Editor Window
	About the Native Environment Pane

	4 Creating JMS Actions
	About Actions
	Actions Unique to the JMS Component Editor
	Options Tab
	Message Body Tab
	Message Header Tab

	The Send Message Action
	Priority, Mode, and Time to Live
	Destination Queue/Topic
	Return Address

	The Browse Messages Action
	The Receive Message Action
	The Message Transaction Action
	What Happens When I Issue a Commit?
	What Happens When I Issue a Rollback?
	What Happens if I Leave the Session Unresolved?
	What Actions Are Included in a Message Transaction?
	What Can I Use Message Transactions For?

	Using Other Actions in the JMS Component Editor

	5 Working with Messages
	Mapping Data into the Message Header
	Limitations on Header Mapping

	Mapping Data to Custom Properties
	Limitations on Property Mapping

	Working with XML Messages
	Working with Copybook Messages
	Copybook Message Setup
	Copybooks and the Native Environment Pane
	Copybook-Specific Context Menu Items
	Mapping Data Between Copybook and DOMs

	Working with Message Filters (Selectors)
	Limitations on Filtering
	Filtering by Body Type

	Request-Response Messaging
	Temporary Queues

	ECMAScript and the JMS Connect
	ECMAScript Method Summary

	6 The JMS Service
	About the JMS Service
	Multiple Listeners
	Creating a JMS Service
	Deployment of the JMS Service
	How Do I Manage Deployed JMS Services?

	A JMS Glossary
	B Message Selector Syntax
	Literals
	Identifiers
	Expressions
	Comparisons
	Null Values
	Special Considerations

	C Message Headers and Properties
	Header Fields Defined by JMS
	JMSCorrelationID
	JMSDeliveryMode
	JMSDestination
	JMSExpiration
	JMSMessageID
	JMSPriority
	JMSRedelivered
	JMSReplyTo
	JMSTimestamp
	JMSType

	Message Properties
	JMS-Defined Properties
	Provider-Specific Properties
	User-Defined Properties

	Index

