Novell
DirXML. Driver for JDBC*

www.novell.com

1.6.2 ®

IMPLEMENTATION GUIDE

Januar y 13, 2006

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representati ons or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitnessfor any particular purpose. Further, Novell, Inc. reservestheright to make changesto any and dl partsof Novell software,
at any time, without any obligation to notify any person or entity of such changes.

Y ou may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations
or the laws of the country in which you reside.

Copyright © 1993-2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher.

U.S. Patent Nos. 5,608,903; 5,671,414, 5,677,851, 5,758,344; 5,784,560; 5,794,232, 5,818,936, 5,832,275; 5,832,483; 5,832,487, 5,870,739,
5,873,079; 5,878,415; 5,884,304 5,913,025; 5,919,257; 5,933,826. U.S. and Foreign Patents Pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

DirXML Driver for JDBC Implementation Guide
January 13, 2006

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

Novell Trademarks

DirXML isaregistered trademark of Novell, Inc. in the United States and other countries.
eDirectory is atrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc. in the United States and other countries.
Novell is aregistered trademark of Novell, Inc. in the United States and other countries.
Nsureis atrademark of Novell, Inc.

Third-Party Materials
All third-party trademarks are the property of their respective owners.

Contents

About This Guide 9
1 Understanding Driver Prerequisites 11
Driver PrerequIsites. e e 11
Supported Platforms L L e 11
Supported Databases. e 11
Recommended Third-Party IDBC Drivers 0 o 12
Using The Sun JDBC-ODBC Bridge Driver. o o o e e e e e e e e e 13
SECUNLY . . o o o e 14
KNOWN ISSUES e e 14
LIimItations. 15

2 Introducing the DirXML Driver for JDBC 17
OVEIVIEW o e e e 17
New Features. e 17
Driver Features e e 17
Driver Bug FiIXeS o e e 17
Identity Manager New Features. e e e 17
Driver CONCEPLS o o e e 18
DiIrXML Driver for IDBC. o e e e 18
Third-Party IDBC Driver o o e e e e 18
JDBC Driver TYPE. . . . o o o o i e e e e e e e e 18
Directory Schema. e e 18
Application Schema. e 19
Synchronization Schema L e e 19
Logical Database Class. e e 19
Database CONCEPLS. o i e e e 19
Database Schema L 19
Data Manipulation Language e e e e 19
Data Definition Language e e 20
Transactions e 20
THOOEIS . o o o o o o e e e 20
Identity ColumNS/SEQUENCES o o e e e 21
Stored Procedures/FUNCLIONS o L e e 21
Data Synchronization Models L 22
Direct Synchronization L e 22
Indirect Synchronization 23

3 Installing or Upgrading the Driver 25
Installing the Driver e 25
Installing the Driver e e e 25
Installing Database ObJeCtS o e 29
Configuring Oracle ObJectS e 29
Configuring Microsoft SQL Server Objects e e 30
Configuring IBM DB2 ObjJeCtS. e e e e e 30
Configuring Sybase ObJeCtS e e 31

Contents 5

6

7

6

Configuring MySQL Objects e
Configuring Informix Objects. e
Upgrading the Driver e e e e
Upgrade Requirements e e e e
Upgrading from 1.5t0 1.6 e e e
Activating the Driver. e e

Configuring the Driver

Setting Driver Authentication Parameters. e e e
Configuring Driver Authentication e e e e
Authentication ID. L e e e e
Authentication Context. e
Application Password L L e e e e

Driver Parameters. o e e e
Configuring Driver Settings e e e e e e
Subscriber Settings L L e e
Publisher Settings e e

Trace Levels. e

Configuring Third-Party IDBC DFIVEIS. e e e e e e e e e e e e e e

Advanced Driver Configuration

Schema Mapping e e e e
Logical Database Classes e e
Indirect Synchronization L e e e
Direct Synchronization. L e e
Synchronizing Primary Key Columns L e e
Synchronizing Multiple Classes e e e
Mapping Multi-Valued Attributes to Single-Valued Database Fields.

Event Mapping e e e
Add EVENtS.
Modify Events e
Delete EVENIS
Query EVeNnts L e e e
Move and Rename EVents.

The EventLog Table L e e
EventLog Columns L e e
Event TYpes o e e

Using Structured Query Language in XML Events e e e
INtroduction L e
Variable Substitution. L e
Statement Placement L
Manual vs. Automatic Transactions e e e e
Transaction Isolation Level L
Statement Type L e e e e
SQL QUETIES o e e
Data Definition Language (DDL) Statementso e e
Logical Operations. e e e e
BeSt PractiCes e

Using the JDBC Association Utility

Understanding the Utility e e e e
Before You Begin e e
Usingthe Utility e e
Editing Associations L e

Uninstalling the Driver and Database Objects

DirXML Driver for JDBC Implementation Guide

m m 9 0O

Uninstalling the Driver L L e e
Uninstalling Database Objects e
Uninstalling Oracle Objects e
Uninstalling Microsoft SQL Server Objects e
Uninstalling IBM DB2 UDB Objects. e e
Uninstalling Sybase Objects e e
Uninstalling MySQL Objects e
Uninstall Informix Objects. e

Best Practices

Common Questions

Can the Driver Manage Database User ACCOUNIS? o o it it e e e e
Can the Driver Synchronize Large Binary and String Data Types? o i i

Supported Data Types
java.sql.DatabaseMetaData Methods
JDBC 1.0 Methods

Documentation Updates
January 13,2006 e e e

Contents

7

8 DirXML Driver for JDBC Implementation Guide

About This Guide

The DirX ML® Driver for Java* Database Connectivity (JDBC*) provides a generic solution for
synchronizing data between Novel|® eDirectory™ and relational databases.

This guide provides an overview of the driver’s technology as well as configuration instructions.

Additional Documentation

For documentation on using Identity Manager and the other drivers, see the Identity Manager
Documentation Web site (http://www.novell.com/documentation/Ig/dirxmldrivers).

Documentation Updates

For the most recent version of this document, see the Identity Manager Documentation Web site
(http://mwww.novell.com/documentation/Ig/dirxmldrivers/index.html).

Documentation Conventions

In this documentation, agreater-than symbol (>) isused to separate actions within astep and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes aNovell trademark. An asterisk (*) denotes athird-party
trademark.

User Comments

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell Nsure™ |dentity Manager. To contact us, send e-mail to
proddoc@novell.com.

About This Guide 9

http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers/index.html

10 DirXML Driver for JDBC Implementation Guide

Understanding Driver Prerequisites

The following sections contain important information you should review before installing and
configuring the driver.

+ “Driver Prerequisites’ on page 11

* “Supported Platforms’ on page 11

* “Supported Databases’ on page 11

+ “Recommended Third-Party JDBC Drivers’ on page 12
+ “Using The Sun JDBC-ODBC Bridge Driver” on page 13
* “Security” on page 14

+ “Known Issues’ on page 14

+ “Limitations’ on page 15

Driver Prerequisites

The DirXML® Driver for JDBC requires the following:
U Novell Nsure™ [dentity Manager 2
U Java Virtua Machine (VM*) 1.2 or higher
U A third-party JDBC driver

Supported Platforms

Thedriver runson al Identity Manager-enabled platforms, including Windows* NT*/2000,
NetWare®, Solaris*, and Linux*.

Supported Databases

Thedriver usesthe JDBC 1.0 API to execute SQL statements and obtain metadatafrom adatabase.
As such, a database must be JDBC-accessible. The following databases have been tested and are

recommended for use with this product:

Database Version

IBM* DB2 Universal Database (UDB) 7.2 or higher

Microsoft* SQL Server 2000 Service Pack 2 or higher
Microsoft SQL Server 7 Service Pack 4

Understanding Driver Prerequisites

11

Database Version

Oracle 8i Release 3 (8.1.7)

Oracle 9i Release 2 (9.2.0.1) or higher
Sybase* Adaptive Server Enterprise (ASE) 12.5 or higher

MySQL* 3.23

Informix* Dynamic Server (IDS) 9.30 or higher

You can use other databases; however, they must meet the following minimum requirements:
¢ Support the SQL-92 entry level grammar.

+ Support triggers or some auditing capability suitable for event capture and replication
(publication only).

Recommended Third-Party JDBC Drivers

12

We recommend using type 3 or type 4 third-party JDBC drivers whenever possible. We also
recommend using thelatest version of thesedrivers. If you chooseto useatype 1 or type 2 driver,
you must use the remote loader to ensure the integrity of the directory process.

The following third-party drivers have been tested and are recommended for use with the driver:

Driver Name Version

Oracle 8i JDBC Driver 8.1.7.1

Oracle 9i JDBC Driver 9.2.0.1 or later

BEA* Weblogic* Type 4 jDriver for 5.1.0, Service Pack 11 or later
Microsoft SQL Server 7/2000

Sybase jConnect JDBC Driver 5.5 or later

Microsoft SQL Server 2000 Driver for 2.2 or later

JDBC

Informix JDBC Driver 9.3 or later

MySQL Connector/J 2.0.14 or later

IBM Type 3 JDBC Driver for DB2 UDB 7.2 or later

The following third-party JDBC drivers have been tested, but are not recommended for use with
this product:

¢ Sun Type 1 JDBC-ODBC Bridge driver (JRE 1.2)

We strongly recommend that you use the recommended third-party drivers whenever possible.

Minimum Third-Party JDBC Driver Requirements

The driver might not work with all third-party drivers. If you choose to use another third-party
driver, it must meet the following requirements to work with the DirXML Driver for JDBC:

DirXML Driver for JDBC Implementation Guide

+ Support required metadata methods.

Refer to Appendix D, “java.sgl.DatabaseM etaData M ethods,” on page 89 for a current list of
the required and optional java.sgl.DatabaseM etaData method calls made by the driver. This
list of requirements might be extended in future releases. As such, all

java.sgl.DatabaseM etaData methods should be supported. If the third-party driver does not
meet these requirements, you might have to purchase a different third-party driver in the
future.

+ Return accurate data from select statements.

+ Correctly execute the insert, update, and delete statements issued by the driver.

Refer to Appendix E, “JDBC 1.0 Methods,” on page 91 for alist of JDBC methods used by the
driver. Thislist can be used in collaboration with third-party driver documentation to identify
potential incompatibilities.

Considerations When Using Other Third-Party JDBC Drivers

+ Because the driver is dependent upon third-party drivers, bugsin those drivers might cause
the driver to malfunction. In order to assist you in debugging third-party drivers, the driver's
trace output has been enhanced to include JDBC API-level tracing (level 5) and third-party
driver tracing (level 6).

+ Stored procedure or function support and connectivity (specifically reconnection) are likely
points of failure.

Using The Sun JDBC-ODBC Bridge Driver

Because of the increased instability inherent in using an ODBC driver and known issues with the
1.3.x Java Runtime Environment (JRE) JDBC-ODBC Bridge driver, We strongly recommend
using a pure Java (type 3 or 4) JDBC driver whenever possible. If you chooseto use atype 1 or
type 2 driver, you must use the remote |oader to ensure the integrity of the directory process.

The principle disadvantage to using atype 1 JDBC bridge driver and a native ODBC driver is
increased instability. Errorsin the native libraries from the ODBC driver imported through the
JDBC bridge driver could bring down the directory.

Thedriver and JIDBC-ODBC Bridge driver might not work with all third-party ODBC drivers. The
list of third-party JDBC driver requirements applies to ODBC drivers aswell. Refer to
“Recommended Third-Party JDBC Drivers’ on page 12 for more information.

+ |f you choose to use the Microsoft ODBC driver for SQL Server (SQLSRV32.DLL), We
recommend installing the latest version of Microsoft Data Access Components (MDAC).
MDAC can be downloaded from free from Microsoft’s Web site. (http://www.microsoft.com/
data/download.htm).

+ The Bridge driver included in the JRE (Java Runtime Environment) 1.3.x contains a known
defect regarding IN OUT stored procedure parameters. Calling a stored procedure with IN
OUT parameters results in amemory access violation that brings down the directory. The
recommended solution to this problem isto use the 1.2.x JRE with Identity Manager.
However, doing so will reduce the performance of all drivers running on the server. Identity
Manager supports the use of Hotspot only with the 1.3.x JRE or greater. 1.4.x JRE has not
been tested with the driver.

Understanding Driver Prerequisites 13

http://www.microsoft.com/data/download.htm

Security

Known Issues

In order to ensure that a secure connection exists between the driver and athird-party driver, we
recommends that you run the driver remotely.

When the driver cannot run remotely, you might want to use atype 2 or type 3 JDBC driver. These
driver types often facilitate a greater degree of security through middleware serversor client APIs
than other JDBC driver types.

This section lists the current known driver issues.

General

+ Some databases, such as Sybase and DB2, have proprietary time stamp formats that cannot be

parsed by the java.sgl. Timestamp class.

When synchronizing time stamp columns from these databases, time stamp values placed in
the event log table should be in ODBC canonical format (i.e., yyyy-mm-dd
hh:mm:ss.fffffffff). Alternatively, these values can be converted to ODBC canonical format
viastyle sheets. When time stamps are used asprimary keys, however, time stamp values must
be placed in the event log table in ODBC canonical format. Time stamp values can be
reformatted on the database using a general -purpose programming language, such as Java, or
the database's native SQL programming language.

When eDirectory Time and Timestamp syntaxes are interpreted as signed integers, they
cannot store dates before Jan 1, 1902 or after Jan 1, 2038.

IBM DB2
+ After applying an IBM Fixpack to your DB2 server, you should use the updated db2java.zip

file on the database server with the driver. Otherwise, you might receive connectivity errors
such as "CLI0601E Invalid statement handle or statement is closed."

JDBC-ODBC Bridge
+ TheBridge driver included in the JRE (Java Runtime Environment) 1.3.x contains a known

defect regarding IN OUT stored procedure parameters. Calling a stored procedure with IN
OUT parameters results in amemory access violation that brings down the directory. The
recommended solution to this problem isto use the 1.2.2 JRE with I dentity Manager.
However, doing so will reduce the performance of all drivers running on the server. ldentity
Manager only supports the use of Hotspot with the 1.3.x JRE or greater.

Oracle

+ You may experience high CPU utilitization problems when executing embedded SQL

statements unless you place a jdbc : type attribute on each <jdbc: statement> element.
A genera means of avoiding this problem is to set the driver parameter Handle Statement
Resultsto single.

The 8.1.6 version of the Oracle JDBC driver has a bug that effects publication. It incorrectly
returns NUL L valuesfor somefieldsin the event log table when their values are actually non-
NULL.

The net effect isthat the driver treats several rows as No Operations or NOOPs, in which the
rows are ignored, and the driver produces an incomplete publication document. Earlier

14 DirXML Driver for JDBC Implementation Guide

Limitations

versions might also exhibit the same problem. We recommend that you use the 8.1.7 version
because it is backwards-compatible with most versions of Oracle 8.

+ Inorder to connect to older versions of Oracle on NetWare (for example, Oracle 8.0.3), you
must use the CLASS111.zip JDBC driver supplied on the Oracle installation CD.

Microsoft SQL Server

+ Microsoft's ODBC driver for SQL Server returns an ambiguous type java.sgl. Types.OTHER
for datatypes NVARCHAR, NCHAR, NTEXT, and UNIQUEIDENTIFIER. The driver
assumes type java.sgl. Types.OTHER to be NVARCHAR, NCHAR, or NTEXT. Because of
this, type UNIQUEIDENTIFIER is not supported.

+ Microsoft's SQL Server 2000 Driver for JIDBC issues the following error when the driver
parameter driver parameter Reuse Statements is set anything other than no: "Can't start
manual transaction mode because there are cloned.”

Sybase

+ Inorder to ensure ANSI-compliant padding and truncation behavior for binary values, binary
columns (other than image) must be exactly the size of the eDirectory attribute that maps to
them, constrained NOT NULL, and added to the publisher or subscriber Create rule. If they
areconstrained NULL, trailing zeros, which are significant to eDirectory, will betruncated. If
binary columns exceed the size of their respective eDirectory attributes, extra Os will be
appended to the value.

MySQL

+ TIMESTAMP columns, when updated after being initially set to O or NULL, are always set
to the current date and time. To compensate for this behavior, we recommend you map
eDirectory Time and Timestamp syntaxes to DATETIME columns.

+ Publication is not supported. MySQL does not support the query used by the publisher to
retrieve events from the Event Log table.
Informix

+ NUMERIC or DECIMAL columns cannot be used as primary keys unlessthe scale (that is,
the number of columnsto theright of the decimal point) isexplicitly set to zero when thetable
is created. By default, the scale is set to 255.

The following section lists the known driver limitations.
+ Thedriver does not support the use of delimited database identifiers.

* Direct synchronization (using views) does not support multi-valued or referential attribute
synchronization.

+ Informix Dynamic Server databases created with LOG MODE ANSI are not supported.
Databases created with this option use delimited identifiersfor user/schemanames. Thedriver
does not currently support delimited identifiers.

+ Publication is not supported. MySQL does not support the query used by the publisher to
retrieve events from the Event Log table.

+ JDBC 2.0 data types are not supported with the exception of CLOB and BLOB.

Understanding Driver Prerequisites 15

16 DirXML Driver for JDBC Implementation Guide

Introducing the DirXML Driver for JDBC

The DirX ML® Driver for Java Database Connectivity (JDBC), subsequently referred to as the
driver, provides a generic solution for synchronizing data between Novell® eDirectory™ and
JDBC-accessible relational databases.

The principal value of this driver residesin its generic nature. Unlike most driversthat interface
with asingle, well-defined application, thisdriver can interface with most relational databases and
database-hosted applications.

Overview

In this section, you will find information on the following topics:
+ “New Features’ on page 17
+ “Driver Concepts’ on page 18
+ “Database Concepts’ on page 19
+ “Data Synchronization Models’ on page 22

New Features

Driver Features
+ Referentia attribute support can now be disabled.

Driver Bug Fixes

+ Referentia attribute support can now bedisabled viathe* Enable Referential Support?”’ driver
parameter. This allows this driver to be backwards compatible with the 1.0 driver.

+ Objects can now be added on the publisher channel without <add-attr> child elements.

* Publication <add> events followed by <modify> events are no longer optimized out. This
ensures backwards compatibility with the 1.5 driver.
Identity Manager New Features

For more information on the new featuresin |dentity Manager, refer to the Nsure | dentity Manager
2 Administration Guide (http://www.novell.com/documentation/Ig/dirxml20/admin/data/
alxnk27.html).

Introducing the DirXML Driver for JDBC 17

http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html
http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html
http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html
http://www.novell.com/documentation/lg/dirxml20/admin/data/alxnk27.html

Driver Concepts
The following are some important terms and concepts you should know before installing and
configuring the driver:

“DirXML Driver for JIDBC” on page 18

“Third-Party JDBC Driver” on page 18

*

*

*

“JDBC Driver Type’ on page 18
+ “Directory Schema’ on page 18
* “Application Schema’ on page 19

*

“Synchronization Schema” on page 19
+ “Logica Database Class’ on page 19

DirXML Driver for JDBC

The driver consists of threefiles: JIDBCShim.jar, JDBCULil.jar, and CommonDriverShim.jar. In
addition to these files, you will need a third-party JDBC driver to communicate with each
respective database.

Third-Party JDBC Driver

One of the numerous JDBC implementations used by the driver to communicate with a particular
database. For example, classes12.zip is one of Oracle’s JDBC drivers.

JDBC Driver Type

There are four types of third-party JDBC drivers:

1. A third-party JDBC driver that is partially Javaand communicates indirectly with a database
through an ODBC driver. Type 1 drivers serve as a JDBC-ODBC bridge. Sun provides a
JDBC-ODBC bridge driver for experimenta use and for situations when no other type of
third-party JDBC driver is available.

2. A third-party JDBC driver that is partially Javaand communicates indirectly with a database
through its native client APIs.

3. A third-party JDBC driver that is pure Java and communicates indirectly with a database
through a middleware server.

4. A third-party JDBC driver that is pure Java and communicates directly with a database.

Type 3 and 4 drivers are generally more stable than type 1 and 2 drivers. Type 1 and 2 drivers are
generally faster than type 3 and 4 drivers. Type 2 and 3 drivers are generally more secure than type
1 and 4 drivers. If you choose to use atype 1 or type 2 driver, you must use the remote loader to
ensure the integrity of the directory process.

Directory Schema

The set of object classes and attributesin the directory. For example, the eDirectory User classand
Given Name attribute are part of the eDirectory schema.

18 DirXML Driver for JDBC Implementation Guide

Application Schema

The set of classes and attributes in an application. Because databases have no concept of classes
or attributes, the driver maps eDirectory classes to views or tables and eDirectory attributes to
columns.

Synchronization Schema

The database schema visible to the driver.

Logical Database Class

The set of tables or views used to represent an eDirectory class in a database.

Database Concepts

In the following section, you will learn about important database concepts, including:
+ “Database Schema’ on page 19
+ “DataManipulation Language” on page 19
+ “DataDefinition Language” on page 20
+ “Transactions’ on page 20
* “Triggers’ on page 20
* “ldentity Columns/Sequences’ on page 21
+ “Stored Procedures/Functions’ on page 21

Database Schema

A database schemais a set of database objects, such astables, views, stored procedures, and so
forth that are owned by a particular database user.

Ownership is often expressed using a dot notation such asdirxml .emp, wheredirxml isthe
name of the database user that ownsthe table emp. All of the database objects owned by di rxml
constitute the dirxml database schema.

Data Manipulation Language

Data Manipulation Language (DML) statements are highly standardized statements that
mani pul ate database data. DML s are essentially the same regardless of the database you use.

The following example shows several DML statements:

SELECT * FROM emp;
INSERT INTO emp(lname) VALUES(’Doe”);
UPDATE emp SET fname = ”John” WHERE empno = 1;

NOTE: Examples used throughout the implementation guide are for the Oracle* database.

Introducing the DirXML Driver for JDBC 19

Data Definition Language

Transactions

Triggers

Data Definition Language (DDL) statements manipul ate database objects such as tables, indexes,
user accounts, and so forth. DDL statements are proprietary and differ substantially between
databases.

The following example shows a DDL statement:

CREATE TABLE emp

¢
empno NUBMER(8),
fname VARCHAR2(64),
Iname VARCHAR2(64)
)

CREATE USER dirxml IDENTIFIED BY novell;

A transaction is an atomic database operation that consists of one or more statements. When a
transaction is complete, al statements in the transaction are committed. When atransactionis
interrupted or one of the statementsin the transaction has an error, the transaction is said to roll
back. When atransaction is rolled back, the database is |ft in the same state it was before the
transaction began.

Transactionsare either manual (user-defined) or automatic. Manual transactions can consist of one
or more statements and must be explicitly committed. Automatic transactions consist of asingle
statement and are implicitly committed after each statement is executed.

Manual Transactions

Manual transactions usually contain morethan one statement. DDL statementstypically cannot be
grouped with DML statements in a manual transaction. The following example shows a manual
transaction:

INSERT INTO emp(lname) VALUES(’Doe”);
UPDATE emp SET fname = ”John” WHERE empno = 1;
COMMIT; /* explicit */

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. When a statement runs
automatically, it isautonomous of any other statement. Thefollowing example shows an automatic
transaction:

INSERT INTO emp(lname) VALUES(’Doe”);
/* COMMIT; iamplicit */

A database trigger is programmable logic that is associated with a table, which fires or executes
under certain conditions. Triggers are often useful for creating side effects in a database. The
following is an example of a database trigger on table emp.

CREATE TABLE emp

(
empno NUMBER(8),

20 DirXML Driver for JDBC Implementation Guide

fname VARCHAR(64),
Iname VARCHAR(64)

);

CREATE TRIGGER t_emp_insert
AFTER INSERT ON emp
FOR EACH ROW

BEGIN
UPDATE emp SET fname = ”John”;
END;

When a statement is executed against a table with triggers, atrigger will fireif the statement
satisfiesthe conditions specified in thetrigger. For example, using the abovetable, if thefollowing
insert statement were executed,

INSERT INTO emp(LNAME) VALUES(’Doe”)

Trigger t_emp_insertwouldfireafter theinsert statement is executed and the following update
statement would also be executed:

UPDATE emp SET fname = ”John”

A trigger can typically be fired before or after the statement that triggered it. Statements that are
run as part of adatabase trigger are typically included in the same transaction as the triggering
statement. In the above example, both the insert and update statements would be committed or
rolled back together.

Identity Columns/Sequences
Identity columns and sequences are used to generate unique primary key values.

An identity column is a self-incrementing column used to uniquely identify arow in atable.
Identity columns values are automatically filled-in when arow isinserted into atable.

A sequence object is a counter that can be used to uniquely identify arow in atable. Unlike an
identity column, aseguence object isnot bound to asingletable. If used by asingletable, however,
a sequence object can be used to achieve an equivalent resullt.

The following is an example of a sequence object:

CREATE SEQUENCE seq_empno
START WITH 1
INCREMENT BY 1
NOMINVALUE
NOMAXVALUE
CACHE 100
ORDER;

Stored Procedures/Functions

A stored procedure or function is programmabl e logic stored in a database. Unliketriggers, stored
procedures or functions are not associated with atable. They can be invoked from almost any
context.

The subscriber can use stored procedures or functions to retrieve primary key values from rows
inserted into tables for the purpose of creating associations. Stored procedures or functions can
aso be invoked from within embedded SQL statements or triggers.

Introducing the DirXML Driver for JDBC 21

The distinction between stored procedures and functions varies by database. Typically, both can
return output. How they return output is at issue. Stored procedures usually return values through
parameters. Functions usually return values through aresult set.

The following is an example of a stored procedure:

CREATE
PROCEDURE sp_empno
(
io_empno IN OUT NUMBER,
i_fname IN VARCHAR2
)
1S
BEGIN
IF (io_empno 1S NULL) THEN
SELECT seq_empno.nextval INTO io_empno FROM DUAL;
END IF;
END sp_empno;

Data Synchronization Models

The driver supports two data synchronization models:. direct and indirect. The following sections
describe how direct and indirect synchronization work on both the Subscriber and Publisher
channels.

Direct Synchronization

Direct synchronization uses views to synchronize information between eDirectory and a database.
The following information explains how direct synchronization works on the Subscriber and
Publisher channels.

In the following scenarios, you can have one or more customer tables or views.

Subscriber Channel

22

Direct Synchronization on
the Subscriber Channel

Database

Driver’s

LT

(Subseriber)- - =

Customer
Table(s)

The subscriber updates customer tables through aview inthedriver’s schema. A view can be used
to synchronize directly with customer tables.

DirXML Driver for JDBC Implementation Guide

NOTE: Direct synchronization without a view is only possible if all columns of interest are located in the same
table and if that table has an explicit primary key constraint.

Publisher Channel

Direct Synchronization on
the Publisher Channel

Database

)
Driver’s |
Schema
ST
T~ 1 I —
FOTTTTE Y Vviewes) s
¥ b e Customer
Table(s)
GIEEBYE e
Publication
Trigger(s)
~—

When a customer table is updated, publication triggers insert rows into the event log table. The
publisher then reads the inserted rows and updates eDirectory.

Depending on the contents of the rows read from the event log table, the publisher might need to
retrieve additional information from the view before updating eDirectory. After updating
eDirectory, the publisher then deletes or marks the rows as processed.

Indirect Synchronization

Indirect synchronization usesintermediate tables to synchronize information between eDirectory
and a database. The following information explains how indirect synchronization works on the

Subscriber and Publisher channels.

In the following scenarios, you can have one or more customer tables or intermediate tables.

Subscriber Channel

Indirect Synchronization
on the Subscriber Channel

Database

Driver’s

Schema

Intermediate

Tables(s) Synchronization
Trigger(s)

Customer
Table(s)

Introducing the DirXML Driver for JDBC 23

The subscriber updatesthe intermediate tablein the driver’s schema. The synchronization triggers
directly update the customer tables elsewhere in the database.

Publisher Channel
Indirect Synchronization

on the Publisher Channel

Database

)
Driver’s
Schema

L. Intermediate <=
Tables(s) Synchronization
Trigger(s)
G —

<—-> reaton

Trigger(s)

Customer
Table(s)

When customer tables are updated, synchronization triggers update the intermediate tables.
Publication triggers then insert one or more rowsinto the event log table. The publisher then reads
the inserted rows and updates eDirectory.

Depending on the contents of the rows read from the event log table, the publisher might need to
retrieve additional information from the intermediate tables before updating eDirectory. After
updating eDirectory, the publisher then deletes or marks the rows as processed.

24 DirXML Driver for JDBC Implementation Guide

Installing or Upgrading the Driver

In this section, you will find information and proceduresto help you install and upgrade the driver:
+ “Installing the Driver” on page 25
+ “Installing Database Objects’ on page 29
* “Upgrading the Driver” on page 32
+ “Activating the Driver” on page 33

Installing the Driver

The DirX ML® Driver for JDBC requires Novel|® eDirectory™ and database-side configuration.
We recommend that you configure your database and test it independently of the driver.

You should use these instructions if no previous installation exists for the driver. After you have
downloaded the CD image, complete the following instructions to install the driver:

Installing the Driver
1 Shut down eDirectory.

2 Copy JDBCShim.jar, JDBCUil.jar, and CommonDriverShim.jar into the appropriate
directory for your platform. Use the following table to determine the appropriate directory:

Platform Directory Path
Netware® SYS:\SYSTEM\LIB
Solaris or Linux lusr/lib/dirxml/classes
Windows NT/2000 NOVELL\NDS\LIB

3 Copy the appropriate third-party driver filesinto the same directory you specified in the
previous step.

NOTE: These third-party files are not bundled with the driver. These files should be properly licensed, if
necessary, when used in a production environment.

The following table includes third-party driver download information, by vendor.

Installing or Upgrading the Driver 25

Vendor

Database

Filename(s)

Download Instructions

Oracle

Oracle 8i

classes12.zip,
nls_charset12.zip

Oracle Technology Network (http://otn.oracle.com/
software/tech/java/sqlj_jdbc/content.html)

You must first register for free with Oracle’s Technology
Network. You should download version 8.1.7.1 or later.

Oracle

Oracle 9i

classes12.zip,
nls_charset12.zip

Oracle Technology Network (http://otn.oracle.com/
software/tech/java/sglj_jdbc/content.html)

You must first register for free with Oracle’s Technology
Network. You should download version 9.2.0.1 or later.

BEA Systems

Microsoft SQL Server 7/
2000

unspecified

BEA Download Center (http://commerce.bea.com/
downloads/weblogic_server.jsp)

This driver requires free registration and expires on a
monthly basis. You should select the JDBC Drivers
product and download MSSQLServer4 Kit, Version 7
and 2000.

You will need to zip/jar the file yourself. To do this:

1. Place the
weblogic\mssglserver4v70\license\WeblogicLicense.xm
| file into the \weblogic\smsqlserver4v70\classes
directory.

2. Zipljar the ...\classes\weblogic directory, including its
contents, and the ...\classes\WeblogicLicense.xml file.
This directory and XML file must be at the root of the
zipped/jarred file.

Microsoft

SQL Server 2000

msbase.jar
mssqlserver.jar

msutil.jar

Microsoft Downloads (http://www.microsoft.com/sql/
downloads/2000/jdbc.asp)

Click the appropriate download option for your platform.

IBM

DB2 Universal Database
(UbB) 7.2

db2java.zip

IBM Downloads (http://www-4.ibm.com/software/data/
db2/udb/downloads.html)

This driver is part of the free DB2 UDB Personal
Developer’s Edition download.

If you apply Fixpacks, ensure that you use the
db2java.zip file on the patched server and not the file
supplied with the original download.

Sybase

Adaptive Server Enterprise
(ASE) 12.5

jeconn2.jar

Sybase Downloads (http://www.sybase.com/
downloads)

To download this driver, select jConnect for JDBC.

MySQL

MySQL 3.23

mysql-connector-
java-2.0.14-bin.jar

MySQL Downloads (http://www.mysqgl.com/downloads/
api-jdbc.html)

Select MySQL Connector/J2 or later.

Informix

Informix Dynamic Server
(IDS) 9.3

ifxjdbc.jar

not available for download

26 DirXML Driver for JDBC Implementation Guide

http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://commerce.bea.com/downloads/weblogic_server.jsp
http://www.microsoft.com/sql/downloads/2000/jdbc.asp
http://www-4.ibm.com/software/data/db2/udb/downloads.html
http://www.sybase.com/downloads
http://www.mysql.com/downloads/api-jdbc.html

Vendor Database Filename(s) Download Instructions

Sun N\A N\A Sun Downloads (http://java.sun.com/j2se/
downloads.html)

Sun’s JDBC-ODBC Bridge driver is freely available as
part of the Java Runtime Environment (JRE).

4 Restart eDirectory.
5 Start ConsoleOne or iManager.

Importing a Driver Configuration

The driver configurations are the sample configurations only. We recommend that you install a
driver configuration and run it before customizing the driver. Driver configurations are provided
for the following databases:

Database 1.6.1 or Earlier Filename 1.6.2 Filename

Oracle 8i, 9i JDBCOracleDirect.xml JDBCOracle.xml

JDBCOraclelndirect.xml

Microsoft SQL Server 7/2000 JDBCMSSQLDirect.xml JDBCMSSQL.xml

JDBCMSSQLIndirect.xml

IBM Universal Database (UDB) 7.2 JDBCDB2Direct.xml JDBCDB2.xml

JDBCDB2Indirect.xml

Sybase Adaptive Server Enterprise JDBCSybaseDirect.xml JDBCSybase.xml
(ASE) 12.5)

JDBCSybaselndirect.xml
MySQL 3.23 JDBCMySQLIndirect.xml JDBCMySQL.xml
Informix Dynamic Server (IDS) 9.3 JDBClInformixDirect.xml JDBClInformix.xml

JDBClInformixIndirect.xml

All configurations use the same conventions, regardless of database:

+ String field lengths are 64 characters. Fields of thislength can hold most eDirectory attributes.
You may want to refine field lengths to enhance storage efficiency.

* Primary key field lengths are 8 digits.

+ Therecord_id columnintheeventlog table has the maximum numeric precision
permitted by each database.

+ All table, trigger, stored procedure, index, and constraint names are lowercase. Thisisthe
most commonly used case convention.

+ Triggers names are prefaced with t_, stored procedure names are prefaced with sp_, index
names are prefaced with i_, check constraints are prefaced with chk_, primary key
constraints are prefaced with pk_ and foreign key constraints are prefaced with fk_.

Installing or Upgrading the Driver 27

http://java.sun.com/j2se/downloads.html

+ Check, primary, and foreign key constraints follow this naming convention: prefix_table-
name_column-name (for example, pk_emp_empno, fk_phone_empno,
chk_eventlog_event_type)

+ Triggersfollow this naming convention: t_table-name_operation (for example,
t_emp_insert)

+ Indexesfollow this naming convention: i_table_name_number (for example, i_eventlog_1)
¢ |dentity columns and sequence objects cache 100 values.

¢ Usernames are the last name of a User concatenated with a primary key value (for example,
John Doe's username could be Doel).

+ Initial passwords are the last name of a User (for example, John Doe's password would be
Doe). Sybase passwords must be at least 6 characters long. When shorter than 6 characters,
last names are padded with the character 'p’ (for example, John Doge’s password would be
Doeppp). The padding character can be adjusted in the Subscriber Command Transformation
style sheet.

Importing the Driver Configuration

The driver configuration (XML) file creates and configures the objects needed in order for driver
work properly. It aso includes sample rules and style sheets you can modify for your
implementation.

1 IniManager, select DirXML Management > Create Driver.
2 Select adriver set.

If you place this driver in anew driver set, you must specify a driver set name, context, and
associated server.

3 Mark Import a Driver Configuration from the Server and select the .xml file.
The driver configuration file isinstalled on the Web server when you set up iManager.

4 You will be prompted to enter aname for the driver. Enter the driver’s name and click Next
to continue.

5 (Optional) Click Define Security Equivalences.

5a Click Add, then select an object with Admin rights (or any other rights that you want the
driver to have).

5b Click Apply, then click OK.

6 (Optional) Click Exclude Administrative Roles to exclude objects from replication.
6a Click Add, then select any users you want to exclude (such as the admin user).
6b Click Apply, then click OK.

7 Click Next to view the import summary. Verify that the configuration is correct, then click
Finish with Overview.

The necessary |dentity Manager objects have now been created. If you didn’t define security
equivalences or exclude administrative users during the import, you can complete these tasks by
modifying the driver object’s properties.

28 DirXML Driver for JDBC Implementation Guide

Installing Database Objects

Thefollowing information explains how to install and configure database objects (tables, triggers,
indexes, and so forth) for synchronization with the default, driver configuration.

SQL scripts are located in the tool s\sgl\database directory.

This section contains information to help you:
+ “Configuring Oracle Objects’ on page 29
+ “Configuring Microsoft SQL Server Objects’ on page 30
+ “Configuring IBM DB2 Objects’ on page 30
+ “Configuring Sybase Objects’ on page 31
* “Configuring MySQL Objects’ on page 31
+ “Configuring Informix Objects’ on page 32

IMPORTANT: We recommend installing or uninstalling preconfigured drivers and database scripts as a unit.
To prevent unintentional mismatching, database scripts and preconfigured drivers now contain headers with a
version number, the target database name, and the database version.

For uninstallation information, refer to Chapter 7, “Uninstalling the Driver and Database Objects,” on page 77.

Configuring Oracle Objects

1 Froman Oracleclient, such as SQL Plus, logon asuser SYSTEM. By default, the password for
SYSTEM isMANAGER.

2 Executethefirst installation script for direct or indirect synchronization. For example:
SQL> @c:\tools\sgl\oracle\direct\INSTALL_DIRECT 1.sql
SQL> @c:\tools\sgl\oracle\indirec\INSTALL_INDIRECT _1.sql

3 Logonasuser dirxml using dirxml asthe password.

4 Execute the second installation script for direct or indirect synchronization. For example:
SQL> @c:\tools\sgl\oracle\direct\INSTALL_DIRECT_2.sql
SQL> @c:\tools\sgl\oracle\indirec\INSTALL_INDIRECT_2.sql

NOTE: Before executing the provided publication tests as SYSTEM, you must log in and create a new session.
Otherwise, you won't be able to see the sequence objects owned by dirxml.

If the scripts execute correctly, you should see natifications that the database objects have been
created. If there are errors, ensure that you are logged in as the correct user. Before re-running the
installation scripts, be sure to execute the uninstallation script (for example,
UNINSTALL_DIRECT.sgl or UNINSTALL_INDIRECT.sql).

Troubleshooting Tips

+ When generating events for publication, make sure you are logged in as someone other than
thedirxml user. If you make changes asthe di rxml user, your changes will not be
published.

+ Be sureto commit changes. Until you commit your changes, they will not be published.

Installing or Upgrading the Driver 29

Configuring Microsoft SQL Server Objects
1 Start Query Analyzer.
2 Log onto your database server as user sa. By default, the sa user has no password.
3 Open and execute the first script for direct or indirect synchronization. For example:
tools\sgl\mssgl\direct\INSTALL_DIRECT _1.sql
tools\sgl\mssgl\indirect\INSTALL_INDIRECT _1.sq]
4 Log on to your database server asuser dirxml by using di rxml asthe password.

5 Open and execute the second installation script for direct or indirect synchronization. For
example:

tools\sgl\mssql\direct\INSTALL_DIRECT_2.sql
tools\sgl\mssgl\indirect\INSTALL_INDIRECT _2.sq]

Troubleshooting Tips

+ When generating events for publication, make sure you are logged in as someone other than
thedirxml user. If you make changes as the di rxml user, your changes will not be
published.

+ Besureto commit changes. Until you commit your changes, they will not be published. The
keyword for commit for Microsoft SQL Server isgo.

+ Make sure you are logged in as the correct user in the correct database when running the
scripts.

Configuring IBM DB2 Objects

For DB2 Universal Database, you must manually create a database user account and database
before running the provided scripts.Because the process of creating user accounts differs between
operating systems, Step 1 below is OS-specific. These instructions are for aWindows NT
operating environment. If you reinstall the database objects, you only need to repeat Step 6 through
Step 8.

1 Create auser account for user di rxml using di rxml asthe password in User Manager for
Domains.

+ Remember to uncheck the User Must Change Password at Next Login check box for this
account.

+ You might want to also check the Password Never Expires check box.
NOTE: The remaining instructions are OS-independent.

Start the Control Center.

Right-click Databases, then click Create Database Using Wizard.

Name the database d i rxml, then click Finish.

Copy JDBCUtil.jar to your DB2 client.

Start the Command Center from the Control Center.

N o o0~ WON

Change the name of the administrator account and password for your server before executing
thefirst installation script.

30 DirXML Driver for JDBC Implementation Guide

10

Troubleshooting Tips

*

For direct synchronization, edit tools\sgl\db2\direc\INSTALL_DIRECT _1.sql.
For indirect synchronization, edit tools\sgl\db2\indirec\INSTALL_INDIRECT_1.5ql.

Click the Script tab, open the Script menu, then import and execute the first script edited in
Step 7.

Change the path to JDBCUil.jar to reflect its location on your client in the second script.
For direct synchronization, edit tools\sgl\db2\direc\INSTALL_DIRECT _2.sq].

For indirect synchronization, edit tools\sgl\db2\indirect\INSTALL_INDIRECT _2.sq]l.
Import and execute the second script edited in Step 9.

When generating events for publication, make sure you are logged in as someone other than
thedirxml user. If you make changesasthe dirxml user, your changes will not be
published.

Make sure you commit your changes. Until you commit changes, they won't be published.

Configuring Sybase Objects

This section explains how to install database objects on Sybase Adaptive Server Enterprise (ASE).

If you haven't installed JDBC support on your Sybase server, you should complete thistask. Refer
to your server’sinstallation manual for further details. If installation is required, you should
execute the sgl_server*.sql script to install java.sql.DatabaseM etaData support.

1

Troubleshooting Tips

*

From a Sybase client, such asisgl, logon as user sa and execute the first installation script for
direct or indirect synchronization. By default, the sa account has no password. For example:

isgl -U sa-P-i tools\sgl\sybase\direct\INSTALL_DIRECT _1.sql
isgl -U sa-P -i tools\sgl\sybase\indirec\INSTALL_INDIRECT _1.sq

Logonasuser dirxml using dirxml asthe password and execute the second installation
script for direct or indirect synchronization. For example:

isgl -U dirxml -P dirxml -i tools\sgl\sybase\direct\INSTALL_DIRECT _2.sql
isgl -U dirxml -P dirxml -i tools\sgl\sybase\direct\INSTALL _INDIRECT_2.sq

Make sure you commit your changes. Until you commit changes, they won't be published.
The keyword for commit for Sybaseis go.

Configuring MySQL Objects

1

FromaMySQL client, such asmysqgl, log on asuser root or another user with administrative
privileges. By default, the root user has no password.

Execute the first script for indirect synchronization. For example:
mysql> \. c:\tools\sgl\mysgl\indirec\INSTALL_INDIRECT_1.sql
Open and execute the second installation script for indirect synchronization. For example:
mysqgl>\. c:\tools\sgl\mysgl\indirect\INSTALL_INDIRECT _2.sql

Installing or Upgrading the Driver 31

Configuring Informix Objects

For Informix Dynamic Server, you must manually create a database user account before running
the provided scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is
OS-specific. Theseinstructions are for aWindows NT operating environment. If you reinstall the
database objects, you only need to repeat Step 2 through Step 6.

Installation Instructions

Troubleshooting Tips

1 Create auser account for user di rxml using dirxml as the password in User Manager for

*

Domains.

¢+ Remember to uncheck the User Must Change Password at Next Login check box for this
account.

+ You might want to also check the Password Never Expires check box.
NOTE: The remaining instructions are OS-independent.
Start SQL Editor.

Log on to your server asuser informix. By default, the password for informix is
informix.

Open and execute the first script for direct or indirect synchronization. For example:
tools\sgl\informix\direc\INSTALL_DIRECT _1.sql
tools\sgl\informix\indirect\INSTALL _INDIRECT _1.sql

Log on to your database server as user dirxml using password dirxml.

Open and execute the second installation script for direct or indirect synchronization. For
example:

tools\sgh\informix\direc\INSTALL_DIRECT_2.sql
tools\sgh\informix\indirec\INSTALL_INDIRECT_2.sql

When generating events for publication, make sure you are logged in as someone other than
thedirxml user. If you make changes as the di rxml user, your changes will not be
published.

Be sure to commit changes. Until you commit your changes, they will not be published.

Make sure you are logged in as the correct user on the correct database when running the
scripts.

Upgrading the Driver

Use the following information and procedures if you are upgrading the driver from a previous
version.

32 DirXML Driver for JDBC Implementation Guide

Upgrade Requirements

For versions prior to 1.5, refer to the DirXML Driver 1.5 for JDBC Implementation Guide (http:/
/www.novell.com/documentation/lg/dirxmidrivers/index.html). Be sure to use the 1.6 association
utility. It supersedes all previous versions.

Upgrading from 1.5to 1.6

After you download the CD image, perform the following steps to upgrade a previous version of
the driver:

1 Stop the drivers being upgraded. Select Manual for the driver’s startup option.
2 Stop eDirectory.

3 Replace IDBCShim.jar, JIDBCUIil.jar, and CommonDriverShim.jar.

4 Restart eDirectory.

5 (Optional) Install the driver configurations.

You should uninstall the previous preconfigured drivers and execute the database uninstall
scripts before installing the new preconfigured drivers and scripts.

»

Set the driver’s startup options to their previous values.
7 Restart the drivers.

Activating the Driver

Activation must be completed within 90 days of installation or the driver will not run.

For activation information, refer to Activating Novell Identity Management Products (http://
www.novell.com/documentation/lg/dirxml 20/admin/data/af bx4oc.html).

Installing or Upgrading the Driver 33

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxml20/admin/data/afbx4oc.html

34 DirXML Driver for JDBC Implementation Guide

Configuring the Driver

This section explains how to set up driver configuration parameters with possible configuration
values. Before you begin, make sure you have the appropriate driver files and aworking
knowledge of Novell® eDirectory™ and iManager.

* “Setting Driver Authentication Parameters’ on page 35
+ “Driver Parameters’ on page 36

* “Trace Levels’ on page 44

+ “Configuring Third-Party JDBC Drivers’ on page 45

Setting Driver Authentication Parameters

After you import the driver, you need to provide authentication information for the database.

Configuring Driver Authentication
1 In Novell iManager, click DirK ML Management > Overview.
2 Locate the driver set containing the driver, then click the driver’sicon.

3 From the Driver Overview, click the driver object, which will display the driver
configurations. Refer to the individua driver implementation guides for more information
about each driver’s specific parameters.

4 Enter driver authentication information:

Parameter Name Sample Configuration Value Default Required
Value Field
Authentication ID dirxml yes
Authentication Context jdbc:oracle:thin:@255.255.255.255:1521:ora yes
Application Password dirxml yes

Authentication ID

Authentication | D isthe name of the driver’s database user/login account. This user must exist and
be granted login/session privileges on the database or a connection cannot be established. In
addition, this user must have rights to select, insert, update, and delete on tablesin the
synchronization schema or synchronization will fail.

Configuring the Driver 35

Authentication Context
Authentication Context is the JDBC URL of the target database.

URL format and content are proprietary and differ between third-party drivers. There are some
similaritiesin content, however. Each URL, whatever the format, usually includes an IP address
or DNS name, port number, and a database identifier. Consult your third-party driver
documentation for the exact syntax and the content requirements of your driver.

The following table lists example URLs for third-party drivers. You will need to substitute the
appropriate | P address, port number, and database/data source identifiersfor your database. These
examplesuse | P address 255.255.255.255, the default port number for each database, and di rxml
database/data source identifier.

Third-party Driver Example JDBC URL Syntax
Oracle8i, 9i JDBC Drivers jdbc:oracle:thin:@255.255.255.255:1521 :dirxml
IBM DB2 UDB JDBC Driver jdbc:db2://255.255.255.255/dirxml

BEA Weblogic jDriver for Microsoft jdbc:weblogic:mssqlserver4:dirxml@255.255.255.255:1433
SQL Server 7/2000

Microsoft SQL Server 2000 Driver for jdbc:microsoft:sqlserver://

JDBC 255.255.255.255:1433;DatabaseName=dirxml
Sybase jConnect jdbc:sybase:Tds:255.255.255.255:2048/dirxml
MySQL Connector/J jdbc:mysql://255.255.255.255:3306/dirxml
Informix JDBC Driver jdbc:informix-sqli://255.255.255.255:1526/

dirxml:informixserver=server

Sun’s JDBC-ODBC Bridge Driver jdbc:odbc:dirxml

Application Password

Thisisthe password for the database user/login account that is used by the driver. You must create
auser/login account on the database and grant login/session privilegesto this account or thedriver
will be unable to connect.

NOTE: ConsoleOne® will not show the asterisk (*) characters in the New Password fields when you reopen
the driver’s Properties dialog box. The password does persist, however, and doesn’t need to be re-entered.

Driver Parameters

After you smightet the driver authentication parameters, you should set the driver’s parameters.
Driver parameters are divided into three categories:

¢ Driver

+ Subscriber

* Publisher

Configuring the Driver 36

Configuring Driver Settings

1 IniManager, click DirXML Management > Overview.

2 Locate the driver set containing the driver, then click the driver’sicon.

3 From the Driver Overview, click the driver object, which will display the driver
configurations.

The following table lists the driver settings and sample values:

Parameter Name Sample Configuration Value Default Required Tag
Third-Party JDBC Driver oracle.jdbc.driver.OracleDriver yes <jdbc-class>
Class Name
Synchronize Schema dirxml yes <sync-schema>
Synchronize Tables emp yes <sync-tables>
Reuse Statements? yes yes no <reuse-
statements>
Use Manual Transactions? yes (dynamically no <use-manual-
determined) transactions>
Use Single Connection? no no no <use-single-
connection>
Default Transaction Isolation read committed (same) no <transaction-
Level isolation-level>
Connection Tester Class com.novell.nds.dirxml.driver.jdbc.uti.JDBCCo (same) no <connection-
Name nnectionTester tester-class>
Connection Test Statement SELECT empno FROM dirxml.emp where -1 no <connection-test-
=0 stmt>
Retrieve Minimal Metadata? no no no <minimal-
metadata>
Handle Statement Results? yes yes no <handle-stmt-
results>
Connection Initialization USE dirxml no <connection-init>
String
Enable Referential Support? yes yes no <enable-refs>

Third-Party JDBC Driver Class Name

Third-Party JDBC Driver ClassNameis arequired, case-sensitive parameter. This namerefersto
the fully-qualified class name of your third-party driver. The following table lists the class name
for tested third-party drivers:

Third-party Driver

Value

Oracle8i, 9i JDBC drivers

oracle.jdbc.driver.OracleDriver

IBM DB2 UDB JDBC Driver

COM.ibm.db2.jdbc.net.DB2Driver

Configuring the Driver 37

Third-party Driver Value

BEA Weblogic jDriver for MSSQL weblogic.jdbc.mssqlserver4.Driver
Server 7/2000

Microsoft SQL Server 2000 Driver for com.microsoft.jdbc.sqglserver.SQLServerDriver
JDBC

Sybase jConnect 5.5 com.sybase.jdbc2.jdbc.SybDriver
MySQL Connector/J org.gjt.mm.mysql.Driver

Informix JDBC driver com.informix.jdbc.IfxDriver

Sun JDBC-ODBC driver sun.jdbc.odbc.JdbcOdbcDriver

Synchronize Schema

Synchronize schemaisarequired parameter that might be case-sensitive. This parameter identifies
the database schema being synchronized. A database schema is anal ogous to the name of the
owner of the tables being synchronized. For example, if you wanted to synchronize two tables,
emp and phone, each belonging to the database user di rxml, you would enter di rxml inthis
field. When this parameter is used, Synchronize Tables must be left empty or omitted from a
driver’s configuration.

Synchronize Tables

Synchronize Tablesis arequired parameter that might be case-sensitive. This parameter allows
you to create a virtual database schema by listing the names of the logical database classesto
synchronize. Logical database class names are the names of parent tablesand views. Itisanerror
to list child table names. This parameter is useful when synchronizing with databases that do not
support the concept of schema or the synchroni zation schema contains alarge number of tables of
which only afew are of interest to thedriver. If you synchronizetwo tables or viewswith the same
names in different schemas, be sure to schema-prefix the table or view names in the schema
mapping rule. The driver does not schema-prefix table or view names returned from the
getSchema() operation by default. When this parameter is used, Synchronize Schemamust be left
empty or omitted from a driver’s configuration.

Reuse Statements

Reuse Statements is a case-insensitive parameter that might be required for some third-party
drivers. If you set the parameter to yes, which is the default, the driver alocates
java.sgl.Statement, java.sgl.PreparedStatement, and java.sgl.Call ableStatement objects once and
reuses them. When set to ano, the driver alocates/deall ocates statement objects each time they
are used. Setting this parameter to no will degrade driver performance.

This parameter must be set to no when using Microsoft's SQL Server 2000 Driver for JDBC.

To maximize driver performance, we recommend that you use the default value or omit this
parameter from most driver configurations.

Use Manual Transactions

Use Manual Transactionsis a case-insensitive parameter whose value is derived from database
metadata at runtime. This parameter should only be used when it is necessary to override default
driver behavior. For instance, for MySQL, transaction support is determined on a per table rather

Configuring the Driver 38

than per database basis. As such, it is necessary to disable manual transaction support when
synchronizing to tables without transaction support.

When set to yes, the driver supports the use of manual transactions. When set to no, each
statement executed by the driver is an automatic transaction.

To ensure dataintegrity in the target database, we recommend that this parameter be omitted from
most driver configurations.

Use Single Connection

Use single connection is a case-insensitive parameter that might be required for some third-party
drivers. When set to yes, both the Subscriber and Publisher channels share a single connection.
When set to no, which is the default, each channel uses a separate connection. Setting this
parameter to yes will degrade driver performance.This parameter should only be set toyes when
both the Subscriber and Publisher channels are in use.

To maximize driver performance, we recommend that you use the default value or omit this
parameter from most driver configurations.

Default Transaction Isolation Level

Default Transaction | solation Level isan optional, case-insensitive parameter. This parameter sets
the default transaction isolation level for connections used by the driver. There are five possible
values, four of which correspond to the public constants defined in the java.sgl.Connection
interface:

¢ none

¢ read uncommitted
¢ read committed

* repeatable read

+ serializable

The default valueisread committed. We recommend using the default transaction isolation
level of read committed. For moreinformation on these values, refer to Sun’s Web site. (http:/
/java.sun.com)

Because some third-party drivers do not support setting a connection’s transaction isolation level
to none, the driver also supports the additional value of unsupported.

Connection Test Statement

Connection Test Statement is an optional parameter that might be case-sensitive. This parameter
isaquick alternativeto creating aconnection tester class. Often, it issufficient to detect connection
failure by sending an arbitrary SQL statement across the wire.

When present, this parameter overrides the Connection Tester Class Name parameter.

Connection Tester Class Name

Connection Tester Class Name is a case-sensitive parameter that might be required for some third-
party drivers. Thisisthefully-qualified class name of the class used to determine connection state.
This class must be public, have a public, default constructor, and implement the
com.novell.nds.dirxml.driver.jdbc.db.DBConnectionTester interface.

The default valueis
com.novell _nds.dirxml._driver._jdbc.util.JDBCConnectionTester

Configuring the Driver 39

http://java.sun.com

Microsoft's SQL driver for JIDBC, set the value to:
com_novell.nds.dirxml._driver.jdbc.db.MSSQLConnectionTester

For Informix’s JDBC driver, set the value to:
com.novell._nds.dirxml.driver.jdbc.db. InformixConnectionTester

For Mysqgl Connector/J driver, set the value to:
com._novell.nds.dirxml._driver.jdbc.db.MySQLConnectionTester

This parameter isignored when a Connection Test Statement parameter value is specified.

Retrieve Minimal MetaData

Retrieve Minimal Metadata is a case-insensitive parameter that might be required for some
databases. When set to yes, the driver calls only required metadata methods. When set to no,
which isthe default value, the driver calls required and optional metadata methods. Refer to
Appendix D, “java.sgl.DatabaseM etaData M ethods,” on page 89 for more a list of required and
optional metadata methods. Optional metadata methods are required for multi-valued and
referential attribute synchronization.

Setting this value to yes will improve the driver’s startup time at the expense of driver
functionality.

Handle Statement Results?

Handle statement resultsis an optional parameter that is case-insensitive. This parameter tellsthe
driver how many result sets can be generated by an arbitrary SQL statement. There are three
possible values:

¢ none
¢ single
+ multiple

The default valueis multiple. For backwards compatibility reasons, yes equatesto
multipleno; equatesto none.

For Microsoft's ODBC driver, Oracle’'s IDBC drivers, or Informix’s JIDBC driver, you should set
this parameter to single. For other third-party drivers, we recommend that you use the default
value or omit this parameter from most driver configurations.

Connection Initialization String

Connection initialization string is an optional parameter that might be case-sensitive. The
connection initialization string is used to set properties on connections used by the driver. Multiple
statement values must be delimited by a semicolon. This parameter is useful for adjusting ANSI-
compatibility standards and database context.

Enable Referential Support?

Enablereferential support isan optional parameter that is case-insensitive. This parameter tellsthe
driver tointerpret foreign key constraints that refer to parent tables of other database classes as
referential attributes. Referential attributes are typically used to denote contaiment (e.g., group
membership). When set to yes, which is the default, the driver interprets said columns as
referential. When set to no, the driver interprets said columns as non-referential. The purpose of
this parameter is to ensure backwards compatibility with the 1.0 version of this driver. For 1.0
compatibility, this parameter should be set to no.

Configuring the Driver 40

Subscriber Settings

The following table lists the subscriber settings and sample values.

Parameter Name Sample Configuration Value Default Required Tag
Value
Disable yes no no <disable>
Primary Key Generation emp("sp_empno(empno,fname)") no <key-gen>
Key Generation Timing after before no <key-gen-
timing>
Check Update Counts? yes yes no <check-
update-
count>
Disable

Disable is an optional, case-insensitive parameter. When set to yes, the subscriber channel does
not process events; instead it returnswarnings. When set to no, which isthe default, the subscriber
processes events.

Primary Key Generation

Primary key generation is an optional, complex parameter that might be case-sensitive. Database
identifiers used in this value must not be delimited.

When processing <add> events, the subscriber uses primary key values to create associations.
This parameter specifies how the subscriber obtains the primary key values necessary to construct
association values. There are three possibilities:

1. The necessary primary key values are aready present in the XML event.
2. The subscriber needs to generate the necessary primary key values.

3. The subscriber should obtain the necessary primary key values by calling a user-defined
stored procedure or function in the database.

Method 1: By default, the driver assumes primary key values are already present in the XML
event. If thisisthe case, no values need to be generated. Thisis desirable when an eDirectory
attribute, such as GUID, is explicitly schema-mapped to atable or view’s primary key column.

The syntax for Method 1 is: |ogical-database-classname(none)
For example:

emp(none)

view_emp(none)

Method 2: It is often desirable in atesting environment to have the subscriber generate primary
key values beforeastored procedure or functionisavailable. Thismethod can also be used against
databases that do not support stored procedures or functions. For any numeric column types, the
driver uses asimple (MAX+1) function to generate primary key values. In the case of string
column types, the driver generates arandom alpha character sequence. Other data types are not
supported.

Configuring the Driver 41

The syntax for Method 2 is: |ogical-database-classname(driver)

For example:

emp(driver)

view_emp(driver)

Method 3: Primary key values are obtained from a user-defined stored procedure or function.

The syntax for stored proceduresis: |ogical-database-classname(" stored-procedure-signature™),
where stored-procedure-signature = procedure-name(column-name, . . .).

For example:
emp("'sp_empno(empno, fname)')
view_emp(“'sp_empno(pk_empno, fname)')

The syntax for functionsis: logical-database-classname("'? = function-signature"), where
function-signature = function-name(column-name, . . .).

For example:
emp("'? = sp_empno(empno, fname)'™)
view_emp("'? = sp_empno(pk_empno, fname)'")

This notation maps a parent table or view to a user-defined stored procedure or function. The
column names are those of thelogical database classthat should be passed to the stored procedure
or function. Parameter order, number, and datatype must correspond to the order, number, and data
type of the parameters expected by the procedure or function. For stored procedures, primary key
columns must be passed as IN OUT parameters. Non-key columns must be passed as IN
parameters.

Some Additional Considerations Regarding Primary Key Generation

+ When using Method 1, GUID rather than CN should be schema-mapped to a primary key
column.

+ When using Method 3, primary key columns should not be schema-mapped or included in the
subscriber or publisher filters.

+ When synchronizing multiple classes, aprimary key generation method should be declared
for each logical database class. Multiple values can be space-delimited or comma-delimited.

Key Generation Timing

Key Generation Timing is a case-insensitive parameter that is required for most databases when
Primary Key Generation Methods 2 and 3 are used.

There aretwo lega values:
¢ before

+ after
The default valueis before.

Primary Key Generation Method 1: This parameter isignored.

Configuring the Driver 42

Primary Key Generation Method 2: When set to before, the subscriber executes a select
statement before arow isinserted into a parent table or aview. When set to after, the subscriber
executes a select statement after arow isinserted into a parent table or aview.

Primary Key Generation Method 3: When set to before, procedures or functions declared in
the Primary Key Generation parameter are called before arow isinserted into a parent table or a
view. When set to after, procedures or functions are called after arow isinserted into a parent
table or aview.

For al databases except Oracle, this parameter should be set to after. For Oracle, the default
value should be used or the parameter omitted.

Check Update Counts?

Check Update Countsis an optional, case-insensitive parameter. When set to ayes, which isthe
default, update counts are checked to ensure that when rows in atable or view are inserted,
updated, or deleted, it actually happened. If this parameter is set to yes and rows are not updated,
an error isissued. When set to no, update counts are not checked. This parameter should be set to
no when statements are redefined in before-trigger logic on atable or instead-of-trigger logic on
aview.

When synchronizing to Microsoft SQL Server, you should use the default value since errorsin
trigger logic (that might roll back atransaction) are not propagated back to the subscriber.

Publisher Settings

The following table lists the publisher settings with default and sample values for the
configuration:

Parameter Name Sample Default Value Required Tag
Configuration Value

Disable yes no no <disable>
Log Table Name eventlog yes <log-table>
Polling Interval (seconds) 1-604800 (1 week) 10 no <polling-interval>
Reconnect Interval (seconds) 1-3600 (1 hour) 30 no <reconnect-interval>
Optimize Updates yes no no <optimize-update>
Delete from Log yes yes no <delete-from-log>
Allow Loopback? yes no no <check-update-
count>
Disable

Disable is an optional, case-insensitive parameter that specifies whether the publisher channel
should open a connection to the database and poll the event log table for events. When set to yes,
the publisher does not establish a connection to the database nor does it poll the event log table.
When set to no, which isthe default, the publisher connectsto the database and pollsthe event log
table.

Configuring the Driver 43

Log Table Name

Log table nameis arequired parameter that might be case-sensitive. This parameter specifiesthe
name of the table where database events are stored for publication. This value must not be
delimited.

Polling Interval

Polling interval isan optional, case-insensitive parameter that specifies how often, in seconds, the
publisher should poll the event log table for events. The default value is ten seconds.

We recommend setting this value to no less than ten seconds.

Reconnect Interval

Reconnect interval isan optional, case-insensitive parameter that specifies how often, in seconds,
the publisher should attempt to reconnect to the target database. The default valueisthirty seconds.

We recommend setting this value to no less than ten seconds.

Optimize Updates

This optional, case-insensitive parameter specifies whether the publisher channel should ignore
type 2 eventsthat contain the same old and new values. Equality is determined in a case-sensitive
string comparison operation. NULL values are considered equal. This option is useful if
publication triggers are not optimized. When set to yes, type 2 events are optimized. When set to
no, which is the default, type 2 events are unoptimized.

Delete from Log

This optional, case-insensitive parameter specifies whether the publisher should delete processed
records from the event log table. When set to no, the publisher does not del ete processed rows
from thetable. Instead, the publisher setsthe status fieldto'S for success. Thissetting isuseful
for debugging purposes. When set to yes, which is the default value, processed rows are del eted.
Thisisthe proper setting for a production environment. Rows that are processed with errors
remain in the event log table independent of this value.

This parameter should be set to no only for debugging purposes. Publication performanceis
degraded when this parameter is set to yes. If an auditing mechanism is desired in a production
environment, rows inserted into the event log table for publication should also be written to a
mirror table.

Trace Levels

In order to see debugging output from the driver, you need to add a DirXML-DriverTracel evel
attribute value from 1 to 6 on the driver set containing the driver. This attribute is commonly
confused with the DirXML-XSL Tracel evel attribute. For more information on driver set trace
levels, refer to the Identity Manager Administration Guide (http://www.novell.com/
documentation).

The driver supports the following six trace levels:
1. Minima
2. Database properties
3. Connection status, SQL statements, event log records

Configuring the Driver 44

http://www.novell.com/documentation

4, Verbose

5. JDBC API (methods, arguments, returned values, etc.)

6. Third-party driver

Levels 5-6 are particularly useful for debugging third-party drivers.

Configuring Third-Party JDBC Drivers

The following guidelines will assist you in configuring third-party drivers. For specific
configuration instructions, refer to your third-party driver’s documentation.

+ Usethelatest version of the driver available.

+ When configuring an ODBC data source, be careful not to override any driver authentication
parameters (for example, username and password settings).

+ Third-party driver behavior might be configurable. In many cases, incompatibility issues can
be resolved by adjusting the driver’s configuration properties.

+ When dealing with international characters, it is often necessary to explicitly specify the

character encoding used by the database to third-party drivers by appending a property string
to the end of the driver's IDBC URL. Properties usually consist of a property keyword and

character encoding value (for example, jdbc:odbc: mssgl;charSet=Big5). The property

keyword might vary between third-party drivers.

The possible character encoding values are defined by Sun. Refer to Sun’s Supported

Encoding Web site (http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html)

for more information.

The following table lists the recommended settings for maximum driver compatibility. These

settings are useful when using an untested third-party driver.

Parameter Name Value
Synchronize Tables table-list
Reuse Statements? no

Use Manual Transactions? no

Use Single Connection yes

Default Transaction Isolation Level unsupported
Retrieve Minimal Metadata? yes

Handle Statement Results? single

Configuring the Driver

45

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html
http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

Configuring the Driver 46

Advanced Driver Configuration

After installing a sample preconfiguration and database script, you will need to customize the
driver for specialized use. This section contains important conceptual information, sample
configurations, and so forth to help you configure the driver.

+ “SchemaMapping” on page 47

+ “The Event Log Table” on page 57

+ “Event Mapping” on page 56

* “Using Structured Query Language in XML Events’ on page 64

Schema Mapping

Thefollowing table shows a high-level view of how the driver maps Novell® eDirectory™ objects

to database objects.
eDirectory Object Database Object
Tree Schema
Class Table/View
Attribute Column
Association Primary Key

Logical Database Classes

A logical database classisthe set of tables or views used to represent an eDirectory classin a
database. A logical database class can consist of asingle view or one parent table and zero or more
child tables. The name of alogical database class is the name of the parent table or view.

Indirect Synchronization

In an indirect synchronization model, the driver maps the following:

eDirectory Object Database Object
Classes Tables
Attributes Columns

Advanced Driver Configuration 47

eDirectory Object Database Object

1 Class 1 Parent table
and

0 or more child tables

Single-valued attribute Parent table column

Multi-valued attribute Parent table column
or

Child table column (preferred)

Mapping eDirectory Classes to Logical Database Classes

In the following example, the logical database class emp consists of one parent table emp and one
child table phone. Logical class emp is mapped to the eDirectory class User.

CREATE TABLE dirxml_emp

(
empno NUMERIC(8) NOT NULL,
fname VARCHAR(64),
Iname VARCHAR(64),
pwdminlen NUMERIC(4),
CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
):
CREATE TABLE dirxml._phone
(
empno NUMERIC(8) NOT NULL,
phone VARCHAR(64) NOT NULL,
CONSTRAINT fk_phone_empno FOREIGN KEY(empno) REFERENCES
emp(empno)
):

<rule name="MappingRule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>emp</app-name>
</class-name>
<attr-name class-name="User"'>
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>
</attr-name>
<attr-name class-name=""User">
<nds-name>Surname</nds-name>
<app-name>lname</app-name>
</attr-name>
<attr-name class-name="'User''>
<nds-name>Password Minimum Length</nds-name>
<app-name>pwdminlen</app-name>
</attr-name>
<attr-name class-name="User"'>
<nds-name>Telephone Number</nds-name>
<app-name>phone .phoneno</app-name>

48 DirXML Driver for JDBC Implementation Guide

Parent Tables

</attr-name>
</attr-name-map>
</rule>

Parent tables are tables with an explicit primary key constraint that contains one or more columns.
In a parent table, an explicit primary key constraint is required so that the driver knows which
fieldsto includein an association value.

CREATE TABLE dirxml_emp

(
empno NUMERIC(8) NOT NULL,

CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
);

The following table contains sample datafor di rxml . emp.

empno fname Iname

1 John Doe

The resulting association for this row would be:

empno=1,table=emp,schema=dirxml

NOTE: The case of database identifiers in association values is determined dynamically at runtime from
database metadata.

Parent Table Columns

Parent table columns can contain only onevalue. Assuch, they areideal for mapping single-valued
eDirectory attributes. For example, mapping the single-valued eDirectory attribute Password
Minimum Length to the single-valued parent table column pwdminlen.

Parent table columns are implicitly prefixed with the name of the parent table. 1t isnot necessary
to explicitly table-prefix parent table columns. For example, emp . fname isequivalent to fname
for schema mapping purposes.

<rule name="MappingRule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>emp</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>
</attr-name>
</attr-name-map>
</rule>

Large binary and string data types should be typically mapped to parent table columns. In order to
map to a child table column, a data type must be comparablein an SQL statements. Large data
types usually cannot be compared in SQL statements.

Advanced Driver Configuration 49

Child Tables

Large binary and string data types can be mapped to child table columnsif <remove-value>
events on these types are transformed in style sheets into a<remove-al 1-values> element
followed by a series of <add-value> elements, one for each value.

A child table isatable that has a foreign key constraint on its parent table's primary key, linking
the two tables together. The columns that comprise the child table’s foreign key must have the
same name as the columnsin the parent table’s primary key. This common column nameis used
by the publisher to identify al rowsin the event log table pertaining to asingle logical database
class.

The following example shows the rel ationship between parent table emp and child table phone.
Note the use of the same column name empno in each table.

CREATE TABLE dirxml.emp

(
empno NUMERIC(8) NOT NULL,
CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
)
CREATE TABLE dirxml.phone
(

empno NUMERIC(8) NOT NULL,
phoneno VARCHAR(64) NOT NULL,

CONSTRAINT fk_phone_empno FOREIGN KEY(empno) REFERENCES
emp(empno)

The constrained column in a child table identifies the parent table. In the above example, the
constrained column in child table phone isempno. The only purpose of this column isto relate
tables phone and emp. Because constrained columns do not contain any useful information, they
should be omitted from publication triggers and the schema mapping rule.

The unconstrained column isthe column of interest. 1t represents asingle, multi-valued attribute.
In the above example, the unconstrained column is phoneno. Because unconstrained columns
can hold multiple values, they areideal for mapping multi-valued eDirectory attributes. For

example, mapping the multi-val ued eDirectory attribute Telephone Number to phone . phoneno.

All columnsin achild table should be constrained NOT NULL.

NOTE: Each multi-valued, eDirectory attribute must be mapped to a different child table column.

The following table contains sample datafor dirxml .phone.

empno phoneno
1 111-1111
1 222-2222

When mapping amulti-valued eDirectory attribute to achild table column, the child column name
must be explicitly prefixed with the child table name (for example, phone . phoneno).
Otherwise, the driver will implicitly interpret phoneno as emp . phoneno, not

phone . phoneno.

50 DirXML Driver for JDBC Implementation Guide

<rule name="MappingRule">
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>emp</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>Tel ephone Number</nds-name>
<app-name>phone.phoneno</app-name>
</attr-name>
</attr-name-map>
</rule>

Referential Attributes

Referential containment can be represented in the database through the use of foreign key
constraints. Referential attributes are columns within alogical database class that refer to the
primary key columns of parent tables of other logical database classes.

Single-Valued Referential Attributes

Two parent tables can be related through a single parent table column. This column must have a
foreign key constraint pointing to the other parent table’s primary key. The following example
relates asingle parent table user toitself.

CREATE TABLE user

(
idu NUMBER(8) NOT NULL,
manager NUMBER(8),
CONSTRAINT pk_user_idu PRIMARY KEY(idu),
CONSTRAINT fk_user_idu FOREIGN KEY(manager)REFERENCES
user(idu)
)

<rule name="Mapping Rule'>
<attr-name-map>
<class-name>
<nds-name>User</nds-name>
<app-name>user</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>manager</nds-name>
<app-hame>manager</app-name>
</attr-name>
</attr-name-map>
</rule>

Single-valued, referential colums must be nullable.

Multi-valued Referential Attributes

Two parent tables can be related through a common child table. This child table must have a
foreign key constraint pointing to each parent table’'s primary key. The following examplerelates
two parent tables user and group through a common child table member.

CREATE TABLE user
(

Advanced Driver Configuration 51

52

idu NUMBER(8) NOT NULL,
Iname VARCHAR(64) NOT NULL,

CONSTRAINT pk_user_idu PRIMARY KEY(idu)

)
CREATE TABLE group
(
idg NUMBER(8) NOT NULL,
CONSTRAINT pk_group_idg PRIMARY KEY(idg)
):
CREATE TABLE member
(
idg NUMBER(8)NOT NULL,
idu NUMBER(8)NOT NULL,
CONSTRAINT fk_member_idg FOREIGN KEY(idg)
group(idg),
CONSTRAINT fk_member_idu FOREIGN KEY(idu)
user(idu)
)

<rule name="Mapping Rule">
<attr-name-map>

<class-name>
<nds-name>User</nds-name>
<app-name>user</app-name>

</class-name>

<attr-name class-name="User">
<nds-name>Surname</nds-name>
<app-name>lname</app-name>

</attr-name>

<class-name>
<nds-name>Group</nds-name>
<app-name>group</app-name>

</class-name>

<attr-name class-name="Group">
<nds-name>Member</nds-name>
<app-name>member . idu</app-name>

</attr-name>

</attr-name-map>
</rule>

The first constrained column in a child table determines ownership. In the above example,
member is considered to be part of classgroup. member issaid to be aproper child of group.
The second constrained column in a child table is the multi-valued referentia attribute. Both

columns must be constrained NOT NULL.

In the following example, the order of the constrained columns has been reversed so member is
part of classuser. To more accurately reflect the relationship, member has been renamed to

member_of.

CREATE TABLE user

(C

idu NUMBER(8) NOT NULL,

Iname VARCHAR(64) NOT NULL,

CONSTRAINT pk_user_idu PRIMARY KEY(idu)
);

DirXML Driver for JDBC Implementation Guide

REFERENCES

REFERENCES

CREATE TABLE group

(
idg NUMBER(8) NOT NULL,
CONSTRAINT pk_group_idg PRIMARY KEY(idg)
);
CREATE TABLE member_of
(
idu NUMBER(8)NOT NULL,
idg NUMBER(8)NOT NULL,
CONSTRAINT fk_member_idg FOREIGN KEY(idg) REFERENCES
group(idg),
CONSTRAINT fk_member_idu FOREIGN KEY(idu) REFERENCES
user(idu)
);

<rule name="Mapping Rule">
<attr-name-map>

<class-name>
<nds-name>User</nds-name>
<app-name>user</app-name>

</class-name>

<attr-name class-name="'User''>
<nds-name>Surname</nds-name>
<app-name>lname</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Group Membership</nds-name>
<app-name>member_of. idg</app-name>

</attr-name>

<class-name>
<nds-name>Group</nds-name>
<app-hame>group</app-name>

</class-name>

</attr-name-map>
</rule>

In databases where position is meaningless, order is determined by Iexographical comparison.

In generadl, it is only necessary to synchronize multi-valued, referentia attributes as part of one
class or the other, not both. If you wanted to synchronize referential attributes for both classes, it
would be necessary to construct two child tables, one for each class. For example, if you wanted
to synchronize Group Membership and Member, you would need two child tables: member_of
and member.

In practice, when synchronizing User and Group objects, we recommend that you synchronize the
Group Membership attribute of User instead of the Member attribute of Group. When
synchronizing Member, events are generated for unassociated Users added to associated Groups.
When synchronizing Group Membership, events are only generated for associated Users added to
associated Groups.

Direct Synchronization

In adirect synchronization model, the driver maps the following:

Advanced Driver Configuration 53

eDirectory Object Database Object

Classes Views
Attributes View Columns
1 Class View
Single-valued attribute View Column
Multi-valued attribute View Column

A view isalogical table. Unlike parent or child tables, they do not physically exist in the database.
As such, views cannot have primary key/foreign key constraints. In order to identify to the driver
which fields to use when constructing association values, one or more view columns must be
prefixed with pk_ (case-insensitive).

NOTE: Views must be constructed in such a way that the pk_ prefixed view columns uniquely identify a single
row.

The update capabilities of views vary widely between databases. Most databases allow views to
be updated under certain conditions. If views are strictly read-only, then they cannot be used for
subscription. Microsoft SQL Server 2000 and Oracle 8i and 9i allow update logic to be defined on
views in instead-of-triggers, which alows aview to join multiple tables and still be updateable.

CREATE TABLE dirxml.emp

(
empno NUMERIC(8) NOT NULL UNIQUE,
fname VARCHAR(64),
Iname VARCHAR(64),
pwdminlen NUMERIC(4),
phoneno VARCHAR(64)
):

CREATE VIEW dirxml_view_emp

(pk_empno, fname, Iname, pwdminlen, phoneno)

AS

SELECT empno, fname, Iname, pwdminlen, phoneno FROM dirxml._emp;

<rule name="MappingRule'>
<attr-name-map>
<class-name>

<nds-name>User</nds-name>
<app-name>view_emp</app-name>

</class-name>

<attr-name class-name="User">
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>

</attr-name>

<attr-name class-name="'User''>
<nds-name>Surname</nds-name>
<app-name>lname</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Password Minimum Length</nds-name>
<app-name>pwdminlen</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Telephone Number</nds-name>

54 DirXML Driver for JDBC Implementation Guide

<app-name>phoneno</app-name>
</attr-name>
</attr-name-map>
</rule>

Synchronizing Primary Key Columns

When the database is the authoritative source of primary key columns, they should generally be
omitted from the publisher and subscriber filters, the schema mapping rule, and publication
triggers.

When eDirectory is the authoritative source of primary key columns, they should beincluded in
the subscriber filter and schema mapping rule and omitted from the publisher filter and publication
triggers. Also, GUID rather than CN isrecommended for use asaprimary key. CN ismulti-valued
and can change. GUID is single-valued and static.

Synchronizing Multiple Classes

When synchronizing multiple eDirectory classes, it is hecessary to synchronize each classto a
different parent table or view. Each logical database class must have a unique primary key column
name. This common column name is used by the publisher to identify all rowsin the event log
table pertaining to asinglelogical database class. For example, logical database classesuser and
group each have aunique primary key column name.

CREATE TABLE user

(

idu NUMBER(8) NOT NULL,

Iname VARCHAR(64) NOT NULL,

CONSTRAINT pk_user_idu PRIMARY KEY(idu)
):
CREATE TABLE group
(

idg NUMBER(8) NOT NULL,

CONSTRAINT pk_group_idg PRIMARY KEY(idg)
):

Mapping Multi-Valued Attributes to Single-Valued Database Fields

By default, the driver assumes that all eDirectory attributes mapped to parent table columns or
view columns are single-valued. Because the driver isunaware of the eDirectory schema, it hasno
way of knowing whether an eDirectory attribute is single-valued or multi-valued. Accordingly,
multi-valued and single-valued attribute mappings are handled identically.

The driver implements the Most Recently Touched (MRT) algorithm with regard to single-valued
parent table or view columns. An MRT agorithm ensures that the most recently added attribute
value or most recently deleted attribute value will be stored in the database. The agorithm is
adequateif the attribute in question is single-valued, and has some undesirabl e consequencesif the
attribute is multi-val ued.

When avalueisdeleted from amulti-val ued attribute, the databasefield it is mapped to will be set
toNULL and will remain NULL until another valueis added. Several solutionsto thisundesirable
behavior are outlined below.

Advanced Driver Configuration 55

Event Mapping

Add Events

Modify Events

Delete Events

The preferred solution isto extend the eDirectory schemaso that only single-valued attributes
are mapping to parent table or view columns.

For indirect synchronization, map each multi-valued attribute to its own child table.

For both direct or indirect synchronization, use style sheetsto delimit multiple values before
inserting them into a parent table or view column.

Implement afirst or last value per replicapolicy in style sheets using methods provided in the
com.novell.nds.dirxml.driver.jdbc.util.MappingPolicy class. Under afirst-value-per-replica
(FPR) policy, thefirst attribute value on the Identity Manager replicais always synchronized.
Under alast-value-per-replica (LPR) policy, thelast attribute value on areplicais aways
synchronized. All of the preconfigured drivers demonstrate afirst-value-per-replica policy.
They map the multi-valued eDirectory attributes Given name, Surname, and Facsimile
Telephone Number to the single-valued columns fname, Iname, and faxno respectively.

The following table summarizes how the Subscriber maps XML events to SQL statements:

XML Event SQL Equivalent

<add> 1 or more insert statements; 0 or 1 select statements; O or 1

stored procedure or function calls

<modify> 0 or 1 update statements; 0 or more insert statements; O or

more delete statements

<delete> 1 or more delete statements; 0 or more update statements
<query> 1 or more select statements
<move> or <rename> 0 statements

Add events map to one insert statement for the parent table or view and zero or more insert
statements for each child table. For Primary Key Generation Method 2, one select statement is
executed. For Primary Key Generation Methods 3, one stored procedure or function call is
executed.

Modify events map to zero or one update statementsfor the parent table or view and zero or more
insert and del ete statements for each child table.

Delete events map to one delete statement for the parent table or view, and zero or one update
statement for each single-valued, referential, parent table column.

Delete events map zero or more delete statements for each multi-valued, referential, child table
column.

56 DirXML Driver for JDBC Implementation Guide

Query Events

Query events map to one select statement for the parent table or view and zero or one select
statement for each child table.

Move and Rename Events

Move and rename events are No Operations or NOOPs. They are always mapped to zero
statements.

The Event Log Table

The event log table iswhere publication events are stored. This section discusses the structure and
limitations of the event log table.

You can customize the name of the event log table and its columnsto avoid conflicts with reserved
database words. The order, number, and datatypes of its columns, however, must remain constant.
In databases where position is meaningless, order is determined by lexicographical comparison.

Event Log Columns
* record_id

Therecord_id columnisused to uniquely identify rowsin the event log table. Thiscolumn
must contain sequential, ascending, positive, unique integer values.

+ status
The status column indicates the state of a given row. The possible values are:

* 'N'=new

¢ 'U' = unknown

¢ 'S = success

+ 'W'=warning

+ 'F =fatal

+ 'E'=error

All rowsinserted into the event log table must have a status value of 'N' in order to be
processed. The remainder of the status characters are used solely by the publisher. All other
characters are reserved for future use.

NOTE: Status values are case-sensitive.
¢+ event_type

Values in this column must be between 1 and 8. Event types fall into two major categories:
per-field (1-3, 7-8) and per-row (4-6). Per-field events are more granular and than per-row
events, but they require more spaceinthe event log table. Per-row eventsare lessgranular and
require less space in the event log table. Per-field event types can be thought of as per-
attribute. Per-row event types can be thought of as per-object.

Event types can aso be grouped into two additional categories. query-back (5-8) and non-
query-back (1-4). Query-back events are useful when synchronizing large binary and string
data types.

Advanced Driver Configuration 57

58

In general, a combination of event types from each category yields the best time, space, and
complexity trade-offs.

The following values are used to classify event types. All other numbers are reserved for
future use.

¢ 1=insertfield

¢ 2=updatefield

¢ 3 =updatefield (remove-all-values)

¢ 4 =deleterow

+ 5=linsert row (query-back)

+ 6 = update row (query-back)

+ 7 =insert field (query-back)

+ 8= update field (query-back)
event_time
Reserved for future use. This value must not be NULL.
perpetrator

The user who instigated the event. A NULL valueisinterpreted asauser other than the driver
user. As such, records with perpetrator = NULL or !driver’s username are published.
Records with perpetrator = driver’s username are not published unless the publisher
parameter Allow Loopback is set to yes.

table_name
The name of the table or view where the event occurred.
table_key

Valuesfor this column must be formatted exactly the samein all triggers of alogical database
class. For example,

primary key column name = value + primary key column name = value. . .
+ For indirect preconfigured drivers, for example, the value for this column would be
empno=1.
+ For direct preconfigured drivers, for example, the value for this column would be
pk_empno=1.

NOTE: Primary key values placed in the table_key field should be delimited (that is, double-quoted) if
they contain the following characters:

JiiE=\"<>
Differences in padding or formatting might result in out-of-order event processing. For

performance reasons, you should remove any unnecessary white space from numeric values.
(For example, "empno=1" is preferred over "empno= 1"

column_name

The name of the column that was changed. The column is used only by per-field (1-3, 7-8)
event types. Even though this column is used only for per-field event types, it must aways be
present in the event log table. If it ismissing, the publisher will shut down the driver.

+ old_value

DirXML Driver for JDBC Implementation Guide

Event Types

Thefield’'s old value.The old value column nameis used only by per-field, non-query-back
event types (1-3). Even though this column is only used for these event types, it must aways
be present in the event log table. If it is missing, the publisher will cause the driver to shut
down.

new_value

Thefield's new value. The new value column nameisused only by per-field, non-query-back
event types (1-3). Even though this column is only used for these event types, it must aways
be present in the event log table. If it is missing, the publisher will cause the driver to shut
down.

This section describes in greater detail the different event types and how they are interpreted by
the publisher.

The table below shows the basic correlation between publication event types and the XML
generated by the publisher.

Event Type Resulting XML
insert <add>

update <modify>
delete <delete>

The example below illustrates the XML generated by the publisher for eventslogged on table emp
for each possible event type.

CREATE TABLE dirxml.emp

(

empno NUMERIC(8) NOT NULL,

fname VARCHAR2(64),

photo LONGRAW,

CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
):

The table below shows the initial contents of emp after a new row has been inserted:

empno fname Iname photo

1 Jack Frost OxAAAA

The table below shows the current contents of emp after the row has been updated:

empno fname Iname photo

1 John Doe 0xBBBB

1. Insert Field

Advanced Driver Configuration

59

Thetable below showsthe contents of the event | og table after anew row isinserted into table
emp. The value for column photo has been Base64-encoded. The Base64-encoded
equivaent of OXAAAA isqgo=.

event_type table table_key column_name old_value new_value
1 emp empno=1 fname NULL Jack
1 emp empno=1 Iname NULL Frost
1 emp empno=1 photo NULL qgo=

The XML generated by the Publisher would be:

<add class-name=""emp'">
<association>empno=1,table=emp,schema=dirxml
</association>
<add-attr attr-name="'fname'>
<value type="'string''>Jack</value>
</add-attr>
<add-attr attr-name="'lname''>
<value type="'string''>Frost</value>
</add-attr>
<add-attr attr-name="‘photo'>
<value type="octet''>qgqo=</value>
</add-attr>
</add>

2. Update Field

The table below shows the contents of the event log table after the row in table emp has been
updated. The values for column photo has been Base64-encoded. The Base64-encoded
equivalent of 0xBBBB isu7s=.

event_type table table_key column_name old_value new_value
2 emp empno=1 fname Jack John
2 emp empno=1 Iname Frost Doe
2 emp empno=1 photo gqo= u7s=

The XML generated by the Publisher would be:

<modify class-name="emp"''>
<association>empno=1,table=emp,schema=dirxml
</association>
<modify-attr attr-name="fname">
<remove-value>
<value type="'string''>Jack</value>
</remove-value>
<add-value>
<value type="string''>John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="Ilname">
<remove-value>
<value type="'string''>Frost</value>

60 DirXML Driver for JDBC Implementation Guide

</remove-value>
<add-value>
<value type="'string''>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-value>
<value type="octet'>qgo=</value>
</remove-value>
<add-value>
<value type="octet''>u7s=</value>
</add-value>
</modify-attr>
</modify>

3. Update Field (Remove-All-Vaues)

The table below shows the contents of the event log table after the row in table emp has been
updated. The value for column photo has been Base64-encoded.

event_type table table_key column_name old_value new_value
3 emp empno=1 fname Jack John
3 emp empno=1 Iname Frost Doe
3 emp empno=1 photo ggo= u7s=

The XML generated by the Publisher would be;

<modify class-name="emp">
<association>empno=1,table=emp,schema=dirxml
</association>
<modify-attr attr-name="fname"'>
<remove-all-values/>
<add-value>
<value type="string'>John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="Iname">
<remove-all-values/>
<add-value>
<value type="'string'>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo'>
<remove-all-values/>
<add-value>
<value type="octet'>u7s=</value>
</add-value>
</modify-attr>
</modify>

4, Delete Row

The table below shows the contents of the event log table after the row in table emp has been
deleted.

Advanced Driver Configuration 61

62

event_type table table_key column_name old_value new_value

4 emp empno=1 NULL NULL NULL

The XML generated by the Publisher would be;

<delete class-name="emp'>
<association>empno=1,table=emp,schema=dirxml
</association>

</delete>

. Insert Row (Query-Back)

Thetable below showsthe contents of the event |og table after anew row isinserted into table
emp.

event_type table table_key column_name old_value new_value

5 emp empno=1 NULL NULL NULL

The XML generated by the Publisher islisted below. Notethat the values reflect the current
contents of table emp, not the initial contents.

<add class-name="'emp"'">
<association>empno=1, table=emp,schema=dirxml
</association>
<add-attr attr-name=""fname'>
<value type="string'>John</value>
</add-attr>
<add-attr attr-name="Iname'>
<value type="'string''>Doe</value>
</add-attr>
<add-attr attr-name="photo'>
<value type="octet'>u7s=</value>
</add-attr>
</add>

. Update Row (Query-Back)

The table below shows the contents of the event log table after the row in table emp has been
updated.

event_type table table_key column_name old_value new_value

6 emp empno=1 NULL NULL NULL

The XML generated by the Publisher islisted below. Notethat the values reflect the current
contents of table emp, not the initial contents.

<modify class-name="emp'>
<association>empno=1,table=emp,schema=dirxml
</association>
<modify-attr attr-name="fname"'>
<remove-all-values/>
<add-value>
<value type="'string'>John</value>
</add-value>

DirXML Driver for JDBC Implementation Guide

</modify-attr>
<modify-attr attr-name="Iname">
<remove-all-values/>
<add-value>
<value type="'string''>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo'>
<remove-all-values/>
<add-value>
<value type="octet''>u7s=</value>
</add-value>
</modify-attr>

</modify>
7. Insert Field (Query-Back)

Thetable below showsthe contents of the event log table after anew row isinserted into table
emp. Old and new values are omitted because they are not used.

event_type table table_key column_name old_value new_value
7 emp empno=1 fname NULL NULL
7 emp empno=1 Iname NULL NULL
7 emp empno=1 photo NULL NULL

The XML generated by the Publisher islisted below. Note that the values reflect the current
contents of table emp, not the initial contents.

<add class-name="‘emp"'>

<association>empno=1,table=emp,schema=dirxml
</association>
<add-attr attr-name="fname'>

<value type="string''>John</value>
</add-attr>
<add-attr attr-name="'Iname'>

<value type="'string'>Doe</value>
</add-attr>
<add-attr attr-name='"photo'>

<value type="octet''>u7s=</value>
</add-attr>

</add>
8. Update Field (Query-Back)

The table below shows the contents of the event log table after the row in table emp has been
updated. Old and new values are omitted since they are not used.

event_type table table_key column_name old_value new_value
8 emp empno=1 fname NULL NULL
8 emp empno=1 Iname NULL NULL
8 emp empno=1 photo NULL NULL

Advanced Driver Configuration 63

The XML generated by the Publisher is listed below. Note that the values reflect the current
contents of table emp, not theinital contents.

<modify class-name="emp'>
<association>empno=1, table=emp,schema=dirxml
</association>
<modify-attr attr-name="fname">
<remove-all-values/>
<add-value>
<value type="'string''>John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="Iname">
<remove-all-values/>
<add-value>
<value type="string''>Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet''>u7s=</value>
</add-value>
</modify-attr>
</modify>

Using Structured Query Language in XML Events

Introduction

Thefollowing section includes information that will help you include Structured Query Language
(SQL) in XML events.

All examples reference table emp below. The primary key generation method used to obtain
primary key valuesisirrelevant for purposes of the examplesin this section.

CREATE TABLE emp

(

empno NUMERIC(8) NOT NULL,

fname VARCHAR2(64),

lanem VARCHAR2(64),

CONSTRAINT pk_emp_empno PRIMARY KEY(empno)
)

NOTE: The namespace prefix jdbc used throughout this section is implicitly bound to the namespace
urn:dirxml : jdbc when referenced outside of an XML document.

You can use embedded SQL in XML events. In the sameway that you can install databasetriggers
on atable and cause side effects in a database, embedded SQL in XML events acts as a virtual
trigger with similar capabilities.

SQL isembeddedin XML eventsthroughthe<jdbc:statement>and<jdbc:sql> elements.
The <jdbc:statement> element can contain one or more <jdbc:sql> elements.

The following XML example shows an embedded SQL statement.

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="'emp’">

64 DirXML Driver for JDBC Implementation Guide

<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sgl> UPDATE dirxml_emp SET fname = ”John~
</jdbc:sql>
</jdbc:statement>
</input>

Because the subscriber resolves <add> events to one or more insert statements, the above XML
would resolve to:

INSERT INTO dirxml_emp(Iname)VALUES(’Doe”);
UPDATE dirxml.emp SET fname = ”John~”;

IMPORTANT: You should use namespace-prefixed elements and attributes to embed SQL (otherwise, the
driver will not recognize them). In the above example, the namespace is urn:dirxml : jdbc. The prefix is the
identifier to the right of the xmIns identifier. In the above example, the prefix is jdbc. In practice, the prefix
can be whatever you want it to be as long as is is bound to the correct namespace.

Variable Substitution

Rather than require you to parse field values from an association, the subscriber supports variable
substitution in embedded SQL statements. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
<modify class-name="emp">
<association>empno=1,table=emp,schema=dirxml
</association>
<modify-attr name="Iname">
<add-value>
<value>DoeRaeMe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement>
<jdbc:sql>UPDATE dirml.emp SET fname = "John®" WHERE
empno = {$empno}</jdbc:sql>
</jdbc:statement>
</input>

Variable placeholders must adhere to the XSLT attribute value template syntax: {$field-name}
and the association element must precede the <jdbc: statement> element in the XML
document or must be present asachild of the<jdbc : statement> element. Thefield-namemust
refer to one of the naming RDN attribute names in the association value. In the above example,
thereis only one naming attribute, empno.

An <add> event isthe only event where an association element is not required to proceed
embedded SQL statements with variable substitution because the association has not been created
yet. Additionally, any embedded SQL statements using variable substitution must follow, not
proceed, the <add> event. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="emp"'">
<add-attr name="Iname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>

Advanced Driver Configuration 65

<jdbc:sql>UPDATE dirxml.emp SET fname = "John®" WHERE
empno = {$empno}</jdbc:sqgl>
</jdbc:statement>
</input>

In order prevent tracing of sensitive information, you can use {$$password} to refer to the
contents of a<password> element within the same document.

<input xmins;jdbc="urn:dirxml:jdbc">
<add class-name="emp">
<add-attr name="Iname">
<value>Doe</value>
</add-attr>
<password>Doe{ $empno} </password>
</add>
<jdbc:statement>
<jdbc:sql>CREATE USER Doe IDENTIFIED BY
{ $$password} </jdbc:sql>
</jdbc:statement>
<finput>

Statement Placement

In the same way that database triggers can fire before or after a triggering statement, embedded
SQL can be positioned before or after the triggering XML event. The following examples show
how you could embed SQL before or after an XML event.

Before Trigger

<input xmlns:jdbc"urn:dirxml:jdbc">
<jdbc:statement>
<association>empno=1,table=emp,schema=dirxml
</association>
<jdbc:sql>UPDATE dirxml.emp SET fname = ”John” WHERE
empno = ${empno}</JDBC:SQL>
</jdbc:statement>
<modify class-name="emp'>
<association>empno=1,table=emp,schema=dirxml
</association>
<modify-attr name=""Iname">
<remove-all-values/>
<add-value>
<value>Doe</value>
</add-value>
</modify-attr>
</modify>
</input>

The above XML resolvesto:

UPDATE dirxml.emp SET fname
UPDATE dirxml.emp SET Iname

>John” WHERE empno = 1;
Doe” WHERE empno = 1;

After Trigger

<input xmlns:jdbc"urn:dirxml:jdbc'">
<modify class-name="emp">
<association>empno=1,table=emp,schema=dirxml

66 DirXML Driver for JDBC Implementation Guide

</association>
<modify-attr name=""Iname">
<remove-all-values/>
<add-value>
<value>Doe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement>
<jdbc:sql>UPDATE dirxml.emp SET fname = ”John” WHERE
empno = {$empno}</jdbc:sql>
</jdbc:statement>
</input>

The above XML resolvesto:

UPDATE dirxml.emp SET Iname
UPDATE dirxml.emp SET fname

Doe” WHERE empno 1;
>John” WHERE empno = 1;

Manual vs. Automatic Transactions

You can manually group embedded SQL and XML events using these two custom attributes:
+ jdbc:transaction-type

¢ jdbc:transaction-id
jdbc:transaction-type

Thisattribute hastwo values: manual and auto. By default, most XML events of interest are set
to the manual transaction type. The manual setting enables XML events to resolve to more than
one SQL statement.

Embedded SQL events are set to auto transaction type by default because some SQL statements
cannot be included in a manual transaction

<input xmlns:jdbc="urn:dirxml:jdbc'">
<add class-name="emp" jdbc:transaction-type="auto'>
<add-attr name="Iname"'>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>UPDATE dirxml.emp SET fname = "John®" WHERE
empno = {$empno}</jdbc:sql>
</jdbc:statement>
</input>

The above XML resolvesto:

INSERT INTO dirxml.emp(Iname) VALUES("Doe");
/* COMMIT; iamplicit */

UPDATE dirxml_.emp SET fname = "John® WHERE empno = 1;
/* COMMIT; implicit */

Advanced Driver Configuration 67

jdbc:transaction-id

This attribute isignored by the subscriber unless the element's jdbc: transaction-type
attribute value defaults to or is explicitly set to manual. The following XML shows an example
of amanual transaction:

<input xmlIns:jdbc="urn:dirxml:jdbc">
<add class-name="emp" jdbc:transaction-id="0">
<add-attr name="Iname'>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement jdbc:transaction-type="manual"
jdbc:transaction-id="0">
<jdbc:sql>UPDATE dirxml.emp SET fname = “"John®" WHERE
empno = {$empno}</jdbc:sql>
</jdbc:statement>
</input>

The above XML code resolves to:

INSERT INTO dirxml.emp(lname) VALUES(’Doe");
UPDATE dirxml.emp SET fname = "John®" WHERE empno
COMMIT; /* explicit */

1
=

Transaction Isolation Level

68

In addition to grouping statements, transactions are used to preserve the integrity of datain a
database. Transactions can lock datain order to prevent concurrent access or modification. How
locksare set isdetermined by theisolation level of atransaction. Usually, thedefault isolation level
used by the driver is sufficient and should not be altered.

The custom attribute jdbc:isolation-level alowsyou to adjust the isolation transaction
level should the need ever arise. There are five possible values defined in the java.sgl.Connection
interface:

¢ none

¢ read uncommitted
¢ read committed

+ repeatable read

+* serializable

The driver's default transaction isolation level isread committed. In the case of amanual
transaction, the jdbc: isolation-level attribute should be placed on thefirst element in the
transaction. This attribute isignored on subsequent elements. For example:

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="emp" jdbc:transaction-id="0"
jdbc:isolation-level="serializable">
<add-attr name="'lname’>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement jdbc:transaction-type="manual"

<jdbc:sql>UPDATE dirxml.emp SET fname = “John~

DirXML Driver for JDBC Implementation Guide

Statement Type

WHERE empno = {$empno}</jdbc:sql>
</jdbc:statement>
</input>

The above XML resolvesto:

INSERT INTO dirxml._.emp(lname) VALUES("Doe");
UPDATE dirxml_.emp SET fname = "John® WHERE empno = 1;
COMMIT; /* explicit */

The driver executes embedded SQL statements, but it doesn’t understand them. The JDBC
interface defines several methods for executing different types of SQL statements. The following
table contains these methods:

Statement Type Method of Execution

SELECT Statement.executeQuery(String)
INSERT Statement.executeUpdate(String)
UPDATE Statement.executeUpdate(String)
DELETE Statement.executeUpdate(String)
CALL or EXECUTE Statement.execute(String)

Any of the above statements

The simplest solutionisto map all SQL statements to the execute() method. By default, thisisthe
method the driver uses. Some third-party drivers, particularly Oracle’s JIDBC driver, incorrectly
implement the methods used to determine the number of results generated by the execute()
method. Asaresult, the driver can get caught in an infinite loop leading to high CPU utilization.
To circumvent this problem, the jdbc : type attribute can be used on any <jdbc:statement>
element to map the SQL statements contained therein to the executeQuery() or executeUpdate()
methods instead of the default execute() method.

The jdbc: type attribute has two values. update and query. The value should be set to
update for insert, update, or delete statements and query for select statements. In the absence
of this attribute, the driver maps all SQL statements to the execute() method. If placed on any
element other than <jdbc:statement>, thisattribute is ignored.

We recommend that you placethe jdbc : type=""query"" atribute value on all select statements,
and the jdbc:type=""update" attribute value on al insert, update, and del ete statements.

The following XML shows an example of the jdbc: type attribute:

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="emp"">
<add-attr name="Iname’'>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement jdbc:type="update'>
<jdbc:sql>UPDATE dirxml.emp SET fname = "John*
WHERE empno = {$empno}</jdbc:sql>
</jdbc:statement>
</input>

Advanced Driver Configuration 69

SQL Queries

Data Definition

In order to fully support the query capabilities of adatabase and avoid the difficulty of trandating
native SQL queriesinto an XML format, thedriver supports native SQL query processing. Select
statements can be embedded in XML documents in exactly the same way as any other SQL
statement.

For example, if we assumed the contents of table emp were:

empno fname Iname

1 John Doe

The XML document below would result in an output document containing a single result set.

<input xmlns:jdbc="urn:dirxml:jdbc'">
<jdbc:statement jdbc:type="query">
<jdbc:sql>SELECT * FROM dirxml._emp</jdbc:sql>
</jdbc:statement>
</input>

<output xmIns:jdbc="urn:dirxml:jdbc">
<jdbc:result-set jdbc:number-of-rows="1">
<jdbc:row jdbc:number="1">
<jdbc:column jdbc:name="‘empno"
jdbc:position="1"
jdbc:type="java.sql.Types.DECIMAL
<jdbc:value>I</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name="fname"
jdbc:position="2"
Jdbc:type="java.sql .Types.VARCHAR>
<jdbc:value>John</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name=""lname"
jdbc:position="3"
Jjdbc:type="java.sql .Types.VARCHAR>
<jdbc:value>Doe</jdbc:value>
</jdbc:column>
</jdbc:row>
</jdbc:result-set>
<status level="success"/>
</output>

SQL queries always produce asingle <jdbc: result-set> element whether or not the result
set contains any rows. If theresult set isempty, the jdbc - number-of-rows attribute will be set
to zero.

More than one query can be embedded in a document. SQL queries do not require that the tables
being references are known to the driver; XML queries do.

Language (DDL) Statements

It is generaly not possible to run a Data Definition Language (DDL) statement in a database
trigger because most databases do not allow mixed DML and DDL transactions. While virtual
triggers do not overcome this transactional limitation, they do allow DDL statementsto be
executed as a side effect of an XML event. For example:

70 DirXML Driver for JDBC Implementation Guide

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="emp"">
<add-attr name="Iname'>
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CREATE USER dirxml IDENTIFIED BY novell
</jdbc:sql>
</jdbc:statement>
</input>

The above XML resolvesto:

INSERT INTO dirxml_emp(lname) VALUES("Doe");
/* COMMIT; implicit */

CREATE USER dirxml IDENTIFIED BY novell;
/* COMMIT; implicit */

Using the jdbc: transaction-id and jdbc: transaction-type attributesto group DML
and DDL statementsinto asingle transaction would result in the transaction being rolled back on
most databases. Because DDL statements are generally executed as separate transactions, it is
possiblethat theinsert statement in the example above might succeed and the create user statement
might roll back. It is not possible, however, that the insert statement fail and the create user
statement succeed. The driver stops executing chained transactions at the point where the first
transaction isrolled back.

Logical Operations

Best Practices

Because it is not generally possible to mix DML and DDL statements in a single transaction, a
single event can consist of one or moretransactions. The jdbc:op-id and jdbc:op-type can
be used to group multiple transactions together into asinglelogical operation. When so grouped,
all members of the operation are handled as a single unit with regard to status. |f one member
errors, all membersreturn the same statuslevel. Similarly, all members share the same statustype.

<input xmlns:jdbc="urn:dirxml:jdbc'">
<add class-name="emp" jdbc:op-id="0"
jdbc:op-type="password-set-operation'>
<add-attr name="Iname">
<value>Doe</value>
</add-attr>
<password>Doe{$empno}</password>
</add>
<jdbc:statement jdbc:op-id="0">
<jdbc:sgql>CREATE USER Doe IDENTIFIED BY {$$password}
</jdbc:sql>
</jdbc:statement>
</input>

The jdbc:op-type attributeisignored on all elements except the first element in the operation.

For performance reasons, it is better to call asingle stored procedure that contains multiple
statements than to embed multiple SQL statementsin an XML document. For example:

Advanced Driver Configuration 71

72

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="‘emp"'>
<add-attr name=""lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>

<jdbc:sql>CALL PROCEDURE set_fname(>John”,

Jimmy”)</jdbc:sql>
</jdbc:statement>
</input>

Is preferred to:

<input xmlIns:jdbc="urn:dirxml:jdbc'">
<add class-name="‘emp"'>
<add-attr name=""lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>

Joe”,

<jdbc:sql>UPDATE dirxml.emp SET fname = ”John~

WHERE empno = {$empno}</jdbc:sql>
</jdbc:statement>
<jdbc:statement>

<jdbc:sql>UPDATE dirxml.emp SET fname = >Joe”’

WHERE empno = {$empno}</jdbc:sql>
</jdbc:statement>
<jdbc:statement>

<jdbc:sql>UPDATE dirxml.emp SET fname = *Jimmy’

WHERE empno = {$empno}</jdbc:sql>
</jdbc:statement>
</input>

DirXML Driver for JDBC Implementation Guide

Using the JDBC Association Utility

This section contains information on using the JDBC association utility. The utility is designed to
normalize associations of objects associated under the 1.0 or later drivers. It also provides several
other features designed to simplify driver administration.

Thisversion of the utility is backwards compatible with all versions of the JDBC driver back to
version 1.0 and supersedes all previous versions of the utility.

Understanding the Utility

This utility supports seven independent operations:

1
2.
3.

List objects associated with adriver (default)
List objects with multiple associations to adriver
List objects with invalid associations to a driver
An association isinvalid if:

+ |tismaformed. (For example, the association is missing the schema RDN, missing the
table RDN, or the schema keyword is misspelled.)

+ |t contains database identifiers that do not map to identifiersin the target database. (For
example, an association includes a mapping to atable that does not exist.)

¢ |t mapsto no row or multiple rows. An association is broken if it doesn’t map to arow.
Also, associations aren’t unique if they map to more than one row.

List objects that need to be normalized

+ A normalized association isvalid, correctly ordered, and uses the correct case. Normal
case is uppercase for case-insensitive databases and mixed case for case-sensitive
databases.

Normalize object associations listed by the previous operation

6. List object associations to be modified

+ Allowsfor global replacement of schema, table, and column names based on search
criteria.

7. Modify object associations listed by the previous operation

The following table lists the operations and whether they are read-only or write.

Operation Read-Only vs. Write
1. List objects associated with a driver Read-only
2. List objects with multiple associations to a driver Read-only

Using the JDBC Association Utility 73

Operation Read-Only vs. Write

3. List objects with invalid associations to a driver Read-only
4. List objects that need to be normalized Read-only
5. Normalize object associations listed by the previous Write
operation

6. List object associations to be modified Read-only
7. Modify object associations listed by the previous Write
operation

Before You Begin

Modifying associations can potentially cause problems. If associations are corrupted, Identity
Manager ceases to function, so you should use write operations only when necessary. To avoid
unintentional association corruption, this utility creates an undo Idiff file for al write operations.

You should review the following cautions before using the utility:

+ This utility, like the driver, assumes database identifiers are undelimited (unquoted and
contain no specia characters).

+ |tisextremely important that all object associations related to a driver be updated together.

+ Inorder to see al of the objects associated with a particular driver, this utility should be
run onthe Novel® eDirectory™ server wherethedriver isrun or wherethedriver isbeing
remoted from.

+ All of the objects associated with a particular driver must be contained by the LDAP
search base.

NOTE: To ensure complete containment, we recommend that you use your tree's root container as
the search base.

+ Makesurethe JDBC URL of target database supplied to this utility isthe same asthe one used
by the driver. Pointing this utility at a case-insensitive database when the database is actually
case-sensitive might result in associations being normalized to the wrong case.

+ Because this utility isrun locally, it uses an unsecured connection, so the eDirectory LDAP
server must be temporarily configured to accept clear text passwords. Depending upon the
third-party JDBC driver you are using, the database connection established by this utility
might be insecure.

NOTE: We recommend changing the shim's authentication password on the database after running this
utility.

Using the Utility

This utility must be run once for each instance of the driver installed on the target server.

A propertiesfileis provided for each supported database and can be found in
tools\sgl\database\properties.txt file.

NOTE: For more information on how to run the utility from the command line, refer to run.bat in the tools\util
directory of the download image.

1 Stop thedriver.

74 DirXML Driver for JDBC Implementation Guide

2 Identify and remove extraneous associations (operations 2 and 3).

No object associated by the JIDBC driver should have multiple associations. Extraneous
associations must be removed manually on a per object basis. Operation 3 might help you
identify which of the multiple associations is actually valid. After thisis known, the
extraneous associations can probably be discarded.

3 Identify and fix invalid associations (operation 3 and possibly operations 6 and 7).

Asageneral rule of thumb, if the problem isisolated, edit each invalid association manually.
If the problem is repetitive and affects alarge number of associations, consider using
operations 6 and 7. This utility can replace bad identifiers on aglobal basis, but cannot insert
or remove them where they do not already exist.

4 Normalize associations (operations 4 and 5).

Editing Associations

This utility requires two parameters (oldRDN and newRDN) for operations 6 and 7. This section
explains how to use these parameters.

Thefirst value isthe search criterion, the second is the replacement value. The wildcard character
* can be used under certain scenarios to generalize the search criterion or replacement value.

Three types of search and replace operations are possible:
1. Schemaname replacement
Wildcards are supported on the right side only. For example,
* Replace schemaold with schemanew
oldRDN: schema=old
newRDN: schema=new
2. Table name replacement
Wildcards are not supported. For example,
+ Replacetable old with table new:
oldRDN: table=o0ld
newRDN: table=new
3. Column name replacement

Wildcards are required on the right side, but they aren’t supported on the |eft side. For
example,

+ Replace column old with column new:
oldRDN: old=*

newRDN: new=*

Using the JDBC Association Utility 75

76 DirXML Driver for JDBC Implementation Guide

Uninstalling

Uninstalling

Uninstalling the Driver and Database Objects

In this section, you will learn how to uninstall a driver and its corresponding database objects.

the Driver

This section provides information about uninstalling the driver.

When deleting NovelI® eDirectory™ objects, you must delete all child objects before you can
delete a parent object. For example, you must delete all rules and style sheets on the Publisher
channel before you can delete the Publisher object. Similarly, you must delete both the Publisher
and Subscriber objects before you can delete the Driver object.

To remove a driver object from eDirectory:
1 In Novell iManager, click DirK ML Management > Overview.
2 From Overview, locate the driver set where the driver exists, then click Delete Driver.

3 Click the Driver you want to delete, then click ok.

Database Objects

This section provides information and procedures about uninstalling the database objects.

This section contains information to help you:

*

“Uninstalling Oracle Objects’ on page 77

+ “Uninstalling Microsoft SQL Server Objects’ on page 78
+ “Uninstalling IBM DB2 UDB Objects’ on page 78

+ “Uninstalling Sybase Objects’ on page 78

¢ “Uninstalling MySQL Objects’ on page 78

¢ “Uninstall Informix Objects’ on page 78

IMPORTANT: We recommend installing and uninstalling preconfigured drivers and database scripts as a unit.
To prevent unintentional mismatching, database scripts and preconfigured drivers now contain headers with a
version number, the target database name, and the database version.

Uninstalling Oracle Objects

1 From an Oracleclient, such as SQL Plus, logininasuser SYSTEM. By default, the SYSTEM
user password is MANAGER.

2 Execute the uninstallation script for direct or indirect synchronization. For example:
SQL > @c:\tools\sgl\oracle\direct\UNINSTALL _DIRECT.sql

Uninstalling the Driver and Database Objects 77

SQL> @c:\tools\sgl\oracle\indirect\UNINSTALL _INDIRECT.sql

Uninstalling Microsoft SQL Server Objects
1 Start Query Analyzer.
2 Logonto your sever as user sa. By default, the sa user has no password.
3 Open and execute the uninstall ation script for direct or indirect synchronization. For example:
tools\sgl\mssgl\direct\UNINSTALL_DIRECT.sql
tools\sgl\mssgl\indirect\UNINSTALL _INDIRECT.sql

Uninstalling IBM DB2 UDB Objects

1 Start Command Center.

2 Click the Script tab > open the Script menu > import the uninstallation script for direct or
indirect synchronization. For example:

tools\sgl\db2\direct\UNINSTALL_DIRECT.sql
tools\sgl\db2\indirec\UNINSTALL _INDIRECT.sql

3 Change the name of the administrator account and password for your server before executing
the uninstallation script.

4 Execute the script.

NOTE: The uninstall script does not destroy the dirxml database or dirxml OS user account.

Uninstalling Sybase Objects

1 From a Sybase client, such asisqgl, log on as user sa and execute the uninstallation script for
direct or indirect synchronization. By default, the sa user has no password. For example:

isql -U sa -P -i
c:\tools\sql\sybase\direct\UNINSTALL DIRECT.sql

isgl -U sa -P -i
c:\tools\sqgl\sybase\indirect\UNINSTALL INDIRECT.sql

Uninstalling MySQL Objects

1 FromaMySQL client, such as mysgl, log on as user root and execute the uninstallation
script for indirect synchronization. By default, the root user has no password. For example:

mysqgl>\. c:\tools\sgl\oracle\indirect\UNINSTALL_INDIRECT.sql

Uninstall Informix Objects
1 Start SQL Editor.

2 Logon to your server asuser informix. By default, the informix user password is
informix.

3 Execute the uninstallation script for direct or indirect synchronization. For example:
tools\sgl\informix\direchUNINSTALL_DIRECT.sql

78 DirXML Driver for JDBC Implementation Guide

tools\sglinformix\indirechUNINSTALL INDIRECT.sql

NOTE: The uninstall script does not destroy the dirxml OS user account.

Uninstalling the Driver and Database Objects 79

80 DirXML Driver for JDBC Implementation Guide

Best Practices

The following section lists important best practices for using the driver. You can find additional
information in Chapter 4, “Configuring the Driver,” on page 35 and Chapter 5, “ Advanced Driver
Configuration,” on page 47.

*

For direct synchronization, you must prefix one or more view column names with pk_ (case-
insensitive).

For indirect synchronization, ensure that all tables comprising alogical database class have
the same primary and foreign key column names.

For both direct and indirect synchronization, ensure that you use different primary key and
foreign key column names between logical database classes.

Primary key values placed in the table_key field should be delimited (that is, double-
quoted) if they contain the following characters:

.1+=\||<>

Thisisusualy only an issueif the primary key column has a binary type. An exampleis
provided in the tool s\sgl\exampl €\pbx directory.

When eDirectory is the authoritative source of primary key values, GUID rather than CN is
recommended for use as a primary key. Unlike CN, GUID is single-valued and does not
change.

Foreign key columns should always be omitted from publication triggers.
DSTrace should not be used in a production environment.

Do not include primary key columnsin publication triggersif they are static (that is, they do
not change.)

We recommend that you place the jdbc: type=""query"" atribute value on al embedded
select statements, and the jdbc: type=""update"" attribute value on al embedded insert,
update, and delete statements.

For performance and security reasons, you should run the driver remotely whenever possible.

Best Practices 81

82 DirXML Driver for JDBC Implementation Guide

Common Questions

The following section contains answers to some common guestions you might encounter as you

install or configure the driver. These include:
+ “Why Can't the Driver See My Tables or Views?’ on page 83
+ “How Do | Synchronize Tables Located in Multiple Schemas?’ on page 83
+ “Why Isn’t the Driver Processing Records in the Event Log?’ on page 84
¢ “Can the Driver Manage Database User Accounts?’ on page 84
+ “Can the Driver Synchronize Large Binary and String Data Types?’ on page 84
+ “Why is Publication so Slow?’ on page 84
¢ “Can the Driver Synchronize Multiple Classes?’ on page 84

+ “Why Must Foreign Key Column and Primary Key Columns Have the Same Name?’ on
page 84

+ “Doesthe Driver Support SSL Encryption?’ on page 85
+ “How Do | Map Multi-Valued Attributes to Single-Valued Database Fields?’ on page 85
+ “Why isthe Driver Synchronizing Garbage Strings?’ on page 85

Why Can'’t the Driver See My Tables or Views?

Thedriver is capable only of synchronizing tables that have explicit primary key constraints.
Explicit constraints are used by the driver to determine which fields should be utilized when
constructing associations. As such, the driver ignores any unconstrained tables.

If you are trying to synchronize with tables that lack explicit constraints, you will need to either

add them or synchronize to intermediate tables with the required constraints. The latter isthe
preferred solution.

To be seen by the driver, aview must contain at least one column name prefixed with pk__ (case-

insensitive).

How Do | Synchronize Tables Located in Multiple Schemas?

You'll need to either dias the tablesinto this driver’s schema, synchronize to intermediate tables
inthedriver’'s schemaand move the data across schema boundaries, use aview, or create avirtual

schema viathe new Synchronize Tables driver parameter.

Common Questions

83

Why Isn’t the Driver Processing Records in the Event Log?

There are several explanations for this behavior. First, you should check the perpetrator field
of the rows in question and make sure the value is set to something other than the driver’s user
name. Thedriver only checksthe perpetrator fieldif the publisher Allow Loopback parameter
isset to no. Thedriver prevents event loopback by ignoring all recordswheretheperpetrator
field valueis equal to the driver’s username.

You should also ensure that the record's status field is set to 'N' (new). Records with status
fields set to something other than 'N' will not be processed. Also, make sure to explicitly commit
changes. Changes are only tentative until you commit them.

Can the Driver Manage Database User Accounts?

Yes, database accounts can be managed using embedded SQL. For more information, refer to
“Using Structured Query Language in XML Events’ on page 64.

Can the Driver Synchronize Large Binary and String Data Types?

Yes. Large binary and string data types can be subscribed and published. Large binary and string
data types can be published using query-back event types.

Why is Publication so Slow?

If the event log table contains alarge number of rows, it should be indexed. Example indexes are
provided in all databaseinstallation scripts. The statements used by the driver to maintain the event
log can be viewed using trace level 3. Examples are also provided in the

tools\sgl\exampl e STATEMENTS.sql file.

Indexes in the installation scripts can be further refined to enhance publication performance.
Placing indexes in a different tablespace or physical disk than the event log will also enhance
publication performance.

Also, the Delete From Log publication parameter should be set to no in aproduction environment.

Can the Driver Synchronize Multiple Classes?

Yes. However, primary key column names must be unique between logical database classes. For
example, if classl is mapped to tablel with primary key column name keyl and class2 is mapped
to table2 with primary key column name key2, then the name of keyl cannot equal key2. This
requirement can always be satisfied if intermediate tables or views are used.

Why Must Foreign Key Column and Primary Key Columns Have the
Same Name?
Within each logical database class, primary key and foreign key column names must match.
Between logical database classes, they must differ. This common nameis used by the publisher to

identify all recordsin the event log table pertaining to asingle, logical database object eveniif the
object spans multiple tables.

84 DirXML Driver for JDBC Implementation Guide

Does the Driver Support SSL Encryption?

No. How the driver communicates with a given database is dependent upon the third-party driver
being used. Some third-party drivers support SSL sockets while others do not. Even if SSL is
supported, there is no standardized way of enabling SLL encryption between third-party drivers.
The general solution for this problem isto remotely run the driver and your third-party driver
which alows the driver and your third-party driver to run locally on the database server. All data
traveling across the network between the engine and the driver will be SLL encrypted.

Another possibility isto use atype 3 or type 2 third-party JDBC driver. Database middleware and
client APIs usualy provide some sort of secure connectivity.

How Do | Map Multi-Valued Attributes to Single-Valued Database
Fields?

For detailed information on how to map multi-valued attributes to single-valued database fields,
refer to “Mapping Multi-Valued Attributes to Single-Valued Database Fields’ on page 55.

Why is the Driver Synchronizing Garbage Strings?

The database and the third-party driver are probably using incompatible character encoding. This
can be remedied by adjusting the character encoding used by your third-party driver.

For more information, refer to the Character Encoding Val ues (http://java.sun.com/products/jdk/
1.1/docs/guide/intl/encoding.doc.html) defined by Sun.

Common Questions 85

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

86 DirXML Driver for JDBC Implementation Guide

Supported Data Types

Thedriver iscapable of synchronizing JDBC 1.0 string, numeric, time, and binary datatypes. How
JDBC data types map to a database’s native data types is database-dependent. The following list
includes the supported java.sql types:

+ Numeric Types

*

*

*

*

*

java.sgl.Types.BIGINT
java.sgl.Types.BIT
java.sgl.Types.DECIMAL
java.sgl.Types.DOUBLE
java.sgl.TypesNUMERIC
java.sgl.Types.REAL
java.sgl. Types.FLOAT
java.sgl. Types.INTEGER
java.sgl. Types. SMALLINT
java.sgl. Types. TINYINT

¢ String Types

*

*

*

java.sgl.Types.CHAR
javasgl.Types.LONGCHAR
java.sgl. Types VARCHAR

+ Time Types

*

*

*

java.sgl.Types.DATE
java.sgl.Types. TIME
java.sgl.Types. TIMESTAMP

+ Binary Types

*

*

+ javasgl.Types.LONGVARBINARY

java.sgl. Types.BINARY
java.sgl. Types.VARBINARY

Supported Data Types

87

88 DirXML Driver for JDBC Implementation Guide

java.sgl.DatabaseMetaData Methods

This section lists the required and optional java.sgl.DatabaseM etaData methods currently used by
the driver. For more information on these methods, refer to Sun’s Web Site on I nterface M etaData
(http://java.sun.com/products/jdk/1.2/docs/api).

Required methods:

+ java.sgl.ResultSet getColumns(java.lang.String catal og, java.lang.String schemaPattern,
javalang.String tableNamePattern, java.lang.String columnNamePattern)

*

java.sgl.ResultSet getPrimaryK eys(javalang.String catalog, java.lang.String schema,
javalang.String table)

*

java.sgl.ResultSet getTables(java.lang. String catal og, java.lang.String schemaPattern,
javalang.String tableNamePattern, java.lang.String[] types)

+ boolean storesL owerCasel dentifiers()
+ boolean storesMixedCasel dentifiers()

+ boolean storesUpperCasel dentifiers()

Optional methods:
+ boolean dataDefinitionCausesTransactionCommit()
+ boolean dataDefinitionlgnoredl nTransactions()

+ java.sgl.ResultSet getExportedK eys(java.lang.String catalog, java.lang.String schema,
javalang.String table)

+ int getMaxConnections()

+ int getMaxColumnslnSelect()

+ int getMaxStatements()

+ int getMaxStatementL ength()

+ java.sgl.ResultSet getTableTypes()

+ javalang.String getUserName()

+ boolean supportsDataDefinitionAndDataM aniuplationTransactions()
+ boolean supportsDataM anipul ationTransactionsOnly()
+ boolean supportsSchemasl nDataM ani pul ation()

+ boolean supportsSchemasl nProcedureCalls()

+ boolean supportsTransactions()

+ boolean supportsMultipleTransactions()

+ boolean supportsTransactionlsolationLevel (int level)

java.sqgl.DatabaseMetaData Methods 89

http://java.sun.com/products/jdk/1.2/docs/api

90 DirXML Driver for JDBC Implementation Guide

JDBC 1.0 Methods

This section lists the JIDBC 1.0 methods (other than DatabaseM etaData methods) used by the
driver. Methods are organized by class. Often, third-party driver vendors list defects or known
issues by method. This section can be used in collaboration with third-party driver documentation
to troubleshoot or anticipate potential interoperability problems.

¢ java.sgl.DriverManager

java.sgl.Connection getConnection(java.lang.String url, java.lang.String user,
javalang.String password)

+ javasgl.PreparedStatement

void clearParameters()

void setNull(int parameterlndex, int sql Type)

void setString(int parameterindex, java.sgl.String x)

void setBoolean(int parameterIndex, boolean x)

void setBigDecimal (int parameterIndex, java.math.BigDecimal x)
void setLong(int parameterindex, long X)

void setDouble(int parameterlndex, double x)

void setInt(int parameterindex, int x)

void setFloat(int parameterindex, float x)

void setShort(int parameterlndex, short x)

void setByte(int parameterindex, byte X)

void setTimestamp(int parameterindex, java.sgl. Timestamp x)
void setTime(int parameterindex, java.sgl.Time x)

void setDate(int parameterindex, java.sgl.Date x)

void setBytes(int parameterindex, byteq[] x)

+ javasgl.Statement

void clearWarnings()

void close()

boolean execute(String sql)
java.sgl.ResultSet executeQuery(String sql)
int executeUpdate(String sql)

boolean getM oreResults()

int getUpdateCount()

java.sgl.ResultSet getResultSet()

+ java.sgl.CalableStatement
void registerOutParameter(int parameterindex, int sgl Type)

JDBC 1.0 Methods 91

92

+ java.sgl.Connection

void close()

void commit()

void rollback()

int getTransactionlsolation()

void setAutoCommit(bool ean autoCommit)
java.sgl.PreparedStatement prepareStatement(String sql)
java.sgl.CallableStatement prepareCall (String sql)
java.sgl.Statement createStatement()

java.sgl.ResultSet

void close()

boolean next()

javalang.String getString(int columnindex)
javalang.String getString(java.lang. String columnName)
java.math.BigDecimal getBigDecimal(int columnindex, int scale)
long getL ong(int columnindex)

double getDouble(int columnlndex)

int getInt(int columnlndex)

float getFloat(int columnlndex)

short getShort(int columnindex)

byte getByte(int columnindex)

boolean getBoolean(int columnindex)

byte[] getBytes(int columnlndex)

byte[] getBytes(java.lang.String columnName)

java.sgl. Timestamp getTimestamp(int columnlndex)
java.sgl.Time getTime(int columnindex)

java.sgl.Date getDate(int columnlndex)
javaio.lnputStream getBinary Stream(String columnName)

DirXML Driver for JDBC Implementation Guide

Documentation Updates

This section contains new or updated information on installing and managing the DirXML Driver
for JDBC.

This documentation is also provided on the Web in two formats: HTML and PDF. The HTML and
PDF documentation are both kept up-to-date with the documentation changeslisted in this section.

If you need to know whether a copy of the PDF documentation you are using is the most recent,
check the date that the PDF file was published. The dateisin the Lega Notices section, which
immediately follows thetitle page.

New or updated documentation was published on the following dates:
+ “January 13, 2006” on page 93

January 13, 2006

Location Change

“Configuring IBM DB2 Revised the steps.
Objects” on page 30

Documentation Updates 93

94 DirXML Driver for JDBC Implementation Guide

	About This Guide
	1 Understanding Driver Prerequisites
	Driver Prerequisites
	Supported Platforms
	Supported Databases
	Recommended Third-Party JDBC Drivers
	Using The Sun JDBC-ODBC Bridge Driver
	Security
	Known Issues
	Limitations

	2 Introducing the DirXML Driver for JDBC
	Overview
	New Features
	Driver Features
	Driver Bug Fixes
	Identity Manager New Features

	Driver Concepts
	DirXML Driver for JDBC
	Third-Party JDBC Driver
	JDBC Driver Type
	Directory Schema
	Application Schema
	Synchronization Schema
	Logical Database Class

	Database Concepts
	Database Schema
	Data Manipulation Language
	Data Definition Language
	Transactions
	Triggers
	Identity Columns/Sequences
	Stored Procedures/Functions

	Data Synchronization Models
	Direct Synchronization
	Indirect Synchronization

	3 Installing or Upgrading the Driver
	Installing the Driver
	Installing the Driver

	Installing Database Objects
	Configuring Oracle Objects
	Configuring Microsoft SQL Server Objects
	Configuring IBM DB2 Objects
	Configuring Sybase Objects
	Configuring MySQL Objects
	Configuring Informix Objects

	Upgrading the Driver
	Upgrade Requirements
	Upgrading from 1.5 to 1.6

	Activating the Driver

	4 Configuring the Driver
	Setting Driver Authentication Parameters
	Configuring Driver Authentication
	Authentication ID
	Authentication Context
	Application Password

	Driver Parameters
	Configuring Driver Settings
	Subscriber Settings
	Publisher Settings

	Trace Levels
	Configuring Third-Party JDBC Drivers

	5 Advanced Driver Configuration
	Schema Mapping
	Logical Database Classes
	Indirect Synchronization
	Direct Synchronization
	Synchronizing Primary Key Columns
	Synchronizing Multiple Classes
	Mapping Multi-Valued Attributes to Single-Valued Database Fields

	Event Mapping
	Add Events
	Modify Events
	Delete Events
	Query Events
	Move and Rename Events

	The Event Log Table
	Event Log Columns
	Event Types

	Using Structured Query Language in XML Events
	Introduction
	Variable Substitution
	Statement Placement
	Manual vs. Automatic Transactions
	Transaction Isolation Level
	Statement Type
	SQL Queries
	Data Definition Language (DDL) Statements
	Logical Operations
	Best Practices

	6 Using the JDBC Association Utility
	Understanding the Utility
	Before You Begin
	Using the Utility
	Editing Associations

	7 Uninstalling the Driver and Database Objects
	Uninstalling the Driver
	Uninstalling Database Objects
	Uninstalling Oracle Objects
	Uninstalling Microsoft SQL Server Objects
	Uninstalling IBM DB2 UDB Objects
	Uninstalling Sybase Objects
	Uninstalling MySQL Objects
	Uninstall Informix Objects

	A Best Practices
	B Common Questions
	Why Can’t the Driver See My Tables or Views?
	How Do I Synchronize Tables Located in Multiple Schemas?
	Why Isn’t the Driver Processing Records in the Event Log?
	Can the Driver Manage Database User Accounts?
	Can the Driver Synchronize Large Binary and String Data Types?
	Why is Publication so Slow?
	Can the Driver Synchronize Multiple Classes?
	Why Must Foreign Key Column and Primary Key Columns Have the Same Name?
	Does the Driver Support SSL Encryption?
	How Do I Map Multi-Valued Attributes to Single-Valued Database Fields?
	Why is the Driver Synchronizing Garbage Strings?

	C Supported Data Types
	D java.sql.DatabaseMetaData Methods
	E JDBC 1.0 Methods
	F Documentation Updates
	January 13, 2006

