
Novell®

novdocx (en) 11 July 2008

AUTHORIZED DOCUMENTATION
Novell ZENworks Orchestrator 1.3 Developer Guide and Reference
www.novell.com

ZENworks® Orchestrator

 1.3
August 3, 2008
Developer Guide and Reference

novdocx (en) 11 July 2008
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

novdocx (en) 11 July 2008
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (en) 11 July 2008

Contents

novdocx (en) 11 July 2008
About This Guide 11

1 Getting Started 15
1.1 What You Should Know . 15

1.1.1 Prerequisite Knowledge. 15
1.1.2 Setting Up Your Development Environment . 16

1.2 Orchestrator Documentation Set . 16
1.2.1 Novell ZENworks Orchestrator Getting Started Guide . 17
1.2.2 Novell ZENworks Orchestrator Administration Guide . 17
1.2.3 Novell ZENworks Orchestrator Virtual Machine Management Guide 17
1.2.4 Novell ZENworks Orchestrator Job Management Guide. 17

1.3 Prerequisites for the Development Environment . 17

2 Job Development Concepts 19
2.1 Orchestrator Development Architecture. 19

2.1.1 Orchestrator Agents. 20
2.1.2 Orchestrator Resource Monitor . 21
2.1.3 Orchestrator Entity Types and Managers . 21
2.1.4 Jobs . 24
2.1.5 Constraint-Based Job Scheduling . 27
2.1.6 Understanding Orchestrator API Interfaces. 28

2.2 Understanding ZENworks Orchestrator Functionality . 30
2.2.1 Resource Virtualization . 30
2.2.2 Policy-Based Management . 31
2.2.3 Global Resource Visualization. 32
2.2.4 Understanding Job Semantics. 34
2.2.5 Distributed Messaging and Failover . 35
2.2.6 Web-Based User Interaction . 36

2.3 JDL Job Scripts . 37
2.3.1 Principles of Job Operation . 38

2.4 Understanding TLS Encryption . 39
2.5 Understanding Job Examples . 40

2.5.1 provisionBuildTestResource.job . 40
2.5.2 Workflow Job Example . 42

3 The ZENworks Orchestrator Datagrid 43
3.1 Defining the Datagrid . 43

3.1.1 Naming Orchestrator Job Files . 43
3.1.2 Distributing Files . 44
3.1.3 Simultaneous Multicasting to Multiple Receivers. 45
3.1.4 Orchestrator Datagrid Commands. 45

3.2 Datagrid Communications . 45
3.2.1 Multicast Example . 46
3.2.2 Grid Performance Factors . 46
3.2.3 Plan for Datagrid Expansion . 47

3.3 datagrid.copy Example. 47
Contents 5

6 Novell

novdocx (en) 11 July 2008
4 Orchestrator Job Classifications 49
4.1 Resource Discovery . 49

4.1.1 Provisioning Jobs. 50
4.1.2 Resource Targeting . 50
4.1.3 Resource Discovery Jobs . 50

4.2 Dynamic Scheduling . 51
4.3 Workload Management . 52
4.4 Policy Management . 53
4.5 Auditing and Accounting Jobs . 55

5 Developing Policies 57
5.1 Policy Elements . 57

5.1.1 Constraints. 57
5.1.2 Facts . 57
5.1.3 Computed Facts . 58

5.2 BuildTest Job Examples. 59
5.2.1 buildTest.policy Example . 60
5.2.2 buildTest.jdl Example. 61
5.2.3 Packaging Job Files. 64
5.2.4 Deploying Packaged Job Files . 64
5.2.5 Running Your Jobs . 64
5.2.6 Monitoring Job Results . 65
5.2.7 Debugging Jobs. 66

6 Using the Orchestrator Client SDK 69
6.1 SDK Requirements . 69
6.2 Creating an SDK Client . 69

7 Job Architecture 71
7.1 Understanding JDL . 71
7.2 JDL Package . 72

7.2.1 .sched Files . 72
7.3 Job Class . 73

7.3.1 Job State Transition Events. 73
7.3.2 Handling Custom Events . 74

7.4 Job Invocation . 75
7.5 Deploying Jobs. 75

7.5.1 Using the Orchestrator Console . 75
7.5.2 Using the ZOSADMIN Command Line Tool . 75

7.6 Starting Orchestrator Jobs . 76
7.7 Working with Facts and Constraints. 77

7.7.1 Grid Objects and Facts . 77
7.7.2 Defining Job Elements. 77
7.7.3 Job Arguments and Parameter Lists . 78

7.8 Using Facts in Job Scripts . 79
7.9 Using Other Grid Objects . 80
7.10 Communicating Through Job Events . 80

7.10.1 Sending and Receiving Events . 81
7.10.2 Synchronization . 81

7.11 Executing Local Programs . 81
7.11.1 Output Handling. 82
7.11.2 Local Users . 82
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
7.11.3 Safety and Failure Handling . 83
7.12 Logging and Debugging . 84

7.12.1 Creating a Job Memo . 84
7.12.2 Tracing. 85

7.13 Improving Job and Joblet Robustness . 85

8 Job Scheduling 87
8.1 Job Scheduler GUI. 87
8.2 Schedule Files . 88

8.2.1 osInfo.sched Example . 88
8.2.2 Cron Trigger Example . 89

8.3 Scheduling with Constraints . 89

9 Virtual Machine Job Development 91
9.1 VM Job Best Practices . 91

9.1.1 Plan Robust Application Starts and Stops . 91
9.1.2 Managing VM Systems . 92
9.1.3 Managing VM Images . 92
9.1.4 Managing VM Hypervisors. 92
9.1.5 VM Job Considerations . 92

9.2 Virtual Machine Management . 92
9.3 VM Life Cycle Management . 93
9.4 Manual Management of a VM Server’s Lifecycle . 94

9.4.1 Manually Using the ZOS Command Line . 95
9.4.2 Automatically Using the Orchestrator Console Job Scheduler 95
9.4.3 Provision Job JDL . 95

9.5 Provisioning Virtual Machines . 96
9.5.1 Provisioning VMs Using Jobs . 98
9.5.2 VM Placement Policy. 99
9.5.3 Provisioning Example . 100

9.6 Automatically Provisioning a VM Server . 100
9.7 Defining Values for Grid Objects . 101

9.7.1 Orchestrator Grid Objects . 102
9.7.2 Repository Objects and Facts . 102
9.7.3 VmHost Objects and Facts . 109
9.7.4 VM Resource Objects and Other Base Resource Facts . 113
9.7.5 Physical Resource Objects and Additional Facts . 120

10 Complete Job Examples 123
10.1 Accessing Job Examples . 123
10.2 Installation and Getting Started . 123
10.3 Orchestrator Sample Job Summary. 124
10.4 Parallel Computing Examples . 125

demoIterator.job . 126
quickie.job . 133

10.5 General Purpose Jobs . 137
dgtest.job . 138
failover.job . 148
instclients.job . 154
notepad.job . 161
sweeper.job . 166
whoami.job . 173

10.6 Miscellaneous Code-Only Jobs . 178
Contents 7

8 Novell

novdocx (en) 11 July 2008
factJunction.job . 179
jobargs.job . 188

A Orchestrator Job Classes and JDL Syntax 197
A.1 Job Class . 197
A.2 Joblet Class. 197
A.3 Utility Classes . 197
A.4 Built-in JDL Functions and Variables . 197

A.4.1 getMatrix() . 198
A.4.2 system(cmd) . 198
A.4.3 Grid Object TYPE_* Variables. 198
A.4.4 The __agent__ Variable . 198
A.4.5 The __jobname__ Variable . 198
A.4.6 The __mode__ Variable . 199

A.5 Job State Field Values . 199
A.6 Repository Information String Values. 200
A.7 Joblet State Values . 200
A.8 Resource Information Values. 201
A.9 JDL Class Definitions . 201

AndConstraint() . 203
BinaryConstraint. 204
BuildSpec . 205
CharRange. 206
ComputedFact . 207
ComputedFactContext . 208
Constraint . 209
ContainerConstraint . 210
ContainsConstraint. 211
DataGrid. 212
DefinedConstraint . 213
EqConstraint . 214
Exec . 215
ExecError . 216
FileRange. 217
GeConstraint . 218
GridObjectInfo . 219
GroupInfo . 220
GtConstraint . 221
Job . 222
JobInfo . 223
Joblet . 224
JobletInfo . 225
JobletParameterSpace. 226
LeConstraint . 227
LtConstraint . 228
MatrixInfo . 229
NeConstraint . 230
NotConstraint . 231
OrConstraint . 232
ParameterSpace . 233
PolicyInfo . 234
ProvisionSpec . 235
RepositoryInfo . 236
ResourceInfo . 237
RunJobSpec. 238
ScheduleSpec . 239
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Timer . 240
UndefinedConstraint . 241
UserInfo . 242
VMHostInfo . 243
VmSpec . 244

B Orchestrator Client SDK 245
B.1 Constraint Package . 245

B.1.1 AndConstraint . 245
B.1.2 BetweenConstraint . 246
B.1.3 BinaryConstraint . 246
B.1.4 Constraint . 246
B.1.5 ContainerConstraint . 246
B.1.6 ContainsConstraint . 246
B.1.7 ConstraintException. 246
B.1.8 DefinedConstraint . 247
B.1.9 EqConstraint . 247
B.1.10 GeConstraint . 247
B.1.11 GtConstraint. 247
B.1.12 IfConstraint . 247
B.1.13 LeConstraint . 247
B.1.14 LtConstraint . 247
B.1.15 NeConstraint . 248
B.1.16 NotConstraint . 248
B.1.17 OperatorConstraint . 248
B.1.18 OrConstraint . 248
B.1.19 TypedConstraint . 248
B.1.20 UndefinedConstraint . 248

B.2 Datagrid Package. 249
B.2.1 DGLogger . 249
B.2.2 GridFile . 249
B.2.3 GridFileFilter . 249
B.2.4 GridFileNameFilter. 249
B.2.5 DataGridException. 249
B.2.6 DataGridNotAvailableException . 250
B.2.7 GridFile.CancelException . 250

B.3 Grid Package . 250
B.3.1 AgentListener. 251
B.3.2 ClientAgent . 251
B.3.3 Credential . 251
B.3.4 Fact . 252
B.3.5 FactSet . 252
B.3.6 GridObjectInfo . 252
B.3.7 ID . 252
B.3.8 JobInfo . 252
B.3.9 Message . 252
B.3.10 Message.Ack . 252
B.3.11 Message.AuthFailure. 253
B.3.12 Message.ClientResponse . 253
B.3.13 Message.Event . 253
B.3.14 Message.GetGridObjects . 253
B.3.15 Message.GridObjects . 253
B.3.16 Message.JobAccepted . 253
B.3.17 Message.JobError . 253
B.3.18 Message.JobFinished . 254
B.3.19 Message.JobIdEvent . 254
B.3.20 Message.JobInfo . 254
Contents 9

10 Novell

novdocx (en) 11 July 2008
B.3.21 Message.Jobs . 254
B.3.22 Message.JobStarted . 254
B.3.23 Message.JobStatus . 254
B.3.24 Message.LoginFailed. 254
B.3.25 Message.LoginSuccess. 255
B.3.26 Message.LogoutAck . 255
B.3.27 Message.NeedUpgrade. 255
B.3.28 Message.RunningJobs . 255
B.3.29 Message.ServerStatus . 255
B.3.30 Message.SessionAck . 255
B.3.31 Message.SessionChallenge . 255
B.3.32 Message.SessionResponse . 256
B.3.33 Message.SessionStatus . 256
B.3.34 Node . 256
B.3.35 Priority . 256
B.3.36 WorkflowInfo . 256
B.3.37 ClientOutOfDateException. 256
B.3.38 FactException . 256
B.3.39 GridAuthenticationException . 257
B.3.40 GridAuthorizationException . 257
B.3.41 GridConfigurationException. 257
B.3.42 GridDeploymentException . 257
B.3.43 GridException . 257
B.3.44 GridObjectNotFoundException . 257

B.4 Toolkit Package . 258
B.4.1 ClientAgentFactory . 258
B.4.2 ConstraintFactory . 258
B.4.3 CredentialFactory . 258

C Documentation Updates 259
C.1 Aug 3, 2008 . 259

C.1.1 Documentation Updates . 259
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
About This Guide

The Novell® ZENworks Orchestrator Job Development Guide is a component of the Novell
ZENworks Orchestrator documentation library. While Orchestrator provides the broad framework
and networking tools to manage complex virtual machines and high performance computing
resources in a datacenter, this guide explains how to develop grid application jobs and polices that
form the basis of Orchestrator functionality. This guide provides developer information to create and
run custom Orchestrator jobs. It also helps provides the basis to build, debug, and maintain policies
using Orchestrator.

This guide contains the following sections:

Chapter 1, “Getting Started,” on page 15
Chapter 2, “Job Development Concepts,” on page 19
Chapter 3, “The ZENworks Orchestrator Datagrid,” on page 43
Chapter 4, “Orchestrator Job Classifications,” on page 49
Chapter 5, “Developing Policies,” on page 57
Chapter 6, “Using the Orchestrator Client SDK,” on page 69
Chapter 7, “Job Architecture,” on page 71
Chapter 8, “Job Scheduling,” on page 87
Chapter 9, “Virtual Machine Job Development,” on page 91
Chapter 10, “Complete Job Examples,” on page 123
Appendix A, “Orchestrator Job Classes and JDL Syntax,” on page 197
Appendix B, “Orchestrator Client SDK,” on page 245

Audience

This guide is intended for use by application developers and technically advanced datacenter
technicians assigned to write Job Description Language (JDL) jobs to manage all resources in a
Orchestrator-enabled environment. It assumes that users have the following background:

Thorough understanding of concepts related to Novell ZENworks Orchestrator.
Experience with the Python programming language.
General understanding of network, operating environments, and systems architecture.
Knowledge of basic UNIX* shell commands, Windows* command line tools, and text editors.
An understanding of parallel computing and applications running on grid network
infrastructures.

Documentation Updates

For the most recent version of this Installation and Getting Started Guide, visit the ZENworks
Orchestrator 1.3 Web site (http://www.novell.com/documentation/zen_orchestrator13/).
About This Guide 11

http://www.novell.com/documentation/zen_orchestrator13/
http://www.novell.com/documentation/zen_orchestrator13/

12 Novell

novdocx (en) 11 July 2008
Additional Documentation

For additional documentation that might assist you in developing Orchestrator jobs, see the
following guides:

Novell ZENworks Orchestrator 1.3 Installation and Getting Started Guide
Novell ZENworks Orchestrator 1.3 Job Management Guide
Novell ZENworks Orchestrator 1.3 Virtual Machine Management Guide

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.

Other typographical conventions used in this guide include the following:

Convention Description

Italics Indicates variables, new terms and concepts, and book titles. For example, a job is
a piece of work that describes how an application can be run in Grid Management
on multiple computers.

Boldface Used for advisory terms such as Note, Tip, Important, Caution, and Warning.

Keycaps Used to indicate keys on the keyboard that you press to implement an action. If
you must press two or more keys simultaneously, keycaps are joined with a
hyphen. For example,

Ctrl-C. Indicates that you must press two or more keys to implement an action.

Simultaneous keystrokes (in which you press down the first key while you type the
second character) are joined with a hyphen; for example, press Stop-a.

Consecutive keystrokes (in which you press down the first key, then type the
second character) are joined with a plus sign; for example, press F4+q.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Fixed-width Used to indicate various types of items. These include:

Commands that you enter directly, code examples, user type-ins in body text, and
options. For example,

cd mydir

System.out.println("Hello World");

Enter abc123 in the Password box, then click Next.

-keep option

Jobs and policy keywords and identifiers. For example,

<run>

</run>

File and directory names. For example,

/usr/local/bin

Note: UNIX path names are used throughout and are indicated with a forward
slash (/). If you are using the Windows platform, substitute backslashes (\) for the
forward slashes (/).

Fixed-width italic

and

<Fixed-width italic>

Indicates variables in commands and code. For example,

zos login <servername> [--user=] [--passwd=] [--port=]

Note: Angle brackets (< >) are used to indicate variables in directory paths and
command options.

| (pipe) Used as a separator in menu commands that you select in a graphical user
interface (GUI), and to separate choices in a syntax line. For example,

File|New

{a|b|c}

[a|b|c]

{ } (braces) Indicates a set of required choices in a syntax line. For example,

{a|b|c}

means you must choose a, b, or c.

[] (brackets) Indicates optional items in a syntax line. For example,

[a|b|c]

means you can choose a, b, c, or nothing.

< > (angle brackets) Used for XML content elements and tags, and to indicate variables in directory
paths and command options. For example,

<template>

<DIR>

-class <class>

Convention Description
About This Guide 13

14 Novell

novdocx (en) 11 July 2008
Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html (http://
www.novell.com/documentation/feedback.html) and enter your comments there.

Novell Support

Novell offers a support program designed to assist with technical support and consulting needs. The
Novell support team can help with installing and using the Novell product, developing and
debugging code, maintaining the deployed applications, providing onsite consulting services, and
delivering enterprise-level support.

. . . (horizontal
ellipses)

Used to indicate that portions of a code example have been omitted to simplify the
discussion, and to indicate that an argument can be repeated several times in a
command line. For example,

zosadmin [options|optfile.xmlc ...] docfile

plain text Used for URLs, generic references to objects, and all items that do not require
special typography. For example,

http://www.novell.com/documentation/index.html

The presentation object is in the presentation layer.

ALL CAPS Used for SQL statements and HTML elements. For example,

CREATE statement

<INPUT>

lowercase Used for XML elements. For example,

<onevent>

Note: XML is case-sensitive. If an existing XML element uses mixed-case or
uppercase, it is shown in that case. Otherwise, XML elements are in lowercase.

ZENworks
Orchestrator Server
root directory

Where the ZENworks Orchestrator Server is installed. The Orchestrator
executables and libraries are in a directory. This directory is referred to as the
ZENworks Orchestrator Server root directory or <ZENworks Orchestrator
Server_root>.

Paths UNIX path names are used throughout and are indicated with a forward slash (/). If
you are using the Windows platform, substitute backslashes (\) for the forward
slashes (/). For example,

UNIX: /usr/local/bin

Windows: \usr\local\bin

URLs URLs are indicated in plain text and are generally fully qualified. For example,

http://www.novell.com/documentation/index.html

Screen shots Most screen shots reflect the Microsoft Windows look and feel.

Convention Description
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/feedback.html

1
novdocx (en) 11 July 2008
1Getting Started

This Developer Guide for NovellTM ZENworksTM Orchestrator 1.3 provides information on how to
assemble, deploy, and manage grid applications—called “jobs”—on the ZENworks Orchestrator
Server. This guide also explains how to build, debug, and maintain policies that manage jobs
running on the Orchestrator Server.

This section includes the following information:

Section 1.1, “What You Should Know,” on page 15
Section 1.2, “Orchestrator Documentation Set,” on page 16
Section 1.3, “Prerequisites for the Development Environment,” on page 17

1.1 What You Should Know
This section includes the following information:

Section 1.1.1, “Prerequisite Knowledge,” on page 15
Section 1.1.2, “Setting Up Your Development Environment,” on page 16

1.1.1 Prerequisite Knowledge
This guide assumes you have the following background:

Sound understanding of networks, operating environments, and system architectures.
Familiarity with the Python development language. For more information, see the following
online references:

Python Development Environment (PyDEV): The PyDEV plug-in (http://
pydev.sourceforge.net/) enables developers to use Eclipse* for Python and Jython
development. The plug-in makes Eclipse a more robust Python IDE and comes with tools
such as code completion, syntax highlighting, syntax analysis, refactor, debug and many
others.
Python Reference Manual: This reference (http://python.org/doc/2.1/ref/ref.html)
describes the exact syntax and semantics but does not describe the Python Library
Reference, (http://python.org/doc/2.1/lib/lib.html) which is distributed with the language
and assists in development.
Python Tutorial: This online tutorial (http://python.org/doc/2.1/ref/ref.html)helps
developers get started with Python.
Extending and Embedding the Python Interpreter: This resource (http://python.org/
doc/2.1/ext/ext.html) describes how to add new extensions to Python and how to embed it
in other applications.

Sound understanding of the ZENworks Orchestrator Job Development Language (JDL).
JDL integrates compact Python scripts to create jobs to manage nearly every aspect of the
Orchestrator grid. For more information, see Appendix A, “Orchestrator Job Classes and JDL
Syntax,” on page 197.
Getting Started 15

http://pydev.sourceforge.net/
http://python.org/doc/2.1/ref/ref.html
http://python.org/doc/2.1/lib/lib.html
http://python.org/doc/2.1/lib/lib.html
http://python.org/doc/2.1/ref/ref.html
http://python.org/doc/2.1/ext/ext.html

16 Novell

novdocx (en) 11 July 2008
Knowledge of basic UNIX shell commands or the Windows command prompt, and text editors.
An understanding of parallel computing and how applications are run on ZENworks
Orchestrator infrastructure.
Familiarity with on-line ZENworks Orchestrator API Javadoc as you build custom client
applications. For more information see Appendix B, “Orchestrator Client SDK,” on page 245.
Developer must assume both Orchestrator administrative and end-user roles while testing and
debugging jobs.

1.1.2 Setting Up Your Development Environment
To set up a development environment for creating jobs, we recommend the following procedure:

1 Initially set up a simple, easy-to-manage server, agent, and client on a single machine. Even on
a single machine, you can simulate multiple servers by starting extra agents (see “Independent
Installation of the Agent and Clients”.

2 As you get closer to a production environment, your setup might evolve to handle more
complex system demands, such as any of the following:

A server deployed on one computer.
An agent installed on every managed server.
A client installed on your client machine.
From your client machine you can build jobs/policies, and then remotely deploy them
using zosadmin Command Line tool. You can then remotely modify the jobs and other grid
object through the Orchestrator Console.

3 Use a version control system, such as Subversion*, to organize and track development changes.
4 Put the job version number inside the deployed file at make time. This will help you keep your

job versions organized.
5 Create make or Ant controls for bundling and deploying your jobs.
6 After you are familiar with more simple jobs, you will want to move to more complex “meta

jobs,” which enable you to tie together several applications in a service. These jobs will include
startup dependencies and other logic to enable one application job code with different
parameters and policies to be used in more than one service.

7 To enhance the robustness of your jobs, we suggest you deploy all jobs to more than one site,
with different policies activated at each site.

8 Ideally, to leverage the flexibility of the Orchestrator environment, you should not have to write
jobs targeted specifically for one container technology (Xen, VMWare, etc.).

1.2 Orchestrator Documentation Set
Before developing, deploying, and managing the Orchestrator jobs explained in this document, you
should have a thorough understanding of how to deploy and manage all product components. These
administrative tasks are explained in the following documents in both PDF and HTML formats:

Section 1.2.1, “Novell ZENworks Orchestrator Getting Started Guide,” on page 17
Section 1.2.2, “Novell ZENworks Orchestrator Administration Guide,” on page 17
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Section 1.2.3, “Novell ZENworks Orchestrator Virtual Machine Management Guide,” on
page 17
Section 1.2.4, “Novell ZENworks Orchestrator Job Management Guide,” on page 17

1.2.1 Novell ZENworks Orchestrator Getting Started Guide
The Novell ZENworks Orchestrator 1.3 Installation and Getting Started Guide introduces
ZENworks Orchestrator 1.3, including its basic administration environment, which is accessed
either through the Orchestrator console or the zos command line. It provides an introductory
overview of Orchestrator components and explains how to install, monitor, and manage applications
running on the Orchestrator. The guide provides basic startup and management instructions for
system administrators.

1.2.2 Novell ZENworks Orchestrator Administration Guide
The Novell ZENworks Orchestrator 1.3 Installation and Getting Started Guide provides basic
information on how to deploy and manage specific, basic jobs on the ZENworks Orchestrator Grid
Management Server using the resources available in the data center. Job managers typically have
limited rights and responsibilities and are not expected to know the intricacies of the Orchestrator or
to understand how to create the jobs themselves.

1.2.3 Novell ZENworks Orchestrator Virtual Machine
Management Guide
The Novell ZENworks Orchestrator 1.3 Virtual Machine Management Guide introduces Novell
ZENworks Virtual Machine Management, including its basic administration environment, which is
accessed through an Eclipse interface console, and its interface for developers, which is accessed
through the developer portal. The guide provides an introductory overview of virtual machine
management (VMM), explains how to install, monitor, and manage VMs and coordinate their
management with applications running on the Orchestrator.

1.2.4 Novell ZENworks Orchestrator Job Management Guide
The Novell ZENworks Orchestrator 1.3 Job Management Guide provides in-depth information on
the ZENworks Orchestrator Console, a thin-client browser console, and the ZENworks Orchestrator
user grid command-line management and deployment tool. It is anticipated that developers will
typically develop jobs using the zos command line tool, while higher level system administrators
will use the ZENworks GUI-based interfaces to submit, deploy and run jobs and manage network
resources.

1.3 Prerequisites for the Development
Environment

Install the Java* Development Kit (https://sdlc3d.sun.com/ECom/
EComActionServlet;jsessionid=DCA955A842E56492B469230CC680B2E1), version 1.5 or
later, to create jobs and to compile a Java SDK client in the Orchestrator environment.The
Orchestrator installer ships with a Java Runtime Environment (JRE) suitable for running
Orchestrator jobs.
Getting Started 17

https://sdlc3d.sun.com/ECom/EComActionServlet;jsessionid=DCA955A842E56492B469230CC680B2E1

18 Novell

novdocx (en) 11 July 2008
Components to write Python-based Job Description Language (JDL) scripts:
Eclipse version 3.2.1 or later. (http://www.eclipse.org/) is the interface console accessed
through the developer portal.

Product License: To expose full product functionality and access to all job examples, you
should be provisioned with a 90-day trial license SKU. If not, you need to add additional
example jobs to customize your setup profile to mirror a fully enabled Novell ZENworks
Server. If you need to customize setup profile, go to “Tested Platforms and Installation
Methods for the Orchestrator Server, Agent, and Clients” in the Novell ZENworks Orchestrator
1.3 Installation and Getting Started Guide.
Development Environment: Set up your environment according to the guidelines outlined in
“Planning the Installation.” In general, the deployed Orchestrator Server requires 2 (minimum
for 100 or fewer managed resources) to 4 gigabytes (recommended for more than 100 managed
resources) of RAM. By default, the Orchestrator Server is configured to use 1 gigabyte of
memory.
Network Capabilities: For Virtual Machine Management, you need a high-speed Gigabit
Ethernet. For more information about network requirements, see “Tested Platforms and
Installation Methods for Virtual Machine Management Components”.
Initial Configuration: After you install and configure Orchestrator, start in the auto
registration mode as described in “First Use of Basic ZENworks Orchestrator Components.”
As a first-time connection, the server creates an account for you as you set up a self-contained
system.

IMPORTANT: Because auto registration mode does not provide high security, make sure you
prevent unauthorized access to your network from your work station during development. As
you migrate to a production environment, be certain that promiscuous mode is deactivated.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.eclipse.org/

2
novdocx (en) 11 July 2008
2Job Development Concepts

This document is written for individuals who assume the role of Novell® ZENworks® Orchestrator
job developers, rather than network administrators or system technicians who later deploy the jobs
that developers create. This document discusses the tools and technology required to create discrete
programming scripts—called “jobs”—that control nearly every aspect of the Orchestrator product.

As a job developer, you need your own self-contained, standalone system with full access to your
network environment. At one point or another, you will assume all system roles: job creator, job
deployer, system administrator, tester, etc. For more information about jobs, see “Jobs” in the Novell
ZENworks Orchestrator 1.3 Installation and Getting Started Guide.

This section provides conceptual information to help you create your own Novell ZENworks
Orchestrator jobs:

Section 2.1, “Orchestrator Development Architecture,” on page 19
Section 2.2, “Understanding ZENworks Orchestrator Functionality,” on page 30
Section 2.3, “JDL Job Scripts,” on page 37
Section 2.4, “Understanding TLS Encryption,” on page 39
Section 2.5, “Understanding Job Examples,” on page 40

2.1 Orchestrator Development Architecture
Novell ZENworks Orchestrator is an advanced datacenter management solution designed to manage
all network resources. It provides the infrastructure that manages group of ten, one hundred, or
thousands of physical or virtual resources.

Orchestrator is equally apt at performing a number of distributed processing problems. From high
performance computing, the breaking down of work into lots of small chucks that can be processed
in parallel through distributed job scheduling. The following figure shows the product’s high-level
architecture:
Job Development Concepts 19

20 Novell

novdocx (en) 11 July 2008
Figure 2-1 ZENworks Orchestrator Architecture

This section contains information about the following topics:

Section 2.1.1, “Orchestrator Agents,” on page 20
Section 2.1.2, “Orchestrator Resource Monitor,” on page 21
Section 2.1.3, “Orchestrator Entity Types and Managers,” on page 21
Section 2.1.4, “Jobs,” on page 24
Section 2.1.5, “Constraint-Based Job Scheduling,” on page 27
Section 2.1.6, “Understanding Orchestrator API Interfaces,” on page 28

2.1.1 Orchestrator Agents
Agents are installed on all managed resources as part of the product deployment. For more detailed
information about these components, see “Software Architecture” in the Novell ZENworks
Orchestrator 1.3 Installation and Getting Started Guide.

The agent connects every managed resource to its configured server and advertises to the ZENworks
Orchestrator Server that the resource is available for tasks. This persistent and auto-reestablishing
connection is important because it provides a message bus for the distribution of work, collection of
information about the resource, per-job messaging, health checks, and resource failover control.

After resources are enabled, Orchestrator can discover, access, and store detailed abstracted
information—called “facts”—about every resource. Managed resources, referred to as “nodes,” are
addressable members of the of the Orchestrator Server “grid” (also sometimes called the “matrix”).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
When integrated into the grid, nodes can be deployed, monitored, and managed by the Orchestrator
Server, as discussed in Section 2.2, “Understanding ZENworks Orchestrator Functionality,” on
page 30.

An overview of the Orchestrator grid architecture is illustrated in the figure below, much of which is
explained in this developer’s guide:

Figure 2-2 Orchestrator Server Architecture

For additional information about job architecture, see Chapter 7, “Job Architecture,” on page 71.

2.1.2 Orchestrator Resource Monitor
ZENworks Orchestrator enables you to monitor your system computing resources using the built-in
Resource Monitor. To open the Resource Monitor in the console, see “Monitoring Server
Resources” in the ZENworks Orchestrator Administration Guide.

2.1.3 Orchestrator Entity Types and Managers
The following entities are some of key components involved in the Orchestrator Server:

“Resources” on page 22
“Users” on page 22
“Job Definitions” on page 22
“Job Instances” on page 22
“Policies” on page 22
“Facts” on page 23
“Constraints” on page 23
“Groups” on page 24
Job Development Concepts 21

22 Novell

novdocx (en) 11 July 2008
“VM: Hosts, Images, and Instances” on page 24
“Templates” on page 24

Resources

All managed resources, which are called nodes, have an agent with a socket connection to the
Orchestrator Server. All resource use is metered, controlled, and audited by the Orchestrator Server.
Policies govern the use of resources.

Orchestrator allocates resources by reacting as load is increased on a resource. As soon as we go
above a threshold that was set in a policy, a new resource is allocated and consequently the load on
that resource drops to an acceptable rate.

You can also write and jobs that perform cost accounting to account for the cost of a resource up
through the job hierarchy, periodically, about every 20 seconds. For more information, see
Section 4.5, “Auditing and Accounting Jobs,” on page 55.

A collection of jobs, all under the same hierarchy, can cooperate with each other so that when one
job offers to give up a resource it is reallocated to another similar priority job. Similarly, when a
higher priority job becomes overloaded and is waiting on a resource, the system “steals” a resource
from a lower priority job, thus increasing load on the low priority job and allocating it to the higher
priority job. This process satisfies the policy, which specifies that a higher priority job must
complete at the expense of a low priority job.

Users

Orchestrator users must authenticate to access the system. Access and use of system resources are
governed by policies.

Job Definitions

A job definition is described in the embedded enhanced Python script that you create as a job
developer. Each job instance runs a job that is defined by the Job Definition Language (JDL). Job
definitions might also contain usage policies. For more information, see the Job (page 222) class.

Job Instances

Jobs are instantiated at runtime from job definitions that inherit policies from the entire context of
the job (such as users, job definitions, resources, or groups). For more information, see JobInfo
(page 223).

Policies

Policies are XML documents that contain various constraints and static fact assignments that govern
how jobs run in the Orchestrator environment.

Policies are used to enforce quotas, job queuing, resource restrictions, permissions, and other job
parameters. Policies can be associated with any Orchestrator object. For more information, see
Section 2.2.2, “Policy-Based Management,” on page 31.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Facts

Facts represent the state of any object in the Orchestrator grid. They can be discovered through a job
or they can be explicitly set.

Facts control the behavior a job (or joblet) when it’s executing. Facts also detect and return
information about that job in various UIs and server functions. For example, a job description that is
set through its policy and has a specified value might do absolutely nothing except return
immediately after network latency.

There are three basic types of facts:

Static: Facts that require you to set a value. For example, in a policy, you might set a value to
be False. Static facts can be modified through policies.
Dynamic: Facts produced by the Orchestrator system itself. Policies cannot override dynamic
facts. They are read only and their value is determined by the orchestrator itself.
Computed: Facts derived from a value, like that generated from the cell of a spreadsheet.
Computed facts have some kind of logic behind them which derive their values.
For example, you might have two numeric facts that you want expressed in another fact as an
average of the two. You could compose a computed fact which averages two other facts and
express it as an average value under a certain fact name. This enables you to create facts that
represent other metrics on the system that aren’t necessarily available in the default set, or are
not static to anything that might impact other dynamic facts.

For more information about facts, see Section 5.1.2, “Facts,” on page 57.

Constraints

In order for the Orchestrator to choose resources for a job, it uses resource constraints. A resource
constraint is some Boolean logic that executes against facts in the system. Based upon this
evaluation, it will only consider resources that match the criteria that have been set up by use of
constraints.

For more detailed information, see Section 7.7, “Working with Facts and Constraints,” on page 77
and the following JDL constraint definitions:

AndConstraint() (page 203)
BinaryConstraint (page 204)
Constraint (page 209)
ContainerConstraint (page 210)
ContainsConstraint (page 211)
DefinedConstraint (page 213)
EqConstraint (page 214)
GeConstraint (page 218)
GtConstraint (page 221)
LeConstraint (page 227)
LtConstraint (page 228)
NeConstraint (page 230)
NotConstraint (page 231)
Job Development Concepts 23

24 Novell

novdocx (en) 11 July 2008
OrConstraint (page 232)
UndefinedConstraint (page 241)

Groups

Resources, users, job definitions and virtual machines (VM) are managed in groups with group
policies that are inherited by members of the group.

VM: Hosts, Images, and Instances

A virtual machine host is a resource that is able to run guest operating systems. Attributes (facts)
associated with the VM host control its limitations and functionality within the Orchestrator Server.
A VM image is a resource image that can be cloned and/or provisioned. A VM instance represents a
running copy of a VM image.

Templates

Templates are images that are meant to be cloned (copied) prior to provisioning the new copy. For
more information, see “Managing Virtual Machine Templates” in the Novell ZENworks
Orchestrator 1.3 Virtual Machine Management Guide.

2.1.4 Jobs
The Orchestrator Server manages all nodes by administering jobs (and the functional control of jobs
at the resource level by using joblets), which control the properties (facts) associated with every
resource. In other words, jobs are units of functionality that dispatch data center tasks to resources
on the network such as management, migration, monitoring, load balancing, etc.

Orchestrator provides a unique job development, debugging, and deployment environment that
expands with the demands of growing data centers.

As a job developer, your task is to develop jobs to perform a wide array of work that can be
deployed and managed by ZENworks Orchestrator.

Jobs, which run on the Orchestrator server, can provide functions within the Orchestrator
environment that might last from seconds to months. Job and joblet code exist in the same script file
and are identified by the .jdl extension. The .jdl script contains only one job definition and zero
or more joblet definitions. A .jdl script can have only one Job subclass. As for naming
conventions, the Job subclass name does not have to match the .jdl filename; however, the .jdl
filename is the defined job name, so the .jdl filename must match the .job filename that
contains the .jdl script. For example, the job files (demoIterator.jdl and
demoIterator.policy) included in the demoIterator example job are packaged into the
archive file named demoIterator.job, so in this case, the name of the job is demoIterator.

A job file also might have policies associated with it to define and control the job’s behavior and to
define certain constraints to restrict its execution. A .jdl script that is accompanied by a policy file
is typically packaged in a job archive file (.job). Because a .job file is physically equivalent to a
Java archive file (.jar), you can use the JDK JAR tool to create the job archive.

Multiple job archives can be delivered as a management pack in a service archive file (SAR)
identified with the .sar extension. Typically, a group of related files are delivered this way. For
example, the Xen30 management pack is a SAR.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
As shown in the following illustration, jobs include all of the code, policy, and data elements
necessary to execute specific, predetermined tasks administered either through the ZENworks
Orchestrator console, or from the zos command line tool.

Figure 2-3 Components of an Orchestrator Job (my.job,)

Because each job has specific, predefined elements, jobs can be scripted and delivered to any agent,
which ultimately can lead to automating almost any datacenter task. Jobs provide the following
functionality:

“Controlling Process Flow” on page 25
“Parallel Processing” on page 25
“Managing the Cluster Life Cycle” on page 26
“Discovery Jobs” on page 26
“System Jobs” on page 26
“Provisioning Jobs” on page 27

For more information, see Chapter 4, “Orchestrator Job Classifications,” on page 49 and the JDL job
class definitions:

Job (page 222)
JobInfo (page 223)

Controlling Process Flow

Jobs can written to control all operations and processes of managed resources. Through jobs, the
Orchestrator Server manages resources to perform work. Automated jobs (written in JDL), are
broken down into joblets, which are distributed among multiple resources.

Parallel Processing

By managing many small joblets, the Orchestrator server can enhance system performance and
maximize resource use.
Job Development Concepts 25

26 Novell

novdocx (en) 11 July 2008
Managing the Cluster Life Cycle

Jobs can detect demand and monitor health of system resources, then modify clusters automatically
to maximize system performance and provide failover services.

Discovery Jobs

Some jobs provide inspection of resources to more effectively management assets. These jobs
enable all agents to periodically report basic resource facts and performance metrics. In essence,
these metrics are stored as facts consisting of a key word and typed-value pairs like the following
example:

resource.loadaverage=4.563, type=float

Jobs can poll resources and automatically trigger other jobs if resource performance values reach
certain levels.

The system job scheduler is used to run resource discovery jobs to augment resource facts as
demands change on resources. This can be done on a routine, scheduled basis or whenever new
resources are provisioned, new software is installed, bandwidth changes occur, OS patches are
deployed, or other events occur that might impact the system.

Consequently, resource facts form a capabilities database for the entire system. Jobs can be written
that apply constraints to facts in policies, thus providing very granular control of all resources as
required. All active resources are searchable and records are retained for all off-line resources.

The following osInfo.job example shows how a job sets operating system facts for specific
resources:

resource.cpu.mhz (integer) e.g., "800" (in Mhz)
 resource.cpy.vendor (string) e.g. "GenuineIntel"
 resource.cpu.model (string) e.g. "Pentium III"
 resource.cpu.family (string) e.g. "i686"

osInfo.job is packaged as a single cross-platform job and includes the Python-based JDL and a
policy to set the timeout. It is run each time a new resource appears and once every 24 hours to
ensure validity of the resources. For a more detailed review of this example, see osInfo.job
(page 51).

System Jobs

Jobs can be scheduled to to periodically trigger specific system resources based on specific time
constraints or events. As shown in the following figure, Orchestrator provides a built-in job
scheduler that enables you or system administrators to flexibly deploy and run jobs.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 2-4 Orchestrator Job Scheduler

For more information, see Section 4.2, “Dynamic Scheduling,” on page 51, Chapter 8, “Job
Scheduling,” on page 87, and Job (page 222).

Provisioning Jobs

Jobs also drive provisioning for virtual machines and blade servers. Provisioning adapter jobs are
deployed and organized into appropriate job groups for management convenience. Provisioning
adapters are deployed as part of your VMM license.

For more information, see Section 9.2, “Virtual Machine Management,” on page 92 and “Virtual
Machine Technologies and Actions” in the Novell ZENworks Orchestrator 1.3 Virtual Machine
Management Guide.

2.1.5 Constraint-Based Job Scheduling
The Orchestrator Server is a “broker” that can distribute jobs to every “partner” agent on the grid.
Based on assigned policies, jobs have priorities and are executed based on the following contexts:

User Constraints
User Facts
Job Constraints
Job Facts
Job Instance
Resource User Constraints
Resource Facts
Groups
Job Development Concepts 27

28 Novell

novdocx (en) 11 July 2008
Each object in a job context contains the following elements:

Figure 2-5 Constraint-Based Resource Brokering

For more information, see Section 7.7, “Working with Facts and Constraints,” on page 77.

2.1.6 Understanding Orchestrator API Interfaces
There are three API interfaces available to the Orchestrator Server:

Orchestrator Server Management Interface: The ZENworks Orchestrator server, written
entirely in Java using the JMX (Java MBean) interface for management, leverages this API for
the ZENworks Orchestrator Console. The console is a robust desktop GUI designed for
administrators to apply, manage, and monitor usage-based policies on all infrastructure
resources. The console also provides at-a-glance grid health and capacity checks.

For more information, see “Using the ZENworks Orchestrator Console” in the ZENworks
Orchestrator Administration Guide.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 2-6 Novell ZENworks Orchestrator Console

Job Interface: Includes a customizable/replaceable Web application and the zosadmin
command line tool. The Web-based User Portal built with this API provides a universal job
viewer from which job logs and progress can be monitored. The job interface is accessible via a
Java API or CLI. A subset is also available as a Web Service. The default Orchestrator
Developer Portal web application leverages this API. It can be customized or alternative J2EE*
application can be written.
ZENworks Monitoring System: Monitors all aspects of the data center through an open
source, Eclipse*-based interrface.This interface operates in conjunction with the Orchestrator
Server and monitors the following objects:

Deployed jobs that teach Orchestrator and provide the control logic that Orchestrator runs
when performing its management tasks.
Users and Groups
Virtual Machines

For more information, see the Novell ZENworks Orchestrator 1.3 Virtual Machine
Management Guide.
Job Development Concepts 29

30 Novell

novdocx (en) 11 July 2008
Figure 2-7 Novell ZENworks Orchestrator Virtual Machine Manager interface.

2.2 Understanding ZENworks Orchestrator
Functionality

Section 2.2.1, “Resource Virtualization,” on page 30
Section 2.2.2, “Policy-Based Management,” on page 31
Section 2.2.3, “Global Resource Visualization,” on page 32
Section 2.2.4, “Understanding Job Semantics,” on page 34
Section 2.2.5, “Distributed Messaging and Failover,” on page 35
Section 2.2.6, “Web-Based User Interaction,” on page 36

2.2.1 Resource Virtualization
Host machines or test targets managed by the Orchestrator Server form nodes on the grid
(sometimes referred to as the matrix). All resources are virtualized for access by maintaining a
capabilities database containing extensive information (facts) for each managed resource.

This information is automatically polled and obtained from each resource periodically or when it
first comes online. The extent of the resource information the system can gather is customizable and
highly extensible, controlled by the jobs you create and deploy.

The ZENworks Virtual Machine Builder is a service of VM Management that allows you to build a
VM to precise specifications required for your data center. You designate the parameters required:
processor, memory, hard drive space, operating system, virtualization type, if it’s based of an auto-
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
install file, and any additional parameters. When you lauch the build job, VM Builder sends the
build request to a machine that meets the hardware requirements of the defined VM and builds the
VM there.

For more information, see “Building a Virtual Machine” in the ZENworks Orchestrator Virtual
Machine Management Guide (http://www.novell.com/documentation/zen_orchestrator11/
zos11_vmm/data/bookinfo.html).

2.2.2 Policy-Based Management
Policies are aggregations of facts and constraints that are used to enforce quotas, job queuing,
resource restrictions, permissions, and other user and resource functions. Policies can be set on all
objects and are inherited, which facilitates implementation within related resources.

Facts, which might be static, dynamic or computed for complex logic, are used when jobs or test
scenarios require resources in order to select a resource that exactly matches the requirements of the
test, and to control the access and assignment of resources to particular jobs, users, projects, etc.
through policies. This abstraction keeps the infrastructure fluid and allows for easy resource
substitution.

Of course, direct named access is also possible. An example of a policy that constrains the selection
of a resource for a particular job or test is shown in the figure below. Although resource constraints
can be applied at the policy level, they can also be described by the job itself or even dynamically
composed at runtime.

Figure 2-8 Resource Selection Policy Example

An example of a policy that constrains the start of a job or test because too many tests are already in
progress is shown in the following figure:
Job Development Concepts 31

http://www.novell.com/documentation/zen_orchestrator11/zos11_vmm/data/bookinfo.html
http://www.novell.com/documentation/zen_orchestrator11/zos11_vmm/data/bookinfo.html

32 Novell

novdocx (en) 11 July 2008
Figure 2-9 Job/Test Start Policy Example

See also:

Chapter 5, “Developing Policies,” on page 57.
Chapter 7, “Job Architecture,” on page 71.

2.2.3 Global Resource Visualization
One of the greatest strengths of the Novell ZENworks Orchestrator solution is the ability to manage
and visualize the entire grid. This is performed through the ZENworks Orchestrator Console and the
ZENworks Monitoring System.

The desktop console is a Java application that has broad platform support and provides job,
resource, and user views of activity as well as access to the historical audit database system, cost
accounting, and other graphing features.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 2-10 The ZENworks Orchestrator Console with Virtual Machine Management Elements

The console also applies policies that govern the use of shared infrastructure or simply create logical
grouping of nodes on the grid. For more information about the ZENworks Orchestrator Console, see
the Novell ZENworks Orchestrator 1.3 Administration Guide.

The ZENworks Monitoring System provides robust graphical monitoring of all managed virtual
resources managed on the grid.
Job Development Concepts 33

34 Novell

novdocx (en) 11 July 2008
Figure 2-11 The Eclipse ZENworks Monitoring System

For more information, see the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.

2.2.4 Understanding Job Semantics
As mentioned earlier, ZENworks Orchestrator runs jobs. A job is a container that can encapsulate
several components including the Python-based logic for controlling the job life cycle (such as a
test) through logic that accompanies any remote activity, task-related resources such as
configuration files, binaries and any policies that should be associated with the job, as illustrated
below.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 2-12 Components of an Orchestrator Job

Workflows

Jobs can also invoke other jobs creating hierarchies. Because of the communication between the job
client (either a user/user client application or another job) it is easy to create complex workflows
composed of discrete and separately versioned components.

When a job is executed and an instance is created, the class that extends job is run on the server and
as that logic requests resources, the class(es) that extend the joblet are automatically shipped to the
requested resource to manage the remote task. The communication mechanism between these
distributed components manifests itself as event method calls on the corresponding piece.

For more information, see Section 2.5.2, “Workflow Job Example,” on page 42, Section 7.3.1, “Job
State Transition Events,” on page 73, and Section 7.10, “Communicating Through Job Events,” on
page 80.

2.2.5 Distributed Messaging and Failover
A job has control over all aspects of its failover semantics, which can be specified separately for
conditions such as the loss of a resource, failure of an individual joblet, or joblet timeout.

The failover/health check mechanisms leverage the same communications mechanism that is
available to job and joblet logic. Specifically, when a job is started and resources are employed, a
message interface is established among all the components as shown in Figure 2-13 on page 36.

Optionally, a communication channel can also be kept open to the initiating client. This client
communication channel can be closed and reopened later based on jobid. Messages can be sent with
the command

sendEvent(foo_event, params, ...)

and received at the other end as a method invocation

def foo_event(self, params)
Job Development Concepts 35

36 Novell

novdocx (en) 11 July 2008
If a job allows it, a failure in any joblet causes the Orchestrator Server to automatically find an
alternative resource, copy over the joblet JDL code, and reestablish the communication connection.
A job also can listen for such conditions simply by defining a method for one of the internally
generated events, such as def joblet_failure_event(...).

Such failover allows, for example, for a large set of regression tests to be run (perhaps in parallel)
and for a resource to die in the middle of the tests without the test run being rendered invalid. The
figure below shows how job logic is distributed and failover achieved:

Figure 2-13 A Job in Action

2.2.6 Web-Based User Interaction
ZENworks Orchestrator ships a universal job monitoring and submission interface as a Web
application that natively runs on the Orchestrator Server. This application is written to the
Orchestrator job management API and can be customized or replaced with alternative rendering as
required. The figure belows shows an example of the interface and more details are discussed in
“The ZENworks Orchestrator Console.”
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 2-14 The ZENworks Orchestrator Console Management Interface

2.3 JDL Job Scripts
The Orchestrator job definition language (JDL) is an extended and embedded implementation of
Python. It is completely multi-threaded. The developer of the job has full access to the Python
language and standard extensions, and the ZENworks Orchestrator system provides additional
constructs to control and access the following:

Interaction with the infrastructure under management (requesting resources, querying load,
etc.)
Distributed variable space with job, user and system-wide scoping
Extensible event callbacks mechanism
Job logging
Datagrid for efficient and cached movement of files across the infrastructure.
Automatic breakdown and distribution of parallel operations
Failover logic

For more information about the Orchestrator JDL script editor, see Section 7.2, “JDL Package,” on
page 72 or “JDL Editor” in the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.

The JDL language allows for the scripted construction of test cases that can be driven by external
parameters and constraints at the time the job instance is executed. In addition, the development of a
job with the JDL (Python) language is very straightforward. For a listing of the job, joblet, and
utility classes, see Appendix A, “Orchestrator Job Classes and JDL Syntax,” on page 197.
Job Development Concepts 37

38 Novell

novdocx (en) 11 July 2008
A simple “hello world” Python script example that runs a given number of times (numTests) in
parallel (subject to resource availability and policy) is shown below:

class exampleJob(Job):
 def job_started_event(self):
 print 'Hello world started: got job_started_event'
 # Launch the joblets
 numJoblets = self.getFact("jobargs.numTests")
 pspace = ParameterSpace()
 i = 1
 while i <= numJoblets:
 pspace.appendRow({'name':'test'+str(i)})
 i += 1
 self.schedule(exampleJoblet, pspace, {})

class exampleJoblet(Joblet):
 def joblet_started_event(self):
 print "Hello from resource%s" % self.getFact("resource.id")

This example script contains two sections:

The class that extends the job and runs on the server.
The class that extends the joblet that will run on any resource employed by this job.

Because the resources are not requested explicitly, they are allocated based on the resource
constraints associated with this job (or user and relevant groups). If none are specified, all resources
match. The exampleJoblet class would typically execute some process or test based on unique
parameters.

Finally, the ParameterSpace object accesses the built in “grid” ability of the Orchestrator
Server, which is the way to describe the parallel inherent in a problem. In this example, the simple
addition of appendRows() indicates that each joblet can run in parallel. This guide provides
information to create much more sophisticated constructs.

2.3.1 Principles of Job Operation
Whenever a job is run on the Orchestrator system it undergoes state transition, as illustrated in
Figure 2-15 on page 39. In all, there are 11 states. The following four states are important in
understanding how constraints are applied on a job’s life cycle through policies:

Accept: Used to prevent work from starting; enforces a hard quota on the jobs.

Start: Used to queue up work requests; limits the quantity of jobs or the load on a resource.

Resource: Used to select specific resources.

Stop: Used to abort jobs; provides special timeout or overrun conditions.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 2-15 Constraint-Based Job State Transition

For more information about job life cycle, see Section 7.3.1, “Job State Transition Events,” on
page 73.

2.4 Understanding TLS Encryption
Understanding Transport Layer Security (TLS) encryption is particularly important if you reinstall
the server and have an old server certificate in either your agent or client user profile. It's kind of
loke “ssh.” If you have an old certificate, you need to either manually replace it or delete it and allow
the client or agent to download the new one from the server using one of the following procedures:

For the Agent: The TLS certificate is in <agentdir>/tls/server.pem. Deleting this
certificate will cause the agent, by default, to log a minor warning message and download the
new one the next time it tries to connect to the server. This is technically not secure, since the
server could be an impersonator. If security is required for this small window of time, then the
real server’s <serverdir>/<instancedir>/tls/cert.pem can be copied to the
above server.pem file.
For the Client: The easiest way to update the certificate from the command line tools is to
simply answer "yes" both times when prompted about the out-of date certificate. This is, again,
not 100% secure, but is suitable for most situations. For absolute security, hand copy the
server’s cert.pem (see above) to ~/.novell/zos/client/tls/
<serverIPAddr:Port>.pem.
For Java SDK clients: Follow the manual copy technique above to replace the certificate. If
the local network is fairly trustworty, you can also delete the above ~/.novell/.../
*.pem files, which will cause the client to auto-download the new certificate on a once-only
basis.
Job Development Concepts 39

40 Novell

novdocx (en) 11 July 2008
2.5 Understanding Job Examples
The following preliminary examples demonstrate how you can use JDL scripting to manage specific
functionality:

Section 2.5.1, “provisionBuildTestResource.job,” on page 40
Section 2.5.2, “Workflow Job Example,” on page 42

For additional job examples, see Chapter 10, “Complete Job Examples,” on page 123.

2.5.1 provisionBuildTestResource.job
The following job example illustrates simple scripting to ensure that each of the desired OS
platforms are available in the grid and, if not, it tries to provision them. The resource Constraint
object is created programmatically, so there is no need for external policies.

1 class provisionBuildTestResource(Job):
2
3 def job_started_event(self):
4 oslist = ["Windows XP", "Windows 2000", "Windows 2003 Server"]
5 for os in oslist:
6 constraint = EqConstraint()
7 constraint.setFact("resource.os.name")
8 constraint.setValue(os)
9 resources = getMatrix().getGridObjects("resource",constraint)
10 if len(resources) == 0:
11 print "No resources were found to match constraint. \
12 os:%s" % (os)
13 else:
14 #
15 # Find an offline vm instance or template.
16 #
17 instance = None
18 for resource in resources:
19 if resource.getFact("resource.type") != "Fixed Physical" and
\
20 resource.getFact("resource.online") == False:
21 # Found a vm or template. provision it for job.
22 print "Submitting provisioning request for vm %s." %
(resource)
23 instance = resource.provision()
24 print "Provisioning successfully submitted."
25 break
26 if instance == None:
27 print "No offline vms or templates found for os: %s" % (os)

It is not necessary to always script resource provisioning. Automatic resource provisioning on
demand is one of the built-in functions of the Orchestrator Server. For example, a job requiring a
Windows 2003 Server resource that cannot be satisfied with online resources only needs to have the
appropriate facts set in the Orchestrator console; that is, job.maxprovision is enabled as shown in the
following figure.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 2-16 Example of a Job to Provision Resources Automatically

This fact could also be set through deployment of a policy. If it is set up this way, ZENworks
Orchestrator detects that a job is in need of a resource and automatically takes the necessary
provisioning steps, including reservation of the provisioned resource.

Figure 2-17 The ZENworks Orchestrator Console Showing Virtual Machine Management

All provisioned virtual machines and the status of the various hosts are visible in this example of the
Orchestrator console.
Job Development Concepts 41

42 Novell

novdocx (en) 11 July 2008
2.5.2 Workflow Job Example
This brief example illustrates a job that does not require resources but simply acts as a coordinator
(workflow) for the buildTest and provision jobs discussed in Section 5.2, “BuildTest Job Examples,”
on page 59.

1 class Workflow(Job):
2 def job_started_event(self):
3 self.runJob("provisionBuildTestResource", {})
4 self.runJob("buildTest", { "testlist" : "/QA/testlists/production",
5 "buildId": "2006-updateQ1" })

The job starts in line 1 with the job_started_event, which initiates provisionBuildTestResource.job
(page 40) to ensure all the necessary resources are available, and then starts the buildTest.jdl
Example (page 61). This workflow job does not complete until the two subjobs are complete, as
defined in lines 3 and 4.

If necessary, this workflow could monitor the progress of subjobs by simply defining new event
methods (usually by convention using the _event suffix). The system defines many standard events,
but custom events are simply the methods names custom_event. Every message received by the job
executes the corresponding event handler method and can also contain a payload (Python
dictionary).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

3
novdocx (en) 11 July 2008
3The ZENworks Orchestrator
Datagrid

This section explains concepts related to the Novell®ZENworks® Orchestrator Server datagrid and
specifies many of the objects and facts that are managed in the grid environment:

Section 3.1, “Defining the Datagrid,” on page 43
Section 3.2, “Datagrid Communications,” on page 45
Section 3.3, “datagrid.copy Example,” on page 47

3.1 Defining the Datagrid
Within the Orchestrator environment, the datagrid has three primary functions:

Section 3.1.1, “Naming Orchestrator Job Files,” on page 43
Section 3.1.2, “Distributing Files,” on page 44
Section 3.1.3, “Simultaneous Multicasting to Multiple Receivers,” on page 45

3.1.1 Naming Orchestrator Job Files
The Orchestrator datagrid provides a file naming convention that is used by the job JDL code and by
the Orchestrator CLI for accessing files created by the grid job. The naming convention is in the
form of a URL. For more information, see Section 2.1.4, “Jobs,” on page 24.

The datagrid server defines the root of the namespace, with further divisions under the root as
illustrated in the figure below:

Figure 3-1 File Structure of Data Nodes in a Datagrid
The ZENworks Orchestrator Datagrid 43

44 Novell

novdocx (en) 11 July 2008
The grid URL naming convention is the form grid://<gridID>/<file path>. Including
the gridID is optional and its absence means the host default grid.When writing jobs and configuring
a datagrid, entering the symbol ^ can be used as a shortcut to the <jobid> directory either
standalone, indicating the current job, or followed by the jobid number to identify a particular
job.Likewise, the symbol ! can be used as a shortcut to the deployed jobs’ home directory either
standalone, indicating the current jobs’ type, or followed by the deployed jobs’ name.The symbol ~
is also a shortcut to the user’s home directory in the datagrid, either by itself, indicating the current
user, or followed by the desired user ID to identify a particular user.

The following examples show address locations in the datagrid using the ZOS command line tool.
These examples assume you have logged in using “zos login” to the Orchestrator Server you are
using:

“Directory Listing of the Datagrid Root Example” on page 44
“Directory Listing of the Jobs Subdirectory Example” on page 44

Directory Listing of the Datagrid Root Example

$ zos dir grid:///
 <DIR> Jun-26-2007 9:42 installs
 <DIR> Jun-26-2007 9:42 jobs
 <DIR> Jun-26-2007 14:26 users
 <DIR> Jun-26-2007 9:42 vms
 <DIR> Jun-26-2007 10:09 warehouse

Directory Listing of the Jobs Subdirectory Example

This example displays all the jobs that are deployed with the Virtual Machine Management (VMM)
pack. The jobs listing is different in the High performance Computing (HPC) pack.

$ zos dir grid:///jobs
 <DIR> Jun-26-2007 9:42 cpuInfo
 <DIR> Jun-26-2007 9:42 findApps
 <DIR> Jun-26-2007 9:42 osInfo
 <DIR> Jun-26-2007 9:42 vcenter
 <DIR> Jun-26-2007 9:42 vmHostVncConfig
 <DIR> Jun-26-2007 9:42 vmprep
 <DIR> Jun-26-2007 9:42 vmserver
 <DIR> Jun-26-2007 9:42 vmserverDiscovery
 <DIR> Jun-26-2007 9:42 xen30
 <DIR> Jun-26-2007 9:42 xenDiscovery
 <DIR> Jun-26-2007 9:42 xenVerifier

3.1.2 Distributing Files
The Orchestrator datagrid provides a way to distribute files in the absence of a distributed file
system. This is an integrated service of the Orchestrator that performs system-wide file delivery and
management.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
3.1.3 Simultaneous Multicasting to Multiple Receivers
The datagrid provides a multicast distribution mechanism that can efficiently distribute large files
simultaneously to multiple receivers. This is useful even when a distributed file system is present.
For more information, see Section 3.2, “Datagrid Communications,” on page 45.

3.1.4 Orchestrator Datagrid Commands
The following datagrid commands can be used when creating job files. To see where these
commands are applied in the Novell Orchestrator console, see “Typical Use of the Grid”.

3.2 Datagrid Communications
There is no set limit to the number of receivers (nodes) that can participate in the datagrid or in a
multicast operation. Indeed, multicast is rarely more efficient when the number of receivers is small.
Any type of file or file hierarchy can be distributed via the datagrid.

The datagrid uses both a TCP/IP and IP multicast protocols for file transfer. Unicast transfers (the
default) are reliable because of the use of the reliable TCP protocol. Unicast file transfers use the
same server/node communication socket that is used for other job coordination datagrid packets are
simply wrapped in a generic DataGrid message. Multicast transfers use the persistent socket
connection to setup a new multicast port for each transfer.

After the multicast port is opened, data packets are received directly. The socket communication is
then used to coordinate packet resends.Typically, a receiver will loose intermittent packets (because
of the use of IP multicast, data collisions, etc.). After the file is transferred, all receivers will respond
with a bit map of missed packets. The logically ANDing of this mask is used to initiate a resend of
commonly missed packets. This process will repeat a few times (with less data to resend on each
iteration). Finally, any receiver will still have incomplete data until all the missing pieces are sent in
a reliable unicast fashion.

The data transmission for a multicast datagrid transmission is always initiated by the Orchestrator
Server. Currently this is the same server that is running the grid.

Command Description

cat Displays the contents of a datagrid file.

copy Copies files and directories to and from the datagrid.

delete Deletes files and directories in the datagrid.

dir Lists files and directories in the datagrid.

head Displays the first of a datagrid file.

log Displays the log for the specified job.

mkdir Makes a new directory in the datagrid.

move Moves files and directories in the datagrid.

tail Displays the end of a datagrid file.
The ZENworks Orchestrator Datagrid 45

46 Novell

novdocx (en) 11 July 2008
With the exception of multicast file transfers, all datagrid traffic goes over the existing connection
between the agent/client and the server. This is done transparently to the end user or developer. As
long as the agent is connected and/or the user is logged in to the grid, the datagrid operations
function.

3.2.1 Multicast Example
Multicast transfers are currently only supported through JDL code on the agents. Doing it via the
command line client interface UI, would be far too messy. In JDL, after you get the “datagrid”
object, you can enable and configure multicasting like this:

 dg.setMulticast(true)

Additional multicast tuneables can be set on the object as well, such as the following example:

 dg.setMulticastRate(20000000)

This would set the maximum data rate on the transfer to 20 million bytes/sec. There are a number of
other options as well. Refer to the JDL reference for complete information.

The actual multicast copy is initiated when a sufficient number of JDL joblets on different nodes
issue the JDL command:

 dg.copy(...)

to actually copy the requested file locally. See the 'setMulticastMin' and 'setMulticastQuorum'
options to change the minimum receiver count and other thresholds for multicasting.

For example, to set up a multicast from a joblet, where the data rate is 30 million bytes/sec, and a
minimum of five receivers must request multicast within 30 seconds, but if 30 receivers connect,
then start right away, use the following script:

 dg = DataGrid()
 dg.setMulticast(true)
 dg.setMulticastRate(30000000)
 dg.setMulticastMin(5)
 dg.setMulticastQuorum(30)
 dg.setMulticastWait(30000)
 dg.copy('grid:///vms/huge-image.dsk', 'image.dsk')

In the above example, if at least five agents running the joblet request the file within the same 30
second period, then a multicast is started to all agents that have requested multicast before the
transfer is started. Agents requesting after the cutoff have to wait for the next round. Also, if fewer
than 5 agents request the file, then each agent will simply fall back to plain old unicast file copy.

Furthermore, if more than 30 agents connect before 30 seconds is up, then the transfer begins
immediately after the 30th request. This is useful for situations where you know how many agents
will request the file and want to start as soon as all of them are ready.

3.2.2 Grid Performance Factors
The multicast system performance is dependent on the following factors:

Network Load: As the load increases, there is more packet loss, which results in more retries.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Number of Nodes: The more nodes (receivers) there are, the greater the efficiency of the
multicast system.
File Size: The larger the file size, the better. Unless there are a large number of nodes, files less
than 2 Mb are probably too small.
Tuning: The datagrid facility has the ability to throttle network bandwidth. Best performance
has been found at about maximum bandwidth divided by 2. Using more bandwidth leads to
more collisions. Also the number of simultaneous multicasts can be limited. Finally the
minimum receiver size, receiver wait time and quorum receiver size can all be tuned.

Access to the datagrid is typically performed via the CLI tool or JDL code within a job. There is also
a Java API in the Client SDK (on which the CLI is implemented). See “ClientAgent” on page 251.

3.2.3 Plan for Datagrid Expansion
When planning your datagrid, you need to consider where you want the Orchestrator Server to store
its data. Much of the server data is the contents of the datagrid, including ever-expanding job logs.
Every job log can become quite large and quickly exceed its storage constraints.

In addition, every deployed job with its job package—JDL scripts, policy information, and all other
associated executables and binary files—is stored in the datagrid. Consequently, if your datagrid is
going to grow very large, store it in a directory other than /opt.

3.3 datagrid.copy Example
This example fetches the specified source file to the destination. A recursive copy is then attempted
if setRecursive(True) is set. The default is a single file copy. A multicast also is attempted if
setMulticast(True) is set. The default is to do a unicast copy.The following example copies a
file from the datagrid to a resource, then read the lines of the file:

1 datagrid = DataGrid()
2 datagrid.copy("grid:///images/myFile","myLocalFile")
3 text = open("myLocalFile").readlines()

This is an example to recursively copy a directory and its sub directories from the datagrid to a
resource:

4 datagrid = DataGrid()
5 datagrid.setRecursive(True)
6 datagrid.copy("grid:///testStore/testFiles","/home/tester/myLocalFiles")

Here’s an example to copy down a file from the job deployment area to a resource and then read the
lines of the file:

7 datagrid = DataGrid()
8 datagrid.copy("grid:///!myJob/myFile","myLocalFile")
9 text = open("myLocalFile").readlines()

Here are the same examples without using the shortcut characters. This shows the job “myJob” is
under the “jobs” directory under the Datagrid root:

10 datagrid = DataGrid()
11 datagrid.copy("grid:///jobs/myJob/myFile","myLocalFile")
12 text = open("myLocalFile").readlines()
The ZENworks Orchestrator Datagrid 47

48 Novell

novdocx (en) 11 July 2008
 ZENworks Orchestrator 1.3 Developer Guide and Reference

4
novdocx (en) 11 July 2008
4Orchestrator Job Classifications

This section discusses the core job classifications that can be run by the Novell® ZENworks
Orchestrator Server® on grid objects:

Section 4.1, “Resource Discovery,” on page 49
Section 4.2, “Dynamic Scheduling,” on page 51
Section 4.3, “Workload Management,” on page 52
Section 4.4, “Policy Management,” on page 53
Section 4.5, “Auditing and Accounting Jobs,” on page 55

For more information, see Section 2.1, “Orchestrator Development Architecture,” on page 19.

4.1 Resource Discovery
Resource discovery jobs introspect a resource’s environment to set resource facts stored with the
resource grid object.

As shown in the following figure, resource discovery jobs automatically discover the resource
attributes (fully extensible facts relating to CPU, memory, storage, bandwidth, load, software
inventory, and so forth) of the resources being managed by the ZENworks Orchestrator server. This
enables the Orchestrator Server to automatically detect new resources and to integrate resource
provisioning of on-line resources. The server can also keep account of these facts for managed
resources that are off line.

Figure 4-1 Resource Discovery Overview
Orchestrator Job Classifications 49

50 Novell

novdocx (en) 11 July 2008
For more information, see “Walkthrough: Observe Discovery Jobs Run” in the Novell ZENworks
Orchestrator 1.3 Installation and Getting Started Guide, and “Discovering Virtual Machine Hosts”
in the Novell ZENworks Orchestrator 1.3 Virtual Machine Management Guide.

4.1.1 Provisioning Jobs
Provisioning jobs are included in the Orchestrator VM Management Pack and are used for
interacting with a VM Technology for VM life cycle management and for cloning, moving VMs,
and other management tasks.These type of jobs are called Provisioning Adapters and are members
of the job group called “provisionAdapters.”

For more information, see Section 9.2, “Virtual Machine Management,” on page 92 and “Virtual
Machine Technologies and Actions” in the Novell ZENworks Orchestrator 1.3 Virtual Machine
Management Guide.

4.1.2 Resource Targeting
Resource targeting jobs typically match constraints on the client and server, then test for conditions
required by specific grid resources.

4.1.3 Resource Discovery Jobs
Some of the commonly used resource discovery jobs include:

“auditCleaner.job” on page 50
“cpuInfo.job” on page 50
“demoInfo.job” on page 50
“findApps.job” on page 50
“logRotator.job” on page 50
“osInfo.job” on page 51

auditCleaner.job

Cleans up the audit database, which frequently becomes cluttered because of massive audit files.

cpuInfo.job

Gets CPU information of a resource.

demoInfo.job

Generates the CPU, operating system, and application information for testing.

findApps.job

Finds and reports what applications are installed on the datagrid.

logRotator.job

Rotates server logs.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
osInfo.job

Gets the operating system of a grid resource. On Linux, it reads the /proc/cpuinfo; on Windows, it
reads the registry; on UNIX, it executes uname.

 resource.cpu.mhz (integer) e.g., "800" (in Mhz)
 resource.cpy.vendor (string) e.g. "GenuineIntel"
 resource.cpu.model (string) e.g. "Pentium III"
 resource.cpu.family (string) e.g. "i686"

4.2 Dynamic Scheduling
ZENworks Orchestrator enables you to create jobs that meet the infrastructure scheduling and
resource management requirements of your data center, as illustrated in the following figure.

Figure 4-2 Multi-Dimensional Resource Scheduling Broker

Notice that there are many combinations of constraints and scheduling demands on the system that
can be managed by the highly flexible Orchestrator resource broker.

Policies govern how jobs are dynamically scheduled based on the various job constraints that are
shown in the following figure. Policies are XML files that specify the requirement for all
constraints.

Figure 4-3 Policy-Based Resource Management Relying on Various Constraints

Every resource has abstracted attributes, called facts, that define its operational characteristics.
Orchestrator Job Classifications 51

52 Novell

novdocx (en) 11 July 2008
Figure 4-4 Policy-Based Job Management

Resources that are discovered by the Orchestrator Server (resource broker) are defined by a
resource.facts file (1), which are monitored by service level agreement systems on the broker (2).

See Chapter 8, “Job Scheduling,” on page 87 for examples of scheduling jobs. See also Section 7.7,
“Working with Facts and Constraints,” on page 77.

4.3 Workload Management
The Orchestrator Server uses a provisioning manager to initiate and monitor changes for both online
and offline resources, and also supports physical and virtual servers. It also manages preemption and
stealing (reassignment) of resources by monitoring the system and submitting workload
management jobs as needed.

Figure 4-5 Workload Management
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Depending on the tasks that applications might require, the Orchestrator Server submits the required
jobs to one or more of the connected services to perform the specific tasks as shown in the figure
below.

Figure 4-6 Grid Scheduling

For more information about how grid scheduling works, see the following sections:

Chapter 8, “Job Scheduling,” on page 87
Section 9.6, “Automatically Provisioning a VM Server,” on page 100
Examples: dgtest.job (page 138) and factJunction.job (page 179).

4.4 Policy Management
Policies are the core control system across the Orchestrator Server. Jobs can be written to change the
configuration and behavior of policies, such as pooling of dynamic and virtual resources, managing
system loads, monitoring and controlling user quotas, controlling priorities of resources, scheduling
jobs and resources, controlling failover operations, and other functions.
Orchestrator Job Classifications 53

54 Novell

novdocx (en) 11 July 2008
Figure 4-7 Managing Policies

Policies are XML-based files that aggregate resource facts and constraints used to control resources.
This provides an extensible and highly flexible system that can covers a wide range of user and
resource demands.

Policies are used to enforce quotas, job queuing, resource restrictions, permissions, etc. They can be
set on all objects. The policy example below constrains a job to limit the number of running jobs to
a defined value, but exempts certain users from this limit. All of the jobs that attempt to exceed the
limit are queued until the running jobs count decreases and the constraint passes:

<policy>
 <constraint type="start" reason="too busy">
 <or>
 <lt fact="job.instances.active" value="5" />
 <eq fact="user.name" value="canary" />
 </or>
 </constraint>
</policy>

As illustrated in the following figure, policies can be based on goals, entitlements, quotas, and other
factors, all of which are controlled by jobs.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 4-8 Policy Types and Examples

For more information about policies, see Section 2.2.2, “Policy-Based Management,” on page 31.
See also Section 7.7, “Working with Facts and Constraints,” on page 77.

4.5 Auditing and Accounting Jobs
Jobs also can be created to control reporting, auditing, and costing. All activity is logged to an
ADBMS database and is available for reporting. Your jobs can aggregate cost accounting for
assigned resources and perform resource audit trails.

For more detailed information about the structure of jobs, see “auditCleaner.job” on page 50 and
Chapter 8, “Job Scheduling,” on page 87.
Orchestrator Job Classifications 55

56 Novell

novdocx (en) 11 July 2008
 ZENworks Orchestrator 1.3 Developer Guide and Reference

5
novdocx (en) 11 July 2008
5Developing Policies

This section explains policy concepts required when developing Novell® ZENworks® Orchestrator
jobs:

Section 5.1, “Policy Elements,” on page 57
Section 5.2, “BuildTest Job Examples,” on page 59

5.1 Policy Elements
XML is the representation for Orchestrator Policy elements. A policy can be deployed to the server
and associated with any grid object. The policy element is the root element for policies. Policies
contain constraints and fact definitions for grid objects:

Section 5.1.1, “Constraints,” on page 57
Section 5.1.2, “Facts,” on page 57
Section 5.1.3, “Computed Facts,” on page 58

5.1.1 Constraints
The constraint element defines the selection of grid objects such as resources. The required type
attribute defines the selection type. Supported types are:

Resource
Provision
Allocation
Accept
Start
Continue
vmhost
Repository

Constraints can also be constructed in JDL and in the Java Client SDK. A JDL constructed
constraint can be used for grid search and for scheduling. A Java Client SDK constructed constraint
can only be used for grid object search. See also Section 7.7, “Working with Facts and Constraints,”
on page 77.

5.1.2 Facts
The XML fact element defines a fact to be stored in the grid object's fact namespace. The name, type
and value of the fact are specified as attributes. For list or array fact types, the element tag defines
list or array members. For dictionary fact types, the dict tag defines dictionary members.

See the examples in the directory, /allTypes.policy. This example policy has an XML
representation for all the fact types.
Developing Policies 57

58 Novell

novdocx (en) 11 July 2008
Facts can also be created and modified in JDL and in the Java Client SDK.

5.1.3 Computed Facts
Computed facts are used when you want to run JDL to generate the value for a fact. Although
computed facts are not jobs, they use the same JDL syntax.

To create a new computed fact, you subclass the ComputedFact class with the .cfact
extension. An implementation uses the ComputedFactContext to get the evaluation context.
For more information, see the job structure from the following examples:

ComputedFact (page 207)
ComputedFactContext (page 208)

After the new computed fact is created, you deploy it using the same procedures required for jobs
(using either the zosadmin command line tool or the Orchestrator console).

The following example shows a computed fact that returns the number of active job instances for a
specific job for the current job instance. This fact can be used in an accept or start constraint to limit
how many jobs a user can run in the system. The constraint is added to the job policy in which to
have the limit. In this example, the start constraint uses this fact to limit the number of active jobs for
a user to one:

"""
 <constraint type="start" >
 <lt fact="cfact.activejobs"
 value="1"
 reason="You are only allowed to have 1 job running at a time" />
 </constraint>

Change JOB_TO_CHECK to define which job is to be limited.
"""
JOB_TO_CHECK="quickie"

class activejobs(ComputedFact):

 def compute(self):

 j = self.getContext()
 if j == None:
 # This means computed Fact is executed in a non running

 # job context. e.g., the ZOC fact browser
 print "no job instance"
 return 0
 else:
 # Computed fact is executing in a job context
 user = j.getFact("user.id")
 activejobs = self.getMatrix().getActiveJobs()
 count = 0
 for j in activejobs:
 jobname = j.getFact("job.id")

 # Don't include queued in count !
 state = j.getFact("jobinstance.state.string")
 if jobname == JOB_TO_CHECK \
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 and j.getFact("user.id") == user \
 and (state == "Running" or state == "Starting"):
 count+=1

 jobid = j.getFact("jobinstance.id")
 print "jobid=%s count=%d" % (jobid,count)
 return count

For another computed fact example, see activejobs.cfact (located in the examples/
activejobs.cfact directory).

5.2 BuildTest Job Examples
There are many available facts that you can use in creating your jobs. If you find that you need
specific kinds of information about a resource or a job, such as the load average of a user or the ID
of a job or joblet, chances are that it is already available.

If a fact is not listed, you can create your own facts by creating a <fact> element in the job’s
policy. In addition, you can create a fact directly in the JDL job code. The fact does not need to be an
argument; you can simply create the fact and write it to the fact database for use in specifying
parameters for other objects as well.

If you want to remember something from one loop to the next or make something available to other
objects in the grid, you can set a fact with your own self-defined names.

This section explains a relatively simple working job that performs a set (100) regression tests on
three different platform types. A number of assumptions have been made to simplify this example:

Each regression test is atomic and has no dependencies.
Every resource is preconfigured to run the tests. Typically, the configuration setup is included
as part of the job.
The tests are expressed as line entries in a file. Orchestrator has multiple methods to specify
parameters. This is just one example (/QA/testlists/nightly.dat):

dir c:/windows
dir c:/windows/system32
dir c:/notexist
dir c:/tmp
dir c:/cygwin

To demonstrate the possible functionality for this example, we have invented some policies that
might apply to this example:

Only users running tests are able to use resources owned by their group.
To conserve resources, we want to terminate the test after 50 failures.
Because the system under test requires a license, we will prevent more than three of these
regression tests from running at one time.
To prevent a job backlog, the system limits the number of queued jobs.
To allow the regression test run to tolerate resource failures (for example, unexpected network
disconnections, unexpected reboots, etc.), we enable automatic failover without affecting the
regression run.
Developing Policies 59

60 Novell

novdocx (en) 11 July 2008
5.2.1 buildTest.policy Example
Policies are typically spread over different objects, entities, and groups on the system. However, to
simplify the concept, we have combined all policies into this one example that is directly associated
with the job.

The arguments available to the job are specified in the in the <jobargs> section (lines 1-11).
When the job is run, job arguments are made available as facts to the job instance. The default
values of these arguments can be overridden when the job is invoked.

1 <policy>
2 <jobargs>
3 <fact name="buildId"
4 type="String"
5 value="02-24-06 1705"
6 description="Build Id to show in memo field" />
7 <fact name="testlist"8 type="String"
9 value="/QA/testlists/nightly.dat"
10 description="Path to testlist to use in tests" />
11 </jobargs>

The <job> section (lines 12-25) defines facts that are associated with the job. These facts are used
in other policies or by the JDL logic itself. Typically, these facts are aggregated from inherited
policies.

12 <job>
13 <fact name="max_queue_size"
14 type="Integer"
15 value="10"
16 description="Limit of queued jobs. Any above this limit are not
accepted." />
17 <fact name="max_licenses"
18 type="Integer"
19 value="5"
20 description="License count to limit number of jobs to run
simultaneously. Any above this limit are queued." />
21 <fact name="max_test_failures"
22 type="Integer"
23 value="50"
24 description="To decide to end the job if the number of failures
exceeds a limit" />
25 </job>

The <accept> (line 26), <start> (line 31), and <continue> (line 40) constraints control the
job life cycle and implement the policy outlined in the example. In addition, allowances are made
for “privileged users” (lines 28 and 33) to bypass the accept and start constraints.

26 <constraint type="accept" reason="Maximum number of queued jobs has been
reached">
27 <or>
28 <defined fact="user.privileged_user" />
28 <lt fact="job.instances.queued" factvalue="job.max_queue_size" />
29 </or>
30 </constraint>
31 <constraint type="start">
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
32 <or>
33 <defined fact="user.privileged_user" />
34 <lt fact="job.instances.active" factvalue="job.max_licenses" />
35 </or>
36 </constraint>

The <resource> constraint (lines 37 and 38) ensures that only resources that are members of the
buildtest group are used by this job. As noted earlier, this is normally associated with the user or user
group.

37 <constraint type="resource">
38 <contains fact="resource.groups" value="buildtest" reason="No resources
are in the buildtest group" />
39 </constraint>
40 <constraint type="continue" >
41 <lt fact="jobinstance.test_failures" factvalue="job.max_test_failures"
reason="Reached test failure limit" />
42 </constraint>
</policy>

NOTE: Typically, resource usage restrictions are specified on the user or user group and not on the
job.

5.2.2 buildTest.jdl Example
The following example shows how additional resource constraints representing the three test
platform types are specified in XML format. These also could have been specified in ZENworks
Orchestrator Console.

Setting Resource Constraints

The annotated JDL code represents the job definition, consisting of base Python v2.1 (and libraries)
as well as a large number of added Orchestrator operations that allow interaction with the
Orchestrator Server:

1 import sys,os,time

2 winxp_platform = "<eq fact=\"resource.os.name\" value=\"Windows XP\" />"
3 win2k_platform = "<eq fact=\"resource.os.name\" value=\"Windows 2000\" />"
4 win2003_platform = "<eq fact=\"resource.os.name\" value=\"Windows 2003 Server\"
/>"

Lines 2-4 specify the resource constraints representing the three test platform types (Windows XP,
Windows 2000, and Windows 2003) in XML format. Alternatively, these constraints could be set
programmatically as options in the Orchestrator console.

The job_started_event in line 6 is the first event delivered to the job on the server.The logic
in this method performs some setup and defines the parameter space used to iterate over the tests.

5 class BuildTest(Job):

6 def job_started_event(self):
7 self.total_counts = {"failed":0,"passed":0,"run":0}
8 self.setFact("jobinstance.test_failures",0)
Developing Policies 61

62 Novell

novdocx (en) 11 July 2008
9 self.testlist_fn = self.getFact("jobargs.testlist")
10 self.buildId = self.getFact("jobargs.buildId")
11 self.form_memo(self.total_counts)

12 # Form range of tests based on a testlist file
13 filerange = FileRange(self.testlist_fn)

Parameter spaces (lines 14-16) can be multidimensional but, in this example, they schedule three
units of work (joblets), one for each platform type, each with a parameter space of the range of lines
in the (optionally) supplied test file (lines 21, 24 and 27).

14 # Form ParameterSpace defining Joblet Splitting
15 pspace = ParameterSpace()
16 pspace.appendDimension("cmd",filerange)

17 # Form JobletSet defining execution on resources
18 jobletset = JobletSet()
19 jobletset.setCount(1)
20 jobletset.setJobletClass(BuildTestJoblet)

Within each platform test, a joblet is scheduled for each test line item on each different platform.
After they are deployed, these joblets can be viewed individually in various Orchestrator UI portals.

21 # Launch tests on Windows XP
22 jobletset.setConstraint(winxp_platform)
23 self.schedule(jobletset)

24 # Launch tests on Windows 2000
25 jobletset.setConstraint(win2k_platform)
26 self.schedule(jobletset)

27 # Launch tests on Windows 2003
28 jobletset.setConstraint(win2003_platform)
29 self.schedule(jobletset)

The test_results_event in line 32 is a message handler that is called whenever the joblets
send test results.

30 # Event invoked when a Joblet has completed running tests.
31 #
32 def test_results_event(self,params):
33 self.form_memo(params)

Creating a Memo Field

In line 37, the form_memo method is called to form an informational string to display the running
totals for this test. These totals are displayed in the memo field for the job (visible in all portal,
Orchestrator Console, command line, SDK, and Web interface tools). The memo field is accessed
through setting the String fact jobinstance.memo in line 55.

34 #
35 # Update the totals and write totals to memo field.
36 #
37 def form_memo(self,params):
38 # total_counts will be empty at start
39 m = "Build Test BuildId %s " % (self.buildId)
40 i = 0
41 for key in self.total_counts.keys():
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
42 if params.has_key(key):
43 total = self.total_counts[key]
44 count = params[key]
45 total += count
46 printable_key = str(key).capitalize()
47 if i > 0:
48 m += ", "
48 else:
49 if len(m) > 0:
50 m+= ", "
51 m += printable_key + ": %d" % (total)
52 i += 1
53 self.total_counts[key] = total
54 self.setFact("jobinstance.test_failures",self.total_counts["failed"])
55 self.setFact("jobinstance.memo",m)

Joblet Definition

As previously discussed, a joblet is the logic that is automatically shipped to any resource employed
by this job, as defined in lines 56-80. The joblet_started_event in line 60 mirrors the
job_started_event (line 6) but, of course, runs on a different resource than the server.

The portion of the parameter space allocated to this joblet in line 65-66 represents some portion of
the total test (parameter) space. The exact breakdown of this is under full control of the
administrator/job. Essentially, the size of the “work chunk” in line 67 is a compromise between
overhead and retry convenience.

In this example, each element of the parameter space (a test) in line 76 is executed locally and the
exit code is used to determine pass or failure. (The exit code is often insufficient and additional logic
must be added to analyze generated files, copy results, or to perform other tasks.) A message is then
sent back to the server prior to completion with the result counts.

56 #
57 # Define test execution on a resource.
58 #59 class BuildTestJoblet(Joblet):
60 def joblet_started_event(self):
61 passed = 0
62 failed = 0
63 run = 0
64 # Iterate over parameter space assigned to this Joblet
65 pspace = self.getParameterSpace()
66 while pspace.hasNext():
67 chunk = pspace.next()
68 cmd = chunk["cmd"].strip()
69 rslt = self.run_cmd(cmd)
70 print "rslt=%d cmd=%s" % (rslt,cmd)
71 if rslt == 0:
72 passed +=1
73 else:
74 failed +=1
75 run += 1
76
self.sendEvent("test_results_event",{"passed":passed,"failed":failed,"run":run})
77 def run_cmd(self,cmd):
78 e = Exec()
79 e.setCommand(cmd)
80 return e.execute()
Developing Policies 63

64 Novell

novdocx (en) 11 July 2008
5.2.3 Packaging Job Files
A job package might consist of the following elements:

Job description language (JDL) code (the Python-based script containing the bits to control
jobs).
An optional policy XML file, which applies constraints and other job facts to control jobs.
Constraints and facts are discussed Constraints (page 57) and Facts (page 57).
Any other associated executables or data files that the job requires.

Section 7.2, “JDL Package,” on page 72 provides more information about job elements.

5.2.4 Deploying Packaged Job Files
After jobs are created, you deploy .jdl or multi-element .job files to the Orchestrator Server by
using any of the following methods:

Copy job files into the “hot” Orchestrator Server deployment directory. See “Deploying a
Sample System Job” in the Novell ZENworks Orchestrator 1.3 Administration Guide.
Drag and drop job files using the Orchestrator management console. You can drag browser
attributes and job files to the Orchestrator Toolbox. This serves as a shortcut to its browser view
in the workspace panel. When you double-click a component in the Toolbox, the console
displays that component’s view in the workspace panel.
Use the Orchestrator command line (CLI) tools. This process is discussed in “The Zos
Command Line Tool” in the Novell ZENworks Orchestrator 1.3 Job Management Guide and in
“The zosadmin Command Line Tool” in the Novell ZENworks Orchestrator 1.3 Administration
Guide.

5.2.5 Running Your Jobs
After your jobs are deployed, you can execute them by using the following methods:

Command Line Interface: Nearly all Orchestrator functionality, including deploying and
running jobs, can be performed using the command line tool, as shown in the following
example:

More detailed CLI information is available in the zos command line tool.
Web Portal interface: After Orchestrator is installed, the management console is available
online to edit, deploy, and run all jobs you create. This process is discussed in “Using the
Orchestrator User Portal to Run VM Jobs” in the Novell ZENworks Orchestrator 1.3 Virtual
Machine Management Guide.
Custom Client: The Orchestrator toolkit provides an SDK that provides a custom client that
can invoke your custom jobs. This process is discussed in Appendix B, “Orchestrator Client
SDK,” on page 245.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Built-in Job Scheduler: The Orchestrator Server uses a built-in job scheduler to run deployed
jobs. This process is discussed in Chapter 8, “Job Scheduling,” on page 87.
From Other Jobs: As part of a job workflow, jobs can be invoked from within other jobs. You
integrate these processes within your job scripts as described in the Chapter 8, “Job
Scheduling,” on page 87.

5.2.6 Monitoring Job Results
ZENworks Orchestrator enables you to monitor jobs by using the same methods outlined in
Section 5.2.5, “Running Your Jobs,” on page 64. The following figure shows examples of the status
of the job ray.buildtest.18 using different monitoring interfaces:

CLI Job Monitoring

Figure 5-1 CLI Job Monitoring Example

Notice in the bottom section that job costing metrics also can be monitored, which are quite minimal
in this example. More sophisticated job monitoring is possible. For more information, see
“Verification at the Command Line” and “Verification at the Jobs Monitor” in the Novell ZENworks
Orchestrator 1.3 Installation and Getting Started Guide.
Developing Policies 65

66 Novell

novdocx (en) 11 July 2008
Web-Based Control

Figure 5-2 User Portal Job Monitoring Example

In this example, the job memo field is displayed.

5.2.7 Debugging Jobs
As a brief introduction to the built-in debugging capabilities of ZENworks Orchestrator, the
following figure shows how to find that the buildTest job was not able to find or match any
resources, because resources were not added to the buildtest group as required by the policy.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 5-3 Debugging Jobs Using the Orchestrator Console

The policy debugger shows the blocking constraint, and the tooltip gives the reason why. Dragging
and dropping the resources to the required group allows the job to quickly continue and no restart
was necessary.
Developing Policies 67

68 Novell

novdocx (en) 11 July 2008
 ZENworks Orchestrator 1.3 Developer Guide and Reference

6
novdocx (en) 11 July 2008
6Using the Orchestrator Client SDK

Novell® ZENworks® Orchestrator includes a Java* Client SDK in which you can write Java
applications to remotely manage jobs. The zos command line tool is written using the Client SDK,
as described in Appendix B, “Orchestrator Client SDK,” on page 245. This SDK application can
perform the following operations:

Login and logout to an Orchestrator Server.
Manage the life cycle of a job (run/cancel).
Monitor running jobs (get job status).
Communicate to a running job using events.
Receive events from a running job.
Search for grid objects using constraints.
Retrieve and modify grid object facts.
Datagrid operations (such as copying files to the server and downloading files from the server).

6.1 SDK Requirements
Before you can run the Orchestrator Client SDK, you must perform the following tasks:

1. Install the Orchestrator Client package. For instructions, see “Installing the Agent and Clients
by Using the Product ISO” and “Walkthrough: Launch the ZENworks Orchestrator Console” in
the Novell ZENworks Orchestrator 1.3 Installation and Getting Started Guide.

2. Install JDK 1.4.2 (http://java.sun.com/j2se/1.4.2/download.html).
3. Examine the two example Orchestrator SDK client applications that are included in the

examples directory:
extranetDemo: Provides a sophisticated example of launching multiple jobs and listening
and sending events to running jobs.
cracker: Demonstrates a simple example how to launch a job and listen for events sent
from the job to the client application. .

6.2 Creating an SDK Client
Use the following procedure to create an SDK client in conjunction with the sample Java code (see
Section B.3.2, “ClientAgent,” on page 251):

1 create ClientAgent instance:

 // example zos server host is "myserver"

 ClientAgent clientAgent = ClientAgentFactory.newClientAgent("myserver");

2 Use the following user and password example to log in to the Orchestrator Server (see
“Walkthrough: Log in to the ZENworks Orchestrator Server”) :
Using the Orchestrator Client SDK 69

http://java.sun.com/j2se/1.4.2/download.html

70 Novell

novdocx (en) 11 July 2008
 Credential credential =
CredentialFactory.newPasswordCredential(username,password);

 clientAgent.login(credential);

3 Run the server operations; in this case, it is the quickie.jbl example job (which must have been
previously deployed) with no job arguments:

 String jobID = clientAgent.runJob("quickie",null)

4 (Optional) Listen for server events using the AgentListener interface:

 clientAgent.addAgentListener(this);

4a Register with the Orchestrator Server to receive job events for the job you started.

clientAgent.getMessages(jobID);

5 Log out of the server:

 clientAgent.logout()
 ZENworks Orchestrator 1.3 Developer Guide and Reference

7
novdocx (en) 11 July 2008
7Job Architecture

The ZENworks® Orchestrator job scheduling manager is a sophisticated scheduling engine that
maintains high performance network efficiency and quality user service when running jobs on the
grid. Such efficiencies are managed through a set of grid component facts that operate in
conjunction with job constraints. Facts and constraints operate together like a filter system to
maintain both the administrator’s goal of high quality of service and the user’s goal to run fast,
inexpensive jobs.

This section explains the following job architectural concepts:

Section 7.1, “Understanding JDL,” on page 71
Section 7.2, “JDL Package,” on page 72
Section 7.3, “Job Class,” on page 73
Section 7.4, “Job Invocation,” on page 75
Section 7.5, “Deploying Jobs,” on page 75
Section 7.6, “Starting Orchestrator Jobs,” on page 76
Section 7.7, “Working with Facts and Constraints,” on page 77
Section 7.8, “Using Facts in Job Scripts,” on page 79
Section 7.9, “Using Other Grid Objects,” on page 80
Section 7.10, “Communicating Through Job Events,” on page 80
Section 7.11, “Executing Local Programs,” on page 81
Section 7.12, “Logging and Debugging,” on page 84
Section 7.13, “Improving Job and Joblet Robustness,” on page 85

7.1 Understanding JDL
The Orchestrator Grid Management system uses an embedded Python-based language for
describing jobs (called the Job Definition Language or JDL). This scripting language is used to
control the job flow, request resources, handle events and generally interact with the Grid server as
jobs proceed.

Jobs run in an environment that expects facts (information) to exist about available resources. These
facts are either set up manually through configuration or automatically discovered via discovery
jobs. Both the end-user jobs and the discovery jobs have the same structure and language. The only
difference is in how they are scheduled.

The job JDL controls the complete life cycle of the job. JDL is a scripting language, so it does not
provide compile-time type checking. There are no checks for infinite loops, although various
precautions are available to protect against runaway jobs, including job and joblet timeouts,
maximum resource consumption, quotas, and limited low-priority JDL thread execution.

As noted, the JDL language is based on the industry standard Python language, which was chosen
because of its widespread use for test script writing in QA departments, its performance, its
readability of code, and ease to learn.
Job Architecture 71

72 Novell

novdocx (en) 11 July 2008
The Python language has all the familiar looping and conditional operations as well as some
powerful operations. There are various books on the language including O’Reilly’s Python in a
Nutshell and Learning Python. Online resources are available at http://www.python.org (http://
www.python.org)

Within the Orchestrator Server and grid jobs, JDL not only adds a suite of new commands but also
provides an event-oriented programming environment. A job is notified of every state change or
activity by calling an appropriately named event handler method.

A job only defines handlers for events it is interested in. In addition to built-in events (such as,
joblet_started_event, job_completed_event, job_cancelled_event, and
job_started_event) it can define handlers for custom events caused by incoming messages.
For example, if a job (Job (page 222) class) defines a method as follows:

 def my_custom_event(self, job, params):
 print \u201cGot a my_custom event carrying ", params)

And the joblet (Joblet (page 224) class) sends an event/message as follows:

 self.sendEvent(“my_custom”, {“arg1”:”one”})

The following line is added to the job log:

 Got a my_custom event carrying arg1=”one”

JDL can also define timer events (periodic and one-time) with similar event handlers.

Each event handler can run in a separate thread for parallel execution or can be synchronized to a
single thread. A separate thread results in better performance, but also incurs the development
expense of ensuring that shared data structures are thread safe.

7.2 JDL Package
The job package consists of the following elements:

Job Description Language (JDL) code, consisting of a Python-based script containing the bits
to control jobs.
An optional policy XML file, which applies constraints and other job facts to control jobs.
Any other associated executables or data files that the job requires.

The cracker.jdl sample job, for example, includes a set of Java code that discovers the user
password in every configured agent before the Java class is run. Or, many discovery jobs, which
measure performance of Web servers or monitor any other applications, might include resource
discovery utilities that enable resource discovery.

Jobs include all of the code, policy, and data elements necessary to execute specific, predetermined
tasks administered either through the ZENworks Orchestrator Console user interface or from the
command line. Because each job has specific, predefined elements, jobs can be scripted and
delivered to any agent, which ultimately can lead to automating almost any datacenter task.

7.2.1 .sched Files
Job packages also can contain optional XML .sched files that describe the scheduling
requirements for any job. This file defines when the job is run.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.python.org

novdocx (en) 11 July 2008
For example, jobs might be run whenever an agent starts up, which is defined in the .shed file. The
discovery job “osInfo.job” on page 51 has a schedule XML file that specifies to always run a
specified job whenever a specific resource is started and becomes available.

7.3 Job Class
The Job class is a representation of a running job instance. This class defines functions for
interacting with the server, including handling notification of job state transitions, child job
submission, managing joblets and for receiving and sending events from resources and from clients.
A job writer defines a subclass of the job class and uses the methods available on the job class for
scheduling joblets and event processing.

For more information about the methods this class uses, see Section 7.3.1, “Job State Transition
Events,” on page 73.

The following example demonstrates a job that schedules a single joblet to run on one resource:

 class Simple(Job):
 def job_started_event(self):
 self.schedule(SimpleJoblet)

 class SimpleJoblet(Joblet):
 def joblet_started_event(self):
 print "Hello from Joblet"

For the above example, the class Simple is instantiated on the server when a job is run either by
client tools or by the job scheduler. When a job transitions to the started state, the method
job_started_event is invoked. Here the job_started_event invokes the base class method
schedule() to create a single joblet and schedule the joblet to run on a resource. The
SimpleJoblet class is instantiated and run on a resource.

7.3.1 Job State Transition Events
Each job has a set of events that are invoked at the state transitions of a job. On the starting state of a
job, the job_started_event is always invoked.

The following is a list of job events that are invoked upon job state transitions:

 job_started_event
 job_completed_event
 job_cancelled_event
 job_failed_event
 job_paused_event
 job_resumed_event

The following is a list of job events that are invoked upon child job state transitions:

 child_job_started_event
 child_job_completed_event
 child_job_cancelled_event
 child_job_failed_event

The following is a list of provisioner events that are invoked upon provisioner state transitions:
Job Architecture 73

74 Novell

novdocx (en) 11 July 2008
 provisioner_completed_event
 provisioner_cancelled_event
 provisioner_failed_event

The following is a list of joblet events that are invoked as the joblet state transitions:

 joblet_started_event
 joblet_completed_event
 joblet_failed_event
 joblet_cancelled_event
 joblet_retry_event

NOTE: *Only the job_started_event is required; other events are optional.

7.3.2 Handling Custom Events
A job writer can also handle and invoke custom events within a job. Events can come from clients,
other jobs, and from joblets.

The following example defines an event handler named mycustom_event in a job:

 class Simple(Job):
 def job_started_event(self):
 ...

 def mycustom_event(self,params):
 dir = params["directory_to_list"]
 self.schedule(MyJoblet,{ "dir" : dir })

In this example, the event retrieves a element from the params dictionary that is supplied to every
custom event. The dictionary is optionally filled by the caller of the event.

The following example invokes the custom event named mycustom_event from the Orchestrator
client command line tool:

 zos event mycustom_event directory_to_list="/tmp"

In this example, a message is sent from the client tool to the job running on the server.The following
example invokes the same custom event from a joblet:

 class SimpleJoblet(Joblet):
 def joblet_started_event(self):
 ...
 self.sendEvent("mycustom_event", { ... })

In this example, a message is sent from the joblet running on a resource to the job running on the
server. The running job has access to a factset which is the aggregation of the job instance factset
(jobinstance.*), the deployed job factset (job.*, jobargs.*), the User factset (user.*), the Matrix
factset (matrix.*) and any jobargs or policy facts supplied at the time the job is started.

Fact values are retrieved using the GridObjectInfo (page 219) functions that the job class inherits.

The following example retrieves the value of the job instance fact state.string from the jobinstance
namespace:
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 class Simple(Job):
 def job_started_event(self):
 jobstate = self.getFact("jobinstance.state.string")
 print "job state=%s" % (jobstate)

7.4 Job Invocation
Jobs can be started using either the zos command line tool, scheduling through a .shed file, or
manually through the ZENworks® Orchestrator Console. Internally, when a job is invoked, an XML
file is created. It can be deployed immediately or it can be scheduled for later deployment,
depending upon the requirements of the job.

Jobs also can be started within a job. For example, you might have a job that contains JDL code to
run a secondary job. Jobs also can be started through the Web portal.

Rather than running jobs immediately, there are many benefits to using the Job Scheduling Manager:

Higher priority jobs can be run first and jump ahead in the scheduling priority band.
Jobs can be run on the least costly node resources when accelerated performance is not as
critical.
Jobs can be run on specific types of hardware.
User classes can be defined to indicate different priority levels for running jobs.

7.5 Deploying Jobs
A job must be deployed to the Orchestrator Server before it can be run. Deployment to the server is
done in either of the following ways:

Section 7.5.1, “Using the Orchestrator Console,” on page 75
Section 7.5.2, “Using the ZOSADMIN Command Line Tool,” on page 75

7.5.1 Using the Orchestrator Console
1 In the Actions menu, click Deploy Job.
2 For additional deployment details, see “Walkthrough: Deploy a Sample Job”.

7.5.2 Using the ZOSADMIN Command Line Tool
From the CLI, you can deploy a component file (.job, .jdl, .sar) or refer to a directory
containing job components.

.job files are Java jar archives containing .jdl, .policy, .sched and any other files required
by your job. A .sar file is a Java jar archive for containing multiple jobs and policies.

1 To deploy a .job file from the command line, enter the following command:

>zosadmin deploy <myjob>.job

2 To deploy a job from a directory where the directory /jobs/myjob contains .jdl,
.policy, .sched, and any other files required by your job, enter the following command:

>zosadmin deploy /jobs/myjob
Job Architecture 75

76 Novell

novdocx (en) 11 July 2008
Deploying from a directory is useful if you want to explode an existing job or .sar file and
redeploy the job components without putting the job back together as a .job or .sar file.

3 Copy the job file into the “hot” deploy directory by entering the following command:

>cp <install dir>/examples/whoami.job <install dir>/deploy

As part of an iterative process, you can re-deploy a job from a file or a directory again after specified
local changes are made to the job file. You can also undeploy a job out of the system if you are done
with it. Use zosadmin redeploy and zosadmin undeploy to re-deploy and undeploy jobs,
respectively.

A typical approach to designing, deploying, and running a job is as follows:

1. Identify and outline the job tasks you want the Orchestrator Server to perform.
2. Use the preconfigured JDL files for specific tasks listed in Appendix A, “Orchestrator Job

Classes and JDL Syntax,” on page 197.
3. To configure jobs, edit the JDL file with an external text editor.
4. Repackage the job as a .jar file.
5. Run the ZOS administration tool to redeploy the packaged job into the Orchestrator Server.
6. Run the job using the zos command line tool.
7. Monitor the results of the job in the ZENworks Orchestrator Console.

Another method to deploy jobs is to edit JDL files through the Orchestrator Console. The console
has a text editor that enables you to make changes directly in the JDL file as it is stored on the server
ready to deploy. After changes are made and the file is saved using the Orchestrator Console, you
simply re-run the job without redeploying it. The procedure is useful when you need to fix typos in
the JDL file or have minor changes to make in the job functionality.

NOTE: Redeploying a job overwrites any job that has been previously saved on the Orchestrator
Server. The Orchestrator console has a Save File menu option if you want to preserve JDL
modifications you made using ZOC.

7.6 Starting Orchestrator Jobs
Jobs can be started by using any of the following options:

Running jobs from the ZOS command line (see “The zosadmin Command Line Tool”).
Running jobs from the Orchestrator scheduler (see “Understanding the Orchestrator Job
Scheduler”).
Running jobs from Web applications (see “Using the ZENworks Orchestrator User Portal”).
Running jobs from within jobs (see “Using Facts in Job Scripts” on page 79).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
7.7 Working with Facts and Constraints
You can incorporate facts and constraints into the custom jobs you create to manage your data center
resources using Orchestrator. You should already be familiar with the concepts related to controlling
jobs using job facts and constraints. For more information, see the following JDL links:

Job (page 222)
Joblet (page 224)

This section contains the following topics:

Section 7.7.1, “Grid Objects and Facts,” on page 77
Section 7.7.2, “Defining Job Elements,” on page 77
Section 7.7.3, “Job Arguments and Parameter Lists,” on page 78

7.7.1 Grid Objects and Facts
Every resource and service discovered in an Orchestrator-enabled network is identified and
abstracted as an object. Within the Orchestrator management framework, objects are stored within
an addressable database called a grid. Every grid object has an associated set of facts and constraints
that define the properties and characteristics of either physical or virtual resources. In essence, by
building, deploying, and running jobs on the Orchestrator Server, you can individually change the
functionality of any and all system resources by managing an object’s facts and constraints.

The components that have facts include resources, users, jobs, repositories, and vmhosts. The grid
server assigns default values to each of the component facts, although they can be changed at
anytime by the administrator unless they are read-only.

However, the developer desires certain constraints to be used for a job and might specify these in the
policy. These comprise a set of logical clauses and operators that are compared with the respective
component’s fact values when the job is run by the Job Scheduling Manager.

Remember, all properties appear in the job context, which is an environment where constraints are
evaluated. These constraints provide a multilevel filter for a job in order to ensure the best quality of
service the grid can provide.

7.7.2 Defining Job Elements
When you deploy a job, you can include an XML policy file that defines constraints and facts.
Because every job is a grid object with its own associated set of facts (job.id, etc.), it already has a
set of predefined facts, so jobs can also be controlled by changing job arguments at run time.

As a job writer, you define the set of job arguments in the job args fact space. Your goal in writing
a job is to define the specific elements a job user is permitted to change. These job argument facts
are defined in the job XML policy for every given job.

The job argument fact values are passed to a job when the job is run. Consequently, the Orchestrator
Server run command passes in the job arguments. Similarly, for the job scheduler, you can define
which job arguments you want to schedule or run a job. You can also specify job arguments for the
Web portal.
Job Architecture 77

78 Novell

novdocx (en) 11 July 2008
For example, in the following quickie.job example, the number of joblets allowed to run and
the amount of sleep time between running joblets are set by the arguments numJoblets and
sleeptime as defined in the policy file for the job. If no job arguments are defined, the client
cannot affect the job:

...
 # Launch the joblets
 numJoblets = self.getFact("jobargs.numJoblets")
 print 'Launching ', numJoblets, ' joblets'

 self.schedule(quickieJoblet, numJoblets)

class quickieJoblet(Joblet):

 def joblet_started_event(self):
 sleeptime = self.getFact("jobargs.sleeptime")
time.sleep(sleeptime)

To view the complete example, see quickie.job (page 133).

As noted, when running a job, you can pass in a policy file, which is another method the client can
use to control job behavior. Policy files can pass in additional constraints to the job, such as how a
resource might be selected or how the job runs. The policy file is an XML file defined with the
.policy extension.

For example, as shown below, you can pass in a policy for the job named quickie, with an
additional constraint to limit the chosen resources to those with a Linux OS. Suppose a policy file
name linux.policy in the directory named /mypolicies with this content:

<constraint type=?resource?> <eq fact="resource.os.family" value="linux" /></
constraint>

To start the quickie job using the additional policy, you would enter the following command:

>zos run quickie --policyfile=/mypolicies/linux.policy

7.7.3 Job Arguments and Parameter Lists
Part of a job’s static definition might include job arguments. A job argument defines what values can
be passed in when a job is invoked. This allows the developer to statically define and control how a
job behaves, while the administrator can modify policy values.

You define job arguments in an XML policy file named with the same base name as the job. The
example job cracker.jdl, for example, has an associated policy file named
cracker.policy. The cracker.policy file contains entries for the <jobargs> namespace,
as shown in the following partial example from cracker.policy.

 <jobargs>
 <fact name="cryptpw"
 type="String"
 description="Password of abc"
 value="4B3lzcNG/Yx7E"
 />
 <fact name="joblets"
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 type="Integer"
 description="joblets to run"
 value="100"
 />
 </jobargs>

The above policy defines two facts in the jobargs namespace for the cracker job. One is a String
fact named cryptpw with a default value. The second jobargs fact is an integer named
joblets. Both of these facts have default values so they do not require been set on job invocation.
If the default value was omitted, then job would require that the two facts be set on job invocation.
The job will not start unless all required job argument facts are supplied at job invocation. The
default values of job argument facts can be overridden at job invocation. Job arguments are passed
to a job when the job is invoked. This is done in one of the following ways:

From the ZOS run command from the CLI, as shown in the following example:

>zos run cracker cryptpw="dkslsl"

From within a JDL job script when invoking a child job, as shown in the following job JDL
fragment:

self.runjob("cracker", { "cryptpw" : "asdfa" })

From the Orchestrator scheduler, either with the Orchestrator console or by a .sched file.

7.8 Using Facts in Job Scripts
Facts can be retrieved, compared against, and written to (if not read-only) from within jobs. Every
grid object has a set of accessor and setter JDL functions. For example, to retrieve the cryptpw job
argument fact in the job example listed in “Job Arguments and Parameter Lists” on page 78, you
would write the following JDL code:

1 def job_started_event(self):
2 pw = self.getFact("jobargs.cryptpw")

In line 2, the function getFact() retrieves the value of the job argument fact. getFact() is
invoked on the job instance grid object.

The following set of JDL grid object functions retrieve facts:

getFact()
factExists()
getFactLastModified()
getFactNames()

The following set of JDL grid object functions modify fact values (if they are not read-only) and
remove facts (if they are not deleteable):

setFact
setDateFact
setTimeFact
setArrayFact
setBooleanArrayFact
Job Architecture 79

80 Novell

novdocx (en) 11 July 2008
setDateArrayFact
setIntegerArrayFact
setTimeArrayFact
setStringArrayFact
deleteFact

For more complete information on these fact values, see GridObjectInfo (page 219).

7.9 Using Other Grid Objects
Grid objects can be retrieved using jobs. This is done when facts from other objects are needed for
job decision processing, or when joblets are executed on a resource.

The MatrixInfo (page 229) grid object represents the system and from the MatrixInfo object, you
can retrieve other grid objects in the system. For example, to retrieve the resource grid object named
webserver and a fact named resource.id from this object, you would enter the following
JDL code:

 webserver = getMatrix().getGridObject(TYPE_RESOURCE,"webserver")
 id = webserver.getFact("resource.id")

The MatrixInfo grid object also provides functions for creating other grid objects. For more
complete information about these functions, see MatrixInfo (page 229).

7.10 Communicating Through Job Events
JDL events are how the server communicates job state transitions to your job. The required
job_started_event is always invoked when the job transitions to the starting state.

Likewise, all the other state transitions have JDL equivalents that can be optionally implemented in
your job. For example, the joblet_completed_event is invoked when a joblet has
transitioned to completed. You could implement joblet_completed_event to launch another
job or joblet or send a custom event to a Client, another job, or another joblet.

You can also use your own custom events for communicating between Client, job, child jobs and
joblets.

Every partition of a job (client, job, joblet, child jobs) can communicate with each other using
Events. Events are messages that are communicated to each of the job partitions. For example, a
joblet running on a resource can send an event to the job portion running on the server to
communicate the completion of a stage of operation.

A job can send an event to a Java Client signalling a stage completion or just to send a log message
to display in a client GUI.

Every event carries a dictionary as a payload. You can put any key/values you want to fulfill the
requirements of your communication. The dictionary can be empty.

For more information about events are invoked at the state transitions of a job, see Job (page 222)
and Section A.7, “Joblet State Values,” on page 200.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
7.10.1 Sending and Receiving Events
To send an event from a joblet to a job running on a server, you would input the following:

1 The portion in the joblet JDL to send the event:

self.sendEvent("myevent", { "message": "hello from joblet" })

2 The portion in job JDL to receive the event:

def myevent(self,params):
 print "hello from myevent. params=",params

To send an event from a job running on the server to a client, you would input the following:

self.sendClientEvent("notifyClient", { "log" : "Web server installation completed"
})

In your Java client, you must implement AgentListener and check for an Event message.

For testing, you can use the zos run ... --listen option to print events from the server.For
additional details about the sendEvent() and sendClientEvent() methods in the Job
(page 222) and Joblet (page 224) documentation.

7.10.2 Synchronization
By default, no synchronization occurs on job events. However, synchronization is necessary when
you update the same grid objects from multiple events.

In that case, you must put a synchronization wrapper around the critical section you want to protect.
The following JDL script is how this is done:

1 import synchronize
2 def objects_discovered_event(self, params):
3 print "hello"
4 objects_discovered_event =
synchronize.make_synchronized(objects_discovered_event)

Line 1 specifies to use the synchronization wrapper, which requires you to import the synchronize
package.

Lines 2 and 3 provide the normal definition to an event in your job, while line 4 wraps the function
definition with a synchronized wrapper.

7.11 Executing Local Programs
Running local programs is one of the main reasons for scheduling joblets on resources. Although
you are not allowed to run local programs on the server side job portion of JDL, there are two ways
to run local programs in a joblet:

1 Use the built-in system() function.
This function is used for simple executions requiring no output or process handling. It simply
runs the supplied string as a shell command on the resource and writes stdout and stderr
to the job log.

2 Use the Exec JDL class.
Job Architecture 81

82 Novell

novdocx (en) 11 July 2008
The Exec class provides flexibility in how to invoke executables, to process the output, and to
manage the process once running. There is provision for controlling stdin, stdout, and
stderr values. stdout and stderr can be redirected to a file, to the job log, or to a stream
object.
Exec provides control of how the local program is run. You can choose to run as the agent user
or the job user. The default is to run as the job user, but fallback to agent user if the job user
does not exist on the resource.
For more information, see Exec (page 215).

7.11.1 Output Handling
The Exec (page 215) function provides controls for specifying how to handle stdout out
stderr. By default, Exec discards the output.

The following example runs a program that directs stdout and stderr to the job log:

 e = Exec()
 e.setShellCommand(cmd)
 e.writeStdoutToLog()
 e.writeStderrToLog()
 e.execute()

The following example runs a program that directs stdout and stderr to files and opens the
stdout file if there is no error in execution:

 e = Exec()
 e.setCommand("ps -aef")
 e.setStdoutFile("/tmp/ps.out")
 e.setStderrFile("/tmp/ps.err")
 result = e.execute()
 if result == 0:
 output = open("/tmp/ps.out").read()
 print output

7.11.2 Local Users
You can choose to run local programs and have file operations done as the agent user or the job user.
The default is to run as the job user, but fallback to agent user if the job user does not exist on the
resource. These controls are specified on the job. The job.joblet.runtype fact specifies how file and
executable operations run in the joblet in behalf of the job user, or not.

The choices for job.joblet.runtype are defined in the following table:
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Table 7-1 Job Run Type Values

There is also a fact on the resource grid object that can override the job.joblet.runtype fact.
The fact resource.agent.config.exec.asagentuseronly on the resource grid object
can overwrite the job.joblet.runtype fact.

This ability to run as the job user is supported by the enhanced exec feature of the Orchestrator
agent. A resource might not support the Orchestrator enhanced execution of running as job users. If
the capability is not supported, the fact resource.agent.config.exec.enhancedused is
False. This fact is provided so you can create a resource or allocation constraint to exclude such a
resource if your grid mixes resource with/without the enhanced exec support and your job requires
enhanced exec capabilities.

7.11.3 Safety and Failure Handling
An exception in JDL will fail the job. By default, an exception in the joblet will fail the joblet. The
job.joblet.* facts provide controls on how many times a failure will fail the joblet. For more
information, see Section 7.13, “Improving Job and Joblet Robustness,” on page 85.

 try :
 < JDL >
 except:
 exc_type, exc_value, exc_traceback = sys.exc_info()
 print "Exception:", exc_type, exc_value

JDL also provides the fail() function on the Job and Joblet class for failing a job and joblet. The
fail() function takes an optional reason message.

You would use fail() when you detect an error condition and wish to end the job or joblet
immediately. Usage of the joblet fail() fails the currently running instance of the joblet. The
actual failed state of the joblet occurs when the maximum number of retries has been reached.

Option Description

RunAsJobUserFallingBackToNodeUser Default. This means if the job user exists as a user on the
resource, then executable and file operations is done on
behalf of that user. By falling back, this means that if the job
user does not exist, the agent will still execute the joblet
executable and file operation as the agent user. If the
executable or file operation still has a permission failure, then
the agent user is not allowed to run the local program or do the
file operation.

RunOnlyAsJobUser This means resource can only run the executable or file
operation as the job user and will fail immediately if the job
user does not exist on the resource. You want to use this
mode of operation if you wish to strictly enforce execution and
file ownership. You must have your resource setup with NIS or
other naming scheme so that your users will exist on the
resource.

RunOnlyAsNodeUser This means the resource will only run executables and do file
operations as the agent user.
Job Architecture 83

84 Novell

novdocx (en) 11 July 2008
7.12 Logging and Debugging
The following sections show some examples how jobs can be logged and debugged:

Section 7.12.1, “Creating a Job Memo,” on page 84
Section 7.12.2, “Tracing,” on page 85

7.12.1 Creating a Job Memo
This job example shows how to set a brief memo visible in the Orchestrator console.

In the job section of this example (lines 4-8), the fact name (jobinstance.memo) is set by job
instance.

1 JOB:
2 fact name "jobinstance.memo"
3
4 class MyJob(Job):
5 def job_started_event(self):
6 numJoblets = 2
7 self.setFact("jobinstance.memo", "Running MyJob Scheduling + " +
numJoblets + " joblets")
8 self.schedule(MyJoblet,numJoblets)

In the joblet section of this example, the face name (joblet.memo, line 10), is set by the joblet
instance and consists of a brief memo for each joblet. This typically is used for providing detailed
explanations, such as what executable is being run.

9 JOBLET:
10 fact name "joblet.memo" (Set by joblet instance)
11

In lines 12-19, the name of the joblet is specified. This is typically a simple word, which is displayed
in the console joblet column view.

12 fact name "joblet.instancename"
13
14
15 class MyJoblet(Joblet):
16 def joblet_started_event(self):
17 self.setFact("joblet.memo", "Running MyJoblet on " +
self.getFact("resource.id"))
18
19 self.setFact("joblet.instancename", "webserver")
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 7-1 Example of How a ‘logexample’ Name Appears in the Orchestrator Console

7.12.2 Tracing
There are two facts on the job grid object to turn on /off tracing. The tracing fact writes a message to
the job log when a job and/or joblet event is entered and exited.The facts are job.tracing and
job.joblet.tracing. You can turn these on via the Orchestrator console or from the zos
run command tool.

7.13 Improving Job and Joblet Robustness
The job and joblet grid objects provide several facts for controlling the robustness of job and joblet
operation.

The default setting of these facts is to fail the job on first error, since failures are typical during the
development phase. Depending on your job requirements, you adjust the retry maximum on the fact
to enable your joblets either to failover or to retry.

The fact job.joblet.maxretry defaults to 0, which means the joblet is not retried. On first
failure, the joblet is considered failed. This, in turn, fails the job. However, after you have written
and tested your job, you should introduce fault tolerance to the joblet.

For example, suppose you know that your resource application might occasionally timeout due to
network or other resource problems. Therefore, you might want to introduce the following behavior
by setting facts appropriately:

On timeout of 60 seconds, retry the joblet.
Retry a maximum of two times. This may cause a retry on another resource matching your
resource and allocation constraints.
On the third timeout, fail the joblet.

To configure this setup, you use the following facts in either the job policy (using the Orchestrator
console to edit the facts directly) or within the job itself:

 job.joblet.timeout set to 60 job.joblet.maxretry set to 2
Job Architecture 85

86 Novell

novdocx (en) 11 July 2008
In addition to timeout, there are different kinds of joblet failures for which you can set the maximum
retry. There are forced (job errors) and unforced connection errors. For example, an error condition
detected by the JDL code (forced) might require more retries than a network error, which might
cause resource disconnections. In the connection failure case, you might want to lower the retry
limit because you probably do not want a badly setup resource with connection problems to keep
retrying and getting work.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

8
novdocx (en) 11 July 2008
8Job Scheduling

Novell® ZENworks® Orchestrator schedules jobs either manually using the Job Scheduler or
programatically using the Job Description Language (JDL). This section contains the following
topics:

Section 8.1, “Job Scheduler GUI,” on page 87
Section 8.2, “Schedule Files,” on page 88
Section 8.3, “Scheduling with Constraints,” on page 89

8.1 Job Scheduler GUI
After ZENworks Orchestrator is enabled with a license, users have access to a built-in job
Scheduler. This GUI interface allows jobs to be started periodically based upon user scheduling or
when various system events occur.

The following figure illustrates the job Scheduler, with seven jobs staged in the main Scheduler
panel.

Figure 8-1 The ZENworks Orchestrator Scheduler GUI

Jobs are individually submitted and managed using the Job Scheduler as discussed in
“Understanding the Orchestrator Job Scheduler” in the Novell ZENworks Orchestrator 1.3
Administration Guide and in “Using the ZENworks Orchestrator User Portal” in the Novell
ZENworks Orchestrator 1.3 Job Management Guide.
Job Scheduling 87

88 Novell

novdocx (en) 11 July 2008
8.2 Schedule Files
In addition to using the Job Scheduler GUI, developers can also write XML files to schedule jobs to
run when triggered by specific events.These files are designated using the .sched extension and
can be included as part of the job archive file.

Everything that you do manually in the Job Scheduler can be automated by creating a .sched
XML script as part of a job. The XML file enables you to package system and job scheduling logic
without using the GUI. This includes setting up cron triggers (for example, running a job at specified
intervals) and other triggers that respond to system events, such as startup (login).

For example, the osInfo discovery job, which probes a resource for its operating system
information, is packaged with a schedule file, as shown in the “osInfo.sched Example” on page 88.
See also Section 8.2.2, “Cron Trigger Example,” on page 89.

This section includes the following information:

Section 8.2.1, “osInfo.sched Example,” on page 88
Section 8.2.2, “Cron Trigger Example,” on page 89

8.2.1 osInfo.sched Example
A schedule file can be packaged with a job in a .job file or independently deployed to a
Orchestrator server. Because the XML file defines the job Schedule programatically outside of the
Orchestrator console, packaging these scripts into jobs is typically a developer task.

The osinfo.sched file is packaged with the osInfo discovery job, which is deployed as part of
the base server. Its purpose is to trigger a run of the osInfo job on a resource when the resource
comes on line as it logs into the server.

The following shows the syntax of the schedule file that wraps the job:

1<schedule>
2 <job name="osinfo" job="osInfo" user="zosSystem" priority="high" >
3 <resourcediscovery/>
4 <active/>
5 <runonresourcestart/>
6 <runoneachresource/>
7 </job>
8 </schedule>

Line 1: Starts the new schedule definition.

Line 2: Defines a new schedule named osinfo, which is used to schedule a run of the job osInfo.
If the job (in this case, osinfo) is not deployed, the deployment returns a “Job is not deployed”
error. The user parameter identifies what user to run the osinfo job, while priority specifies a
priority at which to run the job.

Line 3: Instructs the schedule to run the job as a resource discovery job.

Line 4: Activates the job after it is deployed. The schedule default is not active.

Line 5: Runs osInfo job when the resource logs into the server.

Line 6: Specifies to run a single joblet on each resource.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
8.2.2 Cron Trigger Example
The following example shows the syntax of a schedule file that has two cron triggers for scheduling
a job:

1<schedule>
2 <trigger name="NightlyReportTrigger" description="CRON fire at 4 am every
day">
 <cron value="0 0 4 * * ?" />
 </trigger>
3 <trigger name="DailyReportTrigger" description="CRON fire at 4 pm every day">
 <cron value="0 0 16 * * ?" />
 </trigger>
4 <job name="Report" job="ReportJob" user="manager">
5 <jobargs>
 <fact name="fullreport" type="Boolean" value="false" />
 </jobargs>
6 <active/>
7 <triggers value="NightlyReportTrigger" />
8 <triggers value="DailyReportTrigger" />
9 </job>
10 </schedule>

Line 1: Starts the new schedule definition.

Lines 2-3: Defines two new triggers to fire at 4 a.m. and 4 p.m. every day.

Line 4: Defines a new scheduled task named Report that is used to schedule a run of the job
ReportJob.

Line 5: Specifies the job parameters for the scheduled job.

Line 6: Activates the job after it is deployed. The schedule default is not active.

Lines 7-8: Defines that the schedule uses the two specified triggers.

A schedule file can be packaged either within a .job archive alongside the .jdl file or
independently deployed using the zosadmin command line utility.

8.3 Scheduling with Constraints
The constraint specification of the policies is comprised of a set of logical clauses and operators that
compare property names and values. The grid server defines most of these properties, but they can
also be arbitrarily extended by the user/developer.

All properties appear in the job context, which is an environment where constraints are evaluated.
Compound clauses can be created by logical concatenation of earlier clauses. A rich set of
constraints can thus be written in the policies to describe the needs of a particular job. However, this
is only part of the picture.

Constraints can also be set by an administrator via deployed policies, and additional constraints can
be specified by jobs to further restrict a particular job instance. The figure below shows the complete
process employed by the Orchestrator Server to constrain and schedule jobs.

When a user issues a work request, the user facts (user.* facts) and job facts (job.* facts) are added
to the job context. The server also makes all available resource facts (resource.* facts) visible by
reference. This set of properties creates an environment in which constraints can be executed. The
Job Scheduling 89

90 Novell

novdocx (en) 11 July 2008
scheduler applies a logic ANDing of job constraints (specified in the policies), grid policy
constraints (set on the server), optionally additional user defined constraints specified on job
submission, and optional constraints specified by the resources.

This procedure results in a list of matching resources. The Orchestrator solution returns three lists:

Available resources
Preemptable resources (nodes running lower priority jobs that could be suspended)
Resources that could be “stolen” (nodes running lower-priority jobs that could be killed)

These lists are then passed to the resource allocation logic where, given the possible resources, the
ordered list of desired resources is returned together with information on the minimum acceptable
allocation. The scheduler uses this information to appropriate resources for all jobs within the same
priority group. Because the scheduler is continually re-evaluating the allocation of resources, the job
policies forms part of the schedulers real-time algorithm, thus providing an extremely versatile and
powerful scheduling mechanism.

Figure 8-2 Job Scheduling Priority

Although job scheduling might appear complex, it is very easy to use for an end user. For example,
a job developer might write just a few lines of policy code to describe a job to require a node with a
x86 machine, greater than 512 MB of memory, and a resource allocation strategy of minimizing
execution time. Below is an example.

 <constraint type=”resource”>
 <and>
 <eq fact="cpu.architecture" value="x86" />
 <gt fact="memory.physical.total" value="512" />
 </and>
 </constraint>
 ZENworks Orchestrator 1.3 Developer Guide and Reference

9
novdocx (en) 11 July 2008
9Virtual Machine Job Development

This section explains the following concepts related to developing virtual machine (VM)
management jobs:

Section 9.1, “VM Job Best Practices,” on page 91
Section 9.2, “Virtual Machine Management,” on page 92
Section 9.3, “VM Life Cycle Management,” on page 93
Section 9.4, “Manual Management of a VM Server’s Lifecycle,” on page 94
Section 9.5, “Provisioning Virtual Machines,” on page 96
Section 9.6, “Automatically Provisioning a VM Server,” on page 100
Section 9.7, “Defining Values for Grid Objects,” on page 101

9.1 VM Job Best Practices
This section discusses some of VM job architecture best practices to help you understand and get
started developing VM jobs:

Section 9.1.1, “Plan Robust Application Starts and Stops,” on page 91
Section 9.1.2, “Managing VM Systems,” on page 92
Section 9.1.3, “Managing VM Images,” on page 92
Section 9.1.4, “Managing VM Hypervisors,” on page 92
Section 9.1.5, “VM Job Considerations,” on page 92

9.1.1 Plan Robust Application Starts and Stops
An application is required for a service, and a VM is provisioned on its behalf. As part of the
provisioning process, the VM’s OS typically must be prepared for specific work; for example, NAS
mounts, configuration, and other tasks. The application might also need customizing, such as
configuring file transfer profiles, client/server relationships, and other tasks.

Then, the application is started and its “identity” (IP address, instance name, and other identifying
characteristics) might need to be transferred to other application instances in the service, or a load
balancer).

If the Orchestrator Server loses the job/joblet communication state machine, such as when a server
failover or job timeout occurs, all of the state information must be able to be recovered from “facts”
that are associated with the server. This kind of job should also work in a disaster recovery mode, so
it should be implemented in jobs regularly when relevant services from Data Center A must be
started in Data Center B in a DR case. These jobs require special precautions.
Virtual Machine Job Development 91

92 Novell

novdocx (en) 11 July 2008
9.1.2 Managing VM Systems
A series of VMs must typically be provisioned in order to run system-wide maintenance tasks.
Because there might not be enough resources to bring up every VM simultaneously, you might
consider running discovery jobs to limit how many resources (RAM, cores, etc.) that can be used at
any given time. Then, you should consider running a task that writes a consolidated audit trail.

9.1.3 Managing VM Images
Similar to how the job instagent searches for virtual machine grid objects using specified
Constraints and runs a VM operation (installAgent) on the VMs that are returned, an Orchestrator
image must be checked out of the warehouse and mounted, modified, and checked in again.
Preferably, this should occur without having to provision the VM itself.

9.1.4 Managing VM Hypervisors
The management engine (“hypervisor”) underlying the host server must be “managed” while a VM
is running. For example, VM memory or CPU parameters must be adjusted on behalf of a
monitoring job or a management console action.

9.1.5 VM Job Considerations
In some instances, some managed resources might host VMs that do not contain an Orchestrator
agent. Such VMs can only be controlled by administrators interacting directly with them.

Long-running VMs can be modified or migrated while the job managing the VM is not actively
interacting with it. If you have one joblet running on the container and one inside the VM, that
relationship might have to be re-established.

9.2 Virtual Machine Management
The Orchestrator provisioning manager provides the ability to manage the use of virtual machines,
as shown in the following figure:

Figure 9-1 VM Management
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
For more information about managing virtual machines, see the Novell ZENworks Orchestrator 1.3
Virtual Machine Management Guide.

While Orchestrator enables you manage many aspects of your virtual environment, as a developer,
you can create custom jobs that do the following tasks:

Create and clone VMs: These jobs Creates virtual machine images to be stored or deployed.
They also create templates for building images to be stored or deployed (see “VM Instance:” on
page 97 and “VM Template:” on page 97).
Discover resources that can be used as VM hosts.
Provision, migrate, and move VMs: Virtual machine images can be moved from one physical
machine to another.
Check in VMs that have the proper versions and system configurations.
Provide checkpoints, restoration, and re-synchronization of VMs: Snapshots of the virtual
machine image can be taken and used to restore the environment if needed.
Retire, delete, and destroy VMs: Jobs can decommission and retire deployed images.
Monitor VM operations: Jobs can start, shut down, suspend and restart VMs.
Manage on, off, suspend, and restart operations.

9.3 VM Life Cycle Management
The Novell ZENworks Orchestrator maintains a library of VM images, hosts, and instances. Like
physical resources, VMs can be grouped and they have facts that describe their attributes.
Virtual Machine Job Development 93

94 Novell

novdocx (en) 11 July 2008
ZENworks orchestrator provides a JDL management API for the following tasks you can use jobs to
perform on VMs, as illustrated in the following figure:

Figure 9-2 VM Lifecycle Management

The VM life cycle is divided into two parts: configuration and deployment. Configuration is
performed on a VM in the security of a development environment which allows for creation, testing,
and modification of the VM until you are ready to launch the VM into the production environment.
Deployment is performed in the production environment and the changes take place in real time. As
the administrator, you might do both the configuration and deployment tasks.

9.4 Manual Management of a VM Server’s
Lifecycle
The example provided in this section is a general purpose job that only provisions a resource.

You might use a job like this, for example, each day at 5:00 p.m. when your accounting department
requires extra SAP servers to be available. As a developer, you would create a job that provisions the
required VMs, then use the Orchestrator Scheduler to schedule the job to run every day at the time
specified.

In this example, the provision job retrieves the members of a resource group (which are VMs)
and invokes the provision action on the VM objects. For an example of a provision job JDL, see
Section 9.4.3, “Provision Job JDL,” on page 95.

Check In
Version Control

Edit
Configuration
VM Image
Testing

Deploy
Development
Production

Monitor
Status
Performance
Availability

Manage
Life Cycle, Cloning

Properties, Location

Destroy

Create
VM Builder

Discover
Created or

Existing VMs

Configuration
Deployment
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
To setup to create the provision.job, use the following procedure:

1 Create your VMs and follow the discovery process in the Orchestrator console so the VMs are
in the Orchestrator inventory.

2 In Orchestrator console, create a Resource Group called sap and add the required VMs as
members of the group.

3 Given the .jdl and .policy below you would create a .job file (jar them):

>jar cvf provision.job provision.jdl provision.policy

4 Deploy the provision.job file to the Orchestrator Server using either the Orchestrator
console or the zosadmin command line.

To run the job, use either of the following procedures:

Section 9.4.1, “Manually Using the ZOS Command Line,” on page 95
Section 9.4.2, “Automatically Using the Orchestrator Console Job Scheduler,” on page 95

9.4.1 Manually Using the ZOS Command Line
1 At the command line, enter:

>zos login <zos server>
>zos run provision VmGroup="sap"

For more complete details about entering CLI commands, see “The Zos Command Line Tool” in the
Novell ZENworks Orchestrator 1.3 Job Management Guide.

9.4.2 Automatically Using the Orchestrator Console Job
Scheduler

1 Create a New schedule.
2 Fill in the job name (provision), user, priority.
3 For the jobarg VmGroup, enter sap.
4 Create a Trigger for the time you want this job to run.
5 Save the Schedule and enable it by clicking Resume.

You can manually force scheduling by clicking Test Schedule Now.

For more complete details about using the ZOS Control Scheduler. See also Section 9.6,
“Automatically Provisioning a VM Server,” on page 100.

9.4.3 Provision Job JDL

"""Job that retrieves the members of a supplied resource group and invokes the
provision action on all members. For more details about this class, see Job
(page 222). See also ProvisionSpec (page 235).

The members must be VMs.

"""
class provision(Job):
Virtual Machine Job Development 95

96 Novell

novdocx (en) 11 July 2008
 def job_started_event(self):

 # Retrieves the value of a job argument supplied in
 # the 'zos run' or scheduled run.
 VmGroup = self.getFact("jobargs.VmGroup")

 #
 # Retrieves the resource group grid object of the supplied name.
 # The job Fails if the group name does not exist.
 #
 group = getMatrix().getGroup(TYPE_RESOURCE,VmGroup)
 if group == None:
 self.fail("No such group '%s'." % (VmGroup))

 #
 # Gets a list of group members and invokes a provision action on each one.
 #
 members = group.getMembers()
 for vm in members:
 vm.provision()
 print "Provision action requested for VM '%s'" %
(vm.getFact("resource.id"))

Job Policy:
<!--
 The policy definition for the provision example job.

 This specifies the job argument VmGroup' which is required
-->
<policy>

 <jobargs>

 <fact name="VmGroup"
 type="String"
 description="Name of a VM resource group whose members will be
provisioned"
 />

 </jobargs>

</policy>

9.5 Provisioning Virtual Machines
VM provisioning adapters run just like regular jobs on the Orchestrator. The system can detect a
local store on each VM host and if a local disk might contain VM images. The provisioner puts in a
request for a VM host. However, before a VM is brought to life, the system pre-reserves that VM for
exclusive use.

That reservation prevents a VM from being stolen by any other job that’s waiting for a resource that
might match this particular VM. The constraints specified to find a suitable host evaluates machine
architectures, CPA, bit width, available virtual memory, or other administrator configured
constraints, such as the number of virtual machine slots.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
This process provides heterogeneous virtual machine management using the following virtual
machine adapters:

Xen Adapter: For more information, see XenSource* (http://www.xensource.com/).
VMWware Server 1.0 and GSX 3.2: For more information, see VMWare (http://
www.vmware.com).
Virtual Center 1.3.x or later, and Virtual Center 2.0.1 or later: For more information, see
VMware (http://www.vmware.com).

For more information, see “Virtual Machine Technologies and Actions” in the Novell ZENworks
Orchestrator 1.3 Virtual Machine Management Guide.

There are two types of VMs that can be provisioned:

VM Instance: A VM instance is a VM that is “state-full.” This means there can only ever be
one VM that can be provisioned, moved around the infrastructure, and then shut down, yet
maintains its state.
VM Template: A VM template represents an image that can be cloned. After it is finished its
services, it is shut down and destroyed.
It can be thought of as a “golden master.” The number of times a golden master or template can
be provisioned or cloned is controlled though constraints that you specify when you create a
provisioning job.

The following graphic is a representation of the provisioning adapters and the way they function to
communicate joblets to VMs of VMware Server, VMware Virtual Center, and Xen 3.0:

Figure 9-3 VM Management Provisioning Communications

NOTE: The Xen VM Monitor can support more than just SUSE Linux Enterprise (SLE) 10 (which
uses Xen 3.0.4) and Red Hat Enterprise Linux (RHEL) 5 (which uses Xen 3.0.3) VMs. For a
complete list of supported guest operating systems, see the Xen Web site (http://www.xen.org/).
Virtual Machine Job Development 97

http://www.xensource.com/
http://www.vmware.com
http://www.vmware.com
http://www.xen.org/

98 Novell

novdocx (en) 11 July 2008
The following sections provide more information on provision of VMs:

Section 9.5.1, “Provisioning VMs Using Jobs,” on page 98
Section 9.5.2, “VM Placement Policy,” on page 99
Section 9.5.3, “Provisioning Example,” on page 100

9.5.1 Provisioning VMs Using Jobs
The following actions can be performed by jobs:

Provision (schedule or manually provision a set of VMs at a certain time of day).
Move
Clone (clone a VM, an online VM, or a template)
Migrate
Destroy
Restart
Check status
Create a template to instance
Create an instance to template
Affiliate with a host
Make it a stand-alone VM
Create checkpoints
Restore
Delete
Cancel Action.

You might want to provision a set of VMs at a certain time of day before the need arises. You also
might create a job to shut down all VMs or a constrained group of VMs. You can perform these tasks
programatically (using a job), manually (through the management console), or automatically on
demand.

When performing tasks automatically, a job might make a request for an unavailable resource,
which triggers a job to look for a suitable VM image and host. If located, the image is provisioned
and the instance is initially reserved for calling a job to invoke the required logic to select, place, and
use the newly provisioned resource.

For an example of this job, see sweeper.job (page 166).

VM operations are available on the ResourceInfo (page 237) grid object, and VmHost operations are
available on the VMHostInfo (page 243) grid object. In addition, as shown in Section 9.5.3,
“Provisioning Example,” on page 100, three provisioner events are fired when a provision action has
completed, failed, or cancelled.

The API is equivalent to the actions available within the Orchestrator management console. The
selection and placement of the VM host is governed by policies, priorities, queues, and ranking,
similar to the processes used selecting resources.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Provisioning adapters on the Orchestrator Server abstract the VM. These adapters are special
provisioning jobs that perform operations for each integration with different VM technologies. The
following figure shows the VM host management interface that is using the Orchestrator console.

Figure 9-4 VM Host Management

9.5.2 VM Placement Policy
To provision virtual machines, a suitable host must be found. The following shows an example of a
VM placement policy:

<policy>
 <constraint type="vmhost">
 <and>
 <eq fact="vmhost.enabled" value="true"
 reason="VmHost is not enabled" />
 <eq fact="vmhost.online" value="true"
 reason="VmHost is not online" />
 <eq fact="vmhost.shuttingdown" value="false"
 reason="VmHost is shutting down" />
 <lt fact="vmhost.vm.count" factvalue="vmhost.maxvmslots"
 reason="VmHost has reached maximum vmslots" />
 <ge fact="vmhost.virtualmemory.available"
 factvalue="resource.vmimage.virtualmemory"
 reason="VmHost has insufficient virtual memory for guest VM" />
 <contains fact="vmhost.vm.availableids"
 factvalue="resource.id"
 reason="VmImage is not available on this VmHost" />
 </and>
 </constraint>
</policy>
Virtual Machine Job Development 99

100 Novell

novdocx (en) 11 July 2008
9.5.3 Provisioning Example
This job example provisions a virtual machine and monitors whether provisioning completed
successfully. The VM name is “webserver” and the job requires a VM to be discovered before it is
run. After the provision has started, one of the three provisioner events is called.

1 class provision(Job):
2
3 def job_started_event(self):
4 vm = getMatrix().getGridObject(TYPE_RESOURCE,"webserver")
5 vm.provision()
6 self.setFact("job.autoterminate",False)
7
8 def provisioner_completed_event(self,params):
9 print "provision completed successfully"
10 self.setFact("job.autoterminate",True)
11
12 def provisioner_failed_event(self,params):
13 print "provision failed"
14 self.setFact("job.autoterminate",True)
15
16 def provisioner_cancelled_event(self,params):
17 print "provision cancelled"
18 self.setFact("job.autoterminate",True)

See additional provisioning examples in Section 9.4, “Manual Management of a VM Server’s
Lifecycle,” on page 94 and Section 9.6, “Automatically Provisioning a VM Server,” on page 100.

9.6 Automatically Provisioning a VM Server
If you write jobs to automatically provision virtual machines, you set the following facts in the job
policy:

 resoure.provision.maxcount
 resource.provision.maxpending
 resource.provision.hostselection
 resource.provision.maxnodefailures
 resource.provision.rankby

These are the job facts to enable and configure the usage of virtual machines for resource allocation.
These facts can be set in a job’s policy.

For example, setting the provision.maxcount to greater than 0 allows for virtual machines to be
included in resource allocation.

 <job>
 <fact name="provision.maxcount" type="Integer" value="1" />
 <fact name="provision.maxpending" type="Integer" value="1" />
 </job>

The following figure shows the job’s ZENworks Orchestrator Console settings to use VMs:
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Figure 9-5 Job Settings for VM Provisioning

Specifying Reservations

When using automatic provisioning, the provisioned resource is reserved for the job requesting the
resource. This prevents another job requiring resources from obtaining the provisioned resource.

When the job that reserved the resource has finished its work (joblet has completed) on the
provisioned resource, then the reservation is relaxed allowing other jobs to use the provisioned
resource.

Using JDL, the reservation can be specified to reserve by JobID and also user. This is done using the
ProvisionSpec (page 235) class.

9.7 Defining Values for Grid Objects
The following sections describe the ZENworks Orchestrator Server grid objects and facts that are
required for provisioning of Orchestrator resource objects: This section highlights the facts that are
expected to be set from a virtual machine discovery.

Section 9.7.1, “Orchestrator Grid Objects,” on page 102
Section 9.7.2, “Repository Objects and Facts,” on page 102
Section 9.7.3, “VmHost Objects and Facts,” on page 109
Section 9.7.4, “VM Resource Objects and Other Base Resource Facts,” on page 113
Section 9.7.5, “Physical Resource Objects and Additional Facts,” on page 120
Virtual Machine Job Development 101

102 Novell

novdocx (en) 11 July 2008
9.7.1 Orchestrator Grid Objects
The following table explains the abbreviated codes used to define the Orchestrator grid objects and
facts listed in the following sections:

Table 9-1 Orchestrator Grid Object Definitions

9.7.2 Repository Objects and Facts
Facts marked with an X designate that they should be automatically set after the successful
discovery of virtual resources (VmHosts and VMs). Unless marked with the ° symbol, all of the
following repository objects and facts must be set for the particular provisioning adapter to function.
Facts marked with °° indicate the fact is required under certain conditions.

Value Description

Automatic The fact should be automatically set after the successful discovery of virtual
resources (VmHosts and VMs).

Boolean The fact is a Boolean value.

Default The specified default value of the fact is set.

Dictionary The fact is selected from a specified dictionary listing.

Dynamic The fact is dynamically generated.

Enumerate The fact is a specified enumerated value.

Example When available, provides an example how a fact might be applied to an object.

Integer The fact is an integer value.

Real The fact is a real number.

String The fact is a string value.

Datagrid Facts relate to datagrid object types.

Local Facts relate to local object types.

NAS Facts relate to Network Attached Storage (NAS) object types.

SAN Facts relate to Storage Area Network (SAN) object types.

Virtual Facts relate to virtual object types.

Warehouse Facts relate to warehouse object types.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Table 9-2 Repository Objects and Facts

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions

repository.capacity The maximum amount
of storage space
available to virtual
machines (in
megabytes). The value -
1 means unlimited.

Integer Local: Note: Not auto discovered, but set
to a default value of -1 (unlimited size).
The Administrator should alter this value.

This fact is not currently applicable to SAN
because you cannot move file-based disks
into a SAN.

SAN: Note: Not auto discovered, but set
to a default value of -1 (unlimited size).
The Administrator should alter this value.

nas: Note: Not auto discovered, but set to
a default value of -1 (unlimited size). The
Administrator should alter this value.

Warehouse: Note: Not autodiscovered,
but set to a default value of -1' (unlimited
size). The Administrator should alter this
value.

datagrid: Note: Not auto discovered, but
set to a default value of -1 (unlimited size).
The Administrator should alter this value.

virtual: Note: Not auto discovered, but set
to a default value of -1 (unlimited size).
The Administrator should alter this value.

repository.searchpath The relative path from
the location to search for
VM configuration files,
which implicitly includes
repository.image.
preferredpath.

String [] Local: X. [etc/xen/vm, myimages]

NOTE: The path is relative to
repository.location or the leading '/' is
ignored.

SAN: o.

nas: X. [“my_vms”, “saved_vms”] or [""]
Specifiesto search the whole mount.

NOTE: The path is either relative to
repository.location; the leading '/' ignored.

Warehouse: N/A

datagrid: N/A

virtual: N/A
Virtual Machine Job Development 103

104 Novell

novdocx (en) 11 July 2008
repository.description The description of the
repository.

String Local: o Default empty.

SAN: o.

nas: o.

Warehouse: o Default empty.

datagrid: o Default empty.

virtual: o Default empty.

repository.efficency The efficiency coefficient
used to calculate the
cost of moving VM disk
images to and from the
repository. This value is
multiplied by the disk
image size in Mb to
determine a score.
Thus, thus 0 means no
cost and is very
efficient).

Real Local: Defaults to 1, which normalizes the
transfer efficiency for moving VM disks.

SAN: oDefaults to 1, which normalizes
the transfer efficiency for moving VM
disks. Not currently applicable because
file-based disks cannot be moved into a
SAN.

nas: Defaults to 1, which normalizes the
transfer efficiency for moving VM disks.

Warehouse: Defaults to 1, which
normalizes the transfer efficiency for
moving VM disks.

datagrid: Defaults to 1, which normalizes
the transfer efficiency for moving VM
disks.

virtual: Defaults to 1, which normalizes
the transfer efficiency for moving VM
disks.

repository.enabled True if the Repository is
enabled, meaning that
new VM instances can
be provisioned.

Boolea
n

Local: Defaults to true.

SAN: Defaults to true.

nas: Defaults to true.

Warehouse: Defaults to true.

datagrid: Defaults to true.

virtual: Defaults to true.

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
repository.freespace The amount of storage
space available to new
virtual machines (in
megabytes). The value -
1 means unlimited.

Integer Local: Dynamic: (capacity—used space)
or -1 if capacity is unlimited.

SAN: Dynamic: (capacity—used space)
or -1 if capacity is unlimited.

nas: Dynamic: (capacity—used space) or
-1 if capacity is unlimited.

Warehouse: Dynamic: (capacity—used
space) or -1 if capacity is unlimited.

datagrid: Dynamic: (capacity—used
space) or -1 if capacity is unlimited.

virtual: Dynamic: (capacity—used space)
or -1 if capacity is unlimited.

repository.groups The groups this
Repository is a member
of.

String[] Local: X

SAN: X

nas: X

Warehouse: X

virtual: X

repository.id The repository’s unique
name.

String Local: X

SAN: X

nas: X

Warehouse: X. This fact is autocreated as
warehouse, but could add others
manually.

datagrid: X. Currently one datagrid
repository is supported.

virtual: X

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 105

106 Novell

novdocx (en) 11 July 2008
repository.preferredpath The relative path from
the location to search
and place VM files for
movement and cloning.

String Local: X. "var/lib/xen/images"

NOTE: The path is relative to
repository.location; the leading '/' is
ignored.

SAN:

nas: X. "my_vms"

NOTE: The path is relative to
repository.location; the leading '/' is
ignored.

Warehouse: N/A

datagrid: N/A

virtual: N/A

repository.location The Repository's
physical location.

String Local: X. "/" or /var/xen/images.

SAN: o.

nas: X. /u or /mnt/myshareddisk.

NOTE: This is the “mount point,” which is
assumed to be the same mount point on
every host that has a connection to this
NAS.

Warehouse: X. grid:///warehouse

datagrid: oX. grid:///vms

virtual: N/A

repository.provisioner.jo
bs

The names of the
provisioning adapter
jobs that can manage
VMs on this repository.

String [] Local: X. ["xen30"]

SAN:

nas: X. ["xen30"]

Warehouse: X. ["xen30"]

datagrid: X. ["xen30"]

virtual: X. ["vcenter"]

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
repository.san.type The type of SAN
(Adapter specific, “iscsi”,
or “fibrechannel” or '' if
not applicable.

String
(enum)

Local: N/A, empty.

SAN: Administrator must set to “iqn”,
“npiv“, or “emc.”

nas: N/A, empty.

Warehouse: N/A, empty.

datagrid: N/A, empty.

virtual: N/A, empty.

repository.san.vendor The vendor of the SAN.
Controls which storage
bind logic to run (e.g.
LUN masking, etc.).

String Local: N/A, empty.

SAN: Administrator must set to “iscsi” or
“fibrechannel.”

nas: N/A, empty.

Warehouse: N/A, empty.

datagrid: N/A, empty.

virtual: N/A, empty.

repository.type The type of repository:

Local; e.g. a local
disk.

nas; e.g. a NFS
mount.

san , datagrid: A
Orchestrator built
in datagrid backed
store.

warehouse: A
ZENworks
managed storage.

virtual: An
externally
managed VM; e.g.
VMWare Virtual
Center.

String
(enum)

Local: X. Local

SAN:

nas:

Warehouse: X. Warehouse

datagrid: X. Datagrid

virtual: X. Virtual

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 107

108 Novell

novdocx (en) 11 July 2008
repository.usedspace The amount of storage
space used for virtual
machines.

Integer Local: Dynamic: Sum of disk space used
by contained VMs. Only includes disks
that are stored as local files (not
partitions).

SAN: Dynamic: Sum of disk space used
by contained VMs. Only includes disks
that are stored as local files (not
partitions).

Not currently applicable to SAN because
you cannot move file-based disks into
SAN.

nas: Dynamic: Sum of disk space used by
contained VMs. Only includes disks that
are stored as local files (not partitions).

Warehouse: Dynamic: Sum of disk space
used by contained VMs. Only includes
disks that are stored as local files (not
partitions).

datagrid: Dynamic: Sum of disk space
used by contained VMs. Only includes
disks that are stored as local files (not
partitions).

virtual: Dynamic: Sum of disk space used
by contained VMs. Only includes disks
that are stored as local files (not
partitions).

repository.vmhosts The list of VM hosts
capable of using this
repository (aggregated
from the individual VM
host fact).

String [] Local: X

SAN:

nas: X

Warehouse: X

datagrid: X

virtual: X

repository.vmimages The list of VM images
stored in this repository
(aggregated from
individual VM fact).

String [] Local: X

SAN:

nas: X

Warehouse: X

datagrid: X

virtual: X

Fact Name Description Fact
Type

Type:

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
9.7.3 VmHost Objects and Facts
Unless marked with a “°” symbol, all of the following VmHost objects and facts must be set for the
particular provisioning adapter to function.The “X”mark designates that the fact should be
automatically set after the successful discovery of virtual resources (VmHosts and VMs).

Table 9-3 VmHost Objects and Facts

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions

vmhost.accountinggroup The default vmhost
(resource) group which
is adjusted for VM
statistics.

String xen30: X. All.

vmserver: X. All.

vcenter: X. All.

vmhost.enabled True if the VM host is
enabled, which enables
new VM instances to be
provisioned.

Boolean xen30: X. True.

vmserver: X. True.

vcenter: X. True.

vmhost.groups The groups this VM host
is a member of. Alias for
'vmhost.resource.group.

String [] xen30: X.

vmserver: X.

vcenter: X.

vmhost.id The VM host's unique
name.

String xen30: X. <physical host id>_xen30

vmserver: X. <physical host
id>_vmserver

vcenter: X. <physical host id>_vcenter

vmhost.loadindex.slots The loading index; the
ratio of active hosted
VMs to the specified
maximum.

Dynamic
Real

xen30: X.

vmserver: X.

vcenter: X.

vmhost.loadindex.virtual
memory

The loading index; the
ratio of consumed
memory to the specifed
maximum.

Dynamic
Real

xen30: X.

vmserver: X.

vcenter: X.

vmhost.location The VM host's physical
location.

String xen30: oDefaults to empty string.

vmserver: oDefaults to empty string.

vcenter: X. Virtual center's 'locator' to
the Vmhost; e.g., "/vcenter/eng/esx1".
Virtual Machine Job Development 109

110 Novell

novdocx (en) 11 July 2008
vmhost.maxvmslots The maximum number
of hosted VM instances.

Integer xen30: Defaults to 3. Should be reset by
Administrator.

vmserver: Defaults to 3. Should be
reset by Administrator.

vcenter: Defaults to 3. Should be reset
by Adminstrator.

vmhost.memory.availabl
e

The amount of memory
available to new virtual
machines.

Dynamic
Integer

xen30: X. Calculated to be
'vmhost.memory.max; the memory
consumed by running VMs.

vmserver: X. Calculated to be
'vmhost.memory.max; the memory
consumed by running VMs.

vcenter: X. Calculated to be
'vmhost.memory.max; the memory
consumed by running VMs.

vmhost.memory.max The maximum amount of
memory available to
virtual machines (in
megabytes).

Integer xen30: X. Discovered.

vmserver: X. Discovered.

vcenter: X. Discovered.

vmhost.migration True if the VM host can
support VM migration;
also subject to provision
adapter capabilities.

Boolean xen30: X. Defaults to false. Not
discovered. Administrator should enable
as appropriate to indicate that the
VmHost supports migration.

vmserver: X. Defaults to false. Not
discovered. Should not be set to true
since vmserver/gsx does not support
migration.

vcenter: X. Discovered.

vmhost.provisioner.job The name of the
provisioning adapter job
that manages VM
discovery on this host.

String xen30: X. xen30.

vmserver: X. vmserver.

vcenter: X. vcenter.

vmhost.provisioner.pass
word

The password required
for provisioning on the
VM host. This fact is
used by the provisioning
adapter.

String xen30: o.

vmserver: o. If set, this fact is passed to
the vmserver CLI tools to authenticate.
Not necessary if Orchestrator agent is
run as root.

vcenter: o.

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
vmhost.provisioner.user
name

The username required
for provisioning on the
VM host. This fact is
used by the provisioning
adapter.

String xen30: o.

vmserver: If set, is passed to vmserver
CLI tools to authenticate. Not necessary
if Orchestrator agent is run as root.

vcenter: o.

vmhost.repositories This list of repositories
(VM disk stores) is
visible to this VM host.

String [] xen30: X. Discovery only adds the local
repository, the datagrid and the
warehouse on the first creation of the
vmhost. Administrator is required to add
SAN/NAS repositories or remove local if
desired.

vmserver: X. Discovery only adds the
local repository, the datagrid and the
warehouse on the first creation of the
vmhost. Administrator is required to add
SAN/NAS repositories or remove local if
desired.

vcenter: X. Automatically set to
VirtualCenter.

NOTE: This is the only sensible setting.

vmhost.resource The name of the
resource that houses
this VM host container.

xen30: o.

vmserver: X.

vcenter: X.

vmhost.shuttingdown True if the VM host is
attempting to shut down
and does not need to be
provisioned.

Dynamic
Boolean

xen30: Initially False, then set to True
when the administrator specifies to shut
down a host.

vmserver: Initially False, then set to
True when the administrator specifies to
shut down a host.

vcenter: Initially False, then set to True
when the administrator specifies to shut
down a host.

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 111

112 Novell

novdocx (en) 11 July 2008
vmhost.vm.available.gro
ups

The list of resource
groups containing VMs
that are allowed to run
on this host.

String [] xen30: X. Automatically set to
VMs_<provisioning_adapter>; e.g., any
VM of compatible type can be
provisioned. The
VMs_<provisioning_adapter> group is
automatically created by discovery. The
administrator can refine this by creating
new groups and editing if further
restrictions are required.

vmserver: X. Automatically set to
VMs_<provisioning_adapter>; e.g., any
VM of compatible type can be
provisioned. The
VMs_<provisioning_adapter> group is
automatically created by discovery. The
administrator can refine this by creating
new groups and editing if further
restrictions are required.

vcenter: X. Discovery attempts to map
Virtual Center grouping to Orchestrator
resources groups and sets this fact
accordingly. This also includes a special
"template_vcenter" group to map to
Virtual Center 1.3.x "templates".

vmhost.vm.count The current number of
active VM instances.

Dynamic
Integer

xen30: X.

vmserver: X.

vcenter: X.

vmhost.vm.instanceids The list of active VM
instances.

Dynamic
String[]

xen30: X.

vmserver: X.

vcenter: X.

vmhost.vm.templatecou
nts

A dictionary of running
instance counts for each
running VM template.

Dynamic
Dictionar
y

xen30: X.

vmserver: X.

vcenter: X.

vmhost.xen.bits xen30 only. Legal values
are 32 and 64.

Integer xen30: X. 64.

vmserver: oNot defined.

vcenter: oNot defined.

vmhost.xen.hvm xen30 only. Boolean xen30: X. True.

vmserver: oNot defined.

vcenter: oNot defined.

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
9.7.4 VM Resource Objects and Other Base Resource Facts
The following virtual machine resource objects and additional base resource facts marked with the
“•” symbol must be set for the particular provisioning adapter to function. Facts marked with “••”
indicate the fact is required under certain conditions. The “X” character designates that the fact
should be automatically set after the successful discovery of virtual resources (VmHosts and VMs).

Table 9-4 Resource Objects (VM only) and Additional Facts to Base Resource Facts
resource.provisioner.warehouse.guidresource.provisioner.warehouse.guid

vmhost.xen.version xen30 only: Major.Minor
version of the Xen
hypervisor.

Real xen30: X. 3.00

vmserver: oNot defined.

vcenter: oNot defined.

vmhost.vcenter.hostnam
e

vcenter only. The
hostname of the
resource containing this
VM container.

NOTE: Deprecated. Use
'vmhost.resource.hostna
me instead.

String xen30: oNot defined.

vmserver: oNot defined.

vcenter: X. esx1.

vmhost.vcenter.networks vcenter only. List of
network interfaces on
the physical host.

List xen30: oNot defined.

vmserver: oNot defined.

vcenter: VM network.

vmhost.vcenter.grouppat
h

vcenter only: Part of the
Virtual Center “locator”
URL.

List xen30: oNot defined.

vmserver: oNot defined.

vcenter: X. /vcenter/eng1.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions

resource.provision.auto
matic

Signifies that this
resource was cloned/
provisioned
automatically and thus is
shut down/destroyed
automatically as well.

Dynamic
Boolean

xen30: o .

vmserver: o .

vcenter: o .

Fact Name Description Fact
Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 113

114 Novell

novdocx (en) 11 July 2008
resource.provision.auto
prep.*

Fact namespace used to
convey configuration
information actually
used to "personalize"
this VM instance.

<various
>

xen30: o X. Can be set when
rediscovering the state or as a result of a
migration or provision action.

vmserver: o X. Can be set when
rediscovering the state or as a result of a
migration or provision action.

vcenter: o X. Can be set when
rediscovering the state or as a result of a
migration or provision action.

resource.provision.curre
ntaction

The current
management action in
progress on this
provisionable
resource.c.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.host
wait

The time (seconds) this
resource has been
waiting / waited for a
suitable host.

Dynamic
Integer

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.jobid The current or last job ID
that performed a
provisioning action on
this resource. Useful for
viewing the job log.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.resyn
c

Specifies that the
provisioned resource's
state needs to be re-
synced with the
underlying provisioning
technology at the next
opportunity.

Dynamic
Boolean

xen30: oX. Can be set on discovery
when the Orchestrator state machine
mismatches the VM state. This initiates a
future VM state recovery action ("Check
Status"). May be set for delayed re-
discovery by administrator or JDL logic.

vmserver: oX. Can be set on discovery
when the Orchestrator state machine
mismatches the VM state. This initiates a
future VM state recovery action ("Check
Status"). May be set for delayed re-
discovery by administrator or JDL logic.

vcenter: oX. Can be set on discovery
when the Orchestrator state machine
mismatches the VM state. This initiates a
future VM state recovery action ("Check
Status"). May be set for delayed re-
discovery by administrator or JDL logic.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
resource.provision.state The current state of this
provisioned instance
(down, suspended, up,
paused) or unknown if
an admin action is
currently being
performed.

Dynamic
String
(enum)

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.statu
s

The current descriptive
status of the provisioned
resource.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.templ
ate

The ID of the template
resource that this
instance was created
from (if applicable).

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.time.
request

The time when the last
provision (or other
administrative action)
request was made.

Dynamic
Date

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.time.
shutdown

The time when the
resource was last shut
down.

Dynamic
Date

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.time.
start

The time when the
resource was last
successfully
provisioned.

Dynamic
Date

xen30: o .

vmserver: o .

vcenter: o .

resource.provision.vmho
st

The ID of the host
currently housing this
provisioned resource.

Dynamic
String

xen30: o .

vmserver: o .

vcenter: o .

resource.provisionable True if the resources is a
provisionable type.

Dynamic
Boolean

xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.aut
oprep.*

Fact namespace used to
convey configuration
information actually
used to "personalize"
this VM instance.

<various
>

xen30: o X (only if set in warehouse).

vmserver: o .

vcenter: o .

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 115

116 Novell

novdocx (en) 11 July 2008
resource.provisioner.cou
nt

The total count of
operational instances
and provisions in
progress"

Dynamic
Integer

xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.de
bug

Controls the debug log
level in the provisioner.

Boolean xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.hos
t.maxwait

The maximum time to
wait for a suitable host
before timing out (in
seconds, '<0' to wait
indefinitely).

Integer xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.hos
t.preferredwait

The time after which
some VMhost
constraints is lifted to
increase the available
pool by, for example,
considering moving the
disk image (in seconds,
<0 to wait indefinitely).

Integer xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.inst
ances

The list of id's of the
instances of this
template resource (if
applicable).

String[] xen30: o .

vmserver: o .

vcenter: o .

resource.provisioner.job The name of the
provisioning job that
manages the life cycle of
this resource.

String xen30: X. xen30

vmserver: X. vmserver

vcenter: X. vcenter

resource.provisioner.ma
xinstances

The maximum allowed
number of instances of
this provisionable
resource (applicable
only to templates).

Integer xen30: X. Defaults to 1. Administrator
should reset for VM templates to allow
multiple clones.

vmserver: X. Defaults to 1. Administrator
should reset for VM templates to allow
multiple clones.

vcenter: X. Defaults to 1. Administrator
should reset for VM templates to allow
multiple clones.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
resource.provisioner.rec
ommendedhost

The host on which the
image for this resource
is associated; e.g., was
suspended or is the
preferred host for quick
startup.

String xen30: o X.

vmserver: o X.

vcenter: o X.

resource.provisioner.war
ehouse.guid

The warehouse ID of
this VM.

String xen30: oo X. Required only if
resource.provisioner.repository is
'warehouse' (guid from warehouse).

vmserver: N/A

vcenter: N/A.

resource.provisioner.war
ehouse.version

The warehouse version
number of this VM.

Integer xen30: oo X. Required only if
resource.provisioner.repository is
'warehouse' {version from warehouse}.

vmserver: N/A.

vcenter: N/A.

resource.vcenter.groupp
ath

Locator for the Virtual
Center group that the
VM resides in.

String xen30: o Not defined.

vmserver: o Not defined.

vcenter: X. /vcenter/eng

resource.vcenter.guestO
S

VMWare's name for the
guest OS.

String xen30: o Not defined.

vmserver: o Not defined.

vcenter: X. winNetEnterprise.

resource.vcenter.image
path

Locator for the VM in
Virtual Center.

String xen30: o Not defined.

vmserver: o Not defined.

vcenter: X. /vcenter/eng/
windows2003ent.

resource.vm.basepath The file system location
of the VM files either
absolute or relative to
the 'repository.location'
fact.

String xen30: X. Example: "var/lib/xen/images/
sles10".

vmserver: X. For example, "/var/lib/
vmware/Virtual-Machines/sles9".

Location in the repository of the directory
containing VM disks, configuration file
and other related files.

vcenter: o N/A.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 117

118 Novell

novdocx (en) 11 July 2008
resource.vm.configfile The location of the VM's
configuration file inside
of the default repository
(resource.provisioner.re
pository).

String xen30: X. /etc/xen/vm/sles10.

vmserver: o Not currently used.

vcenter: o N/A.

resource.vm.cpu.archite
cture

The required cpu
architecture e.g. x86,
x86_64, sparc.

String xen30: o X (only if set in warehouse).

vmserver: o .

vcenter: o .

resource.vm.cpu.weight The CPU weight for this
VM. A value of '1.0'
represents normal
weighting; setting
another VM to a weight
of '2.0' would mean it
would get twice as much
cpu as this VM.

Real xen30: o .

vmserver: o .

vcenter: o .

resource.vm.files Files that make up this
VM. The dictionary key
(String) represents the
file type (adapter
specific), the value is the
file path either absolute
or relative to
'repository.location' of
the
'resource.vm.repository'.

Dictionar
y

xen30: X. { "mof": /var/lib/xen/images/
sles10/mof" , "suspendcheckpoint": "/var/
lib/xend/domain/checkpoint", "config": "/
var/lib/xen/images/sles10/config.xen' }.

vmserver: o X { "config": "/var/lib/
vmware/Virtual Machines/sles10/
sles10.vmx' }.

vcenter: o N/A.

resource.vm.maxinstanc
espervmhost

The maximum allowed
number of instances of
this VM image per
vmhost.

Integer xen30: Defaults to 1. Administrator
should increase if more than one
instance of the same VM template is
allowed to be run on one host.

resource.vm.memory The configured virtual
memory requirement of
this VM image
(megabytes).

Integer xen30: X.

vmserver: X.

vcenter: X.

resource.vm.preventmo
ve

Set by the administrator
to prevent relocation of a
VM (disk moves) even if
possible.

Boolean
Default:
False

resource.vm.type The required system
type of a virtual machine
('full' or 'para').

String xen30: X.

vmserver: X.

vcenter: X.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
resource.vm.uuid The UUID of a virtual
machine (vendor/
adapter specific).

String xen30: X. {vm uuid}

vmserver: Not currently used.

vcenter: Not currently used.

resource.vm.vcpu.numb
er

The number of virtual
CPUs for this VM.

Integer xen30: o X.

vmserver: o .

vcenter: o .

resource.vm.vdisks The specification of
virtual disks that make
up this VM. The
dictionary keys are
name (String), repository
(String), location
(String), size (Integer),
fixed (Boolean).

List of
Diction-
aries

xen30: X. [{ "location":"/var/lib/xen/
images/sles10/disk1",
"moveable":True,"repository":"vmhost1"
... }].

vmserver: o Not currently used.

vcenter: o N/A.

resource.vm.vdisksize The total size of all the
moveable virtual desks
for this VM image
(megabytes).

Integer xen30: X.

vmserver: X.

vcenter: X.

resource.vm.vendor The vendor of a virtual
machine.

String xen30: o X.

vmserver: o X.

vcenter: o X.

resource.vm.version The version number for
this VM.

Integer xen30: X (only if set in warehouse).
Required only if
resource.provisioner.repository is
'warehouse.

vmserver: o N/A.

vcenter: o N/A.

resource.vm.vmhost.ran
kby

The ranking
specification used to
select suitable vm hosts.
Element syntax is
<fact>/<order> where
order is either a
(ascending) or d
(descending).

String[] xen30: Defaults to
vmhost.vm.placement.score/a,
vmhost.loadindex.slots/a.

vmserver: Defaults to
vmhost.vm.placement.score/a,
vmhost.loadindex.slots/a.

vcenter: Defaults to
vmhost.vm.placement.score/a,
vmhost.loadindex.slots/a.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 119

120 Novell

novdocx (en) 11 July 2008
9.7.5 Physical Resource Objects and Additional Facts
The following physical resource objects and additional base resource facts marked with the “•”
symbol must be set for the particular provisioning adapter to function. The physical resources have
the potential of creating VmHost containers.

Facts marked with “••” indicate the fact is required under certain conditions. The “X” character
designates that the fact should be automatically set after the successful discovery of virtual resources
(VmHosts and VMs).

Table 9-5 Resource Object (Physical that have the potential for VmHost containers) / Additional Facts (additional
to base resource set) resource.provisioner.warehouse.guid

resource.vnc.ip The host IP address for
a VNC session running
on the resource.

NOTE: Technically, this
fact is available on all
resources both VMs and
physical.

String xen30: o X. 192.168.0.4

vmserver: Not used.

vcenter: o .

resource.vnc.port The port number for a
VNC session running on
the resource.

NOTE: Technically, this
fact is available on all
resources both VMs and
physical.

Integer xen30: o X. 5900

vmserver: Not used.

vcenter: o .

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions

resource.vcenter.client vcenter only: Marks
resources and Virtual
Center web services
client capable.

.

Boolean xen30: o Not defined.

vmserver: o Not defined.

vcenter: Administrator must set through
association of 'vcenter_client.policy' with
approriate resources.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
resource.vmserver.cmdp
ath

vmserver only: Path to
VMWare CLI tools.

String xen30: o Not defined.

vmserver: X. For example, "/usr/bin/
vmware-cmd"

vcenter: o Not defined.

resource.vmserver.localr
epositories

vmserver only: Paths to
VM storage directories.

List xen30: o Not defined.

vmserver: For example, "/var/lib/
vmware/virtual machines"

vcenter: o Not defined.

resource.vmserver.vmru
npath

vmserver only: Full path
to vmrun CLI tool.

String xen30: o Not defined.

vmserver: X. For example, "/usr/bin/
vmrun".

vcenter: o Not defined.

resource.xen xen30 only: Xen
enabled.

Boolean xen30: X. True.

vmserver: o Not defined.

vcenter: o Not defined.

resource.xen.bits xen30 only: (legal values
are 32 and 64)

String xen30: X. 64 bit.

vmserver: o Not defined.

vcenter: o Not defined.

resource.xen.hvm xen30 only: Boolean xen30: X. True.

vmserver: o Not defined.

vcenter: o Not defined.

resource.xen.version xen30 only: Major.Minor
version of the Xen
hypervisor.

.

Real xen30: X. 3.00.

vmserver: o Not defined.

vcenter: o Not defined.

Fact Name Description Type

Provision Adapter

X = automatically set

° = Not necessary to be set

°° = Required under certain conditions
Virtual Machine Job Development 121

122 Novell

novdocx (en) 11 July 2008
 ZENworks Orchestrator 1.3 Developer Guide and Reference

10
novdocx (en) 11 July 2008
10Complete Job Examples

This section describes specific Job examples that can be deployed using Novell® ZENworks®
Orchestrator Server. The following sections demonstrate some practical ways to use Orchestrator
and should help you better understand how to write your own jobs:

Section 10.1, “Accessing Job Examples,” on page 123
Section 10.2, “Installation and Getting Started,” on page 123
Section 10.3, “Orchestrator Sample Job Summary,” on page 124
Section 10.4, “Parallel Computing Examples,” on page 125
Section 10.5, “General Purpose Jobs,” on page 137
Section 10.6, “Miscellaneous Code-Only Jobs,” on page 178

10.1 Accessing Job Examples
The basic examples delivered with Novell® ZENworks® Orchestrator are located in either of two
possible installation directories depending on the type of installation. For server installations, look
here:

/opt/novell/zenworks/zos/server/examples/

For client installation, look here:

/opt/novell/zenworks/zos/client/examples/

When you unjar or unzip examples from the from the <path>/examples/<example>.job
file or view jobs using the details panel and the JDL and Policy tabs in ZENworks Orchestrator
Console, you should see the .jdl and .policy files.

Policy files specify how the job arguments and static attributes are defined. Or, you can use the zos
jobinfo command to simply display job arguments and their default values.

All of the examples can be opened and modified using a standard code editor, then redeployed and
examined using the procedure explained in “Walkthrough: Deploy a Sample Job” in the Novell
ZENworks Orchestrator 1.3 Installation and Getting Started Guide.

10.2 Installation and Getting Started
To run the ZENworks Orchestrator described in this section, use the following guidelines:

Install and configure ZENworks Orchestrator properly (see “Installing and Configuring
ZENworks Orchestrator Components” in the Novell ZENworks Orchestrator 1.3 Installation
and Getting Started Guide.
Unless otherwise indicated, install at least one agent on a managed resource and have it running
(see “Installing the ZENworks Orchestrator Agent on VM Hosts and VMs” in the Novell
ZENworks Orchestrator 1.3 Installation and Getting Started Guide).
Before running zosadmin or zos commands, you must log into the Orchestrator Server.
Complete Job Examples 123

124 Novell

novdocx (en) 11 July 2008
The zosadmin command is required for administrating jobs. This includes deploying and
undeploying a job to the server. The zos command is for job control, including starting a job
and viewing a job’s log. As you learn about the Orchestrator job samples, you will use the
zosadmin command for deploying a sample job and the zos command for running the sample.

For an explanation of the zosadmin commands, see “The zosadmin Command Line Tool”
in the Novell ZENworks Orchestrator 1.3 Administration Guide.

> zosadmin login --user zosadmin
Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

For an explanation of zos commands, see “The Zos Command Line Tool” in the Novell
ZENworks Orchestrator 1.3 Job Management Guide.

> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

You could create a user (see “Walkthrough: Create a User Account” in the Novell ZENworks
Orchestrator 1.3 Installation and Getting Started Guide) but zos login --
user=vmmanger works with the account created by default during installation.

10.3 Orchestrator Sample Job Summary
The following table provides a high-level explanation of the Orchestrator job examples that are
delivered with Orchestrator and the job developer concepts you might want to understand:

Table 10-1 ZENworks Orchestrator Job Development Examples

Example Name Job Function Capabilities

demoIterator.job (page 126) Using policy constraints and job arguments to restrict joblet
execution to specific resources.

Scheduling joblets using a ParameterSpace.

Provides an example of executing a command on a resource.

dgtest.job (page 138) Downloading files stored on grid management servers to networked
nodes.

factJunction.job (page 179) Retrieving information about objects in the grid relative to another
object.

failover.job (page 148) Managing how joblets failover to enhance the robutsness of your
jobs.

instclients.job (page 154) Installing a ZOS client on multiple machines.

Provides an example of executing a command on a resource.

jobargs.job (page 188) Understanding the various argument types that jobs can accept
(integer, real, Boolean, string, time, date, list, dictionary, and array,
which can contain the types integer, real, Boolean, time, date, and
String).

notepad.job (page 161) Understanding how to launch specific applications on specified
resources.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
10.4 Parallel Computing Examples
The following examples demonstrate high performance or parallel computing concepts:

“demoIterator.job” on page 126
“quickie.job” on page 133

quickie.job (page 133) Understanding how jobs can start multiple instances of a joblet on
one or more resources.

sweeper.job (page 166) Understanding how poll all resources on the grid.an ordered
serialized scheduling of the joblets

whoami.job (page 173) Sending a command to the operating system’s default command
interpreter. On Microsoft Windows, this is cmd.exe. On POSIX
systems, this is /bin/sh.

Example Name Job Function Capabilities
Complete Job Examples 125

126 Novell

novdocx (en) 11 July 2008
demoIterator.job
Reference implementation for a simple test iterator. Several concepts are demonstrated: 1) Using
policy constraints and job arguments to restrict joblet execution to a specific resource, 2) Scheduling
joblets using a ParameterSpace, and 3) An example of executing a command on a resource.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail demoIterator
Jobname/Parameters Attributes
------------------ ----------
demoIterator Desc: This example job is a reference for a simple test
 iterator. It is useful for demonstrating how policies
 and job args can be used to target the job to a
particular resource.

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 100

 cmd Desc: Simple command to execute
 Type: String Default:

 os Desc: Regular expression match for Operating System
Type: String
 Default: .*

 cpu Desc: Regular expression match for CPU architecture
Type: String
 Default: .*

Description
The files that make up the DemoIterator job include:

demoIterator # Total: 156 lines
|-- demoIterator.jdl # 79 lines
`-- demoIterator.policy # 77 lines

demoIterator.jdl

 1 # --
-
 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: demoIterator.jdl,v 1.4 2008/03/05 20:05:48 ray Exp $
13 # --
-
14
15 import time, random
16
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgroupname,
exc_type, exc_value)
30
31
32 class demoIteratorJob(Job):
33
34 def job_started_event(self):
35 print 'job_started_event'
36 self.completed = 0
37
38 # Launch the joblets
39 numJoblets = self.getFact("jobargs.numJoblets")
40 print 'Launching ', numJoblets, ' joblets'
41
42 pspace = ParameterSpace()
43 i = 1
44 while i <= numJoblets:
45 pspace.appendRow({'name':'joblet'+str(i)})
46 i += 1
47 pspace.maxJobletSize = 1
48 self.schedule(demoIteratorJoblet,pspace,{})
49
50 def joblet_completed_event(self, jobletnumber, node):
51 self.completed += 1
52 self.setFact("jobinstance.memo", "Tests run: %s" % (self.completed))
53
54
55 class demoIteratorJoblet(Joblet):
56
57 def joblet_started_event(self):
58 print "Hi from joblet ", self.getFact("joblet.number")
59 time.sleep(random.random() * 15)
60
61 cmd = self.getFact("jobargs.cmd")
62 if len(cmd) > 0:
63 system(cmd)
64
Complete Job Examples 127

128 Novell

novdocx (en) 11 July 2008
65
66
67 # Example of more sophisticated exec
68 # e.g. e.signal("SIGUSR1")
69 """
70 e = Exec()
71 e.setCommand(cmd)
72 #e.setStdoutFile("cmd.out")
73 e.writeStdoutToLog()
74 e.writeStderrToLog()
75 #try:
76 e.execute()
77 #except:
78 #self.retry("retryable example error")
79 """

demoIterator.policy

 1 <!--
 2
*===
 3 * Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: demoIterator.policy,v 1.2 2008/02/27 20:49:34 john Exp $
14
*===
15 -->
16
17 <policy>
18 <constraint type="accept" reason="Too busy for more work. Try again later!">
19 <or>
20 <lt fact="job.instances.queued" value="4" />
21 <contains fact="user.groups" value="superuser" />
22 </or>
23 </constraint>
24
25 <constraint type="start" reason="Waiting on queue">
26 <or>
27 <lt fact="job.instances.active" value="2" />
28 <contains fact="user.groups" value="superuser" />
29 </or>
30 </constraint>
31
32 <jobargs>
33 <fact name="numJoblets"
34 type="Integer"
35 description="joblets to run"
36 value="100"
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
37 visible="true" />
38
39 <fact name="cmd"
40 type="String"
41 description="Simple command to execute"
42 value="" />
43
44 <fact name="os"
45 type="String"
46 description="Regular expression match for Operating System"
47 value=".*" />
48
49 <fact name="cpu"
50 type="String"
51 description="Regular expression match for CPU architecture"
52 value=".*" />
53 </jobargs>
54
55 <constraint type="resource" reason="Does not match">
56 <and>
57 <eq fact="resource.os.family" factvalue="jobargs.os" match="regexp" />
58 <eq fact="resource.cpu.architecture" factvalue="jobargs.cpu"
match="regexp"/>
59
60 <or>
61 <and>
62 <defined fact="env.VENDOR" />
63 <eq fact="resource.os.vendor" factvalue="env.VENDOR" match="regexp"
/>
64 </and>
65 <undefined fact="env.VENDOR" />
66 </or>
67 </and>
68 </constraint>
69
70 <job>
71 <fact name="description"
72 type="String"
73 value="This example job is a reference for a simple test iterator. It
is useful for demonstrating how policies and job args can be used to target the job
to a particular resource." />
74 </job>
75
76 </policy>
77

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.
Complete Job Examples 129

130 Novell

novdocx (en) 11 July 2008
MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

ParameterSpace
Defines a parameter space to be used by the scheduler to create a Joblet set. A parameter space
might consist of rows of columns or a list of columns that is expanded and can be turned into a
cross product.

Job Details
The following sections describe the DemoIterator job:

“zosadmin deploy” on page 130
“job_started_event” on page 130
“joblet_started_event” on page 131

zosadmin deploy

The deployment for the DemoIterator job is performed by lines 3-15 of demoIterator.jdl (page 126).
When jobs are deployed into the grid, they can optionally be organized for grouping. In this case, the
demoIterator job is added to the group named examples, and can be displayed in the ZENworks
Orchestrator Console in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploy a Sample Job” in the “Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.”

job_started_event

When the DemoIterator job receives a job_started_event, it creates a ParameterSpace JDL class and
adds the number of rows as indicated by the value of the argument numJoblets (see lines 27-31
in demoIterator.jdl (page 126)). A ParameterSpace object is like a spreadsheet, containing rows and
columns of information that might all be given to one joblet or sliced up across many joblets at
schedule time. In this case, the ParameterSpace is told that maxJobletSize is 1 (see line 32), meaning
a joblet instance is created for each row in the ParameterSpace during job scheduling (see line 33).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Not shown in this example is the fact that a joblet can get access to this “spreadsheet” of information
by calling self.getParameterSpace(), and calling hasNext() and next() to enumerate
through each row of information. To learn more about putting information in a ParameterSpace
object from a job and obtaining that information from the JobletParameterSpace object from a
joblet, see ParameterSpace (page 233).

The resource that runs the joblet is determined from the resource constraint specified in lines 2-14
and 39-52 of demoIterator.policy (page 128), and from the values specified for the parameters os
and cpu supplied on the command line. If these parameters are not specified on the command line,
the default value for both is the regular expression .*, which means to include everything.

The constraints at lines 2-14 in demoIterator.policy (page 128) define the work load for the
resources. In this case, resources do not accept jobs if there are already four jobs queued up, and are
not to run jobs if there are two or more jobs currently in progress.

To learn more about setting start, resource, or accept constraints in a policy file, see
“Defining Job Elements” on page 77.

joblet_started_event

As the DemoIterator joblet is executed on a particular resource, it receives a
joblet_started_event. When this happens, the DemoIterator joblet simply sleeps for a
random amount of time to stagger the execution of the joblets and then sends a command to the
operating system, if one was supplied as a job argument. The command is executed on the target
operating system using the built-in function system(), which is an alternative to using the more
feature-rich class Exec.

For more information on sending commands to the operating system using the Exec class, see Exec .

After the joblet is finished running, a joblet_completed_event is sent to demoIteratorJob, which
increments the variable completed, and posts the updated value to the job fact
jobinstance.memo (see lines 35-37 in demoIterator.jdl (page 126)). You can see the text for the
memo displayed on the Job Log tab in the list of running jobs in the ZENworks Orchestrator
Console.

For more information, see “Starting and Stopping the ZENworks Orchestrator Console”.

Configure and Run
Execute the following commands to deploy and run demoIterator.job:

1 Deploy demoIterator.job into the grid:

> zosadmin deploy demoIterator.job

2 Display the list of deployed jobs:

> zos joblist

demoIterator should appear in this list.
3 Run the job on the first available resource without regard to OS or CPU, and use the default

value for number of joblets, which is 100:

> zos run demoIterator

4 Run 10 joblets on Intel Windows resources, and launch the Notepad* application on each one:
Complete Job Examples 131

132 Novell

novdocx (en) 11 July 2008
> zos run demoIterator numJoblets=10 cmd=notepad os=Windows cpu=i386

NOTE: If a resource with the matching OS is not available, the job remains in the “waiting” state.

Here is an example that runs the pwd command on three joblets on the Linux operating system:

> zos run demoIterator numJoblets=3 cmd=pwd os=linux
JobID: zenuser.demoIterator.417

zos log zenuser.demoIterator.417
job_started_event
Launching 3 joblets
[freeze] Hi from joblet 1
[freeze] /var/opt/novell/zenworks/zos/agent/node.default/freeze/
zenuser.demoIterator.417.1
[skate] Hi from joblet 0
[skate] /var/opt/novell/zenworks/zos/agent/node.default/skate/
zenuser.demoIterator.417.0
[melt] Hi from joblet 2
[melt] /var/opt/novell/zenworks/zos/agent/node.default/melt/
zenuser.demoIterator.417.2

See Also
Setting Constraints Using Policies (see Section 4.4, “Policy Management,” on page 53 and
Chapter 5, “Developing Policies,” on page 57).
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
quickie.job (page 133) demonstrates how a job starts up multiple instances of a joblet on one or
more resources. The Joblet class defines how a joblet is executed on a resource.
Setting default parameter values using policies
Configuring constraints in a policy file
Naming conventions for policy facts (see Section 3.1.1, “Naming Orchestrator Job Files,” on
page 43)
Facts provided by the ZENworks Orchestrator system that can be referenced within a JDL file
Using zos
Running commands using the Exec class
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
quickie.job
Demonstrates a job starting up multiple instances of a joblet on one or more resources. Because this
job simply launches and returns immediately, it can also be useful for testing network latency.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail quickie
Jobname/Parameters Attributes
------------------ ----------
quickie Desc: This example job does absolutely nothing. It just
 returns immediately. For testing network latency.

 sleeptime Desc: time to sleep (in seconds)
 Type: Integer
 Default: 0

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 100

Description
The files that make up the Quickie job include:

quickie # Total: 88 lines
|-- quickie.jdl # 48 lines
`-- quickie.policy # 40 lines

quickie.jdl

 1 # --
-
 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: quickie.jdl,v 1.3 2008/02/27 20:51:13 john Exp $
13 # --
-
14
15 import time
16
Complete Job Examples 133

134 Novell

novdocx (en) 11 July 2008
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgroupname,
exc_type, exc_value)
30
31
32 class quickieJob(Job):
33
34 def job_started_event(self):
35
36 # Launch the joblets
37 numJoblets = self.getFact("jobargs.numJoblets")
38 print 'Launching ', numJoblets, ' joblets'
39
40 self.schedule(quickieJoblet, numJoblets)
41
42
43 class quickieJoblet(Joblet):
44
45 def joblet_started_event(self):
46 self.setFact("joblet.memo", "quickie's memo - joblet started")
47 sleeptime = self.getFact("jobargs.sleeptime")
48 time.sleep(sleeptime)

quickie.policy

 1 <!--
 2
*===
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: quickie.policy,v 1.2 2008/02/27 20:51:13 john Exp $
14
*===
15 -->
16
17 <policy>
18
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
19 <jobargs>
20 <fact name="numJoblets"
21 type="Integer"
22 description="joblets to run"
23 value="100"
24 visible="true" />
25
26 <fact name="sleeptime"
27 type="Integer"
28 description="time to sleep (in seconds)"
29 value="0"
30 visible="true" />
31 </jobargs>
32
33 <job>
34 <fact name="description"
35 type="String"
36 value="This example job does absolutely nothing. It just returns
immediately. For testing network latency." />
37 </job>
38
39 </policy>
40

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Job Details
The Quickie job can be broken down into the following separate operations:

“zosadmin deploy” on page 136
“job_started_event” on page 136
“joblet_started_event” on page 136
Complete Job Examples 135

136 Novell

novdocx (en) 11 July 2008
zosadmin deploy

The job is first deployed into the grid, as shown in lines 2-14 of quickie.jdl (page 133). When jobs
are deployed into the grid, they can optionally be organized for grouping. In this example, the
Quickie job is added to the group named examples and displays in the ZENworks Orchestrator
Console in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploy a Sample Job” in the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.

job_started_event

As shown in line 25 of quickie.jdl (page 133), scheduling one or more instances of the Quickie
joblet to run immediately is the second operation performed by the Quickie job. When the Quickie
job class receives a job_started_event() notification, it schedules the number of
QuickieJoblet instances as indicated by the value of the setting numJoblets, whose value might
have been supplied on the command line or from the quickie.policy file (see line 3 in quickie.policy
(page 134)).

joblet_started_event

The final operation performed by the Quickie job is for the joblet to sleep an amount of time as
specified by the value of the setting sleeptime (see line 31 in quickie.jdl (page 133)), and then
exit.

Configure and Run
1 Deploy quickie.job into the grid:

> zosadmin deploy quickie.job

2 Display the list of deployed jobs:

> zos joblist

quickie should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and sleeptime:

> zos run quickie

4 Run the job on one or more resources using supplied values for numJoblets and
sleeptime:

> zos run quickie numJoblets=10 sleeptime=3
JobID: zenuser.quickie.418

> zos status zenuser.quickie.418
Completed

> zos log zenuser.quickie.418
Launching 10 joblets
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Ten joblets will be run simultaneously, depending on the number of resources available in the
grid and how many simultaneous jobs each resource is configured to run. After the job runs,
each quickie joblet instance simply starts up, sleeps for 3 seconds, and then exits.

See Also
Setting Constraints Using Policies (Section 4.4, “Policy Management,” on page 53 and
Chapter 5, “Developing Policies,” on page 57).
Adding jobs to groups during deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
Scheduling multiple instances of a joblet

10.5 General Purpose Jobs
The following examples demonstrate general purpose job concepts:

“dgtest.job” on page 138
“failover.job” on page 148
“instclients.job” on page 154
“notepad.job” on page 161
“sweeper.job” on page 166
“whoami.job” on page 173
Complete Job Examples 137

138 Novell

novdocx (en) 11 July 2008
dgtest.job
This job demonstrates downloading a file from the datagrid.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail dgtest
Jobname/Parameters Attributes
------------------ ----------
dgtest Desc: This job demonstrates downloading from the Datagrid

 multicast Desc: Whether to download using multicast or unicast
 Type: Boolean
 Default: false

 filename Desc: The filename to download from the Datagrid
 Type: String
 Default: None! Value must be specified

Description
Demonstrates usage of the datagrid to download a file stored on the ZENworks Orchestrator Server
to a node. For additional background information, see Section 3.1, “Defining the Datagrid,” on
page 43.

Because it typically grows quite large, the physical location of the ZENworks Orchestrator root
directory is important. Use the following procedure to determine the location of the datagrid in the
Orchestrator server console:

1 Select the grid id on the left in the Orchestrator Explorer window >
2 Click the Constraints/Facts tab.

The read-only fact name (matrix.datagrid.root) is located here by default:

/var/opt/novell/zenworks/zos/server

The top level directory name is dataGrid.
Contents of the ZENworks Orchestrator can be seen with the Console command:

> zos dir grid:///
 <DIR> Dec-6-2007 6:55 installs
 <DIR> Dec-6-2007 6:55 jobs
 <DIR> Dec-6-2007 22:01 users
 <DIR> Dec-6-2007 6:55 vms
 <DIR> Dec-6-2007 6:56 warehouse

Job Files

The files that make up the Dgtest job include:
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
dgtest # Total: 238 lines
|-- dgtest.jdl # 172 lines
`-- dgtest.policy # 66 lines

dgtest.jdl

 1 # -- ----

 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 11 # ---
--
 12 # $Id: dgtest.jdl,v 1.4 2008/03/05 20:05:43 ray Exp $
 13 # ---
--
 14
 15 """
 16 Example usage of DataGrid to download a file stored on the Server to a node.
 17
 18 Setup:
 19 Before running the job, you must:
 20 (1) Create a dgtest resource group using the management console.
 21 (2) Copy a suitable file into the Server DataGrid
 22 (3) Modify the dgtest policy with the filename to download
 23 (to not use the default test file).
 24
 25 For example, use the following command to copy the file 'suse-10-fla
t.vmdk'
 26 into the deployment area for the job 'dgtest'
 27 >zos mkdir grid:///images
 28
 29 >zos copy suse-10-flat.vmdk grid:///images/
 30
 31 To verify the file is there:
 32 >zos dir grid:///images
 33
 34
 35 To start the job after the above setup steps are complete:
 36 >zos run dgtest filename=suse-10-flat.vmdk
 37
 38 """
 39 import os,time
 40
 41 #
 42 # Add to the 'examples' group on deployment
 43 #
 44 if __mode__ == "deploy":
 45 try:
 46 jobgroupname = "examples"
Complete Job Examples 139

140 Novell

novdocx (en) 11 July 2008
 47 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
 48 if jobgroup == None:
 49 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
 50 jobgroup.addMember(__jobname__)
 51 except:
 52 exc_type, exc_value, exc_traceback = sys.exc_info()
 53 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgr
oupname, exc_type, exc_value)
 54
 55
 56 class test(Job):
 57
 58 def job_started_event(self):
 59 filename = self.getFact("jobargs.filename")
 60 print "Starting Datagrid Test Job."
 61 print "Filename: %s" % (filename)
 62
 63 rg = None
 64 try:
 65 rg = getMatrix().getGroup("resource","dgtest")
 66 except:
 67 # no such group
 68 pass
 69
 70 if rg == None:
 71 self.fail("The resource group 'dgtest' was not found. It is
required for this job.")
 72 return
 73
 74 members = rg.getMembers()
 75 count = 0
 76 for resource in members:
 77 if resource.getFact("resource.online") == True and \
 78 resource.getFact("resource.enabled") == True:
 79 count += 1
 80
 81 memo = "Scheduling Datagrid Test on %d Joblets" % (count)
 82 self.setFact("jobinstance.memo",memo)
 83 print memo
 84 self.schedule(testnode,count)
 85
 86
 87 class testnode(Joblet):
 88
 89 def joblet_started_event(self):
 90 jobletnum = self.getFact("joblet.number")
 91 print "Running datagrid test joblet #%d" % (jobletnum)
 92 filename = self.getFact("jobargs.filename")
 93 multicast = self.getFact("jobargs.multicast")
 94
 95 # Test download a file from server job directory
 96 dg_url = "grid:///images/" + filename
 97
 98 # Create an intance of the JDL DataGrid object
 99 # This object is used to manage DataGrid operations
100 dg = DataGrid()
101
102 # Set to always force a download.
103 dg.setCache(False)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
104
105 # Set whether to use multicast or unicast
106 # If set to True, then the following 4 multicast
107 # options are applicable
108 dg.setMulticast(multicast)
109
110 # how long to wait for a quorom (milliseconds)
111 #dg.setMulticastWait(10000)
112
113 # Number of receivers that constitute a quorum
114 #dg.setMulticastQuorum(4)
115
116 # Requested data rate in bytes per second. 0 means use default
117 #dg.setMulticastRate(0)
118
119 # Min number of receivers
120 #dg.setMulticastMin(1)
121
122 if multicast:
123 mode = "multicast"
124 else:
125 mode = "unicast"
126
127 memo = "Starting %s download of file: %s" % (mode,dg_url)
128 self.setFact("joblet.memo",memo)
129 print memo
130
131 # Destination defaults to Node's Joblet dir.
132 # Change this path to go to any other local filesystem.
133 # e.g. to store in /tmp:
134 # dest = "/tmp/" + filename
135 dest = filename
136 try:
137 dg.copy(dg_url,dest)
138 except:
139 exc_type, exc_value, exc_traceback = sys.exc_info()
140 retryUnicast = False
141 if multicast == True:
142 # If node's OS and/or NIC does not fully support multi cast,
143 # then the node will timeout waiting for broadcasts.
144 # Note the error and fallback to unicast
145 if exc_type != None and len(str(exc_type)) > 0:
146 msg = str(exc_type)
147 index = msg.find("Multicast receive timed out")
148 retryUnicast = index != -1
149
150 if retryUnicast:
151 memo = "Multicast timeout. Fallback to unicast"
152 self.setFact("joblet.memo",memo)
153 print memo
154 dg.setMulticast(False)
155 dg.copy(dg_url,dest)
156 else:
157 raise exc_type,exc_value
158
159 if os.path.exists(dest):
160 print dg_url + " downloaded successfully."
161
162 # Show directory listing of downloaded file to job log
Complete Job Examples 141

142 Novell

novdocx (en) 11 July 2008
163 if self.getFact("resource.os.family") == "windows":
164 cmd = "dir %s" % (dest)
165 else:
166 cmd = "ls -lsart %s" % (dest)
167
168 system(cmd)
169 else:
170 raise RuntimeError, "Datagrid copy() failed"
171
172 print "Datagrid test completed"

dgtest.policy

 1 <!--
 2
*===
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: dgtest.policy,v 1.2 2008/02/27 20:49:29 john Exp $
14
*===
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <!--
22 Name of file that is stored in the Datagrid area to
23 download to the resource.
24
25 A value for this fact the 'zos run' is assigned when
26 using the 'zos run' command.
27 -->
28 <fact name="filename"
29 type="String"
30 description="The filename to download from the Datagrid"
31 />
32
33 <fact name="multicast"
34 type="Boolean"
35 description="Whether to download using multicast or unicast"
36 value="false" />
37
38 </jobargs>
39
40 <job>
41 <fact name="description"
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
42 type="String"
43 value="This job demonstrates downloading from the Datagrid" />
44
45 <!-- limit to one per host -->
46 <fact name="joblet.maxperresource"
47 type="Integer"
48 value="1" />
49 </job>
50
51
52 <!--
53 This job will only run on resources in the "dgtest" resource group.
54
55 You must create a Resource Group named 'dgtest' using the management
56 console and populate the new group with resources that you wish to have
57 participate in the datagrid test.
58 -->
59 <constraint type="resource" reason="No resources are in the dgtest group"
>
60
61 <contains fact="resource.groups" value="dgtest"
62 reason="Resource is not in the dgtest group" />
63
64 </constraint>
65
66 </policy>

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

test
Class test (line 42 in dgtest.jdl (page 139) is derived from the Job class.

testnode
Class testnode (line 73 in dgtest.jdl (page 139) is derived from the Joblet (page 224) class.
Complete Job Examples 143

144 Novell

novdocx (en) 11 July 2008
Job Details
dgtest.job can be broken down into the following parts:

“Policy” on page 144
“zosadmin deploy” on page 144
“job_started_event” on page 144
“joblet_started_event” on page 145

Policy

In addition to describing the filename and multicast jobargs and the default settings for
multicast (lines 3-22) in the dgtest.policy (page 142) file, there is the <job/> section (lines 24-
33), which describes static facts (Section 5.1.2, “Facts,” on page 57).You must assign the
filename argument when executing this example. This is only the name of the file in the
“images” area of ZENworks Orchestrator. For example, for grid:///images/disk.img, just
assign disk.img to the argument. This file must be in the ZENworks Orchestrator file system for
fetching and delivering to remote nodes used in this example.

To populate the ZENworks Orchestrator, use the zos copy command. For example, for a file
named suse-9-flat.vmd in the current directory, use the following command:

> zos mkdir grid:///images
> zos copy suse-9-flat.vmd grid:///images/

The multicast jobarg is a Boolean, defaulted to false so that unicast is used for transport. Set
this value to true to use multicast transport for delivery of the file.

The policy in the <job/> section also describes a resource.groups constraint. (For more
information, see “Constraints” on page 23). This requires a resource group named dgtest (lines
30-39 in dgtest.policy (page 142)) and that group should have member nodes. Consequently, you
must create this resource group using the Orchestrator server console and assign it some nodes to
run this example successfully.

zosadmin deploy

When the Orchestrator server deploys a job for the first time (see Section 7.5, “Deploying Jobs,” on
page 75), the job JDL files are executed in a special deploy mode. Looking at dgtest.jdl (page 139),
you might notice that when the job is deployed (line 30), either via the Orchestrator console or the
zosadmin deploy command, that it attempts to find the examples jobgroup (lines 32-33), create it
if missing (lines 34-45), and add the dgtest job to the group (line 36).

If this deployment fails for some reason, an exception is thrown (line 37), which prints (line 39) the
job name, group name, exception type, and value.

job_started_event

In dgtest.jdl (page 139), the test class (line 42) defines only the required job_started_event (line
44) method. This method runs on the Orchestration server when the job is run to launch the joblets.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
When job_started_event is executed, it gets the name of the file assigned to the
jobargs.filename variable and prints useful tracing information (lines 45-47). It then tries to
find the resource group named dgtest. If the resource group doesn’t exist, the member fail
string is set to inform the user and returns without scheduling the joblet(s) (lines 49-58).

After finding the dgtest group, the job gets the member list and determines how many nodes are
online and enabled. The total count is stored in lines 60-65. After setting the memo line in the
Console (67-69), the job schedules count number of testnode joblets (line 70).

joblet_started_event

In dgtest.jdl (page 139), the testnode class (line 73) defines only the required
joblet_started_event (line 75) method. This method runs on the Orchestrator agent nodes when
scheduled by a Job (page 222) class.

The joblet_started_event prints some trace information (lines 76-77), gets the name of the file to
transfer (line 78) and the mode of transfer (line 79), and creates the grid URL for the file (line 82).

A DataGrid (page 212) is instantiated (line 86), set not to cache (line 89), and set to use the multicast
jobarg (line 94). The next four settings control multicast behavior are commented out (lines 97, 100,
103, and 106).

The joblet prints a memo line for the Orchestrator console (lines 108-115), sets the location for the
file on the local node (line 121), and tries to transfer the file from the datagrid (line 123).

If the datagrid copy at line 123 fails for some reason, we have a retry mechanism in the exception
handler (lines 125-143). The information for why the exception occurred is fetched (line125).

The variable retryUnicast (line 126) is set False and will only be set True if the failed
download attempt was using multicast transport and the exception type has the string "Multicast
receive timed out" (lines 125-134). If the timed out string is not found, the triad assigns the
retryUnicast a value of -1. With this logic, either multicast timeout or not, a unicast attempt is
made if multicast fails.

If you get to line 136 from a failed multicast copy, a memo for the Orchestrator console is set and
printed to the log (137-138), setMulticast is set to false (140), and another copy from the
datagrid is attempted.

If we get to line 136 from a failed unicast copy, an exception is raised (line 143) and we’re done.

Configure and Run

> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.323

Looks like it ran successfully; let’s see what the log says:

> zos log zenuser.dgtest.323
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Job 'zenuser.dgtest.323' terminated because of failure. Reason: The resource group
'dgtest' was not found. It is required for this job.

There is no resource group. Using the Orchestration Console create the resource group dgtest:
Complete Job Examples 145

146 Novell

novdocx (en) 11 July 2008
> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.324

> zos log zenuser.dgtest.324
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Scheduling Datagrid Test on 0 Joblets

NOTE: No joblets were scheduled because we have no active nodes in the group.

Using the Orchestrator Console, populate the dgtest group with nodes that are both online and
anabled:

> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.325

> zos log zenuser.dgtest.325
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Scheduling Datagrid Test on 2 Joblets
[freeze] Running datagrid test joblet #0
[freeze] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[freeze] Traceback (innermost last):
[freeze] File "dgtest.jdl", line 143, in joblet_started_event
[freeze] copy() failed: DataGrid file "/images/suse-9-flat.vmd" does not exist.
Job 'zenuser.dgtest.325' terminated because of failure. Reason: Job failed because
of too many joblet failures (job.joblet.maxfailures = 0)
[melt] Running datagrid test joblet #1
[melt] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[melt] Traceback (innermost last):
[melt] File "dgtest.jdl", line 143, in joblet_started_event
[melt] copy() failed: DataGrid file "/images/suse-9-flat.vmd" does not exist.

Because the path and the file in the DataGrid are missing, we need to create and populate them:

> zos mkdir grid:///images
Directory created.

> zos copy suse-9-flat.vmd grid:///images/
suse-9-flat.vmd copied.

> zos run dgtest filename=suse-9-flat.vmd
JobID: zenuser.dgtest.326

> zos log zenuser.dgtest.326
Starting Datagrid Test Job.
Filename: suse-9-flat.vmd
Scheduling Datagrid Test on 2 Joblets
[melt] Running datagrid test joblet #1
[melt] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[melt] grid:///images/suse-9-flat.vmd downloaded successfully.
[melt] 16732 -rw-r--r-- 1 root root 17108462 Dec 21 21:32 suse-9-flat.vmd
[melt] Datagrid test completed
[freeze] Running datagrid test joblet #0
[freeze] Starting unicast download of file: grid:///images/suse-9-flat.vmd
[freeze] grid:///images/suse-9-flat.vmd downloaded successfully.
[freeze] 16732 -rw-r--r-- 1 root root 17108462 Dec 21 21:31 suse-9-flat.vmd
[freeze] Datagrid test completed
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Finally, the file is deployed from the datagrid and copied successfully. However, you will not find it
if you look for it on the agent after the joblet is finished. By default, the file is deployed only for the
joblet’s lifetime into a directory for the joblet, like the following:

/var/opt/novell/zenworks/zos/agent/node.default/melt/zenuser.dgtest.326.0

So, for a more permanent demonstration, see lines 118-120 in dgtest.jdl (page 139). Uncomment
line 120 and comment out line 121 to store your file in the /tmp directory and have it continue to
exist on the agent after the joblet executes completely.
Complete Job Examples 147

148 Novell

novdocx (en) 11 July 2008
failover.job
A test job that demonstrates handling of joblet failover.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail failover
Jobname/Parameters Attributes
------------------ ----------
failover Desc: This test jobs can be used to demonstrate joblet
 failover handling.

 sleeptime Desc: specify the execute length of joblet before failure in
 seconds
 Type: Integer
 Default: 7

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 1

Description
Schedules one joblet, which fails, then re-instantiates in a repeating cycle until a specified retry limit
is reached and the Orchestration Server does not create another instance. This example demonstrates
how the orchestration server can be made more robust, as described in Section 7.13, “Improving Job
and Joblet Robustness,” on page 85.

The files that make up the Failover job include:

failover # Total: 94 lines
|-- failover.jdl # 64 lines
`-- failover.policy # 30 lines

failover.jdl

 1 # --
-
 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: failover.jdl,v 1.3 2008/02/27 20:50:00 john Exp $
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
13 # --
-
14
15 # Test job to illustrate joblet failover and max retry limits
16 #
17 # Job args:
18 # numJoblets - specify number of Joblets to run
19 # sleeptime -- specify the execute length of joblet before failure in
seconds
20 #
21
22 import sys,os,time
23
24 #
25 # Add to the 'examples' group on deployment
26 #
27 if __mode__ == "deploy":
28 try:
29 jobgroupname = "examples"
30 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
31 if jobgroup == None:
32 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
33 jobgroup.addMember(__jobname__)
34 except:
35 exc_type, exc_value, exc_traceback = sys.exc_info()
36 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgroupname,
exc_type, exc_value)
37
38
39 class failover(Job):
40
41 def job_started_event(self):
42 numJoblets = self.getFact("jobargs.numJoblets")
43 print 'Launching ', numJoblets, ' joblets'
44 self.schedule(failoverjoblet,numJoblets)
45
46
47 class failoverjoblet(Joblet):
48
49 def joblet_started_event(self):
50 print "------------------ joblet_started_event"
51 print "node=%s joblet=%d" % (self.getFact("resource.id"),
self.getFact("joblet.number"))
52 print "self.getFact(joblet.retrynumber)=%d" %
(self.getFact("joblet.retrynumber"))
53 print "self.getFact(job.joblet.maxretry)=%d" %
(self.getFact("job.joblet.maxretry"))
54
55 sleeptime = self.getFact("jobargs.sleeptime")
56 print "sleeping for %d seconds" % (sleeptime)
57 time.sleep(sleeptime)
58
59 # This will cause joblet failure and thus retry
60 raise RuntimeError, "Artifical error in joblet. node=%s" %
(self.getFact("resource.id"))
61
62
63
64
Complete Job Examples 149

150 Novell

novdocx (en) 11 July 2008
failover.policy

 1 <!--
 2
*===
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: failover.policy,v 1.2 2008/02/27 20:50:00 john Exp $
14
*===
15 -->
16
17 <policy>
18 <jobargs>
19 <fact name="sleeptime" description="specify the execute length of
joblet before failure in seconds" value="7" type="Integer" />
20 <fact name="numJoblets" description="joblets to run" value="1"
type="Integer" />
21 </jobargs>
22
23 <job>
24 <fact name="description" value="This test jobs can be used to
demonstrate joblet failover handling." type="String" />
25
26 <!-- Number of times to retry joblet on failure -->
27 <fact name="joblet.maxretry" type="Integer" value="3" />
28 </job>
29 </policy>
30

Classes and Methods

Definitions:

Class failover in line 25 of failover.jdl (page 148) is derived from the Job (page 222) class; and the
class failoverjoblet in line 33 of failover.jdl (page 148) is derived from the Joblet (page 224) class.

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

test
Class test (line 42 in dgtest.jdl (page 139) is derived from the Job class.

testnode
Class testnode (line 73 in dgtest.jdl (page 139) is derived from the Joblet (page 224) class.

Job Details
The following sections describe the Failover job:

“zosadmin deploy” on page 151
“job_started Event” on page 151
“job_started Event” on page 152

zosadmin deploy

In failover.policy (page 150), in addition to describing the jobargs and default settings for
sleeptime and numJoblets (lines 2-5), the <job/> section (lines 7-12) describes static facts
(see Section 5.1.2, “Facts,” on page 57). Note that the joblet.maxretry attribute in line 11 has
a default setting of 0 but is set here to 3. This attribute can also be modified in the failover.jdl
(page 148) file by inserting a line between line 27 and 28, as shown in the following example:

 27 def job_started_event(self):
 ++ self.setFact("job.joblet.maxretries", 3)
 28 numJoblets = self.getFact("jobargs.numJoblets")

job_started Event

After the Orchestrator server deploys a job for the first time (see Section 7.5, “Deploying Jobs,” on
page 75), the job JDL files are executed in a special “deploy” mode. When the job is deployed (line
13, failover.jdl (page 148), it attempts to find the examples jobgroup (lines 15-16), creates it if is
missing (lines 17-18), and adds the failover job to the group (line 19).

Jobs can be deployed using either the Orchestrator console (zoc) or the zosadmin deploy command.
If the deployment fails for some reason, an exception is thrown (line 20), which prints the job name
(line 22), group name, exception type, and value.
Complete Job Examples 151

152 Novell

novdocx (en) 11 July 2008
job_started Event

In failover.jdl (page 148), the failover class (line 25) defines only the required
job_started_event (line 27) method. This method runs on the Orchestrator server when the
job is run to launch the joblets.

On execution, the job_started_event simply gets the number of joblets to create (numJoblets
in line 28), then schedules that specified number of instances (line 30) of the failoverjoblet
class.failoverjoblet. The failoverjoblet class (lines 33-46) defines only the required
joblet_started_event (line 35) method.

When executed on an agent node, the joblet_started_event prints some helpful information
for tracking execution (lines 36-39). The first output is where the joblet is running and which
instance is running (line 37). The current joblet retry number (line 38) is displayed, followed by the
job’s static joblet.maxretry (line 39) that was specified in the policy file.

The joblet then sleeps for jobargs.sleeptime seconds (lines 41-43) and on waking raises an
exception of type RuntimeError (line 46).

This is the point of this example. After a RuntimeError exception is thrown, the zos server
attempts to run the same instance of the joblet again if job.joblet.maxretry (default is 0) is
less than or equal to joblet.retrynumber.

Configure and Run
You must be logged into the Orchestrator Server before you run zosadmin or zos commands.

1 Deploy failover.job into the grid:

> zosadmin deploy failover.job
JobID: zenuser.failover.269

The job appears to have run successfully, now take a look at the log and see the joblet failure
and being relaunched until finally the "maxretry" count is exceeded and the job exits with a
failure status:

2 Display the list of deployed jobs:

> zos joblist

failover should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and sleeptime,

specified in the failover.policy file:

> zos run failover sleeptime=1 numJoblets=2
JobID: zenuser.failover.269

The job appears to have run successfully, now take a look at the log and see the joblet failure and
being relaunched until finally the maxretry count is exceeded and the job exits with a failure
status:

> zos log zenuser.failover.269Launching 2 joblets
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=1
[melt] self.getFact(joblet.retrynumber)=0
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 46, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=0
[freeze] self.getFact(joblet.retrynumber)=0
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 46, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=0
[melt] self.getFact(joblet.retrynumber)=1
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 46, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=1
[freeze] self.getFact(joblet.retrynumber)=1
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 46, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=1
[melt] self.getFact(joblet.retrynumber)=2
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 46, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=0
[freeze] self.getFact(joblet.retrynumber)=2
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 46, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze

See Also
Setting Constraints Using Policies (Section 4.4, “Policy Management,” on page 53 and
Chapter 5, “Developing Policies,” on page 57)
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
Executing Commands Using Exec (page 215)
Complete Job Examples 153

154 Novell

novdocx (en) 11 July 2008
instclients.job
Installs the ZENworks Orchestrator client applications to the specified resource machine. Note that
while most of the other examples are deployed by default, this example is not.

Detail
The following concepts are demonstrated:

Using constraints to restrict joblet execution to a specific resource.
Adding files to a job’s directory in the datagrid, and retrieving them during joblet execution.
Using the Exec class to send a command to the operating system. The system command is
invoked directly without using the system command interpreter (either cmd.exe or /bin/
sh).

Usage

> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy instclients.job
instclients successfully deployed

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail instclients Jobname/Parameters Attributes
------------------ ----------
instclients Desc: This job installs the ZOS clients on a resource

 host Desc: The host name of resource to install on
 Type: String
 Default: None! Value must be specified

Description
The files that make up the Instclients job include:

instclients # Total: 138 lines
|-- instclients.jdl # 97 lines
`-- instclients.policy # 41 lines

instclients.jdl

 1 # --
-
 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: instclients.jdl,v 1.4 2008/03/05 20:05:54 ray Exp $
13 # --
-
14
15 """
16
17 Run install clients on a resource
18
19 Setup:
20 Before running the job, you must copy installers into DataGrid of
21 server.
22
23 >zos copy zosclients_windows_1_3_0_with_jre.exe grid:///\!instclients/
24
25 """
26 import os,time
27
28 #
29 # Add to the 'examples' group on deployment
30 #
31 if __mode__ == "deploy":
32 try:
33 jobgroupname = "examples"
34 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
35 if jobgroup == None:
36 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
37 jobgroup.addMember(__jobname__)
38 except:
39 exc_type, exc_value, exc_traceback = sys.exc_info()
40 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgroupname,
exc_type, exc_value)
41
42
43 class InstClients(Job):
44
45 def job_started_event(self):
46 print "Scheduling joblet"
47 self.schedule(InstClientsJoblet)
48
49
50 class InstClientsJoblet(Joblet):
51
52 def joblet_started_event(self):
53 print "Launching Installer"
54 windowsInstaller = "zosclients_windows_1_3_0_with_jre.exe"
55 linuxInstaller = "zosclients_linux_1_3_0_with_jre.sh"
56 if self.getFact("resource.os.family") == "windows":
57 print "Downloading Windows install"
58 dg = DataGrid()
59 dg.copy("grid:///!instclients/" +
windowsInstaller,windowsInstaller)
Complete Job Examples 155

156 Novell

novdocx (en) 11 July 2008
60
61 print "Starting install"
62 cmd = self.getcwd() + "/" + windowsInstaller + " -q "
63 e = Exec()
64 e.setCommand(cmd)
65 e.setRunAsJobUser(False)
66 e.writeStdoutToLog()
67 e.writeStderrToLog()
68 result = e.execute()
69 else:
70 print "Downloading Linux install"
71 dg = DataGrid()
72 dg.copy("grid:///!instclients/" + linuxInstaller,linuxInstaller)
73
74 print "Starting install"
75 cmd = "chmod +x " + self.getcwd() + "/" + linuxInstaller
76 print "cmd=%s" % (cmd)
77 e = Exec()
78 e.setCommand(cmd)
79 e.setRunAsJobUser(False)
80 e.writeStdoutToLog()
81 e.writeStderrToLog()
82 result = e.execute()
83
84 cmd = self.getcwd() + "/" + linuxInstaller + " -q"
85 print "cmd=%s" % (cmd)
86 e = Exec()
87 e.setRunAsJobUser(False)
88 e.setCommand(cmd)
89 e.writeStdoutToLog()
90 e.writeStderrToLog()
91 result = e.execute()
92
93 if result == 0:
94 print "Install complete"
95 else:
96 print "result=%d" % (result)
97

instclients.policy

 1 <!--
 2
*===
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: instclients.policy,v 1.2 2008/02/27 20:50:26 john Exp $
14
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
*===
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <fact name="host"
22 type="String"
23 description="The host name of resource to install on"
24 />
25
26 </jobargs>
27
28 <job>
29 <fact name="description"
30 type="String"
31 value="This job installs the ZOS clients on a resource" />
32 </job>
33
34 <constraint type="resource" >
35
36 <eq fact="resource.id" factvalue="jobargs.host" />
37
38 </constraint>
39
40 </policy>
41

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.
Complete Job Examples 157

158 Novell

novdocx (en) 11 July 2008
DataGrid
Provides a way to interact with the datagrid. Operations include copying files from the datagrid
down to the resource for joblet usage and uploading files from a resource to the datagrid.

Job Details
The following sections describe the Instclients job:

“zosadmin deploy” on page 158
“job_started_event” on page 158
“joblet_started_event” on page 158

zosadmin deploy

When jobs are deployed into the grid, they can optionally be placed in groups for organization and
easy reference. In this case, the Instclients job will be added to the group named Examples, and will
show up in the ZENworks Orchestrator Console in the Explorer view at the location:

 /ZOS/YOUR_GRID/Jobs/examples.

For a general overview of how jobs are added to groups during deployment, see “Deploying a
Sample System Job” in the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.

job_started_event

When the Instclients job receives a job_started_event, it schedules a single instance of the Instclients
joblet to be run (see line 32 of instclients.jdl (page 154)). The resource that runs the joblet is
determined from the resource constraint specified in instclients.policy (page 156), lines 12-14, and
from the value for the parameter host supplied on the command line.

joblet_started_event

After the Instclients joblet is executed on a particular resource, it receives a joblet_started_event.
When this happens, the Instclients joblet decides which Orchestrator Client installation file to
download, and the commands to execute on the operating system by checking the value of
resource.os.family (see line 40 of instclients.jdl (page 154)). The
resource.os.family fact does not exist in the instclients.policy file, but is instead
provided by the ZENworks Orchestrator system.

After deciding which operating system the joblet is being run on, the Instaclients joblet uses the
DataGrid class to download the appropriate client installation file to the current working directory of
the running joblet (see lines 41-43 and 54-56 in instclients.jdl (page 154)). The URL grid://
!instclients/ points to a directory reserved for the joblet in the datagrid on the server.

After the client installation file has been downloaded from the server, the Instclients joblet uses the
Exec class to begin the installation (see lines 46-52 and 58-75 in instclients.jdl (page 154)l). As
indicated by lines 50, 51, 64, 65, 73 and 74, all standard out and standard err are written to the job’s
log file.

To view the log file for the Instclients job after it has been run, you can execute the command

zos log instclients
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
For more information about using zos, see Section 7.5.2, “Using the ZOSADMIN Command Line
Tool,” on page 75. See the Exec class in Orchestrator Job Classes and JDL Syntax for more
information on running commands.

NOTE: The Instclients job uses the Exec class twice when running on a Linux resource. The first
command changes the mode of the installation file to be an executable, and the second runs the
installation file.

Configure and Run
Execute the following commands to deploy and run instclients.job:

1 Copy client installation files into the directory reserved for the Instclients joblet in the datagrid
of the Orchestrator Server (note: replace windows with Linux*, Solaris*, etc. for your given
operating system):

zos copy zosclients_linux_1_3_0_with_jre.sh grid:///\!instclients/

This command copies the file zosclients_linux_1_3_0_with_jre.sh into the
datagrid job directory for instclients.
For more information about using ZENworks Orchestrator Console to copy files, type zos
copy -help.

NOTE: Replace windows with linux, solaris, etc. for your given operating system.

2 Deploy instclients.job into the grid by entering:

zosadmin deploy instclients.job

3 Display the list of deployed jobs by entering:

zos joblist

instclients should appear in this list.
4 Run the job on the resource with the given host:

zos run instclients host=my_resource_host

Installs the Orchestrator client onto the resource with the host: my_resource_host.

See Also
Setting Constraints Using Policies (Section 4.4, “Policy Management,” on page 53 and
Chapter 5, “Developing Policies,” on page 57)
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
Scheduling multiple instances of a joblet
Setting default parameter values using policies
Configuring constraints in a policy file
Naming conventions for policy facts (Section 3.1.1, “Naming Orchestrator Job Files,” on
page 43.Section 3.1.1, “Naming Orchestrator Job Files,” on page 43)
Facts provided by the ZENworks Orchestrator system that can be referenced within a JDL file
Complete Job Examples 159

160 Novell

novdocx (en) 11 July 2008
Using ZENworks Orchestrator Console (“How Do I Interact with ZENworks Orchestrator?”)
Running commands using the Exec class.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
notepad.job
Launches the Notepad application on a Windows resource.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail notepad
Jobname/Parameters Attributes
------------------ ----------
notepad Desc: No description available.

Description
The files that make up the Notepad job include:

notepad # Total: 86 lines
|-- notepad.jdl # 54 lines
`-- notepad.policy # 32 lines

notepad.jdl

 1 # --
-
 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: notepad.jdl,v 1.3 2008/02/27 20:50:47 john Exp $
13 # --
-
14
15 """
16
17 Run Notepad Application on windows resoure
18
19 """
20 import os,time
21
22 #
23 # Add to the 'examples' group on deployment
24 #
25 if __mode__ == "deploy":
26 try:
Complete Job Examples 161

162 Novell

novdocx (en) 11 July 2008
27 jobgroupname = "examples"
28 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
29 if jobgroup == None:
30 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
31 jobgroup.addMember(__jobname__)
32 except:
33 exc_type, exc_value, exc_traceback = sys.exc_info()
34 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgroupname,
exc_type, exc_value)
35
36
37 class Notepad(Job):
38
39 def job_started_event(self):
40 print "Scheduling joblet"
41 self.schedule(NotepadJoblet)
42
43
44 class NotepadJoblet(Joblet):
45
46 def joblet_started_event(self):
47 print "Starting Notepad"
48 cmd = "notepad"
49 e = Exec()
50 e.setCommand(cmd)
51 e.writeStdoutToLog()
52 e.writeStderrToLog()
53 result = e.execute()
54

notepad.policy

 1 <!--
 2
*===
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: notepad.policy,v 1.2 2008/02/27 20:50:47 john Exp $
14
*===
15 -->
16
17 <policy>
18
19 <constraint type="accept" >
20
21 <gt fact="jobinstance.matchingresources" value="0" reason="No
Windows's resources are available to run Notepad" />
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
22
23 </constraint>
24
25 <constraint type="resource" >
26
27 <eq fact="resource.os.family" value="windows" reason="Notepad only
runs on Windows OS" />
28
29 </constraint>
30
31 </policy>
32

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

Job Details
The Notepad job is broken down into three separate operations:

“zosadmin deploy” on page 163
“job_started_event” on page 164
“joblet_started_event” on page 164

zosadmin deploy

In notepad.jdl (page 161), lines 7-19 places the job into the “examples” job group. After jobs are
deployed into the grid, they can optionally be placed in groups for organization and easy reference.
In this case, the Notepad job is added to the group named Examples and appears in the ZENworks
Orchestrator Console in the Explorer view at the location:
Complete Job Examples 163

164 Novell

novdocx (en) 11 July 2008
/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploy a Sample Job” in the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.

job_started_event

Scheduling the Notepad joblet to run immediately is the second operation performed by the Notepad
job in line 26 of notepad.jdl (page 161). When the Notepad job class receives a
job_started_event() notification, it simply schedules the NotepadJoblet class to be run on
any target device that meets the restrictions identified in the notepad.policy file.

As specified in lines 2 and 5 of notepad.policy (page 162), there must be at least one Windows
machine available in the grid for the Notepad job to run. The accept constraint in lines 1-3
prevents the Notepad job from being accepted for running if there are no Windows resources
available.

The resource constraint in lines 4-7 constrain the Orchestrator scheduler to only choose a
resource that is running a Windows OS.

For more information on setting constraints using policies, see Section 4.4, “Policy Management,”
on page 53 and Chapter 5, “Developing Policies,” on page 57.

joblet_started_event

As specified in lines 33-38 in notepad.jdl (page 161), the joblet executing a command on the target
machine is the last operation performed by the Notepad job.

In this example, after the joblet_started_event() method of the NotepadJoblet class gets
called, the ZENworks Orchestrator API class named Exec is used to run the command notepad on
is captured and written to the log file for the Notepad job.

Configure and Run
Execute the following commands to deploy and run notepad.job:

1 Deploy notepad.job into the grid:

> zosadmin deploy notepad.job

2 Display the list of deployed jobs:

> zos joblist

notepad should appear in this list.
3 Run the job on the first available Windows resource.

> zos run notepad

You should now see the Windows Notepad application appear on the screen of the target
Windows system. You will see the following error if there are no Windows resources.

No Windows resources available to run Notepad
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
See Also
Setting Constraints Using Policies see Section 4.4, “Policy Management,” on page 53 and
Chapter 5, “Developing Policies,” on page 57.
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
Executing Commands Using Exec (page 215)
Complete Job Examples 165

166 Novell

novdocx (en) 11 July 2008
sweeper.job
This example job illustrates how to schedule a "sweep," which is an ordered, serialized scheduling
of the joblets across all matching resources.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail sweeper
Jobname/Parameters Attributes
------------------ ----------
sweeper Desc: This example job ilustrates how to schedule a 'sweep'
 accross all matching resources.

 sleeptime Desc: time to sleep (in seconds)
 Type: Integer
 Default: 1

Options

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

sleeptime
Specifies the time in seconds that the job remains dormant before running (default 1).

Description
The files that make up the Sweeper job include:
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
sweeper # Total: 140 lines
|-- sweeper.jdl # 66 lines
`-- sweeper.policy # 74 lines

The ScheduleSpec (page 239) utility class is also related to this example.

sweeper.jdl

 1 # --
-
 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: sweeper.jdl,v 1.3 2008/02/27 20:51:24 john Exp $
13 # --
-
14
15 import time
16
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgroupname,
exc_type, exc_value)
30
31
32 class sweeperJob(Job):
33
34 def job_started_event(self):
35 self.setFact("jobinstance.memo", self.getFact("job.description"))
36
37 sp = ScheduleSpec()
38
39 # Optionally a constraint can be specified to further limit matching
40 # resources from the job's default 'resource' constraint. Could also
41 # compose an object Constraint.
42 # For example, uncomment to restrict to resource group 'sweeper'
43 #sp.setConstraint("<contains fact='resource.groups' value='sweeper' /
>")
44
Complete Job Examples 167

168 Novell

novdocx (en) 11 July 2008
45 # Specify the joblet to run on each resource
46 sp.setJobletClass(sweeperJoblet)
47
48 # Specify the sweep across active nodes
49 sp.setUseNodeSet(sp.ACTIVE_NODE_SET)
50
51 # Schedule a sweep (creates preassigned joblets)
52 self.scheduleSweep(sp)
53
54 # Now the ScheduleSpec contains the number of joblets created
55 print 'Launched', sp.getCount(), 'joblets'
56
57
58 class sweeperJoblet(Joblet):
59
60 def joblet_started_event(self):
61 msg = "run on resource %s" % (self.getFact("resource.id"))
62 self.setFact("joblet.memo", msg)
63 print "Sweep", msg
64 sleeptime = self.getFact("jobargs.sleeptime")
65 time.sleep(sleeptime)
66

sweeper.policy

 1 <!--
 2
*===
 3 * Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: sweeper.policy,v 1.2 2008/02/27 20:51:24 john Exp $
14
*===
15 -->
16
17 <policy>
18
19 <jobargs>
20 <!--
21 - Defines and sets the length of time the joblet should pretend
22 - it is doing something important
23 -->
24 <fact name="sleeptime"
25 type="Integer"
26 description="time to sleep (in seconds)"
27 value="1"
28 visible="true" />
29 </jobargs>
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
30
31
32 <job>
33 <!--
34 - Give the job a description for GUI's
35 -->
36 <fact name="description"
37 type="String"
38 value="This example job ilustrates how to schedule a 'sweep'
accross all matching resources." />
39
40 <!--
41 - This activates a built in throttle to limit the number of
42 - resources this job will run on at a time
43 -->
44 <fact name="maxresources"
45 type="Integer"
46 value="3" />
47
48 <!--
49 - Rank resources from least loaded to the highest loaded. The
50 - idea is to run the joblets on the least loaded node first
51 - and hopefully by the time we get to the higher loaded machines
52 - their load may have gone down
53 -->
54 <!--
55 <fact name="resources.rankby">
56 <array>
57 <string>resource.loadaverage/a</string>
58 </array>
59 </fact>
60 -->
61
62 <!--
63 - Alternative ranking that is easier to see:
64 - decending alphabetic of node name
65 -->
66 <fact name="resources.rankby">
67 <array>
68 <string>resource.id/d</string>
69 </array>
70 </fact>
71 </job>
72
73 </policy>
74

Classes and Methods
The class sweeperJob (see line 18, sweeper.jdl (page 167)) is derived from the Job Class.

The class sweeperJoblet (see line 44, sweeper.jdl (page 167)) is derived from the Joblet Class.

Definitions:

Job
A representation of a running job instance.
Complete Job Examples 169

170 Novell

novdocx (en) 11 July 2008
Joblet
Defines execution on the resource.

Job Details
The sweeper.job can be broken down into four separate parts:

“Policy” on page 170
“zosadmin deploy” on page 170
“job_started_event” on page 170
“joblet_started_event” on page 171

Policy

In addition to specifying the jobarg and default settings for sleeptime in lines 8-12,
sweeper.policy (page 168)), there also is the <job/> section in lines 16-55, which describes static
facts (see “Facts” on page 57).

The resources.rankby array has two notable setting in this example:

resource.loadaverage: This is the first string assignment (lines 38-44), which is commented
out, that causes joblets to run on the least loaded nodes first.This is the default value and the
default launch order for scheduleSweep.
resource.id: This is the second string assignment (lines 50-54), which is actually used, and
assigns the string to the rank by array so that joblets run on nodes in reverse alphabetical order.

zosadmin deploy

When the Orchestrator server deploys a job for the first time (see Section 7.5, “Deploying Jobs,” on
page 75), the job JDL files are executed in a special deploy mode. When sweeper.jdl is run in
this way (either via the zoc or the zosadmin deploy command), lines 6-15 are executed. This
attempts to locate the examples jobgroup (lines 8-9), creates the group if it is not found (lines 10-11),
and adds the sweeper job to the group (line 12).

If the deployment fails for any reason, then an exception is thrown (line 13), which prints the job
name, group name, exception type and value (line 15).

job_started_event

The sweeperJob class (line 18) defines only the required job_started_event (line 20) method.
This method runs on the Orchestrator server when the job is run to launch the joblets.

When executed, job_started_event displays a message on the memo line of the Job Log tab
within the Jobs view in the Orchestrator console (line 21), via jobinstance.memo (see
Section 7.12.1, “Creating a Job Memo,” on page 84).

Jumping ahead for a moment, instead of calling self.schedule() as most the other examples
do to instantiate joblets, sweeperJob calls self.scheduleSweep() (line 38). scheduleSweep
requires an instance of ScheduleSpec (page 239), so one is created (line 23).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
The ScheduleSpec method setConstraint can be used to constrain the available resources to a
particular group, as shown with a comment (line 29). If this setConstraint line is uncommented,
joblets will only run on members of the sweeper resource.group instead of using the default
resource group all.

NOTE: The sweeper group must already be created and have computing nodes assigned to it (see
“Walkthrough: Create a Resource Account”. This constraint would also be ANDed to any existing
constraint, including any aggregated policies.

The sweeperJoblet is set to be scheduled (line 32), and setUseNodeSet(intnodeSet) is assigned (line
35) the value sp.ACTIVE_NODE_SET. So, the joblet set is constructed after applying resource
constraints to the active/online resources. This in contrast to the other possible value of
sp.PROVISIONABLE_NODE_SET, where constraints are applied to all provisionable resources.

joblet_started_event

The sweeperJoblet class (lines 44-51) defines only the required joblet_started_event (line
46) method. After this method is executed, it displays a message on the memo line of the Joblet tab
within the Jobs view in the Orchestrator console (lines 47-48). It. also prints a similar log message
(line 49), and then just sleeps for jobargs.sleeptime seconds (lines 50-51) before completion.

Configure and Run
Execute the following commands to deploy and run sweeper.job:

1 Deploy notepad.job into the grid:

> zosadmin deploy sweeper.job

2 Display the list of deployed jobs:

> zos joblist

sweeper should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and resource,

specified in the sweeper.policy file:

> zos run sweeper sleeptime=30
JobID: zenuser.sweeper.420

> zos status zenuser.sweeper.420
Completed

> zos log zenuser.sweeper.420
Launched 3 joblets
[melt] Sweep run on resource melt
[freeze] Sweep run on resource freeze
[skate] Sweep run on resource skate
Complete Job Examples 171

172 Novell

novdocx (en) 11 July 2008
See Also
Setting Constraints Using Policies, see Section 4.4, “Policy Management,” on page 53 and
Chapter 5, “Developing Policies,” on page 57
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
whoami.job
Demonstrates using the Exec class to send a command to the operating system’s default command
interpreter. On Microsoft Windows, this is cmd.exe. On POSIX systems, this is /bin/sh.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

~> zos jobinfo --detail whoami
Jobname/Parameters Attributes
------------------ ----------
whoami Desc: This is a demo example of enhanced exec

 numJoblets Desc: The number of joblets to schedule
 Type: Integer
 Default: 1

 resource Desc: The resource id to run on
 Type: String
 Default: .*

Description
The files that make up the Whoami job include:

whoami # Total: 118 lines
|-- whoami.jdl # 69 lines
`-- whoami.policy # 49 lines

whoami.jdl

 1 # --
-
 2 # Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: whoami.jdl,v 1.3 2008/02/27 20:51:34 john Exp $
13 # --
-
14
15 """
16
17 Demonstrate running setuid exec.
Complete Job Examples 173

174 Novell

novdocx (en) 11 July 2008
18
19 """
20 import os,time
21
22 #
23 # Add to the 'examples' group on deployment
24 #
25 if __mode__ == "deploy":
26 try:
27 jobgroupname = "examples"
28 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
29 if jobgroup == None:
30 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
31 jobgroup.addMember(__jobname__)
32 except:
33 exc_type, exc_value, exc_traceback = sys.exc_info()
34 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgroupname,
exc_type, exc_value)
35
36
37 class Whoami(Job):
38
39 def job_started_event(self):
40 # Launch the joblets
41 numJoblets = self.getFact("jobargs.numJoblets")
42 user = self.getFact("user.id")
43 print "Launching %d joblets for user '%s'" % (numJoblets,user)
44 self.schedule(WhoamiJoblet,numJoblets)
45
46
47 class WhoamiJoblet(Joblet):
48
49 def joblet_started_event(self):
50 if self.getFact("resource.os.family") == "windows":
51 cmd = "echo %USERNAME%"
52 elif self.getFact("resource.os.family") == "solaris":
53 cmd = "echo $USER"
54 else:
55 cmd = "whoami"
56 print "cmd=%s" % (cmd)
57
58 # example using built-in system()
59 #result = system(cmd)
60
61 # example using Exec class
62 e = Exec()
63 e.setShellCommand(cmd)
64 e.writeStdoutToLog()
65 e.writeStderrToLog()
66 result = e.execute()
67
68 print "result=%d" % (result)
69
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
whoami.policy

 1 <!--
 2
*===
 3 * Copyright (c) 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: whoami.policy,v 1.2 2008/02/27 20:51:34 john Exp $
14
*===
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <fact name="numJoblets"
22 type="Integer"
23 description="The number of joblets to schedule"
24 value="1" />
25
26 <fact name="resource"
27 type="String"
28 description="The resource id to run on"
29 value=".*" />
30
31 </jobargs>
32
33 <job>
34 <fact name="description"
35 type="String"
36 value="This is a demo example of enhanced exec" />
37
38 <!-- only allow one run resource at a time so that multiple re sources
can be visited -->
39 <fact name="joblet.maxperresource"
40 type="Integer"
41 value="1" />
42 </job>
43
44 <constraint type="resource" >
45 <eq fact="resource.id" factvalue="jobargs.resource" match="regex p" />
46 </constraint>
47
48 </policy>
49
Complete Job Examples 175

176 Novell

novdocx (en) 11 July 2008
Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec
Used to manage command line execution on resources.

Job Details
The following sections describe the Whoami job:

“zosadmin deploy” on page 176
“job_started_event” on page 177
“joblet_started_event” on page 177

zosadmin deploy

When jobs are deployed into the grid, they can optionally be placed in groups for organization and
easy reference. In this case, the Whoami job is added to the group named “examples” (see lines 22-
34 of whoami.jdl) and is displayed in the ZENworks Orchestrator Console in the Explorer view
at the location:

/ZOS/YOUR_GRID/Jobs/examples.

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploy a Sample Job” in the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
job_started_event

When the Whoami job receives a job_started_event, it schedules one or more instances of the
Whoami joblet to be run (see line 30 in whoami.jdl (page 173)). The number of WhoamiJoblet
instances is indicated by the value of the numJoblets fact, whose value might have been supplied
on the command-line, or referenced from what’s been supplied in the whoami.policy file by default
(see lines 3-6 in whoami.policy (page 175)).

In addition to supplying a default value for numJoblets, the whoami.policy file also supplies
a default value for the ID of the resource on which the joblet runs. The default value is .*, which
means all resources are included (see lines 7-10 in whoami.policy (page 175)).

Note that the setting for resource isn’t used in the JDL code but is used to affect which resources on
which the joblet run. This occurs because a constraint is specified in whoami.policy that
restricts the resources that can run this joblet to the current value of the resource fact (see line 22
in whoami.jdl (page 173)).

maxperresource is another job setting that affects scheduling of the Whoami joblet. The system
uses maxperresource to determine how many instances of the joblet can run simultaneously on
the same resource. In this case, only one instance of the Whoami job can be run on a machine at a
time, as specified in lines 17-19 in whoami.policy (page 175).

When facts are referenced in the JDL file, they are prepended with jobargs. or job.. However,
when supplied on the command line, this prefix is omitted. JDL files must use an explicit naming
convention when it references facts from the different sections of the policy files. For more
information on naming conventions for policy facts, see Section 3.1.1, “Naming Orchestrator Job
Files,” on page 43.

joblet_started_event

When the Whoami joblet is executed on a particular resource it receives a joblet_started_event.
After this happens, the Whoami joblet decides which command to use to get the current username
by checking the value of resource.os.family (see lines 36-42 in whoami.jdl (page 173)).
This setting is not set in the whoami.policy, but instead is available from the ZENworks
Orchestrator system.

After the command to get the current username has been decided, the ZENworks Orchestrator API
class named Exec is used to execute the command on the resource where the joblet is running (see
lines 48-54 in whoami.jdl (page 173)).

By passing the command to the Exec setShellCommand method, the command will be executed by
the operating system’s default command interpreter. On Microsoft Windows this cmd.exe. On
POSIX systems, this is /bin/sh. As indicated by lines 50-51 in whoami.jdl (page 173), all
standard out and standard errors are written to the job’s log file.

To view the log file for the whoami job after it has been run, execute the command > zos log
whoami.

For more information about using the zos command line, see “The zosadmin Command Line Tool”.
For more information on running commands using the Exec class, see Exec (page 215).
Complete Job Examples 177

178 Novell

novdocx (en) 11 July 2008
Configure and Run
Execute the following commands to deploy and run whoami.job:

1 Deploy notepad.job into the grid:

> zosadmin deploy whoami.job

2 Display the list of deployed jobs:

> zos joblist

whoami should appear in this list.
3 Run the job on one or more resources using the default values for numJoblets and resource,

specified in the whoami.policy file:

> zos run whoami

4 Run the job on one or more resources using supplied values for numJoblets and resource:

> zos run whoami numJoblets=10 resource=my_resource_.*

Run 10 joblets simultaneously, but only on resources beginning with the name "my_resource_".

NOTE: The value for "resource" is specified using regular expression syntax.

See Also
Setting Constraints Using Policies (Section 4.4, “Policy Management,” on page 53 and
Chapter 5, “Developing Policies,” on page 57).
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
Scheduling multiple instances of a joblet
Setting default parameter values using policies
Configuring constraints in a policy file
Naming conventions for policy facts (Section 3.1.1, “Naming Orchestrator Job Files,” on
page 43.Section 3.1.1, “Naming Orchestrator Job Files,” on page 43)
Facts provided by the ZENworks Orchestrator system that can be referenced within a JDL file
Using ZENworkd Orchestrator (“How Do I Interact with ZENworks Orchestrator?”)
Running commands using the Exec class.

10.6 Miscellaneous Code-Only Jobs
The following examples demonstrate useful, miscellaneous code-only job concepts:

“factJunction.job” on page 179
“jobargs.job” on page 188
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
factJunction.job
Demonstrates using fact junctions to retrieve information about objects in the grid relative to another
object.

Detail
Each object in the grid has a set of facts which can be read and modified. Some of these facts are
special in the sense that their value contains the name of another object that must exist in the grid.
These special facts are called fact junctions.

Fact junctions provide a way to reference the facts of one object, using another object as a starting
point. For example, all jobs in the grid have a fact named job.accountinggroup. The value for
job.accountinggroup must be the name of a job group currently existing in the grid (the
default being the group named all). The following JDL code prints the ID of the accounting group
for the job named myJob without using fact junctions:

job = getMatrix().getGridObject(TYPE_JOB, “myJob”)
groupName = job.getFact(“job.accountinggroup”)
group = getMatrix().getGridObject(TYPE_JOBGROUP, groupName)
print “Group ID: “ + group.getFact(“group.id”)

Using fact junctions, you can obtain the ID of the accounting group without having to retrieve a
reference to the group object first, as follows:

job = getMatrix().getGridObject(TYPE_JOB, “myJob”)
print “Group ID: “ + job.getFact(“job.accountinggroup.id”)

Notice the job myJob does not have a fact named job.accountinggroup.id. However, it does have a
fact named “job.accountinggroup”, which contains the name of an existing job group. This job
group has the fact “group.id”, and using fact junctions you can obtain the value of this fact without
explicitly reading it off of the job group object itself.

Usage

> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy factJunction.job
factJunction successfully deployed

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail factJunction
Jobname/Parameters Attributes
------------------ ----------
factJunction Desc: This is a test job to exercise fact junctions.

No parameters defined for this job.
Complete Job Examples 179

180 Novell

novdocx (en) 11 July 2008
Description
The files that make up the factJunction job include:

factJunction # Total: 205 lines
|-- factJunction.jdl # 179 lines
`-- factJunction.policy # 26 lines

factJunction.jdl

 1 # ---
--
 2 # Copyright 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 11 # ---
--
 12 # $Id: factJunction.jdl,v 1.3 2008/02/27 20:49:39 john Exp $
 13 # ---
--
 14
 15 #
 16 # This is a test job, but also illustrates all the implemented fact junctions.
 17 # A fact junction is a way to access facts on a 'referenced' object.
 18 # E.g. vmhost.resource.*** redirects from the vmhost object through the
 19 # juction onto the underlying physical resource object.
 20 #
 21 # To setup for test, copy job into the 'provisionAdapter' job group.
 22 #
 23
 24 #
 25 # Add to the 'examples' group on deployment
 26 #
 27 if __mode__ == "deploy":
 28 try:
 29 jobgroupname = "examples"
 30 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
 31 if jobgroup == None:
 32 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
 33 jobgroup.addMember(__jobname__)
 34 except:
 35 exc_type, exc_value, exc_traceback = sys.exc_info()
 36 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
 37
 38
 39 class factJunctionJob(Job):
 40
 41 def job_started_event(self):
 42 m = getMatrix()
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 43 nptt = "<Not Possible To Test>"
 44
 45 # Setup test environment
 46 user = m.getGridObject(TYPE_USER, "test")
 47 if (user == None):
 48 user = m.createGridObject(TYPE_USER, "test")
 49 user.setArrayFact("user.privilegedjobgroups", ["all"])
 50
 51 repository = m.getGridObject(TYPE_REPOSITORY, "test")
 52 if (repository == None):
 53 repository = m.createGridObject(TYPE_REPOSITORY, "test")
 54 repository.setArrayFact("repository.provisioner.jobs",
["factJunction"])
 55
 56 node = m.getGridObject(TYPE_RESOURCE, "test")
 57 if (node == None):
 58 node = m.createGridObject(TYPE_RESOURCE, "test")
 59
 60 vm = m.getGridObject(TYPE_RESOURCE, "vmtest")
 61 if (vm == None):
 62 vm = m.createResource("vmtest", ResourceInfo.TYPE_VM_INSTANCE)
 63 vm.setFact("resource.provisioner.job", "factJunction")
 64 vm.setFact("resource.vm.repository", "test")
 65 vm.setFact("resource.provisioner.recommendedhost", "test_test")
 66
 67 vmt = m.getGridObject(TYPE_RESOURCE, "vmttest")
 68 if (vmt == None):
 69 vmt = m.createResource("vmttest", ResourceInfo.TYPE_VM_TEMPLATE)
 70 vmt.setFact("resource.provisioner.job", "factJunction")
 71 vmt.setFact("resource.vm.repository", "test")
 72
 73 try:
 74 vmhost = node.getVmHost("test")
 75 except:
 76 vmhost = node.createVmHost("test")
 77 vmhost.setFact("vmhost.provisioner.job", "factJunction")
 78 vmhost.setArrayFact("vmhost.repositories", ["test"])
 79 vmhost.setArrayFact("vmhost.vm.available.groups", ["all"])
 80
 81 job = m.getGridObject(TYPE_JOB, "factJunction")
 82
 83 # Test junctions
 84
 85 print
 86 print "Testing User fact junctions (3):"
 87 r = user.getFact("user.accountinggroup.id")
 88 print "1. user.accountinggroup.id = %s" % r
 89 # Array junctions
 90 r = user.getFact("user.privilegedjobgroups[all].id")
 91 print "2. user.privilegedjobgroups[all].id = %s" % r
 92 r = user.getFact("user.groups[all].jobcount")
 93 print "3. user.groups[all].jobcount = %s" % r
 94
 95
 96 print
 97 print "Testing Job fact junctions (3):"
 98 r = job.getFact("job.accountinggroup.id")
 99 print "1. job.accountinggroup.id = %s" % r
100 r = job.getFact("job.resourcegroup.id")
Complete Job Examples 181

182 Novell

novdocx (en) 11 July 2008
101 print "2. job.resourcegroup.id = %s" % r
102 # Array junctions
103 r = job.getFact("job.groups[all].jobinstances.total")
104 print "3. job.groups[all].jobinstances.total = %s" % r
105
106
107 print
108 print "Testing VmHost fact junctions (7):"
109 r = vmhost.getFact("vmhost.resource.id")
110 print "1. vmhost.resource.id = %s" % r
111 r = vmhost.getFact("vmhost.accountinggroup.id")
112 print "2. vmhost.accountinggroup.id = %s" % r
113 r = vmhost.getFact("vmhost.provisioner.job.id")
114 print "3. vmhost.provisioner.job.id = %s" % r
115 # Array junctions
116 r = vmhost.getFact("vmhost.groups[all].vmcount")
117 print "4. vmhost.groups[all].vmcount = %s" % r
118 r = vmhost.getFact("vmhost.repositories[test].id")
119 print "5. vmhost.repositories[test].id = %s" % r
120 r = vmhost.getFact("vmhost.vm.available.groups[all].id")
121 print "6. vmhost.vm.available.groups[all].id = %s" % r
122 #r = vmhost.getFact("vmhost.vm.instanceids[vmtest].id")
123 r = nptt
124 print "7. vmhost.vm.instanceids.[vmtest].id = %s" % r
125
126
127 print
128 print "Testing Resource fact junctions (9):"
129 r = vm.getFact("resource.provisioner.job.id")
130 print "1. resource.provisioner.job.id = %s" % r
131 r = vm.getFact("resource.vm.repository.id")
132 print "2. resource.vm.repository.id = %s" % r
133 r = vm.getFact("resource.provisioner.recommendedhost.id")
134 print "3. resource.provisioner.recommendedhost.id = %s" % r
135 #r = vm.getFact("resource.provision.vmhost.id")
136 r = nptt
137 print "4. resource.provision.vmhost.id = %s" % r
138 #r = vm.getFact("resource.provision.template.id")
139 r = nptt
140 print "5. resource.provision.template.id = %s" % r
141 # Array junctions
142 r = vm.getFact("resource.groups[all].loadaverage")
143 print "6. resource.groups[all].loadaverage = %s" % r
144 r = node.getFact("resource.vmhosts[test_test].id")
145 print "7. resource.vmhosts[test_test].id = %s" % r
146 r = node.getFact("resource.repositories[test].id")
147 print "8. resource.repositories[test].id = %s" % r
148 #r = vmt.getFact("resource.provisioner.instances[vmttest_2].id")
149 r = nptt
150 print "9. resource.provisioner.instances[vmtest_2].id = %s" % r
151
152
153 print
154 print "Testing Repository fact junctions (4):"
155 r = repository.getFact("repository.groups[all].id")
156 print "1. repository.groups[all].id = %s" % r
157 r = repository.getFact("repository.vmimages[vmtest].id")
158 print "2. repository.vmimages[vmtest].id = %s" % r
159 r = repository.getFact("repository.vmhosts[test_test].id")
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
160 print "3. repository.vmhosts[test_test].id = %s" % r
161 r = repository.getFact("repository.provisioner.jobs[factJunction].id")
162 print "4. repository.provisioner.jobs[factJunction].id = %s" % r
163
164
165 print
166 print "Testing multiple junctions (1):"
167 r =
repository.getFact("repository.vmhosts[test_test].resource.repositories[test].vmho
sts[test_test].groups[all].id")
168 print "1.
repository.vmhosts[test_test].resource.repositories[test].vmhosts[test_test].group
s[all].id = %s" % r
169
170 # Now make sure they are all accessable by the joblet...
171 #self.schedule(factJunctionJoblet, {})
172
173
174 class factJunctionJoblet(Joblet):
175
176 def joblet_started_event(self):
177 # TODO
178 time.sleep(sleeptime)
179

factJunction.policy

The description fact displays the commands x, y, z ...

 1 <!--
 2
*===
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*===
13 * $Id: factJunction.policy,v 1.2 2008/02/27 20:49:39 john Exp $
14
*===
15 -->
16
17 <policy>
18
19 <job>
20 <fact name="description"
21 type="String"
Complete Job Examples 183

184 Novell

novdocx (en) 11 July 2008
22 value="This is a test job to exercise fact junctions." />
23 </job>
24
25 </policy>
26

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.

MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

UserInfo
A representation of a User grid object. This class provides accessors and setters for User facts.

RepositoryInfo
A representation of a Repository grid object. This class provides accessors and setters for
Repository facts. To script the creation of Repository objects, see MatrixInfo (page 229).

ResourceInfo
A representation of a Resource Grid Object. This class inherits the base fact operations from
GridObjectInfo and adds the provisioning operations for provisionable resources such as
virtual machines. See MatrixInfo (page 229) for how to script creation of Resource objects.

JobInfo
A representation of a deployed Job. The factset available on the JobInfo class is the aggregation
of the Job's policy and policies on the groups the Job is a member of. This includes the job.*
and jobargs.* fact namespaces.

Job Details
The FactJunction job performs its work by handling the following events:

“zosadmin deploy” on page 185
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
“job_started_event” on page 185
“joblet_started_event” on page 185

zosadmin deploy

Deploying FactJunction job is performed by lines 10-22 of factJunction.jdl. When jobs are deployed
into the grid, they can optionally be placed in groups for organization and easy reference. In this
case, the FactJunction job will be added to the group named “examples”, and will show up in the
ZENworks Orchestrator Console in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploy a Sample Job” in the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.

job_started_event

When the FactJunction job receives a job_started_event, it gets a reference to the MatrixInfo
object, which allows it to obtain references to other objects in the grid, such as Users, Resources,
Jobs, etc. (see lines 28, 32, 37, 42, 46, and 53 in “factJunction.jdl” on page 180). If these objects
don't exist in the grid, they are immediately created so they can be used later on (see lines 34, 39, 44,
48, 55, and 62).

After references exist for the various objects in the grid, values for other objects are printed out
using the fact junctions that exist on each object (see lines 69-154 in factJunction.jdl (page 180)).

There are several instances where the FactJunction job uses “array notation” to handle fact junctions
that contain multiple values (see lines 76, 78, 89, 102, 104, 106, 108, 128, 130, 132, 142, 144, 146,
and 153 in factJunction.jdl (page 180)). As previously explained, fact junctions are special facts
because their value contains the name of another object that must exist in the grid. However, fact
junctions don't always contain a single name. Some fact junctions allow for an array of names to be
specified. For example, the value for the fact “job.groups” is supplied as a String array.

In this case, the fact junction can be refined using array notation, which allows for the selection of
one of the values. For example, the following code retrieves the ID of the group named “myGroup”,
which is one of the groups the given job is a member of:

job.getFact(“job.groups[myGroup].id”)

joblet_started_event

The FactJunction job only illustrates using fact junctions to retrieve information about objects in the
grid. Therefore, no work is performed on the resource by the FactJunction joblet.

Configure and Run
To run this example, you must have ZENworks Orchestrator installed and configured properly. No
agents on separate resources are required. You also must be logged into your Orchestrator server
before you run zosadmin or zos commands.

Execute the following commands to deploy and run factJunction.job:

1 Deploy factJunction.job into the grid:
Complete Job Examples 185

186 Novell

novdocx (en) 11 July 2008
> zosadmin deploy factJunction.job

2 Display the list of deployed jobs:

> zos joblist

factJunction should appear in this list.
3 Run the FactJunction job, and view the results:

> zos run factJunction
JobID: zenuser.factJunction.421
> zos log factJunction
> zos status zenuser.factJunction.421
Completed

> zos log factJunction

4 Testing User fact junctions:
1. user.accountinggroup.id = all

2. user.privilegedjobgroups[all].id = all

3. user.groups[all].jobcount = 147

5 Testing Job fact junctions:
1. job.accountinggroup.id = all

2. job.resourcegroup.id = all

3. job.groups[all].jobinstances.total = 1

6 Testing VmHost fact junctions:
1. vmhost.resource.id = test

2. vmhost.accountinggroup.id = all

3. vmhost.provisioner.job.id = factJunction

4. vmhost.groups[all].vmcount = 0

5. vmhost.repositories[test].id = test

6. vmhost.vm.available.groups[all].id = all

7. vmhost.vm.instanceids.[vmtest].id = <Not Possible To Test>

7 Testing Resource fact junctions:
1. resource.provisioner.job.id = factJunction

2. resource.vm.repository.id = test

3. resource.provisioner.recommendedhost.id = test_test

4. resource.provision.vmhost.id = <Not Possible To Test

5. resource.provision.template.id = <Not Possible To Test>

6. resource.groups[all].loadaverage = 0.03666666666666667

7. resource.vmhosts[test_test].id = test_test

8. resource.repositories[test].id = test

9. resource.provisioner.instances[vmtest_2].id = <Not Possible
To Test>
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
8 Testing Repository fact junctions:
1. repository.groups[all].id = all

2. repository.vmimages[vmtest].id = vmtest

3. repository.vmhosts[test_test].id = test_test

4. repository.provisioner.jobs[factJunction].id = factJunction

9 Testing multiple junctions
1. repository.vmhosts[test_test].resource.repositories[test].vmho

sts[test_test].groups[all].id = all

See Also
Adding jobs to groups during deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
View the list of fact junctions available for each object type in a ZENworks Orchestrator grid
Using array notation to refine multi-valued fact junctions
Using ZENworks Orchestrator (“How Do I Interact with ZENworks Orchestrator?”)
Complete Job Examples 187

188 Novell

novdocx (en) 11 July 2008
jobargs.job
Demonstrates the usage of the various argument types that jobs can accept. These types are integer,
Real, Boolean, String, Time, Date, List, Dictionary, and Array (which can contain the types Integer,
Real, Boolean, Time, Date, String). For more information about how to define job arguments, and
specify their values on the command line, see Section 7.7, “Working with Facts and Constraints,” on
page 77.

Usage

> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy jobargs.job
jobargs successfully deployed

> zos login --user zenuser Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail jobargs
Jobname/Parameters Attributes
------------------ ----------
jobargs Desc: This example job tests all fact types.

 TimeArgReq Desc: Required Time arg test
 Type: Time
 Default: None! Value must be specified

 IntegerArg Desc: Integer arg test
 Type: Integer
 Default: 1

 DateArg Desc: Date arg test
 Type: Date
 Default: Wed Apr 05 09:00:00 EDT 2006

 RealArgReq Desc: Required Real arg test
 Type: Real
 Default: None! Value must be specified

 IntegerArrayArg Desc: Integer[] arg test
 Type: Integer[]
 Default: [100,200,300]

 RealArrayArg Desc: Real[] arg test
 Type: Real[]
 Default: [1.23,3.456,7.0]

 DictArg Desc: Dictionary arg test
 Type: Dictionary
 Default: {name=moe, dob=Fri Jan 02 00:00:00 EST 1970,
 age=35}

 DateArrayArg Desc: Date[] arg test
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 Type: Date[]
 Default: [Wed Jul 08 22:00:00 EDT 2009,Thu Jan 02 00:01:00
 EST 2003]

 StringArgReq Desc: Required String arg test
 Type: String
 Default: None! Value must be specified

 TimeArrayArg Desc: Time[] arg test
 Type: Time[]
 Default: [79200000,60000]

 StringArrayArg Desc: String[] arg test
 Type: String[]
 Default: [abc,def,ghi jkl]

 TimeArg Desc: Time arg test
 Type: Time
 Default: 32400000

 BooleanArgReq Desc: Required Boolean arg test
 Type: Boolean
 Default: None! Value must be specified

 BooleanArg Desc: Boolean arg test
 Type: Boolean
 Default: true

 IntegerArgReq Desc: Required Integer arg test
 Type: Integer
 Default: None! Value must be specified

 StringArg Desc: String arg test
 Type: String
 Default: Hello World

 BooleanArrayArg Desc: Boolean[] arg test
 Type: Boolean[]
 Default: [true,false,true]

 RealArg Desc: Real arg test
 Type: Real
 Default: 3.1415

 ListArg Desc: List arg test
 Type: List
 Default: [abc, d, efghij]

 DateArgReq Desc: Required Date arg test
 Type: Date
 Default: None! Value must be specified

Description
The files that make up the Jobargs job include:
Complete Job Examples 189

190 Novell

novdocx (en) 11 July 2008
jobargs.job # Total: 254 lines
|-- jobargs.jdl # 77 lines
`-- jobargs.policy # 177 lines

jobargs.jdl

 1 # --
-
 2 # Copyright © 2008 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --
-
12 # $Id: jobargs.jdl,v 1.3 2008/02/27 20:50:31 john Exp $
13 # --
-
14
15 """
16 Example job showing all available job argument types.
17
18 Example cmd line to run job:
19 zos run jobargs TimeArgReq="12:01:02" RealArgReq="3.14" IntegerArgR
eq="123" StringArgReq="foo" BooleanArgReq="true" ListArg="hi,mom"
20 """
21
22 import time
23
24 #
25 # Add to the 'examples' group on deployment
26 #
27 if __mode__ == "deploy":
28 try:
29 jobgroupname = "examples"
30 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
31 if jobgroup == None:
32 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
33 jobgroup.addMember(__jobname__)
34 except:
35 exc_type, exc_value, exc_traceback = sys.exc_info()
36 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgr
oupname, exc_type, exc_value)
37
38
39 class jobargs(Job):
40
41 def job_started_event(self):
42
43 jobid = self.getFact("jobinstance.id")
44 print "*****Dumping %s JobInstance jobargs facts*****" % (jobi d)
45 keys = self.getFactNames()
46 keys.sort()
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
47 for s in keys:
48 if s.startswith("jobargs"):
49 v = self.getFact(s)
50 ty = type(v)
51
52 if str(ty).endswith("Dictionary"):
53 self.dump_dict(s,v)
54 else:
55 if s.endswith("TimeArg") or s.endswith("TimeArgReq "):
56 v = time.ctime(v/1000)
57
58 print "%s %s %s" % (s,type(v),str(v))
59 print "*****End %s dump*****" % (jobid)
60
61 #self.schedule(jobargsJoblet)
62
63 def dump_dict(self,name,dict):
64 print "Dict: %s" % (name)
65 keys = dict.keys()
66 for k in keys:
67 v = dict[k]
68 ty = type(v)
69 if k == "dob":
70 v = time.ctime(v/1000)
71 print " %s %s %s" % (k,ty,str(v))
72
73
74 class jobargsJoblet(Joblet):

jobargs.policy

 1 <!--
 2
*===
 3 * Copyright © 2008 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 12
*===
 13 * $Id: jobargs.policy,v 1.2 2008/02/27 20:50:31 john Exp $
 14
*===
 15 -->
 16
 17 <policy>
 18
 19 <jobargs>
 20
 21 <!-- Optional job args -->
 22 <fact name="OptionalDateArg"
Complete Job Examples 191

192 Novell

novdocx (en) 11 July 2008
 23 description="Optional Date Arg"
 24 type="Date"
 25 value="1/2/06 12:01 PM"/>
 26
 27 <fact name="OptionalTimeArg"
 28 description="Optional Time Arg"
 29 type="Time"
 30 value="12:01 PM"/>
 31
 32 <fact name="OptionalRealArg"
 33 description="Optional Real Arg"
 34 type="Real"
 35 value="3.14" />
 36
 37 <fact name="OptionalIntegerArg"
 38 description="Optional Integer Arg"
 39 type="Integer"
 40 value="123" />
 41
 42 <fact name="OptionalStringArg"
 43 description="Optional String Arg"
 44 type="String"
 45 value="foo" />
 46
 47 <fact name="OptionalString2ArgAsTag"
 48 description="Optional String Arg as tag">
 49 <string>bar</string>
 50 </fact>
 51
 52 <fact name="OptionalString3ArgAsCDATA"
 53 description="Optional String Arg as CDATA">
 54 <string>
 55 <![CDATA[this text is part of
 56 a multi-line cdata section containing
 57 xml <html>test</html>
 58 <eq fact="foo.bar" value="qwerty" />
 59 cool!
 60]]>
 61 </string>
 62 </fact>
 63
 64 <fact name="OptionalBooleanArg"
 65 description="Optional Boolean Arg"
 66 type="Boolean"
 67 value="true" />
 68
 69 <fact name="OptionalListArg">
 70 <list>
 71 <listelement value="hi" type="String" />
 72 <listelement value="mom" />
 73 <listelement value="42" type="Integer" />
 74 </list>
 75 </fact>
 76
 77 <fact name="OptionalDictArg">
 78 <dictionary>
 79 <dictelement key="name" type="String" value="joe" />
 80 <dictelement key="date" type="Date" value="4/15/06" />
 81 <dictelement key="time" type="Time" value="3:30 AM" />
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
 82 <dictelement key="age" type="Integer" value="12" />
 83 </dictionary>
 84 </fact>
 85
 86 <fact name="OptionalDateArray">
 87 <array>
 88 <date>1/2/06 12:01 PM</date>
 89 <date>1/3/06 12:02 PM</date>
 90 <date>1/4/06</date>
 91 </array>
 92 </fact>
 93 <fact name="OptionalTimeArray">
 94 <array>
 95 <time>12:01 PM</time>
 96 <time>12:02 PM</time>
 97 </array>
 98 </fact>
 99 <fact name="OptionalRealArray">
100 <array>
101 <real>1.1</real>
102 <real>2.2</real>
103 </array>
104 </fact>
105 <fact name="OptionalIntegerArray">
106 <array>
107 <integer>1</integer>
108 <integer>2</integer>
109 </array>
110 </fact>
111 <fact name="OptionalStringArray">
112 <array>
113 <string>string1</string>
114 <string>string2</string>
115 </array>
116 </fact>
117 <!-- Arrays of dictionary or list not currently supported
118 <fact name="OptionalDictionaryArray">
119 <array>
120 <dictionary>
121 <dictelement key="name" type="String" value="joe" />
122 </dictionary>
123 </array>
124 </fact>
125 -->
126
127 <!-- Required job args -->
128 <fact name="RequiredDateArg" type="Date" />
129 <fact name="RequiredTimeArg" type="Time" />
130 <fact name="RequiredRealArg" type="Real" />
131 <fact name="RequiredIntegerArg" type="Integer" />
132 <fact name="RequiredStringArg" type="String" />
133 <fact name="RequiredBooleanArg" type="Boolean" />
134 <!-- XXX Ooops, not currently supported without value!
135 <fact name="RequiredListArg" type="list" />
136 <fact name="RequiredDictArg" type="dictionary" />
137 <fact name="RequiredStringArray" type="string">
138 <array />
139 </fact>
140 -->
Complete Job Examples 193

194 Novell

novdocx (en) 11 July 2008
141
142 <!-- Invisible job args -->
143 <fact name="InvisibleDateArg" type="Date" value="1/2/06 12:01 PM"
visible="False" />
144 <fact name="InvisibleTimeArg" type="Time" value="12:01 PM" visible="False"
/>
145 <fact name="InvisibleRealArg" type="Real" value="3.14" visible="False" />
146 <fact name="InvisibleIntegerArg" type="Integer" value="123"
visible="False" />
147 <fact name="InvisibleStringArg" type="String" value="foo" visible="False"
/>
148 <fact name="InvisibleString2Arg" visible="False" >
149 <string>bar</string>
150 </fact>
151 <fact name="InvisibleBooleanArg" type="Boolean" value="true"
visible="False" />
152 <fact name="InvisibleListArg" visible="False">
153 <list>
154 <listelement value="hi" type="String" />
155 <listelement value="mom" />
156 <listelement value="42" type="integer" />
157 </list>
158 </fact>
159 <fact name="InvisibleDictArg" visible="False">
160 <dictionary>
161 <dictelement key="name" type="String" value="joe" />
162 <dictelement key="date" type="Date" value="4/15/06" />
163 <dictelement key="time" type="Time" value="3:30 AM" />
164 <dictelement key="age" type="Integer" value="12" />
165 </dictionary>
166 </fact>
167
168 </jobargs>
169
170 <job>
171 <fact name="description"
172 type="String"
173 value="This example job tests all fact types." />
174 </job>
175
176 </policy>
177

 Schedule File (optional)

Classes and Methods

Definitions:

Job
A representation of a running job instance.

Joblet
Defines execution on the resource.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
MatrixInfo
A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo
A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Job Details
The Jobargs job performs its work by handling the following events:

“zosadmin deploy” on page 195
“job_started_event” on page 195
“joblet_started_event” on page 195

zosadmin deploy

In jobargs.jdl (page 190), lines 10-229 deploy the job into the grid. After jobs are deployed into the
grid, they can optionally be placed in groups for organization and easy reference. In this case, the
jobargs job will be added to the group named “examples”, and will show up in the ZENworks
Orchestrator Console in the Explorer view at the location:

/ZOS/YOUR_GRID/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploy a Sample Job” in the Novell ZENworks Orchestrator 1.3 Installation and Getting Started
Guide.

job_started_event

After the Jobargs job receives a job_started_event, it gets a list of all the facts available to it, as
shown in line 31 of jobargs.jdl (page 190). This list is sorted, filtered according to whether or not it’s
a jobarg fact, and then enumerated (lines 32-42). Each jobarg fact is printed in a “name type value”
format. When the complex Dictionary type is encountered (line 38), a separate method is used to
print the values for all the key-value pairs (lines 49-57).

The list of optional and required arguments for this Jobargs example are available as facts within the
<jobargs> section (see lines 3-139 in jobargs.policy (page 191)).

For more information about defining job arguments and their types, see Chapter 5, “Developing
Policies,” on page 57 and Section 4.4, “Policy Management,” on page 53.

joblet_started_event

The Jobargs job only illustrates passing job arguments to a job. Therefore, no work is performed on
the resource by the jobargsJoblet.
Complete Job Examples 195

196 Novell

novdocx (en) 11 July 2008
Configure and Run
To run this example, you must have ZENworks Orchestrator installed and configured properly. No
agents on separate resources are required. You also must be logged into your Orchestrator server
before you run zosadmin or zos commands.

Execute the following commands to deploy and run jobargs.job:

1 Deploy jobargs.job into the grid:

> zosadmin deploy jobarg.job

NOTE: Run zosadmin login to log in for zos administration.

2 Display the list of deployed jobs:

> zos joblist

jobargs should appear in this list.

NOTE: Run zos login to run zos client jobs.

3 Display the list of optional and required arguments for this job:

> zos jobinfo jobargs

4 Run the jobargs job and view the results.

NOTE: You must supply values for TimeArgReq, RealArgReq, StringArgReq,
BooleanArgReq, IntegerArgReq, and DateArgReq as follows (see jobargs.policy (page 191)
for the full list of arguments that can be specified):

> zos run jobargs TimeArgReq=12:01:02 RealArgReq=3.14 StringArgReq=Hello
BooleanArgReq=True IntegerArgReq=42 DateArgReq="04/05/07 7:45 AM"

> zos log jobargs

See Also
Adding Jobs to Groups During Deployment (see how the JDL code can print the ID of group of
jobs in factJunction.job (page 179)).
Defining job arguments and their types
Using ZENworks Orchestrator (“How Do I Interact with ZENworks Orchestrator?”)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

A
novdocx (en) 11 July 2008
AOrchestrator Job Classes and JDL
Syntax

Section A.1, “Job Class,” on page 197
Section A.2, “Joblet Class,” on page 197
Section A.3, “Utility Classes,” on page 197
Section A.4, “Built-in JDL Functions and Variables,” on page 197
Section A.5, “Job State Field Values,” on page 199
Section A.6, “Repository Information String Values,” on page 200
Section A.7, “Joblet State Values,” on page 200
Section A.8, “Resource Information Values,” on page 201
Section A.9, “JDL Class Definitions,” on page 201

A.1 Job Class
To review the detailed JDL structure of the joblet class, see Job (page 222).

A.2 Joblet Class
To review the detailed JDL structure of the joblet class, see Joblet (page 224).

A.3 Utility Classes
The following are some of the main utility JDL classes you can use to customize your Orchestrator
jobs:

DataGrid (page 212)
Exec (page 215)
MatrixInfo (page 229)
ResourceInfo (page 237)
RunJobSpec (page 238)
ScheduleSpec (page 239)

A.4 Built-in JDL Functions and Variables
The information in this section defines the built-in ZENworks Orchestrator JDL functions and
variables.

Section A.4.1, “getMatrix(),” on page 198
Section A.4.2, “system(cmd),” on page 198
Section A.4.3, “Grid Object TYPE_* Variables,” on page 198
Orchestrator Job Classes and JDL Syntax 197

198 Novell

novdocx (en) 11 July 2008
Section A.4.4, “The __agent__ Variable,” on page 198
Section A.4.5, “The __jobname__ Variable,” on page 198
Section A.4.6, “The __mode__ Variable,” on page 199

A.4.1 getMatrix()
This function returns the matrix grid object. For more information, see MatrixInfo (page 229).

Purpose: The matrix object is used to retrieve other grid objects in the system.

A.4.2 system(cmd)
This executes a system command in a shell on the resource. The command is passed to the operating
system’s default command interpreter. On Microsoft Windows systems this is cmd.exe, while on
POSIX systems, this is /bin/sh. Stdout and stderr are directed to the job log. No access to stdin is
provided.

Returns: Returns an exit code result of the command execution.

A.4.3 Grid Object TYPE_* Variables
The list of variables are constants for grid object type. For more information, see MatrixInfo
(page 229).

Variable Names:

TYPE_USER
TYPE_JOB
TYPE_RESOURCE
TYPE_VMHOST
TYPE_REPOSITORY
TYPE_USERGROUP
TYPE_JOBGROUP
TYPE_RESOURCEGROUP
TYPE_REPOSITORYGROUP

Type: String.

Purpose: Use these in JDL functions for retrieving and creating grid objects.

A.4.4 The __agent__ Variable
Variable Name: __agent__

Type: Boolean.

Purpose: Defines whether the JDL is executing on the agent.

A.4.5 The __jobname__ Variable
Variable Name: __jobname__

Type: String.
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
Purpose: Defines the name of the deployed job.

A.4.6 The __mode__ Variable
Variable Name: __mode__

Type: String.

Purpose: Defines the execution mode.

Values:

parse - JDL is being parsed.

deploy - JDL is being deployed.

undeploy - JDL is being undeployed.

runtime - JDL is being executed.

A.5 Job State Field Values
Here are the job state field values for the Job (page 222) class:

Constant Value Description

int CANCELLED_STATE 9 Cancelled end state.

int CANCELLING_STATE 6 Cancelling. Transitions to: Cancelled.

int COMPLETED_STATE 8 Completed end state.

int COMPLETING_STATE 5 Completing. Transitions to: Completing.

int FAILED_STATE 10 Failed end state.

int FAILING_STATE 7 Failing. Transitions to: Failed.

int PAUSED_STATE 4 Paused. Transitions to: Running/Completing/
Failing/Cancelling.

int QUEUED_STATE 1 Queued. Transitions to: Starting/Failing/
Cancelling.

int RUNNING_STATE 3 Running. Transitions to: Paused/Completing/
Failing/Cancelling.

int STARTING_STATE 2 Starting. Transitions to: Running/Failing/
Cancelling.

int SUBMITTED_STATE 0 Submitted. Transitions to: Queued/Failing.

String TERMINATION_TYPE_ADMIN “Admin" Indicates Job was cancelled by the admin and
only applies if Job is in CANCELLED_STATE.
Value is obtained from
jobinstance.terminationtype fact.
Orchestrator Job Classes and JDL Syntax 199

200 Novell

novdocx (en) 11 July 2008
A.6 Repository Information String Values

A.7 Joblet State Values
The following values are defined for the various states that the joblet can be in:

String TERMINATION_TYPE_JOB “Job” Indicates Job was cancelled due to exceeding
the job timeout value and only applies if Job is in
CANCELLED_STATE. The value is obtained
from jobinstance.terminationtype fact.

String TERMINATION_TYPE_TIMEOUT “Timeout” Indicates Job was cancelled due to exceeding
the job timeout value and only applies if Job is in
CANCELLED_STATE. Value is obtained from
jobinstance.terminationtype fact.

String TERMINATION_TYPE_USER “User” Indicate Job was cancelled by client user and
only applies if Job is in CANCELLED_STATE.
The value is obtained from
jobinstance.terminationtype fact.

Constant Value Description

SAN_TYPE_FibreChannel Fibre Channel Specifies a fibre channel SAN repository.

SAN_TYPE_ISCSI iSCSI Specifies an iSCSI SAN repository.

SAN_VENDOR_IQN iqn Specifies an IQN SAN repository.

SAN_VENDOR_NPIV npiv Specifies a N_Port ID Virtualization SAN repository.

TYPE_DATAGRID datagrid Specifies a datagrid repository.

TYPE_LOCAL local Specifies a local repository.

TYPE_NAS NAS Specifies a NAS repository.

TYPE_SAN SAN Specifies a SAN repository.

TYPE_VIRTUAL virtual Specifies a virtual repository.

TYPE_WAREHOUSE warehouse Specifies a warehouse repository.

Constant Value Description

INITIAL_STATE 0 Joblet initial state.

WAITING_STATE 1 Joblet waiting for a resource

WAITING_RETRY_STATE 2 Joblet waiting for a resource for retry.

CONTRACTED_STATE 3 Joblet waiting for a resource for retry.

STARTED_STATE 4 Joblet started on a resource.

Constant Value Description
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
See Joblet (page 224).

A.8 Resource Information Values
Use the following values to specify the

For full class descriptions, see ResourceInfo (page 237).

A.9 JDL Class Definitions
The following Orchestrator JDL classes can be implemented in the custom jobs that you create.
Because JDL is implemented in Java, we have provided direct links to detailed Javadoc for each of
the “Pythonized” JDL classes below:

“AndConstraint()” on page 203
“BinaryConstraint” on page 204
“BuildSpec” on page 205
“CharRange” on page 206
“ComputedFact” on page 207
“ComputedFactContext” on page 208
“Constraint” on page 209
“ContainerConstraint” on page 210

PRE_CANCEL_STATE 5 Joblet starting cancellation.

CANCELLING_STATE 6 Joblet cancelling.

POST_CANCEL_STATE 7 Joblet finishing cancellation.

COMPLETING_STATE 8 Joblet completing state.

FAILING_STATE 9 Joblet failing state.

FAILED_STATE 11 Joblet failed end state.

CANCELLED_STATE 12 Joblet cancelled end state.

COMPLETED_STATE 13 Joblet completed end state.

Constant Value
Type Resource Description

TYPE_BM_INSTANCE String Blade server.

TYPE_BM_TEMPLATE String Blade server template.

TYPE_FIXED_PHYSICAL String Fixed physical server.

TYPE_VM_INSTANCE String VM server.

TYPE_VM_TEMPLATE String VM template.

Constant Value Description
Orchestrator Job Classes and JDL Syntax 201

202 Novell

novdocx (en) 11 July 2008
“ContainsConstraint” on page 211
“DataGrid” on page 212
“DefinedConstraint” on page 213
“EqConstraint” on page 214
“Exec” on page 215
“ExecError” on page 216
“FileRange” on page 217
“GeConstraint” on page 218
“GridObjectInfo” on page 219
“GroupInfo” on page 220
“GtConstraint” on page 221
“Job” on page 222
“JobInfo” on page 223
“Joblet” on page 224
“JobletInfo” on page 225
“JobletParameterSpace” on page 226
“LeConstraint” on page 227
“LtConstraint” on page 228
“MatrixInfo” on page 229
“NeConstraint” on page 230
“NotConstraint” on page 231
“OrConstraint” on page 232
“ParameterSpace” on page 233
“PolicyInfo” on page 234
“ProvisionSpec” on page 235
“RepositoryInfo” on page 236
“ResourceInfo” on page 237
“RunJobSpec” on page 238
“ScheduleSpec” on page 239
“Timer” on page 240
“UndefinedConstraint” on page 241
“UserInfo” on page 242
“VMHostInfo” on page 243
“VmSpec” on page 244
 ZENworks Orchestrator 1.3 Developer Guide and Reference

novdocx (en) 11 July 2008
AndConstraint()
Representation of the And Constraint. Perform a logical ANDing of all child constraints. If this
constraint contains no children, no operation is performed. Constraints are added to this constraint
using add().

See Also
ContainerConstraint (page 210)
Javadoc: AndConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/AndConstraint.html)
Orchestrator Job Classes and JDL Syntax 203

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/AndConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/AndConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/AndConstraint.html

204 Novell

novdocx (en) 11 July 2008
BinaryConstraint
Representation of a Constraint operating on the left and right operands. This is a base class and is
not directly constructed.

See Also
Subclasses: ContainsConstraint (page 211), EqConstraint (page 214), GeConstraint (page 218),
GtConstraint (page 221), LeConstraint (page 227), LtConstraint (page 228), NeConstraint
(page 230).
Javadoc: BinaryConstraint (http://www.novell.com/documentation/zen_orchestrator13/
reference/jdldoc/com/novell/zos/jdl/BinaryConstraint.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/BinaryConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/BinaryConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/BinaryConstraint.html

novdocx (en) 11 July 2008
BuildSpec
Defines the attributes for building a new VM. An instance of this class is passed to
resource.build().

See Also
Javadoc: BuildSpec (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/BuildSpec.html)
Orchestrator Job Classes and JDL Syntax 205

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/BuildSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/BuildSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/BuildSpec.html

206 Novell

novdocx (en) 11 July 2008
CharRange
Defines the attributes for creating a virtual machine. An instance of this class is passed to
resource.createInstance(), resource.createTemplate(), resource.clone().

See Also
Javadoc: CharRange (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/CharRange.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/CharRange.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/CharRange.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/CharRange.html

novdocx (en) 11 July 2008
ComputedFact
Defines the base class for creating custom computed facts. Computed facts provide the ability to
create custom calculations that extend the built-in factsets for a grid object. The computed fact can
be in constraints. User defined computed facts are required to subclass this class. In order to use
ComputedFact, you must deploy a subclass of ComputedFact and then create a linked fact
referencing the deployed ComputedFact. The linked fact is then used in constraints.

See Also
ComputedFactContext (page 208)
Javadoc: ComputedFact (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/CharRange.html)
Orchestrator Job Classes and JDL Syntax 207

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/CharRange.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/CharRange.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/CharRange.html

208 Novell

novdocx (en) 11 July 2008
ComputedFactContext
Provides access to the evaluation context. See Example below.

Description
The context contains the grid objects that the constraint engine uses to evaluate constraints.If they
are available in the current context, the ComputedFactContext provides access to the current job
instance, deployed job, user, resource, VM host, and repository grid objects.

The VM host and repository grid objects are only in the context for the evaluation of the
provisioning constraints such as vmHost. The job and job instance objects are only in the context for
a resource or allocation constraint evaluation.

See Also
ComputedFact (page 207)
Javadoc: ComputedFactContext (http://www.novell.com/documentation/zen_orchestrator13/
reference/jdldoc/com/novell/zos/jdl/ComputedFactContext.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ComputedFactContext.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ComputedFactContext.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ComputedFactContext.html

novdocx (en) 11 July 2008
Constraint
Defines the base class for all constraint classes.

See Also
BinaryConstraint (page 204), ContainerConstraint (page 210), DefinedConstraint (page 213),
UndefinedConstraint (page 241).
Javadoc: Constraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/Constraint.html)
Orchestrator Job Classes and JDL Syntax 209

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Constraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Constraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Constraint.html

210 Novell

novdocx (en) 11 July 2008
ContainerConstraint
Representation of a Constraint that contains other Constraints. This is a base class and is not directly
constructed.

See Also
Subclasses: AndConstraint() (page 203), NotConstraint (page 231), OrConstraint (page 232)
Javadoc: ContainerConstraint (http://www.novell.com/documentation/zen_orchestrator13/
reference/jdldoc/com/novell/zos/jdl/ContainerConstraint.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ContainerConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ContainerConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ContainerConstraint.html

novdocx (en) 11 July 2008
ContainsConstraint
Representation of the Contains Constraint. Evaluates to true only if the left side fact is defined in the
match context. If the left side is not defined, this will evaluate to False. Contains is typically used to
check membership of a value in a group fact.

See Also
Javadoc: ContainsConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/ContainsConstraint.html)
Orchestrator Job Classes and JDL Syntax 211

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ContainsConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ContainsConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ContainsConstraint.html

212 Novell

novdocx (en) 11 July 2008
DataGrid
General interface to the datagrid. See Chapter 3, “The ZENworks Orchestrator Datagrid,” on
page 43.

See Also
GridObjectInfo (page 219)
Javadoc: DataGrid (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/DataGrid.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/DataGrid.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/DataGrid.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/DataGrid.html

novdocx (en) 11 July 2008
DefinedConstraint
Representation of the Defined Constraint. Evaluates to true only if the left side fact is defined in the
match context. If the left side is not defined, this will evaluate to False. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Constraint (page 209), ContainerConstraint (page 210), and ContainsConstraint (page 211)
Javadoc: DefinedConstraint (http://www.novell.com/documentation/zen_orchestrator13/
reference/jdldoc/com/novell/zos/jdl/DefinedConstraint.html)
Orchestrator Job Classes and JDL Syntax 213

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/DefinedConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/DefinedConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/DefinedConstraint.html

214 Novell

novdocx (en) 11 July 2008
EqConstraint
Representation of the Equals Constraint. This constraint can be used independently or added to a
And, Or, Not constraint to combine with other constraints. Extends BinaryConstraint (page 204).

See Also
BinaryConstraint (page 204)
Javadoc: EqConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/EqConstraint.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/EqConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/EqConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/EqConstraint.html

novdocx (en) 11 July 2008
Exec
The Exec class is used to manage command line execution on resources. This class defines options
for input, output and error stream handling, and process management including signaling, error and
timeout control.

Description
A command’s standard output and error can be redirected to a file, to a stream, to write to the job
log, or be discarded. By default, the output is discarded. A command’s standard input can be
directed from a file or a stream can be written to. By default, the input is not used.

By default, command line execution is done in behalf of the job user. Exec instances are only
allowed during the running of the Joblet class on a resource. The built-in function system() can also
be used for simple execution of command lines.

See Also
BinaryConstraint (page 204) and ExecError (page 216)
Javadoc: Exec (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/Exec.html)
Orchestrator Job Classes and JDL Syntax 215

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Exec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Exec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Exec.html

216 Novell

novdocx (en) 11 July 2008
ExecError
ExecError is raised for errors in executing a command line using the Exec (page 215) class or
system(). Normal raising of this error causes the joblet to fail. Put this Error in an try except block to
handle the error.

See Also
Exec (page 215)
Javadoc: ExecError (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/ExecError.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ExecError.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ExecError.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ExecError.html

novdocx (en) 11 July 2008
FileRange
Define a range of values for a ParameterSpace (page 233) based on the lines of a text file. An
instance of this class is used as a dimension in a ParameterSpace definition.The file name must
either refer to a file that is readable from the server and resources (on a shared file system) or must
be a DataGrid (page 212) file URL.

See Also
DataGrid (page 212) and ParameterSpace (page 233)
Javadoc: FileRange (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/FileRange.html)
Orchestrator Job Classes and JDL Syntax 217

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/FileRange.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/FileRange.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/FileRange.html

218 Novell

novdocx (en) 11 July 2008
GeConstraint
Representation of the Greater than or Equals constraint. Performs a ‘greater than or equal to’
constraint operation. Missing arguments will always result in this constraint evaluating to false. The
standard lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints. Extends
BinaryConstraint (page 204).

See Also
Constraint (page 209) and BinaryConstraint (page 204).
Javadoc: GeConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/GeConstraint.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GeConstraint.html

novdocx (en) 11 July 2008
GridObjectInfo
The GridObjectInfo class is the base class representation of all grid objects in the system. This
provides accessors and setters to a grid object’s fact set.

See Also
Javadoc: GridObjectInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/GridObjectInfo.html)
Orchestrator Job Classes and JDL Syntax 219

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GridObjectInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GridObjectInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GridObjectInfo.html

220 Novell

novdocx (en) 11 July 2008
GroupInfo
he GroupInfo class is a representation of Group grid objects. Operations include retrieving the group
member lists and adding/removing from the group member lists, and retrieving and setting facts on
the group. Extends GridObjectInfo (page 219).

See Also
GridObjectInfo (page 219)
Javadoc: GroupInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/GroupInfo.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GroupInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GroupInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GroupInfo.html

novdocx (en) 11 July 2008
GtConstraint
Representation of the Greater than Constraint. Performs a ‘greater than’ constraint operation.
Missing arguments will always result in this constraint evaluating to false. The standard
lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Constraint (page 209)
Javadoc: GtConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/GtConstraint.html)
Orchestrator Job Classes and JDL Syntax 221

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GtConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GtConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/GtConstraint.html

222 Novell

novdocx (en) 11 July 2008
Job
The Job class represents a running job instance. This class defines functions for interacting with the
server including handling notification of job state transitions, child job submission, managing
joblets and for receiving and sending events from resources and from clients. A job writer defines a
subclass of the Job class and uses the methods available on the Job class for scheduling joblets and
event processing.

See Also
JobInfo (page 223), Joblet (page 224), JobletInfo (page 225), JobletParameterSpace (page 226)
Javadoc: Job (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/Job.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Job.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Job.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Job.html

novdocx (en) 11 July 2008
JobInfo
The JobInfo class is a representation of a deployed job. The factset available on the JobInfo class is
the aggregation of the job's policy and policies on the groups the job is a member of. This includes
the "job.*" and "jobargs.*" fact namespaces.

See Also
Job (page 222)
Javadoc: JobInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/Job.html)
Orchestrator Job Classes and JDL Syntax 223

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Job.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Job.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Job.html

224 Novell

novdocx (en) 11 July 2008
Joblet
Defines the attributes for creating a virtual machine. An instance of this class is passed to
resource.createInstance(), resource.createTemplate(), resource.clone().

See Also
Job, JobInfo
Javadoc: Joblet (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/Joblet.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Joblet.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Joblet.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Joblet.html

novdocx (en) 11 July 2008
JobletInfo
JobletInfo is a representation of the joblet grid object created when a job calls schedule() to create
joblets. This class provides access to a joblet's factset and operations on a joblet such as cancellation
and sending events to a joblet that is running on a resource. The separate Joblet class defines
execution on a resource.

See Also
Javadoc: JobletInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/JobletInfo.html)
Orchestrator Job Classes and JDL Syntax 225

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/JobletInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/JobletInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/JobletInfo.html

226 Novell

novdocx (en) 11 July 2008
JobletParameterSpace
JobletParameterSpace is a slice of the ParameterSpace allocated to a joblet. As the scheduler defines
slices of the parameter space for a given schedule(), JobletParameterSpace instances are created for
each joblet. This slice of the parameter space is delivered to the resource on joblet execution. The
JobletParameterSpace can also be retrieved from the joblet object.

See Also
Javadoc: JobletParameterSpace (http://www.novell.com/documentation/zen_orchestrator13/
reference/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/JobletParameterSpace.html

novdocx (en) 11 July 2008
LeConstraint
Representation of the Less than or equals Constraint. Performs a 'less than or equal to' constraint
operation. Missing arguments will always result in this constraint evaluating to false. The standard
lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Javadoc: LeConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/LeConstraint.html)
Orchestrator Job Classes and JDL Syntax 227

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/LeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/LeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/LeConstraint.html

228 Novell

novdocx (en) 11 July 2008
LtConstraint
Representation of the Less than Constraint. Performs a "less than" constraint operation. Missing
arguments always result in this constraint evaluating to false. The standard lexographical ordering of
values is used to determine result. This constraint can be used independently or added to a And, Or,
Not constraint to combine with other constraints.

See Also
Javadoc: LtConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/LtConstraint.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/LtConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/LtConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/LtConstraint.html

novdocx (en) 11 July 2008
MatrixInfo
The MatrixInfo class is a representation of the matrix grid object (see GridObjectInfo (page 219)).
This provides operations for retrieving and creating grid objects in the system. MatrixInfo is
retrieved using the built-in getMatrix() function. Write capability is dependent on the context in
which getMatrix() is called. For example, in a joblet process on a resource, creating new grid
objects is not supported.

See Also
Javadoc: MatrixInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/MatrixInfo.html)
Section A.4, “Built-in JDL Functions and Variables,” on page 197.
Orchestrator Job Classes and JDL Syntax 229

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/MatrixInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/MatrixInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/MatrixInfo.html

230 Novell

novdocx (en) 11 July 2008
NeConstraint
Representation of the Not Equals Constraint. Performs a not equal constraint operation. Missing
arguments will always result in this constraint evaluating to false. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Javadoc: NeConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/NeConstraint.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/NeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/NeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/NeConstraint.html

novdocx (en) 11 July 2008
NotConstraint
Representation of a Not Constraint Object. Performs a logical not operation of all the child
constraints. This is a no-op if this constraint contains no children. Constraints are added to this
constraint using add().

See Also
See Constraint (page 209) and ContainerConstraint (page 210).
Javadoc: NotConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/NotConstraint.html)
Orchestrator Job Classes and JDL Syntax 231

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/NotConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/NotConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/NotConstraint.html

232 Novell

novdocx (en) 11 July 2008
OrConstraint
Representation of Or Constraint Object. Perform a logical or-ing operation of all the child
constraints. This is a no-op if this constraint contains no children. Constraints are added to this
constraint using add().

See Also
See Constraint (page 209) and ContainerConstraint (page 210).
Javadoc: OrConstraint (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/OrConstraint.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/OrConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/OrConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/OrConstraint.html

novdocx (en) 11 July 2008
ParameterSpace
Defines a parameter space to be used by the scheduler to create a joblet set. A parameter space may
consist of rows of columns or a list of columns that is expanded and can be turned into a cross
product. Use appendRow to create a rowMajor parameter space or appendCol to define a
column expansion. You cannot use both appendRow() and appendCol() in the same
ParameterSpace. Once the scheduler defines a slice of the parameter space for a given joblet,
the scheduler creates JobletParameterSpace instances for each joblet. This slice of the
parameter space is delivered to the resource.

See Also
Javadoc: ParameterSpace (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/ParameterSpace.html)
Orchestrator Job Classes and JDL Syntax 233

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ParameterSpace.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ParameterSpace.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ParameterSpace.html

234 Novell

novdocx (en) 11 July 2008
PolicyInfo
Representation of a Policy Object. This class allows for associating and unassociation of Grid
objects using this policy

See Also
Javadoc: PolicyInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/PolicyInfo.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/PolicyInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/PolicyInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/PolicyInfo.html

novdocx (en) 11 July 2008
ProvisionSpec
Defines the attributes for starting a provision. An instance of this class is passed to
self.provision(). Defining a provision to reserve a provisioned resource "nightly" for a user
is an instance of when this function might be used: spec = ProvisionSpec()
spec.setReserveForUser('nightly') self.provision(spec)

See Also
Javadoc: ProvisionSpec (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/ProvisionSpec.html)
Orchestrator Job Classes and JDL Syntax 235

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ProvisionSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ProvisionSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ProvisionSpec.html

236 Novell

novdocx (en) 11 July 2008
RepositoryInfo
RepositoryInfo is a representation of a repository grid object. This class provides accessors
and setters for Repository facts. See MatrixInfo (page 229) for how to script creation of Repository
objects.

See Also
See GridObjectInfo (page 219) and MatrixInfo (page 229).
Javadoc: RepositoryInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/RepositoryInfo.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/RepositoryInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/RepositoryInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/RepositoryInfo.html

novdocx (en) 11 July 2008
ResourceInfo
ResourceInfo is a representation of a resource grid object. This class inherits the base fact operations
from GridObjectInfo (page 219) and adds the provisioning operations for provisionable resources
such as VMs. See MatrixInfo (page 229) for how to script creation of Resource objects.

See Also
GridObjectInfo (page 219) and MatrixInfo (page 229).
Javadoc: ResourceInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/ResourceInfo.html)
Orchestrator Job Classes and JDL Syntax 237

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ResourceInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ResourceInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ResourceInfo.html

238 Novell

novdocx (en) 11 July 2008
RunJobSpec
Defines the attributes for starting a child job. An instance of this class is passed to
self.runJob().

See Also
Javadoc: RunJobSpec (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/RunJobSpec.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/RunJobSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/RunJobSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/RunJobSpec.html

novdocx (en) 11 July 2008
ScheduleSpec
Defines one or more joblets to be scheduled and run on resources. A ScheduleSpec instance is
passed to the job’s schedule(). schedule() creates the joblets and schedules joblets to run on
resources.

See Also
Joblet (page 224)
Javadoc: ScheduleSpec (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/ScheduleSpec.html)
Orchestrator Job Classes and JDL Syntax 239

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ScheduleSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ScheduleSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/ScheduleSpec.html

240 Novell

novdocx (en) 11 July 2008
Timer
Timer schedules a callback to a job or joblet method. Timers can schedule a one time or a repeated
callback on an interval basis. Any Timers created in a job or joblet are shut down on job or joblet
completion.

See Also
Javadoc: Timer (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/
novell/zos/jdl/Timer.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Timer.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Timer.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/Timer.html

novdocx (en) 11 July 2008
UndefinedConstraint
Representation of the Undefined Constraint. Evaluates to true only if the left side fact is not defined
in the match context. If the left side is not defined, this will evaluate to false. This constraint can
be used independently or added to a And, Or, Not constraint to combine with other constraints.

See Also
Constraint (page 209)
Javadoc: UndefinedConstraint (http://www.novell.com/documentation/zen_orchestrator13/
reference/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html)
Orchestrator Job Classes and JDL Syntax 241

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/UndefinedConstraint.html

242 Novell

novdocx (en) 11 July 2008
UserInfo
UserInfo is a representation of a user grid object. This class provides accessors and setters for User
facts.

See Also
Javadoc: UserInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/UserInfo.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/UserInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/UserInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/UserInfo.html

novdocx (en) 11 July 2008
VMHostInfo
The VmHostInfo class is a representation of a virtual machine host grid object. This class
provides accessors and setters to the VM host facts and operations to control the state of the VM
host object.

See Also
VmSpec (page 244)
Javadoc: VMHostInfo (http://www.novell.com/documentation/zen_orchestrator13/reference/
jdldoc/com/novell/zos/jdl/VMHostInfo.html)
Orchestrator Job Classes and JDL Syntax 243

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/VMHostInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/VMHostInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/VMHostInfo.html

244 Novell

novdocx (en) 11 July 2008
VmSpec
Defines the attributes for creating a virtual machine. An instance of this class is passed to
resource.createInstance(), resource.createTemplate(), resource.clone().

See Also
VMHostInfo (page 243)
Javadoc: VmSpec (http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/
com/novell/zos/jdl/VmSpec.html)
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/VmSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/VmSpec.html
http://www.novell.com/documentation/zen_orchestrator13/reference/jdldoc/com/novell/zos/jdl/VmSpec.html

B
novdocx (en) 11 July 2008
BOrchestrator Client SDK

This section provides the reference information for the internal Java* classes used by the Novell®
ZENworks Orchestrator® Client:

Section B.1, “Constraint Package,” on page 245
Section B.2, “Datagrid Package,” on page 249
Section B.3, “Grid Package,” on page 250
Section B.4, “Toolkit Package,” on page 258

B.1 Constraint Package
The following Java files form the interfaces and exceptions for the internal Orchestrator constraint
grid structure:

Section B.1.1, “AndConstraint,” on page 245
Section B.1.2, “BetweenConstraint,” on page 246
Section B.1.3, “BinaryConstraint,” on page 246
Section B.1.4, “Constraint,” on page 246
Section B.1.5, “ContainerConstraint,” on page 246
Section B.1.6, “ContainsConstraint,” on page 246
Section B.1.7, “ConstraintException,” on page 246
Section B.1.8, “DefinedConstraint,” on page 247
Section B.1.9, “EqConstraint,” on page 247
Section B.1.10, “GeConstraint,” on page 247
Section B.1.11, “GtConstraint,” on page 247
Section B.1.12, “IfConstraint,” on page 247
Section B.1.13, “LeConstraint,” on page 247
Section B.1.14, “LtConstraint,” on page 247
Section B.1.15, “NeConstraint,” on page 248
Section B.1.16, “NotConstraint,” on page 248
Section B.1.17, “OperatorConstraint,” on page 248
Section B.1.18, “OrConstraint,” on page 248
Section B.1.19, “TypedConstraint,” on page 248
Section B.1.20, “UndefinedConstraint,” on page 248

B.1.1 AndConstraint
Perform a logical and-ing of all child constraints.
Orchestrator Client SDK 245

246 Novell

novdocx (en) 11 July 2008
For complete documentation of the class, see AndConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
AndConstraint.html).

B.1.2 BetweenConstraint
Binary Operator Constraints that have both a left and right side.

For complete documentation of the class, see BetweenConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
BetweenConstraint.html).

B.1.3 BinaryConstraint
Binary Operator Constraints that have both a left and right side.

For complete documentation of the class, see BinaryConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
BinaryConstraint.html).

B.1.4 Constraint
Basic Constraint interface which allows traversal and evaluation of a constraint tree.

For complete documentation of the class, see Constraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/Constraint.html).

B.1.5 ContainerConstraint
Container constraints that perform logical aggregation operations on contained constraints.

For complete documentation of the class, see ContainerConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
ContainerConstraint.html).

B.1.6 ContainsConstraint
Performs a simple set operation that returns true is the right side of the operation is found in the
value set of the left side.

For complete documentation of the class, see ContainsConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
ContainsConstraint.html).

B.1.7 ConstraintException
For exceptions that occur in parsing or executing constraints.

For complete documentation of the class, see ConstraintException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
ConstraintException.html).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/AndConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/BetweenConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/BinaryConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/Constraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/ContainerConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/ContainsConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/ConstraintException.html

novdocx (en) 11 July 2008
B.1.8 DefinedConstraint
Evaluates to true only if the left side fact is defined in the match context.

For complete documentation of the class, see DefinedConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
DefinedConstraint.html).

B.1.9 EqConstraint
Performs a equality constraint operation.

For complete documentation of the class, see EqConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/EqConstraint.html).

B.1.10 GeConstraint
Performs a ‘greater than or equal to’ constraint operation.

For complete documentation of the class, see GeConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/GeConstraint.html).

B.1.11 GtConstraint
Performs a 'greater than' constraint operation.

For complete documentation of the class, see GtConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/GtConstraint.html).

B.1.12 IfConstraint
Perform a conditional if,then,else block.

For complete documentation of the class, see IfConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/IfConstraint.html).

B.1.13 LeConstraint
Performs a ‘less than or equal to’ constraint operation.

For complete documentation of the class, see LeConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/LeConstraint.html).

B.1.14 LtConstraint
Performs a ‘less than’ constraint operation.

For complete documentation of the class, see LtConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/LtConstraint.html).
Orchestrator Client SDK 247

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/DefinedConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/EqConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/GeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/GtConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/IfConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/LeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/LtConstraint.html

248 Novell

novdocx (en) 11 July 2008
B.1.15 NeConstraint
Performs a not equal constraint operation.

For complete documentation of the class, see NeConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/NeConstraint.html).

B.1.16 NotConstraint
Perform a logical not operation of all the child constraints.

For complete documentation of the class, see NotConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
NotConstraint.html).

B.1.17 OperatorConstraint
Operator constraints that perform comparison operation on facts.

For complete documentation of the class, see OperatorConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
OperatorConstraint.html).

B.1.18 OrConstraint
Perform a logical or-ing operation of all the child constraints.

For complete documentation of the class, see OrConstraint (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/OrConstraint.html).

B.1.19 TypedConstraint
Typed constraint must only be used as the outermost wrapper when it is necessary to override the
default constraint type of ‘resource’.

For complete documentation of the class, see TypedConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
TypedConstraint.html).

B.1.20 UndefinedConstraint
Evaluates to true only if the left side fact is not defined in the match contect.

For complete documentation of the class, see UndefinedConstraint (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/
UndefinedConstraint.html).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/NeConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/NotConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/OperatorConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/OrConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/TypedConstraint.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/constraint/UndefinedConstraint.html

novdocx (en) 11 July 2008
B.2 Datagrid Package
The following Java files form the classes, interfaces, and exceptions for the internal Orchestrator
datagrid structure:

Section B.2.1, “DGLogger,” on page 249
Section B.2.2, “GridFile,” on page 249
Section B.2.3, “GridFileFilter,” on page 249
Section B.2.4, “GridFileNameFilter,” on page 249
Section B.2.5, “DataGridException,” on page 249
Section B.2.6, “DataGridNotAvailableException,” on page 250
Section B.2.7, “GridFile.CancelException,” on page 250

B.2.1 DGLogger
Definitions of the DataGrid Logger options used for multicast.

For complete documentation of the class, see DGLogger (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/DGLogger.html).

B.2.2 GridFile
Specifies the ZENworks Orchestrator datagrid interface for individual files and directories.

For complete documentation of the class, see GridFile (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/GridFile.html).

B.2.3 GridFileFilter
Filter for accepting/rejecting file names in a directory list.

For complete documentation of the class, see GridFileFilter (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/GridFileFilter.html).

B.2.4 GridFileNameFilter
Filter for accepting/rejecting file names in a directory list.

For complete documentation of the class, see GridFileNameFilter (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/
GridFileNameFilter.html).

B.2.5 DataGridException
General exception class for datagrid errors.

For complete documentation of the class, see DataGridException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/
DataGridException.html).
Orchestrator Client SDK 249

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/DGLogger.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/GridFile.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/GridFileFilter.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/GridFileNameFilter.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/DataGridException.html

250 Novell

novdocx (en) 11 July 2008
B.2.6 DataGridNotAvailableException
Exception thrown if the datagrid cannot be reached due to a network error.

For complete documentation of the class, see DataGridNotAvailableException (http://
www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/
DataGridNotAvailableException.html).

B.2.7 GridFile.CancelException
Exception thrown by cancelled requests.

For complete documentation of the class, see GridFile.CancelException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/
GridFile.CancelException.html).

B.3 Grid Package
The Java classes included in the Grid package form the basis of the ZENworks Orchestrator
infrastructure. For complete documentation of each class, click on the links to access the online
documentation Javadoc.

Section B.3.1, “AgentListener,” on page 251
Section B.3.2, “ClientAgent,” on page 251
Section B.3.3, “Credential,” on page 251
Section B.3.4, “Fact,” on page 252
Section B.3.5, “FactSet,” on page 252
Section B.3.6, “GridObjectInfo,” on page 252
Section B.3.7, “ID,” on page 252
Section B.3.8, “JobInfo,” on page 252
Section B.3.9, “Message,” on page 252
Section B.3.10, “Message.Ack,” on page 252
Section B.3.11, “Message.AuthFailure,” on page 253
Section B.3.12, “Message.ClientResponse,” on page 253
Section B.3.13, “Message.Event,” on page 253
Section B.3.14, “Message.GetGridObjects,” on page 253
Section B.3.15, “Message.GridObjects,” on page 253
Section B.3.16, “Message.JobAccepted,” on page 253
Section B.3.17, “Message.JobError,” on page 253
Section B.3.18, “Message.JobFinished,” on page 254
Section B.3.19, “Message.JobIdEvent,” on page 254
Section B.3.20, “Message.JobInfo,” on page 254
Section B.3.21, “Message.Jobs,” on page 254
Section B.3.22, “Message.JobStarted,” on page 254
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/DataGridNotAvailableException.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/dataGrid/GridFile.CancelException.html

novdocx (en) 11 July 2008
Section B.3.23, “Message.JobStatus,” on page 254
Section B.3.24, “Message.LoginFailed,” on page 254
Section B.3.25, “Message.LoginSuccess,” on page 255
Section B.3.26, “Message.LogoutAck,” on page 255
Section B.3.27, “Message.NeedUpgrade,” on page 255
Section B.3.28, “Message.RunningJobs,” on page 255
Section B.3.29, “Message.ServerStatus,” on page 255
Section B.3.30, “Message.SessionAck,” on page 255
Section B.3.31, “Message.SessionChallenge,” on page 255
Section B.3.32, “Message.SessionResponse,” on page 256
Section B.3.33, “Message.SessionStatus,” on page 256
Section B.3.34, “Node,” on page 256
Section B.3.35, “Priority,” on page 256
Section B.3.36, “WorkflowInfo,” on page 256
Section B.3.37, “ClientOutOfDateException,” on page 256
Section B.3.38, “FactException,” on page 256
Section B.3.39, “GridAuthenticationException,” on page 257
Section B.3.40, “GridAuthorizationException,” on page 257
Section B.3.41, “GridConfigurationException,” on page 257
Section B.3.42, “GridDeploymentException,” on page 257
Section B.3.43, “GridException,” on page 257
Section B.3.44, “GridObjectNotFoundException,” on page 257

B.3.1 AgentListener
Provides the interface necessary for processing messages sent from the Orchestrator Server.

For complete documentation, see AgentListener (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/AgentListener.html).

B.3.2 ClientAgent
API for client communication with server for job and datagrid operations.

For complete documentation, see ClientAgent (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/ClientAgent.html).

B.3.3 Credential
A credential used for identity on the ZENworks Orchestrator system.

For complete documentation, see Credential (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Credential.html).
Orchestrator Client SDK 251

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/AgentListener.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/ClientAgent.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Credential.html

252 Novell

novdocx (en) 11 July 2008
B.3.4 Fact
The Grid Fact object.

For complete documentation, see Fact (http://www.novell.com/documentation/zen_orchestrator13/
reference/javadoc/com/novell/zos/grid/Fact.html).

B.3.5 FactSet
Definition of a set of facts.

For complete documentation, see FactSet (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/FactSet.html).

B.3.6 GridObjectInfo
Client interface to any Grid object.

For complete documentation, see GridObjectInfo (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridObjectInfo.html).

B.3.7 ID
A unique identifier for an engine or a facility or Grid object.

For complete documentation, see ID (http://www.novell.com/documentation/zen_orchestrator13/
reference/javadoc/com/novell/zos/grid/class-use/ID.html).

B.3.8 JobInfo
A client representation of a deployed job.

For complete documentation, see JobInfo (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/JobInfo.html).

B.3.9 Message
A base interface for all the messages in the system.

For complete documentation, see Message (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.html).

B.3.10 Message.Ack
A general acknowledgement of “action” message.

For complete documentation, see Message.Ack (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.Ack.html).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Fact.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/FactSet.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridObjectInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/class-use/ID.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/JobInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.Ack.html

novdocx (en) 11 July 2008
B.3.11 Message.AuthFailure
Authentication failure messages indicates that processing of a client message will not occur because
client credentials are invalid.

For complete documentation, see Message.AuthFailure (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.AuthFailure.html).

B.3.12 Message.ClientResponse
Message All messages that can optionally carry an error string back to the client extend this.

For complete documentation, see Message.ClientResponse (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.ClientResponseMessage.html).

B.3.13 Message.Event
An Event is used to signal clients and workflows.

For complete documentation, see Message.Event (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.Event.html).

B.3.14 Message.GetGridObjects
Client request to retrieve an (optionally ordered) set of grid objects that match a search criteria
(constraint).

For complete documentation, see Message.GetGridObjects (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.GetGridObjects.html).

B.3.15 Message.GridObjects
Server response to client request to retrieve grid a grid object set.

For complete documentation, see Message.GridObjects (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.GetGridObjects.html).

B.3.16 Message.JobAccepted
A JobAccepted message is sent in response to a RunJob message when a job is successfully
accepted into the system.

For complete documentation, see Message.JobAccepted (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobAccepted.html).

B.3.17 Message.JobError
A JobError message is sent when an unrecoverable error occurs in a job.

For complete documentation, see Message.JobError (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobError.html).
Orchestrator Client SDK 253

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.AuthFailure.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.ClientResponseMessage.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.Event.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.GetGridObjects.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.GetGridObjects.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobAccepted.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobError.html

254 Novell

novdocx (en) 11 July 2008
B.3.18 Message.JobFinished
A JobFinished message is sent when processing of a job completes.

For complete documentation, see Message.JobFinished (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobFinished.html).

B.3.19 Message.JobIdEvent
Base Event interface for retrieving JobID used for jobid messages.

For complete documentation, see Message.JobIdEvent (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobIdEvent.html).

B.3.20 Message.JobInfo
A JobInfo message contains information describing a deployed job.

For complete documentation, see Message.JobInfo (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobInfo.html).

B.3.21 Message.Jobs
A Jobs message contains a list of deployed job names.

For complete documentation, see Message.Jobs (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.Jobs.html).

B.3.22 Message.JobStarted
A JobStarted message is sent when a job is successfully started.

For complete documentation, see Message.JobStarted (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobStarted.html).

B.3.23 Message.JobStatus
A JobStatus message contains the state of the specified job.

For complete documentation, see Message.JobStatus (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobStatus.html).

B.3.24 Message.LoginFailed
Response message for an unsuccessful login

For complete documentation, see Message.LoginFailed (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.LoginFailed.html).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobFinished.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobIdEvent.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.Jobs.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobStarted.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.JobStatus.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.LoginFailed.html

novdocx (en) 11 July 2008
B.3.25 Message.LoginSuccess
Response message for a successful login.

For complete documentation, see Message.LoginSuccess (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.LoginSuccess.html).

B.3.26 Message.LogoutAck
A LogoutAck indicates success or failure of logout operation.

For complete documentation, see Message.LogoutAck (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.LogoutAck.html).

B.3.27 Message.NeedUpgrade
to be documented

For complete documentation, see Message.NeedUpgrade (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.NeedUpgrade.html).

B.3.28 Message.RunningJobs
A RunningJobs message contains the list of running jobs.

For complete documentation, see Message.RunningJobs (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.RunningJobs.html).

B.3.29 Message.ServerStatus
A ServerStatus message.

For complete documentation, see Message.ServerStatus (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.ServerStatus.html).

B.3.30 Message.SessionAck
to be documented

For complete documentation, see Message.SessionAck (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.SessionAck.html).

B.3.31 Message.SessionChallenge
to be documented

For complete documentation, see Message.SessionChallenge (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
Message.SessionChallenge.html).
Orchestrator Client SDK 255

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.LoginSuccess.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.LogoutAck.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.NeedUpgrade.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.RunningJobs.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.ServerStatus.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.SessionAck.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.SessionChallenge.html

256 Novell

novdocx (en) 11 July 2008
B.3.32 Message.SessionResponse
to be documented

For complete documentation, see Message.SessionResponse (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
Message.SessionResponse.html).

B.3.33 Message.SessionStatus
to be documented

For complete documentation, see Message.SessionStatus (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.SessionStatus.html).

B.3.34 Node
Internal interface for Node (Resource) Grid object.

For complete documentation, see Node (http://www.novell.com/documentation/zen_orchestrator13/
reference/javadoc/com/novell/zos/grid/Node.html).

B.3.35 Priority
Priority information.

For complete documentation, see Priority (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Priority.html).

B.3.36 WorkflowInfo
A WorkflowInfo can represent either a snapshot of a running instance or an historical record of an
instance.

For complete documentation, see WorkflowInfo (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/WorkflowInfo.html).

B.3.37 ClientOutOfDateException
Grid exception indicating the client is not compatible with the server.

For complete documentation, see ClientOutOfDateException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
ClientOutOfDateException.html).

B.3.38 FactException
For exceptions that occur in accessing or setting facts.

For complete documentation, see FactException (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/FactException.html).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.SessionResponse.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Message.SessionStatus.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Node.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/Priority.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/WorkflowInfo.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/ClientOutOfDateException.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/FactException.html

novdocx (en) 11 July 2008
B.3.39 GridAuthenticationException
Thrown when authentication is denied by a ZENworks Orchestrator Server.

For complete documentation, see GridAuthenticationException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
GridAuthenticationException.html).

B.3.40 GridAuthorizationException
Thrown when credentials are insufficient for the desired grid operation.

For complete documentation, see GridAuthorizationException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
GridAuthorizationException.html).

B.3.41 GridConfigurationException
Grid exception thrown to indicate a Grid configuration error.

For complete documentation, see GridConfigurationException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
GridConfigurationException.html).

B.3.42 GridDeploymentException
Thrown when credentials are insufficient for the desired grid operation.

For complete documentation, see GridDeploymentException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
GridDeploymentException.html).

B.3.43 GridException
The base exception for all Grid exceptions.

For complete documentation, see GridException (http://www.novell.com/documentation/
zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridException.html).

B.3.44 GridObjectNotFoundException
Thrown when a grid object lookup does not find the requested object.

For complete documentation, see GridObjectNotFoundException (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/
GridObjectNotFoundException.html).
Orchestrator Client SDK 257

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridAuthenticationException.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridAuthorizationException.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridConfigurationException.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridDeploymentException.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridException.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/grid/GridObjectNotFoundException.html

258 Novell

novdocx (en) 11 July 2008
B.4 Toolkit Package
The Client agent, Constraint, and Credentials factory patterns used internally by Orchestrator
Server:

Section B.4.1, “ClientAgentFactory,” on page 258
Section B.4.2, “ConstraintFactory,” on page 258
Section B.4.3, “CredentialFactory,” on page 258

B.4.1 ClientAgentFactory
Factory pattern used to create new clients for connection to a ZENworks Orchestrator Server.

For complete documentation of the class, see ClientAgentFactory (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/toolkit/
ClientAgentFactory.html).

B.4.2 ConstraintFactory
Factory pattern used to create constraint objects which may be combined into larger constraint
hierarchies for use in searches or other constraint based matching.

For complete documentation of the class, see ConstraintFactory (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/toolkit/
ConstraintFactory.html).

B.4.3 CredentialFactory
Factory pattern used to create a Credential used for connection to a ZENworks Orchestrator Server.

For complete documentation of the class, see CredentialFactory (http://www.novell.com/
documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/toolkit/
CredentialFactory.html).
 ZENworks Orchestrator 1.3 Developer Guide and Reference

http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/toolkit/ClientAgentFactory.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/toolkit/ConstraintFactory.html
http://www.novell.com/documentation/zen_orchestrator13/reference/javadoc/com/novell/zos/toolkit/CredentialFactory.html

Documentation Updates

C

259

novdocx (en) 11 July 2008

CDocumentation Updates

This section contains information on documentation content changes that have been made in the
Developer Guide and Reference since the initial release of Novell® ZENworks® Orchestrator 1.3
(June 9, 2008). The information will help you to keep current on updates to the documentation.

All changes that are noted in this section were also made in the documentation. The documentation
is provided on the Web in two formats: HTML and PDF. The HTML and PDF documentation are
both kept up-to-date with the documentation changes listed in this section.

The documentation update information is grouped according to the date the changes were published.
Within a dated section, the changes are alphabetically listed by the names of the main table of
contents sections for ZENworks Orchestrator 1.3.

f you need to know whether a copy of the PDF documentation you are using is the most recent, the
PDF document contains the date it was published on the front title page.

The documentation was updated on the following dates:

Section C.1, “Aug 3, 2008,” on page 259

C.1 Aug 3, 2008
The following sections are affected by updates:

Section C.1.1, “Documentation Updates,” on page 259

C.1.1 Documentation Updates
The following changes were made in this section:

Location Change

Chapter 3, “The ZENworks
Orchestrator Datagrid,” on page 43

Changed the name of this chapter to better reflect its contents.

	Novell ZENworks Orchestrator 1.3 Developer Guide and Reference
	About This Guide
	1 Getting Started
	1.1 What You Should Know
	1.1.1 Prerequisite Knowledge
	1.1.2 Setting Up Your Development Environment

	1.2 Orchestrator Documentation Set
	1.2.1 Novell ZENworks Orchestrator Getting Started Guide
	1.2.2 Novell ZENworks Orchestrator Administration Guide
	1.2.3 Novell ZENworks Orchestrator Virtual Machine Management Guide
	1.2.4 Novell ZENworks Orchestrator Job Management Guide

	1.3 Prerequisites for the Development Environment

	2 Job Development Concepts
	2.1 Orchestrator Development Architecture
	2.1.1 Orchestrator Agents
	2.1.2 Orchestrator Resource Monitor
	2.1.3 Orchestrator Entity Types and Managers
	2.1.4 Jobs
	2.1.5 Constraint-Based Job Scheduling
	2.1.6 Understanding Orchestrator API Interfaces

	2.2 Understanding ZENworks Orchestrator Functionality
	2.2.1 Resource Virtualization
	2.2.2 Policy-Based Management
	2.2.3 Global Resource Visualization
	2.2.4 Understanding Job Semantics
	2.2.5 Distributed Messaging and Failover
	2.2.6 Web-Based User Interaction

	2.3 JDL Job Scripts
	2.3.1 Principles of Job Operation

	2.4 Understanding TLS Encryption
	2.5 Understanding Job Examples
	2.5.1 provisionBuildTestResource.job
	2.5.2 Workflow Job Example

	3 The ZENworks Orchestrator Datagrid
	3.1 Defining the Datagrid
	3.1.1 Naming Orchestrator Job Files
	3.1.2 Distributing Files
	3.1.3 Simultaneous Multicasting to Multiple Receivers
	3.1.4 Orchestrator Datagrid Commands

	3.2 Datagrid Communications
	3.2.1 Multicast Example
	3.2.2 Grid Performance Factors
	3.2.3 Plan for Datagrid Expansion

	3.3 datagrid.copy Example

	4 Orchestrator Job Classifications
	4.1 Resource Discovery
	4.1.1 Provisioning Jobs
	4.1.2 Resource Targeting
	4.1.3 Resource Discovery Jobs

	4.2 Dynamic Scheduling
	4.3 Workload Management
	4.4 Policy Management
	4.5 Auditing and Accounting Jobs

	5 Developing Policies
	5.1 Policy Elements
	5.1.1 Constraints
	5.1.2 Facts
	5.1.3 Computed Facts

	5.2 BuildTest Job Examples
	5.2.1 buildTest.policy Example
	5.2.2 buildTest.jdl Example
	5.2.3 Packaging Job Files
	5.2.4 Deploying Packaged Job Files
	5.2.5 Running Your Jobs
	5.2.6 Monitoring Job Results
	5.2.7 Debugging Jobs

	6 Using the Orchestrator Client SDK
	6.1 SDK Requirements
	6.2 Creating an SDK Client

	7 Job Architecture
	7.1 Understanding JDL
	7.2 JDL Package
	7.2.1 .sched Files

	7.3 Job Class
	7.3.1 Job State Transition Events
	7.3.2 Handling Custom Events

	7.4 Job Invocation
	7.5 Deploying Jobs
	7.5.1 Using the Orchestrator Console
	7.5.2 Using the ZOSADMIN Command Line Tool

	7.6 Starting Orchestrator Jobs
	7.7 Working with Facts and Constraints
	7.7.1 Grid Objects and Facts
	7.7.2 Defining Job Elements
	7.7.3 Job Arguments and Parameter Lists

	7.8 Using Facts in Job Scripts
	7.9 Using Other Grid Objects
	7.10 Communicating Through Job Events
	7.10.1 Sending and Receiving Events
	7.10.2 Synchronization

	7.11 Executing Local Programs
	7.11.1 Output Handling
	7.11.2 Local Users
	7.11.3 Safety and Failure Handling

	7.12 Logging and Debugging
	7.12.1 Creating a Job Memo
	7.12.2 Tracing

	7.13 Improving Job and Joblet Robustness

	8 Job Scheduling
	8.1 Job Scheduler GUI
	8.2 Schedule Files
	8.2.1 osInfo.sched Example
	8.2.2 Cron Trigger Example

	8.3 Scheduling with Constraints

	9 Virtual Machine Job Development
	9.1 VM Job Best Practices
	9.1.1 Plan Robust Application Starts and Stops
	9.1.2 Managing VM Systems
	9.1.3 Managing VM Images
	9.1.4 Managing VM Hypervisors
	9.1.5 VM Job Considerations

	9.2 Virtual Machine Management
	9.3 VM Life Cycle Management
	9.4 Manual Management of a VM Server’s Lifecycle
	9.4.1 Manually Using the ZOS Command Line
	9.4.2 Automatically Using the Orchestrator Console Job Scheduler
	9.4.3 Provision Job JDL

	9.5 Provisioning Virtual Machines
	9.5.1 Provisioning VMs Using Jobs
	9.5.2 VM Placement Policy
	9.5.3 Provisioning Example

	9.6 Automatically Provisioning a VM Server
	9.7 Defining Values for Grid Objects
	9.7.1 Orchestrator Grid Objects
	9.7.2 Repository Objects and Facts
	9.7.3 VmHost Objects and Facts
	9.7.4 VM Resource Objects and Other Base Resource Facts
	9.7.5 Physical Resource Objects and Additional Facts

	10 Complete Job Examples
	10.1 Accessing Job Examples
	10.2 Installation and Getting Started
	10.3 Orchestrator Sample Job Summary
	10.4 Parallel Computing Examples
	demoIterator.jobReference implementation for a simple test iterator. Several concepts are demonstrated: 1) Using policy constraints and job arguments to restrict joblet execution to a specific resource, 2) Scheduling joblets using a ParameterSpace, and
	quickie.jobDemonstrates a job starting up multiple instances of a joblet on one or more resources. Because this job simply launches and returns immediately, it can also be useful for testing network latency.

	10.5 General Purpose Jobs
	dgtest.jobThis job demonstrates downloading a file from the datagrid.
	failover.jobA test job that demonstrates handling of joblet failover.
	instclients.jobInstalls the ZENworks Orchestrator client applications to the specified resource machine. Note that while most of the other examples are deployed by default, this example is not.
	notepad.jobLaunches the Notepad application on a Windows resource.
	sweeper.jobThis example job illustrates how to schedule a "sweep," which is an ordered, serialized scheduling of the joblets across all matching resources.
	whoami.job

	10.6 Miscellaneous Code-Only Jobs
	factJunction.jobDemonstrates using fact junctions to retrieve information about objects in the grid relative to another object.
	jobargs.job

	A Orchestrator Job Classes and JDL Syntax
	A.1 Job Class
	A.2 Joblet Class
	A.3 Utility Classes
	A.4 Built-in JDL Functions and Variables
	A.4.1 getMatrix()
	A.4.2 system(cmd)
	A.4.3 Grid Object TYPE_* Variables
	A.4.4 The __agent__ Variable
	A.4.5 The __jobname__ Variable
	A.4.6 The __mode__ Variable

	A.5 Job State Field Values
	A.6 Repository Information String Values
	A.7 Joblet State Values
	A.8 Resource Information Values
	A.9 JDL Class Definitions
	AndConstraint()
	BinaryConstraintRepresentation of a Constraint operating on the left and right operands. This is a base class and is not directly constructed.
	BuildSpec
	CharRangeDefines the attributes for creating a virtual machine. An instance of this class is passed to resource.createInstance(), resource.createTemplate(), resource.clone().
	ComputedFact
	ComputedFactContextProvides access to the evaluation context. See Example below.
	ConstraintDefines the base class for all constraint classes.
	ContainerConstraintRepresentation of a Constraint that contains other Constraints. This is a base class and is not directly constructed.
	ContainsConstraintRepresentation of the Contains Constraint. Evaluates to true only if the left side fact is defined in the match context. If the left side is not defined, this will evaluate to False. Contains is typically used to check membership of a
	DataGrid
	DefinedConstraintRepresentation of the Defined Constraint. Evaluates to true only if the left side fact is defined in the match context. If the left side is not defined, this will evaluate to False. This constraint can be used independently or added to
	EqConstraint
	ExecThe Exec class is used to manage command line execution on resources. This class defines options for input, output and error stream handling, and process management including signaling, error and timeout control.
	ExecError
	FileRange
	GeConstraint
	GridObjectInfo
	GroupInfo
	GtConstraintRepresentation of the Greater than Constraint. Performs a ‘greater than’ constraint operation. Missing arguments will always result in this constraint evaluating to false. The standard lexographical ordering of values is used to determin
	Job
	JobInfoThe JobInfo class is a representation of a deployed job. The factset available on the JobInfo class is the aggregation of the job's policy and policies on the groups the job is a member of. This includes the "job.*" and "jobargs.*" fact namespace
	JobletDefines the attributes for creating a virtual machine. An instance of this class is passed to resource.createInstance(), resource.createTemplate(), resource.clone().
	JobletInfoJobletInfo is a representation of the joblet grid object created when a job calls schedule() to create joblets. This class provides access to a joblet's factset and operations on a joblet such as cancellation and sending events to a joblet tha
	JobletParameterSpaceJobletParameterSpace is a slice of the ParameterSpace allocated to a joblet. As the scheduler defines slices of the parameter space for a given schedule(), JobletParameterSpace instances are created for each joblet. This slice of the
	LeConstraintRepresentation of the Less than or equals Constraint. Performs a 'less than or equal to' constraint operation. Missing arguments will always result in this constraint evaluating to false. The standard lexographical ordering of values is used
	LtConstraintRepresentation of the Less than Constraint. Performs a "less than" constraint operation. Missing arguments always result in this constraint evaluating to false. The standard lexographical ordering of values is used to determine result. This
	MatrixInfo
	NeConstraintRepresentation of the Not Equals Constraint. Performs a not equal constraint operation. Missing arguments will always result in this constraint evaluating to false. This constraint can be used independently or added to a And, Or, Not constra
	NotConstraint
	OrConstraint
	ParameterSpace
	PolicyInfoRepresentation of a Policy Object. This class allows for associating and unassociation of Grid objects using this policy
	ProvisionSpec
	RepositoryInfo
	ResourceInfo
	RunJobSpec
	ScheduleSpec
	TimerTimer schedules a callback to a job or joblet method. Timers can schedule a one time or a repeated callback on an interval basis. Any Timers created in a job or joblet are shut down on job or joblet completion.
	UndefinedConstraint
	UserInfoUserInfo is a representation of a user grid object. This class provides accessors and setters for User facts.
	VMHostInfo
	VmSpecDefines the attributes for creating a virtual machine. An instance of this class is passed to resource.createInstance(), resource.createTemplate(), resource.clone().

	B Orchestrator Client SDK
	B.1 Constraint Package
	B.1.1 AndConstraint
	B.1.2 BetweenConstraint
	B.1.3 BinaryConstraint
	B.1.4 Constraint
	B.1.5 ContainerConstraint
	B.1.6 ContainsConstraint
	B.1.7 ConstraintException
	B.1.8 DefinedConstraint
	B.1.9 EqConstraint
	B.1.10 GeConstraint
	B.1.11 GtConstraint
	B.1.12 IfConstraint
	B.1.13 LeConstraint
	B.1.14 LtConstraint
	B.1.15 NeConstraint
	B.1.16 NotConstraint
	B.1.17 OperatorConstraint
	B.1.18 OrConstraint
	B.1.19 TypedConstraint
	B.1.20 UndefinedConstraint

	B.2 Datagrid Package
	B.2.1 DGLogger
	B.2.2 GridFile
	B.2.3 GridFileFilter
	B.2.4 GridFileNameFilter
	B.2.5 DataGridException
	B.2.6 DataGridNotAvailableException
	B.2.7 GridFile.CancelException

	B.3 Grid Package
	B.3.1 AgentListener
	B.3.2 ClientAgent
	B.3.3 Credential
	B.3.4 Fact
	B.3.5 FactSet
	B.3.6 GridObjectInfo
	B.3.7 ID
	B.3.8 JobInfo
	B.3.9 Message
	B.3.10 Message.Ack
	B.3.11 Message.AuthFailure
	B.3.12 Message.ClientResponse
	B.3.13 Message.Event
	B.3.14 Message.GetGridObjects
	B.3.15 Message.GridObjects
	B.3.16 Message.JobAccepted
	B.3.17 Message.JobError
	B.3.18 Message.JobFinished
	B.3.19 Message.JobIdEvent
	B.3.20 Message.JobInfo
	B.3.21 Message.Jobs
	B.3.22 Message.JobStarted
	B.3.23 Message.JobStatus
	B.3.24 Message.LoginFailed
	B.3.25 Message.LoginSuccess
	B.3.26 Message.LogoutAck
	B.3.27 Message.NeedUpgrade
	B.3.28 Message.RunningJobs
	B.3.29 Message.ServerStatus
	B.3.30 Message.SessionAck
	B.3.31 Message.SessionChallenge
	B.3.32 Message.SessionResponse
	B.3.33 Message.SessionStatus
	B.3.34 Node
	B.3.35 Priority
	B.3.36 WorkflowInfo
	B.3.37 ClientOutOfDateException
	B.3.38 FactException
	B.3.39 GridAuthenticationException
	B.3.40 GridAuthorizationException
	B.3.41 GridConfigurationException
	B.3.42 GridDeploymentException
	B.3.43 GridException
	B.3.44 GridObjectNotFoundException

	B.4 Toolkit Package
	B.4.1 ClientAgentFactory
	B.4.2 ConstraintFactory
	B.4.3 CredentialFactory

	C Documentation Updates
	C.1 Aug 3, 2008
	C.1.1 Documentation Updates

