Novell
Nsure. Identity Manager

www.novell.com
2 ®
POLICY BUILDER AND DRIVER
August 3, 2004 CUSTOMIZATION GUIDE

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all parts of Novell software,
at any time, without any obligation to notify any person or entity of such changes.

You may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations
or the laws of the country in which you reside.

Copyright © 2000-2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher.

U.S. Patent Nos. 5,349,642; 5,608,903; 5,671,414; 5,677,851; 5,758,344; 5,784,560; 5,818,936; 5,828,882; 5,832,275; 5,832,483; 5,832,487,
5,870,561; 5,870,739; 5,873,079; 5,878,415; 5,884,304; 5,919,257, 5,933,503; 5,933,826; 5,946,467; 5,956,718; 6,016,499; 6,065,017; 6,105,062;
6,105,132; 6,108,649; 6,167,393; 6,286,010; 6,308,181; 6,345,266; 6,424,976; 6,516,325; 6,519,610; 6,539,381; 6,578,035; 6,615,350; 6,629,132.
Patents Pending.

Novell, Inc.

1800 South Novell Place
Provo, UT 84606

U.S.A.

www.novell.com

Policy Builder and Driver Customization Guide
August 3, 2004

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

Novell Trademarks
DirXML is a registered trademark of Novell, Inc. in the United States and other countries.

eDirectory is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc. in the United States and other countries.

Nsure is a trademark of Novell, Inc.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Contents

About This Guide 9
1 Policies and Filters 1"
What Are Policies and Filters? e e e 11
Terminology Changes from DIrXML 1.X. o 13
Introduction to Policies L e e e 13
Basic Policies e e 13
Transformation Policies L e 15
Defining Policies L 15
Introduction to Filters L e e 16
2 Defining Policies Using Policy Builder 19
Policy Builder Tasks L 19
Opening Policy Builder e 19
Creatinga Policy e 20
Defining Individual Rules withina Policy 20
Defining Individual Arguments withina Rule 21
Modifying a Policy. L e e e 24
Deletinga Policy L e 24
Importing a Policy froman XML File e 24
Exporting a Policytoan XML File. e 24
Creating a Policy Reference e 25
Conditions L e 25
IfAssociation L 26
IfAttribute L 27
IfClass Name. e 29

If Destination Attribute L L 30

If Destination DN e e 32

If Entitlement L e 34

If Global Configuration Value e 36

If Local Variable. e e 37

If Named Password e 38

If Operation Attribute L e 39

If Operation e e 41

If Operation Property e 42
[FPassword e e 43

If Source Attribute. L e 44
IfSource DN 46

If Xpath Expression e e e 48
ACLIONS e 48
Add Association. L L e 50
Add Destination Attribute Value. L 51
Add Destination Object e 52
Add Source Attribute Value L e 53
Add Source Object L e 54

Contents 5

Append XML Text o o 56
Break. e e 57
Clear Destination Attribute Value e 58
Clear Operation Property e 59
Clear Source Attribute Value e 60
Clone Operation Attribute e 61
Clone by Xpath EXpressions. e 62
Delete Destination Object L e 63
Delete Source Object e 64
Find Matching Object e 65
ForEach e e e 67
Generate Event L e 68
Move Destination Object. e 70
Move Source Object L L e 71
Reformat Operation Attribute e e e 72
Remove Association. L e 73
Remove Destination Attribute Value. e 74
Remove Source Attribute Value L e e 75
Rename Destination Object e 76
Rename Operation Attribute e 77
Rename Source Object L e 78
Send Email. e e 79
Send Email From Template e e e 81
Set Default Attribute Value. e 83
Set Destination Attribute Value e 84
Set Destination Password L e 85
SetlLocal Variable e 86
Set Operation Association L e 87
Set Operation Class Name e 88
Set Operation Destination DN e 89
Set Operation Property L e 90
Set Operation Source DN L e 91
Set Operation Template DN e 92
Set Source Attribute Value. e e e 93
Set Source Password L e e e e e 94
Set XML Attribute e 95
Status e e 96
Strip Operation Attribute L e 97
Strip Xpath e e e e 98
Trace Message e e e 99
Velo . . e e e 100
Veto If Operation Attribute Not Available 101
NOUNS . . . o e e e 101
Added Entitlement L e e e e 102
Association. L L e e 103
Attribute . . . L e e 104
Class Name e e 105
Destination Attribute L e e e 106
Destination DN. L e e e 107
Destination Name e e e e 108
Entitlement. L e e 109
Global Configuration Value e 110
Local Variable e e e 111
Named Password e e e e 112

Policy Builder and Driver Customization Guide

Operation L e 113

Operation Attribute L e 114
Operation Property L e 115
Password e e 116
Removed Attribute L L L 117
Removed Entitlement L 118
Source Attribute. L L e 119
Source DN . . . L L e e 120
Source Name L L e 121
Text . . e e 122
Unique Name L e e 123
Unmatched Source DN o e 125
XPath . . . e 126
Verbs . . L e 126
Escape Destination DN 127
Escape Source DN L 128
Lower Case e e 129
Parse DN e e 130
Replace All e 132
Replace First o e e e e 133
Substring L e e 134
UpperCase e e 135
Values e 135
Comparison Modes e e e 135
Defining Policies using XSLT Style Sheets 137
Managing XSLT Style SheetsiniManager. e 137
Adding an XSLT Policy e e 137
Restrictions L e 138
Matching Rule Restrictions L e e 138
Create Rule Restrictions e 139
Placement Rule Restrictions 139
Starting with an Identity Transformation 139
Using the Parameters that DIrXML Passes. e e s e e e e 139
Using Extension Functions e 142
Testing Style Sheets Outside of DIrXML e e e 142
Creating a Password Example: Create Rule e 143
Creating an eDirectory User Example: Create Rule 144
Defining Filters 149
Filter Tasks o e 149
Managing Filters e e 149
Viewing and Modifying Filters. L 149

Contents 7

Policy Builder and Driver Customization Guide

About This Guide

Novell® Nsure™ Identity Manager 2, which is powered by DirXML®, is a data sharing and
synchronization service that enables applications, directories, and databases to share information.
It links together scattered information and enables you to establish policies that govern automatic
updates to designated systems when identity changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user
self-service, authentication, authorization, automated workflows and Web services. It allows you
to integrate, manage and control your distributed identity information so you can securely deliver
the right resources to the right people.

This guide provides detailed reference on Policy Builder and Driver Configuration in Identity
Manager 2.

Additional Documentation

For documentation on using the DirXML drivers, see the DirXML Documentation Web site (http:/
/www.novell.com/documentation/lg/dirxmldrivers/index.html)

For documentation on Identity Manager 2.0, see the DirXML Documentation Web site (http://
www.novell.com/documentation/lg/dirxml20/index.html)

Documentation Updates

For the most recent version of this document, see the DirXML Documentation Web site (http://
www.novell.com/documentation/lg/dirxml20/index.html)

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

User Comments

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. To contact us, send e-mail to proddoc@novell.com.

About This Guide 9

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxml20/index.html
http://www.novell.com/documentation/lg/dirxml20/index.html

10 Policy Builder and Driver Customization Guide

Policies and Filters

This section contains an overview of policies and filters, and their function in a DirXML®
environment. The following topics are covered:

+ “What Are Policies and Filters?”” on page 11

¢ “Introduction to Policies” on page 13

What Are Policies and Filters?

At a high level, policies enable you to customize the way DirXML sends and receives updates.

To understand policies, it helps to understand some level of detail regarding what a driver shim is
written to do.

When a driver shim is written, an attempt is made to include the ability to synchronize anything a
company deploying the driver might use. The developer writes the driver shim to detect any
relevant changes in the connected system, then pass this change to Novell® eDirectory™.

This change is contained in an XML document, formatted according to the DirXML specification.
The following snippet contains one of these XML documents:

<nds dtdversion="2.0" ndsversion="8.7.3">

<sour ce>
<product version="2.0">Di r XML</ pr oduct >
<cont act >Novel |, Inc. </contact>

</ source>

<i nput >

<add cl ass-nane="User" event-id="0" src-dn="\ACME\ Sal es\ Sni t h"
src-entry-i d="33071">
<add-attr attr-nanme="Surnane">
<val ue tinmestanp="1040071990#3" type="string">Sni th</val ue>
</ add-attr>
<add-attr attr-nane="Tel ephone Numnber">
<val ue timestanp="1040072034#1" type="tel eNunber">111-1111</val ue>
</add-attr>
</ add>
</i nput >
</ nds>

Now, depending on what you are trying to accomplish, you might not care that a user named Smith
with a telephone number of 111-1111 was added to a system. However, someone else might.

Point is, drivers are designed to report any relevant changes, then enable you to filter or modify
the change however you see fit. The logic of what changes are important and how to process these
changes is handled in the engine, not in the driver shim.

Policies and Filters 11

12

If one company wasn’t very concerned with users, they could implement a filter to block all
operations regarding users in either eDirectory or the connected system. If users were all they
cared about, they could implement a filter to do the reverse.

Defining filters to prevent the synchronization of objects that aren’t interesting to you is the first
step in driver customization.

The next step defines what DirXML does with the objects that aren’t blocked by your filter. As an
example, let’s refer to the add operation in the XML document above. A user named Smith with a
telephone number of 111-1111 was added to your connected system. Assuming you don’t filter this
operation, DirXML needs to decide what to do with this user.

To make this decision, DirXML applies a set of policies, in a specific order (for now we are going
to ignore transformation policies, which occur before the filter is applied on the publisher channel,
and as the last step on the subscriber).

The first policy, matching, answers the question, “Is this object already in the data store?” To
answer this, you need to define the characteristics that are unique to an object. A common attribute
to check might be an e-mail address, since these are generally unique to ensure we all receive our
fair share of spam. You could define a policy that says “If two objects have the same e-mail
address, they are the same object.”

If a match is found, DirXML notes this find in an attribute called an association. An association is
a unique value that enables DirXML to associate objects in connected systems.

In circumstances where a match is not found, the second policy, creation, is called on. The create
policy tells DirXML under what conditions you would like objects created. You can make the
existence of certain attributes mandatory in the creation rule. If these attributes do not exist,
DirXML blocks the creation of the object until the required information is provided.

After the object is created, the third rule, placement, tells DirXML where to put it. You could
specify that objects should be created in a hierarchical structure identical to the system they came
from, or you could place them somewhere completely different based on an attribute value.

If you would like to place users in a hierarchy according to a location attribute on the object, and
name them according to their Full Name, you could make these attributes required in the create
policy. This way you can ensure that the attribute exists so your placement strategy works
correctly.

There are many other things you can do with policies. Using Policy Builder, you can easily
generate unique values, add and remove attributes, generate events, send e-mail, and a laundry list
of other operations. Even more advanced transformations are available by using XSLT to
transform the XML document directly (remember that changes are sent to and from eDirectory in
XML documents).

The basic thing to keep in mind is policies enable you to control how DirXML handles updates.

Continue to “Introduction to Policies” on page 13 to learn more about the different types of
policies, then move on to Chapter 2, “Defining Policies Using Policy Builder,” on page 19 to get
your hands dirty in Policy Builder.

A Note on Transformation Policies

Transformation policies act as a translation mechanism between DirXML and the connected
system. They transform schema between systems, and make preliminary changes to operations
coming in, and final changes going out.

Policy Builder and Driver Customization Guide

In a basic sense, transformation policies are used to make the other rules discussed previously
(matching, create, placement), work correctly. The default configuration for each driver contains
all of the necessary transformation policies, so you don’t need to worry about these at first (the
only exception might be the schema mapping policy, which you can easily modify using a GUI in
iManager).

After you have a grasp of the basic policy types, understanding transformation policies might
enable you to perform some customization that isn’t possible with the basic policies.

Terminology Changes from DirXML 1.x

If you have not used DirXML 1.x, you do not need to review this section.

In DirXML 1.x, the term rule was used to describe a set of rules, the individual rules in this set,
and the conditions and actions within the individual rules, depending on the context. This overlap
causes confusion in circumstances when the context is not clear.

In DirXML 2, the term policy is now used to replace the previous usage of the term rule, when
describing the high level transformation that is occurring. You now define a set of policies, which
consists of one or more policies, where each policy contains one or more rules. The term rule is
now used to describe only an individual set of conditions and actions.

The following table shows this terminology change:

Item being described DirXML 2 Terminology DirXML 1.x Terminology
Set of transformations Set of Policies Rule

An individual transformation Policy Rule

within a set

The conditions and actions Rule Rule

within an individual

transformation

Introduction to Policies

Basic Policies

This section provides an introduction to the types of policies available, their roles in DirXML, and
how to define your own policies. The following topics are covered:

+ “Basic Policies” on page 13
+ “Transformation Policies” on page 15

+ “Defining Policies” on page 15

There are several different types of policies you can define on both the Subscriber and Publisher
channels. Each policy is applied at a different step in the data transformation, and some policies
are only applied when a certain action occurs. For example, a creation policy is applied only when
a new object is created.

Policies and Filters 13

Create

Matching

Placement

Policy Description

Subscriber Matching The object containing the criteria used to find objects in the application that
match objects in eDirectory, so those matching objects can be associated
with each other.

Subscriber Create The object containing the definition of the attributes required to create a new
object in the application.

Subscriber Placement ~ The object containing the criteria that determine where new application
objects should be created.

Publisher Matching The object containing the criteria used to find objects in eDirectory that
match objects in the application so those matching objects can be
associated with each other.

Publisher Create The object containing the definition of the attributes required to create a new
object in eDirectory.

Publisher Placement The object containing the criteria that determine where new eDirectory
objects should be created.

Schema Mapping The object that holds the definition of the schema mappings between
eDirectory and the application

Create policies define the minimum set of attributes that must be present to create a new object.

For example, you create a new user in eDirectory, but you only give the new User object a name
and ID. This creation is mirrored in the eDirectory tree, but the addition is not immediately
reflected in applications connected to eDirectory because you have a Create policy specifying that
only User objects with a more complete definition are allowed.

A Create policy can be the same for both the Subscriber and the Publisher, or it can be different.

The create policy is represented in eDirectory as an object in the driver.

Matching policies define the minimum criteria that two objects must meet to be considered the
same.

Placement policies determine where new objects are created in eDirectory and the connected
application.

Each driver requires at least two Placement policies: one to specify where to place a new
eDirectory object when the external application database creates a new object, and one to specify
where to create an external application database object when a new object is created in eDirectory.

Because eDirectory is hierarchical, multiple policies are useful because they let you create objects
in multiple containers, However, you might prefer to have all new objects created in the same
container, then later move them to department containers.

14 Policy Builder and Driver Customization Guide

Schema Mapping

Schema Mapping policies hold the definition of the schema mappings between eDirectory and the
connected system.

The eDirectory schema is read from eDirectory. The DirXML driver for the connected system
supplies the application’s schema. After the two schemas have been identified, a simple mapping
is created between eDirectory and the target application.

After a schema mapping is defined in the DirXML driver configuration, the corresponding data
can be mapped.

Transformation Policies

The following policies are used to transform the event data format between eDirectory and the

application:

Policy Description

Output Transformation The transform action that should be used as
information is passed from eDirectory to the
application.

Input Transformation The transform action that should be used as
information is passed from the application to
eDirectory.

The following policies are used to transform the event action between eDirectory and the

application:
Policy Description
Subscriber Event Transformation The transform action used to convert from one
event to another.
Publisher Event Transformation The transform action used to convert from one

event to another.

The following policies are used to transform commands between eDirectory and the application:

Policy Description

Subscriber Command Transformation The transform actions used on commands sent to
eDirectory by the DirXML engine.

Publisher Command Transformation The transform actions used on commands sent by
the driver to the DirXML engine.

Defining Policies
Policies are defined in one of two ways:

+ Using the Policy Builder interface to generate DirXML Script. Existing, non-XSLT rules are
converted to DirXML Script automatically upon import.

+ Using XSLT style sheets.

Policies and Filters 15

Policy Builder and DirXML Script

XSLT Style Sheets

The Policy Builder interface is used to define the majority of policies you might implement. The
Policy Builder interface uses a graphical environment to enable you to easily define and manage
policies.

The underlying functionality of rule creation within Policy Builder is provided by a custom
scripting language, called DirXML Script.

DirXML Script contains a wide variety of conditions you can test, actions to perform, and dynamic
values to add to your policies. Each of these options are presented using intelligent drop-down
lists, providing only valid selections at each point, and quick links to common values.

Policy Builder makes working directly with DirXML script unnecessary.

See Chapter 2, “Defining Policies Using Policy Builder,” on page 19, for more information on
Policy Builder.

TIP: Although not necessary to use Policy Builder, a complete DirXML script reference is available with the
DirXML Driver Developer Kit at http:/developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/index.html (http:/
developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/index.html)

To define more complex policies, XSLT style sheets are used to directly transform one XML
document into another XML document containing the required changes.

Style sheets provide you a large amount of flexibility, and are used when the transformation
doesn’t fit into the predefined conditions and actions available using rule creation in Policy
Builder.

To create an XSLT style sheet, you need a through understanding of XSLT the nds.dtd, and the
commands and events transferred to and from the DirXML engine. For detailed nds.dtd reference,
see the NDS DTD reference (http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/
DTD-TREE.html), and nds.dtd (http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/
nds.dtd).

See Chapter 3, “Defining Policies using XSLT Style Sheets,” on page 137 for more information
on XSLT style sheets.

Introduction to Filters

Filters specify the object classes and the attributes for which the DirXML engine processes events.

Separate event filters are specified for the subscriber and publisher channels. Event filters only
pass events occurring on objects whose base class matches one of those classes specified by the
filter. Event filters do not pass events occurring on objects that are a subordinate class of a class
specified in the filter unless the subordinate class is also specified.

NOTE: In eDirectory, a base class is the object class that is used to create an entry. You must specify that
class in the filter, rather than a super class from which the base class inherits.

For example, if the User class is specified in the event filter with the Surname and Given Name
attributes, the DirXML engine passes on any changes to these attributes. However, if the entry’s
Telephone Number attribute is modified, the DirXML engine drops this event because the
Telephone Number attribute is not in the event filter.

Filters must be configured to include the following:

16 Policy Builder and Driver Customization Guide

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/index.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/DTD-TREE.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/nds.dtd

+ Attributes required by the rules
¢ Attributes that are to be synchronized

See Chapter 4, “Defining Filters,” on page 149 for information on defining filters.

Policies and Filters 17

18 Policy Builder and Driver Customization Guide

Defining Policies Using Policy Builder

Policy Builder is a complete, graphical interface for creating and managing the policies that define
the exchange of data between connected systems.

This section covers the following topics on using Policy Builder:
¢ “Policy Builder Tasks” on page 19
This section also contains the following detailed reference sections:
+ “Conditions” on page 26
* “Actions” on page 50
+ “Nouns” on page 104

* “Verbs” on page 129

Policy Builder Tasks

This section contains instructions on performing common tasks in Policy Builder:
¢ “Opening Policy Builder” on page 19
¢ “Creating a Policy” on page 20
* “Modifying a Policy” on page 25
¢ “Defining Individual Rules within a Policy” on page 20

¢ “Defining Individual Arguments within a Rule” on page 22

Opening Policy Builder
1 In iManager, expand the DirXML® Management Role, then click Overview.
2 Specify a driver set.

3 Click the driver for which you want to manage policies. The DirXML Driver Overview opens:

eetoT

¥

ol

Defining Policies Using Policy Builder 19

4 Policies are managed from the DirXML Driver Overview.

Creating a Policy
1 Open the DirXML Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to define.
'<} represents an undefined policy.
@ represents a defined policy.
3 Click Insert.
4 Enter a name for the new policy, then select Policy Builder.

5 The policy is displayed. To define one or more rules for this policy, click Append New Rule,
then follow the instructions in “Defining Individual Rules within a Policy” on page 20.

Defining Individual Rules within a Policy

Rules are defined in the Rule Builder window of Policy Builder:

7} Policy Builder - Rule Builder FrameSet - Microsoft Internet Explore 10l =|
Rule Builder
Description:

Conditions
Select condition structure:

 OR Conditions, AND Groups
* AND Conditions, OR Groups

Append Condition Group * Required
(X}
If|<SeIect a condition= j EE
Actions
Do |<Se|ect an action: ;I IE‘E
oK | cancel |

The Rule Builder interface enables you to quickly create and modify rules using intelligent drop-
down menus.

In Rule Builder, you define a set of conditions that must be met before a defined action occurs.

For example, if you needed to create a rule that disallowed any new objects from being added to
your environment, you might define this rule similar to the following: When an add operation
occurs, veto the operation.

To implement this logic in Rule Builder, you could select the following condition:

20 Policy Builder and Driver Customization Guide

If | operation j

Select operator:™ | equal j
Walue: |move

And If | class name j

Select operator™ | equal

Ll

Compare mode: | case insensitive

Walue: |Lser

And the following action:

Do |vet0 LI

See “Conditions” on page 26 and “Actions” on page 50 or a detailed reference on the conditions
and actions available in the Rule Builder.

Tips

To create more complex conditions, you can join conditions and groups of conditions together with
and/or statements. You can modify the way these are joined by selecting the condition structure:

Select condition structure:
 OR Conditions, AND Groups
* AND Conditions, OR Groups

Click the X icon to see a list of values for a field. In the example above, this icon opens a list of
valid class names.

Click the & icon to use the Argument Builder interface to construct an argument.

Click the B icon to disable a policy, rule, condition, or action. Click the £l icon to re-enable it.

Click the @ icon to add a comment to a policy or rule. Comments are stored directly on the policy
or rule, and can be as long as necessary.

Use the Cut/Copy/Paste icons, [, to use the Policy Builder clipboard. The Paste icon is
disabled if the current content on the clipboard is invalid at that location.

Use the EIEHE icons to add, remove, and position conditions.

Use the _Append Condition Group | (1o add condition groups.

Use the X icons to remove, and position condition groups.

Defining Individual Arguments within a Rule

Argument Builder provides a dynamic, graphical interface which enables you to construct
complex argument expressions for use within Rule Builder:

Defining Policies Using Policy Builder 21

22

3 policy Builder - ArgBuilder FrameSet - Microsoft Internet E 10l =|

Argument Builder

Add or remove your components to the expression area to construct your argument, Enter
component values under Editor,

== Expression EIEHE‘ it Nouns

Select noun and verb tokens from the right to add to the

Added Entitlement
Association
Attribute

Class Name x|

< Add

Expression area. Use the buttons in the Expression caption
to re-arrange or remowve them,

Verbs

Escape Source DN i’
Escape Destination DN

Lower Case x|
< Add
Z# Editor * Required % Description
This is where information about the selected token is Constant text,
viewed and edited.
0K Cancel

To define an expression, select one or more nouns (values, objects, variables, etc.), and combine
them with verbs (substring, escape, upper and lower case) to construct arguments.

Multiple nouns, verbs, and expressions are combined to construct complex arguments.

For example, if you would like the argument set to an attribute value, you simply select the
attribute noun, and enter or select the attribute name:

2 Editor
Text: |ds.nmrell

If you only want a portion of this attribute, you can combine the attribute noun with the substring
verb:

= Expression

/ Substring(length="1")
| £ AttHbutel"Given Mame")
.'.

£ AttHbutel"Surname")

See “Nouns” on page 104 and “Verbs” on page 129 for a detailed reference on the nouns and verbs
available in the Argument Builder.

Tips

To create more complex conditions, you can join conditions or groups of conditions together with
and/or statements.

Policy Builder and Driver Customization Guide

Use the =L jcons to move and delete nouns and verbs.
Click the icon to see a list of values for a field.

After you add a noun or verb, you can provide values in the editor then immediately add another
noun or verb. You do not need to refresh the Expression pane to apply your changes, they appear
when the next operation is performed.

Although you define most arguments using this standard interface, there are a few other custom
Argument Builder windows used to provide information in certain circumstances. Several of these
windows launch the default Argument Builder to provide values.

The following sections contain an explanation of these additional Argument Builder interfaces and
the conditions and actions which use them:

¢ “Matching Attribute Builder” on page 24
* “Argument Actions Builder” on page 24

¢ “Named String Builder” on page 25

* “Argument Value List Builder” on page 25

Matching Attribute Builder

The Matching Attribute Builder is used to construct conditions to satisfy a Find Matching Object

(page 67) action.
Match Attributes
[IMame:™ |CH “alue from current object v
[CMame:™ |L Other value v

Enter walue type: |string

Enter string:™ |"Prova”

g

Argument Actions Builder

The Argument Actions Builder is used to construct a list of actions to take in actions such as For

Each (page 69).
Actions
Do |add destination attribute value ;I EE
Enter attribute name:*IMemher
Enter class name: |Group
Select mode: | add to current operation j
Select object: | DM j
Enter DN:*lLocaI “ariable("current-node")
Enter value type: Istring
Enter tokens:*lDestination DMG

Named String Builder

The Named String Builder is used to create name/value pairs for use in Actions such as Generate
Event (page 70) and Send Email (page 82).

Defining Policies Using Policy Builder 23

[~ Mame:™ l— String tokens:™ IW. [~[+
[~ Mame:™ |to String tokens:™ |to user2@company.com” [=]+]
[~ Mame:™ Icc String tokens:™ | co_user@company. com” [=]+]
[Mame:™ |hcc String tokens:™ |"hcc_user@company.com" [=]+]
[Mame:™ |from String tokens:™ |"fr0m_user@company.com" [=I+]
[Mame:™ |suhject String tokens:™ |"This is the e-mail subject” [=]+]
[Mame:™ |message String tokens:™ |"This is the e-mail body" [=]+]

Argument Value List Builder

The Argument Value List Builder is used to create arguments for actions such as Set Default
Attribute Value (page 86). In this example, a string argument with the value unknown has been
created to set the default location.

Argument Values
[Type:™ Istring Enter tokens:™ I"Unknown" [=]+]

Modifying a Policy
1 Open the DirXML Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to modify.

3 Select the policy you want to modify, then click Edit.

Deleting a Policy
1 Open the DirXML Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to delete.

3 Select the policy you want to delete, then click Remove.

Importing a Policy from an XML File
1 Open the DirXML Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to delete.
3 Edit an existing policy, or create a new policy.
4 Click the Insert button, and select Import an XML file containing DirXML Script.
5 Browse to the policy file to import, then click OK.

Exporting a Policy to an XML File
1 Open the DirXML Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to delete.
3 Edit an existing policy, or create a new policy.

4 Click the Save As button, then select a location to save the DirXML Script XML file.

24 Policy Builder and Driver Customization Guide

Creating a Policy Reference

Conditions

A policy reference enables you to create a single policy, and reference it in multiple locations. If
you have a policy that is used by more than one driver or policy, creating a reference simplifies

management of this policy.

1 Open the DirXML Driver Overview for the driver you want to manage.

2 Click the icon representing the policy you want to delete.

3 Edit an existing policy, or create a new policy.

4 Click the insert button, and select Append a reference to a policy containing DirXML Script.

5 Browse to the policy object to reference, then click OK.

This section contains detailed reference to all conditions available using the Policy Builder

interface.

If Association (page 28)

If Attribute (page 29)

If Class Name (page 31)

If Destination Attribute (page 32)
If Destination DN (page 34)

If Entitlement (page 36)

If Global Configuration Value (page 38)
If Local Variable (page 39)

If Named Password (page 40)

If Operation Attribute (page 41)
If Operation (page 43)

If Operation Property (page 44)
If Password (page 45)

If Source Attribute (page 46)

If Source DN (page 48)

If Xpath Expression (page 50)

Defining Policies Using Policy Builder

25

If Association

If Association performs a test on the association value of current operation or the current

object.
Example
If | as=aciation b [
Select operator™ | availahle v
If | association w EI
Select aperator™ | equal ~
Walug: |{07414f25-1035-40ec-807 c-c20a221 ddafb)
Condition
Operator Condition is met when...
associated There is an established association for the current object.
available There is a non-empty association value specified by the current operation.
equal The association value specified by the current operation is exactly equal to
the content of if association.
not-associated Associated would return False.
not available Available would return False.
not-equal Equal would return False.
Fields
Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

26 Policy Builder and Driver Customization Guide

If Attribute

If Attribute performs a test on attribute values of the current object in either the current
operation or the source data store.

Example
If | attribute V E
Enter mame:* |0
Select operator:™ | available b

It | attribute V E

Enter name:™ (2L
Select operator® | egual b
Compare mode: | case insensitive b
Walue: [Sales
If | attribute v [B B
Enter name:* |Language
Select operator® | egual b
Compare mode: | structured b
Structured components:™
string(JP) [=]
Condition
Operator Condition is met when...
available There is a value available in either the current operation or the source data
store for the specified attribute.
equal There is a value available in either the current operation or the source data
store for the specified attribute, that equals the specified value when
compared using the specified comparison mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the attribute to test for the selected condition.

Defining Policies Using Policy Builder 27

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

28 Policy Builder and Driver Customization Guide

If Class Name

If Class Name performs a test on the object class name in the current operation.

Example
If | class name v (] B
Select operator™ | availahle b
If | class name hd (] B
Select operaton™ | equal ~
Compare mode! | case insensitive W
Walue: |User
Condition
Operator Condition is met when...
available there is an object class name available in the current operation.
equal there is an object class name available in the current operation, and it
equals the specified value when compared using the specified comparison
mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 29

If Destination Attribute

If Destination Attribute performs a test on attribute values of the current object in the
destination data store.

Example
If | destination attribute ¥ E
Enter attrHbute name:™ |1
Select operator™ | available b
If | destination attribute b El
Enter attribute name:™ | O1J
Select operator™ | equal i
Compare mode: | case insensitive i
Walue: [Sales
If| destination attribute b El
Enter attribute name™ Language
Select operator™ | equal i
Compare maode: | structured e
Structured components:™
string(JF) [=]
Condition
Operator Condition is met when...
available There is a value available in the destination data store for the specified
attribute.
equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the attribute to test for the selected condition.

30 Policy Builder and Driver Customization Guide

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 31

If Destination DN

If Destination DN performs a test on the destination DN in the current operation.

Example
If | destination DM M
Select operator™ | gvailahle w
If | destination DN v
Select operator™ | aqual i
Yalue: |MovellLserstFred
If | destination DN w
Select operator™ | in container b
Yalue: | MovelJsers
If | destination DM V
Select operatar®™ | in subtree b
Yalue: |Movell
Condition
Operator Condition is met when...
available There is a destination DN available.
equal There is a destination DN available, and it equals the specified value when
compared using semantics appropriate to the DN format of the destination
data store.
in-container There is a destination DN available, and it represents an object in the
container, specified by value, when compared using semantics appropriate
to the DN format of the destination data store.
in-subtree There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared using semantics appropriate to
the DN format of the destination data store.
not available Available would return False.
not-equal Equal would return False.
not-in-container In-container would return False.
not-in-subtree In-subtree would return False.
32 Policy Builder and Driver Customization Guide

Fields

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 33

If Entitlement

If Entitlement performs a test on entitlements of the current object, in either the current
operation or eDirectory.

Example

If | entitlement V
Enter name:™ notes-group
Select operator™ | availahle b

If | entitlement v [E=]
Enter name:™ |notes-group
Select operator™ | changing i

If | entitlement ~ [=
Enter name:™ notes-group
Select operatar™ | changing frorm b

Compare mode: | case insensitive A

Walue: |Sales

If| entitlement v [E
Enter name:™ notes-group
Select operator™ | changing to b

Compare mode: | case insensitive A

Walue: |Sales

If| entitlement "’
Enter name:™ notes-group

Select operaton®™ | equal ~

Compare mode: | case insensitive A

Walue: |Sales

Condition

Operator Condition is met when...

available The named entitlement is available in either the current operation or the
eDirectory™ data store.

changing The current operation contains a change (modify attribute or add attribute)
of the named entitlement.

changing-from The current operation contains a change that removes a value (remove
value) of the named entitlement, that has a value which equals the specified
value, when compared using the specified comparison mode.

34 Policy Builder and Driver Customization Guide

Operator Condition is met when...

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement, that has a value which equals the
specified value, when compared using the specified comparison mode.

equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.
not-changing Changing would return False.
not-changing-from Changing-from would return False.
not-changing-to Changing-to would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the entitlement to test for the selected condition.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 35

If Global Configuration Value

If Global Configuration Value performs a test on a global configuration variable.

Example
If | global configuration value h
Enter name:™ ryGlobalvariable
Select operator® | available i
If | global configuration value b
Enter name:™ myGlobalvariable
Select operator® | egual ¥
Compare mode: | case insensitive i
Walue: |enabled
Condition
Operator Condition is met when...
available There is a global configuration variable with the specified name.
equal There is a global configuration variable with the specified name and its
value equals the specified value when compared using the specified
comparison mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the global variable to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

36 Policy Builder and Driver Customization Guide

If Local Variable

If Local Variable performs a test on a local variable.

Example
If | local variable i
Enter name:™ rmyLocalvariable
Select operator™| available o
If | local variable b
Enter name:™ ryLocalvariable
Select operaton®™ | equal b
Compare mode: | case insensitive b
Walue: enabled
Condition
Operator Condition is met when...
available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.
equal There is a local variable with the specified name, and its value equals the
specified value when compared using the specified comparison mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the local variable to test for the selected condition.
Operator

Select the condition test type.
Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 37

If Named Password

If Named Password performs a test on a password in the current operation with the
specified name. The type of test performed depends on the selected operator. The
following table shows the type of test performed by each operator.

Example
If | named passward v

Enter name: |password

Select operator™ | available 5

Condition

Operator Condition is met when...

available There is password with the specified name available.

not available Available would return False.
Fields

Name

Specify the name of the named password to test for the selected condition.

Operator
Select the condition test type.

38 Policy Builder and Driver Customization Guide

If Operation Attribute

If Operation Attribute performs a test on attribute values in the current operation.

Example

operation attribute & |3

changing from

case insensitive

Sales
operation attribute &l |3

ou

changing to

case insensitive

L o Sales

operation attribute 2 []

ou

equal

case insensitive

Sales

operation attribute ' &=l [

Language

equal

structured

Defining Policies Using Policy Builder

39

Condition

Fields

Operator Condition is met when...

available There is a value available in the current operation (add attribute, add value,
attribute) for the specified attribute.

changing The current operation contains a change (modify attribute or add attribute)

changing-from

changing-to

equal

not available
not-changing
not-changing-from
not-changing-to

not-equal

of the specified attribute.

The current operation contains a change that removes a value (remove
value) of the specified attribute, that equals the specified value when
compared using the specified comparison mode.

The current operation contains a change that adds a value (add value or
add attribute) to the specified attribute, that equals the specified value when
compared using the specified comparison mode.

There is a value available in the current operation (other than a remove
value) for the specified attribute, that equals the specified value when
compared using the specified comparison mode.

Available would return False.

Changing would return False.

Changing-from would return False.

Changing-to would return False.

Equal would return False.

40

Name

Specify the name of the attribute to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Policy Builder and Driver Customization Guide

If Operation

If Operation performs a test on the name of the current operation.

Example
If | operation ~ &
Select operator™ | equal b
Walue: | add

Condition

Operator Condition is met when...

equal The name of the current operation is exactly equal to content of If

Operation.

not-equal Equal would return False.

Fields
Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 41

If Operation Property

If Operation Property performs a test on an operation property on the current operation.
The type of test performed depends on the selected operator. The following table shows
the type of test performed by each operator.

Example
If | operation property v
Enter name:™ myStoredy'ariable
Select operator™ | available 4
If | operation property h
Enter name:™ |y Storedvariable
Select operator™ | equal ~
Compare mode: | case insensitive hd
Walue: |true
Condition
Operator Condition is met when...
available There is an operation property with the specified name on the current
operation.
equal There is a an operation property with the specified name on the current
operation and its value equals the provided content when compared using
the specified comparison mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the operation property to test for the selected condition.

Operator

Select the condition test type.

42 Policy Builder and Driver Customization Guide

If Password

Example

If | password

Condition

Fields

If Password performs a test on a password in the current operation.

vE

Select operator®™ | available b
Operator Condition is met when...
available There is password available in the current operation.
not available Available would return False.
Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder

43

If Source Attribute

If Source Attribute performs a test on attribute values of the current object in the source

data store.
Example
If| source attribute hd El
Enter attribute name:™ (OlJ
Select operator™ | available 4
If | source attribute b E
Enter attHbute name:™ [
Select operator™ | equal b
Compare mode: | case insensitive >
Walue! | Sales
If | source attribute b E
Enter attribute name™ |Language
Select operator™ | equal b
Compare mode: | structured ~
Structured components:™
string (P [=]
Condition
Operator Condition is met when...
available There is a value available in the source data store for the specified attribute.
equal There is a value available in the source data store for the specified attribute,
that equals the specified value when compared using the specified
comparison mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the source attribute to test for the selected condition.

44 Policy Builder and Driver Customization Guide

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 45

If Source DN

Example

If | source DM

If| source OM

If | source DM

If | source DM

Condition

If Source DN performs a test on the source DN in the current operation.

v [Bl =[]

Select operator™ | availahle v

v [Fel e

Select operator™| equal "
YWalue! | Movelllsers\Fred
v [E B [El
Select operatar™ | in container v
YWalue: |Movelhlsers
v @ [l = E]
Select operator™ | in subtree b
YWalue: | Movell
Operator Condition is met when...
available There is a source DN available.
equal There is a source DN available, and it equals the content of the specified

value when compared using semantics appropriate to the DN format of the
source data store.

in-container There is a source DN available, and it represents an object in the container
specified by value, when compared using semantics appropriate to the DN
format of the source data store.

in-subtree There is a source DN available, and it represents an object in the subtree
specified by value, when compared using semantics appropriate to the DN
format of the source data store.

not available Available would return False.
not-equal Equal would return False.
not-in-container In-container would return False.
not-in-subtree In-subtree would return False.

46 Policy Builder and Driver Customization Guide

Fields

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 138.

Defining Policies Using Policy Builder 47

If Xpath Expression

If Xpath Expression performs a test on the results of evaluating an XPATH 1.0 expression.

Example
If | ¥xFATH expression hi [
Select operator™ | true V
Walue:™ | add-attr[iEattr-name="0U]value[stringl.) = "Sales")

Condition

Operator Condition is met when...

true The XPATH expression evaluates to True.

false True would return False.
Fields

Operator
Select the condition test type.

Actions

This section contains detailed reference to all actions available using the Policy Builder interface.

Add Association (page 52)

Add Destination Attribute Value (page 53)
Add Destination Object (page 54)

Add Source Attribute Value (page 55)
Add Source Object (page 56)

Append XML Element (page 57)

Append XML Text (page 58)

Break (page 59)

Clear Destination Attribute Value (page 60)
Clear Operation Property (page 61)

Clear Source Attribute Value (page 62)
Clone Operation Attribute (page 63)
Clone by Xpath Expressions (page 64)
Delete Destination Object (page 65)
Delete Source Object (page 66)

Find Matching Object (page 67)

Find Matching Object (page 67)

For Each (page 69)

48 Policy Builder and Driver Customization Guide

Generate Event (page 70)

Move Destination Object (page 73)
Move Source Object (page 74)
Reformat Operation Attribute (page 75)
Remove Association (page 76)

Remove Destination Attribute Value (page 77)
Rename Destination Object (page 79)
Rename Operation Attribute (page 80)
Rename Source Object (page 81)

Send Email (page 82)

Send Email From Template (page 84)
Set Default Attribute Value (page 86)
Set Destination Password (page 88)

Set Local Variable (page 89)

Set Operation Association (page 90)

Set Operation Class Name (page 91)
Set Operation Destination DN (page 92)
Set Operation Property (page 93)

Set Operation Source DN (page 94)

Set Operation Template DN (page 95)
Set Source Attribute Value (page 96)
Set Source Password (page 97)

Set XML Attribute (page 98)

Status (page 99)

Strip Operation Attribute (page 100)
Strip Xpath (page 101)

Trace Message (page 102)

Veto (page 103)

Veto If Operation Attribute Not Available (page 104)

Defining Policies Using Policy Builder

49

Add Association

This action causes an add association command to be sent to eDirectory.

Example
Do | add association b El
Select mode: | add to current aperation b
Enter DM: | Source DM
Enter association™ | Source Mamel)
Fields

Mode

Select whether this actions should be added to the current operation, or written directly to the
destination data store.

DN

Provide the DN of the object to receive the association using the Argument Builder.

Association

Provide the value of the association using the Argument Builder.

50 Policy Builder and Driver Customization Guide

Add Destination Attribute Value

Example

Fields

This action causes the specified value to be added to the named attribute on an object in
the destination data store. The target object is the current object, a DN, or an association.

add destination attribute value b [

Enter attribute name™ |Member
Enter class name:
Select mode: | add to current operation i
Select object: | DM b’
Enter DN&™ | "Users/ManagerGroup”
Enter value type: |string
Enter string™ |Destination D)

Attribute Name
Specify the name of the attribute to add to the target object in the destination data store.

Class Name

(Optional) Specify the class name of the target object in the destination data store. This value
might be required if object is other than current object, for schema mapping purposes.

Select Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Select Object

Select the object in the destination data store to receive the attribute. This object can be the
current object, or specified by a DN or an association.

Value Type

Select the syntax of the new attribute value.

Tokens

Provide the value of the new attribute using the Argument Builder.

Defining Policies Using Policy Builder 51

Add Destination Object

This action causes an object of the specified type to be created in the destination data
store, with the name and location specified in the Enter DN field. Any attribute values to
be added as part of the object creation must be done in subsequent Add Destination
Attribute Value (page 53) actions using the same DN.

Example
0o | add destination object w EI
Enter class name™ |User
Select mode: | add to current operation b
Enter DM™ |"sers/Fred Flintstone”
Do | add destination attribute value b EI
Enter attribute name:™ |Surmame
Enter class name:
Select mode: | add to current operation v
Select abject: | DM o
Enter DM™* | "Users/Fred Flintstone” =
Enter value type: |string
Enter string® |"Flintstone” =
Fields

Class Name
Specify the class name of the object to add to the destination data store.
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN

Specify the DN of the new object to add to the destination data store.

52 Policy Builder and Driver Customization Guide

Add Source Attribute Value

This action causes the specified value to be added to the specified attribute on an object
in the source data store. The target object is the current object, a DN, or an association.

Example
0o | add source attribute walue v EI
Enter attrbute name™ |Member
Enter class name:
Select object: [DM ¥
Enter DM | "Users/ManagerGroup”
Enter value tvpe: |string
Enter sting:™ (Destination DMNQ)
Fields

Attribute Name
Specify the name of the attribute to add to the target object in the source data store.
Class Name

(Optional) Specify the class name of the target object in the source data store. This value
might be required if object is other than current object, for schema mapping purposes.

Object

Select the target object in the source data store to receive the attribute. This object can be the
current object, or specified by a DN or an association.

Value Type
Select the syntax of the new attribute value.
Tokens

Provide the value of the new attribute using the Argument Builder.

Defining Policies Using Policy Builder 53

Add Source Object

This action causes an object of the specified type to be created in the source data store.
Any attribute values to be added as part of the object creation must be done in
subsequent Add Source Attribute Value (page 55) actions using the same DN.

Example
0o | add source object V [l [l [E]
Enter class name™ |User
Enter DM |"UsersfFred Flintstone"
Do | add source attribute value w [
Enter attribute name: |Surname
Enter clazs name:
Select object: | DM b
Enter DN:* |"UsersfFred Flintstone"
Enter value type: |string
Enter str'ing:*|"F|intstDn8"
Fields

Class Name
Specify the class name of the object to add to the source data store.
DN

Specify the DN of the new object to add to the source data store.

54 Policy Builder and Driver Customization Guide

Append XML Element

This action causes a custom element to be appended to the set of elements selected by
the XPATH expression.

Example
Do | append XML element v [
Enter name:™ |jdhc:statement |
Enter XPA&TH expression™ |
Do | append XML element b [l
Enter name:® |j|:||:u::sq| |
Enter XPATH expression:™ |..fjdhc:statement[lastﬂl]
Dn | append =ML texd V B Eel (&)
Enter ¥PATH expression:™® |__fjdhc:statement[lastﬂ]ﬁjdhc:sql
Enter string™ | LIPDATE dirxkml.emp SET fname = "+Operation Attribute
Do | append AWL text V ES|EE]El
Enter ¥PATH expression:™ |..fjdhu::statement[lastﬂ]fjdhc:sql
Enter string™ | LIPDATE dirxml.emp SET fname = "+Operatian Aﬂrihute
Fields

Name

Tag name of the XML element. This name can contain a namespace prefix if the prefix has
been previously defined on this policy.

XPATH Expression

XPATH 1.0 expression that returns a nodeset containing the element(s) to which the new
element(s) should be appended.

Defining Policies Using Policy Builder 55

Append XML Text

This action causes the specified text to be appended to the set of elements selected by
the XPATH expression.

Example
Do | append XML element v [
Enter name:™ |jdhc:statement |
Enter XPA&TH expression™ |
Do | append XML element b [l
Enter name:® |j|:||:u::sq| |
Enter XPATH expression:™ |..fjdhc:statement[lastﬂl]
Dn | append =ML texd V B Eel (&)
Enter ¥PATH expression:™® |__fjdhc:statement[lastﬂ]ﬁjdhc:sql
Enter string™ | LIPDATE dirxkml.emp SET fname = "+Operation Attribute
Do | append AWL text V ES|EE]El
Enter ¥PATH expression:™ |..fjdhu::statement[lastﬂ]fjdhc:sql
Enter string™ | LIPDATE dirxml.emp SET fname = "+Operatian Aﬂrihute
Fields

XPATH Expression

XPATH 1.0 expression that returns a nodeset containing the element(s) to which the new
element(s) should be appended.

String

Text to be appended to the set of element(s) selected by expression.

56 Policy Builder and Driver Customization Guide

Break

This action causes the current operation to not be processed by any more actions or rules
within the current policy.

Example

Do | hreak v El

Defining Policies Using Policy Builder 57

Clear Destination Attribute Value

This action causes the all values for the named attribute to be removed from an object in
the destination data store. The target object is the current object, a DN, or an association.

Example
Do | clear destination attribute value v [
Enter attribute name:™ |Member
Enter class name:
Select made: | add to current operation
Select object: | DN
Enter DN& | "Users/ManagerGroup”
Fields

Attribute Name
Specify the name of the attribute to add to the target object in the destination data store.
Class Name

(Optional) Specify the class name of the target object in the destination data store. This value
might be required if object is other than current object, for schema mapping purposes.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

58 Policy Builder and Driver Customization Guide

Clear Operation Property

This action causes any operation property with the provided name to be cleared from the
current operation.

Example

Do | clear operation property b EI

Enter property name™ |myStoredProperty

Fields

Property Name

Specify the name of the operation property to clear.

Defining Policies Using Policy Builder 59

Clear Source Attribute Value

This action causes the all values for the named attribute to be removed from an object in
the source data store. The target object is the current object, a DN, or an association.

Example
Do | clear source attribute value b El
Enter attribute name:* |Member
Enter class name:
Select object: | DM b
Enter DM&* | "Users/ManagerGroup”
Fields

Attribute Name

Specify the name of the attribute to add to the target object in the source data store.

Class Name

(Optional) Specify the class name of the target object in the source data store. This value
might be required if object is other than current object, for schema mapping purposes.

Select Object

Select the object in the source data store to receive the attribute. This object can be the current
object, or specified by a DN or an association.

60 Policy Builder and Driver Customization Guide

Clone Operation Attribute

This action causes all elements that are children of the current operation with an attribute
name equal to the specified source name, to be duplicated within the operation, with the
attribute name set to the specified destination name.

Example
Do | clone operation attribute A El
Enter source name:™ [Member
Enter destination name: |Equivalent to he
Fields

Source Name
Specify the attribute name to clone.
Destination Name

Specify the attribute name to give to the clone.

Defining Policies Using Policy Builder 61

Clone by Xpath Expressions

This action causes causes deep copies of the nodes specified by the source field to be
appended to the set of elements specified by the destination field.

Example
Do | clone by XPATH expressions » El
Enter source XPATH expression™ |&*
Enter destination XPATH expression:™ | /modify[last()]
Fields

Source XPATH Expression

XPATH 1.0 expression that returns a nodeset containing the element(s) to which the new
element(s) should be appended.

Destination XPATH Expression

XPATH 1.0 expression that returns a nodeset containing the node(s) that are to be cloned.

62 Policy Builder and Driver Customization Guide

Delete Destination Object

This action causes an object in the destination data store to be deleted. The target object
is the current object, a DN, or an association.

Example
Do | delete destination object hd El
Select mode: | add to current operation v
Select object: | DN L
Enter DM&* |"Users/Fred Flintstone”
Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object in the destination data store to delete. This object can be the current
object, or specified by a DN or an association.

Defining Policies Using Policy Builder 63

Delete Source Object

This action causes the object in the source data store to be deleted. The target object is
either the current object, a DN, or an association.

Example
O | delete source object h EI
Select object: | DN w
Enter DM&™ |"Users/Fred Flintstone”
Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object in the source data store to delete. This object can be the current object,
or specified by a DN or an association.

64 Policy Builder and Driver Customization Guide

Find Matching Object

This action causes a query to be performed in the destination data store, and an
appropriate destination DN, or an appropriate destination association, to be added to the
current operation.

Example
Dg|ﬂnd matching object V EI
Select scope: | subordinates ™
Enter DN: |"Users/"+Attribute("OL")
Enter match attributes: |CN,L

The following is an example of the Argument Builder used to provide the match attributes:

Match Attributes
[JName:™ . “alue from current object |:|2|

[JName:™ | . |Otherua|ue | |E|:|
Enter value type: |51r|ng
Enter string:™ |"F'r|:nr0"
Fields
Scope
Scope of the operation. Select entry, subordinates, or subtree.
DN
DN of the location to search using the selected scope.
Match Attributes
Provide the attributes which must match to consider the search successful.
Remarks

A DN argument is required when scope="entry", and is optional otherwise. At least one match
attribute is required when scope= "subtree" or scope="subordinates".

Note that since it is undefined what a query does with the search attribute when scope="entry", it
is also undefined what Find Matching Object will do.

The query generated has a scope attribute based on the selected scope, a destination DN attribute
set to the content of the Enter DN field, if specified. It also has a class name attribute and search
class based on the class name of the current object.

If the destination data store is the application, then an association will be added to the current
operation for each successful match that is returned. No query will be performed if the current

Defining Policies Using Policy Builder 65

operation already has a non-empty association, thus allowing multiple find matching object
actions to be strung together in the same rule.

If the destination data store is eDirectory, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of
the current operation is set to the source DN of the matching object. If only a single result is
returned and it is already associated, then the destination DN of the current operation is set to the
single character ￼. If multiple results are returned then the destination DN of the current
operation is set to the single character � .

66 Policy Builder and Driver Customization Guide

For Each

This action causes the specified action to be repeated once for each node in the specified

node set.
Example
D0|fc|reach V E
Enter node set™ |Added Entitlerment("Graup™)
Enter action™ |dn-add-dest-attr—value
The following is an example of the Argument Actions Builder, used to provide the action
argument:
Actions
Do | add destination attribute value j EE
Enter attribute name:* |Memher
Enter class name: IGrnup
Select mode: |add to current operation j
Select object: IDN j
Enter DN:* |L|:u:al Yariable("current-node™)
Enter value type: Istring
Enter takens:* |Destinatinn DM
Fields

Node Set

Node set on which the specified action is repeated.

Action

Action to perform on each node in the node set.

Defining Policies Using Policy Builder 67

Generate Event

This action causes a DirXML user-defined event to be sent to Nsure™ Audit.

Example

Do | generate event v E=IEEE

Enter 10:* 1000

Select level: | infarmational b

Enter strings: |text] text? text3 walue walue3 target ,target-type,data,data-l

The following is an example of the Named String Builder, used to provide the strings argument:

[IMame:™ [text] . String value:™ |"Uszer defined data for text? field" .DE

[JMame:™ |te}{t2 String value:™ |"User defined data for text? field" EE‘
[(Mame:™ |text3 String walue:™ |"User defined data for text3 field" |E|E|
[IName:™ |'|.-'a|ue String value:™ |"—EI:I2" EE‘
[IMame:™ |va|u93 String value:™ |"ED2" IEIE‘
[Mame:™ |target String value:™ |"cn=user,n=cnmpany" EE‘
[IMame:" |target-type String value:” "3 AT+
[Mame:™ |data String value:™ |"User defined data blob” |E|E|
[Mame:™ |data-type String value:™ |"MIME_TEXT XhL" |EI:|
Fields
ID

ID of'the event. The provided value must result in an integer in the range of 1000-1999 when
parsed using the parselnt method of java.lang.Integer.

Level

Level of the event.

Level Description

log-emergency Events that cause the DirXML engine or driver to shutdown.

log-alert Events that require immediate attention.

log-critical Events that can cause parts of the DirXML engine or driver to
malfunction.

log-error Events describing errors which can be handled by the DirXML engine or
driver.

log-warning Negative events not representing a problem.

68 Policy Builder and Driver Customization Guide

Level Description

log-notice Events (positive or negative) an administrator can use to understand or
improve use and operation.

log-info Positive events of any importance.

log-debug Events of relevance for support or engineers to debug operation of the
DirXML engine or driver.

Strings

User-defined string, integer, and binary values to include with the event. These values are
provided using the Named String Builder.

Tag Description
target The object being acted upon.
target-type Integer specifiying a predefined format for the target. Predefined values

for target-type are currently:

¢ 0=None

*

1 = Slash Notation
2 = Dot Notation
+ 3 =LDAP Notation

*

subTarget The sub-component of the target being acted upon.

text1 Text entered here will be stored in the text1 event field.

text2 Text entered here will be stored in the text2 event field.

text3 Text entered here is stored in the text3 field.

value Any number entered here is stored in the value event field.
value3 Any number entered here will be stored in the value3 event field.
data Data entered here will be stored in the blob event field.
data-type MIME-type of data. See logevents.h, for a complete list.

Remarks

DirXML user-defined event IDs must be between the range of 1000 to 1999. Valid event levels are
definend in the following table. The remaining event data fields are provided by four string
elements with name attributes. The Nsure Audit event structure contains a target, a subTarget,
three strings (textl, text2, text3), two integers (value, value3), and generic field (data). The text
fields are limited to 256 bytes, while the data field may contain up to 3KB of information, unless
a larger data field is enabled in your environment.

A detailed discussion of generating events using Policy Builder is contained in the Identity
Manager 2 Administration Guide in the “Logging and Reporting Using Nsure Audit” section.

Defining Policies Using Policy Builder 69

Move Destination Object

This action causes an object in the destination data store to be moved. Select the current
object, a DN, or an association to move to another location specified by a DN, or an

association.
Example
Do | move destination object hd E
Select mode: | add to current operation b
Select object to mave: [DM W
Enter DM |"Users/Active/FredFlintstone”
Select container to mawve to: | DR w
Enter DR:* | "Lzers/Infctive"
Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object to Move

Select the object to be moved in the destination data store. This object can be the current
object, or specified by a DN or an association.

Container

Select the container to receive the object. This container is specified by a DN or an
association.

70 Policy Builder and Driver Customization Guide

Move Source Object

This action causes an object in the source data store to be moved. Select the current
object, a DN, or an association to move to another location specified by a DN, or an

association.
Example
Do | move source object h El
Select object to mave: [DM W
Enter DMNi* |"UsersiActive/FredFlintstone”
Select container to mowve to: | DR w
Enter D™ | "Uzersiinsctive”
Fields

Object to Move

Select the object to be moved in the source data store. This object can be the current object,
or specified by a DN or an association.

Select Container

Select the container to receive the object. This container is specified by a DN or an
association.

Defining Policies Using Policy Builder 71

Reformat Operation Attribute

This action causes all values for the named attribute within the current operation to be
replaced with the specified value. The specified value is evaluated once for each value
being replaced with the local variable current-value set to the original value.

Example
0o | reformat operation attribute il EI
Enter name™ |CN
Enter value tvpe: | string
Enter string™ |Upper Case(local Variable("current-value™)
0o | reformat operation attribute it EI
Enter name™ |Efdail Address
Enter value twpe: string
Enter string™ | XPATH{"Scurrent-valuedcomponent[E@narme="eMailAddr]™)
Fields

Name

Specify the name of the attribute to reformat.

Value Type

Specify the syntax of the new attribute value.

Tokens

Provide the new format of the attribute using the Argument Builder.

72 Policy Builder and Driver Customization Guide

Remove Association

This action causes a remove association command to be sent to eDirectory.

Example
Do | remove association hd El
Select mode: | add to current operation hd
Enter association:™ | Source Mame()
Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association

Provide the value of the association using the Argument Builder.

Defining Policies Using Policy Builder 73

Remove Destination Attribute Value

Example

Fields

This action causes the specified value to be removed from the named attribute on an
object in the destination data store. The target object is the current object, a DN, or an
association.

Do | rernove destination attribute value ~ [= B (2]

Enter attribute name™ |Member
Enter class name:
Select mode: | add to current operation N
Select object: | DM b
Enter DN | "Users/ManagerGroup”
Enter value tvpe: |string
Enter string™ |Destination D)

Attribute Name
Specify the name of the attribute to add to the target object in the destination data store.
Class Name

(Optional) Specify the class name of the target object in the destination data store. This value
might be required if object is other than current object, for schema mapping purposes.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Select Object

Select the target object in the destination data store. This object can be the current object, or
specified by a DN or an association.

Value Type
Specify the syntax of the new attribute value.
Tokens

Provide the value of the new attribute using the Argument Builder.

74 Policy Builder and Driver Customization Guide

Remove Source Attribute Value

This action causes the specified value to be removed from the named attribute on an

object in the source data store. The target object is the current object, a DN, or an
association.

Example
Do | remove source attribute value b EI
Enter attribute name™ |Member
Enter class name:
Select object: [DM b
Enter DMN™ | "Users/ManagerGroup”
Enter value tvpe: |string
Enter string™ [Source DR
Fields

Attribute Name
Specify the name of the attribute to add to the target object in the source data store.

Class Name

(Optional) Specify the class name of the target object in the source data store. This value
might be required if object is other than current object, for schema mapping purposes.

Select Object

Select the object in the destination data store to receive the attribute. This object can be the
current object, or specified by a DN or an association.

Value Type
Specify the syntax of the new attribute value.

Tokens

Provide the value of the new attribute using the Argument Builder.

Defining Policies Using Policy Builder 75

Rename Destination Object

This action causes an object in the destination data store to be renamed. The target
object is the current object, a DN, or an association.

Example
Do | rename destination object hd El
Select mode: | add to current operation v
Select object: | DN L
Enter DM& | "UsersfActive/Fred Flintstone”
Enter sting™ |"Freddy”
Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object in the destination data store. This object can be the current object, or
specified by a DN or an association.

String

Provide the new name of the object in the destination data store using the Argument Builder.

76 Policy Builder and Driver Customization Guide

Rename Operation Attribute

This action causes all elements that are children of the current operation with the
specified attribute equal to the name specified, to have the specified attribute set to the
destination attribute name.

Example
Do | rename operation attribute v & B E B
Enter zource name:™ [Surname
Enter destination name: |sn
Fields

Source Name

Specify the name of the attribute in the source data store.

Destination Name

Specify the name of the attribute in the destination data store.

Defining Policies Using Policy Builder 77

Rename Source Object

Example

Fields

This action causes an object in the source data store to be renamed to the specified
name. The target object is the current object, a DN, or an association.

Do | rename source object w EI

Select object: | DN w
Enter DMN& | "LUsersfActive/Fred Flintstone”

[[

Enter string™ [“Freddy”

Select Object

Select the target object in the source data store. This object can be the current object, or
specified by a DN or an association.

String

Provide the new name of the object in the source data store using the Argument Builder.

78 Policy Builder and Driver Customization Guide

Send Email

Example

This action causes an e-mail notification to be sent to the specified server. Optional
credentials for authentication to the SMTP server are provided in the id and password.

Do | send ermail

v & FEE

Enter ID: ||_|ser

Enter server™ |sm1p_cnmpany.cnm

Enter password:

Select message twpe:

Enter strngs:

text

to to,cc bec from subject message

The following is an example of the Named String Builder, used to provide the strings argument:

[~ Name:™ Itn String tokens:™ I"m_useﬂ@company.cnm"

[Mame:™ Itn

String tokens:® |"tc|_user2@|:cumpany.cnm"

[Mame:™ Il::l:

String tokens:™ |"cc_user@company.cnm"

[Mame:™ Ihcc

String tokens:™ |"bcc_user@cumpany.cnm"

™ Mame:™ Ifrnm

String tokens:™ |"fr0m_user@company.cnm"

[T Mame:™ |5u|:|ject

String tokens:™ |"This i the e-mall subject”

[Mame:™ |message

Fields

ID

String tokens:™ |"This is the e-rmail body"

(Optional) User ID in the SMTP system sending the message.

Server

SMTP server name.

Password

(Optional) SMTP server account password.

WARNING: The value of the password attribute is stored in clear text.

Type

Select the e-mail message type.

Strings

alolalslalala

These values contain the various e-mail addresses, subject and message. The following table
lists valid named string arguments:

Defining Policies Using Policy Builder

79

80

String Name

Description

to

cc

bcc

from
reply-to
subject
message

encoding

Adds the address to the list of e-mail recipients, multiple instances are
allowed.

Adds the address to the list of CC e-mail recipients, multiple instances
are allowed.

Adds the address to the list of BCC e-mail recipients, multiple instances
are allowed.

Specifies the address to be used as the originating e-mail address.
Specifies the address to be used as the e-mail message reply address.
Specifies the e-mail subject.

Specifies the content of the e-mail message.

Specifies the character encoding to use for the e-mail message.

Policy Builder and Driver Customization Guide

Send Email From Template

This action causes an e-mail notification to be generated using a SMTP notification
configuration object, e-mail template object and replacement tokens.

Example

Dg|send email from template V [Eal [E]]
Enter notification DM:* |Icn=seu:urityfu:n=DefauIt Matification Callection |
Enter template DM |f|:n=securit3rf|:n=DefauIt Motification Cnllectinnfu:n=F'S-Syr|

Enter password: | |

Enter strings: |manager,surname,given-name,tu,cc

The following is an example of the Named String Builder, used to provide the strings argument:

[Name:™ Imanager String tokens:™ I"Elill Jones" DE‘
™ Mame:™ Isurname String tokens:™ I"Smith" EIE'
[Mame:™ Igiven-name String tokens:™ I"Jne" EIE‘
[Mame:™ |t|:| String tokens:™ |"tc|_user@cnmpany.cnm" [=]+]
[Mame:™ |cc String tokens:™ |"cc_usen@cumpany.cnm" EI:'
Fields

Notification DN

Slash form DN of SMTP notification configuration object.
Template DN

Slash form DN of e-mail template object.
Password

(Optional) SMTP server account password.

WARNING: The value of the password attribute is stored in clear text.
Strings

Replacement tokens for the e-mail message. The following table contains reserved
replacement tokens, which specify the various e-mail addresses:

String Name Description

to Adds the address to the list of e-mail recipients, multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients, multiple instances
are allowed.

Defining Policies Using Policy Builder 81

String Name Description

bcc Adds the address to the list of BCC e-mail recipients, multiple instances
are allowed.

reply-to Specifies the address to be used as the e-mail message reply address.

encoding Specifies the character encoding to use for the e-mail message.

82 Policy Builder and Driver Customization Guide

Set Default Attribute Value

This action causes the values specified to be added to the current operation, for the
named attribute, if no values for that attribute already exist. It is only valid when the

current operation is add. If write-back="true", default values are also written back to the
source object.

Example
Do | set default attribute value hd El
Enter attrbute name:® |L
Write back: | false i
Emter argument walues:® ["LUnknown"
Fields

Attribute Name

Specify the name of the attribute to add to the target object in the destination data store.
Write Back

If write back is set to true, default values are also written back to the source object.

Values

Provide the default value(s) of the attribute using the Argument Builder.

Defining Policies Using Policy Builder 83

Set Destination Attribute Value

Example

Fields

This action causes the specified value to be added to the named attribute on an object in
the destination datastore, and all other values for that attribute to be removed. The target
object is the current object, a DN, or an association.

Og | set destination attribute value v EI

Enter attHbute name:* QL)
Enter class name:
Select mode: | add to current operation]
Select object: | Current object ~
Enter value tvpe: |string
Enter string:™ |"Sales”

Attribute Name
Specify the name of the attribute to add to the target object in the destination data store.
Class Name

(Optional) Specify the class name of the target object in the destination data store. This value
might be required if object is other than current object, for schema mapping purposes.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object in the source data store to receive the attribute. This object can be the
current object, or specified by a DN or an association.

Value Type
Select the syntax of the attribute value.
Tokens

Provide the value of the attribute using the Argument Builder.

84 Policy Builder and Driver Customization Guide

Set Destination Password

Example

Fields

This action causes the specified value to be set as the password for the current object in
the destination data store.

0o | set destination password hd El
Select mode: | add to current operation v
Enter string:™ | Attribute("Given Mame")+Attribute" Sumame™)
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

String

Provide the value of the password using the Argument Builder.

Defining Policies Using Policy Builder 85

Set Local Variable

This action causes a local variable with the given name to be set to the string value
specified, the XPATH 1.0 Node Set specified, or the Java* object specified.

Example
Do | et local variahle b E
Enter wvariable name:™ |[astMame
Select variable tvpe: | Mode set ~
Enter node set:® |Attribute("8urname"j
Do | et local variable b E
Enter variable name:™ |lastMame
Select variable type: | Object ~
Enter object:™ |>{F'ATH("jrandnm:new0"]l
Fields

Variable Name
Specify the name of the new local variable.
Variable Type

Select the type of local variable to add. This can be a string, an XPATH 1.0 Node Set, or a Java
object.

86 Policy Builder and Driver Customization Guide

Set Operation Association

This action causes the association value for the current operation to be set to the
specified value.

Example

Do | set operation association b [Bl [E)]

Enter association:™ |Source Mamel)

Fields

Association

Provide the new association value.

Defining Policies Using Policy Builder 87

Set Operation Class Name

This action causes the object class name for the current operation to be set to the
specified value.

Example
Do | set aperation class name b el B [E]
Enter string™|"User"
Fields
String
Provide the new class name.
88 Policy Builder and Driver Customization Guide

Set Operation Destination DN

This action causes the destination DN for the current operation to be set to the specified
value.

Example

Do | et operation destination DM il Pl Exd [E]
Enter DM:* | "Novelhsers\"+Source MName()

Fields
DN

Provide the new destination DN.

Defining Policies Using Policy Builder 89

Set Operation Property

This action creates an operation property with the specified name and value on the
current operation. An operation property is a named value that is stored within an

operation, and is typically used to supply additional context that may be needed by the
policy that handles the results of an operation.

Example
Do | set operation property b El
Enter property name™ |myStoredProperty
Enter sting™ |token-string)
Fields

Property Name
Provide the name of the new operation property.
String

Provide the value of the new operation property.

90 Policy Builder and Driver Customization Guide

Set Operation Source DN

This action causes the source DN for the current operation to be set to the specified value.
Example

Do | set operation source OM hd El
Enter DN | "Movell\serst" +attribute(" CH™

Fields
DN

Provide the new source DN.

Defining Policies Using Policy Builder 91

Set Operation Template DN

This action causes the template DN for the current operation to be set to the specified
value. This action is only valid when the current operation is add.

Example

Do | set operation template OM b EI
Enter DN™ | "MovellJsers\UserTemplate”

Fields
DN

Provide the new template DN.

92 Policy Builder and Driver Customization Guide

Set Source Attribute Value

This action causes the specified value to be added to the named attribute on an object in
the source data store, and all other values for that attribute to be removed. The target
object is the current object, a DN, or association.

Example
Do | set source attribute walue b EI
Enter attribute value:® QL
Enter clazz name:
Select object: | Current object b
Enter value twpe: |string
Enter string:* ["=ales”
Fields

Attribute Name
Specify the name of the attribute to add to the target object in the source data store.
Class Name

(Optional) Specify the class name of the target object in the source data store. This value
might be required if object is other than current object, for schema mapping purposes.

Object

Select the target object in the source data store to receive the attribute. This object can be the
current object, or specified by a DN or an association.

Value Type
Select the syntax of the attribute value.
Tokens

Provide the value of the attribute using the Argument Builder.

Defining Policies Using Policy Builder 93

Set Source Password

This action causes the specified value to be set as the password for the current object in
the source data store.

Example
Do | set source password w E
Enter string:™ | Attribute("Given MName")+&ttributel"Surmame")
Fields
String

Provide the value of the source password using the Argument Builder.

94 Policy Builder and Driver Customization Guide

Set XML Attribute

This action causes a custom XML attribute named by the name attribute to be set on the
set of elements selected by the XPATH expression.

Example
Do | set XML attribute N El
Enter name™ [cer-id
Enter XPATH expression:™ |
Enter string™ |"
Do | set *ML attribute b El
Enter name:™ | cen-pwd
Enter XPA&TH expression:™ |,
Enter string™ ["certifyZeny”
Fields

Name

cMotustdominotdatabeng.id”

i [&] [#]

[[&] [#]

Tag name of the XML attribute. This name can contain a namespace prefix if the prefix has

been previously defined on this policy.

XPATH Expression

XPATH 1.0 expression that returns a nodeset containing the element(s) on which the XML

attribute should be set.

String

Provide the value of the XML attribute using the Argument Builder.

Defining Policies Using Policy Builder

95

Status

Example

Fields

Remarks

This action causes a status notification to be generated with the specified level and
message.

Do | status v [E B [E]
Enter level™ [warning
Message:™ | Source DM+ operation vetoed on out-of-scope object”

Level
Specify the status level of the notification.
Message

Provide the status message using the Argument Builder.

If level is retry then the policy will immediately halt processing of the input document and
schedule a retry of the event currently being processed.

If level is fatal then the policy will immediately halt processing of the input document and initiate
a shutdown of the driver.

If a the current operation has an event-id, then that event-id will by used for the status notification,
otherwise there will be no event-id reported.

96 Policy Builder and Driver Customization Guide

Strip Operation Attribute

This action causes all elements that are children of the current operation with the
specified attribute name equal to the name specified to be stripped from the current

operation.
Example
Do | strip operation attribute b EI
Enter mame:™ |Member
Fields
Name

Specify the name of the attribute to strip from the operation.

Defining Policies Using Policy Builder 97

Strip Xpath

This action causes nodes selected by the XPATH 1.0 expression to be removed from the
current operation. The expression must evaluate to a node-set.

Example

Do | strip XPATH expression b El
Enter #PATH expression:™ |*[@attr-name="0L1"
Fields

XPATH Expression

XPATH 1.0 expression that returns a nodeset containing the element(s) to be removed from
the current operation.

98 Policy Builder and Driver Customization Guide

Trace Message

Example

Fields

This action sends the specified string to DSTRACE in the selected color. In order for the

message to appear, the specified trace level must be less than or equal to the currently
selected level in DSTRACE.

Do | trace message b El

Enter level: (0
Select color: | bright purple b

Enter string™ |"Flaced new object at "+Destination DN

Level

Enter the trace level of the message. The default level is 0.

Color
Select the trace message color.
String

Provide the value of the trace message.

Defining Policies Using Policy Builder 99

Veto

This action causes the current operation to be cancelled.
Example

Do | veto v & [l E=[E]

100 Policy Builder and Driver Customization Guide

Veto If Operation Attribute Not Available

This action causes the current operation to be cancelled if the specified attribute is not

Example

Fields

Nouns

available in the current operation.

0o | weto if operation attribute not avail: V E=IEEIE]

Enter name:® |CN

Name

Specify the name of the attribute to check for availability before a veto is performed.

This section contains detailed reference to all nouns available using the Policy Builder interface.

Added Entitlement (page 105)
Association (page 1006)
Attribute (page 107)

Class Name (page 108)
Destination Attribute (page 109)
Destination DN (page 110)
Destination Name (page 111)
Entitlement (page 112)

Global Configuration Value (page 113)

Local Variable (page 114)
Named Password (page 115)
Operation (page 116)

Operation Attribute (page 117)
Operation Property (page 118)
Password (page 119)

Removed Attribute (page 120)
Removed Entitlement (page 121)
Source Attribute (page 122)
Source DN (page 123)

Source Name (page 124)

Text (page 125)

Unique Name (page 126)
Unmatched Source DN (page 128)
XPath (page 129)

Defining Policies Using Policy Builder

101

Added Entitlement

This noun expands to the value(s) of the named entitlement added in the current
operation.

Example

fh fdded Entitlement("manager")

Fields

Name

Name of the entitlement.

102 Policy Builder and Driver Customization Guide

Association

This noun expands to the association value specified in the current operation.

Example

& Azzociation()

Defining Policies Using Policy Builder 103

Attribute

This noun expands to the value of the specified attribute in the current operation.
Example

fh pttrbute"0U")

Fields

Name

Name of the attribute.

104 Policy Builder and Driver Customization Guide

Class Name

This noun expands to the object class name specified in the current operation.

Example

M Class Mamel)

Defining Policies Using Policy Builder 105

Destination Attribute

This noun expands to the specified attribute value.

Example

& Destination dttHbutel"OU"Y)

Fields

Class Name

Class name of object in the destination data store to read. This might be required if object is
other than the current object.

Name

Name of the attribute.

106 Policy Builder and Driver Customization Guide

Destination DN

This noun expands to the destination DN specified in the current operation or a portion
thereof.

Example

fh Destination DM(]

Fields

Convert

True converts to the DN format of the source data store.

Start
Segment index to start with:
+ 0 is the rootmost segment
+ >0 is an offset from the rootmost segment
¢ -1 is the leafmost segment

¢ <-1is an offset from the leafmost segment towards the rootmost segment

Length

Number of DN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1 (e.g for a DN with 5 segments a length of -1 =(5 + (-1))+1=5,-2=(5 + (-2))
+1=4,etc.)

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used, otherwise only
the portion of the DN specified by start and length is used. The format of the DN is automatically
converted to the format of the source data store if convert to source DN format is set to True.

Defining Policies Using Policy Builder 107

Destination Name

This expands to the unqualified Relative Distinguished Name (RDN) of the destination DN
specified in the current operation.

Example

fh Destination Mame()

108 Policy Builder and Driver Customization Guide

Entitlement

This noun expands to the value(s) of the named entitlement for current object.

Example

&b Entitlement("manager")

Fields

Name

Name of the entitlement.

Defining Policies Using Policy Builder

109

Global Configuration Value

This noun expands to the value of the specified global configuration variable.
Example

& Global Configuration YWalue("Fred")

Fields

Name

Name of the global configuration value.

110 Policy Builder and Driver Customization Guide

Local Variable

This noun expands to the value of the named local variable.
Example

fh Lacal Wariable("myWarable")

Fields

Name

Name of the local variable.

Defining Policies Using Policy Builder 111

Named Password

This noun expands to the named password from the driver.
Example

& Mamed Pazsword("password")

Fields

Name

Name of the password.

112 Policy Builder and Driver Customization Guide

Operation

This noun expands to the name of the current operation.

Example

& Qperation()

Defining Policies Using Policy Builder 113

Operation Attribute

This noun expands to the value of the specified attribute from the current operation (add
attribute, add value, or attribute).

Example

o) Operation AttAbute("OU")

Fields

Name

Name of the attribute from the current operation.

114 Policy Builder and Driver Customization Guide

Operation Property

This noun expands to the value of the specified operation property on the current
operation.

Example

& Operation Property("myStoredProperty’)

Fields

Name

Name of the property.

Defining Policies Using Policy Builder 115

Password

This noun expands to the password specified in the current operation.

Example

oal Pazswordl)

116 Policy Builder and Driver Customization Guide

Removed Attribute

This noun expands to the specified attribute value being removed in the current operation
(remove attribute).

Example

b Remaved AttrAbote("0U")

Fields

Name

Name of the removed attribute.

Defining Policies Using Policy Builder 117

Removed Entitlement

This noun expands to the value(s) of the named entitlement removed in the current
operation.

Example

i Removed Entitlement("manager)

Fields

Name

Name of the entitlement.

118 Policy Builder and Driver Customization Guide

Source Attribute

This noun expands to the specified attribute values from the current object, a DN, or
association, in the source data store.

Example

& Source Attribute("OU")

Fields

Class Name

Class name of object in the source data store to read. This might be required if object is other
than the current object.

Name

Name of the attribute.

Defining Policies Using Policy Builder 119

Source DN

This noun expands to the source DN specified in the current operation, or a portion
thereof.

Example

fh Source DMI)

Fields

Convert

True converts to the DN format of the destination data store.

Start
Segment index to start with:
¢ 0 is the rootmost segment
+ >0 is an offset from the rootmost segment
¢ -1 is the leafmost segment
¢ <-1is an offset from the leafmost segment towards the rootmost segment
Length

Number of DN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1 (e.g for a DN with 5 segments a length of -1 =(5§ + (-1))+1=5,-2=(5 + (-2))
+1=4,etc.)

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used, otherwise only
the portion of the DN specified by start and length is used. The format of the DN is converted to
the format of the destination data store if the convert attribute is set to True.

120 Policy Builder and Driver Customization Guide

Source Name

This expands to the unqualified Relative Distinguished Name (RDN) of the source DN
specified in the current operation.

Example

fh Source Mame()

Defining Policies Using Policy Builder 121

Text

This noun expands to the specified text.
Example

&h -

Fields

Text

Specify the text value.

122 Policy Builder and Driver Customization Guide

Unique Name

This noun expands to a pattern-based name that is unique in the destination data store
according to the criteria specified.

Example
& Unique Mamel"CH",scope="zubtree",Lower Casel))
The following is an example of the Editor pane when constructing the unique name argument:
pttrbute name: | Cp
Scope: | Subtree v
Start search:™ | Root of datastore v
Pattern:™ Rl e
=]
Counter start: |1 digits: |1 Pad courter with leading O's
The following pattern was constructed to provide unique names:
Lower Caze()
SubztHng()
| fh Attribute"Given Mame")
.l_
T AttHbute("Surname")
If this pattern does not generate a unique name, a digit is appended starting with counter start,
incrementing up to the specified number of digits. In this example,9 additional unique names
would be generated by the appended digit before an error occurs (patternl - pattern9).
Fields

Name

Name of attribute to check for uniqueness.
Scope

Scope in which to check uniqueness. The default scope is subtree.
Start Search

Select a starting point for the search. The starting point can be the root of the data store, or
specified by a DN or association.

Pattern
Provide a pattern to use to generate unique values using the Argument Builder.
Counter Start

Number to start counter, default is 1.

Defining Policies Using Policy Builder 123

Digits
Width in digits of counter, default is 1. The Pad counter with leading 0’s checkbox prepends

0 to match the digit length. For example, with a digit width of 3, the initial unique value would
be appended with 001, then 002, and so on.

Remarks

For each provided pattern, a query is performed for that value in the name attribute against the
destination data store, using a DN, an association, or the root of the data store as the base of the
query, and the selected scope.

Each provided pattern is tried in order until a value is found that does not return any instances.

If all of the provided values are exhausted, then the final value will have a counter appended to it
and the value will be tried repeatedly (increasing the counter each time) until the query does not
return any instances. By default, the counter starts at 1 and is not padded. The counter can be set
to start at a different number using the counter start field. The counter will use the number of digits
specified by the digits field (default 1). If the number of digits is less than those specified, then the
counter will be right padded with zeros. If/when the number of digits exceeds those specified, then
no unique name will be generated and the enclosing rule will return an error status.

If the destination data store is eDirectory and name is omitted, then a search is performed against
the pseudo-attribute “[Entry].rdn”, which represents the RDN of an object without respect to what
the naming attribute might be. If the destination data store is the application, then name is required.

124 Policy Builder and Driver Customization Guide

Unmatched Source DN

This noun expands to the portion of the source DN in the current operation that
corresponds to the part of the DN that was not matched by the most recent match of an
If Source DN condition, in the conditions for this rule (taking into account short circuit
evaluation).

Example
& Unmatched Source DMI)
Fields
Convert
True converts to DN format of destination data store.
Remarks

If there were no matches then the entire DN is used. The format of the DN is converted to the
format of the destination data store if the convert attribute is set to True.

This token is equivalent to <copy-path-prefix> in DirXML 1.x and exists primarily for backward
compatibility purposes.

Defining Policies Using Policy Builder 125

XPath

This noun expands to results of evaluating an XPATH 1.0 expression.

Example
i KPATHM™ [@attr-name="0U74 fvalue[startz-with(ztrng .), o]
Fields
Expression
XPATH 1.0 expression to evaluate.
Verbs

This section contains detailed reference to all verbs available using the Policy Builder interface.

Escape Destination DN (page 130)
Escape Source DN (page 131)
Lower Case (page 132)

Parse DN (page 133)

Replace All (page 135)

Replace First (page 136)
Substring (page 137)

Upper Case (page 138)

126 Policy Builder and Driver Customization Guide

Escape Destination DN

This verb escapes the enclosed values according to the rules of the destination DN
format.

Example

Ezcape Destination DRQ)
| & AttHbute("Surname")

Defining Policies Using Policy Builder 127

Escape Source DN

This verb escapes the enclosed values according to the rules of the source DN format.

Example

Ezcape Source D)
| T AttHbute("Surname")

128 Policy Builder and Driver Customization Guide

Lower Case

This verb converts enclosed nouns and verbs to lower case.

Example

Lower Casel)
| & SttHbutel"Surname”)

Defining Policies Using Policy Builder 129

Parse DN

This noun expands to a version of the DN specified by expansion of the concatenation of
the enclosed tokens.

Example

Parse ON()
| & Qperation Attrbute"Group Membership")

Fields

Destination DN Delimiter

Specifies the custom destination DN delimiter.
Destination DN Format

Specifies the format used to ouput the parsed DN.
Length

Number of DN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1 (e.g for a DN with 5 segments a length of -1 =(5 + (-1)) +1=5,-2=(5 + (-2))
+1=4,etc.).

Source DN Delimiter
Specifies the custom source DN delimiter.
Source DN Format
Specifies the format used to parse the source DN.
Start
Segment index to start with.
¢ 0 is the rootmost segment
+ >0 is an offset from the rootmost segment
¢ -1 is the leafmost segment

¢ <-1is an offset from the leafmost segment towards the rootmost segment

Remarks

The DN is parsed according the format specified by src-dn-format. The portion of the DN specified
by start and length is then converted to the format specified by dest-dn-format.

The parameters are used to specify custom DN formats. The 8 characters which make up the
delimiter set are defined as follows:

1. Typed Name Boolean Flag: '0' means names are NOT typed, '1' means names are typed

130 Policy Builder and Driver Customization Guide

2. Unicode No-Map Character Boolean Flag: '0' means don't output or interpret unmappable
unicode characters as escaped hex digit strings, e.g.,\FEFF. The following unicode characters are
not accepted by eDirectory: Oxfeff, Oxftfe, Oxfffd, and Oxfftf.

3. Relative RDN Delimiter
4. RDN Delimiter

5. Name Divider

6. Name Value Delimiter
7. Wildcard Character

8. Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, then the orientation of the
name is root right, otherwise the orientation is root left.

If there are more than 8 characters in the delimiter set, then the extra characters will be considered
as characters that need to be escaped, but will have no other special meaning.

If start and length are set to the default values {0,-1}, then the entire DN is used, otherwise only
the portion of the DN specified by start and length is used.

Defining Policies Using Policy Builder 131

Replace All

This verb replaces all occurrences of the specified regular expression on all enclosed
nouns and verbs.

Example
Rﬁlace AU
| £ Destinatian DN)
Fields
Regular Expression
Regular Expression that matches the substring to replace.
Replace With
Regular expression that specifies the replacement string.
Remarks

Each matching instance is replaced the string specified by the value specified in the Replace with
field.

For details on creating regular expressions, see:

+ http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html (http://java.sun.com/j2se/
1.4/docs/api/java/util/regex/Pattern.html)

¢ http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replace All
(java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE _INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed using the appropriate embedded escapes.

132 Policy Builder and Driver Customization Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Replace First

Example

Fields

Remarks

This verb replaces the first occurrence of the specified regular expression.

Rﬁlace First{""[*], [.*]5","52 51"
| sttHbute"Full Mame")

Regular Expression

Regular Expression that matches the substring to replace.

Replace With

Regular expression that specifies the replacement string.

The matching instance is replaced the string specified by the value specified in the Replace with
field.

For details on creating regular expressions, see:

¢ http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html (http://java.sun.com/j2se/
1.4/docs/api/java/util/regex/Pattern.html)

¢ http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replace All
(java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but can be
reversed using the appropriate embedded escapes.

Defining Policies Using Policy Builder 133

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Substring

This verb expands to string containing the number of characters specified in the Length
field. Enclosed nouns and verbs are concatenated before the substring verb is applied.

Example

SubstHngzllength="1")
| & AttHbutel"Given Mame")

Fields

Start
Starting location for the concatenation:
¢ 0 is the first character.
+ >0 is an offset from the start of the string
+ -1 is the last character.

+ <-1is an offset from the last character towards the start of the string.

Length

Number of characters from start to include in the substring. Negative numbers are interpreted
as (total # of characters + length) + 1 (e.g. for a string with 5 characters a length of -1 =(5 +
(1)) +1=5,-2=(5+(-2)+1=4,etc).

134 Policy Builder and Driver Customization Guide

Upper Case

Example

Values

This verb converts enclosed nouns and verbs to upper case.

Uﬁer Cazel)
| sttHbutel"Surname”)

This section contains a list of common policy builder values.

Comparison Modes

Mode Description

case Character by character case sensitive comparison.

nocase Character by character case insensitive comparison.

regex Regular expression match of entire string. Case insensitive by default, but may be changed by an escape in the
expression.
See http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/Pattern.html (http://java.sun.com/j2se/1.4/docs/apiljava/
util/regex/Pattern.html) and http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/Matcher.html#matches() (http://
java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#matches()).
Note that pattern option CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but can be reversed
using the appropriate embedded escapes.

src-dn Compare using semantics appropriate to the DN format for the source datastore.

dest-dn Compare using semantics appropriate to the DN format for the destination datastore.

numeric Compare numerically.

octet Compare octet (Base64 encoded) values.

structured Compare structured attribute according to the comparison rules for the structured syntax of the attribute.

Defining Policies Using Policy Builder 135

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#matches()

136 Policy Builder and Driver Customization Guide

Defining Policies using XSLT Style Sheets

Style sheets define XSLT transformation rules. The XSLT processor in the DirXML® engine is
compliant with the 16 November 1999 W3C Recommendation. For the specifications, see the
following:

+ XSL Transformations (XSLT) (http://www.w3.0rg/TR/1999/REC-xslt-19991116)
+ XML Path Language (XPath) (http://www.w3.0rg/TR/1999/REC-xpath-19991116)

Style sheets can be used in the following places:
¢ Input transformation rules
¢ Output transformation rules
+ Event transformation rules
+ Matching, create, or placement rules
* Mapping rules
The following sections describe the implementation specifics of using style sheets with DirXML.
¢ “Restrictions” on page 138
¢ “Starting with an Identity Transformation” on page 139
¢ “Using the Parameters that DirXML Passes” on page 139
+ “Using Extension Functions” on page 142
+ “Testing Style Sheets Outside of DirXML” on page 142
+ “Creating a Password Example: Create Rule” on page 143

+ “Creating an eDirectory User Example: Create Rule” on page 144

Managing XSLT Style Sheets in iManager

XSLT policy style sheets are added, modified, and deleted using iManager. The following sections
provide details on using XSLT style sheets in iManager:

+ “Adding an XSLT Policy” on page 137

Adding an XSLT Policy

1 Open the DirXML Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to define.
3 Click Insert.

4 Enter a name for the new policy, select XSLT, then click enter.

Defining Policies using XSLT Style Sheets 137

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

8 Define your XSLT policy, then click OK:

DirXsL Policy: &= uslt policy

b

*ML Editor: EJ"FEEnable *ML editing

<?¥ml wversion="1.0" encoding="UTF-5"7>
<¥slistylesheet exclude-result-prefixes="guery cmd dnev™ wversion="1.0" xml
<!—-— parameters passed in from the DirXML engine —-->
<Hal:param neme="srcoueryProcesaor™s >
<xsl:param name="destQueryProcessor"™/>
<xsl:param name="srcCommandProcessor™/ >
<x3l:param name="destCommandProcessor™s >
<xsl:param name="dnConverter"/>
<xzl:param hame="fromnfds"/ >

ry

<!—-— identity transformation template —->
<!—=— in the sbsence of any other templates this will cause —->
<!=— the styleszheet to copy the input through unchanged to the out

<xsl:template match="node () |B*">
<xsl:copy:
<Hal:apply-templates select="[+|node() "/ >
</x3l:copysr
</®usl:templatex>
<!—-— add wour custom templates here ——>
<fxsl:styleshest>

a | o

o] | Cancel | Apply |

Restrictions

Three of the rule types (matching, create, and placement) can be also be XML documents. When
these rules are written as style sheets, they are subject to the following restrictions.

Matching Rule Restrictions

When matching rules are written as an XSLT style sheet, they are subject to the following
restrictions:

+ Use the special value of a single Unicode character OXFFFD to signal that multiple matches
were found.

+ Can operate only on add events.

¢ On the subscriber channel, the DirXML driver must add an <association> element for any
matches that are found in the application.

138 Policy Builder and Driver Customization Guide

¢ On the publisher channel, the DirXML driver must fill in the dest-dn attribute of the
<add> element if a match is found in eDirectory™.

+ Can remove events
+ Cannot generate extra events

¢ Cannot change event types

The names of the attributes and classes are in the eDirectory name space.

Create Rule Restrictions

When create rules are written as an XSLT style sheet, they are subject to the following restrictions:
+ Can operate only on add events.
¢ Can add attributes and values to the <add> element.

+ Can remove events (this is how an add event is vetoed).

The names of the attributes and classes are in the eDirectory name space.

Placement Rule Restrictions

When placement rules are written as an XSLT style sheet, they are subject to the following
restrictions:

+ Can operate only on add events.
+ Must fill in the dest-dn attribute of the <add> element.

+ Can remove events.

The names of the attributes and classes are in the eDirectory name space.

Starting with an Identity Transformation

Unless you are translating to or from an XML format that is completely different from the DirXML
format, you will want to start your style sheet with templates that implement the identity
transformation. These templates allow the events in the document that you don't specifically try to
intercept and change to pass through without any modifications.

The following two templates together implement the identity transformation:

<xsl:tenmplate match="/" >
<xsl:apply-tenpl ates select="node()| @"/>
</ xsl :tenpl at e>

<xsl:tenplate match="node()| @" >
<xsl : copy>
<xsl : appl y-tenpl ates sel ect="node()| @"/>
</ xsl : copy>
</ xsl :tenpl at e>

Using the Parameters that DirXML Passes

The DirXML engine passes the rule style sheets the following parameters that the style sheet can
use. Note that with DirXML 1.1, the query processor parameters are now passed to the schema

Defining Policies using XSLT Style Sheets 139

mapping rules and the input and output transformation rules. The command processor parameters
are passed to all rules.

+ fromNds—This is a boolean value that is true if the rule is being processed by the subscriber
channel and false if the rule is being processed by the publisher channel.

* srcQueryProcessor—This is a Java object that implements the XdsQueryProcessor interface.
This allows the style sheet to query the event source for more information.

¢ destQueryProcessor—This is a Java object that implements the XdsQueryProcessor interface.
This allows the style sheet to query the event target for more information.

¢ srcCommandProcessor—This is a java object that implements the XdsCommandProcessor
interface. This allows the style sheet to "write-back" a command to the event source. Not
available in DirXML 1.0.

+ destCommandProcessor—This is a java object that implements the XdsCommandProcessor
interface.This allows the style sheet to issue a command to the command destination directly,
bypassing most other rules. Not available in DirXML 1.0.

To use these parameters include the following in your style sheet:

<xsl:param name="fromNds"/>

<xsl:param name="srcQueryProcessor"/>
<xsl:param name="destQueryProcessor"/>
<xsl:param name="srcCommandProcessor"/>
<xsl:param name="destCommandProcessor"/>

With DirXML 1.1, processors will accept a query or command element as the top level element
and will wrap it in <input> and <nds> if necessary.

When using the query and command parameters with the schema mapping rules, input
transformation rules, and output transformation rules the following limitations apply:

1. Queries issued to the application shim must be in the form expected by the application shim.
In other words, schema names must be in the application namespace and the query must
conform to whatever XML vocabulary is used natively by the shim. No association refs will
be added to the query.

2. Responses from the application shim will be in the form returned by the shim with no
modification or schema mapping performed and no resolution of association refs.

3. Queries issued to NDS must be in the form expect by NDS. In other words schema names
must be in the NDS namespace and the query must be XDS. Association refs will not be
resolved.

4. Responses from the application shim will be in the form returned by the shim with no
modification or schema mapping performed.
Query Processors

Use of the query processors depends on the Novell XSLT implementation of extension functions.
To make a query, you need to declare a name space for the XdsQueryProcessor interface. This is
done by adding the following to the <xsl:stylesheet> or <xsl:transform> element of the style sheet.

xm ns: query="http://ww. novel | . com nxsl/java/
com novel | . nds. di rxm . dri ver. XdsQuer yProcessor"

The following example uses one of the query processors (the extra long lines are wrapped and do
not begin with a <):

140 Policy Builder and Driver Customization Guide

<I-- Query object nane queries NDS for the passed object -->

<I-- pame. ldeally, this would not depend on "CN': to do -->
<l-- this, add another paraneter that is the name of the -->
<l-- pamng attribute. -->

<xsl:tenpl at e nane="query- obj ect - nane" >
<xsl : par am nane="obj ect - nanme"/ >

<l-- build an xds query as a result tree fragnent -->
<xsl : vari abl e nane="query">
<nds ndsversion="8.5" dtdversion="1.0">
<i nput >
<query>
<search-cl ass cl ass-name="{ancestor-or-self:
:add/ @l ass-nane}"/ >

<I-- NOTE: depends on CN being the naming attribute -->
<search-attr attr-nane="CN'>
<val ue><xsl : val ue- of sel ect ="$obj ect - name"/
></val ue>
</search-attr>
<l-- put an enpty read attribute in so that we don't get -->
<I-- the whol e object back -->
<read-attr/>
</ query>
</ input >
</ nds>
</ xsl : vari abl e>

<I-- query NDS -->
<xsl:variable name="result" sel ect ="query: query($dest Query
Processor, $query) "/ >

<l-- return an enpty or non-enpty result tree fragnent -->

<I-- depending on result of query -->
<xsl : val ue-of select="$result//instance"/>

</ xsl:tenpl at e>

Command Parameters

In order to allow channel write-back for default attributes added by a create rule, a new XML
attribute called write-back was added to the <required-attr> element of the Create Rule. If present
and set to true, the create rule will call the srcCommandProcessor with a modify command to write
the default value back to the source.

The following example uses command parameters to perform a write back operation.

<?xm version="1.0"?>
<xsl :transform
version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nt
xm ns: cnd="http://ww. novel | . coni nxsl /| ava
com novel | . nds. di rxm . dri ver. XdsCommandPr ocessor"
>
<xsl : param nane="sr cConmandPr ocessor"/ >

<xsl:tenplate match="node()| @" >
<xsl : copy>
<xsl : appl y-tenpl ates sel ect="@| node()"/>
</ xsl : copy>
</ xsl:tenpl at e>

Defining Policies using XSLT Style Sheets 141

<xsl:tenpl ate mat ch="add" >
<xsl : copy>
<xsl : appl y-tenpl ates sel ect="@| node()"/>
</ xsl : copy>

<I-- on a user add, add Engi neering departnent to the source object -->
<xsl : vari abl e nanme="dunmy" >
<nodi fy cl ass-nanme="{ @l ass- nane} "dest-dn="{@rc-dn}">
<xsl - copy- of sel ect="associ ation"/>
<nmodi fy-attr attr-nane="0U'>
<add- val ue>
<val ue type="string">Engi neeri ng</val ue>
</ add- val ue>
</nodify-attr>
</ nodi fy>
</ xsl :vari abl e>
<xsl :vari abl e name="dummy2"
sel ect =" cnd: execut e($sr cCommandPr ocessor, $dummy) "/ >
</ xsl:tenpl at e>

</ xsl :transfornp

Using Extension Functions

XSLT is an excellent tool for performing some kinds of transformations and a rather poor tool for
other types of transformations such as non-trivial string manipulation and iterative processes.
Fortunately the Novell XSLT processor implements extension functions which allow the style
sheet to call a function implemented in Java, and by extension, any other language that can be
accessed through JNI.

For specific examples, see the above example using the query processor, and the following
example that illustrates using Java for string manipulation (the extra long lines are wrapped and
do not begin with a <).

<l-- get-dn-prefix places the part of the passed dn that -->
<I-- precedes the |ast occurrence of '"\' in the passed dn -->
<I-- in aresult tree fragment neaning that it can be -->
<I-- used to assign a variabl e val ue -->

<xsl:templ ate nane="get-dn-prefix" xmns:jstring="http://
www. novel | . conf nxsl /javal/java.lang. String">

<xsl : par am nane="src-dn"/ >
<I-- use java string stuff to make this much easier -->

<xsl :vari abl e nane="dn" sel ect="jstring: new $src-dn)"/>
<xsl :variabl e nane="i ndex" sel ect="jstring:|astlndexCf

($dn,"'\")"/>
<xsl:if test="$index != -1">
<xsl : val ue- of sel ect="jstring: substring($dn, 0, $i ndex)
">
</xsl:if>

</ xsl :tenpl at e>

Testing Style Sheets Outside of DirXML

The XSLT process in the DirXML engine may be invoked from the command line and can be used
to test style sheets in a more controlled environment before installing them into DirXML.

142 Policy Builder and Driver Customization Guide

The following batch file may be used to invoke the XSLT processor on NT or Windows 2000.

@cho of f
set | ocal
remTODO - edit the following line to point to directory where NDS and DirXM. are installed

set DI RXML_HOVE=c: \ novel I \ nds

set COVMON_JARS=%D RXM__HOVE% | i b9l RXML._HOVE% j re\ bi n\j ava -cl asspat h%COMMON_JARS% xp. j ar;
YCOMMON_JARS% col | ections.jar; %COMMON_JARS% nxsl.jar com novell.xsl.nxsl % %2 %3 % % % %
"B 90

endl ocal

Invoking the processor without any arguments prints out the latest information on the command
syntax for the processor.

Since you are running outside of DirXML, the srcQueryProcessor and destQueryProcessor will
not be available. To get around this limitation, you can temporarily comment out code that uses the
query processor and replace it with an explicit assignment of the reply you might expect from the
query. For example:

<l-- query NDS -->
<l-- <xsl:variable nane="result" sel ect ="query: query($dest QueryProcessor, $query)"/> -->

<l-- simulate query results -->

<xsl:variable nane="result">
<nds dtdversion="1.0" ndsversion="8.5">

<out put >
<i nstance cl ass-nanme="User" src-dn="\ MY_TREE \ M¥_ORG Fred"/ >
<status event-id="" |evel ="success"></stat us>
</ out put >
</ nds>

<xsl :vari abl e>

Creating a Password Example: Create Rule

The following style sheet can be used for a create rule. It creates a user, generates a password for
the user from the user’s Surname and CN attributes, and performs an identity transform (which
passes through everything in the document except the events you are trying to intercept and
transform).

<?xm version="1.0" encodi ng="1 SO 8859- 1" ?>

<I-- This styl esheet has an exanple of how to replace a create rule with
an XSLT styl esheet and supply an initial password for "User" objects. -->

<xsl:transform xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf orm
"version="1.0">

<l-- ensure we have required NDS attributes -->
<xsl:tenpl ate mat ch="add" >
<xsl:if test="add-attr[@ttr-name="Surnane'] and
add-attr[@ttr-name="CN]">
<l-- copy the add through -->
<xsl : copy>
<xsl : apply-tenpl ates sel ect="@ | node()"/>
<!-- add a <password> el enent -->
<xsl:cal | -tenpl ate nane="creat e- password"/ >

Defining Policies using XSLT Style Sheets 143

</ xsl : copy>

</ xsl:if>

<l--

</ xsl

<xsl :

if the xsl:if fails, we don't have all the required attributes
so we won't copy the add through, and the create rule will veto the add -->

:tenpl at e>

tenpl at e nane="cr eat e- passwor d" >

<passwor d>

<xsl :val ue-of sel ect="concat (add-attr[@ttr-nane=" Surname']/val ue,
'-',add-attr[@ttr-name="CN]/val ue)"/>

</ passwor d>

</ xsl

<l--

<xsl :

:tenpl at e>
identity transformfor everything we don't want to change -->

tenpl ate match="@ | node()" >

<xsl : copy>

<xsl :appl y-tenpl ates sel ect="@ | node()"/>

</ xsl : copy>

</ xsl

</ xsl

:tenpl ate>

:transforne

Creating an eDirectory User Example: Create Rule

<?xm

<l--

<xsl :

This style sheet can be used for a create rule. It shows how to create an eDirectory user from an
entry created in an external application. This example is based on the idea that a newly hired
person is first created in the Human Resources database and then on the network. It takes the user’s
first name and last name and generates a unique CN in the eDirectory tree. Although eDirectory
requires the CN to be unique in only the container, this style sheet ensures that it is unique across
all containers in the eDirectory tree.

version="1.0" encodi ng="| SO 8859-1"?>

This stylesheet is an exanple of how to replace a create rule with an
XSLT styl esheet and that creates the User nanme fromthe Surnanme and
given Nanme attributes -->

transform

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Transf or mi' versi on="1. 0"
xm ns: query="http://ww. novel | . com nxsl/java/ com novel | . nds. di rxm . driver.

>
<l--
<xsl :
<xsl :
<xsl :

<l--

<xsl :
<xsl :

<l --
<xsl :

144

XdsQuer yProcessor "

This is for testing the styl esheet outside of DirXM so things
are pretty to |look at -->

strip-space elements="*"/>

preserve-space el enent s="val ue, conponent"/ >

out put met hod="xm " indent="yes"/>

dirxm al ways passes two styl esheet paraneters to an XSLT rul e:
an i nbound and out bound query processor -->

par am name="sr cQuer yProcessor"/ >

par am name="dest Quer yProcessor"/>

mat ch <add> el ements -->
tenpl ate mat ch="add" >

Policy Builder and Driver Customization Guide

<!-- ensure we have required NDS attributes we need for the nanme -->
<xsl:if test="add-attr[@ttr-nanme='Surnane'] and
add-attr[@ttr-nane="' G ven Nane']">

<l-- copy the add through -->
<xsl : copy>

<l-- copy any attributes through except for the src-dn -->

<l-- we'll construct the src-dn below so that the placenent rule will work -->

<xsl :apply-tenpl ates select="@|[string(.) != "src-dn']"/>

<l-- call atenplate to construct the object nane and place the result in a variable -->

<xsl : vari abl e name="obj ect - nane" >
<xsl:call-tenpl ate nane="cr eat e- obj ect - name"/ >
</ xsl :vari abl e>

<l-- now create the src-dn attribute with the created name -->
<xsl:attribute name="src-dn">
<xsl :variabl e name="prefix">
<xsl:call-tenpl ate nane="get-dn-prefix">
<xsl :wi t h- param name="src-dn" select="string(@rc-dn)"/>
</ xsl:call-tenpl at e>
</ xsl :vari abl e>
<xsl : val ue- of sel ect ="concat ($prefix,'\', $obj ect-nane)"/>
</xsl:attribute>

<Il-- if we have a "CN' attribute, set it to the constructed name -->
<xsl:if test="./add-attr[@ttr-name="CN]">
<add-attr attr-nane="CN'>
<val ue type="string"><xsl:val ue-of sel ect="%object-nanme"/></val ue>
</ add-attr>

</[xsl:if>
<l-- copy the rest of the stuff through, except for what we have al ready copied -->
<xsl :apply-tenpl ates select="*[name() != 'add-attr' or @ttr-name !'="'CN] |
conment () |
processi ng-instruction() |
text()"/>
<!-- add a <password> el enent -->

<xsl:cal | -tenpl ate nane="creat e- password"/ >

</ xsl : copy>
</xsl:if>
<l-- if the xsl:if fails, it means we don't have all the required attributes
so we won't copy the add through, and the create rule will veto the add -->
</ xsl:tenpl at e>

<I-- get-dn-prefix places the part of the passed dn that precedes the -->
<I-- last occurrance of '\' in the passed dn in a result tree fragment -->
<I-- neaning that it can be used to assign a variable val ue -->

<xsl:tenpl ate nane="get-dn-prefix" xmns:jstring="http://ww.novell.conf nxsl/java/
java.lang. String">
<xsl : param nane="src-dn"/ >

<l-- use java string stuff to make this nmuch easier -->
<xsl :vari abl e nane="dn" sel ect="j string: new $src-dn)"/>
<xsl :vari abl e name="i ndex" select="jstring:|astlndexX($dn,'\")"/>
<xsl:if test="$index != -1">
<xsl : val ue-of sel ect="jstring:substring($dn, 0, $i ndex)"/>

Defining Policies using XSLT Style Sheets 145

</xsl:if>
</ xsl:tenpl at e>

<l-- create-object-nane creates a name for the user object and places the -->
<I-- result in aresult tree fragnment -->
<xsl:tenpl at e nane="cr eat e- obj ect - nane" >

<l-- first try is first initial followed by surname -->

<xsl : vari abl e nanme="gi ven-nane" sel ect="add-attr[@ttr-nanme=' G ven Nane']/val ue"/>
<xsl :vari abl e name="sur nane" sel ect="add-attr[@ttr-nane=" Surnanme']/val ue"/>

<xsl :vari abl e name="prefix" sel ect="substring($gi ven-nane, 1,1)"/>

<xsl : vari abl e name="obj ect - nane" sel ect ="concat ($prefi x, $sur nanme) "/ >

<!-- then see if name already exists in NDS -->
<xsl :vari abl e name="exi sts">
<xsl:call -tenpl ate nane="query- obj ect - nane" >
<xsl : wi t h- par am nane="obj ect - nane" sel ect =" $obj ect - nane"/ >
</ xsl:call-tenpl ate>
</ xsl:variabl e>

<l-- if exists, then try 1st fallback, else return result -->
<xsl : choose>
<xsl :when test="$exists I="'"'"">

<xsl:call-tenpl ate nane="cr eat e- obj ect - nane-2"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl : val ue- of sel ect ="$obj ect - nane"/ >
</ xsl : ot her wi se>
</ xsl : choose>

</ xsl:tenpl at e>

<I-- create-object-name-2 is the first fallback if the nane created by -->
<l-- create-object-nane already exists -->
<xsl:tenpl at e nane="cr eat e- obj ect - nanme- 2" >

<l-- first try is first name foll owed by surnanme -->

<xsl :vari abl e nanme="gi ven-nane" sel ect="add-attr[@ttr-nanme="G ven Nane']/val ue"/>
<xsl :vari abl e nanme="sur nane" sel ect="add-attr[@ttr-nane=" Surname']/val ue"/>

<xsl : vari abl e name="obj ect - nane" sel ect ="concat ($gi ven- nane, $sur nane) "/ >

<!-- then see if nane already exists in NDS -->
<xsl :vari abl e name="exi sts">
<xsl:call-tenpl ate nane="query- obj ect - nane" >
<xsl : wi t h- par am nane="obj ect - nane" sel ect =" $obj ect - nane"/ >
</ xsl:call-tenpl ate>
</ xsl :vari abl e>

<l-- if exists, then try last fallback, else return result -->
<xsl : choose>
<xsl :when test="$exists I="'""">

<xsl:call-tenpl ate nane="creat e- obj ect - nanme- f al | back"/ >
</ xsl : when>
<xsl: otherw se>
<xsl : val ue- of sel ect ="$obj ect - nane"/ >
</ xsl : ot her w se>
</ xsl : choose>

</ xsl :tenpl at e>

146 Policy Builder and Driver Customization Guide

<I-- create-object-nane-fall back recursively tries a nanme created by -->

<I-- concatenating the surnane and a count until NDS doesn't find -->
<l-- the nane. There is a danger of infinite recursion, but only if -->
<l-- there is a bug in NDS -->

<xsl:tenpl at e nane="cr eat e- obj ect - nane- f al | back" >
<xsl : param nane="count" select="1"/>

<l-- construct the a nane based on the surnane and a count -->

<xsl :vari abl e name="sur nane" sel ect="add-attr[@ttr-nane=" Surnanme']/val ue"/>
<xsl : vari abl e nanme="obj ect - nane" sel ect ="concat ($surnane, ' -', $count)"/>

<l-- see if it exists in NDS -->

<xsl :vari abl e name="exi sts">
<xsl:call-tenpl ate nane="query- obj ect - nane" >
<xsl : wi t h- par am nane="obj ect - nane" sel ect =" $obj ect - nane"/ >
</ xsl:call-tenpl ate>
</ xsl :vari abl e>

<l-- if exists, then try again recursively, else return result -->
<xsl : choose>
<xsl :when test="%exists !I=""">

<xsl:call-tenpl ate nane="cr eat e- obj ect - nane-fal | back" >
<xsl : wi t h- param nane="count" sel ect ="$count + 1"/>

</xsl:call-tenpl ate>

</ xsl : when>

<xsl : ot herwi se>
<xsl : val ue- of sel ect ="$obj ect - nane"/ >

</ xsl : ot her wi se>

</ xsl : choose>

</ xsl:tenpl at e>

<l-- query object nane queries NDS for the passed object-nane. ldeally, this would -->
<l-- not depend on "CN': to do this, add another paraneter that is the nane of the -->
<l-- namng attribute. -->

<xsl:tenpl at e nane="query- obj ect - nane" >
<xsl : par am nane="obj ect - nanme"/ >

<!-- build an xds query as a result tree fragnment -->
<xsl :vari abl e name="query" >
<nds ndsversion="8.5" dtdversion="1.0">
<i nput >
<query>
<search-cl ass cl ass- name="{ancestor-or-sel f::add/ @l ass-nane}"/ >
<I-- NOTE: depends on CN being the naming attribute -->
<search-attr attr-nane="CN'>
<val ue><xsl : val ue- of sel ect ="$obj ect - name"/ ></ val ue>

</search-attr>

<I-- put an enpty read attribute in so that we don't get the whol e object back -->
<read-attr/>
</ query>
</i nput >

</ nds>
</ xsl :vari abl e>

<!-- query NDS -->
<xsl :variabl e name="result" sel ect ="query: query($dest QueryProcessor, $query)"/>

<l-- return an enpty or non-enpty result tree fragnent depending on result of query -->
<xsl : val ue-of select="$result//instance"/>

Defining Policies using XSLT Style Sheets 147

</ xsl:tenpl at e>

<l-- create an initial password -->
<xsl:tenpl at e nane="cr eat e- passwor d" >
<passwor d>
<xsl :val ue-of sel ect="concat (add-attr[@ttr-nane=" Surnanme']/value,'-', add-attr[@ttr-
name=' CN]/val ue)"/>
</ passwor d>
</ xsl :tenpl at e>

<I-- identity transformfor everything we don't want to nmess with -->
<xsl:tenplate match="@ | node()" >
<xsl : copy>
<xsl :apply-tenpl ates sel ect="@ | node()"/>
</ xsl : copy>
</ xsl :tenpl at e>

</ xsl :transfor np

148 Policy Builder and Driver Customization Guide

Defining Filters

Filters enable you to specify the objects and attributes synchronized by Nsure™ Identity Manager.

This section covers the following filter-related topics:

+ “Filter Tasks” on page 149

Filter Tasks

This section contains instructions on performing common filter-related tasks in iManager:
¢ “Managing Filters” on page 149
* “Viewing and Modifying Filters” on page 149

Managing Filters
1 In iManager, expand the DirXML Management Role, then click Overview.
2 Specify a driver set.

3 Click the driver for which you want to manage filters. The DirXML Driver Overview opens:

[EC L

peof

4 Filters are managed from the DirXML Driver Overview.

Viewing and Modifying Filters
1 Open the DirXML Driver Overview for the driver you want to manage.

2 Click the icon representing the filter you want to define on the publisher or subscriber channel.

Defining Filters 149

3 The Filter window opens, displaying the currently defined filter. Use the Filter window to
modify the filter. Click the help icon in the filter window for additional information.

150 Policy Builder and Driver Customization Guide

	About This Guide
	Additional Documentation
	Documentation Updates
	Documentation Conventions
	User Comments
	1 Policies and Filters

	What Are Policies and Filters?
	A Note on Transformation Policies
	Terminology Changes from DirXML 1.x

	Introduction to Policies
	Basic Policies
	Create
	Matching
	Placement
	Schema Mapping

	Transformation Policies
	Defining Policies
	Policy Builder and DirXML Script
	XSLT Style Sheets

	Introduction to Filters
	2 Defining Policies Using Policy Builder

	Policy Builder Tasks
	Opening Policy Builder
	1 In iManager, expand the DirXML® Management Role, then click Overview.
	2 Specify a driver set.
	3 Click the driver for which you want to manage policies. The DirXML Driver Overview opens:
	4 Policies are managed from the DirXML Driver Overview.

	Creating a Policy
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the policy you want to define.
	3 Click Insert.
	4 Enter a name for the new policy, then select Policy Builder.
	5 The policy is displayed. To define one or more rules for this policy, click Append New Rule, then follow the instructions in “Defining Individual Rules within a Policy” on page 20.

	Defining Individual Rules within a Policy
	Tips

	Defining Individual Arguments within a Rule
	Tips
	Matching Attribute Builder
	Argument Actions Builder
	Named String Builder
	Argument Value List Builder

	Modifying a Policy
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the policy you want to modify.
	3 Select the policy you want to modify, then click Edit.

	Deleting a Policy
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the policy you want to delete.
	3 Select the policy you want to delete, then click Remove.

	Importing a Policy from an XML File
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the policy you want to delete.
	3 Edit an existing policy, or create a new policy.
	4 Click the Insert button, and select Import an XML file containing DirXML Script.
	5 Browse to the policy file to import, then click OK.

	Exporting a Policy to an XML File
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the policy you want to delete.
	3 Edit an existing policy, or create a new policy.
	4 Click the Save As button, then select a location to save the DirXML Script XML file.

	Creating a Policy Reference
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the policy you want to delete.
	3 Edit an existing policy, or create a new policy.
	4 Click the insert button, and select Append a reference to a policy containing DirXML Script.
	5 Browse to the policy object to reference, then click OK.

	Conditions
	If Association performs a test on the association value of current operation or the current object.
	Example
	Condition
	Fields
	Operator
	Compare Mode
	If Attribute performs a test on attribute values of the current object in either the current operation or the source data store.

	Example
	Condition
	Fields
	Name
	Operator
	Compare Mode
	If Class Name performs a test on the object class name in the current operation.

	Example
	Condition
	Fields
	Operator
	Compare Mode
	If Destination Attribute performs a test on attribute values of the current object in the destination data store.

	Example
	Condition
	Fields
	Name
	Operator
	Compare Mode
	If Destination DN performs a test on the destination DN in the current operation.

	Example
	Condition
	Fields
	Operator
	Compare Mode
	If Entitlement performs a test on entitlements of the current object, in either the current operation or eDirectory.

	Example
	Condition
	Fields
	Name
	Operator
	Compare Mode
	If Global Configuration Value performs a test on a global configuration variable.

	Example
	Condition
	Fields
	Name
	Operator
	Compare Mode
	If Local Variable performs a test on a local variable.

	Example
	Condition
	Fields
	Name
	Operator
	Compare Mode
	If Named Password performs a test on a password in the current operation with the specified name. The type of test performed depends on the selected operator. The following table shows the type of test performed by each operator.

	Example
	Condition
	Fields
	Name
	Operator
	If Operation Attribute performs a test on attribute values in the current operation.

	Example
	Condition
	Fields
	Name
	Operator
	Compare Mode
	If Operation performs a test on the name of the current operation.

	Example
	Condition
	Fields
	Operator
	Compare Mode
	If Operation Property performs a test on an operation property on the current operation. The type of test performed depends on the selected operator. The following table shows the type of test performed by each operator.

	Example
	Condition
	Fields
	Name
	Operator
	If Password performs a test on a password in the current operation.

	Example
	Condition
	Fields
	Operator
	Compare Mode
	If Source Attribute performs a test on attribute values of the current object in the source data store.

	Example
	Condition
	Fields
	Name
	Operator
	Compare Mode
	If Source DN performs a test on the source DN in the current operation.

	Example
	Condition
	Fields
	Operator
	Compare Mode
	If Xpath Expression performs a test on the results of evaluating an XPATH 1.0 expression.

	Example
	Condition
	Fields
	Operator

	Actions
	This action causes an add association command to be sent to eDirectory.
	Example
	Fields
	Mode
	DN
	Association
	This action causes the specified value to be added to the named attribute on an object in the destination data store. The target object is the current object, a DN, or an association.

	Example
	Fields
	Attribute Name
	Class Name
	Select Mode
	Select Object
	Value Type
	Tokens
	This action causes an object of the specified type to be created in the destination data store, with the name and location speci...

	Example
	Fields
	Class Name
	Mode
	DN
	This action causes the specified value to be added to the specified attribute on an object in the source data store. The target object is the current object, a DN, or an association.

	Example
	Fields
	Attribute Name
	Class Name
	Object
	Value Type
	Tokens
	This action causes an object of the specified type to be created in the source data store. Any attribute values to be added as part of the object creation must be done in subsequent Add Source Attribute Value (page 55) actions using the same DN.

	Example
	Fields
	Class Name
	DN
	This action causes a custom element to be appended to the set of elements selected by the XPATH expression.

	Example
	Fields
	Name
	XPATH Expression
	This action causes the specified text to be appended to the set of elements selected by the XPATH expression.

	Example
	Fields
	XPATH Expression
	String
	This action causes the current operation to not be processed by any more actions or rules within the current policy.

	Example
	This action causes the all values for the named attribute to be removed from an object in the destination data store. The target object is the current object, a DN, or an association.

	Example
	Fields
	Attribute Name
	Class Name
	Mode
	This action causes any operation property with the provided name to be cleared from the current operation.

	Example
	Fields
	Property Name
	This action causes the all values for the named attribute to be removed from an object in the source data store. The target object is the current object, a DN, or an association.

	Example
	Fields
	Attribute Name
	Class Name
	Select Object
	This action causes all elements that are children of the current operation with an attribute name equal to the specified source name, to be duplicated within the operation, with the attribute name set to the specified destination name.

	Example
	Fields
	Source Name
	Destination Name
	This action causes causes deep copies of the nodes specified by the source field to be appended to the set of elements specified by the destination field.

	Example
	Fields
	Source XPATH Expression
	Destination XPATH Expression
	This action causes an object in the destination data store to be deleted. The target object is the current object, a DN, or an association.

	Example
	Fields
	Mode
	Object
	This action causes the object in the source data store to be deleted. The target object is either the current object, a DN, or an association.

	Example
	Fields
	Mode
	Object
	This action causes a query to be performed in the destination data store, and an appropriate destination DN, or an appropriate destination association, to be added to the current operation.

	Example
	Fields
	Scope
	DN
	Match Attributes

	Remarks
	This action causes the specified action to be repeated once for each node in the specified node set.

	Example
	Fields
	Node Set
	Action
	This action causes a DirXML user-defined event to be sent to NsureTM Audit.

	Example
	Fields
	ID
	Level
	Strings

	Remarks
	This action causes an object in the destination data store to be moved. Select the current object, a DN, or an association to move to another location specified by a DN, or an association.

	Example
	Fields
	Mode
	Object to Move
	Container
	This action causes an object in the source data store to be moved. Select the current object, a DN, or an association to move to another location specified by a DN, or an association.

	Example
	Fields
	Object to Move
	Select Container
	This action causes all values for the named attribute within the current operation to be replaced with the specified value. The ...

	Example
	Fields
	Name
	Value Type
	Tokens
	This action causes a remove association command to be sent to eDirectory.

	Example
	Fields
	Mode
	Association
	This action causes the specified value to be removed from the named attribute on an object in the destination data store. The target object is the current object, a DN, or an association.

	Example
	Fields
	Attribute Name
	Class Name
	Mode
	Select Object
	Value Type
	Tokens
	This action causes the specified value to be removed from the named attribute on an object in the source data store. The target object is the current object, a DN, or an association.

	Example
	Fields
	Attribute Name
	Class Name
	Select Object
	Value Type
	Tokens
	This action causes an object in the destination data store to be renamed. The target object is the current object, a DN, or an association.

	Example
	Fields
	Mode
	Object
	String
	This action causes all elements that are children of the current operation with the specified attribute equal to the name specified, to have the specified attribute set to the destination attribute name.

	Example
	Fields
	Source Name
	Destination Name
	This action causes an object in the source data store to be renamed to the specified name. The target object is the current object, a DN, or an association.

	Example
	Fields
	Select Object
	String
	This action causes an e-mail notification to be sent to the specified server. Optional credentials for authentication to the SMTP server are provided in the id and password.

	Example
	Fields
	ID
	Server
	Password
	Type
	Strings
	This action causes an e-mail notification to be generated using a SMTP notification configuration object, e-mail template object and replacement tokens.

	Example
	Fields
	Notification DN
	Template DN
	Password
	Strings
	This action causes the values specified to be added to the current operation, for the named attribute, if no values for that att...

	Example
	Fields
	Attribute Name
	Write Back
	Values
	This action causes the specified value to be added to the named attribute on an object in the destination datastore, and all other values for that attribute to be removed. The target object is the current object, a DN, or an association.

	Example
	Fields
	Attribute Name
	Class Name
	Mode
	Object
	Value Type
	Tokens
	This action causes the specified value to be set as the password for the current object in the destination data store.

	Example
	Fields
	Mode
	String
	This action causes a local variable with the given name to be set to the string value specified, the XPATH 1.0 Node Set specified, or the Java* object specified.

	Example
	Fields
	Variable Name
	Variable Type
	This action causes the association value for the current operation to be set to the specified value.

	Example
	Fields
	Association
	This action causes the object class name for the current operation to be set to the specified value.

	Example
	Fields
	String
	This action causes the destination DN for the current operation to be set to the specified value.

	Example
	Fields
	DN
	This action creates an operation property with the specified name and value on the current operation. An operation property is a...

	Example
	Fields
	Property Name
	String
	This action causes the source DN for the current operation to be set to the specified value.

	Example
	Fields
	DN
	This action causes the template DN for the current operation to be set to the specified value. This action is only valid when the current operation is add.

	Example
	Fields
	DN
	This action causes the specified value to be added to the named attribute on an object in the source data store, and all other values for that attribute to be removed. The target object is the current object, a DN, or association.

	Example
	Fields
	Attribute Name
	Class Name
	Object
	Value Type
	Tokens
	This action causes the specified value to be set as the password for the current object in the source data store.

	Example
	Fields
	String
	This action causes a custom XML attribute named by the name attribute to be set on the set of elements selected by the XPATH expression.

	Example
	Fields
	Name
	XPATH Expression
	String
	This action causes a status notification to be generated with the specified level and message.

	Example
	Fields
	Level
	Message

	Remarks
	This action causes all elements that are children of the current operation with the specified attribute name equal to the name specified to be stripped from the current operation.

	Example
	Fields
	Name
	This action causes nodes selected by the XPATH 1.0 expression to be removed from the current operation. The expression must evaluate to a node-set.

	Example
	Fields
	XPATH Expression
	This action sends the specified string to DSTRACE in the selected color. In order for the message to appear, the specified trace level must be less than or equal to the currently selected level in DSTRACE.

	Example
	Fields
	Level
	Color
	String
	This action causes the current operation to be cancelled.

	Example
	This action causes the current operation to be cancelled if the specified attribute is not available in the current operation.

	Example
	Fields
	Name

	Nouns
	This noun expands to the value(s) of the named entitlement added in the current operation.
	Example
	Fields
	Name
	This noun expands to the association value specified in the current operation.

	Example
	This noun expands to the value of the specified attribute in the current operation.

	Example
	Fields
	Name
	This noun expands to the object class name specified in the current operation.

	Example
	This noun expands to the specified attribute value.

	Example
	Fields
	Class Name
	Name
	This noun expands to the destination DN specified in the current operation or a portion thereof.

	Example
	Fields
	Convert
	Start
	Length

	Remarks
	This expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in the current operation.

	Example
	This noun expands to the value(s) of the named entitlement for current object.

	Example
	Fields
	Name
	This noun expands to the value of the specified global configuration variable.

	Example
	Fields
	Name
	This noun expands to the value of the named local variable.

	Example
	Fields
	Name
	This noun expands to the named password from the driver.

	Example
	Fields
	Name
	This noun expands to the name of the current operation.

	Example
	This noun expands to the value of the specified attribute from the current operation (add attribute, add value, or attribute).

	Example
	Fields
	Name
	This noun expands to the value of the specified operation property on the current operation.

	Example
	Fields
	Name
	This noun expands to the password specified in the current operation.

	Example
	This noun expands to the specified attribute value being removed in the current operation (remove attribute).

	Example
	Fields
	Name
	This noun expands to the value(s) of the named entitlement removed in the current operation.

	Example
	Fields
	Name
	This noun expands to the specified attribute values from the current object, a DN, or association, in the source data store.

	Example
	Fields
	Class Name
	Name
	This noun expands to the source DN specified in the current operation, or a portion thereof.

	Example
	Fields
	Convert
	Start
	Length

	Remarks
	This expands to the unqualified Relative Distinguished Name (RDN) of the source DN specified in the current operation.

	Example
	This noun expands to the specified text.

	Example
	Fields
	Text
	This noun expands to a pattern-based name that is unique in the destination data store according to the criteria specified.

	Example
	Fields
	Name
	Scope
	Start Search
	Pattern
	Counter Start
	Digits

	Remarks
	This noun expands to the portion of the source DN in the current operation that corresponds to the part of the DN that was not m...

	Example
	Fields
	Convert

	Remarks
	This noun expands to results of evaluating an XPATH 1.0 expression.

	Example
	Fields
	Expression

	Verbs
	This verb escapes the enclosed values according to the rules of the destination DN format.
	Example
	This verb escapes the enclosed values according to the rules of the source DN format.

	Example
	This verb converts enclosed nouns and verbs to lower case.

	Example
	This noun expands to a version of the DN specified by expansion of the concatenation of the enclosed tokens.

	Example
	Fields
	Destination DN Delimiter
	Destination DN Format
	Length
	Source DN Delimiter
	Source DN Format
	Start

	Remarks
	This verb replaces all occurrences of the specified regular expression on all enclosed nouns and verbs.

	Example
	Fields
	Regular Expression
	Replace With

	Remarks
	This verb replaces the first occurrence of the specified regular expression.

	Example
	Fields
	Regular Expression
	Replace With

	Remarks
	This verb expands to string containing the number of characters specified in the Length field. Enclosed nouns and verbs are concatenated before the substring verb is applied.

	Example
	Fields
	Start
	Length
	This verb converts enclosed nouns and verbs to upper case.

	Example

	Values
	Comparison Modes
	3 Defining Policies using XSLT Style Sheets

	Managing XSLT Style Sheets in iManager
	Adding an XSLT Policy
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the policy you want to define.
	3 Click Insert.
	4 Enter a name for the new policy, select XSLT, then click enter.
	5 Define your XSLT policy, then click OK:

	Restrictions
	Matching Rule Restrictions
	Create Rule Restrictions
	Placement Rule Restrictions

	Starting with an Identity Transformation
	Using the Parameters that DirXML Passes
	1. Queries issued to the application shim must be in the form expected by the application shim. In other words, schema names mus...
	2. Responses from the application shim will be in the form returned by the shim with no modification or schema mapping performed and no resolution of association refs.
	3. Queries issued to NDS must be in the form expect by NDS. In other words schema names must be in the NDS namespace and the query must be XDS. Association refs will not be resolved.
	4. Responses from the application shim will be in the form returned by the shim with no modification or schema mapping performed.
	Query Processors
	Command Parameters

	Using Extension Functions
	Testing Style Sheets Outside of DirXML
	Creating a Password Example: Create Rule
	Creating an eDirectory User Example: Create Rule
	4 Defining Filters

	Filter Tasks
	Managing Filters
	1 In iManager, expand the DirXML Management Role, then click Overview.
	2 Specify a driver set.
	3 Click the driver for which you want to manage filters. The DirXML Driver Overview opens:
	4 Filters are managed from the DirXML Driver Overview.

	Viewing and Modifying Filters
	1 Open the DirXML Driver Overview for the driver you want to manage.
	2 Click the icon representing the filter you want to define on the publisher or subscriber channel.
	3 The Filter window opens, displaying the currently defined filter. Use the Filter window to modify the filter. Click the help icon in the filter window for additional information.

