
n

NDK: LDAP Libraries for C#
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
M a r c h 1 , 2 0 0 6

L D A P L I B R A R I E S F O R C #

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please
refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc., in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc., in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 9

1 Getting Started 11
1.1 Dependencies . 11
1.2 Supported Platforms . 11
1.3 Using Novell.Directory.Ldap on Windows . 12
1.4 Using Novell.Directory.Ldap on Linux . 13
1.5 Integrating SSL with LDAP Libraries for C#. 13

1.5.1 Setting Up the LDAP Server . 14
1.5.2 Setting Up the .NET Client Application . 14
1.5.3 Integrating the LDAP Libraries for C# . 15

1.6 Sample Code . 15
1.7 LDAP Test Server . 15

2 Concepts 17
2.1 Knowing the LDAP Model . 17
2.2 How to Use LDAP Libraries for C# . 18
2.3 LDAP Libraries for C# Namespaces . 18

2.3.1 Novell.Directory.Ldap . 18
2.3.2 Novell.Directory.Ldap.Asn1. 18
2.3.3 Novell.Directory.Ldap.Controls . 19
2.3.4 Novell.Directory.Ldap.Extensions . 19
2.3.5 Novell.Directory.Ldap.Rfc2251 . 19
2.3.6 Novell.Directory.Ldap.Utilclass . 19

2.4 LDAP Directory Access Methods. 20
2.4.1 Error Handling . 20

2.5 Using the LDAP Classes . 21
2.5.1 LDAP Connections . 21
2.5.2 Using Synchronous or Asynchronous Functions. 21
2.5.3 Clear Text vs. Encrypted Passwords . 22
2.5.4 Using Constraints to Control Operations. 22
2.5.5 LDAP URLs . 22
2.5.6 Using LDAP URLs When Handling Referrals . 23
2.5.7 LDAP Messages . 23

2.6 Exception Handling . 23
2.6.1 Synchronous Methods. 24
2.6.2 Asynchronous Methods. 24
2.6.3 Referral Exceptions . 24

3 Tasks 27
3.1 Binding an Entry to an LDAP Server . 27
3.2 Searching the Directory . 28

3.2.1 Specifying Search Parameters . 28
3.2.2 Getting Search Results . 32

3.3 Creating an Entry in the Directory . 34
3.4 Modifying Entry Properties. 35
3.5 Renaming an Entry . 36
7

8 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
3.6 Moving an Entry . 36
3.7 Deleting an Entry . 37

4 Referral Handling in LDAPv3 39
4.1 Configuring eDirectory to Return Complete Data . 39
4.2 Configuring eDirectory to Return Referrals . 39
4.3 Enabling Referral Handling in the Application . 39
4.4 Following Referrals Using Synchronous Requests . 40

4.4.1 Following Referrals Manually . 40
4.4.2 Following Referrals Automatically as Anonymous . 40
4.4.3 Following Referrals Automatically with Authentication. 40

5 Controls and Extensions 43
5.1 Supported Controls. 43
5.2 Supported Extensions . 45

6 LDAP Event Services 49
6.1 Concepts . 49

6.1.1 Configuring the eDirectory Event System . 49
6.1.2 Monitoring the eDirectory Events . 49

6.2 Event Types . 54
6.2.1 Entry Events. 55
6.2.2 Value Events . 55
6.2.3 Debug Events. 55
6.2.4 General DS Events . 59
6.2.5 Events Without Data . 71
6.2.6 Bindery Events . 72
6.2.7 Security Equivalence Event . 72
6.2.8 Module State Events . 72
6.2.9 Network Address Events . 72
6.2.10 Connection Change Events . 73
6.2.11 Change Server Address. 73

6.3 Classes. 73
6.3.1 Entry Events. 73
6.3.2 Value Events . 74
6.3.3 Debug Events. 75
6.3.4 General DS Events . 77
6.3.5 Bindery Events . 78
6.3.6 SecurityEquivalence Event . 78
6.3.7 Module State Events . 79
6.3.8 Network Address Event . 79
6.3.9 Connection Change Event . 80

A Revision History 83
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
About This Guide

LDAP libraries for C# enable you to write applications for accessing, managing, and updating
information stored in Novell® eDirectoryTM or other LDAP compliant directories.

This guide consists of the following sections:

• Getting Started
• Concepts
• Tasks
• Referral Handling in LDAPv3
• Controls and Extensions
• LDAP Event Services
• Revision History

Audience

This guide is intended for C# developers who desire to write applications to access, manage, update,
and search for information stored in Novell eDirectory and other LDAP-aware directories.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comment feature at the bottom of each page of the
online documentation.

Additional Information

For additional information, see the following resources:

• Novell eDirectory and LDAP Information:
• NDK: Novell eDirectory Technical Overview
• NDK: LDAP and eDirectory Integration

Documentation Updates

For the most recent version of this guide, see the LDAP Libraries for C# NDK page (http://
developer.novell.com/ndk/ldapcsharp.htm).

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path. A trademark symbol (®, TM, etc.) denotes a Novell trademark. An
asterisk (*) denotes a third-party trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* and UNIX*, should use forward slashes as required by your software.
9

http://developer.novell.com/ndk/ldapcsharp.htm

10 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 Libraries for C#

1
novdocx (E

N
U

) 01 February 2006
1Getting Started

This section contains information about how to set up your development environment for using the
Novell.Directory.Ldap namespace. For conceptual information, refer to Chapter 2, “Concepts,” on
page 17.

The following sections cover a few basic requirements for getting set up and started with the LDAP
Libraries for C#:

• Section 1.1, “Dependencies,” on page 11
• Section 1.2, “Supported Platforms,” on page 11
• Section 1.3, “Using Novell.Directory.Ldap on Windows,” on page 12
• Section 1.4, “Using Novell.Directory.Ldap on Linux,” on page 13
• Section 1.5, “Integrating SSL with LDAP Libraries for C#,” on page 13
• Section 1.6, “Sample Code,” on page 15
• Section 1.7, “LDAP Test Server,” on page 15

1.1 Dependencies
You need the following to take full advantage of the functionality offered in the classes:

Novell® eDirectoryTM

• Novell eDirectory 8.5 or higher to develop or run applications using the extensions for
naming context and replica management.

• Novell eDirectory 8.7 or higher if you wish to develop or run applications that start/stop
Transport Layer Security (TLS).

For Windows*:
To use Novell.Directroy.Ldap on the Windows OS, you need to setup your Microsoft* .NET
project using Novell.Directory.Ldap.
You need mono.security.dll, if the setup is Microsoft* .NET on the Windows OS. You can
download MonoTM from http://www.mono-project.com/downloads (http://www.mono-
project.com/downloads) and copy mono.security.dll to an appropriate location in your project.
For Linux*:
To use Novell.Directroy.Ldap on Linux, you need to have Mono® (compiler, runtime and class
libraries) installed on your Linux box. You can download Mono from http://www.mono-
project.com/downloads/ (http://www.mono-project.com/downloads).

1.2 Supported Platforms
The LDAP Libraries for C# SDK enables application developers to write applications to access,
manage, update and search for information stored in eDirectory and other LDAP-aware directories.
Getting Started 11

http://www.mono-project.com/downloads
http://www.mono-project.com/downloads
http://www.mono-project.com/downloads

12 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
Client applications remotely access directory information stored on an LDAP server. The libraries
currently support development of such applications on the following platforms:

• Windows NT* Server 4.0 with SP 4 (with .NET framework installed)
• Linux (tested on Red Hat* 9.0)

1.3 Using Novell.Directory.Ldap on Windows
To use Novell.Directory.Ldap on Windows:

1 Download the Novell.Directory.Ldap.dll file from http://forge.novell.com/
modules/xfmod/project/?ldapcsharp (http://forge.novell.com/modules/xfmod/project/
?ldapcsharp) if you don't have it.

2 Copy Novell.Directory.Ldap.dll and mono.security.dll to an appropriate
location in your project.

3 Start Visual Studio .NET.
4 Select File > New > Project.
5 In the Project Type column, select the project type to create C#.
6 In the Template column, select a project template (like Console Application, Windows

Application).
7 Enter a name for your project.
8 Click OK to create your new project.
9 Select Project > Add reference > Browse.

10 In Browse, select Novell.Directory.Ldap.dll and mono.security.dll from the
location you copied in Step 2.

Figure 1-1 Windows Setup: Adding a Reference
 Libraries for C#

http://forge.novell.com/modules/xfmod/project/?ldapcsharp
http://forge.novell.com/modules/xfmod/project/?ldapcsharp

novdocx (E
N

U
) 01 February 2006
11 Click OK to Add Reference.
12 Add the following line to your code:

using Novell.Directory.Ldap;

1.4 Using Novell.Directory.Ldap on Linux
To use Novell.Directory.Ldap:

1 Download the Novell.Directory.Ldap.dll file from http://forge.novell.com/modules/
xfmod/project/?ldapcsharp (http://forge.novell.com/modules/xfmod/project/?ldapcsharp) if
you don't have it.

2 Copy Novell.Directory.Ldap.dll to an appropriate location in your project.
3 Set the directory containing Novell.Directory.Ldap.dll in your MONO_PATH

variable as follows:

Figure 1-2 Linux Setup

4 In your project makefile set reference to Novell.Directory.Ldap.dll using
/r:/home/project/lib/Novell.Directory.Ldap.dll

5 Add the following line to your code:
Using Novell.Directory.Ldap;

NOTE: Adding the namespace using statement to your code is unnecessary, but can simplify object
names. If you do not add this statement, then you must declare an object as
Novell.Directory.Ldap.LdapConnection, instead of LdapConnection.

1.5 Integrating SSL with LDAP Libraries for C#
The LDAP libraries for C# perform their own authentication. To authenticate using SSL, the LDAP
server must have a certificate to use with SSL, the .NET client must have a place to store the
certificates, and the LDAP library must be set up to use SSL.

Thus to integrate SSL with the LDAP libraries for C#, you need to do the following:

• Section 1.5.1, “Setting Up the LDAP Server,” on page 14
• Section 1.5.2, “Setting Up the .NET Client Application,” on page 14
• Section 1.5.3, “Integrating the LDAP Libraries for C#,” on page 15
Getting Started 13

http://forge.novell.com/modules/xfmod/project/?ldapcsharp
http://forge.novell.com/modules/xfmod/project/?ldapcsharp

14 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
1.5.1 Setting Up the LDAP Server
To set up the LDAP server:

• Set up a digital certificate from a certificate authority.
See the documentation on Novell Certificate Server Version 1 (http://developer.novell.com/
ndk/doc/ncslib/npkitenu/data/h1axgumd.html), for information on setting up a certificate on
the Netware server.

• Configure the LDAP server to use the certificate in ConsoleOne.
 For instructions on this configuration, see Configuring LDAP Services for eDirectory (http://
support.novell.com/techcenter/articles/dnd19981101.html) in the November 1998 issue of
Novell Developer Notes.

1.5.2 Setting Up the .NET Client Application
You need to set up the .NET client application to store the certificates in a Mono Trust Store. Before
setting up the trust store, ensure that you have:

• Mono Security Library, that is, Mono.Security.dll
• KeyStore for storing root certificates

On Linux, Mono.Security.dll and certmgr.exe utility are installed by default with the Mono
packages.

On Windows, you need to install Mono.Security.dll and certmgr.exe (http://www.mono-
project.com/about) . You also need to set the location in your .NET client application path.

Mono.Security.dll and the certmgr utility are used to create a Mono Trust Store that contains
the server certificate.

Creating the Mono Trust Store

To create a trust store using Mono certmgr utility:

1 From ConsoleOne, create a trusted root certificate (a .der file).
2 Export the trusted root certificate to your local disk.
3 Rename the file
[trusted root certificate].der

to
[trusted root certificate].cer

This is because Mono currently does not recognize the .der extension.
4 Use the certmgr.exe utility to create a trust store file. If /home/exports/
TrustedRootCert.cer is the certificate filename, the command would be as follows:
certmgr -add -c Trust /home/exports/TrustedRootCert.cer

5 The certificate will be added to the Mono Trust Store location which you can find at:
~/.mono/certs/Trust directory
 Libraries for C#

http://developer.novell.com/ndk/doc/ncslib/npkitenu/data/h1axgumd.html
http://support.novell.com/techcenter/articles/dnd19981101.html
http://www.mono-project.com/about

novdocx (E
N

U
) 01 February 2006
NOTE: The format and location of the trust store depends upon Mono releases. You should use
certmgr tool to interact safely with the certificate stores. To get more information about
certmgr, refer to the certmgr manpage.

1.5.3 Integrating the LDAP Libraries for C#
To integrate the Mono Security Library with the LDAP libraries for C#, set the SecureSocketLayer
Property to true, after creating LdapConnection instance, as follows:

LdapConnection conn= new LdapConnection();conn.SecureSocketLayer=true;

For an example of setting up a .NET client to use SSL, see SecureBind.cs in the LDAP libraries for
C# samples.

1.6 Sample Code
The LDAP Libraries for C# contain a number of samples demonstrating common operations. These
samples are available on the Web (http://forge.novell.com/modules/xfmod/project/?ldapcsharp), or
on the local drive once they have been installed.

1.7 LDAP Test Server
Novell has set up an LDAP server that you can access over the Internet to test your LDAP
application. The server’s name is www.nldap.com, and it listens on the default LDAP port (389). To
use authenticated access, you must set up your own account in your own eDirectory container. Your
account is limited to 1MB of disk storage.

To access this site, go to the NDS/LDAP Services Access Test Site (http://www.nldap.com/
NLDAP).
Getting Started 15

http://forge.novell.com/modules/xfmod/project/?ldapcsharp
http://www.nldap.com/NLDAP

16 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 Libraries for C#

2
novdocx (E

N
U

) 01 February 2006
2Concepts

LDAP libraries for C# enable you to write applications for accessing, managing, and updating
information stored in Novell® eDirectoryTM or other LDAP compliant directories.

This chapter consists of the following sections:

• Section 2.1, “Knowing the LDAP Model,” on page 17
• Section 2.2, “How to Use LDAP Libraries for C#,” on page 18
• Section 2.3, “LDAP Libraries for C# Namespaces,” on page 18
• Section 2.4, “LDAP Directory Access Methods,” on page 20

2.1 Knowing the LDAP Model
Lightweight Directory Access Protocol (LDAP) is described in RFC 2251-2256 and RFC 2829-
2830. It defines a lightweight access mechanism in which clients send requests to and receive
responses from LDAP servers.

The LDAP information model comes from X.500 and is based on the entry, which contains
information about some object (for example, a person). Entries are composed of attributes, which
have a type and one or more values. Each attribute has a syntax that determines what kinds of values
are allowed in the attribute (for example, ASCII characters, a JPEG photograph, etc.) and how those
values behave during directory operations (for example, case significant during comparisons).

Entries can be organized in a tree structure, usually based on political, geographical, and
organizational boundaries. Other structures are possible, including a flat namespace. Each entry is
uniquely named relative to its sibling entries by its relative distinguished name (RDN) consisting of
one or more distinguished attribute values from the entry. At the most, one value from each attribute
may be used in the RDN. For example, the entry for the person “James Smith” might be named with
the “Jonathan Smith” value from the CN (commonName) attribute.

A globally unique name for an entry, called a distinguished name or DN, is constructed by
concatenating the sequence of RDNs from the entry up to the root of the tree. For example, if James
worked for the Novell Inc., the DN of his Novell entry might be “cn= Jonathan
smith,o=Novell,c=US”. The DN format used by LDAP is defined in RFC2253.

Operations are provided to authenticate, search and retrieve information, modify, add and delete
entries from the tree.

An LDAP server may return referrals if it cannot completely service a request (for example if the
request specifies a directory base outside of the tree managed by the server).

The LDAP libraries for C# offers a programmer the following options:

• Catch the referrals as exceptions and explicitly issue new requests to the referred-to servers
• Provide an object to establish a new connection to a referred-to server
• Let the library automatically follow the referrals
Concepts 17

18 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
2.2 How to Use LDAP Libraries for C#
An application generally uses the following procedure to utilize LDAP libraries for C#:

1 SSL Integration: Integrate the Mono Security Library with the LDAP libraries for C#. For
integrating instructions, refer to Section 1.5.3, “Integrating the LDAP Libraries for C#,” on
page 15.

2 Establish an LDAP Connection: Initialize an LDAP session with a directory server. The
LdapConnection.Connect() call establishes a handle to the session, allowing multiple sessions
to be open at the same time, on different instances of LdapConnection.

3 Authenticate to the LDAP Server: Authenticate to the LDAP server with
LdapConnection.Bind().

4 Perform LDAP Operations and Obtain Results: The synchronous version of
LdapConnection.Search() returns an LdapSearchResults, which can be enumerated to access
all entries found. The asynchronous version of LdapConnection.Search() returns an
LdapSearchQueue, which is used to read the results of the search. LdapConnection.Read()
returns a single entry.

5 Close the Connection: Close the connection. The LdapConnection.Disconnect() call closes
the connection.

2.3 LDAP Libraries for C# Namespaces
The LDAP libraries for C# developer kit is released under the Novell.Directory.Ldap namespace
and all the class files under this namespace are further divided into the six different namespaces:

• Section 2.3.1, “Novell.Directory.Ldap,” on page 18
• Section 2.3.2, “Novell.Directory.Ldap.Asn1,” on page 18
• Section 2.3.3, “Novell.Directory.Ldap.Controls,” on page 19
• Section 2.3.4, “Novell.Directory.Ldap.Extensions,” on page 19
• Section 2.3.5, “Novell.Directory.Ldap.Rfc2251,” on page 19
• Section 2.3.6, “Novell.Directory.Ldap.Utilclass,” on page 19

2.3.1 Novell.Directory.Ldap
Allows you to manage entries and schema definitions on LDAPv3 compliant servers. It provides
classes for the core C# LDAP library, which is most frequently used by applications. These classes
are based on Internet drafts maintained by IETF.

NOTE: The schema functionality is yet to be implemented in the .NET C# Library.

2.3.2 Novell.Directory.Ldap.Asn1
Allows you to encode and decode Abstract Syntax Notation One (ASN.1) object types using Basic
Encoding Rules (BER).

ASN.1 is the language used by the OSI protocols for describing abstract syntax. ASN.1 is defined in
ISO documents 8824.2 and 8825.2.
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
BER is historically the original encoding rules for ASN.1.

The LDAP protocol uses the BER encoding format and Novell.Directory.Ldap.Asn1 includes
classes that allow ASN.1 to be encoded and decoded into the BER format. However, the classes
have been built to be flexible enough to allow an application to provide its own ASN.1 encoder
class. This class could encode data into any encoding format. For example, a particular application
might want to use Packed Encoding Rules (PER) to encode the supported ASN.1 objects. This
application would have to supply its own PER encoder and PER decoder classes. These application-
provided classes will need to implement the ASN1Encoder and ASN1Decoder interfaces defined in
this package.

NOTE: LDAP uses BER encoding and the Novell provided namespace already includes a
BEREncoder and BERDEcoder class. These classes can be used by third party developers who wish
to develop new LDAP controls or extensions. These classes could also be used by an arbitrary .NET
C# application that wishes to encode and decode data as defined in the ASN.1 format.

2.3.3 Novell.Directory.Ldap.Controls
Provides classes for using LDAP controls. This namespace uses LDAP controls that are supported in
LDAPv3. The use of these controls requires an LDAP server that supports them.

2.3.4 Novell.Directory.Ldap.Extensions
Provides classes for using the Novell LDAP extensions that manage replicas, naming contexts, and
the synchronization of replicas and the schema. This namespace uses LDAP extensions that are
supported in LDAPv3. These extensions require the LDAP server to run on eDirectory.

2.3.5 Novell.Directory.Ldap.Rfc2251
Provides classes that represent protocol elements as defined by the IETF LDAP RFC 2251. This
namespace is designed to work on LDAPv3 servers. It does not support the T.61 character set used
by the LDAPv2 protocol.

2.3.6 Novell.Directory.Ldap.Utilclass
Provides utility classes for use by LDAP applications. This namespace includes the DN class and
RDN class supporting DN and RDN encapsulation respectively. It also provides classes perform
client functions related to the LDAP protocol. This package is designed to work on LDAPv3
servers. It does not support the T.61 character set used by the LDAPv2 protocol.

The central LDAP class is LdapConnection. It provides methods to establish an authenticated or
anonymous connection to an LDAP server, as well as methods to search for, modify, compare, and
delete entries in the directory.

The LdapConnection class also provides fields for storing settings that are specific to the LDAP
session (such as, limits on the number of results returned or timeout limits). An LdapConnection
object can be cloned, allowing objects to share a single network connection but use different settings
(using LdapConstraints or LdapSearchConstraints).

A synchronous search conducted by an LdapConnection object returns results in an
LdapSearchResults object, which can be enumerated to access the entries found. Each entry
Concepts 19

20 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
(represented by an LdapEntry object) provides access to the attributes (represented by LdapAttribute
objects) returned for that entry. Each attribute can produce the values found as byte arrays or as
Strings.

2.4 LDAP Directory Access Methods
The LDAP protocol provides synchronous as well as asynchronous directory access methods.

Synchronous methods do not return until the operation has completed. To facilitate user feedback
during synchronous searches, intermediate search results can be obtained before the entire search
operation is completed by specifying the number of entries to return at a time.

Asynchronous methods take a MessageQueue parameter (either LdapResponseQueue or
LDAPSearchQueue) and return a MessageQueue object which is used to enumerate the responses
from the server. MessageQueue is associated with the request, and it is the responsibility of the
client to read the messages from the queue and process them. A loop is typically used to read from
the MessageQueue object, which blocks until there is a response available, until the operation has
completed.

An LdapResponseQueue can be shared between operations, for multiplexing the results. In this case,
the object returned on one operation is passed in to one or more other operations, rather than passing
in null.

For the asynchronous methods, exceptions are raised only for connection errors. LDAP result
messages are converted into LdapResponse objects, which are to be checked by the client for errors
and referrals, whereas, the synchronous methods throw an LdapException on result codes other than
0.

An asynchronous search conducted by an LdapConnection object returns results through the
getResponse method of the LdapSearchQueue returned by the search operation. The getResponse
method typically returns an LdapSearchResult object which has an Entry Property that returns the
LdapEntry that represents the search entry.

None of the ancillary asynchronous classes are intended to be instantiated by a client, so they lack
public constructors.

2.4.1 Error Handling
Errors result in the throwing of an LdapException, with a specific error code and context-specific
textual information available.

If null is passed as the value of an LdapConstraints or LdapSearchConstraints parameter to an
operation, the default constraints are used for that operation.

If null is passed as the value of a DN to an operation it is treated as if it was the empty string.

The API doesn’t distinguish between LDAP search continuation references and LDAP referrals,
presenting a unified interface to the client for handling the two.

Messages Retrieved From Result Objects Derived From

LdapResponseQueue LdapResponse

LdapSearchQueue LdapResponse, search results, or search result references.
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
Implementations of the API must ensure that the LdapConnection class is thread-safe. Other classes
and methods can be thread-safe and the implementor must indicate which classes and methods are
thread-safe.

2.5 Using the LDAP Classes
This section contains general information that is helpful to understand before you begin developing
with the LDAP Classes for C#. This section contains information on LDAP connections,
asynchronous and synchronous methods, constraints, LDAP messages, and LDAP URLs. The
namespace used in the C# LDAP SDK is Novell.Directory.Ldap.

2.5.1 LDAP Connections
The central LDAP class is an LdapConnection. This class provides methods to establish an
authenticated or anonymous connection to an LDAP server, as well as methods to search for,
modify, compare, and delete entries in the directory.

The following code demonstrates the use of an LdapConnection object to connect to an LDAP
server:

String ldapHost = "localhost";
int ldapPort = 389;
LdapConnection ldapConn = new LdapConnection();
ldapConn.Connect(ldapHost, ldapPort);

These four lines use the LdapConnection object to create an anonymous connection to the LDAP
server specified by ldapHost, and the port specified by ldapPort. At this point, you may authenticate
to the server using the bind method, or perform another operation.

The LdapConnection class also provides methods for managing settings that are specific to the
LDAP session (such as limits on the number of results returned or time-out limits). An
LdapConnection object can be cloned, allowing objects to share a single network connection in a
thread-safe manner.

2.5.2 Using Synchronous or Asynchronous Functions
Blocking versus Non-Blocking: The LDAP protocol provides both synchronous and asynchronous
functions. For the synchronous search methods you can set the batch size parameter for functionality
similar to the asynchronous search methods.

Asynchronous Functions

Asynchronous functions do not block, they return immediately after initiating the operation. One of
the Listener class functions is used to retrieve the results.

Synchronous Functions

Synchronous functions with batch size of zero block until all the results have been received from the
server. Synchronous search functions with batch size = n: (non-zero) Block until "n" messages have
been received from the server, then let enumeration proceed while queuing additional messages.
Concepts 21

22 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
The default value of the batch size parameter is 1. Thus by default, an enumeration of search results
from a synchronous search operation will return messages as they are received from the server. The
enumeration will block if no messages are waiting.

Other differences between asynchronous and synchronous operations are detailed in the operation-
specific sections, such as exception handling and referral handling.

2.5.3 Clear Text vs. Encrypted Passwords
Before you can make a non-encrypted connection, the LDAP server must be configured to allow the
clear-text passwords.

2.5.4 Using Constraints to Control Operations
LDAP constraints are used to control LDAP operations, allowing you to control the way in which
operations are performed. Using constraints you can, for example, enable referral handling, set
referral hop limits, and set controls to be sent to the server.

2.5.5 LDAP URLs
LDAP URLs provide a uniform method to access information on an LDAP server. Defined in RFC
2255, LDAP URLs begin with the prefix LDAP:// or LDAPS://. The following provides the
syntax and descriptions of an LDAP URL.

ldap[s]://<hostname>:<port>/
<base_dn>?<attributes>?<scope>?<filter>?<extension>

Note that ldaps is a common enhancement used to denote SSL, and is not defined in an RFC.

Table 2-1 Field Descriptions of an LDAP URL

NOTE: An attribute list is required if you want to provide a scope (even if the attribute list is blank).
To return all attributes within a specific scope you must include <base_dn>??<scope>.

The SDK provides an LdapUrl class to handle LDAP URLs. This class has methods to store, parse,
and manage LDAP URLs.

URL Element Default Value Description

hostname None DNS name or IP address of the LDAP server

port 389 Port of the LDAP server.

base_dn root Base DN for the LDAP operation.

attributes all attributes A comma delimited list of attributes to return.

scope base Search scope.

filter (objectClass=*) Search filter.

extension none LDAP extended operations.
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
2.5.6 Using LDAP URLs When Handling Referrals
If you receive an LdapReferralExeption, you can retrieve a list of referral URLs using the
LdapReferralException.getReferrals method. This method returns an array of LDAP URL Strings,
which can be converted to LDAPUrls and passed directly to LDAP searches, or can be examined to
determine whether or not you wish to follow the referrals.

2.5.7 LDAP Messages
The LdapMessage class represents the base class for LDAP response messages for asynchronous
commands.

For all asynchronous operations you are returned a listener object. Methods of this listener object
return an LdapResponse (a subclass of LdapMessage), which contains the result of the operation.

When performing an asynchronous search, a number of LdapMessage objects are returned. These
messages can be one of three sub-types:

• LdapSearchResult represents an entry returned from your search.
• LdapSearchResultReference contains a search result reference (referral information) to

continue your search
• An LdapResponse, signals the end of the results.

In your code, you need to determine the message type and handle it appropriately.

For example, you could perform an asynchronous search and receive nine LDAP messages. Seven
of these could be LdapSearchResults, one could be an LdapSearchResultReference, and the last one
is an LdapResponse. In your code, you set up conditional statements to determine the message type
and handle it appropriately.

2.6 Exception Handling
There are two types of exceptions in the C# LDAP SDK:

• LdapException
• LdapReferralException

Most errors that occur throw an LdapException. An LdapException is a general exception
including an error message and an LDAP result code. An LdapException can result from physical
problems (such as network errors) as well as problems with LDAP operations (for example, if the
LDAP add operation fails because of a duplicate entry).

An LdapException can also contain a nested exception or a Throwable class with more information
about the cause of the error. To retrieve the nested exception or Throwable class, use
LdapException.getCause, which returns the lower-level exception which caused the failure. For
example, an IOException with additional information may be returned on a CONNECT_ERROR
failure. The various result codes returned from an LDAP request are defined as constants in the
LdapException class.

Depending whether you are using asynchronous or synchronous functions, exceptions are handled
differently. These differences are outlined in the following sections.
Concepts 23

24 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
2.6.1 Synchronous Methods
Synchronous methods throw an LdapException on result codes other than SUCCESS. This
eliminates the need to check for errors, therefore a standard try/catch statement can be used to
handle exceptions.

The following is an example using the LdapException.toString method to print error information:

try {
 [Attempt an LDAP operation]
}
catch(LdapException e) {
 Console.WriteLine("Error: " + e.ToString());
}

To facilitate user feedback during synchronous searches, intermediate search results can be obtained
before the entire search operation is completed by specifying the number of entries to return at a
time. By calling the LdapSearchConstraints.BatchSize property, you can set the number of results to
obtain before returning information back to the application. The default setting is 1, allowing results
to be obtained as they are received by the server. By setting the batch size to 0, you ensure all the
results have been received from the server and stored in local memory before returning to the
application. This will allow you to enumerate through the results without ever blocking

2.6.2 Asynchronous Methods
For the asynchronous methods, exceptions are thrown only for local or non-server errors, such as
connection errors or parameter errors. For server errors, LDAP result messages are returned as
LdapResponse objects which must be checked by the client for errors.

The following is an example of error handling with a failed asynchronous search.

NOTE: Before you check the response for an error message you need to determine which type of
LDAP message has been returned.

//previously determined that the message is an LdapResponse
if (message is LdapResponse)
{
 LdapResponse response = (LdapResponse) message;
 int status = response.getResultCode();
 if (status != LdapException.SUCCESS)
 {
 Console.WriteLine("Asynchronous search failed.");
 throw new LdapException(response.getErrorMessage(),
 status,
 response.getMatchedDN());
 }
}

2.6.3 Referral Exceptions
LdapReferralExceptions are encountered when performing synchronous LDAP operations. They are
derived from LdapException and contain a list of URL strings corresponding to referrals received on
an LDAP operation.
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
LdapReferralExceptions are thrown when referral handling is turned off in your application, or if the
API attempted to follow a referral and the referral could not be followed. For example, if you have
enabled automatic referral handling and the API throws an LdapReferralException, it means the
referral could not be followed and you most likely have incomplete results. The LdapReferral
exception will contain a list of LDAP URL strings the API attempted to follow.
Concepts 25

26 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 Libraries for C#

3
novdocx (E

N
U

) 01 February 2006
3Tasks

This section contains information about basic LDAP operations.

• Section 3.1, “Binding an Entry to an LDAP Server,” on page 27
• Section 3.2, “Searching the Directory,” on page 28
• Section 3.3, “Creating an Entry in the Directory,” on page 34
• Section 3.4, “Modifying Entry Properties,” on page 35
• Section 3.5, “Renaming an Entry,” on page 36
• Section 3.6, “Moving an Entry,” on page 36
• Section 3.7, “Deleting an Entry,” on page 37

3.1 Binding an Entry to an LDAP Server
The bind operation allows the entry to authenticate to the server. An entry in a directory is uniquely
identified using its distinguished name (DN). A client application can choose to bind to the directory
using an identity (DN and password) or anonymously. The C# code snippet below shows how to
bind a user entry to an LDAP server:

Anonymous Binding

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect (ldapHost,ldapPort);

//Bind function with null user dn and password value will perform
anonymous bind to LDAP server
ldapConn.Bind (null, null);

Binding Using an Identity

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will Bind the user object Credentials to the Server
ldapConn.Bind(userDN,userPasswd);
Tasks 27

28 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
3.2 Searching the Directory
To perform a search, your application must first bind to the LDAP server and then select the root
point in the directory (base object DN). For optimal performance, select a point that provides the
smallest result set.

The following diagram illustrates a search that selects the marketing container as the root point for
search. While setting up this search, decide on the type of object to search for and set up a search
filter for that type of object.

Figure 3-1 Search

3.2.1 Specifying Search Parameters
Searching is performed using the LdapConnection.Search function. When you perform an
LDAPsearch, you need to specify the following basic parameters:

• “Search Base” on page 28
• “Search Scope” on page 29
• “Search Filter” on page 29
• “Attribute List” on page 31
• “Types Only” on page 31

Search Base

The search base parameter specifies the DN of the entry where you want to begin the search, such as
ou=development, o=acme.

If you want the search to begin at the tree root pass an empty string.

Organization tree

Base DN of Search

ou=Marketing,o=org

Search Filter

(ObjectClass=*)

Search Scope

Base,OneLevel,SubTree

Attributes Returned

Sn,cn,title...

1

2

3

4

Search base

Search Parameters
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
NOTE: Beginning a search at the tree root is handled differently by the various LDAP server
implementations. If your search does not return results, read the root DSE to retrieve valid naming
contexts for a valid starting point.

Search Scope

The search scope parameter specifies the depth of the search and can be one of three values:

• SCOPE_BASE: Only the entry specified as the search base is included in the search. This is
used when you already know the DN of the object and you want to read its attributes. The read
method may also be used to read the values of a single entry.

• SCOPE_ONE: Objects one level below the base (but not including the base) are included in
the search. If we specified o=acme as our search base, then entries in the o=acme container
would be included, but not the object o=acme.

• SCOPE_SUB: All objects below the base, including the base itself, are included in the search.

Search Filter

The search filter defines the entries that will be returned by the search. The LDAP search filter
grammar is specified in RFC 2254 and 2251. The grammar uses ABNF notation. If you are looking
for all employees with a title of engineer, the search filter would be (title=engineer).

Search Filters

The LDAP search filter grammar is specified in RFC 2254 and 2251. The grammar uses ABNF
notation.

filter = " (" filtercomp ") "
filtercomp = and / or / not / item

and = "&" filterlist
 filterlist = 1*filter

or = "|" filterlist
 filterlist = 1*filter

not = "!" filterlist
 filterlist = 1*filter

item = simple / present / substring / extensible

simple = attr filtertype value
 attr = name | name;binary
 filtertype = equal / approx / greater / less
 value = data valid for the attribute's syntax

equal = "="
approx = "~="
greater = ">="
less = "<="

present = attr "=*"
Tasks 29

30 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 attr = name | name;binary

substing = attr "=" [initial] any [final]
 attr = name | name;binary
 initial = value
 any = "*" *(value "*")
 final = value

extensible = attr [":dn"] [":" matchingrule] ":="value
 / [":dn] ":" matchingrule ":=" value
 / matchingrule = name | OID

For additional options for the attr option, see Section 4.1.5 of RFC 2251.

For additional information on the value option, see Section 4.1.6 of RFC 2251.

IMPORTANT: Novell® eDirectoryTM does not support LDAP approximate (~=) matching or
extensible matching rules.

Operators

Table 3-1 LDAP Filter Operators

The following Boolean operators can be combined with the standard operators to form more
complex filters. Note that the Boolean operator syntax used is different in search filters than in the C
and Java programming languages, but they are conceptually similar.

Operator Description

= Used for presence and equality matching. To test if an attribute exists in the directory,
use (attributename=*). All entries that have the specified attribute will be returned. To
test for equality, use attributename=value. All entries that have attributename=value are
returned.

For example, (cn=Kim Smith) would return entries with Kim Smith as the common name
attribute. (cn=*) would return all entries that contained a cn attribute. The = operator can
also be used with wildcards to find a substring, (cn=*ary*) would return mary, hillary, and
gary.

>= Used to return attributes that are greater than or equal to the specified value. For this to
work, the matching rule defined by the attribute syntax must have defined a mechanism
to make this comparison.

For example, (cn>=Kim Smith) would return all entries from Kim Smith to Z.

<= Used to return attributes that are less than or equal to the specified value. For this to
work, the matching rule defined by the attribute syntax must have defined a mechanism
to make this comparison.

For example, (cn<=Kim Smith) would return all entries from A to Kim Smith.

~= Used for approximate matching. The algorithm used for approximate matching varies
with different LDAP implementations.
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
Table 3-2 LDAP Filter Boolean Operators

Examples

Operational Attributes

Operational attributes are not automatically returned in search results; they must be requested by
name in the search operation. For a list of supported operational attributes in Novell eDirectory 8.5,
see “LDAP Operational Attributes” in the LDAP and eDirectory Integration Guide. The LDAP
servers in releases previous to 8.5 do not support requesting operational attributes in a search
operation.

Attribute List

A null-terminated array of strings indicating which attributes to return for each matching entry.

Types Only

A Boolean specifying whether you want to return only the attribute names or the attribute types and
the attribute values.

Boolean Operators Description

& And. For example, (&(Kim Smith) (telephonenumber=555-5555)) would return
entries with common name of Kim Smith and a telephone number of 555-5555.

| Or. For example, (|(cn=Kim Smith)(cn=Kimberly Smith)) would return entries with
common name Kim Smith or Kimberly Smith.

! Not. For example, (!(cn=Kim Smith)) would return entries with any cn other than
Kim Smith. Note that the ! operator is unary, i.e. operates only on a single filter
expression.

Filter and Description

(cn = Kim Smith)

Returns entries with a common name of Kim Smith.

(&(cn=Kim Smith)(telephonenumber=555*)(emailaddress=*acme.com))

Returns entries with a common name of Kim Smith, a telephone number that starts with 555, and an
e-mail address that ends in acme.com

(!(cn = Chris Jones))

Returns entries that do not have a common name of Chris Jones.

(&(objectClass=inetOrgPerson) (| (sn=Smith) (cn=Chris S*)))

Returns entries that are of type inetOrgPerson with a surname of Smith or a common name beginning
with Chris S.

(&(o=acme)(objectclass=Country)(!(|(c=spain)(c=us))

Returns entries that are of type Country from the organization Acme, that are not countries spain or
us.
Tasks 31

32 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
3.2.2 Getting Search Results
Each result returned by the Search function is stored in a MessageQueue which can be retrieved
either in a synchronous way using LdapSearchResults class or in an asynchronous way using
LdapSearchQueue class.

The C# code snippet below shows how to do a synchronous and asynchronous search in a LDAP
server:

string searchBase = "ou=development,o=acme";
int searchScope = LdapConnection.SCOPE_BASE;
string searchFilter = "(title=engineer)";

Searching the Directory - Asynchronous

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will Bind the user object Credentials to theServer
ldapConn.Bind(userDN,userPasswd);

// Searches in the Marketing container and return all child entries
just below this container i.e Single level search

LdapSearchQueue queue=ldapConn.Search (searchBase,
LdapConnection.SCOPE_ONE, searchFilter,null,false,(LdapSearchQueue)
null,(LdapSearchConstraints)null);

LdapMessage message;
while ((message = queue.getResponse()) !=null)
{
 if (message is LdapSearchResult)
 {
 LdapEntry entry = (LdapSearchResult) message.Entry;
 System.Console.Out.WriteLine("\n" + entry.DN);
 System.Console.Out.WriteLine("\tAttributes: ");

 // Get the attribute set of the entry
 LdapAttributeSet attributeSet = entry.getAttributeSet();
 System.Collections.IEnumerator ienum =
attributeSet.GetEnumerator();

 // Parse through the attribute set to get the attributes and
the corresponding values
 while(ienum.MoveNext())
 {
 LdapAttribute attribute=(LdapAttribute)ienum.Current;
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
 string attributeName =attribute.Name;
 string attributeVal = attribute.StringValue;
 Console.WriteLine(attributeName + "value:" +
attributeVal);}}
 }

 //Procced

 //While all the required entries are parsed, disconnect
 ldapConn.Disconnect();

Searching the Directory - Synchronous

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will bind the user object Credentials to the Server
ldapConn.Bind(userDN,userPasswd);

// Searches in the Marketing container and return all child entries
just below this container i.e. Single level search

LdapSearchResults
lsc=ldapConn.Search("ou=Marketing,o=Sales",LdapConnection.SCOPE_ONE,"
objectClass=*",null,false);
while (lsc.hasMore())
{
 LdapEntry nextEntry = null;
 try
 {
 nextEntry = lsc.next();
 } catch(LdapException e)
 {
 Console.WriteLine("Error: " + e.LdapErrorMessage);
 //Exception is thrown, go for next entry
 continue;
 }

Console.WriteLine("\n" + nextEntry.DN);

// Get the attribute set of the entry
LdapAttributeSet attributeSet = nextEntry.getAttributeSet();
System.Collections.IEnumerator ienum = attributeSet.GetEnumerator();

// Parse through the attribute set to get the attributes and the
corresponding values
while(ienum.MoveNext())
{
Tasks 33

34 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 LdapAttribute attribute=(LdapAttribute)ienum.Current;
 string attributeName = attribute.Name;
 string attributeVal = attribute.StringValue;
 Console.WriteLine(attributeName + "value:" + attributeVal);}
}

//Procced

//While all the entries are parsed, disconnect
ldapConn.Disconnect();

3.3 Creating an Entry in the Directory
This section contains information about how to add a new entry inside a directory using classes
provided by Novell.Directory.Ldap namespace. To add a new directory entry, use the Add function
of LdapConnection class.

Adding an entry involves four steps:

1 Create the attributes of the entry and add them to an attribute set.
2 Specify the DN of the entry to be created.
3 Create an LdapEntry object with the DN and the attribute set.
4 Call the LdapConnection.Add method to add it to the directory.

The C# code fragments below shows how to add an entry using Novell.Directory.Ldap namespace:

Example

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will Bind the user object Credentials to the Server
ldapConn.Bind(userDN,userPasswd);

//Creates the List attributes of the entry and add them to attribute
set
LdapAttributeSet attributeSet = new LdapAttributeSet();
attributeSet.Add(new LdapAttribute("objectclass","inetOrgPerson"));
attributeSet.Add(new LdapAttribute("cn", new string[]{"James Smith",
"Jimmy Smith"}));
attributeSet.Add(new LdapAttribute("givenname", "James"));
attributeSet.Add(new LdapAttribute("sn", "Smith"));
attributeSet.Add(new LdapAttribute("mail", "JSmith@Acme.com"));

// DN of the entry to be added
string dn = "cn=KSmith," + containerName;
LdapEntry newEntry = new LdapEntry(dn, attributeSet);
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
//Add the entry to the directory
ldapConn.Add(newEntry);

3.4 Modifying Entry Properties
This section contains information about how to modify the attributes of an existing entry inside a
directory using classes provided by Novell.Directory.Ldap namespace. To modify the attributes of
an existing entry, use the Modify function of LdapConnection class.

Modifying an entry attributes involves three steps:

1 Create an LdapModification object for each of the attributes to be modified using an attribute
with a new value (in case of add/replace) and the modification type, for example, add, replace
or delete.

2 Create an LdapModification array with all the LdapModification objects created above.
3 Call the LdapConnection.Modify method to modify the entry attributes

Example

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will bind the user object Credentials to the server
ldapConn.Bind(userDN,userPasswd);

ArrayList modList = new ArrayList();
String desc = "This object belongs to test user";

// Add a new value to the description attribute
LdapAttribute attribute = new LdapAttribute("description", desc);
modList.Add(new LdapModification(LdapModification.ADD, attribute));

//Replace the existing email with the new email value
attribute = new LdapAttribute("mail", "James_Smith@Acme.com");
modList.Add(new LdapModification(LdapModification.REPLACE,
attribute));

LdapModification[] mods = new LdapModification[modList.Count];
Type mtype=Type.GetType("Novell.Directory.LdapModification");
mods = (LdapModification[])modList.ToArray(typeof(LdapModification));

//Modify the entry in the directory
ldapConn.Modify (dn, mods);
Tasks 35

36 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
3.5 Renaming an Entry
This section contains information about how to rename (or change the RDN) an entry inside a
directory using classes provided by Novell.Directory.Ldap namespace. To rename an entry use the
Rename function of LdapConnection class.

Renaming an entry involves two steps:

1 Select the new RDN of the entry.
2 Specify whether you want to keep the old name as an attribute value or not.

The C# code fragments below shows how to rename an entry using Novell.Directory.Ldap
namespace:

Example

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance LdapConnection
ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will bind the user object Credentials to the server
ldapConn.Bind(userDN,userPasswd);

//Renames the entry to newRDN. If third parameter is true it means, the
old name is not retained as an attribute value. If false, the old name
is retained as an attribute value.

ldapConn.Rename(oldDN, newRDN, true);

3.6 Moving an Entry
This section contains information about how to move an entry (changing the parent DN) inside a
directory from one container to another using classes provided by Novell.Directory.Ldap
namespace. To move an entry, use the Rename function of LdapConnection class, do the following:

1 Select the new container DN (parentDN) where the entry has to be moved.
2 Specify whether you want to keep the old name as an attribute value or not.

The C# code fragments below shows how to move an entry using Novell.Directory.Ldap
namespace:

Example

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will bind the user object Credentials to the server
ldapConn.Bind(userDN,userPasswd);

//Moves the entry to new container named parentDN. If third parameter
//is true it means, the old name is not retained as an attribute value.
//If false, the old name is retained as an attribute value.
ldapConn.Rename(oldDN, oldDN,parentDN, true);

3.7 Deleting an Entry
This section contains information about how to delete an entry from the directory using classes
provided by Novell.Directory.Ldap namespace. To delete an entry, use the Delete function of
LdapConnection class.

Example

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will bind the user object Credentials to the server
ldapConn.Bind(userDN,userPasswd);

//Deletes the entry from the directory
ldapConn.Delete(entryDN);
Tasks 37

38 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 Libraries for C#

4
novdocx (E

N
U

) 01 February 2006
4Referral Handling in LDAPv3

Because of the distributed nature of directory services, a search sent to an LDAP server on
eDirectoryTM has a high probability of returning partial data, and referrals for the rest of the data.

When an LDAP server does not contain the requested data and a referral is necessary, the
LDAPGroup object in eDirectory can be configured to handle them in one of four ways:

• Configure eDirectory to return complete data and never referrals to the client (always chain).
• Send referrals to the client only for eDirectory servers that do not support chaining.
• Always send referrals to the client (never chain).
• The client applications can be configured to have the API follow referrals, or the applications

can perform their own handling of the referrals.

When you are using the LDAP SDK, note that referrals are handled differently for asynchronous and
synchronous requests. Details are outlined in the following sections:

• Section 4.1, “Configuring eDirectory to Return Complete Data,” on page 39
• Section 4.2, “Configuring eDirectory to Return Referrals,” on page 39
• Section 4.3, “Enabling Referral Handling in the Application,” on page 39
• Section 4.4, “Following Referrals Using Synchronous Requests,” on page 40

4.1 Configuring eDirectory to Return Complete
Data
In eDirectory, the LDAP server can be configured to return complete data and not return referrals.
This is done through the LDAP Group Object using ConsoleOne. For possible configurations in e-
Directory, see the documentation for the LDAP Group Object (http://www.novell.com/
documentation/lg/ndsse/ndsseenu/data/fbabcieb.html).

4.2 Configuring eDirectory to Return Referrals
The LDAP server in eDirectory can also be configured to return referrals to your application. This is
done through the LDAP Group Object using ConsoleOne®. For possible configurations in Novell e-
Directory, see the documentation for the LDAP Group Object (http://www.novell.com/
documentation/lg/ndsse/ndsseenu/data/fbabcieb.html)

4.3 Enabling Referral Handling in the Application
To enable referral following, use LDAPConstraints.setReferralFollowing passing TRUE to enable
referrals, or FALSE (default) to disable referrals.
Referral Handling in LDAPv3 39

http://www.novell.com/documentation/lg/ndsse/ndsseenu/data/fbabcieb.html
http://www.novell.com/documentation/lg/ndsse/ndsseenu/data/fbabcieb.html

40 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
4.4 Following Referrals Using Synchronous
Requests
When performing synchronous operations, referrals can be followed automatically with or without
authentication, or they can be handled manually.

4.4.1 Following Referrals Manually
When referral handling is disabled, an LdapReferralException is thrown if the search result is a
referral or a continuation reference.

You can use LdapReferralExceptions to follow referrals or continuation references by retrieving the
URLs from the LdapReferralException and manually following them.

If you receive some data and an LdapReferralException is thrown, this is not an error. The server has
probably returned partial data and a continuation reference for the remaining data. A separate
LdapReferralException is thrown for each continuation reference received during a search.

4.4.2 Following Referrals Automatically as Anonymous
If referral following is enabled, referrals are followed by default using an anonymous bind to the
next server. If your application does not require authentication, this default behavior is ideal.

If the server encounters a problem following a referral, an LdapReferralException is thrown. This
exception provides information on the URLs that could not be followed, and it may contain a nested
exception or throwable class with more information on what caused the exception. Be aware that if
you receive some data and an LdapReferralException when using automatic referral handling, you
most likely have incomplete results. This does not indicate the end of the data in your enumeration.

4.4.3 Following Referrals Automatically with Authentication
If your application requires more than anonymous authentication, you will need to implement a
referral handler. The LDAP SDK provides interfaces your application can implement to provide
credentials when following referrals. These interfaces are LdapAuthHandler and LdapBindHandler.

• LdapAuthHandler: This interface is the simplest to use. Your application creates an object
that implements this interface and the SDK uses this class under-the-covers to authenticate.

• LdapBindHandler: Used to do explicit bind processing on a referral. This interface provides
greater control over the bind process when following a referral but requires more work.

LdapAuthHandler

To use LdapAuthHandler you must create a class that extends the LdapAuthHandler interface. The
following is an example of an LdapAuthHandler class:

class AuthImpl implements LdapAuthHandler
{
 private LdapAuthHandler auth;
 AuthImpl(String dn, byte[] pw)
 {
 auth = new LdapAuthProvider(dn, pw);
 return;
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
 }

 public LdapAuthProvider getAuthProvider(String host, int port)
 {
 return auth;
 }
}

LdapBindHandler

To use LdapBindHandler, you must create a class that extends the LdapBindHandler interface. The
LdapBindHandler class provides the most flexibility, but you must perform your own bind
operation. If the bind is successful, the referral will then be followed automatically.
Referral Handling in LDAPv3 41

42 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 Libraries for C#

5
novdocx (E

N
U

) 01 February 2006
5Controls and Extensions

Controls and extensions were added to the LDAPv3 protocol. In version 2, there was no standard
mechanism to extend the protocol, requiring developers to extend the protocol in nonstandard ways.
In version 3, extensions and controls were defined to provide consistent expansion of the protocol.

5.1 Supported Controls
The following table contains a list of controls supported in the LDAP libraries for C#.

Table 5-1 Supported Controls

• Server Side Sort: Returns results from a search operation in sorted order. This can be used to
off-load processing from the client, or if you cannot sort the results for some reason.

• Vertical List View: Works in conjunction with the server side sort control to provide a
dynamic view of a scrolling list. This works in conjunction with the server side sort control.

• Persistent Search and Entry Change Notification: Provides a control to perform a
continuous search, notifying the application of changes.

• Manage Dsa IT: Causes directory-specific entries, regardless of type, to be treated as normal
entries.

The C# code fragments below shows how to use the server side control using the
Novell.Directory.Ldap namespace. The code below is hard coded to sort based on the “sn” attribute,
and it searches for all objects at the specified searchBase.

Using Sort Control

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server

OID Description

1.2.840.113556.1.4.473 Sever-side sort control request

1.2.840.113556.1.4.474 Server-side sort control response

2.16.840.1.113730.3.4.9 Virtual list view request

2.16.840.1.113730.3.4.10 Virtual list view response

2.16.840.1.113730.3.4.3 Persistent search

2.16.840.1.113730.3.4.7 Entry change notification

2.16.840.1.113730.3.4.2 Manage Dsa IT
Controls and Extensions 43

44 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will Bind the user object Credentials to the Server
ldapConn.Bind(userDN,userPasswd);

String[] attrs = new String[1];
attrs[0] = "sn";
LdapSortKey[] keys = new LdapSortKey[1];
keys[0] = new LdapSortKey("sn");

// Create a LDAPSortControl object - Fail if cannot sort
LdapSortControl sort = new LdapSortControl(keys, true);

// Set the Sort control to be sent as part of search request
LdapSearchConstraints cons = ldapConn.SearchConstraints;

cons.setControls(sort);
ldapConn.Constraints = cons;
LdapSearchResults lsc=ldapConn.Search(searchBase,
LdapConnection.SCOPE_SUB,searchFilter,attrs,false,
LdapSearchConstraints)null);

while (lsc.hasMore())
{
LdapEntry nextEntry = null;

 try
 {
 nextEntry = lsc.next();
 }
 catch(LdapException e)
 {
 Console.WriteLine("Error: " + e.LdapErrorMessage);
// Exception is thrown, go for next entry
 continue;
 }
Console.WriteLine("\n" + nextEntry.DN);

LdapAttributeSet attributeSet =nextEntry.getAttributeSet();
System.Collections.IEnumerator ienum = attributeSet.GetEnumerator();

while(ienum.MoveNext())
{
LdapAttribute attribute=(LdapAttribute)ienum.Current;
string attributeName = attribute.Name;
string attributeVal = attribute.StringValue;
Console.WriteLine(attributeName + "value:" + attributeVal);
}
}

ldapConn.Disconnect();
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
5.2 Supported Extensions
The following table contains a list of extensions supported in the LDAP libraries for C#.

Table 5-2 Supported Extensions

OID Name

2.16.840.1.113719.1.27.100.1 ndsToLdapResponse

2.16.840.1.113719.1.27.100.2 ndsToLdapRequest

2.16.840.1.113719.1.27.100.3 Split Partition Request

2.16.840.1.113719.1.27.100.4 Split Partition Response

2.16.840.1.113719.1.27.100.5 MergePartitionRequest

2.16.840.1.113719.1.27.100.6 MergePartitionResponse

2.16.840.1.113719.1.27.100.7 addReplicaRequest

2.16.840.1.113719.1.27.100.8 addReplicaResponse

2.16.840.1.113719.1.27.100.9 refreshLDAPServerRequest

2.16.840.1.113719.1.27.100.10 refreshLDAPServerResponse

2.16.840.1.113719.1.27.100.11 removeReplicaRequest

2.16.840.1.113719.1.27.100.12 removeReplicaResponse

2.16.840.1.113719.1.27.100.13 PartitionEntryCountRequest

2.16.840.1.113719.1.27.100.14 PartitionEntryCountResponse

2.16.840.1.113719.1.27.100.15 changeReplicaTypeRequest

2.16.840.1.113719.1.27.100.16 changeReplicaTypeResponse

2.16.840.1.113719.1.27.100.17 getReplicaInfoRequest

2.16.840.1.113719.1.27.100.18 getReplicaInfoResponse

2.16.840.1.113719.1.27.100.19 listReplicaRequest

2.16.840.1.113719.1.27.100.20 listReplicaResponse

2.16.840.1.113719.1.27.100.21 receiveAllUpdatesRequest

2.16.840.1.113719.1.27.100.22 receiveAllUpdatesResponse

2.16.840.1.113719.1.27.100.23 sendAllUpdatesRequest

2.16.840.1.113719.1.27.100.24 sendAllUpdatesResponse

2.16.840.1.113719.1.27.100.25 RequestPartitionSyncRequest

2.16.840.1.113719.1.27.100.26 RequestPartitionSyncResponse

2.16.840.1.113719.1.27.100.27 requestSchemaSyncRequest

2.16.840.1.113719.1.27.100.28 requestSchemaSyncResponse
Controls and Extensions 45

46 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
The C# code fragment below shows how to use the extensions using the Novell.Directory.Ldap
namespace. The code below shows a sample extension demonstrating how to reload the LDAP
server module using LDAP extensions.

Using Extensions

// C# Library namespace
using Novell.Directory.Ldap;

// Creating an LdapConnection instance
LdapConnection ldapConn= new LdapConnection();

//Connect function will create a socket connection to the server
ldapConn.Connect(ldapHost,ldapPort);

//Bind function will Bind the user object Credentials to the Server
ldapConn.Bind(userDN,userPasswd);

// Creating Refresh LDAP server extension.
LdapExtendedOperation request = new RefreshLdapServerRequest();

//Sending the extended request and getting back the result
LdapExtendedResponse response = ldapConn.ExtendedOperation(request);
if (response.ResultCode == LdapException.SUCCESS)
{

2.16.840.1.113719.1.27.100.29 AbortPartitionOperationRequest

2.16.840.1.113719.1.27.100.30 AbortPartitionOperationResponse

2.16.840.1.113719.1.27.100.31 GetBindDNRequest

2.16.840.1.113719.1.27.100.32 Response Get Bind DN

2.16.840.1.113719.1.27.100.33 getEffectivePrivilegesRequest

2.16.840.1.113719.1.27.100.34 getEffectivePrivilegesResponse

2.16.840.1.113719.1.27.100.35 setReplicationFilterRequest

2.16.840.1.113719.1.27.100.36 setReplicationFilterResponse

2.16.840.1.113719.1.27.100.37 getReplicationFilterRequest

2.16.840.1.113719.1.27.100.38 getReplicationFilterResponse

2.16.840.1.113719.1.27.100.39 CreateOrphanPartitionRequest

2.16.840.1.113719.1.27.100.40 CreateOrphanPartitionResponse

2.16.840.1.113719.1.27.100.41 RemoveOrphanPartitionRequest

2.16.840.1.113719.1.27.100.42 RemoveOrphanPartitionResponse

OID Name
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
Console.WriteLine("Refresh Ldap Server Request succeeded\n");
}
ldapConn.Disconnect();
Controls and Extensions 47

48 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 Libraries for C#

6
novdocx (E

N
U

) 01 February 2006
6LDAP Event Services

LDAP Event Services provide a way for applications to monitor the activity of eDirectoryTM on an
individual server using LDAP. LDAP Event Services are available on eDirectory 8.7 and higher.

6.1 Concepts
LDAP Event Services utilizes the standard LDAP extension mechanism to expose the eDirectory
event system. The LDAP Libraries for C# (http://developer.novell.com/ndk/ldapcsharp.htm) are
enhanced to provide support functions to simplify the use of the event system extension.

The event system extension allows the client to specify the events for which it wants to receive
notification. This information is sent in the extension request. If the extension request specifies valid
events, the LDAP server keeps the connection open and uses the intermediate extended response to
notify the client when events occur. Any data associated with an event is also sent in the response. If
an error occurs when processing the extended request or during the subsequent processing of events,
the server sends an extended response to the client containing error information and then terminates
the processing of the request.

6.1.1 Configuring the eDirectory Event System
The eDirectory Event System extension is configured on a per LDAP server basis using the
iManager utility (for information, see the iManager Documentation (http://www.novell.com/
documentation/lg/imanager20/index.html)). There are two parameters that need to be set. The
"allow event monitoring" parameter turns event monitoring on or off on that particular server. If
event monitoring is turned off, the monitor events request fails. The second parameter is the
maximum event monitoring load for the server. A zero value indicates no load limit. Each event type
is assigned an integer valued load factor. The load factor is a representation of the loading effect
monitoring this event has on the server relative to all other event types. The load is calculated based
on each monitored event’s load factor and the number of clients registered for that event.

Client Access Rights to Event Data

Any LDAP client can register to monitor any event. Access retrictions are enforced at the time of
notification. If the authenticated client does not have access rights to view all of the information in
the event, the event will not be sent. The one exception to this rule is the perpetrator DN. If the client
does not have rights to the perpertrator object it will be sent as a zero length string. The event
notification will still be sent.

6.1.2 Monitoring the eDirectory Events
The C# sample class EdirEventSample below shows how to monitor the eDirectory events using the
Novell.Directory.Ldap namespace. The code below is hard coded to monitor the event type
EVT_CREATE_ENTRY and it uses the command line parameters to get the inputs such as the host
name, login DN and password.

using System;
LDAP Event Services 49

http://developer.novell.com/ndk/ldapcsharp.htm
http://www.novell.com/documentation/lg/imanager20/index.html

50 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
//Use the C# LDAP namespaces
using Novell.Directory.Ldap;
using Novell.Directory.Ldap.Events;
using Novell.Directory.Ldap.Events.Edir;
using Novell.Directory.Ldap.Events.Edir.EventData;

public class EdirEventSample
{
 //Set the time out parameter.
 public const double TIME_OUT_IN_MINUTES = 5;
 public static DateTime timeOut;

 /**
 * Check the queue for a response. If a response has been received,
 * print the response information.
 */

 static private bool checkForAChange(LdapResponseQueue queue)
 {
 LdapMessage message;
 bool result = true;

 try
 {
 //check if a response has been received so we don't block
 //when calling getResponse()

 if (queue.isResponseReceived())
 {
 message = queue.getResponse();
 if (message != null)
 {

// is the response a search result reference?

if (message is MonitorEventResponse)
{
 MonitorEventResponse eventerrorresponse =

(MonitorEventResponse) message;
 Console.WriteLine("\nError in Registration ResultCode = " +

eventerrorresponse.ResultCode);
 EdirEventSpecifier[] specifiers =

eventerrorresponse.SpecifierList;
 for (int i = 0; i < specifiers.Length; i++)
 {
 Console.WriteLine("Specifier:" + "EventType = " +

specifiers[i].EventType);
 }
 Environment.Exit(-1);

}

// is the response a event response ?

else if (message is EdirEventIntermediateResponse)
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
{
 Console.WriteLine("Edir Event Occured");
 EdirEventIntermediateResponse eventresponse =

(EdirEventIntermediateResponse) message;

 //process the eventresponse Data, depending on the
 // type of response
 processEventData(eventresponse.EventResponseDataObject,

eventresponse.EventType);

}

// the message is an Unknown response
else
{
 Console.WriteLine("UnKnown Message =" + message);
}

 }
 }

 }
 catch (LdapException e)
 {
 Console.WriteLine("Error: " + e.ToString());
 result = false;
 }

 return result;
 }

 public static void Main(String[] args)
 {
 if (args.Length != 3)
 {
 Console.WriteLine("Usage: mint EdirEventSample <host name>
<login dn>"

+ " <password> ");
 Console.WriteLine("Example: mint EdirEventSample Acme.com
\"cn=admin,o=Acme\""

+ " secret ");
 Environment.Exit(0);
 }

 int ldapPort = LdapConnection.DEFAULT_PORT; // Set to the default
LDAP Port
 int ldapVersion = LdapConnection.Ldap_V3; // Set to the
LDAP version 3
 String ldapHost = args[0];
 String loginDN = args[1];
 String password = args[2];

 LdapResponseQueue queue = null;

 //Create the connection
LDAP Event Services 51

52 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 LdapConnection lc = new LdapConnection();

 try
 {
 // connect to the server
 lc.Connect(ldapHost, ldapPort);

 // authenticate to the server
 lc.Bind(ldapVersion, loginDN, password);

 //Create an Array of EdirEventSpecifier
 EdirEventSpecifier[] specifier = new EdirEventSpecifier[1];

 //Register for all Add Value events.

 specifier[0] = new
EdirEventSpecifier(EdirEventType.EVT_CREATE_ENTRY,

//Generate an Value Event of Type Add Value
EdirEventResultType.EVT_STATUS_ALL
//Generate Event for all status
);

 //Create an MonitorEventRequest using the specifiers.
 MonitorEventRequest requestoperation = new
MonitorEventRequest(specifier);

 //Send the request to server and get the response queue.
 queue = lc.ExtendedOperation(requestoperation, null, null);

 }

 //Catch the exception
 catch (LdapException e)
 {
 Console.WriteLine("Error: " + e.ToString());
 try
 {

//Disconnect
lc.Disconnect();

 }
 catch (LdapException e2)
 {

Console.WriteLine("Error: " + e2.ToString());
 }
 Environment.Exit(1);
 }

 catch (Exception e)
 {

Console.WriteLine("Error: " + e.ToString());
 }

 Console.WriteLine("Monitoring the events for {0} minutes..",
TIME_OUT_IN_MINUTES);
 Libraries for C#

novdocx (E
N

U
) 01 February 2006

 //Set the timeout value
 timeOut= DateTime.Now.AddMinutes(TIME_OUT_IN_MINUTES);

 try
 {
 //Monitor till the timeout happens
 while (DateTime.Now.CompareTo(timeOut) < 0)
 {
 if (!checkForAChange(queue))
 break;
 System.Threading.Thread.Sleep(10);
 }
 }

 catch (System.IO.IOException e)
 {
 Console.WriteLine(e.Message);
 }

 catch (System.Threading.ThreadInterruptedException e)
 {

Console.WriteLine(e.Message);
 }

 //disconnect from the server before exiting
 try
 {
 lc.Abandon(queue); //abandon the queue
 lc.Disconnect();
 }

 catch (LdapException e)
 {
 Console.WriteLine("Error: " + e.ToString());
 }

 Environment.Exit(0);

 } // end main

 /**
 * Processes the Event Data depending on the Type.
 */

 static private void processEventData(BaseEdirEventData data,
EdirEventType type)
 {
 switch (type)
 {

case EdirEventType.EVT_CREATE_ENTRY :
// Value event.
LDAP Event Services 53

54 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
//Output the relevant Data.
EntryEventData valueevent = (EntryEventData) data;
Console.WriteLine("Entry = " + valueevent.Entry);
Console.WriteLine("PrepetratorDN = " +

valueevent.PerpetratorDN);
Console.WriteLine("TimeStamp = " + valueevent.TimeStamp);
Console.WriteLine();
break;

default :
//Unknow Event.
break;

 }

 }
}

6.2 Event Types
The eDirectory event system supports over 200 events. Each event is identified by an integer
eventType and most events have associated event data with additional information about the event.
This information is returned in one of several structs depending upon the event type.

The eDirectory event system events are grouped according to the structure of the associated event
data. This event grouping is outlined in the following table:

Table 6-1 Event Grouping

Event Type Description

Entry Events These events indicate the occurrence of individual entry operations
such as creating or deleting an entry. The event data is contained in
an EntryEventData Class.

Value Events These events indicate the occurrence of attribute value operations
such as deleting or adding a value. The event data is contained in a
ValueEventData Class.

General DS Events These are general events used to indicate a wide variety of DS
operations. A generic structure, GeneralDSEventData Class, is used
to hold the event data which needs to be interpreted based on the
event type.

Bindery Events These events occurrence of bindery emulation operations. The event
data is contained in a BinderyObjectEventData Class.

Security Equivalence Event This event indicates an entry’s security equivalence vector is being
checked. The event data is contained in a
SecurityEquivalenceEventData Class.

Network Address Events The data for these events is contained in a
NetworkAddressEventData Class.

Events without Data This classification includes all events that do not have associated
data.
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
6.2.1 Entry Events
The following table lists the event types that are associated with changes to individual attributes.

Table 6-2 Event Types

6.2.2 Value Events
The following table lists the events that are associated with changes to individual attributes:

6.2.3 Debug Events
The following table lists the events that are associated with debug events:

Val Event Type Description

1 EVT_CREATE_ENTRY A new eDirectory object has been created. This event
does not include className and is set to null.

2 EVT_DELETE_ENTRY An existing eDirectory object has been deleted.

3 EVT_RENAME_ENTRY An existing eDirectory object has been renamed.

4 EVT_MOVE_SOURCE_ENTRY This is the second of two events reported for a move
operation. This event specifies the deletion of a
eDirectory object from its original location in the
Directory tree. (See EVT_MOVE_DEST_ENTRY).

14 EVT_MOVE_DEST_ENTRY This is the first of two events reported for a move
operation. This event specifies the placement of the
eDirectory object into its new location in the Directory
tree. (See EVT_MOVE_SOURCE_ENTRY.) This
generates EVT_ADD_VALUE events for all of the
values associated with the object.

15 EVT_DELETE_UNUSED_EXTREF An unused external reference has been deleted.

228 EVT_PRE_DELETE_ENTRY A pre-delete event posted when an entry is about to
be deleted.

Event Type Structure Returned

5 EVT_ADD_VALUE A value has been added to an object attribute.

6 EVT_DELETE_VALUE A value has been deleted from an object attribute.

7 EVT_CLOSE_STREAM A Stream attribute has been closed.

8 EVT_DELETE_ATTRIBUTE An attribute has been deleted from an object. This
generates EVT_DELETE_VALUE events for values
associated with the attribute. The EVT_DELETE_VALUE
events occur after the EVT_DELETE_ATTRIBUTE event.
LDAP Event Services 55

56 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
Event Type Description Data Returned

26 EVT_DB_AUTHEN An authentication debug message
has been sent.

DebugEventData
Class

27 EVT_DB_BACKLINK A backlink debug message has
been sent.

DebugEventData
Class

28 EVT_DB_BUFFERS A request buffer debug message
has been sent.

DebugEventData
Class

29 EVT_DB_COLL A collision debug message has
been sent.

DebugEventData
Class

30 EVT_DB_DSAGENT A low-level DSAgent debug
message has been sent.

DebugEventData
Class

31 EVT_DB_EMU A Bindery emulation debug
message has been sent.

DebugEventData
Class

32 EVT_DB_FRAGGER A Fragger debug message has
been sent.

DebugEventData
Class

33 EVT_DB_INIT An initialization debug message has
been sent.

DebugEventData
Class

34 EVT_DB_INSPECTOR An inspector debug message has
been sent.

DebugEventData
Class

35 EVT_DB_JANITOR A Janitor process debug message
has been sent.

DebugEventData
Class

36 EVT_DB_LIMBER A Limber process debug message
has been sent.

DebugEventData
Class

37 EVT_DB_LOCKING A locking debug message has been
sent.

DebugEventData
Class

38 EVT_DB_MOVE A move debug message has been
sent.

DebugEventData
Class

39 EVT_DB_MIN A default DSTrace (equivalent to
ON) debug message has been sent.

DebugEventData
Class

40 EVT_DB_MISC A miscellaneous debug message
has been sent

DebugEventData
Class

41 EVT_DB_PART A partition operations debug
message has been sent.

DebugEventData
Class

42 EVT_DB_RECMAN A Record Manager debug message
has been sent.

DebugEventData
Class

44 EVT_DB_RESNAME A Resolve Name debug message
has been sent.

DebugEventData
Class

45 EVT_DB_SAP A SAP* debug message has been
sent.

DebugEventData
Class

46 EVT_DB_SCHEMA A schema debug message has
been sent.

DebugEventData
Class
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
47 EVT_DB_SKULKER A synchronization debug message
has been sent.

DebugEventData
Class

48 EVT_DB_STREAMS A streams debug message has
been sent.

DebugEventData
Class

49 EVT_DB_SYNC_IN An incoming synchronization debug
message has been sent.

DebugEventData
Class

50 EVT_DB_THREADS An eDirectory thread scheduling
debug message has been sent.

DebugEventData
Class

52 EVT_DB_TIMEVECTOR A time vectors debug message has
been sent.

DebugEventData
Class

53 EVT_DB_VCLIENT A virtual client debug message has
been sent.

DebugEventData
Class

166 EVT_DB_NCPENG An NCPENG debug message has
been sent.

DebugEventData
Class

175 EVT_DB_AUDIT An auditing debug message has
been sent.

DebugEventData
Class

176 EVT_DB_AUDIT_NCP An auditing NCPTM debug message
has been sent.

DebugEventData
Class

177 EVT_DB_AUDIT_SKULK An auditing debug message
concerning synchronization has
been sent.

DebugEventData
Class

184 EVT_DB-CHANGE_CACHE A change cache debug message
has been sent.

DebugEventData
Class

186 EVT_DB_PURGE A purge debug message has been
sent.

DebugEventData
Class

189 EVT_DB_CLIENT_BUFFERS A client buffers debug message has
been sent.

DebugEventData
Class

190 EVT_DB_WANMAN A WAN Traffic Manager debug
message has been sent

DebugEventData
Class

198 EVT_DB_DRL A Distribute Reference Link (DRL)
has been created.

DebugEventData
Class

202 EVT_DB_ALLOC A memory allocation debug
message has been generated.

DebugEventData
Class

204 EVT_DB_SERVER_PACKET Not implemented. DebugEventData
Class

207 EVT_DB_OBIT An obituary debug message has
been generated.

DebugEventData
Class

209 EVT_DB_SYNC_DETAIL A synchronization detail debug
message has been generated.

DebugEventData
Class

210 EVT_DB_CONN_TRACE A connection trace debug message
has been generated.

DebugEventData
Class

Event Type Description Data Returned
LDAP Event Services 57

58 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
214 EVT_DB_DIRXML A DirXML® debug message has
been sent.

DebugEventData
Class

217 EVT_DB_DIRXML_DRIVERS A DirXML Drivers debug message
has been sent.

DebugEventData
Class

218 EVT_DB_NDSMON A NDSMON debug message has
been sent.

DebugEventData
Class

220 EVT_DB_DNS A DNS debug message has been
sent.

DebugEventData
Class

221 EVT_DB_REPAIR A DS Repair debug message has
been sent.

DebugEventData
Class

222 EVT_DB_REPAIR_DEBUG A Repair Debug debug message
has been sent.

DebugEventData
Class

225 EVT_DB_SCHEMA_DETAIL A Schema Detail debug message
has been sent.

DebugEventData
Class

227 EVT_DB_IN_SYNC_DETAIL A Sync Detail debug message has
been sent.

DebugEventData
Class

229 EVT_DB_SSL An SSL debug message has been
sent.

DebugEventData
Class

230 EVT_DB_PKI A PKI debug message has been
sent.

DebugEventData
Class

231 EVT_DB_HTTPSTK A HTTPSTK debug message has
been sent.

DebugEventData
Class

232 EVT_DB_LDAPSTK An LDAPSTK debug message has
been sent.

DebugEventData
Class

233 EVT_DB_NICIEXT A NICI Ext debug message has
been sent.

DebugEventData
Class

234 EVT_DB_SECRET_STORE A SecretStore debug message has
been sent.

DebugEventData
Class

235 EVT_DB_NMAS A NMASTM debug message has
been sent.

DebugEventData
Class

236 EVT_DB_BACKLINK_DETAIL A Backlink Detail debug message
has been sent.

DebugEventData
Class

237 EVT_DB_DRL_DETAIL A DRL debug message has been
sent.

DebugEventData
Class

238 EVT_DB_OBJECT_PRODUC
ER

An Object Producer debug
message has been sent.

DebugEventData
Class

239 EVT_DB_SEARCH A Search debug message has been
sent.

DebugEventData
Class

240 EVT_DB_SEARCH_DETAIL A Search Detail debug message
has been sent.

DebugEventData
Class

Event Type Description Data Returned
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
6.2.4 General DS Events
A large number of events are classified as general events. The meaning of the data returned is
dependent on the type of the event.

For example, when a EVT_LOGIN (event type 100) occurs, the GeneralDSEventData Class
contains several general data fields about the event (dstime, milliseconds, curProcess, and verb).
The final two output parameters (intValues[], and strValues[]) contain information specific to the
EVT_LOGIN event. The description of this information for each event is contained in the Data
Returned column in the following table.

In the following example, each integer and string value from the Data Returned column is paired
with its corresponding value in the GeneralDSEventData Class:

Integer Values
[0] (corresponds to) intValues[0]
[1] (corresponds to) intValues[1]
...

String Values:
[0] (corresponds to) strValues[0]
[1] (corresponds to) strValues[1]
...

The Data Returned column for the EVT_LOGIN event contains the following:

Integer Values
[0] 0 if a non-null password was used, 1 if a null password was used
[1] 0 if a bindery login was used, -1 if an NDS login was performed

String Values:
[0] DN of the parent of the entry that performed the login
[1] DN of the entry that performed the login

The data described by Integer Values [0] is contained in the first location in the intValues array,
intValues[0]. If you wanted to determine if a non-null password was used during the login,
intValues[0] would be checked to determine if it is 1 or 0 (with a value of 0 indicating that a non-null
password was used).

242 EVT_DB_NPKI_API An NPKI debug message has been
sent.

DebugEventData
Class

Event Type Description Data Returned
LDAP Event Services 59

60 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
Table 6-3 Event Type

Event Type Description Data Returned

53 EVT_AGENT_OPEN_LOCAL The local Directory agent has
been opened.

Integer Values:
[0] end state of the
open operation

String Values:
[0] end
[1] start
[2] audit

54 EVT_AGENT_CLOSE_LOCAL The local Directory agent has
been closed.

Integer Values:
[0] the state of the
operation

String Values:
[0] end
[1] start

55 EVT_DS_ERR_VIA_BINDERY An error was returned from the
bindery.

Integer Values:
[0] error code returned
from the bindery

56 EVT_DSA_BAD_VERB An incorrect verb number was
given in a DSAgent request.

Integer Values:
[0] bad verb number
given to the DSA
Request (NCP 104, 2)

57 EVT_DSA_REQUEST_START A DSAgent request has been
started.

Integer Values:
[0] verb number (NCP
104, 2)

58 EVT_DSA_REQUEST_END A DSAgent request has
completed.

Integer Values:
[0] verb number
[1] primary ID
[2] request size
[3] reply size

59 EVT_MOVE_SUBTREE A container and its subordinate
objects have been moved.

String Values:
[0] DN of source
container
[1] DN of destination
container

60 EVT_NO_REPLICA_PTR A replica exists that has no
replica pointer associated with
it.

String Values:
[0] DN of associated
partition object

61 EVT_SYNC_IN_END Inbound synchronization has
finished.

Integer Values:
[0] number of entries
sent

String Values:
[0] DN of the server
entry associted with
the server sending the
changes
[1] DN of root entry of
the partition
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
62 EVT_BKLINK_SEV A backlink operation has
updated an object’s Security
Equivalence Vector.

String Values:
[0] DN of the updated
object

63 EVT_BKLINK_OPERATOR A backlink operation has
changed an object’s console
operator privileges.

String Values:
[0] DN of updated
entry
[1] DN of server entry
for which the privleges
were changed

64 EVT_DELETE_SUBTREE A container and its subordinate
objects have been deleted.

Integer Values:
[0] number of entries
deleted

String Values:
[0] DN of the root
object of the deleted
subtree

67 EVT_REFERRAL A referral has been created. Integer Values:
[0] Referral type

String Values:
[0] DN of the partition
[1] DN of the entry

68 EVT_UPDATE_CLASS_DEF A schema class definition has
been updated.

String Values:
[0] Name of updated
class

69 EVT_UPDATE_ATTR_DEF A schema attribute definition
has been updated.

String Values:
[0] Name of updated
or added attribute

70 EVT_LOST_ENTRY eDirectory has encountered a
lost entry. A lost entry is an
entry for which updates are
being received, but no entry
exists on the local server.

Integer Values:
[0] Seconds field of
entry's timestamp
[1] replicaNumber field
of entry's timestamp
[2] Event field of the
entry's timestamp

String Values:
[0] DN of the entry's
parent

71 EVT_PURGE_ENTRY_FAIL A purge operation on an entry
has failed.

String Values:
[0] DN of the entry for
which the purge
operation failed

72 EVT_PURGE_START A purge operation has started. Integer Values:
[0] Replica type

String Values:
[0] DN of the partition
being purged

Event Type Description Data Returned
LDAP Event Services 61

62 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
73 EVT_PURGE_END A purge operation has ended. Integer Values:
[0] Number of entries
purged
[1] Number of values
purged

String Values:
[0] DN of the purged
partition

76 EVT_LIMBER_DONE A Limber operation has
completed.

Integer Values:
[0] 1 indicates all
initialized, 0 indicates
not all initialized
[1] 1 indicates that a
new RDN was found,
0 indicates that a new
RDN was not found

77 EVT_SPLIT_DONE A Split Partition operation has
completed.

String Values:
[0] DN of the parent
partition's root
[1] DN of the child
partition's root

78 EVT_SYNC_SVR_OUT_START Outbound synchronization has
begun from a particular server.

Integer Values:
[0] Replica number
[1] Replica state, type,
and flags

String Values:
[0] DN of the
associated server
entry
[1] DN of the partition
root

79 EVT_SYNC_SVR_OUT_END Outbound synchronization from
a particular server has finished.

Integer Values:
[0] Number of objects
sent
[1] Number of values
sent

String Values:
[0] DN of the
associated server
entry
[1] DN of the partition
root

80 EVT_SYNC_PART_START Synchronization of a partition
has begun.

Integer Values:
[0] Partition state
[1] Replication type

String Values:
[0] DN of associated
partition entry

Event Type Description Data Returned
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
81 EVT_SYNC_PART_END Synchronization of a partition
has finished.

Integer Values:
[0] 1 indicates all
processed, 0 indicates
not all processed

String Values:
[0] DN of the
associated partition
entry

82 EVT_MOVE_TREE_START A Move Subtree operation has
started.

String Values:
[0] DN of the root of
the subtree to be
moved
[1] DN of the
destination parent
entry
[2] DN of the server
the operation is
starting with

83 EVT_MOVE_TREE_END A Move Subtree operation has
finished.

String Values:
[0] DN of the root of
the moved subtree
[1] DN o fthe server
the operation started
from

86 EVT_JOIN_DONE A Join Partitions operation has
completed.

String Values:
[0] DN of the parent
partition root entry
[1] DN of the child
partition root entry

87 EVT_PARTITION_LOCKED A partition has been locked. String Values:
[0] DN of the locked
partition

88 EVT_PARTITION_UNLOCKED A partition has been unlocked. String Values:
[0] DN of the unlocked
partition

89 EVT_SCHEMA_SYNC The schema has been
synchronized.

Integer Values:
[0] 1 indicates all
changes processed, 0
indicates not all
changes processed

90 EVT_NAME_COLLISION A name collision (two entries
with the same name) has
occurred.

String Values:
[0] DN of the original
entry
[1] DN of the duplicate
entry

91 EVT_NLM_LOADED An NLMTM has been loaded. Integer Values:
[0] Module handle of
the loaded NLM.

Event Type Description Data Returned
LDAP Event Services 63

64 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
96 EVT_SERVER_RENAME A server has been renamed. String Values:
[0] New server name

97 EVT_SYNTHETIC_TIME To bring eDirectory servers into
synchronization, synthetic time
has been invoked.

Integer Values:
[0] Number of time
stamps requested

String Values:
[0] DN of the root entry
of the parition issuing
the time stamp
[1] DN of the partiton

99 EVT_DSA_READ A Read operation has been
performed on an entry.

String Values:
[0] DN of read entry

100 EVT_LOGIN A user has logged in. Integer Values:
[0] 0 if a non-null
password was used, 1
if a null password was
used
[1] 0 if a bindery login
was used, -1 if an
eDirectory login was
performed

String Values:
[0] DN of the parent
[1] DN of the entry

101 EVT_CHGPASS A user’s password has
changed.

String Values:
[0] DN of the parent
entry of the changed
entry
[1] DN of the entry
whose password was
changed

102 EVT_LOGOUT A user has logged out. String Values:
[0] DN of the parent
entry of entry that
logged out
[1] DN of the entry that
logged out

103 EVT_ADD_REPLICA A replica of a partition has been
added to a server.

Integer Values:
[0] Replica type

String Values:
[0] DN of the root entry
of the partition
[1] DN of the server
entry
[2] Name of the server

Event Type Description Data Returned
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
104 EVT_REMOVE_REPLICA A replica of a partition has been
removed from a server.

String Values:
[0] DN of the root entry
of the partition
[1] DN of the server
entry
[2] Name of the server

105 EVT_SPLIT_PARTITION A partition has been split. String Values:
[0] DN of the root entry
of the parent partition
[1] DN of the root entry
of the new partition
[2] Name of the new
partition entry

106 EVT_JOIN_PARTITIONS A parent partition has been
joined with a child partition.

String Values:
[0] DN of the root entry
of the parent partition
[1] DN of the root entry
of the child partition

107 EVT_CHANGE_REPLICA_TYPE A partition replica’s type has
been changed.

Integer Values:
[0] Old replica type
[1] New replica type

String Values:
[0] DN of the partition's
root entry
[1] DN of the target
server's entry

108 EVT_REMOVE_ENTRY An entry has been removed
beneath a container.

String Values:
[0] DN of the container
entry
[1] DN of the deleted
entry

109 EVT_ABORT_PARTITION_OP A partition operation has been
aborted.

String Values:
[0] DN of the partition's
parent entry
[1] DN of the partition
entry

110 EVT_RECV_REPLICA_UPDATES A replica has received an
update during synchronization.

String Values:
[0] DN of the replica's
root entry

111 EVT_REPAIR_TIMESTAMPS A replica’s time stamps have
been repaired.

String Values:
[0] DN of the replica's
root entry

112 EVT_SEND_REPLICA_UPDATES A replica has sent an update
during synchronization.

String Values:
[0] DN of the replica's
root entry

Event Type Description Data Returned
LDAP Event Services 65

66 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
113 EVT_VERIFY_PASS A password has been verified. String Values:
[0] DN of the entry's
parent
[0] DN of the entry

114 EVT_BACKUP_ENTRY An entry has been backed up. String Values:
[0] Backed-up entry's
DN

115 EVT_RESTORE_ENTRY An entry has been restored. String Values:
[0] DN of the entry's
parent
[1] RDN of the entry

116 EVT_DEFINE_ATTR_DEF An attribute definition has been
added to the schema.

String Values:
[0] Attribute's name

117 EVT_REMOVE_ATTR_DEF An attribute definition has been
removed from the schema.

String Values:
[0] Attribute name

118 EVT_REMOVE_CLASS_DEF A class definition has been
removed from the schema.

String Values:
[0] Class name

119 EVT_DEFINE_CLASS_DEF A class definition has been
added to the schema.

String Values:
[0] Class name

120 EVT_MODIFY_CLASS_DEF A class definition has been
modified.

String Values:
[0] Class name

121 EVT_RESET_DS_COUNTERS The internal eDirectory counters
have been reset.

String Values:
[0] DN of the server
entry

122 EVT_REMOVE_ENTRY_DIR A file directory associated with
an entry has been removed.

String Values:
[0] DN of the entry's
parent
[1] DN of the entry

123 EVT_COMPARE_ATTR_VALUE A Compare operation has been
performed on an attribute.

String Values:
[0] DN of the entry's
parent
[1] DN of the entry
[2] Attribute name

124 EVT_STREAM A stream attribute has been
opened or closed.

Integer Values:
[0] 0 if the stream was
opened, 1 if the
stream was closed
[1] requested rights
(only present if the
stream was opened)

String Values:
[0] DN of the entry
[1] Attribute name

Event Type Description Data Returned
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
125 EVT_LIST_SUBORDINATES A List Subordinate Entries
operation has been performed
on a container object.

String Values:
[0] DN of the entry's
parent
[1] DN of the entry

126 EVT_LIST_CONT_CLASSES A List Containable Classes
operation has been performed
on an entry.

String Values:
[0] DN of the entry's
parent
[1] DN of the entry

127 EVT_INSPECT_ENTRY An Inspect Entry operation has
been performed on an entry.

String Values:
[0] DN of the entry's
parent
[1] DN of the entry

128 EVT_RESEND_ENTRY A Resend Entry operation has
been performed on an entry.

String Values:
[0] DN of the entry's
parent
[1] DN of the entry

129 EVT_MUTATE_ENTRY A Mutate Entry operation has
been performed on an entry.

String Values:
[0] DN of the entry
[1] OID of the new
class
[2] Name of the new
class

130 EVT_MERGE_ENTRIES Two entries have been merged. String Values:
[0] DN of the parent of
the winner entry
[1] DN of the winner
entry
[2] DN of the loser
entry

131 EVT_MERGE_TREE Two eDirectory trees have been
merged.

String Values:
[0] DN of the root entry

132 EVT_CREATE_SUBREF A subordinate reference has
been created.

String Values:
[0] subordinate
reference ID

133 EVT_LIST_PARTITIONS A List Partitions operation has
been performed.

String Values:
[0] DN of the partitions
root entry

134 EVT_READ_ATTR An entry’s attributes have been
read.

String Values:
[0] DN of the entry
[1] Attribute's name

135 EVT_READ_REFERENCES The references on a given
object have been read.

String Values:
[0] DN of the entry

136 EVT_UPDATE_REPLICA An Update Replica operation
has been performed on a
partition replica.

String Values:
[0] DN of the partition's
root entry
[1] DN of the partition
entry

Event Type Description Data Returned
LDAP Event Services 67

68 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
137 EVT_START_UPDATE_REPLICA A Start Update Replica
operation has been performed
on a partition replica.

String Values:
[0] DN of the partition's
root entry

138 EVT_END_UPDATE_REPLICA An End Update Replica
operation has been performed
on a partition replica.

String Values:
[0] DN of the partition's
root entry

139 EVT_SYNC_PARTITION A Synchronize Partition
operation has been performed
on a partition replica.

String Values:
[0] DN of the partition's
root entry

141 EVT_CREATE_BACKLINK A backlink has been created. Integer Values:
[0] Remote entry ID

String Values:
[0] DN of the server
entry making the
request
[1] DN of the local
entry

142 EVT_CHECK_CONSOLE_OPERA
TOR

An object has been checked for
Console Operator rights.

Integer Values:
[0] 0 if the entry does
not have console
rights, 1 if it does

String Values:
[0] DN of server entry
[1] DN of entry being
checked

143 EVT_CHANGE_TREE_NAME The tree name has been
changed.

String Values:
[0] New tree name

144 EVT_START_JOIN A Start Join operation has been
performed.

String Values:
[0] DN of the parent
partition's root entry
[1] DN of the child
partition's root entry

145 EVT_ABORT_JOIN A Join operation has been
aborted.

String Values:
[0] DN of the parent
partition root
[1] DN of the child
partition root

146 EVT_UPDATE_SCHEMA An Update Schema operation
has been performed.

String Values:
[0] DN of the server
entry

147 EVT_START_UPDATE_SCHEMA A Start Update Schema
operation has been performed.

String Values:
[0] Name of the Tree
root
[1] DN of the server
entry

Event Type Description Data Returned
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
148 EVT_END_UPDATE_SCHEMA An End Update Schema
operation has been performed.

String Values:
New:
[0] Name of the Tree
root
[1] DN of the server
entry

149 EVT_MOVE_TREE A Move Tree operation has
been performed.

Integer Values:
[0] Type of string.

String Values:
[0] DN of the source
parent
[1] DN of the
destination parent
[2] If integer[0] = 0,
Source DN. If integer
[0] = 1, new name.

151 EVT_RELOAD_DS DS has been reloaded. String Values:
[0] DN of tree root.

151 EVT_ADD_PROPERTY An attribute (property) has been
added to an object.

Integer Values:
[0] Security
[1] Flags

String Values:
[0] DN of the entry

152 EVT_DELETE_PROPERTY An attribute (property) has been
removed from an object.

String Values:
[0] DN of the entry

153 EVT_ADD_MEMBER A member has been added to a
Group object.

String Values:
[0] DN of the group
entry
[1] DN of the new
member
[2] Attribute name

154 EVT_DELETE_MEMBER A member has been deleted
from a Group object.

String Values:
[0] DN of the group
entry
[1] DN of the deleted
entry
[2] Attribute name

155 EVT_CHANGE_PROP_SECURIT
Y

Security for a bindery object’s
property has been changed.

Integer Values:
[0] New security

String Values:
[0] DN of the object
[1] Property's name

Event Type Description Data Returned
LDAP Event Services 69

70 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
156 EVT_CHANGE_OBJ SECURITY A bindery object’s security has
been changed.

Integer Values:
[0] New security

String Values:
[0] DN of the object's
parent
[1] DN of the object

159 EVT_SEARCH A Search operation has been
performed.

Integer Values:
[0] Scope
[1] Indicates the nodes
to search
[2] Info type

String Values:
[0] DN of the base
entry

160 EVT_PARTITION_STATE_CHG A partition’s state has changed. Integer Values:
[0] Function
[1] Type
[2] State

String Values:
[0] DN of the partition's
root entry
[1] DN of the partner
partition entry

161 EVT_REMOVE_BACKLINK A backlink has been removed. String Values:
[0] DN of the affected
object
[1] DN of the affected
server entry
[2] DN of the remote
server entry

162 EVT_LOW_LEVEL_JOIN A low-level join has been
performed.

String Values:
[0] DN of the parent's
root entry
[1] DN of the child
partition's root entry

164 EVT_CHANGE_SECURITY_EQU
ALS

An object’s Security Equals
attribute has been changed.

Integer Values:
[0] 0=delete
equivalence, 1=add
equivalence

String Values:
[0] DN of the obect
whos security has
changed.
[1] DN of the
equivalent object.

Event Type Description Data Returned
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
6.2.5 Events Without Data
The following events do not have any associated data. When these events occur, the eventData field
of the EventMonitorResponse is not present.

167 EVT_CRC_FAILURE A CRC failure has occurred
when fragmented NCP requests
were reconstructed.

Integer Values:
[0] Failure type,
0=server, 1=client
[1] Server/Client CRC
error count

168 EVT_ADD_ENTRY A new object has been added
under a container object.

String Values:
[0] Container entry's
DN
[1] Entry's DN

169 EVT_MODIFY_ENTRY An attribute has been modified
on an object.

String Values:
[0] Dn of the entry's
parent entry
[1] Entry's DN

178 EVT_MODIFY_RDN A Modify RDN operation has
been performed.

String Values:
[0] Dn of the entry's
parent entry
[1] Entry's DN
[2] Entry's former DN

181 EVT_ENTRYID_SWAP A Swap Entry ID operation has
been performed.

String Values:
[0] DN of the source
entry
[1] DN of the
destination entry

185 EVT_LOW_LEVEL_SPLIT A low-level partition split has
been performed.

String Values:
[0] DN of the parent
partition root entry
[1] DN of the child
partition root entry

188 EVT_ALLOW_LOGIN A user has been allowed to log
in.

Integer Values:
[0] Flags

String Values:
[0] Entry's DN

Event Description

9 EVT_SET_BINDERY_CONTEXT

13 EVT_UPDATE_SEV

94 EVT_LUMBER_DONE Signals that a lumber operation has finished.

95 EVT_BACKLINK_PROC_DONE Signals that a backlink process has finished.

98 EVT_SERVER_ADDRESS_CHANGE Signals that a server address has changed.

Event Type Description Data Returned
LDAP Event Services 71

72 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
6.2.6 Bindery Events
The following table lists the events that are associated with bindery events:

6.2.7 Security Equivalence Event
The security equivalence event is indicated by the following eventType value:

6.2.8 Module State Events
The following table lists the events that are associated with module state events:

6.2.9 Network Address Events
The following table lists the events that are associated with network address events:

140 EVT_SYNC_SCHEMA Signals that the schema has been synchronized.

150 EVT_RELOAD_DS Signals that eDirectory has been reloaded.

163 EVT_CREATE_NAMEBASE Signals that a directory namebase has been
created.

171 EVT_OPEN_BINDERY Signals that the bindery has been opened.

172 EVT_CLOSE_BINDERY Signals that the bindery has been closed.

174 EVT_NEW_SCHEMA_EPOCH Signals that a new schema epoch has been
declared.

182 EVT_INSIDE_NCP_REQUEST

187 EVT_END_NAMEBASE_TRANSACTION

213 EVT_BEGIN_NAMEBASE_TRANSACTION

Event Description

10 EVT_CREATE_BINDERY_OBJECT Signals that a bindery object has been created.

11 EVT_DELETE_BINDERY_OBJECT Signals that a bindery object has been deleted.

Event Description

12 EVT_CHECK_SEV

Event Description

21 EVT_CHANGE_MODULE_STATE

Event Description
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
6.2.10 Connection Change Events
The following table lists the events that are associated with connection change events:

6.2.11 Change Server Address
The following table lists the events that are associated with change server address events:

6.3 Classes
This section explains the Event Data classes used by LDAP Event Services.

6.3.1 Entry Events
This section explains the Entry Events.

EntryEventData Class

The response data for entry events is returned as an EntryEventData class. This class consists of the
read-only properties as explained in the table below.

Event Description

17 EVT_REMOTE_SERVER_DOWN

18 EVT_NCP_RETRY_EXPENDED

158 EVT_CONNECT_TO_ADDRESS A connection has been established with a
particular address.

Data returned:

Integer Values:
[0] taskID
[1] Address type
[2] Address_size

String Values:
[0] Address

Event Description

173 EVT_CHANGE_CONN_STATE Signals that the connection state has changed

212 EVT_COMPUTE_CONN_SEV_INLINE

Event Description

219 EVT_CHANGE_SERVER_ADDRS
LDAP Event Services 73

74 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
DSETimestamp Class

The class represents the time stamp data structure for eDirectory Events Notification. It contains the
time (in seconds), replica number and event type.

Remarks

Two time stamp values are compared by comparing the seconds fields first and the event fields
second. If the seconds fields are unequal, order is determined by the seconds field alone. If the
seconds fields are equal, and the Event fields are unequal, order is determined by the Event fields. If
the seconds and the event fields are equal, the time stamps are equal.

6.3.2 Value Events
This section explains the Value Events.

ValueEventData Class

The response data for value events is returned as an ValueEventData class. This class consists of the
read-only properties as explained in the table below.

Property Type Description

PerpetratorDN LDAPDN Specifies the DN of the entry that caused the event.

Entry LDAPDN Specifies the DN of the entry that was acted upon.

Class OCTET
STRING

Specifies the class OID of the object that was acted upon.

TimeStamp DSETimestamp Specifies the Time of Creation of this entry.

Verb INTEGER Specifies the action that caused the event to occur.

Flags INTEGER

NewDN OCTET
STRING

Specifies the new DN of the entry that was acted upon.

Property Type Description

Seconds INTEGER Specifies in seconds when the event occurred. Zero equals 12:00
midnight, January 1, 1970,

ReplicaNumber INTEGER Specifies the number of the replica on which the change or event
occurred.

Event INTEGER Specifies an integer that further orders events occurring within the
same whole-second interval.

Property Type Description

PerpetratorDN LDAPDN Specifies the DN of the entry that caused the event.

Entry LDAPDN Specifies the DN of the entry that was acted upon.
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
6.3.3 Debug Events
This section explains the different types of Debug Events.

DebugEventData Class

The response data for debug event is returned as a DebugEventData class. This class consists of the
read-only properties as explained in the table below.

DebugParameter Class

This class contains the debug parameters associated with debug events.

Attribute OCTET STRING Specifies the attribute OID of the attribute that was acted upon.

Syntax OCTET STRING Specifies the Syntax OID of the entry that was acted upon.

ClassId OCTET STRING Specifies the class OID of the object that was acted upon.

TimeStamp DSETimestamp Specifies a TimeStamp.

Data OCTET STRING Specifies the information that further identifies the changes that
were made.

Verb INTEGER Specifies the action that caused the event to occur.

Property Type Description

DSTime INTEGER Specifies the time the event occurred as the number of seconds
elapsed since midnight (00:00:00), January 1, 1970, coordinated
universal time, according to the system clock.

MilliSeconds INTEGER The millisecond portion of the time the event occurred.

PerpetratorDN LDAPDN The DN of the object that caused this event.

FormatString String The format string used to create the string printed in the DS Trace
utility. The format string describes the string that is displayed by
the DS Trace utility. It contains literal characters as well as format
characters that serve as place holder for parameter values. See
the remarks for a list of valid format characters.

Verb INTEGER The ID of the ds verb that was executing when the event occurred.

ParameterCount INTEGER Number of elements in the parameters array.

Parameters Array of
DebugParameter

A list of DebugParameter class. The parameters are in the same
order as the parameter characters in the format string.

Property Type Design

DebugType INTEGER An integer that indicates the type of the parameter. See the Table
Below.

Data Object Specifies different type of Object depending on Type.

Property Type Description
LDAP Event Services 75

76 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
Values of Type

Remarks

The FormatString parameter is formatted according to the following:

%[flags][width][.precision][L,l,h,!]type

Value of Type
Data Class
contained as Data
property

Description

DebugParamType.ENTRYID INTEGER Contains an Integer Object.

DebugParamType.STRING String Contains an UTF-8 encoded string value of
the parameter

DebugParamType.BINARY byte[] Contains an byte array as data.

DebugParamType.INTEGER INTEGER Contains an Integer Object.

DebugParamType.ADDRESS ReferralAddress Contains the Network Address contained in
a ReferralAddress class.

DebugParamType.TIMESTAMP DSETimeStamp Specifies an TimeStamp as a
DSETimeStamp class.

DebugParamType.TIMEVECTOR List of
DSETimeStamp

Specifies a List of DSETimeStamp.

Element Description

flags -, +, #, 0

width An optional integer indicating the width of the displayed value

precision An optional integer indicating the precision of the displayed value

L, l, h, ! A character indication the size of the parameter, one of the following
values:

• L: DOUBLE_FLAG

• l: LONG_FLAG

• h: SHORT_FLAG

• !: I64_FLAG
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
ReferralAddress Class

This class is used to store the network address.

6.3.4 General DS Events
This section explains different types of the General DS Events.

GeneralDSEventData Class

The response data for general DS events is returned as a GeneralDSEventData class. This class
consists of the read-only properties as explained in the table below.

type A character indicating the data type of the parameter, one of the following
values:

• C: color (no associated parameter)

• t: current time (no associated parameter)

• s: string, EVT_TAG_DB_STRING

• a: network address

• U: string, EVT_TAG_DB_STRING

• T: time stamp

• V: time stamp vector

• S: string, EVT_TAG_DB_STRING

• D: binary data

• x: hex integer, EVT_TAG_DB_INTEGER

• v: verb number, EVT_TAG_DB_INTEGER

• o: octal integer, EVT_TAG_DB_INTEGER

• e: error code value, EVT_TAG_DB_INTEGER

• d: normal decimal integer, EVT_TAG_DB_INTEGER

• c: single character, EVT_TAG_DB_INTEGER

• p: raw memory pointer, EVT_TAG_DB_INTEGER

• X: HEX integer, EVT_TAG_DB_INTEGER

• E: error code value, EVT_TAG_DB_INTEGER

Property Type Description

AddressType INTEGER An integer value indicating the address type.

Address String The actual address value.

Property Type Description

DSTime INTEGER Specifies the time in milliseconds when the event occurred.

MilliSeconds INTEGER

Element Description
LDAP Event Services 77

78 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
Events Without Data

In the case of events without data , the response data is returned as an null object.

6.3.5 Bindery Events
This section explains the Bindery Data.

BinderyObjectEventData Class

The response data for bindery events is returned as a BinderyObjectEventData class. This class
consists of the read-only properties as explained in the table below.

6.3.6 SecurityEquivalence Event
This section explains the SecurityEquivalence Event.

SecurityEquivalenceEventData Class

The response data for SecurityEquivalence events is returned as a SecurityEquivalenceEventData
class. This class consists of the read-only properties as explained in the table below.

Verb INTEGER Specifies the action that caused the event to occur.

CurrentProcess INTEGER Specifies the process that was running when the event occurred.

PerpetratorDN LDAPDN Specifies the DN of the entry that caused the event.

IntegerValues Array of integer Contains event data determined by the event type

StringValues Array of string Contains event data determined by the event type.

Property Type Description

EntryDN LDAPDN Specifies the DN of the Directory entry that is being created to
represent the bindery object.

Type INTEGER Specifies the bindery object type.

EmuObjFlags INTEGER Specifies the bindery object flags.

Security INTEGER Specifies the bindery object security.

Name LDAPString Specifies the name of the bindery object.

Property Type Description

EntryDN LDAPDN Specifies the DN of the Directory object whose Security
Equivalence Vector (SEV) is being checked.

RetryCount INTEGER Specifies the number of retries.

ValueDN LDAPDN Specifies the DN of an object or group being checked.

Property Type Description
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
6.3.7 Module State Events

This section explains the Module State Events.

ModuleStateEventData Class

The response data for module state events is returned as an ModuleStateEventData class. This class
consists of the read-only properties explained in the table below.

The values for flags field are contained in the following table:

6.3.8 Network Address Event
This section explains the Network Address Event.

ReferralList List of
ReferralAddress

Specifies the List of referrals.

ReferralCount INTEGER Specifies the number of referrals in the referrals parameter.

Property Type Design

ConnectionDN LDAPDN Specifies the DN of the entry associated with the connection.

Flags INTEGER The least significant byte of the flags field contains module
attribute flags. The next byte contains event subtype flags. They
indicate the type of module event in progress. See the Table
below for details.

Name LDAPSTRING Specifies the affected module name.

Description LDAPSTRING Specifies the name and description of the target module.

Source LDAPSTRING Specifies the affecting module.

0x0001 DSE_MOD_HIDDEN

0x0002 DSE_MOD_SYSTEM

0x0004 DSE_MOD_ENGINE

0x0008 DSE_MOD_AUTOMATIC

0x00FF DSE_MOD_FILE_MASK

0x0100 DSE_MOD_POSTEVENT

0x0200 DSE_MOD_AVAILABLE

0x0400 DSE_MOD_LOADING

0x0800 DSE_MOD_MODIFY

0x8000 DSE_MOD_NEGATE_BIT

0xFF00 DSE_MOD_EVENT_MASK

Property Type Description
LDAP Event Services 79

80 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
NetworkAddressEventData Class

The response data for network address events is returned as a NetworkAddressEventData class. This
class consists of the read-only properties as explained in the table below.

Remarks

The address is stored as a binary string. This string is the literal value of the address. To display as a
hexadecimal value, you must convert each 4-bit nibble to the correct character (0,1,2,3,...) For two
net addresses to match, the type, length, and value of the addresses must match.

6.3.9 Connection Change Event
This section explains the Connection Change Event.

ConnectionStateEventData Class

The response data for connection change events is returned as a ConnectionStateEventData class.
This class consists of the read-only properties as explained in the table below.

Flags

Property Type Description

ValueType INTEGER Specifies the type of the address. Can be one of the following
values:

• NT_IPX

• NT_IP

• NT_SDLC

• NT_TOKENRING_ETHERNET

• NT_OSI

• NT_APPLETALK

• NT_COUNT

Data OCTET
STRING

An character array containing address.

Property Type Design

ConnectionDN LDAPDN Specifies the DN of the entry associated with the connection.

OldFlags INTEGER Specifies the flag associated with the previous connection state,
and is one of the flag Specified in Table below.

NewFlags INTEGER Specifies the flag that indicates the new connection state. Uses
the same flags as oldFlags.

SourceModule LDAPSTRING Specifies the module that caused the connection state to change.

0x00000001 DSE_CONN_VALID
 Libraries for C#

novdocx (E
N

U
) 01 February 2006
0x00000002 DSE_CONN_AUTHENTIC

0x00000004 DSE_CONN_SUPERVISOR

0x00000008 DSE_CONN_OPERATOR

0x00000010 DSE_CONN_LICENSED

0x00000020 DSE_CONN_SEV_IS_STALE

0x000000FF DSE_CONN_OPERATIONAL_FLAGS

0x00010000 DSE_CONN_CLEAR_ON_UNLOCK

0x00020000 DSE_CONN_LOCKED

0x00040000 DSE_CONN_CLEAR_ON_EVENT

0x000F0000 DSE_CONN_SECURITY_FLAGS
LDAP Event Services 81

82 NDK: LDAP

novdocx (E
N

U
) 01 February 2006
 Libraries for C#

Revision History

A
novdocx (E

N
U

) 01 February 2006

83

ARevision History

The following table lists all changes made to the NDK: LDAP Libraries for C# documentation:

March 2006 Added the following:

• Section 2.5, “Using the LDAP Classes,” on page 21

• Section 2.6, “Exception Handling,” on page 23

• Section 6.1.2, “Monitoring the eDirectory Events,” on page 49

Modified the examples in the following sections:

• Section 3.2, “Searching the Directory,” on page 28

• Section 3.3, “Creating an Entry in the Directory,” on page 34

• Section 3.4, “Modifying Entry Properties,” on page 35

• Section 3.5, “Renaming an Entry,” on page 36

• Section 3.6, “Moving an Entry,” on page 36

• Section 3.7, “Deleting an Entry,” on page 37

• Section 5.1, “Supported Controls,” on page 43

Fixed formatting issues.

October 2005 Added information on “SSL Integration:” on page 18.

September 2004 Added information on integrating the Mono Security Library with the LDAP
libraries for C#. See Section 2.2, “How to Use LDAP Libraries for C#,” on
page 18.

October 2004 Added the following:

• Chapter 6, “LDAP Event Services,” on page 49.

• Location to obtain the Novell.Directory.Ldap.dll file.

June 2004 Added section on Section 1.5, “Integrating SSL with LDAP Libraries for C#,”
on page 13.

February 2004 Initial version.

	NDK: LDAP Libraries for C#
	About This Guide
	1 Getting Started
	1.1 Dependencies
	1.2 Supported Platforms
	1.3 Using Novell.Directory.Ldap on Windows
	1.4 Using Novell.Directory.Ldap on Linux
	1.5 Integrating SSL with LDAP Libraries for C#
	1.5.1 Setting Up the LDAP Server
	1.5.2 Setting Up the .NET Client Application
	1.5.3 Integrating the LDAP Libraries for C#

	1.6 Sample Code
	1.7 LDAP Test Server

	2 Concepts
	2.1 Knowing the LDAP Model
	2.2 How to Use LDAP Libraries for C#
	2.3 LDAP Libraries for C# Namespaces
	2.3.1 Novell.Directory.Ldap
	2.3.2 Novell.Directory.Ldap.Asn1
	2.3.3 Novell.Directory.Ldap.Controls
	2.3.4 Novell.Directory.Ldap.Extensions
	2.3.5 Novell.Directory.Ldap.Rfc2251
	2.3.6 Novell.Directory.Ldap.Utilclass

	2.4 LDAP Directory Access Methods
	2.4.1 Error Handling

	2.5 Using the LDAP Classes
	2.5.1 LDAP Connections
	2.5.2 Using Synchronous or Asynchronous Functions
	2.5.3 Clear Text vs. Encrypted Passwords
	2.5.4 Using Constraints to Control Operations
	2.5.5 LDAP URLs
	2.5.6 Using LDAP URLs When Handling Referrals
	2.5.7 LDAP Messages

	2.6 Exception Handling
	2.6.1 Synchronous Methods
	2.6.2 Asynchronous Methods
	2.6.3 Referral Exceptions

	3 Tasks
	3.1 Binding an Entry to an LDAP Server
	3.2 Searching the Directory
	3.2.1 Specifying Search Parameters
	3.2.2 Getting Search Results

	3.3 Creating an Entry in the Directory
	3.4 Modifying Entry Properties
	3.5 Renaming an Entry
	3.6 Moving an Entry
	3.7 Deleting an Entry

	4 Referral Handling in LDAPv3
	4.1 Configuring eDirectory to Return Complete Data
	4.2 Configuring eDirectory to Return Referrals
	4.3 Enabling Referral Handling in the Application
	4.4 Following Referrals Using Synchronous Requests
	4.4.1 Following Referrals Manually
	4.4.2 Following Referrals Automatically as Anonymous
	4.4.3 Following Referrals Automatically with Authentication

	5 Controls and Extensions
	5.1 Supported Controls
	5.2 Supported Extensions

	6 LDAP Event Services
	6.1 Concepts
	6.1.1 Configuring the eDirectory Event System
	6.1.2 Monitoring the eDirectory Events

	6.2 Event Types
	6.2.1 Entry Events
	6.2.2 Value Events
	6.2.3 Debug Events
	6.2.4 General DS Events
	6.2.5 Events Without Data
	6.2.6 Bindery Events
	6.2.7 Security Equivalence Event
	6.2.8 Module State Events
	6.2.9 Network Address Events
	6.2.10 Connection Change Events
	6.2.11 Change Server Address

	6.3 Classes
	6.3.1 Entry Events
	6.3.2 Value Events
	6.3.3 Debug Events
	6.3.4 General DS Events
	6.3.5 Bindery Events
	6.3.6 SecurityEquivalence Event
	6.3.7 Module State Events
	6.3.8 Network Address Event
	6.3.9 Connection Change Event

	A Revision History

