How Classes are Found

JDK Tools

How the Java Launcher Finds Classes

The Java launcher, java, initiates the Java virtual machine. The virtual machine searches for and loads classes in this order:

In effect, these three search paths are joined to form a simple class path. This is similar to the "flat" class path previously used, but the current model has some important differences:

How the Java Launcher Finds Bootstrap Classes

Bootstrap classes are the classes that implement the Java 1.2 platform. Bootstrap classes are in the rt.jar and i18n.jar archives in /jdk1.2/jre/lib. These archives are specified by the value of the bootstrap class path which is stored in the sun.boot.class.path system property. This system property is for reference only, and should not be directly modified.

It is very unlikely that you will need to redefine the bootstrap class path. The nonstandard option, -Xbootclasspath, allows you to do so in those rare cicrcumstances in which it is necessary to use a different set of core classes.

Note that the classes which implement the JDK development tools are in separate archive from the bootstrap classes. The tools archive is /jdk1.2/lib/tools.jar. The development tools add this archive to the user class path when invoking the launcher. However, this augmented user class path is only used to execute the tool. The tools that process source code, javac and javadoc, use the orginal class path, not the augmented version. (For more information, see How Javac and Javadoc Find Classes, below.)

How the Java Launcher Finds Extension Classes

Extension classes are classes which extend the Java platform. Every .jar file in the extension directory, jre/lib/ext, is assumed to be an extension and is loaded using the Java Extension Framework. Loose class files in the extension directory will not be found. They must be contained in a .jar file (or .zip file). There is no option provided for changing the location of the extension directory.

How the Java Launcher Finds User Classes

User classes are classes which build on the Java platform. To find user classes, the launcher refers to the user class path -- a list of directories, JAR archives, and ZIP archives which contain class files.

A class file has a subpath name that reflects the class's full-qualified name. For example, if the class com.mypackage.MyClass is stored under /myclasses, then /myclasses must be in the user class path and the full path to the class file must be /myclasses/com/mypackage/MyClass.class. If the class is stored in an archive named myclasses.jar, then myclasses.jar must be in the user class path, and the class file must be stored in the archive as com/mypackage/MyClass.class.

On Solaris, the user class path is specified as a string, with a colon (:) separating the class path entries. The java launcher puts the user class path string in the java.class.path system property. The possible sources of this value are:

How the Java Launcher Finds JAR-class-path Classes

A JAR file usually contains a "manifest" -- a file which lists the contents of the JAR. The manifest can define a JAR-class-path, which further extends the class path (but only while loading classes from that JAR). Classes accessed by a JAR-class-path are found in the following order:

How the OldJava Launcher Finds Classes

The oldjava launcher does not support the Java Extensions Framework. It provides for backward compatibility when:

  1. You have an app that implements an 1.1-style security manager which is incompatible with the 1.2 class loading methodology, or
  2. The classes you are loading have been generated or massaged in some manner (for example, by an obfuscator) that is incompatible with the 1.2 class structure.

(For more information on these issues, see the java launcher reference page for Windows or Solaris.)

The oldjava launcher combines the bootstrap and user classes in a single class path. There are two ways to specify a class path with oldjava:

The combined class path is stored in the java.class.path system property.

How Javac and JavaDoc Find Classes

The javac and javadoc tools use class files in two distinct ways:

The class files used to resolve source code references are mostly the same class files used to run javac and javadoc. But there are some important exceptions:

If a referenced class is defined in both a class file and source file, javadoc always uses the source file (javadoc never compiles source files). In the same situation javac uses class files, but automatically recompiles any class files it determines to be out of date. The rules for automatic recompilation are documented in the javac document for Windows or Solaris.

By default, javac and javadoc search the user class path for both class files and source code files. If the -sourcepath option is specified, javac and javadoc search only the specified source file path.

Class Loading and Security Policies

To be used, a class or interface must be loaded by a class loader. Use of a particular class loader determines a security policy associated with the class loader.

A program can load a class or interface by calling the loadClass method of a class loader object. But usually a program loads a class or interface simply by referring to it. This invokes an internal class loader, which can apply a security policy to extension and user classes. If the security policy has not been enabled, all classes are "trusted". Even if the security policy is enabled, it does not apply to bootstrap classes, which are always "trusted."

When enabled, security policy is configured by system and user policy files. The JDK software includes a system policy file that grants "trusted" status to extension classes and places basic restrictions on user classes.

To enable or configure the security policy, refer to Security Features.

Note: Some security programming techniques that worked with the Java 1.1 platform are incompatible with the 1.2 class loading model. To provide temporary support for existing code, this release includes the oldjava launcher, which uses the 1.1 class loading model.