Legal Notices

Novell, Inc. and Omnibond Systems, LLC. make no representations or warranties with respect to the contents or use of this documentation, and specifically disclaim any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. and Omnibond Systems, LLC. reserve the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. and Omnibond Systems, LLC. make no representations or warranties with respect to any software, and specifically disclaim any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. and Omnibond Systems, LLC. reserve the right to make changes to any and all parts of the software, at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Omnibond Systems, LLC. All rights reserved. Licensed to Novell, Inc. Portions copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see www.novell.com/documentation.
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.
Contents

About This Guide 9

1 Overview 11
 1.1 Driver Architecture .. 11
 1.1.1 Publisher Channel .. 12
 1.1.2 Subscriber Channel .. 13
 1.1.3 Scriptable Framework .. 14
 1.1.4 Schema File .. 14
 1.1.5 Include/Exclude File ... 14
 1.1.6 Loopback State Files .. 14
 1.2 Configuration Overview .. 14
 1.2.1 Data Flow .. 15
 1.2.2 POSIX Information Management 15
 1.2.3 Filter and Schema Mapping 15
 1.2.4 Policies ... 16

2 Planning for the Linux and UNIX Driver 17
 2.1 Deployment Planning .. 17
 2.2 Migration Planning ... 18
 2.3 Customization Planning ... 18
 2.4 Participating Systems ... 18
 2.5 Choosing between the Basic and the Advanced Installation Methods ... 19
 2.6 Establishing a Security-Equivalent User 19

3 Installing the Linux and UNIX Driver 21
 3.1 Before You Begin .. 21
 3.2 Required Knowledge and Skills 21
 3.3 Prerequisites .. 22
 3.3.1 Connected System Requirements 22
 3.3.2 Identity Vault Requirements 23
 3.4 Getting the Installation Files 23
 3.5 Running the Installation Script 23
 3.6 Extending the Schema for Identity Manager 24
 3.6.1 Windows and NetWare Metadirectory Servers 24
 3.6.2 Linux and UNIX Metadirectory Servers 24
 3.7 Setting Up the Driver on the Metadirectory Server 25
 3.8 Installing the Driver Shim on the Connected System 27
 3.9 Installing the PAM or LAM Module 27
 3.10 Post-Installation Tasks .. 28
 3.11 Uninstalling the Driver ... 28

4 Upgrading from Another Driver 29
 4.1 Upgrading from the NIS Driver 29
 4.1.1 Upgrading the Driver Shim 29
 4.1.2 Upgrading the Driver ... 30
4.1.3 Post-Migration Tasks ... 31
4.2 Upgrading from the Fan-Out Driver ... 31
 4.2.1 Preparing for Migration .. 32
 4.2.2 Migrating Fan-Out Driver Platform Services to the Linux and UNIX Driver 32
 4.2.3 Configuring the Driver .. 32
 4.2.4 Post-Migration Tasks .. 33

5 Configuring the Linux and UNIX Driver 35
 5.1 Driver Parameters and Global Configuration Values 35
 5.1.1 Properties That Can Be Set Only during Driver Import 35
 5.1.2 Driver Configuration Page ... 37
 5.1.3 Global Configuration Values Page 40
 5.2 The Driver Shim Configuration File .. 42
 5.3 Migrating Identities ... 43
 5.3.1 Migrating Identities from the Identity Vault to the Connected System 43
 5.3.2 Migrating Identities from the Connected System to the Identity Vault 44
 5.3.3 Synchronizing the Driver ... 45

6 Customizing the Linux and UNIX Driver 47
 6.1 The Scriptable Framework .. 47
 6.2 The Connected System Schema File .. 49
 6.2.1 Schema File Syntax .. 49
 6.2.2 Example Schema File .. 50
 6.3 The Connected System Include/Exclude File 50
 6.3.1 Include/Exclude Processing ... 50
 6.3.2 Include/Exclude File Syntax .. 51
 6.3.3 Example Include/Exclude Files 54
 6.4 Managing Additional Attributes ... 55
 6.4.1 Modifying the Filter .. 55
 6.4.2 Modifying the Scripts for New Attributes 55

7 Using the Linux and UNIX Driver 57
 7.1 Starting and Stopping the Driver .. 57
 7.2 Starting and Stopping the Driver Shim 57
 7.3 Displaying Driver Shim Status ... 58
 7.4 Monitoring Driver Messages ... 58
 7.5 Changing Passwords .. 58

8 Securing the Linux and UNIX Driver 59
 8.1 Using SSL ... 59
 8.2 Physical Security .. 59
 8.3 Network Security .. 59
 8.4 Auditing ... 59
 8.5 Driver Security Certificates ... 60
 8.6 Driver Shell Scripts .. 60
 8.7 The Change Log ... 60
 8.8 Driver Passwords .. 60
 8.9 Driver Code ... 60
 8.10 Administrative Users ... 60
 8.11 Connected Systems ... 60
About This Guide

Novell® Identity Manager 3 is a data sharing and synchronization service that enables applications, directories, and databases to share information. It links scattered information and enables you to establish policies that govern automatic updates to designated systems when identity changes occur. Identity Manager provides the foundation for account provisioning, security, user self-service, authentication, authorization, automated workflow, and Web services. It allows you to integrate, manage, and control your distributed identity information so you can securely deliver the right resources to the right people.

The Identity Manager Driver for Linux and UNIX 3.0 synchronizes data between the Identity Vault and a connected Linux or UNIX system.

This guide is organized into the following sections:

• Chapter 1, “Overview,” on page 11
• Chapter 2, “Planning for the Linux and UNIX Driver,” on page 17
• Chapter 3, “Installing the Linux and UNIX Driver,” on page 21
• Chapter 4, “Upgrading from Another Driver,” on page 29
• Chapter 5, “Configuring the Linux and UNIX Driver,” on page 35
• Chapter 6, “Customizing the Linux and UNIX Driver,” on page 47
• Chapter 7, “Using the Linux and UNIX Driver,” on page 57
• Chapter 8, “Securing the Linux and UNIX Driver,” on page 59
• Appendix A, “Troubleshooting,” on page 61
• Appendix B, “System and Error Messages,” on page 69
• Appendix C, “Technical Details,” on page 87

Audience

This guide is for system administrators and others who plan, install, configure, and use the Linux and UNIX driver.

This guide assumes that you are familiar with Identity Manager architecture, managing Identity Manager drivers, setting up a connected system, and administering policies. For detailed information about these topics, see the Identity Manager 3.0 Administration Guide and the Policy Builder and Driver Customization Guide. For the most recent version of these guides and other Identity Manager documentation, go to the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

This guide also assumes that you are familiar with system administration of your connected Linux or UNIX system. For detailed information, see the documentation for your system.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to the Novell Documentation Feedback Web page (http://www.novell.com/documentation/feedback.html) and enter your comments there.

Documentation Updates

For the most recent version of this guide, visit the Identity Manager Drivers Documentation Web site (http://www.novell.com/documentation/idmdrivers/index.html).

Additional Documentation

For documentation about Identity Manager, see the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

For documentation about other Identity Manager drivers, see the Identity Manager Drivers Documentation Web site (http://www.novell.com/documentation/idmdrivers/index.html).

For details about using iManager, see the Novell iManager documentation Web site (http://www.novell.com/documentation/imanager26/index.html).

For details about RFC 2307, see the Internet RFC/STD/FYI/BCP Archives Web site entry (http://www.faqs.org/rfcs/rfc2307.html).

For details about developing customized scripts for the Identity Manager Driver for Linux and UNIX 3.0, see the Novell Identity Manager Linux and UNIX Driver Developer Kit Web site (http://developer.novell.com/wiki/index.php/idmxmlrvdevkit).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and items in a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party trademark.
Overview

The Identity Manager Driver for Linux and UNIX 3.0 synchronizes data between the Identity Vault and a connected Linux or UNIX system. The driver runs on a target system, such as Linux, Solaris*, AIX*, and HP-UX*. The Identity Vault runs on any platform supported by Identity Manager and communicates with the driver on the connected system over a secure network link.

The driver uses embedded Remote Loader technology to communicate with the Identity Vault, bidirectionally synchronizing changes between the Identity Vault and the connected system. The embedded Remote Loader component, also called the driver shim, runs as a native process on the connected Linux or UNIX system. There is no requirement to install Java* on the connected system.

The driver commits changes to the connected system using customizable shell scripts that issue native system commands. The publication method uses a polling script that scans the system for changes, and a change log to save changes for subsequent publishing. Password changes are sent to the change log using the authentication module framework and are then published to the Identity Vault.

The Linux and UNIX driver uses a scriptable framework, designed so that you can easily add support for existing and future applications.

The Identity Manager Driver for Linux and UNIX 3.0 combines the flexibility of the Fan-Out driver for Linux and UNIX systems, and the bidirectional support and Identity Manager policy options available with the NIS driver. New features include:

- Bidirectional synchronization of data without requiring Java or a separate Remote Loader
- Customizable schema to integrate all aspects of Linux and UNIX account administration
- Customizable shell scripts to handle all data to be synchronized
- Low memory and processor requirements on the Metadirectory server
- No LDAP or Fan-Out core driver configuration

The following sections present a basic overview of the Linux and UNIX driver:

- Section 1.1, “Driver Architecture,” on page 11
- Section 1.2, “Configuration Overview,” on page 14

1.1 Driver Architecture

The Linux and UNIX driver synchronizes information between the Identity Vault and the account management system (files, NIS, or NIS+) on connected Linux and UNIX systems.

The Identity Manager detects relevant changes to identities in the Identity Vault and notifies the Subscriber component of the driver. After customizable policy processing, events are sent to the Subscriber shim of the embedded Remote Loader process on the connected system. The Subscriber shim uses shared memory to securely pass the information to customizable shell scripts that perform the required actions.

A process on the connected Linux or UNIX system polls the account management system for changes at a configurable interval. If the poll returns identity changes, they are written to the change log.
log. An authentication module on the connected system monitors password changes and submits them to the change log.

The Publisher shim of the embedded Remote Loader process submits the changes from the change log to the Metadirectory engine as events. The Metadirectory engine processes these events using customizable policies and posts relevant changes to the Identity Vault.

The following illustration shows an overview of the architecture.

Figure 1-1 Linux and UNIX Driver Architecture

1.1.1 Publisher Channel

The Publisher shim provides identity change information to the Metadirectory engine as XDS event documents. The Metadirectory engine applies policies, takes the appropriate actions, and posts the events to the Identity Vault.

PAM and LAM

Pluggable Authentication Modules (PAM) and AIX Loadable Authentication Modules (LAM) are modules installed on the local system to intercept password changes for participating applications, such as the `passwd` command. These changes are written to the change log and are later presented to the Metadirectory engine by the Publisher shim. For details about the PAM and LAM configurations, see Section C.4, “PAM Configuration Details,” on page 92 and Section C.5, “LAM Configuration Details,” on page 94.
Change Log

The change log stores identity changes in encrypted form. The polling script uses the change log update command to record identity changes it detects. Password changes are written to the change log by the PAM and LAM modules. Events are removed from the change log by the Publisher shim at configurable intervals and submitted to the Metadirectory engine for processing. If communication with the Metadirectory engine is temporarily lost, events remain in the change log until communication becomes available again.

Change Log Update Command

The change log update command, nxclh, encrypts and writes events to the change log. Any process with rights to update the change log can use the change log update command. The change log update command takes command line arguments and standard input, and stores events in encrypted form in the change log for subsequent publishing. The polling script calls the change log update command to record identity changes. For information about using the change log update command, see the Novell Identity Manager Linux and UNIX Driver Developer Kit Web site (http://developer.novell.com/wiki/index.php/idmnxdrvdevkit).

Polling Script

The polling script, poll.sh, is a native shell script that periodically scans the local account management system for modifications that have occurred since the last polling interval. If necessary, the polling script updates the change log by calling the change log update command. You can specify the polling interval during installation and by subsequent configuration of the Driver object.

Account Snapshot Files

The account snapshot files hold information about the state of users and groups. These files are used by the polling script to detect changes made to users and groups in the account management database (files, NIS, or NIS+).

Publisher Shim

The Publisher shim periodically scans the change log for events. Before scanning the change log, the driver calls the polling script to check the local system for changes that might have been made since the previous poll.

When the Publisher shim finds events in the change log, it decrypts, processes, and sends them to the Metadirectory engine in XDS format over a Secure Sockets Layer (SSL) network link.

1.1.2 Subscriber Channel

The Subscriber channel receives XDS command documents from the Metadirectory engine, stores them as name-value variables in shared memory, then calls the appropriate shell script or scripts to handle the command.

The provided shell scripts support adds, modifies, deletes, moves, and renames for User and Group objects, and handle password synchronization. You can extend the shell scripts to support other object types and events. The shell scripts have secure access to the original command data using the shared memory tool (nxsmh) that accesses shared memory from the driver shim.
1.1.3 Scriptable Framework

The interface between the account management database (files, NIS or NIS+) and the driver shim uses customizable shell scripts. You can extend the scripts that are provided with the driver to support other applications and databases.

Several utility scripts and helper commands are provided with the driver to facilitate communication with the driver shim and the change log. An extensible connected system schema file allows you to add your own objects and attributes to those already supported by the driver.

For more information about the shell scripts and the scriptable framework, see Section 6.1, “The Scriptable Framework,” on page 47.

1.1.4 Schema File

The configuration of class and attribute definitions for the connected Linux and UNIX system is specified using the schema file. You can modify and extend this file to include new objects and attributes. For details about configuring the schema file, see Section 6.2, “The Connected System Schema File,” on page 49.

The schema for the connected system includes two classes: User and Group. These correspond to the passwd and group maps commonly found in /etc/passwd and /etc/group in the files environment.

By default, the User class contains the attributes loginName, uidNumber, gidNumber, gecos, homeDirectory, and loginShell. These refer to the fields in the passwd map.

```
loginName:x:uidNumber:gidNumber:gecos:homeDirectory:loginShell
```

By default, the Group class contains the attributes groupName, gidNumber, and memberUid. These refer to the fields in the group map.

```
groupName:!:gidNumber:memberUid
```

1.1.5 Include/Exclude File

The include/exclude file allows local system policy to enforce which objects are included or excluded from provisioning, on both the Publisher channel and the Subscriber channel, independently. For details about using the include/exclude file, see Section 6.3, “The Connected System Include/Exclude File,” on page 50.

1.1.6 Loopback State Files

The loopback state files are used to provide automatic loopback detection for external applications that do not have mechanisms to perform loopback detection. This loopback detection prevents subscribed events from being published back to the Identity Vault.

1.2 Configuration Overview

This section discusses driver configuration details specific to the Linux and UNIX driver. For basic configuration information, see the Identity Manager 3.0 Administration Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html). For
detailed information about configuring the Linux and UNIX driver, see Chapter 5, “Configuring the Linux and UNIX Driver,” on page 35.

1.2.1 Data Flow

Filters and policies control the data flow of users and groups to and from the connected system and the Identity Vault. The Data Flow option, specified during driver import, determines how these filters and policies behave.

- **Bidirectional**: Sets classes and attributes to be synchronized on both the Subscriber and Publisher channels.
- **Application to Identity Vault**: Sets classes and attributes to be synchronized on the Publisher channel only.
- **Identity Vault to Application**: Sets classes and attributes to be synchronized on the Subscriber channel only.

1.2.2 POSIX Information Management

The Linux and UNIX driver provides a file (`nxdrv.sch`) that you can use to add auxiliary classes to eDirectory™ User and Group objects for the RFC 2307 posixAccount and posixGroup attributes. You can use these classes to maintain the Linux and UNIX attributes between corresponding users and groups in the connected system and the Identity Vault. For information about extending the schema to add these auxiliary classes, see Section 3.6, “Extending the Schema for Identity Manager,” on page 24.

The POSIX Information Management option, specified during driver import, provides management methods for RFC 2307 posixAccount and posixGroup attributes, such as uidNumber, gidNumber, homeDirectory, loginShell, and memberUid.

- **Manage Local**: The connected system maintains all the RFC 2307 information. RFC 2307 information is not created or stored in the Identity Vault. RFC 2307 schema extensions are not required. This option is useful for maintaining UID and GID information on multiple systems separately.
- **Manage from Identity Vault**: The Identity Vault provides and maintains all RFC 2307 information for users and groups. RFC 2307 information must be present in the Identity Vault before users and groups can be provisioned to the connected system.
- **Manage Bidirectional**: RFC 2307 information can be created and managed by both the Identity Vault and the connected system.

1.2.3 Filter and Schema Mapping

The Metadirectory engine uses filters to control which objects and attributes are shared. The default filter configuration for the Linux and UNIX driver allows objects and attributes to be shared as described in the following table:
1.2.4 Policies

The Metadirectory engine uses policies to control the flow of information into and out of the Identity Vault. The following table describes the policy functions for the Linux and UNIX driver in the default configuration:

Table 1-2 Default Linux and UNIX Driver Policy Functions

<table>
<thead>
<tr>
<th>Policy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping</td>
<td>Maps the Identity Vault User and Group objects and selected attributes to a Linux or UNIX user or group.</td>
</tr>
<tr>
<td>Publisher Event</td>
<td>None is provided.</td>
</tr>
<tr>
<td>Publisher Matching</td>
<td>Restricts privileged accounts and defines matching criteria for placement in the Identity Vault.</td>
</tr>
<tr>
<td>Publisher Create</td>
<td>Defines creation rules for users and groups before provisioning into the Identity Vault.</td>
</tr>
<tr>
<td>Publisher Placement</td>
<td>Defines where new users and groups are placed in the Identity Vault.</td>
</tr>
<tr>
<td>Publisher Command</td>
<td>Defines password publishing policies.</td>
</tr>
<tr>
<td>Subscriber Matching</td>
<td>Defines rules for matching users and groups in the connected system.</td>
</tr>
<tr>
<td>Subscriber Create</td>
<td>Defines required creation criteria.</td>
</tr>
<tr>
<td>Subscriber Command</td>
<td>Transforms RFC 2307 attributes and defines password subscribing policies.</td>
</tr>
<tr>
<td>Subscriber Output</td>
<td>Sends e-mail notifications for password failures and converts information formats from the Identity Vault to the connected system.</td>
</tr>
<tr>
<td>Subscriber Event</td>
<td>Restricts events to a specified container.</td>
</tr>
</tbody>
</table>
Planning for the Linux and UNIX Driver

This section reviews some of the issues to consider before you install and deploy the Identity Manager Driver for Linux and UNIX 3.0.

- Section 2.1, “Deployment Planning,” on page 17
- Section 2.2, “Migration Planning,” on page 18
- Section 2.3, “Customization Planning,” on page 18
- Section 2.4, “Participating Systems,” on page 18
- Section 2.5, “Choosing between the Basic and the Advanced Installation Methods,” on page 19
- Section 2.6, “Establishing a Security-Equivalent User,” on page 19

For more information about planning, see the Identity Manager 3.0 Installation Guide on the Identity Manager Drivers Documentation Web site (http://www.novell.com/documentation/idmdrivers/index.html).

2.1 Deployment Planning

- Consider where and how you will install each component, and how you will respond to the installation script prompts and other installation decisions.
- Is this a new installation, or are you replacing a NIS driver or Fan-Out driver Platform Services installation? For details about upgrading from the NIS driver or the Fan-Out driver, see Chapter 4, “Upgrading from Another Driver,” on page 29.
- How do you plan to prototype, test, and roll out your deployment?
- Do you plan to use the include/exclude file on the connected system to limit your initial deployment to a small number of users and groups?
- If you are using AIX and want to publish password changes, will you use PAM or LAM? (You can use both if necessary.)
 AIX version 5.3 can use PAM, but previous AIX versions must use LAM.
 LAM supports only the files database type. LAM does not support NIS and NIS+. You can do either of the following:
 - Upgrade to AIX 5.3.
 - Require users to change their passwords on the Identity Vault.
- Do you have NIS or NIS+ clients that you want to publish password changes from?
- What are the host names or IP addresses of all systems that will participate in your configuration?
- Will you use the default TCP port numbers?
2.2 Migration Planning

- Where are the objects that you plan to manage with the Linux and UNIX driver currently stored?
- Can you use a Matching policy to select the objects to manage based on criteria, such as department, group membership, or some other attribute?

2.3 Customization Planning

- Do you plan to customize the shell scripts provided with the driver?

 For details about the provided scripts, see Table 6-1, “Identity Vault Command Processing Scripts,” on page 48, Table 6-2, “Other Scripts,” on page 48, and the scripts themselves.
- Do you plan to add attributes or classes to the connected system schema file?
- Do you plan to customize policies?

- Are the resources needed to perform the customization available within your organization?

2.4 Participating Systems

You can install the components of the Identity Manager Driver for Linux and UNIX 3.0 to a single system, but the components are typically installed on two systems. The driver is installed on a Metadirectory server. The driver shim is installed on the connected Linux or UNIX system. In addition, you can install the driver PAM module on NIS or NIS+ clients to publish password change information from them.

The connected system runs a lightweight process, called the driver shim or embedded Remote Loader, that communicates with the driver on the Metadirectory server over an encrypted TCP/IP network link.

The Metadirectory server and the connected system can be the same system if the system is running a version of Linux or UNIX supported as a connected system. This can be useful for testing and prototyping. Even if the Metadirectory server and the connected system are the same system, the driver is still run as a Remote Loader driver.

Table 2-1 Default TCP Port Numbers

<table>
<thead>
<tr>
<th>Purpose</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver shim connection to Metadirectory engine</td>
<td>8090</td>
</tr>
<tr>
<td>Driver shim HTTP services for log viewing and access by remote NIS or NIS+ client PAM modules</td>
<td>8091</td>
</tr>
<tr>
<td>Secure LDAP port</td>
<td>636</td>
</tr>
<tr>
<td>Non-secure LDAP port</td>
<td>389</td>
</tr>
</tbody>
</table>
2.5 Choosing between the Basic and the Advanced Installation Methods

When you import the driver, you are prompted to choose either the Basic Installation or the Advanced Installation. Select Advanced Installation for any of the following:

- You plan to maintain RFC 2307 attribute information, such as uidNumber, gidNumber, homeDirectory, loginShell, and gecos, centrally from the Identity Vault. You can do this with a manual process or by an automated process, such as by using the Linux and UNIX Settings driver. You do not want to publish changes to this information from the Linux or UNIX system.
- You plan to maintain RFC 2307 attribute information locally on the connected Linux or UNIX system. You do not want to subscribe to changes to this information from the Identity Vault.
- You want to publish information only.
- You want to subscribe to information only.
- You want to use Role-Based Entitlements.
- You want to override the defaults and configure specific Linux and UNIX driver options, such as the automatic creation of home directories, the automatic deletion of home directories, or the setting of gecos values.

To view the driver import configuration settings offered by each installation method, see Table 3-2, “Configuration Settings to Specify during Driver Import,” on page 25.

2.6 Establishing a Security-Equivalent User

The driver must run with Security Equivalence to a user with sufficient rights. You can set the driver equivalent to ADMIN or a similar user. For stronger security, you can define a user with only the minimal rights necessary for the operations you want the driver to perform.

The driver user must be a trustee of the containers where synchronized users and groups reside, with the rights shown in Table 2-2. Inheritance must be set for [Entry Rights] and [All Attribute Rights].

Table 2-2 Base Container Rights Required by the Driver Security-Equivalent User

<table>
<thead>
<tr>
<th>Operation</th>
<th>[Entry Rights]</th>
<th>[All Attribute Rights]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber notification of account changes (recommended minimum)</td>
<td>Browse</td>
<td>Compare and Read</td>
</tr>
<tr>
<td>Creating objects in the Identity Vault without group synchronization</td>
<td>Browse and Create</td>
<td>Compare and Read</td>
</tr>
<tr>
<td>Creating objects in the Identity Vault with group synchronization</td>
<td>Browse and Create</td>
<td>Compare, Read, and Write</td>
</tr>
<tr>
<td>Modifying objects in the Identity Vault</td>
<td>Browse</td>
<td>Compare, Read, and Write</td>
</tr>
<tr>
<td>Renaming objects in the Identity Vault</td>
<td>Browse and Rename</td>
<td>Compare and Read</td>
</tr>
</tbody>
</table>
If you do not set Supervisor for [Entry Rights], the driver cannot set passwords. If you do not want to set passwords, set the Subscribe setting for the User class nspmDistributionPassword attribute to Ignore in the filter to avoid superfluous error messages. For details about accessing and editing the filter, see the Policy Builder and Driver Customization Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

<table>
<thead>
<tr>
<th>Operation</th>
<th>[Entry Rights]</th>
<th>[All Attribute Rights]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleting objects from the Identity Vault</td>
<td>Browse and Erase</td>
<td>Compare, Read, and Write</td>
</tr>
<tr>
<td>Retrieving passwords from the Identity Vault</td>
<td>Browse and Supervisor</td>
<td>Compare and Read</td>
</tr>
<tr>
<td>Updating passwords in the Identity Vault</td>
<td>Browse and Supervisor</td>
<td>Compare, Read, and Write</td>
</tr>
</tbody>
</table>
Installing the Linux and UNIX Driver

This section contains requirements and instructions for installing the Identity Manager Driver for Linux and UNIX 3.0.

• Section 3.1, “Before You Begin,” on page 21
• Section 3.2, “Required Knowledge and Skills,” on page 21
• Section 3.3, “Prerequisites,” on page 22
• Section 3.4, “Getting the Installation Files,” on page 23
• Section 3.5, “Running the Installation Script,” on page 23
• Section 3.6, “Extending the Schema for Identity Manager,” on page 24
• Section 3.7, “Setting Up the Driver on the Metadirectory Server,” on page 25
• Section 3.8, “Installing the Driver Shim on the Connected System,” on page 27
• Section 3.9, “Installing the PAM or LAM Module,” on page 27
• Section 3.10, “Post-Installation Tasks,” on page 28
• Section 3.11, “Uninstalling the Driver,” on page 28

3.1 Before You Begin

☐ Review Chapter 2, “Planning for the Linux and UNIX Driver,” on page 17.
☐ Ensure that you have the most recent distribution, support pack, and patches for the driver.
☐ Review the most recent support information for the driver on the Novell® Support Web site (http://support.novell.com).

3.2 Required Knowledge and Skills

To successfully install, configure, and use the driver, you must have system administration skills and rights for Identity Manager and the target systems. You must be proficient with using iManager to configure Identity Manager drivers. You must be familiar with the facilities of the Linux and UNIX driver, and you must have developed a deployment plan.

For documentation about Identity Manager, see the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

For details about using iManager, see the Novell iManager documentation Web site (http://www.novell.com/documentation/imanager26/index.html).

For an overview of driver facilities, see Chapter 1, “Overview,” on page 11.

For information about planning for the Linux and UNIX driver, see Chapter 2, “Planning for the Linux and UNIX Driver,” on page 17.

For information about administering your target systems, see your operating system vendor’s documentation.
3.3 Prerequisites

- Section 3.3.1, “Connected System Requirements,” on page 22
- Section 3.3.2, “Identity Vault Requirements,” on page 23

3.3.1 Connected System Requirements

- “Operating System Requirements” on page 22
- “Account Management System Requirements” on page 22
- “Secure Sockets Layer Entropy Requirements” on page 22

Operating System Requirements

- Red Hat* Linux
- SUSE® Linux
- Solaris SPARC
- Solaris x86
- AIX
- HP-UX

For a current list of the supported versions, see the Identity Manager Drivers Documentation Website (http://www.novell.com/documentation/idmdrivers/index.html).

Account Management System Requirements

- Linux or UNIX systems using files (/etc/passwd), NIS, or NIS+ are supported.
- Either Pluggable Authentication Module (PAM), or Loadable Authentication Module (LAM) on AIX must be used if bidirectional password synchronization is desired. The driver uses PAM and LAM to intercept password changes on the connected system.

Remote NIS and NIS+ client systems that use PAM are also supported.

You can modify the scripts to support other account management systems. Support for modified scripts is provided by the developer community.

Secure Sockets Layer Entropy Requirements

Secure Sockets Layer (SSL), used by the driver shim for communication with the Metadirectory engine and with NIS and NIS+ clients, requires a source of entropy. Some UNIX implementations provide a /dev/random device for entropy. If your UNIX implementation does not include a /dev/random device, you must install an entropy daemon. This applies to both the connected system and to any NIS or NIS+ clients where you install the driver PAM module.

The PRNGD entropy daemon can be installed from the prngd directory of the distribution.

Solaris versions before Solaris 9 do not include a /dev/random device. Sun* has released this functionality for versions 2.6 onward in Patch ID 112438-01.
3.3.2 Identity Vault Requirements

- Novell Identity Manager 3 with the latest Support Pack

3.4 Getting the Installation Files

1. Obtain the most recent distribution of the Identity Manager Driver for Linux and UNIX 3.0 from the [Novell Downloads Web site](http://download.novell.com/).

 The driver is part of the Identity Manager Integration Module 3.1 for Linux and UNIX.

2. Copy the driver installation files from the distribution.
 - For NetWare® and Windows®, copy the `LinuxUnix.xml` and `nxdrv.sch` files onto the workstation where you will run iManager to set up the driver on the Metadirectory server.
 - For Linux and UNIX, copy the installation script listed in Table 3-1 onto the Metadirectory server.

3. Copy the appropriate driver shim installation script file listed in Table 3-1 from the distribution onto your connected system.

Table 3-1 Linux and UNIX Installation Script Filenames

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Installation Script File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td><code>linux_driver_install.bin</code></td>
</tr>
<tr>
<td>Solaris</td>
<td><code>solaris_driver_install.bin</code></td>
</tr>
<tr>
<td>AIX</td>
<td><code>aix_driver_install.bin</code></td>
</tr>
<tr>
<td>HP-UX</td>
<td><code>hpux_driver_install.bin</code></td>
</tr>
</tbody>
</table>

3.5 Running the Installation Script

Several of the installation procedures described in the sections that follow include running the installation script on a Linux or UNIX system.

To run the installation script:

1. Log in to the target server as `root`.
2. Enter one of the following commands as appropriate for your operating system:

   ```sh
   sh linux_driver_install.bin
   sh solaris_driver_install.bin
   sh aix_driver_install.bin
   sh hpux_driver_install.bin
   ```

 These installation commands are self-extracting files, natively executable by the shell.

3. Optionally enter a language choice.

4. Read and accept the license agreement.

5. At the prompt, enter the installation type as directed by the procedure.
Select the type of installation:
1) Install Driver Shim on Linux or UNIX system
2) Install only the rules (LinuxUnix.xml) and schema components
3) Install only PAM Module

Installation Type [1]:

6 Respond to the subsequent prompts as appropriate for the selected installation type.

3.6 Extending the Schema for Identity Manager

You must extend the schema if you want to use the Identity Vault to manage RFC 2307 attributes. Otherwise, it is not necessary.

Extending the schema adds auxiliary classes to eDirectory™ User and Group objects for the RFC 2307 posixAccount and posixGroup attributes.

• Section 3.6.1, “Windows and NetWare Metadirectory Servers,” on page 24
• Section 3.6.2, “Linux and UNIX Metadirectory Servers,” on page 24

3.6.1 Windows and NetWare Metadirectory Servers

For Windows and NetWare Metadirectory servers, use iManager to extend the schema.

1 Select the Extend Schema task under Schema.
2 Select Import data from file on disk, then click Next.
3 Select a file type of Schema File.
4 Specify file nxdrv.sch as the file to import, then click Next.
5 Specify the host name or IP address and the LDAP port number of your Metadirectory server.
 To connect to the non-secure LDAP port (389), you must have the Require TLS for Simple Binds with Password option disabled on your LDAP Group. If necessary, you can edit this option using the LDAP Options task under LDAP in iManager. For details, see the Novell® eDirectory 8.7.3 Administration Guide on the Novell eDirectory 8.7.3 Documentation Web site (http://www.novell.com/documentation/edir873/index.html).
6 Select Authenticated login and log in as ADMIN or another user with rights to extend the schema.
7 Click Next to go the summary.
8 Click Finish to extend the schema.

3.6.2 Linux and UNIX Metadirectory Servers

Respond Y to the following prompt while setting up the driver on the Metadirectory server:

Would you like to extend the eDirectory schema? (Y/N) [Y]

For details, see Section 3.7, “Setting Up the Driver on the Metadirectory Server,” on page 25.
3.7 Setting Up the Driver on the Metadirectory Server

1. For a Linux or UNIX Metadirectory server, run the installation script on the Metadirectory server, and select *Install only the rules (LinuxUnix.xml) and schema components*. Respond to the prompts as appropriate.

 For details, see Section 3.5, “Running the Installation Script,” on page 23.

2. Using iManager, select the *Identity Manager Utilities* task *New Driver*.

3. Select a Driver Set where you want to create the driver, then click *Next*.

 If you place this driver in a new Driver Set, you must specify a Driver Set name, context, and associated server.

 Only one driver set can be active on a server.

4. Import the driver rules file.

 - For a Linux or UNIX Metadirectory server, select *Import a driver configuration from the server (XML file)*, select LinuxUnix.xml, then click *Next*.

 - For a NetWare or Windows Metadirectory server, select *Import a driver configuration from the client (XML file)*, enter or browse for LinuxUnix.xml on the workstation (where you placed it in Step 2 on page 23), then click *Next*.

5. Provide a name for the driver and select an installation method, then click *Next*.

 For details about choosing the appropriate Installation Method, see Section 2.5, “Choosing between the Basic and the Advanced Installation Methods,” on page 19.

6. Specify the configuration settings as described in the following table, then click *Next*.

 Table 3-2 Configuration Settings to Specify during Driver Import

<table>
<thead>
<tr>
<th>Configuration Setting</th>
<th>Action</th>
<th>Installation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Flow</td>
<td>Select Bidirectional, Application to Identity Vault, or Identity Vault to Application. For details, see “Data Flow” on page 36.</td>
<td>Advanced</td>
</tr>
<tr>
<td>POSIX Management Mode</td>
<td>Select Manage Bidirectional, Manage Local, or Manage from Identity Vault. For details, see “POSIX Management Mode” on page 36.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Specify the number of seconds the Publisher shim waits after running the polling script and sending events from the change log to the Metadirectory engine. For details, see “Polling Interval” on page 39.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Database Type</td>
<td>Select Files, NIS or NIS+. For details, see “Database Type” on page 38.</td>
<td>Basic and Advanced</td>
</tr>
<tr>
<td>Configuration Setting</td>
<td>Action</td>
<td>Installation Method</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Base Container</td>
<td>Specify the Identity Vault container where synchronized users and groups reside. You can specify separate containers for users and groups by updating the driver properties later. For details, see “User Base Container” on page 42 and “Group Base Container” on page 42.</td>
<td>Basic and Advanced</td>
</tr>
<tr>
<td>Enable Entitlements</td>
<td>Select Yes or No. For details, see “Enable Entitlements” on page 36.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Exclude Privileged Users and Groups</td>
<td>Select Yes or No. For details, see “Exclude Privileged Users and Groups” on page 41.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Synchronize Group Membership</td>
<td>Select Yes or No. For details, see “Synchronize Group Membership” on page 41.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Remove Home Directories</td>
<td>Select Yes or No. For details, see “Remove Home Directories” on page 39.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Create Home Directories</td>
<td>Select Yes or No. For details, see “Create Home Directories” on page 39.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Allow Duplicate UIDs and GIDs</td>
<td>Select Yes or No. For details, see “Allow Duplicate UIDs” on page 39 and “Allow Duplicate GIDs” on page 39.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Use First Name + Last Name for gecos</td>
<td>Select Yes or No. For details, see “Use First Name + Last Name for gecos” on page 41.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Lower Case CNs</td>
<td>Select Yes or No. For details, see “Lower Case CNs” on page 41.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Remote Host Name and Port</td>
<td>Specify the host name or IP address and TCP port number of the driver shim on your Linux or UNIX connected system. The default port number is 8090.</td>
<td>Basic and Advanced</td>
</tr>
<tr>
<td>Use SSL</td>
<td>Select Yes or No. For details, see “Use SSL” on page 37.</td>
<td>Advanced</td>
</tr>
<tr>
<td>Driver Object Password</td>
<td>Specify secure passwords and remember them. You will need to enter them in Step 3a on page 27 when you install the driver shim on the connected system. For details, see “Driver Object Password” on page 38 and “Remote Loader Password” on page 38.</td>
<td>Basic and Advanced</td>
</tr>
<tr>
<td>Remote Loader Password</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 Click Define Security Equivalences and make the driver equivalent to ADMIN or another high-rights user so the driver can obtain information from the Identity Vault and create users and groups there.
For details about the rights required by the user, see Table 2-2, “Base Container Rights Required by the Driver Security-Equivalent User,” on page 19.

8 (Optional) Click Exclude Administrative Roles to exclude users with administrative rights from being processed by the driver.

9 Click Finish to complete the driver installation.

10 Start the driver.
 Click the upper right corner of the driver icon, then click Start driver.

3.8 Installing the Driver Shim on the Connected System

The driver shim and its files are installed into the /usr/local/nxdrv directory and other appropriate system locations. For details see Section C.7, “Files and Directories Modified by Installing the Driver Shim,” on page 95.

The driver uses an embedded Remote Loader. It is not necessary to install Java on the connected system.

1 Log in to the connected system as root, and run the installation script.
 For details, see Section 3.5, “Running the Installation Script,” on page 23.

2 When prompted for the type of installation, enter the option for Install Driver Shim on Linux or UNIX system.

3 Respond to additional prompts as appropriate.
 3a Provide the Remote Loader and Driver object passwords that you entered when creating the driver in Step 6 on page 25.
 3b Specify the Metadirectory server host name or IP address and secure LDAP port number. These are used to secure the driver shim with SSL.
 3c Install the PAM or LAM module if you intend to publish passwords from the connected system. For details, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.

4 Start the driver shim.
 To start the driver shim, run the appropriate command for your operating system as shown in Table 7-1, “Starting the Driver Shim,” on page 57.

3.9 Installing the PAM or LAM Module

To synchronize passwords from the connected system, you must install the PAM or LAM module on the connected system.

To synchronize passwords from client systems in a NIS or NIS+ environment, you must install the PAM module on each client system.

To install the Linux and UNIX driver PAM or LAM module:

1 Log in to the target system as root, and run the installation script.
 For details, see Section 3.5, “Running the Installation Script,” on page 23.

2 When prompted for the type of installation, enter the option for Install only PAM Module.
For AIX systems, the option presented is Install only PAM and LAM Modules. AIX version 5.3 can use PAM, but previous AIX versions must use LAM.

3 Respond to additional prompts as appropriate.

If the driver shim is already installed, you can run the nxdrv-config command to reconfigure the PAM or LAM Module. For details about using the nxdrv-config command, see Section C.1, “Using the nxdrv-config Command,” on page 87.

NOTE: The Red Hat AS 2.1 and 3.0 PAM module pam_unix.so does not work with the Linux and UNIX driver PAM module. Edit the PAM configuration file to use pam_pwdb.so (located in the /lib/security directory) instead. For details about editing the PAM configuration file, see Section C.4, “PAM Configuration Details,” on page 92.

3.10 Post-Installation Tasks

1 If desired, set Startup Option on the Driver Configuration page to Auto start. This causes the driver to start when the Metadirectory engine starts.

2 Set the driver shim to start automatically when the connected system starts. For details, see your operating system documentation.

3 Activate the driver.

 Identity Manager and Identity Manager drivers must be activated within 90 days of installation or they shut down. At any time during the 90 days, or afterward, you can activate Identity Manager products.

You can run the nxdrv-config command on the connected system at any time to change the driver shim configuration. You can configure the Remote Loader and driver passwords, SSL settings, the PAM or LAM module, and the schema. For details about using nxdrv-config, see Section C.1, “Using the nxdrv-config Command,” on page 87.

3.11 Uninstalling the Driver

1 To remove the driver shim and the PAM or LAM module from the connected system, run /usr/sbin/nxdrv-uninstall.

2 To remove the Driver object from eDirectory, click Delete Driver on the Identity Manager Overview page in iManager.
Upgrading from Another Driver

You can upgrade to the Identity Manager Driver for Linux and UNIX 3.0 from earlier versions of the Linux and UNIX driver, also known as the NIS driver, and from the Fan-Out driver.

- Section 4.1, “Upgrading from the NIS Driver,” on page 29
- Section 4.2, “Upgrading from the Fan-Out Driver,” on page 31

We recommend that you perform the upgrade in a test environment similar to your production environment before performing it to production systems.

Before beginning the upgrade process, review Chapter 3, “Installing the Linux and UNIX Driver,” on page 21.

To prepare for installing the upgrade:

1. Verify that you have the required knowledge and skills.
 For details, see Section 3.2, “Required Knowledge and Skills,” on page 21.
2. Ensure that the prerequisites are met.
 For details, see Section 3.3, “Prerequisites,” on page 22.
3. Prepare the distribution files for installation.
 For details, see Section 3.4, “Getting the Installation Files,” on page 23.

4.1 Upgrading from the NIS Driver

- Section 4.1.1, “Upgrading the Driver Shim,” on page 29
- Section 4.1.2, “Upgrading the Driver,” on page 30
- Section 4.1.3, “Post-Migration Tasks,” on page 31

4.1.1 Upgrading the Driver Shim

1. Uninstall the NIS driver shim:
 1a. Stop the NIS driver shim.
 1b. Run the NIS driver shim uninstall program (/usr/sbin/nis-drv-uninstall in version 2.0.1) on the connected Linux or UNIX system. Remove both the driver files and the PAM or LAM module.
 1c. Remove any system startup items related to the NIS driver shim.
2. Install the driver shim on the connected system.
 For details, see Section 3.8, “Installing the Driver Shim on the Connected System,” on page 27.
3. Install the Linux and UNIX driver PAM or LAM module.
 For details, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.
4.1.2 Upgrading the Driver

1 Make a copy of any non-standard policy customizations you have made to your driver rules:
 1a In iManager, navigate to the Driver Overview for the driver.
 1b Click the Arrow icon for a policy you want to save.
 1c Select a new or customized policy in the list, then click Edit.
 1d Click Save As, specify a filename, then click Finish.
 1e Repeat Step 1b through Step 1d for each custom policy.

2 Import the Linux and UNIX driver over the existing NIS driver:
 2a Copy the driver rules file `LinuxUnix.xml` to the appropriate location.
 • For a Linux or UNIX Metadirectory server, run the installation script on the Metadirectory server, and select Install only the rules (`LinuxUnix.xml`) and schema components. Respond to the prompts as appropriate.
 For details, see Section 3.5, “Running the Installation Script,” on page 23.
 • For a NetWare® or Windows Metadirectory server, you will import the rules from your workstation in Step 2d.
 2b In the Driver Set Overview in iManager, click Add Driver.
 2c Select the appropriate existing driver set, then click Next.
 2d Import the driver rules file.
 • For a Linux or UNIX Metadirectory server, select Import a driver configuration from the server (.XML file), select LinuxUnix.xml, then click Next.
 • For a NetWare or Windows Metadirectory server, select Import a driver configuration from the client (.XML file), enter or browse for LinuxUnix.xml on the workstation (where you placed it in Step 3 on page 29), then click Next.
 2e Select the existing NIS driver to update in the Existing Drivers box on the Create Driver page.
 2f Select an installation method, then click Next.
 For details about choosing an installation method, see Section 2.5, “Choosing between the Basic and the Advanced Installation Methods,” on page 19.
 2g Specify the configuration settings as described in Table 3-2, “Configuration Settings to Specify during Driver Import,” on page 25, then click Next.
 2h Select Update everything about that driver, then click Next.
 2i Click Finish to complete the driver installation.

3 Export the newly created policies to an XML file:
 3a In iManager, navigate to the Driver Overview for the driver.
 3b Click Export, then click Next.
 3c Accept the default export settings to export all policies, and then click Next.
 3d Leave the Prompt field blank, then click Next.
 3e Click Save As, specify a filename, then click Finish.

4 Integrate your customizations into the policies that you saved in Step 1.
Compare the newly-created policies with the policies that you saved in Step 1, and determine how to integrate your customizations into the standard policies for the Linux and UNIX driver. Ensure that you do not delete required functionality from the standard policies. When you have finished, save your changes for each policy to a new file.

5 Update the policies for the driver:
 5a In iManager, navigate to the Driver Overview for the driver.
 5b Click the Arrow icon for a policy you want to update.
 5c Select a policy in the list, then click Edit.
 5d Click Insert, then select Import an XML File containing DirXML Script.
 5e Append to or replace the policy.
 • If the policy was new, select Append the rules from the imported policy.
 • If the policy was customized from a standard policy, select Replace the policy with the imported policy.
 5f Enter or browse for the appropriate XML file that you saved in Step 4, then click OK.
 5g Repeat Step 5b through Step 5f for each custom policy.

6 Start the Linux and UNIX driver.
 Click the upper right corner of the driver icon, then click Start driver.

Customizing policies is an advanced task that is beyond the scope of this document. For complete information on policy customization, see the Policy Builder and Driver Customization Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

4.1.3 Post-Migration Tasks

Perform the steps listed in Section 3.10, “Post-Installation Tasks,” on page 28.

4.2 Upgrading from the Fan-Out Driver

The Fan-Out driver provides one-way synchronization to a heterogeneous mix of systems including Linux and UNIX systems, and IBM* OS/400* and z/OS* systems. The Fan-Out driver also provides authentication redirection from those systems.

Moving to the Linux and UNIX driver provides two main advantages.

- **Bidirectional Synchronization:** The Linux and UNIX driver allows synchronization from the connected Linux or UNIX system.
- **Standard Identity Manager Policies That Simplify Customization:** The Fan-Out driver makes minimal use of Identity Manager policies.

Consider the following before migrating from the Fan-Out driver to the Linux and UNIX driver.

- **Heterogeneity:** The Fan-Out driver supports operating systems besides Linux and UNIX. You can continue to use the Fan-Out driver for those systems while using the Linux and UNIX driver for Linux and UNIX systems.
• **Scalability:** The Fan-Out driver can fan out identities to any number of systems. The Linux and UNIX driver can replicate to only one system. (Although that system might provide account management for many computers using NIS or NIS+.)

One Linux and UNIX driver is required for each connected system. For best performance, we recommend no more than a total of 60 drivers.

• **Authentication Redirection:** The Fan-Out driver provides authentication redirection from Linux and UNIX using PAM or LAM. The Linux and UNIX driver provides only bidirectional password synchronization.

4.2.1 Preparing for Migration

If necessary, migrate the UID and GID numbers from the appropriate Fan-Out driver Platform Set. You can assign RFC 2307 attributes, such as homeDirectory and loginShell, to objects in the Identity Vault.

To use the Linux and UNIX Settings driver to accomplish this:

1. Install the Linux and UNIX Settings driver on each connected Linux or UNIX system.
2. Set the properties of the Linux and UNIX Settings driver to correspond to the UID/GID ranges that were specified in the Fan-Out driver.
3. Configure the Linux and UNIX Settings driver to populate the desired RFC 2307 attributes.

For details about installing and configuring the Linux and UNIX Settings driver, see the *Linux and UNIX Settings Driver Implementation Guide* on the Identity Manager Drivers Documentation Web site (http://www.novell.com/documentation/idmdrivers/index.html).

4.2.2 Migrating Fan-Out Driver Platform Services to the Linux and UNIX Driver

Perform the following steps on your target platform system:

1. Stop the following processes:
 - asamrcvr
 - asampsp
2. Remove the Platform Services startup scripts from `/etc/init.d`.
3. Install the driver shim on the connected system.
 For details, see Section 3.8, “Installing the Driver Shim on the Connected System,” on page 27.
4. Install the Linux and UNIX driver PAM or LAM module.
 For details, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.

4.2.3 Configuring the Driver

1. Install and set up the Linux and UNIX driver on the Metadirectory server.
 For details, see Section 3.7, “Setting Up the Driver on the Metadirectory Server,” on page 25.
2. Make any required policy modifications.
Create or modify an appropriate policy to use the alternative naming attribute if one was used by the Fan-Out driver. For more information about policy customization, see the Policy Builder and Driver Customization Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

3 Start the Linux and UNIX driver.

 Click the upper right corner of the driver icon, then click Start driver.

4 Migrate the users to make new associations. For details, see Section 5.3.1, “Migrating Identities from the Identity Vault to the Connected System,” on page 43 and Section 5.3.2, “Migrating Identities from the Connected System to the Identity Vault,” on page 44.

4.2.4 Post-Migration Tasks

Perform the steps listed in Section 3.10, “Post-Installation Tasks,” on page 28.

After the new driver is operating properly, you can remove the Fan-Out driver components.

1 Delete the Platform object from the Fan-Out driver configuration.

2 On the connected system, uninstall Platform Services by removing all startup scripts and deleting the /usr/local/ASAM directory.

3 If this is the last platform being served by the Fan-Out driver, you can uninstall the Fan-Out core driver:

 3a Remove the ASAM directory from the file system.

 3b Remove the ASAM System container object and all of its subordinates from the tree.

 3c Uninstall the Fan-Out driver plug-ins.
Configuring the Linux and UNIX Driver

This section includes the following topics:

- Section 5.1, “Driver Parameters and Global Configuration Values,” on page 35
- Section 5.2, “The Driver Shim Configuration File,” on page 42
- Section 5.3, “Migrating Identities,” on page 43

5.1 Driver Parameters and Global Configuration Values

You can control the operation of the Linux and UNIX driver by modifying the properties described in the following sections.

IMPORTANT: Changing these values requires a restart of the driver.

- Section 5.1.1, “Properties That Can Be Set Only during Driver Import,” on page 35
- Section 5.1.2, “Driver Configuration Page,” on page 37
- Section 5.1.3, “Global Configuration Values Page,” on page 40

To change import-only properties, you must re-import the driver configuration file LinuxUnix.xml over the existing driver. For details, see Section 3.7, “Setting Up the Driver on the Metadirectory Server,” on page 25.

To edit the properties shown on the Driver Configuration page and the Global Configuration Values page:

1. In iManager, select Identity Manager Overview from the Identity Manager task list on the left side of the window.
2. Navigate to your Driver Set by searching the tree or by entering its name.
3. Click the driver to open its overview.
4. Click the driver icon.
5. Select Driver Configuration or Global Config Values as appropriate.
6. Edit the property values as desired, then click OK.

5.1.1 Properties That Can Be Set Only during Driver Import

Properties that you can set only during driver import are used to generate policies and other configuration details.
Table 5-1 Driver Import-Only Parameters

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Values or Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Flow</td>
<td>Bidirectional</td>
</tr>
<tr>
<td></td>
<td>Application to Identity Vault</td>
</tr>
<tr>
<td></td>
<td>Identity Vault to Application</td>
</tr>
<tr>
<td>Enable Entitlements</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>POSIX Management Mode</td>
<td>Manage Bidirectional</td>
</tr>
<tr>
<td></td>
<td>Manage Local</td>
</tr>
<tr>
<td></td>
<td>Manage from Identity Vault</td>
</tr>
<tr>
<td>Use SSL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Data Flow

- **Bidirectional**: Identities are synchronized from both the Identity Vault and the connected system (application). After all pending events are processed, the Identity Vault and connected system mirror each other.

- **Application to Identity Vault**: Identities are synchronized from the connected system (application) to the Identity Vault, but not vice versa. For example, an identity created in the Identity Vault is not created on the connected system unless explicitly migrated.

- **Identity Vault to Application**: Identities are synchronized from the Identity Vault to the connected system (application), but not vice versa. For example, changes made to a Linux or UNIX identity are not synchronized to the Identity Vault.

Enable Entitlements

Specifies whether the driver uses either Approval Flow or Role-Based Entitlements with the Entitlements Service driver.

Enable entitlements for the driver only if you plan to use the User Application or Role-Based Entitlements with the driver.

You can use Role-Based Entitlements to integrate the Linux and UNIX driver with the Identity Manager User Application.

POSIX Management Mode

POSIX Management Mode controls the management of RFC 2307 information, such as uidNumber, gidNumber, homeDirectory, and loginShell, for the driver.

- **Manage Bidirectional**: Both the connected Linux or UNIX system and the Identity Vault can provide RFC 2307 information. Schema extensions to hold this information are required for Manage Bidirectional. For details about extending the schema, see Section 3.6, “Extending the Schema for Identity Manager,” on page 24.

- **Manage Local**: The local Linux or UNIX system manages RFC 2307 information. Schema extensions are not necessary with Manage Local, and the RFC 2307 information is not synchronized.
• **Manage from Identity Vault:** The Identity Vault provides RFC 2307 information through a manual or automated process. Select this option if you are using centralized UID/GID management with the Linux and UNIX Settings driver. Schema extensions are required with Manage from Identity Vault. For details about extending the schema, see Section 3.6, “Extending the Schema for Identity Manager,” on page 24.

Use SSL

Specifies whether the driver uses Secure Sockets Layer (SSL) to encrypt the connection between the Identity Vault and the application.

We strongly recommend that you use SSL. If you do not use SSL, identity data, including passwords, is sent across the network in clear text.

5.1.2 Driver Configuration Page

Table 5-2 Driver Configuration Page

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Values or Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Module</td>
<td>Connect to Remote Loader must be selected.</td>
</tr>
<tr>
<td>Driver Object Password</td>
<td>Text Value</td>
</tr>
<tr>
<td>Authentication ID</td>
<td>Not used by the Linux and UNIX driver.</td>
</tr>
<tr>
<td>Authentication Context</td>
<td>Not used by the Linux and UNIX driver.</td>
</tr>
<tr>
<td>Remote Loader Connection Parameters</td>
<td>Host name or IP address and port number of the driver shim on the connected system, and the RDN of the object with server certificate</td>
</tr>
<tr>
<td>Driver Cache Limit</td>
<td>The recommended value is 0 (zero).</td>
</tr>
<tr>
<td>Application Password</td>
<td>Not used by the Linux and UNIX driver.</td>
</tr>
<tr>
<td>Remote Loader Password</td>
<td>Text Value</td>
</tr>
<tr>
<td>Startup Option</td>
<td>Auto start</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
</tr>
<tr>
<td>Database Type</td>
<td>Files</td>
</tr>
<tr>
<td></td>
<td>NIS</td>
</tr>
<tr>
<td></td>
<td>NIS+</td>
</tr>
<tr>
<td>Automatic Loopback Detection</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Remove Home Directories</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Create Home Directories</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Allow Duplicate UIDs</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
Driver Object Password

The Driver object password is used by the driver shim (embedded Remote Loader) to authenticate itself to the Metadirectory engine. This must be the same password that is specified as the Driver object password on the connected system driver shim.

Remote Loader Connection Parameters

The Remote Loader Connection Parameters option specifies information that the driver uses for Secure Sockets Layer (SSL) communication with the connected system.

Table 5-3 Remote Loader Connection Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host=hostName</td>
<td>Connected system host name or IP address.</td>
</tr>
<tr>
<td>port=portNumber</td>
<td>Connected system TCP port number. The default is 8090.</td>
</tr>
<tr>
<td>kmo=objectRDN</td>
<td>The RDN of the object with the server certificate signed by the tree’s certificate authority. Enclose the RDN in double quotes (") if the name contains spaces.</td>
</tr>
</tbody>
</table>

The following is an example Remote Loader connection parameter string:

```
hostname=192.168.17.41 port=8090 kmo="SSL CertificateIP"
```

Remote Loader Password

The Remote Loader password is used to control access to the driver shim (embedded Remote Loader). This must be the same password that is specified as the Remote Loader password on the connected system driver shim.

Database Type

Database Type specifies the type of account management database that you use for your network-wide information storage.

- **Files**: Local file-based storage (`/etc/passwd`)
- **NIS**: Map-based storage
• **NIS+**: Hierarchical domain-based storage.

Automatic Loopback Detection

Specifies whether the driver shim discards events that would cause loopback conditions. This function supplements the loopback detection provided by the Metadirectory engine.

Remove Home Directories

Specifies whether the driver automatically removes home directories from the file system when users are deleted.

This option has no effect on AIX systems.

Create Home Directories

Specifies whether the driver automatically creates home directories in the file system when users are created.

This option has no effect on AIX systems. On AIX, the `add-user.sh` script uses the native AIX `mkuser` command. By default, this command creates a home directory. This setting is governed by `/usr/lib/security/mkuser.default` and `/etc/security/login.cfg`.

Allow Duplicate UIDs

Specifies whether the driver allows duplicate UIDs on the connected Linux or UNIX system.

AIX does not allow duplicate UIDs. Select No for AIX connected systems.

Allow Duplicate GIDs

Specifies whether the driver allows duplicate GIDs on the connected Linux or UNIX system.

AIX does not allow duplicate GIDs. Select No for AIX connected systems.

Polling Interval

Specifies the number of seconds that the Publisher shim waits after running the polling script and sending events from the change log to the Metadirectory engine. The default interval is 60 seconds.

Publisher Disabled

Specifies whether the Publisher shim is active.

Select Yes if you are using Identity Vault to Application (one-way) data flow. This saves processing time.

Heartbeat Interval

Specifies how often, in seconds, the driver shim contacts the Metadirectory engine to verify connectivity. Specify 0 to disable the heartbeat.
5.1.3 Global Configuration Values Page

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Values or Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected System or Driver Name</td>
<td>Text Value</td>
</tr>
<tr>
<td>Synchronize Group Membership</td>
<td>Yes</td>
</tr>
<tr>
<td>Exclude Privileged Users and Groups</td>
<td>Yes</td>
</tr>
<tr>
<td>Require POSIX Attributes When Subscribing</td>
<td>Yes</td>
</tr>
<tr>
<td>Use First Name + Last Name for gecos</td>
<td>Yes</td>
</tr>
<tr>
<td>Lower Case CNs</td>
<td>Yes</td>
</tr>
<tr>
<td>The Linux or UNIX Connected System Accepts Passwords from the Identity Vault</td>
<td>Yes</td>
</tr>
<tr>
<td>The Identity Vault Accepts Passwords from the Linux or UNIX Connected System</td>
<td>No</td>
</tr>
<tr>
<td>The Identity Vault Accepts Administrative Password Resets from the Linux or UNIX Connected System</td>
<td>Yes</td>
</tr>
<tr>
<td>Publish Passwords to NDS Password</td>
<td>Yes</td>
</tr>
<tr>
<td>Publish Passwords to Distribution Password</td>
<td>No</td>
</tr>
<tr>
<td>Require Password Policy Validation before Publishing Passwords</td>
<td>Yes</td>
</tr>
<tr>
<td>Reset User’s External System Password to the Identity Manager Password on Failure</td>
<td>Yes</td>
</tr>
<tr>
<td>Notify the User of Password Synchronization Failure via E-Mail</td>
<td>Yes</td>
</tr>
<tr>
<td>User Base Container</td>
<td>Identity Vault Container object</td>
</tr>
<tr>
<td>Group Base Container</td>
<td>Identity Vault Container object</td>
</tr>
</tbody>
</table>

To view and edit Password Management GCVs, select *Show* for *Show Password Management Policy*.

To view and edit User and Group Placement GCVs, select *Show* for *Show User and Group Placements*.
Connected System or Driver Name

Specifies the name of the driver. This value is used by the e-mail notification templates.

Synchronize Group Membership

This option does not apply if the POSIX Management Mode is set to Manage Local. When it does apply, it has the following effect:

- It specifies whether the driver synchronizes the Group Membership attribute of a corresponding Group object in the Identity Vault (if one exists with that GID).
- The driver always synchronizes a user’s GID number (primary group identification) to the RFC 2307 gidNumber attribute of the corresponding User object in the Identity Vault.

Exclude Privileged Users and Groups

Specifies whether the driver excludes events for users and groups with a uidNumber or gidNumber less than 100.

Require POSIX Attributes When Subscribing

This option does not apply if the POSIX Management Mode is set to Manage Local. When it does apply, it specifies whether the driver requires users and groups from the Identity Vault to have RFC 2307 information, such as uidNumber, gidNumber, and homeDirectory, before it provisions them to the connected Linux or UNIX system.

Use First Name + Last Name for gecos

Specifies whether the driver creates the user gecos field from the First Name and Last Name attributes of the User object in the Identity Vault for subscribed events.

Lower Case CNs

Specifies whether the driver uses lowercase for the CN of User and Group objects it receives in events from the Metadirectory engine.

Linux and UNIX user and group names are usually lowercase.

The Linux or UNIX Connected System Accepts Passwords from the Identity Vault

Specifies whether the driver allows passwords to flow from the Identity Vault to the connected Linux or UNIX system.

The Identity Vault Accepts Passwords from the Linux or UNIX Connected System

Specifies whether the driver allows passwords to flow from the connected Linux or UNIX system to the Identity Vault.

The Identity Vault Accepts Administrative Password Resets from the Linux or UNIX Connected System

Specifies whether the driver allows passwords to be reset from the connected Linux or UNIX system in the Identity Vault. The root user can use the passwd command to set another user’s password.
Publish Passwords to NDS Password

Specifies whether the driver uses passwords from the connected Linux or UNIX system to set non-reversible NDS® passwords in the Identity Vault.

Publish Passwords to Distribution Password

Specifies whether the driver uses passwords from the connected Linux or UNIX system to set NMAS™ Distribution Passwords, which are used for Identity Manager password synchronization.

Require Password Policy Validation before Publishing Passwords

Specifies whether the driver applies NMAS password policies to published passwords. If so, a password is not written to the Identity Vault if it does not conform.

Reset User’s External System Password to the Identity Manager Password on Failure

Specifies whether, on a publish Distribution Password failure, the driver attempts to reset the password on the connected Linux or UNIX system using the Distribution Password from the Identity Vault.

Notify the User of Password Synchronization Failure via E-Mail

Specifies whether the driver sends an e-mail to a user if the password cannot be synchronized.

User Base Container

Specifies the base container object in the Identity Vault for user synchronization. This container is used in the Subscriber channel Event Transformation policy to limit the Identity Vault objects being synchronized. This container is used in the Publisher channel Placement policy as the destination for adding objects to the Identity Vault. Use a value similar to the following:

users.myorg

Group Base Container

Specifies the base container object in the Identity Vault for group synchronization. This container is used in the Subscriber channel Event Transformation policy to limit the Identity Vault objects being synchronized. This container is used in the Publisher channel Placement policy as the destination when adding objects to the Identity Vault. Use a value similar to the following:

groups.myorg

5.2 The Driver Shim Configuration File

The driver shim configuration file /etc/nxdrv.conf controls operation of the driver shim. You can specify the configuration options listed in Table 5-5, one per line. You can also specify these options on the driver shim command line. For details about driver shim command line options, see Section C.3, “Driver Shim Command Line Options,” on page 92.
Table 5-5 Driver Shim Configuration File Statements

<table>
<thead>
<tr>
<th>Option (Short and Long Forms)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-conn <connString></td>
<td>A string with connection options. Enclose the string in double quotes ("). If you specify more than one option, separate the options with spaces.</td>
</tr>
</tbody>
</table>
| -connection <connString> | port=<driverShimPort>
 | ca=<Certificate Authority Key File> |
| -hp <httpPort> | Specifies the HTTP services port number. The default HTTP services port number is 8091. |
| -httpport <httpPort> | You can connect to this port to view log files. For details, see Section A.1.2, “The Trace File,” on page 62 and Section A.1.5, “The Status Log,” on page 63. |
| -path <driverPath> | Specifies the path for driver files. The default path is /usr/local/nxdrv. |
| -setpassword <password> | Sets the Remote Loader and Driver object passwords. |
| -sp <password> | Sets the level of debug tracing. 0 is no tracing, and 10 is all tracing. For details, see Section A.1.2, “The Trace File,” on page 62. |
| -trace <traceLevel> | The output file location is specified by the tracefile option. |
| -tf <fileName> | Sets the trace file location. |
| -tracefile <fileName> | The default is /usr/local/nxdrv/logs/trace.log. |

Example /etc/nxdrv.conf File

-tracefile /usr/local/nxdrv/logs/trace.log
-trace 0
-connection "ca=/usr/local/nxdrv/keys/ca.pem port=8090"
-httpport 8091
-path /usr/local/nxdrv/

5.3 Migrating Identities

When you first run the Linux and UNIX driver, you might have identities in the Identity Vault that you want to provision to the connected system, or vice versa. Identity Manager provides a built-in migration feature to help you accomplish this.

5.3.1 Migrating Identities from the Identity Vault to the Connected System

1. In iManager, open the Identity Manager Driver Overview for the driver.
2 Click **Migrate from Identity Vault**. An empty list of objects to migrate is displayed.

3 Click **Add**. A browse and search dialog box that allows you to select objects is displayed.

4 Select the objects you want to migrate, then click **OK**.

To view the results of the migration, click **View the Driver Status Log**. For details about the log, see Section A.1.5, “The Status Log,” on page 63.

If a user has a Distribution Password, the Distribution Password is migrated to the connected system as the user’s password. Otherwise, no password is migrated. For information about Universal Passwords and Distribution Passwords, see the *Password Management Administration Guide* (http://www.novell.com/documentation/password_management/index.html).

5.3.2 Migrating Identities from the Connected System to the Identity Vault

1 In iManager, open the Identity Manager Driver Overview for the driver.

2 Click **Migrate into Identity Vault** to display the Migrate Data into the Identity Vault window.

3 Specify your search criteria:

 a. To view the list of eDirectory™ classes and attributes, click **Edit List**.

 b. Select class User or class Group.

 IMPORTANT: Identity Manager imports objects by class in the order specified in the list. Migrate users before you migrate groups so that the users can be added to the newly created groups.

 c. Select the attributes to be used as search criteria for objects of the selected class, then click **OK**.

 The eDirectory attributes map to Linux and UNIX attributes as specified by the driver schema: CN maps to loginName, etc. For the default mappings, see Table 1-1, “Default Linux and UNIX Driver Filter and Schema Mapping,” on page 16.

 To see RFC 2307 attributes, click **Show all attributes from all classes** above the attribute list.

 d. Specify values for the selected attributes, then click **OK**.

 The values can include basic regular expressions. For details about basic regular expressions, use the `man grep` command.

4 Click **OK**.

To view the results of the migration, click **View the Driver Status Log**. For details about the log, see Section A.1.5, “The Status Log,” on page 63.

Because local passwords are irreversibly encrypted, they cannot be submitted to the Metadirectory engine until they are changed. Install the PAM or LAM module to capture password changes. For information about installing the PAM or LAM module, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.
5.3.3 Synchronizing the Driver

To generate events for associated objects that have changed since the driver’s last processing, open the Identity Manager Driver Overview page for the driver in iManager, then click Synchronize.
Customizing the Linux and UNIX Driver

You can customize the Identity Manager Driver for Linux and UNIX 3.0 using its scriptable framework, connected system schema file, include/exclude file, and other features, as well as through Identity Manager filters and policies. For details about the filters and policies provided with the Linux and UNIX driver, see Section 1.2.3, “Filter and Schema Mapping,” on page 15 and Section 1.2.4, “Policies,” on page 16.

- Section 6.1, “The Scriptable Framework,” on page 47
- Section 6.3, “The Connected System Include/Exclude File,” on page 50
- Section 6.4, “Managing Additional Attributes,” on page 55

6.1 The Scriptable Framework

The Linux and UNIX driver provides a comprehensive scriptable framework that you can use to add to the built-in support for files, NIS, and NIS+, and to add support for other applications.

The Linux and UNIX driver scriptable framework includes components that simplify the job of extending the driver to support new applications.

- Embedded Remote Loader
 - Full SSL support, and an installer to easily configure the certificates
 - Web access to debugging information from the embedded Remote Loader
- Encrypted change log that stores changes from the application to the Identity Vault if there is a communication problem
- Loopback detection system to prevent subscribed events from being published back to the Identity Vault
- Shared memory helper programs that provide for securely passing large variables to and from the scripts
- Easily extendable connected system schema file to support any application
- Include/exclude file for simplified testing and deployment by the platform administrator
- Event support, both for applications that have exits or callouts, and for applications that must be polled for changes

The names of objects and attributes in the scripts are the names specified in the connected system schema file.

The following tables describe the major script files. For complete developer kit documentation about the Identity Manager Driver for Linux and UNIX 3.0 scriptable framework, including descriptions of the helper scripts not listed here, see the Novell Identity Manager Linux and UNIX Driver Developer Kit Web site (http://developer.novell.com/wiki/index.php/idmnxdrvdevkit).
Table 6-1 Identity Vault Command Processing Scripts

<table>
<thead>
<tr>
<th>Script File</th>
<th>Identity Vault Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>add-group.sh</td>
<td>Add Group</td>
</tr>
<tr>
<td>add-group-member.sh</td>
<td>Add Group Member</td>
</tr>
<tr>
<td>add-user.sh</td>
<td>Add User</td>
</tr>
<tr>
<td>delete-group.sh</td>
<td>Delete Group</td>
</tr>
<tr>
<td>delete-user.sh</td>
<td>Delete User</td>
</tr>
<tr>
<td>disable-user.sh</td>
<td>Disable User</td>
</tr>
<tr>
<td>enable-user.sh</td>
<td>Enable User</td>
</tr>
<tr>
<td>modify-group.sh</td>
<td>Modify Group</td>
</tr>
<tr>
<td>modify-password.sh</td>
<td>Password Change</td>
</tr>
<tr>
<td>modify-user.sh</td>
<td>Modify User</td>
</tr>
<tr>
<td>query-read-group.sh</td>
<td>Entry Query for Group</td>
</tr>
<tr>
<td>query-read-user.sh</td>
<td>Entry Query for User</td>
</tr>
<tr>
<td>query-search-group.sh</td>
<td>Subtree Query for Group</td>
</tr>
<tr>
<td>query-search-user.sh</td>
<td>Subtree Query for User</td>
</tr>
<tr>
<td>remove-group-member.sh</td>
<td>Remove Group Member</td>
</tr>
<tr>
<td>rename-group.sh</td>
<td>Rename Group</td>
</tr>
<tr>
<td>rename-user.sh</td>
<td>Rename User</td>
</tr>
</tbody>
</table>

Table 6-2 Other Scripts

<table>
<thead>
<tr>
<th>Script File</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>subscriber.sh</td>
<td>Sets up file path locations. Calls the appropriate shell script based on the type of event and object.</td>
</tr>
<tr>
<td>poll.sh</td>
<td>Examines the account management system files to detect changes.</td>
</tr>
<tr>
<td>idmlib.sh</td>
<td>Contains a function library to help the scripts access and manipulate Identity Manager data.</td>
</tr>
<tr>
<td>heartbeat.sh</td>
<td>Sends a status document to report the health of the application.</td>
</tr>
<tr>
<td>globals.sh</td>
<td>Holds configurable options that all shell scripts can use during event processing.</td>
</tr>
<tr>
<td>association.sh</td>
<td>Generates an association for a user or group.</td>
</tr>
</tbody>
</table>
6.2 The Connected System Schema File

The schema file on the connected system at /usr/local/nxdrv/schema/schema.def is used to specify the classes and attributes that are available on the system.

The schema file is read by the driver shim when the Metadirectory engine requests it. This typically happens at driver startup. The schema file is also used by the Policy Editor to map the schema of the Identity Vault to the schema of the external application.

If you change the schema file, you must restart the driver shim and the driver.

The scripts that are provided with the driver depend on the classes and attributes in the schema file that is provided with the driver.

6.2.1 Schema File Syntax

Each line in the schema file represents an element and must begin with the element name: SCHEMA, CLASS, or ATTRIBUTE.

The first element of the schema file is the schema definition. The schema definition is followed by class definitions. Each class definition can contain attribute definitions.

Except for the values of class and attribute names, the contents of the schema file are case insensitive.

Comments

Lines that begin with an octothorpe (#) are comments.

This is a comment.

Schema Definition

The first line in the schema file that is not a comment must be the schema definition.

SCHEMA [HIERARCHICAL]

HIERARCHICAL specifies that the target application is not a flat set of users and groups, but is organized by hierarchical components, such as a directory-based container object.

Class Definition

CLASS className [CONTAINER]

You must specify a class name. Enclose the class name in double quotes (").

Add the CONTAINER keyword if objects of this class can contain other objects.

The class definition is ended by another class definition or by the end of the file.

Attribute Definition

Any number of attribute definitions can follow a class definition. Attribute definitions define attributes for the class whose definition they follow.

ATTRIBUTE attributeName [TypeAndProperties]
An attribute name is required. Enclose the attribute name in double quotes (".").

If no attribute type is specified, the attribute has the string type. The allowable types are

- STRING
- INTEGER
- STATE
- DN

The allowable attribute properties are

- REQUIRED
- NAMING
- MULTIVALUED
- CASESENSITIVE
- READONLY

6.2.2 Example Schema File

```
SCHEMA HIERARCHICAL
CLASS "User"
  ATTRIBUTE "cn" NAMING REQUIRED
  ATTRIBUTE "Group Membership" MULTIVALUED DN
CLASS "Group"
  ATTRIBUTE "cn" NAMING REQUIRED
  ATTRIBUTE "Group Members" MULTIVALUED DN
```

6.3 The Connected System Include/Exclude File

You can use an optional include/exclude file on the connected system to control which identities are or are not synchronized between the Identity Vault and the connected system. The include/exclude file is located in `/usr/local/nxdrv/conf/include-exclude.conf`.

The file is read when the driver shim starts. If you make changes to it, you must restart the driver shim.

The include/exclude file can contain include rules and exclude rules.

A default file that excludes many common Linux and UNIX user IDs and groups, such as `root`, is created by the installation process.

You can use the include/exclude file to phase in your deployment of the Linux and UNIX driver, excluding most users and groups at first, and then adding more as you gain confidence and experience.

6.3.1 Include/Exclude Processing

Identity Vault events for identities that match an exclude rule are discarded by the Subscriber shim. Local events for identities that match an exclude rule are not sent to the Metadirectory engine by the Publisher shim.
Included identities are treated normally by the Subscriber and Publisher shims.

Identities that do not match an include rule or an exclude rule in the file are included.

Identities are matched in the following priority:

1. Channel-specific (Publisher or Subscriber) exclude rules
2. Channel-specific include rules
3. General exclude rules
4. General include rules

Within each level of this matching priority, identities are matched against rules in the order that the rules appear in the file. The first rule that matches determines whether the identity is included or excluded.

6.3.2 Include/Exclude File Syntax

Except for class names, attribute names, and the values to match, the contents of the include/exclude file are case insensitive.

The include/exclude file can contain any number of include sections, exclude sections, and single-line rules.

Include sections and exclude sections can contain class matching rules, and class matching rules can contain attribute matching rules. Include sections and exclude sections can also contain association matching rules.

Include and exclude sections can be contained in subscriber and publisher sections to limit their scope to the specified channel.

Class and attribute names used in the include/exclude file must correspond to the names specified in the schema file. For details about the schema file, see Section 6.2, “The Connected System Schema File,” on page 49.

Comments

Lines that begin with an octothorpe (#) are comments.

This is a comment.

Subscriber and Publisher Sections

Subscriber and publisher sections limit the include and exclude sections they contain to the specified channel.

A subscriber section begins with a subscriber line and ends with an endsubscriber line.

SUBSCRIBER
 ...
 ...
ENDSUBSCRIBER

A publisher section begins with a publisher line and ends with an endpublisher line.
Each subscriber and publisher section can contain include and exclude sections.

Include and Exclude Sections

Include and exclude sections provide rules to specify which objects are to be included or excluded from synchronization.

An include section begins with an include line and ends with an endinclude line.

```plaintext
INCLUDE
  .
  .
ENDINCLUDE
```

An exclude section begins with an exclude line and ends with an endexclude line.

```plaintext
EXCLUDE
  .
  .
ENDEXCLUDE
```

You can use class matching rules and association matching rules within an include section and an exclude section.

Class Matching Rules

Use a class matching rule within an include section or an exclude section to specify the name of a class of objects to include or exclude.

A class matching rule is defined by a class line that specifies the name of the class and ends with an endclass line.

```plaintext
CLASS className
  .
  .
ENDCLASS
```

You can use attribute matching rules within a class matching rule.

Attribute Matching Rules

You can use attribute matching rules within a class matching rule to limit the objects that are included or excluded. If no attribute matching rules are specified for a class, all objects of the specified class are included or excluded.
An attribute matching rule comprises an attribute name, an equals sign (=), and an expression. The expression can be an exact value, or it can use limited regular expressions. For details about limited regular expressions, see “Limited Regular Expressions” on page 54.

attributeName=expression

Multiple attribute matching rules can be specified for a given class.

Attribute matching rules within a class matching rule are logically ANDed together. To logically OR attribute matching rules for a class, specify multiple class matching rules. For example, the following include/exclude file excludes both user01 and user02:

```
# Exclude the User object if its loginName is user01 or user02.
EXCLUDE
CLASS User
  loginName=user01
ENDCLASS
CLASS User
  loginName=user02
ENDCLASS
ENDEXCLUDE
```

Association Matching Rules

You can specify association matching rules in an include or exclude section. Association matching rule expressions can specify an exact association or a limited regular expression. For details about limited regular expressions, see “Limited Regular Expressions” on page 54.

By default, an association is formed by concatenating the object name and the class name. Association formation can be customized in the Subscriber scripts.

For example, to exclude the root user, specify

```
EXCLUDE
  rootUser
ENDEXCLUDE
```

Single-Line Rules

```
[SUBSCRIBER|PUBLISHER] INCLUDE|EXCLUDE [className] objectSelection
```

Where objectSelection can be

```
{associationMatch | attributeName=expression}
```

Single-line rules can specify the Subscriber or Publisher channel at the start of the rule. If a channel is specified, the rule applies only to that channel. Otherwise it applies to both channels.

You must specify whether the rule is to include or exclude the objects it matches.

You can specify a class name to limit matches to only objects of that class.

You must specify either an association or an attribute matching expression. The syntax of the association and attribute matching expression is the same as that of association matching rules and attribute matching rules previously described. For details, see “Association Matching Rules” on page 53 and “Attribute Matching Rules” on page 52.
For example, to ignore events from the ADMIN user in the Identity Vault, code:

```
# Do not subscribe to events for the ADMIN user.
SUBSCRIBER EXCLUDE adminUser
```

Limited Regular Expressions

A limited regular expression is a pattern used to match a string of characters.

Character matching is case sensitive.

Any literal character matches that character.

A period (.) matches any single character.

A bracket expression is a set of characters enclosed by left ([) and right (]) brackets that matches any listed character. Within a bracket expression, a range expression is a pair of characters separated by a hyphen, and is equivalent to listing all of the characters that sort between the given characters, inclusive. For example, [0-9] matches any single digit.

An asterisk (*) indicates that the preceding item is matched zero or more times.

A plus sign (+) indicates that the preceding item is matched one or more times.

A question mark (?) indicates that the preceding item is matched zero or one times.

You can use parentheses to group multiple expressions into a single item. For example, (abc) + matches abc, abcabc, abcabcabc, etc. Nesting of parentheses is not supported.

6.3.3 Example Include/Exclude Files

Example 1

```
# Exclude users whose names start with temp
EXCLUDE
  CLASS User
    loginName=temp.*
  ENDCLASS
ENDEXCLUDE
```

Example 2

```
# Exclude usera and userb
# Because attribute rules are ANDed, these must be in separate
# CLASS sections.
EXCLUDE
  CLASS User
    loginName=usera
  ENDCLASS
  CLASS User
    loginName=userb
  ENDCLASS
ENDEXCLUDE
```
Example 3

```syntax
eclude all users except those whose names start with idm
# This works because channel-specific matching takes precedence
# over general matching.
exclude
    class User
    endclass
endexclude

subscriber include User loginName=idm.*
publisher include User loginName=idm.*
```

6.4 Managing Additional Attributes

You can add additional attributes to the driver for both the Publisher and Subscriber channels. These attributes can be accessed by the scripts for all event types.

To publish or subscribe to additional attributes, you must add them to the filter and add support for them into the scripts.

6.4.1 Modifying the Filter

1. On the iManager Driver Overview page for the driver, click the Filter icon on either the Publisher or Subscriber channel. It is the same object.
2. In the Filter Edit dialog box, click the class containing the attribute to be added.
3. Click Add Attribute, then select the attribute from the list.
4. Select the flow of this attribute for the Publisher and Subscriber channels.
 - **Synchronize**: Changes to this object are reported and automatically synchronized.
 - **Ignore**: Changes to this object are not reported and not automatically synchronized.
 - **Notify**: Changes to this object are reported, but not automatically synchronized.
 - **Reset**: Resets the object value to the value specified by the opposite channel. (You can set this value on either the Publisher or Subscriber channel, but not both.)
5. Click Apply.
6. If you want to map this attribute to an existing attribute in the Linux and UNIX schema, modify the Schema Mapping policy for the driver.

6.4.2 Modifying the Scripts for New Attributes

In the Subscriber channel, a specific shell script is called to take the appropriate action for each type of event. If the additional attribute is required for adds and modifies of users, modify add-user.sh and modify-user.sh to process the additional attribute.

Publishing additional attributes requires that you act on changes made in the Linux or UNIX source application. For in-depth details on extending the scripts to support custom applications, see the
Using the Linux and UNIX Driver

7

- Section 7.1, “Starting and Stopping the Driver,” on page 57
- Section 7.2, “Starting and Stopping the Driver Shim,” on page 57
- Section 7.3, “Displaying Driver Shim Status,” on page 58
- Section 7.4, “Monitoring Driver Messages,” on page 58
- Section 7.5, “Changing Passwords,” on page 58

7.1 Starting and Stopping the Driver

To start the driver:

1. In iManager, navigate to the Driver Overview for the driver.
2. Click the upper right corner of the driver icon.
3. Click Start driver.

To stop the driver:

1. In iManager, navigate to the Driver Overview for the driver.
2. Click the upper right corner of the driver icon.
3. Click Stop driver.

7.2 Starting and Stopping the Driver Shim

To start the driver shim, use the command appropriate for your operating system as shown in the following table:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>/etc/rc.d/init.d/nxdrvd start</td>
</tr>
<tr>
<td>HP-UX</td>
<td>/sbin/init.d/nxdrvd start</td>
</tr>
<tr>
<td>Linux</td>
<td>/etc/init.d/nxdrvd start</td>
</tr>
<tr>
<td>Solaris</td>
<td>/etc/init.d/nxdrvd start</td>
</tr>
</tbody>
</table>

To stop the driver shim, use the command appropriate for your operating system as shown in the following table:
7.3 Displaying Driver Shim Status

To see status and version information for the driver shim, use the appropriate command for your operating system as shown in the following table:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>/etc/rc.d/init.d/nxdrvd stop</td>
</tr>
<tr>
<td>HP-UX</td>
<td>/sbin/init.d/nxdrvd stop</td>
</tr>
<tr>
<td>Linux</td>
<td>/etc/init.d/nxdrvd stop</td>
</tr>
<tr>
<td>Solaris</td>
<td>/etc/init.d/nxdrvd stop</td>
</tr>
</tbody>
</table>

7.4 Monitoring Driver Messages

The Linux and UNIX driver writes messages to the system log. Monitor driver activity there in the same way you monitor other key system functions. For details about the messages written by the driver, see Appendix B, “System and Error Messages,” on page 69.

7.5 Changing Passwords

To publish password change information, you must change passwords with a method that uses PAM or LAM. The driver obtains password change information through PAM and LAM.

To set a password, use `passwd`, not `yppasswd` or `passwd -r`. `yppasswd` and `passwd -r` bypass the authentication module.

Do not specify a password with `useradd`. This bypasses the authentication module.

For more information about the driver PAM and LAM modules, see Section C.4, “PAM Configuration Details,” on page 92 and Section C.5, “LAM Configuration Details,” on page 94.
Securing the Linux and UNIX Driver

The section describes best practices for securing the Identity Manager Driver for Linux and UNIX 3.0.

- Section 8.1, “Using SSL,” on page 59
- Section 8.2, “Physical Security,” on page 59
- Section 8.3, “Network Security,” on page 59
- Section 8.4, “Auditing,” on page 59
- Section 8.5, “Driver Security Certificates,” on page 60
- Section 8.6, “Driver Shell Scripts,” on page 60
- Section 8.7, “The Change Log,” on page 60
- Section 8.8, “Driver Passwords,” on page 60
- Section 8.9, “Driver Code,” on page 60
- Section 8.10, “Administrative Users,” on page 60
- Section 8.11, “Connected Systems,” on page 60

For additional information about Identity Manager security, see the Novell® Identity Manager 3.0 Administration Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

8.1 Using SSL

Enable SSL for communication between the Metadirectory engine and the driver shim on the connected system. For more information, see “Use SSL” on page 37.

If you don’t enable SSL, you are sending information, including passwords, in the clear.

8.2 Physical Security

Keep your servers in a physically secure location with access by authorized personnel only.

8.3 Network Security

Require users outside of the corporate firewall to use a VPN to access corporate data.

8.4 Auditing

Track changes to sensitive information. Examine audit logs periodically.

For details about using Novell Audit to monitor driver operation, see the Novell Audit Documentation Web site (http://www.novell.com/documentation/novellaudit20/index.html).
8.5 Driver Security Certificates

SSL uses security certificates to control, encrypt, and authenticate communications.

Ensure that the security certificate directory /usr/local/nxdrv/keys is appropriately protected. The installation program sets secure file permissions for this directory.

8.6 Driver Shell Scripts

The driver uses shell scripts to perform updates on the connected system, and to collect changes made there.

Ensure that the script directory /usr/local/nxdrv/scripts is appropriately protected. The installation program sets secure file permissions for this directory.

8.7 The Change Log

The change log file contains information about events on the connected system, including passwords. It is encrypted, but it should be protected against access by unauthorized users.

Ensure that the change log directory /usr/local/nxdrv/changelog is appropriately protected. The installation program sets secure file permissions for this directory.

8.8 Driver Passwords

Use strong passwords for the Driver object and Remote Loader passwords, and restrict knowledge of them to authorized personnel. These passwords are stored in encrypted form in the security certificate directory /usr/local/nxdrv/keys. The installation program sets secure file permissions for this directory.

8.9 Driver Code

Ensure that the driver executable directory /usr/local/nxdrv/bin and the driver files in /usr/sbin are appropriately protected. The installation program sets secure file permissions for this directory and for the driver files added to /usr/sbin.

8.10 Administrative Users

Ensure that accounts with elevated rights on the Metadirectory system, Identity Vault systems, and the connected systems are appropriately secure. Protect administrative user IDs with strong passwords.

8.11 Connected Systems

Ensure that connected systems can be trusted with account information, including passwords, for the portion of the tree that is configured as their base containers.
Troubleshooting

This section discusses topics for troubleshooting the Identity Manager Driver for Linux and UNIX 3.0.

• Section A.1, “Driver Status and Diagnostic Files,” on page 61
• Section A.2, “Troubleshooting Common Problems,” on page 63
• Section A.3, “Shared Memory Errors,” on page 68

A.1 Driver Status and Diagnostic Files

There are several log files that you can view to examine driver operation.

• Section A.1.1, “The System Log,” on page 61
• Section A.1.2, “The Trace File,” on page 62
• Section A.1.3, “The Script Output File,” on page 63
• Section A.1.4, “DSTRACE,” on page 63
• Section A.1.5, “The Status Log,” on page 63
• Section A.1.6, “The PAM Trace File,” on page 63

A.1.1 The System Log

The system log is used by the driver shim to record urgent, informational, and debug messages. Examining these should be foremost in your troubleshooting efforts. For detailed message documentation, see Appendix B, “System and Error Messages,” on page 69.

The location for the system log varies from system to system and is generally configured through /etc/syslog.conf. The amount of information that is logged by the driver can also be configured through this system log configuration file. The following is a sample fragment from /etc/syslog.conf:

```
# sample /etc/syslog.conf
#
*.err;kern.notice;auth.notice       /dev/sysmsg
*.err;kern.debug;daemon.notice;mail.crit    /var/adm/messages
*.alert;kern.err;daemon.err          operator
*.alert                              root
```

The options in the first column determine which messages are logged. The options in the second column specify the destination file or user to send the log output to. For example, specifying *.err logs all messages with a priority of err or above. For more information about syslog priorities, view your system documentation using the man syslog command.

Messages from the Linux and UNIX driver shim and messages from the scripts are logged with various priorities as shown in Table A-1 on page 62. The information that is recorded depends on your syslog configuration.
Table A-1 Message Priorities

<table>
<thead>
<tr>
<th>Message Topic</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script being called</td>
<td>DEBUG</td>
</tr>
<tr>
<td>Successful Linux or UNIX command execution</td>
<td>INFO</td>
</tr>
<tr>
<td>Publication events</td>
<td>INFO</td>
</tr>
<tr>
<td>Failures</td>
<td>ERR</td>
</tr>
</tbody>
</table>

A.1.2 The Trace File

The default trace file exists on the connected Linux and UNIX system at `/usr/local/nxdrv/logs/trace.log`. A large amount of debug information can be written to this file. Use the trace level setting in `/etc/nxdrv.conf` to control what is written to the file. For details about `/etc/nxdrv.conf`, see Section 5.2, “The Driver Shim Configuration File,” on page 42.

Table A-2 Driver Shim Trace Levels

<table>
<thead>
<tr>
<th>Trace Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No debugging.</td>
</tr>
<tr>
<td>1–3</td>
<td>Identity Manager messages. Higher trace levels provide more detail.</td>
</tr>
<tr>
<td>4</td>
<td>Previous level plus Remote Loader, driver, driver shim, and driver connection messages.</td>
</tr>
<tr>
<td>5–7</td>
<td>Previous level plus change log and loopback messages. Higher trace levels provide more detail.</td>
</tr>
<tr>
<td>8</td>
<td>Previous level plus driver status log, driver parameters, driver command line, driver security, driver Web server, driver schema, driver encryption, driver PAM, driver SOAP API, and driver include/exclude file messages.</td>
</tr>
<tr>
<td>9</td>
<td>Previous level plus low-level networking and operating system messages.</td>
</tr>
<tr>
<td>10</td>
<td>Previous level plus maximum low-level program details (all options).</td>
</tr>
</tbody>
</table>

The following is an example `/etc/nxdrv.conf` line to set the trace level:

```
-trace 9
```

To view the trace file:

1. Use a Web browser to access the driver shim at `https://driver-address:8091`. Substitute the DNS name or IP address of your driver for `driver-address`.
2. Authenticate by using any user name and the password that you specified as the Remote Loader password.
3. Click `Trace`.
A.1.3 The Script Output File

By default, script output is written to /usr/local/nxdrv/logs/script-trace.log on the connected system. This file captures the standard error output from all scripts executed by the driver shim. The location of the script output file is set in the globals.sh script.

A.1.4 DSTRACE

You can view Identity Manager information using the DSTRACE facility on the Metadirectory server. Use iManager to set the tracing level. For example, trace level 2 shows Identity Vault events in XML documents, and trace level 5 shows the results of policy execution. Because a high volume of trace output is produced, we recommend that you capture the trace output to a file. For details about using DSTRACE, see the Novell® Identity Manager 3.0 Administration Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

A.1.5 The Status Log

The status log is a condensed summary of the events that have been recorded on the Subscriber and Publisher channels. This file exists on the connected system at /usr/local/nxdrv/logs/dirxml.log. You can also view the status log in iManager on the Driver Overview page. You can change the log level to specify what types of events to log. For details about using the status log, see the Novell Identity Manager 3.0 Administration Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

To view the status log:

1. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the DNS name or IP address of your driver for driver-address.
2. Authenticate by using any user name and the password that you specified as the Remote Loader password.
3. Click Status.

A.1.6 The PAM Trace File

To log PAM trace messages to /usr/local/nxdrv/logs/pam_nxdrv.log, specify the debug=* command line option for the driver PAM module in your PAM configuration file. This file is implementation dependent. For details, see your system’s PAM documentation. For details about the driver PAM module command line options, see Table C-4, “Linux and UNIX Driver PAM Module Command Line Options,” on page 93.

A.2 Troubleshooting Common Problems

• Section A.2.1, “Driver Shim Installation Failure,” on page 64
• Section A.2.2, “Driver Rules Installation Failure,” on page 64
• Section A.2.3, “Schema Update Failure,” on page 64
• Section A.2.4, “Driver Certificate Setup Failure,” on page 64
• Section A.2.5, “Driver Start Failure,” on page 65
• Section A.2.6, “Driver Shim Startup or Communication Failure,” on page 65
A.2.1 Driver Shim Installation Failure

- Ensure that you use the correct installation program for your operating system and that you are running on a supported operating system. For details, see Table 3-1, “Linux and UNIX Installation Script Filenames,” on page 23 and “Operating System Requirements” on page 22.
 - Ensure that you run the installation as root.
 - Ensure that your package management software, such as RPM, is installed and up-to-date.

A.2.2 Driver Rules Installation Failure

Ensure that you use iManager 2.5 or higher, with the Identity Manager plug-ins installed.

A.2.3 Schema Update Failure

Examine the log file at /var/nds/schema.log.

Ensure that you specify the correct parameters (host name, ADMIN FDN in dotted format, and password).

Ensure that you have network connectivity to the Metadirectory server.

A.2.4 Driver Certificate Setup Failure

To set up certificates, the driver shim communicates with the Metadirectory server using the LDAP secure port (636).

 - Ensure that the connected system has network connectivity to the Metadirectory server.

You can use the command /usr/local/nxdrv/bin/nxdrv -s to configure the certificate at any time.

If you cannot configure SSL using LDAP, you can install the certificate manually.

1 In iManager, browse the Security container to locate your tree’s Certificate Authority (typically named treeName CA).
2 Click the Certificate Authority object.
3 Click Modify Object.
4 Select the Certificates tab.
5 Click Public Key Certificate.
6 Click Export.
7 Select No to export the certificate without the private key, then click Next.
8 Select Base64 format, then click Next.
9 Click Save the exported certificate to a file, then specify a location to save the file.
10 Use ftp or another method to store the file on the connected system as /usr/local/nxdrv/keys/ca.pem.

A.2.5 Driver Start Failure

• Examine the status log and DSTRACE output.
• The driver must be specified as a Remote Loader driver, even if the Identity Vault and connected system are the same computer. You can set this option in the iManager Driver Edit Properties window.
• You must activate both Identity Manager and the driver within 90 days. The Driver Set Overview page in iManager shows when Identity Manager requires activation. The Driver Overview page shows when the driver requires activation.

For more information about troubleshooting Identity Manager engine errors, see the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

A.2.6 Driver Shim Startup or Communication Failure

• Examine the trace file.
• Ensure that the connected system’s operating system version is supported. For a list of supported operating systems, see “Operating System Requirements” on page 22.
• Apply all patches for your operating system.
• Ensure that the Remote Loader and Driver object passwords that you specified while setting up the driver on the Metadirectory server match the passwords stored with the driver shim.

To update these passwords on the connected system, use the nxdrv-config command. The passwords are stored under /usr/local/nxdrv/keys in encrypted files dpwdlf40 (Driver object password) and lpwdlf40 (Remote Loader password).

To update these passwords on the Metadirectory server, use iManager to update the driver configuration. For details, see Section 5.1.2, “Driver Configuration Page,” on page 37.

• Ensure that the correct host name and port number of the connected system are specified in the Driver Configuration Remote Loader connection parameters. You can change the port number (default 8090) in /etc/nxdrv.conf.
A.2.7 Users or Groups Are Not Provisioned to the Connected System

- Examine the status log, DSTRACE output, trace file, and script output file.
- To be provisioned, users and groups must be in the appropriate base container. You can view and change the base containers in iManager on the Global Configuration Values page of the Driver Edit Properties window. For more details, see Section 5.1.3, “Global Configuration Values Page,” on page 40.
- To provision identities from the Identity Vault to the connected system, the driver Data Flow property must be set to Bidirectional or Identity Vault to Application. To change this value, re-import the driver rules file over your existing driver.
- If the POSIX Management Mode is Manage from Identity Vault, ensure that the identities to be provisioned have RFC 2307 information. Manage from Identity Vault sets the Require POSIX Attributes When Subscribing GCV.
- The user that the driver is security equivalent to must have rights to read information from the base container. For details about the rights required, see Table 2-2, “Base Container Rights Required by the Driver Security-Equivalent User,” on page 19.

A.2.8 Users or Groups Are Not Provisioned to the Identity Vault

- Examine the status log, DSTRACE output, and trace file.
- Examine the User Base Container and Group Base Container GCV values. For more details, see Section 5.1.3, “Global Configuration Values Page,” on page 40.
- To provision identities from the connected system to the Identity Vault, the driver Data Flow property must be set to Bidirectional or Application to Identity Vault. To change this value, re-import the driver rules file over your existing driver.
- The user that the driver is security equivalent to must have rights to update the base container. For details about the rights required, see Table 2-2, “Base Container Rights Required by the Driver Security-Equivalent User,” on page 19.

A.2.9 Identity Vault User Passwords Are Not Provisioned to the Connected System

- Examine the status log, DSTRACE output, and script output file.
- There are several password management properties available in iManager on the Global Configuration Values page of the Driver Edit Properties window. Ensure that the connected system accepts passwords from the Identity Vault. To determine the right settings for your environment, view the help for the options, or see the Novell Identity Manager 3.0 Administration Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).
- Ensure that the user’s container has an assigned Universal Password policy and that the Synchronize Distribution Password When Setting Universal Password GCV is set for this policy.
A.2.10 Connected System User Passwords Are Not Provisioned to the Identity Vault

- Examine the status log, DSTRACE output, and the trace file.
- There are several password management properties available in iManager on the Global Configuration Values page of the Driver Edit Properties window. Ensure that at least one of the following options is set:
 - The Identity Vault Accepts Passwords from the Linux or UNIX Connected System
 - The Identity Vault Accepts Administrative Password Resets from the Linux or UNIX Connected System

To determine the right settings for your environment, view the help for the options, or see the Novell Identity Manager 3.0 Administration Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

- To set a password, use `passwd`, not `yppasswd` or `passwd -r`, because they bypass the authentication module.
- Do not specify a password with `useradd`. This bypasses the authentication module.
- If the Require Password Policy Validation before Publishing Passwords GCV is set, the user’s password must satisfy the password rules in the password policy assigned to the user container.
- To capture passwords, PAM or LAM and the driver PAM or LAM module must be installed and enabled. For details about installing the driver PAM or LAM module, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.
 - You can use the `nxdrv-config` command on the connected system to configure the PAM or LAM module. For details, see Section C.1, “Using the nxdrv-config Command,” on page 87.
- Ensure that remote NIS or NIS+ clients have the driver PAM module installed, that they have a source of entropy, and that they have network connectivity to the driver shim system.
- If you are using Red Hat AS 2.1 or 3.0, ensure that you are using the `pam_pwdb.so` PAM module. For details, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.

A.2.11 Users or Groups Are Not Modified, Deleted, Renamed, or Moved

- Examine the status log, DSTRACE output, trace file, and script output file.
- Examine the driver Data Flow setting to verify the authoritative source for identities.
- Identity Vault and connected system identities must be associated before events are synchronized. To view an identity’s associations, use Modify User/Group in iManager and click the Identity Manager tab. You can migrate identities to establish associations. For details, see Section 5.3, “Migrating Identities,” on page 43.
- Identity Vault move events can remove the identity from the base container monitored by the driver to a container that is not monitored by the driver. This makes the move appear to be a delete.
- Renaming a user or group is not supported by AIX.
A.3 Shared Memory Errors

Shared memory is used by the driver shim to safely and securely communicate with the scripts. If the system shared memory segments become unusable, you must shut down the process and fix the shared memory segments.

Shared memory segments can become unusable on some UNIX systems if the driver shim is improperly terminated without detaching from the segments. For information about how to properly stop the driver shim, see Section 7.2, “Starting and Stopping the Driver Shim,” on page 57. You can use the `ipcs` system tool to locate these segments and the `ipcrm` tool to manually clear them as shown in the following example:

```
> ipcs -m

-------- Shared Memory Segments --------
key          shmid     owner      perms      bytes      nattch     status
0x2a065bbd 1802241  root      600      16384      1

> ipcrm -m 1802241

The driver shim generates default segments of 16384 bytes and permissions 600.
System and Error Messages

The Identity Manager Driver for Linux and UNIX 3.0 writes messages to the system log to report operational status and problems. For more information about the system log, see Section A.1.1, “The System Log,” on page 61. For detailed troubleshooting information, see Appendix A, “Troubleshooting,” on page 61.

- Section B.1, “CFG Messages,” on page 69
- Section B.2, “CHGLOG Messages,” on page 70
- Section B.3, “DOM Messages,” on page 70
- Section B.4, “DRVCOM Messages,” on page 70
- Section B.5, “HES Messages,” on page 71
- Section B.6, “LWS Messages,” on page 71
- Section B.7, “NET Messages,” on page 78
- Section B.8, “NIX Messages,” on page 78
- Section B.9, “NXLAM Messages,” on page 81
- Section B.10, “NXPAM Messages,” on page 81
- Section B.11, “OAP Messages,” on page 82
- Section B.12, “RDXML Messages,” on page 83

B.1 CFG Messages

Messages beginning with CFG are issued by configuration file processing.

CFG001E Could not open configuration file filename.

Explanation: Could not open the configuration file.
Possible cause: The file does not exist.
You don’t have permission to read the file.
Action: Ensure that the configuration file exists at the correct location and that you have file system rights to read it.

CFG002E Error parsing configuration file line: <configline>.

Explanation: The line is not formatted as a valid configuration statement and cannot be parsed.
Action: Correct the line in the configuration file.

CFG003W Configuration file line was ignored. No matching statement name found: <configline>.

Explanation: This line is formatted as a valid configuration file statement, but the statement is not recognized. The line is ignored.
Possible cause: The statement is incorrectly typed or the statement name is used only in a newer version of the software.

Action: Correct the statement.

**CFG004E Error parsing configuration file line. No statement name was found:** `<configLine>`.

Explanation: Could not find a statement name on the configuration line.

Action: Correct the line in the configuration file to supply the required statement.

**CFG005E A required statement statement_id is missing from the configuration file.**

Explanation: The `statement_id` statement was not specified in the configuration file, but is required for the application to start.

Action: Add the required statement to the configuration file.

### B.2 CHGLOG Messages

Messages beginning with CHGLOG are issued by change log processing.

**CHGLOG000I nameversion Copyright 2005 Omnibond Systems, LLC. ID=code_id_string.**

Explanation: This message identifies the system component version.

Action: No action is required.

### B.3 DOM Messages

Messages beginning with DOM are issued by driver components as they communicate among themselves.

**DOM0001W XML parser error encountered: errorString.**

Explanation: An error was detected while parsing an XML document.

Possible cause: The XML document was incomplete, or it was not a properly constructed XML document.

Action: See the error string for additional details about the error. Some errors, such as no element found, can occur during normal operation and indicate that an empty XML document was received.

### B.4 DRVCOM Messages

Messages beginning with DRVCOM are issued by the include/exclude system.

**DRVCOM000I nameversion Copyright 2005 Omnibond Systems, LLC. ID=code_id_string.**

Explanation: This message identifies the system component version.

Action: No action is required.
DRVCOM001W Invalid include/exclude CLASS statement.
   Explanation: The include/exclude configuration file contains an invalid CLASS statement.
   Action: Correct the include/exclude configuration file with proper syntax.

DRVCOM002D An include/exclude Rule was added for class: class.
   Explanation: The include/exclude configuration supplied a rule for the specified class.
   Action: None.

DRVCOM003D An include/exclude Association Rule was added for association association.
   Explanation: The include/exclude configuration supplied an association rule for the specified association.
   Action: None.

B.5 HES Messages
Messages beginning with HES are issued by driver components as they use HTTP to communicate.

HES001E Unable to initialize the HTTP client.
   Explanation: Communications in the client could not be initialized.
   Possible cause: Memory is exhausted.
   Action: Increase the amount of memory available to the process.

HES002I Connecting to host host_name on port port_number.
   Explanation: The client is connecting to the specified server.
   Action: None.

HES003W SSL communications have an incorrect certificate. rc = rc.
   Explanation: The security certificate for SSL services could not be verified.
   Possible cause: The certificate files might be missing or invalid.
   Action: Obtain a new certificate.

B.6 LWS Messages
Messages beginning with LWS are issued by the integrated HTTP server.

LWS0001I Server has been initialized.
   Explanation: The server has successfully completed its initialization phase.
   Action: None. Informational only.

LWS0002I All services are now active.
   Explanation: All of the services offered by the server are now active and ready for work.
LWS0003I Server shut down successfully.
Explanation: The server processing completed normally. The server ends with a return code of 0.
Action: No action is required.

LWS0004W Server shut down with warnings.
Explanation: The server processing completed normally with at least one warning. The server ends with a return code of 4.
Action: See the log for additional messages that describe the warning conditions.

LWS0005E Server shut down with errors.
Explanation: The server processing ended with one or more errors. The server ends with a return code of 8.
Action: See the log for additional messages that describe the error conditions.

LWS0006I Starting service.
Explanation: The server is starting the specified service.
Action: None. Informational only.

LWS0007E Failed to start service.
Explanation: The server attempted to start the specified service, but the service could not start. The server terminates processing.
Action: See the log for additional messages that describe the error condition.

LWS0008I Stopping all services.
Explanation: The server was requested to stop. All services are notified and will subsequently end processing.
Action: None. Informational only.

LWS0009I Local host is host_name (IP_address).
Explanation: This message shows the host name and IP address of the machine that the server is running on.
Action: None. Informational only.

LWS0010I Local host is IP_address.
Explanation: This message shows the IP address of the machine that the server is running on.
Action: None. Informational only.
LWS0011I Server is now processing client requests.

Explanation: The server has successfully started all configured services, and it is ready for clients to begin requests.

Action: None. Informational only.

LWS0012I service is now active on port number.

Explanation: The server service is running on the specified TCP port number. Clients can begin making requests to the specified service.

Action: None. Informational only.

LWS0013I service is now inactive on port number.

Explanation: The server service is not active on the specified TCP port number. Processing continues, but no client requests can be made to the service until it becomes active again.

Action: None. Informational only.

LWS0014E An error was encountered while parsing execution parameters.

Explanation: An error occurred while parsing the execution parameters. The server terminates with a minimum return code of 8.

Action: Collect diagnostic information and contact Novell® Technical Support.

LWS0015E service failed to start with error number.

Explanation: The specified service failed to start. The server terminates with a minimum return code of 8.

Action: Collect diagnostic information and contact Novell Technical Support.

LWS0020I Server version level: level.

Explanation: This message contains information detailing the current service level for the server program being executed. The value of version indicates the current release of the server. The value of level is a unique sequence of characters that can be used by Novell Technical Support to determine the maintenance level of the server being executed.

Action: Normally, no action is required. However, if you report a problem with the server to Novell Technical Support, you might be asked to provide the information in the message.

LWS0023I Listen port number is already in use.

Explanation: The displayed listen port is already in use by another task running on the local host. The server retries establishing the listen port.

Action: Determine what task is using the required port number and restart the server when the task is finished, or specify a different port in the configuration file. If the port number is changed for the server, the client must also specify the new port number.
LWS0024W Too many retries to obtain port number.

Explanation: The server tried multiple attempts to establish a listen socket on the specified port number, but the port was in use. The server terminates with a return code of 4.

Action: Determine what task is using the required port number, and restart the server when the task is finished, or specify a different port in the configuration file. If the port number is changed for the server, the client must also specify the new port number.

LWS0025I Local TCP/IP stack is down.

Explanation: The server detected that the local host TCP/IP service is not active or is unavailable. The server retries every two minutes to reestablish communication with the TCP/IP service.

Action: Ensure that the TCP/IP service is running.

LWS0026E Unrecoverable TCP/IP error number returned from internal_function_name.

Explanation: An unrecoverable TCP/IP error was detected in the specified internal server function name. The server ends with a minimum return code of 8. The error number reported corresponds to a TCP/IP errno value.

Action: Correct the error based on TCP/IP documentation for the specified errno.

LWS0027W Listen socket was dropped for port number.

Explanation: The server connection to the displayed listen port was dropped. The server attempts to reconnect to the listen port so that it can receive new client connections.

Action: Determine why connections are being lost on the local host. Ensure that the host TCP/IP services are running.

LWS0028E Unable to reestablish listen socket on port number.

Explanation: The listen socket on the specified port number was dropped. The server tried multiple attempts to reestablish the listen socket, but all attempts failed. The server ends with a return code of 8.

Action: Determine if the host’s TCP/IP service is running. If the host’s TCP/IP service is running, determine if another task on the local host is using the specified port.

LWS0029I <id> Client request started from ip_address on port number.

Explanation: A new client request identified by id has been started from the specified IP address on the displayed port number.

Action: None. Informational only.
LWS0030I <id> Client request started from host (ip_address) on port number.
    Explanation: A new client request identified by id has been started from the specified host and IP address on the displayed port number.
    Action: None. Informational only.

LWS0031W Unable to stop task id: reason.
    Explanation: The server attempted to terminate a service task identified by id. The server could not stop the task for the specified reason. The server ends with a return code of 4.
    Action: See the reason text for more information about why the task could not terminate.

LWS0032I <id> Client request has ended.
    Explanation: The client requested identified by id has ended.
    Action: None. Informational only.

LWS0033I <id> Client request: resource.
    Explanation: The client connection identified by id issued a request for resource.
    Action: None. Informational only.

LWS0034W <id> Write operation for client data has failed.
    Explanation: A write operation failed for the connection identified by id. This is normally because the client dropped the connection. The client connection is dropped by the server.
    Action: Ensure that the client does not prematurely drop the connection. Retry the client request if necessary.

LWS0035W <id> Read operation for client data has timed out.
    Explanation: A read operation on the connection identified by id has timed out because of inactivity. The client connection is dropped by the server.
    Action: Ensure that the client does not prematurely drop the connection. Retry the client request if necessary.

LWS0036W <id> Client request error: error_code - error_text.
    Explanation: The server encountered an error while processing the client request. The server terminates the request.
    Action: Determine why the request was in error by viewing the error code and error text that was generated.

LWS0037W <id> Client request error: code.
    Explanation: The server encountered an error while processing the client request. The server terminates the request.
Action: Determine why the request was in error by viewing the error code and error text that was generated.

**LWS0038I** Received command: *command_text*.

Explanation: The server has received the displayed command from the operator. The server processes the command.

Action: None. Informational only.

**LWS0043E** Task *id* ended abnormally with RC=*retcode*.

Explanation: The server detected a task that ended with a non-zero return code. The server ends with a minimum return code of 8.

Action: View the log for other messages that might have been generated regarding the error.

**LWS0045I** Idle session time-out is *number* seconds.

Explanation: The message shows the idle time limit for connections. The server automatically terminates sessions that are idle for longer than the specified number of seconds.

Action: None. Informational only.

**LWS0046I** Maximum concurrent sessions limited to *number*.

Explanation: The message shows the maximum number of concurrent sessions allowed. The server allows only the specified number of concurrent sessions to be active at any given time. All connections that exceed this limit are forced to wait until the total number of connections drops below the specified value.

Action: None. Informational only.

**LWS0047W** Unable to delete log file *filename*.

Explanation: The log file could not be deleted as specified.

Possible cause: The user service or daemon does not have file system rights to delete old log files.

Action: Verify that the user service or daemon has the appropriate rights.

Examine the current logs for related messages.

**LWS0048I** Log file *filename* successfully deleted.

Explanation: The log file has been deleted as specified.

Action: None. Informational only.

**LWS0049E** Error *error* authenticating to the directory as *fdn*.

Explanation: The connection manager could not connect to the directory as user *fdn*. The error was *error*.

Possible cause: The configuration parameters do not contain the correct user or password.
Action: Correct the cause of the error as determined from error.

Verify that the User object has the appropriate rights.

Verify that the password given for the User object in the configuration parameters is correct.

LWS0050E Server application initialization failure was detected.

Explanation: During server initialization, an error was detected while initializing the server Application object.

Possible Cause This message is commonly logged when the driver is started and then immediately shut down. This can happen during installation, when the shim is started to generate keys or configure SSL. You can safely ignore this message in those cases.

Action: See the error logs for additional messages that indicate the cause of the error.

LWS0051E Server initialization failure was detected.

Explanation: The server failed to initialize properly because of an operating system specific initialization error.

Action: See the log for additional messages that indicate the cause of the error.

LWS0052W This server is terminating because of another instance already running (details).

Explanation: The server is shutting down because there is another active instance of this server running on the host.

Possible cause: A previous instance of the server was not stopped before starting a new instance.

Action: Stop or cancel the previous server instance before starting a new one.

LWS0053I The parameter keyword is no longer supported.

Explanation: The specified parameter is no longer supported in this release and might be removed in future releases.

Possible cause: An execution parameter was specified that is no longer supported.

Action: Do not specify the unsupported parameter.

LWS0054I The execution parameter keyword is in effect.

Explanation: The specified execution parameter is in effect for the server.

Action: Informational only. Processing continues.

LWS0055W Invalid execution parameter detected: keyword.

Explanation: An invalid execution parameter was detected.

Action: Do not specify the invalid or unknown execution parameter.
LWS0056I Not accepting new connections because of the MAXCONN limit. There are *number* active connections now for *service*.

Explanation: The specified service has a maximum connection limit that has been reached. The service no longer accepts new connections until at least one of the active connections ends.

Action: If you receive this message frequently, increase the MAXCONN limit for this service or set the MAXCONN to unlimited connections.

LWS0057I New connections are now being accepted for *service*.

Explanation: The service was previously not accepting new connections because of the imposed MAXCONN limit. The service can now accept a new connection because at least one active connection has ended.

Action: None. Informational only.

LWS0058I Listen socket on port *number* has been re-established.

Explanation: The previously dropped listen socket has been re-established. Services using the specified port can now continue. The listen socket previously dropped because of an error or TCP/IP connectivity problems has been re-established. Client connection processing continues.

Action: None. Informational only.

LWS0059W Server is terminating because the required service *serviceName* is ending.

Explanation: The specified required service has ended. The server terminates because it cannot continue running without the required service.

Action: See related log messages to determine why the required service ended. Correct the problem and restart the server.

B.7 NET Messages

Messages beginning with NET are issued by driver components during verification of SSL certificates.

NET001W Certificate verification failed. Result is *result*.

Explanation: A valid security certificate could not be obtained from the connection client. Diagnostic information is given by *result*.

Possible cause: A security certificate has not been obtained for the component.

The security certificate has expired.

The component certificate directory has been corrupted.

Action: Respond as indicated by *result*. Obtain a new certificate if appropriate.

B.8 NIX Messages

Messages beginning with NIX are issued by the driver shim.
NIX000I nameversion Copyright 2005 Omnibond Systems, LLC. ID=code_id_string.

Explanation: This message identifies the system component version.
Action: No action is required.

NIX001S An error occurred attempting to attach the shared memory segment to an address space (errno=errno).

Explanation: The driver uses shared memory as the mechanism for providing information to the shell scripts. An error occurred attempting to attach the shared memory to a physical address for access.
Possible cause: The calling process has no access permissions for the requested attach type.
       An invalid or non-page-aligned address was provided to the system routine.
       Memory could not be allocated for the descriptor or for the page tables.
Action: Restart the driver process and ensure that there are adequate memory resources. Verify that the driver process is run as root and has permissions to read its configuration files. Contact Novell Technical Support for additional instructions if necessary.

NIX002S An error occurred while attempting to allocate a shared memory segment (errno = errno).

Explanation: The driver uses shared memory as the mechanism for providing information to the shell scripts. An error occurred attempting to allocate a shared memory segment.
Possible cause: The memory size was too small or too large.
       The system shared memory settings might not have adequate values.
       The memory segment could not be created because it already exists. This could be caused by an abnormal termination of a previous driver process.
       All possible shared memory IDs have been taken.
       Allocating a segment of the requested size would cause the system to exceed the system-wide limit on shared memory.
       No shared memory segment exists for the given key.
       The user or process does not have permission to access the shared memory segment.
       No memory could be allocated for segment overhead.
Action: Restart the driver process and ensure that there is sufficient memory.
       Verify that the driver process is run as root and has permissions to read its configuration files.
       If there are other applications on the server that use shared memory, ensure that they are running, healthy, and do not conflict with the requirements for the driver.
Contact Novell Technical Support for additional instructions if necessary.

**NIX003S An error occurred attempting to create a System V IPC key. The project identifier pathname = **\textit{pathname}.

- **Explanation:** The driver uses shared memory as the mechanism for providing information to the shell scripts. An error occurred attempting to create the key used to specify the shared memory segment.
- **Possible cause:** The project pathname is invalid or does not exist.
- **Action:** Restart the driver process.

  Ensure that the file pathname is correct and that the process has adequate permissions to read the path.

**NIX004S An error occurred while writing data to shared memory (bytes = \textit{bytes}, allocationSize = \textit{allocationSize}).**

- **Explanation:** The driver uses shared memory as the mechanism for providing information to the shell scripts. An error occurred while writing data from the driver process into the shared memory segment.
- **Possible cause:** Invalid memory resources or internal error.
- **Action:** Contact Novell Technical Support.

**NIX005S An error occurred attempting to set an environment variable.**

- **Explanation:** The driver uses environment variables for some of the communication between the driver and other processes called from the scripts. An error occurred setting an environment variable.
- **Possible cause:** There was not enough space to allocate the new environment.
- **Action:** Restart the driver and ensure that there are adequate memory resources for the driver process.

**NIX006S An error occurred attempting to execute the script [\textit{script}].**

- **Explanation:** The driver uses shell scripts to update the system for events from the Identity Vault. An error occurred while attempting to execute one of these scripts.
- **Possible cause:** The script does not exist on the local system.

  A memory or environment allocation failure occurred.

- **Action:** Restart the driver and ensure that the script exists on the local system.

**NIX007S An error occurred attempting to terminate the script [\textit{script}].**

- **Explanation:** The driver uses shell scripts to update the system for events from the Identity Vault. An error occurred while attempting to terminate the script.
- **Possible cause:** The script does not exist on the local system.

  A memory or environment allocation failure occurred.

- **Action:** Restart the driver and ensure that the script exists on the local system.
NIX008S The shared memory tool was unable to retrieve a key from the environment.

Explanation: The shared memory tool uses an environment variable to retrieve the key used to unlock the shared memory region and access driver shim data. The tool could not obtain the key from the environment.

Possible cause: The driver shim cannot set environment variables, or the environment has become corrupt during event processing.

Action: Restart the driver shim process and clear any residual shared memory segments.

B.9 NXLAM Messages

Messages beginning with NXLAM are issued by the driver LAM module.

NXLAM000I nameversion Copyright 2006 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.

NXLAM001W Password Change was not submitted for user.

Explanation: When a user changes the password using a LAM-enabled application, the LAM module for the driver submits the password change to the change log. An error occurred that prevents the change being submitted to the change log.

Possible cause: If the LAM module is running locally on the same system with the driver shim, certain files or directories could be missing, such as the /usr/local/nxdrv/keys/lpwd1f40 driver shim key file or the /usr/local/nxdrv/changelog change log directory.

If the LAM module is running remotely from the system with the driver shim, the LAM module could not connect to the driver shim. This could be caused by a network problem or a problem with the driver shim.

The LAM module might not be configured properly.

Action: Ensure that the LAM module is installed and configured correctly.

Ensure that the driver shim is running and healthy.

If the LAM module is running remotely, verify connectivity to the driver shim system.

B.10 NXPAM Messages

Messages beginning with NXPAM are issued by the driver PAM module.

NXPAM000I nameversion Copyright 2006 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.
NXPAM001W Password Change was not submitted for user.

Explanation: When a user changes the password using a PAM-enabled application, the PAM module for the driver submits the password change to the change log. An error occurred that prevents the change being submitted to the change log.

Possible cause: If the PAM module is running locally on the same system with the driver shim, certain files or directories could be missing, such as the /usr/local/nxdrv/keys/lpwd1f40 driver shim key file or the /usr/local/nxdrv/changelog change log directory.

If the PAM module is running remotely from the system with the driver shim, the PAM module could not connect to the driver shim. This could be caused by a network problem or a problem with the driver shim.

The PAM module might not be configured properly.

Action: Ensure that the PAM module is installed and configured correctly.

Ensure that the driver shim is running and healthy.

If the PAM module is running remotely, verify connectivity to the driver shim system.

B.11 OAP Messages

Messages beginning with OAP are issued by driver components while communicating among themselves.

OAP001E Error in SSL configuration. Verify system entropy.

Explanation: Entropy could not be obtained for SSL.

Possible cause: A source of entropy is not configured for the system.

Action: Obtain and configure a source of entropy for the system.

OAP002E Error in SSL connect. Network address does not match certificate.

Explanation: The SSL client could not trust the SSL server it connected to, because the address of the server did not match the DNS name or IP address that was found in the certificate for the server.

Possible cause: The appropriate credentials are missing from the configuration.

Action: If you cannot resolve the error, collect diagnostic information and call Novell Technical Support.

OAP003E Error in SSL connect. Verify address and port.

Explanation: A TCP/IP connection could not be made.

Possible cause: The server is not running.

The configuration information does not specify the correct network address or port number.

Action: Verify that the server is running properly.
Correct the configuration.

**OAP004E HTTP Error:** cause.

**Explanation:** The user name or password provided failed basic authentication.

**Possible cause:** The user name or password is incorrect.

**Action:** Verify that user name is in full context (cn=user,ou=ctx,o=org or user.ctx.org) and that the password was correctly typed.

**OAP005E HTTP Error: Internal Server Error.**

**Explanation:** The server experienced an internal error that prevents the request from being processed.

**Possible cause:** A secure LDAP server is not available.

**Action:** Ensure that the LDAP server is available.

Ensure that the LDAP host and port are configured correctly.

**B.12 RDXML Messages**

Messages beginning with RDXML are issued by the embedded Remote Loader.

**RDXML000I nameversion Copyright 2005 Omnibond Systems, LLC. ID=code_id_string.**

**Explanation:** This message identifies the system component version.

**Action:** No action is required.

**RDXML001I Client connection established.**

**Explanation:** A client has connected to the driver. This can be the Metadirectory engine connecting to process events to and from the driver, or a Web-based request to view information or publish changes through the SOAP mechanism.

**Action:** No action required.

**RDXML002I Request issued to start Driver Shim.**

**Explanation:** The driver received a command to start the driver shim and begin processing events.

**Action:** No action required.

**RDXML003E An unrecognized command was issued. The driver shim is shutting down.**

**Explanation:** The driver received an unrecognized command from the Metadirectory engine. The driver shim is shutting down to avoid further errors.

**Possible cause:** Network error.

Invalid data sent to the driver.
The Metadirectory engine version might have been updated with new commands that are unrecognized by this version of the driver.

This message is logged when the driver shim process is shut down from the Linux or UNIX system rather than from a Driver object request. The local system can queue an invalid command to the driver shim to simulate a shutdown request and terminate the running process.

Action: Ensure that the network connection is secured and working properly.
Apply updates for the engine or driver if necessary.

If the driver shim process was shut down from the local system, no action is required.

RDXML004I Client Disconnected.
Explanation: A client has disconnected from the driver. This might be the Metadirectory engine disconnecting after a driver shutdown request or a Web-based request that has ended.

Action: No action required.

RDXML005W Unable to establish client connection.
Explanation: A client attempted to connect to the driver, but was disconnected prematurely.
Possible cause: The client is not running in SSL mode.
Mismatched SSL versions or mismatched certificate authorities.
Problems initializing SSL libraries because of improperly configured system entropy settings.

Action: Ensure that both the Metadirectory engine and the driver are running in the same mode: either clear text mode or SSL mode.
If you are using SSL, ensure that the driver and Metadirectory engine have properly configured certificates, and that the driver system is configured properly for entropy.

RDXML006E Error in Remote Loader Handshake.
Explanation: The Metadirectory engine attempted to connect to the driver, but the authorization process failed. Authorization requires that both supply mutually acceptable passwords. Passwords are configured at installation.
Possible cause: The Remote Loader or Driver object passwords do not match.

Action: Set the Remote Loader and Driver object passwords to the same value for both the driver and the driver shim. Use iManager to modify the driver properties. Re-configure the driver shim on the connected system.

RDXML007I Driver Shim has successfully started and is ready to process events.
Explanation: The Metadirectory engine has requested the driver to start the shim for event processing, and the driver shim has successfully started.

Action: No action required.
RDXML008W Unable to establish client connection from remoteName.

Explanation: A client attempted to connect to the driver, but was disconnected prematurely.
Possible cause: The client is not running in SSL mode.

   Mismatched SSL versions or mismatched certificate authorities.
   Problems initializing SSL libraries because of improperly configured system entropy settings.

Action: Ensure that both the Metadirectory engine and the driver are running in the same mode: either clear text mode or SSL mode.

If you are using SSL, ensure that the driver and Metadirectory engine have properly configured certificates, and that the driver system is configured properly for entropy.

RDXML009I Client connection established from remoteName.

Explanation: A client has connected to the driver. This can be the Metadirectory engine connecting to process events to and from the driver, or a Web-based request to view information or publish changes through the SOAP mechanism.

Action: No action required.
Technical Details

C.1 Using the nxdrv-config Command

You can use /usr/sbin/nxdrv-config to change the driver shim configuration. When you run this command, you are prompted for the function to perform.

> nxdrv-config
Which configuration do you want to perform?
1) Set the Remote Loader and Driver object passwords
2) Configure the driver for Secure Sockets Layer (SSL)
3) Configure the driver to allow for remote client publishing, such as NIS or NIS+ clients
4) Extend the schema for Identity Manager (must be run on a Metadirectory server)
5) Configure PAM for publishing password changes
6) Configure LAM for publishing password changes
Select one configuration option [q/?]:

Enter the number of the function you want to configure, then respond to the prompts.

• Section C.1.1, “Setting the Remote Loader and Driver Object Passwords,” on page 87
• Section C.1.2, “Configuring the Driver for SSL,” on page 88
• Section C.1.3, “Configuring Remote Client Publishing,” on page 88
• Section C.1.4, “Extending the Identity Manager Schema,” on page 89
• Section C.1.5, “Configuring PAM,” on page 89
• Section C.1.6, “Configuring LAM,” on page 90

C.1.1 Setting the Remote Loader and Driver Object Passwords

The nxdrv-config command prompts you to enter and confirm the Remote Loader password and the Driver object password.

Enter Remote Loader password:
Confirm Remote Loader password:
Enter Driver object password:
Confirm Driver object password:
The Remote Loader password is used by the Metadirectory engine to authenticate itself to the driver shim (embedded Remote Loader). The Driver object password is used by the driver shim to authenticate itself to the Metadirectory engine.

The Remote Loader and Driver object passwords set by nxdrv-config are stored on the connected system. The Remote Loader and Driver object passwords set for the driver using iManager are stored in the Identity Vault. Each password on the connected system must exactly match its counterpart in the Identity vault.

To change the passwords after driver installation:

1. In iManager, navigate to the Driver Overview for the driver.
2. Click the driver icon.
3. Specify the Driver object password.
4. Specify the Remote Loader password.
   The Remote Loader password is below the Authentication heading.
5. Click Apply.
6. Restart the driver.

### C.1.2 Configuring the Driver for SSL

The nxdrv-config command prompts you to enter the LDAP server host address and port, then displays the Certificate Authority for that server and asks you if you accept it.

You are about to connect to the eDirectory LDAP server to retrieve the eDirectory Tree Trusted Root public certificate.

Enter the LDAP Server Host Address [localhost]: sr.digitalairlines.com  
Enter the LDAP Server Port [636]:

Certificate Authority:  
   Subject: ou=Organizational CA,o=TREENAME  
   Not Before: 20050321144845Z  
   Not After: 20150321144845Z  
Do you accept the Certificate Authority? (Y/N) y

Enter the host name or IP address and TCP port number of an LDAP server for your Identity Vault. The LDAP server must be configured for SSL, and it must be listening on the SSL port. The default SSL port is 636.

The driver shim connects to the specified server and displays information about the Certificate Authority. If you accept the Certificate Authority, the driver shim saves it to the local file system.

If you do not have LDAP configured for SSL, you can use a manual process to configure the driver for SSL. For details, see Section A.2.4, “Driver Certificate Setup Failure,” on page 64.

### C.1.3 Configuring Remote Client Publishing

The nxdrv-config command generates a new certificate and key, used to authenticate remote publishing clients, such as NIS and NIS+ clients.
New certificate authority keys were generated:

```
Subject: /CN=soap api certificate authority
Serial Number: 0
Valid From: 20060411002823Z
Valid To: 20160409002823Z
```

The keys are 2048-bit, Base64-encoded, RSA public/private key pairs. They are written to /usr/local/nxdrv/keys/soap-ca-cert.pem (public certificate) and /usr/local/nxdrv/keys/soap-ca-key.pem (private key). These keys are used to issue and sign certificates for remote publishing when you configure PAM on a remote client. The default time duration for the certificate authority is 10 years. You can change the time duration and other remote publisher parameters in the configuration file /usr/local/nxdrv/conf/remote-publisher.conf. For details about the configuration file, see Section C.2, “The Remote Publisher Configuration File,” on page 90.

**C.1.4 Extending the Identity Manager Schema**

To extend the schema with the nxdrv-config command, you must run the command on the Metadirectory server. You can use the nxdrv-config command on Linux and UNIX systems only. To extend the schema on Windows and NetWare® Metadirectory servers, use iManager. For details, see Section 3.6.1, “Windows and NetWare Metadirectory Servers,” on page 24.

The nxdrv-config command prompts you to enter the host name or IP address of the server that the schema is to be extended on, the name of the tree that the schema is to be extended on, and the fully distinguished name of a user with administrative rights to the tree.

The eDirectory server will now be extended to include the posixAccount and posixGroup auxiliary classes.

```
Enter the eDirectory hostname [localhost]: sr.digitalairlines.com
Enter the Tree Name: digitalairlines
Enter the admin FDN (admin.acme): admin.digitalairlines
```

The nxdrv-config command calls the ndssch utility to extend the schema. The ndssch utility prompts you for the password for the administrative user and extends the schema. For details about the ndssch utility, see the Novell® eDirectory™ 8.7.3 Administration Guide on the Novell eDirectory 8.7.3 Documentation Web site (http://www.novell.com/documentation/edir873/index.html).

**C.1.5 Configuring PAM**

The nxdrv-config command asks you if you are configuring PAM on a remote client.

If you are configuring PAM on a remote client, the nxdrv-config command does the following:

1. Prompts you for the host name or IP address and port number of the Linux or UNIX connected system.
2. Calls the command to mint a security certificate for the remote client. This command requires you to enter the Remote Loader password.
3. Sets up the PAM configuration file.
If you are configuring PAM on the connected system, the nxdrv-config command sets up the PAM configuration file.

Are you configuring PAM from a remote NIS client? (Y/N) [N]
Configuring PAM...
Using PAM configuration file: [/etc/pam.conf]
Inserting line [/usr/lib/security/pam_nxdrv.so.1 mechanism=api]
original PAM file backed up to /etc/pam.conf.nxdrv.04152006151641

The nxdrv-config command locates the PAM configuration file, makes a backup copy, and inserts a line for the Linux and UNIX driver PAM module.

C.1.6 Configuring LAM

The nxdrv-config command makes a backup copy of the /usr/lib/security/methods.cfg file, then appends the stanza for the Linux and UNIX driver to the methods.cfg file.

original methods.cfg backed up to
/usr/lib/security/methods.cfg.nxdrv.04152006154047

C.2 The Remote Publisher Configuration File

The /usr/local/nxdrv/conf/remote-publisher.conf file on the connected Linux or UNIX system controls the issuing of security certificates to remote publishing clients. It is used when a remote client is configured.

Enter configuration statements, one per line.

C.2.1 Comments

Lines that begin with an octothorpe (#) are comments.

Example

# This is a comment line.

C.2.2 CA-DELAY Statement

The CA-DELAY statement specifies the number of days that the Certificate Authority remains valid.

Syntax

CA-DELAY=days

Example

CA-DELAY=3650
C.2.3 CLIENT-DELAY Statement

The CLIENT-DELAY statement specifies the number of days that the client certificate remains valid.

Syntax

CLIENT-DELAY=days

Example

CLIENT-DELAY=1025

C.2.4 VERIFY-SERIAL-NUMBERS Statement

The VERIFY-SERIAL-NUMBERS statement specifies whether the driver shim verifies that the certificate serial number of a connecting client matches the serial number specified for it in a Client statement.

Syntax

VERIFY-SERIAL-NUMBERS={true|false}

Example

VERIFY-SERIAL-NUMBERS=true

C.2.5 NEXT-SERIAL-NUMBER Statement

The NEXT-SERIAL-NUMBER statement specifies the next unused client certificate serial number.

Syntax

NEXT-SERIAL-NUMBER=number

Example

NEXT-SERIAL-NUMBER=1000

C.2.6 CLIENT Statements

CLIENT statements are written by the driver shim when a remote client is configured, and are used by the driver shim to verify a client when it connects to publish a password.

Syntax

CLIENT ADDRESS=address1,address2, . . . SERIAL=serialNumber

Example

CLIENT ADDRESS=192.168.17.41,192.168.17.42,192.168.17.46 SERIAL=1952
C.3 Driver Shim Command Line Options

The following options can be specified on the driver shim (/usr/local/nxdrv/bin/nxdrv) command line. You can also specify driver shim configuration file statements as command line options. For details about the driver shim configuration file, see Section 5.2, “The Driver Shim Configuration File,” on page 42.

C.3.1 Options Used to Set Up Driver Shim SSL Certificates

The following command line options are used to set up the driver shim SSL certificates:

Table C-1  Driver Shim Command Line Options for Setting Up SSL Certificates

<table>
<thead>
<tr>
<th>Option (Short and Long Forms)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td>Secures the driver by creating SSL certificates, then exits.</td>
</tr>
<tr>
<td>-secure</td>
<td></td>
</tr>
<tr>
<td>-p</td>
<td>Specifies the Remote Loader password.</td>
</tr>
<tr>
<td>-password</td>
<td></td>
</tr>
</tbody>
</table>

C.3.2 Other Options

Table C-2  Other Driver Shim Command Line Options

<table>
<thead>
<tr>
<th>Option (Short and Long Forms)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c &lt;configFile&gt;</td>
<td>Instructs the driver shim to read options from the specified configuration file.</td>
</tr>
<tr>
<td>-config &lt;configFile&gt;</td>
<td>Options are read from /etc/nxdrv.conf by default.</td>
</tr>
<tr>
<td>-?</td>
<td>Displays the command line options, then exits.</td>
</tr>
<tr>
<td>-help</td>
<td></td>
</tr>
<tr>
<td>-v</td>
<td>Displays the driver shim version and build date, then exits.</td>
</tr>
<tr>
<td>-version</td>
<td></td>
</tr>
</tbody>
</table>

C.4 PAM Configuration Details

The PAM module can publish password information on the system running the driver shim or from a remote system such as a NIS or NIS+ client. The only task of the driver PAM module is to obtain the password during normal password change operations that use PAM-enabled tools, such as the passwd command.

You can install and optionally configure the PAM module at any time using the installation program. For details, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.
After it is installed, you can configure the PAM module with the `nxdrv-config` command. For details, see Section C.1, “Using the nxdrv-config Command,” on page 87.

The installation script installs the PAM module as appropriate for the server operating system as shown in the following table:

**Table C-3  PAM Modules**

<table>
<thead>
<tr>
<th>Operating System</th>
<th>PAM Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>/usr/lib/security/pam_nxdrv</td>
</tr>
<tr>
<td>HP-UX</td>
<td>/usr/lib/security/libpam_nxdrv.so 1</td>
</tr>
<tr>
<td>Linux</td>
<td>/lib/security/pam_nxdrv.so</td>
</tr>
<tr>
<td>Solaris</td>
<td>/usr/lib/security/pam_nxdrv.so.1</td>
</tr>
</tbody>
</table>

If you respond to the prompt to configure the PAM module, the installation script places an entry for the PAM module in the appropriate PAM configuration file for the password facility. The `nxdrv-config` command also does this.

You can edit your PAM configuration file manually. The PAM module requires a command line option as shown in Table C-4. For the location and syntax of your PAM configuration file, see your system’s PAM documentation. If you choose to edit your own PAM configuration files, you must place the PAM module entry below the module that obtains the new password during a password change.

**Table C-4  Linux and UNIX Driver PAM Module Command Line Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mechanism=api</td>
<td>The PAM module uses the API to send password change information to the driver shim. This method is used when the PAM module is running on the same system as the driver shim.</td>
</tr>
<tr>
<td>mechanism=soap</td>
<td>The PAM module uses Simple Object Access Protocol (SOAP) to send password change information to the driver shim. This method is used when the PAM module is running on a different system from the driver shim, such as with NIS or NIS+ clients.</td>
</tr>
<tr>
<td>host=hostName</td>
<td>Required for SOAP. Specifies the host name or IP address of the driver shim system.</td>
</tr>
<tr>
<td>port=portNumber</td>
<td>Required for SOAP. Specifies the TCP port number of the driver shim system. The default port is 8091.</td>
</tr>
</tbody>
</table>

The Linux and UNIX driver PAM module is contained in the pam-password part of the PAM stack below the other PAM modules on the system. When the other PAM modules participate in a dialog with a user who is changing the password, the driver PAM module uses `pam_get_item` to get the new password from the PAM framework.
When the Linux and UNIX driver PAM module obtains a new password on the system running the
driver shim, it writes the new password to the change log so it can be published into the Identity
Vault.

When the PAM module is used from a host other than the one where the driver shim is running (such
as NIS or NIS+ clients), it uses a secure TCP/IP channel to communicate with the driver shim. If the
password change event cannot be sent to the driver shim, a message is written to the system log.

C.5 LAM Configuration Details

PAM is supported by AIX beginning with AIX 5.3, but earlier versions use the IBM Loadable
Authentication Module (LAM) technology instead of PAM. The Linux and UNIX driver LAM
module implements password publishing in the LAM environment for files mode only. The LAM
module is not supported for NIS or NIS+ on AIX.

You can install and optionally configure the LAM module at any time using the installation
program. For details, see Section 3.9, “Installing the PAM or LAM Module,” on page 27.

After it is installed, you can configure the LAM module with the nxdrv-config command. For
details, see Section C.1, “Using the nxdrv-config Command,” on page 87.

The installation script installs the LAM module NXDRV into the /usr/lib/security directory
of the connected AIX system. If you respond to the prompt to configure the LAM module, the
installation script adds an NXDRV stanza to /usr/lib/security/methods.cfg. The
nxdrv-config command also adds this stanza.

You can edit your /usr/lib/security/methods.cfg file manually. The following example
shows the driver LAM stanza:

NXDRV:
  program = /usr/lib/security/NXDRV
  options = db=BUILTIN

If the LAM module is installed, the default AIX files-mode scripts cause AIX users to be associated
with the LAM module via individual user stanzas in /etc/security/user. Alternatively, you
can change the global stanza in /etc/security/user to use the LAM module by default, and
change the scripts so that they don’t assign NXDRV SYSTEM and registry attributes to files-mode
users. More fine-tuned configurations are also possible and are referenced in the add-user.sh
script file.

C.6 Publisher Channel Limitations

The Publisher channel generates events based on modifications that are discovered by polling.
Because events are interpreted after they have occurred, some assumptions must be made. This can
lead to unexpected results under certain circumstances.

For example, a user might be renamed on the local Linux or UNIX system. If the user’s UID is not
changed, the polling script can determine that the event is a rename, not a delete followed by an add.
However, if a user is renamed and its UID is changed, the polling script must assume that this is a
delete followed by an add.

You can modify the polling script to provide a more accurate approach using additional contextual
clues that are specific to your particular environment. For example, you might modify the polling
script behavior to additionally look at the password hash or a gecos field component to decide
whether a user has been deleted or simply renamed. Preserving the user’s identity might be essential to preserving the appropriate rights and resources to another connected system. For detailed information about customizing the shell scripts, see the Novell Identity Manager Linux and UNIX Driver Developer Kit Web site (http://developer.novell.com/wiki/index.php/idmnxdrvdevkit).

C.7 Files and Directories Modified by Installing the Driver Shim

- Section C.7.1, “Main Driver Shim Files,” on page 95
- Section C.7.2, “Driver PAM Files,” on page 96
- Section C.7.3, “Driver LAM Files,” on page 96

C.7.1 Main Driver Shim Files

- “Driver Shim Directory” on page 95
- “/usr/sbin Files” on page 95
- “/usr/lib Files” on page 95
- “init.d Files” on page 95
- “Man Pages” on page 96
- “Driver Shim Configuration File” on page 96

Driver Shim Directory

When you install the driver, the /usr/local/nxdrv directory is created and populated with driver-related files and subdirectories.

/usr/sbin Files

The following commands are added to /usr/sbin:

<table>
<thead>
<tr>
<th>Table C-5</th>
<th>Driver Commands Placed in /usr/sbin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Function</td>
</tr>
<tr>
<td>nxdrv-uninstall</td>
<td>Uninstalls the Linux and UNIX driver</td>
</tr>
<tr>
<td>nxdrv-config</td>
<td>Updates the configuration</td>
</tr>
</tbody>
</table>

init.d Files

Commands to start, stop, and display the status of the driver are added to the appropriate file for the connected system operating system.

<table>
<thead>
<tr>
<th>Table C-6</th>
<th>Commands for Starting, Stopping, and Displaying the Status of the Driver Shim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Command</td>
</tr>
<tr>
<td>AIX</td>
<td>/etc/rc.d/init.d/nxdrv</td>
</tr>
</tbody>
</table>
Man Pages

The installation process adds man pages for the driver shim, change log update command, and shared memory tool to /usr/man.

Driver Shim Configuration File

The installation program places a default driver shim configuration file at /etc/nxdrv.conf.

C.7.2 Driver PAM Files

The driver installation script adds the driver PAM module to the appropriate library, and adds a line to the PAM configuration file for the pam-password function. The location of these depends on the operating system used by the connected system. For details, see Table C-3, “PAM Modules,” on page 93 and your operating system’s PAM documentation.

C.7.3 Driver LAM Files

The installation script installs the LAM module NXDRV into the /usr/lib/security directory of the connected AIX system, and adds an NXDRV stanza to /usr/lib/security/methods.cfg.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-UX</td>
<td>/sbin/init.d/nxdrvd</td>
</tr>
<tr>
<td>Linux</td>
<td>/etc/init.d/nxdrvd</td>
</tr>
<tr>
<td>Solaris</td>
<td>/etc/init.d/nxdrvd</td>
</tr>
</tbody>
</table>
Index

Symbols
/dev/random device 22
/usr/local/nxdrv 27, 95
/usr/sbin 95

A
account management system 11
change detection 13
database type 38
driver shim interface 14
account snapshot files 13
activating the driver 28
adding attributes to the driver 55
administrative password resets 41
advanced installation method 19
AIX 11
duplicate GIDs 39
duplicate UIDs 39
home directories 39
init.d files 95
installing driver PAM or LAM module 28
LAM configuration 94
PAM module 93
support for PAM 94
aix_driver_install.bin 23
Allow Duplicate GIDs 39
Allow Duplicate UIDs 39
Application to Identity Vault option 15, 36
Approval Flow 36
architecture 11
association matching rules 53
attribute definition statement 49
attribute matching rules 52
audience 9
auditing 59
authentication redirection 32
Automatic Loopback Detection 39
auxiliary classes. See extending the schema

B
base container
move events 67
setting 26
troubleshooting provisioning 66
trustee rights 19
basic installation method 19
best practices 59
Bidirectional option 15, 36

C
CA-DELAY statement 90
certificates 60
configuring with nxdrv-config 88
installing manually 64
NIS and NIS+ clients 88
setting up 92
setup troubleshooting 64
change log 11, 12, 47
description 13
securing 60
change log update command 13
changing passwords 58
See also password synchronization
class definition statement 49
class line 52
class matching rules 52
CLIENT statements 91
CLIENT-DELAY statement 91
CN of User and Group objects 41
command line options
driver shim 42, 92
PAM module 93
configuration
overview 14
settings 25
configuring
LAM with nxdrv-config 90
PAM with nxdrv-config 89
remote client publishing 88
the driver 35
the driver for SSL 88
Connected System or Driver Name 41
connected system requirements 22
connected system schema file 14, 47
detailed description 49
example 50
overview 14
syntax 49
Create Home Directories 39
customizing the driver 47
planning 18

D
Data Flow 36
overview 15
Database Type 38
default
driver policies 16
filter and schema mapping 16
port numbers 18
deployment planning 17
details about the driver 87
directories modified by installing the driver shim 95
displaying driver shim status 58

97
Distribution Password 42
  migrating 44
  publication failure 42
documentation
  additional 10
  conventions 10
  updates 10
driver
  architecture 11
  parameters and GCVs 35
  security 59
  start failure 65
Driver Configuration page parameters 37
Driver object password 38
  purpose 88
  setting for driver 26
  setting for driver shim 27, 43
  setting with nxdrv-config 87
  stored in keys directory 65
driver rules file
  importing 25
  troubleshooting installation 64
Driver Set 25
driver shim
  command line options 42, 92
  configuration 42
  connection options 43
  directory 95
  installing 27
  port for HTTP services 43
  troubleshooting communications 65
  troubleshooting installation 64
  troubleshooting startup 65
driver shim configuration file
  default 96
  detailed description 42
  statements as command line options 92
  DSTRACE 63

E
  e-mail notification of password synchronization
  failure 42
  embedded Remote Loader 47
    as driver shim 11
    installing 27
Enable Entitlements 36
  endclass line 52
  endexclude line 52
  endinclude line 52
  endpublisher line 51
 endsubscriber line 51
  entropy requirements 22
  exclude line 52
  Exclude Privileged Users and Groups 41
  exclude section 52
  extending the schema 15
    procedure 24
    troubleshooting 64
  with nxdrv-config 89

F
  Fan-Out driver
    uninstalling 33
    upgrading to the Linux and UNIX driver 31
  feedback 9
  files 11
    change detection 13
    database type 38
    driver shim interface 14
    supported by LAM 17
  files modified by installing the driver shim 95
  filters 15
    modifying 55
  firewall 59
  First Name attribute 41

G
  GCVs 35, 40
    password synchronization 41, 42
  gecos 14, 41
  getting the installation files 23
  gidNumber 14
    privileged 41
    user primary group identification 41
  GIDs
    duplicate 39
    managing 15
  Global Configuration Values. See GCVs
  Group Base Container 42
  group base container
    See also base container
    setting 26
  Group class 14
  group map 14
  groupName 14

H
  Heartbeat Interval 39
  heterogeneous mix 31
  home directories 39
  homeDirectory 14
  HP-UX 11
    init.d files 96
    PAM module 93
  hpux_driver_install.bin 23

I
  Identity Manager 9
  Identity Vault requirements 23
  Identity Vault to Application option 15, 36
  illustration 12
  importing the driver rules file 25
  import-only driver properties 35
  include line 52
include section 52
include/exclude file 14, 47
detailed description 50
examples 54
processing 50
syntax 51
include-exclude.conf. See include/exclude file
init.d 95
installation files, getting 23
installation method
advanced 19
basic 19
installation script, running 23
installing 21
certificate manually 64
driver PAM or LAM module 27
driver rules file 25
driver shim 27
schema extensions 24
ipcrm command 68
ipcs command 68

J
Java 11, 27

L
LAM 12
configuration details 94
LAM module 13
configuring with nxdrv-config 90
installation into /usr/lib/security 96
installing 27
Last Name attribute 41
libpam_nxdrv.1 93
limited regular expressions 54
in association matching 53
in attribute matching 53
Linux 11
init.d files 96
PAM module 93
Linux and UNIX Settings driver 19, 32, 37
linux_driver_install.bin 23
LinuxUnix.xml. See driver rules file
Loadable Authentication Module. See LAM
loginName 14
loginShell 14
loopback detection 14, 47
configuring 39
loopback state files 14
Lower Case CNs 41

M
man pages 96
Manage Bidirectional option 15, 36
Manage from Identity Vault option 15, 37
Manage Local option 15, 36
managing additional attributes 55
mechanism=api 93
mechanism=soap 93
memberUid 14
messages
descriptions 69
monitoring 58
priorities 62
methods.cfg 94
migrating identities 43
migration planning 18
modifying the filter 55
monitoring
driver messages 58
driver operation 59

N
name of the driver 41
NDS password 42
network security 59
new features 11
NEXT-SERIAL-NUMBER statement 91
NIS 11
change detection 13
database type 38
driver shim interface 14
not supported by LAM 17
NIS driver
uninstalling 29
upgrading to the Linux and UNIX driver 29
NIS or NIS+ clients 18
communication to driver shim 94
configuring SSL with nxdrv-config 88
entropy requirements 22
installation 27
PAM configuration details 92
planning 17
NIS+ 11
change detection 13
database type 39
driver shim interface 14
not supported by LAM 17
NMAS Distribution Password. See Distribution Password
NMAS password policies 42
Notify the User of Password Synchronization Failure via E-Mail 42
Novell Audit 59
Novell Identity Manager 9
nxclh. See change log update command
NXDRV LAM module 94
nxdrv.conf. See driver shim configuration file
nxdrv.sch. See extending the schema
nxdrv-config command 87
nxsmh. See shared memory tool

O
one-way synchronization 31
operating system requirements 22
overview 11

P
PAM 12
  AIX support for 94
  configuration details 92
  configuration file 90, 93
  stack 93
PAM module 13, 18
  by operating system 93
  command line options 93
  configuring with nxdrv-config 89
  installation library 96
installing 27
PAM trace file 63
  pam_nxdvr 93
  pam_nxdrv.so 93
  pam_nxdrv.so.1 93
passwd 12, 58, 67
passwd map 14
password facility 93
password policy validation 42
password resets 41
password synchronization
  changing passwords 58
  GCVs 41, 42
  on connected system 27
  on NIS or NIS+ clients 18, 27
  shell scripts 13
  troubleshooting 66, 67
physical security 59
planning 17
  customization 18
  deployment 17
  migration 18
Pluggable Authentication Module. See PAM
policies
  default 16
  for Fan-Out driver 32
  generating 35
  migrating customized 30
  tracing results 63
Policy Editor 49
poll.sh. See polling script
Polling Interval 39
polling script 11, 13
port number
  default 18
  driver shim 26, 37, 38, 65, 89, 93
  HTTP services 43
  LDAP server 88
  Metadirectory server 43
  Metadirectory server LDAP port 24, 27, 64
POSIX information management 15
POSIX Management Mode 15, 36, 41
posixAccount 15, 24
posixGroup 15, 24
post-installation tasks 28
prerequisites. See requirements
  primary group identification 41
  PRNGD entropy daemon 22
Publish Passwords to Distribution Password 42
Publish Passwords to NDS Password 42
Publisher channel 12
  disabling 39
  limitations 94
Publisher Disabled 39
publisher line 51
publisher section 51
R
redirection, authentication 32
remote clients. See NIS or NIS+ clients
Remote Loader Connection Parameters 38
Remote Loader password 38
  configuring remote NIS or NIS+ clients 89
  purpose 88
  setting for driver 26
  setting for driver shim 27, 43, 92
  setting with nxdrv-config 87
  stored in keys directory 65
  using 62, 63
Remote Loader. See embedded Remote Loader
remote publisher configuration file 90
Remove Home Directories 39
Require Password Policy Validation before
  Publishing Passwords 42
Require POSIX Attributes When Subscribing 41
requirements
  account management system 22
  connected system 22
  connected system operating system 22
  entropy 22
  Identity Vault 23
  knowledge and skills 21
  SSL 22
Reset Users External System Password to the
  Identity Manager Password on Failure 42
RFC 2307
  advanced installation method 19
  documentation 10
  extending the schema for 24
  gidNumber 41
  information management 15, 36
  information required to synchronize to
    connected system 41
  rights required by driver 19
Role-Based Entitlements 36
  advanced installation method 19
  running the installation script 23
S
scalability 32
schema definition statement 49
schema file. See connected system schema file
schema mapping 15
schema.def. See connected system schema file
script output file 63
scriptable framework 11, 14, 47
scripts. See shell scripts
Secure Sockets Layer. See SSL
securing the driver 59
security-equivalent user 19, 26
setting remote loader and driver object passwords
87
setting up the driver 25
Settings driver 19, 32, 37
shared memory 13, 47
troubleshooting 68
shared memory tool 13
shell scripts 11, 13, 47, 55
account management system interface 14
securing 60
single-line rules 53
SOAP 93
Solaris 11
init.d files 96
PAM module 93
solaris_driver_install.bin 23
SSL 13, 47, 59, 60, 64
configuring driver 37
configuring with nxdrv.config 88
entropy requirements 22
setting up certificates 92
starting the driver 57
starting the driver shim 57
startup option 28
status log 63
status log 63
viewing 63
stopping the driver 57
stopping the driver shim 57
Subscriber channel 13
subscriber line 51
subscriber section 51
Synchronize Group Membership 41
synchronizing the driver 45
system log 61, 69

t
The Identity Vault Accepts Administrative
Password Resets from the Linux or UNIX
Connected System 41
The Identity Vault Accepts Passwords from the
Linux or UNIX Connected System 41
The Linux or UNIX Connected System Accepts
Password Resets from the Identity Vault 41
trace 43
trace file 62
viewing 62
trace levels 62
troubleshooting 61
certificate setup 64
driver creation 64
driver rules file import 64
driver shim communications 65
driver shim installation 64
driver shim startup 65
driver startup 65
extending the schema 64
password synchronization 66, 67
provisioning 66, 67
shared memory errors 68

U
uidNumber 14
privileged 41
UIDs
duplicate 39
managing 15
uninstalling
Fan-Out driver 33
Linux and UNIX driver 28
NIS driver shim 29
Platform Services 33
Universal Password policy 66
updates, documentation 10
upgrading to the Linux and UNIX driver 29
from the Fan-Out driver 31
from the NIS driver 29
Use First Name + Last Name for gecos 41
Use SSL 37
User Application 36
User Base Container 42
user base container
See also base container
setting 26
User class 14
useradd 58, 67
using the nxdrv-config command 87

V
VERIFY-SERIAL-NUMBERS statement 91
viewing
status log 63
trace file 62
VPN 59

W
Web access 47

y
ypassword 58, 67