
Novell

m
w w w . n o v e l l . c o

Integration Manager™
6 . 0
J u n e 2 7 , 2 0 0 6

L D A P C O N N E C T U S E R ’ S G U I D E

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all
parts of Novell software, at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other
countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or
import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological
weaponry end uses. Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system,
or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular,
and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S. and in other
countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.
2 LDAP Connect User’s Guide

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.
3

http://www.novell.com/company/legal/trademarks/tmlist.html

4 LDAP Connect User’s Guide

Contents

About This Book. 7

1 Welcome to LDAP Connect for Integration Manager . 9
About Integration Manager and the Connect Architecture. 9

Hub and Spoke Architecture . 10
About exteNd’s LDAP Connect . 10
What Are Directories? . 11
How Is Information Stored in a Directory? . 12
What is LDAP? . 13
What Does LDAP Do? . 13

LDAP Verbs . 14
What is DSML? . 15
What Kinds of Applications Can You Build Using the LDAP Connect? . 15
LDAP and Security . 15

Access Control . 16
For More Information . 17

2 Getting Started with the LDAP Component Editor . 19
About Connection Resources . 19
About Expression-Driven Connection Parameters . 19
LDAP Connection Parameters . 20
Security Settings . 21

Creating an LDAP Connection Resource . 21
Connection Troubleshooting . 23

Exception After Successful Connection . 25
Silent Failover . 25
Editing Connection Resources After They’re Created. 26

3 Creating an LDAP Component . 27
The LDAP Application Model . 27

Before Creating an LDAP Component. 28
Special Features of the LDAP Component Editor . 31

LDAP Native Environment Pane . 31
Drag-and-Drop Operations . 34
Special Menu Commands . 35

4 DSML Actions . 37
Working with DSML . 37

Multiple Requests in a Single DSML Document . 38
The Create DSML Action. 39

Add . 40
Compare . 45
Delete . 47
Modify . 47
Rename . 48
Search. 49

The Execute DSML Action. 52
Using Other Actions in the LDAP Component Editor. 52

5 Working with LDAP and DSML. 53
DSE Query Example . 53

Connection Resource for Anonymous Bind . 53
5

Component and Action Model . 54
Dealing with Errors. 57

ECMAScript and the LDAP Connect. 60
LDAP Extension Methods . 60
Access Control List (ACL) Methods . 60
Access to Novell LDAP Classes. 61

ECMAScript Example Involving LDIF . 61

A LDAP Glossary . 65

B LDAP Result Codes . 69
6 LDAP Connect User’s Guide

About This Book

Purpose

This guide describes how to use the LDAP Connect.

Audience

This book is for developers and systems integrators who are planning to use Integration Manager to
develop directory-aware services (including Web Services) and components.

Prerequisites

This book assumes prior familiarity with Integration Manager’s work environment and deployment
options. Some familiarity with the Lightweight Directory Access Protocol is also assumed.

Additional documentation

For the complete set of Novell exteNd documentation, see the Novell Documentation Web Site
(http://www.novell.com/documentation-index/index.jsp).

About the Product Name Change

In version 6.0. we've changed the name of exteNd Composer to Novell Integration Manager. In some
places in the user interface, and in Integration Manager file and directory names, you will still see the
name "exteNd Composer" or "Composer".
7

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8 LDAP Connect User’s Guide

1 Welcome to LDAP Connect for Integration
Manager

Welcome to the Novell Integration Manager LDAP Connect User’s Guide. This Guide is a companion to
the Novell Integration Manager User’s Guide, which details how to use all the standard features of
Integration Manager except for those specific to the Connect Component Editors. So, if you haven’t
looked at the Novell Integration Manager User’s Guide yet, you should familiarize yourself with it before
using this Guide.

Novell Integration Manager provides separate Component Editors for each Connect. The special features
of each component editor are described in separate Guides like this one.

If you have been using Integration Manager, and are familiar with the core editors (such as the XML Map
Component Editor), then this Guide will help you become productive with the LDAP Component Editor
in minimal time.

About Integration Manager and the Connect Architecture
Novell Integration Manager is a tool for building (and deploying) your own XML-enabled integration
applications.

Integration Manager comes in two parts. The design-side part (which is what we mean when we say
“Integration Manager” in this guide) is an integrated development environment (IDE) for creating your
own custom applications. The runtime part (called Integration Manager Enterprise Server, or
“Integration Manager Server” for short) is the server-resident execution engine for your apps. (You do
not need access to Integration Manager Server in order to design, test, and debug your services, however.)

The services you build and deploy using Integration Manager can be triggered (invoked) in any number
of ways. A common option is to have a service invoked by a servlet that “listens” on a URL. (For more
information on invocation and deployment options, see the Novell Integration Manager User’s Guide as
well as the Novell Integration Manager User’s Guide for your particular app server).

This guide will show you how to build LDAP Components that you can use in your Integration Manager-
built services. Typically, you will:

Create a project (a Integration Manager or Workbench.spf file).
Create an LDAP Component and its associated resources (such as a Connection Resource).
Optionally create other components (XML Map, JDBC, etc.) that carry out additional “business
logic” operations.
Create a service (or “Service Component”) that calls your other components. The service, in other
words, “wrappers” your lower-level components.
Package and deploy your service in JAR, WAR, or EAR form as appropriate.

The service provides the invocation layer for a component (or group of components). It can be exposed
as a WSDL-described Web Service, or it can run locally, with no public-facing interface, on the app
server.
Welcome to LDAP Connect for Integration Manager 9

Hub and Spoke Architecture
Novell Integration Manager is built on a simple hub-and-spoke architecture. The hub is a robust XML
transformation engine that accepts XML documents, processes the documents, and returns an XML
document created according to the particular requirements of the business process in question. The
spokes, or Connects, are add-in modules that “XML-enable” sources of data that are not XML-aware.
That is, Connects make it possible for non-XML data—whether from legacy COBOL-VSAM managed
information systems, Telnet or other terminal streams, message queues, EDI, etc.—to be captured in
XML form (or the reverse: repackage XML data so the endpoint system can understand it). Integration
Manager Connects are natively able to read, write, and transform XML using industry-standard parsers
and transcoders.

All of this is done in a non-intrusive/non-invasive manner, such that there is no impact on existing
systems or infrastructure. (For example, there is no need to load any new software on existing systems,
aside from the app server itself.)

Integration Manager comes with two core Connects, for JDBC and LDAP. (JDBC is the subject of a
separate User’s Guide.)

Other Connects are available for CICS RPC, Telnet, 3270, 5250, HP3000, Tandem, Data General, JMS,
SAP, EDI, and HTML data sources. These additional Connects are not part of the core Integration
Manager installation but represent value-adds that can be purchased separately.

About exteNd’s LDAP Connect
Just as the JDBC Connect lets you build and deploy XML integration applications that are database-
aware, the LDAP Connect lets you build components and services that are directory-aware. Your
component or service acquires the power to act as an LDAP client. It can make queries against (or even
update the contents of) any directory—regardless of vendor—that supports the LDAP protocol.
10 LDAP Connect User’s Guide

The key to the power and flexibility of Integration Manager’s LDAP Connect is its ability to work with
DSML (Directory Services Markup Language), which is an industry-standard XML grammar for
encoding directory requests and responses. (See the more detailed discussion further below.) Since
DSML is just a dialect of XML, it shares all of XML’s advantages in terms of being human-readable,
machine-parsable, transportable, firewall-friendly, etc. The data in a DSML document is easily accessed,
transformed, and repurposed.

NOTE: You will not need to create, or keep on hand, actual DSML documents in order to work with the
LDAP Connect. Integration Manager will create the necessary DSML for you, on the fly.

We will have more to say about DSML later on.

What Are Directories?
A directory is a structured data store. As such, it has many of the characteristics of a relational database
(which is perhaps the best known type of structured data store). But a directory differs from a traditional
database in a number of key ways:

Whereas a database is designed to accommodate large chunks of potentially volatile data (data that
may be subject to frequent updates), a directory is more suited to handling small, highly
granularized bits of data that don’t need frequent updating.
Directories allow administrators to aggregate data in vertical object hierarchies built on flexible
naming and containment rules. (Traditional databases follow a less vertical approach to organizing
data.)
Every data element (or entry) in a directory is directly addressable via a unique ID (known as its
distinguished name). The address of a directory entry is constructed (and deconstructed) piecewise,
much the same way a URL is, so that there can be relative versus fully qualified names. In a
database, data elements are not directly addressable.

As with a database, data in a directory can be queried as well as written (updated) or removed. Databases
can be queried via one flavor or another of SQL (Structured Query Language). With directories, queries
follow a syntax described in RFCs 2251 and 2254. The query “language” for LDAP is well standardized.

The diagram above shows how applications communicate with the two basic types of structured data
stores (directories and databases). Applications go through LDAP to query and/or update directories.
They go through SQL and appropriate drivers to access data in a database.
Welcome to LDAP Connect for Integration Manager 11

How Is Information Stored in a Directory?
Directories store data as entries. Collections of entries are usually called objects. Objects can contain
other objects as entries.

The data within directory objects consists of attribute-value pairs. Some attributes are said to be single-
valued; others are multi-valued. For example, a person might have more than one phone number: In this
case, the attribute under which phone numbers are stored for this person would probably be a multi-
valued attribute. This would be specified in the directory’s schema. (A directory schema is not to be
confused with an XML schema. The two are completely distinct.)

When entries contain other entries, the containing entry is called a container object.

A contained entry is said to be the subordinate entry of the container. The container, on the other hand, is
said to be the superior of the contained entry.

NOTE: An entry can be both a container (superior) as well as a subordinate to another entry, much the
same way that a DOM node can be both a parent and a child.

Nesting of entries is a key characteristic of directories and gives them a treelike structure. (In fact, you
will often hear the term Directory Information Tree, or DIT, in reference to a directory.) The tree structure
lends itself, in turn, to XML representation.

The above graphic shows how the directory structure for a small company might look. In this example,
the top-level node in TinyCompany has an Organization (O) attribute of TinyCompany. Under
TinyCompany are containers for the Engineering, Accounting, and Marketing departments. (These are
labelled as such in terms of OU or Organization Unit attributes.) Accounting has two organizational units
under it (Accounts Payable and Accounts Receivable.) So far, all of these entries have been containers.
At the leaf-node level, we reach the CN Common Name) entries for the various personnel under the
containers. Note that Marketing has no employees at the moment. But they do have a printer.

Any item in the tree can be addresses by a concatenation (or federation) of namespaces: Judy Yo can be
addressed unambiguously by means of:

cn=Judy Yo,ou=R&D,ou=Engineering,o=TinyCompany

This “fully qualified” name is called a distinguished name (usually abbreviated “DN” or “dn”). It is
analogous to a fully qualified path or URI.

NOTE: Order is important in a DN. Unlike URL or file-system naming schemes, the ordering inside a DN
(going left to right) flows from lowest level to highest level of organization (or from child to parent)—always
upwards along the ancestor chain.
12 LDAP Connect User’s Guide

Because order is important, it would be wrong to rewrite the above DN as

cn=Judy Yo,ou=Engineering,ou=R&D,o=TinyCompany

This DN states the hierarchy of relationships incorrectly, since R&D belongs under Engineering. The DN
shown here would not resolve correctly given the object hierarchy shown in the foregoing graphic.

We will talk more about naming and other conventions in later chapters.

What is LDAP?
LDAP (Lightweight Directory Access Protocol) is a messaging protocol for communicating with
directories. It implements a compact subset of the functionality specified in the more elaborate Directory
Access Protocol. Full DAP is a feature-rich, far-reaching, rigorous (“heavyweight”) protocol for
communicating with X.500 directory servers. By comparison, LDAP is a lightweight protocol with a
reduced feature set and relatively modest learning curve for those wishing to use it. You can think of
LDAP as a kind of complexity-reduced version of DAP based on ordinary TCP/IP for messaging as
opposed to DAP’s use of the less-common OSI network protocol stack.

In many circles, LDAP has come to mean more than just the network protocol described in RFC 3377.
When people talk about LDAP, they may be talking about:

The LDAP functional model: that is to say, the kinds of operations you can perform on a directory
The LDAP namespace model: The ways in which data groupings can be distinguished or identified
by name
The LDAP data model, which defines the kinds of information that can be stored in a directory, and
rules for organizing that data

Many of these concepts stem from International Telephone Union (ITU) Technical Recommendation
X.500: "The Directory: Overview of Concepts, Models and Service"(1993). LDAP remains, at its core,
a network protocol (like HTTP), but its semantics are tightly bound to the conceptual framework defined
by ITU’s X.500, X.501, and X.511 standards.

With LDAP, you can establish communications with (or “bind to”) a directory, access (read) information
in the directory, and/or update (write information to) the directory.

The LDAP v3 specification is at http://www.ietf.org/rfc/rfc2251.txt.

For additional information on LDAP, consult http://www.openldap.org.

What Does LDAP Do?
LDAP is a protocol for communicating with directories. Like any network protocol, LDAP has its own
“handshake” conventions and a vocabulary of keywords with implied semantics. There are 20 verbs, total
(see the section following this one), describing various types of operations:

Bind—The bind operation establishes an LDAP session between a client application and a
directory server. (This operation also allows a client application to pass authentication information
to the server.)
Unbind—The unbind operation terminates an LDAP session and signals to the server that the
“connection” can be discarded.
Search—The search operation allows an LDAP-enabled client application to exploit the lookup
services offered by a directory server. Depending on the parameters in the client application's
search request, the server will return information from a single entry, from all of the entries below a
particular entry on the directory tree, or from an entire branch of the directory tree.
Welcome to LDAP Connect for Integration Manager 13

http://www.openldap.org
http://www.ietf.org/rfc/rfc2251.txt

NOTE: In addition to allowing client applications to define the scope of a particular search, LDAP 3
parameters allow a client application to define search filters; a size limit for the number of entries
returned; and a time limit within which the search should be performed.

Modify—The modify operation allows a client to modify the value of an attribute for a particular
entry. Parameters of the modify operation allow a client application to add values for attributes, to
delete values for attributes, and to change values for attributes. For example, a client application
might request an add, delete, or replace operation.

Add a telephone number to the telephoneNumber attribute of a particular user entry.
Delete a telephone number from the telephoneNumber attribute.
Replace the existing telephone number with a new telephone number.
Modify Distinguished Name (DN). The modify-DN operation allows a client application to
change an entry's distinguished name by changing the leftmost element of that name.
(Distinguished names are discussed further below.)

Compare—The compare operation allows a client application to compare a stated attribute value
with the value of an attribute in a particular entry. For example, a client application might verify a
particular user's password using the compare operation.
Abandon—The abandon operation allows a client application to abandon an operation that has not
yet been completed.

LDAP 3 also defines an indirection capability—that is, a means by which a directory can refer a client
application to another LDAP 3 directory. For example, suppose a client application were to request
information about a particular entry from LDAP Directory A, but Directory A could not find the
requested entry. If Directory A knew that Directory B that might contain the desired info, A could refer
the client to B, and the search could continue (possibly along an extended series of referrals).

When the host silently implements its own referral-following scheme, it’s called chaining. In LDAP, the
client has no knowledge of nor (generally speaking) any control over chaining, since it’s totally under the
server’s control.

Referral-following, on the other hand, is under the client’s control: The client must decide whether to act
on each referral as it is received, and what kind of security to use on each “hop.”

NOTE: The current version of the LDAP Connect for Integration Manager does not provide native
support for referral-following. You can, however, build your own action-model logic to accomplish this,
using ordinary looping constructs and dynamic connection-resource parameter values.

LDAP Verbs
The above discussion presented LDAP operations in “non-programmer” terms. At a lower level, LDAP
operations are specified by LDAP verbs.

The current list of LDAP verbs (including those that are unique to Version 3 of the spec) looks like this:

BindRequest
BindResponse
UnbindRequest
SearchRequest
SearchResponse (v2 only; not in v3)
SearchResultEntry (v3)
SearchResultDone (v3)
SearchResultReference (v3)
ModifyRequest
ModifyResponse
AddRequest
AddResponse
DelRequest
DelResponse
ModifyDNRequest
ModifyDNResponse
CompareRequest
CompareResponse
14 LDAP Connect User’s Guide

AbandonRequest
ExtendedRequest (v3)
ExtendedResponse (v3)

These verbs are presented here merely to give you an idea of the kinds of operations that are possible in
LDAP. You do not need to understand how to work with these verbs directly in order to use the
Integration Manager LDAP Connect.

For more information on the uses and meanings of these commands, refer to the developer
documentation at http://developer.novell.com/ndk/.

What is DSML?
Directory Services Markup Language, or DSML, allows directory information and/or directory queries
to be represented as an XML document.

NOTE: If you are already experienced with LDAP, you can think of DSML as the XML analog of an LDIF
file. (LDIF is the LDAP Data Interchange Format, a text format for specifying directory entries and LDAP
queries. LDIF is described in RFC 2849)

The DSML specification (see http://www.oasis-open.org) was created in order to make it easy for
XML-based enterprise applications to leverage resource information stored in directories, using firewall-
friendly mechanisms like SOAP (Simple Object Access Protocol).

DSML allows XML and directories to work together. It provides a generalized mechanism by which
XML-based applications can access directory-based information. The goal of DSML is simply to make
it possible for an ever-growing number of XML-based enterprise applications to be directory-aware.

NOTE: You do not need to understand DSML in order to use the Integration Manager LDAP Connect.
Many of the LDAP Connect’s features are wizard-driven. Based on your input to the wizard dialogs,
Integration Manager’s LDAP Connect will build any necessary DSML documents or DOMs for you,
dynamically.

What Kinds of Applications Can You Build Using the LDAP
Connect?

With the aid of the LDAP Connect and Integration Manager, you can build “directory awareness” into
your XML integration applications (whether they’re Web Services or private apps running in a local
context). Your LDAP-aware app can push data into or pull data from any LDAP-accessible data store,
using XML as the interchange format. (DSML is the XML dialect that is actually used.) And you can do
this without having to know anything about DSML. For example, you can write a component (perhaps
part of a larger web service) that retrieves the phone number, e-mail address, and title of a company
employee from a company directory. If the information your app needs resides in two or more directories,
you can merge the information from separate directories before displaying it to the user or passing it to
another component in your application.

LDAP and Security
LDAP applications typically use SSL and TLS (Transport Layer Security) for authentication of LDAP
endpoints and encryption of LDAP session data.
Welcome to LDAP Connect for Integration Manager 15

http://www.oasis-open.org
http://developer.novell.com/ndk/

TLS is a generic wrapper for various kinds of transport-layer security. The participants in a TLS session
agree, at the beginning of a session, to use one of several available security mechanisms (a typical choice
being Secure Socket Layer technology); then the participants use that mechanism to conduct a “secure
session.”

When TLS is enabled, all communications are encrypted; no passwords (and no data) are ever sent in the
clear.

Host authentication is also a component of TLS. By default, the host sends its X.509 certificate
information to the client and the client verifies (authenticates) the host, confirming that the host in
question is indeed the LDAP server that the client was expecting.

NOTE: There are other possible authentication handshakes, including authentication of the client by the
host without authentication of the host by the client, as well as two-way mutual authentication; but the
LDAP Connect for Integration Manager currently supports only the most common handshake scenario, in
which the server provides its certificate info to the client.

See “Getting Started with the LDAP Component Editor” on page 19 for additional information about
LDAP Connect security.

For more information on Transport Layer Security, see RFC 2246 at
http://www.faqs.org/rfcs/rfc2246.html.

Access Control
Access control is different from “security” of the kind discussed above: Rather than addressing
authentication and encryption, access control has to do with authorization, operational privilege levels
(read-only vs. read-write), inheritance rules for privileges, object and attribute visibilities, etc., and
assignment, management, and enforcement of these properties on a per-user and per-group basis.

ITU X.501 addresses (in a characteristically abstract way) directory access control concepts, but does not
specify access control mechanisms in enough architectural detail to enable directory vendors to
implement access control in a standard way. Therefore, access control features have necessarily tended
to be implemented in vendor-specific ways. There is no one “standard” way to implement access control.

Novell’s eDirectory offers a rich, flexible, robust access control architecture centered on an attribute
called ACL (for “Access Control List”). The ACL attribute is an optional, multivalued attribute that (in
eDirectory and NDS) is defined on the Top object class. Since all objects derive from Top, all object
classes can avail themselves of the ACL attribute.

The ACL attribute is an attribute on the object that is being accessed. Each ACL value specifies who can
access the object; what type of rights the accessor has been granted; and whether children of the accessor
inherit those rights. When an object has been granted rights to another object, the accessor is called a
trustee of the target object.

Since the ACL attribute is multivalued, any object that uses an ACL attribute can store any number of
values in it. Typically, there is one value per trustee. Therefore, an ACL might contain a great many
values. But some trustees might actually be container objects representing large groups. The rights of an
entire group of directory objects can be controlled through a single ACL entry.

ACL-based access control is based on very simple principles, but the ramifications of those principles are
far-reaching. For a technical overview of ACL concepts, you should consult the NDS Technical
Overview documentation (in particular, the chapter on eDirectory Security) available online at
http://developer.novell.com/ndk. ACL is also discussed later in this guide (see “Access Control List
(ACL) Methods” on page 60).
16 LDAP Connect User’s Guide

http://www.faqs.org/rfcs/rfc2246.html
http://developer.novell.com/ndk/doc/ndslib/index.html?page=/ndk/doc/ndslib/dsov_enu/data/h6tvg4z7.html
http://developer.novell.com/ndk/doc/ndslib/index.html?page=/ndk/doc/ndslib/dsov_enu/data/h6tvg4z7.html
http://developer.novell.com/ndk

For More Information
The web has many good LDAP and directory resources. A good place to start is
http://developer.novell.com/edirectory/ndsldap.htm, which has links to many LDAP-related articles,
specifications, and developer resources.

Links to the RFCs covering LDAP, along with other resources, can be found at http://nldap.com/nldap/.
Some of the RFCs include the following:

RFC 2251 - LDAP (v3)
RFC 2252 - LDAP (v3): Attribute Syntax Definitions
RFC 2253 - LDAP (v3): UTF-8 String Representation of Distinguished Names
RFC 2254 - The String Representation of LDAP Search Filters
RFC 2255 - The LDAP URL Format
RFC 2256 - A Summary of the X.500(96) User Schema for use with LDAPv3

A public LDAP test directory is maintained by Novell at http://nldap.com. You can use it to set up a
private container for test purposes, if you don’t have a local LDAP server against which to test your
LDAP Connect components and services.

Information on the X.500 directory standard (and DAP) can be found at the web site of the International
Telecommunication Union, http://www.itu.int. (Note: ITU’s standards must be purchased before they
can be downloaded.)
Welcome to LDAP Connect for Integration Manager 17

http://developer.novell.com/edirectory/ndsldap.htm
http://nldap.com/nldap/
http://www.itu.int

18 LDAP Connect User’s Guide

2 Getting Started with the LDAP Component
Editor

The steps involved in creating a Integration Manager component using the LDAP Connect are
fundamentally no different from those involved in creating any other kind of component. The steps are:

1 Decide on any XML Templates you may need for your component.
2 Create a Connection Resource to allow your component to bind to an LDAP host. (The procedure

for this is explained in detail below.)
3 Create a new Component.
4 Create Actions specific to the Component.
5 Test the action model by running the Component in animation mode.
6 Fix any problem discovered during animation.
7 Save your work.
8 Create a deployable Service that calls the Component. (Components cannot be deployed directly;

the unit of deployment in a Integration Manager project is the Service.)
9 Deploy your service to a staging area or to an app server environment (such as Novell exteNd App

server, IBM WebSphere, or BEA Weblogic).

In the sections that follow, we’ll look closely at Step 2: creating a Connection Resource. See “Creating
an LDAP Component” on page 27 for a detailed explanation of how to use LDAP-specific Actions.

About Connection Resources
Before you can create a working LDAP Component, you need to create a Connection Resource for it. (If
you try to create an LDAP Component and there are no LDAP Connection Resources in your resource
list, you will be prompted with a dialog that offers to take you to the Connection Resource wizard.)

The LDAP Connection Resource contains the information needed to allow a component to connect to an
LDAP host (or directory server). You will generally create a separate resource for every different host
you want to establish a connection with, or for every unique set of credentials (or timeout settings) that
you want to use with a given host.

NOTE: The various parameters associated with a given connection resource can be late-binding if you
specify expression-driven connection parameters in your resource, as described below.

About Expression-Driven Connection Parameters
You can specify Connection parameter values in one of two ways: as constants or as expressions.

A constant-based parameter uses the literal value you supplied in the Connection wizard every time the
Connection is used. An expression-based parameter means that you set the value using a programmatic
(ECMAScript) expression, which is evaluated at runtime. The “late binding” of parameters afforded by
the latter method makes it possible for you to supply a different User DN or password each time the
connection resource is used. That is, the connection params can be chosen programmatically, at runtime.
Getting Started with the LDAP Component Editor 19

Suppose you want to pull login credentials from a file or database at runtime. You can set up your
connection resource to use expressions that look up the necessary info from files or databases via
ECMAScript File I/O extensions or via Java directly. The use of expressions allows a Connection’s
behavior to be flexible and vary dynamically in accordance with runtime conditions.

To switch a parameter from Constant to Expression driven:

1 Click the right mouse button inside the parameter field you are interested in changing.
2 Select Expression from the context menu that appears. A small editor button (icon) will become

visible to the right of the parameter field.

3 Click on the button and use the Expression Builder dialog to create an ECMAScript expression that
evaluates to a valid parameter value at runtime.

LDAP Connection Parameters
To create an LDAP connection, you will need to supply, at a minimum, the server IP address and the port
number on which the session will occur. These two items are all that is needed to bind anonymously to a
host that permits anonymous binds. (An anonymous bind in LDAP is analogous to an anonymous FTP
session.) The IP address might be something like 127.0.0.1 or “localhost” at design-time (but presumably
something else at runtime; perhaps switched by an expression-driven IP address parameter). The Port
Number is typically 389 for a non-secure session and 636 for an SSL session, because this is how most
directory servers are configured, but in fact you can supply any value here that might apply.

For non-anonymous binds, you will need to supply a User DN (user distinguished name), and a password.
The User DN represents (in the words of RFC 2251) “the name of the directory object that the client
wishes to bind as.” It is typically the distinguished name of a person or entity in the directory, such as
“cn=John Doe, ou=Mailroom,o=Rising Star Industries.”

When a given server exposes more than one tree, the server needs to know which tree (more accurately,
which subtree) the client wants to bind to. This information is given in the form of a Base DN.

For example, consider a directory server operated by the fictitious international conglomerate Acme, Inc.
The Acme directory server might have three top-level container objects—three “trees”—representing
complete directory structures for Acme Pacific, Acme U.S., and Acme Europe, as shown below.
20 LDAP Connect User’s Guide

If an LDAP client wants to bind to the Acme directory, the server will need to know which tree (Pacific.,
U.S., or Europe) the client wishes to bind to. In this example, if an Acme human resources manager in
Spain wants to bind to the tree for Acme Europe, he would specify “o=Acme Europe” as the Base DN.

NOTE: In LDAP, the Root object is not really an entry in the tree and is not addressable directly. The Root
is more formally known as the root DSE, or DSA Specific Entry. (A DSA is a directory system agent, which
is an X.500 term for a directory server.) The DSE can be queried for “meta” information about the directory
server (in LDAP version 3).

Security Settings
The LDAP Connect for Integration Manager supports encrypted sessions (and server authentication
using X.509 digital certificate technology) through the use of SSL.

To enable encryption and authentication, you must check the TLS (Transport Layer Security) checkbox
on the connection setup dialog. In most cases, you will also want to set the Port Number (in the same
dialog) to 636, because LDAP servers generally expect to carry out encrypted sessions on that port.

NOTE: The Port Number shown in the dialog does not automatically change to 636 when you set the
TLS checkbox. You must enter the Port Number manually. (Likewise, merely entering a port value of 636
does not cause the TLS checkbox to come on.)

When the TLS box is checked, all information moving across the connection will be encrypted; no
information will be sent in the clear. Also, the host (or directory server) will be presented a certificate
challenge. The host will respond with its X.509 certificate info. Integration Manager will check that
certificate info against the Certificate Authority data stored in the agrootca.jar file (which is a Java
archive that ships with Integration Manager, containing Certificate Authority info for numerous industry
standard certificate issuers; see the Novell Integration Manager User’s Guide for details).

NOTE: You can find agrootca.jar in your Integration Manager-installation \lib folder. Use WinZip to
open, inspect, and/or add new certificates to this file. Be sure to consult your app server’s documentation
to learn how to add X.509 certificates, and any other security resources that your applications might need,
to your app server’s runtime environment.

The SSL3 security mechanisms supported by Integration Manager’s LDAP Connect are “all or nothing”
(not dynamically switchable). In other words: the ability to begin an LDAP session in clear-text mode,
then drop into “secure” mode on the fly (as part of the same session, using the same Connection
Resource), is not supported in this version of the LDAP Connect.

Creating an LDAP Connection Resource
The process of creating an LDAP Connection Resource is straightforward.

To create a LDAP connection resource:

1 From Integration Manager’s main menubar, select File > New > xObject, then open the Resource
tab and select Connection.
The “Create a New Connection Resource” Wizard appears.
Getting Started with the LDAP Component Editor 21

2 Type a Name for the connection object. (This is the name that will show up later in the Navigator
pane of Integration Manager’s main window when you are browsing resources in the Connection
category.)

3 (Optional) Enter text in the Description area of the dialog.
4 Click Next. A new dialog appears.

5 Select LDAP Connection from the Connection Type pulldown menu.
6 Next to Host or IP Address, enter the name or IP address of the directory server with which you

intend to connect. (For testing, this might be localhost.)
NOTE: This parameter, and all subsequent text fields in this dialog, can be set dynamically using
ECMAScript expressions. See “About Expression-Driven Connection Parameters” on page 19.

7 If your connection will be using a port other than the default of 389, enter the appropriate value
next to Port Number. (If the connection will be a TLS connection using SSL, and you are not sure
what value to enter here, enter 636, which is the standard port for LDAP-over-SSL.)
TIP: You can specify a port as part of the IP address (previous step) using colon notation, such as
localhost:389. If you do decide to use the all-in-one IP-address:port notation, enter 0 (zero) in the
Port Number field.

8 Enter a valid Base DN (tree name), if applicable. This value might look something like t=DEVNET-
TREE.

9 Enter a valid User DN (user distinguished name). See earlier discussion for information about
distinguished names.
22 LDAP Connect User’s Guide

NOTE: If you are attempting an anonymous (no-password) bind, you can enter any value here.

10 No password is required for an anonymous bind. In all other cases, enter a valid Password for the
given User DN.

CAUTION: This password will be sent in the clear if the connection is not TLS-enabled.

11 Unless your LDAP host requires a different value, accept the default Version value (LDAP
version) of 3.

12 Check the TLS checkbox if this is to be a secure connection (SSL3). Note that for X.509
certificate-based authentication to work, you must have the appropriate Certificate Authority
entries in your agrootca.jar file (in Integration Manager’s \lib directory). Also, the appropriate
certificate setups must exist on the server. Consult your app server documentation for details.

13 Optionally enter a Time Limit value representing the maximum number of milliseconds your
component is willing to wait for establishment of a connection with the server. The default is no
limit.

14 Optionally enter an integer value in Size Limit, representing the maximum number of tree entries
(nodes) you are willing to accept for purposes of rendering tree-views of the directory at design
time. The default value is 1000, which means that Integration Manager can display a maximum of
1000 child nodes under any given parent node (entry) in the tree browser.
Two things could happen if you enter a very large number here:

Performance could suffer as Integration Manager tries to pull down and render all the requested
entries
The remote host might reach a preset limit on how many entries it can serve, and return an error
(in which case Integration Manager will not be able to display entries under the node in
question)

It is recommended that you accept the default value of 1000, unless you know for sure that you will
need to browse a tree node that contains a particularly large number of child nodes.
NOTE: This is a design-time consideration only. At runtime, on the server, this setting does
nothing.

15 Click Test to see if the connection defined in your resource really works. A success or failure alert
dialog will appear after a few seconds. (The test can take 30 seconds or more to “time out” if no
connection can be made. To lessen the wait, enter a Time Limit value as described in the previous
step.)
NOTE: You can continue editing the resource if your connection fails. You can also Save the
resource and edit it later.

16 Optionally check the Default checkbox (underneath the Test button) if you want this connection to
be used as the default connection each time you create a new LDAP Component. (You can override
this behavior at any time.)

17 Click Finish. The newly-created resource connection object appears in the Integration Manager
Connection Resource detail pane.

Connection Troubleshooting
If you see an error dialog (instead of an alert with the message “Connected Successfully”) when you press
the Test button, click the Details button of the dialog to see a full stack trace for the exception. See
illustration below.
Getting Started with the LDAP Component Editor 23

The stack trace message often provides useful clues for isolating the cause of the problem. In the example
shown above, the connection was refused. On closer examination, it can be seen that the IP address
specifies (at the end, after a colon) a port number of 390. The correct port number for the server was 389.
Hence, no connection could be obtained and an LDAPException was thrown.

Here are some issues to bear in mind if you encounter trouble:

Anonymous binds: If you can’t establish an anonymous bind, remember that the host server might
not be set up to allow anonymous binds—the same way that an FTP server may not be set up to
allow “anonymous FTP” sessions. If the server doesn’t allow anonymous binding, you must
authenticate to the server in some fashion (whether by simple password and User DN over port 389,
or full SSL on port 636, or some other way).
ECMAScript expressions: When expression-driven parameters are used (see “About Expression-
Driven Connection Parameters” on page 19), literal string values must be wrapped in quotation
marks. Conversely, if you are not using expression-driven parameters, do not wrap param values in
quotation marks.
TLS: Be sure to uncheck this checkbox when a secure connection is not needed; and when it is
checked, verify that you’ve specified a “secure port” (such as 636). Also verify, when using a
secure connection, that your Certificate Authority .jar file contains the correct entries and is
installed properly. (Look for a file called agrootca.jar in your Integration Manager installation.
The fully qualified path to this file must be specified in the <XCCERTFILE> element of your
xconfig.xml file, not only in the design-time installation but also the runtime, or server, installation.
Also, you may have to take additional steps to be sure this file can be found by your app server at
runtime. See your app server documentation for details on how to set up X.509 certificates and
certificate authority files.)
24 LDAP Connect User’s Guide

Exception After Successful Connection
It is possible to see a “Connected Successfully” alert, followed by an error dialog, when testing a
connection. The success message means the host IP address and port number that you supplied were valid
and a connection was established with the host. The subsequent exception message means a problem was
encountered after connecting (such as a timeout, or an unknown Base DN).

NOTE: LDAP makes a subtle distinction between connecting and binding. Establishing a connection
merely means that a the host and client were able to begin an LDAP session over TCP/IP, without
reference to any particular target objects in a directory. A bind occurs when the host sees fit to associate
a given combination of User DN and credentials with a given object in the server, in the context of session
access.

By way of analogy: Suppose 10-year-old Danny knocks on the door of the next-door-neighbor’s house.
An adult opens the door. The child asks the adult: “Can Tommy come out and play?” In this example,
Danny is analogous to an LDAP client and the adult is the LDAP host. When the door opens, a
connection is established. The adult (server) then has to decide whether the child (client) should have
access to Tommy (the target object). If the adult knows Danny (i.e., Danny can be authenticated in some
way), and Danny has access rights to Tommy (i.e., it’s the right time of day, Tommy is done with his
homework, etc.), then the two children might be allowed to play (to “bind”). But if the adult has never
seen Danny before or doesn’t trust him, or if access rules preclude Tommy’s availability, then Danny will
be turned away, even though the front door did open and a conversation took place.

Silent Failover
Directories quite often form the heart of mission-critical systems, and as a result, things like system
outages (no matter how brief) and normal maintenance-related takedowns tend to be extremely
disruptive. For that reason, directory trees are often replicated across servers, so that if a client tries to
connect with Server A, but Server A is down, it can try Server B.

If you know the IP address of one or more backup servers that can be used if the primary server you’re
interested in is either physically down or simply bogged down due to high demand, you can construct
your LDAP Connection Resource in such a way as to provide silent failover capability.

Suppose your primary server is at server1.acme.com, but there are replicas of the directory also on
server2.acme.com and server3.acme.com. When you create your connection resource, enter all three
addresses (separating each with a space character) in the “Host or IP Address” field:
Getting Started with the LDAP Component Editor 25

In the example shown, you’ll see that not only have three addresses been entered in “Host or IP Address,”
but a value of 200 milliseconds has been specified under Time Limit (at the bottom of the dialog). When
a component uses this resource, it will first try to connect to server1.acme.com (on the specified port of
389). If that server is down, or takes longer than 200 milliseconds to respond, a new connection attempt
will be tried on the next address: server2.acme.com. If that server doesn’t respond within 200
milliseconds, server3.acme.com will be tried. Finally, if none of the servers can be connected to, an
exception is thrown.

NOTE: All three servers, in this example, will be tried on port 389, because that’s the value that was
entered in the Port Number field of the dialog. If the servers are not all using the same port, it is still
possible to build a failover connection by using colon notation in the IP addresses:
server1.acme.com:389, server2.acme.com:636, etc. If you do this, however, you should enter 0 (zero)
in the Port Number field of the dialog.

Editing Connection Resources After They’re Created
You can go back and change a connection resource at any time. Simply locate the resource by name in the
Navigator pane (at the Integration Manager window’s left edge) and doubleclick it to bring up a tabbed
dialog containing the information you typed into the wizard when you created the resource originally.
(See previous illustration.) Choose the tab of interest and type new information into the appropriate
fields. Click OK to keep your changes, or Cancel to revert back to the resource’s original settings.
26 LDAP Connect User’s Guide

3 Creating an LDAP Component

The LDAP Connect for Novell Integration Manager allows you to build XML integration applications
that are directory-aware. In practical terms, this means you can leverage well-established LDAP APIs
for:

Searching and retrieving entries from a directory
Adding new entries to the directory
Updating entries in the directory
Deleting entries from the directory
Renaming entries in the directory
Binding operations
Abandoning operations

LDAP’s search function emulates the more complex X.500 operations such as list and read. The
metaphor is the same: You specify a base object to be searched and the portion (or scope) of the tree to
search. A filter specifies the conditions that must be met in order for the search to capture a particular
entry. (The LDAP search operation offers identical functionality to DAP's, but is encoded in a simpler
form.)

NOTE: While in theory the LDAP API allows applications to perform operations either synchronously or
asynchronously depending on whether the client wants to wait for an operation to complete before
receiving the results of a previous operation, in actuality all operations in the LDAP Connect for Integration
Manager are synchronous.

In the LDAP Connect, you will issue LDAP queries in DSML (Directory Services Markup Language)
form, using an industry-standard query-response syntax, rather than writing your own custom Java code
to package and unpackage queries using an LDAP SDK. What makes DSML particularly attractive is
that it is XML: You can map data into or out of it easily using ordinary Integration Manager actions. What
makes the LDAP Connect particularly powerful is its ability to autogenerate DSML for you, on the fly,
so that you don’t have to know low-level DSML internals.

The LDAP Application Model
LDAP applications typically perform five steps:

1 Open a connection to the LDAP server. This step involves initializing the session, setting session
preferences and binding to the server. Usually the session preferences involve defining things like:

maximum number of entries returned in a search
maximum number of seconds spent on a search
how referrals are handled
security preferences

2 Authenticate to the server. The client can authenticate either anonymously with public rights, or
through simple (clear-text) password authentication, or with full encryption. Novell's LDAP
Services v3 uses SSL3 for full encryption and authentication.
Creating an LDAP Component 27

3 Perform the operations and obtain the results. This step usually involves searching the directory,
but may also involve modifying the directory data as well.

4 Process the results. This step involves making use of the returned information in some fashion, via
custom business logic.

5 Close the session. This means unbinding from the server and disposing of the session handle. (In
Integration Manager, this step occurs automatically when your component goes out of scope.)

Before Creating an LDAP Component
As with all exteNd components, the first step in creating a new LDAP component is to determine whether
you need any XML templates. (For more information, see Creating a New XML Template in the separate
Novell Integration Manager User’s Guide.) Providing you’ve created a Connection Resource in advance
(discussed earlier), you can then create an LDAP Component, using your templates’ sample documents
to represent the inputs and outputs processed by your component.

To create a new LDAP component:

1 In Integration Manager’s main menubar, go to the File menu and select New > xObject, then open
the Component tab and select LDAP. The “Create a New LDAP Component” Wizard appears.

NOTE: If your project currently contains no LDAP Connection Resources, you will be prompted to
create one at this point, and you will go through the Connection Resource creation process before
you reach the above dialog.

2 Enter a Name for the new LDAP Component.
3 Optionally, add your own Description text.
4 Click Next. A new dialog appears.
28 LDAP Connect User’s Guide

5 Specify one or more Input templates as follows:
Select a Template Category if yours will be different than the default category.
Using the dropdown menu immediately to the right., select a Template Name from the list of
XML templates in the selected Template Category.
To add additional input XML templates, click Add and repeat these steps.
To remove an input XML template, click inside an entry and click Delete.

6 Select an XML template for Output.
NOTE: You can specify an empty XML template by selecting {System}{ANY} as the Output
template. You might do this if you wanted to generate a custom Output DOM dynamically using
ECMAScript or XPath inside a Map Action. (For more information, see the Novell Integration
Manager User’s Guide, particularly the chapter on creating an XML Map Component.)

7 Click Next. A new dialog appears.

8 In this dialog, you may (optionally) add Temp documents for use as “scratchpad DOMs” in your
component. You may also add Fault documents as needed. Use the Add and Delete buttons to add
or remove documents as desired.

9 Click Next. The connection panel of the wizard appears.
Creating an LDAP Component 29

10 Select a Connection from the pull-down list. (The list will be prepopulated with the names of
existing LDAP Connection Resources.)
NOTE: You can later change this selection and use a different connection resource, if you want.
You are not “locked into” using this connection.

TIP: The fields of the connection resource will be greyed out in this dialog. If you need to edit the
connection resource, open it separately after you are done creating the component.

11 Click Finish. The Integration Manager main window appears, with a blank action model pane. The
Native Environment Pane in the upper right should have a Tree tab as well as a Schema tab.
(Schema here refers to an LDAP directory schema, not an XML schema.) When the Tree tab is
selected, you should see a tree view of the target directory. See below.

At this point, you can begin creating actions in your action model, or you can simply Save your work and
come back to the component later.
30 LDAP Connect User’s Guide

Special Features of the LDAP Component Editor
The LDAP Component Editor includes all the functionality of the XML Map Component Editor. It
contains mapping panes for Input and Output XML documents as well as an Action pane. All of the
regular Integration Manager actions (such as XML Map, Function, Log, Decision, Send Mail, etc.) are
available to you along with the two LDAP-specific actions, Create DSML and Execute DSML. (These
actions will be discussed in detail in the next chapter.)

LDAP Native Environment Pane
The LDAP Component Editor includes a Native Environment Pane (see graphic above) with a Tree tab
offering a browseable tree view of the directory to which your component’s Connection Resource points,
as well as a Schema tab (discussed in more detail below). If you are familiar with Novell’s ConsoleOne
tree browser, the Tree tab’s browser operates in much the same way.

The Native Environment Pane’s default location is in the upper right corner of the main Integration
Manager window. You can change its location, however, by using the View > Window Layout menu
command:

This command will bring up a dialog in which you can specify North, West, East, and South positionings
of the Native Environment Pane, XML document windows, and Action Model pane.

Tree Tab

The Tree tab of the Native Environment Pane (see illustration below) offers an interactive design-time
visual aid for finding and verifying the location of objects in the target directory. This view will populate
automatically when you open a component. Its contents are based on the host specified in the
component’s Connection Resource.
Creating an LDAP Component 31

NOTE: You cannot drag or drop items into nor out of the directory tree view.

Schema Tab

The Schema tab (see illustration below) is a read-only design-time aid for inspecting object/attribute
relationships as defined by the schema for this particular tree. If your component will contain actions that
modify the schema, you can verify the changes visually simply by inspecting this tab. (“Schema” here
refers to the directory schema, not an XML schema.)
32 LDAP Connect User’s Guide

To see all of the attributes defined on a given object, simply click any object name in the top scrollpane
of the tab; the list of attribute names in the bottom scrollpane updates accordingly in real time.

For additional information on the Integration Manager work environment, consult the separate Novell
Integration Manager User’s Guide.

Request and Response Tabs

Two special tabs—the Request and Response tabs—appear in the Native Environment Pane when an
Execute DSML Action is selected (highlighted) in the action-model pane. These tabs (see below) present
a tree view of the DSML request/response DOMs that were used by the Execute DSML action during
execution.
Creating an LDAP Component 33

NOTE: The tabs are initially empty. To populate the tab with the appropriate DOMs, run your action model
in animation mode (or by using the Execute All button in Integration Manager’s main toolbar), then
select/highlight the Execute DSML action.

The request and response DSML DOMs are volatile (transitory) and cannot serve as drag sources nor
drop targets. To map to or from these DOM elements, use a Create DSML action to map a
batchRequest element to Input (as described in the next chapter), or use an Execute DSML action to
map a batchResponse element to Temp, Output, etc.—then drag-and-drop between DOMs (or map
DOM contents in whatever way you choose).

Working with DSML DOMs will be described in more detail in the next chapter.

Contextual Tabs

Additional tabs (with names Add, Attributes, Compare, Filter, Modify, Rename, and Search) will appear
dynamically when you add Create DSML actions of various “flavors” to your action model. The
appearance and usage of each of these will be discussed later.

Drag-and-Drop Operations
Integration Manager’s UI allows you to drag and drop DOM nodes from one DOM tree to another, or in
some cases, from a DOM tree to a field in the Native Environment Pane. This is a convenient, quick way
to specify data-mapping rules that would otherwise require hand-coded XPath or ECMAScript
expressions.

DOM-to-DOM

DOM-to-DOM drag-and-drop allows you to specify data mappings across documents. (For example, you
can specify the transfer of data from a particular spot in a DSML response document to a special location
in a custom DOM.)

When you click on a DOM element in (for instance) the Input DOM, in tree view, and drag it into another
DOM window, then release the mouse when it is over a particular element, Integration Manager maps a
copy of the source’s data, attributes, and children (including their attributes, etc.) into the target element
(the “drop target”). At the same time, Integration Manager automatically adds a Map Action,
corresponding to the mapping that just occurred, to your component’s action model.
34 LDAP Connect User’s Guide

In many cases, the map-all-descendants behavior just described is what you will want. But in some cases,
you may need different mapping behavior. For more precise control over data mappings, you will want
to create Map Actions manually and use the Map Action dialog (and its Advanced button) to achieve the
desired mapping(s).

NOTE: These techniques are described in detail in the Novell Integration Manager User’s Guide.
Consult that guide for more information.

DOM-to-NEP (Native Environment Pane)

In many instances, you can click on a DOM element in (for instance) the Input DOM, then drag that
element to a text field in the Native Environment Pane and let go, thereby populating the target field with
a reference to a particular XML element.

Consider the following example:

In this example, the user is constructing a search filter and is taking advantage of drag-and-drop to bind
a node in the Input document to a parameter in the filter expression. The user has clicked the cn node
under ADDREQUEST in Input, and dragged it to the empty field in the Native Environment Pane. When the
mouse is released, the appropriate ECMAScript expression, namely
Input.XPath("ADDREQUEST/sn"), will appear in the target field of the search expression. Thus, the
filter (as constructed) will match entries where objectClass equals inetOrgPerson and sn equals the
value in Input/ADDREQUEST/sn.

Special Menu Commands
Menu commands specific to the LDAP Connect include two new actions (Create DSML and Execute
DSML, both under Action > New Action) as well as two commands under the Component menu:

The Refresh LDAP Schema command updates the contents of the Schema tab (discussed above). This
command has no runtime significance. It is potentially useful at design time in cases where you’ve
modified the target directory’s schema in some way and want to see the change(s) reflected through to the
Schema tab contents in Integration Manager.

Likewise, the Refresh LDAP Tree command (which has no runtime effect) is useful when you have
modified the contents of a directory at design time by executing DSML requests—such as Add or
Rename—and want to see the changes reflected in the Tree tab in the Native Environment Pane.
Creating an LDAP Component 35

36 LDAP Connect User’s Guide

4 DSML Actions

An action is similar to a programming statement in that it takes input in the form of parameters and
performs specific operations. It’s an atomic unit of execution in a Integration Manager component, the
same way an expression is in Java or ECMAScript.

The list of actions you create in your component is called an Action Model. The Action Model is the
logical core of your integration app: It is where data mapping, data transformation, and data transfer
between directories and XML documents occurs. It’s the ordered list of statements that comprise your
app.

Some of the actions available in Integration Manager are data-specific; others involve control flow
constructs like looping, conditional branching, exception vectoring, etc. The LDAP Connect provides
two main LDAP-related actions: Create DSML and Execute DSML. The usage of these actions will be
described in detail in the sections to follow.

Working with DSML
DSML (Directory Services Markup Language) is an XML grammar for presenting LDAP queries and
storing responses to queries. In some respects, it takes the place of LDIF, which is a text-based file
interchange format for LDAP queries and objects.

In Integration Manager, when you want to query a directory using DSML, you have two choices:

If you have a ready-to-go DSML file (perhaps received as input from the servlet that triggered your
service), you can use it in an Execute DSML action. Integration Manager will use the DSML to
form the appropriate LDAP query, and execute that query against the target directory server.
If you do not have a readymade DSML query document, use a Create DSML action. Integration
Manager will create the necessary DSML for you.

In the latter case, you will use point-and-click UI tools to choose the parameters for your query;
Integration Manager will then build a DSML DOM that uses your param values and display it in a DOM
window. You can drag or drop data into or out of that DOM window just as with any other Integration
Manager DOM window.

When a query result comes back from the server, it comes back to your component as DSML. You can
specify the target DOM for this information (Output, Temp, etc.) and you can manipulate this DOM, once
again, just as you would any other DOM.

The following illustration will give some idea of the overall structure of a DSML request and response.
DSML Actions 37

In this case, the response document has been mapped to Output, but it could just as easily have been
mapped to Temp or some other DOM.

DSML mimics the mnemonics and operational linguistics of LDAP, so that operations specified in
DSML map very closely to LDAP SDK method signatures. So for example, every response contains an
element called resultCode, with XML attributes of code and desc. The code attribute value is zero
on success, or else (on failure) is one of the result code values shown in Appendix B of this
documentation (i.e., which in turn come from Novell’s JLDAP SDK). The desc value is a string
representing the plaintext explanation of what caused the error (such as “Invalid DN Syntax,” which is
associated with a result code of 34).

Multiple Requests in a Single DSML Document
It is possible to accumulate multiple requests within a single DSML document so that on a single server
query, the server can be told to perform a series of Add operations, or Add and Delete operations, etc., in
batchwise fashion.

The way this is done is to construct multiple back-to-back Create DSML actions, all of them mapping to
the same root node (batchRequest) in the same document (typical Input). Each time a Create DSML
action executes, it appends a new request to the specified root node. The DOM will continue to grow as
necessary. Finally, this DOM is submitted as a single query when an Execute DSML action occur
(presumably at the end of the list of Create DSML actions). The request executes as a batch; and a batch
response is produced.

When a query response contains more than one search result, the results are accumulated under a
searchResultEntry element node in the response document.

It is possible for a response to contain multiple results even if the request involved only one Create
DSML action, since Search requests often use filters that contain wildcards, resulting in multiple “hits.”
38 LDAP Connect User’s Guide

In the example shown above, there are numerous attr elements under the searchResultEntry
element. The original query, which used wildcards, asked for an array of attributes. That’s what was
returned. Notice the many name-value pairs.

The Create DSML Action
The Create DSML Action supports the following LDAP operations:

Add—adds an entry to the directory
Compare—produces a boolean value based on a comparison of values (often useful for verifying
the existence of a particular object or object type in a directory, so as to facilitate logical operations
like “if this container doesn’t already have an attribute called ‘paymentHistoryRef’, modify the
schema to add such an attribute”)
Delete—removes an entry from the directory
Modify—changes (edits) a value in the directory
Rename—renames an entry or moves it
Search—searches for entries based on filter criteria

These operations are shown in the Create DSML Request dialog’s pull-down menu, under DSML
Action:

Each of these options will be discussed in turn.
DSML Actions 39

Add

To construct a Create DSML Action that performs an Add request

1 Right-mouse-click inside the action-model pane (or use Integration Manager’s Action menu, in the
main menubar) and select New Action > Create DSML from the menu, as shown here:

2 In the dialog that appears, choose Add from the pull-down menu.

3 Use the pull-down menu under Request Map to specify a target DOM (or target Message). The
menu will be prepopulated with the names of DOMs (Messages) you specified when you originally
created the component.

4 In the text field underneath the DOM-name pull-down menu, enter an XPath expression
representing the target node for the creation of the request. (In most cases, you can simply accept
the default value of batchRequest.)
IMPORTANT: If you are going to pass this DOM straight through as a DSML query, do not change
the root node’s name. The root must be called batchRequest in order for this to remain a valid
DSML document.

5 Dismiss the dialog by clicking OK. You should see the tabs in the Native Environment Pane
update. Also, a new action with the label “Create DSML Add Request” will appear in the action
model.
40 LDAP Connect User’s Guide

6 In order for this action to create a meaningful DSML request, it needs to know the Base DN of the
Add request (representing the target node of the directory tree) as well as the Object Class of the
new entity being added. You will supply this information in the Add tab of the Native Environment
Pane (as shown above). Select the Add tab if it is not already selected.

7 Enter a quoted string next to Base DN, representing the name of the container object in which the
Add will take place.
NOTE: Integration Manager will help you build this reference: Click the DN icon to the right of the
text-entry field to bring up the Expression Builder dialog. This dialog contains a tree representation
of the directory like that available in the Tree tab of the Native Environment Pane. As you doubleclick
items in the picktree, Integration Manager automatically generates an appropriately formatted DN
string for the target tree node.

8 Using the (prepopulated) pull-down menu under the label Object Class, choose the object type that
applies to the object you will be adding to the tree. When you do this, the table of Attributes in the
bottom part of the tab automatically updates to show the required naming attributes of the object-
class in question.

9 The bottom portion of the panel will be prepopulated with Attributes (but not values) appropriate to
the container or Object Class in question. Some attributes are required for the object class in
question; these are shown with a solid-colored background. Some attributes (whether they’re
required or merely optional) are eligible for use as naming attributes; these are shown with a small
vertical key icon.
NOTE: The key iconology and background shading are available only when the LDAP server in
question is powered by Novell eDirectory. In all other cases, items in the Attribute list are shown in
plain-text form.

All possible combinations of visual hints are shown in the illustration below:
DSML Actions 41

The cn and sn attributes are required for the inetOrgPerson object. This is indicated by the solid
background shading in the cn and sn cells (as well as by the fact that these two attributes cannot be
deleted from the Attribute column).
Two additional attributes, in this example, have been added by the user (via the blue “plus sign”
button): Those attributes are ACL and uid. Note that they have white backgrounds, indicating that
they are not required attributes for the object class in question.
The uid attribute (as well as the required cn attribute) has a key icon next to it, indicating that uid
can be used as a naming attribute for an instance of inetOrgPerson. (That is, the uid or User ID
field can be part of the person’s Distinguished Name and Relative Distinguished Name.)
NOTE: A hover-help tip explains the status of any item if you let the mouse linger over the item:

10 To designate an attribute for use as part of the item’s Relative Distinguished Name, check the RDN
checkbox to the left of the attribute in question. The mere presence of a key doesn’t make the
attribute part of the new entry’s RDN: You must check the checkbox.

11 If you wish to add members to the list of attributes, click the plus sign (+) icon to add Attribute
cells. (Then choose an attribute from the pulldown menu that appears in the new cell.) To remove
any entry, just click into (apply focus to) the entry in question and click the minus sign (-) to
remove it.

12 Be sure to associate a Value with each Attribute. The value you enter must be a valid ECMAScript
string, or an expression that will evaluate to a string. If you are entering literal data, you should
wrap the value in quotation marks (i.e., enter “John” rather than just John).
NOTE: You may optionally click the ‘E’ icon (at the right) to bring up the Expression Builder dialog,
and from there, you can either type or doubleclick on picktree items to build an expression
interactively.
42 LDAP Connect User’s Guide

Add Request (Detailed Example)

Suppose you have set up a container (an organizationalUnit object) called user under
o=mondocorp.

Now suppose you are interested in adding a new inetOrgPerson named Joey Jacobs to the user object.
You also want to store certain additional information about Joey, including a UserID value and the name
of Joey’s assistant. To add the new entry to the directory, you would construct a Create DSML action (in
Add mode) as described previously, setting up your Native Environment Pane to look something like
this:

These settings say: “Add an inetOrgPerson with common name (cn) of Joey and surname (sn) of
Jacobs, with the assistant and uid values shown, to the user organizationalUnit (ou), in the
organization container called mondocorp.”

The checkboxes indicate which pieces of information to use in forming the new entry’s Relative DN. In
this example, the new RDN will be cn=Joey,uid=132845901 and it will go under the container whose
Base DN is ou=user,o=mondocorp, so the new entry’s full distinguished name would be:

cn=Joey,uid=132845901,ou=user,o=mondocorp

When the Create DSML action executes, it will create DSML for this request and put it in Input (or
whichever DOM you specified in the Create DSML Request dialog). The request still hasn’t been issued
to the server, however. To do that, you’ll need to create an Execute DSML action. (If your request is in
the Input DOM, just add an Execute DSML action and accept the defaults in the dialog.) Your action
model will look like:

Test the actions by clicking the Execute All button in the Integration Manager main toolbar:
DSML Actions 43

The actions will execute and you should see the Output DOM populate. A result code of 0 in the Output
means that operation was a success.

To verify that the operation was, indeed, a success, go to the main menu and choose
Component > Reload XML Documents:

Now click the Execute All toolbar icon again (re-run the component). You should see an error message
in the Output DOM this time:

The errorMessage element contains a message to the effect that the entry you’re trying to make already
exists, indicating that the original test of the action model was successful (Joey Jacobs was added to the
tree).

NOTE: This illustrates an important principle of X.500 directory architecture, which is that no two siblings
(instance objects on the same level of the tree) can have the same identity. In other words, you can’t add
the same object twice, as we tried to do here. You will get an error on the second Add.

You can also verify Adds by using a third-party LDAP client—such as a web browser—to query the
directory.

Most web browsers are LDAP clients and will honor the ldap:// URL protocol. If you wanted to verify
the add request that was carried out in the foregoing example, you could simply type the following URL
into the address window of Microsoft Internet Explorer:

ldap://[server-domain]/ou=user,o=mondocorp?cn?sub?objectClass=inetorgperson

The URL in effect says “Using the ldap: protocol, go to the server at [server-domain] and bind
anonymously to the user container, then search the subtree under that container for inetOrgPerson
objects and retrieve the attribute values corresponding to cn (common name).”

If you make MSIE go to this URL, an Address Book window will open, showing the search result:
44 LDAP Connect User’s Guide

Indeed, a new entry with common name John appears in the list.

Compare
The Compare operation is valuable when you are trying to test a directory entry for existence. The
procedure for setting up a Compare request is similar to that for doing an Add (as discussed above).

To construct a Create DSML Action that performs a Compare request

1 Right-mouse-click inside the action-model pane (or use Integration Manager’s Action menu, in the
main menubar) and select New Action > Create DSML from the menu.

2 Use the pull-down menu control to select Compare.

3 If you are in doubt as to what to put for Request Map values, accept the defaults shown. Click OK,
and the action will be added to the action model.

4 Click the Compare tab in the Native Environment Pane if it is not already the frontmost tab.
5 Next to Entry DN, enter the distinguished name of the object against which you will be making

comparisons. (Include quotation marks around this string as shown in the illustration below.)
DSML Actions 45

6 Click the small funnel-shaped Filter icon (next to plus and minus icons). A dialog with a scrolling
list will appear.

7 Select (highlight by single-clicking) the object class corresponding to the entry whose existence
you want to test.

8 Dismiss the Select Filter dialog by clicking the OK button.
9 In the Attribute-Value table in the lower part of the Native Environment Pane, use the pull-down

menu to select an attribute name. This list of attributes corresponds to the allowable attributes for
the object class you selected in the preceding step.

10 Click the plus-sign icon as needed to add more entries to the Attribute-Value table. (Optional)
11 For each Attribute name, enter a corresponding value under Value.

NOTE: The Value should be wrapped in quotation marks if it is not a programmatic (ECMAScript)
expression.

The action is now ready to test.

Compare Request Example

In the Add request example previously, we added John Doe to a container node called lapdog in a test
directory. (Refer to that example for setup details.) To test for the existence of an entry with common
name John and surname Doe, in the organizationUnit object called lapdog, one would

Construct a Create DSML action exactly as described above
Set up the Compare tab as shown above
Add an Execute DSML action to the action model (accepting the defaults in the Execute DSML
setup dialog)
Run the action model either in step-through (animation) mode or by using the Execute All button in
Integration Manager’s main toolbar
46 LDAP Connect User’s Guide

The following graphic shows what the component windows look like after executing the model:

Delete
The Delete operation is useful for removing entries from a directory.

The procedure for setting up a Delete request is similar to that for doing an Add (as discussed previously).

To construct a Create DSML Action that performs a Delete request

1 Right-mouse-click inside the action-model pane (or use Integration Manager’s Action menu, in the
main menubar) and select New Action > Create DSML from the menu.

2 Use the pull-down menu control to select Delete.
3 Click the Delete tab in the Native Environment Pane to bring it forward, if it is not already the

frontmost tab.
4 In the Delete tab, next to Entry DN, enter the unique DN (distinguished name) of the entry you

wish to delete.

The action is now ready to use. Executing it will append an appropriate request to the DSML target
document.

Modify
The Modify operation is useful for adding, deleting, or replacing values in a directory. For example, if
your directory already contains an entry for John Doe but does not contain an entry for his instant
messaging ID, you could use the “add” flavor of the Modify request to add his IM handle to the directory.
This is illustrated in the following procedure.

To construct a Create DSML Action that performs a Modify request

1 Right-mouse-click inside the action-model pane (or use Integration Manager’s Action menu, in the
main menubar) and select New Action > Create DSML from the menu.

2 Use the pull-down menu control to select Modify.
3 Click the Modify tab in the Native Environment Pane to bring it forward, if it is not already the

frontmost tab.
4 In the Modify tab, next to Entry DN, enter the unique DN (distinguished name) of the entry you

wish to modify.
DSML Actions 47

5 Click the small funnel-shaped Filter icon (next to plus and minus icons). A Select Filter dialog
with a scrolling list will appear.

6 In the scrolling list, click on the object class corresponding to the entry you want to modify.
7 Dismiss the Select Filter dialog by clicking its OK button.
8 In the Modify tab of the Native Environment Pane, click the plus-sign icon to add an Operation to

the Operation-Attribute-Value table.
9 Select the type of operation you wish to perform (add, delete, or replace) from the pull-down

menu as shown above.
10 In the Attribute column, use the pull-down menu to choose the attribute that corresponds to the

one whose value you intend to add, delete, or replace. (The attribute list is prepopulated with
attributes that are appropriate to the object class you chose in the Select Filter dialog earlier.)

11 In the Value column, enter the appropriate value for the attribute.
The action is now ready to use. Executing it will append an appropriate request to the DSML target
document.

Rename
The Rename operation can either rename or move an entry in a directory, depending on how it is used.

The screenshot in the following procedure illustrates changing the common name (cn) for someone
named John to a cn of Johann.

To construct a Create DSML Action that issues a Rename request

1 Right-mouse-click inside the action-model pane (or use Integration Manager’s Action menu, in the
main menubar) and select New Action > Create DSML from the menu.

2 Use the pull-down menu control to select Rename.
3 Click the Rename tab in the Native Environment Pane to bring it forward, if it is not already the

frontmost tab.
4 In the Rename tab, next to Old DN, enter the unique DN (distinguished name) of the entry you

wish to rename or move.
5 Next to New RDN, enter the new relative DN for this entry. (You do not need to use quotation

marks around the value if the k icon is showing at the right. See the explanation of this icon in the
procedure for Add, above.)
48 LDAP Connect User’s Guide

6 Optionally enter a new parent-container DN next to New Parent DN, if you are moving the entry.
7 Optionally check the Delete Old RDN checkbox if you are moving the entry to a new location and

don’t want to keep the old copy in the old location.
The action is now ready to use.

Search
The Search operation can be used to retrieve data from a directory. LDAP defines a query filter syntax
involving logical operations that can be combined to build complex conditional search criteria. The
syntax is covered in RFC 2254 and won’t be recapitulated here since Integration Manager can
automatically generate the correct expression syntax for you based on your use of UI controls. (See
below.)

NOTE: If you are familiar with the rule-builder GUIs offered in e-mail clients for constructing mail filtering
conditions, the same principles (and GUI metaphors) apply here.

To construct a Create DSML Action that issues a Search request

1 Right-mouse-click inside the action-model pane (or use Integration Manager’s Action menu, in the
main menubar) and select New Action > Create DSML from the menu.

2 Use the pull-down menu control to select Search.
3 Click the Search tab in the Native Environment Pane to bring it forward, if it is not already the

frontmost tab.

4 In Base DN, enter the distinguished name of the container object where you want the search to
start. (Be sure to wrap this string in quotation marks.)

5 For Scope, choose one of the three available values:
DSML Actions 49

baseObject—means to limit the search to the base object (specified in Base DN) only
singleLevel—mean the search will be scoped to the base object plus its immediate (one-level-
deep) children
wholeSubtree—means the search will include the base object as well as all children under the
Base DN object, no matter how many levels deep the children might be

6 For Deref Alias, choose one of the following values from the pull-down menu:
derefAlways— means that aliases (entries that contain a pointer to another entry) are always
dereferenced, both when finding the starting point for the search, and also when searching the
entries beneath the starting entry
derefFindingBaseObject— means that aliases should be dereferenced (resolved) when finding
the starting point for the search, but not when searching under that starting entry
derefInSearching— means aliases should be dereferenced when searching the entries beneath
the starting point of the search, but not when finding the starting entry
neverDerefAliases— means not to look at aliased entries

7 For Size Limit, enter a numeric value representing the maximum number of “hits” the component
is willing to receive from the server. (Note that the server may also have its own response-batch-
size limits, which can’t be controlled from the client, generally speaking.) The default value of zero
means there is no limit on the number of items that can be returned and the component will simply
block until all results come in.
TIP: Use the flyout menu to select k for constant or ECMA Expression if you want to enter a
programmatic (ECMAScript) expression that resolves to a number at runtime. See description under
the “Add” procedure further above.

8 For Time Limit, enter a numeric value representing the maximum number of seconds (not
milliseconds) the component is willing to wait while the server processes the request. This tells the
server that it should stop searching and return an error Leaving this value blank (or zero) means
there is no upper limit on wait time; the client (your component) is content to wait forever.
TIP: Needless to say, it is not a good idea to wait forever. Enter a prudent value here.

9 Optionally check the Types Only checkbox if you want the search to return the names of any
attributes found, but not their associated values.

10 Click the Filter tab to bring it forward.
11 Use the various controls to build rules for filtering the search. (See below.)
50 LDAP Connect User’s Guide

The settings in this particular graphic show a rule that says: “objectClass equals organizationalUnit
AND surname equals Smith; AND common name does not equal Myrtle.”

12 Click the Attributes tab to bring it forward.
13 Use the pull-down menu under Filter by object class to select an object class name, thereby

exposing a list of the allowable attribute types for that object class in the Available subpane (lower
left).

14 Use the plus and minus icons to move attribute names from the Attribute column to the Selected
column or vice versa.

In this example, the isManager and fullName attributes have been selected from the list of
allowable organizationalPerson attributes. What this means is that the search results will
contain isManager and fullName attributes (and their values) for the “hits,” if any.
DSML Actions 51

The Execute DSML Action
The Execute DSML action converts a DSML-packaged request to a low-level LDAP request, and
executes it (synchronously) against the server. It retrieves any response data received from the server and
maps it to the XML document of your choice (typically the Output DOM or a Temp DOM).

To set up a valid Execute DSML action, you have to tell Integration Manager where the DSML request
document (which should be an in-memory DOM) can be found, and where to map the DSML response
that comes back after a request is made.

To create an Execute DSML Action

1 Right-mouse-click inside the action-model pane (or use Integration Manager’s Action menu, in the
main menubar) and select New Action > Execute DSML from the menu. A dialog appears.

2 In some cases, there is no need to alter the default settings in this dialog and you can close the
dialog immediately by clicking OK. What this does is tell Integration Manager: “Just use the
DSML in Input for the request, and map the response to Output.” If this is not what you want,
specify the correct Request and Response DOMs (and target nodes) using the radio buttons, pull-
down menu controls, and text fields provided. (For example, you might want to map the response
to Temp, Temp1, or some other “scratchpad DOM” rather than straight to Output.)
NOTE: These controls will be familiar to you if you have created Map Actions in Integration
Manager before. Consult the Novell Integration Manager User’s Guide for information on how to
specify XPath-to-XPath mappings if you have not done this before.

3 Click OK to dismiss the dialog. The new Execute DSML action is added to your action model.

Using Other Actions in the LDAP Component Editor
In addition to the DSML-related actions described so far, you have all the standard Basic and Advanced
Integration Manager actions at your disposal as well. The complete listing of Basic Integration Manager
Actions can be found in Chapter 7 of the Novell Integration Manager User’s Guide. Chapter 8 contains
a listing of the more Advanced Actions available to you.
52 LDAP Connect User’s Guide

5 Working with LDAP and DSML

This chapter is designed to familiarize you with LDAP programming idioms as they apply to the LDAP
Connect for Integration Manager, and show how various advanced LDAP and Integration Manager
features can be used together, with emphasis on testing and debugging.

DSE Query Example
A useful discovery mechanism (and audit capability) afforded by LDAP is the ability to query the DSE
root, or DSA-specific entry, of a directory server. (DSA means directory system agent, which is X.500
jargon for a directory server.)

If a server supports LDAP version 3, the DSE root can be queried for “meta” information about the
server. The DSE root entry isn’t really an addressable object, per se, but it can be queried through a
special syntax (which we’ll see in a minute).

By querying the DSE entry, you can find out (among other things):

Supported security mechanisms
Supported extensions
Implementation (vendor version) info
The number of simple-authentication and strong-authentication binds that have occurred since
server startup
The location of the schema for the subtree

The following example shows the steps involved in building a component that queries the DSE entry of
Novell’s public server at www.nldap.com. But instead of recapitulating the detailed step-by-step
procedure for building each action and each resource (already covered in previous sections), we’ll
concentrate on the larger workflow issues related to building an LDAP Component, such as how to test
and debug the component as part of the design session.

Connection Resource for Anonymous Bind
First, we need to have a connection resource. The LDAP Connection Resource for this example will use
the following settings. Notice that no password is given. The bind is thus (by definition) anonymous.
Working with LDAP and DSML 53

Component and Action Model
Next, we’ll create a new LDAP Component called DSETest, containing two actions: a Create DSML
Action (of the Search request type) and an Execute DSML Action.

The search parameters for a DSE root dump are straightforward: All that’s needed is a base-level search
on an empty Base DN, with a filter set to:

(objectClass=*)

We will set the Native Environment Pane’s Search tab something like this:

NOTE: This example purposely contains a bug. The settings shown above will cause an error. (Can you
spot the problem?)

The Search tab will look like:
54 LDAP Connect User’s Guide

We want to receive information on all attributes, hence we will enter nothing in the Attributes tab. (Just
accept the defaults.) Notice that the Selected pane (below, right) is empty. When this list is empty, the
server, by default, returns all attributes that apply to the “hits” turned up by the query.

For test purposes, we will simply map DSML (from the Create action) into Input and map our response
straight to Output. Therefore, the action model will initially look like this:

To test the actions, we can simply click the Execute All tool icon in the main toolbar.

When the component executes, the Output DOM populates with data. But on close inspection, we see that
there has been a problem. The Output document looks rather short and the resultCode is not zero:
Working with LDAP and DSML 55

The error description (at the bottom of the Output DOM) is “Invalid DN Syntax.” And this is reflected in
the Input DOM tree, next to dn, under searchRequest, where the data value is
org.mozilla.javascript.Undefined@3cd5b5.

The problem: The Base DN value in the Search tab has to be valid ECMAScript. We left the field blank.
Instead, we should have specified an empty string: two quotation marks with nothing in between them.

The fix is easy: Go back and put two quotation marks in the Base DN field. But before pressing the
Execute All button again, we need to clean out the existing DOMs. To do this, go to the main menubar
and choose Component > Reload XML Documents:

The DOM windows will reset to their original (empty) state.

NOTE: If you fail to reset the DOMs, the next round of execution will cause the Create DSML action to
simply append more data (another request) onto the existing Input document. After the component
executes, your Output document will contain the responses for two requests: the original (unsuccessful)
request and the one that was appended to Input.

When we rerun the component, this time it works without error. The Output DOM is quite long and
contains many attr elements corresponding to DSE root entries:
56 LDAP Connect User’s Guide

Dealing with Errors
As the above example shows, unsuccessful LDAP or DSML operations don’t result in errors, per se, at
the action-model level. If an LDAP exception occurs in the context of a query, it’s merely reported back
to the client in the DSML document under the resultCode element. Your application may want to know
about the exceptional condition and take special action; or it may simply need to pass the information on
through. If it needs to know about the unsuccessful nature of the query, you will need to add logic to deal
with this.

As an example, suppose you want your application to log unsuccessful DSML requests. One way to
implement this would be to include logic in the action model to the effect: “If the result was anything
other than success, log the reason to System output [or a logfile].”

Here is how you could accomplish this:

To log query failure notices\

1 Position the cursor inside the action pane (action model) at the point where you want a new action
to appear.

2 Use the Action menu in the main menu bar to select New Action > Function. The Function Action
dialog appears.

3 Click the small ‘E’ icon to open the Expression Builder dialog.
Working with LDAP and DSML 57

4 In the Expression Builder, click into the Output node tree until you have exposed the resultCode
node and its children. Doubleclick the code attribute node. An ECMAScript expression appears in
the text-edit pane.

NOTE: This example assumes that you have a DSML document already loaded in your Output
DOM. Construct and run a Create DSML and Execute DSML action, if need be, so that you will have
a fully browseable Output DOM (similar to that shown) in the Expression Builder picktree.

The expression gives the XPath syntax for the resultCode, wrapped in a call to the Integration
Manager extension method XPath(). The Expression Builder gives you a visual, point-and-click
way of building XPath-related ECMAScript expressions so that you don’t have to type them in
(and debug them) manually.

5 Type “theResultCode = ” (minus quotes) in front of the ECMAScript expression. (This is just a
shorthand way of storing the result code value in a script variable.)

6 Click OK to go back to the Function Action dialog. The edit window of the dialog should contain
the statement:
theResultCode =
Output.XPath("batchResponse/searchResponse/searchResultDone/resultCode/@code");

(It should be all one line. Ignore the linewrap.)
7 Click OK or type Enter to dismiss the Function Action dialog. A new action appears in the action

model.
Use the Action menu in the main menu bar to select New Action > Decision. The Decision Action
dialog appears.

8 Type “theResultCode != 0” (as shown above) into the box. This is the truth condition for the
Condition. If theResultCode is zero (success), the condition is false. Any value other than zero
will make the condition true.
58 LDAP Connect User’s Guide

9 Click OK or type Enter to dismiss the dialog. A new Decision action appears in the action model.
10 TRUE and FALSE statements will appear on their own lines after the Decision action. Single-click

on the TRUE line.
11 Use the Action menu in the main menu bar to select New Action > Log. The Log Action dialog

appears.

12 Choose one of the radio buttons under Log to, to specify a destination for any messages logged by
this action. We’ve chosen System Output for test purposes, since (in Integration Manager) this
means the log message will show up in the Log tab at the bottom of the main Integration Manager
window, where it can be seen easily during design-time testing. For runtime purposes, you would
probably want to (re)set this to a User or System Log.

13 Enter whatever descriptive text you would like to appear in the log message for this action.
(Remember, this is in the TRUE branch, which means this message will be logged whenever the
query result was non-zero—i.e., non-successful.) In this example, we used the Expression Builder
to help construct an ECMAScript statement that finds the plaintext error message in the Output
DSML document.

14 Click OK to dismiss the dialog.
15 Single-click on the FALSE line in the action model under the Decision action, and repeat the

foregoing steps to create a Log Action for the FALSE branch, if desired. (This is the branch
corresponding to success, not failure, of a query.)
The action model, at this point, should look something like this:

16 In the main menu bar, choose Component > Reload XML Documents (to purge your DOM
windows), then Execute the component, or its individual actions, to test it.

17 Save your work.
Working with LDAP and DSML 59

ECMAScript and the LDAP Connect
Integration Manager’s ECMAScript binding provides a powerful and flexible tool for performing
programmatic operations of various sorts, including straight-through calls to Java objects. Since the
LDAP Connect for Integration Manager uses Novell’s JLDAP library (already included in the
CLASSPATH for your projects), you can easily call straight into the Java-level LDAP API. An example
of this is shown further below.

LDAP Extension Methods
When you are using the LDAP Component editor to create or edit an action model, several LDAP-related
Integration Manager extension methods are available for use in Function actions and other places where
script expressions are permitted. The method you will use most often is getLDAPAttr(), described
below.

getLDAPAttr(String connResource, String dn, String attr)—Looks up a value stored in
a particular attribute of a named object in an LDAP directory, using the connection resource whose name
is supplied in the first argument. The second argument is the object’s LDAP distinguished name. The
third arg is the attribute of interest. The value returned may be numeric or String data. Use ECMAScript’s
typeof operator to determine if the value is of type “number” versus type “string.”

Access Control List (ACL) Methods
Access Control Lists are used in Novell eDirectory as a way of managing access to directory information
based on identities and privileges. Access control is implemented by an optional, multivalued attribute
called ACL, which is defined on the top-level directory object called “top.” Since all directory objects
inherit from the top object, all objects can use the ACL attribute.

Each value stored in a tree entry’s ACL attribute represents information about a trustee (a different
object) whose access to the entry is to be controlled. In other words, the ACL stores information about
client objects (accessors) rather than about the data-store object itself.

Integration Manager’s LDAP Component Editor does not expose UI tools for managing ACLs and
privilege sets—for good reason. ACLs are at the heart of directory security. ACL-editing capability is not
something you’d want to expose in a web service. Nevertheless, there may be situations in which it is
necessary or desirable to set trustee characteristics on an object “under the covers,” as part of the normal
execution of a service. You can do this in Integration Manager with ECMAScript.

Two ECMAScript extension methods are available for creating ACL (Access Control List) values that
can be attached to objects in an eDirectory tree.

NOTE: These methods are relevant only to Novell eDirectory and NDS-compliant directory servers.

ndsACL.createEntryACL(boolean abBrowse, boolean abAdd, boolean abDelete,
boolean abRename, boolean abSupervisor, boolean abInherit, String asTrusteeDN)

Creates a properly formatted ACL value that can be added to the (optional, multivalued) ACL attribute
of any object in a Novell eDirectory tree. The return value of this method represents a specific set of
Access Control List privileges applicable to a particular “asTrusteeDN” accessor. The first six parameters
are true/false flags indicating the rights to be granted. The “abInherit” argument determines whether
children of the trustee object should inherit the rights of the parent.

ndsACL.createAttrACL(boolean abCompare, boolean abRead, boolean abWrite,
boolean abSelf, boolean abSupervisor, boolean abInherit, String asTrusteeDN,
String asProtectedAttrName)

Similar to the previous method, but creates access control policy for a given attribute on an existing
object.
60 LDAP Connect User’s Guide

The general procedure for using these methods is:

In a Function action, execute the method of interest, obtaining the return value in an ECMAScript
variable. For sake of this discussion, assume that the variable’s name is aclEntry.
In the LDAP Component Editor, add a Create DSML Action to the action model. Specify “Modify”
as the query type.
In the native environment tabs for the action just created, add an Add operation to the Modify,
targeting the particular DN (directory entry) of interest. Add an ACL attribute on this DN, with an
ACL value of aclEntry (your ECMAScript variable).
Execute the DSML query.

An example will help make this clearer: Suppose you have, in your eDirectory tree, an inetOrgPerson
whose common name (CN) is Bob. You want Bob’s telephoneNumber attribute to be exposed to
another inetOrgPerson, named Jill. To do this, you would create an access control value using
ndsACL.createAttrACL(), specifying Jill’s DN as the trustee DN and telephoneNumber as the
protected attribute name. In a Modify operation, you add the access control value to Bob’s ACL attribute.
(Remember, ACL is a multivalued attribute. Bob may have scores or even hundreds of values stored
under his ACL attribute.) Jill would then have certain specific access rights to Bob’s telephone number.

CAUTION: ACLs are a critical component of eDirectory security. You should have a thorough
understanding of ACL concepts before attempting to use the above methods. Misuse of ACL methods can
cause security to be compromised at many different levels of a directory tree. Do not attempt ACL
modifications unless you are confident that you thoroughly understand NDS security concepts and their
implications.

For a technical overview of ACL concepts, consult the NDS Technical Overview document (in
particular, the chapter on eDirectory Security) available online at http://developer.novell.com/ndk.

Access to Novell LDAP Classes
The Novell Java LDAP (JLDAP) library classes, which are publicly available as part of the Novell NDK,
are already a part of Integration Manager (design-time as well as runtime) and are already in the
classpath. Therefore you can write code of the following sort in Integration Manager’s Custom Script
Resource editor (or in the Expression Builder dialogs, etc.):

myConn = new Packages.com.novell.ldap.LDAPConnection();

Notice that in ECMAScript, access to the Java classloader occurs via the Packages keyword. Hence, to
access any class that is visible on the classpath, you need only prepend “Packages” to the qualified class
name, as shown above. Since ECMAScript variables do not require a data type declaration, it is perfectly
legal to execute the above line of code as-is. It both declares and initializes the variable myConn in one
operation.

ECMAScript Example Involving LDIF
This section shows an example of how to use ECMAScript to call Novell LDAP classes directly, so as to
accomplish tasks that would otherwise not be possible in the LDAP Component Editor. The example
shown below involves LDIF.

Prior to the advent of DSML, directory users relied heavily (and still do) on the text-based LDIF (LDAP
Data Interchange Format) file type for persisting LDAP objects and queries. (The LDIF specification is
published in RFC 2849.) LDIF is convenient for many of the same reasons XML is: It’s human readable,
structured according to relatively simple rules, platform-neutral, etc. Many administrative tools are able
to handle LDIF natively.
Working with LDAP and DSML 61

http://developer.novell.com/ndk/doc/ndslib/index.html?page=/ndk/doc/ndslib/dsov_enu/data/h6tvg4z7.html
http://developer.novell.com/ndk

It is useful to compare the DSML and LDIF versions of a query result. The DSML version might look
something like this:

<?xml version="1.0" encoding="UTF-8"?>
<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <searchResponse requestID="160">
 <searchResultEntry dn="cn=admin,ou=lapdog,ou=user,o=NOVELL" requestID="160">
 <attr name="cn">
 <value>admin</value>
 </attr>
 <attr name="loginTime">
 <value>20030315051622Z</value>
 </attr>
 <attr name="objectClass">
 <value>inetOrgPerson</value>
 <value>organizationalPerson</value>
 <value>person</value>
 <value>top</value>
 <value>ndsLoginProperties</value>
 </attr>
 <attr name="securityEquals">
 <value>ou=lapdog,ou=user,o=NOVELL</value>
...
[etc.]

The LDIF version of the same thing would look like this:

version: 1

dn: cn=admin,ou=lapdog,ou=user,o=NOVELL
cn: admin
loginTime: 20030315051622Z
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top
objectClass: ndsLoginProperties
securityEquals: ou=lapdog,ou=user,o=NOVELL
. . .
[etc.]

The structure of an LDIF file is not unlike that of a simple flat file with one record per line and each
record representing an attribute-value pair delimited by a colon. (The syntax isn’t quite that simple, but
close enough for this discussion.)

For audit purposes, it’s sometimes convenient to obtain an “LDIF dump” of a particular tree object. It
doesn’t take much ECMAScript to do this.

To programmatically query a directory and write the results to an LDIF file, start by creating a Custom
Script Resource (using Integration Manager’s main menu bar, go to File > New > xObject then open the
Resource tab and select Custom Script). Inside the custom script editor window, enter a custom
function like that shown below.

function query2Ldif(ldapHost,
loginDN,
password,
searchBase,
scope,
searchFilter,
attribs,
fileName)

{
 var jldap = Packages.com.novell.ldap;
 var ldapPort = jldap.LDAPConnection.DEFAULT_PORT;
 var ldapVersion = jldap.LDAPConnection.LDAP_V3;
 var typesOnly = false;

 var lc = new jldap.LDAPConnection();

// An ECMAScript array reference cannot
// be passed to a Java method that expects

 // a Java array. So we have to copy our
// 'attribs' array into a legit Java array:

 var javaStringArray =
 java.lang.reflect.Array.newInstance(
62 LDAP Connect User’s Guide

java.lang.String,
attribs.length);

 for (var i = 0; i < attribs.length; i++)
 javaStringArray[i] =

new java.lang.String(attribs[i]);

// bind to server
 lc.connect(ldapHost, ldapPort);
 lc.bind(ldapVersion, loginDN, password);

 // set up file I/O objects
 var fos = new java.io.FileOutputStream(fileName);
 var writer = new jldap.util.LDIFWriter(fos);

// send query
 var results = lc.search(searchBase,

scope,
searchFilter,
javaStringArray,
typesOnly);

// write the results
 while (results.hasMore())

 writer.writeEntry(results.next());

// clean up
 writer.finish();
 fos.close();
 lc.disconnect();

 java.lang.System.out.println("LDIF file written.");
}

This function is purposely somewhat monolithic in order to show all of the intended functionality in one
complete series of related steps. (In the real world, you’d probably factor this function out into two
smaller functions: a function that does the bind and issues the query, and another that writes the query
result out to an LDIF file.)

The eight arguments represent the standard parameters needed to bind an LDAP directory plus those
needed to form a query.

The first line inside the function is:

var jldap = Packages.com.novell.ldap;

This lets us use a shorthand notation (of jldap) for the longish context string that begins with Packages.
(ECMAScript offers access to Java methods through the Packages indirection mechanism.) After we’ve
established this shorthand, we can do

var lc = new jldap.LDAPConnection();

instead of

var lc = new Packages.com.novell.ldap.LDAPConnection();

and save ourselves some typing every time we need to get to a JLDAP object.

Once an LDAPConnection object has been instantiated, we can go ahead and bind to the tree:

lc.connect(ldapHost, ldapPort);
 lc.bind(ldapVersion, loginDN, password);

These are standard JLDAP calls, documented in the Novell NDK Javadocs.

Next, we set up our file-I/O objects:

var fos = new java.io.FileOutputStream(fileName);
 var writer = new jldap.util.LDIFWriter(fos);

The file will be written to whatever path was supplied in the fileName argument.

Querying the server requires one line of code:
Working with LDAP and DSML 63

// send query
 var results = lc.search(searchBase,

 scope,
searchFilter,
javaStringArray,
typesOnly);

The search results can be enumerated and written out very simply:

while (results.hasMoreElements())
 writer.writeEntry(results.nextElement());

Finally, we close all files, streams, and connections:

writer.finish();
 fos.close();
 lc.disconnect();

Testing the Script

To test the script, we can put the following text in a Function Action and run it:

query2Ldif('www.nldap.com'
 'anonymous',
 '', /* no password */
 '', /* no search base DN */
 0, /* 0 for base-object scope */
 '(objectClass=*)', /* filter == all objects */

new Array('*'), /* attrib array */
 'c:\\temp\\test.ldif')

When the Function Action with the script runs, it queries the Novell public server for its DSE root
information. An LDIF file is written to disk.

The LDIF file can be inspected with a simple text editor. It contains (in part):

This LDIF file was generated by the LDIF APIs of Novell's Java LDAP SDK
version: 1

dn:
errors: 21428
subschemaSubentry: cn=schema
directoryTreeName: DEVNET-TREE
securityErrors: 972
compareOps: 218
bindSecurityErrors: 850
outBytes: 2279628812
vendorVersion: eDirectory v8.7.0 (10410.57)
simpleAuthBinds: 383333
supportedFeatures: 1.3.6.1.4.1.4203.1.5.1
supportedFeatures: 2.16.840.1.113719.1.27.99.1
repUpdatesIn: 0
abandonOps: 572
supportedSASLMechanisms: EXTERNAL
supportedSASLMechanisms: DIGEST-MD5
supportedSASLMechanisms: NMAS_LOGIN
referralsReturned: 0
removeEntryOps: 6683
searchOps: 654935
addEntryOps: 20253
strongAuthBinds: 32
modifyEntryOps: 888
vendorName: Novell, Inc.
listOps: 0
modifyRDNOps: 9
chainings: 300
...
[etc.]
64 LDAP Connect User’s Guide

A LDAP Glossary

Alias
A directory entry that names another directory entry.

Anonymous Bind
A connection to a directory server established without a password (and usually also without a user ID). The rights granted under
an anonymous bind are usually restrictive.

Asynchronous Request
Any request made without expectation of an immediate response. Usually, a client that makes an asynchronous request will
begin other processing immediately, without waiting for a response from the server. This is in contrast to a synchronous
request, in which the client issues a request and then blocks until a response has been received from the host.

Authentication
The process of verifying the identity of a participant in a conversation. (“Is this person who he says he is?”)

Base DN
The partially qualified name (or container context) specifying the “starting point” for a search or for access to a directory.

Bind
To obtain access to a directory based on a set of credentials. (When access is granted based on empty credentials, it is said to
be an anonymous bind.)

CA
Certification Authority. An entity that issues digital certificates and/or can vouch for the authenticity of a certificate.

cn
Common name.

dn
see Distinguished Name

Entry
In a generic sense, an entry in a directory is analogous to a record or row in a database. The node holding the name Robert
can also hold information about the person, such as his manager’s name, e-mail, instant messaging name, and so forth. The
whole node is an entry.

Attribute
An attribute is associated with a value. For example, a cn (common name) attribute might be associated with a value of
Robert. Objects in a tree are collections of attributes and their associated values.
LDAP Glossary 65

Chaining
A name-resolution facility whereby the server, acting as a proxy for the client, locates non-local DIT entries by following
referrals. This type of referral-following is not under the control of the client.

Container
A directory object that can contain other objects.

DAP
Directory Access Protocol (X.519)

Directory Information Tree (DIT)
The entire information tree of the directory itself is called the DIT (Directory Information Tree).

Distinguished Name (DN)
A distinguished name is a fully qualified name that uniquely identifies an entity in a directory. For example, a user of a website
might be entered into a directory with a unique DN of cn=Theo87,ou=Visitors,o=Blogsville. There can be only
one entry with that particular DN. (Notice that the order and reading direction of the DN are critical. The DN is parsed left-to-
right with the “leaf” or terminus portion—in this case, cn=Theo87—coming first.)

DSA
Directory Server Agent—the X.500 term for a directory server or (L)DAP host.

DSE
DSA-specific-entry—a root-level entry in a directory, describing server capabilities.

DSML
Directory Services Markup Language—an XML grammar for encoding directory information and requests.

JLDAP
Java LDAP library—an open-source LDAP SDK developed by Novell.

LDIF
LDAP Data Interchange Format

Object
A collection of attributes and values—an instance of an object class. (See Object Class, below.)

Object Class
The formal definition of an object (as contained in the directory schema), including the number and types of required and
optional attributes, the OID, the object type (abstract, structural, or auxiliary), and the object class name.

OID (Object Identifier)
A string, in dotted-decimal form, that identifies an object type.

Referral
A name-resolution hint. A server can send a referral to a client to help the client locate information that is not local to the current
host. It is up to the client whether to follow the referral or not.
66 LDAP Connect User’s Guide

Relative Distinguished Name (RDN)
RDN (Relative Distinguished Name) is a portion of an entity’s fully qualified DN, containing (or equal to) the terminal or “leaf-
node” identifier for the entity, such as cn=Rich.

RFC
Request for Comment. A mechanism by which the Internet Engineering Task Force (IETF) publishes web-protocol
specifications.

Schema
The schema of an LDAP directory gives the layout of the information it contains and specifies how the information is grouped.
It therefore allows clients or external interfaces to discover structural features of the directory and how the tree can be accessed
in terms of search, addition, deletion, modification, and so on. Refer to RFC 2256 for information on the LDAP object classes
and attributes.

Scope
The bounds within which an operation is valid. For an LDAP search request, scope can be one of base, first child level, or
subtree. If a search is scoped to base level, only entries within the base-DN container will be searched. If the search is scoped
to first child level, the container and its immediate children will be searched. “Subtree” scope means the container, its child
objects, and all children-of-children, etc. (down to terminal entries) will be searched.

Subordinate Entry
An object or entry that is contained by a “container object.”

TLS
Transport Layer Security—a non-proprietary industry standard for implementing encrypted, authenticated communications
over network connections. It can accommodate, but is not limited to, conventional SSL (Secure Socket Layer) methodologies.

X.500
A document, published by the International Telecommunications Union, that describes the fundamental concepts underlying
the notion of a directory. Often, X.500 is used as a synonym for “the non-lightweight directory protocos” (otherwise known as
DAP), but in fact the DAP protocol is specified in X.519, and the complete ITU directory “specification” is distributed across
a dozen or so X.500-series publications.
LDAP Glossary 67

68 LDAP Connect User’s Guide

B LDAP Result Codes

Value Result Code

0 SUCCESS (success)

1 OPERATIONS_ERROR (operationsError)

2 PROTOCOL_ERROR (protocolError)

3 TIME_LIMIT_EXCEEDED
(timeLimitExceeded)

4 SIZE_LIMIT_EXCEEDED (sizeLimitExceeded)

5 COMPARE_FALSE (compareFalse)

6 COMPARE_TRUE (compareTrue)

7 AUTH_METHOD_NOT_SUPPORTED
(authMethodNotSupported)

8 STRONG_AUTH_REQUIRED
(strongAuthRequired)

10 REFERRAL (referral)

11 ADMIN_LIMIT_EXCEEDED
(adminLimitExceeded)

12 UNAVAILABLE_CRITICAL_EXTENSION
(unavailableCriticalExtension)

13 CONFIDENTIALITY_REQUIRED
(confidentialityRequired)

14 SASL_BIND_IN_PROGRESS
(saslBindInProgress)

16 NO_SUCH_ATTRIBUTE (noSuchAttribute)

17 UNDEFINED_ATTRIBUTE_TYPE
(undefinedAttributeType)

18 INAPPROPRIATE_MATCHING
(inappropriateMatching)

19 CONSTRAINT_VIOLATION
(constraintViolation)

20 ATTRIBUTE_OR_VALUE_EXISTS
(AttributeOrValueExists)

21 INVALID_ATTRIBUTE_SYNTAX
(invalidAttributeSyntax)

32 NO_SUCH_OBJECT (noSuchObject)
LDAP Result Codes 69

Local errors, resulting from actions other than an operation on a server.

33 ALIAS_PROBLEM (aliasProblem)

34 INVALID_DN_SYNTAX (invalidDNSyntax)

35 IS_LEAF (isLeaf)

36 ALIAS_DEREFERENCING_PROBLEM
(aliasDereferencingProblem)

48 INAPPROPRIATE_AUTHENTICATION
(inappropriateAuthentication)

49 INVALID_CREDENTIALS (invalidCredentials)

50 INSUFFICIENT_ACCESS_RIGHTS
(insufficientAccessRights)

51 BUSY (busy)

52 UNAVAILABLE (unavailable)

53 UNWILLING_TO_PERFORM
(unwillingToPerform)

54 LOOP_DETECT (loopDetect)

64 NAMING_VIOLATION (namingViolation)

65 OBJECT_CLASS_VIOLATION
(objectClassViolation)

66 NOT_ALLOWED_ON_NONLEAF
(notAllowedOnNonLeaf)

67 NOT_ALLOWED_ON_RDN
(notAllowedOnRDN)

68 ENTRY_ALREADY_EXISTS
(entryAlreadyExists)

69 OBJECT_CLASS_MODS_PROHIBITED
(objectClassModsProhibited)

71 AFFECTS_MULTIPLE_DSAS
(affectsMultipleDSAs

80 OTHER (other)

Value Result Code

81 SERVER_DOWN

82 LOCAL_ERROR

83 ENCODING_ERROR

84 DECODING_ERROR

85 LDAP_TIMEOUT

86 AUTH_UNKNOWN

Value Result Code
70 LDAP Connect User’s Guide

87 FILTER_ERROR

88 USER_CANCELLED

90 NO_MEMORY

91 CONNECT_ERROR

92 LDAP_NOT_SUPPORTED

93 CONTROL_NOT_FOUND

94 NO_RESULTS_RETURNED

95 MORE_RESULTS_TO_RETURN

96 CLIENT_LOOP

97 REFERRAL_LIMIT_EXCEEDED

100 INVALID_RESPONSE

101 AMBIGUOUS_RESPONSE

112 TLS_NOT_SUPPORTED

Value Result Code
LDAP Result Codes 71

72 LDAP Connect User’s Guide

Index
A
Abandon operation 14
Access Control List (ACL) 60
Action Model, definition of 37
actions 37

creating DSML Actions 39
Execute DSML 52
Map 34

Add request 40
Address Book example 44
agrootca.jar 21, 23, 24
anonymous bind 24, 53
attributes 12

adding, deleting, changing, and comparing values 14
single-valued vs multi-valued 12

authentication 15, 27

B
Base DN 41
baseObject (scope) 50
batch processing of DSML actions 38
batch requests 38
Binding

Bind operation 13
bind vs. connect 25
connecting to the LDAP server 27

C
CA (certificate authority) 21
certificates 21
client authentication 16
colon notation 26
Compare operation 14
Compare request 45
Component Editor

about 31
Schema view 32
Tree view 31

Components
creating 28

connect vs. bind 25
connection parameters

constant-based 19
expression-driven 19

Connection Resource

creating 19, 21
silent failover of 25
testing 23

Connection Resources
editing 26
troubleshooting 23

constant-based connection parameters 19
container objects 12
createAttrACL() 60
createEntryACL() 60
creating DSML Actions 39

D
data mapping (DOM to DOM) 34
debugging 23
Decision action 59
Delete Old RDN 49
Delete request 47
Deref Alias in Search requests 50
derefAlways 50
derefFindingBaseObject 50
derefInSearching 50
Directories 11

definition of 11
querying 11
schema 12

Directory Access Protocol (DAP)
definition of 13

Directory Information Tree 12
DN (Distinguished Name) 12
DOM

mapping data 34
resetting 56

drag-and-drop mapping 34
DSE 53
DSML

(Directory Services Markup Language), definition of 15
LDIF versus 62

DSML Actions
Add request 40
Compare request 45
Delete request 47
Execute DSML 52
Modify request 47
Rename request 48
Search request 49
73

E
ECMAScript 60
ECMAScript expressions 24
eDirectory 60
entries 12

container objects 12
nesting 12

errorMessage 44
errors, handling 57
example using ECMAScript 61
Execute DSML aciton 52
Expression Builder 58
expression-driven connection parameters 19

F
failover 25
filters 51

G
ganged requests 38

I
indirection capability 14
Integration Manager Enterprise Server 9
IP address 20, 22, 26
IP address formats 26

J
JLDAP 38, 60

L
LDAP

data model 13
verbs 14

ldap
URL protocol 44

LDAP (Lightweight Directory Access Protocol)
definition of 13

LDAP Components, creating 28
LDIF 61
Log Action 59
logging 57

M
Map actions 34
Modify operation 14
Modify request 47
moving an entry 48
MSIE 44
multiple requests 38

N
Native Environment Pane 31
NDS security 61
neverDerefAliases 50
NO_SUCH_ATTRIBUTE 69
Novell eDirectory 60
Novell public server 53

O
objectClass 54
objects 12

P
Port Number 20, 21, 22, 26
port numbers 26
public LDAP server 53

Q
query

add 40
batched requests 38
compare 45
delete 47
LDAP URL 44
modify 47
move 48
rename 48
search 49

R
Refresh LDAP Schema command 35
Refresh LDAP Tree command 35
reload XML documents 56
Rename request 48
replication 25
Request Map 40
resultCode, XPath to 57
root query 53
rules, filter 51

S
Schema Tab 32
scope constraints 50
Search operation 13
Search request 49
Security

authentication 27
SSL and TLS 15

security and access control 60
silent failover 25
singleLevel (scope) 50
Size Limit in Search requests 50
74

SSL certificates 21
subordinate entries 12
subtree searches 50
syntax, filter 51

T
templates, creating 29
test server, Novell 53
Time Limit

Connection Resources 23
Search requests 50

TIME_LIMIT_EXCEEDED 69
TLS 23

connection resources and 24
enabling encryption and authentication 21

TLS (Transport Layer Security) 16
Tree Tab 31
troubleshooting, Connection Resources 23
trustee 60

U
Unbind operation 13
URLs, ldap 44
User DN

(Distinguished Name), definition of 20

V
verbs 14

W
wholeSubtree 50

X
X.509 21
XCCERTFILE 24
xconfig.xml 24
XML data mapping 34
XML templates, creating 29
75

76 LDAP Connect User’s Guide

	Contents
	About This Book
	1 Welcome to LDAP Connect for Integration Manager
	About Integration Manager and the Connect Architecture
	Hub and Spoke Architecture

	About exteNd’s LDAP Connect
	What Are Directories?
	How Is Information Stored in a Directory?
	What is LDAP?
	What Does LDAP Do?
	LDAP Verbs

	What is DSML?
	What Kinds of Applications Can You Build Using the LDAP Connect?
	LDAP and Security
	Access Control

	For More Information

	2 Getting Started with the LDAP Component Editor
	About Connection Resources
	About Expression-Driven Connection Parameters
	LDAP Connection Parameters
	Security Settings
	Creating an LDAP Connection Resource
	Connection Troubleshooting
	Exception After Successful Connection
	Silent Failover
	Editing Connection Resources After They’re Created

	3 Creating an LDAP Component
	The LDAP Application Model
	Before Creating an LDAP Component
	Special Features of the LDAP Component Editor
	LDAP Native Environment Pane
	Drag-and-Drop Operations
	Special Menu Commands

	4 DSML Actions
	Working with DSML
	Multiple Requests in a Single DSML Document

	The Create DSML Action
	Add
	Compare
	Delete
	Modify
	Rename
	Search

	The Execute DSML Action
	Using Other Actions in the LDAP Component Editor

	5 Working with LDAP and DSML
	DSE Query Example
	Connection Resource for Anonymous Bind
	Component and Action Model
	Dealing with Errors

	ECMAScript and the LDAP Connect
	LDAP Extension Methods
	Access Control List (ACL) Methods
	Access to Novell LDAP Classes

	ECMAScript Example Involving LDIF

	A LDAP Glossary
	B LDAP Result Codes
	Index

