
Novell

w w w . n o v e l l . c o m

Integration Manager™

6 . 0

J u n e 2 7 , 2 0 0 6
P R O C E S S M A N A G E R U S E R ’ S G U I D E

2 Process Manager User’s Guide

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all
parts of Novell software, at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other
countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or
import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological
weaponry end uses. Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system,
or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular,
and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S. and in other
countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

3

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 Process Manager User’s Guide

5

Contents

About This Book. 9
Configuration and Setup . 10

Database Setup Prequisites . 10
Database Setup Example Using JBoss. 11
Registering the Database with the Process Engine . 11

Getting Started with Process Manager: Quick Overview. 13
How Do I Deploy It?. 18

1 Welcome to Integration Manager and Process Management . 19
What Is Process Management?. 19
Why Automated Process Management? . 20
Process Design versus Application Design . 21

Modularity . 21
Example of a Simple Straight-Through Process . 22

Process Management and Emerging Technologies . 22
How Does a Process Differ from a Service? . 23
Process Management Terms and Concepts . 26

Activities, Messages, and Links . 26
Sequencing, Timing, and Process-Level Logic . 28

Control Flow Logic . 28
Deferred Mode versus Immediate Mode . 30
Map Policy and Data Merging . 31
Timeouts and Retries . 32

Data Flow Patterns . 32
Lifecycle Events. 33
Process Manager Architectural Layers . 33
Process Manager FAQ . 35

2 Preparing to Model a Process . 37
Process Server Execution Model. 37

The Design-Time View . 39
Flow Control Strategies . 41

Branch Logic . 41
Join Logic . 43
Looping . 44
How Safe Looping Can Be Accomplished. 45

Process Architecture in Review . 51
Taking a Best-Practices Approach . 52

3 Creating and Testing Processes . 53
Example: A Simple Straight-Through Process . 53

Description . 53
Process-Building Basics . 54
Creating a New Process . 54
About Service Provider Resources . 56
About Service Provider Type Resources. 60
Creating Activities . 61
Creating Links . 63
Message Mapping . 64

Message Naming . 64
How to Define Message Mappings . 65

6 Process Manager User’s Guide

Data Mapping for Start and End Activities . 67
Selecting a Process Input Template. 67

Applying Flow Logic at the Activity Level . 67
Timeouts and Retries . 69
Map Policy . 70

Fault Messages and Fault Handling . 71
System Faults . 71
Timeout Faults . 72

Fault Handling. 72
Animation and Testing . 74
Aids to Debugging. 77

Watching System Messages at Animation Time . 77
Inspecting Messages . 79

4 The Process Designer User Interface . 81
Main Features . 81

The Process Designer Window . 81
Graph Elements . 83

Menu Commands . 85
Process Properties . 89
Object Properties . 90
Activity Properties . 90
Integration Manager Component . 90

Activity Tab . 91
Messages Tab . 92
UI Tab . 93

Web Service Send . 94
Web Service Send Activity Tab . 94

Web Service Receive . 96
Web Service Receive Activity Tab . 96

Subprocess . 97
Synchronize Subprocesses . 97
Link . 98

Link Tab . 98
UI Tab for Links . 98

Graph Object Properties . 99
Process Messages Tab . 99
Graph UI Tab . 100

Selected Node Properties on UI Tab . 101
UI Tab (Selected Node Properties) . 101

Text Object Properties . 103
UI Tab . 103

Layout Properties . 104
General Layout Tips . 105

Customizing the Canvas . 106

5 Advanced Topics . 109
Web Service Receive . 109

Implementation Independence . 112
Synchronize Subprocesses Activity . 113

Data Mapping in the Synchronize Subprocesses Activity . 114
Fault Handling . 116

Waiting Activities. 116
“Waiting Activity” Actions . 117

6 Waiting Activities and Addressees . 121
Understanding How Processes Are Triggered . 121
Process-Related Actions. 122
The Process Execute Action. 122

How to Create a Process Execute Action . 123
Deployment and the Process Execute Action . 124

Find Waiting Activity Action. 125

7

Finding a Waiting Activity . 126
The Find Waiting Activity Dialog . 127

Release Waiting Activity Action . 129
The Release Waiting Activity Dialog . 129

Human Participation in Processes. 130
Addressees . 131
The Role of the Web Service Receive Activity . 131

Browse Waiting Activities Action . 132
Where to Use the Browse Waiting Activities Action . 133
Creating a Browse Waiting Activities Action . 134

Lock/Unlock Waiting Activity . 135
Prerequisites for Locking/Unlocking an Activity. 135
Creating a Lock/Unlock Waiting Activity Action. 135

The Reassign Addressee Action . 137
Reassigning an Addressee . 137
Creating a Reassign Addressee Action. 138

7 Runtime Administration of Processes. 139
Server Console Usage. 139

Process Manager Console: Main Tab . 139
Process Manager Console: Status Tab. 144
Process Manager Console: Log Tab. 146
Detail View for a Process Instance . 147

A Testing . 151
Environmental Differences between Design-Time Testing and Server Testing . 151

B Performance Tuning . 153
Configuration Options . 153

Cache . 153
Sleep Time . 153
Cutoff Period . 153
Total In-Memory Process Instances . 153

C Process Management Glossary. 155

D Clustering the Process Manager Engine . 161
About Process Manager Engine Clustering. 161
Setting Up Process Manager Engines for Clustering . 161
Administering the Cluster. 161

8 Process Manager User’s Guide

9

About This Book

Purpose

This guide describes how to use the Integration Manager Process Manager to build potentially largescale,
long-running, automated processes that rely, in whole or in part, on Web Services. The guide is intended
to be an adjunct to (not a replacement for) the Novell Integration Manager User’s Guide.

Audience

This guide is aimed at persons tasked with design and deployment of coordinated systems of automated
activities (that is, business process models). Anyone participating in the development of such systems
should read this guide.

Prerequisites

You should be familiar with XML-related standards (including Schema, XSL, and XPath), the Document
Object Model, and WSDL metaphors and motivations, in addition to basic J2EE concepts involving file
packaging (JAR/EAR/WAR files).

Additional documentation

Process Manager relies on a database for persistence of state info. You may find it useful to refer to the
application server documentation for detailed information on how to install and configure databases on
your application server.

For the complete set of Novell exteNd user guides and other documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-index/index.jsp).

Organization

This document is organized as follows:

Chapter Description

Chapter 1, Welcome to
Integration Manager and
Process Management

Gives a definition and overview of the Process
Manager and key process-modelling concepts.

Chapter 2, Preparing to
Model a Process

Briefly describes Process Manager design-time
concepts and user-interface features.

Chapter 3, The Process
Designer User Interface

Outlines the key factors that should be
considered when designing a process, and
presents various scenarios. A brief example is
explained in walkthrough fashion.

Chapter 4, Creating and
Testing Processes

Explains process deployment options and how
to use the Process Administrator console to
manage process instances.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

10 Process Manager User’s Guide

About the Product Name Change

In version 6.0. we've changed the name of exteNd Composer to Novell Integration Manager. In some
places in the user interface, and in Integration Manager file and directory names, you will still see the
name "exteNd Composer" or "Composer".

Configuration and Setup
In order to run deployed processes, you must have Process Manager installed on the application server,
and you must have a database called process50 installed on the application server. This database is where
the Process Server engine stores state information.

The following sections will lead you through the creation and deployment of the necessary database
using MySQL.

NOTE: Check the Integration Manager Process Manager Release Notes for the latest database
compatibility matrix.

Database Setup Prequisites
The database-setup procedure assumes that the following conditions are met:

A supported application server (for example, JBoss, Novell exteNd, WebSphere, WebLogic) is
installed and running.
Integration Manager Process Manager runtime is installed on the application server (if necessary,
run the Integration Manager installation program again in order to install the Process Manager).
A supported database (for example, MySQL, Oracle, DB2, SQLServer, Sybase) is installed and
operational.
A process50 database must be available on the application server.

Using your database system's administration facility, create a new, empty database named
process50.

Chapter 5, Advanced
Topics

Discusses scenarios involving the Web Service
Receive activity and the Synchronize
Subprocesses activity, with information, also,
about ways to implement human-centric
workflows involving queued work items.

Chapter 6, Getting Ready
for Deployment

Explains concepts pertaining to packaging and
deployment of processes.

Chapter 7, Runtime
Administration of
Processes

An introduction to the administrative consoles
that can be used to monitor and control running
processes.

Appendix A, Testing A discussion of important differences between
design-time and server-side testing.

Appendix B, Performance
Tuning

This appendix explains the parameters that may
be adjusted for obtaining better Process Server
performance in an environment where
performance is critical.

Appendix C, Glossary Defines a variety of process management
terms.

Chapter Description

11

If necessary, create an ODBC data source for the database.
Using your application server's administration facility, add the newly created database as a data
source for the application server, including a connection pool.

TIP: For Novell exteNd Application Server, you can use the Server Management Console
application to create the data source. (For a step-by-step explanation of how to do this, see the Data
Source Configuration chapter in Part 1 of the Administrator’s Guide for Novell exteNd application
server.)

NOTE: If you are using a MySQL database, your JDBC URL will be something like:
jdbc:mysql://localhost:63306/process50?profileSql=false&maxRows=100

Database Setup Example Using JBoss

To set up a MySQL data source and connection pool for JBoss:

1 If you have not done so already, install the Integration Manager Enterprise Server (which includes
the process engine) to JBoss, following the instructions given in the Novell Integration Manager
Installation Guide.

2 Using MySQL, create the “process50” database.
3 Edit the mysql-ds.xml file located in <JBoss install directory>\docs\examples\jca.

Replace <jndi-name>MySqlDS</jndi-name> with <jndi-name>process50</jndi-name>.
Replace <connection-url>jdbc:mysql://mysql-hostname:3306/jbossdb</connection-url>
with your connection string—that is, your mysql hostname (for example, “localhost”) and port
number (63306 is the default MySQL port number when installed with Integration Manager).
For example, jdbc:mysql://localhost:63306/process50.
Set the user-name and password elements to your database username and password.
Save the mysql-ds.xml file in the deploy directory for the server in which the Integration
Manager Enterprise Server is installed (for example, <JBoss install
directory>\server\default\deploy).
Copy the MySQL JDBC driver (for example, mysql-connector-java-bin.jar) into the JBoss
server “lib” directory. For example, if the Process Manager runtime is installed to the JBoss
default server, you would copy the JDBC driver to /<JBoss install directory>/server/default/lib.

Registering the Database with the Process Engine
Once the process50 database has been created and exposed as a JDBC data source on the application
server, you need to make the Process Server engine aware of the database, using the following procedure.

To register the database with the Process Engine:

1 Start your application server.
2 Install the Integration Manager Process Manager onto the application server if it is not already

installed.
3 Access the Process Manager Console with a web browser, using a URL similar to the following:

http://<hostname>:<port number>/exteNdComposer/Console
NOTE: Substitute the appropriate IP address or host name and port number. For example, for
JBoss, using the default port, the URL would be http://localhost:8080/exteNdComposer/Console.

A browser window containing the Integration Manager Enterprise Server main administrative
console will appear. In the navigator frame on the left side of the console window, choose the
Process link; then in the content frame, click the Console button. A new browser window will
open, containing the Process Manager administrative console:

12 Process Manager User’s Guide

4 Confirm the unconfigured state of the Process Engine:
The Process Engine Status should read: "Shut down"
The Process Database Info should read: "Invalid Configuration"

5 Press the Configure button and the Process Database Configuration screen appears.

6 Select the type of database for the Process Manager to use. In this example, we are using MySQL.
7 Enter the application-server-specific Pool Name for the database the Process Manager will use.

For example:
JBoss: java:<database name>
Novell exteNd: Databases/<database name>/DataSource

13

WebSphere: jdbc/<DBPoolName>
WebLogic: a JNDI data source name

WebSphere and WebLogic both use the JNDI Name specified by the user when creating the
Connection Pool. So if the user creates a Connection Pool called ProcessPool with a JNDI name of
ProcessJNDI, the user will enter ProcessJNDI in the Pool Name field of Integration Manager’s
Process Console on the Process Database Configuration screen.

8 Enter the User Name (e.g. “dba”) and Password for the database (e.g. “sql”).
NOTE: When configuring the Process engine's database using the Process Database
Configuration screen (see “Jump to Process” on page 141), the Username and Password for a
Novell, WebSphere, or JBoss servers is the database Username/Password (for example, "dba/sql"
for a Sybase database). But for WebLogic, the Username/Password needed to configure the
Process database is the WebLogic server username/password ("system/weblogic," for example).

9 Type an engine name in the Engine Name field. This can be any arbitrary name. If you are
clustering the Process engine, the engine name must be unique within the cluster.

10 Press the Save button. If successful, the Initialize button appears.
11 To set up the Process Manager database tables, press the Initialize button.
12 If successful, the Status will read "Connected - Ready".
13 Press the Back button to access the Process Manager Console.
14 To start the Process Manager engine, press the Start button in the main console. If successful, the

Status under Process Engine Info should read: "Running".
15 For the Novell application server only, access the Server Management Console and synchronize the

Process Manager database once the Process Manager engine is running.

NOTE: To reinitialize the database or change to another database, you must stop the engine first, and
repeat the above steps.

Getting Started with Process Manager: Quick Overview
Creating a process in Process Manager is straightforward. The steps below describe the basic procedure
.For a fuller discussion of relevant concepts, you will obviously want to consult the chapters titled “The
Process Designer User Interface” on page 81 and “Creating and Testing Processes” on page 53 (as well
as other relevant portions of this guide).

TIP: The Samples folder of your Integration Manager design-time installation contains a prebuilt process
in the project called ProcessSubmitApprove.spf. The project contains all the web services, JSPs, and
other resources for a working manual-approval workflow.

The basic procedure for creating a process is:

Place activities on the process graph using the click/drag/drop GUI
Draw links to link them together
Specify relevant data mappings (input/output messages for the activities)
Specify the components or services that will serve as the underlying implementations of the
activities
Optionally test the process by running it in animation mode before deploying it

14 Process Manager User’s Guide

To create a Process:

1 Launch Integration Manager. In the File menu, select New > xObject, then open the
Process/Service tab, as shown below, and select Process.

2 The “Create a New Process Component” dialog will appear. Enter a Name for your process.

3 Click Next to bring up the second (and final) dialog of the wizard.

4 The second dialog allows you to choose XML Templates for your process input and output
messages. Select these as you normally would when setting up any other Integration Manager
Component. (See the Novell Integration Manager User’s Guide.)

5 Dismiss the dialog. A blank canvas (representing the area where you will draw your process)
appears in what would ordinarily be the Native Environment Pane.

15

6 The Object Properties pane should be visible (as above). If it is not, toggle its visibility using the
Object Properties command under the View menu. Note that you can tear off (or undock) this
pane if you want to drag it out of the way at any time.

7 Click on the Activity Tool to select it. (See below.) The cursor will change appearance.

8 Click anywhere on the blank canvas. A new activity is created, with blue stretch-handles positioned
around its boundary.

9 With the new activity still selected (i.e., in focus), use Copy and Paste to create another copy of it
(or use the Activity Tool again to create another activity on the canvas). You should now have two
activities: A1 and A2.

16 Process Manager User’s Guide

10 Select the Link Tool on the toolbar. Connect the two activities with a link in the manner shown
below.

11 Now it is time to associate the activities with components (concrete implementations). Bring the
Object Properties pane into view (with View > Object Properties) if it is not already visible. Click
on the first activity. The Object Properties pane will update to show the current properties for that
activity.

12 From the dropdown menu next to Component Type, select the type of component you would like
to use as the implementation of your first activity: XML Map, JDBC, etc.

13 From the dropdown menu next to Component Name, select an actual component. (This list will be
prepopulated with the names of components that already exist in the current project.) The graphic
below shows what your object properties should now look like, assuming you chose a JDBC
Component named InventoryLookup.

14 Click the Messages tab of the Object Properties pane.
15 We want to associate input with this activity, so click the blue Plus Sign in the Messages tab. A

dialog appears.

17

16 Because this is the first activity in the process, we will want to specify ProcessInput as the message
Source. (This will be the default.) ProcessInput will have the data structure corresponding to the
XML Template that you specified for input in Step 3 earlier.

17 Since the Target of our maps is A1 (or whatever the currently selected activity is named), we will
want to specify A1Input as the target message and Input as the target message part (as shown). You
can think of the Input part as corresponding to the Input DOM in your component.

18 Repeat Steps 10 through 16 for Activity A2 (the second activity you created). Remember, once
again, that you are mapping data into (not out of) the selected activity (A2). This time, the Source
for the current activity’s input will be the previous activity’s output (A1Output). Therefore, your
data mapping will probably look like:

19 The output of this simple process will simply be the second activity’s output. This requires one
more data mapping, to specify, explicitly, the mapping from A2 to ProcessOutput. To set this up,
click on an empty portion of the canvas (to deselect all activities). Then go back to the Object
Properties pane. You will see that it has changed to reflect the properties of the process-as-a-
whole.

20 Click the blue Plus Sign and create the data mapping shown below.

21 Save your work.

Congratulations: You have created your first Process!

Now might be a good time to animate through the process to be sure it does what you expect it to do.
Using the Animation Tool on the toolbar (see below), you can begin stepping through the process from
beginning to end.

18 Process Manager User’s Guide

Additional toolbar tools allow you to Step Into or Step Over the components that make up your activity
implementations. If you Step Into one of those components, animation continues in real time at the
action-model level, inside the component in question. When you are done stepping through the
component’s actions,you will return to the process-graph level, where you can continue animating to the
next activity, etc.

How Do I Deploy It?
Since a Process is just a Integration Manager xObject (like any component or service created with
Integration Manager), it is packaged and deployed as part of a project, following the same procedure as
with other Integration Manager projects. (Obviously, the target application server must have both
Integration Manager Server and Process Server installed before your deployed processes can be run.)

Just as components must be called from services, processes must also be invoked from Integration
Manager services. To do this, you simply place a Process Execute action in the action model of any
service. Then deploy the service. (The service’s input message can be passed straight through to the
process. See the discussion of “The Process Execute Action” on page 122.) If the service is deployed on
a public URL, incoming requests to the service will trigger new instances of the associated process.
Those instances, and the status of all associated activities, can be monitored via Process Server Consoles.
(See “Runtime Administration of Processes” on page 139.)

For more information about deploying Integration Manager services, be sure to consult the Novell
Integration Manager Enterprise Server User’s Guide.

Welcome to Integration Manager and Process Management 19

1 Welcome to Integration Manager and Process
Management

Welcome to the Novell Integration Manager Process Manager User’s Guide. This Guide is a companion
to the Novell Integration Manager User’s Guide, which explains the core features of Integration
Manager. The rest of this guide assumes familiarity with core Integration Manager functionality, so if you
haven’t looked at the Novell Integration Manager User’s Guide yet, please familiarize yourself with it
before using this Guide.

Before you begin working with the Process Manager, you must have it installed in your existing
Integration Manager environment. Likewise, before you can run any server-based processes, you must
already have installed the Integration Manager Process Server software on your application server.

To be successful with the Process Manager, you should be familiar with the following:

Business Process Management (BPM) concepts
The particular application server environment (e.g., JBoss, exteNd, WebSphere, or WebLogic) into
which you will be deploying
XML, XSD (schema), and XPath
WSDL (the Web Services Description Language)
Java WAR (Web Archive) files
The use of Integration Manager to create and deploy services
Basic structured-programming concepts and object-oriented design patterns

It will also help if you already have some knowledge of the Web Services Flow Language. The complete
specification can be seen at

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

This chapter presents an overview of key BPM (or “workflow”) concepts so that you can better
understand the relationship of Web Services, J2EE applications, and Integration Manager applications to
automated workflows.

What Is Process Management?
The aim of Business Process Management is to model business operations as well-defined systems of
tasks in which participants interact according to a prescribed choreography to achieve a desired goal.

The top-level unit of work in such a model is usually called a process, emphasizing the dynamic nature
of the underlying interactions. Because of the directed flow of work through such a system, the resulting
model is often said to encapsulate a workflow.

A non-automated workflow might look something like the following.

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

20 Process Manager User’s Guide

Figure 1-1

In this hypothetical flow model, various parties (inside and outside the company) accomplish various
tasks in a well-defined sequence. The input that triggers the overall process might be a phone call; the
output might be a signed contract. The process has identifiable players with defined roles and
responsibilities. If each participant does its job, the desired objective will be achieved.

An automated business process attempts to model the same interactions in terms of enterprise
applications (each one, again, with its own roles and responsibilities). For maximum flexibility, the
applications might be (but need not always be) implemented as Web Services. To accommodate human
input, some of the applications might have a user-facing presentation layer. In some cases, the entire
model might be realized in software, with no need for human intervention.

Why Automated Process Management?
The ultimate aim of BPM is to make possible the automation of complex and/or long-running business
processes. The benefits of process automation go far beyond the obvious one of reducing demands on
human resources. They include:

Scalable throughput—Capacity no longer hinges on personnel headcount. Logjams during “busy
times” can be avoided.
Consistency—Once business rules are formalized as part of a process, they are adhered to reliably.
TPA (Trading Partner Agreement) provisions can be enforced and company performance
documented.
Adaptability—Processes can be designed to automatically detect and route around unexpected
bottlenecks.
Upgradability—Processes can be rewired quickly to adapt to changes in business requirements.
Individual components of a process can be modified or “changed out” without necessitating a total
rewrite of the process itself.
Powerful audit capabilities—Comprehensive reporting across activities, process instances, and
business units is possible without the need to pull together disparate data sets from a variety of
sources.
Better ability to respond to customer needs—Processes can be initiated by the customer or
trading partner in real time and executed on a 24/365 availability basis. Turnaround times can in
some cases be shortened from days to hours, or hours to minutes.

Welcome to Integration Manager and Process Management 21

New opportunities for Business Process Improvement—The powerful audit and reporting
capabilities afforded by BPM can yield new categories of process-related analytics that expose
inefficiencies and opportunities for improvement within the organization.

Process Design versus Application Design
Process design and application design start from different points of reference. The design of an enterprise
application usually involves a narrowly focused, data-centric view of a problem and a correspondingly
scoped data-oriented solution. Process design, on the other hand, is motivated by the need to fulfill a
business objective: patent an invention, process a claim, conduct an auction. The input to the process may
be a phone call; the output might be 55-gallon drums on a truck. Carrying out the process may require
completion of many tasks. Data requirements may vary greatly along the chain of tasks.

Process design is more than just “data in, data out.” It requires thinking about the Big Picture, including
not only which applications one might use in modelling a process, but the time order in which those
applications must run; the guarantees made by, and responsibilities of, the applications that make up a
process; the possible interdependencies of the applications; and the various ways in which a process
might terminate prematurely even though no application has failed.

Modularity
The concept of modularity is key to process modelling. For example:

The various constituent activities that make up a given business process (or workflow model) can,
themselves, be processes. This is sometimes called recursive composition.
A particular activity may play a role in multiple processes (which may be unrelated to each other).
For example, the “credit check” activity of Process A might also be used by Process B and Process
C. This is activity reuse.
The implementation of an activity can be changed without affecting the process model itself. For
example, new business logic, reflecting a change in company policy (or perhaps a change in
algorithms), can be instituted in the “credit check” activity of a process; but the process itself
doesn’t have to be modified.

NOTE: The principle of dividing large, custom-built chunks of work into smaller general-purpose chunks
of work is well known to application developers as factoring. The goal of factoring is to promote reuse of
costly resources.

The activities that make up a process may involve public-facing Web Services, or they may be limited to
“behind-the-firewall” services running on a local app server. External trading partners may or may not be
participants, and the process can be long-running, with lots of “callbacks” into the system, or it could be
of relatively short duration (i.e., straight-through processing).

22 Process Manager User’s Guide

Example of a Simple Straight-Through Process
An example of an automated business process is shown in the following graphic.

Figure 1-2

In this scenario, a membership organization accepts member applications online. The applicant, upon
submitting HTML form data to the organization’s web site, triggers an automated process consisting of
four activities:

1 The first activity checks the application for completeness and perhaps looks in a database to see if
the applicant is already a member.

2 The second activity processes the user’s electronic payment information.
3 Once payment has been received, relevant information about the new member is entered into the

main membership database.
4 The final activity sends a personalized welcome message to the new member via e-mail.

In this admittedly simple example, any of the four component activities of the New Member Enrollment
Process might represent an automated process in its own right. One of the activities (Process Payment)
might very well rely on a Web Service offered by a business partner. Others might be local to the
application server.

Process Management and Emerging Technologies
Modelling a high-level business function in terms of tasks that can be linked together via software is a
powerful metaphor that plays well to the strengths of the Web Services model in particular and distributed
computing in general. With the advent of technologies like XML, SOAP, WSDL, and UDDI, it becomes
practical to design and deploy powerful, robust, sophisticated business applications that rely on the
coordinated efforts of smaller, task-oriented units of work that can be “wired together” without respect to
each unit’s implementation details. (Separation of interfaces from implementations is a key feature of
Web Services architectures.)

The Integration Manager Process Manager leverages many of today’s most important enterprise-
computing technologies, including:

Welcome to Integration Manager and Process Management 23

XML (eXtensible Markup Language) for data portability
SOAP (Simple Object Access Protocol) for platform-neutral handling of payloads and remote
procedure calls
WSDL (Web Services Definition Language) for describing the public interfaces to services
J2EE (Java 2 Enterprise Edition) standards, for interoperability, security, scalability, and platform
independence

In addition, Integration Manager’s Process Manager runtime engine utilizes key features of the proposed
Web Services Flow Language (WSFL) standard.

How Does a Process Differ from a Service?
Processes are dynamic, stateful systems characterized by a rules-driven flow of data between
participating activities. From an input-output point of view, a process receives input data, transforms
and/or augments that data, and produces output data, much like any other service. And in fact, if the
process is exposed as a Web Service (described by WSDL), it looks to the world like any other Web
Service.

What makes a process different from a conventional Web Service is that it ties together—and orchestrates
the flow of control and data between—relatively large units of work to accomplish a particular business
function. A process is, in this sense, a meta-service that directs the interaction of other services
(including, potentially, services that are external to the organization).

Some of the important differences between a conventional Integration Manager service and a process are
summarized in the table below (and discussed in further detail in the sections to follow).

Table 1-1:

Conventional Service Process

Short duration Long-running

Performance is important Rapid execution typically not as important

Execution depends on the
server being “up”

Processes that rely on external services
can continue executing while a server is
down

Serial execution of logic.
Relatively little reliance on
asynchronous processes

Asynchronous processing and parallel
execution of activities are commonplace

Few opportunities for
unexpected data overwrite

Multiple activity outputs can map to the
same target messages (or message
parts). Hence, overwrite is a potential
concern, and policies to deal with “who
writes where and when” must be defined
explicitly

Control-flow stoppages are
handled as exceptions

Flow may “route around” blockage points,
in some cases. In other cases,
timeout/retry policies may kick in

Data flow and control flow
are tightly coupled

Data and control are less tightly coupled

24 Process Manager User’s Guide

Large versus Small Units of Work

The units of work in a process are relatively large. (They encompass whole applications or services.)
Likewise, operations on data tend to be conducted at a coarse (rather than fine) scale, occurring at the
level of whole documents or document aggregates, rather than at the level of, say, nodes or nodesets.
Fine-scale data manipulations occur inside the activities that make up the process.

Long-Running versus Straight-Through

One key distinguishing characteristic of a process (as opposed to an ordinary application or service) is
that it is typically long-running. This means the process could have an execution time measured in hours,
days, or even weeks, due to reliance on partner interactions, scheduled batch operations, human
intervention at various levels, etc. For example, a process that obtains bids from contractors might very
well require weeks to run to completion, whereas a credit-check application is expected to execute
quickly, in real time. The credit-check task is best implemented as a discrete, standalone app: It processes
information in straight-through fashion while the caller waits for a reply. By contrast, an RFP process
involving (potentially) dozens of bidders, each with its own internal procedures and constraints,
constitutes a large-scale, long-running process, which might be difficult or impossible to implement
robustly as a monolithic, self-contained Web Service.

Wait States and Persistence

Persistence of state information is important for automated processes not only from a recovery standpoint
but for efficient use of resources. A long-running process has to be able to deal with suspensions and
resumptions of service, whether brought about administratively or through hardware downtime
(scheduled or otherwise).

Integration Manager’s Process Manager persists process-instance info to database storage, so that
processes can be put to sleep as needed and woken up again in response to appropriate events (such as the
arrival of data from a just-finished activity), thus freeing valuable RAM and CPU resources during long
waits.

NOTE: State info is persisted at every stage of process execution (not just when a process goes to
sleep), so that a server restart, for example, is not disruptive.

No “sleep” mechanism A long-running process may go to sleep
during idle periods. Over the process’s
lifetime, it may go to sleep and wake up
many times

Straightforward testing
requirements

Control-flow paths may be too numerous
to test; extensive coordination with
business partners may be required

Administration centers on
performance tuning and
configuration issues

Administration centers on lifecycle events,
status monitoring

Table 1-1: (continued)

Conventional Service Process

Welcome to Integration Manager and Process Management 25

Parallel Execution

Processes typically involve more than simple “straight-through” processing. If each task in a process
requires, say, three days to complete, a straight-through execution chain would mean that the process
could require nine days to run. This could be very inefficient if the tasks are not directly dependent on one
another. Splits and merges (parallel execution and resynchronization) are a common feature, therefore, of
process control flows.

These concepts become clearer with an example. The following figure depicts a process that relies on
parallel execution of tasks.

Figure 1-3

In this example, an incoming request (which could be a SOAP request, form data received via HTTP
POST, etc.) triggers a process instance to handle the request. Activity A performs the initial processing,
then calls two more activities (B and C) to do additional processing. The output of Activities B and C
form the input to Activity D. Finally, the latter sends output to the requester.

It’s important to note that this diagram could cover a wide range of scenarios. For example:

The request might come from inside the firewall or outside; and it could invoke the process
asynchronously, or wait for the process to return (synchronous execution).
The process might or might not be designed to send output to the original requester. The output
might actually be directed elsewhere.
Activity A might call B and/or C asynchronously, or synchronously.
The process might be designed such that if Activity B does not respond within a given timeout
period, a retry will occur.
Activities B and C could be Web Services operated by remote business partners.
Activity D might be designed to execute as soon as B or C finishes (whichever is first), or it might
be required to block until both B and C have delivered data. In the latter case, D might be required
to choose data from B or C, but not both.
Any of the four activities shown could be processes in their own right. Or they could be Web
Services, or Integration Manager components; or any combination of the above.

26 Process Manager User’s Guide

Process Management Terms and Concepts
To be productive quickly with Integration Manager’s Process Manager, it’s important that you
understand certain key terms and concepts. This section explains the terms and concepts you’ll most need
to know when working with the Process Manager.

Note that most of the process automation idioms discussed below—as implemented by Integration
Manager’s Process Manager—derive directly from the Web Services Flow Language (WSFL). For a
more rigorous explanation of key terms, consult the WSFL specification at:

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Many of the fundamental concepts behind Integration Manager’s vision of process automation stem,
also, from WSDL (the Web Services Description Language). For a detailed discussion of WSDL, see

http://www.w3.org/TR/wsdl

NOTE: The more you understand WSDL and Web Services, the easier it will be for you to understand
Integration Manager’s vision of business process automation.

Activities, Messages, and Links
Integration Manager implements processes in terms of activities and links. Activities are the units of work
that carry out the steps of the process; they may be Web Services, applications, or other processes. Links
establish the possible control-flow paths between activities. Data moves through the process model via
messages that are passed (in whole or in part) from one activity to another.

Activities

Activities represent the fundamental unit of work inside an automated process. In a Process Manager
process model, an activity can be:

A Integration Manager component
A Web Service
Another process

NOTE: The notion of a Web Service puts no restrictions on implementations. A Web Service can be
implemented in any language, on any kind of platform, as long as it has an interface that can be described
in WSDL.

In some cases, the components and services that you intend to use in a process model will have already
been deployed on your server (or might already exist on the Web somewhere). That is to say, a process
might simply “wire together” preexisting services. In other cases, you will develop components or
services from scratch in order to meet process requirements. (Obviously, you can’t test or deploy the
process until all activities have been fully implemented.)

Start Activities and End Activities

The trigger for a process provides data that can be mapped (as messages) to one or more start activities.
The final activities of a process model are said to be end activities. (There can be more than one start
activity to a workflow; and also more than one end activity.) Start and end activities are like any other
activities, except that a start activity has no incoming control link and an exit activity has no outgoing
control link.

It’s possible that some start activities might not have any outgoing control links. For example, one of a
process model’s startup activities might be a JMS messaging component (built using Integration
Manager’s JMS Connect) that sends notifications to various queues asynchronously. If no downstream
activities depend on data from the messaging activity, the messaging activity becomes both a start and an
end activity.

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Welcome to Integration Manager and Process Management 27

Tasks, Activities, and Implementations

Integration Manager’s vision of process modelling makes a subtle but important distinction between
tasks, activities, and implementations.

At the most abstract level, a task is a business function (which, in the real world, might go by a name like
“Obtain Payment History,” “Issue Purchase Order,” or “Determine Back-Order Status”). Some business
tasks are performed by humans; others are automated. Twentieth-century enterprise computing was
concerned mainly with finding ways to automate or semi-automate business tasks.

Activities carry out tasks. The word “activity” implies a task that can be realized in software, but it does
not imply anything about the actual implementation. One might know in advance what an activity’s
required inputs and outputs will be, but this simply means that the activity’s interface needs are known.
It doesn’t mean underlying implementation details are known.

Implementations of activities can take many forms. This is the key intuition behind Web Services:
Collaboration depends on interfaces, not implementations. Integration Manager’s Process Manager takes
full advantage of the Web Services model, allowing any service that has a WSDL-described interface to
be used as an activity in a process. No restrictions are put on how activities are implemented. An activity
might be a C++ program running on a business partner’s web server, or it could be a custom EJB running
on your own server, or a Integration Manager JDBC component, etc.

Messages

Activities operate on messages which, in turn, are composed of logical parts. The parts have name and
type characteristics as defined in a schema. (The types can be canonical XSD data types, or complex
types of your own, defined in custom schemas.) You can think of message parts as corresponding to the
input and output data for activities.

If you are accustomed to thinking of service inputs and outputs as XML documents or DOMs, the
message metaphor simply extends the input-doc/output-doc idiom to include the notion of collaboration
between participants. A message implies an interface—a predefined set of operations on specific kinds
of data. The key intuition is that a message, far from being a static container of data, carries with it an
implicit operational semantic arising from the fact that messages and their parts can be named and
therefore designated in operations associated with an interface.

NOTE: The concept of “data as message” is fundamental in WSDL. If you are not familiar with Web
Service Description Language concepts involving messages, message parts, types, etc., you will find it
helpful to read the WSDL spec.

The message metaphor is extremely powerful, because it is concrete enough, in practice, to allow
applications to specify their interface needs (and so make interoperability possible), yet abstract enough
to keep participants from having to know anything about their respective implementation details. This
means that applications can be developed entirely independent of one another, in different times and
places, by different programmers, yet interoperate with one another as the need arises.

28 Process Manager User’s Guide

By exploiting the message metaphor, Integration Manager’s Process Manager achieves the goal of
keeping interfaces and implementations isolated, for maximum flexibility in “wiring activities together.”

Message Parts

Integration Manager’s Process Manager “understands” the message-part semantics of WSDL-described
services, in cases where activities are associated with WSDL.

Where activities consist of regular Integration Manager components, message parts needn’t be explicitly
defined in a schema. Component Input and Output DOMs are treated (by default) as messages.

Links

Links define the allowable control-flow paths in a process model. Unless an activity is a start activity or
an end activity (see below), it will have one or more incoming links and zero or more outgoing links.

NOTE: The mere existence of a link does not mean that the link will actually be followed at runtime.
Transition-condition logic actually determines this. (See discussion to follow.)

In an operational sense, links tell the Process Manager runtime engine “what to do next” when an activity
finishes.

Links also provide a convenient metaphor for visualizing control flow between activities in a design-time
environment, since links can be drawn as lines or arrows connecting boxes or icons that represent
activities.

Sequencing, Timing, and Process-Level Logic
A process is more than just a collection of links and activities. The links in a process model are like the
roads in a highway system: They define all the possible paths that can be traversed, but not how they will
actually be traversed. In the real world, the pattern of traffic flow through a road system is affected by
traffic laws, clearance limits on overpasses, etc. Likewise, the flow of execution through a process model
is dependent on various designed-in rules and constraints that apply at runtime.

Factors that affect runtime flow patterns include:

Link-traversal logic—Rules applied at the level of link transition conditions. (See below.)
Synchronization logic—Rules that govern the triggering of activities that have more than one
incoming link. In some cases, a “join” activity will want all potential input activities to finish
executing before the join is evaluated. In other cases, the target activity may be designed to begin
executing as soon as the first input (from any incoming activity) arrives.
Retry and timeout policies—Some business interactions are required to adhere to elaborate
try/timeout/retry requirements. For example: “Query this vendor and wait a maximum of two hours
for acknowledgement. Query again, up to a total of three times.” Every activity can have (but
doesn’t have to have) a timeout/retry policy.

These and other flow control factors are discussed in the sections immediately below.

Control Flow Logic
Control flow is mediated by logic that you can apply at three key points in a process: link transition
conditions, activity exit conditions, and join conditions.

Welcome to Integration Manager and Process Management 29

Link Transition Conditions

The logic that determines whether or not a given link is actually traversed at runtime is called a transition
condition. The transition logic returns a boolean value based, typically, on inspection of the data coming
into the link. If the transition condition evaluates to true, the link is traversed; otherwise it is not.

Note that links are not required to have transition logic. By default, a link is traversed straight-through.

In the example shown previously (see Figure 1-3), the arrows between Activities constitute links. Each
link could have an associated transition condition (expressed via XPath). Data at Activity A might or
might not trigger Activity B depending on (for example) the type of data received or particular values
contained in the data.

Activity Exit Conditions

Every activity can have an exit condition. The exit condition is a logical expression that yields a boolean
value. That value signifies whether or not the associated activity completed normally. If the exit condition
evaluates to true at runtime, the outgoing link(s) can be followed. If it is false, the original activity will
be reexecuted; but outgoing links will not be followed. (If an activity has no outgoing links, there is no
exit condition.)

Join Conditions

When two or more links meet at the same target activity, logic needs to be applied in order for execution
to continue. This logic takes the form of a join condition in conjunction with a map policy.

The join condition is an expression that returns true or false based on examination of the truth values of
incoming links. (The truth value is the final value of the link condition.)

NOTE: While exit and link conditions are expressed in XPath, join conditions are specified in
straightforward fashion using AND, OR, NOT, and parentheses (for grouping).

When an activity has a join condition, the join logic is consulted to determine how to proceed. Consider
the following scenarios.

Bids have been solicited from three suppliers. Company policy requires that bids must be received
from all three suppliers before the rest of the process can be undertaken. The join condition
specifies a logical-AND between link values. This pattern is called an AND-join.
A company allows each of its employees to choose between two retirement plans. Each plan has
associated with it an activity that generates appropriate paperwork for the employee. The
paperwork contains data that will be passed to a join activity. The join condition specifies
something like:
(Plan1 AND NOT Plan2) OR (NOT Plan1 AND Plan2)

This is an exclusive-OR (i.e., XOR) join.
An activity receives input from any of several links. Any or all of the inputs can be used. This
pattern is an OR-join.

The easiest way to visualize the relationship between the various kinds of flow logic is to think of the join
condition as the “input-side” logic of an activity and the exit condition as the “output-side” logic.

30 Process Manager User’s Guide

The join condition exists for the primary purpose of implementing synchronization logic of the
OR/XOR/AND type. Data from one or more activities can be inspected and used as the basis for deciding
whether the next activity executes or doesn’t execute.

The exit condition is strictly a mechanism for determining whether the associated activity (once it
finishes executing) has produced data suitable for use by the next activity (or activities). If an exit
condition evaluates to true, it means the activity’s data output met the minimum criteria for continuation
to any outgoing links. All outgoing links will be followed if the exit condition is met. No links will be
followed if it is not met.

Transition conditions determine whether the next activity can be entered at all, using output from the
source activity. Since there is no way for a link to “know” anything about other link targets, transition
logic tends to be relatively simple (in many cases merely defaulting to true).

NOTE: Conditional branching can be implemented at the link level. See the discussion under “Branch
Logic” on page 41 in the next chapter.

Deferred Mode versus Immediate Mode
Joins can be fully synchronized (i.e., dependent on all source activities having finished executing), or
asynchronous (allowing continuation as soon as data from any input activity arrives). By default, all joins
occur in Deferred Mode, which means that all of a join’s input activities must finish before the join
condition can be evaluated. In this mode, a join condition will be evaluated exactly once.

For cases where the desired behavior is for a join activity to fire prior to the completion of all source
activities, there is Immediate Mode. In this mode, the join condition is evaluated every time a source
activity finishes. If there are multiple incoming links to a join, the join condition could be set to fire as
soon as the first “true” link is known.

Integration Manager Process Manager allows setting Deferred or Immediate Mode on an activity-by-
activity basis.

Dead Links and Synchronization Failure

If a join condition is waiting on the truth value of an incoming link, but the link’s condition is never
evaluated (because flow was halted at some upstream point), the join will hang. Consider the following
scenario:

Welcome to Integration Manager and Process Management 31

In this flow graph, a join occurs at Activity5. In Deferred Mode, the join condition will not be evaluated
until the truth conditions of Link3 and Link4 are both known. But assume that after Activity2 finishes
normally, the link condition at Link2 evaluates to false. In that case, Activity4 will never fire; and if
Activity4 never fires, Link3 will never be evaluated. (Link3 thereby becomes a dead link, and any
segment of the flow graph that depends on it constitutes a dead path.) The net result is that the join at
Activity 5 hangs.

To avoid this kind of synchronization failure, the Process Manager runtime engine performs a lookahead
any time a condition expression evaluates to false. The lookahead is conducted as follows:

Starting at the false link (or false join condition, as applicable), the engine traverses all downstream
links until either a join activity or an end activity is reached, whichever occurs first. At this point,
traversal stops.
Each link on the traversal path is set to false.
If the traversal path ends at a join, the engine determines whether the join condition can be
evaluated (based on other link truth values and the join mode); if so, it is immediately evaluated
with the incoming (dead) link having a value of false. Should the join condition then be true, the
join is considered to be “alive” and no further dead-link traversal need occur. If the join is false—
meaning that its outgoing links are dead—its status must be set to false, and the lookahead must
continue downstream from that point.

This “dead-path elimination” procedure ensures that no false condition can cause a downstream join to
hang. It is carried out automatically, as needed, by the runtime engine.

Map Policy and Data Merging
When multiple activities direct their output at a single activity, the potential exists for source activities to
overwrite each other’s data at the input to the target activity. A map policy specifies the mapping order
and overwrite policy that will be followed for resolving conflicts.

There are three policy choices:

First writer wins (FWW)—This means that the first data to be mapped into the activity’s input
template will be used as input to the join activity. Any subsequent messages cannot overwrite.
Last writer wins (LWW)—The last data to arrive are mapped without regard to how any previous
data were mapped.

32 Process Manager User’s Guide

Map Order—Data mappings will occur in a user-specified order, without regard to time-of-arrival.

See “Map Policy” on page 70 for more information.

Timeouts and Retries
An activity (whether it is part of a join or not) can have explicitly defined timeout/retry behavior. That is
to say, if the activity doesn’t produce usable output within a specified timeout period, a retry can be
attempted, up to some maximum number of retries. Retries can be repeated at a user-specified interval.

NOTE: Timeout/Retry behavior is available on a per-activity basis but is entirely optional.

Timeouts and retries are an important part of many standard business interactions and are formalized, in
some cases, by industry standards, such as the Partner Interface Processes defined by RosettaNet.
Integration Manager’s Process Designer allows timeout and retry options to be set on an activity-by-
activity basis.

Data Flow Patterns
In automated business processes, as in human-mediated ones, the flow of data is coupled to the flow of
control, but not always tightly. Some activities, for example, require data from outside the normal chain
of control; the last activity to execute might need some piece of data from the first activity that executed,
which could be many control links away. Other activities require data on the input side but have no
“output data” per se. (The “output” of the activity might be physical goods loaded onto a truck.) There
are many real-world situations in which data flow and control flow take different paths.

Integration Manager’s Process Manager allows data and control to follow their own paths, subject to one
restriction: When an activity requires data from an activity to which it is not directly linked, the source
activity must be reachable if one were to “swim upstream” (never downstream) through the control path,
as shown in the following diagram.

In the example shown above, data can flow along the path from A to C to D, and it is also permissible for
D to obtain data directly from A, because A lies on the (entirely one-way) path from A to C to D. But it
is not permissible for D to obtain data from B. (The path from B to A to C to D involves first moving
upstream from B to A, then downstream from A to C to D.)

It is not safe for D to obtain data from B, because the link topology does not ensure that B completes
before D. One of the guarantees made by control links is that any activity on the “upstream” terminus of
a link must execute before the activity on the downstream end can execute. In the above example, B
might take three days to execute, but C might execute in a matter of seconds. The only safe way to get
data from B to D is to create a control link between the two activities, thus making D a “join” activity.

allowed

Welcome to Integration Manager and Process Management 33

Without getting too heavily into the details of data propagation, it should be mentioned in passing that
data transfer (or mapping) across activities follows its own unique set of rules, distinct from the control-
flow rules that Process Designer depicts with icons and arrows. (Flow graphs created in the Designer
show control flow rather than data flow.) Data routing is easier to understand than control flow, but some
unique twists apply; see the next chapter for details.

Lifecycle Events
A process can respond to any of several lifecycle events, so-called because they affect the overall
execution of the process.

Spawn—A spawn event invokes or instantiates a process in an asynchronous mode. The spawning
agent does not want to wait (block) for the process to return, so after the process is activated the
caller expects to return to whatever it was doing as soon as the spawned process returns a set of
instance data (a “receipt”) to the caller, indicating that a unique process instance has been invoked
successfully. The caller can, if necessary, later use this data to query the process for status updates,
etc.
Call—When an entity calls a process, the caller expects to receive data back from the process in
real time (which is to say, synchronously). The call invokes the process, and the process runs to
completion before returning. The output of the process is directed back at the caller.
Suspend—A suspend stops, but does not destroy, an ongoing process. Control flow is temporarily
interrupted. This type of lifecycle event typically occurs in an administrative context.
Resume—The inverse of suspend. A process that was previously suspended continues operation.
Again, this is an event of primarily administrative importance.
Inquire—Queries a process for status information.
Terminate—Aborts a process instance.

Process Manager Architectural Layers
Processes you create using the Integration Manager Process Manager are implemented and managed at
three different levels.

Design Level: The design layer has the responsibility of managing the visual or user-interface
representation of a process. This layer lets you define activities, connect activities via links, determine
message mappings, and assign logic to transition points (links, joins, and exit conditions), using a rich set
of visual design tools. The process model that you create here becomes the basis for the metadata
representation of the process (see below) that the runtime engine uses for creating and managing process
instances.

Metadata Level: At the non-visual level, a process model is stored in metadata form as an XML
description of activities, links, input and output messages, etc. This metadata description provides all of
the information needed to instantiate the process in a runtime environment. No presentation-related
information is needed at this level.

Runtime Level: The runtime layer manages the execution of process instances. It maintains state
information, manages lifecycle events, implements timeout/retry behavior, mediates the flow of data and
control between activities, and performs housekeeping tasks involving (among other things) persistence
of instance data to a database. Administrative access to processes occurs via this layer.

The graphic below summarizes the relationship of these layers.

34 Process Manager User’s Guide

The layers drive each other from the top down (never from the bottom up). For example, the visual or
design layer drives the creation of the process’s metadata representation, but the metadata layer never
dictates a particular presentation. Likewise, the metadata layer sets the rules for the runtime layer, but the
runtime engine never modifies the metadata; the metadata constitutes a blueprint of the process.

The design-time and runtime responsibilities of the layers (and their constituents) are shown in greater
detail in the graphic below.

Notice that the process ultimately “sits on top of” and relies, for its concrete runtime implementation, on
already-deployed services and components. (Some of these could be remote Web Services.) Deploying a
process that uses prebuilt services can be likened to deploying a management framework whose sole job
is to invoke existing applications according to special rules.

Welcome to Integration Manager and Process Management 35

Existing applications might play roles in any number of processes. For example, there might be a Process
A that uses Activities X, Y, and Z; and a Process B that uses Activities X, Z, and Q. If Activity Z is a Web
Service with a public URI, it might actually play a role in a remote process in use at another company.

The plug-and-play nature of Web Services brings great power and flexibility to process management and
is key to understanding how to use Integration Manager’s Process Manager effectively.

Process Manager FAQ
By now, you are probably starting to have many questions about the ways in which processes can be
modelled using Integration Manager’s Process Manager and what the limitations are, if any, on process
design. The answers to many questions will become clearer in subsequent chapters, but for now, here are
a few quick answers to Frequently Asked Questions.

Can I Create or Edit Integration Manager Components within Process Manager?
Yes. The Process Manager design-time editor runs entirely within Integration Manager. You can have
multiple components, services, and processes open at the same time and switch between windows freely.
In fact, in animation mode, you can step over and into process activities, and if a given activity’s
underlying implementation was built in Integration Manager, you can step into the activity-
implementation’s action model and step through it before returning to the process itself. You have the
ability to debug action models and process models all in the same environment.

Can I Begin Designing a Process Even if Some Activities Have not Yet Been
Implemented?

Yes. You can put placeholder activity icons on the process canvas and name them, draw links between
them, etc., arbitrarily. To perform useful message-part mappings, of course, you will need to designate
actual components or services for each activity, but even then, the components do not have to be
completely built. If an activity is a Web Service, its mappings can be specified in the process model even
before the service is built, so long as WSDL exists for the service.

Can I Run a Process in the Design-Time Environment for Test Purposes?
Yes. You can run a process within Integration Manager, in animation mode, much the same way that you
would execute a Integration Manager Component in animation mode. This is a unique capability among
workflow and process automation tools. In other workflow products, you may be able to create a
“skeleton” process fairly quickly, but you usually cannot implement activity-layer functionality without
leaving the design-time environment to do low-level programming; and when the activity layer has been
implemented, you generally can’t test it in the original design environment. With Integration Manager
Process Manager, you can design, test, and debug activities as well as processes without leaving the
design environment, dramatically shortening the development cycle.

Is It Possible to Import WSFL Flow Models Created in Another Environment?
No. Integration Manager’s Process Manager is not designed to import workflow models from other
sources. WSFL is too immature a specification at this point to provide all the functionality required by
users, and it’s unlikely, therefore, that two vendors would implement two WSFL solutions in a
compatible manner. In addition, the presentation (graphing) layer of Integration Manager Process
Manager is not directly driven by the metadata layer; in other words, no particular graphical
representation of a process is inherent in a WSFL metadata model, and the Process Designer would not
have any a priori notion of how to display your graph.

36 Process Manager User’s Guide

Can I Edit My Process-Model Metadata in an XML Editor?
You should never have to hand-edit the metadata descriptions of process models produced by Integration
Manager’s Process Manager. Direct editing of the metadata is not recommended.

Does Process Manager Support Parallel Split, Exclusive Choice, and other Branching
Constructs?

Yes. By allowing the designer to place boolean logic on the entry and exit sides of activities (in join and
exit conditions) as well as on individual links, WSFL is able to accommodate arbitrarily complex flow
patterns without having to define special-purpose constructs. So the short answer is that Integration
Manager Process Manager (following WSFL’s lead) does not define special branch or join flow
primitives. But you can easily achieve any desired branch/join behavior by means of appropriate
transition conditions.

Does Process Manager Support Looping?
Yes, although backwards-facing links are not allowed. Links that connect downstream activities to source
activities produce what’s called a cyclic graph, which is not supported by WSFL because of the potential
for reentrancy-related problems. (These problems are discussed more fully in the next chapter, along with
the looping constructs actually supported by Process Manager.)

Can I Use the Process Manager for Document Routing and User Agent Functionality?
Queue-based workflows with human-facing activities can be created using Process Manager (see the
“Advanced Topics” chapter). The concepts of queues containing work items, work-item priority,
addressees (individuals) with roles, timeouts, locks, and administrative control over and browsing of
queues are all supported by Process Manager. Also, the various actions that support these features are
available for use across all component types (and all Component Editors) in Integration Manager.

Will Automated Processes Put Huge Demands on My System?
No. The load and performance characteristics of a system running processes under Integration Manager’s
Process Server are determined by the activities that make up the process. The Process Server itself incurs
very little processing overhead because one instance of the Process Server controls any number of
running processes. Also, since processes are typically long-running, it’s usually the case that most of the
pieces of an in-progress process instance spend the majority of their time in a sleep state. During these
waiting periods, activities exist in persistent storage so that they do not actually consume CPU cycles.

Can I Start and Stop a Server While a Process is Running?
Yes, because process state information is persisted for each process instance on an ongoing basis. Also,
processes are generally long-running and spend most of their time asleep. Suspension of a running
process instance is supported by WSFL and by Process Manager. You can suspend any process at any
time via the Process Server Console.

Must All Activities Be Implemented as Web Services?
No. Your activities can take the form of Integration Manager Components or Web Services.

Must Processes be Exposed as Web Services?
No. They can be, but they don’t have to be.

Preparing to Model a Process 37

2 Preparing to Model a Process

This chapter attempts to make the abstract concepts of Chapter 1 more concrete by, first of all, examining
runtime flow mechanics (as implemented by the Integration Manager Process Server), then by showing
how various use cases and design patterns can be implemented in Process Designer.

Process Server Execution Model
An understanding of the Process Server’s basic execution algorithm in fundamental to understanding
how to design a process.

The Process Server (or runtime engine) executes a process instance in the following manner.

1 If the process was called asynchronously via a Spawn event, the Process server—upon instantiating
a new process—returns a ProcessID (a “return receipt”) to the caller immediately. Otherwise, if the
process was invoked with a Call, it is assumed that the caller will block until the process finishes.

2 The Process Server determines which of the process model’s activities constitute start activities.
3 The input data to the process (one or more message parts) are mapped to the start activities.
4 Start activities are invoked.
5 Whenever any activity (whether it is a start activity or not) finishes, the Process Server consults the

exit condition of the activity and evaluates the associated XPath expression. If the exit condition
evaluates to false, the activity is executed again (with the same input as before). Execution repeats
until a timeout occurs, or the exit condition is true, whichever occurs first. See diagram below.

38 Process Manager User’s Guide

6 If the exit condition of a completed activity is true, the Process Server determines which control
links (if any) are connected to the outbound side of the activity, and the transition conditions of
those control links are evaluated.

7 Data is mapped to the next activity (or activities).
8 For each control link whose transition condition was true, the Process Server evaluates the join

condition of the link target. This evaluation takes place once, after all link conditions have been
evaluated, if the join is in Deferred Mode (the default). If the join mode is Immediate, the join
condition is evaluated multiple times: once each time a link’s truth value has been computed. (In
others words, as soon as a link condition has been evaluated—if even if the value is false—the
engine will evaluate the join condition.)

9 If the join condition evaluates to true, the target activity fires; otherwise it does not.
NOTE: Regardless of synchronization mode (Immediate/Deferred), the target of a join will not fire
until and unless the join condition is, at some point, true.

10 When the target activity of any link has finished executing, the cycle begins again at Step 5 above.
Execution continues until there is nothing to do (i.e., the truth values of all end-activity exit
conditions are known).

The following graphic shows typical process-startup mechanics for a process instance that has been
invoked via spawn. (That is, the caller has elected to invoke the process in a “fire and forget” manner.)

Preparing to Model a Process 39

The Design-Time View
The runtime engine needs to know which activities a given process model will use, how they are linked
together, what the data mappings are between them, etc. All of this information must be specified at
design time in a process graph. You will use the Process Design to do this.

The Process Designer is a visual editing environment for creating graphical representations of processes,
and for specifying data relationships between activities in a process. The tools that allow you to do this
involve a combination of point-and-click layout tools plus text-based property sheets, which operate like
non-modal dialogs. In addition to these GUI features (which are unique to the Process Designer), you
have Integration Manager’s standard menu commands, navigator frame, multi-document content frame,
and output frame, just as you’d use when creating Integration Manager components and services. In other
words, the Process Designer runs entirely within Integration Manager.

The Process Designer view of a simple two-activity process looks like:

The activity icons, in this case, represent Integration Manager Components. A link connects the two
activities. The fact that the link icon is diamond-shaped means a custom transition condition has been
specified for the link. (Links without custom conditions have no diamond icon and just show the word
“Link”.)

We say that Activity1, in this diagram, is the Source Activity, whereas Activity2 is the Target Activity.

40 Process Manager User’s Guide

Just looking at this graph, it’s not apparent whether Activity1 has a custom exit condition; whether a retry
protocol applies to either activity; whether a mapping policy (such as Last Writer Wins) applies on the
input to Activity2; and so on—to say nothing of how message parts are actually mapped from one activity
to the other. The graph depicts control-flow relationships in a clear, direct, intuitive fashion, yet seems to
hide data-related information.

Data-link information is available via a non-modal (and dockable) Object Properties palette containing
tabs for component-, message-, and UI-based information, as shown below.

Notice that in this graph, Activity1 has focus (as indicated by the handles around its periphery), and
therefore the Object Properties panel (or “property sheet”) displays information appropriate to Activity1.
If one were to give Activity2 focus (by clicking on it with the mouse), the Object Properties panel would
update to show information specific to that activity. Likewise, clicking on Link1 would cause the panel
to show information specific to the link. These panel updates happen in real time, automatically, so that
information is available for any graph element at any time. The information is not simply read-only,
however. The fields in the Object Properties panel are where you specify data-related and activity-level
attribute values.

In the Component tab (shown here), you can view activity-level information: the activity name and type,
the type of Component (in this case, a Web Service), the Component’s name, its Exit and Join conditions
(if any), retry information, and map policy. Some of these values can be set using dropdown menus
already populated with correct choices, as shown above. Others are text fields where you can type values
directly into the panel.

By clicking on the Messages tab, you can view data-related information for the activity that has focus.

The top part of this panel shows the process-specific name for the activity’s input and output messages as
well as the concrete Type and Message descriptions given in the WSDL for the service (i.e., the activity’s
implementation). In other words, the Type and Message fields are automatically filled out with values
taken from the WSDL portType segment.

Preparing to Model a Process 41

The lower part of the panel is where you can specify exactly which Source message parts map to which
Target message parts (using XPath). The above graphic applies to Activity2 in the previous flow graph
and shows how input to Activity2 will be composed. The Source XPath, in this case, specifies that the
Output message part from Activity1 will be mapped directly to Activity2’s Input part. This means that
when Activity2 fires, it will use as its input the Activity1 output. Obviously, this is a simple case. There
could potentially be many intricate XPath mappings from Activity1’s output message parts to Activity2’s
input parts.

The Object Properties panel will be discussed in greater detail later. For now, it’s enough that you know
that the Object Properties panel is where you can specify:

Activity name
Activity type (Web Service Send, Web Service Receive, Integration Manager Component,
Subprocess, or Synchronize Subprocesses)
Exit condition for the activity
Join condition for triggering the activity
Timeout and retry settings
Map policy (or overwrite policy) for situations where data from multiple incoming sources map to
the same target message part(s)
XPath-to-XPath mappings of data from source message parts to target message parts

Flow Control Strategies
Because the WSFL model attempts to “granulate” flow logic at the level of links and joins (rather than
aggregating flow decision-making into higher-level constructs like “XOR-split”), it’s not always obvious
how one can specify conditional branches and other common control-flow patterns using a WSFL-based
approach (as followed by Integration Manager Process Manager). Nevertheless, it is possible to model
virtually any kind of flow logic you can imagine using the Integration Manager Process Designer.

This section looks at some of the more common flow idioms and how they can be implemented with the
Process Designer.

Branch Logic
Many workflow experts are accustomed to thinking in terms of branch logic as well as join logic. We will
consider branching patterns in this section and join patterns in the next.

Conditional Branch (XOR-Split)

WSFL has no built-in notion of conditional branching per se, which means activities cannot, on their
own, decide which link(s) to use when there is more than one link on the outbound side of an activity.
Instead, the decision of which link to follow is determined by the links themselves. But no individual link
can “know” what the transition conditions of other, parallel links might be. A link can only decide
whether its path should be followed, based on the output of the previous activity.

Nevertheless, this flow-constraint mechanism is sufficient to model a conditional branch. For example:

42 Process Manager User’s Guide

In this scenario, Activity1 produces output containing bid information from a company. The link
condition at A says that link A will be followed if /Bid is less than 1000. The condition at B says that link
B will be followed if /Bid is greater than or equal to 1000. Clearly, if one link is followed, the other one
will not be; so this represents an exclusive-OR split (or XOR split)—a conditional branch.

AND Split

The AND-split case (where every outgoing link is always followed) represents default behavior in
Process Manager models.

An AND split, as defined here, is the case where every outgoing link will fire its target activity. This just
means that every link has a value of true.

Non-Exclusive OR Split

There may be cases where an activity with multiple outgoing links could (depending on the output data)
fire any number of target activities. For example, “Fire Activity 1 if such-and-so is true; also Fire Activity
2 if this-and-such is true; also Fire Activity 3 if so-and-so is true.” The number of activities that might
actually fire at runtime could be zero, one, two, or three.

Again, this case is easily handled by distributed link logic. Every link can “look at” the source activity’s
output and apply suitable XPath logic in order to arrive at a decision of whether to fire/not fire. In the end,
the appropriate number of target activities fire.

Compound Branch Logic

It’s possible to combine the above patterns to handle complex cases such as “Traverse links A, B, and C
always, but traverse D conditionally and traverse E only if D wasn’t followed.” To implement the case
just stated, you would:

Hard-wire links A, B, and C to true.
Set a condition on D (using suitable XPath) of “if this node value is exactly such-and-such, fire the
target activity.”
Set a condition on E of “if [the same node that was tested in D] isn’t exactly such-and-such, fire the
target.”

In pseudocode, the net result (in terms of the links that will fire their target activities) is:

(A AND B AND C) AND (D OR E)

Other complex cases are possible as well. But before getting involved too deeply in compound branching
strategies, it’s important to step back and understand why such complex constructions are best avoided
altogether.

Preparing to Model a Process 43

In programming, complexity is a sign that a procedure or a block of code needs to be factored into smaller
logical units. In Java code, conditionals involving many ANDs and ORs chained together are rare,
because usually the desired actions can be carried out in a single switch/case block or a series of if/elses
with simple conditions. If data dependencies are too complex to allow this, the dependencies themselves
need to be broken out in such a way that the logic can be made simple. Data entanglements shouldn’t be
allowed to dictate tangled logic.

U.S. income-tax law provides many good examples of tangled logic involving complex data
dependencies. The Internal Revenue Service must nevertheless produce tax forms that mere human
beings can fill out correctly every year. They do this by, first of all, factoring out major dependencies into
subject groupings, each with its own dedicated form (or “Schedule”). Within each form, there are major
subdivisions (parts) that group calculations. The major parts are broken down, finally, into simple if/else
statements. Some of the if/else statements point to other Schedules that must be completed before the
if/else can be evaluated. (Each of those Schedules is a series of if/else statements grouped into parts.)
Obviously, each tax form could, in theory, present all of its if/else logic in a single compound expression
at the top of the form. But such a single-statement procedure wouldn’t be human-readable.

Complex branch requirements should be a signal to you that the model you’re creating needs to be
factored into simpler logical units.

Join Logic
Link logic determines whether a target activity can be fired; not whether it actually will fire. The final
decision as to whether an activity fires rests with the join condition.

In Deferred Mode (the default), no join condition can be evaluated—and therefore no join activity can be
fired—until the truth value of every one of the activity’s incoming links is known. When all link values
are known, the join condition is evaluated. Only if the join condition is true can the target activity then
fire.

In Immediate Mode, the join condition is evaluated every time a link’s truth value is determined by the
runtime engine. So if there are four inbound links to a target activity, it is possible that the activity’s join
condition will be evaluated four separate times. As soon as it is clear that the join condition is true (and
can’t change), the target activity is invoked.

NOTE: As explained in the previous chapter, join logic is the only logic touchpoint in the process model
where XPath is not used. Links and exit conditions have access to upstream data and base their decision-
making on XPath evaluations. The join condition knows only the truth values of incoming links; it does not
use XPath and is not data-driven.

A join condition tends to look something like:

(Link1 OR Link2)

This is a simple non-exclusive OR condition. It means the join is true if one link or both links are true.

An exclusive-OR condition (i.e., the condition is true if one and only one link is true) would look like:

(Link1 AND NOT Link2) OR (NOT Link1 AND Link2)

In this case, either link could fire the activity, but if both links were true the activity would not fire. For
this condition to work as intended, the join mode would have to be Deferred.

You can think of join conditions as a mechanism for deciding how many (and which precise
combinations of) link values it takes to fire a target activity. This is important, because links have no way
of knowing whether other (sibling) links exist, or which siblings evaluated to true. This knowledge exists
only at the join.

44 Process Manager User’s Guide

Looping
On occasion, you may find that you want to iterate on a given activity until a certain condition is met. For
example, you may have some kind of batch operation to do. Your normal inclination might be to draw a
link from a target back to one of its sources. But this kind of control flow (reentrant flow) is not allowed
in WSFL, nor in the Process Designer. If you attempt to create a cyclic graph, you will see the following
alert:

Iteration of an activity must be done by the implementation of the activity (or by the implementation of
the calling activity) rather than at the process-logic level.

The reason looping is not allowed in a process model is that it opens the door to any number of ill-defined
situations that would be difficult to manage. For example, consider the control-flow graph shown below,
which has a loop-link from D back to B. The runtime engine must make some difficult decisions:

B is a join node with input from two activities: A and D. In Deferred Mode, B must wait for both
incoming links to have truth values before its join condition can evaluate. But since D requires the
prior execution of B and C, it can’t execute unless D executes. The model hangs while B waits for
D to execute. The join at B would only work in Immediate mode.
C will execute multiple times as part of the B-C-D loop. Each time it executes, the link from C to E
is followed (in addition to the C-to-D link) and E will fire repeatedly if its link evaluates to true.
Therefore E can unintentionally become part of the loop. To avoid this, the link logic for E’s input
link would have to “know” about the iteration status of the loop.
If E is executed multiple times, it might trigger G multiple times; therefore, G also has to know
about the loop. (And so on, for all activities downstream of E.)
If the loop makes it back to C while before E returns from its first invocation, should a new instance
of E be spawned?
When D executes each time through the loop, should it fire F on every cycle?

Even if these issues were resolved, the prospect of testing (then debugging) a model of the above sort
could be daunting.

Preparing to Model a Process 45

How Safe Looping Can Be Accomplished
A number of looping paradigms are possible in Process Manager. Some rely on WSFL’s inherent retry-
on-false-exit-condition mechanism; others delegate looping to activity implementations; and there is a
special Process Manager activity to help with asynchronous fan-outs.

Mapping an Activity to Itself

While Process Manager does not permit control links to be used for looping, it does allow you to
designate an activity’s output as the data source to use for input in the event of a retry. This affords a type
of looping, since standard WSFL and Process Manager behavior is to try an activity whenever the
activity’s exit condition is false. By mapping output back to input, the activity can loop on its own output
as needed, until an exit condition of true is reached, at which point the looping stops and control proceeds
down outgoing links. Diagrammatically, the scenario can be represented this way:

Activity2 has an input message named Activity2InOut and an output message of the same name. If
Activity2 exits with an exit condition of false, it reexecutes using Activity2InOut. But Activity2InOut’s
data was modified on the initial execution of the activity as part of a loop. (Perhaps new info from a
database lookup was appended to the Data doc.) In any case, the exit condition on Activity2 might be an
XPath expression that inspects a flag value in the output DOM. The flag value would signal the need
either to iterate again or break out of the loop.

To implement this kind of mapping requires that you give the loop activity’s output and input messages
the same name, as shown here:

Same name

46 Process Manager User’s Guide

On the first invocation of Activity2, Activity2InOut gets populated with data from
Activity1Output/Output. When Activity2 reexecutes due to a false exit condition, Activity2InOut (already
populated with data) simply gets fed back in to the activity.

NOTE: When setting up this kind of mapping, do not forget to apply an exit condition (one that will
successfully terminate the loop) to the loop activity. Otherwise, an infinite loop can result.

Iterating Against an External Data Store

The type of looping described above is useful when an output document containing loop results needs to
be built incrementally, with new data added to output on each trip through the loop. But there are also
times when work items merely need to be pulled off a queue and processed one at a time (one work item
per trip through the loop), with no consolidation, per se, of data for a final output doc.

Imagine that a process has a start activity that produces, as output, a batch of work items. Each item needs
to be processed individually by a given application designed for the purpose. This means the processing
application must be invoked multiple times (once per work item). A possible process model is shown
below.

In this scenario, Activities 2 and 3 are Integration Manager JMS Components, but they could also be
JDBC Components using a database instead of a queue; the concept can be adapted to other external
stores as well. The idea is that Activity2 receives a batch of data (packaged as a WSDL message) as input.
Activity2 unbundles (and possibly performs some kind of preprocessing on) the input. It also pushes
every work item onto a message queue. Activity3 will inspect that queue.

In this example, the output from Activity2 contains a JMSDestination (in an element inside a message
part) representing the location of the queue that Activity3 should operate against. No “work-item count”
need be passed to Activity3. (Activity3 has been designed simply to fetch and process one work item.)

Activity3 does the following:

1 It executes exactly one JMS Receive action. The action either succeeds in pulling a waiting
message off the queue or finds that the queue is empty.

2 If a message is successfully pulled off the queue, its data is processed and the activity exits with an
exit condition of false, so that it executes again.

3 If no message was available (i.e., the JMSMessageID came back empty), the activity exits with
condition of true.

Preparing to Model a Process 47

The exit condition for Activity3 is based on whether the JMS Receive succeeded. If a message was
processed, the exit is false so that Activity3 executes again. If no message was processed (i.e., the activity
had nothing to do, because the queue was empty), the condition is true and Activity3 passes control to the
next activity in the process flow.

This pattern does not involve a cyclic graph and does not violate WSFL’s restriction against backward
links, because there is no control link that “points the wrong way”—no reentrancy. Repeated execution
of Activity3 occurs because its exit condition is false until a certain criterion is met. The arrows labelled
“JMS Send” and “JMS Receive” represent data flow outside the process model. The data do not enter into
any message maps.

Delegating Loop Behavior to an Activity Implementation

An alternative to the foregoing strategy is to hide loop behavior within an activity’s implementation. For
example, you could create a Integration Manager service that uses Execute Component and Repeat While
actions to call a given component repeatedly in a while loop. This strategy does not require the Process
Server to manage any aspect of loop iteration.

The flow graph is the same as before except that the Integration Manager Component called
InventoryLookup is called not by the process engine but by the action model of Activity2, as shown
above.

Fan-Out

Rather than processing work items one at a time, you might find it advantageous to process them in
parallel. Concurrent processing often results in significant performance gains.

The spawning of multiple concurrent processes is called a fan-out. The design pattern looks like this:

48 Process Manager User’s Guide

The Fan-Out Activity, on receiving a batch of work, unbundles the work items and spawns multiple
instances of the appropriate target subprocess: one instance per work item. The subprocess might be
called something like “DetermineQuantityOnHand” and the batch might be a collection of SKU
numbers. One instance of DetermineQuantityOnHand is created for each SKU number.

Every subprocess instance is invoked via the WSFL-defined spawn mechanism, which means each
instance runs in its own thread: i.e., parallel instances execute concurrently and finish whenever they
happen to finish.

For this scenario to work, there has to be a “Fan-In” activity that collects output from every subprocess
instance and waits until all instances are finished before passing control to the next activity in the process
graph. The activity that does this is shown as the Consolidator activity in the above diagram.

As each subprocess instance finishes, it hands data to the merge component, which collects that data and
merges it (typically) into one final document. When all subprocess instances have been accounted for, the
merge component’s exit condition becomes true and control passes to the next point in the graph.

There are two problems with implementing this pattern in a flow graph. The first is that WSFL provides
no native mechanism for creating arbitrary numbers of outbound links at runtime. The second is that,
even supposing that links could be created in quantities known only at runtime, there is no native
provision for specifying the kind of late-binding join logic that would be needed to handle the
synchronization.

Fortunately, these problems can be overcome.

Component-Controlled Fan-Out/Fan-In

One strategy is to hide the fan-out in a component’s implementation. Imagine that a component’s action
model contains a Repeat While loop that iterates over a batch, calling a Process Execute action on each
work item. By specifying an execution method of “spawn” in the Process Execute action, every process
is launched in its own thread, in fire-and-forget manner. The workhorse process instances (the “fanee
processes”) can be designed in such a way that they post their results to a database, JMS message queue,
or other external store. Synchronization would be handled by a second component (a “consolidator”).
The “sync component” could follow either a listener metaphor or a periodic-polling metaphor. If the
latter pattern is used, polling could take place in a continuous loop, or (less CPU-intensively) on a timed
basis, where the component sleeps between data queries. The listener metaphor, on the other hand, can
readily be implemented using a JMS Service.

Preparing to Model a Process 49

Recursive Fan-Out/Fan-In

Fan-outs can be modelled in WSFL using a recursive graph. That is, a fan-out can be modelled as a
process that calls itself until a suitable number of “fanee” activities has been invoked (at which point the
results are accumulated via joins). Diagrammatically, a recursive fan-out process might look like this:

The algorithm can be summarized as:

1 Take in a batch of work. If the “batch” contains more than one work item, split it into two smaller
batches (that is, traverse Link5 shown above) and fire new instances of ourselves using the smaller
batches as input. (That is, traverse Link3 and Link4 and fire two new instances of DoBatch.) This
recursive invocation of new instances of DoBatch continues until incoming batches are no longer
splittable.

2 If an incoming batch contains exactly one work item, traverse Link1. The target of Link1 is the
component (ProcessWorkItem) that actually processes the work item.

3 The output of the ProcessWorkItem activity is handed to OutputBatch, which does any required
post-processing and returns.

4 When a recursively called DoBatch instance returns, it traverses its outgoing link (Link6 or Link7,
whichever applies). A deferred join then occurs at MergeBatch.

5 The MergeBatch component accumulates data arriving from Link6 and Link7 into one output
message, which is sent to OutputBatch. The return/merge/return/merge cycle continues until every
processed work item has been accumulated into one consolidated message (document).

6 Finally, the topmost instance of DoBatch returns the consolidated document.

50 Process Manager User’s Guide

Note that the link logic at the top of the graph effectively makes the split coming out of TakeInBatch an
exclusive-OR split. (This also has the effect of making Link2 and Link8 mutually exclusive.) The
algorithm is basically one of “split or work.” The ProcessWorkItem activity is not hit until the batch has
been split into individual work items (at which point a corresponding number of instances of
ProcessWorkItem fire up). The output docs are merged two-by-two, then four-by-four, etc., until the final
output of the process is one consolidated document.

This is an example of a well-factored design that uses simple, discrete operations to accomplish a
dynamically sized task. The flow can be diagrammed explicitly using ordinary WSFL constructs and
hides nothing (other than business logic) in activity-level implementations. All data travels through
ordinary data links (no special “off the graph” communication through external stores); all processing is
concurrent; and all joins are synchronous.

Synchronize Subprocesses Activity

One of the native Activity types in Integration Manager Process Manager is a specialized activity called
Synchronize Subprocesses. This activity exists in order to provide “fan-in” capability (synchronization
and consolidation of returns from asynchronous subprocesses).

A graph that uses the Synchronize Subprocesses activity will implement the following pattern:

Activity1 is a Integration Manager Component that performs a fan-out by spawning multiple subprocess
instances inside a Repeat While loop, as part of the component’s implementation. (This can be done via
the Process Execute action, which has spawn as well as call modes.) Activity1 constitutes the fan-out.
Activity2, the Synchronize Subprocesses activity (which has its own distinct icon), constitutes the fan-in.

When a subprocess is invoked via spawn, the Process Server returns a Flow Instance ID to the caller.
Activity1 collects Flow Instance IDs for each subprocess that it invokes and passes the list of IDs to the
Synchronize Subprocesses activity.

The Synchronize Subprocesses activity’s implementation consists of a Integration Manager XML Map,
JDBC, or other Component. This component receives, as input, the list of Flow Instance IDs mentioned
above, plus a collation document. The latter is used at runtime to accumulate data returned by “fanee”
subprocesses. The Process Server mechanics for this are described in a later chapter, but the key notion
is that the fan-in component is notified (called by the runtime engine) each time a fanee returns, and the
associated work-item data is added to the collation doc. When every fanee is accounted for, the
component exits with a condition of true and its output (a completed batch of work) is mapped forward
to the next activity or activities in the model.

Preparing to Model a Process 51

Process Architecture in Review
Below is a brief recap of key concepts. You should keep these concepts in mind as you create models in
Process Designer.

Activities can be of five types:

Integration Manager Component
Subprocess
Web Service Receive
Web Service Send
Synchronize Subprocesses

There are two flavors of Web Service activity. The Web Service Send type handles WSDL Solicit-
Response and Notify patterns, whereas the Web Service Receive type handles WSDL Request-Response
and One-Way operations.

Synchronize Subprocesses is a specialized type of activity (unique to Process Manager) that provides for
synchronization of fan-outs.

A Subprocess is simply any Integration Manager process that is being used as an activity inside a larger
process. The use of processes as activities makes possible hierarchical modelling of business workflows.

A process model can coordinate the flow of data and control between a heterogeneous mix of local and
offsite applications (including Web Services administered by business partners).

A Start Activity has no inbound links. An End Activity has no outgoing links. All other activities have
one or more incoming links and zero or more outgoing links.

Data dependencies between activities are implemented by means of data links. In Process Designer, data
links are not drawn by the user; they are created automatically when you map one activity’s output
message part(s) to another activity’s input message part(s).

Time-order dependencies between activities are enforced by means of control links. A control link
connects a source activity to a target activity. The link guarantees that the target cannot execute before the
source does. A corollary of this is that cyclic graph patterns (where downstream activities have links
pointing to upstream activities) is not allowed.

Synchronization of work is accomplished through joins.

Conditional flow of data is under the control of link logic (transition conditions).

Conditional triggering of an activity based on the completion of “feeder” activities is under the control of
join logic (join conditions). In Deferred Mode, the join condition is not evaluated until the truth values of
all incoming links are known. In Immediate Mode, the join condition evaluates every time a source link
evaluates.

Data-overwrites can be controlled through the use of map policies (in cases where two source activities
might target the same XPath location in the input to the next activity). The policy can be Last Writer Wins
(arrival-order overwrite), First Writer Wins (first mapping is permanent; late data is ignored), and literal
map-order.

Retry behavior is under the control of activity exit conditions and/or timeout values. If an exit condition
is false, the activity reexecutes using the original input. The activity keeps reexecuting until the exit
condition is true or a timeout occurs, whichever comes first.

Link and exit conditions must be specified using XPath. Join conditions cannot use XPath; they are
specified via boolean expressions involving link truth values.

The Process Server is the runtime engine that manages the execution of process instances. It persists state
information, instance data, etc. at all points in a process’s life cycle.

Processes can be monitored and administered (suspended, resumed, etc.) via the Process Server Console.

52 Process Manager User’s Guide

WSFL defines (and Process Manager supports) lifecycle events spawn, call, suspend, resume, enquire,
and terminate.

Suspend, resume, and terminate events can be controlled administratively via the Process Server
Console. The enquire event (meant for status queries) is not labelled as such in the console; rather,
complete status information is displayed in a Process Status view, available at any time. Spawn and call
are under the control of a process’s initiator, which might be a SOAP server responding to a request, a
component that has executed a Process Execute action, etc.

Taking a Best-Practices Approach
The key feature of a WSFL-based process model is its reliance on units of work that know nothing about
each other’s implementation details, yet can interact cooperatively based on known interfaces. In this
type of system, the units of work (activities) have no knowledge of—and should need no knowledge of—
the context in which they are being used. Everything an activity needs to know is contained in the input
message to the activity.

A good process model leverages this principle of separation of interfaces from implementations. This not
only makes for efficient code reuse but opens the door to interoperability across technologies, platforms,
partners, etc. It also greatly eases troubleshooting, testing, and maintenance.

Characteristics of a well-designed process model include:

A well-factored activity layer. No single activity tries to “do too much.” No activity is monolithic in
functional requirements.
Every activity has been designed to run standalone, with no special knowledge of its neighbor
activities.
Every activity has clear-cut data-input needs and correspondingly clear data-output responsibilities.
Activity-to-activity data dependencies are explicitly described in message mappings.
Business logic is completely hidden inside activity implementations. No business logic is attempted
in any message maps.
NOTE: Message mappings between activities should exhibit coarse granularity. Element-level
transformations of the underlying XML (i.e., fine-granularity document manipulation) should be done
inside activity implementations, not in the process model.

The flow graph is easy to read and comprehend. If a graph starts to grow beyond a handful
activities or joins, consider factoring out related activities into subprocesses. A model with dozens
of splits, joins, activities, etc., may be extremely difficult to test or debug, whereas if the same
model can be factored into three or four subprocesses, each with only three or four activities, the
subprocesses can very likely be tested standalone, then combined into a final, unified model that is
robust.

Creating and Testing Processes 53

3 Creating and Testing Processes

In this chapter, we’ll take a look at how to construct a process, specify data mappings, apply logic to links,
control joins, and animate (step through or execute) a process in the design-time environment.

If this is your first time using the Process Designer, you should read this chapter before building your first
process.

Example: A Simple Straight-Through Process
So that you can see how quickly a process model can be built and tested using the Integration Manager
Process Designer, we’ll go step-by-step through the construction of a simple straight-through process, as
represented by the graph shown below:

Description
The ProductInquiryProcess model handles a request for product information. The input to the process is
an XML DOM containing a SKU (product ID) number. The output of the process is an XML DOM
containing detailed information about the product in question. The needed product information is pulled
from two sources (two databases) via JDBC.

Our process uses four activities, all of them Integration Manager Components. The roles and
responsibilities of the activities are as follows:

AcceptInquiry (XML Map Component)—Takes in an input DOM containing SKU information and
simply writes that information straight to an output DOM, along with a tracking number.

54 Process Manager User’s Guide

InventoryLookup (JDBC Component)—Using the output of AcceptInquiry, this component performs
a database lookup against an inventory control system to obtain Category and Status information about
the product whose SKU number was passed in.

ProductLookup (JDBC Component)—Using the output of AcceptInquiry, this component performs a
database lookup against a marketing database to obtain detailed product info, including price, color, text
description, and so on.

MergeProductAndInventory (XML Map Component)—This component merges the incoming data
from the two JDBC components. Its output constitutes the overall process output.

NOTE: If you are familiar with the Integration Manager Tutorial, the above components (except for
AcceptInquiry, which is specific to this process) are the same ones that are used in the Integration
Manager Tutorial.

Process-Building Basics
Until you have gained familiarity with the Process Designer, we recommend that you construct your first
process models following the steps shown below.

To create a Process Model:

1 Create the new, blank process graph.
2 Optionally, create any Service Provider or Service Provider Type resources you may need.
3 Create and position all activity icons.
4 Connect the activities with links.
5 Create the message mappings between activities.
6 Specify any link conditions that might apply at various points in the process.
7 Specify any exit conditions that might apply.
8 Specify any join conditions that might apply.
9 Set any other attributes (Timeout/Retry values, Map Policy, etc.) that might apply to any activity in

the process model.
10 Build, test, and debug all individual activity implementations (that is, the underlying Integration

Manager Components, Web Services, or Subprocesses that constitute the executables for the
activities), if you have not already done so.

11 Finally, test the model.

Creating a New Process
If you have created Integration Manager Components and Services before, you will find the procedure
for creating a new process quite familiar.

To create a new process:

1 Launch Integration Manager, if it is not already running.
2 From the File menu, select New> xObject, then open the Process/Service tab, as shown below,

and select Process.

Creating and Testing Processes 55

A dialog appears, prompting you for a process name.

3 Enter a Name for the process. Optionally enter any additional descriptive info that you want to
associate with this process.

4 :Click Next. A new dialog appears.

5 As an aid to the design-time testing of your process, add whatever XML Templates you would like
to use for process inputs and output. (These documents will not actually be used after deployment
of the process to a server. They are design-time aids only.)

56 Process Manager User’s Guide

NOTE: XML Templates are used by almost every component type in Integration Manager. If you
are not familiar with the creation and use of templates, consult the chapter on XML Templates in the
Novell Integration Manager User’s Guide.

Usually, the template(s) you would specify here would be identical to the ones used by the start
activity of your process (assuming that the start activity is a Integration Manager component). In
this case, you want a template, or templates, that are capable of providing sample input data to the
process.

6 Click Finish. The Process Designer window opens, with an empty canvas. See below.

About Service Provider Resources
A Service Provider is the party responsible for performing a particular activity within a business process.
Integration Manager allows you to identify Servicer Providers for use with your process.

NOTE: You must have WSDL resources and Service Provider Types (see below) in place before creating
new Service Provider Type Resources.

To identify a new Service Provider:

1 From Integration Manager’s File menu, select New, then xObject. From the Resource tab, select
Service Provider.

or
Right-click on the Service Provider Resource icon in the Category pane, and choose New.

2 Provide a name and, optionally, a description to identify the Service Provider.
3 Click Finish to create the Service Provider and open it in the Editor pane.

Creating and Testing Processes 57

4 Click on Add to create a new Service Provider, which causes the Service Provider Type Selector to
appear.

5 Use the right and left arrows to select or deselect the appropriate Service Provider Types and click
on OK when your selection is complete.

6 This will return you to the Editor pane, where the Service Provider Type will now appear, and the
Name and Operations fields of the Operations tab will be completed.

58 Process Manager User’s Guide

7 Click on Mapped to Implementation and select the appropriate implementation. Choices include:
WSDL, Component and Process. The dialog will differ depending on your choice. Below is an
example of the dialog when WSDL has been chosen as the implementation method.

8 In all cases, you will need to provide fill in the Endpoint information:

Creating and Testing Processes 59

Specify a Timeout Value or use the XPath Expression Builder to identify one.
Specify a Retry Count.
Specify a Retry Interval.
Identify your HTTP Header Params by clicking on Edit.

9 If the implementation method is WSDL, the Authentication Tab must also be filled in.

Select either an Endpoint-Defined or Service-Provider-Defined Connection.
Fill in a Userid and Password as appropriate.
Identify a Client Certificate, Client Private Key and Private Key Password as appropriate.
Type in a valu, in seconds, to be used for the Connection Timeout.

10 Click OK when you have finished selecting the appropriate choices for each field to return to the
editor pane.

11 Select File>Save, or click the Save button to save your Service Provider.

60 Process Manager User’s Guide

About Service Provider Type Resources
Service Providers can be classified into Types. Each Service Provider Type describes its interface(s)
using WSDL. According to the WSFL specification (http://www-
106.ibm.com/developerworks/webservices/library/ws-ref4/), “Service providers must properly
implement the appropriate Web service interface in order to be classified as the appropriate type of
service provider to handle a particular activity in the business process.”

WSFL requires the process designer to explicitly specify the roles as part of the process implementation.
Integration Manager allows you to do this by creating Service Provider Type Resources.

The serviceProviderType element identifies each type of role with the context of a given business process
model and the specific Web service interfaces (in the form of WSDL-defined portTypes) that must be
implemented by a Web service provider in order to fulfill that role.

NOTE: You must have WSDL resources in place to create new Service Provider Type Resources.

To create a new Service Provider type:

1 From Integration Manager’s File menu, select New, then xObject. From the Resource tab, select
Service Provider Type.

or
Right-click on the Service Provider Type Resource icon in the Category pane, and choose New.

2 This will cause the Create a New Service Provider Type dialog to appear.

3 Click on Finish to add the new Service Provider Type to the list and to open it in the Editor panel.

To add Service Provider Types in the Editor:

1 Click on Add to create a new Service Provider Type.

Creating and Testing Processes 61

2 Select your WSDL Resource from the dropdown list.
3 Select the Port Type.
4 Select the Operation to perform.
5 Select the Operation Type (i.e., Send, Receive).
6 Repeat the previous steps until you’ve added all your data.
7 Select File>Save, or click the Save button.

Creating Activities
Even if your activity implementations (Integration Manager Components, Subprocesses, etc.) have not
yet been built, you can begin laying down activity icons at any time. For this example, we will assume
that the activities consist of prebuilt Integration Manager Components.

To create an Activity:

1 Choose the appropriate Activity Tool type from the toolbar. To see a flyout icon list, click the small
triangle next to the current activity tool:

2 Click on the canvas. A new activity appears.
NOTE: To reposition the activity icon on the canvas, first choose the Pointer Tool, then click and
drag the activity icon. You can control snap-to-grid behavior by using the Grid submenu under
Integration Manager’s View menu.

3 Repeat the preceding steps as necessary to create additional activities for the process model.

To associate an implementation with an Activity:

1 Select the activity by single-clicking on its icon.
2 Under Integration Manager’s View menu, choose Object Properties in order to bring the Object

Properties panel into view. See graphic below.

62 Process Manager User’s Guide

3 Select the Activity tab (or Subprocess tab, etc., as applicable, depending on the type of activity) of
the Object Properties panel.

4 Select the appropriate Activity Type (Integration Manager Component, Subprocess, etc.) from the
pulldown menu provided, if the type that it showing is not what you expected.
NOTE: For purposes of this discussion, we will assume that the activity implementation is a
Integration Manager Component.

5 Next to Component Type, select the desired type of component (JDBC, XML Map, or whatever
applies).

6 Next to Component Name, use the pulldown menu to select among the already built components
in the current project that match the Component Type specified in the previous step. (If your current
Integration Manager project has four XML Map Components and you have selected XML Map as
the Component Type in Step 4, you will see the names of your four XML Map Components in the
pulldown menu.)

To rename an Activity:

1 Select (click on) the activity with the Pointer Tool. Resize-handles (small blue squares) will appear
around the activity icon, indicating that the icon has focus.

2 Click directly on the activity’s name. A text-entry field will appear, with the activity name
highlighted:

3 Type the new name for the activity.
4 Click off to the side to deselect (remove focus from) the activity.

NOTE: Activities carry their own names, separate from their underlying implementations.

Creating and Testing Processes 63

Creating Links
Once your activities have been placed on the canvas, you will want to connect them via control links. As
explained in Chapter 1, control links control the flow of execution in a process. We will discuss data flow
further below in the section on Message Mapping.

To create a Link:

1 Select the Link Tool from the Process Designer toolbar.

2 Click on an activity. Doing so will designate the activity as the source for the link.
3 Without letting up on the mouse button, drag the cursor from the source activity to any activity

that you want to be the target activity. As you drag around the canvas, the link arrow will “rubber-
band” out as it tracks the mouse.

4 With the cursor directly over the target activity, release the mouse button. The link will change
color and redraw immediately to show the connection between the two activities’ bounding boxes.

Link Transition Logic

Because link conditions are specified in XPath and therefore require knowledge of the source activity’s
output message structure, it is usually best not to specify link conditions until after all data mappings have
been specified. (See discussion further below.) Nevertheless, if you already understand the data
relationships between source and target activities, you can specify a link condition at any time.

To specify a Link Condition:

1 Select a link by clicking on it.
2 Bring the Object Properties panel into view if it is not already visible. (Toggle its visibility using

the Object Properties command under Integration Manager’s View menu.)

3 Select the Link tab if it is not already selected.
4 Next to Condition, type an XPath expression that will evaluate to a boolean value.

NOTE: If you enter nothing, the runtime engine will assume that the value of the link is true by
default.

64 Process Manager User’s Guide

5 Close the Object Properties panel if desired. Notice that the link’s onscreen representation has
changed to include a diamond, indicating that XPath logic has been associated with the link.

Links That Point the “Wrong Way”

If you attempt to draw a link connecting a target activity to one of its upstream sources (i.e., a backwards-
facing link), you will get an error:

Cyclic graphic patterns (reentrant loops) are not supported by Integration Manager Process Manager. See
discussion in Chapter 2 for details (“Looping” on page 44).

Message Mapping
The transfer of data from one activity to another occurs via data links. Unlike control links, data links are
not “drawable.” They have no visual symbology on a process graph. Instead, data links are established
via message maps. These maps are simply XPath-to-XPath correlations between a source activity’s
output and a target activity’s input. In other words, they are defined much the same way as Map Actions
in an ordinary Integration Manager XML Map Component.

Message Naming
Integration Manager Process Manager uses a default naming scheme to label message sources and
targets. When you place the first activity on a new canvas, Process Manager assigns a default name of
Activity1 to the activity. (Subsequent activities are named Activity2, Activity3, etc.) Accordingly, Process
Manager assigns a default name of Activity1Input to Activity1’s input message and the name
Activity1Output to the activity’s output message. Even if you later change the name of Activity1 to
CodeRedFireAlarm, the name of its input and output messages do not change, unless you change them
manually (see procedure below). They continue to have the default names of Activity1Input and
Activity1Output.

DOMs are associated with messages, and DOM names (Input, Input1, Temp, Output, etc.) are referenced
off the message name. From there, normal XPath rules apply. For example:

Creating and Testing Processes 65

Activity1Output/Output/PRODUCTREQUEST/SKU

means the XPath node /PRODUCTREQUEST/SKU on the Output DOM of the message named
Activity1Output. You will see how this works in subsequent examples and screenshots.

How to Define Message Mappings
To send data from a source activity to a target activity, you need to define at least one message map.

NOTE: All message maps are defined at the target activity (the “receiver” of incoming data), as described
below.

To define a Message Map:

1 Select (click on) an activity. This is the activity whose data source(s) you will specify.
2 Bring the Object Properties panel into view if it is not already visible. (Toggle its visibility using

the Object Properties command under Integration Manager’s View menu.)
3 Select the Messages tab. The tab have an appearance similar to this:

4 In the upper half of the panel, you will see Type, Name, and Message information, with the default
Names showing for input, output, and fault messages. You can enter a new Name for any message
at this time if desired.
NOTE: Fault messages are discussed separately, later in this chapter.

5 In the lower half of the panel, you can define Source-to-Target message mappings using XPath.
Click the Plus icon to add a mapping. A dialog appears.

6 Using the pulldown menu immediately under Source XPath Expression, select the message that
you want to use as the data source for this mapping. The prepopulated list will contain output
message names from all available (legal) data sources. (In other words, you can choose to map data
from any activity that can be reached by back-traversal of links. This includes the ProcessInput
message itself.)

66 Process Manager User’s Guide

7 In the Source XPath Expression text field area, enter any desired XPath statement to specify a
source element, nodetree, whole DOM, etc., coming from the activity shown in the “from Activity”
pulldown menu. (This menu will be greyed out if there is only one incoming link to the current
activity. On join targets, this menu will be prepopulated with the names of all available incoming
messages.)
NOTE: It is a common case to specify “Output” (the source activity’s Output DOM) as the sole
incoming message part, as shown here.

8 (Optional) If you would like to generate XPath using Integration Manager’s Expression Builder,
click the small “pencil and X” icon to the right of the text field. This will bring up the XPath
Expression Builder window:

The upper panes of this editor window are prepopulated with message trees, XPath native script
methods, etc., for your convenience in building XPath expressions. Doubleclick any node in any
tree to make the correct sub-expression appear in the edit field. Click OK to go back to the Edit
Map dialog.

9 In the Target XPath Expression text field area, enter any desired XPath statement to specify a
target to receive data from the input message.
NOTE: It is a common case to specify “Input” (the target activity’s Input DOM) as the target
message part. This is equivalent to mapping Source data to the Input DOM of the activity.

10 Click OK to dismiss the dialog.

The Source and Target mapping information that you just specified are now visible in the Messages tab
of the Object Properties window, as shown above. (A summary view of the info is also available in a
rollover tooltip if you let the mouse loiter over these fields.)

Creating and Testing Processes 67

Mappings of this sort continue throughout the chain of activities shown in the process graph. You will
need to perform this mapping procedure at least once for every activity that receives data.

Data Mapping for Start and End Activities
To specify the input to your process’s start activity (or activities), simply click on the start activity, bring
the Object Properties panel into view, and specify a mapping from ProcessInput to the start activity, using
the procedure given above.

If your start activity is named Activity1, the resulting map specification might look like:

To specify a mapping from an end activity to ProcessOutput, click anywhere on bare canvas, bring the
Object Properties panel into view, and specify a mapping from the end activity’s output message to the
ProcessOutput message. The result might look like:

Selecting a Process Input Template
As mentioned earlier (in the discussion of how to create a new process), you can specify an input template
document for ProcessInput (for design-time testing purposes) during the initial creation of the process. If
you did not specify any XML Templates at that time, or you now want to use a different template, simply
go to the File menu and select the Properties... command. A dialog will appear. Select the Messages tab
within that dialog. There, you will be able to add or remove templates as desired.

Applying Flow Logic at the Activity Level
Activity flow logic (join conditions and exit conditions) can be specified in the Object Properties panel.
These conditions are optional: By default, the runtime engine will assume that an empty condition is true.

To specify an Exit Condition:

1 Select (click on) an activity.
2 Bring the Object Properties panel into view if it is not already visible. (Toggle its visibility using

the Object Properties command under Integration Manager’s View menu.)
3 Select the Activity tab (or Subprocess, etc., as applicable to the selected activity).
4 Next to Exit Condition, enter an XPath expression. This condition must evaluate to true or false at

runtime. If it evaluates to false, the activity will execute again using the original input data. (See
discussion in Chapter 2.) The activity will continue to reexecute until the exit condition is true or a
timeout occurs.

68 Process Manager User’s Guide

To specify a Join Condition:

1 Select (click on) a join activity—that is, any activity that has more than one incoming link.
2 Bring the Object Properties panel into view if it is not already visible. (Toggle its visibility using

the Object Properties command under Integration Manager’s View menu.)
3 Select the Activity tab (or Subprocess, etc., as applicable to the selected activity).
4 Next to Join Condition, enter a join expression based on the truth values of incoming links. This

condition must evaluate to true or false at runtime. Optionally use the Expression Builder to build
the join condition. Click the blue icon at the right edge of the text field. The Expression Builder
dialog appears.

5 The Links tree in the upper left is prepopulated with the names of available incoming links. Link-
expression syntax helpers are in the upper right. Doubleclick on any leaf node in any tree to build
an expression in the text-edit field below. Then dismiss the dialog.

Recall that a join activity cannot fire until the join condition is true. In Deferred Mode (default), a join
condition is evaluated exactly once, when the truth values of all incoming links are known. In Immediate
Mode (which you can select on the Object Properties panel), the join condition is evaluated as truth
values become known, and as soon as it is true, the join activity fires regardless of whether all source
activities have finished executing.

NOTE: If, during a design session, you assign a join condition to an activity and later remove one or more
incoming links, the join logic may no longer function as intended. Be sure to remember to update join
conditions any time the input links to a join have been removed or replaced.

Creating and Testing Processes 69

Timeouts and Retries
Timeout, Retry Count, and Retry Interval parameters are supported by Process Manager so as to allow
for complex choreographies between partners involving timings and roundtrip interactions that are not
addressed by simple Request/Response and Solicit/Response scenarios.

NOTE: It’s important to keep in mind that Retry Count and Retry Interval come into play only when a
Timeout value has been specified. Otherwise, Retry Count and Retry Interval are ignored.

See the discussion of fault trapping further below for a more detailed explanation of how and under what
conditions timeout faults can occur.

To specify Timeout and Retry Parameters

1 Click on an activity for which you wish to set Timeout and Retry parameters.
2 Bring the Object Properties panel into view if it is not already visible. (Toggle its visibility using

the Object Properties command under Integration Manager’s View menu.)

3 Select the Activity tab.
4 Next to Timeout, enter a value in days, minutes, or seconds (suffix values ‘d’,’m’, or ‘s’,

respectively). Example: To specify 7 days, enter “7d”.
NOTE: If you use a unit specifier, you must enclose the entire value in quotation marks. If you enter
a number without units (and without quotation marks) it will be interpreted as seconds.

5 If you entered a Timeout value, optionally enter a number in the text field next to Retry Count.
This is the number of times the activity will be retried after the first try times out. If you do not
enter a number, zero retries will be attempted.

6 In the text field next to Retry Interval, enter a value representing the wait time between retries (in
seconds). The default is zero, meaning that as soon as the activity times out, it will be retried with
no wait. If the Retry Interval is non-zero, Process Manager will wait the specified amount of time
between the timeout and the retry.

70 Process Manager User’s Guide

Map Policy
Map Policy comes into play when multiple data sources (incoming messages) have parts that map to the
same location in the target activity’s input message(s). For example, consider a process in which
Activity1 and Activity2 have links to a join activity, Activity3. If Output/ShipmentMode from
Activity1Output maps to Activity3Input/Input/ShipVia, and Output/Carrier from Activity2Output also
maps to Activity3Input/Input/ShipVia, the potential exists for a collision. The result depends on whether
you want to keep the last-arriving data (allowing overwrites in time order, as they occur) or keep only the
first-arriving data. To specify this, you must set the Map Policy to LWW (Last Writer Wins) or FWW
(First Writer Wins), as appropriate.

NOTE: Recall that an activity does not have to be a join activity in order to receive data from multiple
upstream sources. Therefore, it’s possible for map policies to come into play even when there is only one
incoming control link to a target activity.

LWW, FWW, and Map Order

The choices for Map Policy are LWW (Last Writer Wins) or FWW (First Writer Wins), or Map Order.
The meanings of the first two choices are self-evident. Map Order requires further explanation.

Map Order means that regardless of the timestamp on incoming messages, XPath-to-XPath mappings
will occur in the order in which the mappings are specified in the Messages tab of the activity’s property
sheet, going top to bottom. Timestamps, in other words, are ignored. Messages are cached when they
arrive, and then—when mapping takes place—every message part is mapped according to the literal
order in which you have specified the mappings.

You would typically use this option as a way of dealing with overwrites when you care more about where
messages are coming from than you do about their actual arrival order. For example, if several activities
feed into a join, and one particular source activity should always have write-preference over other feeder
activities, then you could use Map Order to give the preferred source a higher precedence (for overwrite)
than the others.

To set a Map Policy:

1 Click on an activity for which you wish to set a Map Policy.
2 Bring the Object Properties panel into view if it is not already visible. (Toggle its visibility using

the Object Properties command under Integration Manager’s View menu.)
3 Select the Activity tab.
4 Use the pulldown menu next to Map Policy to specify Last Writer Wins (LWW), First Writer

Wins (FWW), or Map Order.

Creating and Testing Processes 71

Fault Messages and Fault Handling
Faults generated by Process Manager are of two general kinds: System and Timeout. Both are generated
as special messages. The fault messages take the place of the Activity Output message for the activity that
raised the fault. In other words, an activity implementation that faults out is not considered to produce
Output. An activity will therefore either produce an Output message or Fault message, but not both.

System Faults
The runtime engine raises a System fault under the following circumstances:

An activity implementation generates an unhandled exception
A subprocess activity returns a fault message
The runtime engine encounters a message or message type that it doesn’t know how to handle
A Timeout fault occurred and was not handled by an activity designed for that purpose. (In this
case, two faults are actually generated: one Timeout and one System.)

When a System fault occurs, the process instance produces a message called _SystemFault, with a part
name called (also) _SystemFault. The DOM view of the message looks like:

Every System fault contains MainCode, SubCode, Message, ProcessID, and ActivityName
elements. The content of each element is visible in a rollover tooltip as shown above for the Message
element. Notice that the Fault/Message element contains a Nested Message. The value of this Nested
Message is whatever custom string value you put in any Log or Raise Error action (assuming the
implementation is a Integration Manager service or component).

Regardless of the cause, a fault (of any kind) will result in termination of a running process, unless the
fault is handled by an activity designed for that purpose. In this respect, faults are similar to exceptions.
If no handler exists, the fault “bubbles up” to the process engine and the process simply allows the
process instance to exit with a fault message. Any activity instances in existence at the time of the
unhandled fault are aborted.

Fault Codes

MainCode values currently implemented include:

SubCode values currently implemented include:

SYSTEM_FAULT_MAINCODE -1

TIMEOUT_FAULT_MAINCODE -2

COMPONENT_FAULT_SUBCODE 1

UNHANDLED_MESSAGE_SUBCODE 2

72 Process Manager User’s Guide

Timeout Faults
The runtime engine enforces the following behavior when a Timeout value exists on an activity:

When the activity is launched, a timer begins.
If the activity completes with an exit value of true prior to the timeout period, control passes to
outgoing link(s).
If the activity completes with an exit value of false prior to the timeout period, the activity is
reexecuted immediately (which is the normal action for all activities that finish with a false exit
condition).
If the activity hasn’t finished running when the timeout is reached, the runtime engine halts the
activity and consults the Retry Count parameter. If the Retry Count is non-zero, the Retry Interval
parameter (if applicable) is consulted, and the runtime engine waits for the time specified in Retry
Interval; then it resets the Timeout clock and reexecutes the activity using the original data
mappings. This execute-wait-retry cycle is repeated until the Retry Count has been reached, at
which point the engine raises a Timeout fault.

If a Timeout fault is not handled by an activity, it will cause the runtime engine to terminate the process.

The Timeout fault message has this appearance, in tree view:

The message elements are self-explanatory. The MainCode value is -2 for Timeout (as explained above).

Fault Handling
Because faults can be handled by custom-designed activities (which in turn can be implemented as Web
Services, Integration Manager Components, etc.), fault logic can be as sophisticated as it needs to be. You
can designate one fault handler activity for each activity that needs one (its implementation could even
consist of the same Integration Manager component in each case); or you could have a single fault-
handling activity that handles all faults for the entire process. An example of the latter is shown in the
graph below. Every activity has a link to MyAllPurposeFaultHandler, which handles faults for the entire
process.

Creating and Testing Processes 73

The triangle shape on each link signifiies that the link has been designed to handle fault flow. The
procedure below tells how to create the necessary control and data links to handle faults.

To attach a fault handler to an activity:

1 Create the implementation of the fault handler activity, if you have not already done so. (Since this
activity will generally be local to the app server, it usually makes sense to implement it as a
Integration Manager Component.)

2 Place the activity icon for the fault handler on the process graph.
3 Draw a link from the appropriate source activity (the activity that generates the fault) to the fault-

handler activity.
4 Click on the link you just drew, to select it.
5 Bring the Object Properties panel into view, if it is not already visible.
6 Click the Link tab. You should now be looking at something similar to the following:

7 Next to Source Result, use the pulldown menu to select the appropriate fault type. In this case,
_TimeoutFault was chosen.
NOTE: On the graph, the link will acquire a triangle icon at this point.

8 If a special condition applies to this link, enter an appropriate XPath expression.
9 Save your work.

To create data mappings into a fault handler:

1 Click on the fault-handler activity to select it.
2 Bring the Object Properties panel into view.
3 Click the Messages tab.

74 Process Manager User’s Guide

4 In the bottom portion of the tab, click the Plus-sign icon to add a message. The following dialog
appears.

5 Select SystemFault or TimeoutFault, as appropriate, from the top left pulldown menu, under
Source XPath Expression.

6 In the pulldown menu next to from Activity, select the source activity for this message.
NOTE: All possible source activities will be listed—that is, any upstream activity that is reachable
by simple one-way back-traversal of links. When you select one of these activities, you are creating
a data link from that activity to the fault handler. The source activity you choose from this list does
not have to be directly connected to the target activity by a control link, but in most cases, you will
want such a flow-control connection, since a data link, by itself, isn’t enough to fire a fault handler.
Bottom line: If you data-map a fault message to an activity input, be sure, also, to draw a control link
from the source activity to the fault activity so that the fault activity will actually fire.

7 Dismiss the dialog by clicking OK.
8 Repeat Steps 4 through 7 for each activity that will feed into this fault handler.

Animation and Testing
A unique and powerful feature of the Process Manager is that it allows you to run and debug processes
(step into or over activities, etc.) in the design-time environment. And because Process Designer runs
within Integration Manager itself, you can step directly into any Integration Manager Components that
make up the implementation(s) of activities. Once inside the component, you can step through the action
model just as you would during a component design session, watch DOMs change in real time, set
breakpoints, etc. You can debug activities at the same time that you test and debug your process.

You can either animate or execute a process via the special toolbar buttons provided for this purpose:

The difference between Execute and Animate is that Execute runs the process from start to finish without
interruption, whereas Animate allows you to step through the process.

Process Designer gives valuable visual feedback during animation. Whether you Execute or Animate a
process, you can see individual control links highlight (become thicker) as control passes from one
highlighted activity to the next, and if a link cannot be followed (because its condition is false), that link’s
representation changes from a solid line to a dashed line. Therefore it’s easy to see, at a glance, which
links are being followed and which activities are executing.

Creating and Testing Processes 75

To animate a process:

1 (Optional) Clear the output pane (where system messages appear) at the bottom of the Integration
Manager main window. To do this, click inside the pane, type Control-A (Select All), and hit
Backspace.

2 If you have not already assigned a ProcessInput data template to the process for test purposes,
select Properties from the File menu, then click the Messages tab. Otherwise, skip to Step 6 below.

3 Choose and/or Add an Input Message by selecting from available XML Templates using the
pulldown menus in the upper half of the dialog. Likewise, choose an Output template if needed.

4 Dismiss the Properties dialog by clicking OK.
5 Create data mappings between ProcessInput and your start activity. (The procedure for this was

discussed previously. See “Data Mapping for Start and End Activities” on page 67.)
6 Click the Animate button in the Process Designer toolbar. The start activity will highlight. (See

below.) Also notice that a new toolbar appears at the bottom of the graph window. The icons, from
left to right, are Animate (dimmed when active), Stop, Step Into, Step Over, Run to Breakpoint,
Set Breakpoint, and Pause:

76 Process Manager User’s Guide

7 If you wish to step into the activity implementation, click the Step Into button. This will open the
activity’s underlying component in the appropriate component editor environment within
Integration Manager. You can then step through the component’s action list as you normally would
in Integration Manager. After you step through the last action in the action list, the process graph
window will reappear.

8 If you wish to step over the currently highlighted activity, click the Step Over button. The
appropriate link(s) will be followed and links will change appearance either to a double-thickness
solid line (for true links) or a dotted line (for false links). Execution will stop at the target activity
(or activities). You can then use Step Over or Step Into again, and so on.

9 To run to the end of the process, click the Run to End icon. When the process is finished running,
a small alert dialog will appear, explaining whether the process finished normally or errored out in
some manner.

Note that as you step through the chain of control, various links will highlight and change appearance to
reflect the actual path followed during execution. For example, in the graph shown below, animation has
proceeded past the start activity to the next activity in the flow. One of the two outgoing links from the
start activity has been followed (namely, the dark, solid link on the left); the other link (with a dotted line
appearance; right) was not followed, because its transition condition was false.

Start activity gains focus when
animation is begun.

Creating and Testing Processes 77

Notice that because the link from AcceptInquiry to ProductLookup was not followed, the link from
ProductLookup to MergeProductAndInventory is also shown as a dotted line (even though execution has
not proceeded to this point yet), through dead path elimination. The process engine knows that if the link
from AcceptInquiry to ProductLookup is false, there is no way the link from ProductLookup to
MergeProductAndInventory can ever be followed—hence this downstream link can be (and in fact must
be) set to false as well. The reason this must occur is that the join condition at
MergeProductAndInventory will never evaluate if it is waiting on the truth value of a feeder link that will
never evaluate. (See the discussion of “Dead Links and Synchronization Failure” on page 30.)

Aids to Debugging
Process Designer provides many ways to monitor the step-by-step execution of a process. For example,
valuable realtime feedback is given (in plain text form) in the Log pane of the Integration Manager
window, and you can look at any activity’s input or output DOMs (or even the ProcessInput and
ProcessOutput) along with DOM views of fault messages, to see exactly what data values were produced
at various points in the flow.

Watching System Messages at Animation Time
Any time you execute or animate a process in Process Designer, system messages will appear in the Log
pane at the bottom of the main Integration Manager window. See below.

Dotted line indicates that
this link was not traversedThis link was followed

Animation has proceeded
to this point

Not yet traveled This link has been set to false
automatically by the runtime
engine (dead-path elimination)

Green “marching arrows”
mean that this activity’s
implementation is
currently executing

78 Process Manager User’s Guide

The information in this pane is quite detailed. Every activity startup, link evaluation, join evaluation,
activity completion, activity error—every event—is logged so that you can go back through the chain of
events and see exactly what executed and when, and what failed and why.

NOTE: Two numbers (one of them in parentheses) precede every message. The first number is the
ProcessID for the current instance. The second number, in parens, is the event code for the event in
question (6 for activity start, 7 for activity complete, and so on).

If a fault occurs, you can easily identify the offending activity; and you will also see the complete fault
message (in XML form):

If an activity was implemented as a Integration Manager Component or Subprocess, you can doubleclick
on the activity in question (right on the process graph), and the component will open in the appropriate
component editor. You can then make changes to the component, save it, and return to the Process
Designer for another animation session.

NOTE: When you have made changes to an action model, be sure to Save the component (save the
changes) before reexecuting the process. Otherwise you will get the same error(s) again.

Creating and Testing Processes 79

Inspecting Messages
Any message produced at any point in a process can be displayed in DOM view, text view, or stylized
view in its own pane. This includes ProcessInput, ProcessOutput, _TimeoutFault, and _SystemFault
messages as well as all activity input and output messages.

To make a message visible (or to hide an existing one):

1 From the main menu bar, select View > XML Documents > Show/Hide:

2 In the dialog that appears, use the left-right arrow buttons to move messages to the Hide or Show
columns as necessary.
NOTE: The prepopulated list on the right will contain the names of only those messages that were
actually produced or used in the execution of the process. If a process terminates early, it is possible
that some activities’ messages won’t be listed.

3 (Optional) Use the up-down arrow buttons to reorder the Show items as desired.
4 Dismiss the dialog by clicking OK.
5 The messages that you designated under Show will now appear in their own data panes. See below.

Note that you can obtain different views of any DOM by doing a right-mouse-click on the DOM in
question, then choosing View > As Text (or Tree, or Stylized) from the context menu, as shown
above.

Message in
Text View

Message in
DOM View

80 Process Manager User’s Guide

The Process Designer User Interface 81

4 The Process Designer User Interface

This chapter describes the user interface functionality of Integration Manager Process Designer, which is
the design-time environment in which you will create your process models.

Main Features
The Process Designer is a visual editing environment for creating process models represented by
directed-edge graphs. In this environment, you can quickly create and arrange activities (represented by
icons), draw links between activities, and designate data mappings, link conditions, etc., between and
among activities. The point-and-click nature of the drawing environment allows for rapid creation of
flow graphs.

An important feature of Process Designer is that any process can be run in animation mode at design time,
so that process models can be designed, tested, and debugged in a single session. In animation mode, you
can step into or over activities, set breakpoints, watch data transformations as they occur, see log
messages, observe the behavior of splits and joins, etc., all in real time. You can also drill down on
activity implementations, make changes to action models in components, edit message maps or
documents, modify link or join logic, and so forth, interactively, without leaving the session. This
capability greatly speeds development.

The Process Designer Window
The Process Designer runs inside Integration Manager (along with other component editors), so the
overall environment should look familiar to any Integration Manager user. (See graphic, below.)

When Process Designer is the front editor, three new panes are visible:

 The Process Model Pane (also called the canvas), where you draw the process model graph. This is
the largest pane.
 The Object Properties Pane, in which you can specify property values for various elements of the
process model (e.g., activities, links, text labels, and shapes).
 The Overview Pane, which contains a “bombsight view” of the main canvas. By holding the
mouse down and dragging the blue rectangle within this mini-window, you can pan across the main
canvas, setting the visual focus to a particular region instantly, without using scrollbars.

82 Process Manager User’s Guide

Toolbar

Integration Manager Process Designer adds several new tools to the Integration Manager toolbar, as
shown below.

Tool Icon Usage

Selection Tool This pointer allows you to select
items by clicking on them. Once
selected, an item can be dragged to
any spot on the canvas. (You can
shift-click to select multiple elements
individually.)

Drag The drag tool allows you to pull the
entire canvas around, so that you can
“pan across” the canvas and bring
any region of interest into view.

Text Box Click on the canvas with this tool to
create a text label inside a rectangle.

The Process Designer User Interface 83

Graph Elements
Graph elements include activities, links, text boxes, and shapes (rect and oval). The creation tools for
these elements can be accessed via the Process menu on the main Integration Manager menubar or via
tool icons on the main toolbar. They operate in point-and-click fashion.

NOTE: The appearance characteristics (colors, borders, text justification, etc.) for each of the different
graph-element types discussed below can be adjusted by means of controls located in the UI tab of the
Object Properties pane. (You can toggle this pane’s visibility by means of the Object Properties command
under the View menu.)

Activities

Activity This tool allows you to place new
activity elements on the canvas.

Link This tool lets you connect any two
activities with an arrow, representing
a control-flow link.

Shape You can place resizable filled
rectangles or ovals on the canvas
with this tool.

Magnification A dropdown menu allows you to
choose from several preset viewing
magnifications. You can also enter a
custom magnification factor into the
text field next to the dropdown.

Execute,
Animate, Stop
Animation, and
Reset

These buttons allow you to start or
stop a process (for testing purposes)
within the design-time environment.
The Reset button (lower left) is
greyed out until an animation has
finished running; pressing it resets
the graphic appearance of the flow
diagram.

Tool Icon Usage

Reset

84 Process Manager User’s Guide

Activities can be of five types, as depicted above. The various activity types are described in the
following table.

To create an instance of one of these activity types in your graph, simply select the corresponding tool
icon from the main toolbar (or the flyout icon list under the icon), then click anywhere on the main
canvas.

Links

The Link tool allows you to connect activities with a directed edge (arrow). Its operation is very simple.
First, select the tool from the toolbar. Then click on any activity; this becomes the source activity for the
link. With the mouse still down, drag out a line to the desired target activity. (Be sure the line extends not
just to the activity, but actually over the middle of the activity icon.) When you let go of the mouse, an
arrowhead will appear on the “target end” of the link and the two activities will be linked in terms of
control flow. At this point, if you use the Selection cursor to drag either activity around the canvas, the
link will automatically expand and/or reorient as necessary so that both activities remain connected.

Text Boxes

The Text tool allows you to place text boxes on the canvas. When you click on the canvas, a rectangle
will appear with the word “Untitled.” You can then change the text in the box, set its background and
outline colors, etc., by entering appropriate settings in the UI tab of the Object Properties pane.

Text boxes are simply arbitrary text labels that you can use at various spots around the canvas to
document activity characteristics, control-flow intents, etc., or to indicate titles, author info, revision
dates, and so on. Text boxes can be repositioned (by dragging) at any time and have no effect on control
flow. Their use is optional.

By using the controls in the UI tab of the Object Properties pane, you can change a text box’s appearance,
not only with regard to colors, resizability, margins and centering, etc., but also involving text size, font,
and style.

Activity Type Description

Component
Activity

The Component Activity provides for runtime interaction with a Component or
Service to interact with one or more external systems using one or more
Integration Manager Components (e.g. JDBC, 3270, 5250, CICS RPC, JMS,
HTML, Telnet, EDI or XML Map as well as Integration Manager JMS Services or
Integration Manager Web Services). One can drill down on a Component
Activity to view and edit the Integration Manager Component’s action model.

Web Service
Receive Activity

The Web Service Receive Activity provides for runtime interaction with a
published Web Service and correlates a received message with a current
process instance.

Web Service
Send Activity

The Web Service Send Activity provides for runtime interaction with a published
Web Service. It enables the Process Manager user to select the Web Service’s
WSDL Resource, Service Name, Binding, Operation, Endpoint Locator and
Connection. This is similar to the WS Interchange Action introduced in
Integration Manager 3.0.

Subprocess
Activity

A Subprocess Activity represents any process created in Process Designer. This
effectively means a process can call another process. It allows for a layered,
hierarchical flow architecture. One can doubleclick on a subprocess Activity to
view and edit the subprocess graph.

Synchronize
Subprocesses

This is a specialized activity type that allows the merging of information returned
from a repetitively executed subprocess.

The Process Designer User Interface 85

Shapes

The Shapes tool will let you put rectangles, ovals, or your own .jpg or .gif graphics anywhere on the
canvas. These elements are strictly decorative and have no effect on process runtime dynamics.

Menu Commands
In Integration Manager, when the Process Manager is the front editor, a number of process-specific menu
commands appear in Integration Manager’s menus. The File, View, Process, and Layout menu
structures are illustrated and discussed below.

The only addition to Integration Manager’s File menu is the Print Graph command.

Menu Submenu Command Description

File Print Graph Print This selection allows you to print the complete or selected
graph and descriptions

File Print Graph Print Setup This selection allows you to determine what portion of the
process should be printed – see dialog below for more
information.

File Print Graph Print
Preview

This selection allows you to preview the selected items
before printing.

File menu:

86 Process Manager User’s Guide

Menu Submenu Command Description

View XML
Documents

Brings up submenu allowing you to change visibility, order and
view of XML documents

View Zoom Many The Zoom tool lets you to set the view magnification (on a
percentage basis) for the canvas. Several preset values are
available via pulldown menu. You can also specify any
arbitrary percentage by selecting Custom Zoom.

View Show/Hide
Grid

Toggles the grid’s visibility (see below).

View Grid Style Grid Type You can choose to either have a blank background or (in
conjunction with the Grid Size option) a grid view. The default is
None.

View Grid Style Grid Size When in grid view mode, this command sets the spacing
between lines or dots.

View Snap to
Grid

Align process objects to grid lines

View Overview
Window

Toggles the visibility of the Overview pane (“bombsight view”)
while creating or editing a layout.

View Object
Properties

Toggles the visibility of the Object Properties pane while
creating or editing a layout. This pane is where data mappings
(messages) are specified.

View Enable
Docking

Allows modal windows described above to be docked if they
are brought near an edge of the graph. The default is On.

View menu:

The Process Designer User Interface 87

.The Process Menu commands are explained below.

Menu Submenu Command Description

Process Execute Runs a process from start to finish.

Process Clear
Execution
Status

This menu command duplicates the functionality of the
Reset button on the far right side of the toolbar; it
resets the graphics state(s) of all icons, links, etc. to
the original pre-animation state(s).

Process Reload XML
Documents

Performs the same function as Reload in the
Component menu item when in a Component Editor.

Process Add Watch Allows you to identify certain data items and examine
their data values during the execution of a component
as a debugging aid.

Process Create
Activity

Integration
Manager
Component

Changes the active tool to the Activity tool and
configures it so that a click on the canvas will create a
new Component Activity.

Process Create
Activity

Subprocess Changes the active tool to the Activity tool and
configures it so that a click on the canvas will create a
new Subprocess.

Process Create
Activity

Synchronize
Subprocesses

Changes the active tool to the Activity tool and
configures it so that a click on the canvas will create a
new Synchronize Subprocesses Activity.

Process Create
Activity

Web Service
Receive

Changes the active tool to the Activity tool and
configures it so that a click on the canvas will create a
new Web Service Receive Activity.

Process Create
Activity

Web Service
Send

Changes the active tool to the Activity tool and puts
the tool in Integration Manager Component mode so
that a click on the canvas will create a new Web
Service Send Activity.

Process Create Link Changes the active tool to the Link tool.

Process Create
Graphic

Rectangle Changes the active tool to the Graphics tool and
configures it so that a click on the canvas will create a
resizable rectangle.

Process menu:

88 Process Manager User’s Guide

Process Create
Graphic

Oval Changes the active tool to the Graphics tool and
configures it so that a click on the canvas will create a
resizable oval.

Process Create
Graphic

Rounded
Rectangle

Changes the active tool to the Graphics tool and
configures it so that a click on the canvas will create a
resizable, rounded rectangle.

Process Create
Graphic

Diamond Changes the active tool to the Graphics tool and
configures it so that a click on the canvas will create a
resizable diamond shape.

Process Create
Graphic

Picture Changes the active tool to the Graphics tool and
configures it so that a click on the canvas will cause an
image file (.jpg or .gif) to be placed. You can specify
the actual image file in the UI tab of the canvas’s
property sheet (see end of this chapter).

Process Create Text Changes the active tool to the Text tool.

Process Select Changes the current tool to the arrow cursor (for
selection of graph items).

Process Pan Changes the current tool to the Hand tool to allow
canvas panning for fast navigation of large graphs.

Process Marquee
Zoom

This option is useful only when the Overview Window
(View > Overview Window) is in view. When this
option is active, you can click outside the blue
marquee box to zoom the canvas to larger
magnification.

Process Interactive
Zoom

Similar to the above, but allows you to drag the corner
handles of the marquee box (blue box) to “resize the
view.”

Process Navigate
Edges

Changes the active tool in such a way that you can
click on any activity and see the graph animate
(without executing any activities) along link paths. No
executables are run.

Process Sticky Tools Allows you to select a tool once and have it remain the
selected tool. This will allow you to drop multiple
activities on the canvas or draw multiple links without
selecting the Link tool multiple times.

Menu Submenu Command Description

Layout menu:

The Process Designer User Interface 89

Process Properties
General info for a whole process can be accessed via File > Properties. The dialog that appears has two
tabs, Header Info and Messages. The Header Info tab gives Name and comment-type information about
the process in question. The Messages tab contains XML Template information for the input and output
messages of the process.

Menu Command Description

Layout Global Layout Default layout mode: Entire graph is cached in memory at design time.

Layout Incremental
Layout

Optional layout mode that uses memory more efficiently.

Layout Circular
Layout

Arranges nodes in a hub-and-spoke manner. See discussion elsewhere
under “Layout Properties” on page 104.

Layout Hierarchical
Layout

Applies the familiar “organizational chart” style of diagramming, in which
top-down relationships are emphasized.

Layout Orthogonal
Layout

Constrains nodes and links to a row-and-column motif.

Layout Symmetric
Layout

Edge crossings are minimized and node distributions are made uniform
so that symmetrical relationships are emphasized.

Layout Tree Layout Applies the familiar “family tree” layout to a graph, similar to the
hierarchical style described above, except that links are not parallel and
seldom run perfectly horizontal or vertical.

Layout Properties Brings up a preferences dialog for fine-tuning the above settings.

90 Process Manager User’s Guide

Object Properties
Each type of object depicted in a directed edge graph created in Process Designer has its own set of
properties. The properties are context-sensitive: they vary according to the type of object that you have
selected on the canvas. To see the current properties for any object, simply select an object (by clicking
on it using the Pointer tool) and toggle Object Properties under the View menu (if the Object Properties
palette is not already visible).

The Object Properties palette (equivalently referred to as the property sheet for an object) is where you
can specify such important activity attributes as:

 Exit Condition
 Join Condition
 Timeout
 Retry Count
 Retry Interval
 Map Policy
And more (see below)

The following sections describe what the property sheets for the various process elements look like when
the appropriate type of object has focus.

Activity Properties
The Process Manager supports five activity types, each with its own set of object properties: Integration
Manager Component, Web Service Send, Web Service Receive, Subprocess, and Synchronize
Subprocesses. The property sheets for each are discussed in some detail below.

Integration Manager Component
The Component Activity Object Properties panel has three tabs: Activity; Messages, and UI. Their
appearances are illustrated below; their functionality is discussed in the tables that follow.

Note that all Object Properties tabs and panels are context-aware: Their contents update automatically to
reflect the attributes of the activity that you have selected on the canvas. Likewise, any changes you make
in any of the property settings will take effect in real time, as soon as the field in question loses focus.
(You may have to click outside of a property field in order for a change to take effect.)

The Process Designer User Interface 91

Activity Tab

Property Control Type Usage

Activity Name Text field This is the name shown under the activity icon on the canvas.

Activity Type Dropdown A dropdown list allows you to change the activity type of the
currently selected activity. The dropdown shows the five
categories of activity type.

Component Type Dropdown A dropdown displays a list of available Integration Manager
Component types (XML Map, Web Service, JDBC
Component, and so on).

Component Name Dropdown The dropdown displays a list of Component Names
corresponding to any components of the chosen Component
Type (above) that you have already built in the current project.

Exit Condition Text Field An Exit Condition is a Boolean XPath expression, the purpose
of which is to determine whether the Activity has finished
normally.

The Exit Condition’s expression can refer to the output
message of the Activity or to output of any activity that ran
before the Activity on the same control path.

If the Exit Condition evaluates to true, the activity is treated as
“Complete.” If the Activity is complete, the process resumes
normal flow of control; otherwise, the Activity is executed
again.

The Activity will be executed X number of times where X is the
Retry Count defined below.

The Retry Interval defines the time between execution retries.

Join Condition
(appears only on
join targets)

Text Field A Join Condition is a Boolean expression in simple
OR/AND/NOT syntax, the purpose of which is to synchronize
parallel work based on the truth values of incoming links.

An Activity is called a Join Activity if it has more than one
incoming link. The Join Activity will fire if and only if the Join
Condition is true. The default, if no condition is explicitly
specified, is true.

Join Evaluation
(appears only on
join targets)

Dropdown The choices are Deferred and Immediate. For the meaning of
these options, see Chapter 1.

92 Process Manager User’s Guide

Messages Tab

Timeout Text Field The Timeout attribute defines a time interval in which an
Activity must complete its work. Once a time-out occurs, the
Retry Count (if any) will apply and the activity will be
reexecuted.

After a timeout occurs, the Process Server will wait a certain
length of time (specified in the Retry Interval) before kicking off
the next retry. The Retry Interval, below, defines the wait time
before an activity can be retried.

Timeout and Retry settings are optional. The default is zero
retries and a retry interval of zero.

Retry Count Text Field The number of times to retry an Activity.

Retry Interval Text Field The length of time to wait between retries, should a retry be
necessary.

Map Policy Text Field Last Writer Wins, First Writer Wins, or Map Order. Note that
this value is important only when there is the potential for two
activities to overwrite each other’s data (i.e., two source
activities contend for the same XPath locations in the target
activity’s input message).

Property Control Type Usage

Messages Three columns:

• Type (non-
editable)

• Name

• Message (non-
editable)

If WSDL exists, “Type” and “Message” are pulled from the
WSDL’s Port Type Operations Input and Output elements.
“Name” defaults to the default Activity Name appended by the
type (e.g. Activity2Output).

Maps: + and - icons Add and Delete mappings from last activity’s output to current
input.

Source Button The Source XPath expression (applies to output from
previous activity in the graph)

Target Button The Target XPath expression (applies to currently selected
activity’s input)

Property Control Type Usage

The Process Designer User Interface 93

UI Tab

Property Control Type Usage

Show
Label

Checkbox Determines whether a text label (name) appears below the
currently selected activity object.

Picture Text Field The path to the image (Gif or JPEG) that will be used for the
display of the currently selected activity object. Use this to point to
custom icon art, if desired. (This is for design time only. Your art
will not be deployed in any jar files.)

Font Dialog appears Clicking on the Value field causes the “Choose Font” dialog to be
displayed. This dialog has three dropdowns which allow for the
selection of a font, style (Plain, Bold, Italic, Bold Italic) and point
size.

Text
Color

Color picker Displays the color to be used for text associated with the current
object. Clicking on this bar causes a color picker dialog to appear.

Text
Justificat
ion

Dropdown menu Left

Center (default)

Right

Color Color picker This is the background color for the selected object. Clicking on
this bar causes a color picker dialog to appear.

Transpar
ent

Checkbox Checked = Transparent object, Unchecked = Opaque

Border
Color

Color picker Border color for the selected object. Clicking on this bar causes a
color picker dialog to appear.

Show
Border

Checkbox Checked = Border Displayed; Unchecked = Border not displayed.

94 Process Manager User’s Guide

Web Service Send
The Web Service Send activity has its own unique object properties, which are reflected in the Activity
tab on the Object Properties panel.

NOTE: The Messages and UI tabs for this activity are the same as for the Component activity described
above. Only the Activity tab will be described below.

Web Service Send Activity Tab

Resizabil
ity

Dropdown: Choices are:

No Fit

Tight Fit

Tight Width

Tight Height

Tight Fit Preserve Aspect

Preserve Aspect

Width Text Field Item width. 40.0 (Default)

Height Text Field Item height. 32.0 (Default)

X Center Text Field Position X coordinate

Y Center Text Field Position Y coordinate

Property Control Type Usage

The Process Designer User Interface 95

Messages and UI Tabs for Web Service Send

The settings on these tabs work the same as described for the Component Activity (already discussed).

Property Control Type Usage

Activity Type Dropdown A dropdown list of Activity Types

Activity Name Activity 1…n (default) The name of the Activity.

WSDL Resource Dropdown A dropdown list of the available WSDL Resources
within the Integration Manager project.

Service Name Dropdown A dropdown list of the available Web Services within
the WSDL Resource.

Service Port or
Binding

Dropdown A dropdown list of the Binding Names within the WSDL
Resource.

Operation Dropdown A dropdown list of the Operation Names within the
WSDL Resource.

Endpoint
Locator

XPath Expression Enter the Endpoint Location (usually a URL pointing at
a servlet) for the Web Service you wish to use,
wrapped in quotation marks. (Alternatively, enter an
XPath expression that will evaluate to an Endpoint
Location at runtime.)

Connection Connection A dropdown list of Connections.

HTTP Params Pushbutton This displays the ‘HTTP Header Parameters’ dialog,
where you can specify content-length and other
common HTTP parameters.

Exit Condition Text Field See “Exit Condition” on page 91.

Join Condition
(as applicable)

Text Field See “Exit Condition” on page 91.

Join Evaluation Dropdown Like the Join Condition field, this field will only appear
when the target activity is a join activity. The dropdown
choices (Immediate, Deferred) determine the join’s
evaluation mode.

Timeout Text Field See “Exit Condition” on page 91.

Retry Count Numeric Field See “Retry Count” on page 92.

Retry Interval Text Field See “Retry Interval” on page 92.

Map Policy Text Field See “Map Policy” on page 92.

96 Process Manager User’s Guide

Web Service Receive

Web Service Receive Activity Tab

Property
Control
Type Usage

Activity Type Dropdown A dropdown list of available Activity Types

Activity Name Activity
1…n
(default)

The name of the Activity.

Implementation
Type

Dropdown One of: Web Service, JMS Service, or External.

WSDL Resource Dropdown A dropdown list of the available WSDL Resources within the
Integration Manager project.

WSDL Port Type Dropdown The port type for this service.

WSDL Operation Dropdown A dropdown list of the Operation Names within the WSDL
Resource.

Correlation ID Text Field Arbitrary user-defined value, used to uniquely identify a
transaction

Addressee Text Field Arbitrary string label, typically to define the “owner” (name of an
individual) associated with this particular transaction or activity

Priority Text Field Some arbitrary numeric value relating, typically, to the
importance of this activity or work item

Exit Condition Text Field See “Exit Condition” on page 91.

Join Condition
(as applicable)

Text Field See “Exit Condition” on page 91.

Timeout Text Field See “Exit Condition” on page 91.

Retry Count Numeric
Field

See “Retry Count” on page 92

Retry Interval Text Field See “Retry Interval” on page 92.

Map Policy Text Field See “Map Policy” on page 92.

The Process Designer User Interface 97

Messages and UI Tabs for Web Service Receive

The settings on these tabs operate the same as described earlier for the Component Activity (see above).

Subprocess

All properties on all tabs of the Object Properties panel for Subprocess have exactly the same names (and
operate the same way) as for the Integration Manager Component properties, except for the Create
Operation property, which is one of spawn or call, to reflect whether the subprocess should be invoked
asynchronously (“fire and forget”) or synchronously (poll until response comes).

Synchronize Subprocesses

The Synchronize Subprocesses activity type is a specialized activity that coordinates the “fan-in” of
multiple results from fanned-out subprocesses. See the discussion of “Synchronize Subprocesses
Activity” on page 113.

Property Control Type Usage

Activity Type Dropdown A dropdown list of available Activity Types

Activity Name Activity 1…n
(default)

The name of this Activity.

Component
Type

Dropdown A list of available components in this Integration Manager
project.

Fault Handling Dropdown Two choices: Fail on Any Fault, or Fail If All Fail.

98 Process Manager User’s Guide

Link
The Link Object Properties has two tabs: Link and UI.

Link Tab

UI Tab for Links

Subprocess
List

Text Field
(XPath)

XPath locations of the ProcessInfo data for fanned out
subprocesses.

Exit Condition Text Field See “Exit Condition” on page 91.

Join Condition
(as applicable)

Text Field See “Join Condition” on page 91.

Timeout Text Field See “Exit Condition” on page 91.

Retry Count Numeric Field See “Retry Count” on page 92.

Retry Interval Text Field See “Retry Interval” on page 92.

Map Policy Text Field See “Map Policy” on page 92.

Property Control Usage

Link Name Text Field The link’s name. This name is also used in join-condition
expressions.

Source Result Dropdown Designates the source activity of the link.

Condition Text Field Specifies the XPath condition for the link.

Property Control Type Usage

The Process Designer User Interface 99

Graph Object Properties
The Process Object (or graph) property sheet has a Messages tab and a UI tab. To see the graph’s
properties, click anywhere on the bare canvas, then bring the Object Properties palette into view (use the
View menu’s Object Properties command). You will use this window to set overall process input,
output, and fault message mappings, and customize the appearance of the graph.

Process Messages Tab
The Messages tab is where you will typically specify the end-activity-to-process-output data mapping(s).
For example, if Activity4 on your graph is the end activity for the process (the final activity to execute),
and you want the process to return a message containing Activity4’s output, this is where you would
specify the ProcessOutput mapping. See example below.

Property Control Usage

Show Label Checkbox Toggles the visibility of the link name.

Font Text Field Clicking this field will cause a dialog to appear. In the dialog,
you can set various font properties.

Text Color Color Picker Allows you to set the color of the text (link name) associated
with a link.

Text
Justification

Dropdown Menu Center, Left Justify, Right Justify.

Transparent Checkbox Toggles the link’s transparency on/off.

Border Color Color Picker Allows you to select the color of the outline of the link.

Show Border Checkbox Toggles the border (draw/no-draw).

Resizability Dropdown Menu Allows you to specify various link drawing policies.

Width Text Field Allows you to specify the overall width of the link.

Height Text Field Allows you to specify the overall height of the link.

100 Process Manager User’s Guide

In the above example, the activity Return_Ack is the end activity for the process. Its output is mapped to
$ProcessOutput/Output, as shown at the bottom of the Object Properties pane. The first step in
setting up this pane was to click on the bare canvas (thus deselecting all activities, links, and other
graphic elements). This makes the Object Properties pane reflect the properties of the process-as-a-
whole. (Notice the input and output messages are simply ProcessInput and ProcessOutput.)

Graph UI Tab
The graph lUI tab has two purposes: It allows you to define custom appearance-related settings for the
overall graph, and it provides summary information about the number of nodes on the graph, the number
of links, labels, etc.

Remember that this set of properties is reachable only when you click on bare canvas.

NOTE: For additional information about how to customize the appearance of a graph, see the section
“Layout Properties” on page 104.

The following table describes the properties available in the UI tab of the process Object Properties panel.

Attribute Value Description

Nodes 0—n This field is not editable. It provides a numeric count of the graph’s
Nodes.

Edges 0—n This field is not editable. It provides a numeric count of the graph’s
Edges.

Labels 0—n This field is not editable. It provides a numeric count of the graph’s
Labels.

Subgraphs 0—n This field is not editable. It provides a numeric count of the graph’s
Subgraphs.

Background
Color

Displays
the color
itself. The
default is
white.

This is the background color.

Picture Check Box Checked = display a picture on the graph, Not Checked = don’t display
a picture on the graph.

The Process Designer User Interface 101

Selected Node Properties on UI Tab
The Selected Node Properties UI tab is for inspecting or setting appearance attributes on objects shown
on the graph. Single-click an object to select it, then select the UI tab from the Object Properties pane;
then choose Selected Node Properties from the dropdown menu control at the top of the tab. See below.

UI Tab (Selected Node Properties)

Picture
Filename

The
filename of
the Picture.

The full path name of the picture file which may be a JPEG or a Gif.

Picture Style World
Offset or
Device
Offset

World Offset displays the picture in the middle of the diagram. Device
Offset displays the picture at the offset defined by the Picture X Offset
and the Picture Y Offset.

Tile Picture Check Box Checked = tile the picture, Not Checked = display the picture at the
offset.

Picture X
Offset

0.0 Used to change the onscreen x-offset.

Picture Y
Offset

0.0 Used to change the onscreen y-offset.

Attribute Value Description

Font Dialog

• SanSerif (default)

• Serif

• MonoSpaced

• DialogInput

Clicking on the Value field causes the ‘Choose Font’ dialog
to be displayed. This dialog has three dropdowns which
allow for the selection of a font, font style (Plain, Bold, Italic,
Bold Italic) and Font Size.

Text Color Displays the color
itself. The default is
black.

Click on the Value field causes the ‘Choose Color’ dialog to
be displayed.

Attribute Value Description

102 Process Manager User’s Guide

Text
Justification

Left

Center (default)

Right

This is a dropdown.

Color Displays the color
itself. The default is
yellow.

This is the background color. Click on the Value field
causes the ‘Choose Color’ dialog to be displayed.

Transparent Checkbox Checked = Transparent, Unchecked = Opaque

Border Color Displays the color
itself. The default is
black.

Click on the Value field causes the ‘Choose Color’ dialog to
be displayed.

Show Border Checkbox Checked = Border Displayed; Unchecked = Border not
displayed.

Resizability Dropdown:

• No Fit

• Tight Fit

• Tight Width

• Tight Height

• Tight Fit Preserve
Aspect

• Preserve Aspect

Width Text Field 40.0 (Default)

Height Text Field 40.0 (Default)

X Center Text Field X coordinate

Y Center Text Field Y coordinate

Attribute Value Description

The Process Designer User Interface 103

Text Object Properties
The UI tab for Text objects, Shapes, etc., has a Selected Node Properties pane with attributes similar to
those described above. The table below describes the properties in detail.

UI Tab

Attribute Value Description

Name Untitled This is the Name of the text object as well as the
Text/Caption/Label itself.

Margin
Width

3.0 (default) This is the width of the margin to the left and right of the text.

Margin
Height

1.0 (default) This is the height of the margin to the top and bottom of the
text.

Font Dialog

• SanSerif
(default)

• Serif

• MonoSpaced

• DialogInput

Clicking on the Value field causes the ‘Choose Font’ dialog to
be displayed. This dialog has three dropdowns, which allow
for the selection of a font, font style (Plain, Bold, Italic, Bold
Italic) and Font Size.

Text Color Displays the color
itself. The default
is black.

Click on the Value field causes the ‘Choose Color’ dialog to be
displayed.

Text
Justification

Left

Center (default)

Right

This is a dropdown.

Color Displays the color
itself. The default
is white.

This is the background color. Click on the Value field causes
the ‘Choose Color’ dialog to be displayed.

Transparent Checkbox Checked = Transparent, Unchecked = Opaque

Border Color Displays the color
itself. The default
is black.

Click on the Value field causes the ‘Choose Color’ dialog to be
displayed.

Show
Border

Checkbox Checked = Border Displayed; Unchecked = Border not
displayed.

Resizability Dropdown:

No Fit

Tight Fit

Tight Width

Tight Height

Tight Fit &
Preserve
Aspect

Preserve
Aspect

104 Process Manager User’s Guide

Layout Properties
Process Designer will (if you wish) automatically reformat your graph according to any of five flow-
diagramming algorithms:

Circular—Arranges nodes in a hub-and-spoke manner whenever possible, with spokes having
identical lengths. This type of layout is appropriate when clustering is the predominant
architectural feature (e.g., as in depicting a LAN or WAN layout).
Hierarchical—This is the familiar “organizational chart” style of diagramming, in which top-
down relationships are emphasized. (You can, however, configure this layout option to show left-
to-right or other flow polarities.) This layout option is appropriate for graphs in which hierarchical
relationships need to be emphasized.
Orthogonal—This style constrains nodes and links to a row-and-column motif. Links are
constrained to run parallel to x- and y-axes. Also note that nodes with more than one incoming link
may be magnified in appearance relative to other nodes. This layout strategy is appropriate for
situations where a grid or lattice relationship between elements needs to be emphasized, as opposed
to hierarchical relationships.
Symmetric—In this style of graphing, edge crossings are minimized and node distributions are
made uniform so that symmetrical relationships can be emphasized.
Tree—This diagram style is appropriate when the predominant need is to show parent/child
relationships. It uses the familiar “family tree” type of layout, very similar to the hierarchical style
described above, except that links are not parallel and seldom run perfectly horizontal or vertical.

All of the above diagramming styles can be extensively customized by means of preferences exposed in
the Layout > Properties dialog. To bring up this dialog, go to Integration Manager’s main menubar and
choose Properties from the Layout menu.

Width Text Field 48.0 (Default) This field is not enabled. The width will change
as the text is changed from the default ‘untitled’ and as the
margin widths and fonts are changed.

Height Text Field 19.0 (Default) This field is not enabled. The height will change
as the margin height and fonts are changed.

X Center Text Field X coordinate

Y Center Text Field Y coordinate

Attribute Value Description

The Process Designer User Interface 105

The dialog has six tabs: a General Preferences tab, and five tabs corresponding to the five autolayout
styles just described. Each tab contains a wealth of controls and settings to allow you to exercise fine
control over the many constraints that characterize a particular style of graphing.

General Layout Tips
The following tips are aimed at helping you achieve maximum productivity with Process Designer.

Snap and Grid Behavior
By default, everything you draw or position snaps to an invisible 5-pixel-by-5-pixel grid. But you
can override this behavior at any time by holding the Alt key down. (You can override it
permanently by setting Grid Size to one, using View > Grid Style > Grid Size > Custom Size.)
You can toggle the visibility of the grid by using the View menu’s Hide Grid or Show Grid
commands. (There is actually only one command; its name changes dynamically depending on
which mode you just entered.) Grid Size and Style (dots versus lines) can also be set at any time
through View menu commands .
You can instantly align graph nodes to the grid, at any time, by using View > Snap to Grid. You
will see graph items suddenly “jump” to the closest grid lines.

Multiple Undo

Multiple Undo/Redo is available for all layout gestures.

Sticky Tools

Normally, a tool reverts to the arrow cursor after one use. For example, if you select the Activity Tool,
then click on the canvas to put down a new activity icon, the tool will immediately revert to the arrow (or
Selection Tool) when you let go of the mouse. You can override this behavior and make the tool mode
persist across mouse clicks by turning on the Sticky Tools option. Look under the Process menu for
Sticky Tools.

Overview Window

Exceptional control over pan and zoom can be had by using the Overview Window (see below). Toggle
this pane’s visibility by using View > Overview Window.

Two behaviors are available from the overview window:

You can drag the blue “viewport rect” around the overview pane to pan the canvas in real time.
You can click-drag just outside the viewport rect to interactrively zoom the canvas to a bigger or
smaller size.

Notice that the cursor changes appearance depending on the position of the mouse (inside or outside the
viewport rect).

106 Process Manager User’s Guide

Customizing the Canvas
Note that you can customize the canvas in various ways. For example, you can specify a background
image; change the appearance of any activity to use a custom image; and/or add any number of decorative
images or logos to the canvas, and use Send to Back or Bring to Front to “stack” images in any order.
These features allow you to build presentation-quality process graphs for use in meetings,
demonstrations, etc.

NOTE: To access canvas properties, click anywhere on bare canvas, then choose the UI Tab in the
Object Properties panel.

Using Custom Backgrounds

One way in which the canvas can be customized is to add a custom background, consisting of a .gif or
.jpg image. The following illustration shows a canvas that contains a .jpg background.

To add a picture to a canvas:

1 Click anywhere on bare canvas.
2 Toggle the Object Properties panel into view.
3 Choose the UI Tab.

Outside the viewport rect, the
cursor has the magnifying

Inside the viewport rect, the
cursor changes to the Hand Tool,
which you can use to Pan the canvas

glass appearance

The Process Designer User Interface 107

4 Click the white area to the right of Picture Filename. A navigation dialog will appear.
5 Navigate your hard disk or network and find a .jpg or .gif file that you wish to use as a graph

background picture.
6 In the UI Tab, check the Picture checkbox to apply the image to the canvas.
7 Optionally check the Tile Picture checkbox if you wish to tile the canvas with the image.
8 Next to Picture Style you will find a dropdown menu. Select one of the two choices available on

this menu:
World Offset—Choosing this option means that the image will shrink or grow with the canvas
as you choose different zoom settings and maintain its relative position to other objects on-
canvas. This is the normal behavior for all Process Designer graphics.
Device Offset—Choosing this option means that the image will not shrink, grow, nor change
position as you pan or zoom.

9 Optionally adjust Picture X-Offset and/or Picture Y-Offset values to place the picture exactly
where you want it on the graph. (You may enter positive or negative values here as required.)

Autolayout Options

As explained earlier, Process Designer will reformat your graph according to various diagramming
algorithms, if you desire. The auto-diagramming option you are most likely to use is the Hierarchical
layout option. This option (Layout > Hierarchical Layout) will reformat a graph to a top-down (or left-
-to-right, or other) hierarchy view, with or without X/Y alignment of links, and with or without merging
of parallel links.

Various constraint options are available for Hierarchical Layout (as for the other autolayout modes). To
access the settings, use the Layout menu’s Properties command, which brings up the Layout Properties
dialog:

108 Process Manager User’s Guide

Take special note of the Edge Routing control group at the lower right. You must check the Orthogonal
Routing checkbox if you want links to be X/Y-axis aligned. If you want stems of parallel links (coming
into or out of a common node) to be depicted as a single stem, you should check the Merge Edge
Channels checkbox.

Advanced Topics 109

5 Advanced Topics

This chapter discusses concepts and scenarios that go beyond the simple “straight-through processing”
use cases that have been discussed so far. In particular, we will examine the Web Service Receive activity
and the Synchronize Subprocesses activity. The Web Service Receive activity is useful in implementing
design patterns that rely on incoming notifications or requests as part of an ongoing process. The
Synchronize Subprocesses activity, on the other hand, is useful for collecting and resynchronizing the
results from a previous fan-out (or parallel division of workflow to multiple subprocess instances) by an
upstream activity.

To get the most out of this chapter, you should be familiar with WSDL-based Web Services, Integration
Manager action models, and concepts involving message mapping, fault messages, and link logic.

Web Service Receive
The Web Service Receive activity type allows you to implement the WSDL Request-Response and One-
Way port type patterns. These are patterns in which the “endpoint” activity (representing the Web Service
that will fire) does nothing until triggered by an incoming request. The target activity’s implementation
is, in this sense, passive—unlike the Notification and Solicit-Response scenarios, in which the
underlying service is the requestor instead of the requestee.

The Web Service Receive activity must fulfill all the normal obligations of an activity in a process model.
That means it has to be able to function as a link target, with timeout and retry behavior, fault behaviors,
etc.

110 Process Manager User’s Guide

In this example, Activity 1 (a Subprocess activity) “fires” Activity2 (a Web Service Receive activity) via
link L1. When and if Activity2 exits with a condition of true, its outgoing link (to Activity3) will be
followed, but not until then. If Activity2 does not come back with an exit condition of true within the
Timeout period (in this case, 7200 seconds: two hours), Activity2 will generate a _TimeoutFault.

A key concept to understand is that the runtime engine doesn’t run the service under Activity2. It merely
provides appropriate input messages (as with any activity) at the proper time and collects the output
message at the appropriate time. Incoming requests to the server cause the Web Service Receive’s
implementation to be invoked or run through appropriate triggering mechanisms (involving servlets,
JMS listeners, or whatever), independently of the process engine itself. In other words, the web-service
app that underlies the WSR activity is just a web service on a server, like any other web service, and its
URL might be hit at any time, but the process engine only cares about (and will only respond to) that web
service within the context of a given process, with all its timeout constraints, etc. Should a business
partner hit the URL when the WSR activity is not active, the partner will likely just get a SOAP fault
message back.

A typical WSR usage might be one in which a process is designed to send requests to various vendors,
collect the first valid response, and continue on to do some kind of processing. Using the pattern shown
in the above diagram, the roundtrip scenario could look like this:

The implementation for Activity1 might be an app that issues a request for quote (RFQ) via
notifications to one or more external business partners who have web services designed to handle
such requests.
Activity2 might be configured in such a way that the notified business partners have two hours to
reply with a quote. If no reply is received (from any partner) within two hours, the activity
generates a Timeout Fault.
Activity2’s underlying implementation might be a web service that wakes up the process engine
immediately upon receiving a valid quote.

Advanced Topics 111

Activity2 exits immediately if a reply is handled (transferring control to the next activity); or else
exits with a Timeout Fault after two hours. (We’re disregarding the System Fault case for purposes
of this example.)
Activity3 might notify a person or department (or another app, etc.) that a bid was received from
so-and-so.

Note that this is not a fan-out/fan-in scenario, but a “first responder wins” type of scenario. If you were
going to notify multiple partners and collect multiple responses, you would want to use the Synchronize
Subprocesses Activity (described further below).

Multiple Implementations for a Single WSR Activity

It is possible to have multiple web services act as “the implementation” of a single Web Service Receive
activity. This is because a Web Service Receive activity is built on top of a web service that waits to
receive something—waits to be “hit.”

In the example shown above, a Web Service Receive activity (situated between two activities, A1 and
A2) is able to respond to any of three different web services that have been deployed as implementations
for the activity. When the WSR activity “fires,” the process simply waits for one of the three web services
represented by URLs reply.target1, reply.target2, and reply.target3 to receive input from a business
partner. Each of the web services is a Integration Manager application that contains a Find Waiting
Activity action (as discussed in more detail in the next chapter). When one of the web services executes
its Find Waiting Activity action—followed by a Release Waiting Activity action—the process continues
of to the next activity, A3, assuming no fault conditions.

NOTE: If any business partner “hits” one of the three web services during a time when the WSR activity
is not active (e.g., hasn’t been fired; or has fired and timed out), the partner will receive an error message
of some kind. In most cases, this will be a SOAP fault.

Multiple Web Service Receive Activities in the Same Component

When multiple Web Service Receives exist in the same Process Manager component, you must ensure
that each Web Service Receive is uniquely identified. A Web Service Receive is uniquely identified by
its Process ID (which Composer assigns) and its Correlation ID (which you must uniquely assign to each
Web Service Receive). If you do not specify a Correlation ID for a Web Service Receive, Composer sets
the Correlation ID to be the same as the Process ID, which results multiple Web Service Receives with
the same Process ID and Correlation ID pair. This will cause errors when the Process component
executes.

You specify the Correlation ID using the Object Properties of the Web Service Receive activity object.

112 Process Manager User’s Guide

Implementation Independence
The Process Manager imposes no restrictions on what the implementation for a Web Service Receive
activity should look like. This is true for Web Services in general. The authors of WSDL put no
limitations on how a Web Service should be implemented, and there are also no restrictions on the
transport mechanism used. A Web Service needn’t use HTTP, for example, and payloads needn’t be
passed via SOAP.

The Process Manager, likewise, allows your Web Service Receive activity’s implementation to take
various forms: Integration Manager web service, JMS service, or External (arbitrary implementation, not
built in Integration Manager). These choices are provided in a pulldown menu control on the Activity tab
of the Object Properties dialog (see below).

Of course, for a Web Service to be a true Web Service, it should have a WSDL definition associated with
it. Integration Manager consults the WSDL when determining how to manage message maps for the Web
Service Receive activity. In addition, since this is a Web Service Receive activity, the underlying service
should implement either the WSDL One-Way or Request-Response port-type scenario. (The
distinguishing characteristic of these two patterns is that the service implementing them is never the
initiator of a transaction. The service is a receiver; you can think of the service as “listening” on a port.)

To use a Web Service Receive activity:

1 Design and implement the Web Service that will serve as the activity implementation. It should
have its own WSDL Resource. (For information on how to create services and WSDL Resources in
Integration Manager, consult the Novell Integration Manager User’s Guide).

2 If you created the Web Service inside another project, import the Web Service and its resources into
the current project, which will contain your Process.

3 Create or open the Process in which you want to use the Web Service Receive activity.
4 Using the Web Service Receive variant of the Activity Tool (on the Process Designer toolbar),

place a Web Service Receive activity icon on the process graph.
5 Draw links to and from the Web Service Receive activity the same way you would for any other

kind of activity.
6 Bring the Object Properties pane into view (using View > Object Properties, if necessary).
7 In the Object Properties pane, click the Activity tab.
8 Next to Component Type in the properties list, use the pulldown menu to select one of External,

JMS Service, or Web Service, as appropriate. See illustration.

9 Next to Web Service Name, use the pulldown menu to select the Web Service that you built in Step
1. (This list is prepopulated with the names of all Web Services in the current project.)

10 Set any other properties that you want to specify on the Activity tab.
11 Switch to the Messages tab.
12 Add any data mappings that you want to add, using the Plus-sign icon.
13 Save your work.

Advanced Topics 113

In order for a process to make use of the Web Service Receive activity, there must obviously be an
underlying implementation consisting of a web service that communicates via the One-Way or Request-
Response pattern(s) described in WSDL. This service must, in turn, be capable of communicating its
“finished” status (and in most cases, some kind of XML data) back up to the process engine. Such
communication requires the use of Find Waiting Activity and Release Waiting Activity actions in a
service’s action model, as described in the next chapter.

NOTE: If you intend to use the Web Service Receive activity type, be sure to read about Find Waiting
Activity and Release Waiting Activity actions in the next chapter.

Synchronize Subprocesses Activity
The Synchronize Subprocesses activity is similar to the Web Service Receive activity in that it, too,
assumes an implementation that waits passively for incoming data and that may be invoked numerous
times before it finally exits. Unlike the Web Service Receive activity, a Synchronize Subprocesses
activity must use a Integration Manager Component (an XML Map Component, for example) as its
implementation.

The purpose of the Synchronize Subprocesses activity is to allow data from numerous input activities to
be collected into a single activity, in situations where the number of inputs is not known until runtime. In
other words, this represents a scenario that (due to an indeterminate number of links) can’t be drawn on
a process graph. It is sometimes called a “fan-out/fan-in” scenario.

The fan-out activity in this diagram might represent a start activity in a process that receives a batch of
work items. The number of work items, however, is not known until runtime. Suppose a subprocess
called DoWork can process exactly one work item, then pass it on to the next activity. Ideally, you’d want
the start activity to be able to fan out N work items to N instances of DoWork, have those instances
execute in parallel, then collect all the results of the various DoWork instances at a central Fan-In
Activity, as shown.

The problem is that this pattern can only be drawn if the maximum number of possible instances of
DoWork (the maximum batch size) is known in advance. If it were possible to know, for instance, that a
batch can never hold more than 12 work items, then you could place 12 activity icons on the graph,
representing 12 launchable instances of DoWork, and connect links from the Fan-Out activity to each
instance of DoWork (as well as outgoing links from each DoWork to a Fan-In Activity.) A simple XPath
condition on each link could determine (by looking at the output from the Fan-Out activity) whether a
given link should fire based on whether the appropriate source XPath contains data.

114 Process Manager User’s Guide

An explicit graph of the type just described will work. It wouldn’t be pretty to look at, and the data
mappings would be tedious to spell out, but it would work. The problem is that six months from now,
someone could decide that the maximum batch size needs to be 200 instead of 12. Or, there may be no
limit to the batch size. What then?

The Synchronize Subprocesses activity is designed to handle resynchronization of the results of a fan-
out. The process engine performs certain services on behalf of the Synchronize Subprocesses activity,
and the activity’s implementation must be designed with certain runtime behaviors in mind. The salient
points to bear in mind are:

The Fan-Out Activity (which can be any of the standard Process Manager activity types) invokes N
instances of a Subprocess activity. The instances are spawned from Process Execute actions inside
the Fan-Out’s action model, as part of a loop.
Because the “work activities” are subprocesses and are spawned (rather than called
synchronously), each subprocess returns a ProcessID to the Fan-Out activity immediately.
The Fan-Out activity implementation should collect the ProcessIDs under a known XPath in
Output. That XPath must, in turn, be specified in the property sheet for the Synchronize
Subprocesses activity as shown here:

The component that provides the underlying implementation of the Synchronize Subprocesses
activity need not know about the list of ProcessIDs. The runtime engine will call the implementing
component the appropriate number of times, based on this list; then it will pass control (when every
subprocess has finished) to the next link or links in the chain, barring a fault condition. Thus, the
implementing component does not need to know that it is being used as part of a loop.
Each time the fan-in implementation is fired, the Input message part will contain the output from
a subprocess that just finished. It is up to the Synchronize Subprocesses implementation (the fan-in
component) to process the newly acquired data as needed. Usually, this will mean accumulating it
onto Output, for reasons explained below.
When all subprocesses have returned, the activity returns (barring a fault condition) and the parent
process continues down the normal control chain.

Data Mapping in the Synchronize Subprocesses Activity
The Synchronize Subprocesses activity will always have at least three message parts: Input, Input1,
and Output. The activity implementation will have DOMs corresponding to these part names as well,
but the parts have unique roles and an implementation should be designed with those roles clearly in
mind.

Input

From the implementation’s point of view, the Input message part is where subprocess output will be
received. Each time a spawned subprocess returns, its output gets passed to the merge component’s
Input. (The “merge component” here means the Synchronize Subprocesses activity implementation: an
XML Map component, JDBC component, or whatever.)

Advanced Topics 115

In the case of most other activity types, data from the previous activity’s Output is passed into the target
implementation’s Input DOM. In the Synchronize Subprocesses case, however, this is not true, because
the activity that fires the Synchronize Subprocesses activity is not really the data source of interest. See
below.

The Synchronize Subprocesses activity implementation (or merge component) is interested in data
provided by the subprocess instances that were spawned. It looks to Input to find that data. Each time
the merge component is fired, it sees a single work-item’s worth of data in Input.

Input1

The Synchronize Subprocesses activity implementation will typically map the Input1 DOM straight to
the Output DOM before doing anything else. That is to say, there will usually be an XML Map action at
the top of the implementation’s action model that looks like:

This is because the merge component’s Output part will be fed back into Input1 on every subsequent
invocation of the component. See discussion below.

Output

In order to allow the Synchronize Subprocesses activity implementation to accumulate or consolidate
“work items” into a single document, by adding subprocess returns one at a time to an incrementally built
DOM, the Synchronize Subprocesses activity recycles its implementation’s Output back to Input1. In
other words, on invocation N, the implementation receives, in Input1, the Output from invocation N–
1. (On invocation zero, Input1 is empty.)

See diagram below.

116 Process Manager User’s Guide

Fault Handling
You can choose to have the Synchronize Subprocesses activity raise a Fault message according to one of
two policies: Fail on Any Fault, or Fail if All Fail. In the first instance, the activity faults out as soon as
any one of the feeder activities (the data-producing subprocesses) gives a fault. In the second case, all of
the spawned subprocesses must return before a fault is generated. In either case, if the Synchronize
Subprocesses activity results in a fault, the process of which it is a part will terminate unless the fault is
handled (just as it normally would). Therefore, as a safeguard against a single fanned-out subprocess
instance failing your whole process, you should take time to “think through” a robust fault-handling
scheme.

Waiting Activities
Any time an activity (such as a subprocess or Web Service Receive activity) is in a wait state, waiting to
receive a response to some request that was made asynchronously by another activity, it is said to be a
waiting activity. In the wait state, the activity is not “running” in the normal sense of the word; it is not in
memory. The activity implementation might be a Web Service that operates according to the Request-
Response or One-Way port types of WSDL. It gets fired when a request comes in via HTTP to the server,
or via a message sent to a JMS message listener, etc. After the service is finished, the activity for which
it is the implementation (the waiting activity) needs to “wake up” and notify the process engine so that
the proper process instance can continue to execute the appropriate flow pattern.

But an activity implementation, being merely an application or service of some sort, doesn’t necessarily
know (nor should it know) that it is being used in a stateful process. The application (the activity
implementation) might be a generic, reusable, multi-role application or component that gets invoked by
external clients as well as by local applications. It may be a part of several different process models. At
any one time, there might be dozens of process instances using the component as an activity
implementation. When an instance of the component fires, it has no idea who called it or why; it doesn’t
magically know if it is being used as an activity implementation in a running process. See below.

Advanced Topics 117

If an activity is waiting for its underlying implementation to produce output, the underlying service or
component has to have some way of hooking back into the correct process instance, because numerous
process instances (possibly belonging to different process models) might be using the same
implementation. A correlation value of some kind must be passed into the waiting activity’s
implementation so that the implementation can get the activity out of the wait state and let the proper
process instance resume navigation.

NOTE: The particulars of how and when to specify a correlation value will be discussed in the next
chapter.

The scenario, then, is this:

The activity that makes the original outbound notification to an external serviceor business partner
must pass a correlation value to the service. This can be a custom CorrelationID in conjunction
with the Process name, or it can be a ProcessID in conjunction with the Activity name. (See the
next chapter for details.)
The web service that serves as the implementation for the Web Service Receive Activity must get
the correlation value back from the external service (business partner).
The web service (WSR implementation) must be a Integration Manager service with an action
model that contains a Find Waiting Activity action. (New Action > Process > Find Waiting
Activity.) The correlation value(s) will be used in this action as a means of looking up the
appropriate waiting activity in the appropriate process.
Once the Find Waiting Activity action has successfully executed, it must be followed by a Release
Waiting Activity action. (New Action > Process > Release Waiting Activity.)

“Waiting Activity” Actions
When the Process Manager has been installed as part of a Integration Manager installation, all component
editors for all component types (JDBC, XML Map, JMS, Telnet, etc.) have six Process-related actions
available for use in any action model:

Browse Waiting Activities
Find Waiting Activity
Lock/Unlock Waiting Activity
Process Execute
Reassign Addressee
Release Waiting Activity

These actions are available off the Process submenu in the New Action menu. You can use them in the
action model for any type of Integration Manager component or service (XML Map component, JDBC
component, etc.), but if they’re used in a component, the component should be wrappered in a Integration
Manager web service.

118 Process Manager User’s Guide

Five of the six activities are related to Waiting Activity functionality. All such functionality assumes the
presence of an activity whose implementation follows a One-Way or Request-Response type of
communication pattern. These are patterns in which the web service waits, passively, for an external
request.

Find Waiting Activity and Release Waiting Activity actions will be used together in most scenarios that
involve waiting activities, regardless of the nature of the associated business tasks. That’s because both
are needed in order to “wake up” a Web Service Receive activity once it has been enabled.

When process flow reaches a WSR activity at runtime, the process goes to sleep and only wakes up again
when:

a Integration Manager web service executes a Release Waiting Activity action targeting the WSR
activity, or
the WSR activity times out

In other words, the coupling between a WSR activity and its underlying implementation is quite loose. A
Web Service Release activity can be thought of as simply a place in the process flow where the process
goes to sleep until it is woken up either by an alarm clock (i.e., the activity times out) or by a web service
that knows how to wake the process up again.

For an in-depth discussion of Waiting Activity actions and their usage, see the next chapter.

Waiting Activities and Human Interaction

The actions called Browse Waiting Activities, Lock/Unlock Waiting Activity, and Reassign Addressee add
optional functionality designed to make it possible to use waiting activities in a human-intervention type
of workflow, where human operators perform tasks in response to notification by activities. It is common
in this type of flow for notifications to be sent to human operators, who will ultimately post work back to
the process via waiting activities. This type of scenario is discussed in greater depth in the following
chapter.

The concept of an Addressee is exposed in some of the “waiting activity” action dialogs. This allows
work items (that is, message parts, or node branches within parts) to be assigned to specific individuals
according to their roles, as part of a running process. The individuals in question can be notified of
arriving work via an activity designed for that purpose; and the process instance can call on a Web
Service Receive activity (or other “waiting activity”) to receive various individuals’ work back into the
system.

The notion of work-item Priority is also exposed in this system.

Advanced Topics 119

NOTE: Addressee and Priority are initially specified in the Object Properties panel of the Web Service
Receive activity. (The Addressee and Priority properties will not be visible in other activity types. A Web
Service Receive activity must be selected in order to see these properties.)

Work items can be marked as locked for exclusive use by one individual, programmatically, through the
Lock/Unlock Waiting Activity action.

Work items can be reassigned to different individuals via the Reassign Addressee action.

In addition, waiting activities representing the work queues of specific individuals can be browsed or
tallied using the Browse Waiting Activity action.

Through the creative use of these actions, you can develop sophisticated (yet robust and easy to test)
workflow systems involving work queues, work items with varying priorities, human operators with
roles, and so on.

120 Process Manager User’s Guide

Waiting Activities and Addressees 121

6 Waiting Activities and Addressees

This chapter discusses a wide variety of issues relevant to invocation and control of processes and
activities, including the various actions that can be used inside components to implement “human
intervention” scenarios involving work lists. To get the most out of this chapter, you should already be
familiar with Integration Manager project deployments and standard J2EE packaging and deployment
constructs, such as EAR/WAR files, web.inf files, contexts, servlets, and so on; and you should be
familiar with the basic Integration Manager service trigger types. For more information on the latter
subject, be sure to consult your Integration Manager Enterprise Server User’s Guide for the app server
environment (WebSphere, Weblogic, SilverStream) into which you will be deploying.

Understanding How Processes Are Triggered
In order for a process to be invoked, it needs to be associated with a Process Execute action (see “The
Process Execute Action” on page 122) in a calling component. The calling component can be any valid
Integration Manager component type (XML Map, JDBC, HTML, Telnet, or whatever). At some point,
however, the component must itself be called by a service, and the service must be triggered by one of the
standard Integration Manager service trigger types. From the top down, then, the activation sequence is:

HTTP/SOAP request fires servlet (typically)
Servlet (service trigger) fires Integration Manager service (web service)
Integration Manager service fires Integration Manager component(s)
Integration Manager component fires Process
Activities start and stop within the Process instance’s lifetime

In its simplest form, the activation chain looks something like:

Here, a Integration Manager service is shown calling/spawning a Process directly. But as mentioned
earlier, any component type (XML Map, JDBC, etc.) can also call or spawn a Process. The way this is
done is via a Process Execute action (discussed in further detail below).

122 Process Manager User’s Guide

Process-Related Actions
The Process Manager adds six process-related actions to the component editor menus.

The actions can be thought of as supporting three basic types of functionality:

Process invocation via an action: This is accomplished by the Process Execute action. Within a
given project, any Integration Manager component or service (whether inside or outside of a
Process) can launch any process in that project via this action.
Reentry into a Process: The Find Waiting Activity and Release Waiting Activity actions make it
possible for a service that implements a Web Service Receive activity to get the attention of the
process engine after it has finished running.
Human-accessible work queues: The Browse Waiting Activities, Lock/Unlock Waiting Activities,
and Reassign Addressee actions provide support for scenarios involving delegation of tasks to
individuals in an organization.

The Process Execute Action
The Process Execute action allows you to launch a Process using runtime inputs and outputs that you
specify. By using this action in a component’s action model, you can invoke any Process in the current
project.

The Process Execute action is similar to Integration Manager’s regular Component action (which fires
components), except that it covers two possible methods of execution (namely, Call and Spawn) and
optionally allows you to register the called/spawned process as a subprocess of a parent process.

If the process is started via a Call, then the action model containing the Process Execute action (the
source component) will block any further action processing until the called process returns. This is the
same behavior as for the regular Component action.

If the process is started via Spawn, then the process is executed in a “fire and forget” mode wherein the
spawner does not wait for the spawnee to return. Instead, the spawned process returns (immediately) a
“receipt” consisting of a unique identifier for the process and a timestamp. (See below.) This information
can be used by other process actions such as the Browse Waiting Activities or Find Waiting Activity
actions.

Waiting Activities and Addressees 123

Data Returned by a Spawned Process

When you spawn a process, you are invoking the process asynchronously, in “fire and forget” manner.
The spawned process will hand back a message containing certain information about the process instance
that was spawned (which can be useful later). The “return receipt” information handed back by a
spawned process looks like:

The information returned includes the ProcessID associated with the particular process instance that
was just started, and the date of birth of the process instance, in Process/Info/CreationDate.

How to Create a Process Execute Action

To create a Process Execute action:

1 Open the Integration Manager component or service from which you wish to invoke a process.
Click inside its action model at the point where you want to insert the action.

2 In the Action menu, choose New Action > Process > Process Execute, as shown above. (You can
also reach this command from the context menu, available by right-clicking in the action pane.) A
dialog appears.

3 Using the pulldown menu in the top left corner of the dialog, choose the Execute Method: Spawn
(fire and forget) or Call (block until results come back).

4 From the pull down menu under Process Component, select the process that you want to invoke.
The menu will be prepopulated with the names of all process xObjects in the current project.

5 Under Passed Part, select (from the dropdown list that appears when you click in this field) the
name of the component DOM that will be the data source for the process.

6 Under Returned Part, select (from the dropdown list that appears) the name of the DOM that will
receive information back from the process. For a spawn action, see discussion below.

7 If you are spawning this process as part of a fan-out (in anticipation of later using a Synchronize
Subprocesses activity to sync back up), check the Spawn as Subprocess... checkbox and indicate
(via XPath expression) where the parent process’s ProcessID can be found.

124 Process Manager User’s Guide

NOTE: This is an advanced option that is useful primarily when you are working with the
Synchronize Subprocesses activity type. Leave this checkbox unchecked unless the current
component is an activity implementation for a process and you are using the Synchronize
Subprocesses activity type somewhere else in the same process.

8 Click OK to dismiss the dialog.

More about the Process Execute Dialog

Passed Part represents the runtime name(s) of the source component parts that will be passed into the
target process as its ProcessInput message. When you select a process to execute from the drop down list
box, the parts it is expecting as defined by its input XML Template will appear. You then simply match
up the current component parts to pass with their process counterparts. The Passed Parts do not have to
match the template parts in name. However, to insure that the process receives all the data it needs, the
number of parts passed should equal the number of parts expected.

The output from a Process Execute action is returned to a Part in the current component that you specify.
If the process is executed via a Call, then the process output will be placed in the Returned Part. If the
process is executed via Spawn, then a Process Info receipt is placed in the Returned Part.

Spawn as Subprocess of Parent ID

The checkbox called “Spawn as a subprocess of Parent ID,” underneath the Returned Part section of the
Process Execute dialog, is visible only when Spawn is selected as the Execute method. The controls just
below the checkbox appear, also, when Spawn mode has been chosen. These controls allow you to
correlate a spawned process with a given parent process, so that the process engine can keep track of
subprocess returns. This is important only in the context of a Synchronize Subprocesses activity
implementation.

NOTE: If you are not implementing a “fan-out” type of scenario culminating in a fan-in via a Synchronize
Subprocesses activity, you do not need to concern yourself with this discussion.

The parent Process ID that is attached to each process when it is spawned by the Process Execute action
allows the engine to return each spawned process’s results to the correct parent process. Since there may
be many instances of the parent process running at one time, this mechanism prevents one instance of a
parent process from receiving the results of a different instance.

For a more detailed discussion of a fan-in/fan-out scenario using the Synchronize Subprocess activity, see
“Synchronize Subprocesses Activity” on page 113.

Deployment and the Process Execute Action
The unit of deployment in all Integration Manager projects is the Web Service xObject. Thus, as with all
other Integration Manager components (e.g. JDBC, EDI, XML Map, 3270, etc.), any Process you wish
to expose to a business partner must be executed from inside a Web Service component.

In the simplest case, you can deploy a Process by placing a single Process Execute action inside a Web
Service, which you then deploy as you normally would. You merely need to make sure that the Web
Service’s input message (and its constituent parts) matches the input(s) for the Process. Then it is a
simple matter to call the process via the Process Execute action and pass in the parts.

In a more complex deployment, the Process Execute action may be part of a larger action model that
either prepares the initial process message or runs multiple other components and/or processes as well.

Waiting Activities and Addressees 125

Find Waiting Activity Action
You will typically use the Find Waiting Activity action inside the implementation for a Web Service
Receive activity. (It is usually followed by a Release Waiting Activity action. See discussion further
below.) The Find Waiting Activity action allows you to retrieve runtime information from the process
engine for a Web Service Receive activity that is waiting to be fired by (for example) a business partner.
The retrieved information, along with the business partner’s message, is then used to generate an output
message for the activity.

A Release Waiting Activity action generally follows every Find Waiting Activity action. The Release
Waiting Activity action causes output to be passed to the Web Service Receive activity and signals its
“exit readiness” to the process engine, thus allowing the process flow to continue.

Recall that in the Process Manager, the Web Service Receive activity allows a process (or branch of a
process) to halt the flow of control at that activity in order to wait for a Web Service to receive
information that is necessary to continue the process flow.

The implementation for the Web Service Receive will typically be an Integration Manager web service
with a published WSDL endpoint for the business partner to contact. After being contacted, this Web
Service needs a way to find its associated Web Service Receive activity in the correct process instance,
pass it the business partner’s message, and signal the process engine that the activity is complete (see
Release Waiting Activity described later). The Find Waiting Activity action fills the need of locating the
proper Web Service Receive activity.

NOTE: It’s important to keep in mind throughout this discussion that activities and activity
implementations are not the same thing. Activities are abstract entities that have certain attributes and
states meaningful only to the process environment. An activity implementation is the business application
that carries out some task in software. An activity has certain properties associated with it—these are
shown in the property sheets which make up the tabs in the Object Properties panel. But in general, an
activity doesn’t know anything about the implementation, or underlying app, that carries out the actual
work required to accomplish a given business task. Conversely, an implementation doesn’t know that it is
being used in a process.

A Scenario

Consider the following scenario: You have defined a process that places an order, sends a confirmation
to a business partner asking for final approval to execute the order, and then waits to hear back from the
partner. The partner sends a message referencing the order number back to you, at which point the order
process continues. A Web Service Receive activity is used for the part of the process that waits to be
contacted by the business partner (see No. 1 in the diagram below). This activity’s implementation is
usually a standard Web Service. That Web Service, in turn, uses a Correlation ID to keep everything
instance-bound. The business partner will have been given this ID by an upstream activity in the process
(the activity that queried the partner). The following diagram shows what happens when the partner
finally answers back.

126 Process Manager User’s Guide

When the business partner sends a confirmation message to Web Service A (which implements the Web
Service Receive activity in the above diagram),Web Service A needs to find and “wake up” its associated
activity and process. Fortunately, Web Service A contains a Find Waiting Activity action that does
precisely this (see 2, above). Using the Find Waiting Activity action, the web service finds the Web
Service Receive activity that has been waiting for the business partner’s response. That activity’s input
message and PendingActivity document can be utilized in creating an output message for the activity
(see 3 above). Using the PendingActivity document, the Web Service executes a Release Waiting Activity
action and passes output back to the Web Service Receive activity (see 4 above), which exits and allows
the process to continue.

Finding a Waiting Activity
A waiting activity can be found using one of two methods. One method uses a combination of Process
Name and Correlation ID; the other uses Activity Name and ProcessID.

The Correlation ID method is most common for business interactions with business partners on opposite
sides of a firewall (i.e. two separate companies). The Correlation ID is simply any unique value—such as
a timestamp, work order number, confirmation number, etc.—created earlier in the process and
communicated to the business partner. The Find Waiting Activity action will extract the CorrelationID
from a location in the Input document that you specify, then submit this ID to the process engine to find.

The second lookup method bases its inquiry on a unique key constructed by combining an Activity Name
(i.e. the name of the Web Service Receive activity of which the component is a part) and the ProcessID
of the process instance in question. The Find Waiting Activity dialog (below) allows you to enter this
information.

The second lookup method is more common in cases where requesting and responding parties are both
inside a common firewall.

Waiting Activities and Addressees 127

With either lookup method, it is essential that the business partner provide the needed ID information in
the input message to the Web Service. That ID information will consist either of a Correlation ID, or a
combination of Process ID and Activity Name.

The Find Waiting Activity Dialog
The Find Waiting Activity dialog consists of two tabs of controls. The Find tab is where you specify
criteria used to find a waiting activity. The Message tab allows you to specify where to place the
information returned from the process engine regarding the activity you find.

Find tab

The Find tab will take on a different appearance depending on which of the two radio buttons is selected
in the top part of the dialog. When “Process Name and Correlation ID” is selected, the dialog takes on the
following appearance:

If you are finding an Activity by Process Name and Correlation ID, select a process name from the
dropdown list. Then specify an XPath expression identifying where, in the message received from the
business partner, Integration Manager will find the CorrelationID. (Alternatively, click the Expression
radio button and specify an ECMAScript expression that will evaluate to the needed ID.) The message
part containing the business partner’s message will normally be Input, but others are allowed. Note that
the element containing the CorrelationID does not need to be named “CorrelationID.” A valid XPath
expression might be: PurchaseOrder/Header/POID.

128 Process Manager User’s Guide

When finding an activity by Activity Name and Process ID (using the radio button labelled “Activity
Name and Process ID”), specify an XPath expression identifying where, in the message received from
the business partner, Integration Manager can expect to find the Activity Name (i.e. the name of the Web
Service Receive activity). The message part containing the business partner’s message will ordinarily be
Input, but others are allowed. Note that the element containing the Activity Name does not need to be
named “Activity Name.” A valid XPath expression might be:
ServiceTicket/Header/InquiryType. Also, in similar fashion, specify the location of the
ProcessID.

Message tab

When an activity is found, the process engine will return two XML documents to the Web Service that
issued the Find Waiting Activity action. The first document is the original input message (consisting of
1 or more parts) to the Web Service Receive activity before it began waiting for a contact from a business
partner. This allows the activity’s implementation to work on the activity message or use it as a reference
with the message received from the business partner.

The second document returned by the process engine is runtime information about the waiting activity
(see details below).

The first section of the Message tab allows you to map the activity’s original input message into the Web
Service so you can work on it. Two radio buttons control the options available to you:

The Parts radio button allows you to map each part of the activity’s input message to a part in the
Web Service. This will be the choice for most applications.
The Message radio button allows you to map the entire activity input message (including all its
parts) to a single part in the Web Service. If no parts are available for use, you will need to add
Temp documents to the Web Service.

The second section of the Messages tab allows you to specify what part in the Web Service will receive
the waiting activity’s process information from the process engine. Select a part from the dropdown list.
If no part is available for use, you will need to add a Temp document to the Web Service.

The PendingActivity document

The second document returned by the Find Waiting Activity action is used by a Release Waiting Activity
action to signal the completion of the Web Service Receive activity and allow the process flow to
continue to execute. The document returned by the process engine that describes a waiting activity
contains a root element named PendingActivity.

The PendingActivity document contains the following child elements:

Waiting Activities and Addressees 129

ProcessID—This is the unique number associated with the process instance in which the found
Web Service Receive activity exists. This data is used by the Release Waiting Activity action to
restart the waiting activity.
QueueDate—This is a date/time stamp indicating when the Web Service Receive activity starting
waiting for contact from a business partner.
ActivityName—The name of the Web Service Receive activity that is waiting.
ProcessName—The name of the process to which the Web Service Receive activity belongs.
CorrelationID—The unique key used to identify and find the Web Service Receive activity. The
value is specified as a property of the Web Service Receive activity and is set by the process when
the activity executes and begins waiting.
Addressee—The name of a user who is supposed to contact this Web Service Receive activity.
This data is usually used in assigning work to people in work queue applications that involve user
intervention/interaction with a long-running process. The value is specified as a property of the
Web Service Receive activity and is set by the process when the activity executes and begins
waiting. This data is usually used in processes that run completely behind the firewall.
Priority—This data is used in assigning work to people in work queues and allows an application
querying the process engine to sort waiting activities by relative importance. The value is specified
as a property of the Web Service Receive activity and is set by the process when the activity
executes and begins waiting. This data is usually used in processes that run completely behind the
firewall.
LockedBy—This label is typically the name of a user in a work queue who has flagged this activity
instance as being locked for exclusive use by one individual. No actual lock is created; rather, it is
a semaphore or flag value for work-queue applications querying the process. The value is set by a
Lock/Unlock Waiting Activity action.
LockedUntil—A date value indicating when the lock will be removed. The value is set by a
Lock/Unlock Waiting Activity action.

Release Waiting Activity Action
The Release Waiting Activity action is used inside the implementation (usually a Web Service) for a Web
Service Receive activity. The action is usually preceded, at some point in the implementation’s action
model, by a Find Waiting Activity action. The action passes data to the waiting Web Service Receive
activity; and that data becomes the output message, signalling the activity’s completion to the process
engine. The passed data is usually information from a business partner that contacted the Web Service.
Thus, the Release Waiting Activity action is the callback mechanism used by a Web Service to produce an
output message for, and signal the completion of, a Web Service Receive activity inside a process.

Before an Activity can be released, you must produce a message part that contains a PendingActivity
document indicating the Process and Web Service Receive activity you wish to release. This can be
accomplished via a Find Waiting Activity action (see the previous section). In addition, you will need one
or more parts that will be passed back to the waiting Web Service Receive activity as its output
message. Once you have a PendingActivity document and one or more parts to serve as activity output,
you can release an activity.

The Release Waiting Activity Dialog
The Release Waiting Activity dialog has three sections to it.

The first section allows you to specify a part in the Web Service that contains a PendingActivity
document describing the process and activity you wish to release. This part must have been populated
previously by a Find Waiting Activity action.

The second section is where you map parts in the Web Service to output message parts in the waiting Web
Service Receive activity.

130 Process Manager User’s Guide

The third section is optional and allows you to return output to the activity but flag it as a fault message
causing the process flow out of the Web Service Receive activity to follow fault links.

Under “Part containing Waiting Activity’s Process Information,” just select a part name from the drop
down list.

NOTE: In order for a part to show in the list, it must contain a PendingActivity document.

The second section of the dialog allows you to specify data from the Web Service that will become the
waiting activity’s output message. The Parts option allows you to map one or more parts in the Web
Service to one or more parts in the Web Service Receive activity’s output message. This will be the
choice for most applications. The Target Part name you enter will be created in the activity’s output
message for you. The Message option allows you to map a single part in the Web Service as the entire
activity output message (including all its parts).

The third section in the dialog allows you to specify (optionally) that the returned data is to be flagged as
a fault inside the process. Use the expression builder to specify a fault message name corresponding to
one that was defined for the Web Service Receive activity on its Messages tab.

Human Participation in Processes
Most processes require some kind of human interaction, if for no other purpose than the initial triggering
of the process. In some scenarios, human involvement in all phases of a particular business task can be
essential. Purchase orders may require personal approval; product inquiries may require personal e-mail
responses or phone calls; large transactions may require escalation to a particular individual; and so on.

You can use Integration Manager’s Process Manager to implement a wide variety of sophisticated
human-centric workflows. The Process Manager has features that make it easy to:

Assign (and reassign or reroute) work to individuals
Assign priorities to work items
Mark work items as locked or unlocked for exclusive use by an individual
Browse a process for worklists, filtered by individual(s)
Retrieve individual work items
Integrate back-end systems into the workflow
Integrate easy front-end access to work lists via JSP or HTML

Waiting Activities and Addressees 131

To create human entry-points into a process, you will generally use Web Service Receive activities to
expose outward-facing web-service applications (i.e., the implementations of the Web Service Receive
activities). The user-facing services could be exposed via JSP or HTML pages; or they might be exposed
by other means.

Your user-facing services can be designed to allow users to browse work queues, find and lock work
items, unlock work items, reassign work, and/or push work back into the system. The actions that make
these operations possible include the Find Waiting Activity and Release Waiting Activity actions already
discussed above, as well as the Browse Waiting Activities, Lock/Unlock Waiting Activity, and Reassign
Addressee activities discussed below.

Addressees
Human participants in a process are known, in Process Manager, as Addressees. The runtime engine
associates an Addressee with a particular document or work item via the Addressee property on the
Object Properties panel for the Web Service Receive activity type.

NOTE: Addressee is a property of Web Service Receive activities only. You will not see this field in the
Object Properties panel for other activity types.

The Addressee value is specified as an XPath expression. This affords a great deal of flexibility, since the
Addressee can be in a passed-in message part, or it can be determined dynamically at runtime, or it can
be hard-coded to a particular string value. Thus, you can accommodate any of the following common
scenarios:

The sales person to whom the order should go is determined by a JSP scriplet or EJB at the time the
order is submitted online. The ProcessInput message already contains the necessary Addressee
name at process invocation.
An order arrives via the Web and kicks off a process. The Addressee is determined dynamically—
”just in time”—by business logic in a preprocessing component, and it appears in the output
message of an activity.
All orders must eventually be approved by John Smith. Therefore, a Web Service Receive activity
is hard-wired to an Addressee value of “John Smith.”

The Role of the Web Service Receive Activity
The Web Service Receive activity is the main touchpoint for human input into automated processes built
with the Process Manager.

When a Web Service Receive activity “fires,” three things happen:

Its Addressee property becomes associated with a string value (usually, although not necessarily,
representing a real person’s name)

132 Process Manager User’s Guide

The underlying implementation for that activity (namely, a user-facing Web Service that follows
the WSDL One-Way or Request-Response pattern) becomes operational
The Process Engine puts the Web Service Receive activity (not its implementation!) into a waiting
state

A person (i.e., a worker or an administrator; the Addressee) can then use a work-group application
implemented in JSPs to execute Integration Manager components or services to:

1 Browse all the waiting activities addressed to a particular person (using a Browse Waiting
Activities action),

2 Lock waiting activities to prevent other users from approving an order (using a Lock/Unlock
Waiting Activity action) while they are being reviewed by an Administrator,

3 Unlock an order, allowing it to be approved (using a Lock/Unlock Waiting Activity action),
4 Retrieve orders and mark them as approved (using a Find Waiting Activity action), and/or
5 Complete the approval and allow the process to proceed to the next activity (by finally calling a

Release Waiting Activity action).

Notice that only the Release Waiting Activity action can actually complete a Web Service Receive
activity (that is, cause it to exit). So by definition, the implementation to a Web Service Receive activity
(i.e. a Web Service) must contain a Release Waiting Activity action. The other process actions (Browse
Waiting Activities, Lock/Unlock Waiting Activity, Reassign Addressee, and even Find Waiting Activity)
can be used in a variety of components not directly connected to a process. Such components might use
these actions to add oversight and “see-into” functionality to external applications, giving users a means
to view and manage waiting activities.

Browse Waiting Activities Action
The Browse Waiting Activities action can be used in any service or component (even one outside the
process), as long as the process and the service/component are deployed as part of the same Integration
Manager project. The sole purpose of the Browse Waiting Activities action is to allow an application to
obtain a list (or lists) of pending activities, filtered by Addressee.

When you execute a Browse Waiting Activities action, you are merely supplying the Process Server with
a name, or a list of names. The Process Server, in turn, examines all Web Service Receive activities in all
instances of all processes, and hands back a list of activities waiting to be acted on by the individuals (or
departments, etc.) in question.

The list that the Process Server returns in response to a browse is a PendingActivity document. This
document contains such information as the ProcessID and Activity Name for the pending activity, as well
as other information that can be used, if desired, to find and do work on behalf of a waiting activity. (See
“The PendingActivity document” on page 128 for additional discussion of the PendingActivity
document structure.)

Waiting Activities and Addressees 133

Where to Use the Browse Waiting Activities Action
The Browse Waiting Activities action is usually utilized in scenarios where a long-running process
requires the intervention of, or interaction with, a live person through another application such as a JSP.
(See the Integration Manager Enterprise Server User’s Guide section titled "Creating a JSP that calls a
Integration Manager Service" for more detail.) For example, you may have a heavily trafficked process
that processes orders one-at-a-time. The process contains an activity that accepts a single order and
passes it to a Web Service Receive activity, where the process stops and waits for the order to be approved
by a particular person. That person, in turn, will use a JSP (Java Server Page) to input his approval. In this
kind of scenario, the Addressee (the person who approves the order) needs to be able to find out about (or
discover) work waiting to be done, and also push work into the system as it gets done. The discovery part
can be accomplished via a Browse Waiting Activities action in a service (not necessarily internal to the
process) that can be triggered off a JSP. The “data push” part can be done via a service that implements
the Web Service Receive activity type. This service would use a Find Waiting Activities action to look up
individual work items, and a Release Waiting Activity action to execute the “push.”

How It Works

A waiting activity (no matter which process it is in) can be located by Addressee alone, using the Browse
Waiting Activities action. But for this to work, the associated Web Service Receive activity must have a
non-empty Addressee property. To specify a value for Addressee, just open the Process graph in Process
Designer, click on the Web Service Receive activity in question, bring the Object Properties panel into
view, and enter a legal XPath value next to Addressee. (See screen shot under “Addressees” on
page 131.) The XPath should point either to an input message part that contains an Addressee string, or
a hard-coded string value.

A second Web Service Receive activity property named Priority can also be set in the Object Properties
panel. Priority is an arbitrary number that allows the application to sort or filter retrieved work items
before displaying them to the user. You can assign any value(s) you want here, or leave the value empty.

In most applications, a Browse Waiting Activities action will be followed by other process actions like
Lock/Unlock Waiting Activities, Reassign Addressee, and/or Find (or Release) Waiting Activity. For
instance, one possible scenario might be as follows. An administrator for a work group selects multiple
waiting activities for a group of users (using the Browse Waiting Activities action). The administrator
places a lock on all the selected activities to prevent users from working on the work items (using a
Lock/Unlock Waiting Activities action) while they are under review. The administrator reassigns some
work items among the users (using the Reassign Addressee action), finds and works on the high priority
work items (using the Find Waiting Activities action) and completes them (using a Release Waiting
Activity action), and then unlocks the activities not worked on (again using a Lock/Unlock Waiting
Activities action).

Comparing Browse and Find

The Browse Waiting Activities action differs from the Find Waiting Activities action in the following
characteristics:

Browse can search for waiting activities by Addressee only, whereas Find can search only by
Process Name/CorrelationID or Activity Name/ProcessID.
Browse can return information on multiple activities, whereas Find returns information on just a
single waiting activity.
Browse maps its results to a message part or XPath location, whereas Find maps its results to a part
only.
Browse does not return the input messages to the found activities, whereas Find does return the
waiting activity's input message. So by using a Browse coupled with a Find, an administrator can
look into the details of a waiting activity such as looking at the actual order.

NOTE: Both Browse and Find are nondestructive. No waiting activity is marked as finished until a
Release Waiting Activity action has been called on it.

134 Process Manager User’s Guide

Creating a Browse Waiting Activities Action
To create a Browse Waiting Activities action, go into a component and right-click in the action model;
then select New Action > Process > Browse Waiting Activities from the context menu. A dialog will
appear.

The Browse Waiting Activities dialog contains two basic control groups. The first control group offers a
way to point to a list of Addressees in a message part in the component. The value(s) contianed in the
nodelist will be used as the search key(s) for finding waiting activities. For example, in the dialog above,
the Addressee XPath points to the list of Approvers shown below.

The second control group allows you to specify where to place the results of the browse. Specify a part
name (such as Temp) and an XPath location within the part. The results of the browse will be placed as
child elements of the XPath you specify.

A successful browse will return one or more PendingActivity documents (as shown above), each
containing child elements describing the waiting activity. If the browse finds no waiting activities, then
only the XPath you specify will be created and there will be no PendingActivity children elements
beneath it.

Waiting Activities and Addressees 135

NOTE: Unlike the Find Waiting Activity action, the Browse Waiting Activities action does not return the
input message for the found activity. In order to retrieve the input message, you must loop through each
PendingActivity element using a Repeat for Element action, and perform a Find Waiting Activity action on
the activities of interest. (The PendingActivity branches contain all the information required by a Find
Waiting Activity action to retrieve any given activity.)

Lock/Unlock Waiting Activity
The Lock/Unlock Waiting Activity action flags a waiting Web Service Receive activity as being in use or
clears that flag, indicating the waiting activity is available to be worked on. The flag consists of the two
elements /LockedBy and /LockedUntil in the PendingActivity document associated with a waiting
Web Service Receive activity. A non-null value in the LockedBy element indicates the waiting activity
is unavailable for use. When a lock is flagged, the LockedUntil element contains a date/time stamp
indicating when the lock or flag will be cleared automatically by the process engine.

It is important to note that the Lock/Unlock Waiting Activity action does not physically lock the waiting
activity. It simply marks the activity as being in use. Even when flagged as being in use, a Find Waiting
Activity/Release Waiting Activity set of actions can work on and complete the activity. It is up to the
designer of the work group application to honor the lock.

NOTE: Locked activities are not excluded from Browse results. The PendingActivity information returned
by a Browse will show all applicable activities, including both locked and unlocked ones.

The Lock/Unlock Waiting Activity action is typically utilized in applications where a long-running
process requires the intervention of, or interaction with, a live person through another application such as
a JSP. (See the Integration Manager Enterprise Server User’s Guide section titled "Creating a JSP that
calls an Integration Manager Service" for more detail.) These work-group applications commonly use
work queues filled with work items assigned to addressees.

Prerequisites for Locking/Unlocking an Activity
Before you can lock or unlock a waiting activit,y you must have a ProcessID and Activity Name with
which to locate the waiting activity. A Lock/Unlock WaitingActivity action will generally be preceded in
an action model by a successful Browse Waiting Activities or Find Waiting Activity action. The result of
either action is a PendingActivity document from which you can reference the necessary ProcessID and
Activity Name.

If the activity you are trying to lock or unlock is no longer present in the process engine, Integration
Manager will throw an exception, so it is good practice to anticipate this (for example by placing
Lock/Unlock Waiting Activity actions inside a Try/On Error action).

If the Lock/Unlock Waiting Activity action is successful (i.e., no exception is thrown), nothing is
returned and the next action in the action model executes.

Creating a Lock/Unlock Waiting Activity Action
To create a Lock/Unlock Waiting Activities action, go into a component and right-click in the action
model; then select New Action > Process > Lock/Unlock Waiting Activities from the context menu. A
dialog will appear.

136 Process Manager User’s Guide

The Lock/Unlock Waiting Activity dialog has 5 sets of controls:

The first control group contains two radio buttons that determine whether the action is to set a lock
or clear an existing one.
The second control specifies the ProcessID you wish to target. Specify an XPath within a
PendingActivity document down to the ProcessID element.
The third control specifies the Activity Name you wish to target. Specify an XPath within a
PendingActivity document down to the Activity Name element.
The fourth control is the LockedBy flag. Specify a meaningful value for the people or processes
who might inspect it by executing a Browse or Find against the waiting activity while you have it
flagged as locked.
The fifth control is the Lock Duration. Specify a time interval that will be used to calculate a
date/time stamp to place in the LockedUntil element of the PendingActivity document associated
with the waiting activity. The time interval default unit of measurement is seconds, so entering the
text 60 will leave the lock flag in place for 60 seconds, after which the flag will be cleared
automatically. Other units of measure include minutes (specified inside single quotes as: '60m'),
hours (specified inside single quotes as: '60h'), and days (specified inside single quotes as: '60d').

NOTE: If you select the Lock Waiting Activity radio button, values for all controls are required. If you
select the Unlock Waiting Activity radio button, values for the Process ID and Activity Name controls only
are required.

The Lock dialog settings shown in the screen shot further above might give the following result when
another user (say, Mary) browses waiting activities:

Waiting Activities and Addressees 137

The Reassign Addressee Action
The Reassign Addressee action allows you to change the value of the Addressee attribute assigned to a
waiting Web Service Receive activity. In most cases, the original value of the Addressee will be set by
the Process Manager when a Web Service Receive activity enters its waiting state. Once in its wait state,
the current Addressee can be changed to another value by the Reassign Addressee action. You also have
the option of reassigning the the current Addressee for one Web Service Receive activity, or all of that
person’s Web Service Receive activities. (For example, you might want to reassign all of Mary’s work to
Joe while Mary is out sick.)

Remember that the Addressee is an optional attribute that can be assigned to a Web Service Receive
activity. The presence or absence of a value does not inherently affect the processing of the Web Service
Receive activity except as a flag or tag to an external work group application.

The Reassign Addressee action is typically used in applications where a long-running Integration
Manager process requires the intervention of, or interaction with, a live person through another
application such as a JSP-driven application or form. Work group applications allowing human
interaction commonly use work queues filled with work items assigned to addressees.

Reassigning an Addressee
Before you reassign the addressee to a waiting activity, you must decide if the action will reassign all or
just one of the activities associated with a particular Addressee. If you want the action to reassign all
activities, then you need only define two parameters for the action: an XPath or ECMAScript expression
identifying the current Addressee, and an XPath or ECMASCript expression identifying the new
Addressee.

If you want to reassign a single specific activity of the current Addressee, then you will also need to
supply a ProcessID and Activity Name. To do this, the Reassign Addressee action must be preceded in
an action model by a successful Browse Waiting Activities or Find Waiting Activity action. The result of
the Browse or Find will be a PendingActivity document from which you can reference the necessary
ProcessID and Activity Name.

After the Reassign Addressee action executes, whether successful or unsuccessful, nothing is returned.
To verify the success of the action, perform another Browse.

138 Process Manager User’s Guide

Creating a Reassign Addressee Action
To create a Reassign Addressee action, go into a component and right-click in the action model; then
select New Action > Process > Reassign Addressee from the context menu. A dialog will appear.

The Reassign Addressee dialog has several groups of controls. The first control identifies the current
Addressee (the one whose work will be reassigned) while the second control identifies the new
Addressee. For each one, enter an XPath location from a part in the current action model or an
ECMAScript expression that will resolve to the correct Addressee name. (The value for each will
typically be passed into the component in which the Reassign Addressee action is used.)

The All Activities and Specified Activity radio buttons in the middle of the dialog determine whether all
activities for the current Addressee will be reassigned (as in the case where all of Mary’s work needs to
be reassigned to Joe), or just one specific activity. If Specified Activity is chosen, the control groups
called Activity Name and Process ID become enabled and you must enter an XPath or ECMAScript
expression identifying the specific Activity to reassign, along with the specific ProcessID containing
that activity. In order to supply these values, you will generally have performed a Browse Waiting
Activities or Find Waiting Activity action.

Runtime Administration of Processes 139

7 Runtime Administration of Processes

This chapter discusses the use of the Process Server Console to manage deployed processes.

Server Console Usage
From the Integration Manager Enterprise Server main console page (shown below), click the “Process
Console” icon in the top row of buttons:

NOTE: Integration Manager Enterprise Server and the Process Server should be installed and running
on your application server prior to attempting to access these consoles.

After clicking the Process Console button, a new screen should appear in a new browser window, as
shown in the section below. Notice the presence of four tabs (Main, Statistics, Status, and Log). These
tabs are discussed in the sections to follow.

Process Manager Console: Main Tab
The console’s Main tab reveals a screen comprised of the following sections:

Process Statistics Summary
Process Engine Info
Process Database Info
Jump to Process
Delete Process Info
Manage Activity Queue

Each of these sections is described below:

140 Process Manager User’s Guide

Process Statistics Summary

The Process Statistics Summary section displays the count of Active, Cached, and Completed processes.
The latter refers to the number of process instances that have run since the Process Server was started
(i.e., the Start date given in the next section), whether they ended in success or a fault of some kind.

Engine Info

The Process Engine Info section shows whether the process engine is running and, if it is running, the
date and time at which it was started. If the process engine is running, the Process Engine Status is
“Running” and the button below is labeled “Stop Engine.” If the process engine is not running, the
Process Engine Status is “Suspended” and the button below is labeled “Start Engine.” If you are
clustering the Process Engine, you use the Manage Engine(s) button to configure engine parameters to
manage the cluster (see “Administering the Cluster” on page 161).

Process Database Info

The Process Database Info section displays general information regarding the process database. (See the
first few pages of this guide, as well as the product Release Notes, for information on setting up this
database.) This is the database Process Manager uses to persist “state data” for long-running processes.

Type—the type of database (e.g. Oracle, DB2, ASA, etc.)
Pool Name—the name of the connection pool
Status—the status may be:

Not Connected to Database
Can’t Connect to Database
Connected—Not Initialized
Connected—Ready

Runtime Administration of Processes 141

Configure—the Configure button will be displayed only when the Process Engine is stopped.
Pressing the Configure button in the Process Database Info section will display the Process
Database Configuration page, from which you can configure the database (see below).

To configure the database, select a database type from the dropdown list (e.g. Oracle, DB2, ASA,
etc.) and enter a pool name. You may save the configuration by pressing the Save button. Once the
Configuration is saved, you can initialize the database by pressing the Initialize Database button.
The Initialize Database button is displayed only when the status is Connected—Not Initialized.

Jump to Process

The Jump to Process section of the main console enables you to display the status of a specific process
by entering the ID of the process and pressing the Go button.

Delete Process Info

Process records can be completely deleted via the Delete Process Info section. You may delete all
information for process instances that were terminated (e.g. completed or otherwise terminated) by a
specified date. To do this, enter the “Terminated By” date and press the Delete button. For example, if
you enter 2002-02-01 and press the Delete button, all records for process instances completed or
otherwise terminated on or February 1, 2002 will be permanently deleted.

NOTE: When a process finishes running or is manually terminated, only the process instance's input
documents and output documents will be maintained. Any interim documents created by the process
instance will be purged, automatically, upon termination of the process instance.

Manage Activity Queues

You may administer activity queues by pressing Manage Activity Queues button on the Main tab. Doing
so will display a page with two tabs that provide queue statistics and queue status.

142 Process Manager User’s Guide

Queue Statistics

The Queue Statistics tab displays a table that contains a sorted list of addresses in the activity queue and
a count of the work items assigned to that addressee. These statistics are automatically refreshed every 60
seconds.

Queue Status

The Queue Status tab (see illustration below) displays a table with the following columns:

Addressee—the Addressee name
Priority—the priority
PID—the Process ID
Corr ID—the correlation ID
Process Name—the name of the process
Activity—the name of the Activity
Created—the creation date of the Activity instance
Expires—the expiration date of the Activity instance
Owner—Owner of the lock
Lock Until—the date which the lock expires

Runtime Administration of Processes 143

The PID column contains hot links to the Process Detail info for the process instances. (This will open in
a new browser window.) The Process Detail windows are discussed in a later section.

If the activity does not have a timeout, the Expires column is blank.

If the Activity has been locked via the Lock Waiting Activity Action, the Owner column displays the
name of the Owner of the Locked Activity and the Lock Until column displays the date to which the
activity has been locked. If the Activity does not have a Lock, the Owner and Lock Until fields are blank.

Optionally, you may filter Queue Status by Addressee by entering an Addressee name. You may also
choose to display only those activities that were queued within a specific range of dates by entering the
range of dates in the From and To fields.

Navigation

The Queue Status tab, like other Integration Manager Process Manager Console pages, displays up to
twenty (20) records per page. If there are more than 20 records, a controls at the bottom the page allow
you to move to the first page, the previous page, the next page, or the last page.

Process Manager Console: Statistics Tab
The Process Manger Console’s Statistics tab provides a list of all processes and a count of Running and
Completed process instances for each process. (See below.) On the Totals line at the bottom, you will see
(from left to right) the total number of Processes (not process instances, but different process models),
Running process instances, and Completed process instances. The processes are listed alphabetically by
name on the left. Each name is a hot link that will take you to a Status page listing a status table filtered
by the process name.

144 Process Manager User’s Guide

Process Manager Console: Status Tab
The Process Manager Console’s Status tab gives you a view of the overall execution status of all
processes, filterable by process name and date range, with control over which field to sort by. The filter
controls are at the bottom of the page.

As always, 20 result lines are displayed at a time. To page through the available results, click the First,
Prev, Next, or Last links at the lower right corner of the page.

This view is not updated in real time. Therefore, a Refresh button is provided near the bottom right
corner.

Runtime Administration of Processes 145

Process ID and Parent ID numbers are clickable links. You can “drill down” on a specific process
instance by clicking the appropriate Process ID link. Clicking a link will open a new browser window in
which the Process Detail page, described later, is presented.

Status Filter

The Status Filter control group (bottom of page) allows you to control how processes are displayed in
the Status tab view. You can choose, for example, to display process instances for a specific named
process using the Process drop-down control.

Using the Sort By control, you can sort the list of displayed processes by Process Name, Process ID, the
Create Date/Time, the Modify Date/Time or the Status.

By entering dates in the From and To fields, you can display processes that were started and, optionally,
completed within a specified range of dates. Check the Include Completed check box if you want to
display records of finished processes.

After selecting your filter options, press the Refresh button to display a new list of processes based on
your current Filter and Sort settings.

146 Process Manager User’s Guide

Process Manager Console: Log Tab
The Process Manager Console’s Log tab displays log messages in the following format, sorted by Date
and Time:

You may filter the view of the log by clicking on the checkboxes at the bottom of the page:

After making your desired choices, press the Refresh button.

Runtime Administration of Processes 147

Detail View for a Process Instance
When you click a link for a process instance (such as any of the links in the ID column of the Status Tab
in the main process console), you will see an Activity Detail view for that process instance pop open in a
new browser window. (Using multiple browser windows, you can monitor multiple process instances
simultaneously.)

The detail viewfor a process instance has three tabs: Activities Detail, Messages and Log.

Process Detail: Activities Detail Tab

Activities Detail is the first tab on the detail page and is the default view when the window first opens.

In this tab, you’ll see the Name, ID, Start Date/Time, Completed Date/Time, and Status of the individual
activities that comprise the process instance. The process instance will be listed as either Running or
Complete. If the process is running, buttons will be present enabling you to Suspend or Terminate the
running process instance.

148 Process Manager User’s Guide

The columns in the Activities Detail tab view have the following meanings.:

Activity This is the name of the Activity. The Activity names are
hyperlinked to the Activity Data Monitor. The Activity Data
Monitor displays Input and Output documents and their data
values.

Activity
Type

This is the type of activity – Web Service, Subprocess,
Integration Manager Component or End Point.

Started This is the date and time when the activity started.

Completed This is the date and time when the activity was completed.

Status This column displays the Status of the activity.

Completed After the associated operation has
completed, continuation of the activity
depends on its exit condition. If this
evaluates to false, the activity is
iterated, by either continuing with
‘enabled’ or ‘running’ depending on the
associated operation. If the exit
conditions evaluates to true, the
activity reaches the ‘Completed’ state.

Running The Activity’s state once it is started.

Terminated The Acvity’s status when the process
completes before the Activity.

Enabled The flow engine decides that this
activity instance could now possibly be
executed and puts it into the ‘Enabled’
state. Depending on the nature of the
activity and its associated operation, it
might remain in that state until it is
started through an explicit requests
(e.g. for in or in-out operations), or the
flow engine will start it right away (e.g.
for out or out-in requests).

Runtime Administration of Processes 149

Process Detail: Messages

The Messages tab gives you a view of the process instance’s messages (i.e., input and output documents).
The messages are sorted by name.

The Messages tab displays the following information:

Message
Name

The name of the message.

Message Type The message type may be either Input or Output

Creation Time The time the message was created.

View Text The View Text link displays the message in a new browser
window, as shown below.

150 Process Manager User’s Guide

Process Detail: Log

The Log tab summarizes logged events of various types. See below.

At the bottom of the window (scroll down as necessary), you’ll find checkboxes that you can use to
control the types of events summarized in the table.

Select the checkboxes of interest, then click the Refresh button to bring up a listing of logged events
(appropriately filtered).

Testing 151

A Testing

Environmental Differences between Design-Time Testing and
Server Testing

There are significant environmental differences between animation-based “step through” testing in
Integration Manager and server-side (deployment) testing. Both types of testing are needed, obviously, to
verify the processes and services you build. Some environmental differences that you should be aware of
are detailed in the table below.

Requirement Testing in Integration Manager Testing on the Server

Console views
and
administrative
monitoring

Not available in a non-deployed, design-
time environment

Administrative consoles are available

Logging Messages go to Output pane of main
Integration Manager window

Messages visible in Log tab of
console

Testing of long-
running
processes

Not practicable in a design-time setting
(some processes may take days or
weeks)

Can and should be done here

Data persistence No database required Database must be configured for
Process Server’s use

Visual depiction
of running
process’s state

Available at animation time (canvas view
updates as process runs)

No canvas (graph) views in this
release

Process instance
info

Process IDs start at one at the beginning
of each design session, then increment
as new process instances are executed.
With each launch of Process Designer,
the Process ID numbering is reset to
begin again at one.

Process IDs are generated
continuously and never reset to one.

152 Process Manager User’s Guide

Runtime
variables for:
* Connection
names

* Client
credentials

* Log File Paths
* DTD URIs
* XSL URIs
* Send Mail
Server
* XML Inter-
change URIs

Often point to locations on local
machine, for design and test purposes

Should be set to point to locations on
production Servers and Web

Triggering Processes can be executed either from
a Process Execute action inside an
animating component, or directly from
one of the animation toolbar buttons

Every process must be deployed with
a service that can kick it off

Requirement Testing in Integration Manager Testing on the Server

Performance Tuning 153

B Performance Tuning

Configuration Options
Process Server performance can be tuned in various ways. The necessary adjustments are accomplished by editing
the xc_process_config.xml file. For an exteNd application server install, this file would be located in (for
example) \extend5\AppServer\Composer\lib.

Cache
The Process Server cache is managed by changing the values of <PROCESS_CACHE>.

Sleep Time
The value of the <SLEEP> element controls the number of seconds the Process Server waits in a delay loop before
checking to see if any in-memory processes have exceeded their <CUTOFF> period. (See below.)

Cutoff Period
The value of the <CUTOFF> element controls the maximum number of seconds a process is allowed in memory
without any activity. If the <CUTOFF> for any in-memory process is exceeded at the end of a <SLEEP> period,
then the process will be purged from memory. It is, however, still in persistence in the database and can still reenter
an executable state, albeit more slowly than if in memory.

Total In-Memory Process Instances
The value of the <SIZE> element controls the the maximum number of processes that will be allowed in memory
before swapping occurs.

154 Process Manager User’s Guide

Process Management Glossary 155

C Process Management Glossary

Activity
An activity is a unit of work within a process model, representing a business task. On an operational level, an activity is a named
operation with a signature that specifies the inputs, outputs, and possible faults associated with the operation. The activity is
separate from its implementation. The implementation (which can be any Integration Manager component type, or any
Component service) performs a task on behalf of the activity.

Addressee
The Addressee property (which exists only on the Web Service Receive activity type) provides a way to tag activity instances
with a label, typically corresponding to the name of an individual in the organization.

Asynchronous
A mode of operation in which work is done independently and in parallel with other work. (That is, there are no time-order
dependencies between parties.) In software terms, an asychronous task executes in its own thread. The term “fire and forget”
is often used when referring to a process that has been spawned asynchronously. See also Thread and Spawn, below.

Business Process Management (BPM)
Business Process Management is the study of ways to model business functions in terms of their component activities and
participant roles.

BPML
Business Process Modeling Language: an XML grammar for describing workflow, created and managed by the Business
Process Management Initiative (http://www.bpmi.org). It is roughly comparable in scope to WSFL. Process Manager follows
WSFL closely; it does not adhere to BPML.

Call
A call event is one of two lifecycle events that can invoke an instance of a process. (The other such event is spawn; see below.)
Unlike a spawned process, which returns an instance ID immediately, a called process does not return until the process flow
has completed. A call operation implies synchronous processing, whereas a spawn operation is equivalent to “fire and forget.”

Choreography
A particular set of sequenced operations is often colloquially referred to (in a business-process context) as a choreography. See
also PIP, below.

Control Link
A control link is the WSFL construct that defines a single step in the flow of control from one activity to another.It specifies
the “activity traversal order” so that the workflow engine knows how to get from a given activity to the next one in sequence.

Correlation ID
In Process Manager, a Correlation ID is an arbitrary user-specified string or number that can be used to associate data in a given
message part with a transaction context. Correlation ID is a common term for this kind of user-defined label, but it is not a
formal WSDL or WSFL concept.

http:\\www.bpmi.org

156 Process Manager User’s Guide

Cyclic Graph
A cyclic graph is a graph that permits links from downstream nodes back to upstream nodes, forming a loop. Such graph
patterns are not allowed in Process Manager.

Data Link
A data link is an atomic unit of data flow, specifying one or more data sources along with one or more data targets. The sources
and targets are activities within the running process. While in most cases data flow will mirror control flow, it is possible that
data can bypass certain activities in a flow or arrive at a target by a more direct path than might be specified in the control flow.
Hence, data links do not always follow control links.

Dead-Path Elimination
Dead-path elimination refers to the special lookahead operation that the Process Server conducts every time a conditional
expression (a link condition, for example) evaluates to false. When flow along a given path is no longer possible due to a false
link condition, all downstream links must be marked as false so that joins can be evaluated in the course of operation. (The path
goes from being dead to being known-false.) If this were not done, downstream joins could hang indefinitely.

Exit Condition
An exit condition is a boolean value (determined by runtime evaluation of user-supplied XPath logic) that indicates whether a
given activity executed normally. Outgoing control links cannot be followed until and unless the exit condition is true. If the
exit condition is false, the activity will execute again (if allowed by the timeout and retry settings).

Factoring
In programming, factoring is the attempt to split code into smaller, more generic (and thus reusable) units of work.

Fan-Out
A type of execution pattern in which a collection of N discrete works items gives rise to an asynchronous invocation of N
instances of a particular process designed to work on the work items.

FlowInstanceID
Every WSFL process that is invoked via a spawn operation is required to return a unique FlowInstanceID to the caller
immediately. This ID can be a timestamp or can be an arbitrary string, but it must uniquely identify a particular instance of a
running process. This value is used as the input value of other lifecycle operations (such as enquire; see Lifecycle Interface,
below).

Flow Model
The flow model is the XML representation of the directed graph that models the business process. In other words, it is the all-
encompassing set of activities, control links, and data links that comprise a given process. A flow model makes the
choreography of a process explicit, such that an execution engine can instantiate the process at runtime and understand how to
manage the flow of control over the process’s lifecycle.

Graph
An abstract visual representation of a system of nodes. In Process Manager terms, a graph of a process is what you draw on the
Process Designer canvas.

Implementation
The concrete realization in software of an activity. Every activity must have an implementation.

Join Condition
When two or more activities target the same successor activity, the decision of whether the successor activity can be invoked
may depend on factors that can be evaluated only when upstream activities have finished executing. The runtime engine makes
this decision based on user-supplied logic in a join condition. The join condition takes as input the respective boolean values

Process Management Glossary 157

(or “truth values”) of incoming links. It performs some user-specified set of logical operations on the link values and returns
true or false. A true condition means that the join target will be invoked. False means that control flow ends at the join. Note
that unlike link and exit logic (which both use XPath), join logic is expressed in a simple pseudocode-like boolean logic. The
join condition, in other words, has no knowledge of messages or message parts (nor any data whatever). It only knows about
link boolean values.

Lifecycle Interface
The Lifecycle Interface is the WSDL-defined web service interface that describes the basic set of operations that all WSFL
processes must support. These operations include spawn, call, suspend, resume, enquire, and terminate. These operations are
global in scope (they apply to the process-as-a-whole) and can be managed administratively.

Link Condition
A link condition is an XPath expression that resolves to a boolean value. Its value determines whether a given link can be
traversed by the process engine at runtime. The XPath expression typically utilizes data from an upstream activity’s output.

Long Running
Some processes can take days or weeks to run to completion. Such processes are called long-running.

Map Policy
A map policy specifies how data should be mapped in the special case where two or more data links target the same message
part(s). A policy of Last Writer Wins (LWW) means that newly arriving data will overwrite older data. A policy of First Writer
Wins (FWW) means that once any data have been written, data arriving later will be ignored. Map Order means that for any
given incoming message, XPath-to-XPath mappings will occur in the order listed in the Messages tab of the activity’s property
sheet, completely ignoring timestamps.

Message
In WSFL and WSDL, a message is an abstract definition of a bundled set of data. The logical parts that are bundled together as
part of the message structure are known as message parts (see below). Activities operate on messages; hence, the interface to
an activity can be specified in terms of its input and output messages.

Message Part
In WSFL and WSDL, a message part is a logical unit of a message. In Process Manager terms, the parts correspond to XML
documents that activity implementations can inspect, modify, and transform into new parts of new messages.

Metadata
Data about data. In Process Manager terms, the metadata representation of a process is a non-visual XML representation of a
given process’s actual structure and attributes. The metadata blueprint of a process is used by Process Server to construct
process instances at runtime.

Notification
A one-way operation is a web service execution pattern in which the service proactively sends a message, with no expectation
of a response. It is “fire and forget” pattern. However, it is often used in conjunction with the One-Way pattern (see below) in
order to complete an asynchronous roundtrip communication with a partner. In such a case, the web service that implements
the Notification pattern will typically embed correlation information in the outgoing message, so that information received in
a later One-Way operation can be “matched up” with the transaction context of the Notification. See also One-Way, below.

One-Way
A one-way operation is a web service execution pattern in which the endpoint receives a message (but does not send one back
to the initiator). The one-way web service is a passive receiver. See also Notification.

158 Process Manager User’s Guide

Operation
In WSDL, an operation is a specified sequence of message transfers (described in terms of named input messages and output
messages). See also Port Type, below.

PIP®

RosettaNet Partner Interface Processes: a set of de facto industry standards that define business interaction patterns between
trading partners. The interaction patterns include sequencing and timeout rules for various kinds of common business
transactions. The patterns, because of their intricate sequencing (time domain) requirements, are often called choreographies.

Port Type
In WSDL, a port type is a named set of operations. (An operation, in turn, is a specification of a particular time-order sequence
of particular messages.) Four port types are supported by WSDL: One-Way, Request-Response, Solicit-Response, and
Notification. (See individual definitions of these items.)

Process
A description of the activities, control-flow patterns, and data-flow relationships involved in performing a particular business
task. WSFL (see below) describes processes as web services compositions. It is assumed, in WSFL, that processes (or
workflows) are automated.

ProcessID
A number that uiniquely identifies a process instance (a running process) within the Process Server at runtime.

Request-Response
A request-response operation is a web service execution pattern in which the service receives a message, then sends a
(correlated) message back to the initiator. The request-response web service is a passive receiver. It responds with an output
message.

RosettaNet
A non-profit industry organization dedicated to “the adoption and promotion of open content and open transaction standards in
electronic commerce across the Information Technology (IT), Electronic Components (EC) and Semiconductor Manufacturing
(SM) supply chains.” See http://www.rosettanet.org/ for details.

Semaphore
A flag value meant to signal the availability or unavailability of (typically) a function or file, in the context of the file’s lock
status.

Service Provider
A service provider is the party responsible for performing a particular activity within a business process.

Service Provider Type
In order to maintain separation between the definition of a business process and its implementation, WSFL defines activities
as being implemented by abstract service provider types rather than by specific service providers (which can later be mapped
to the types). The service provider type and its associated interface are defined by a WSDL document. Service providers must
properly implement a given web service interface in order to handle a particular activity in the business process.

SOAP
Simplified Object Access Protocol: a lightweight XML-based protocol for exchange of information in a distributed
environment. The protocol definition consists of three parts: an envelope that defines a framework for describing what is in a
message and how to process it, a grammar for specifying application-defined datatypes, and a grammar for representing remote
procedure calls and responses.

http://www.rosettanet.org/

Process Management Glossary 159

Solicit-Response
A solicit-response operation is a web service execution pattern in which the service sends a message proactively, then receives
a response. In this scenario, the web service is an initiator of a transaction. Since a response from a participant is required as
part of the pattern, this type of web service is assumed to execute synchronously. (That is, on sending its message, it blocks until
the reply message comes back.) See also Request-Response, above.

Spawn
Spawn is a WSFL-defined lifecycle operation that allows one-way (asynchronous) invocation of a process. (The corresponding
synchronous launch event is the call event. See further above.) When a process is spawned, it returns a result (the Process ID)
immediately.

Subprocess
A process that has been called by another process.

Synchronize Subprocesses Activity
The Synchronize Subprocesses Activity is one of Process Manager’s core activity types. It is a special-purpose activity type
designed to aid in the collection and collation of data from multiple spawned instances of a component. The implementation to
the activity is often called a “merge component,” because it typically merges incoming data. The Synchronize Subprocesses
Activity thus constitutes the “fan-in” piece in a fan-out/fan-in scenario.

System Fault
The runtime engine raises a System fault when an activity implementation generates an unhandled exception; or a
subprocess activity returns a fault message; or the runtime engine encounters a message or message type that it
doesn’t know how to handle; or a Timeout fault occurred and was not handled by an activity designed for that
purpose. (In this case, two faults are actually generated: one Timeout and one System.) When a System fault occurs, the
process instance produces a message called _SystemFault, with a part name called (also) _SystemFault.

Thread
An execution context with no time-order dependencies on other operations occurring in other contexts.

Transition Condition (Link Logic)
As a process is run, the execution engine must be able to recognize when a particular activity is finished, identify the next
activity in the flow, and make a decision as to whether the next activity should be invoked or not invoked, based on user-
specified transition logic. A transition condition determines whether flow should continue along the current path. The
transition condition is specified in XPath and always evaluates to true or false.

UDDI
Universal Description, Discovery and Integration specification (maintained by http://www.uddi.org).A scheme for exposing
business services via web-based registries.

Waiting Activity
Any time an activity (such as a subprocess or Web Service Receive activity) is in a wait state, waiting to receive a response to
some request that was made asynchronously by another activity, it is said to be a waiting activity.

Web Service Receive
The Web Service Receive Activity is one of the core Process Manager activity types. It is a passive, “listening” activity type
meant to implement the Request-Response or One-Way transaction patterns described by WSDL.

Web Services Composition
A process model based on web services. Essentially, any WSFL process.

http://www.uddi.org/

160 Process Manager User’s Guide

Workflow
In the context of BPM, a workflow is a process. WSFL favors the term process because its authors anticipate that most
automated workflows will rely, ultimately, on Web Services. (In more traditional workflow systems, activities tend to center
around human-mediated activities.)

WSDL
Web Services Description Language: An XML format for describing web services as a set of endpoints operating on messages.
The operations and messages are described abstractly, then bound to a concrete network protocol and message format to define
an endpoint. Related concrete endpoints are combined into abstract endpoints (services). Services are thus defined using six
major elements: types, message, portType, binding, port, and service.

WSFL
Web Services Flow Language: An XML format for describing workflow processes as linked activities. The activities may be
web services, or other workflow processes.

Clustering the Process Manager Engine 161

D Clustering the Process Manager Engine

About Process Manager Engine Clustering
Using any software product in a mission-critical environment requires that you consider availability.
High availability is the system management strategy of quickly restoring essential services in the event
of system, component, or application failure. The goal is to minimize service interruption. A cluster is a
collection of nodes that cooperate to provide high availability of services running within the cluster. If
one of those machines should fail, the resources required to maintain business operations are transferred
to another available machine in the cluster. A Process Manager cluster utilizes a “takeover”
configuration: an advanced configuration in which all nodes perform a share of the work, and critical
work can be taken over in the event of a node failure. All nodes are performing highly available
(movable) work.

A Process Manager cluster is easy to set up. You must install the Process Manager to each application
server that will take part in the cluster. The application servers do not have to be clustered, and
application servers can be of different types (for example, you can use JBoss, WebSphere, and WebLogic
application servers, all in the same cluster). You must configure a datasource on each application server
to point to a common process50 database.

NOTE: If high-availability is a concern, you may want to consider clustering the database manager that
manages the process50 database. Refer to the documentation for your database manager.

Clustering can also significantly improve the performance of the Process Manager.

Setting Up Process Manager Engines for Clustering
To set up a Process Manager engine for clustering:

1 Follow the steps given in “Configuration and Setup” on page 10 for each engine in the cluster.
2 Set up the data source for each engine to point to the process50 database.
3 Give each Process engine a unique name (see Step 9 on page 13).

Administering the Cluster
When a Process Manager engine fails,other engines in the cluster detect the failure and reassign and
resume the processes that were being performed by the failed Process Manager engine. The Process
Manager engine employs a timer mechanism called a heartbeat to detect engine failures. At intervals
determined by the timer settings, each Process Manager engine writes status information (called a
heartbeat) to the process50 database. Using the heartbeat interval, each engine checks the heartbeat of
other engines in the cluster. When an engine, or the communication to an engine, fails, the heartbeat from
the engine does not get through and, after a configurable time-out period, the remaining engines detect
the failure and take over the processes that were running on the failed engine. You can configure the
heartbeat interval and the timeout factor using the Process Manager console.

162 Process Manager User’s Guide

To configure cluster properties:

1 Click on the Process link in the Integration Manager Enterprise Server main console page:

2 Click Console on the Process connect main page. The Process Manager console is displayed.

3 Click Manage Engine. The Cluster Management page is displayed.

Clustering the Process Manager Engine 163

There are two attributes that you can set to specify the heartbeat timeout. The Heartbeat Interval
is multiplied by the Timeout Factor to yield the Heartbeat Timeout. With fewer heartbeats and
longer timeout values, the cluster will be slower to respond (less sensitive) to communications
failures. With more frequent heartbeats and shorter timeout values, the cluster will respond more
quickly to communications failures.

4 Specify the Heartbeat Interval (in seconds).
5 Specify the Timeout Factor (in seconds).
6 Click Update Heartbeat Properties.

164 Process Manager User’s Guide

165

Index

Symbols
_TimeoutFault 73, 110

A
action

Browse Waiting Activities 132
Lock/Unlock Waiting Activity 135
Process Execute 123
Reassign Addressee 137
Release Waiting Activity 125, 129

activities
creating 61
finding 126

activity
end 26
fan-out 48, 113
fault handler 72
lookup 126
renaming 62
source vs. target 39
start 26
Synchronize Subprocesses 113
types 26
waiting 118
Web Service Receive 96, 112
Web Service Send 94

activity detail 147
activity icons 83
activity implementation 125
Activity Tool 61
Addressee 118, 129, 131, 143
administration 139

Addressee views 143
lock info 143
Process Database Info 140
Process Engine Info 140
queue 142
statistics 140

algorithm, execution 37
algorithm, process execution 37
alignment to grid 105
Alt key and grid alignment 105
AND Split 42
animation 74
animation and deployment testing 151
architectural summary 51
asynchronous fan-out 47

autodiagramming 107
autolayout 107

B
background image 106
batch processing 113
best practices 52
bombsight view 81, 105
BPM, justification for 20
branch logic 41
breakpoints 75
Browse Waiting Activities 118
Browse Waiting Activities action 132, 134
Business Process Management (BPM) 19

C
call 33, 123
Call vs. Spawn (Process Execute) 122
canvas

background images 106
customization 106

choreography, retry 69
circular layout 104
clustering

about 161
engine name 13
Heartbeat Interval 163
Heartbeat Timeout 163
Manage Engine 140
Timeout Factor 163

collisions, data-mapping 70
Comparing Browse and Find 133
COMPONENT_FAULT_SUBCODE 71
compound branch logic 42
concurrent processing 47
condition

join 68
conditional branching 41
conditions

exclusive-OR 43
exit 37, 67

Configure Database 141
configuring the engine’s database 13
connection pools 13
Consoles, Process Manager 139
CORR ID 142

166

Correlation ID 111, 126
custom grid size 105
customization 106
Cutoff Period 153
cyclic graph 64

D
data links 51, 64
data mapping 64
data merging 31
database

configuring Process Engine 140
example, JBoss setup 11
synchronization 13
WebLogic setup 13
WebSphere setup 13

datasource, example, setup, JBoss 11
dead links 30
dead path elimination 30
debugging 74, 77
Deferred Mode 30, 31, 38, 43, 44, 68
Delete Process Info 139, 141
deployment 124
Device Offset 107
DoBatch 49
document purging 141
DOM view 79
dynamic fan-out 47

E
edge routing 108
End Activities 26
engine 140
engine (see also Process Server) 140
engine name 13
environmental differences 151
error, link creation 44
Exit Condition

specifying 67
exit condition 29, 37

specifying 67
Expression Builder 66, 68
exteNd application server 13
external data store 46

F
factoring 21
Fail on First Fault 116
fan-out 113, 124
fan-out component 48
Fan-Out/Fan-In 47

recursive 49
FAQ 35
fault 78
Fault Codes 71

Fault Handling 72, 116
fault handling 71
Fault Messages 71
filter 145
filter criteria (admin) 145
Find Waiting Activity. 117
First Writer Wins 70
First writer wins (FWW) 31
FWW 70

G
grid behavior 105
GVXMLProperties_process 55

H
Heartbeat Interval 163
Heartbeat Timeout 163
Hierarchical Layout 107
hierarchical modelling 51
human interaction scenarios 118
human participation in processes 130

I
icons, activity 83
images, background 106
Immediate Mode 30, 38, 68
Immediate Mode, 43
implementation, activity 61

tasks vs. 27
Initialize Database 141
Initialize database 13
initialize database 141
input message

named same as output 45
Input1 DOM 115
inquire (lifecycle event) 33
installation, databases and 13
Internal Revenue Service 43
Invalid Configuration message 12
iterating on an external data store 46

J
JMS Components 46
JMS Receive action 46
JMS Service 48
JMSDestination 46
JMSMessageID 46
JNDI Name, connection pools and 13
join condition 29, 43
Join Logic 43
jpeg or .gif image on canvas 106
JSP 131, 132, 133, 135
Jump to Process 141

167

L
Last Writer Wins 70
Last writer wins (LWW) 31
layout modes 107
lifecycle events 33
link

conditions, specifying 63
creation 63

link condition 63
Link tool 84
links 28

auto-alignment 107
backward-facing 64
creating 63
data 64
triangle shape 73
XPath 63

Lock Duration 136
lock until 142
Lock Waiting Activity 143
Lock/Unlock Waiting Activity 119
Lock/Unlock Waiting Activity action 135
LockedBy 129, 135, 136
LockedUntil 129, 135
log 147, 150
log messages 77
Log Tab 146
logged events 150
logic, link 63
lookup methods, activity 126
looping 44, 45

asynchronous 47
reentrancy and 64

LWW 70

M
MainCode 71
Manage Activity Queue button 141
Manage Engine 140
Map Order 32, 70
Map Policy 31, 70
mapping 64

start activity 67
mapping an activity to itself 45
merge component 48, 114
Merge Edge Channels 108
message

fault, contents of 78
parts 28
show/hide 79
Timeout fault 72

message maps 64
message naming 64
message parts 28
messages 27, 147
Messages Tab 92
metadata description 33
multiple Undo 105

N
naming conventions

message 64
navigation of consoles 143
New Process 54
Non-Exclusive OR Split 42

O
Object Properties 40

Addressee 119
Object Properties panel 41, 63, 81, 90
ORSplit 42
Orthogonal Layout 104
orthogonal routing 108
overview of Process Manager 51
overview pane 81
Overview Window 105
overwrite policy 70
owner 142

P
panning 105
parallel processing 47
Parent ID 124
Passed Part, 123
pending processes (admin) 143
PendingActivity document 128, 132, 135
performance 36
picture, adding to canvas 106
policy, overwrite 70
Pool Name 12
portType 40
Priority 118, 129
process

create 54
human interaction with 130
input template 67
invoking via action 122
new 54
triggers 121

process architecture summary 51
Process Database Configuration 13
process database info 140
Process Designer GUI 81
process engine database 140
Process Execute action 122, 123
Process Manager Architectural Layers 33
Process Model Pane 81
Process Properties 87
Process Server Execution Model 37
Process Statistics Summary 140
process50 10, 11
ProcessID 37
ProcessInput, mapping to 67
ProcessOutput, mapping to 67
ProductInquiryProcess 53
property sheets 39

168

purging of documents 141

Q
queue 142
Queue Status Tab 142
QueueDate 129
queues 122
QuickFilter 145

R
Reassign Addressee 118
Reassign Addressee action 137
recursive process graph 49
reentrancy 44
reentrant loops 64
Release Waiting Activity 117
Release Waiting Activity action 125, 129
rename activity 62
Request-Response pattern 109
resume 33
resynchronization 114
Retry Count 69
Retry Interval 69, 72
Retry Interval, 69
Returned Part 123
Run to Breakpoint 75
runtime execution algorithm 37

S
scenarios, work-group 131
sequencing 28
server start/stop 36
Service Providers

adding types 60
Set Breakpoint 75
setup, database 13
Shapes tool 85
Sleep Time 153
snap behavior 105
SOAP trigger 121
spawn 33, 38, 123
Spawn (Process Execute) 122
Spawn as Subprocess of Parent ID 124
Spawn as Subprocess... 123
split-or-work strategy 50
Start Activities 26
start/end activity mapping 67
statistics 140, 142, 143

filter/sort 145
Status Tab, ,admin console 144
status, queue 142
Step Into/Over 75
Sticky Tools 105
SubCode 71
Subprocess 84

summary of WSFL workings 51
summary statistics (admin) 140
suspend 33
Sybase 13
Sychronize Subprocesses Activity 50
Symmetric Layout 104
synchronization 48
synchronization failure 30
synchronization logic 28
synchronize database 13
Synchronize Subprocesses Activity 84, 113, 124
System Faults 71
System log 77
SYSTEM_FAULT_MAINCODE 71

T
Tasks vs activities 27
templates

process input 67
terminate 33
Terminated By 141
testing and debugging 74
Text tool 84
threaded subprocesses 48
Tile Picture 107
Timeout 32, 69, 72
Timeout Factor 163
Timeout Faults 72
TIMEOUT_FAULT_MAINCODE 71
toolbar 82
tools

link 84
sticky mode 105
text 84

tools,shape 85
transition condition 29
Tree Layout 104
triangle link icon 73
trigger types 121
troubleshooting

database synchronization 13

U
UNHANDLED_MESSAGE_SUBCODE 71
user access to queued work 130

V
viewport rect 105

W
Waiting Activities 116
Waiting Activity 118
Web Service Receive 84, 96, 109, 112, 125, 126, 131
Web Service Send 84, 94

169

Web Services Flow Language 26
WebLogic-specific setup info 13
WebSphere-specific setup info 13
work items 119, 142
work queues 122
workflow 19
workflow models, human-centric 130
workflow, human 118
workgroups 130
workhorse process 48
World Offset 107
WSDL 27, 40, 112
WSFL 19

best practices 52
looping and 44
summary of key points 51

X
XML Template 67
XOR join 29
XOR-Split 41
XPath 29, 66

in links 63
XSL 152
x-y alignment of links 107

Z
zooming, interactive 105

170 Process Manager User’s Guide

	Contents
	About This Book
	Purpose
	Audience
	Prerequisites
	Additional documentation
	Organization
	About the Product Name Change
	Configuration and Setup
	Database Setup Prequisites
	Database Setup Example Using JBoss
	Registering the Database with the Process Engine

	Getting Started with Process Manager: Quick Overview
	How Do I Deploy It?

	1 Welcome to Integration Manager and Process Management
	What Is Process Management?
	Why Automated Process Management?
	Process Design versus Application Design
	Modularity
	Example of a Simple Straight-Through Process

	Process Management and Emerging Technologies
	How Does a Process Differ from a Service?
	Process Management Terms and Concepts
	Activities, Messages, and Links

	Sequencing, Timing, and Process-Level Logic
	Control Flow Logic
	Deferred Mode versus Immediate Mode
	Map Policy and Data Merging
	Timeouts and Retries

	Data Flow Patterns
	Lifecycle Events
	Process Manager Architectural Layers
	Process Manager FAQ

	2 Preparing to Model a Process
	Process Server Execution Model
	The Design-Time View

	Flow Control Strategies
	Branch Logic
	Join Logic
	Looping
	How Safe Looping Can Be Accomplished

	Process Architecture in Review
	Taking a Best-Practices Approach

	3 Creating and Testing Processes
	Example: A Simple Straight-Through Process
	Description

	Process-Building Basics
	Creating a New Process
	About Service Provider Resources
	About Service Provider Type Resources
	Creating Activities
	Creating Links
	Message Mapping
	Message Naming
	How to Define Message Mappings
	Data Mapping for Start and End Activities
	Selecting a Process Input Template

	Applying Flow Logic at the Activity Level
	Timeouts and Retries
	Map Policy

	Fault Messages and Fault Handling
	System Faults
	Timeout Faults

	Fault Handling
	Animation and Testing
	Aids to Debugging
	Watching System Messages at Animation Time
	Inspecting Messages

	4 The Process Designer User Interface
	Main Features
	The Process Designer Window
	Graph Elements

	Menu Commands
	Process Properties
	Object Properties
	Activity Properties
	Integration Manager Component
	Activity Tab
	Messages Tab
	UI Tab

	Web Service Send
	Web Service Send Activity Tab

	Web Service Receive
	Web Service Receive Activity Tab

	Subprocess
	Synchronize Subprocesses
	Link
	Link Tab
	UI Tab for Links

	Graph Object Properties
	Process Messages Tab
	Graph UI Tab

	Selected Node Properties on UI Tab
	UI Tab (Selected Node Properties)

	Text Object Properties
	UI Tab

	Layout Properties
	General Layout Tips
	Customizing the Canvas

	5 Advanced Topics
	Web Service Receive
	Implementation Independence

	Synchronize Subprocesses Activity
	Data Mapping in the Synchronize Subprocesses Activity
	Fault Handling

	Waiting Activities
	“Waiting Activity” Actions

	6 Waiting Activities and Addressees
	Understanding How Processes Are Triggered
	Process-Related Actions
	The Process Execute Action
	How to Create a Process Execute Action
	Deployment and the Process Execute Action

	Find Waiting Activity Action
	Finding a Waiting Activity
	The Find Waiting Activity Dialog

	Release Waiting Activity Action
	The Release Waiting Activity Dialog

	Human Participation in Processes
	Addressees
	The Role of the Web Service Receive Activity

	Browse Waiting Activities Action
	Where to Use the Browse Waiting Activities Action
	Creating a Browse Waiting Activities Action

	Lock/Unlock Waiting Activity
	Prerequisites for Locking/Unlocking an Activity
	Creating a Lock/Unlock Waiting Activity Action

	The Reassign Addressee Action
	Reassigning an Addressee
	Creating a Reassign Addressee Action

	7 Runtime Administration of Processes
	Server Console Usage
	Process Manager Console: Main Tab
	Process Manager Console: Status Tab
	Process Manager Console: Log Tab
	Detail View for a Process Instance

	A Testing
	Environmental Differences between Design-Time Testing and Server Testing

	B Performance Tuning
	Configuration Options
	Cache
	Sleep Time
	Cutoff Period
	Total In-Memory Process Instances

	C Process Management Glossary
	D Clustering the Process Manager Engine
	About Process Manager Engine Clustering
	Setting Up Process Manager Engines for Clustering
	Administering the Cluster

	Index

