
novdocx (en) 16 A
pril 2010

DOCUMENTATION
Kablink Teaming 2.0 Developer Guide
Kablink Teaming

2.0
November 25, 2009
Developer Guide

novdocx (en) 16 A
pril 2010
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2009 Novell, Inc. All rights reserved. Permission is granted to copy, distribute, and/or modify this
document under the terms of the GNU Free Documentation License (GFDL), Version 1.2 or any later version,
published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the GFDL can be found at http://www.fsf.org/licenses/fdl.html.

THIS DOCUMENT AND MODIFIED VERSIONS OF THIS DOCUMENT ARE PROVIDED UNDER THE
TERMS OF THE GNU FREE DOCUMENTATION LICENSE WITH THE FURTHER UNDERSTANDING THAT:

1. THE DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE DOCUMENT
OR MODIFIED VERSION OF THE DOCUMENT IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A
PARTICULAR PURPOSE, OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY, ACCURACY,
AND PERFORMANCE OF THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS WITH
YOU. SHOULD ANY DOCUMENT OR MODIFIED VERSION PROVE DEFECTIVE IN ANY RESPECT, YOU
(NOT THE INITIAL WRITER, AUTHOR OR ANY CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES
AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY DOCUMENT OR MODIFIED VERSION OF THE
DOCUMENT IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER; AND

2. UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING
NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL THE AUTHOR, INITIAL WRITER, ANY
CONTRIBUTOR, OR ANY DISTRIBUTOR OF THE DOCUMENT OR MODIFIED VERSION OF THE
DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PERSON FOR ANY
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER
INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE,
COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR LOSSES ARISING
OUT OF OR RELATING TO USE OF THE DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT,
EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/

novdocx (en) 16 A
pril 2010
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/documentation

novdocx (en) 16 A
pril 2010
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

novdocx (en) 16 A
pril 2010
About This Manual 9

1 Web Services Overview 11
1.1 Teaming Web Services Terminology . 11
1.2 Web Services Implementation . 12

1.2.1 Sample Clients. 12
1.3 Authentication . 14

1.3.1 HTTP Basic Authentication Access (ssr) . 14
1.3.2 Web Services Security Access (ssf) . 14

1.4 Server Endpoints . 15
1.5 Categories of Operations . 15
1.6 Client Stubs . 16
1.7 Managing Data. 16

1.7.1 Working with Java Objects . 17
1.7.2 Adding Folders and the Binder Configuration Identifier . 18
1.7.3 Attaching Files . 19
1.7.4 Fetching Attachments . 20
1.7.5 Adding Calendar Entries . 20
1.7.6 Binder Pages and search_getWorkspaceTreeAsXML . 20

1.8 Extending Teaming Web Services . 22

A Web Service Operations 23
admin_destroyApplicationScopedToken. 26
admin_getApplicationScopedToken . 27
binder_addBinder . 28
binder_copyBinder . 29
binder_deleteBinder . 30
binder_deleteTag . 31
binder_getBinder . 32
binder_getBinderByPathName . 33
binder_getFileVersions . 34
binder_getFolders . 35
binder_getSubscription . 36
binder_getTags . 37
binder_getTeamMembers . 38
binder_indexBinder . 39
binder_indexTree . 40
binder_modifyBinder . 41
binder_moveBinder . 42
binder_removeFile . 43
binder_setDefinitions . 44
binder_setFunctionMembership . 45
binder_setFunctionMembershipInherited . 46
binder_setOwner . 47
binder_setSubscription . 48
binder_setTag . 49
Contents 5

6 Kablin

novdocx (en) 16 A
pril 2010
binder_setTeamMembers . 50
binder_uploadFile . 51
definition_getDefinitionAsXML . 52
definition_getDefinitionByName . 53
definition_getDefinitions . 54
definition_getLocalDefinitionByName . 55
definition_getLocalDefinitions . 56
folder_addEntry . 57
folder_addEntryWorkflow . 58
folder_addMicroBlog . 59
folder_addReply . 60
folder_copyEntry . 61
folder_deleteEntry . 62
folder_deleteEntryTag . 63
folder_deleteEntryWorkflow . 64
folder_getEntries . 65
folder_getEntry . 66
folder_getEntryByFileName . 67
folder_getEntryTags . 68
folder_getFileVersions . 69
folder_getSubscription . 70
folder_modifyEntry . 71
folder_modifyWorkflowState . 72
folder_moveEntry . 73
folder_removeFile . 74
folder_reserveEntry . 75
folder_setEntryTag . 76
folder_setRating . 77
folder_setSubscription . 78
folder_setWorkflowResponse . 79
folder_synchronizeMirroredFolder . 80
folder_unreserveEntry . 81
folder_uploadFile . 82
folder_uploadFileStaged . 83
ical_uploadCalendarEntriesWithXML . 85
ldap_synchAll . 86
ldap_synchUser . 87
license_getExternalUsers . 88
license_getRegisteredUsers . 89
license_updateLicense . 90
migration_addBinder . 91
migration_addBinderWithXML . 92
migration_addEntryWorkflow . 94
migration_addFolderEntry . 95
migration_addFolderEntryWithXML . 96
migration_addReply . 98
migration_addReplyWithXML . 99
migration_uploadFolderFile . 101
migration_uploadFolderFileStaged . 103
profile_addGroup . 105
profile_addGroupMember . 106
profile_addUser . 107
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_addUserWorkspace . 108
profile_deletePrincipal . 109
profile_getFileVersions . 110
profile_getGroup . 111
profile_getGroupByName . 112
profile_getGroupMembers . 113
profile_getPrincipals . 114
profile_getUser . 115
profile_getUserByName . 116
profile_getUsers . 117
profile_getUserTeams. 118
profile_modifyGroup . 119
profile_modifyUser . 120
profile_removeFile . 121
profile_removeGroupMember . 122
profile_uploadFile . 123
search_getFolderEntries. 124
search_getHotContent . 125
search_getTeams . 126
search_getWorkspaceTreeAsXML . 127
search_search . 128
template_addBinder . 130
template_getTemplates . 131
zone_addZone . 132
zone_deleteZone . 133
zone_modifyZone . 134

B Deprecated Web Service Operations 135
addFolder . 137
addFolderEntry . 138
addReply. 140
addUserWorkspace . 142
getAllPrincipalsAsXML . 143
getDefinitionAsXML . 144
getDefinitionConfigAsXML . 145
getDefinitionListAsXML. 146
getFolderEntriesAsXML . 147
getFolderEntryAsXML. 148
getPrincipalAsXML . 149
getTeamMembersAsXML . 150
getTeamsAsXML . 151
getWorkspaceTreeAsXML . 152
indexFolder . 154
migrateBinder . 155
migrateEntryWorkflow. 157
migrateFolderEntry . 159
migrateFolderFile . 161
migrateFolderFileStaged. 163
migrateReply. 165
modifyFolderEntry. 167
setDefinitions . 168
Contents 7

8 Kablin

novdocx (en) 16 A
pril 2010
setFunctionMembership . 169
setFunctionMembershipInherited . 171
setOwner. 172
setTeamMembers . 173
synchronizeMirroredFolder . 174
uploadCalendarEntries . 175
uploadFolderFile . 176

C Migrating from Forum to Kablink Teaming 179
C.1 Sequence of Migration Operations. 179
C.2 Migration Overwrite Operations . 180
C.3 Migrating Users . 180
C.4 Migrating Files . 180
C.5 Migrating Custom Commands and Workflow. 181
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
About This Manual

The Kablink Teaming 2.0 Developer Guide present ways to extend the functionality of Teaming 2.0.
The guide is divided into the following sections:

Chapter 1, “Web Services Overview,” on page 11
Appendix A, “Web Service Operations,” on page 23
Appendix B, “Deprecated Web Service Operations,” on page 135
Appendix C, “Migrating from Forum to Kablink Teaming,” on page 179

Audience

This guide is intended for programmers who want to write extensions for Teaming 2.0.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of the Kablink Teaming 2.0 Developer Guide and other documentation,
visit the Kablink Teaming 2.0 Documentation Web site (http://www.novell.com/documentation/
kablinkteaming2).

Additional Documentation

You can find more information in the Kablink Teaming documentation, which is accessible from
links within Kablink Teaming:

Kablink Teaming Help system
Kablink Teaming Quick Start
Kablink Teaming User Guide
Kablink Teaming Advanced User Guide
Kablink Teaming Installation Guide
Kablink Teaming Administration Guide

To access the Kablink Teaming Help system, log in to the Teaming site, then click the Help icon
(question mark), then click a yellow Help spot for context-sensitive help.

To access the Kablink Teaming guides from within Teaming, click the Help icon (question mark),
then click Teaming Manuals.
About This Manual 9

http://www.novell.com/documentation/kablinkteaming2

10 Kablin

novdocx (en) 16 A
pril 2010
Documentation Conventions

A greater-than symbol (>) is used to separate actions within a step and items in a cross-reference
path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.
k Teaming 2.0 Developer Guide

1
novdocx (en) 16 A

pril 2010
1Web Services Overview

Novell® offers a set of operations that you can use in client programs to exchange information with
a server that is running an installation of Kablink Teaming 2.0 or later.

 In addition to the overview information in this chapter, see Appendix A, “Web Service Operations,”
on page 23, for reference information about the latest operations for the new interface. For reference
information about earlier Web Services operations that have been superseded by the current release,
see Appendix B, “Deprecated Web Service Operations,” on page 135.

Section 1.1, “Teaming Web Services Terminology,” on page 11
Section 1.2, “Web Services Implementation,” on page 12
Section 1.3, “Authentication,” on page 14
Section 1.4, “Server Endpoints,” on page 15
Section 1.5, “Categories of Operations,” on page 15
Section 1.6, “Client Stubs,” on page 16
Section 1.7, “Managing Data,” on page 16
Section 1.8, “Extending Teaming Web Services,” on page 22

1.1 Teaming Web Services Terminology
The following are Kablink Teaming definitions that can assist you when using the Teaming Web
services:

binder: A place such as a workspace or folder.
binder configuration ID: A number that identifies the template used to create and configure a
new workplace or folder. This number represents a set of information that Teaming uses to
establish configuration settings, such as the default view, allowable views, allowable workflow,
and workflow associations.
binder ID: A unique number that identifies a specific workspace or folder.
data item name: A tag value that maps an HTML form element to a value stored in the
Teaming database.
definition ID: A unique 32-character hexadecimal identifier that maps to a definition for a
specific type of entry. (You modify and create definitions by using the designers in the
administration portlet.) You need to specify this value when creating a new entry in a folder.
page: A level in the workspace hierarchy that represents a subset of binders. Most often used to
group personal workspaces into sets that are convenient for display in the user interface (UI).
Section 1.7.6, “Binder Pages and search_getWorkspaceTreeAsXML,” on page 20 provides
additional information about this hierarchical level.
principal: A registered user or a group.
principal ID: A unique number that identifies a specific user or group.
stub: A proxy on the client. The stub code performs SOAP calls to the server.
Web Services Overview 11

12 Kablin

novdocx (en) 16 A
pril 2010
1.2 Web Services Implementation
Section 1.2.1, “Sample Clients,” on page 12

Teaming implements Java Web services, which provide a set of operations that client programs can
use to exchange information with Teaming. The alphabetized reference section in this
documentation provides syntax for these operations (Appendix B, “Deprecated Web Service
Operations,” on page 135).

You can view a list of available operations online:

http://localhost:8080/ssf/ws

The latest operations are listed under the TeamingServiceV1 header, and the deprecated operations
are listed under the Facade header.

You can also access the Teaming Web Services Description Language (WSDL) file:

http://localhost:8080/ssf/ws/TeamingServiceV1?wsdl

In the previous two examples, replace the localhost specification with the host and port for your
Teaming installation.

NOTE: Teaming does not currently publish its WSDL file with Universal Description, Discovery,
and Integration (UDDI) or the Web Services Inspection Language (WSIL). Use the alphabetized
reference section in this manual (Appendix A, “Web Service Operations,” on page 23) or the URL-
generated WSDL file to understand the Teaming operation interface. For reference information
about earlier Web Services operations that have been superseded by the current release, see
Appendix B, “Deprecated Web Service Operations,” on page 135.

When you make calls to Teaming Web services, there are two ways that you can implement lower-
level Simple Object Access Protocol (SOAP) calls:

Unzip client-side routines on the system running your application. These routines are Java
classes and other files that produce a stub. Your application can use an interface with these stub
routines, which make the SOAP calls to and from the server. See Section 1.6, “Client Stubs,”
on page 16, for more information about implementing these client-side routines on your
application’s system.
Have your application perform the SOAP calls by using, for example, routines from the
Apache Axis toolkit.

Teaming Web services accepts and provides data by using Java objects and methods defined in the
Teaming source code. (Visit the Open Source Community page (http://www.kablink.org) for more
information about downloading the source code.) Although this section provides tips for locating
object and method definitions, you might want to apply a tool such as Javadoc to the sources, so that
you have reference pages to assist you in working with the Teaming objects and methods.

The primary method of learning to use Teaming Web services is by reviewing sample clients and
their source code, which are provided in the Teaming sources.

1.2.1 Sample Clients
Teaming provides sample clients in its product code base that can assist you in learning how to use
its Web services. The sample clients are located within the source code:
k Teaming 2.0 Developer Guide

http://www.kablink.org

novdocx (en) 16 A
pril 2010
/ssf/samples/wsclient

The following sample clients are provided. The are listed in the order of how helpful they are in
learning how to make Web service calls:

teamingservice-client-with-stub.bat (Teaming 2.0+): Uses client-side routines to implement
a Windows batch file for simple operations, this is the recommended method. Using this batch
file requires the installation of the client-side routines.
teamingservice-client-with-call.bat (Teaming 2.0+): Uses the Axis Call object when making
Web service calls, as a way to implement a Windows batch file for simple operations.
facade-client.bat (V1+): Uses the deprecated Web services interface.
wsExport.bat and wsImport.bat (Teaming 2.0+): Takes data from a portion of the
workspace and folder hierarchy and reproduces it on another file system. These tools are not a
complete import and export facility, because they do not retain the workflow states, access-
control settings, and history of the original objects.

You can find the source files for the sample clients here:

/ssf/samples/wsclient/src/org/kablink/teaming/samples/wsclient

The TeamingServiceClientWithCall.java file extends the WSClientBase.java file, which is
also located in the /ssf/samples/wsclient/src/org/kablink/teaming/samples/wsclient
directory.

Enabling the .bat clients (Windows systems only)

Before executing the sample .bat programs on a Windows system, you need to do some work in
your build to enable them.

1 Execute the build Ant target in /ssf/samples/wsclient/build.xml by entering ant from
the command line.

To use one of the batch files:

1 Use a command line window to cd to the /ssf/samples/wsclient directory.
2 Type the filename for the batch file you want to execute.

To see a list of legal commands and arguments for one of the teamingservice or facade
batch files, type only the filename of the batch file, then press the Return key.

3 On the same line, just after the name of the batch file, type a command name and desired
arguments.

4 Press the Return key.

If the command executes successfully, Teaming displays the return value in the command line
window.
Web Services Overview 13

14 Kablin

novdocx (en) 16 A
pril 2010
1.3 Authentication
Before determining how to connect your client application to the server, it is important to decide on
the authentication method that you want to use. Teaming and its Web services support three types of
authentication:

Section 1.3.1, “HTTP Basic Authentication Access (ssr),” on page 14
Section 1.3.2, “Web Services Security Access (ssf),” on page 14

1.3.1 HTTP Basic Authentication Access (ssr)
For basic authentication, use calls from your client application to pass a username and password as
you establish an HTTP session. Then, perform SOAP calls or calls using the client-side routines. If
you want to use basic authentication, you muse use the /ssr/secure/ws endpoint when connecting
to the server.

HTTP Basic Authentication is the existing transport authentication to authenticate the Web services
client. HTTP Basic Authentication uses a username and password to authenticate a service client to
a secure endpoint. To use this authentication mechanism, use /ssr/secure/ws endpoint. To enable
this service on the Teaming side, select the Enable Basic Authentication (recommended) check box
during product installation.

See Section 1.4, “Server Endpoints,” on page 15, for more information about connecting to the
server.

1.3.2 Web Services Security Access (ssf)
For WSS authentication, you need to place the authentication information (username and password)
in the SOAP calls. If you want to use this method of authentication, use the /ssf/ws endpoint to
connect to the server.

Web Services Security (WSS) is a standard protocol from Oasis* that provides a means for applying
security to Web services. Unlike security mechanisms that rely on the use of transport layer services,
WSS provides authentication at the message layer by using a SOAP header. To use this
authentication mechanism, use /ssf/ws endpoint. The deprecated Web services operation is
accessed only through this mechanism. This service is enabled on the Teaming side by selecting the
Enable WSS Authentication (recommended) check box during product installation.

If you choose to use WSS authentication instead of HTTP basic authentication:

Use the teamingservices-client-with-call.bat client and its sources to see an example
of this type of authentication.
You must use the /ssf/ws endpoint (see Section 1.4, “Server Endpoints,” on page 15, for more
information).
You must use password-text methods.
Password-digest is still supported in Teaming 2.0 and earlier but support is dropped with
Teaming 2.1. We strongly recommended that you use only the password-text method.

On the client side of the Web services transaction, the client code uses password-text to provide a
username and password to the Web services framework, and the framework passes the password as
plain text.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
On the server side, the security framework allows Teaming to retrieve the clear-text password from
the operation by using an application programming interface (API) call. Teaming applies its internal
password encryptor and compares the result with the password stored in the database for the user
when the password is retrieved.

Although it is easy to code, this method is not secure, because the password is transmitted in plain
text. Systems requiring a higher level of security should connect to Teaming over SSL.

To use this service with the teamingservice-client-with-call.bat, edit the script and set the
value of the -Dauthmethod switch to wss_text.

See Section 1.4, “Server Endpoints,” on page 15, for more information about connecting to the
server.

1.4 Server Endpoints
An endpoint is the URL that you use to connect your client application to the Teaming server.
Depending on the authentication method you want to use and other factors, you must choose one of
the following four endpoints to specify in your client application:

/ssf/ws/TeamingServiceV1: Use this endpoint if you want to use WSS authentication with the
latest Web services operations. See Section 1.3, “Authentication,” on page 14.
/ssf/ws/Facade: Use this endpoint if you want to use the deprecated Web services operation.
This endpoint requires WSS authentication.
/ssr/secure/ws/TeamingServiceV1: Use this endpoint only if you are using HTTP Basic
Authentication with the latest Web services operations.
/ssr/token/ws/TeamingServiceV1: Use this endpoint when you are making a Web services call
as a remote application.
/ssr/ws/TeamingServiceV1: Use this endpoint when you want to access Teaming as an
anonymous user (not specifying any username or password).

1.5 Categories of Operations
To assist you in locating the operation you need to perform, the name of each operation is prefaced
with its category name. For example, one category is called folder, and one operation within that
category is folder_getEntry.

The following categories of Web services operations are available:

binder: Operations that are specific to workspaces, common to workspaces and folders, or that
are to be applied to the workspace tree beginning at a specific node in the tree.
definition: Operations for obtaining and using definitions. Definitions are created by using the
designers within the Teaming UI.
folder: Operations that affect only folders and their contents (entries and comments).
ical: The operation that adds a calendar entry.
ldap: Operations that work with LDAP data.
license: Operations used for license compliance.
migration: Operations that assist migration from the SiteScape Forum® product to Teaming.
See Appendix C, “Migrating from Forum to Kablink Teaming,” on page 179.
Web Services Overview 15

16 Kablin

novdocx (en) 16 A
pril 2010
profile: Operations affecting users and groups.
search: Operations that assist in locating information based on criteria other than the defined
type.
template: Operations that create workspaces and folders, or that get lists of available
templates. (To create a completely configured folder, use template_addBinder and not
binder_addBinder.)
zone: Operations that work with different Teaming starting points within the same installation.
Each starting point contains its own unique workspace hierarchy.

1.6 Client Stubs
A stub is a proxy on the client. The stub code performs SOAP calls to the server. Teaming provides
pre-generated Java stub classes that are included in the Kablink Teaming Web Services Java client
library. To obtain the Kablink Teaming Web Services Java client library, see Section 1.7.1, “Working
with Java Objects,” on page 17.

The following example is the deleteFolderEntry method defined in the sample Java class
TeamingServiceClientWithStub.java file. The TeamingServiceClientWithStub.java file
makes SOAP calls to Teaming through the use of the pre-generated Java stub classes mentioned
above. This method uses the folder_deleteEntry Web services operation to delete an entry from
Teaming. This code assumes that your client is running on the same machine that is running the
Teaming server (localhost). It uses the Basic Authentication mechanism for authentication.

Consider the following code:

 private static final String TEAMING_SERVICE_ADDRESS_BASIC = "http://
localhost:8080/ssr/secure/ws/TeamingServiceV1";

 private static final String USERNAME = "admin";
 private static final String PASSWORD = "test";
 .
 .
 .
 public static void deleteFolderEntry(long entryId) throws Exception {
 TeamingServiceSoapServiceLocator locator = new
TeamingServiceSoapServiceLocator();
 locator.setTeamingServiceEndpointAddress(TEAMING_SERVICE_ADDRESS_BASIC);
 TeamingServiceSoapBindingStub stub = (TeamingServiceSoapBindingStub)
locator.getTeamingService();
 WebServiceClientUtil.setUserCredentialBasicAuth(stub, USERNAME, PASSWORD);

 stub.folder_deleteEntry(null, entryId);

 System.out.println("ID of the deleted entry: " + entryId);
 }

1.7 Managing Data
Some operations are less intuitive than others for messages. This section provides additional
information for those operations and includes the following subsections:

Section 1.7.1, “Working with Java Objects,” on page 17
Section 1.7.2, “Adding Folders and the Binder Configuration Identifier,” on page 18
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
Section 1.7.3, “Attaching Files,” on page 19
Section 1.7.4, “Fetching Attachments,” on page 20
Section 1.7.5, “Adding Calendar Entries,” on page 20
Section 1.7.6, “Binder Pages and search_getWorkspaceTreeAsXML,” on page 20

1.7.1 Working with Java Objects
The Web services operations often pass and return data within model objects as defined within the
Kablink® Teaming software. This is beneficial because it cuts down on the amount of code required
to prepare, send, receive, and interpret data. For example, parsing XML strings requires more
coding. For users who develop Web services client applications in Java, Kablink Teaming provides a
client-side library that they can use directly for added convenience. Users who develop Web services
client applications in a language other than Java must rely on their own tools for understanding and
coding the Kablink Teaming Web interfaces that have been defined and exposed by the
corresponding WSDL.

Regardless of the language and tools that are used to develop Web services applications, it is helpful
to familiarize yourself with some of the Teaming source code in order to understand the model
objects and methods that are used to pass parameters and receive returned data.

To obtain the Kablink Teaming Web Services Java client library, download the Kablink Teaming
product distribution tar/zip file, and expand it in a directory. This product distribution tar/zip file
contains teaming-2.*.*-wsclient.zip. This file contains:

The Axis generated Java source and class files for the client side stubs and model classes.

kablink-teaming-wsclient.jar

Search utility classes that aid in building search queries.
kablink-teaming-util-search.jar

All third-party libraries needed on the client side to run generated stubs.

The kablink-teaming-wsclient.jar file contains the Java source that defines model objects that
are passed between the Web services client and the Teaming server as either input arguments to or
return values from various Web service operations. These model classes are located in the org/
kablink/teaming/client/ws/model Java package. A significant number of the model classes
build upon the base class DefinableEntity. The TeamingServiceSoapBindingStub.java class
is the main stub class that application programs need to interact with in order to invoke various Web
service operations.

To access Java sample programs that use the Kablink Teaming Web Services Java client library,
download the Teaming source code from the Open Community Source page (http://
www.kablink.org/) and examine the source code and scripts located in the /ssf/samples/
wsclient directory. For example, the TeamingServiceClientWithStub.java class in /ssf/
samples/wsclient/src/org/kablink/teaming/samples/wsclient demonstrates how to use
the supplied stub and model classes to invoke Teaming Web services operations with minimum
coding effort.
Web Services Overview 17

http://www.kablink.org/

18 Kablin

novdocx (en) 16 A
pril 2010
The kablink-teaming-wsclient.jar is also found with in the source tree in the /ssf/ws-
client directory. To implement a client-side application of your own, all of the necessary libraries
must be defined as being in your class path. When the sample program is run in /ssf/samples/
wsclient, the accompanying build.xml Ant build script performs this function for you. It can be
viewed as a template.

The names of the Web services operations use categories to organize the operations so they are
easier for you to locate and understand. In general, the categories describe an item within Teaming
that is the focus of the operation, such as folder, entry, binder, or attachments.

1.7.2 Adding Folders and the Binder Configuration Identifier
When you add a fully configured folder (template_addBinder (page 130)), you need to specify a
binder configuration identifier, which identifies the template used to configure a folder of a
particular type. For example, the blog-folder template specifies settings used to configure a new
blog folder.

To review the blog-folder template:

1 Log in to Teaming as the Teaming administrator.
2 Click Manage > Site Administration.
3 Click Manage Workspace and Folder Templates.
4 In the Standard Templates section, click Blog.
5 Click Manage This Target > Configure.

The Configure Default Settings page is displayed.

The following configuration settings are available in the template:
Definition inheritance
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
Allowed Views
Default View
Default Entry Types
Workflow Associations
Allowed Workflows

At the time of this writing, Teaming does not provide a message that you can use to retrieve the
binder configuration identifier for a particular type of folder. Use the following procedure to obtain
the binder configuration identifier for the folder you want to create:

1 View any workspace or folder.
2 Click Manage > Add folder.
3 While viewing the Add new folder page, use your browser to view the HTML source code for

the page.
4 Search for the type of folder you want to create (for example, discussion, blog, or calendar).
5 In the input HTML tag that creates the radio button for that type of folder, note the

name=”binderConfigId” and value=”nnn” pair of tag elements.
The number specified by the value element is the binder configuration identifier of the folder
you want to create.

The following figure shows an example of the binder configuration information for a blog folder, as
found in the HTML source for the Add new folder page:

Figure 1-1 The Binder Configuration Identifier in Source Code

1.7.3 Attaching Files
In Kablink Teaming, attachments are files that are associated with an entry. An entry can have more
than one attached file.

For Web services, an attachment is a file exchanged in conjunction with an operation being passed
between the client and server. Teaming recognizes only the first file attachment to an operation
being sent to the server and ignores all other attachments.

To attach more than one file to an entry in Teaming, you must use one of the upload operations
multiple times. For example, to attach 17 files to an entry in Teaming, you must use
folder_uploadFile 17 times. Your client source code establishes where in the file system it finds
or places files used as attachments to messages.
Web Services Overview 19

20 Kablin

novdocx (en) 16 A
pril 2010
The folder_uploadFile operation requires that you pass a data item name. This identifier maps to
the value specified in the name attribute of the input HTML tag used to upload the file; this value is
also used in a hidden HTML tag that communicates values between the HTML form and the
Teaming database.

To upload a file into the standard form element used to contain attachments, specify
ss_attachFile1 as the data item name. If you are uploading files into a custom form element,
create an instance of that custom entry, use an operation to get the name of the hidden field, then use
the name when attaching files to the entry you actually want to affect.

1.7.4 Fetching Attachments
When you use folder_getEntry to obtain information about an entry, you use a Boolean
parameter to indicate if you want the entry’s attachments. If you specify that you do want the
attachments, your client establishes where on its system it places the attached files.

1.7.5 Adding Calendar Entries
When you pass the ical_uploadCalendarEntriesWithXML operation to the server, the Web
services framework uses an XML formatted string of iCal data passed as the second parameter to the
operation (<doc><entry>iCal data</entry></doc>).

1.7.6 Binder Pages and search_getWorkspaceTreeAsXML
When you use search_getWorkspaceTreeAsXML to obtain information about the hierarchical
workspace tree, Kablink Teaming returns XML formatted information about nodes in the tree,
within the levels of the hierarchy you specify. Each node in the tree is a binder, which is typically a
place (a workspace or folder). Sometimes, the XML element returned for a node is called a page.

The following graphic shows the workspace tree, which is expanded to show five levels of the
workspace hierarchy:

Figure 1-2 Workspace Hierarchy Levels as Seen in the UI

In the graphic, each of the workspaces and folders are nodes in the workspace tree. The Workspaces
workspace is the only binder at level 1. Level 2 binders include Global workspaces, Personal
workspaces, and Team workspaces. The only binder shown at level 3 is the Corporate web site
binder. Level 4 binders include folders and the December 2008 redesign workspace. The Calendar
binder is located at level 5. If a binder has a plus sign next to it (for example, both the Global
workspaces and Personal workspaces binders are preceded by plus signs), it means that there are
hierarchy levels of binders that are not displayed in the UI.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
If you use search_getWorkspaceTreeAsXML to get one level of the tree starting at the Workspaces
node, Teaming returns information about Global workspaces, Personal workspaces, and Team
workspaces.

As mentioned, some nodes in the tree are pages:

Figure 1-3 Pages as They Appear in the UI

The /ssf/web/docroot/WEB-INF/classes/config/ssf.properties file contains a property
called wsTree.maxBucketSize, which, by default, is set to 25. This means that the maximum
number of sub-workspaces allowed is 25. If a folder or workspace has more subplaces, Teaming
creates virtual buckets called pages. Each line in Figure 1-3 corresponds to a page. The Personal
workspaces workspace has two pages.

When you use search_getWorkspaceTreeAsXML to retrieve information about nodes in the
workspace tree, it can return more than one hierarchical level as you specify, unless it encounters a
page. To expand the tree beyond a page, you must call search_getWorkspaceTreeAsXML again,
pass the binder identifier of the page, and pass the number of levels beyond the page you want to
retrieve.

Consider the following:

Figure 1-4 A Page Containing Sub-Workspaces

The wong//zeeman page contains workspaces. The workspaces listed (Wong, Charles (cwong), and
Zeeman, Skip szeeman)) are one level beyond the page.

When you receive page information as a node in the workspace tree, you receive page and tuple
attributes. For example, page=”2” and pageTuple=”charles_wong (cwong)//skip_zeeman
(szeeman)”. To obtain information about the contents of this page, you need to specify the
identifier of the page’s parent, the number of hierarchy levels you want expanded, and a
concatenation of the page number and tuple values, as shown in this example:

search_getWorkspaceTreeAsXML 24 3 "2//charles_wong//skip_zeeman"

This code begins at binder number 24, accesses page number 2, and returns two hierarchical levels
of data for all users between Charles Wong and Skip Zeeman.
Web Services Overview 21

22 Kablin

novdocx (en) 16 A
pril 2010
Given the structure of the Teaming pages and how Web services returns tree data, it is easiest to
retrieve page data in this way. However, if you choose, you can actually retrieve paged tree data
regardless of page number. To do this, specify any page number (Teaming actually ignores it), and
specify a tuple in the correct order in which it appears in the tree, even if the set of users crosses
pages. Teaming returns hierarchical information for all users in between the tuple values. However,
if the number of returned nodes exceeds the value specified in the wsTree.maxBucketSize
property (by default, 25 users), Teaming pages the data.

Finally, if you want to see all tree information without any page specifications, specify -1 as the
value of the hierarchy levels you want returned.

1.8 Extending Teaming Web Services
Because Kablink Teaming is open source software, you have the source code that implements our
Web services, and you can extend it. However, we invite you to operate within the spirit of an open
source community by participating in the Kablink Teaming online community (http://
www.kablink.org), sharing your code with others, and working with the Novell engineers to
incorporate your Web services extensions into the base product. In this way, you make the product
and community stronger, and you avoid doing work that might need to be redone in future versions
of Kablink Teaming because of engineering changes.

Of course, whether you participate in the community or upgrade to future versions of the software is
up to you. Regardless of your decision, Kablink Teaming includes an example that provides a
structure that enables users of all versions of our software to be able to extend our Web services in
the most optimal way, minimizing work that you might need to do to maintain the extensions for
every upgrade.

Kablink Teaming includes an extended Web services example, which adds the
folder_getFolderTitle operation to the base Teaming web services, and also adds the
getFolderTitle command to the teamingservice-client-with-call.bat sample client. The
source code for the extension is located in this directory and in its subdirectories:

/ssf/samples/extendedws

This directory contains the readme.txt file, which provides simple directions for establishing the
extension.
k Teaming 2.0 Developer Guide

http://www.kablink.org

A
novdocx (en) 16 A

pril 2010
AWeb Service Operations

This section provides alphabetized reference pages for the Web services operations of Kablink®
Teaming 2.0 and later.

NOTE: All examples in this reference section use the Kablink Teaming client library. See
Section 1.6, “Client Stubs,” on page 16, for more information about the client library and other ways
to call Teaming Web services operations.

“admin_destroyApplicationScopedToken” on page 26
“admin_getApplicationScopedToken” on page 27
“binder_addBinder” on page 28
“binder_copyBinder” on page 29
“binder_deleteBinder” on page 30
“binder_deleteTag” on page 31
“binder_getBinder” on page 32
“binder_getBinderByPathName” on page 33
“binder_getFileVersions” on page 34
“binder_getFolders” on page 35
“binder_getSubscription” on page 36
“binder_getTags” on page 37
“binder_getTeamMembers” on page 38
“binder_indexBinder” on page 39
“binder_indexTree” on page 40
“binder_modifyBinder” on page 41
“binder_moveBinder” on page 42
“binder_removeFile” on page 43
“binder_setDefinitions” on page 44
“binder_setFunctionMembership” on page 45
“binder_setFunctionMembershipInherited” on page 46
“binder_setOwner” on page 47
“binder_setSubscription” on page 48
“binder_setTag” on page 49
“binder_setTeamMembers” on page 50
“binder_uploadFile” on page 51
“definition_getDefinitionAsXML” on page 52
“definition_getDefinitionByName” on page 53
“definition_getDefinitions” on page 54
Web Service Operations 23

24 Kablin

novdocx (en) 16 A
pril 2010
“definition_getLocalDefinitionByName” on page 55
“definition_getLocalDefinitions” on page 56
“folder_addEntry” on page 57
“folder_addEntryWorkflow” on page 58
“folder_addMicroBlog” on page 59
“folder_addReply” on page 60
“folder_copyEntry” on page 61
“folder_deleteEntry” on page 62
“folder_deleteEntryTag” on page 63
“folder_deleteEntryWorkflow” on page 64
“folder_getEntries” on page 65
“folder_getEntry” on page 66
“folder_getEntryByFileName” on page 67
“folder_getEntryTags” on page 68
“folder_getFileVersions” on page 69
“folder_getSubscription” on page 70
“folder_modifyEntry” on page 71
“folder_modifyWorkflowState” on page 72
“folder_moveEntry” on page 73
“folder_removeFile” on page 74
“folder_reserveEntry” on page 75
“folder_setEntryTag” on page 76
“folder_setRating” on page 77
“folder_setSubscription” on page 78
“folder_setWorkflowResponse” on page 79
“folder_synchronizeMirroredFolder” on page 80
“folder_unreserveEntry” on page 81
“folder_uploadFile” on page 82
“folder_uploadFileStaged” on page 83
“ical_uploadCalendarEntriesWithXML” on page 85
“ldap_synchAll” on page 86
“ldap_synchUser” on page 87
“license_getExternalUsers” on page 88
“license_getRegisteredUsers” on page 89
“license_updateLicense” on page 90
“migration_addBinder” on page 91
“migration_addBinderWithXML” on page 92
“migration_addEntryWorkflow” on page 94
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
“migration_addFolderEntry” on page 95
“migration_addFolderEntryWithXML” on page 96
“migration_addReply” on page 98
“migration_addReplyWithXML” on page 99
“migration_uploadFolderFile” on page 101
“migration_uploadFolderFileStaged” on page 103
“profile_addGroup” on page 105
“profile_addGroupMember” on page 106
“profile_addUser” on page 107
“profile_addUserWorkspace” on page 108
“profile_deletePrincipal” on page 109
“profile_getFileVersions” on page 110
“profile_getGroup” on page 111
“profile_getGroupByName” on page 112
“profile_getGroupMembers” on page 113
“profile_getPrincipals” on page 114
“profile_getUser” on page 115
“profile_getUserByName” on page 116
“profile_getUsers” on page 117
“profile_getUserTeams” on page 118
“profile_modifyGroup” on page 119
“profile_modifyUser” on page 120
“profile_removeFile” on page 121
“profile_removeGroupMember” on page 122
“profile_uploadFile” on page 123
“search_getFolderEntries” on page 124
“search_getHotContent” on page 125
“search_getTeams” on page 126
“search_getWorkspaceTreeAsXML” on page 127
“search_search” on page 128
“template_addBinder” on page 130
“template_getTemplates” on page 131
“zone_addZone” on page 132
“zone_deleteZone” on page 133
“zone_modifyZone” on page 134
Web Service Operations 25

26 Kablin

novdocx (en) 16 A
pril 2010
admin_destroyApplicationScopedToken
Destroys an application-scoped token.

Syntax
public void admin_destroyApplicationScopedToken(String accessToken, String token);

Description
The admin_destroyApplicationScopedToken operation destroys a previously acquired
application scoped token.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

token
The string representation of the previously acquired application-scoped token that you want to
destroy.

return_value
None.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
admin_getApplicationScopedToken
Requests an application-scoped token on behalf of the user.

Syntax
public String admin_getApplicationScopedToken(String accessToken, long applicationId, long
userId);

Description
The admin_getApplicationScopedToken operation requests the system to create and return an
application-scoped token on behalf of the user.The token is subsequently utilized by the application.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

applicationId
The identifier of the application set up with the Teaming system.

userId
The identifier of the user on whose behalf you want the token to be created.

return_value
A string representation of the requested token.
Web Service Operations 27

28 Kablin

novdocx (en) 16 A
pril 2010
binder_addBinder
Adds an unconfigured binder to the workspace tree hierarchy.

Syntax
public long binder_addBinder(String accessToken, Binder binder);

Description
The binder_addBinder operation adds either a workspace or folder to the hierarchy.

To add a fully configured binder, use the template_addBinder operation instead.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part implementing a remote
application, or the null value.

binder
Data and methods for the Java Binder object, defined in the Teaming source code.

return_value
The identifier of the new binder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
template_addBinder (page 130)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_copyBinder
Creates a new binder identical to an existing one.

Syntax
public long binder_copyBinder(String accessToken, long sourceId, long destinationId,
boolean cascade);

Description
The binder_copyBinder operation copies an existing workspace or folder, and creates a new one.

Teaming automatically copies all non-binder content (entries and comments). As an option, you can
replicate the source binder’s sub-binders (sub-workspaces or sub-folders).

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

sourceId
The identifier of the binder you want to copy.

destinationId
The binder identifier of the parent for the new workspace or folder.

cascade
A Boolean value indicating whether you want to copy the source binder’s sub-binders (sub-
workspaces and sub-folders).

return_value
The identifier of the new binder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 29

30 Kablin

novdocx (en) 16 A
pril 2010
binder_deleteBinder
Deletes a binder.

Syntax
public void binder_deleteBinder(String accessToken, long binderId, boolean deleteMirroredSource
);

Description
The binder_deleteBinder operation deletes a workspace or folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier of the workspace or folder you want to delete.

deleteMirroredSource
Deletes the source directory, if the folder being deleted is a mirrored folder.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_deleteTag
Removes a tag from a binder.

Syntax
public void binder_deleteTag(String accessToken, long binderId, String tagId);

Description
The binder_deleteTag operation removes a tag from a workspace or folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the binder that applies the tag you want to remove.

tagId
The tag you want to remove.

return_value
None.

Example
 public static void checkTags(long binderId) throws Exception { ...
Tag[] tags = setupTags(binderId);
for (int i=0; i<tags.length; ++i) {stub.binder_setTag(null, tags[i]); }
tags = stub.binder_getTags(null, binderId);
validateTags(tags);
stub.binder_deleteTag(null, binderId, tags[0].getId());

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 31

32 Kablin

novdocx (en) 16 A
pril 2010
binder_getBinder
Accepts a binder identifier to get information about a binder.

Syntax
public Binder binder_getBinder(String accessToken, long binderId, boolean includeAttachments);

Description
The binder_getBinder operation gets information about a workspace or folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder for which you want information.

includeAttachments
A Boolean value that indicates whether you want Teaming to return attached files.
By default, workspaces do not include attached files. However, users can use the designers to
define workspaces that do include attached files.

return_value
A Binder Java object that contains data and methods for the requested binder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_getBinderByPathName
Accepts a directory specification to get information about a binder.

Syntax
public Binder binder_getBinderByPathName(String accessToken, String pathName,
boolean includeAttachments);

Description
The binder_getBinderByPathName operation uses a workspace-hierarchy path name to get
information about a workspace or folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

pathName
The titles of the binder for which you want information, preceded by the titles of all of its
parents, separated by slashes:
Workspaces / Global workspaces / wsOrfolderTitle / ... / titleTargetWS

includeAttachments
A Boolean value that indicates whether you want Teaming to return attached files.
By default, workspaces do not include attached files. However, users can use the designers to
define workspaces that do include attached files.

return_value
A Binder Java object that contains data and methods for the requested binder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 33

34 Kablin

novdocx (en) 16 A
pril 2010
binder_getFileVersions
Returns information about the versions of a file.

Syntax
public void binder_getFileVersions(String accessToken, long binderID, String fileName);

Description
The binder_getFileVersion operation retrieves information about the versions of a file
associated with a workspace or folder.

By default, workspaces and folders do not contain files, but users can alter definitions by using the
designers in the user interface so that a custom workspace or folder can include one or more files.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderID
The binder identifier for the workspace or folder.

filename
The filename of the file you want to retrieve version information about.

return_value
A File Version Java object that contains information about the file versions.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_getFolders
Returns a folder collection for a binder’s sub-folders.

Syntax
public FolderCollection binder_getFolders(String accessToken, long binderId,int firstRecord, int
maxRecords);

Description
The binder_getFolders operation returns a folder collection, which contains information about
the sub-folders of a specified binder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder for which you want information about its sub-
folders.

firstRecord
The index of the first record whose folder information you want to obtain. The index is 0-
based.

maxRecord
The maximum number of folders whose information should be returned. Specify -1 for
unlimited.

return_value
A FolderCollection Java object containing information about the sub-folders.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 35

36 Kablin

novdocx (en) 16 A
pril 2010
binder_getSubscription
Obtains subscription information about a binder.

Syntax
public Subscription binder_getSubscription(String accessToken, long binderId);

Description
The binder_getSubscription operation returns subscription information for a specified binder.
When a user subscribes to a binder, that person receives e-mail notifications.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder for which you want subscription information.

return_value
A Subscription Java object containing subscription information.

Example
public static void checkBinderSubscriptions(long binderId) throws Exception {
...
Subscription subscription = setupSubscription(binderId);
stub.binder_setSubscription(null, binderId, subscription);
subscription = stub.binder_getSubscription(null, binderId);
validateSubscription(subscription);
}

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_getTags
Obtains tags applied to a binder.

Syntax
public Tag[] binder_getTags(String accessToken, long binderId);

Description
The binder_getTags operation gets tag information for a specified binder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder whose tag information you want.

return_value
An array of Tag Java objects, each containing information about one of the tags applied to the
binder.

Example
 public static void checkTags(long binderId) throws Exception { ...
Tag[] tags = setupTags(binderId);
for (int i=0; i<tags.length; ++i) {stub.binder_setTag(null, tags[i]); }
tags = stub.binder_getTags(null, binderId);
validateTags(tags);
stub.binder_deleteTag(null, binderId, tags[0].getId());

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 37

38 Kablin

novdocx (en) 16 A
pril 2010
binder_getTeamMembers
Obtains information about the members of a team assigned to a specified binder.

Syntax
public TeamMemberCollection binder_getTeamMembers(String accessToken, long binderId);

Description
The binder_getTeamMembers operation obtains information about the members of a team assigned
to a specified binder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binder
The binder identifier for the workspace or folder for which you want information about team
members.

return_value
A TeamMemberCollection Java object containing information about the members of a team
assigned to the specified binder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_indexBinder
Indexes a binder and its content.

Syntax
public void binder_indexBinder(String accessToken, long binderId);

Description
The binder_indexBinder operation indexes a workspace or folder (and its contents), optimizing
the ability of Teaming to search its contents. This operation does not index sub-binders.

To index sub-binders, use the binder_indexTree operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder that you want to index.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
binder_indexTree (page 40)
Web Service Operations 39

40 Kablin

novdocx (en) 16 A
pril 2010
binder_indexTree
Indexes a binder’s sub-binders.

Syntax
public Long binder_indexTree(String accessToken, long binderId);

Description
The binder_indexTree operation indexes the specified workspace or folder, all sub-binders, and
all content in all those binders.

If you want to index a binder and its contents without indexing sub-binders, use the
binder_indexBinder operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder that indicates the node where you want to
begin indexing within the workspace hierarchy.

return_value
An array of integers, with each integer being the identifier of a binder successfully indexed.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
binder_indexBinder (page 39)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_modifyBinder
Modifies a binder.

Syntax
public void binder_modifyBinder(String accessToken, Binder binder);

Description
The binder_modifyBinder operation modifies a workspace or folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binder
Data and methods for the Binder Java object, defined in the Teaming source code.

return_value
None.

Example
public static Binder modifyBinder(Binder binder) throws Exception { ...
binder.setTitle(binder.getTitle() + " (Modified)");
binder.getDescription().setText(binder.getDescription().getText() + "
(Modified)"); stub.binder_modifyBinder(null, binder);
stub.binder_getBinder(null, binder.getId(), true);
System.out.println("ID of the modified binder: " + binder.getId());
return binder;
}

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 41

42 Kablin

novdocx (en) 16 A
pril 2010
binder_moveBinder
Moves a binder within the workspace tree hierarchy.

Syntax
public void binder_moveBinder(String accessToken, long binderId, long newParentBinderId);

Description
The binder_moveBinder operation moves either a workspace or folder within the workspace
hierarchy.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder that you want to move.

newParentBinderId
The binder identifier of the binder under which you want binderId to appear as a sub-binder.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_removeFile
Removes a file from a binder.

Syntax
public void binder_removeFile(String accessToken, long binderId, String fileName);

Description
The binder_removeFile operation removes a file from a workspace or folder.

By default, workspaces do not contain files, but users can alter definitions by using the designers in
the UI so that a custom workspace can include one or more files.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder from which you want to remove a file.

fileName
The file name of the file you want to remove from the binder.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 43

44 Kablin

novdocx (en) 16 A
pril 2010
binder_setDefinitions
Associates workflow definitions with entry definitions.

Syntax
public void binder_setDefinitions(String accessToken, long binderId, String[] entryDefinitionIds,
String [] workflowDefinitionIds);

Description
The binder_setDefinitions operation associates entries within the specified binder with
workflow processes. (Teaming associates identifiers in the first element of both arrays, the second
element of both arrays, the third, and so on.)

When an entry is associated with a workflow process, creation of an entry of that type automatically
places the entry into the initial state of the workflow process. By default, workspaces do not contain
entries that can be associated with workflow processes. However, users can alter definitions by
using the designers in the UI so that a custom workspace can include one or more files.

NOTE: This operation is an overwrite operation, setting all workflow associations for the folder;
you cannot use repeated calls to this operation to set associations incrementally. Set all of the
workflow associations for the folder with one call.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the folder or custom workspace within which you want entries
associated with workflow processes.

entryDefinitionIds
An array of definition identfiers for each type of entry to which you want to associate a
workflow process.

workflowDefinitionIds
An array of workflow identifiers in the order in which you want them applied to the entry-
definition identifiers in entryDefinitionIds.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_setFunctionMembership
Applies access-control settings to a binder.

Syntax
public void binder_setFunctionMembership(String accessToken, long binderId,
FunctionMembership[] functionMemberships);

Description
The binder_setFunctionMembership operation provides access-control settings for a folder or
workspace. The term function is analogous to an access-control role in the UI.

NOTE: This operation is an overwrite operation, that sets all function memberships for the folder or
workspace; you cannot use repeated calls to this operation to set memberships incrementally. Set all
memberships for the workspace or folder with one call.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder whose access control you want to set.

functionMemberships
An array of FunctionMembership Java objects.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
binder_setFunctionMembershipInherited (page 46)
Web Service Operations 45

46 Kablin

novdocx (en) 16 A
pril 2010
binder_setFunctionMembershipInherited
Establishes inheritance as the access-control mechanism for a folder or workspace.

Syntax
public void binder_setFunctionMembershipInherited(String accessToken, long binderId,
boolean inherit);

Description
The binder_setFunctionMembershipInherited establishes whether a specified workspace or
folder inherits access-control settings from its parent binder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder for which you want to establish the
inheritance setting for access control.

inherit
A true or false value that establishes whether the binder inherits its access-control settings.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
binder_setFunctionMembership (page 45)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_setOwner
Establishes the owner of the binder.

Syntax
public long binder_setOwner(String accessToken, long binderId, long userId);

Description
The binder_setOwner operation establishes the specified user as the owner of a workspace or
folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder whose owner you want to establish.

userId
The identifier for the user whom you want to be the owner of the binder.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 47

48 Kablin

novdocx (en) 16 A
pril 2010
binder_setSubscription
Establishes e-mail settings for a binder.

Syntax
public void binder_setSubscription(String accessToken, long binderId, Subscription subscription);

Description
The binder_setSubscription operation establishes subscription settings for a workspace or
folder. When a user subscribes to a binder, that person receives e-mail notifications.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder whose subscription you want to set.

subscription
A Subscription Java object containing information used to establish e-mail notification settings
for the specified binder.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_setTag
Applies a tag for a binder.

Syntax
public void binder_setTag(String accessToken, Tag tag);

Description
The binder_setTag operation applies a tag to a workspace or folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

tag
A Tag Java object that contains information applying the tag to a workspace or folder.

return_value
None.

Example
 public static void checkTags(long binderId) throws Exception { ...
Tag[] tags = setupTags(binderId);
for (int i=0; i<tags.length; ++i) {stub.binder_setTag(null, tags[i]); }
tags = stub.binder_getTags(null, binderId);
validateTags(tags);
stub.binder_deleteTag(null, binderId, tags[0].getId());

This code is taken from the source code for the teamingservice-client-with-stub.bat file.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 49

50 Kablin

novdocx (en) 16 A
pril 2010
binder_setTeamMembers
Establishes members of a team for a binder.

Syntax
public void binder_setTeamMembers(String accessToken, long binderId, String[] teamMembers);

Description
The binder_setTeamMembers operation establishes members of the team for a specified
workspace or folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binder
The binder identifier for the workspace or folder for which you want to establish team
membership.

return_value
None.

teamMembers
Names of the team members.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
binder_uploadFile
Uploads a file into a binder.

Syntax
public void binder_uploadFile(String accessToken, long binderId,
String formDataItemName, String fileName);

Description
The binder_uploadFile operation performs an action equivalent to using the UI to upload a file to
either a workspace or folder. You can attach only one file at a time; call this operation multiple times
to attach more than one file to the binder.

By default, workspaces do not include attached files. However, users can use the designers to define
workspaces that do include attached files.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder into which you want to upload a file.

formDataItemname
A string containing the internal identifier for the part of the entry that contains attached files.
This identifier maps the name attribute of an input HTML tag on a form to data in the Teaming
database; a hidden HTML tag communicates this file mapping to the server.
The name value for the standard entry element containing attached files is ss_attachFile1. If
you want to upload a file into a custom form element you defined using the designers, you need
to look up the name identifier for that form element.
If you are uploading to a folder file, specify upload as an argument to this parameter to make
this attachment the primary file for the entry.

fileName
A string containing the filename of the file you want to upload to the binder.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 51

52 Kablin

novdocx (en) 16 A
pril 2010
definition_getDefinitionAsXML
Obtains information about a definition.

Syntax
public String definition_getDefinitionAsXML(String accessToken, String definitionId);

Description
The definition_getDefinitionAsXML operation returns a string of XML containing information
about a specified definition.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

definitionId
The definition identifier of the item about which you want information.

return_value
An XML string containing information about the definition. This XML is free form; it does not
have a firm, established schema.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
definition_getDefinitionByName (page 53)
definition_getDefinitions (page 54)
definition_getDefinitionByName (page 53)
definition_getLocalDefinitions (page 56)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
definition_getDefinitionByName
Obtains information about a global definition.

Syntax
public DefinitionBrief definition_getDefinitionByName(String accessToken,
String definitionName);

Description
The definition_getDefinitionByName operation obtains information about a global definition
by using the definition name. To get information about a local definition, use the
definition_getLocalDefinitionByName operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

definitionName
The descriptive word or phrase used to name the global definition.

return_value
A DefinitionBrief Java object containing information about the global definition.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
definition_getDefinitions (page 54)
definition_getLocalDefinitionByName (page 55)
Web Service Operations 53

54 Kablin

novdocx (en) 16 A
pril 2010
definition_getDefinitions
Obtains all global definitions in the installation.

Syntax
public DefinitionCollection definition_getDefinitions(String accessToken);

Description
The definition_getDefinitions operation obtains information about all global definitions in
the installation. To get information about local definitions, use the
definition_getLocalDefinitions operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

return_value
A DefinitionCollection Java object containing information about all global definitions in the
installation.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
definition_getLocalDefinitionByName (page 55)
definition_getLocalDefinitions (page 56)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
definition_getLocalDefinitionByName
Obtains information about a local definition.

Syntax
public DefinitionBrief definition_getLocalDefinitionByName(String accessToken, long binderId,
String name, boolean includeAncestors);

Description
The definition_getLocalDefinitionByname operation obtains information about a local
definition by using a name. To get information about a global definition, use the
definition_getDefinitionByname operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder whose local definition you want.

name
The word or phrase used to name the local definition.

includeAncestors
A Boolean value that indicates whether Teaming should check local definitions inherited from
ancestor workspaces and folders, which are located higher in the hierarchy than the specified
binder. If you specify false, Teaming checks only the local definitions created within the
specified binder.

return_value
A DefinitionBrief Java object containing information about the definition that matches name.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
definition_getLocalDefinitionByName (page 55)
definition_getLocalDefinitions (page 56)
Web Service Operations 55

56 Kablin

novdocx (en) 16 A
pril 2010
definition_getLocalDefinitions
Obtains information about all local definitions.

Syntax
public DefinitionCollection definition_getLocalDefinitions(String accessToken, long binderId,
boolean includeAncestors);

Description
The definition_getLocalDefinitions operation obtains information about the local definitions
for a specified binder. If you want information about all global definitions in the installation, use the
definition_getDefinitions operation.

If you want to add a fully configured binder, use template_addBinder instead.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the workspace or folder whose local definitions you want.

includeAncestors
A Boolean value that indicates whether Teaming should include local definitions inherited
from ancestor workspaces and folders, which are located higher in the hierarchy than the
specified binder. If you specify false, Teaming includes only the local definitions created within
the specified binder.

return_value
A DefinitionCollection Java object that contains information about the binder’s local
definitions.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
definition_getDefinitions (page 54)
definition_getLocalDefinitionByName (page 55)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_addEntry
Adds an entry to a folder.

Syntax
public long folder_addEntry(String accessToken, FolderEntry entry, String attachedFileName);

Description
The folder_addEntry operation adds an entry to a folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entry
A FolderEntry Java object containing information that Teaming uses to create the new entry.

attachedFileName
(Optional) A string containing the filename of a file to attach to the new entry. If you are not
attaching a file, specify the null value for this argument.

return_value
The entry identifier of the newly created entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 57

58 Kablin

novdocx (en) 16 A
pril 2010
folder_addEntryWorkflow
Initiates a workflow process for a folder entry.

Syntax
public void folder_addEntryWorkflow(String accessToken, long entryId, String
workflowDefinitionId);

Description
The folder_addEntryWorkflow operation initiates a workflow process for a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The entry identifier of the folder entry with which you want to initiate a workflow process.

workflowDefinitionId
The definition identifier of the workflow process that you want to initiate for the specified
folder entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_addMicroBlog
Adds a micro-blog entry to a folder.

Syntax
public long folder_addMicroBlog(String accessToken, string text);

Description
The folder_addMicroBlog operation adds a micro-blog entry to a folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

text
A string containing the text of the micro-blog to create.

return_value
The entry identifier of the newly created micro-blog entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 59

60 Kablin

novdocx (en) 16 A
pril 2010
folder_addReply
Adds a comment to a folder entry.

Syntax
public long folder_addReply(String accessToken, long parentEntryId, FolderEntry reply,
String attachedFileName);

Description
The folder_addReply operation adds a comment to a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

parentEntryId
The entry identifier of the entry or comment that is to be the parent of the comment you are
adding.

reply
A FolderEntry Java object containing information that yyyy uses to create the new comment.

attachedFileName
The filename of a file you are attaching to the comment. If you are not attaching a file, specify
the null value for this argument.

return_value
The entry identifier of the newly created comment.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_copyEntry
Copies a folder entry.

Syntax
public long folder_copyEntry(String accessToken, long entryId, long parentFolderId);

Description
The folder_copyEntry operation copies a folder entry.

NOTE: This operation does not copy workflow information for an entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The entry identifier of the folder entry you want to copy.

parentFolderId
The folder identifier of the folder you want to contain the copied entry.

return_value
The entry identifier of the new entry created by copying the existing entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 61

62 Kablin

novdocx (en) 16 A
pril 2010
folder_deleteEntry
Deletes a folder entry.

Syntax
public void folder_deleteEntry(String accessToken, long entryId);

Description
The folder_deleteEntry operation deletes a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The entry identifier of the folder entry you want to delete.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_deleteEntryTag
Removes a tag from a folder entry.

Syntax
public void folder_deleteEntryTag(String accessToken, long entryId, String tagId);

Description
The folder_deleteEntryTag operation removes a tag from a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The entry identifier of the entry from which you want to remove a tag.

tagId
A string identifying the tag you want to remove from the entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 63

64 Kablin

novdocx (en) 16 A
pril 2010
folder_deleteEntryWorkflow
Removes a workflow from an entry.

Syntax
public void folder_deleteEntryWorkflow(String accessToken, long entryId,
String workflowDefinitionId);

Description
The folder_deleteEntryWorkflow operation removes a workflow process from a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The entry identifier of the entry for which you want to remove a workflow process.

workflowDefinitionId
A string containing the definition identifier for the workflow process you want to remove from
the entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_getEntries
Obtains information about the entries within a specified folder.

Syntax
public FolderEntryCollection folder_getEntries(String accessToken, long binderID, int firstRecord,
int maxRecords);

Description
The folder_getEntries operation obtains information about the entries contained in a folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the folder containing the entries for which you want information.

firstRecord
The index of the first record whose information you want to obtain. The index is 0-based.

maxRecords
The maximum number of entries whose information should be returned. Specify -1 for
unlimited.

return_value
A FolderEntryCollection Java object containing information about the entries contained within
the folder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 65

66 Kablin

novdocx (en) 16 A
pril 2010
folder_getEntry
Accepts an entry identifier to get information about an entry in a folder.

Syntax
public FolderEntry folder_getEntry(String accessToken, long entryId,
boolean includeAttachments);

Description
The folder_getEntry operation obtains information about an entry in a folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The entry identifier of the entry about which you want information.

includeAttachments
A Boolean value that indicates whether you want Teaming to return the entry’s attachments.
The client program is responsible for placement of attachment files on its local system.

return_value
A FolderEntry Java object that contains information about the specified entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_getEntryByFileName
Accepts a filename to get information about an entry.

Syntax
public FolderEntry folder_getEntryByFileName(String accessToken, long binderId,
String fileName, boolean includeAttachments);

Description
The folder_getEntryByFileName operation obtains information about an entry in a folder by
using the entry’s file name.

Although this operation is most useful for file folders, it works for any folder that requires that all
filenames within the folder to be unique.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The binder identifier for the folder containing the entry for which you want information.

fileName
The name of the file that corresponds with the entry for which you want information.

includeAttachment
A Boolean value that indicates whether you want Teaming to return the entry’s attachments.
The client program is responsible for placement of attachment files on its local system.

return_value
A FolderEntry Java object that contains information about the specified entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 67

68 Kablin

novdocx (en) 16 A
pril 2010
folder_getEntryTags
Obtains information about an entry’s tags.

Syntax
public Tag[] folder_getEntryTags(String accessToken, long entryId);

Description
The folder_getEntryTags operation gets information about each of the tags applied to a folder
entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry about whose tags you want information.

return_value
An array of Tag Java objects, where each object contains information about one tag applied to
the entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_getFileVersions
Returns information about the versions of a file.

Syntax
public void folder_getFileVersions(String accessToken, long entryId, String fileName);

Description
The folder_getFileVersions operation retrieves information about the versions of a file
associated with an entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The entry identifier of the entry.

fileName
The filename of the file you want to retrieve version information about.

return_value
A File Versions Java object containing information about the file versions.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 69

70 Kablin

novdocx (en) 16 A
pril 2010
folder_getSubscription
Obtains subscription information for a specified folder.

Syntax
public Subscription folder_getSubscription(String accessToken, long entryId);

Description
The folder_getSubscription operation gets information about the e-mail notification settings
for a specified folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier for the entry whose subscription information you want.

return_value
A Subscription Java object that contains information about e-mail notification settings for the
specified folder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_modifyEntry
Modifies an entry in a folder.

Syntax
public void folder_modifyEntry(String accessToken, FolderEntry entry);

Description
The folder_modifyEntry operation modifies the contents of a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entry
A FolderEntry Java object containing the information to apply to the existing folder entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 71

72 Kablin

novdocx (en) 16 A
pril 2010
folder_modifyWorkflowState
Changes the workflow state of an entry.

Syntax
public void folder_modifyWorkflowState(String accessToken, long entryId, long StateId, String
toState);

Description
The folder_modifyWorkflowState operation changes the workflow state of a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry whose workflow state you want to change.

stateID
The token ID of the current workflow state from which you want the entry to transition to the
new state.

toState
A string identifying your desired workflow state.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_moveEntry
Moves an entry within the folder-tree hierarchy.

Syntax
public void folder_moveEntry(String accessToken, long entryId, long parentId);

Description
The folder_moveEntry operation moves an entry to be under a new parent within the folder
hierarchy.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry you want to move.

parentId
The identifier of the folder that is to be the new parent of the specified entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 73

74 Kablin

novdocx (en) 16 A
pril 2010
folder_removeFile
Removes a file attachment from an entry.

Syntax
public void folder_removeFile(String accessToken, long entryId, String fileName);

Description
The folder_removeFile operation removes a file attachment from an entry in a folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry that includes the attachment you want to remove.

fileName
A string containing the filename of the attachment you want to remove from the entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_reserveEntry
Reserves an entry.

Syntax
public void folder_reserveEntry(String accessToken, long entryId);

Description
The folder_reserveEntry operation reserves an entry in a folder, preventing others from
modifying it.

Users reserve and release an entry in the UI using the Reserve and Unreserve menu items.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry you want to reserve.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 75

76 Kablin

novdocx (en) 16 A
pril 2010
folder_setEntryTag
Applies a tag to a folder entry.

Syntax
public void folder_setEntryTag(String accessToken, Tag tag);

Description
The folder_setEntryTag operation applies a tag to a folder entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

tag
A Tag Java object containing information about the tag you want to apply.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_setRating
Sets a rating for a folder entry.

Syntax
public void folder_setRating(String accessToken, long entryId, long value);

Description
The folder_setRating operation applies a “star” rating to an entry.

In the UI, entries can have ratings that range from a lowest value of 1 star to the highest value of 5
stars.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry for which you want to apply a rating.

ratingValue
An integer indicating how many stars you want to set as the rating.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 77

78 Kablin

novdocx (en) 16 A
pril 2010
folder_setSubscription
Establishes subscription settings for an entry.

Syntax
public void folder_setSubscription(String accessToken, long entryId, Subscription subscription);

Description
The folder_setSubscription operation establishes settings for e-mail notifications for a
specified entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry for which you want to set subscription information.

subscription
A Subscription Java object that contains subscription information to be applied to the specified
entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_setWorkflowResponse
Applies an answer to a workflow question for a specified entry.

Syntax
public void folder_setWorkflowResponse(String accessToken, long entryId,
long stateId, String question, String response);

Description
The folder_setWorkflowResponse operation establishes an answer for a workflow question for a
specified entry.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry that is currently in the workflow state within which you want to
apply an answer to a question.

stateId
The token ID of the current workflow state that defines the question that you want to affect.

question
A string identifying the question that you are providing an answer to.

response
A string identifying the response you want to apply to the workflow question.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 79

80 Kablin

novdocx (en) 16 A
pril 2010
folder_synchronizeMirroredFolder
Synchronizes a mirrored folder with its source folder.

Syntax
public void folder_synchronizeMirroredFolder(String accessToken, long binderId);

Description
The folder_synchronizeMirroredFolder operation synchronizes a mirrored folder with its
source folder.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the mirrored folder that you want to synchronize.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_unreserveEntry
Releases a locked entry.

Syntax
public void folder_unreserveEntry(String accessToken, long entryId);

Description
The folder_unreserveEntry operation releases a locked entry.

Users reserve and release an entry in the UI by using the Reserve and Unreserve menu items.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry that you want to release from its lock.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 81

82 Kablin

novdocx (en) 16 A
pril 2010
folder_uploadFile
Uploads a file as an attachment to an entry.

Syntax
public void file_uploadFile(String accessToken, long entryId, String formDataItemName,
String fileName);

Description
The file_uploadFile operation uploads a file as an attachment to an entry. You can attach only
one file at a time; call this operation multiple times to attach more than one file to the entry.

Because transferring files across the Internet can be time-consuming, you can upload files that have
already been moved to a staging area on the Teaming server by using the
folder_uploadFileStaged operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
The identifier of the entry that is to include the new attached file.

formDataItemName
A string containing the internal identifier for the part of the entry that contains attached files.
This identifier maps the name attribute of an input HTML tag on a form to data in the Teaming
database; a hidden HTML tag communicates this file mapping to the server.
The name value for the standard entry element containing attached files is ss_attachFile1. If
you want to upload a file into a custom form element you defined by using the designers, you
need to look up the name identifier for that form element.
If you are uploading to a folder file, specify upload as an argument to this parameter to make
this attachment the primary file for the entry.

fileName
A string containing the filename of the file you want to attach to the entry.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
folder_uploadFileStaged (page 83)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
folder_uploadFileStaged
Locates a locally stored file and attaches it to an entry.

Syntax
public void file_uploadFileStaged(String accessToken, long entryId, String formDataItemName,
String fileName, String stagedFileRelativePath);

Description
As a way to streamline the transfer of files, the file_uploadFileStaged operation accesses a file
that has been copied locally to the Teaming server, avoiding transferring them over the Internet. The
operation then attaches the file to a folder entry in Teaming. In order for the Web services client to
utilize this operation, the Teaming administrator must first configure the server to allow this
operation by specifying staging.upload.files.enable and
staging.upload.files.rootpath configuration settings in ssf-ext.properties file. Because
it involves Teaming administrator access to the server environment, this operation is reserved only
for major migration projects where individual file uploads through the HTTP protocol do not meet
the performance requirements of the project.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entryId
An identifier for the entry to which you want to attach a file.

formDataItemName
A string containing the internal identifier for the part of the entry that contains attached files.
This identifier maps the name attribute of an input HTML tag on a form to data in the Teaming
database; a hidden HTML tag communicates this file mapping to the server.
The name value for the standard entry element containing attached files is ss_attachFile1. If
you want to upload a file into a custom form element you defined by using the designers, you
need to look up the name identifier for that form element.
If you are uploading to a folder file, specify upload as an argument to this parameter to make
this attachment the primary file for the entry.

fileName
A string containing the filename of the file you want to attach to the entry.

stagedFileRelativePath
A pathname of the file relative to the staging area on the server side. On the Teaming server, the
staging directory is designated by the value of the staging.uploads.files.rootpath
configuration setting. This relative pathname is resolved against the staging directory of the
Teaming server to identify the input file.
Web Service Operations 83

84 Kablin

novdocx (en) 16 A
pril 2010
return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
folder_uploadFile (page 82)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
ical_uploadCalendarEntriesWithXML
Adds a calendar entry to a folder.

Syntax
public void ical_uploadCalendarEntriesWithXML(String accessToken, long folderId, String
iCalDataAsXML);

Description
The ical_uploadCalendarEntriesWithXML adds a calendar entry using iCal information in an
XML string.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

folderId
The identifier of the folder where you want to add a calendar entry.

iCalDataAsXML
A string containing XML formatted calendar data (<doc><entry>iCal data</entry>...</
doc>).

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 85

86 Kablin

novdocx (en) 16 A
pril 2010
ldap_synchAll
Synchronizes all users with the current information that is in LDAP.

Syntax
public void ldap_synchAll(String accessToken);

Description
The ldap_synchAll operation synchronizes all users with the current information that is in LDAP.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
ldap_synchUser
Synchronizes one user with the latest information in LDAP for that person.

Syntax
public void ldap_synchUser(String accessToken, long userId);

Description
The ldap_synchUser operation synchronizes one user with the latest information in LDAP for that
person.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

userId
The identifier of the user whose information you want synchronized with that person’s LDAP
data.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 87

88 Kablin

novdocx (en) 16 A
pril 2010
license_getExternalUsers
Obtains a count of external users.

Syntax
public long license_getExternalUsers(String accessToken);

Description
The license_getExternalUsers operation obtains a count of legal external users for the current
license.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

return_value
An integer indicating the number of allowed external users.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
license_getRegisteredUsers
Obtains a count of registered Teaming users.

Syntax
public long license_getRegisteredUsers(String accessToken);

Description
The license_getRegisteredUsers operation obtains a count of the current number of registered
users on the system.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

return_value
An integer that is the count of users currently registered on the system.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 89

90 Kablin

novdocx (en) 16 A
pril 2010
license_updateLicense
Updates the Teaming license.

Syntax
public void license_updateLicense(String accessToken);

Description
The license_updateLicense operation updates the Teaming license.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migration_addBinder
Accepts a Java object to add a binder, allowing preservation of SiteScape Forum® data.

Syntax
public long migration_addBinder(String accessToken, Binder binder);

Description
The migration_addBinder operation adds either a workspace or folder to the hierarchy, allowing
you to specify SiteScape Forum data (such as the person who created the workspace or folder in
Forum, the Forum creation date, the user who last modified the workspace or folder in Forum, and
the date of the last modification in Forum).

If you prefer to use XML to specify data, use the migration_addBinderWithXML operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binder
Data and methods for the Java Binder object, defined in the Teaming source code. Edit the
information in the Binder object to reflect the Forum values.

return_value
The identifier of the newly created binder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_addBinderWithXML (page 92)
Web Service Operations 91

92 Kablin

novdocx (en) 16 A
pril 2010
migration_addBinderWithXML
Accepts XML to add a binder, allowing preservation of SiteScape Forum data.

Syntax
public long migration_addBinderWithXML(String accessToken, long parentId, String definitionId,
String inputDataAsXML, String creator, Calendar creationDate, String modifier,
Calendar modificationDate);

Description
The migration_addBinderWithXML operation adds either a workspace or folder to the hierarchy,
allowing you to specify SiteScape Forum data (such as the person who created the workspace or
folder in Forum, the Forum creation date, the user who last modified the workspace or folder in
Forum, and the date of the last modification in Forum).

If you prefer to use a Java object to specify data, use the migration_addBinder operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

parentId
The identifier of the workspace or folder that is to contain the new binder.

definitionID
A string that identifies the definition used to create the new binder.

inputDataAsXML
An XML string that provides the data needed to construct the workspace or folder.

creator
A string containing the username of the person who created the workspace or folder in Forum.

creationDate
A Calendar Java object that contains the creation date of the workspace or folder in Forum.

modifier
A string containing the username of the person who last modified the workspace or folder in
Forum.

modificationDate
A Calendar Java object that contains the modification date of the workspace or folder in Forum.

return_value
The identifier of the newly created binder.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_addBinder (page 91)
Web Service Operations 93

94 Kablin

novdocx (en) 16 A
pril 2010
migration_addEntryWorkflow
Associates an entry with a workflow process, allowing preservation of SiteScape Forum data.

Syntax
public void migration_addEntryWorkflow(String accessToken, long binderId, long entryId,
String definitionId, String startState, String modifier, Calendar modificationDate);

Description
The migration_addEntryWorkflow operation associates an entry with a workflow process, while
preserving values from a SiteScape Forum installation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the folder containing the entry with which you want to associate a workflow
process.

entryId
The identifier of the entry with which you want to associate the workflow process.

definitionId
A string containing the definition identifier for the workflow process you want to associate
with the entry.

startState
A string containing the name of the state of the entry as it was last set in the Forum installation.

modifier
A string containing the username of the person who last modified the workflow state in the
Forum installation.

modificationDate
A Calender Java object that contains the date that the workflow state was last modified in the
Forum installation.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migration_addFolderEntry
Accepts a Java object to add an entry to a folder, allowing preservation of SiteScape Forum data.

Syntax
public long migration_addFolderEntry(String accessToken, FolderEntry entry, boolean subscribe);

Description
The migration_addFolderEntry operation adds an entry to a folder.

If you prefer to use an XML string to create the new entry, use the
migration_addFolderEntryWithXML operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

entry
A FolderEntry Java object that contains information used to create the new entry, including
information from the entry in the Forum installation.

subscribe
A Boolean value that implements the Forum notify me when someone replies to this entry
feature by establishing a subscription for the entry owner.

return_value
The identifier of the newly created entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_addFolderEntryWithXML (page 96)
Web Service Operations 95

96 Kablin

novdocx (en) 16 A
pril 2010
migration_addFolderEntryWithXML
Accepts XML to add an entry to a folder, allowing preservation of SiteScape Forum data.

Syntax
public long migration_addFolderEntryWithXML(String accessToken, long binderId,
String definitionId, String inputDataAsXML, String creator, Calendar creationDate,
String modifier, Calendar modificationDate, boolean subscribe);

Description
The migration_addFolderEntry operation adds an entry to a folder, allowing you to preserve
data from the entry as it last existed in an installation of SiteScape Forum.

If you prefer to create the entry by using a Java object, use the migrate_addFolderEntry
operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the folder that is to contain the new entry.

definitionId
A string containing the definition identifier for the new entry.

inputDataAsXML
A string containing the XML elements used to construct the new entry.

creator
A string containing the username of the person who created the entry in the Forum installation.

creationDate
A Calendar Java object containing the date the entry was created in the Forum installation.

modifier
A string containing the username of the person who last modified the entry in the Forum
installation.

modificationDate
A Calendar Java object containing the date the entry was last modified in the Forum
installation.

subscribe
A boolean value that implements the Forum feature “notify me when someone replies to this
entry” by establishing a subscription for the entry owner.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
return_value
The identifier of the binder for the newly created entry.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_addFolderEntry (page 95)
Web Service Operations 97

98 Kablin

novdocx (en) 16 A
pril 2010
migration_addReply
Accepts a Java object to add a comment, allowing preservation of SiteScape Forum data.

Syntax
public long migration_addReply(String accessToken, long parentEntryId, FolderEntry reply);

Description
The binder_addReply operation adds a comment to an entry or a reply, and allows you to preserve
data from the reply as it last appeared in a Forum installation.

If you prefer to add the comment by using XML, use the migrate_addReplyWithXML operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

parentEntryId
The identifier of the entry or comment that is the parent of the comment you want to create.

reply
A FolderEntry Java object that contains information used to construct the new comment,
including data reflecting the reply as it last appeared in the Forum installation.

return_value
The identifier of the newly created comment.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_addReplyWithXML (page 99)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migration_addReplyWithXML
Accepts XML to add a comment, allowing preservation of SiteScape Forum data.

Syntax
public long migration_addReplyWithXML(String accessToken, long binderId, long parentId,
String definitionId, String inputDataAsXML, String creator, Calendar creationDate, String modifier,
Calendar modificationDate);

Description
The migration_addReplyWithXML operation adds a comment to an entry or to another comment,
allowing you to preserve data from the reply as it last appeared in the SiteScape Forum installation.

If you prefer to add the comment by using a Java object, use the migration_addReply operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the folder that contains the entry to which you want to add the comment.

parentId
The identifier of the entry or comment that is to be the parent of the newly created comment.

definitionId
A string containing the definition identifier for the comment you want to create.

inputDataAsXML
An XML string whose elements are used to create the new comment.

creator
A string containing the username of the person who created the reply in the Forum installation.

creationDate
A Calendar Java object containing the date that the reply was created in the Forum installation.

modifier
A string containing the username of the person who last modified the reply in the Forum
installation.

modificationDate
A Calendar Java object that contains the date that the reply was last modified in the Forum
installation.
Web Service Operations 99

100 Kablin

novdocx (en) 16 A
pril 2010
return_value
The identifier of the newly created comment.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_addReply (page 98)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migration_uploadFolderFile
Uploads an entry attachment, allowing preservation of SiteScape Forum data.

Syntax
public void migration_uploadFolderFile(String accessToken, long binderId, long entryId,
String formDataItemName, String fileName, String modifier, Calendar modificationDate);

Description
The migration_uploadFolderFile operation attaches a file to an entry, allowing you to preserve
data from the attachment as it last appeared in a SiteScape Forum installation. You can attach only
one file at a time; call this operation multiple times to attach more than one file to the entry.

Because moving files across the Internet can be time-consuming, you can create attachments from
Forum files that have already been copied to a staging area on the Teaming server by using the
migration_uploadFolderFileStaged operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the folder containing the entry to which you want to attach a file.

entryId
The identifier of the entry to which you want to attach a file.

formDataItemName
A string containing the internal identifier for the part of the entry that contains attached files.
This identifier maps the name attribute of an input HTML tag on a form to data in the Teaming
database; a hidden HTML tag communicates this file mapping to the server.
The name value for the standard entry element containing attached files is ss_attachFile1. If
you want to upload a file into a custom form element you defined by using the designers, you
need to look up the name identifier for that form element.
If you are uploading to a folder file, specify upload as an argument to this parameter to make
this attachment the primary file for the entry.

fileName
A string containing the name of the file you want to upload.

modifier
A string containing the username of the last person in the Forum installation to modify the file.
Web Service Operations 101

102 Kablin

novdocx (en) 16 A
pril 2010
modificationDate
A Calendar Java object containing the date that the file was last modified in the Forum
installation.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_uploadFolderFileStaged (page 103)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migration_uploadFolderFileStaged
Uploads a local copy of an entry attachment, allowing preservation of SiteScape Forum data.

Syntax
public void migration_uploadFolderFileStaged(String accessToken, long binderId, long entryId,
String formDataItemName, String fileName, String stagedFileRelativePath, String modifier,
Calendar modificationDate);

Description
The migration_uploadFolderFileStaged operation accesses a file that has been copied locally
to the Teaming server as a way to streamline the transfer of files, avoiding transferring them over the
Internet. The operation then attaches the file to a folder entry in Teaming.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the binder containing the entry to which you want to attach a file.

entryId
The identifier of the entry to which you want to attach a file.

formDataItemName
A string containing the internal identifier for the part of the entry that contains attached files.
This identifier maps the name attribute of an input HTML tag on a form to data in the Teaming
database; a hidden HTML tag communicates this file mapping to the server.
The name value for the standard entry element containing attached files is ss_attachFile1. If
you want to upload a file into a custom form element you defined by using the designers, you
need to look up the name identifier for that form element.
If you are uploading to a folder file, specify upload as an argument to this parameter to make
this attachment the primary file for the entry.

fileName
A string containing the name of the file you want to attach to an entry.
Web Service Operations 103

104 Kablin

novdocx (en) 16 A
pril 2010
stagedFileRelativePath
A pathname of the file relative to the staging area on the server side. On the Teaming server, the
staging directory is designated by the value of the staging.upload.files.rootpath
configuration setting. This relative pathname is resolved against the staging directory of the
Teaming server to identify the input file.
Although the files can be present in any folder structure within the staging area, one
streamlined way to approach this task is to unzip the Forum hidden directory into the staging
area. Then, use this parameter to specify the relative path through the hidden folder structure to
the location of the file to be attached to the entry in Teaming.

modifier
A string containing the username of the person who last modified the file in the Forum
installation.

modificationDate
A Calendar Java object that contains the date that the file was last modified in the Forum
installation.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
migration_uploadFolderFile (page 101)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_addGroup
Adds a group.

Syntax
public long profile_addGroup(String accessToken, Group group);

Description
The profile_addGroup operation adds a new group to Teaming.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

group
A Group Java object containing information needed to create the new group in Teaming.

return_value
The identifier of the newly created group.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 105

106 Kablin

novdocx (en) 16 A
pril 2010
profile_addGroupMember
Adds a user to a group.

Syntax
public void profile_addGroupMember(String accessToken, String groupName, String userName);

Description
The profile_addGroupMember operation adds a user to a group.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

groupName
A string containing the name of the group.

userName
A string containing the name of the user to be added to the group.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_addUser
Adds a user profile.

Syntax
public long profile_addUser(String accessToken, User user);

Description
The profile_addUser operation adds a profile for a new Teaming user.

After you add a user profile, you can add a user workspace for the new user by using the
profile_addUserWorkspace operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

user
A User Java object containing the information needed to create a new user.

return_value
The identifier of the newly created user.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
profile_addUserWorkspace (page 108)
Web Service Operations 107

108 Kablin

novdocx (en) 16 A
pril 2010
profile_addUserWorkspace
Adds a user workspace for an existing user.

Syntax
public long profile_addUserWorkspace(String accessToken, long userId);

Description
The profile_addUserWorkspace operation adds a user workspace for an existing user.

To create a new user before using this operation, use the profile_addUser operation, which
creates a profile for a new user.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

userId
The identifier of the user for whom you want to create a user workspace.

return_value
The binder identifier of the newly created user workspace.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
profile_addUser (page 107)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_deletePrincipal
Removes a group or user.

Syntax
public void profile_deletePrincipal(String accessToken, long principalId,
boolean deleteWorkspace);

Description
The profile_deletePrincipal operation removes a group or user.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

principalId
The identifier of the group or user you want to delete.

deleteWorkspace
When you delete a user, this Boolean value indicates whether Teaming should delete the
corresponding user workspace.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 109

110 Kablin

novdocx (en) 16 A
pril 2010
profile_getFileVersions
Returns information about the versions of a file.

Syntax
public void profile_getFileVersions(String accessToken, long principalId, string fileName);

Description
The profile_getFileVersions operation retrieves information about the versions of a file
associated with a user or group.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

principalId
The identifier for the principal (a user or group).

fileName
The filename of the file you want to retrieve version information about.

return_value
A File Version Java object containing information about the file versions.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_getGroup
Accepts a group identifier to obtain the title and the description of the group.

Syntax
public Group profile_getGroup(String accessToken, long groupId, boolean includeAttachments);

Description
The profile_getGroup operation obtains the title and the description of the group.

If you want to get information about the members of a group, use the profile_getGroupMembers
operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

groupId
The identifier of the group about which you want information.

includeAttachments
A Boolean value that indicates whether you want files that are attached to the group.
By default, you cannot attach files to a group. However, a site administrator can use the
designers in the UI to customize a group to be able to include files.

return_value
A Group Java object containing information about all of the group members.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
profile_getGroupByName (page 112)
profile_getGroupMembers (page 113)
Web Service Operations 111

112 Kablin

novdocx (en) 16 A
pril 2010
profile_getGroupByName
Accepts a group name to obtain the title and the description of the group.

Syntax
public Group profile_getGroupByName(String accessToken, String groupName,
boolean includeAttachments)

Description
The profile_getGroupByName operation obtains the title and the description of a group.

If you want to get information about the members of a group, use the profile_getGroupMembers
operation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

groupName
A string containing the name of the group.

includeAttachments
A Boolean value that indicates whether you want files attached to the group.
By default, you cannot attach files to a group. However, a site administrator can use the
designers in the UI to customize a group to be able to include files.

return_value
A Group Java object containing information about all of the group members.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
profile_getGroup (page 111)
profile_getGroupMembers (page 113)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_getGroupMembers
Obtains information about the members of a group.

Syntax
public PrincipalCollection profile_getGroupMembers(String accessToken, String groupName);

Description
The profile_getGroupMembers operation obtains information about members of a group.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

groupName
A string containing the name of the group whose members you want information about.

return_value
A PrincipalCollection Java object containing information about the members of the specified
group.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 113

114 Kablin

novdocx (en) 16 A
pril 2010
profile_getPrincipals
Gets information for users and groups in the installation.

Syntax
public PrincipalCollection profile_getPrincipals(String accessToken, int firstRecord,
int maxRecords);

Description
The profile_getPrincipals operation gets information for users and groups in the installation.
Because the set of information is potentially very large, you can use successive calls to this
operation to receive manageable subsets of information for each call.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

firstRecord
The number of the record (information about one user or group) to begin returning. Use this
parameter to page the returned list of principals.
The number of the first record 0.

maxRecords
The largest number of records you want returned in this call. For an unlimited number specify -
1.

return_value
A PrincipalCollection Java objection containing information about the set of users and groups
you requested.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_getUser
Accepts a user identifier to get information about a user.

Syntax
public User profile_getUser(String accessToken, long userId, boolean includeAttachments);

Description
The profile_getUser operation accepts a user identifier and returns information about a Teaming
user.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

userId
The identifier of the user about whom you want information.

includeAttachments
A Boolean value that specifies whether Teaming should return attachments to the user’s profile.
By default, the only attached files are the users’ pictures. However, the site administrator can
customize the profile to include other files by using the designer tools in the UI.

return_value
A User Java object that contains information about the requested user.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
profile_getUserByName (page 116)
Web Service Operations 115

116 Kablin

novdocx (en) 16 A
pril 2010
profile_getUserByName
Accepts a username to get information about a user.

Syntax
public User profile_getUserByName(String accessToken, String userName,
boolean includeAttachments);

Description
The profile_getUserByName operation accepts a username as a parameter and returns
information about a Teaming user.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

userName
A string containing the username of the user for whom you want information.

includeAttachments
A Boolean value that indicates whether Teaming should return attached files.
By default, the only attached files are the users’ pictures. However, the site administrator can
customize the profile to include other files by using the designer tools in the UI.

return_value
A User Java object containing information about the requested user.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
profile_getUser (page 115)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_getUsers
Obtains information for users in the installation.

Syntax
public UserCollection profile_getUsers(String accessToken, boolean captive, int firstRecord, int
maxRecords);

Description
The profile_getUsers operation gets information for users in the installation. Because the set of
information is potentially very large, you can use successive calls to this operation to receive
manageable subsets of information for each call.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

captive
Set this to true if you want the permalink URL returned for each user workspace to represent
captive mode. When a user workspace is viewed in captive mode, the master heading and the
sidebar are removed from the display, which allows the page to fit better in a small screen. The
default is false.

firstRecord
The number of the record to begin returning. Use this parameter to page the returned list of
users.
The number of the first record is 0.

maxRecord
The largest number of records you want to return in this call. Specify -1 for unlimited.

return_value
A UserCollection Java object that contains information about the entries contained within the
folder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
profile_getUserByName (page 116)
Web Service Operations 117

118 Kablin

novdocx (en) 16 A
pril 2010
profile_getUserTeams
Obtains information about all teams that the specified user is a member of.

Syntax
public TeamCollection search_getUserTeams(String accessToken, long userId);

Description
The search_getUsersTeams operation obtains information about all teams that the user is a
member of.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

userId
The identifier of the user about whom you want information.

return_value
A UserCollection Java object that contains information about the entries contained within the
folder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_modifyGroup
Modifies a group.

Syntax
public void profile_modifyGroup(String accessToken, Group group);

Description
The profile_modifyGroup operation modifies information associated with a group.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

group
A Group Java object containing modified information about a group.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 119

120 Kablin

novdocx (en) 16 A
pril 2010
profile_modifyUser
Modifies a user.

Syntax
public void profile_modifyUser(String accessToken, User user);

Description
The profile_modifyUser operation modifies information associated with a user.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

user
A User Java object containing modified information about a user.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_removeFile
Removes a file from the user profile.

Syntax
public void profile_removeFile(String accessToken, long principalId, String fileName);

Description
The profile_removeFile operation removes a file from a user profile.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

principalId
The identifier for the principal (by default, a user) from which you want to remove a file.
By default, only user profiles contain files. However, it is possible for site administrators to
customize groups by using the designer tools in the UI.

fileName
A string containing the name of the file you want to remove.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 121

122 Kablin

novdocx (en) 16 A
pril 2010
profile_removeGroupMember
Removes a user from a group.

Syntax
public void profile_removeGroupMember(String accessToken, String groupName,
String userName);

Description
The profile_removeGroupMember operation removes a user from membership in a group.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

groupName
A string containing the name of the group from which you want to remove a member.

userName
A string containing the name of the user you want to remove from the specified group.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
profile_uploadFile
Uploads a file as an attachment to a user or group.

Syntax
public void profile_uploadFile(String accessToken, long principalID, String formDataItemName,
String fileName);

Description
The profile_uploadFile operation performs an action similar to using the user interface to
upload a picture to user profiles. Files are attached one at a time; call this operation multiple times to
attach more than one file to the binder.

By default, only user profiles contain files. However, it is possible for site administrators to
customize groups by using the designer tools in the user interface,

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

principalId
The identifier for the user or group to which you want to attach a file.

formDataItemName
A string containing the internal identifier for the part of the principal entry that contains
attached files. This identifier maps the name attribute of an input HTML tag on a form to data
in the Teaming database; a hidden HTML tag communicates this file mapping to the server.
The name value for the standard entry element containing attached files is ss_attachFile1.
To upload a file into the custom forms element you defined by using the designer, you need to
look up the name identifier for that form element.
To upload a picture for a user profile, specify picture as an argument to this parameter to
make this attachment one of the pictures associated with the user profile.

fileName
A string containing the filename of the file you want to upload to the principal.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 123

124 Kablin

novdocx (en) 16 A
pril 2010
search_getFolderEntries
Obtains information about the entries that match the specified search query.

Syntax
public String search_getFolderEntries(String accessToken, String query, int offset, int maxResults);

Description
The search_getFolderEntries operation obtains information about the entries matching the
specified search query. Because the list of each result can be lengthy, this operation lets you make
multiple calls, receiving a subset of the search results each time.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

query
A search query represented in XML.

offset
An integer indicating at which result you want to begin receiving information. The first result is
numbered 0.

maxResults
An integer indicating the number of results you want returned. The value of -1 indicates
unlimited.

return_value
A FolderEntryCollection Java object containing information about the entries contained within
the folder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
search_getHotContent
Returns information about binders and entries active during the last two weeks.

Syntax
public String search_getHotContent(String accessToken, String limitType, Long binderId);

Description
The search_getHotContent operation returns an XML document about all items that were
viewed, downloaded, or modified in the past two weeks.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

limitType
One of the following values:

activity: Returns items that had any activity.
download: Returns items that included at least one attachment that was downloaded.
modify: Returns items that were modified.
view: Returns items that were viewed.

binderId
The identifier of the binder whose descendants you want to evaluate for activity. If you want to
evaluate all items in a zone, pass the null value to this parameter.

return_value
An XML string containing information about the entries that had activity.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 125

126 Kablin

novdocx (en) 16 A
pril 2010
search_getTeams
Obtains information about the teams that the calling user is a member of.

Syntax
public TeamCollection search_getTeams(String accessToken);

Description
The search_getTeams operation obtains information about the teams that the calling member is a
user of.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

return_value
A TeamCollection Java object that contains information about the teams that the calling user is
a member of.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
search_getWorkspaceTreeAsXML
Obtains information needed to construct the Teaming workspace and folder tree.

Syntax
public String search_getWorkspaceTreeAsXML(String accessToken, long binderId, int levels,
String page);

Description
The search_getWorkspaceTreeAsXML operation obtains information needed to construct the
Teaming workspace and folder tree.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

binderId
The identifier of the binder whose descendants you want to include in the workspace and folder
tree information.
The top workspace in the Teaming tree has a binder identifier of 1.

levels
The number of hierarchical levels down from the node specified by binderId that you want to
include in the returned information. The value -1 indicates that you want all subsequent levels.

page
A parameter used to expand pages of binders. When you specify a valid page identifier,
Teaming expands the page by the number of levels indicated in the levels parameter.
If you do not want to use this call expand pages, pass null as this parameter.
See Section 1.7.6, “Binder Pages and search_getWorkspaceTreeAsXML,” on page 20 for more
detailed information about working with pages.

return_value
A string containing XML elements needed to construct each node within the requested levels of
the workspace hierarchy.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 127

128 Kablin

novdocx (en) 16 A
pril 2010
search_search
Returns XML for results of a search query.

Syntax
public String search_search(String accessToken, String query, int offset, int maxResults);

Description
The search_search operation returns XML for the results of a search query represented in XML.
Because the list of each results can be lengthy, this operation is designed so that you can make
multiple calls, receiving a subset of the search results each time.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

query
A search query represented in XML.

offset
An integer indicating at which result you want to begin receiving information. The first result is
numbered 0.

maxResults
An integer indicating the number of results you want returned.

return_value
A string of XML containing information about the search results that match your specified
criteria.

Example
The following input query string in XML matches all users whose first name begins with the letter J
or the last name is Smith.

<QUERY>
 <AND>
 <FIELD fieldname="_entityType" exactphrase="true">
 <TERMS>user</TERMS>
 </FIELD>
 <FIELD> fieldname="_docType" exactphrase="true">
 <TERMS>entry</TERMS>
 </FIELD>
 <OR>
 <FIELD fieldname="_lastName">
 <TERMS>Smith</TERMS>
 </FIELD>
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
 <FIELD fieldname="_firstName">
 <TERMS>J*</TERMS>
 </FIELD>
 </OR>
 </AND>
</QUERY>

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 129

130 Kablin

novdocx (en) 16 A
pril 2010
template_addBinder
Adds a fully configured workspace or folder to the workspace hierarchy.

Syntax
public long template_addBinder(String accessToken, long parentId, long binderConfigId, String
title);

Description
The template_addBinder operation adds a fully configured workspace or folder to the workspace
hierarchy.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

parentId
The identifier of the workspace or folder that is to contain the new binder.

binderConfigId
The identifier that maps to the default configuration for the folder you want to create.
You can use the template_getTemplates information to get a configuration identifier from a
binder that has a configuration you want for your new binder. Or, you can get a binder
configuration identifier from the Teaming user interface. See Section 1.7.2, “Adding Folders
and the Binder Configuration Identifier,” on page 18, for information about getting a
configuration identifier from the user interface.

title
A string containing the title of the new binder.

return_value
The binder identifier of the newly created workspace or folder.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
template_getTemplates (page 131)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
template_getTemplates
Obtains information about all defined templates in the installation.

Syntax
public TemplateCollection template_getTemplates(String accessToken);

Description
The template_getTemplates operation obtains information about all defined templates in the
installation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

return_value
A TemplateCollection Java object that contains information about all templates in the
installation.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 131

132 Kablin

novdocx (en) 16 A
pril 2010
zone_addZone
Adds a zone to the installation.

Syntax
public Long zone_addZone(String accessToken, String zoneName, String virtualHost,
String mailDomain);

Description
The zone_addZone operation adds a zone to the installation.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

zoneName
A string containing the name of the new zone.

virtualHost
A string specifying the virtual host. (See the installation guide for more information.)

mailDomain
This parameter is not used.

return_value
The zone identifier, which is the binder identifier of the top workspace in the new zone.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
zone_deleteZone
Deletes a zone.

Syntax
public void zone_deleteZone(String accessToken, String zoneName);

Description
The zone_deleteZone operation deletes a zone.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

zoneName
A string containing the name of the zone you want to delete.

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
Web Service Operations 133

134 Kablin

novdocx (en) 16 A
pril 2010
zone_modifyZone
Modifies a zone.

Syntax
public void zone_modifyZone(String accessToken, String zoneName, String virtualHost,
String mailDomain);

Description
The zone_modifyZone operation changes a zone’s virtual host specification.

Parameters and Return Value
accessToken

Either the security token passed to your application by Teaming as part of implementing a
remote application, or the null value.

zoneName
A string containing the name of the new zone.

virtualHost
A string specifying the virtual host. (See the installation guide for more information.)

mailDomain
This parameter is not used

return_value
None.

See Also
Java objects in the Teaming sources (see Section 1.7.1, “Working with Java Objects,” on
page 17)
k Teaming 2.0 Developer Guide

B
novdocx (en) 16 A

pril 2010
BDeprecated Web Service
Operations

This topic provides alphabetized reference pages for deprecated Web services operations provided
by Kablink Teaming.

NOTE: Novell recommends that you do not use these Web services operations in new applications.
Instead, use the operations documented in Appendix A, “Web Service Operations,” on page 23.
Novell continues to support the operations in this appendix for backward compatibility for
applications written to interoperate with Teaming 1.03 or earlier.

The following are conventions used in this reference section:

NOTE: All examples in this reference section use Apache Axis run-time library methods that
specify Web service operations and their argument lists. If you are not using Apache Axis, map the
Apache methods to those you are using to implement your Web service calls.

The search operation is under development and subject to change or deletion at any time. Do not
use this operation in your client applications.

Web service operations contained in this reference section are used by this Windows based client: /
ssf/samples/wsclient/facade-client.bat. With the exception of uploadCalendarEntries,
use the same parameters for the batch-file command that you use for the corresponding Web service
message.

What you see What it means

Click the Add a team workspace button.

Click the Getting Started link.

Items that are clickable on the page, programming
variables, or syntax parameters are presented in
italic font.

Blog summary - Provides a....

Note: Remember that....

Defined terms in a list, note headers, section
headers on a reference page, and list items on a
reference page are presented in bold font.

Type status, then press Enter.

Open the ManagerGuide.pdf file.

Use the open_db routine with its lock parameter.

Text that you must type, file names, commands,
command options, routines, Web services
messages, and parameters are presented in
Courier font when occurring in a body of text.

[page] Optional syntax parameters are enclosed in
brackets ([]).

..., paramSyntax1 | paramSyntax2,... Required parameters that accept two or more
optional syntaxes are separated by the vertical-line
character.

(V1—V1.0.3) The versions of Teaming that support the Web
services operation (“all versions between Version
1.0 through Version 1.0.3”)
Deprecated Web Service Operations 135

136 Kablin

novdocx (en) 16 A
pril 2010
The following table maps the facade-client.bat command name to its corresponding, linked
Web services message, which is documented in this reference section:

facade-client.bat command Web services message

addEntry addFolderEntry

addFolder addFolder

addReply addReply

[none] addUserWorkspace

indexBinder indexFolder

listDefinitions getDefinitionListAsXML

migrateBinder migrateBinder

migrateEntry migrateFolderEntry

migrateReply migrateReply

migrateFile migrateFolderFile

migrateFileStaged migrateFolderFileStaged

migrateWorkflow migrateEntryWorkflow

modifyEntry modifyFolderEntry

printAllPrincipals getAllPrincipalsAsXML

printDefinition getDefinitionAsXML

printDefinitionConfig getDefinitionConfigAsXML

printFolderEntry getFolderEntryAsXML

printFolderEntries getFolderEntryAsXML

printPrincipal getPrincipalAsXML

printTeamMembers getTeamMembersAsXML

printTeams getTeamsAsXML

printWorkspaceTree getWorkspaceTreeAsXML

setDefinitions setDefinitions

setFunctionMembership setFunctionMembership

setFunctionMembershipInherited setFunctionMembershipInherited

setOwner setOwner

setTeamMembers setTeamMembers

synchronize synchronizeMirroredFolder

uploadCalendar uploadCalendarEntries

uploadFile uploadFolderFile
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
addFolder
Adds a folder to the workspace-tree hierarchy. (V1—V1.0.3)

Syntax
public long addFolder(long parentBinderId, long binderConfigId, String title);

Description
The addFolder operation adds a folder to the workspace and folder hierarchy.

Parameters and Return Value
parentBinderId

The identifier of the workspace or folder that is to contain the new folder.

binderConfigId
The identifier that maps to the default configuration for the folder you want to create.

title
A string providing a title for the new entry.

return_value
The binder identifier of the newly created folder.

Example
call.setOperationName(new QName(“addFolder”));
Object result = call.invoke(new Object[] {new Long(21), new Long(146), new
String(“My new folder”)});

This code creates a new to the container whose binder identifier is 21, gives the folder a
configuration identifier of 146 (on our test installation, this corresponds to a discussion folder),
and establishes the title of the new folder as My new folder. The container whose binder
identifier is 21 can be either a workspace or folder.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section 1.7.1, “Working with Java Objects,” on page 17
Deprecated Web Service Operations 137

138 Kablin

novdocx (en) 16 A
pril 2010
addFolderEntry
Adds an entry to a folder. (V1—V1.0.3)

Syntax
public long addFolderEntry(long folderId, String definitionId, String inputDataAsXML,
String attachedFileName | null);

Description
The addFolderEntry operation adds an entry to a folder.

Parameters and Return Value
folderId

The binder identifier of the folder that is to contain the new entry.

definitionId
The 32-character, hexadecimal identifier that maps to the type of entry to be created (for
example, some default entry types are topic, file, blog, wiki, and calendar).
The easiest way to work with definition identifiers for entries is to specify null for this value.
When you specify null, Teaming automatically applies the definition identifier for the default
entry type of the folder in which you are creating a new entry. For example, by default, you
want to create an entry in a blog folder. If you pass null as the definition identifier, Teaming
automatically applies the definition identifier for a blog entry.
As another option, you can use the getDefinitionConfigAsXML operation to get information
about all definitions. Then, you can parse the XML string for the definition identifier of the
type of entry you want.

inputDataAsXML
A string of XML containing the values needed to create an entry of your desired type.
Use the Teaming UI to create a complete entry of the type you want this Web services operation
to create, note the entry identifier, and then use the getFolderEntryAsXML operation to return
XML for the entry. Then, use the returned XML as a template for this parameter.

attachedFileName
The name of the file you wish to attach to the new entry. This is an optional parameter. The file
must be located in the directory in which the client code executes.

return_value
The entry identifier for the newly created entry.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
Examples
call.setOperationName(new QName(“addFolderEntry”));
Object result = call.invoke(new Object[] {new Long(21), new
String(“402883b90cc53079010cc539bf260002“), s, filename}, filename);

This code creates a new entry in the folder whose binder identifier is 21; the specified entry-
definition identifier maps to a discussion topic. The variable s contains XML elements needed
by Teaming to create the entry. The new entry includes the attached file whose filename is
specified by the value of the filename variable.

call.setOperationName(new QName(“addFolderEntry”));
Object result = call.invoke(new Object[] {new Long(21), new
String(“402883b90cc53079010cc539bf260002“), s, null});

This code produces the same effect as the last example, except that it does not attach a file.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
getFolderEntryAsXML (page 148)
getDefinitionConfigAsXML (page 145)
Deprecated Web Service Operations 139

140 Kablin

novdocx (en) 16 A
pril 2010
addReply
Adds a new comment to an entry or comment. (V1.0.3)

Syntax
public long addReply(long folderId, long parentEntryId, String definitionId,
String inputDataAsXML, String attachedFileName | null);

Description
The addReply operation adds a new comment to an entry or to an existing comment.

Parameters and Return Value
folderId

The binder identifier of the folder containing the entry or comment to which you want to apply
the new comment.

parentEntryId
The entry identifier for the entry or comment to which you want to apply the comment.

definitionId
The 32-character, hexadecimal identifier that maps to the type of comment to be created.
You can use the getDefinitionListAsXML operation to get metadata for all definitions. Then,
you can parse the XML string for the definition identifier of the type of comment you want.

inputDataAsXML
A string of XML containing the values needed to create a comment of your desired type.
Use the Teaming UI to create a complete comment of the type you want this Web services
operation to create, note the entry identifier, and then use the getFolderEntryAsXML
operation to return XML for the entry. Then, use the returned XML as a template for this
parameter.

attachedFileName
The name of the file you wish to attach to the new comment. This is an optional parameter. The
file must be located in the directory in which the client code executes.

return_value
The entry identifier of the newly created comment.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
Example
call.setOperationName(new QName(“addReply”));
Object result = call.invoke(new Object[] {new Long(21), new Long(45), null, s,
null});

This code creates a new comment in the folder whose binder identifier is 21, and applies it to
the entry or comment whose entry identifier is 45. The first null value instructs Teaming to
use the default comment type for the folder. The variable s contains XML elements needed by
Teaming to create the comment. Because of the final null value, the new comment does not
include an attached file.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
getFolderEntryAsXML (page 148)
getDefinitionListAsXML (page 146)
Deprecated Web Service Operations 141

142 Kablin

novdocx (en) 16 A
pril 2010
addUserWorkspace
Adds a new personal workspace. (V1.0.3)

Syntax
public long addUserWorkspace (long userId);

Description
The addUserWorkspace operation adds a new personal workspace to the workspace hierarchy.

The primary purpose of this operation is to assist with migrating data from SiteScape Forum to
Teaming. By default using Teaming, the creation of the personal workspace occurs when someone
first uses the portal software to sign in with a username and password. If you want to migrate Forum
information as sub-content to a personal workspace in Teaming, use this operation before creating
the sub-content.

Parameters and Return Value
userId

The identifier for the user for whom you want to create the personal workspace

return_value
The binder identifier of the newly created personal workspace.

Example
call.setOperationName(new QName(“addUserWorkspace”));
Object result = call.invoke(new Object[] {new Long(21)});

This code creates a new personal workspace.

See Also
Section C.1, “Sequence of Migration Operations,” on page 179
Section C.3, “Migrating Users,” on page 180
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
getAllPrincipalsAsXML
Returns summary information for users and groups. (V1—V1.0.3)

Syntax
public String getAllPrincipalsAsXML(int firstRecord, int maxRecords);

Description
The getAllPrincipalsAsXML operation returns XML elements that provide summary information
about registered users and defined groups. You can use this operation to identify a particular user by
name or other data, obtain an identifier for a particular user, and then use the getPrincipalAsXML
operation to gather a finer level of information about that person.

Parameters and Return Value
firstRecord

The index of the first record whose user or group information you want to obtain. The index for
the first principal in the system is 1.

maxRecords
The maximum number of user and group records whose information should be returned.
You can use the previous parameter and this parameter in subsequent calls to
getAllPrincipalsAsXML to process data for sets of users and groups at a time (for example,
50 at a time, or 100 at a time).

return_value
A string containing the XML elements providing information about the requested set of users
and groups.

Example
call.setOperationName(new QName(“getAllPrincipalsAsXML”));
Object result = call.invoke(new Object[] {new Integer(100), new Integer(50)});

This code requests information for users and groups starting with the record number 100 and
including up to 50 records.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
getAllPrincipalsAsXML (page 143)
Deprecated Web Service Operations 143

144 Kablin

novdocx (en) 16 A
pril 2010
getDefinitionAsXML
Returns information about one definition. (V1—V1.0.3)

Syntax
public String getDefinitionAsXML(String definitionId);

Description
The getDefinitionAsXML operation returns an XML string containing information about one
definition. You work with definitions using the designers in the administration UI.

For example, if you pass one of the definition identifiers for an entry type listed in the
addFolderEntry reference page, Teaming returns information about the definition for that entry.

As an alternative, you can use the getDefinitionConfigAsXML operation to obtain all definitions
in Teaming and then parse the larger string for the definition information you want.

Parameter and Return Value
definitionId

The identifier of the definition whose information you want. Definitions are maintained using
the designers in the administration UI, and define the components of an object in Teaming.

return_value
A string of XML whose elements provide information about the components of an object in
Teaming.

Example
call.setOperationName(new QName("getDefinitionAsXML"));
Object result = call.invoke(new Object[] {new
String("402883b9114739b301114754e8120008")});

This code requests XML-formatted information about the definition for a wiki entry.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
addFolderEntry (page 138)
getDefinitionConfigAsXML (page 145)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
getDefinitionConfigAsXML
Returns information about all configuration definitions. (V1—V1.0.3)

Syntax
public String getDefinitionConfigAsXML();

Description
The getDefinitionConfigAsXML operation returns information about all configuration
definitions. The configuration information does not include workflow or template definitions. You
can uses the returned information to extract the definition identifier for a given entry type to use in a
subsequent call to addFolderEntry.

Return Value
return_value

A string of XML whose elements describe all configuration definitions.

Example
call.setOperationName(new QName(“getDefinitionConfigAsXML”));
Object result = call.invoke();

This code obtains information about all configuration settings.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
addFolderEntry (page 138)
Deprecated Web Service Operations 145

146 Kablin

novdocx (en) 16 A
pril 2010
getDefinitionListAsXML
Returns metadata for all definitions in the installation. (V1.0.3)

Syntax
public String getDefinitionListAsXML ();

Description
The getDefinitionListAsXML operation returns metadata for all definitions in the installation.
This metadata includes information such as the definition name and identifier.

When using other Web services operations that require a definition identifier, you can use this
message, parse the XML for the name (discussion, blog, calendar, comment), and obtain the 32-
character, hexadecimal identifier that maps to the desired object.

Return Value
return_value

A string of XML whose elements contain metadata for all definitions in the installation.

Example
call.setOperationName(new QName(“getDefinitionListAsXML”));
Object result = call.invoke();

This code obtains metadata for all definitions in the installation.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
getFolderEntriesAsXML
Returns a string containing XML providing summary information about entries in a folder.
(V1—V1.0.3)

Syntax
public String getFolderEntriesAsXML(long folderId);

Description
The getFolderEntriesAsXML operation returns XML elements containing summary information
about each entry in the specified folder.

Parameter and Return Value
folderId

The binder identifier of the folder containing the entries for which you want information.

return_value
A string containing XML elements containing summary information for each entry in the
folder specified by folderId.

Example
call.setOperationName(new QName(“getFolderEntriesAsXML”));
Object result = call.invoke(new Object[] {new Long(21)});

This code returns a string containing XML information for all of the entries in the folder whose
binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Deprecated Web Service Operations 147

148 Kablin

novdocx (en) 16 A
pril 2010
getFolderEntryAsXML
Returns information about one entry in a folder. (V1—V1.0.3)

Syntax
public String getFolderEntryAsXML(long folderId, long entryId, boolean includeAttachments);

Description
The getFolderEntryAsXML operation returns XML whose elements provide information about one
entry in a folder.

Parameters and Return Value
folderId

The binder identifier of the folder containing the entry whose information you want.

entryId
The identifier of the entry whose information you want.

includeAttachments
A boolean value that indicates whether you want Teaming to return the entry’s attachments.
The client program is responsible for placement of attachment files on its local system.

return_value
A string containing XML elements for the requested entry.

Example
call.setOperationName(new QName(“getFolderEntryAsXML”));
Object result = call.invoke(new Object[] {new Long(21), new Long(34), new
Boolean.FALSE});

This code returns XML that includes information contained in entry number 34 in the folder
whose identifier is 21. Because of the value of the last parameter, Teaming does not place the
entry’s file attachments in the client program’s source directory.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section 1.7.4, “Fetching Attachments,” on page 20
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
getPrincipalAsXML
Returns information about one user or group. (V1—V1.0.3)

Syntax
public String getPrincipalAsXML(long binderId, long principalId);

Description
The getPrincipalAsXML operation returns XML whose elements provide information about one
registered user or defined group.

Parameters and Return Value
binderId

The binder identifier of the principal’s parent workspace. The information returned by
getAllPrincipalsAsXML includes the binder number of this containing workspace.

principalId
The identifier that maps to the user or group for which you want to gather information.

return_value
A string containing XML elements whose elements provide information about the specified
user or group.

Example
call.setOperationName(new QName(“getPrincipalAsXML”));
Object result = call.invoke(new Object[] {new Long(2), new Long(25)});

This code returns information about a user or group, whose parent workspace has a binder
identifier of 2 and whose principal identifier is 25.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
getAllPrincipalsAsXML (page 143)
Deprecated Web Service Operations 149

150 Kablin

novdocx (en) 16 A
pril 2010
getTeamMembersAsXML
Returns information about all team members assigned within a workspace or folder. (V1—V1.0.3)

Syntax
public String getTeamMembersAsXML(long binderId);

Description
The getTeamMembersAsXML operation returns XML that names members of a team assigned within
the specified workspace or folder.

Parameter and Return Value
binderId

The binder identifier of the workspace or folder for which you want information about team
members. The getTeamsAsXML operation returns information about all workspaces and folders
that have assigned teams.

return_value
A string containing XML elements describing team members for the specified place.

Example
call.setOperationName(new QName(“getTeamMembersAsXML”));
Object result = call.invoke(new Object[] {new Long(23));

This code returns an XML string whose elements describe all of the team members assigned in
the workspace or folder associated with the binder identifier of 23.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
getTeamsAsXML (page 151)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
getTeamsAsXML
Returns information about all workspaces and folders that have assigned teams. (V1—V1.0.3)

Syntax
public String getTeamsAsXML();

Description
The getTeamsAsXML operation returns an XML string providing information about all workspaces
and folders that have assigned teams. You can use this operation to obtain the list of places that have
assigned teams, note a binder number of a particular place, and then use the getTeamMembersAsXML
operation to obtain the list of team members for that place.

Return Value
return_value

An XML string whose elements describe workspaces and folders that have assigned teams.

Example
call.setOperationName(new QName(“getTeamsAsXML”));
Object result = call.invoke();

This code returns information about all places in the Teaming installation that have assigned
teams.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
getTeamMembersAsXML (page 150)
Deprecated Web Service Operations 151

152 Kablin

novdocx (en) 16 A
pril 2010
getWorkspaceTreeAsXML
Returns information needed to construct the Teaming workspace and folder tree. (V1—
V1.0.3)

Syntax
public String getWorkspaceTreeAsXML(long binderId, int levels, String page);

Description
The getWorkspaceTreeAsXML operation returns XML elements needed to construct the requested
portion of the Teaming workspace tree.

Parameters and Return Value
binderId

The binder identifier of the starting node of the returned portion of the hierarchy. The top
workspace in the Teaming tree has a binder identifier of 1.

levels
The number of hierarchical levels down from the node specified by binderId that you want to
include in the returned information. The value -1 indicates that you want all subsequent levels.

page
A parameter used to expand pages of binders. When you specify a valid page identifier,
Teaming expands the page by the levels indicated in the levels parameter.
If you do not want to expand pages using this call, pass null as this parameter.
The Web-services overview topic contains more detailed information about working with pages
(Section 1.7.6, “Binder Pages and search_getWorkspaceTreeAsXML,” on page 20).

return_value
A string containing XML elements needed to construct each node within the requested levels of
the workspace hierarchy.

Example
call.setOperationName(new QName(“getWorkspaceTreeAsXML”));
Object result = call.invoke(new Object[] {new Long(1), new Integer(3), null});

This code returns a string containing XML information for the first three levels of the
workspace hierarchy. The following depicts these levels using default workspace titles:
Level 1: Workspaces

 Level 2: Global, Personal, and Team workspaces

 Level 3: Children of Global, Personal, and Team

The children of Global workspaces, Personal workspaces, and Team workspaces can be either
workspaces or folders.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section 1.7.6, “Binder Pages and search_getWorkspaceTreeAsXML,” on page 20
Deprecated Web Service Operations 153

154 Kablin

novdocx (en) 16 A
pril 2010
indexFolder
Indexes a folder. (V1.0.3)

Syntax
public void indexFolder(long folderId);

Description
The indexFolder operation indexes a folder.

The primary use of this operation is to index data after you migrate it from SiteScape Forum into
Teaming. (The migration operations transfer the data but do not index it.)

Parameter
folderId

The binder identifier of the folder you want to index.

Example
call.setOperationName(new QName(“indexFolder”));
Object result = call.invoke(new Object[] {new Long(21)});

This indexes the folder whose binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migrateBinder
Creates a new workspace or folder while preserving SiteScape Forum data. (V1.0.3)

Syntax
public long migrateBinder (long parentId, String definitionId, String inputDataAsXML,
String creator, Calendar creationDate, String modifier, Calendar modificationDate);

Description
The migrateBinder operation creates a workspace or folder in Teaming that preserves values from
a SiteScape Forum installation (for example, the name of the person who created the item in Forum,
the Forum creation date, the person who last modified the item in Forum, and the date of the last
modification in Forum).

Parameters and Return Value
parentId

The binder identifier of the parent of the newly created workspace or folder.

definitionId
The 32-character, hexadecimal identifier that maps to the type of workspace or folder to be
created.
You can use the getDefinitionListAsXML operation to get metadata for all definitions. Then,
you can parse the XML string for the definition identifier of the type of workspace or folder
you want to create.

inputDataAsXML
A string of XML supplying the elements and values needed to construct the workspace or
folder you want to create.

creator
A string containing the username of the person who created the corresponding workspace or
folder in the Forum installation.

creationDate
Calendar data specifying the date when the corresponding workspace or folder was created in
Forum.

modifier
A string containing the username of the person who last modified the corresponding workspace
or folder in Forum.

modificationDate
Calendar data specifying the date when the corresponding workspace or folder was modified in
Forum.
Deprecated Web Service Operations 155

156 Kablin

novdocx (en) 16 A
pril 2010
return_value
The binder identifier of the newly created workspace or folder.

Example
call.setOperationName(new QName(“migrateBinder”));
Object result = call.invoke(new Object[] {new Long(21), def, input, new
String("JSmith"), createcal, new String("JGarces"), modcal});

This code creates a new binder determined by the definition in the def variable (use the
getDefinitionListAsXML operation to obtain the correct string for your binder type), and the
binder will be a child of the binder whose identifier is 21. The input variable contains an XML
string, properly formatted for your binder type, which Teaming uses to create binder content.
The remaining four parameters provide names (literals) and dates (the createcal and modcal
variables) for the creation and last modification of the corresponding item in the Forum
installation.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
getDefinitionListAsXML (page 146)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migrateEntryWorkflow
Associates an entry with a workflow process while preserving SiteScape Forum data. (V1.0.3)

Syntax
public void migrateEntryWorkflow (long binderId, long entryId, String definitionId,
String startState, String modifier, Calendar modificationDate);

Description
The migrateEntryWorkflow operation associates a workflow process with an entry in Teaming,
while preserving values from a SiteScape Forum installation (for example, the state to which the
entry should be set, the person who last changed workflow state in Forum, and the date of the last
state change in Forum).

Parameters and Return Value
binderId

The binder identifier of the folder that contains the entry to which you want to associate a
workflow process.

entryId
The entry identifier of the entry to which you want to associate a workflow process.

definitionId
The 32-character, hexadecimal identifier that maps to the workflow-process definition.
Before using this message, you must replicate the Forum workflow processes in Teaming.

startState
The current state of the Teaming entry (which would reflect its last state in Forum).

modifier
A string containing the username of the person who last changed the workflow process in
Forum.

modificationDate
Calendar data specifying the date when the workflow process was last changed in Forum.

Example
call.setOperationName(new QName(“migrateEntryWorkflow”));
Object result = call.invoke(new Object[] {new Long(21), new Long(45),
String("ptoProcess"), String("PTO Request"), new String("JGarces"), modcal});

This code associates the ptoProcess workflow process with the entry whose identifier is 45
and which is located in a folder whose binder identifier is 21. The entry should be placed in the
PTO Request state. The operation also provides the name of the person who last changed the
workflow state in Forum and the date when that state change occurred.
Deprecated Web Service Operations 157

158 Kablin

novdocx (en) 16 A
pril 2010
See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
Section C.5, “Migrating Custom Commands and Workflow,” on page 181
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migrateFolderEntry
Creates a new folder entry while preserving SiteScape Forum data. (V1.0.3)

Syntax
public void migrateFolderEntry (long binderId, String definitionId, String inputDataAsXML,
String creator, Calendar creationDate, String modifier, Calendar modificationDate);

Description
The migrateFolderEntry operation creates a folder entry in Teaming that preserves values from a
SiteScape Forum installation (for example, the name of the person who created the item in Forum,
the Forum creation date, the person who last modified the item in Forum, and the date of the last
modification in Forum).

When creating entries within a file folder in Teaming, use this operation to create the entry, and then
use either migrateFolderFile or migrateFolderFileStaged to attach the file to the entry.

Parameters and Return Value
binderId

The binder identifier of the folder to contain the new entry.

definitionId
The 32-character, hexadecimal identifier that maps to the type of entry to be created.
The easiest way to work with definition identifiers for entries is to specify null for this value.
When you specify null, Teaming automatically applies the definition identifier for the default
entry type of the folder in which you are creating a new entry. For example, by default, you
want to create an entry in a blog folder. If you pass null as the definition identifier, Teaming
automatically applies the definition identifier for a blog entry.
As another option, you can use the getDefinitionListAsXML operation to get metadata for
all definitions. Then, you can parse the XML string for the definition identifier of the type of
workspace or folder you want to create.

inputDataAsXML
A string of XML supplying the elements and values needed to construct the type of entry you
want to create.

creator
A string containing the username of the person who created the corresponding entry in the
Forum installation.

creationDate
Calendar data specifying the date when the corresponding entry was created in Forum.

modifier
A string containing the username of the person who last modified the corresponding entry in
Forum.
Deprecated Web Service Operations 159

160 Kablin

novdocx (en) 16 A
pril 2010
modificationDate
Calendar data specifying the date when the corresponding entry was modified in Forum.

return_value
The entry identifier of the newly created entry.

Example
call.setOperationName(new QName(“migrateFolderEntry”));
Object result = call.invoke(new Object[] {new Long(21), def, input, new
String("JSmith"), createcal, new String("JGarces"), modcal});

This code creates a new entry of the type determined by the definition in the def variable (use
the getDefinitionListAsXML operation to obtain the correct string for your entry type), and
the new entry is to be located in the binder whose identifier is 21. The input variable contains
an XML string, properly formatted for your entry type, which Teaming uses to create entry
content. The remaining four parameters provide names (literals) and dates (the createcal and
modcal variables) for the creation and last modification of the corresponding entry in the
Forum installation.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
getDefinitionListAsXML (page 146)
migrateFolderEntry (page 159)
migrateFolderFileStaged (page 163)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migrateFolderFile
Attaches a file to an entry while preserving SiteScape Forum data. (V1.0.3)

Syntax
public void migrateFolderFile (long binderId, long entryId, String fileUploadDataItemName, String
filename, String modifier, Calendar modificationDate);

Description
The migrateFolderFile operation attaches a file to a folder entry in Teaming that preserves values
from a SiteScape Forum installation (for example, the person who last modified the item in Forum,
and the date of the last modification in Forum).

Parameters and Return Value
binderId

The binder identifier of the folder that contains the entry to which you want to attach a file.

entryId
The entry identifier of the entry to which you want to attach the file.

fileUploadDataItemName
The internal-use name used by the database to identify the file as an element of an entry.
For example, a Forum custom command allowed for uploading different files into a single
entry that served different functions, such as an expense report, a meeting presentation, and so
on. These custom file uploads have associated internal-use names that are different than the
reserved internal-use name applied to standard file entries or standard attachments.
If you are migrating to a folder file, specify upload as an argument to this parameter to make
this attachment the primary file for the entry.

filename
The name of the file to be attached to the entry.

modifier
A string containing the username of the person who last modified the corresponding file in
Forum.

modificationDate
Calendar data specifying the date when the corresponding file was modified in Forum.
Deprecated Web Service Operations 161

162 Kablin

novdocx (en) 16 A
pril 2010
Example
call.setOperationName(new QName(“migrateFolderFile”));
Object result = call.invoke(new Object[] {new Long(21), new Long(45),
String("_budgetReport"), String("budget-report.xls"), new String("JGarces"),
modcal});

This code attaches the budget-report.xls file to the entry whose identifier is 45 and is
located in a folder whose binder identifier is 21. The internal-use name that maps to the file as
an element in the entry is _budgetReport. The operation also provides the name of the person
who modified the file in Forum and the date when that modification occurred.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
Section C.4, “Migrating Files,” on page 180
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migrateFolderFileStaged
Locates a locally stored file, and attaches it to an entry while preserving Forum data. (V1.0.3)

Syntax
public void migrateFolderFileStaged (long binderId, long entryId,
String fileUploadDataItemName, String filename, String stagedFileRelativePath, String modifier,
Calendar modificationDate);

Description
The migrateFolderFileStaged accesses a Forum file that has been copied locally on the Teaming
server as a way to streamline the transfer of files, avoiding transferring them over the Internet. The
operation then attaches the file to a folder entry in Teaming that preserves values from a SiteScape
Forum installation (for example, the person who last modified the item in Forum, and the date of the
last modification in Forum).

Parameters and Return Value
binderId

The binder identifier of the folder that contains the entry to which you want to attach a file.

entryId
The entry identifier of the entry to which you want to attach the file.

fileUploadDataItemName
The internal-use name used by the database to identify the file as an element of an entry.
For example, a Forum custom command allowed for uploading different files into a single
entry that served different functions, such as an expense report, a meeting presentation, and so
on. These custom file uploads have associated internal-use names that are different than the
reserved internal-use name applied to standard file entries or standard attachments.
If you are migrating to a folder file, specify upload as an argument to this parameter to make
this attachment the primary file for the entry.

filename
The name of the file to be attached to the entry.

stagedFileRelativePath
The relative path specification, beginning with the staging area designated in the
ssf.properties and ssf-ext.properties files on the Teaming server. (See the installation
guide for more information about these files.)
Although the files can be present in any folder structure within the staging area, one
streamlined way to approach this task is to unzip the Forum hidden directory into the staging
area. Then, use this parameter to specify the relative path through the hidden folder structure to
the location of the file to be attached to the entry in Teaming.
Deprecated Web Service Operations 163

164 Kablin

novdocx (en) 16 A
pril 2010
modifier
A string containing the full name of the person who last modified the corresponding file in
Forum.

modificationDate
Calendar data specifying the date when the corresponding file was modified in Forum.

Example
call.setOperationName(new QName(“migrateFolderFileStaged”));
Object result = call.invoke(new Object[] {new Long(21), new Long(45),
String("_budgetReport"), String("budget-report.xls"), String("hidden/ssf/
myworkspace/myforum/4567849"), new String("JGarces"), modcal});

To locate the file, Teaming begins with the defined staging folder and then applies the relative
path hidden/ssf/myworkspace/myforum/456789.This code attaches the budget-
report.xls file to the entry whose identifier is 45 and is located in a folder whose binder
identifier is 21. The internal-use name that maps to the file as an element in the entry is
_budgetReport. The operation also provides the name of the person who modified the file in
Forum and the date when that modification occurred.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
Section C.4, “Migrating Files,” on page 180
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
migrateReply
Creates a new comment while preserving SiteScape Forum data. (V1.0.3)

Syntax
public void migrateReply (long binderId, long parentId, String definitionId,
String inputDataAsXML, String creator, Calendar creationDate, String modifier,
Calendar modificationDate);

Description
The migrateReply operation creates a comment in Teaming that preserves values from a SiteScape
Forum installation (for example, the name of the person who created the item in Forum, the Forum
creation date, the person who last modified the item in Forum, and the date of the last modification
in Forum).

Parameters and Return Value
binderId

The binder identifier of the folder that will contain the new comment.

parentId
The binder identifier of the entry or comment to which you want to apply the new comment.

definitionId
The 32-character, hexadecimal identifier that maps to the type of comment to be created.
You can use the getDefinitionListAsXML operation to get metadata for all definitions. Then,
you can parse the XML string for the definition identifier of the type of comment you want to
create.

inputDataAsXML
A string of XML supplying the elements and values needed to construct the type of comment
you want to create.

creator
A string containing the username of the person who created the corresponding reply in the
Forum installation.

creationDate
Calendar data specifying the date when the corresponding reply was created in Forum.

modifier
A string containing the username of the person who last modified the corresponding reply in
Forum.

modificationDate
Calendar data specifying the date when the corresponding reply was modified in Forum.
Deprecated Web Service Operations 165

166 Kablin

novdocx (en) 16 A
pril 2010
return_value
The entry identifier of the newly created comment.

Example
call.setOperationName(new QName(“migrateReply”));
Object result = call.invoke(new Object[] {new Long(21), new Long(45), def,
input, new String("JSmith"), createcal, new String("JGarces"), modcal});

This code creates a new comment of the type determined by the definition in the def variable
(use the getDefinitionListAsXML operation to obtain the correct string for your comment
type). The new comment is to be located in the binder whose identifier is 21, and applied to an
entry or comment whose identifier is 45. The input variable contains an XML string, properly
formatted for your comment type, that Teaming uses to create comment content. The remaining
four parameters provide names (literals) and dates (the createcal and modcal variables) for
the creation and last modification of the corresponding reply in the Forum installation.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
modifyFolderEntry
Modifies a single entry. (V1—V1.0.3)

Syntax
public void modifyFolderEntry(long folderId, long entryId, String inputDataAsXML);

Description
The modifyFolderEntry operation modifies one entry in a folder.

Parameters and Return Value
folderId

The binder identifier of the folder that contains the entry to be modified.

entryId
The identifier of the entry to be modified.

inputDataAsXML
A string of XML containing the values needed to modify the entry.

return_value
None.

Example
call.setOperationName(new QName(“modifyFolderEntry”));
Object result = call.invoke(new Object[] {new Long(21), new Long(43), s});

This code modifies entry 43 in the folder whose binder ID is 21. The variable s contains XML
elements needed by Teaming to modify the contents of the entry.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Deprecated Web Service Operations 167

168 Kablin

novdocx (en) 16 A
pril 2010
setDefinitions
Establishes workflow-entry associations for a folder. (V1.0.3)

Syntax
public void migrateEntryWorkflow (long binderId, String[] definitionIds,
String[] workflowAssociations);

Description
The setDefinitions operation uses two arrays to associate workflow identifiers with entry
identifiers for a folder. (Teaming associates identifiers in the first element of both arrays, the second
element of both arrays, the third, and so on.)

When an entry is associated with a workflow process, creation of an entry of that type automatically
places the entry into the initial state of the workflow process.

NOTE: This operation is an overwrite operation, setting all workflow associations for the folder;
you cannot use repeated calls to this operation to set associations incrementally. So, set all of the
workflow associations for the folder with one call.

Parameters and Return Value
binderId

The binder identifier of the folder in which you want to associate entry and workflow
identifiers.

definitionIds
An array of entry identifiers.

workflowAssociations
An array of workflow identifiers.
Before using this message, you must replicate the Forum workflow processes in Teaming.

Example
call.setOperationName(new QName(“setDefinitions”));
Object result = call.invoke(new Object[] {new Long(21), entries, workflows});

This code passes two array variables, entries and workflows. Teaming uses the
corresponding elements in both arrays to create entry-workflow associations for the folder
whose binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
setFunctionMembership
Applies access-control settings to a folder or workspace. (V1—V1.0.3)

Syntax
public void setFunctionMembership(long binderId, String inputDataAsXML);

Description
The setFunctionMembership operation provides access-control settings for folder or a workspace.
The term function is analogous to a role in the user interface (UI).

The primary use of this operation is to establish access-control settings when migrating workspaces
and folders from Forum to Teaming. You must ensure that you have migrated Forum user and group
names to Teaming that are required for your access-control settings.

NOTE: This operation is an overwrite operation, setting all function memberships for the folder or
workspace; you cannot use repeated calls to this operation to set memberships incrementally. So, set
all memberships for the workspace or folder with one call.

Parameters and Return Value
binderId

The binder identifier of the folder or workspace for which you want to set access control.

inputDataAsXML
A string of XML containing the values needed to set access control. Here is an example of
XML that sets the visitor function:
<workAreaFunctionMemberships>
<workAreaFunctionMembership>
<property name="functionName">__role.visitor</property>
<property name="memberName">jGarces</property>
<property name="memberName">sChen</property>
<property name="members">1,2,3</property>
</workAreaFunctionMembership>
 .
 .
 .
</workAreaFunctionMemberships>

To obtain the functionName value:
1. Sign in as a site administrator for Teaming.
2. In the administration portlet, click Configure role definitions.
Deprecated Web Service Operations 169

170 Kablin

novdocx (en) 16 A
pril 2010
3. Click any item (for example, Participant).
4. Note or copy the identifier in the Role Name text box (for example,

__role.participant). This identifier begins with a double underscore (_).
You can pass either user or group names (for example, jGarces or sChen) or user or group
identifiers (for example, 1, 2, 3). Teaming reserves the identifiers -1 for the workspace or
folder owner, and -2 for a team member.

Example
call.setOperationName(new QName(“setFunctionMembership”));
Object result = call.invoke(new Object[] {new Long(21), s});

This code uses the content of the XML string s to establish access-control settings for the folder
or workspace whose binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
setFunctionMembershipInherited
Establishes inheritance as the access-control mechanism for a folder or workspace. (V1.0.3)

Syntax
public void setFunctionMembershipInherited(long binderId, boolean inherit);

Description
The setFunctionMembershipInherited operation allows you to establish that a folder or
workspace is to inherit its access-control settings from the parent binder. The primary purpose of
this operation is to set inheritance for folders and workspaces that you migrate from Forum.

Parameters and Return Value
binderId

The binder identifier of the folder or workspace for which you want to establish inheritance for
its access-control settings.

inherit
A boolean value that determines whether the folder or workspace uses inheritance to establish
its access settings.

Example
call.setOperationName(new QName(“setFunctionMembershipInherited”));
Object result = call.invoke(new Object[] {new Long(21), new Boolean.TRUE});

This code establishes inheritance as the access-control mechanism for the folder or workspace
whose binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
Deprecated Web Service Operations 171

172 Kablin

novdocx (en) 16 A
pril 2010
setOwner
Establishes the owner of a folder or workspace. (V1.0.3)

Syntax
public void setOwner(long binderId, long userId);

Description
The setOwner operation allows you to establish an owner for a folder or workspace. The primary
purpose of this operation is to mirror Forum ownership as you migrate folders and workspaces.

Parameters and Return Value
binderId

The binder identifier of the folder or workspace for which you want to establish ownership.

userId
The user identifier of the person whom you want to be the owner of a folder or workspace.

Example
call.setOperationName(new QName(“setOwner”));
Object result = call.invoke(new Object[] {new Long(21), new Long(345)});

This code establishes the user whose identifier is 345 as the owner of the folder or workspace
whose binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
setTeamMembers
Establishes the membership of a team for a folder or workspace. (V1.0.3)

Syntax
public void setTeamMembers(long binderId, String[] memberNames);

Description
The setTeamMembers operation establishes the members of a team for a folder or workspace.

Parameters and Return Value
binderId

The binder identifier of the folder or workspace for which you want to establish team
membership.

memberNames
An array containing the names of all team members for the folder or workspace.

Example
call.setOperationName(new QName(“setTeamMembers”));
Object result = call.invoke(new Object[] {new Long(21), users});

This code establishes each username in the array users as team members for the folder or
workspace whose binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
Deprecated Web Service Operations 173

174 Kablin

novdocx (en) 16 A
pril 2010
synchronizeMirroredFolder
Synchronizes the mirrored folder with the folder on the external drive. (V1.0.3)

Syntax
public void synchronizeMirroredFolder(long binderId);

Description
The synchronizeMirroredFolder operation synchronizes a mirrored folder with the
corresponding file on the external drive. A new mirrored folder does not synchronize with its
external drive until a synchronization occurs manually in the user interface (UI) or using this
message.

Parameters and Return Value
binderId

The binder identifier of the mirrored file that you want to synchronize with its external drive.

Example
call.setOperationName(new QName(“synchronizedMirroredFolder”));
Object result = call.invoke(new Object[] {new Long(21)});

This code synchronizes with its external drive the mirrored folder whose binder identifier is 21.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section C.1, “Sequence of Migration Operations,” on page 179
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
uploadCalendarEntries
Creates new calendar entries from a file. (V1—V1.0.3)

Syntax
public void uploadCalendarEntries(long folderId, String XMLCalendarData);

Description
The uploadCalendarEntries operation uses iCal information in an XML string or in an
attachment to add entries to a calendar folder.

NOTE: The uploadCalendar command in the facade-client.bat batch file accepts two
required parameters and an optional third parameter. The second parameter is a file containing XML
that specifies iCal data. The third, optional parameter is an iCal formatted file. Both files must be
located in the same directory as facade-client.bat. Again, if you want the iCal file to be the only
source of data for newly created entries, place an empty XML document in the file specified as the
second command parameter.

Parameters and Return Value
folderId

The binder identifier of the calendar folder that is to contain the new entries.

XMLCalendarData
A string containing XML formatted calendar data (<doc><entry>iCal data</entry>...</
doc>). If you wish to specify all of your calendar data in an iCal file attached to the message,
pass an empty document for this string (<doc></doc>).

return_value
None.

Example
call.setOperationName(new QName(“uploadCalendarEntries”));
Object result = call.invoke(new Object[] {new Long(21), s});

This code creates new entries in the calendar folder whose binder ID is 21. Teaming uses
XML-formatted iCal information contained in the s variable to create the new calendar entries.

See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section 1.7.5, “Adding Calendar Entries,” on page 20
Deprecated Web Service Operations 175

176 Kablin

novdocx (en) 16 A
pril 2010
uploadFolderFile
Attaches a file to an entry to a folder. (V1—V1.0.3)

Syntax
public void uploadFolderFile(long folderId, String entryId, String fileUploadDataItemName,
String attachedfileName);

Description
The uploadFolderFile operation attaches a file to an entry in a folder. You can attach only one file
at a time; call this operation multiple times to attach more than one file to the entry. Files to be
attached must be located in the same directory as the executing client.

Parameters and Return Value
folderId

The binder identifier of the folder that contains the entry to which you want to attach a file.

entryId
The identifier of the entry to which you want to attach a file.

fileUploadDataItemName
A string containing the internal identifier for the part of the entry that contains attached files.
This identifier maps the name attribute of an input HTML tag on a form to the Teaming
database; a hidden HTML tag communicates this mapping to the server.
The name value for the standard entry element containing attached files is ss_attachFile1. If
you want to upload a file into a custom form element you defined using the designers, you need
to look up the name identifier for that form element (see also getDefinitionConfigAsXML or
getFolderEntryAsXML).

attachedFileName
The name of the file you wish to attach to the new entry. This client is responsible for locating
on its local system the file to be used as an attachment.

return_value
None.

Example
call.setOperationName(new QName(“uploadFolderFile”));
Object result = call.invoke(new Object[] {new Long(21), new Long(43), new
String(“ss_attachFile1”), filename}, filename);

This code attaches a file to entry 43 in the folder whose binder ID is 21. The name of the file to
be attached to the entry is contained in the variable filename.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
See Also
The operation table for the Windows based facade-client.bat program (Appendix B,
“Deprecated Web Service Operations,” on page 135)
Section 1.7.3, “Attaching Files,” on page 19
getDefinitionConfigAsXML (page 145)
getFolderEntryAsXML (page 148)
Deprecated Web Service Operations 177

178 Kablin

novdocx (en) 16 A
pril 2010
k Teaming 2.0 Developer Guide

C
novdocx (en) 16 A

pril 2010
CMigrating from Forum to Kablink
Teaming

Kablink Teaming is the ongoing path from the legacy SiteScape Forum product. To assist with
migrating data from SiteScape Forum to an installation of Kablink Teaming, Novell developed a set
of Web services.

Although this section provides guidance about migrating, the task is complex and requires the active
assistance of the Kablink Teaming support team. This is especially true for workflow migration. For
more information, please contact the support team and arrange to receive consultation as you
perform this task.

Section C.1, “Sequence of Migration Operations,” on page 179
Section C.2, “Migration Overwrite Operations,” on page 180
Section C.3, “Migrating Users,” on page 180
Section C.4, “Migrating Files,” on page 180
Section C.5, “Migrating Custom Commands and Workflow,” on page 181

C.1 Sequence of Migration Operations
Some operations require the previous execution of other operations. For example, migrating an entry
requires that you have already migrated the folder. As another example, a workflow process requires
that you have already migrated user and group names, so that these names can be applied to its
access control.

Here are notes regarding the sequence of operations:

Migrate users and groups, and create personal workspaces early in the process.

Use LDAP to establish the Forum users in Kablink Teaming.

You need the existence of personal workspaces to be able to migrate sub-workspaces and child
folders. Also, migrating workflow and some types of custom commands requires that your
users be established in Kablink Teaming first.

The Forum term “custom command” maps to “custom view and form” in Kablink Teaming.
Generally, migrate parents before children you wish to create.
Examples include migrating parent workspaces before its child folders, and migrating entries
before migrating attached files.
Using SiteScape Forum, a “forum” maps to a “folder” in Kablink Teaming, a “reply” maps to a
“comment” in Kablink Teaming, and the process of “attaching a file” maps to the Web services
phrase “adding a folder file.”
Migrate binders before setting their ownership, team members, and access control.
The Forum items “workspaces and folders” map to the Kablink Teaming Web services term of
“binders.” The Forum term “access control” maps to “membership.” Also, the Web services
term “function” is equivalent to the term “roles” in the UI for Kablink Teaming.
Migrating from Forum to Kablink Teaming 179

180 Kablin

novdocx (en) 16 A
pril 2010
Migrate custom commands before creating entries.
The custom command migration process cannot be done using only Web services (see
Section C.5, “Migrating Custom Commands and Workflow,” on page 181, for more
information).
Migrate workflow processes before migrating entries.
First, the workflow-migration process cannot be done using only Web services (see
Section C.5, “Migrating Custom Commands and Workflow,” on page 181, for more
information). Second, any entry that is currently in a workflow state requires the presence of
the workflow definition in Kablink Teaming.
After migrating custom commands and workflow, you can migrate workflow associations for
specific folders.
Finalizing operations include indexing folders and synchronizing any mirrored folders that you
created.
Remember that migrated entries do not appear in the UI until you index the folders containing
these entries.
The Kablink Teaming UI does not begin to mirror the files on the drive until someone manually
synchronizes them. The Web services call is equivalent to a manual synchronization in the UI.

C.2 Migration Overwrite Operations
Two operations require that you perform the operation for all items using one call to the message;
they do not allow you to perform the operation incrementally on subsets of items, using multiple
calls to the message. If you call these operations sequentially for subsets of the information, each
successive call erases the established data from the previous call.

The operations that require you to perform the operation for all items using only one call are:

binder_setDefinitions: Associates entry types with workflow processes (see
setDefinitions (page 168)).
binder_setFunctionMembership: Sets access control for a workspace or folder (see
setFunctionMembership (page 169)).

C.3 Migrating Users
Migrating users requires two steps:

1 Use LDAP to add your Forum users to Kablink Teaming.
2 Use the migration_addBinder operation to add personal workspaces for the new Kablink

Teaming users.

Migrating custom commands and workflow involve additional work in regard to users. See
Section C.5, “Migrating Custom Commands and Workflow,” on page 181, for more information.

C.4 Migrating Files
If you have a small number of files to migrate to Kablink Teaming, you can use the
migration_uploadFolderFile operation.
k Teaming 2.0 Developer Guide

novdocx (en) 16 A
pril 2010
However, most Forum installations include a significant number of files, and those files might be
large. To improve performance, you should strongly consider using the
migration_uploadFolderFileStaged message.

Staging involves moving all of the files from SiteScape Forum to the server running the Kablink
Teaming installation. Although the files can be located using any folder hierarchy on the server, a
convenient way to migrate files is to unzip the Forum hidden directory onto the Kablink Teaming
server machine and to work within that existing folder hierarchy from Forum. After placing the files
on the Kablink Teaming server, the migration_uploadFolderFileStaged operation takes files
from the staging area and migrates them into the Kablink Teaming installation.

Here are the steps needed to migrate files:

1 Establish a directory on the Kablink Teaming server machine where you want to place the
Forum files.

2 Make the three required changes to the ssf.properties and ssf-ext.properties files.
This action indicates the location of the staging directory. (See the installation guide for more
information about the these files.)
Multiple Forum file versions are separate files in the staged area. Call the
migration_uploadFolderFileStaged operation once for each version of the file, using the
same filename for each call but specifying a different path. This method creates versioned files
in Kablink Teaming.

3 Copy the Forum files onto the Kablink Teaming server, using the specified staging directory as
your top directory.

4 Use the migration_uploadFolderFileStaged operation to migrate the files into the
Kablink Teaming installation.
This command attaches files to an existing entry. Also, it accepts as one of its arguments a
relative path, which traverses the s beneath the designated staging directory.

See migrateFolderFileStaged (page 163), for more information.

C.5 Migrating Custom Commands and Workflow
Migrating custom commands and workflow require tasks beyond the scope of using only Web
services calls. It is highly recommended that you work closely with the Kablink Teaming support
team while completing these tasks.

These are the general steps needed to migrate custom commands and workflow processes:

1 Migrate your Forum users to Kablink Teaming.
2 Use the profile_getPrincipals operation to get a list of the user identifiers for the newly

created Kablink Teaming users.
3 Create a mapping file that maps Kablink Teaming user identifiers to Forum usernames.
4 Run a Tcl script—which uses the mapping file—to generate an XML file of workflow

information.
5 Import the workflow XML file into Kablink Teaming.
6 Create another mapping file, which maps workflow identifiers in Kablink Teaming to Forum

workflow names.
Migrating from Forum to Kablink Teaming 181

182 Kablin

novdocx (en) 16 A
pril 2010
7 Run a Tcl script—which uses the second mapping file—to generate an XML file of custom
command information.
Some custom commands are associated with workflow processes. Because of this, the mapping
file of workflow information is necessary.

8 Import the custom command XML into Kablink Teaming.

NOTE: This process migrates custom commands created using Forum’s UI. It does not migrate
template-based custom commands. To migrate template-based custom commands, use the Kablink
Teaming entry designer and any necessary JSPs to recreate the command.
k Teaming 2.0 Developer Guide

	Kablink Teaming 2.0 Developer Guide
	1 Web Services Overview 11
	A Web Service Operations 23
	B Deprecated Web Service Operations 135
	C Migrating from Forum to Kablink Teaming 179

	About This Manual
	1 Web Services Overview
	1.1 Teaming Web Services Terminology
	1.2 Web Services Implementation
	1.2.1 Sample Clients

	1.3 Authentication
	1.3.1 HTTP Basic Authentication Access (ssr)
	1.3.2 Web Services Security Access (ssf)

	1.4 Server Endpoints
	1.5 Categories of Operations
	1.6 Client Stubs
	1.7 Managing Data
	1.7.1 Working with Java Objects
	1.7.2 Adding Folders and the Binder Configuration Identifier
	1.7.3 Attaching Files
	1.7.4 Fetching Attachments
	1.7.5 Adding Calendar Entries
	1.7.6 Binder Pages and search_getWorkspaceTreeAsXML

	1.8 Extending Teaming Web Services

	A Web Service Operations
	admin_destroyApplicationScopedTokenDestroys an application-scoped token.
	admin_getApplicationScopedTokenRequests an application-scoped token on behalf of the user.
	binder_addBinder Adds an unconfigured binder to the workspace tree hierarchy.
	binder_copyBinder Creates a new binder identical to an existing one.
	binder_deleteBinder Deletes a binder.
	binder_deleteTag Removes a tag from a binder.
	binder_getBinder Accepts a binder identifier to get information about a binder.
	binder_getBinderByPathName Accepts a directory specification to get information about a binder.
	binder_getFileVersions Returns information about the versions of a file.
	binder_getFolders Returns a folder collection for a binder’s sub-folders.
	binder_getSubscription Obtains subscription information about a binder.
	binder_getTags Obtains tags applied to a binder.
	binder_getTeamMembers Obtains information about the members of a team assigned to a specified binder.
	binder_indexBinder Indexes a binder and its content.
	binder_indexTree Indexes a binder’s sub-binders.
	binder_modifyBinder Modifies a binder.
	binder_moveBinder Moves a binder within the workspace tree hierarchy.
	binder_removeFile Removes a file from a binder.
	binder_setDefinitions Associates workflow definitions with entry definitions.
	binder_setFunctionMembership Applies access-control settings to a binder.
	binder_setFunctionMembershipInherited Establishes inheritance as the access-control mechanism for a folder or workspace.
	binder_setOwner Establishes the owner of the binder.
	binder_setSubscription Establishes e-mail settings for a binder.
	binder_setTag Applies a tag for a binder.
	binder_setTeamMembers Establishes members of a team for a binder.
	binder_uploadFile Uploads a file into a binder.
	definition_getDefinitionAsXML Obtains information about a definition.
	definition_getDefinitionByName Obtains information about a global definition.
	definition_getDefinitions Obtains all global definitions in the installation.
	definition_getLocalDefinitionByName Obtains information about a local definition.
	definition_getLocalDefinitions Obtains information about all local definitions.
	folder_addEntry Adds an entry to a folder.
	folder_addEntryWorkflow Initiates a workflow process for a folder entry.
	folder_addMicroBlogAdds a micro-blog entry to a folder.
	folder_addReply Adds a comment to a folder entry.
	folder_copyEntry Copies a folder entry.
	folder_deleteEntry Deletes a folder entry.
	folder_deleteEntryTag Removes a tag from a folder entry.
	folder_deleteEntryWorkflow Removes a workflow from an entry.
	folder_getEntries Obtains information about the entries within a specified folder.
	folder_getEntry Accepts an entry identifier to get information about an entry in a folder.
	folder_getEntryByFileName Accepts a filename to get information about an entry.
	folder_getEntryTags Obtains information about an entry’s tags.
	folder_getFileVersions Returns information about the versions of a file.
	folder_getSubscription Obtains subscription information for a specified folder.
	folder_modifyEntry Modifies an entry in a folder.
	folder_modifyWorkflowState Changes the workflow state of an entry.
	folder_moveEntry Moves an entry within the folder-tree hierarchy.
	folder_removeFile Removes a file attachment from an entry.
	folder_reserveEntry Reserves an entry.
	folder_setEntryTag Applies a tag to a folder entry.
	folder_setRating Sets a rating for a folder entry.
	folder_setSubscription Establishes subscription settings for an entry.
	folder_setWorkflowResponse Applies an answer to a workflow question for a specified entry.
	folder_synchronizeMirroredFolder Synchronizes a mirrored folder with its source folder.
	folder_unreserveEntry Releases a locked entry.
	folder_uploadFile Uploads a file as an attachment to an entry.
	folder_uploadFileStaged Locates a locally stored file and attaches it to an entry.
	ical_uploadCalendarEntriesWithXML Adds a calendar entry to a folder.
	ldap_synchAll Synchronizes all users with the current information that is in LDAP.
	ldap_synchUser Synchronizes one user with the latest information in LDAP for that person.
	license_getExternalUsers Obtains a count of external users.
	license_getRegisteredUsers Obtains a count of registered Teaming users.
	license_updateLicense Updates the Teaming license.
	migration_addBinder Accepts a Java object to add a binder, allowing preservation of SiteScape Forum® data.
	migration_addBinderWithXML Accepts XML to add a binder, allowing preservation of SiteScape Forum data.
	migration_addEntryWorkflow Associates an entry with a workflow process, allowing preservation of SiteScape Forum data.
	migration_addFolderEntry Accepts a Java object to add an entry to a folder, allowing preservation of SiteScape Forum data.
	migration_addFolderEntryWithXML Accepts XML to add an entry to a folder, allowing preservation of SiteScape Forum data.
	migration_addReply Accepts a Java object to add a comment, allowing preservation of SiteScape Forum data.
	migration_addReplyWithXML Accepts XML to add a comment, allowing preservation of SiteScape Forum data.
	migration_uploadFolderFile Uploads an entry attachment, allowing preservation of SiteScape Forum data.
	migration_uploadFolderFileStaged Uploads a local copy of an entry attachment, allowing preservation of SiteScape Forum data.
	profile_addGroup Adds a group.
	profile_addGroupMember Adds a user to a group.
	profile_addUser Adds a user profile.
	profile_addUserWorkspace Adds a user workspace for an existing user.
	profile_deletePrincipal Removes a group or user.
	profile_getFileVersionsReturns information about the versions of a file.
	profile_getGroup Accepts a group identifier to obtain the title and the description of the group.
	profile_getGroupByName Accepts a group name to obtain the title and the description of the group.
	profile_getGroupMembers Obtains information about the members of a group.
	profile_getPrincipals Gets information for users and groups in the installation.
	profile_getUser Accepts a user identifier to get information about a user.
	profile_getUserByName Accepts a username to get information about a user.
	profile_getUsersObtains information for users in the installation.
	profile_getUserTeamsObtains information about all teams that the specified user is a member of.
	profile_modifyGroup Modifies a group.
	profile_modifyUser Modifies a user.
	profile_removeFile Removes a file from the user profile.
	profile_removeGroupMember Removes a user from a group.
	profile_uploadFileUploads a file as an attachment to a user or group.
	search_getFolderEntriesObtains information about the entries that match the specified search query.
	search_getHotContent Returns information about binders and entries active during the last two weeks.
	search_getTeams Obtains information about the teams that the calling user is a member of.
	search_getWorkspaceTreeAsXML Obtains information needed to construct the Teaming workspace and folder tree.
	search_search Returns XML for results of a search query.
	template_addBinder Adds a fully configured workspace or folder to the workspace hierarchy.
	template_getTemplates Obtains information about all defined templates in the installation.
	zone_addZone Adds a zone to the installation.
	zone_deleteZone Deletes a zone.
	zone_modifyZone Modifies a zone.

	B Deprecated Web Service Operations
	addFolderAdds a folder to the workspace-tree hierarchy. (V1—V1.0.3)
	addFolderEntryAdds an entry to a folder. (V1—V1.0.3)
	addReplyAdds a new comment to an entry or comment. (V1.0.3)
	addUserWorkspaceAdds a new personal workspace. (V1.0.3)
	getAllPrincipalsAsXMLReturns summary information for users and groups. (V1—V1.0.3)
	getDefinitionAsXMLReturns information about one definition. (V1—V1.0.3)
	getDefinitionConfigAsXMLReturns information about all configuration definitions. (V1—V1.0.3)
	getDefinitionListAsXMLReturns metadata for all definitions in the installation. (V1.0.3)
	getFolderEntriesAsXMLReturns a string containing XML providing summary information about entries in a folder. (V1—V1.0.3)
	getFolderEntryAsXMLReturns information about one entry in a folder. (V1—V1.0.3)
	getPrincipalAsXMLReturns information about one user or group. (V1—V1.0.3)
	getTeamMembersAsXMLReturns information about all team members assigned within a workspace or folder. (V1—V1.0.3)
	getTeamsAsXMLReturns information about all workspaces and folders that have assigned teams. (V1—V1.0.3)
	getWorkspaceTreeAsXMLReturns information needed to construct the Teaming workspace and folder tree. (V1— V1.0.3)
	indexFolderIndexes a folder. (V1.0.3)
	migrateBinderCreates a new workspace or folder while preserving SiteScape Forum data. (V1.0.3)
	migrateEntryWorkflowAssociates an entry with a workflow process while preserving SiteScape Forum data. (V1.0.3)
	migrateFolderEntryCreates a new folder entry while preserving SiteScape Forum data. (V1.0.3)
	migrateFolderFileAttaches a file to an entry while preserving SiteScape Forum data. (V1.0.3)
	migrateFolderFileStagedLocates a locally stored file, and attaches it to an entry while preserving Forum data. (V1.0.3)
	migrateReplyCreates a new comment while preserving SiteScape Forum data. (V1.0.3)
	modifyFolderEntryModifies a single entry. (V1—V1.0.3)
	setDefinitionsEstablishes workflow-entry associations for a folder. (V1.0.3)
	setFunctionMembershipApplies access-control settings to a folder or workspace. (V1—V1.0.3)
	setFunctionMembershipInheritedEstablishes inheritance as the access-control mechanism for a folder or workspace. (V1.0.3)
	setOwnerEstablishes the owner of a folder or workspace. (V1.0.3)
	setTeamMembersEstablishes the membership of a team for a folder or workspace. (V1.0.3)
	synchronizeMirroredFolderSynchronizes the mirrored folder with the folder on the external drive. (V1.0.3)
	uploadCalendarEntriesCreates new calendar entries from a file. (V1—V1.0.3)
	uploadFolderFileAttaches a file to an entry to a folder. (V1—V1.0.3)

	C Migrating from Forum to Kablink Teaming
	C.1 Sequence of Migration Operations
	C.2 Migration Overwrite Operations
	C.3 Migrating Users
	C.4 Migrating Files
	C.5 Migrating Custom Commands and Workflow

