Novell
Nsure" SecurelLogin

www.novell.com

3.51 @
SCRIPTING GUIDE

May 13, 2004

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all parts of Novell software,
at any time, without any obligation to notify any person or entity of such changes.

You may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations
or the laws of the country in which you reside.

Copyright © 2002-2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A.

www.novell.com

Nsure SecurelLogin 3.51 Scripting Guide
May 13, 2004

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

Novell Trademarks

BorderManager is a registered trademark of Novell, Inc. in the United States and other countries.
ConsoleOne is a registered trademark of Novell, Inc. in the United States and other countries.
eDirectory is a registered trademark of Novell, Inc. in the United States and other countries.
GroupWise is a trademark of Novell, Inc.

NDS is a registered trademark of Novell, Inc. in the United States and other countries.

NMAS is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc. in the United States and other countries.

Novell iFolder is a registered trademark of Novell, Inc. in the United States and other countries.
Novell SecretStore is a registered trademark of Novell, Inc. in the United States and other countries.

Third-Party Trademarks

All other third-party trademarks are the property of their respective owners.

Contents

About This Guide 9

1 Introduction to Scripting 1"
The Scripting Language L 11
Scripting BasiCs. e e 12
Structuring and Executing Scripts L L 13
Types of Scripts L 14
Scripts for Predefined Applications. L 15

2 Best Practices in Scripting 17
3 Using Symbols and Variables 21
Symbols Used in Scripts e 21

The Pound Symbol (#) e 21
Quotation Marks (" ") L e 22

The Dollar Sign ($) o e 22

The Question Mark (?) L e 22

The Percent Sign (%)« o o 0 e 22

The Exclamation Mark (1) o e 22

The Backslash (\) L e 22

The @ Symbol e 23

The Hyphen (-) o 23
Understanding Script Variables. 23
Stored Variables L 23
Runtime Variables e 24
Directory Attribute Variables e 25
Passticket Variables L 25

Internal Variables e 25
Variablesand Values e 26

4 Working with Scripts 29
Managing Scripts e e e 29
Using Corporate ScriptS. o e e e e 30

Finding Control IDs e e 33
Using Advanced Windows Scripting L e e 35

5 SecureLogin Commands 37
AAVerify . . o e 38

Add . . 39
Attribute. . . . e 40
BeginSplashScreen / EndSplashScreen L 40
Break e e 41

Call . . 43
ChangePassword. L e 43
Class 44
Click . . e 45

Contents 5

Ctrl. . e e 48
Delay e e 49
Dialog /EndDialog. 49
DisplayVariables. e 50
Divide e 52
DumpPage e e 52
DumpScript . . . 53
EndScript e e 53
Event . . o e e 54
GetCheckBoxState e 55
GetCommandline L e e e e 55
GetSessionName e e e 56
GetText e e 56
GetURL o e 57
GotoURL e 58
If/Else /EndIf. L e e 58
InClude. e e e 61
Increment/ Decrement L L L e e e 62
KiLAPD . . . o e 63
Local. . . . e e 63
MessageBox. L L e e 64
Multiply . . . e e e 66
OnException/ClearException e e e 67
Parent/EndParent e 69
PickListAdd e 71
PickListDisplay e e e e 71
PositionCharacter e e 72
ReadText e e 73
RegSplit e e 75
Repeat/ EndRepeat. L e e e 75
RestrictVariable e e 78
RUN e e 79
SelectListBoxltem L e 80
SendKey. e e 81
Set. . e e 81
SetCheckBoX e e 83
SetCUISOr o e e e 84
SetFOCUS e e 84
SetPlat. . . . L e e 85
SetPrompt L e e 88
Streat . . L e e 89
Strlength L e e 90
StrLoWer. . . . e e e 91
StrUPPEr. . . . e e 91
Sub/ENdSub e 92
Submit. . . e e 93
Subtract . . . L e e 94
Tag/lEndTag o e e e 95
Title . . . e 95
TYPE . . . e e 96

Sending Keyboard Commands by Using Type 98
WaitForFocus e e e 99
WaitForText e e 100
Practicing Your Scripting Skills 103

Nsure SecurelLogin 3.51 Scripting Guide

Using the Wizard to Create a Script 103

Viewing the Wizard’s Script. 105
Experimenting with a Script. L 105

Creating a Password Policy. e 105

Creating Your Own Script. e 106

Experiment: Using Window Finder e 109

Adding a MessageBox L L e 111

Changing Passwords e 111
Keystrokes and Functions 113
Sending Special Keystrokes L e e e 113
@ Commands Used with Emulators e 114
Troubleshooting Scripts 117
Logging Into Web Sites e e 117
Deriving Application Names from Strings. L 118
Quick-Reference Chart 119
FAQs on Scripting 123
One Script, Two Sets of Credentials e 123
Cache All Passwords, Prompt for Each Application 123
Trapping SNMP Alerts 125
Producingan Alert L 125
Example Script 125
Keyboard Functions and Codes 127
Event Specifiers 133
Error Codes 137
Error Codes With Tips. L 137
Documentation Updates 141
January 7, 2004 e e 141
April 20,2004 L 141
April 28,2004 141
May 13,2004 e 142

Contents 7

Nsure SecurelLogin 3.51 Scripting Guide

About This Guide

This guide is for network administrators. The following sections provide information on scripting:

*

*

*

Chapter 1, “Introduction to Scripting,” on page 11
Chapter 2, “Best Practices in Scripting,” on page 17
Chapter 3, “Using Symbols and Variables,” on page 21
Chapter 4, “Working with Scripts,” on page 29
Chapter 5, “SecureLogin Commands,” on page 37
Chapter 6, “Practicing Your Scripting Skills,” on page 103
Chapter 7, “Keystrokes and Functions,” on page 113
Chapter 8, “Troubleshooting Scripts,” on page 117
Appendix A, “Quick-Reference Chart,” on page 119
Appendix B, “FAQs on Scripting,” on page 123
Appendix C, “Trapping SNMP Alerts,” on page 125

Appendix D, “Keyboard Functions and Codes,” on page 127

Appendix E, “Event Specifiers,” on page 133

Additional Documentation

For documentation on understanding, managing, and troubleshooting SecureLogin, see the Nsure
SecureLogin 3.51 Administration Guide.

For documentation on installing SecureLogin, see the Nsure SecureLogin 3.51 Installation Guide.

For documentation on terminals services, see the Nsure SecureLogin 3.51 Terminal Services

Guide.

For documentation on terminal emulators, see the Nsure SecureLogin 3.51 Configuration Guide
for Terminal Emulation.

For documentation on Novell® SecretStore®, see the Novell SecretStore 3.3.0 Administration

Guide.

Documentation Updates

For the most recent version of this and other SecureLogin guides, see SecureLogin (http://

www.novell.com/documentation) at the Novell Documentation Web page.

About This Guide

9

http://www.novell.com/documentation

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®,TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

10 Nsure SecurelLogin 3.51 Scripting Guide

Introduction to Scripting

This section provides information on the following:
¢ “The Scripting Language” on page 11
* “Scripting Basics” on page 12
¢ “Structuring and Executing Scripts” on page 13
* “Types of Scripts” on page 14
* “Scripts for Predefined Applications” on page 15

The Scripting Language

The SecureLogin scripting language is a key feature of single sign-on functionality. The scripting
language enables SecureLogin to be compatible with almost all network environments and
applications, including those that are developed in-house, without the need to modify any
application code.

SecureLogin uses the scripting language to provide a flexible single sign-on and monitoring
environment. For example, the SecureLogin Windows Agent watches for application login boxes.
When a login box is identified, the agent runs a script to enter the username, password, and
background authentication information.

The script language is used in individual application scripts to retrieve and enter the correct login
details. These scripts are stored and secured in a Directory (for example, Novell® eDirectory™) to
ensure maximum security, support for single-point administration, and manageability.

The script language is used to automate many login processes, such as multi-page logins and login
panels requiring other information (such as a surname or telephone number) stored in the
Directory. The script language also contains the commands required to automate password
changes on behalf of users and request user input when it is required.

The scripting language has the following advantages:

+ Enables you to define single sign-on methods for almost any Windows*, mainframe, Internet,
intranet, terminal server, or UNIX* application.

+ Provides single sign-on functionality without installing back-end modules on your application
servers.

+ Provides the flexibility for you and your application owners to choose what to do after an
application-generated message is detected.

This feature gives you full control over your single sign-on environment.

+ Allows more sophisticated single sign-on to supported applications, including the ability to
seamlessly handle several versions of one application.

Introduction to Scripting 11

This feature is especially important when you upgrade your applications.

+ Stores SecureLogin data (for example, user credentials and application scripts) in the
Directory and protects the data.

 Can use Novell SecretStore® technology to provide additional benefits:
+ Provides an additional level of security.

+ Enables you to share secrets with other applications (for example, Novell iChain® and
Novell Portal Services).

¢ Enables you to use NICI between the workstation and the server.
SecretStore requires Novell eDirectory.

+ On startup, locates objects in the Directory and caches their encrypted contents in memory
(and optionally on disk) for later use by the workstation's SecureLogin single sign-on agent.

SecureLogin allows you to define which applications are enabled for single sign-on. This option
gives you the following:

¢ Full control of which applications are single-sign-on enabled.

¢ The ability to update the entire Directory database with a new application login script by
updating a single object.

The corporate scripts are stored in a Container object rather than individual User objects. For users,
the result is a less complex system. For you as the administrator, the improved login mechanisms
provide the following:

* A greater level of accountability with increased productivity and security.

+ A reduced workload at the help desk because of significantly fewer password resets.

Scripting Basics

12

A script is essentially a list of instructions that SecureLogin follows to perform various tasks upon
various windows. For example, for Windows applications (*.exe files) a script is written for each
executable file that you want SecureLogin to act upon. In that script, you are able to assign
different instructions to each screen that an executable file or application might produce.
Therefore, you have the choice of acting upon only the login panel, selected windows, or every
window (for example, account locked, invalid username, invalid password, expired password) that
the executable file produces.

SecureLogin follows scripts from left to right, top to bottom. However, with the use of Flow
Control commands (for example, If/Else/EndIf) you can skip, repeat or jump to certain parts of the
script.

With the use of Dialog Specifier commands (for example, Call), you can skip, repeat, or jump to
parts of the script.

With the use of Dialog Specifier commands, you can assign individual sections of a script to the
different windows that an executable file might produce. Such assignments allow the login dialog
box, for example, to be treated differently from the “wrong password” dialog box.

The scripting language can read from and write to variables. These variables enable SecureLogin
to use corporate scripts while still keeping each individual user’s secrets securely stored in the
Directory. The scripting language can also read attributes (for example, the user’s full name or

Nsure SecurelLogin 3.51 Scripting Guide

phone number) from the username’s attributes in the Directory. For more information on variables,
see “Understanding Script Variables” on page 23.

SecureLogin is able to write information to the screen as well as read from it with the use of
commands such as ReadText. You can use this functionality to extract usernames, domains in use,
and error messages. You can then use Variable Manipulator commands to perform calculations,
break apart information, and join the information back together.

The SecureLogin language has 52 different commands. Many of these, such as Repeat and Dialog,
have one or two additional commands (for example, EndRepeat or EndDialog) that are used to
close them. See Chapter 5, “SecureLogin Commands,” on page 37.

All these features come together to form an extremely powerful language that is able to accomplish
almost any required login task.

Structuring and Executing Scripts

A script is a simple piece of text that is stored by the SecureLogin script broker. Scripts store the
login name, password, and any other information in fields required for authentication. Scripts are
stored in the local database and in eDirectory.

Each script has a name, called the application name, which uniquely identifies it within a particular
single sign-on database. In addition, each script has a type, known as the application type (prebuilt,
Windows, Web, or Java*). The application type specifies the type of application the script refers
to and which of the SecureLogin components executes it.

SecureLogin scripts execute sequentially from the first line. There are no flow control mechanisms
as such. However, in some instances a component might choose not to execute certain statements,
as in the Dialog / EndDialog or If/Else/EndIf statements.

Each line in the script consists of one or more arguments. Arguments are separated by white space
(spaces and tabs), unless they are enclosed in quotation marks. For example, the following line
contains three arguments:

A sinple "conmmand to get started"
The arguments are as follows:

s A

* simple

+ "command to get started"

After a script has been broken into arguments, the quotation marks are removed. If you need to
specify an actual quotation mark in a script, precede it with a backslash (for example, \").

The first argument on a line is the command. It specifies the action that the line takes. The rest of
the arguments on the line, if any, are passed to that command. Different commands take varying
numbers of arguments. For a list of commands and their arguments, see Chapter 5, “SecureLogin
Commands,” on page 37.

A line that begins with a # character is treated as a comment and is ignored in the script language.
The following example illustrates the use of the # character:

W ndow "I ogi n"

Del ay 30

#SecureLogin ignores this line and the next two |ines
#whi | e executing the script.

Introduction to Scripting 13

#The Del ay command is used to wait for the windowto be created correctly.
Type "$User nane”

Scripts are interpreted as SecurelL.ogin components to perform the sign-in process. This
functionality ensures that any variables that are substituted are current.

Types of Scripts

Using the Applications tab, you can view a list of applications that are enabled for single sign-on.
The Description column displays information about the application, including icons that represent
the type of script stored for that application.

Properties of AKRAMES

Hovell SecureLogin « | Movel SecretStore I Dial &ccess Services | General "I Restrictions vI Memberships - |

General Settings

UserIDs Applications | passward Policies | Settings |

Descriptioh | Marne | Source
AnpZap.exe AnpZap.exe
hitp: e doits com hitp:ifaeane daits com Edit
@ Java application Javahpp.exe Delete
E‘} Startup application Jemkeeper.exe —
E Mainframe application JifLaunch.exe Refresh
W Lrotes.exe LiMotes. exe S
Al
Page Options... (0]34 Cancel | Apply | t

The following table provides information on the icons.

Script Type Description
) 0 F= For Windows-based applications. Represented by a
Windows application generic window icon.

For Web-based applications. Maintains backward
Web application compatibility with older scripts. Represented by a

ringed planet. For new Web scripts, use the
Advanced Web script type.

For Web-based applications. Enables SecurelLogin
Advanced Web to use legacy script commands along with
commands that were introduced with SecurelLogin
3.5.

Java application E \I;"or Java-based applications. Represented by a red
El | For applications that are executed during the startup
|

- of SecurelLogin. Represented by a circular arrow.

SecurelLogin Startup

14 Nsure SecurelLogin 3.51 Scripting Guide

Script Type

Description

Terminal Launcher E

Lotus Notes !-

Corporate script

For applications that require access via an emulator.
Represented by a black-with-white monitor.

For scripts that are used to log in to Lotus Notes.

For applications applied at a Container level.
Represented by a red C in the upper left corner of

the icon.

When you add an application that has a prebuilt script, SecureLogin automatically enters a
description for that application. When you add an application that doesn’t have a prebuilt script,
the name that you enter to describe the application appears in the Description column.

Scripts for Predefined Applications

SecureLogin provides native script support for many popular applications so that you don’t have

to configure them manually.

Application Application Application

+Medic Vision for Windows MeetingMaker pcANYWHERE* 8.0
3M* Care Innovation Microsoft* Front Page PeopleSoft*

ACT Contact Manager Microsoft Internet Gaming Zone plusw33.exe

(lobby.exe)

America Online*

Microsoft Internet Gaming Zone
(zone.exe)

QuickBooks* Pro

AOL Instant Messenger* Microsoft Money 98/99 Quicken*
Bloomberg Microsoft Networking Client Remedy* ARUSER
Clarify MMIS Remedy Notifier
Corporate Time MMIS (NTVDM) RiskMaster v3.6

Entrust* Client Mobile UP v4.5 SAP* /R3 Login

Entrust Server MS SQL Siebel* Customer Tracking
Eudora* Email MSN Messenger Soft Front

GoldMine MYOB Premier STARS

GoldMine 5.5 Netscape* Sunrise* Clinical Manager
ICQ Novell BorderManager® VPN Visual SourceSafe* Login

Client

Informix* Connect for Win32*

Novell GroupWise® Client

Windows 9x Dialup Networking

Internet Explorer

Novell GroupWise Notify Client

Windows 9.x Login

Introduction to Scripting 15

16

Application

Application

Application

JPilot applet

Onebox email

Windows NT* Logon

Lotus* Notes*

Oracle* Generic Login

Yahoo!* Messenger

Lotus Organizer* 4 + 5

Oracle Financials

Zainetbar

Meditech Remote Workstation

Nsure SecurelLogin 3.51 Scripting Guide

Best Practices in Scripting

Use the following rules when writing a SecureLogin script. Although these rules are not

compulsory, they accomplish the following:

+ Make reading the script easier.

+ Help you modify the scripts if you need to make changes later.

Example scripts in this guide follow these rules.

Using Capitals

Use capitalization where applicable.

Use This

Instead of This

MessageBox "Sone text" -YesNo ?Result Messagebox "Some text" -yesno ?result

Indenting

Indent sections of scripts between pairs of commands, such as Dialog/EndDialog, Repeat/

EndRepeat, and If/Else. An indent of three spaces is optimal.

Use This

Instead of This

If -Text "Sone text"
#Do this

El se
#Do this

Endl f

If -Text "Sone text"
#Do this

El se

#Do Thi s

Endl f

Leaving Blank Lines

Leave a blank line between sections of the script, such as the Dialog block and the rest of the script.

Use This

Instead of This

Logi n D al og Box
Di al og

Title "Login"

Cl ass #32770
EndDi al og

Type $Usernane #1001
Type $Password #1002
dick #1

Logi n D al og Box
Di al og

Title "Login"

Cl ass #32770
EndDi al og
Type $User nane #1001
Type $Password #1002
Cick #1

Best Practices in Scripting

17

18

Placing and Naming Subroutine Sections

Place subroutine sections of the script at the bottom of the script, not halfway through. The name
of the subroutine should describe its function. It shouldn’t simply be a numeric name. The name
should follow the rules for capitalizing.

Using Quotation Marks for Text in Commands

Even if quotation marks aren’t required, always use them around segments of text in commands.

Use This Instead of This
Type "Text" Type Text

o O

If -Text "Login" If -Text Login

Capitalizing Variables

Begin variable names with a capital letter.

Use This Instead of This

Type $User nane Type $user nanme

Placing Switches

Place switches directly after the command (for example, Type -Raw, If -Text).

Use This Instead of This

Type - Raw $User nane Type $User nane - Raw

Password Policy Names

Use program names to represent password policy names for the program they are used for. Don't
use numerical names.

Use This Instead of This

G oupwi sePasswor dPol i cy Passwor dPol i cy3

Hiding Variables

If you want to hide a variable from an administrator by displaying the variable as **** instead of
clear text, begin the variable name with $Password. For example, $PasswordPIN will be protected,
but $PIN won’t be protected.

Using Comments

Use comments throughout the script to explain what each section does and how it does it. At the
top of the script, enter and comment out information such as who wrote the script and the date that
the script was last modified.

Nsure SecurelLogin 3.51 Scripting Guide

NOTE: To help explain example scripts in the SecureLogin Commands section, this Guide places explanations
to the left of the scripts. For example, see Example: Windows Script in “AAVerify” on page 38.

Use This Instead of This

#Witten by M Kurz June 7, 2002 Di al og
#MWodi fied by C. Bertrand July 3, 2003 Title "Login"

. . Cl ass #32770
#Logi n Di al og Box EndDi al og

Di al og
Title "Login"
Cl ass #32770
EndDi al og

Using the Include Command

Wherever possible, use the Include command to create generic scripts for commonly used
elements, such as password change procedures. For common processes within the script, use
subroutines.

Best Practices in Scripting 19

20 Nsure SecurelLogin 3.51 Scripting Guide

Using Symbols and Variables

This section contains information on the following:
+ “Symbols Used in Scripts” on page 21
¢ “Understanding Script Variables” on page 23

Symbols Used in Scripts
The SecureLogin scripting language uses the following symbols to define the function of lines in
the script:
¢ “The Pound Symbol (#)” on page 21
* “Quotation Marks (" ") on page 22
¢ “The Percent Sign (%)” on page 22
¢ “The Exclamation Mark (!)” on page 22
¢ “The Backslash (\)” on page 22
¢ “The @ Symbol” on page 23
¢ “The Hyphen (-)” on page 23

The Pound Symbol (#)

Use the pound or hash symbol (#) to define a line of text as a comment field, so that you can
annotate a script. The script engine ignores any line that starts with a # symbol.

You can use comment lines to do the following:
+ Define sections of a script, such as login window or change password window.
+ Explain complex sections of a script.
+ Remove command lines from a script while the script is being written and edited.

Removing lines by commenting them saves having to continuously delete and rewrite lines
while testing.

+ Make notes, such as when the script was written and what version of the software the script
was written for.

When used within a command (for example, Class or Type), the pound or hash symbol takes on a
different meaning, specifying a numerical value. This numerical value can be used to specify a
target for the command. The command listings provide additional details. See Chapter 5,
“SecureLogin Commands,” on page 37.

Using Symbols and Variables 21

Quotation Marks (" ")

Use quotation marks ("") to group text or variables that contains spaces. Use these symbols with
commands such as Type, MessageBox, and If -Text. Without quotation marks, command lines
such as the following won’t work as expected:

Type Dat abase 2
MessageBox Confirmyour login details.
| f-Text Login failure

For these command lines to work, quotation marks must be used to group the text:

Type "Dat abase 2"
MessageBox "Confirmyour login details."
| f-Text "Login failure"

The Dollar Sign ($)

Use the dollar sign ($) to define a SecureLogin variable that is persistent. Use these variables to
store information such as usernames and passwords. For more information on the $ variable, see
“Stored Variables” on page 23.

The Question Mark (?)

Use the question mark (?) to define the use of a runtime variable. The values of these variables are
not stored in the Directory. They are reset each time SecureLogin is started. However, with the use
of the Local command, these variables are reset each time the script is started. Use these variables
to store temporary information, such as counting, data processing, and date information.

The question mark is also used with several internal system-generated variables. For more
information on the ? variable, see “Runtime Variables” on page 24 and “Internal Variables” on
page 25.

The Percent Sign (%)

Use the percent sign (%) to define the use of a Directory attribute. The attributes that are available
vary, depending on the Directory in use and the setup of the Directory. Examples of the attributes
you can use are %CN and %Surname.

For more information on the types of variables, see “Understanding Script Variables” on page 23.

The Exclamation Mark (!)

Use the exclamation mark (!) to define the use of a passticket. A passticket is a one-time password
that is generated using a combination of an encryption key, encryption offset, and the current time.
Such passwords are only valid for a short time (from 30 seconds up to 2 minutes). The encryption
key and offset can be defined manually or automatically generated for the program.

For more information, see “Passticket Variables” on page 25.

The Backslash (\)

Use the backslash symbol (\) with the Type and SendKey commands to specify the use of a special
function. The symbol is used in conjunction with values to simulate keystrokes. For example, use
\N to simulate pressing the Enter key in a Windows application.

22 Nsure SecurelLogin 3.51 Scripting Guide

The @ Symbol

The Hyphen (-)

For details on the values that can be used with the backslash symbol, see the command listings in
Chapter 5, “SecureLogin Commands,” on page 37.

The @ symbol is similar to the backslash symbol. However, the @ symbol is limited to HLLAPI-
enabled emulators. Use it in conjunction with values to simulate keystrokes. For example, use @E
to simulate pressing the Enter key in a terminal emulator application.

For more information on the @ symbol, see “(@ Commands Used with Emulators” on page 114
and the command listings.

Use the hyphen (-) as a switch within several commands (for example, If and Type). Use it in
conjunction with values to modify the behavior of commands (such as -Raw), or to switch certain
functions (such as -YesNo) on or off.

For details on the values that you can use with the hyphen, see the command listings in Chapter 5,
“SecureLogin Commands,” on page 37.

Understanding Script Variables

This section contains information on the following:
¢ “Stored Variables” on page 23
¢ “Runtime Variables” on page 24
+ “Directory Attribute Variables” on page 25
+ “Passticket Variables” on page 25
+ “Internal Variables” on page 25

¢ “Variables and Values” on page 26

Generally, don’t use spaces when you specify variables. For example, specify $Username Alias
instead of $Username Alias. If you use spaces, enclose the entire variable in quotation marks (for
example, “$Username Alias™).

Stored Variables

Stored variables are the most common style of variable used in SecureLogin scripts. They are
preceded with a dollar sign (§). Use these variables to store the values used during the login
process, such as usernames, passwords, and any other required details.

The values of these variables are stored against a script in the Directory under the User object. The
values are encrypted so that only the user can access them.

In general, variables are stored separately for each application’s script, so that the username
variable is different for each application. However, you can set an application to read variables
from another application’s script. This is useful for applications that share user accounts or
passwords. For details on how to do this, see the description in “SetPlat” on page 85.

If a stored variable is referenced in a script, and no value has been stored for that variable (for
example, the first time the program is run), SecureLogin prompts the user to enter a value for the

Using Symbols and Variables 23

variable. This is an automatic process. It is also possible to manually trigger this process to prompt
auser to enter new values for particular variables. For details on how to do this, see the description
of “DisplayVariables” on page 50 and “ChangePassword” on page 43.

Example: Stored Variables in Use

Di al og
Title "Login"
Cl ass #32770
End Di al og

Type $User nane #1001
Type $Password #1002
Cick #1

Runtime Variables

24

In general, use runtime variables to store calculations, process data, or date information. You can
also use runtime variables for temporary passwords and usernames.

Runtime variables are preceded with the question mark symbol (?). They have two modes: Normal
and Local. Normal runtime variables are reset each time SecureLogin is started. Local runtime
variables are reset each time the script is started. Runtime variables are Normal by default. For
details on how to switch a runtime variable from General to Local mode, see the description in
“Local” on page 63.

Runtime variables aren’t stored in the Directory or the SecureLogin local cache. They are used
straight from the computer’s memory. For this reason, don’t use runtime variables to store
usernames, passwords, or other details that SecureLogin will need to access in the future. If
runtime variables are used for such details, the user will be prompted to enter them each time the
script is run or each time SecureLogin is restarted.

SecureLogin has one preset runtime variable: ?CurrTime. This variable is constantly updated to be
equal to the number of seconds that have passed from January 1970 until the present time. This
variable can also be used with the ConvertTime command to convert it to read the current time and
date. This feature is generally used to enforce password changes every x days.

Example: A Runtime Variable in Use

Di al og
Title "ERROR
Cl ass #32770
EndDi al og

Local ?Error Count
I ncrement ?Error Count
If ?ErrorCount eq "2"
MessageBox "This is the second tine you have received this error. Wuld
you like to reset the application?" -YesNo ?Result
If ?Result eq "Yes"

Kil | App " App. exe"

Run " C: \ App\ App. exe"
El se

Set ?Error Count "O"
Endl f
Endl f

Nsure SecurelLogin 3.51 Scripting Guide

Directory Attribute Variables

SecureLogin is able to read the user’s details (for example, the Windows version, which Internet
browser is in use, or the password that was used to access the Directory) from the Directory and
the workstation. These details are accessed by using internal variables. Internal variables have set
names, which vary with the Directory in use and are prefixed with a percentage sign (%). See
“Internal Variables” on page 25.

The following are examples of when these variables are used:
* When it is necessary to use a different script for different browser types
+ When it is necessary to use a different script for different versions of Windows

* When the password for an application is synchronized with the Directory password

Passticket Variables

Passticket variables are used to generate one-time passwords based on a DES key and offset,
similar to how VASCO tokens work. They are used differently than the other variable types.
Passticket variables are preceded with the exclamation mark symbol (!).

To use a passticket variable, you must create and define numerical values for stored variables with
the names $DESKEY and $DESOFFSET. The SecureLogin script parser uses these numbers to
generate the one-time password.

After the stored variables have been defined, you use the following passticket variable to generate
a password.

I Name of application definition
or
I def aul t

For example, if you want to use a passticket variable for the Outlook application, you create two
stored variables called SDESKEY and $DESOFFSET under the Outlook application definition.
You then set values for the two stored variables. You can then use the variable /Outlook whenever
you need to generate a one-time password.

You can also use !Default, which automatically reads the values from the current application
definition.

If the SDESKEY and $DESOFFSET variables are not given values, SecureLogin generates
random values the first time a password is generated and stores the values for later use.

Internal Variables

SecureLogin is able to read details from the system and use the details to create variables that can
be incorporated into the scripting language. These variables are automatically generated as
runtime variables and can be used in the same manner within any application definition.

The following table lists the internal variables that SecureLogin supports.

Using Symbols and Variables 25

Variable Name

Description

?SysVersion(system) The local SecureLogin Windows agent version. This variable can
be used to determine whether specific support is built into the
product running on the user’s workstation. The format of the
variable is major.minor.subminor.build. For example, 3050109
represents v3.5.1.9, in W.XX.YY.ZZ format.

?BrowserType Contains either Internet Explorer or Netscape and indicates which

(system) browser the script is running in.

?SysUser The name of the user that was last used in the GINA or Windows

(system) 9x login dialog box. This variable is available only when the
SecurelLogin login extension is installed.

?SysPassword The password that matches the username presented in the GINA

(system) dialog box. This variable is available only when the SecurelLogin
login extension is installed.

?SysContext Lists the Novell® eDirectory™ user context as entered in the GINA

(system) or Windows 9x login dialog box. This variable is available only when
the SecureLogin login extension is installed.

?SysTree The NDS® or eDirectory tree name that the user entered. This

(system) variable is available only if the SecureLogin login extension is
installed.

?SysServer The name of the server that was entered in the login GINA or

(system) Windows 9x login dialog box. This variable is available only when
the SecurelLogin login extension is installed.

?CurrTime The running time in seconds from January 1970 to the present. Use

(system) this variable to force password changes every x days. Don’t use

scripting to force a password change if you want to continue having
the application generate the change password event
(recommended). Use this variable on applications where a
password expiration can’t be set at the application’s back end.

Variables and Values

26

SecureLogin stores your username and password in the form of a variable and its value. Your
username and password are not included in the script. Instead, a variable is used in the script. The
value of the variable is your username or password.

Logins consist of a set of variables. You can use any name for a variable. A variable can contain
any text. As the following figure illustrates, the Variable column usually just contains the
password and username for a particular application. However, in some more complicated
applications, there might be other variables.

Login Detail - Hewapp.exe

Wanables

ugErname
pazsword

Nsure SecurelLogin 3.51 Scripting Guide

This example has two variables: username and password. The script for this application has the
following line:

Type $User nanme

The variable $Username is written in the script. The value of $Username in this example is mkurz.
When the script runs, SecureLogin looks for the variable $Username in the user's login details.
There it finds and reads the value mkurz. SecureLogin enters the value mkurz into the login dialog
box.

At runtime, the value of the variable $Username (mkurz) is read. However, in the script you only
see the variable $Username.

Using Symbols and Variables 27

28 Nsure SecurelLogin 3.51 Scripting Guide

4 Working with Scripts

To help you customize the login capabilities of your users, this section provides information on the
following:

* “Managing Scripts” on page 29

+ “Finding Control IDs” on page 33

+ “Using Corporate Scripts” on page 30

* “Using Advanced Windows Scripting” on page 35

Managing Scripts

Each single-sign-on-enabled application has a script. A basic script tells SecureLogin how to log
in to the application. You can create more involved scripts that allow you to perform other
password management tasks, such as detecting expired passwords and generating new passwords.

SecureLogin has a scripting wizard as well as a host of prebuilt scripts. These features enable you
to easily enable a broad range of applications for single sign-on.

Manage scripts for applications by using ConsoleOne®, the Microsoft Management Console
(MMC), SecureLogin Manager (slmanager.exe), or the SecureLogin workstation client.

1 Right-click an object (for example, an OU or User object), then click Properties.
2 Click Novell SecureLogin > General Settings > Applications.

Properties of AKRAMES

Hovell SecureLogin - | Movel SecretStore I Dial Access Services | General vl Restrictions vl Memberships vl

General Settings

UseriDs Applications | Password Policies | Sattings |

Description | Marme | Source I Mew
FHovell GroupWise Client GRPWISE.EXE

=[S pinTeller exe SpinTeller.exe _ Edit

3 Click an application, click Edit, then click Script.

The following figure illustrates the Script tab and an example simple script.

Working with Scripts 29

Applicatiun SpinTeller_exe

Mame: |SpinTeIIer.exe Type: [Windows ;I

Description: |SpinTeIIer.exe

Dialog
Title "Sign On"
EndDialog

Type §lsername
Type T

Type \Password
Type ™

4 Make changes.

For commands used in scripts, along with example scripts for those commands, see Chapter 5,
“SecureLogin Commands,” on page 37.

To experiment with a sample script and a test application, see Chapter 6, “Practicing Your
Scripting Skills,” on page 103.

For a scenario to enable authentication to MyRealBox through single sign-on, see Using Novell
SecureLogin to Enable Web Applications for Single Sign-On (http://developer.novell.com/
research/appnotes/2002/may/02/apv.htm#1228584) in the May 2002 issue of AppNotes

Using Corporate Scripts

Corporate scripts are normal scripts that are assigned to a Container object instead of to a User
object. Corporate scripts differ from other scripts in two ways:

+ The application is added at an Organization or Organizational Unit object instead of a User
object.

* You use ConsoleOne, MMC, or SecureLogin Manager to add the application.
The differences are the location and inheritance only.

Because they are automatically rolled out to all User objects held in the Container object, corporate
scripts simplify implementing and administering SecureLogin single sign-on. By using this
method, you don’t have to configure applications for each individual user in your organization. All
users read and use the same scripts.

Windows Application, Web, Startup, and Terminal Launcher scripts can all be implemented as
corporate scripts.

Creating a Corporate Script: MMC or ConsoleOne
1 Log in as Admin or an Admin equivalent.
2 Navigate to the Container object where you want to create the corporate script.

3 Right-click the Container object, then click Properties.

30 Nsure SecurelLogin 3.51 Scripting Guide

http://developer.novell.com/research/appnotes/2002/may/02/apv.htm#1228584
http://developer.novell.com/research/appnotes/2002/may/02/apv.htm#1228584

4 Click Novell SecureLogin > Applications > New.

Properties of AKRAMES

Hovell SecureLogin « | Movel SecretStore I Dial Access Services | General vI Restrictions vI Memberships - |

General Settings

UseriDs Applications | passward Policies | Settings |

Description Source [s] ey

To use a prebuilt script, go to Step 5.
To create a new script for an application, without using a prebuilt script, go to Step 6.

5 (Optional) Add a prebuilt script to the application list.
Ba Click Select a Prebuilt Script, scroll to and select the desired application, then click OK.

Mew Application

fe Select 3 pre-huilt application:

Description |
microsaoft Metwarking Client ;l
Microsoft Frant Page
SAP RIZ Login J
Galdmine
GoldMine 5.5

B Movell Groupy

Sunrise Clinical Manager

Ica

Internet Explorer Ll

" Mew application:

DRI |

Qescriptinn:l

THpEs IAdvanced YWeh =

(9] 4 I Cancel | Help |

5b At the Applications tab, save the script by clicking Apply or OK.

The next time the selected application is launched, users will be prompted to enter their
credentials. Whenever the application is subsequently launched, SecureLogin enters the
users' credentials, as though the login process has been eliminated.

6 (Optional) Add an application that doesn’t have a script.
6a From the New Application dialog box, click New Application.

Working with Scripts 31

Mew Application []

O Gelect a pre-huilt application:

Description |

ACT Contact Manager j

ACQL Instant Messenger

Remedy ARUSER

PCAmwhere 8.0

Clarifi

Corporate Tirme

M Care Innovation

=] Jrilot applet

Entrust Client |

URL: |

Qescriptinn:l

Type: |Advanced Wieh ;l

kK I cancel | Help |

6b Type a name in the first text field.

For a Windows application, type the executable filename. For a Web application, type the
URL. This name will display in the Description column on the Applications tab.

& New application:

Executable Mame: |Fle}f{ML.e;={e
Description: |>(r-J1L data finder
Type: |Wind0ws LI

(8] Cancel | Help |

7 Select a type (for example, Java, Startup, Windows) from the drop-down list, then click OK.
8 At the Applications tab, save the data by clicking Apply.
9 Click the newly added application, click Edit, then click Script.

10 Add a script.

For hands-on experience with basic scripting, work through the tutorial in Chapter 6,
“Practicing Your Scripting Skills,” on page 103.

For script commands, with accompanying example scripts and explanations, see Chapter 5,
“SecureLogin Commands,” on page 37.
Creating a Corporate Script: SecureLogin Manager
1 Log in to the workstation as Admin or equivalent.

2 Run SecurelLogin.

32 Nsure SecurelLogin 3.51 Scripting Guide

3 Launch SecureLogin Manager.
Run slmanager.exe, found in the \securelogin\client\tools directory.

4 Type the distinguished name of the object where you want to create a corporate script.

£ secureLogin Configuration Editor

Icn=rdev.o=akranes|

"Dbiect name

Enter the distinguizhed name [for example,
ch=uzers, de=novell do=com)

aF. I Cancel

You logged in to the workstation as Admin or equivalent, then accessed SecureLogin as that
user. SecureLogin Manager uses the rights of the authenticated user to create the corporate
script for the context or object that you specify.

For AD and LDAP, use LDAP naming conventions (for example, cn=admin,cd=akranes). For
eDirectory, use eDirectory conventions (for example, cn=admin.o=akranes).

5 Click OK.

Exempting a User Object from a Corporate Script

Local scripts take precedence over corporate scripts. Occasionally, you might want a particular
user to use a script other than the corporate script. To do this, create a local script for the application
at the User object level.

If you have a corporate script for an application, and you have a user who should not have that
application single sign-on enabled, create a blank local script for the application at the User object
level.

You can also use this procedure to exempt a Container object from corporate scripts inherited from
Container objects that are higher in the directory tree.

Finding Control IDs

A control ID is a number that uniquely identifies a field, such as a button, within a window. Many
script commands related to logging in to Windows applications require a control ID.

To help you determine these control IDs, SecureLogin includes a tool called Window Finder. This
tool displays information about a control that you have selected.

To inspect a control:
1 Click Start > Programs > Novell SecureLogin > Window Finder.
2 Right-click the SecureLogin icon and drag it over the control of interest.
The Window Finder tool displays the details of the control.

If an application page hides the Window Finder, click the WinSSO Window Finder icon on
the system tray.

Working with Scripts 33

34

£ Win550 Window Finder M= E

— Module Details

todule Mame: I

Command Line: I

— Parent Details

Window Title: |
Window Class: I
Handle: I

— Cantral Details

Dialog 1D

Clazz Mame:

3

3

Ywfindow Text: I
Handle: I

[Show password values

,-' Right-click. and drag the Securelogin icon on the left to the Window

cantrol you want to identify,

The following table provides information on fields in the dialog box:

Field

Description

Module Name

Command Line

Window Title

Window Class
Handle

Dialog ID
(Control ID)

Class Name

Window Text

Handle

The name of the executable that created the window. Use this name for the
application name of the Windows single sign-on script.

The path to the module or executable.

The title of the window that contains the control. You can use this title in a window
or title statement.

A field for information only. Each window has a class associated with it.
The handle of the parent window.

A unique identifier. Each control has a unique identifier, called the control ID. Use
this number as the target for Type, Click, Ctrl, and SetPlat statements. For
information on each of these commands, see Chapter 5, “SecureLogin Commands,”
on page 37.

A name that determines the type of the control. For single sign-on to work correctly,
the SecurelLogin Windows component must be able to read and write text to the
specified control. The class name determines the type of the control and whether
reading and writing is possible. Supported classes include edit, combobox, and
static.

A field that displays the text contained within the control. This information can be
useful in troubleshooting and for writing the regular expression required by the
Setplat command.

The handle of the control window.

Nsure SecurelLogin 3.51 Scripting Guide

Using Advanced Windows Scripting

Advanced Windows Scripting (AWS) is an extension to the single sign-on scripting language.
AWS enables arbitrary Windows messages to trigger scripts. In earlier versions of SecureLogin, a
script written for an application was triggered when (and only when) the application sent a WM-
CREATE message. AWS provides Event, which is a single new specifier.

The Event command takes exactly one parameter, which is the Windows event that triggers
execution of the controlled block. The following script illustrates this block:

Begi nSection: "d obal Script Configuration”
EndSection: "d obal Script Configuration”
Begi nSection: "Login W ndow'
Di al og
Cl ass "#32770"
Title "Novel |l iFolder Login"
Crl #1
Crl #1092
Event WM _ACTI VATE
EndDi al og
ReadText #1092 ?Message
If ?Message eq "Place a shortcut to the iFolder on the desktop”
If ?Failure eq 1
Set ?Failure <notset>
EndScri pt
El se
Set pronpt "User nane: "
Type $Username #1007
Set pronpt "Password: "
Type $Password #1079
Set pronpt "i Fol der Server Nane:"
Type $Optional #1001
Cick #1
Set pronpt "Enter your iFolder account infornmation."
Endi f
Endl f
EndSection: "Login W ndow'

Di al og
Par ent
Title "Novell iFolder Login"
EndPar ent
Title "Novell iFolder"
Crl #2
EndDi al og
Readt ext #65535 ?Error Message
I f ?ErrorMessage eq "You nust enter a server address."

Cick #2
Set ?Failure 1
Endl f

Advanced Windows Scripting meets two requirements:
+ It handles login dialog boxes that are created some time before they are displayed.

In earlier SecureLogin releases, SecureLogin fired scripts on a Create event. Whenever a
window was created, SecureLogin could key off that event. When the login dialog box was
created, SecureLogin was able to log in from that event.

Working with Scripts 35

36

However, some applications have a feature where the login dialog box is created long before
itis displayed and before a user is able to actually log in. When this login dialog box is created,
it sends a WM_CREATE message, which triggers any associated script.

Scenario: SecureLogin before AWS. You log in to Novell® iFolder®. The Create event fires
a script and logs you in. However, iFolder creates and instantiates a subsequent login. You
close iFolder but still have it running on your system tray. You log in to iFolder again.
SecureLogin is unable to recognize that event.

Using AWS, you can delay execution of the login script until, for example, the login dialog
box is activated (and fires a WM_ACTIVATE message). SecureLogin 3.51 recognizes the
second event. SecureLogin can key off Create, Activate, Destroy, mouse clicks, and other
events.

It adds value to applications that SecureLogin already handles.

For example, a login system allows the user to choose from # different servers by using a
combo box. With AWS, you can delay execution of the script until the user has selected a
server from the combo box. You cause the delay by using the EM_SETSEL message. The
script can then read which server has been selected, then choose an appropriate credential set.

With AWS, SecureLogin can enable additional applications. Also, scripts no longer need to be
Startup scripts so that all the applications launch. The applications can start at any time.

To use AWS, edit the application scripts by adding events. For a list of events and other
information on AWS, see “Event” on page 54.

Nsure SecurelLogin 3.51 Scripting Guide

SecureLogin Commands

This section provides information on commands used in Securel.ogin scripts. The commands are

listed alphabetically.

Following the command, a table provides information in the following format:

Item

Description

Use with:

SecurelLogin Version:

Type:

Usage:

Arguments:
Description:
Syntax Examples:
Example:

Script type
Script explanation

Startup scripts: Use the command in startup scripts.
Terminal Launcher: Use the command in Terminal Launcher scripts.
Web: Use the command in Web site scripts.

Windows: Use the command in Windows application scripts.

All: You can use the command in all versions.

Version number: The version that the command was introduced in.

Action: Use the command to perform an action, such as the way the Type
command types information into an application.

Dialog specifier: Use the command to define dialog boxes. For example,
see “Parent / EndParent” on page 69 and “Class” on page 44.

Flow control: Use the command to direct SecurelLogin around the script.
For example, see “Repeat / EndRepeat” on page 75 and “EndScript” on
page 53.

Variable manipulator: Use the command to modify variables. For
example, see “Add” on page 39 and “Subtract” on page 94.

The command argument / variable. Variables, values, text, and other
items that you type are italicized in the tables. Optional items that you
type are placed in brackets ([]).

Argument / variable: A brief explanation of the argument or variable.
An explanation of the command and how it is used.

Examples of the various ways the command can be written in a script.

An example script.

SecureLogin Commands 37

AAVerify

Item

Description

Use with:

SecurelLogin Version:
Type:

Usage:

Arguments:

Method

User

Tree

[?Result]

Description:

Syntax Examples:

Startup scripts, Terminal Launcher, Web, Windows
All (Arguments were added in version 3.0.)
Action

AAVerify -Method NMAS sequence -User User object -Tree Tree name
[?Result]

The Novell® Modular Authentication Services (NMAS™) login method that you
want to use. If you don’t specify a method or login sequence, AAVerify uses the
method that was chosen during initial authentication to the Directory.

The DN of the user that you want to use for the AAVerify command. If you don’t
specify a username, AAVerify uses the current user that is authenticated.

The user’s NDS® or eDirectory™ tree name. This argument must be used with
the -User argument.

An optional variable (preferably a temporary variable) that will receive the result
of the AAVerify command. The variable is set to either True for success or False
for failure.

Used with SecureLogin Advanced Authentication or NMAS to verify the user,
typically before the application Username and Password are retrieved and
entered into the login box. AAVerify provides reauthentication to an application,
using a strong login method. AAVerify is extremely secure.

For example, a user can be forced to enter a smart card and PIN before the
application will log in via single sign-on, even though the application natively
knows nothing about smart cards and PINs. If the verification fails, the [?Result]
is set to False.

If NMAS is not installed on the workstation, the script sends an error, or an error
is returned via [?Result].

To enable AAVerify with NMAS, make sure that nmas.dll is in the PATH. Also
make sure that the NMAS client and specified login sequence are installed and
properly configured. For details, see Novell Modular Authentication Services
(http://www.novell.com/documentation/lg/nmas21/index.html).

AAVerify

AAVerify -Method "Enhanced Password" ?Result

AAVerify -Method "Enhanced Password" -User "mkurz" - Tree "Production”
?Result

38 Nsure SecurelLogin 3.51 Scripting Guide

http://www.novell.com/documentation/lg/nmas21/index.html

Add

Item

Description

Example:

Windows Script

The login dialog box is
detected. However,
before SecurelLogin
enters the user’s
credentials, it prompts
the user to provide
Advanced
Authentication
credentials (for
example, a smart card
and PIN, biometric
device, or token).

Logi n Di al og Box
Di al og
Title "Login"
Crl #32770
EndDi al og

AAVerify -Method "Enhanced Password" ?Result
If ?Result Eq "True"

Type $User name #1001

Type $Password #1002

dick #1
El se

Messagebox "Aut hentication failed. Verify that your smart
card is inserted and that your PINis correct. |IT x453"
Endl f

Item

Description

Use with:
SecurelLogin Version:
Type:

Usage:

Arguments:

Variable1

Variable2
[?Result]

Description:

Syntax Examples:

Startup scripts, Terminal Launcher, Web, Windows
3.0
Variable manipulator

Add Variable1 Variable2 [?Result]

The first argument, the number that the second argument will be added to. If the
optional ?result argument is not passed in, this argument also contains the
result of the addition equation. If you use Variable1 without the ?Result
argument, Variable 1 must be a SecurelLogin variable. Otherwise, Variable1 can
be any numeric value.

The second argument, the number added to the first argument in the equation.
Variable2 can be a SecurelLogin variable or a numeric value.

Optional. The sum or result of the equation.

Adds one number whole number to another. (Doesn’t add fractions.) The
numbers can be hard-coded into the script, or they can be variables. The result
can be output to another variable or to one of the original numbers.

Add 1 2 ?Result

Add ?Logi nAttenpts ?Logi nFail ures

Add ?Logi nAttenpts ?Logi nFai |l ures ?Resul t
Add ?Logi nAttenmpts 3

Add ?Logi nAttenmpts 3 ?Result

SecureLogin Commands 39

Attribute

Item

Description

Example

Windows Script:

The values of Control
IDs 103 and 104 are
read into variables.
From there they are
added, and the resultis
typed into Control ID 1.

ReadText #103 ?Nunberl
ReadText #104 ?Nunber 2

Add ?Nunber1 ?Nunber2 ?Resul t
Type ?Result #1

Item Description

Use with: Advanced Web Script

SecureLogin Version: 3.5

Type: Specifier

Usage: Attribute Variable Name Value Name
Arguments:

Variable Name

Value Name

Description:

Example:
SecurelLogin finds the
form that has an
attribute of “name” with
a value of “login.”

The name of the variable to discover.

The value that the above variable must contain for the condition to be true.

The Attribute specifier works with the Tag/EndTag command and specifies

which attributes must exist.

Tag " Forni'
Attribute "Name" "Login"
EndTag

BeginSplashScreen / EndSplashScreen

Item Description
Use with: Terminal Launcher (Generic and Advanced Generic only)
SecureLogin Version: 3.0.4
Type: Action
Usage: BeginSplashScreen
EndSplashScreen
Arguments: None

40 Nsure SecurelLogin 3.51 Scripting Guide

Item Description

Description: Displays a Novell splash screen across the whole terminal emulator window.
This command is used to mask any flashing, etc. that is produced by
SecurelLogin selecting text from the screen. A Delay command at the start of the
script ensures that the emulator window is in place before the splash screen is

displayed.
Example: Del ay 2000
Terminal Launcher Begi nSpl ashScr een
Script Wi t For Text "ogin:"
After launching the Type $User nane

emulator, SecureLogin EndSpl ashScr een
waits two seconds forit Type @&

to connect. The splash

screen displays to

cover the flashing. A

login is detected and a

username is entered.

The splash screen

disappears.
Break
Item Description
Use with: Startup scripts, Terminal Launcher, Web, Windows

SecureLogin Version: 2.5

Type: Action

Usage: Break

Arguments: None

Description: Used within the Repeat/EndRepeat commands to break out of a repeat loop.
Example 1: Di al og

Windows Script Title "Login"

SecurelLogin reads the Cl ass #32770

screen and searches EndDi al og

for “Login”. If “Login” is

found, the Repeat loop Repeat

is broken and the script ReadText #301 "?Text”

continues. If it isn't I'f ?Text Eq "Login"
found, the script Break
checks again. Endl f

Del ay 100

EndRepeat

SecureLogin Commands 41

Item Description

Example 2: # Initial System Login
Terminal Script Wi t For Text "ogin:"

The terminal emulator Type $User nanme

screen is read and the Type @

content is searched for Wi t For Text "assword: "

a successful login. (In Type $Password

this case, the Type @

application main menu Del ay 500

appears.) After the)
user has logged in, the # Repeat loop for error handling

Repeat loop is broken
and the script
continues. Ifthe login is
not successful, the
script checks again.
Terminal emulators use
Repeat loops for error
handling and Break to
break out of the loop as
appropriate.

Repeat

#Check to see if password has expired

If -Text "EMS: The password has expired."
ChangePassword #Password
Type $Password
Type @
Type $Password
Type @

Endl f

#User
I f

has an invalid Usernanme and / or Password stored.
-Text "Login Failed"

Di spl ayVari abl es "The usernane and / or password stored
by SecurelLogin is invalid. Verify your credentials and try
again. | T x453."

Type $User nane

Type @

Del ay 500

Wi t For Text "assword: "

Type $Password

Type @

Del ay 500

Endl f

Account is |ocked for some reason,
If -Text "Account Locked"
MessageBox "Your account has been | ocked, possibly
because of inactivity for 40 days. Contact the admi ni strator
at x453."
Endl f

possi bly inactive.

Main Menu,
If -Text "
Br eak
Endl f

user has | ogged in successfully.
Application Sel ection”

Del ay 100
EndRepeat

42

Nsure SecurelLogin 3.51 Scripting Guide

Call

Item Description

Use with: Startup scripts, Terminal Launcher, Web, Windows

SecurelLogin Version: 2.5

Type: Flow control

Usage: Call Subroutine

Arguments:

Subroutine The name of the subroutine to be called. This name must be identical to the

name specified in the Sub command.

Description: Calls and runs a subroutine.
Example: Repeat

Terminal Script If -Text "Usernane"
If the word Username Call "Login"

is found on the screen, Endl f

the subroutine “Login”
is launched. If “Wrong
Password” is found, the

If -Text "Wong Password"
Call "W ongPassword"

subroutine End f
IWronhgIz::la\?ss.V\tl)ord t_|s Del ay 100
aunched. Subroutines EndRepeat
are particularly useful
when you would # Login Subroutine
otherwise need to Sub Login
repeat the same lines Type $User nane
of script. Type @
Type $Password
Type @
EndSub

Wong Password Subroutine
Sub W ongPasswor d

Di spl ayVari abl es "The password entered is incorrect.
Verify your password and click OKto retry login. I T x453."

$Passwor d
Call Login
EndSub
ChangePassword
Item Description
Use with: Startup scripts, Terminal Launcher, Web, Windows

SecurelLogin Version: All

Type: Action

SecureLogin Commands 43

Item Description

Usage: ChangePassword Variable [Text] [Random]
Arguments:

Variable A normal or runtime variable that the new password is stored in.

[Text] The text you want displayed in the change password dialog box.

[Random] Invokes the random password generator.

Description: Allows a single variable to be changed. Use this command in scenarios where

Syntax Examples:

Example:

Windows Script

The script detects the
change password
event. The application
requires the current
username and
password, then the
new password and
confirmation of the new
password. The script
creates a backup of the
old password in case
the password change
fails (which can be
detected via the
message that pops up).
The script then
generates and enters a
new password.

password expiration is an issue. The Variable will be set to the new password.

The flag for this command is Random. If Random is set, the new password will
be generated automatically in compliance with the variable’s password policy.

If Random is not set, a dialog box prompts the user to enter a new password.
The new password is tried against any variable password policies that are in
place. Also see “RestrictVariable” on page 78.

ChangePassword ?NewPassword
ChangePassword ?NewPassword "Enter a new password”
ChangePassword ?NewPassword Random

Change Password Di al og Box
Di al og

Titl e "Change Password"

Cl ass #32770
EndDi al og

Set $Passwor dBackup $Password
Type $Password #1015
ChangePasswor d $Password Random
Type $Password #1005

Type $Password #1006

Cick #1

Change Password Fail ed Di al og Box
Di al og

Titl e "Change Password Fail ed"

Cl ass #32770
EndDi al og

Set the password back as the password change fail ed

Set $Password $Passwor dBackup

MessageBox "The change password process failed. Retry the
password change at your next login. IT x453."

Class
Item Description
Use with: Startup scripts, Windows
SecureLogin Version: All
Type: Dialog specifier
44 Nsure SecurelLogin 3.51 Scripting Guide

Click

Item

Description

Usage:

Arguments:

Window-Class

Description:

Example:

Windows Script

The dialog box
generated by the
application is checked
to determine if the
Window Class is
#32770. If True and its

Class Window-Class

A string specifying the window class that this statement will match.

When a window is created, it is based on a template known as a window class.
The Class command checks to see if the class of the newly created window
matches its Window-Class argument.

If the window matches the Window-Class argument, the execution of the script
continues to the next line. If the window does not match the Window-Class
argument, execution continues at the next dialog statement.

You can determine the class by using Window Finder. See “Finding Control IDs”
on page 33.

Login D al og Box
Di al og

Title "Login"

Cl ass #32770
EndDi al og

Type $Username #1001
Type $Password #1002

title is "Login", that dick #1

section of the script

executes. If False, the

script checks the next

Dialog block.

Item Description

Use with: Startup scripts, Web, Windows

SecurelLogin Version:

Type:

Windows Usage:
Usage 1

Usage 2

Web Usage:

All

Action

Click #Ctrl-ID [-Raw] [-Right]
Click X_Coordinate Y_Coordinate

Click #Number

SecureLogin Commands 45

Item Description

Arguments:

#Ctrl-ID The ID number of the control to be pressed.

[-Raw] Eliminates the mouse and sends a direct click.

[-Right] Sends a right-mouse click. Use this argument with the -Raw flag only.

X_Coordinate Represents the horizontal coordinate relative to the client area of the application
(not the screen).

Y_Coordinate Represents the vertical coordinate relative to the client area of the application
(not the screen).

#Number The pound or hash symbol followed by the sequential number of the button to
be pressed. The number of the button is determined by the Web page layout.
The first button (top to bottom, left to right) on the page is number 1, the second
button on the page is number 2, and so on. Because of Web page layout and
design, the sequential order of the buttons might not be obvious.

The sequential number of the button to be pressed. The number of the button
is determined by the Web page layout. The first button on the page is number
1, the second button on the page is number 2, and so on. Because of Web page
layout and design, the sequential order of the buttons might not be obvious.

number

Description: When used with Windows applications, the Click command sends a click
command to the specified #Ctrl-ID. If the button to be clicked does not have a
control ID, use the Type \N command.

The -Raw flag causes SecurelLogin to bypass the mouse by emulating the
mouse and sending a direct click message to the control. Using the -Right flag
with the -Raw flag sends a right-click to the control. If the button or control does
not respond to the Click command, you can set the -Raw flag.

Setting the #Ctrl-ID to 0 (zero) sends the Click command to the window that the
script is running on.

You can also set X coordinate Y coordinate coordinates. These coordinates are
relative to the client area of the application, not the screen.

When used with Web pages, the click command takes a single argument, which
is the sequential number on the page of the button to be pressed. "Click #3"
clicks the third button on the page. Keep in mind that, because of Web page
layout and design, the sequential order of the buttons might not be obvious.

Syntax Examples: Click #1
Click #1 -Raw -Right
Click -X12-Y 24

Example 1: # Login Di al og Box
Windows Script Di al og

The Login dialog is Title "Login"
detected, the Grl #32770
username and EndDi al og

password are entered,
and button number 1 TyYPe $Username #1001

(in this case the Login TYPe $Password #1002
button) is clicked. dick #1

46 Nsure SecurelLogin 3.51 Scripting Guide

Item Description

Example 2: Type $User nane
Web Script Type $Password Password
The username and Cick #1

password are entered,
then the Login button is

clicked.

Example 3: #Logi n Di al og Box
Windows Script Di al og

In this example, the Title "Login"
application is Java. Cl ass #32770

Therefore, thereisno End Di al og
Control ID. Instead, the

click command is told TyPe $User name
to click a particular Type $Password

place on the window. < ick -X 12 -Y 24

ConvertTime
Item Description
Use with: Startup scripts, Terminal Launcher, Web, Windows

SecureLogin Version: 3.0.4

Type: Variable manipulator

Usage: ConvertTime ?CurrTime String Time

Arguments:

String Time The output variable.

Description: Converts ?Currtime system to a string representation of the date and time and

stores it in String Time.

Example: # Login Dialog Box
Windows Script Dialog

Converts the time to a Title "Login"
readable format and Class #32770
displays it in a dialog End Dialog

box.

ConvertTime ?CurrTime ?Time
MessageBox ?Time

SecureLogin Commands 47

Ctrl

48

Item

Description

Use with:
SecurelLogin Version:
Type:

Usage:

Arguments:

#Ctrl-ID

[RegEX]

Description:

Syntax Examples:

Example:
Windows Script
The dialog box is
tested to see if it
contains the correct
Control IDs with the

Startup scripts, Windows
All
Dialog specifier

Ctrl #Ctrl-ID [RegEx]

The ID number of the control to be checked.

The regular expression.

Determines if a window contains the control expressed in the #Ctrl-ID argument.
The control ID number is a constant that is established at the time a program is
compiled.

NOTE: Third-party software control ID numbers might not be constant from one
version to the next.

You can use the Window Finder tool to determine the control ID number. See
“Finding Control IDs” on page 33.

Using the [RegEx] argument adds a further check that allows the script to skip
to the next command. If the text on the specified #Ctrl-ID does not conform to
the [RegEXx], the script skips to the next dialog statement as though the #Ctrl-ID
did not exist.

Ctrl #1
Ctrl #1 "OK"

Login Di al og Box
Di al og

Title "Login"
Grl #1 "X
Crl #2 "Cancel"
Crl #3 "Hel p"

correct values. If any of EndDi al og

the Control IDs are
missing, or the text
does not match, the

Type $User nane
Type \T

script passes on to the Cick #1

next dialog block.

Nsure SecurelLogin 3.51 Scripting Guide

Delay

Item

Description

Use with:

SecurelLogin Version:

Type:
Usage:

Arguments:

Time Period

Description:

Example:

Windows Script

The login box is
detected. However, the
script waits half a
second before acting
upon it to ensure that
the box is complete.

Startup scripts, Terminal Launcher, Web, Windows
All
Action

Delay Time Period

A period of time, expressed in milliseconds (1/1000 of a second), to pause
execution of the script.

Delays the action of the script for the time specified in the Time Period
argument. The time specified in the Time Period argument is noted in
milliseconds. For example, Delay 5000 creates a 5-second pause.

Use the Delay command to accommodate an introduction screen or some other
custom feature. When troubleshooting new scripts, add Delay to the script as a
first course of action.

To optimize SecurelLogin’s performance, use the Delay command in all Repeat
loops.

Logi n Di al og Box
Di al og

Title "Login"

Cl ass #32770
EndDi al og

Del ay 500
Type $User nane #1001
Type $Password #1002

Cick #1
Dialog / EndDialog
Item Description
Use with: Startup scripts, Windows

SecurelLogin Version:

Type:

Usage:

Arguments:

All
Dialog specifier

Dialog
EndDialog

None

SecureLogin Commands 49

Item Description

Description: Identifies the beginning and end of a dialog specification block. Use these
commands to construct a dialog specification block, which consists of a series
of dialog specification statements (for example, Ctrl, Title).

When a dialog block is executed, each of the dialog specification statements is
executed in sequence. If any statement within the dialog block is not found, the
entire dialog block is considered false and execution proceeds to the next dialog
block, if any. You need to specify enough information in the dialog block to make
the dialog box unique (for example, Log In or Change Password).

The part of the script that follows the EndDialog command is called the script
body. Another dialog block, or the end of the script, terminates the script body.

Example: # Login Di al og Box

Windows Script Di al og

The dialog box is Title "Login"

tested to determine its crl #1 "OK"

identity. Ifit is Par ent

determined to be the Title "Application 1"
login box, the script EndPar ent

parses the Type and EndDi al og

Click commands to
complete the login Type $Usernane #1001

process. Type $Password #1002
Cick #1

DisplayVariables

50

Item Description

Use with: Startup scripts, Terminal Launcher, Web, Windows

SecurelLogin Version: All

Type: Action

Usage: DisplayVariables [User Prompf] [Variables]

Arguments:

[User Prompt] Optional, customized text to be displayed in the Enter SecurelLogin Variables
dialog box.

[Variables] The name of the variables you want the user to be prompted for. If you don’t
specify the name of the variables, SecureLogin prompts for all variables that the
script uses.

Nsure SecurelLogin 3.51 Scripting Guide

Item

Description

Description:

Syntax Examples:

Example:

Windows script

The Wrong Password
dialog box is detected.
SecurelLogin prompts
the user to enter a new
username and
password for it to use.
After these have been
specified, SecureLogin
enters them into the
dialog box and clicks
OK.

Displays a dialog box that lists the user’s stored variables (for example,
$Username and $Password) for the current application. The user can edit the
variables from this dialog box.

For example, if the login is unsuccessful because of an incorrect username or
password, the DisplayVariables command prompts the user to edit the stored
username or password values. From that point, the login process proceeds as
usual.

To replace the default prompt text in the Enter SecureLogin Variables dialog box,
enter the replacement text in quotation marks after the DisplayVariables
command. Limit the text to 90 characters.

If no variables are stored for the user the first time SecureLogin attempts to apply
single sign-on to the application, the prompt will not be customized.

After variables are stored for the user, the prompt is customized when the script
is run.

You can also customize the text in the prompt by using the SetPrompt command.
See “SetPrompt” on page 88.

TIP: Sometimes you will need to enter "dummy" variables in the script,
depending on the placement of the DisplayVariables command. For the
command to operate optimally, some $Variables must be listed after the
command.

The OnException EnterVariablesCancelled command can be used to prevent a
user from cancelling the DisplayVariables prompt.

DisplayVariables

DisplayVariables “Enter your details”

DisplayVariables “Enter a new password” $Password

DisplayVariables “Enter your username and password” $Username $Password
DisplayVariables “” $Username $Password

Wong Password D al og Box
Di al og

Title "Wong Password"

Cl ass #32770
EndDi al og

Di spl ayVari abl es "Enter a new username and password"”
$User name $Password

Type $Usernanme #1001

Type $Password #1002

Cick #1

SecureLogin Commands 51

Divide

DumpPage

Item

Description

Use with:
SecurelLogin Version:
Type:

Usage:

Arguments:

Variable1

Variable2

[?Result]

Description:

Syntax Examples

Example:

Windows Script

The values of Control
IDs 103 and 104 are
read into variables.
From there they are
divided and typed into

Startup scripts, Terminal Launcher, Web, Windows
3.0
Variable manipulator

Divide Variable1 Variable2 [?Result]

The dividend. The first argument. The number that will be divided by the second
argument. This argument will contain the result if the optional [?Result]
argument is not passed in. If you use the Variable1 argument without the
[?Result] argument, Variable1 must be a SecurelLogin variable (either
?Variable1 or $Variable1). Otherwise, Variable1 can be any numeric value.

The divisor. The second argument. The number that the first argument is
divided by. The Variable2 argument can be a SecurelLogin variable or a numeric
value.

The quotient or result of the equation.

Divides one whole number by another. (Doesn’t divide fractions or give results
in fractions.) The numbers can be hard-coded into the script, or they can be
variables. The result can either be output to another variable or to one of the
original numbers.

Divide "1" "2" ?Result

Divide ?LoginAttempts ?LoginFailures

Divide ?LoginAttempts ?LoginFailures ?Result
Divide ?LoginAttempts "3"

Divide ?LoginAttempts "3" ?Result

ReadText #103 ?Nunber1

ReadText #104 ?Nunber 2

Di vi de ?Nunber1l ?Nunber2 ?Result
Type ?Result #1

Control ID 1.

Item Description

Use with: Advanced Web Script
SecureLogin Version: 3.5

Type: Action

52 Nsure SecurelLogin 3.51 Scripting Guide

Item Description

Usage: DumpPage Variable
Arguments:
Variable The string variable to receive the page information.
Description: Provides information about the current Web page. This information can be

useful for debugging scripts for a Web page.

Example: DunpPage ?dunp
MessageBox ?dunp

DumpScript

EndScript

Item Description

Use with: Advanced Web Script

SecureLogin Version: 3.5

Type: Action
Usage: DumpScript Variable
Arguments:
Variable The string variable to receive the script information.
Description: Used for debugging a web page. Shows the structure of what SecureLogin has

seen as tags.

Example: DunpScri pt ?dunp
MessageBox ?dunp

Item Description

Use with: Startup scripts, Terminal Launcher, Web, Windows

SecurelLogin Version: All

Type: Action

Usage: EndScript

Arguments: None

Description: Immediately terminates execution of the script.

SecureLogin Commands 53

Item Description

Example: Di al og

Windows Script Title "Login Failure"
The login box is CGrl #1

detected. SecureLogin EndDi al og

enters the username
and password and
clicks OK. If the
"Incorrect Password"
message is detected,

ReadText #65535 ?Error Msg
If "Incorrect Password" -In ?ErrorMsg

MessageBox "You have entered an incorrect password”
EndScri pt

SecureLogin tells the ~ Endl

user that the password

was incorrect and

terminates the script.

Event

Item Description

Use with: Win32 application scripts

SecurelLogin Version: 3.5

Type: Dialog specifier

Usage: Event Event

Arguments:

Event The application event to monitor. For a list of events that you can specify, see
Appendix E, “Event Specifiers,” on page 133.

Description: Scripts generally execute when an application window is created. This timing
corresponds to the WM_CREATE message that is received from an application
window at startup.

By adding the Event specifier to a dialog block, you can override this behavior,
so that a script now executes when (and only when) the specified message is
generated. If no Event specifier is given, it is equivalent to "Event
WM_CREATE".

You can apply the Event specifier only within a Dialog and EndDialog statement
block.

Specify only one Event per Dialog block. If there is a requirement to monitor for
multiple events, each must be specified within its own Dialog block.

Syntax Examples: Dialog
Class "someclass"

Event WM_ACTIVATE

EndDialog

Messagebox "Caught the WM_ACTIVATE message"
54 Nsure SecurelLogin 3.51 Scripting Guide

GetCheckBoxState

Item

Description

Use with:
SecurelLogin Version:
Type:

Usage:

Arguments:

Item Number

Advanced Web Script
3.5
Action

GetCheckBoxState Item Number Variable

The Windows control ID of the check box.

Variable The target variable for the status of the specified check box. The value returned
will be Checked or Unchecked. The variable can be either a ? or a $ variable.
Description: Returns the current state of the specified check box.
Example:. Cet CheckBoxSt ate #25 ?statel
Get CheckBoxSt ate #26 ?state2
Messagebox ?statel
Messagebox ?state2
GetCommandline
Item Description
Use with: Startup scripts, Windows

SecureLogin Version:
Type:

Usage:

Arguments:

Variable

Description:

3.04
Action

GetCommandline Variable

Defines where the captured command line will be stored.

Captures the full command line of the program that is loaded and saves it to the
specified variable.

TIP: You can use GetCommandLine to detect and differentiate back-end
systems or databases for use with multiple logins in the SAP application.

SecureLogin Commands 55

Item

Description

Example:
Windows script
The command line of

Get Commandl i ne ?Text
I f ?Text Eq "C \Wnnt\ Not epad. exe"

Ki || app Not epad. exe

the application is read, Endl f

then tested to seeifitis
Notepad.exe. If it is,
Notepad is closed. If it
isn't, the script ends.

GetSessionName

Item Description

Use with: Terminal Emulator

SecureLogin Version: 3.5

Type: Action

Usage: GetSessionName ?variable

Arguments: None

Description: Finds the current HLLAPI session name that is being used to connect and
returns it to the specified variable.

Example: GetSessionName ?Session_name

GetText

Windows Script

Item Description
Use with: Web
SecurelLogin Version: 3.0
Type: Action
Usage: GetText Variable
Arguments:
Variable Defines where the captured text will be stored.

56 Nsure SecurelLogin 3.51 Scripting Guide

Item Description

Description: Gets all of the text from the screen and saves it to the specified variable. This
command Is rarely used and is generally unnecessary. Use this command in a
large Web script that might contain several If-Text statements.

Under Netscape, each If-Text statement scans the screen to find the specified
text. Each scan of the screen results in the screen flashing. However, if you use
GetText (for example, If ?Text -In ?FromGetText), the script can contain
multiple If-Text commands, with only one scan of the screen.

Example: Get Text ?Text

Web Script If "Login" -ln ?Text

The text content of the Type $User nane

Web page is copied Type $Password Password

into the ?Text variable. Endl f
SecurelLogin tests for

the presence of

"Login." If it exists,
SecurelLogin enters the
credentials and

submits them

automatically.

GetURL

Item Description

Use with: Web

SecurelLogin Version: 3.0

Type: Action

Usage: GetURL Variable

Arguments:

Variable Defines where the captured URL will be stored.

Description: Captures the URL of the site that is loaded and saves it to the specified variable.
Example: Cet URL ?URL

Web Script If "Logout" -In ?URL

The URL of the Web MessageBox " You have chosen to | og out of the applications.
site is copied intothe You wi ||l now be redirected to the Intranet home page."
?URL variable and GoToURL "http://Intranet”

tested to see if it Endl f

matches text being
searched for. If it does,
SecurelLogin pops up a
message box and
redirects the user to the
Intranet.

SecureLogin Commands 57

GotoURL

Item Description

Use with: Web

SecurelLogin Version: 2.5

Type: Action

Usage: GotoURL URL [-frame]

Arguments:

URL The URL that the browser will navigate to.

-frame Opens the URL in the frame that started the script.

Description: Makes the browser navigate to the specified URL. By default, the command

opens the new Web page in the main window, rather than the frame that started
the script. When you use the -frame option on a framed Web page, the URL
redirect occurs only in the current frame rather than in the parent window.

Example: If -text "lIncorrect Password"
Web Script MessageBox "You have entered an incorrect password"
Securelogin detects Got oURL "http://ww. novel | . cont

an incorrect password Endl f
message, displays a

message box informing

the user, then browses

to the Novell Web site.

If / Else | EndIf

Item Description

Use with: Startup scripts, Terminal Launcher, Web, Windows
SecureLogin Version: All
Type: Flow control

Usage 1: If Value1 Gt/Lt/Eq Value2
#Do This
Else
#Do This
Endif

Usage 2: If -Text [-frame] Text
#Do This
Else
#Do This
EndIf

58 Nsure SecurelLogin 3.51 Scripting Guide

Item

Description

Usage 3:

Usage 4:

Arguments:

Gt/LV/Eq/-In

-Text

-Exists

Description:

Syntax Examples:

If -Exists Variable
#Do This

Else
#Do This

EndlIf

If Text_to_find -In Text_to_search_through
#Do This

Else
#Do This

EndIf

Operators. They compare the value on the left side of the operator to the value
on the right side of the operator.

+ If Value1 Eq Value2
Assesses whether two values are equal.
+ If Value1 Gt Value2
Assesses whether one value is greater than another value.
¢ If Valuet Lt Value2
Assesses whether one value is less than another value.
+ If Text_to_find -In Text_to_search_through

Searches for text from within specified text.
If -Text [frame] Text.

A shortcut to evaluate text within windows. You can use the optional -frame
switch within framed Web pages to restrict searching for the text in the current
frame only.

If -Exists Variable.

Assesses whether the text specified in the variable is present.

Establishes a block to be executed if the Operator is found to be true.

The Else command works inside an If block. This command is executed if the
operator in the If block is false.

The EndIf command terminates the If block.

If ?Value1 Gt ?Value2
If -Text "Login”

If -Exists $RunBefore
If "Login" -In ?Text

SecureLogin Commands 59

60

Item Description
Example 1: If -Text "lIncorrect Password"
Web Script Di spl ayVari abl es "You have entered the i ncorrect password.

SecurelLogin tests for
"Incorrect Password". If
it is found, an incorrect
password message
box is displayed. If the
error message isn'’t
found, SecurelLogin
logs in as normal.

Example 2:

Windows Script
Each time the script is
run, a variable is
incremented. This is
used to count the
number of times the
dialog box has been
displayed. Ifit is
displayed more than
three times, the
application is closed. If
the login is successful,
the count is reset.

Example 3:

Web Script

The text content of the
Web page is copied to
?WebText. The
variable is then tested
to see if "Login" is
present. If it is,
SecurelLogin performs
the login process. If it
isn't, the script is
terminated.

Verify it and try logging in again."
El se

Type $User nane

Type $Password Password
Endl f

Login Di al og Box
Di al og

Title "Login"

Cl ass #32770
EndDi al og

ReadText #1001 ?User name

If -Exists $Username
El se

Set $User nane ?User nane
Endl f

I ncrenment ?RunCount
I f ?RunCount & "3"

MessageBox "Logi n has been attenpted too many tines.

application will be closed.”
Kill App "app. exe"

El se
Type $Usernane #1001
Type $Password #1002
Cick #1

Endl f

Logi n Successful Dial og Box
Di al og
Title "Login Successful"
crl #1
EndDi al og

Set ?RunCount "0"

Get Text ?WebText
If "Login" -1n ?WebText
Type $User nane
Type $Password Password
El se
EndScri pt
Endl f

The

Nsure SecurelLogin 3.51 Scripting Guide

Include

Item

Description

Example 4:

Startup Script
When SecurelLogin
loads, it tests to see
whether the user has
run SecurelLogin
before. If the user
hasn't, SecurelLogin
sets the variable so
that the message is
displayed only once.

If -Exists $LoadedBefore

EndScript
Else

MessageBox -YesNo ?Result "Welcome to SecureLogin, a new password
management tool that will save you the hassle of remembering your passwords.
Would you like more details on how to use SecureLogin and what it can do for
you?"

Set $LoadedBefore "Yes"

If 7Result Eq "Yes"

GoToURL "http://www.company.com/SecureLoginDetails.htm"
EndIf

SecurelLogin then EndIf

displays a welcome

message along with

the option for further

details on

SecurelLogin.

Item Description

Use with: Startup scripts, Terminal Launcher, Web, Windows
SecureLogin Version: 3.0

Type: Flow control

Usage: Include Platform-Name
Arguments:

Platform-Name

Description:

Example:

Windows Script
SecurelLogin detects
the login dialog,
executes the
notepad.exe script,
then enters the user’s
credentials.

The name of the script to be included.

Allows commonly-used application script code to be shared by multiple
applications. The script identified by Platform-Name is included at execution
time into the calling application script. The application type selected for the
script to be included should be compatible with the calling script's application
type.

Logi n Di al og Box
Di al og

Title "Login"

Cl ass #32770
EndDi al og

I ncl ude Not epad. exe
Type $Usernanme #1001
Type $Password #1002
Cick #1

SecureLogin Commands 61

Increment / Decrement

62

Item

Description

Use with:

SecurelLogin Version:

Type:

Usage:

Arguments:

Variable

Description:

Syntax Examples:

Example:

Windows Script
Each time the script is
run, a variable is
incremented. This is
used to count the
number of times the
dialog box has been
displayed. Ifit is
displayed more than
three times, the
application is closed. If
the login is successful,
the count is reset.

Startup scripts, Terminal Launcher, Web, Windows
All
Variable manipulator

Increment Variable
Decrement Variable

The name of the variable to increase or decrease in value.

Counts the number of passes a particular script has made. After the number of
instances is equal to the specified number, you can instruct the script to run
another task or end the script.

This instruction can be particularly useful in the following situations:

+ When you configure an application whose login panel is similar to other
windows within the application.

+ To easily control the number of attempts a user can have to access an
application.

Increment ?RunCount
Decrement ?RunCount

Logi n Di al og Box
Di al og

Title "Login"

Cl ass #32770
EndDi al og

I ncrement ?RunCount
If ?RunCount &¢ "3"
MessageBox "Logi n has been attenpted too nmany tines. The
application will be closed."
Kill App "app. exe"
El se
Type $Usernanme #1001
Type $Password #1002
Cick #1
Endl f

Logi n Successful Message
Di al og
Title "Login Successful "
Crl #1
EndDi al og

Set ?RunCount "O0"

Nsure SecurelLogin 3.51 Scripting Guide

KillApp

Local

Item

Description

Use with:
SecurelLogin Version:
Type:

Usage:

Arguments:

Process-Name
Description:

Example:

Windows Script
Each time the script is
run, a variable is
incremented. This is
used to count the
number of times the
dialog box has been

Startup scripts, Terminal Launcher, Web, Windows
All
Action

KillApp Process-Name

The name of the process that will be terminated.
Terminates an application.

Logi n Di al og Box
Di al og

Title "Login"

G ass #32770
EndDi al og

I ncrenment ?RunCount
I f ?RunCount & "3"

displayed. If it is MessageBox "Logi n has been attenpted too many tinmes. The
displayed more than ~ @Pplication will be closed.”
three times, the Kill App "app. exe"
application is closed. If El s€
the login is successful, Type $Usernane #1001
the count is reset. Type $Password #1002
dick #1
Endl f
Logi n Successful Message
Di al og
Title "Login Successful”
arl #1
EndDi al og
Set ?RunCount "O0"
Item Description
Use with: Startup scripts, Terminal Launcher, Web, Windows
SecureLogin Version: 3.0
Type: Variable manipulator
Usage: Local ?Variable
SecureLogin Commands 63

Item

Description

Arguments:

?Variable

Description:

Example:

Windows Script

A variable is declared
local, then used to
count the number of
times a dialog box has
been displayed. If the
box has been
displayed too many
times, SecureLogin
alerts the user, then
closes the application.

The runtime variable that will be declared as local.

Declares that a runtime variable will only exist for the lifetime of the script. Use
local runtime variables the same way as normal runtime variables, and still write
local runtime variables as ?Variable.

Declare local runtime variables to be local by using the Local command,
followed by the variable name. When runtime variables are declared local, they
cannot be set back again. You can declare a runtime variable to be local at any
time in a script.

Using local runtime variables slightly increases the performance of
SecureLogin. Use local runtime variables to run scripts multiple times and not
have the runtime variables stored between each run of the script.

Also use local runtime variables to prevent runtime variables from overwriting
each other. Overwriting could happen if two instances of a script are running at
the same time. For example, use the Local command if two instances of
Terminal Launcher are running, each instance running the same script but
attached to different emulator sessions.

Invalid Login Message
Di al og
Title "Login Failure"
Cl ass #32770
EndDi al og

Local ?RunCount

I ncrement ?RunCount

If ?RunCount &G "5"
MessageBox "C osing Application”
Kill App "PasswordText . exe"

Endl f

Type $User nane

Type $Password

MessageBox
Item Description
Use with: Startup scripts, Terminal Launcher, Web, Windows

64

SecurelLogin Version:
Type:

Usage:

All
Action

MessageBox [-YesNo] [-YesNoCancel] ?Variable [-Background] [-DefaultNo]
Data

Nsure SecurelLogin 3.51 Scripting Guide

Item

Description

Arguments:

[-YesNoO]

[-YesNoCancel]

?Variable

[-Background]

[-DefaultNo]

Data

Description:

Syntax Examples:

Allows the user to select either Yes or No within the message box rather than
being limited only to an OK button.

Allows the user to select either Yes, No, or Cancel when a message box is
presented.

Required with the -YesNo or -YesNoCancel flag to store the result of the user
action.

When specified, allows the user to open an application and work in that
application, without having to respond to the MessageBox.

If this parameter is not used, the MessageBox remains the topmost window and
the user must respond to the MessageBox before continuing with any other
work.

An optional parameter, used only with the -YesNo and -YesNoCancel flags.
When the -DefaultNo parameter is set, default focus goes to the No button
instead of to the Yes button.

The text to be displayed to the user.

Displays a dialog box that contains the text specified in the Data variable. The
script is suspended until the user reacts to this message. As the following line
illustrates, MessageBox can take any number of text arguments, including
variables:

MessageBox "The User "$Usernane" has just been | ogged into
t he systent

You can set the -YesNo flag when calling a MessageBox. If the -YesNo flag is
set, the MessageBox prompts the user with a box that has a Yes and a No button
rather then an OK button.

You can capture the result of the MessageBox immediately after the flag by
using a runtime ?Variable. The variable value is set to Yes, No, or Cancel.

MessageBox "Script completed successfully”

MessageBox -YesNo ?Result "Do you want to continue?”

MessageBox -YesNoCancel ?Result -Background -DefaultNo "Do you want to
continue?”

SecureLogin Commands 65

Multiply

Item

Description

Example 1:

Windows Script
Securelogin detects
the password dialog
box, asks the user
whether the user wants
to change the
password, and informs
the user that the
change was
successful.

Example 2:

Terminal Launcher
Script

Message boxes can be
useful when
troubleshooting scripts.
The boxes can be
displayed before each
step in the script to
enable the writer to see
where the script fails to
execute.

NOTE: The
WaitForText command
cuts off the first
character because it
will find both Password
and password and
respond to all
password entry points.

Change Password Di al og Box
Di al og

Titl e "Change Password"

Cl ass #32770
EndDi al og

MessageBox - YesNo ?Result "Your password has expired. Wuld
you |like to change it now?"

If ?Result Eq "Yes"

Type $Usernanme #1015

Type $Password #1004

ChangePassword $Password Random

Type $Password #1005

Type $Password #1006

Cick #1

MessageBox "Password changed successful | y"
El se

Cick #2

MessageBox "You el ected not to change your password."
Endl f

MessageBox "Beginning wait for Login pronpt"
Wi t For Text "ogin:"
MessageBox "Login detected,
Type $User name

MessageBox "Usernane entered,
Type @

MessageBox "Enter has been sinmulated. Now waiting for
Passwor d"

Wai t For Text "assword: "
MessageBox "Password det ect ed,
Type $Password

MessageBox "Password entered,
Type @

MessageBox " Sequence conpl et ed. The user shoul d now be | ogged
in"

now entering Username"

now sinul ati ng Enter”

now entering Password"

now sinul ati ng Enter”

Item

Description

Use with:
SecurelLogin Version:
Type:

Usage:

Startup scripts, Terminal Launcher, Web, Windows
3.0
Variable manipulator

Multiply Variable1 Variable2 [?Result]

66 Nsure SecurelLogin 3.51 Scripting Guide

Item

Description

Arguments:

Variable1

Variable2

[?Result]

Description:

Syntax Examples:

Example:

Windows Script
The values of control
IDs 103 and 104 are
read into variables.
From there they are
multiplied, then typed
into control ID 1.

The multiplicand. The first argument. The whole n