
Identity Manager Connector for Java Messaging Service

-1-

+

Novelltm

 DirXML® Driver 2.0 for

Java* Message Service (JMS)

and WebSphere* MQ

Driver Overview and Configuration

Version 2.0

This document contains trade secrets and proprietary information. No use or disclo-
sure of the information contained herein is permitted without prior written consent.

All trade names, trademarks, or registered trademarks are trade names, trademarks,
or registered trademarks of their respective companies.

Identity Manager Connector for Java Messaging Service

-2-

Table of Contents

TABLE OF CONTENTS... 2

PREFACE .. 5

DOCUMENTATION CONVENTIONS .. 5

INTRODUCING THE DRIVER ... 6

Overview .. 6

What Is JMS .. 7

High Availability JMS ... 7

Understanding JMS Driver Concepts ... 7

JMS Engine Processing .. 8
The DirXML Publisher Channel .. 9
The DirXML Subscriber Channel .. 9

Publishing to eDirectory ... 10

Subscribing from eDirectory.. 10

Benefits... 10

Features ... 11

Java-Enabled Enterprise Application Integration (EAI) Systems .. 11

Supported Platforms.. 12

JMS Driver Features .. 12

For More Information about DirXML .. 12

JMS Configuration and Setup .. 14

Using iManager .. 14

Product Components ... 14
Driver Configuration .. 14
Driver Shim.. 14

INSTALLING AND CONFIGURING THE DRIVER .. 15

Prerequisites ... 15

Identity Manager Connector for Java Messaging Service

-3-

iManager... 15
Supported Platforms... 16

PLANNING FOR INSTALLATION... 16

JMS Checklist... 16

Planning a Local or Remote Installation ... 17
Local Installation.. 17
Remote Installation .. 17

Installing Components... 17

Installing or Upgrading The Driver... 18
Installing the Driver ... 18

Activating DirXML Products.. 20

Post- Installation Tasks ... 21
Importing the Driver Configuration ... 21

Configuring the Remote Loader on the Remote System .. 22
Generating a Security Certificate on the eDirectory Container ... 23
Creating an Organizational Trusted Root Certificate... 23
Using the Wizard to Configure Remote Loader Properties on the Remote Loader Host Server
.. 24
Starting the Remote Loader if It Is Installed as a Service.. 25
Starting the Remote Loader Manually ... 25
Configuring Driver Object Properties for the Remote Loader... 26

Configuring The JMS Driver Parameters... 27
Configuring Driver Parameters .. 27

Troubleshooting the Driver ... 30

Using the DSTrace Utility ... 30

Common ErrorsDeveloping Solutions with the DirXML Driver for JMS 31

Developing Solutions with the DirXML Driver for JMS .. 32

Using JMS Features .. 32

Performance Data... 35

Association Style Sheets ... 39
Overview .. 39
Association StyleSheet (XDS Format)... 39
Association Write Back (Non-XDS Format) ... 39
Association (Publisher Channel).. 40
XSLT Channel Write-Back In Depth... 41
Sample Query Style Sheet.. 46
Sample Query Reply Documents .. 46

Identity Manager Connector for Java Messaging Service

-4-

Audit Features .. 48

Automatic Failover and Load Balancing ... 49

Vendor Configurations .. 50
Features .. 63
Message Properties... 68
Message Body .. 68
JMS Messaging Models: Publish-and-Subscribe and Point-to-Point 68

APPENDIX D: SOLUTIONS .. 72

RACF & CICS Integration.. 72

Oracle Integration .. 78
Oracle Workflow.. 78

Novell exteNd Composer .. 80

Novell exteNd Composer .. 80

Data Junction Integration .. 83
Dodge Adaptors.. 83
Application Adaptors: .. 83
HIPAA Adaptors .. 85
General Adaptors.. 85

Identity Manager Connector for Java Messaging Service

-5-

Preface
This document is for network administrators, consultants, and JMS administrators.
DirXML® Driver 2.0 for Java* Message Service (JMS) and WebSphere* MQ is designed to
share data between eDirectory and applications that are interfaced to the many dif-
ferent messaging bus applications supported by the JMS standard.

This configurable solution gives organizations the ability to increase productivity and
streamline business processes by integrating any business process and information sys-
tem platform in the enterprise with Directory Services.

The previous version of the driver is the DirXML Driver 1.0 for WebSphere MQ.

Documentation Conventions
The term driver refers to all components of the DirXML Driver 2.0 for Java Message
Service (JMS) and WebSphere MQ and not to any one particular component.

In Novell documentation, a greater-than symbol (>) is used to separate actions within
a step and items in a cross-reference path.

In this documentation, a trademark symbol (®,, etc.) denotes a Novell trademark.
An asterisk (*) denotes a third-party trademark.

Identity Manager Connector for Java Messaging Service

-6-

Introducing the Driver

Overview
The DirXML® Driver for Java Message Service (JMS) and WebSphere MQ, subsequently
referred to as the driver or JMS driver, allows the creation of automated data syn-
chronization links between any applications supported by a JMS-compliant message
bus and Novell® eDirectoryTM.

The JMS driver offers several key advantages for Secure Identity Management (SIM)
integration, including the following:

• Native XML-based API connectivity to Enterprise Resource Planning applications
from SAP*, Oracle*, J.D. Edwards* and many others. This is often the only
method authorized by customers and application vendors for interfacing with
this class of application, because the XML APIs can be pre-validated prior to
processing. Hundreds of XML APIs have been defined collaboratively by ven-
dors and customers through The Organization for the Advancement of Struc-
tured Information Standards (OASIS) (http://www.oasis-open.org/).

In addition to protecting data integrity, an XML-based API is highly abstracted
(that is, much less likely to change than the underlying table structure), which
means that database modifications or even a wholesale application replace-
ment do not necessarily require that the DirXML solution be modified in any
way.

• Native XML-based connectivity to and from Web application servers including
IBM* WebSphere, BEA WebLogic*, iPlanet* AS, Oracle AS, Novell exteNdTM, and
others.

• Simplified integration into IBM Mainframe (OS/390) and Midrange (AS/400) en-
vironments as well as integration with security frameworks such as IBM RACF.

• Integration with the vast majority of Enterprise Application Integration (EAI)
architectures, including TIBCO Rendezvous, IBM’s Websphere MQ and Web-
sphere Business Integration (CrossWorlds), Oracle Advanced Queuing, Novell
jBrokerTM, and many other such technologies.

The driver also provides Enterprise-class features that are needed in mission-critical
situations:

• Automated Failover: Multiple JMS driver instances work cooperatively to en-
sure high availability.

• Load Balancing: Any number of JMS driver instances can be clustered to pro-

vide very high performance.

Identity Manager Connector for Java Messaging Service

-7-

In short, this DirXML driver enables identity profile information managed within
business processes across the enterprise to be integrated into a common direc-
tory services strategy. It works with, rather than in place of, existing customer
EAI infrastructures; it allows the guaranteed delivery, exchange and processing
of Identity information among applications and eDirectory; and can greatly re-
duce the complexity and total number of DirXML drivers needed to implement
an enterprise SIM solution.

What Is JMS
The Java Message Service (JMS) API is an API for accessing enterprise messaging sys-
tems. It is part of the Java 2 Platform, Enterprise Edition (J2EE*). This makes it easy
to write business applications that asynchronously send and receive critical business
data and events.

JMS defines a common enterprise messaging API that is designed to be easily and effi-
ciently supported by a wide range of enterprise messaging products. It supports both
message queuing and publish-subscribe styles of messaging.

Java Message Service (JMS): http://java.sun.com/products/jms

Java 2 Platform, Enterprise Edition (J2EE): http://java.sun.com/j2ee

JMS Frequently Asked Questions: http://java.sun.com/products/jms/faq.html

Additional Information on JMS: http://java.sun.com/products/jms/docs.html

High Availability JMS
High Availability JMS Servers provide failover, high availability, and load balancing
by implementing clustering. A common high availability implementation is a clus-
ter of two JMS Server nodes, one of which is the Active node and the other a
“warm” standby node. The standby node does not participate in any operation,
except sync up, when the active node is up.

When the Active node fails, a standby node takes over transparently and functions
as the Active node. The first node, when it resumes operation, subsequently func-
tions as a standby node. The standby node remains aware of the status of the ac-
tive node and takes over in the event of a failure.

Understanding JMS Driver Concepts

Identity Manager Connector for Java Messaging Service

-8-

The driver is a bidirectional synchronization product that establishes a link between
JMS-supported systems and eDirectory. This solution uses XML to provide data and
event transformation capabilities and can convert eDirectory data and events into
XML data and vice-versa.

The JMS-compliant messaging queue (MQ) middleware generally acts as a hub that
applications and directories can send data to and receive data from. The driver acts
as a specialized connector into this hub that exchanges data among consumer appli-
cations and foreign directories and eDirectory. This results in two main flows of data
for Identity Manager: the Publisher channel and the Application Subscriber channel.

The driver supports both point-to-point and publish-subscribe messaging models. Ap-
plications can publish information in any available form to queues and topics. The
Publisher channel can also consume messages from queues or topics.

If the message queue system supports publish and subscribe transactions, multiple
consuming applications can listen for and receive the same XML documents. This type
of message configuration has the ability to simplify or eliminate unnecessary DirXML
application development by allowing more than one application to consume docu-
ments produced by DirXML. Likewise, DirXML might tap into an existing message
queue in order to consume its documents.

JMS Engine Processing
The DirXML engine processes the XML document by sequentially applying all config-
ured rules based on the standard DirXML process flow. The driver can then manipu-
late the information using various rules, filters, and style sheets defined by the sys-
tem administrator or developer. The driver then submits the data to eDirectory.
When used with other DirXML drivers or driver instances, the data can be shared
among many business applications and directories. Based on business rules, these
other applications can add additional data that can, in turn, be submitted to other
JMS-connected applications.

Identity Manager Connector for Java Messaging Service

-9-

The DirXML Publisher Channel

The Publisher channel is used to integrate application data with eDirectory:

Host
Interface

JMS Shim

MQ
Subsystem

Message Queue

Publish Subscribe

DirXML
Engine

MQ
Driver Shim

MQ

Subsystem

eDirectory
Configured to

publish
specific data

XML
Message

Gets and
optionally
transforms

XML message

Puts message
into MQ

subsystem

Adds or
updates data
in eDirectory

The JMS shim publishes the application’s output, converts it into XML document for-
mat, and places the document into a specified JMS message queue or topic. The MQ
driver shim consumes the message from the specified queue or topic and submits
XML-formatted changes to the DirXML engine for publication into eDirectory.

The DirXML Subscriber Channel

The Subscriber channel is used to integrate eDirectory data with host applications:

Host
Interface

JMS Shim

MQ
Subsystem

Message Queue
DirXML
Engine

MQ
Driver Shim

MQ
Subsystem

Publish Subscribe

eDirectory
Adds, updates

or modifies
host data

XML
Message

Puts XML
message into
MQ subsystem

Gets XML
message from
MQ subsystem

Detects
eDirectory
changes

The Subscriber channel receives XML-formatted eDirectory events from the DirXML
engine, converts these documents to an appropriate data format, and publishes them
to a JMS queue or topic where an application can consume them.

All eDirectory events that are filtered by the DirXML driver are submitted to the JMS-
interfaced application via the Subscriber channel. It is up to the application’s JMS in-
terface to interpret these messages correctly.

Identity Manager Connector for Java Messaging Service

-10-

Publishing to eDirectory
When a JMS-connected application is determined to be an authoritative source of
user profile data, that system can propagate all Add, Delete, and Modify object event
data to eDirectory. The Publisher channel is used for propagation into eDirectory. For
data to flow from the JMS-connected application to eDirectory, the driver utilizes the
JMS interface to place XML documents into the appropriate queue for the applica-
tion’s interface.

JMS interfaces can be developed on a custom basis or purchased commercially as off-
the-shelf connectors from third parties. In addition, many third-party Extraction,
Transformation, and Loading (ETL) tools support the JMS interface standard and can
readily be configured to communicate with many messaging middleware products.
JMS ensures that an XML document is securely and reliably transported from the ap-
plication or host system to eDirectory.

More information on using Java Message Service can be found at:

 http://java.sun.com/products/jms/

Subscribing from eDirectory
The Subscriber channel of the driver is the component responsible for synchronizing
data from eDirectory into a specific JMS message queue. This data can then be used
to query, update, and delete data managed by the host application.

Any combination of attributes, including those containing character string and binary
data, can be subscribed from eDirectory via a JMS message queue. Additionally, JMS
header information can be set by the driver and read by the subscribing application.
The underlying JMS transport ensures that the XML payload is securely and reliably
delivered from eDirectory to the host application.

Benefits
The driver uniquely enables the automation and maintenance of identity management
processes with a very wide range of Enterprise applications:

• Message-based integration is inherently abstracted, which provides for greater
data integrity and insulation against change. Greater abstraction also simpli-
fies DirXML development, including collaboration and delegated work proc-
esses.

• The existing EAI infrastructure, which is increasingly found in public and pri-

vate enterprises, can be fully leveraged for integration between DirXML and
Applications and Data Warehouses.

• ERP applications often provide their own EAI and JMS messaging capabilities

that can be fully leveraged at no additional purchase cost to the customer. For

Identity Manager Connector for Java Messaging Service

-11-

example, integrating with Oracle Financials or Oracle Workflow can be per-
formed using Oracle’s Advanced Queuing (AQ) interface.

• Native connectivity to IBM S/390 Mainframe or AS/400 Midrange host platforms

can be provided via IBM JMS middleware.

Features
The driver provides the following features:

• Support for JMS providers

• Support for Novell Remote Loader

Java-Enabled Enterprise Application Integration
(EAI) Systems

• IBM WebSphere MQ

• IBM*WebSphere MQ (Remote Connections)\

• Novell exteNd Enterprise

• OpenJMS

• Oracle* Advanced Queuing (AQ)

• SoftWired iBus Message Server*

• SpiritSoft SpiritWave TIBCO-JMS Bridge

• TIBCO JMS Server

• Sun* Message Queuing

• Sonic MQ

• SeeBeyond*

• BEA

• JBOSS*

• Support for additional JMS providers available upon request

Identity Manager Connector for Java Messaging Service

-12-

Supported Platforms
• Linux*

• NetWare®

• Solaris*

• Windows* NT* 2000

• Windows 2003

JMS Driver Features
• Subscribe and Publish to Queues

• Subscribe and Publish to Topics

• Custom String Properties

• Message Priority

• TTL (Time To Live) JMS header.

• Query interface

• Publisher Tracking Interface (Queues and Topics)

• Publisher Auditing Interface (Queues and Topic)

• Reflexive Acknowledgement Queue

• Performance Statistics

Functional Channels operate independently (Examples: subscribe to both a queue and
a topic simultaneously; publish to both a queue and topic simultaneously; publish to a
queue and subscribe to a topic; publish to a topic and subscribe to a queue.)

For More Information about DirXML
For more information about DirXML, refer to the DirXML Administration Guide
(http://www.novell.com/documentation/lg/dirxml11a/index.html) or the Nsure
Identity Manager Administration Guide
(http://www.novell.com/documentation/lg/dirxml20/index.html).

For more information about eDirectory, refer to the Novell® eDirectory documenta-
tion (http://www.novell.com/documentation/lg/edir871/index.html, or the docu-
mentation for a later version).

Identity Manager Connector for Java Messaging Service

-13-

For more information about Java Message Service, refer to
http://java.sun.com/products/jms/. For more information about specific message
queue middleware, refer to your vendor’s specific documentation.

Identity Manager Connector for Java Messaging Service

-14-

JMS Configuration and Setup
You can integrate enterprise applications with the DirXML Driver for JMS to enhance
and secure your organization’s business processes. Before installing and configuring
the driver, you must evaluate and design the processes that will underlie the integra-
tion. The design must define the driver’s configuration, rules, and style sheets to
automate these processes as necessary. Additionally, queues or topics must be de-
fined for your specific messaging middleware product.

Using iManager
Novell iManager is a tool for managing eDirectory. Additional administration and man-
agement capabilities are added to iManager through plug-ins.

This Web-based management tool was introduced with eDirectory 8.7. Because it is
Web-based, you can do DirXML tasks from outside the firewall. Part of the iManager
interface for DirXML is a helpful graphical representation of the rules and style sheets
for each instance of the driver. Prior to installing and configuring the driver, you
should install the DirXML plug-ins found on the DirXML CD.

If the version of DirXML you are using supports both administration tools, you can use
both ConsoleOne® and iManager to manage the same DirXML drivers. The tools are
not mutually exclusive.

Product Components
The driver contains the following components:

• Driver configuration import files
• Driver shim

Driver Configuration

The driver configuration contains required driver parameters and policies. Driver con-
figuration files are provided with the driver for installation on a system that includes
DirXML, JMS, and the driver. Additional environments are also supported via manual
configuration.

Driver Shim

The driver shim handles communication between the JMS message queue and the
DirXML engine. It also allows for manipulation and querying of the JMS header for use
of JMS-specific features by application developers and systems integrators.

Identity Manager Connector for Java Messaging Service

-15-

Installing and Configuring the Driver
This section helps you do the following:

• Understand prerequisites for the driver

• Planning for installation

• Install driver components

• Configure driver parameters

Prerequisites
The DirXML® Driver for JMS requires the following:

• eDirectory 8.6.1. or higher
• Novell® DirXML® 1.1 or higher, or Identity Manager 2
• Novell iManager 1.5
• Java Virtual Machine (JVM*) 1.2 or higher
• Java Message Systems Libraries JMS.Jar

It is recommended that you create the Driver Set object before you install the driver.
For more information about the Driver Set object, refer to Creating Driver Sets and
Objects in the DirXML Administration Guide at:
http://www.novell.com/documentation/lg/dirxml11a/index.html

Enterprise Messaging Buses support the Java Message Service interface, such as Web-
Sphere MQ, TIBCO Rendezvous, Oracle AQ, and Novell Messaging Platform. The nec-
essary vendor-specific JMS class libraries must be obtained to allow the JMS driver to
function properly. (In some cases, there might be a licensing fee for the use of a ven-
dor’s JMS classes. Be sure to verify licensing issues with your specific vendor as part
of any project planning.)

iManager

Novell iManager 1.5 or later with the DirXML plug-ins installed

Identity Manager Connector for Java Messaging Service

-16-

Supported Platforms

The driver runs on all DirXML-enabled platforms, including Windows* NT* 2000, Net-
Ware®, Solaris*, and Linux*.

Planning for Installation
Before you install and use the driver, you must first plan for the installation.

JMS Checklist
• Establish or identify the queues to be used either to hold event messages pub-

lished to eDirectory and/or event messages subscribed from eDirectoryTM.

• Ensure that the appropriate vendor-specific JMS classes are installed on the
server hosting the driver in accordance with the vendor’s recommendation.

• Vendor-specific features: Ensure that any vendor-specific supporting compo-

nents have been installed and configured properly on the JMS server. Example:
when using topics with IBM WebSphere MQ, ensure that the message broker
(strmqbrk) process has been started.

Identity Manager Connector for Java Messaging Service

-17-

Planning a Local or Remote Installation
This section explains the difference between a local and remote installation of the
driver.

Local Installation

A local installation installs the driver on a server machine where you have
JMS, DirXML® and eDirectory installed.

Remote Installation

A remote installation installs the driver on a different computer than the one where
DirXML and eDirectory are installed. When using NetWare®, you might want to use
this type of installation when installing the JMS driver if your JMS version is not sup-
ported to run under NetWare.

Installing Components
The driver installation program installs the following components on the server:

Component Description
Driver Shim A Java driver shim that communicates between

the JMS message bus and the DirXML engine.
Driver Configuration XML File All eDirectory objects, including the appropriate

rules and style sheets for adding, modifying, and
deleting or disabling objects. Controls the infor-
mation being sent from JMS to eDirectory and
from eDirectory to JMS.

Although the installation program installs the components, setup is not complete until
you properly configure the Driver object and the JMS system.

Identity Manager Connector for Java Messaging Service

-18-

Installing or Upgrading The Driver
This section Helps you use the Application Driver Creation Wizard to install and con-
figure the driver.

Installing the Driver

1. Download jms_mq_Install.exe or jms_mq_Install.bin and run it.
2. Run install.exe, found in the product distribution.
3. Click next on the Introduction screen.
4. Accept the license agreement, then click Next.
5. Select the directory you would like to use,then click Next.
6. Click Finish to perform the installation.

Component Filename
Driver Shim Jms.jar (supporting files)

Jmsdriver.jar
Driver Configuration File Jmsdriver20.xml

The Install package copies the files Jms.jar, Jmsdriver.jar and jmsdriver20.xml to
the default \novell\nds\lib directory.

To complete the installation, manually copy the jmsdriver20.xml file to the appropri-
ate directory. If you are using ConsoleOne®, copy the file to
novell\consoleone\1.2\snapins\dirxml. If you are using Novell iManager, copy the file
to tomcat/4/webapps/nps/dirxml.drivers/

Upgrading from 1.0 to 2.0
After you download the CD image, perform the following steps to upgrade a previous
version of the driver:

1. Stop the drivers that you want to upgrade. Select Manual for the driver’s
startup option.

2. Stop eDirectory.
3. Copy jmsdriver.jar and jms.Jar into the appropriate directory for your plat-

form. Use the following table to determine the appropriate directory:

Platform Directory Path
NetWare sys:\system\lib
Solaris or Linux /usr/lib/dirxml/classes
Windows
NT/2000

novell\nds\lib

4. Restart eDirectory.

Identity Manager Connector for Java Messaging Service

-19-

5. (Optional) Install the driver configuration.
6. Export a copy of the current driver configuration.
7. In the Drive Module, replace

com.novell.nds.dirxml.driver.mq.MqDirXMLDriverShim with
com.novell.nds.dirxml.driver.JMS.JMSDirXMLDriverShim

8. Make a copy of the current driver parameters.
9. Replace the driver parameters with the new driver parameters shown below:

<?xml version="1.0" encoding="UTF-8"?>
<driver-config name="JMS Driver">
 <driver-options>
 <qmgr display-name="Queue Manager"/>
 <msgbrk display-name="Message Broker"/>
 <mqchannel display-name="WebSphere MQ Channel"/>
 <purl display-name="Provider Url"/>
 <port display-name="Port"/>
 <vb display-name="Verbose">TRUE</vb>
 <osid display-name="OracleSID"/>
 <ouser display-name="Oracle-Schema"/>
 <otable display-name="OracleQueueTable"/>
 <clientid display-name="JMS Client ID"/>
 <vendor display-name="Vendor">Jbroker</vendor>
 </driver-options>
 <subscriber-options>
 <qsend display-name="Queue Sender">queue0</qsend>
 <tpub display-name="Topic Sender"/>
 <nonper display-name="Message persistence"/>
 <bytemessaging display-name="Byte Messaging"/>
 <streammessaging display-name="Stream Messaging"/>
 <jmsclient display-name="Client Mode"/>
 <mqccsid display-name="WebSphereMQ CCSID"/>
 <mqencoding display-name="WebSphereMQ Encoding"/>
 <subqueryq display-name="Subscriber Query Queue"/>
 <subqueryreplyq display-name="Subscriber Query Reply Queue"/>
 <subquerytimeout display-name=" Subscriber Query Reply Timeout"/>
 <ttl display-name="JMS Time To Live"/>
 <pri display-name="JMS Priority"/>
 <marker display-name="Remove Scripting Markers"/>
 </subscriber-options>
 <publisher-options>
 <qrec display-name="Publisher Queue Receiver"/>
 <queryq display-name="Publisher Query Queue"/>
 <queryreplyq display-name="Publisher Query Reply Queue"/>
 <querytimeout display-name="Publisher Query Reply Timeout"/>
 <trec display-name="Topic Receiver"/>
 <headers display-name="Retrieve Headers"/>
 <jmsclient display-name="Client Mode"/>
 <auditq display-name="Error Auditing Queue"/>
 <trackingq display-name="Transaction Tracking Queue"/>
 <correlationid display-name="Use Correlation ID'S"/>
 <performance display-name="Performance Queue"/>
 <ackqueue display-name="Reflexive Acknowledgement Queue"/>
 <ackheader display-name="Reflexive Acknowledgement Header"/>
 </publisher-options>
7</driver-config>

Identity Manager Connector for Java Messaging Service

-20-

10. Set the Client Mode to MQ if you need to have native mode JMS Messages.
11. Set the driver’s startup options to their previous values.
12. Restart the drivers.

Activating DirXML Products
Activation must be completed within 90 days of installation, or the driver will
not run.

**NOTE: Activating a driver does not change your current configuration or install a newer ver-
sion of the driver shim. It simply changes the driver to an activated state.

The following examples describe various activation scenarios you might encounter:

• You purchase a DirXML bundled activation. This includes the activation of
multiple drivers and the DirXML engine.

• You purchase individual driver activation for DirXML. This includes the ac-
tivation of a single driver and the DirXML engine.

• You purchase driver group activation for Identity Manager.

• You purchase customized or third party driver activation. This includes
the activation of a customized or third-party driver and the DirXML en-
gine.

For information about activating with DirXML, refer to Activating DirXML Prod-
ucts
(http://www.novell.com/documentation/lg/dirxml11a/dirxml/data/agoppxb.ht
ml) and Viewing Product Activations for DirXML and DirXML Drivers
(http://www.novell.com/documentation/lg/dirxml11a/dirxml/data/agoppxb.ht
ml#agfhtax).

For information about activating with Identity Manager, refer to Activating
Novell Identity Manager Products
(http://www.novell.com/documentation/lg/dirxml20/admin/data/afbx4oc.htm
l).

For additional information about Activation, refer to Activation Basics
(http://www.novell.com/partners/partnerplace/epd/product_activation_basics
.html) and Activation Troubleshooting
(http://www.novell.com/partners/partnerplace/epd/troubleshooting_activatio
n.html).

To purchase DirXML licenses, see the information on How to Buy
(http://www.novell.com/products/edirectory/dirxml/howtobuy.html).

Identity Manager Connector for Java Messaging Service

-21-

Post- Installation Tasks
Now that you have installed the driver, you must do the following:

• Import the Driver Configuration file.
• Configure the Remote Loader on the remote system.

Importing the Driver Configuration

The Application Driver Creation Wizard helps you import a Driver Configuration file.
This file creates and configures objects needed in eDirectory to make the driver work
properly.

• Right-click Network Neighborhood, then click NetWare Connections.

Ensure the following:

• You are authenticated to the eDirectory server you are installing to.

• The server where the driver will be running is set as the primary server.

1. In IManager, click Wizards > Create a New Application Driver.

2. Select the driver set where you want the driver installed, then click Next.

3. Enter the following driver set properties as prompted:

- Name
- Context
- Whether to create a new partition on the driver set

4. Select Jmsdriver.xml driver configuration file, then click Next.

 Follow the on-screen prompts to enter information about eDirectory structure
and driver connectivity.

5. Click Next, then enter the following information as prompted:

- The name you want to use for the driver

- The driver password

The shim authentication password is used for logging into JMS. The driver pass-
word is used to authenticate to the DirXML server.

• When the driver import is finished, click Yes to define security equivalences on
the driver.

Identity Manager Connector for Java Messaging Service

-22-

• Click Add, then select an object with Admin rights (or any other rights
you want the driver to have).

• Click Apply, then click Close.

6. Exclude Administrative Roles from replication, click Apply, then click Close.

7. Click Finish.

Configuring the Remote Loader on the Remote
System

The optional Remote Loader can be configured to use an SSL connection for secure
data transfer between eDirectory and the JMS system. This section explains what
needs to be completed to establish an SSL connection.

1. Generate a security certificate on the eDirectory container.
2. Create an organizational trusted root certificate.
3. Validate the certificate file.
4. Run Remote Loader Wizard and configure Remote Loader options.
5. Configure Driver Object properties in iManager.

Identity Manager Connector for Java Messaging Service

-23-

Generating a Security Certificate on the eDirectory Container

In iManager, select the Container in which the eDirectory server resides.

1. Right-click the container, select New Object, then create the NDSPKI: Key Ma-
terial object.

2. Enter a name for the certificate, select the creation method, then click Next.

IMPORTANT: Write down the name of the certificate. You will need this infor-
mation when configuring the driver.

3. Select the Standard Creation Method, then click Next to view the Confirmation
Screen.

4. Click Finish to generate a certificate for the eDirectory container.

Creating an Organizational Trusted Root Certificate

In IManager, browse to the Security container and locate the Organizational CA for
the tree.

1. Right-click the certificate object, then click Properties.

2. Click the Certificate tab and go to the Self-Signed Certificate option.

3. Select Export, then click Next.

4. Select the Base64 option, then click Next.

5. Click Finish.

6. Click Validate to verify the Certificate’s validity.

7. Copy the certificate file to the Remote Loader directory on the Remote Loader
host system.

Identity Manager Connector for Java Messaging Service

-24-

Using the Wizard to Configure Remote Loader Properties on the Re-
mote Loader Host Server

From a DOS command prompt on the Remote Loader host system, change directory to
the Remote Loader directory and enter: dirxml_remote

1. Click Next to begin the wizard.

• Following the wizard prompts, configure the following items:

- Command Port. Used to differentiate between instances of Remote Loader.

- Increments. The first instance of Remote Loader defaults to port 8000 with
each additional instance incrementing in number by one.

- Configuration File. The configuration file is a filename that is automatically
generated. Verify the filename.

DirXML Driver. Select the Java option. Enter the case-sensitive java class
name: com.novell.nds.dirxml.driver.JMS.JMSDirXMLDriverShim.

- Connection to DirXML. Enter the port number. The default is 8090, but you
can enter a different, unique port number. Select the IP address to which you
want to apply changes. You should select the All IP addresses option.

- Certificate. Select Use SSL. Browse to the certificate generated in the previ-
ous section, then click Next. The browser automatically looks for Base64 files.

- Tracing. Choose a level of tracing. In addition to trace files, you can log trace
events to a log file. Configure this log file if you want. Trace level 0 provides
no trace application window.

- Install as a service. When you install Remote Loader as a service, it auto-
matically launches when the machine boots.

- Passwords. Enter a password for the Remote Loader and Driver object.

**Note: IMPORTANT please write down these passwords. You need them
for the next step in driver configuration.

2. Summary. Click Next to continue with the DirXML Remote Loader configura-

tion.

3. Click Finish to complete the configuration. When prompted to start the DirXML
Remote Loader, click Yes.

Identity Manager Connector for Java Messaging Service

-25-

Starting the Remote Loader if It Is Installed as a Service
1. Open the Windows Service Control Manager.

2. Select the DirXML Loader (com.novell.nds.dirxmldriver), click the Startup Op-

tion, then click Start.

Starting the Remote Loader Manually

1. From a command prompt (wherever Remote Loader is installed), enter:

-dir *.txt

This displays the name of the configuration file (for example, config8001.txt).

2. Enter the following:

dirxml_remote config <configfilename.txt>

For example:

dirxml_remote -config config8001.txt

You can open the Windows Task Manager to verify that Remote Loader is run-
ning.

**Note: If the Java Message Service factory classes have been installed into eDirectory, the
driver retrieves these classes from the directory prior to initialization. If the remote driver ex-
ists in a DMZ or is separated by a firewall, the default TCP ports 8090 for the remote loader,
389 for LDAP, and optionally 636 for LDAP/S must be open to the server that hosts the driver.

Identity Manager Connector for Java Messaging Service

-26-

Configuring Driver Object Properties for the Remote Loader

1. In iManager, select the JMS Driver object, then click Properties.

2. Click the Authentication tab.

• Enter the following Remote Loader connection parameters with a space be-
tween each parameter:

o Hostname. Specifies the address or name of the machine on which the

Remote Loader will run. For example, hostname=192.168.0.1

o Port. Specifies the port on which the Remote Loader will accept connec-

tions from the remote interface shim. For example, port=8090

o KMO. Specifies the key name of the Key Material Object containing the

keys and certificate used for SSL. For example: kmo=remotedrivercert.

**NOTE: If SSL is enabled, you must enter the hostname, port, and KMO information. If
SSL is not enabled, you only need to enter the hostname and port information.

3. Enter passwords for the application and the Remote Loader.

4. Click the Driver Parameters tab, then scroll to Publisher Settings.

5. Verify that the Publisher queue is configured. This queue contains XML docu-

ment to be processed against eDirectory. Refer to Configuring Driver Object
Properties for more information.

Identity Manager Connector for Java Messaging Service

-27-

Configuring The JMS Driver Parameters
This section helps you to configure the JMS Driver properties. In addition to the fol-
lowing driver-specific configuration parameters, you should configure basic DirXML
Driver object fields. For more information regarding these basic configuration fields,
see the DirXML Administration Guide.

Configuring Driver Parameters

In iManager, select the JMS Driver object, then click Properties and configure the fol-
lowing:

Tabs/Parameters Description
Driver Module
JMS The type and name of the DirXML driver:

com.novell.nds.dirxml.driver.JMS.JMSDirXMLDriverShim

Authentication
Authentication ID The user name to authenticate against the JMS provider instal-

lation.
Authentication
Context

An optional directory context of the authentication object.

Application Pass-
word

The password used in conjunction with the Authentication ID.

Driver Settings
Queue Manager The name of a queue manager.
Message Broker The name of message broker.

For non-JMS implementations, this field must be filled in with
the element Message Broker if you want to send or receive us-
ing topics.

Verbose Enables verbose logging to the DirXML trace to
enhance debugging. The only valid value is True. Other-
wise,leave it empty.

Port This element is used only for connecting to JMS Server Installa-
tion on non standard/default ports.

Oracle SID Used only when connecting to Oracle Advanced Queuing. The
element represents the Oracle SID Identifier.

Oracle-Schema Used only when connecting to Oracle Advanced Queuing. This
element is used to specify the schema tag the queues reside
under.

OracleQueueTable Used only when connecting to Oracle Advanced Queuing.
This element represents the actual queue table name that will
hold the JMS messages.

JMS Client ID The JMS Client identifier used to connect to a queue or topic.
If left blank, the shim generates a random JMS Client ID.

Vendor The JMS Vendor Implementation. Valid values are MQSeries,

Identity Manager Connector for Java Messaging Service

-28-

Oracle, Tibco, TIBCOJMS, Jbroker, OpenJMS, and IBUS.
Subscriber
Settings

Queue Sender The name of the queue to send DirXML messages.
Query Queue

The queue used to query the remote application via JMS.

Query Reply
Queue

The queue used to receive the reply message from the remote
application.

Query Reply
Queue Timeout
Period

The number of seconds the Subscriber channel waits for the
query reply message from the JMS application. This value has
no effect when enabled with pub/sub messaging. The only
valid value is an integer value for seconds. Otherwise, leave it
empty for the default value of 10 seconds to be used.

Topic Sender The topic to publish NDS event information to.
Client Mode The mode or style to use in placing messages on a queue or

topic. The valid styles are WebSphere MQ native message or
JMS Messages.

The only valid values are blank or MQ.

Byte Messaging Used to send a message containing a stream of uninterrupted
bytes. The receiver of the message is responsible for the inter-
pretation of the bytes. This should only be used if DirXML
needs to exchange non-text messages with your application.

Input True for sending a byte stream, or leave blank for the
default (text) option.

JMS Time To Live The maximum lifetime for a message. The input is expected to
be in milliseconds. If the element is blank, the message has an
unlimited lifetime.

JMS Priority The priority of the message. Valid values are from 0 through 9.
If the element is left blank, the message priority defaults to 4.

Message
Persistence

Whether messages will be non-persistent. The default mode is
persistent. The only valid value is True. If the value of True is
set, the message is non-persistent

Publisher Settings
Topic Receiver A JMS queue to receive XML formatted DirXML commands.
Queue
Receiver

A JMS queue to receive XML formatted DirXML commands from.

Query Queue

The queue to be used to query the remote application via JMS.

Query Reply
Queue

The queue to be used receive the reply message from the re-
mote application.

Query Reply
Queue Timeout
Period

The number of seconds the Subscriber channel waits for the
query reply message from the JMS application. This value has
no effect when enabled with pub/sub messaging. The only
valid value is an integer value for seconds. Otherwise, leave it

Identity Manager Connector for Java Messaging Service

-29-

empty for the default value of 10 seconds to be used.
Audit Queue A JMS queue to use if the submitted DirXML transaction re-

turned an error.
Tracking Queue A JMS queue in which to place a copy of the message that was

successfully processed by the DirXML engine.
Use Correlation
IDs

Whether to append a correlation identifier to both the tracking
and audit queue Messages.

Performance
Queue

A JMS queue in which to place the Performance XML document.

Reflexive
Acknowledgement
Queue

 The JMS queue in which to place the reflexive acknowledge-
ment message.

Reflexive
Acknowledgement
Header

The header to retrieve from the originally submitted message
to place in the CorrelationID property of the reflexive ac-
knowledgement message.

Identity Manager Connector for Java Messaging Service

-30-

Troubleshooting the Driver

This section contains potential problems and error codes you might encounter while
configuring or using the driver.

Using the DSTrace Utility
You can troubleshoot the driver by using the DSTrace utility. You can configure the
utility’s options by selecting Edit > Properties > DirXML Drivers.

For each event or operation received, the driver returns an XML document containing
a status report. If the operation or event is not successful, the status report also con-
tains a reason, and a text message describing the error condition. If the result is fa-
tal, the driver shuts down.

Identity Manager Connector for Java Messaging Service

-31-

Common Errors

Driver Load Errors

Solution

java.lang.ClassNotFoundException:
com.novell.nds.dirxml.driver.JMS.JMSD
irXMLDriverShim

This is a fatal error that occurs when JMSdirXMLDriverShim.jar
or JMS.Jar is not installed properly. You should ensure that
the file is in the proper location for either a local or remote
loader configuration.

java.lang.ClassNotFoundException:
com.novell.nds.dirxml.driver.JMS.JMSD
irXMLDriverShim

This is a fatal error that occurs when the class name for the
JMSDirXMLDriverShim.jar is incorrect. You should ensure that
the Java class name is set on the Driver Module tab in a local
installation and that the -class parameter is set in a Remote
Loader configuration. The proper class name is:
com.novell.nds.dirxml.driver.JMS.JMSDirXMLDriverShim

-295 Almost all-295 errors indicate a missing supporting java class
library.

Driver Initialization Errors

Solution

java.lang.ArrayIndexOutOfBoundsExce
ption # > #

There is a problem with the JDK* version when trying to re-
trieve JMS QueueConnectionFactory object via JNDI. This does
not apply to a local JMS connection. Replace the
<Novell_Install_Path>\NDS\jre\lib\rt.jar with a more JDK
version 1.3.1 and above rt.jar.

‘no mqjbnd02 in java.library.path’ Ensure that the <MQSeries_Install_Path>\java\lib is in your
System path.

MQJMS2008: failed to open MQ queue.
MQJMS2005: failed to create
MQQueueManager for <>

Ensure the specified queue in the ‘Driver Parameters
Xml’ exists on the WebSphere MQ server. Ensure that the
WebSphere MQ is running.

MQJMS2006: MQ problem:
com.ibm.mq.MQException: Completion
Code 2, Reason 2085

Regarding MQ JMS Pub/Sub calls, ensure the mq jms system
queues are created. Example:
C:\<MQSeries_Install_Path>\java\bin\runmqsc
<queue_manager> < MQJMS_PSQ.mqsc

-295 errors Almost all-295 errors indicate a missing supporting Java class
library. Exceptions:
A –295 Error with the Driver issuing a System.Exit(-1) indicates
that the Novell MP Mporb12.dll is not in the system path.

-295
javax/transaction/xa/XAException

The JVM 1.4 requires the use of the JTA classes available
from java.sun.com

mqjms1046: The character set 437 is
not supported.

Set the sending client ccsid to 819 (the default).

Identity Manager Connector for Java Messaging Service

-32-

Developing Solutions with the DirXML Driver for
JMS
JMS-enabled applications that need to exchange data with the driver must use mes-
sages created in XML format. The driver passes XML messages to the DirXML engine
and returns the results in XML.

The desired XML message format should comply with the Novell nds.dtd document
type definition. If your JMS application is unable to work with the XML format speci-
fied within the nds.dtd, it can use any style of XML. However, DirXML transformation
style sheets must be created to allow the driver to do the conversion of data from
one format to another.

**Note for JMS Users: The driver for JMS can work with either MQ Series style messages or regular JMS
style messages. However, each instance of the driver for JMS can work with only one type of message.

Using JMS Features
In addition to the configurable parameters, the driver supports the use of many addi-
tional Java Message Service features that enhance the developer’s ability to create
solutions.

Message Properties

A JMS Message contains a built-in facility for supporting application-defined property
values. This provides a mechanism for adding application-specific header fields to a
message. Properties allow an application, via message selectors, to have a JMS pro-
vider select/filter messages on its behalf by using application-specific criteria.

Custom Message properties can be set through a DirXML Style sheet. This method is
needed to pass name-value pairs to systems that are JMS header dependent.

The following example illustrates how to set a customer header of Last Name to
Smith:

{LastName|Smith}

The JMS Shim looks for name-value pairs contained by brackets { } and separated by
a ‘|’/

{FieldName|FieldValue}

Setting Binary Values in a Message

The JMS Driver 2.0 supports setting binary content in Subscriber channel messages.
Many legacy application use nonprintable ASCII characters as record delimiters. The
current XSLT specification does not contain a mechanism for handling non-printable
characters natively.

Identity Manager Connector for Java Messaging Service

-33-

Custom bnary characters can be set by using specific markers that the JMS Driver
knows how to interpret. This method is needed to pass binary value pairs to systems
that depend on nonprintable characters for their record delimiters.

The following example illustrates how to set a bnary vlue of 255 or FF.

{#CC|255}

The JMS Shim looks for name-value pairs contained by brackets { } and separated by
a ‘|’/

{FieldName|FieldValue}

 In this case, the JMS Shim knows that the specific FieldName of #cc indicates it will
insert a character of (FieldValue) in the message. The FieldValue Is expressed in in-
teger format . Therefore, if you wanted to insert a character of FF equivalent, you
would express this as {#CC|255}

Message Priority

JMS defines a 10 level priority value with 0 as the lowest and 9 as the highest. JMS
clients or DirXML style sheet logic should consider 0-4 as lower–to-normal priority and
5-9 as normal-to-higher priority. Priority is set to 4, by default.

TTL (Time To Live)

JMS defines the length of time in milliseconds that a message should be retained by
the message system. Time to Live is set to zero by default.

JMSMessageID

A JMS Message ID property contains an optional value that uniquely identifies each
message sent by a provider. This can be used to historically identify each message or
in concert with Correlation ID to establish a relationship among requests and replies
in an asynchronous messaging environment.

Correlation ID.

The JMS CorrelationID property is used for linking one message with another. It typi-
cally links the Message ID of the reply message with the Correlation ID of the re-
questing message.

Identity Manager Connector for Java Messaging Service

-34-

Associations

Associations are made between messages and eDirectory objects through a style
sheet. A unique ID can be created for records relating to each system connected via
JMS.

The association attribute received from a queue is unique to the interfaced applica-
tion, based on each driver instance that you install and enable.

If other drivers are installed, they should use an association specific to that applica-
tion.

The association attribute is multi-valued. Therefore, if DirXML is being used to con-
nect multiple applications, all of their associations can be stored on this attribute.

The unique ID association links objects in the JMS-connected application to their ob-
jects in eDirectory. When an ADD event occurs, the association is made and refer-
enced in the style sheets. This association allows the driver to perform subsequent
tasks on the appropriate object.

If a User object is added in eDirectory, the unique user’s ID might be populated so
that the ID can be linked to the individual’s record in the JMS-connected application.
The matching rule is executed and, if the ID is found within the application, the asso-
ciation is then created. The Matching rule matches the eDirectory user
ID and the appropriate unique ID on the host system.

Setting the Global Association Attribute Value

A global association attribute value can be set by modifying a value in the command
transformation style sheet.

The association value can be statically set by modifying the association state element, or
dynamically by computing this value based on additional logic that you can add to the
style sheet to meet an application’s requirements.

Overriding the Global Association Attribute Value

The global association value that you establish in the style sheet can be dynamically
overridden within a Publisher channel message. This is a powerful feature that is made
possible by the open-ended nature of the driver’s design.

To override the global value, you must include an association attribute value inside
an XDS message submitted to the Publisher channel as follows:

<association> value <association/>

The Role of the Subscriber Channel in Setting Associations

Identity Manager Connector for Java Messaging Service

-35-

In the JMS driver, the Subscriber channel plays an important role is setting the asso-
ciation values. At first, this might seem counter-intuitive, but it takes advantage of
DirXML engine features and is very efficient.

 Because of the nature of marrying DirXML to the flexible and asynchronous JMS inter-
face, the driver automatically creates a dummy association for each Add event. This
association value is then updated according to application needs, either by setting a
global, static value in the spreadsheet or dynamically within a Publisher channel mes-
sage (as described above).

When setting the association attribute value using the style sheet, a filter for the Sub-
scriber channel must be enabled. This allows the relevant XSL script to fire in order
to correctly update the association values.

Using The Advanced Features

Special Subscriber Channel Commands
The special Subscriber channel commands were implemented to provide the capabil-
ity to output non-XDS formatted documents to a JMS queue or topic. The Identity
Manager engine arbitrarily wraps the outgoing document with the standard <NDS>
tags as show in the example below. The engine also adds an arbitrary event-id=0
data value as an attribute on the <Input> node.

Example:
 <NDS><Input>submitted message</Input></NDS>

{RemoveInputTags|True}

 The RemoveInputTags command instructs the JMS driver shim to remove the
<nds><input> tags from the beginning of the message and remove the
</input></nds> tags from the end of the message.

{RemoveEventID|True}

The RemoveEventID command instructs the JMS driver shim to remove the Event-ID
Attribute data value from the current message.

Performance Data

The JMS driver captures and reports performance data in several different styles. The
performance data can be requested on demand by simply submitting a special docu-
ment to the publisher shim. The performance data is also set on a per transaction ba-
sis both in the publisher and subscriber channels.

On Demand Performance Data

Identity Manager Connector for Java Messaging Service

-36-

The On Demand performance data is returned on demand by submitting the “<Per-
formance Metrics/>” document to the Publisher channel queue or topic. The per-
formance data returned on the “Performance Queue” is defined in the Publisher
channel driver properties.

The specifics of the On Demand Performance data are itemized and explained in the
table below.

Performance Tag

Explanation of Data Elements

Driver Start Time

Contains the system time when the driver is
started. It is reinitialized each time you start and
stop the driver.

Reported in milliseconds.

Driver Up Time

Contains the total time the driver has been run-
ning continuously since the last start.

Reported in milliseconds.

Current Time

Contains the current system time when the per-
formance metrics were requested.

Reported in milliseconds.

Total Number of Messages

Contains the counter indicating the total number
of messages processed by the Publisher channel
queue or topic.

Total Success Messages

Contains the counter indicating the total number
of message successfully processed by the Pub-
lisher channel queue or topic.

A successful message is defined by the DirXML
engine returning a code indicating that no error,
warning, or retry codes were returned during the
processing of a submitted document to the Pub-
lisher channel.

Identity Manager Connector for Java Messaging Service

-37-

Total Error Messages

Contains the counter indicating the total number
of messages where a code other than success
was returned by the DirXML engine during the
processing of a submitted document to the Pub-
lisher channel.

Average Message Processing
Time

Contains the average time to process a message
in the Publisher channel.

The data element is calculated by dividing the
Total Message Processing Time by the Total Num-
ber of Message submitted.

Identity Manager Connector for Java Messaging Service

-38-

Per Transaction Performance Data

Per Transaction performance data is calculated in both the Publisher and Subscriber
channel and stored on the header of each individual message. The metrics stored on
the individual message are discussed in the table below.

• Publisher

The Publisher channel transaction performance data is calculated and then
placed on the audit or transaction messages.

• Subscriber

The Subscriber channel per transaction performance data is calculated and
stored in the headers of each outgoing message.

Transaction Data

Explanation of Data Elements

Processing Start Time
Contains the system time when the driver re-
ceived the message from the queue or topic.

Processing End Time

Contains the system time when the driver has fin-
ished processing the received message.

Reported in milliseconds.

Total Processing Time

Contains total processing time for a received
message. The Total Processing time is calculated
by subtracting the processing start time from the
processing end time.

Reported in milliseconds.

Identity Manager Connector for Java Messaging Service

-39-

Association Style Sheets
Overview

There are 3 primary ways to set an association value with the JMS driver:

o Subscriber Channel [Outgoing Document is in XDS format]
o Subscriber Channel [Outgoing Document is in non-XDS format]
o Publisher Channel

Association StyleSheet (XDS Format)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="add">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <association state="associated">MQAssociation</association>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Association Write Back (Non-XDS Format)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:cmd="http://www.novell.com/nxsl/java/com.novell.nds.dirxml.driver.XdsCommandProcessor"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:strip-space elements="*"/>
 <xsl:preserve-space elements="value component"/>
 <xsl:output indent="yes" method="xml"/>
 <!-- ****************** -->
 <!-- DirXML passed parameter for cmd processing -->
 <!-- ****************** -->
 <xsl:param name="srcCommandProcessor"/>
 <!-- ****************** -->
 <!-- Global Variables. -->
 <!-- ****************** -->
 <xsl:variable name="debug">false</xsl:variable>
 <xsl:variable name="message">true</xsl:variable>
 <!-- ****************** -->
 <!-- ****************** -->
 <xsl:template match="add">
 <!-- convert modify or sync with an association to an instance so that -->
 <!-- output transform can create a complete output record -->
 <xsl:variable name="associationValue" select="string(association/text())"/>
 <xsl:choose>
 <xsl:when test="association[@state = 'disabled']">

Identity Manager Connector for Java Messaging Service

-40-

 <!-- ignore if the association is disabled -->
 </xsl:when>
 <xsl:otherwise>
 <!-- if a modify on an associated object the association replace it with the instance -->
 <!-- returned by querying the object -->
 <xsl:variable name="assoc-cmd">
 <add-association dest-dn="{@src-dn}" dest-entry-id="{@src-entry-id}">
 <xsl:value-of select="JMSAssociation"/>
 </add-association>
 </xsl:variable>
 <!-- query NDS variable can be called anything -->
<xsl:variable name="do-cmd" select="cmd:execute($srcCommandProcessor, $assoc-cmd)"
xmlns:cmd="http://www.novell.com/nxsl/java/com.novell.nds.dirxml.driver.XdsCommandProcessor"/
>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

Association (Publisher Channel)

To set the association via the Publisher channel, add an association tag into the XDS
document, as shown below:

<association state="associated">MQAssociation</association>

Identity Manager Connector for Java Messaging Service

-41-

Channel Write-Back

The JMS driver has support for the Channel Write Back on both the Publisher and Sub-
scriber channels.

When using the Channel Write Back to send messages to the JMS provider, you must
tell the command processor the name of the queue. You must specify the name of
the queue by placing the following string ‘{cmdQueue|Queue Name}’ at the beginning
of the variable. The command processor removes the special command tags when
processing the message.

The command processor invocation automatically encapsulates the message with the
‘<nds><input> </input></nds>’ tags. You can instruct the command processor to re-
move the tags by including the following command in the variable definition ‘{Re-
moveInputTags|True}’. A more in-depth discussion about how to use the Channel
write back functionality is included below.

XSLT Channel Write-Back In Depth

Now that you've seen a simple example of XSLT Channel Write-Back, let's dig in
deeper and understand how it all works. There are four items that Channel Write-
Back uses in any style-sheet:

• Name Space Declarations
• Parameter Declarations
• XDS Fragment Document
• Channel Write-Back Execution

Name Space Declaration

The first item you need to add is a name space declaration that instructs the
NovellXSLT processor to bind the prefix ‘cmd' to a Java class that implements the
Channel Write-Back functionality.

xmlns:cmd="http://www.novell.com/nxsl/java/com.novell.nds.dirxml.driver.
XdsCommandProcessor"

Typically, the <xsl:stylesheet> element's start tag looks something like this:
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
To enable Channel Write-Back in a style sheet, the <xsl:stylesheet> element's start
tag should look like this:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:cmd="http://www.novell.com/nxsl/java/com.novell.nds.dirxml.driver.
XdsCommandProcessor" >

Identity Manager Connector for Java Messaging Service

-42-

In terms of DirXML, the <xsl:stylesheet> and <xsl:transform> are identical and can be
used interchangeably.

Parameter Declaration

In addition to adding the name space declaration, two style sheet parameters must
be declared:

• SrcCommandProcessor
• destCommandyProcessor

These two parameters are passed by the DirXML engine to the styles sheet. They are
used to allow the style sheet to specify which datastore should be written back to
(modified). The terms "source" and "destination" are used in context of the origin of
the event. In other words, if you need to query the datastore that generated the
event, you send the XDS Fragment query to the srcCommand- Processor. If you need
to modify the datastore that receives the event, you send the XDS Fragment to the
destCommandProcessor.

Here's a hint that might help you. Because the Publisher Channel is always used for
events coming into eDirectory, the destination datastore is always eDirectory.
Therefore, the destCommandProcessor is used to modify eDirectory on the Publisher
channel. Conversely, because the Subscriber channel is always used for events coming
from eDirectory, the source datastore is always eDirectory. Therefore, the srcCom-
mandProcessor is used to modify eDirectory.

These two parameters should be declared towards the top of your style sheet, after
the <xsl:stylesheet> element. Although it is only necessary to declare the parameters
that are actually used, it's good practice to declare them both:

<xsl:param name="srcCommandProcessor"/>
<xsl:param name="destCommandProcessor"/>

The XDS Fragment Document

Now that you've properly prepared your style sheet for Channel Write-Back, you can
now delve into the actual Channel Write-Back itself. The structure of the XDS Frag-
ment document is the same as any XDS document. This means it must comply with
the NDS.DTD. The full details of the XDS Document structure can be found in the
NDS.DTD file located at

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/ndsdtd/query.html.

After the XDS Fragment Document is constructed, it is typically stored in an
<xsl:variable> so that it can be passed to the Command Processor for execution.

Sample XDS Fragment Documents

Identity Manager Connector for Java Messaging Service

-43-

Below are some sample XDS Fragment Documents to better illustrate how to properly
construct such a document.

Sample 1. This is a document to modify a user's Description attribute.
<modify class-name="User" dest-dn="\AMCE\Users\Sam">
<association>JMS Assocation<association>
<modify-attr attr-name="Description">
<remove-all-values/>
<add-value>
<value>This is a new Description</value>
</add-value>
</modify-attr>
</modify>

Sample 2. This document sends a message to a queue named “TestQueue”. The
content of the variable does not need to be in XML format. The contents can be in
any format needed or desired.

<xsl:variable name="TextMessage">
 {cmdQueue| TestQueue }{RemoveInputTags|True}
 <TextMessage>

<Test text message/>
 </ TextMessage >
</xsl:variable>

Sample 3. This is a document to add an Alias to an object.
<add class-name="Alias" dest-dn="\ACME\Aliases\Sam">
<add-attr attr-name="Aliased Object Name">
<value type="dn">
<xsl:value-of select="\ACME\Users\Sam"/>
</value>
</add-attr>
</add>

Sample 4. Examples of a non-XML formatted message
<xsl:variable name="TextMessage">
 {cmdQueue| TestQueue }{RemoveInputTags|True}
 This is a test Text Message
</xsl:variable>

The Channel Write-Back Execution

After you've properly constructed your XDS Fragment Document and stored it in an
<xsl:variable> called $cmd-Update, you need to submit it to the Command Processor
for execution. There are a few components to the execution:

• The name of the variable to contain the results. (Unlike queries, the result
variable is never used after execution. It is used to execute the command.)

Identity Manager Connector for Java Messaging Service

-44-

• The cmd: prefix to indicate that this command is to be handled by the Com-
mand Processor as declared in the Name Space Declaration.

• A reference to either the srcCommandProcessor or the destCommand- Proces-
sor to instruct the DirXML engine as to which datastore the XDS Fragment
should be applied.

• A reference to the variable in which the XDS Fragment Document is stored.

When you put these elements together, you get the following command:
<xsl:variable name="result" select="cmd:execute($srcCommandProcessor, $cmd-
Update)"/>
$result is the <xsl:variable> to store the Channel Write-Back results in. This variable
has no function after the command is executed.

Query interface

Overview

The JMS driver has two query interfaces: one on the Subscriber channel, and one on
the Publisher channel.

Each query interface has three components: Query Queue, Query Reply Queue, and a
Query Timeout value. The query interface uses a synchronous transaction mode.

The query reply queue interface operates in blocking (synchronous) mode. When the
query interface is invoked, it places a query message on the Query Queue and then
waits for a reply to this message on the designated Query Reply Queue until the value
of the timeout has been exceeded.

Query Queue

The Query Queue defines the queue that query documents are to be placed on.
Typically, these documents are in XML or XDS format, but they can be in any format.
The remote JMS client is then responsible for interpreting this query document and
placing the response to the query on the Query Reply Queue.

Query Reply Queue

The Query Reply Queue interface defines the actual queue used for the query reply
documents that are sent by the remote JMS client. This interface is used instruct the
JMS driver where to look for the response document to the original query document.

Query Timeout Value

The Query Timeout specifies the maximum length of time the Query Reply Queue in-
terface will wait to receive a reply from the remote JMS client responsible for re-
sponding to query messages. No other DirXML processing or blocking occurs during
the specified period . If this field is left blank, it defaults to 10 milliseconds.

Identity Manager Connector for Java Messaging Service

-45-

Identity Manager Connector for Java Messaging Service

-46-

Sample Query Style Sheet

<xsl:template name="query-object-name">
<xsl:param name="object-name"/>
 <!-- build an xds query as a result tree fragment -->
 <xsl:variable name="query">
 <nds dtdversion="1.0" ndsversion="8.5">
 <input>
 <query>
 <search-class class-name="{ancestor-or-self::add/@class-name}"/>
 <!-- NOTE: depends on CN being the naming attribute -->
 <search-attr attr-name="CN">
 <value>
 <xsl:value-of select="$object-name"/>
 </value>
 </search-attr>
 <!-- put an empty read attribute so only object is returned. -->
 <read-attr/>
 </query>
 </input>
 </nds>
 </xsl:variable>

<!-- query eDirectory -->

 <xsl:variable name="result" select="query:query($destQueryProcessor,$query)"/>
 <!-- return an empty or non-empty result tree fragment depending on result of query
-->
 <xsl:value-of select="$result//instance/@class-name"/>
 </xsl:template>

Sample Query Reply Documents

Included below are sample documents representing the default format for the re-
turned query documents. However, a returned query document can be in any desired
format.

One Instance Found

If a single object is found based on your search criteria, the following document will
be returned:

<instance class-name="User" event-id="0" src-dn="\TEST_TREE\TEST\Users\JDoe">
<association state="associated">JDoe@test.com</association>
 <attr attr-name="Surname">
 <value timestamp="1016241258#16" type="string">Doe</value>
 </attr>
</instance>

Identity Manager Connector for Java Messaging Service

-47-

Because only a single object matched your search criteria, there is only a single <in-
stance> element in the document above.

Multiple Instances Found

This example shows you the default format for a response to query command when
the search returns multiple results. Remember that this is the default format and
you can return the document in any form necessary.

<instance class-name="User" event-id="0" src-dn="\TEST_TREE\TEST\Users\JDoe">
<association state="associated">JDoe@test.com</association>
 <attr attr-name="Surname">
 <value type="string">Doe</value>
 </attr>
</instance>
<instance class-name="User" event-id="0" src-dn="\TEST_TREE\TEST\Users\JDoe2">
<association state="associated">Jdoe2@test.com</association>
 <attr attr-name="Surname">
 <value type="string">Doe</value>
 </attr>
</instance>

Identity Manager Connector for Java Messaging Service

-48-

Audit Features
The JMS driver provides a mechanism that helps to ensure best practices for handling
transactions submitted to the Publisher channel. The features are:

• Audit Queue Interface
• Audit Topic Interface
• Tracking Queue Interface
• Tracking Topic Interface

Audit Queue Interface

When documents are submitted to the Publisher channel but fail to be processed for
any reason, the Audit Queue Interface places a copy of the original message and a
copy of the returned error message on the indicated queue.

Audit Topic Interface

When documents are submitted to the Publisher channel but fail to be processed for
any reason, the Audit Topic Interface places a copy of the original message and a
copy of the returned error message on the indicated topic.

Tracking Queue Interface

The Tracking Queue interface captures all messages that processed successfully and
places a copy of the message on the tracking queue.

Tracking Topic Interface

The Tracking Topic interface captures all messages that processed successfully and
places a copy of the message on the tracking topic.

Identity Manager Connector for Java Messaging Service

-49-

Automatic Failover and Load Balancing
Multiple JMS drivers can be configured to retrieve messages from a single queue. Un-
der this configuration, the queue feeds messages to each attached driver in a
“round-robin” manner.

Automatic Failover

Fully automatic failover can be supported by configuring two JMS drivers that fetch
messages from a single queue (or queue cluster). If one of the drivers fails for any
reason, the second automatically continues processing. No messages can be lost dur-
ing this process.

Load Balancing

When configured on multiple DirXML servers, the JMS driver supports true load bal-
ancing that can greatly scale the performance of DirXML. Where XML transaction vol-
umes exceed the ability of the engine to keep pace, simply add one or more instances
of the driver without modification.

**Note: The load-balanced drivers must be hosted on separate DirXML servers in order to obtain the
desired performance benefits.

The diagram below illustrates how the JMS Driver can be readily configured for auto-
matic failover and load balancing.

eDirectory
DirXML
Server

eDirectory
DirXML
Server

JMS Queue

MSG 1

MSG 2

Identity Manager Connector for Java Messaging Service

-50-

Vendor Configurations

General Driver Configuration

All implementations of the JMS driver require these files to be copied to the
\novelll\nds\lib directory or equivalent location, depending on the platform required.

• JMSDriver.Jar
• JMS.JAR
• Vendor specific JMS libraries

Supported JMS Vendor Implementations

• JMS
• Oracle Advanced Queuing
• IBUS Message Server
• TIBCOJMS
• TIBCO
• Novell
• Open JMS
• Sonic MQ
• Sun Message Queuing
• JBOSS
• Bea WebLogic
• SeeBeyond

Identity Manager Connector for Java Messaging Service

-51-

JMS Summary

IBM WebSphere MQ (MQ Series) is the defining message queue product in its class and
used in the majority of messaging implementations. WebSphere MQ implements full
JMS compatibility in both standard and WebSphere MQ Everyplace (lightweight) ver-
sions.

Company Web site: www.ibm.com

MQ Series Specific Configurations

Versions 5.2 and below need the MA88 Support Pack (Java Messaging System support).

The Support pack is available as a free download from
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma88.html

For version 5.3 and higher, you must select custom installation and select the option
to install Support for JMS.

If you want to use topics, you need the MA0C support pack, and you must start the
Strmbrk process. The support pack is available as a free download from
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0c.html

Vendor-Specific Support Files

• Connector.jar
• Com.ibm.jms.jar
• Com.ibm.jmsbind.jar
• Com.ibm.mqjms.jar

Authentication Information

The User ID that authenticates to the JMS environment must be a member of the MQM
group.

Windows Environment Configuration

Add the JMS\Java\Lib directory to the Windows path environment variable.

Solaris Environment Configuration.

Add the following paths to the Java support files.

• /opt/mqm/bin:
• /opt/mqm/lib:
• /opt/mqm/java/lib

Identity Manager Connector for Java Messaging Service

-52-

The path /opt/mqm/java/lib must be added to the LD_LIBRARY_PATH in the NDSD
startup script for the MQ driver to find the supporting c libraries.

**Note: You must also make sure you export the LD_LIBRARY_PATH.

Identity Manager Connector for Java Messaging Service

-53-

JMS Remote Configuration

MQ Series Specific Configurations

Remote connections require that the JMS Client be installed.

Versions 5.2 and below need the MA88 Support Pack (Java Messaging System support).
Later versions have integrated JMS support within the standard installation proce-
dure.

For those that require it, the Support pack is available as a free download from
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma88.html

For version 5.3 and higher, you need to select the custom installation and select the
option to install support for JMS.

If you want to use topics, you need the MA0C support pack, and you must start the
Strmbrk process. The support pack is available as a free download from
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0c.html

Vendor-Specific Support Files

• Connector.jar
• Com.ibm.jms.jar
• Com.ibm.jmsbind.jar
• Com.ibm.mqjms.jar

Authentication Information

Provide the User ID that authenticates to the JMS environment. The user must be a
member of the MQM group.

Windows Environment Configuration

Add the JMS\Java\Lib directory to the Windows path environment variable.

Solaris Environment Configuration

Add the following paths to the Java support files.

• /opt/mqm/bin:
• /opt/mqm/lib:
• /opt/mqm/java/lib

Identity Manager Connector for Java Messaging Service

-54-

Oracle Advanced Queuing (AQ)

Oracle AQ is the preferred approach used by Oracle to develop highly abstracted, ef-
ficient, and safe application integration. AQ is integral to all Oracle databases from
8.04 onwards and supports the JMS standard.

Company Web site: www.oracle.com

Oracle-Specific Configurations

Java Messaging System support is included in every version of Oracle from 8.04.

Supporting Files

• aqapi.jar (Advanced Queuing files)
• ojdbc14.jar (Oracle JDBC* thin driver support)

Authentication Information

The User ID that authenticates to the Oracle Advanced Queuing environment must be
a member of the AQ Users Role or AQ Administrators Role.

Oracle Advanced Queuing Message Format

Some difficulty might be experienced when de-queuing a message generated by work-
flow and formatted by the queue handler. With some versions of Oracle, It is neces-
sary to populate the agent section, header section, property section and the text
section of the message. A JMS-120 is generated when the suggested sections were
not populated appropriately. The error is as follows:

JMS-120: Dequeue failed
oracle.jms.AQjmsException: JMS-120: Dequeue failed
at oracle.jms.AQjmsError.throwEx(AQjmsError.java:233)
at oracle.jms.AQjmsConsumer.dequeue(AQjmsConsumer.java:1429)
at oracle.jms.AQjmsConsumer.receiveFromAQ(AQjmsConsumer.java:691)
at oracle.jms.AQjmsConsumer.receive(AQjmsConsumer.java:628)

Identity Manager Connector for Java Messaging Service

-55-

An example of populating the message with each section defined correctly is as fol-
lows:

l_jms_text_message:= sys.AQ$_JMS_TEXT_MESSAGE (sys.AQ$_JMS_HEADER
 (sys.AQ$_AGENT(' ', NULL, 0),
 NULL,
 'apps',
 NULL,
 NULL,
 NULL,
 sys.AQ$_JMS_USERPROPARRAY
 (sys.AQ$_JMS_USERPROPERTY('jmsobject', 200, NULL, 12345, 23)
)
 length(p_jms_text_message.text_vc), p_jms_text_message.text_vc, NULL
);

Identity Manager Connector for Java Messaging Service

-56-

Soft-Wired iBUS

iBus is a highly robust and cost effective java messaging product. Unique features in-
clude both Internet (SSL) and Mobile device connectivity.

Company Web site: www.soft-wired.com

iBUS Specific Configurations
Special Vendor Installation Options

Supporting Files

• IBUSmsrvClt.jar

Authentication Information

By default security is not implemented on the IBUS message server. If you want to
enable username password access controls, you must explicitly enable the security
manager module in the administration tool. This module allows you to assign ACLs
(Access Control Lists) to queues or topics.

Environment Settings

• Windows

The IBUSSRV_HOME environment variable must be set before
running the server scripts. The installer sets the environment
variable IBUSSRV_HOME to INSTALL_DIR\server. Use the startserver.bat
batch file in the directory INSTALL_DIR\server\bin and the
stopserver.bat batch file located in INSTALL_DIR\client\bin.

• UNIX

Set the environment variable IBUSSRV_HOME to
INSTALL_DIR/server. To start the server, use the
startserver.sh shell script in INSTALL_DIR/server/bin. To stop
the server, use the stopserver.sh shell script in
INSTALL_DIR/client/bin. This script is an iBus client and can be
run from any machine.

Identity Manager Connector for Java Messaging Service

-57-

TIBCO JMS Server

This message bus provides real-time connectivity to dozens of platforms and applica-
tions.

Company Web site: www.tibco.com

Tibco JMS Specific Configurations

Vendor: TibcoJMS

Special Vendor Installation Options

Supporting Files

• TIBCOJMS.JAR

Authentication Information

By default, security is not implemented on the TIBCO JMS message server. If you
want to use security, you must assign ACLs (Access Control Lists) to queues or topics.

Environment Settings

 None.

Identity Manager Connector for Java Messaging Service

-58-

Spiritsoft SpriritWave TIBCO-JMS Bridge

This third-party product provides native connectivity to the TIBCO Rendezvous Mes-
sage Bus without requiring the TIBCO JMS Server.

Company Web site: www.spiritsoft.com

Special Vendor Installation

To properly register the Spiritsoft-TIBCO Bridge license file with the eDirectory in-
stance, you must copy the Properties directory to the \novell\nds\jre\lib\ext direc-
tory.

Supporting Files

• rvconfig.jar
• tibrvj.jar
• tibrvjsd.jar

Identity Manager Connector for Java Messaging Service

-59-

Novell Messaging Platform

 Su

This product provides a high-performance JMS-compliant message bus that integrates
with all Novell exteNdTM technologies as well as all other J2EE technology.

Company Web site: www.novell.com

Novell MP Specific Configurations

Vendor: Novell

Special Vendor Installation Options

Supporting Files

• MP-JMS.jar
• MPORB12.dll

Authentication Information

By default, security is not implemented on the Novell message server. If you want to
use security, you must assign ACLs (Access Control Lists) to queues or topics.

Environment Settings

A search path must be set for the MPORB12.dll.

Identity Manager Connector for Java Messaging Service

-60-

Sonic MQ

Sonic Message Queuing is a highly robust Java messaging product. Unique features in-
clude Sonic Continuous Availability Architecture and advanced clustering technolo-
gies.

Company Web site: http://www.sonicsoftware.com/

Sonic Specific Configurations

Special Vendor Installation Options

Supporting Files

• Sonic_Client.jar

Authentication Information

By default, security is not implemented on the Sonic message server. If you want to
use security, you must enable the security manager module in the administration
tool. This module allows you to assign ACLs (Access Control Lists) to queues or topics.

Identity Manager Connector for Java Messaging Service

-61-

Sun Message Queuing

This product includes support for multi-broker message services, HTTP/HTTPS con-
nections, secure connection services, scalable connection capability, and client con-
nection failover .

Company Web site: http://www.sun.com/

Sun Message Queue Specific Configurations

Special Vendor Installation Options

Supporting Files

• IMQ.jar
• IMQBroker.JAR

Authentication Information

By default, security is not implemented on the SUN Message Queuing server. If you
want to use security, you must the security manager module in the administration
tool. This module allows you to assign ACLs (Access Control Lists) to queues or topics.

Environment Settings

Setting Description

IMQ_HOME

• On Solaris, there is no root Message Queue installa-
tion directory. Therefore, IMQ_HOME is not used in
Message Queue documentation to refer to file loca-
tions on Solaris.

• On Windows, the root Message Queue installation di-
rectory is set by the Message Queue installer (by de-
fault, C:\Program Files\Sun\MessageQueue3).

• On Windows, for Sun Java System Application
Server, the root Message Queue installation direc-
tory is /imq under the Application Server base di-
rectory.

• On Linux, there is no root Message Queue installa-
tion directory. Therefore, IMQ_HOME is not used in
Message Queue documentation to refer to file loca-

Identity Manager Connector for Java Messaging Service

-62-

tions on Linux.

IMQ_VARHOME The /var directory in which Message Queue temporary or
dynamically-created configuration and data files are
stored. It can be set as an environment variable to point to
any directory.

• On Solaris, IMQ_VARHOME defaults to the /var/imq
directory.

• On Solaris, for Sun Java System Application Server,
Evaluation Edition, IMQ_VARHOME defaults to the
IMQ_HOME/var directory.

• On Windows, IMQ_VARHOME defaults to the
IMQ_HOME\var directory.

• On Windows, for Sun Java System Application
Server, IMQ_VARHOME defaults to the
IMQ_HOME\var directory.

• On Linux, IMQ_VARHOME defaults to the
/var/opt/imq directory

IMQ_JAVAHOME An environment variable that points to the location of the
Java runtime (JRE) required by Message Queue executa-
bles:

• On Solaris, IMQ_JAVAHOME defaults to the
/usr/j2se/jre directory, but you can optionally set
the value to wherever the required JRE resides.

• On Windows, IMQ_JAVAHOME defaults to
IMQ_HOME\jre, but you can optionally set the value
to wherever the required JRE resides.

• On Linux, Message Queue first looks for the java
runtime in the /usr/java/j2sdkVersion directory,
and then looks in the /usr/java/j2reVersion direc-
tory. However, you can optionally set the value of
IMQ_JAVAHOME to wherever the required JRE re-
sides.

Identity Manager Connector for Java Messaging Service

-63-

JBOSS MQ

A clean room implementation of the Java Message Service API part of the J2EE speci-
fication. It allows asynchronous delivery of messages in distributed systems with op-
tional QOS parameters such as persistence, guaranteed delivery[comma] or transac-
tions.

• JBoss-4.x supports the JMS1.1 version of the spec.

• JBoss-3.2.x supports the JMS1.0.2b spec.

Features

• Fire and Forget for asynchronous delivery.

• Guaranteed Delivery using persistent messages and durable subscriptions.

• JTA XA integration used by JBoss's JMS Resource Adapter.

• Pluggable Security to support different security mechanisms.

• Pluggable Persistence to support different persistence mechanisms.

• High Availability in a clustered environment.

Company Web site: http://www.jboss.org/

JBOSS MQ Specific Configurations

Special Vendor Installation Options

Supporting Files

• jbossall-client.jar

Authentication Information

By default, security is not implemented on the JBOSS Application server. If you want to use
security, you must use the security manager module in the administration tool. This module al-
lows you to assign ACLs (Access Control Lists) to queues or topics.

Identity Manager Connector for Java Messaging Service

-64-

Bea WebLogic

BEA MessageQ is easy-to-use, fast, and reliable message software that allows applica-
tions to communicate using the industry-leading queued message bus technology. A
proven and widely deployed middleware solution for distributed enterprise applica-
tions, BEA MessageQ allows the reliable exchange of guaranteed application messages
across heterogeneous platforms. BEA MessageQ provides a robust application integra-
tion architecture for building high-performance message-based applications using
multi-mode communications.

BEA MessageQ offers the following features:

• Interoperability with IBM platforms via TCP/IP, LU6.2.

• Publish and subscribe

• Large message size: up to 4 MB

• Self-describing messages for automatic data conversion between heterogene-
ous platforms

• Connectivity to BEA Tuxedo*, BEA eLink Platform*, MQSeries*, Legacy Applica-
tions, SAP R/3, and more

Company Web site: http://www.beasys.com

BEA Weblogic MessageQ Specific Configurations

Special Vendor Installation Options

Supporting Files

• WLClient.jar

Authentication Information

By default, security is not implemented on the Bea WebLogic server. If you want to
use security, you must use the security manager module in the administration tool.
This module allows you to assign ACLs (Access Control Lists) to queues or topics.

Identity Manager Connector for Java Messaging Service

-65-

SeeBeyond

eGate* Integrator is a J2EE compliant and Web services based distributed integration
platform that serves as the foundation of the SeeBeyond ICAN Suite 5, and is designed
to dramatically lower the total cost of ownership (TCO) of developing, deploying, and
managing integrations over time. eGate provides core integration including compre-
hensive systems connectivity, guaranteed messaging, and robust transformation ca-
pabilities while providing a unified, single sign-on environment for integration
development, deployment, monitoring and management.

eGate Integrator is the first and only J2EE certified integration platform to support
native operation of its integration technology over third-party J2EE application serv-
ers and includes the industry's first enterprise-scale integration change management
tools, significantly lowering TCO.

Company Web site: http://www.seebeyond.com/

SeeBeyond Specific Configurations

Special Vendor Installation Options

Supporting Files

• TDB

Authentication Information

By default, security is not implemented on the SeeBeyond JMS server. If you want to
use security you must use the security manager module in the administration tool.
This module allows you to assign ACLs (Access Control Lists) to queues or topics.

Identity Manager Connector for Java Messaging Service

-66-

OpenJMS

Product Web site: openjms.sourceforge.com

OpenJMS Specific Configurations

Vendor: Open Source

Authentication Information

By default, security is not implemented on the OpenJMS message server. If you want
to use security, you must assign ACLs (Access Control Lists) to queues or topics.

Identity Manager Connector for Java Messaging Service

-67-

Appendix A: JMS Overview

What Is JMS Messaging?

Messaging is a method of communication between software components or applica-
tions. A messaging system is a peer-to-peer facility; a messaging client can send mes-
sages to, and receive messages from, any other client. Each client connects to a mes-
saging agent that provides facilities for creating, sending, receiving, and reading mes-
sages.

Messaging enables distributed communication that is loosely coupled. A component
sends a message to a destination, and the recipient can retrieve the message from
the destination. However, the sender and the receiver do not need to be available at
the same time in order to communicate. In fact, the sender does not need to know
anything about the receiver: nor does the receiver need to know anything about the
sender. The sender and the receiver need to know only what message format and
what destination to use. In this respect, messaging differs from tightly coupled tech-
nologies, such as Remote Method Invocation (RMI), which require an application to
know a remote application's methods.

Messaging also differs from electronic mail (e-mail), which is a method of communi-
cation between people or between software applications and people. Messaging is
used for communication between software applications or software components.

Message Types

• In JMS, a message is a Java object with 3 parts:Message header

• Message properties

• Message body

Message Header

Every JMS message includes message header fields that are always passed from pro-
ducer to consumer. The purpose of the header fields is to convey extra information to
the consumer outside the normal content of the message body. The JMS provider sets
some of these fields automatically after a message is sent to the consumer, but the
message producer has the opportunity to set some fields programmatically.

JMSCorrelationID

The JMSCorrelationID header field provides a way to correlate related messages. This
is normally used for a request/response scenario. This can either be a vendor-specific
ID, an application-specific string, or a provider-native byte value.

Identity Manager Connector for Java Messaging Service

-68-

JMSExpiration or Time to Live

The JMSExpiration header field specifies the expiration or time-to-live value for a
message. If the value is set to 0, the message never expires. When a message does
expire, the JMS provider typically discards the message. Also, any persistent mes-
sages are deleted based on expiration values.

JMSMessageID

The JMSMessageID header field contains a value that uniquely identifies each message
sent by a provider. This value is automatically set by the provider and returned to
the message producer when the send method completes. All JMSMessageID values
must start with an ID: prefix.

JMSPriority

JMS defines 10 priority levels, 0 through 9. 0 is the lowest priority and 9 is the high-
est. Levels 0–4 indicate a range of normal priorities, and levels 5–9 indicate a range of
expedited priority. Priority level 4 is typically the default for a message producer.

Message Properties

The message property fields are similar to header fields described previously in the
Message Header section, except these fields are set exclusively by the sending appli-
cation.

Message Body

The message body carries free form application data, which can take several forms:
text, serializable objects, byte streams, etc. The JMS API defines several message
types (TextMessage,ByteMessage MapMessage, and others) and provides methods for deliv-
ering messages to and receiving messages from other applications.

JMS Messaging Models: Publish-and-Subscribe and Point-to-Point

JMS provides two types of messaging models: publish-and-subscribe and point-to-
point. The JMS specification refers to these as messaging domains. In JMS terminol-
ogy, publish-and-subscribe and point-to-point are frequently shortened to pub/sub
and p2p (or PTP), respectively. This chapter uses both the long and short forms
throughout.

In the simplest sense, publish-and-subscribe is intended for a one-to-many broadcast
of messages, while point-to-point is intended for one-to-one delivery of messages.

Publish-and-Subscribe

Identity Manager Connector for Java Messaging Service

-69-

In publish-and-subscribe messaging, one producer can send a message to many con-
sumers through a virtual channel called a topic. Consumers can choose to subscribe to
a topic. Any messages addressed to a topic are delivered to all the topic's consumers.
Every consumer receives a copy of each message. The pub/sub messaging model is a
push-based model, where messages are automatically broadcast to consumers without
consumers requesting them or polling the topic for new messages.

In the pub/sub messaging model, the producer sending the message is not dependent
on the consumers receiving the message. Optionally, JMS clients that use pub/sub can
establish durable subscriptions that allow consumers to disconnect and later recon-
nect and collect messages that were published while they were disconnected.

Point-to-Point

The point-to-point messaging model allows JMS clients to send and receive messages
both synchronously and asynchronously via virtual channels known as queues. The p2p
messaging model has traditionally been a pull- or polling-based model, where mes-
sages are requested from the queue instead of being pushed to the client automati-
cally. (The JMS specification does not specifically state how the p2p and pub/sub
models must be implemented. Either one may use push or pull, but at least concep-
tually pub/sub is push and p2p is pull.)

• A queue canhave multiple receivers, but only one receiver canreceive each
message. The JMS provider takes care of doling out the messages among JMS
clients, ensuring that each message is consumed by only one JMS client. The
JMS specification does not dictate the rules for distributing messages among
multiple receivers.

Identity Manager Connector for Java Messaging Service

-70-

Appendix B: Supporting National Language Code
Pages

The driver supports different code pages for national languages such as Japanese by
setting the JMS Queue Manager CCSIS to the code page corresponding to the UTF-8
character format for the target language.

To set the Queue Manager CCSID:

1. Execute the runmqsc program. This will bring up a DOS-like box
2. Enter the command: ALTER QMGR CCSID (1208)

(In the example, the value 1208 represents the Japanese language UTF-8 code
page. Substitute the correct UTF-8 code page ID for the required target lan-
guage.)

Messages sent to the queue need to be in Unicode* format. Information on the Uni-
code standard is found at http://www.unicode.org/

Identity Manager Connector for Java Messaging Service

-71-

Appendix C: Driver Parameters XML

<?xml version="1.0" encoding="UTF-8"?>
<driver-config name="JMS Driver">
 <driver-options>
 <qmgr display-name="Queue Manager">QM_appbox</qmgr>
 <msgbrk display-name="Message Broker"/>
 <mqchannel display-name="WebSphere MQ Channel"/>
 <sp display-name="Security Principal"/>
 <purl display-name="Provider Url">127.0.0.1</purl>
 <sc display-name="Security Credentials"/>
 <ss display-name="Security Protocol"/>
 <vb display-name="Verbose">TRUE</vb>
 <port display-name="OraclePort"/>
 <osid display-name="OracleSID"/>
 <ouser display-name="Oracle-Schema"/>
 <otable display-name="OracleQueueTable"/>
 <clientid display-name="JMS Client ID"/>
 <vendor display-name="Vendor">JBROKER</vendor>
 </driver-options>
 <subscriber-options>
 <qsend display-name="Queue Sender">subq</qsend>
 <tpub display-name="Topic Sender"/>
 <nonper display-name="Message persistence"/>
 <bytemessaging display-name="Byte Messaging"/>
 <jmsclient display-name="Client Mode"/>
 <subqueryq display-name="Subscriber Query Queue"/>
 <subqueryreplyq display-name="Subscriber Query Reply Queue"/>
 <subquerytimeout display-name=" Subscriber Query Reply Timeout"/>
 <ttl display-name="JMS Time To Live"/>
 <pri display-name="JMS Priority"/>
 </subscriber-options>
 <publisher-options>
 <qrec display-name="Publisher Queue Receiver">pubq</qrec>
 <queryq display-name="Publisher Query Queue"/>
 <queryreplyq display-name="Publisher Query Reply Queue"/>
 <querytimeout display-name="Publisher Query Reply Timeout"/>
 <trec display-name="Topic Receiver"/>
 <headers display-name="Retrieve Headers"/>
 <jmsclient display-name="Client Mode"/>
 <auditq display-name="Error Auditing Queue"/>
 <trackingq display-name="Transaction Tracking Queue"/>
 <correlationid display-name="Use Correlation ID'S"/>
 </publisher-options>

Identity Manager Connector for Java Messaging Service

-72-

Appendix D: Solutions

RACF & CICS Integration
The RACF & CICS integration solution is a mainframe-administrator: friendly approach
to integrating RACF and other host systems by using CLIST files. A set of included
ReXX scripts extract messages containing information for the RACF, CICS, or other da-
tabases on the host. The solution uses IBM JMS to transport the information from the
source (eDirectoryTM) to the mainframe and ReXX to execute. This is a very non-
intrusive solution because it provides the mainframe administrators total control
over the integration.

 IBM Support Packs required:

• MA12 (Batch Trigger Monitor)
MA18 (MQ ReXX Support)
Both of these support packs are found on IBM's Web site at http://www-
3.ibm.com/software/integration/support/supportpacs,
under Category 2, AS-IS SupportPacs

This solution uses trigger monitor submits a batch job that invokes a batch TSO TMP,
where a ReXX exec program fetches messages from a queue.

Sample ReXX Script:
/* REXX */
/* TRACE !RESULTS */

PARSE UPPER ARG ,
 USID "|" ,
 PSWD "|" ,
 UNAME "|" ,
 BG "|" ,
 DG "|" ,
 OG "|" ,
 TSOFLG "|" ,
 PRACNO "|" ,
 JOBF "|" ,
 REG "|" ,
 LOC "|" ,
 VMID "|" ,
 EMPTYPE "|",
 HRT "|"

 MAXCC = 0
 UEXIST = BLANK

 SAY "*** START PROCESSING USID="USID "***"

Identity Manager Connector for Java Messaging Service

-73-

 SAY "UNAME="UNAME "VMID="VMID
 SAY "BG="BG "DG="DG "OG="OG
 SAY "TSOFLG="TSOFLG "PRACNO="PRACNO "JOBF="JOBF
 SAY "REG="REG "LOC="LOC "EMPTYPE="EMPTYPE "HRT="HRT

 IF HRT = TER THEN DO
 MAXCC = 0
 SAY "*** NOT PROCESSED: TERMINATION ***"
 EXIT MAXCC
 END

 IF USID = '' THEN DO
 MAXCC = 0
 SAY "*** PROBLEM: NO USERID ***"
 EXIT MAXCC
 END

 AP = POS("'",UNAME)
 IF AP > 0 THEN UNAME = INSERT("'",UNAME,AP)

 X = OUTTRAP('LUOUT',0)
"LU" USID
 LURC = RC
 X = OUTTRAP('OFF')

 SELECT
 WHEN LURC = 0 THEN DO
 "CO" USID "GROUP("DG")"
 "ALU" USID "RESUME"
 "RE" USID "GROUP(@ISTERM)"
 UEXIST = Y
 IF MAXCC < 4 THEN MAXCC = 4
 SAY "*** NOTICE:" USID "EXISTED ***"
 END
 WHEN LURC = 4 THEN DO
 "AU" USID "OW("OG") DFLTGRP("DG")"
 AURC = RC
 UEXIST = N
 END
 OTHERWISE SAY "*** PROBLEM: LU ***"
 END

 IF HRT = REH THEN "CO" USID "GROUP(@ISTERMX) OW(ISSD01)"

 IF UEXIST = N THEN ,
 IF AURC ¬= 0 THEN DO
 IF MAXCC < AURC THEN MAXCC = AURC
 SAY "*** PROBLEM: AU ***"
 END

Identity Manager Connector for Java Messaging Service

-74-

"ALU" USID "OW("OG") DFLTGRP("DG") PASSWORD("PSWD")" ,
 "NAME('"UNAME"') DATA('"VMID"') CICS(OPIDENT(HAL))"
 ALRC = RC

 IF ALRC ¬= 0 THEN DO
 IF MAXCC < ALRC THEN MAXCC = ALRC
 SAY "*** PROBLEM: ALU ***"
 IF MAXCC > 4 THEN EXIT MAXCC
 END

 SELECT
 WHEN SUBSTR(USID,1,2) = @N THEN DO
 UUID = 80||SUBSTR(USID,3,4)
 "ALU" USID "OMVS(UID("UUID") HOME(/) PROGRAM(/bin/echo))"
 END
 OTHERWISE DO
 UUID = 1||SUBSTR(USID,2,5)
 "ALU" USID "OMVS(UID("UUID") HOME(/) PROGRAM(/bin/echo))"
 END
 END

 IF TSOFLG ¬= Y THEN EXIT MAXCC

"CO" USID "GROUP("BG") OW("OG")"

 SELECT
 WHEN OG = @TBADM01 THEN DO
 PRCD = LOGONU
 CMND = "EX ''BAS0000.P.TOOLS.CLIST(LOGON)''"
 END
 OTHERWISE DO
 PRCD = LOGONI
 CMND =
 END
 END

"ALU" USID "TSO(ACCTNUM(00000-00521109-001-51-238S)" ,
 "SIZE(8192) MAXSIZE(8192) JOBCLASS(A) MSGCLASS(S) SYSOUTCLASS(S)" ,
 "DEST(LOCAL) UNIT(SYSDA) PROC("PRCD") COMMAND('"CMND"'))"

 V1 = RANDOM(0,7)
 ACCNT = 0

 X = OUTTRAP('LCAT',0)
"LISTCAT ENTRIES('"USID"')"
 LCRC = RC
 X = OUTTRAP('OFF')

Identity Manager Connector for Java Messaging Service

-75-

 SELECT
 WHEN LCRC = 0 THEN DO
 IF MAXCC < 4 THEN MAXCC = 4
 SAY "*** NOTICE: CAT ENTRY EXISTED ***"
 END
 WHEN LCRC = 4 THEN DO
 DO UNTIL ACRC = 0 | ACCNT = 8
 TUCAT = SYS1.UCATTSO||V1
 IF TUCAT = SYS1.UCATTSO0 THEN TUCAT = SYS1.UCATTSO
 "DEFINE ALIAS (NAME('"USID"') RELATE('"TUCAT"'))"
 ACRC = RC
 ACCNT = ACCNT + 1
 V1 = V1 + 1
 IF V1 = 8 THEN V1 = 0
 END
 IF ACRC ¬= 0 THEN DO
 IF MAXCC < ACRC THEN MAXCC = ACRC
 SAY "*** PROBLEM: DEFINE ALIAS ***"
 EXIT MAXCC
 END
 END
 WHEN LCRC > 4 THEN DO
 IF MAXCC < LCRC THEN MAXCC = LCRC
 SAY "*** PROBLEM: CATALOG ENTRY ***"
 END
 END

"ALLOC DA('"USID".ISPPROF') NEW SPACE(2,1) DIR(35) TRACKS" ,
 "DSORG(PO) RECFM(F B) LRECL(80) BLKSIZE(6160)"
"FREE DA('"USID".ISPPROF')"
"ADDSD '"USID".*' OWNER("USID") UACC(NONE) AUDIT(NONE)"
"PE '"USID".*' ID("BG") ACC(READ) GEN"
"ADDSD '"USID".SYSOUT.*' OWNER("USID") UACC(NONE) AUDIT(NONE)"
"PE '"USID".SYSOUT.*' ID("BG") ACC(READ) GEN"

 SELECT
 WHEN PRACNO = 11 THEN NOP
 WHEN PRACNO = 14 THEN NOP
 WHEN PRACNO = 15 THEN NOP
 WHEN PRACNO = 17 THEN NOP
 WHEN PRACNO = 19 THEN ,
 TBIDFLAG = YES
 WHEN PRACNO = 20 THEN NOP
 WHEN PRACNO = 24 THEN ,
 TBIDFLAG = YES
 WHEN PRACNO = 27 THEN NOP
 WHEN PRACNO = 32 THEN NOP
 WHEN PRACNO = 40 THEN NOP
 WHEN PRACNO = 41 THEN NOP

Identity Manager Connector for Java Messaging Service

-76-

 WHEN PRACNO = 43 THEN NOP
 WHEN PRACNO = 44 THEN NOP
 WHEN PRACNO = 64 THEN ,
 "PE '"USID".SYSOUT.*' ID(@HETEC01) ACC(ALTER) GEN"
 WHEN PRACNO = 67 THEN NOP
 OTHERWISE
 END

 IF TBIDFLAG = YES THEN DO
 USIB = USID||'B'
 X = OUTTRAP('LUBOUT',0)
 "LU" USIB
 LUBRC = RC
 X = OUTTRAP('OFF')
 SELECT
 WHEN LUBRC = 0 THEN DO
 "ALU" USIB "RESUME"
 "RE" USIB "GROUP(@ISTERM)"
 IF MAXCC < 4 THEN MAXCC = 4
 SAY "*** NOTICE:" USIB "EXISTED ***"
 EXIT MAXCC
 END
 WHEN LUBRC = 4 THEN DO
 "AU" USIB "OW(@BAADM01) DFLTGRP(@TBHLD) PASSWORD("PSWD")" ,
 "NAME('"UNAME"') DATA('TBA B ID') CICS(OPIDENT(HAL))" ,
 "TSO(ACCTNUM(00000-00521109-001-51-238S) PROC(LOGONB)" ,
 "SIZE(2048) MAXSIZE(8192) JOBCLASS(A) MSGCLASS(S) " ,
 "SYSOUTCLASS(S) DEST(LOCAL) UNIT(SYSDA))"
 ABRC = RC
 IF ABRC ¬= 0 THEN DO
 IF MAXCC < ABRC THEN MAXCC = ABRC
 SAY "*** PROBLEM: AU BID ***"
 EXIT MAXCC
 END
 ELSE DO
 "CONNECT" USIB "GROUP(@ISTBAB) OW(@ISADM01)"
 IF TUCAT = TUCAT THEN TUCAT = SYS1.UCATTSO
 "DEFINE ALIAS (NAME('"USIB"') RELATE('"TUCAT"'))"
 "ALLOC DA('"USIB".ISPPROF') NEW SPACE(2,1) DIR(35) TRACKS " ,
 "DSORG(PO) RECFM(F B) LRECL(80) BLKSIZE(6160)"
 "FREE DA('"USIB".ISPPROF')"
 "ADDSD '"USIB".*' OWNER("USIB") UACC(NONE) AUDIT(NONE)"
 "PE '"USID".*' ID("USIB") ACCESS(ALTER) GEN"
 "ADDSD '"USIB".P.AQUA.*' OWNER("USIB") UACC(NONE) AUDIT(NONE)"
 "PE '"USIB".P.AQUA.*' ID(@ISPBIDS) ACCESS(READ)"
 "PE '"USIB".P.AQUA.*' ID(@DBDBA01) ACCESS(READ)"
 "ADDSD '"USID".P.AQUA.*' OWNER("USID") UACC(NONE)" ,
 "FROM('"USID".*')"
 "PE '"USID".P.AQUA.*' ID(@DBDBA01) ACCESS(READ)"

Identity Manager Connector for Java Messaging Service

-77-

 "RACLINK ID("USID") DEFINE(HALINMA1."USIB") PEER(PWSYNC)"
 END
 END
 OTHERWISE SAY "*** PROBLEM: LU B ID ***"
 END
 END

 RETURN MAXCC

Identity Manager Connector for Java Messaging Service

-78-

Oracle Integration
Company Web site: www.oracle.com
Oracle provides a set of JMS interfaces and associated semantics called Advanced
Queue (AQ) that define how a JMS client accesses the facilities of Oracle by using in-
dustry-standard Java messaging.

Oracle JMS supports the standard JMS interfaces and has extensions to support the
AQ administrative operations and other AQ features that are not a part of the JMS
standard.

The Oracle Advanced Queuing interfaces allow the developer to quickly and safely
integrate with a number of Oracle applications through messaging, as opposed to di-
rectly updating database tables. This allows APIs developed in PLSQL and Java to
prepare, validate, execute, roll-back and post-process all DirXML updates to Oracle
to ensure complete data integrity. Applications that can be integrated in this fash-
ion include:

• Oracle HR
• Oracle Financials
• Oracle E-Business Suite

Oracle Workflow

Oracle Workflow is an increasingly popular toolset that automates and streamlines
business processes both internal and external to the enterprise. It supports tradi-
tional applications-based workflows as well as Identity Management integration work-
flows.

The Workflow Engine embedded in the Oracle database server monitors workflow
states and coordinates the routing of activities for a process. Changes in workflow
state, such as the completion of workflow activities, are signaled to the engine via a
Java API. Based on flexibly defined workflow rules, the engine determines which ac-
tivities are eligible to run and the schedule that they use.

Oracle Workflow leverages Oracle Advanced Queuing and enables DirXML® application
integration at the business process level. Business event messages from DirXML can
be placed on or received from Oracle Advanced Queues and consumed by Oracle
Workflow. The HTTP and HTTPS communications protocols are also supported.

 Oracle Workflow Business Event System

A business event is triggered in an application whenever something of significance
happens. An example of a business event is the hiring of an employee or the creation
of a customer. The Business Event System consists of the Event Manager, which lets

Identity Manager Connector for Java Messaging Service

-79-

you register subscriptions to significant events, and event activities, which let you
model business events within workflow processes.

When a local event occurs, the subscribing code is executed in the same transaction
as the code that raised the event, unless the subscriptions are deferred. Subscription
processing can include executing custom code on the event information, sending
event information to a workflow process, and sending event information to other
queues or systems.

Identity Manager Connector for Java Messaging Service

-80-

Novell exteNd Composer
Company Web site: http://www.novell.com/

 Novell exteNd ComposerTM is an award-winning extraction, loading, and transforma-
tion (ETL) product that provides powerful data manipulation and extensive connec-
tivity tools. When configured with the DirXML Driver for JMS/MQ, it enables eDirec-
tory to connect to hundreds of applications, platforms, and data formats.

eDirectory DirXML
Server

JMS Queue
Novell

Composer Subscriber
System

Publisher

Subscriber

Novell exteNd Composer Connectors are available for a wide variety of back-end envi-
ronments, user interfaces, and data formats. They are also very easy to use. With these Connec-
tors and the exteNd Composer's simple drag-and-drop functionality, you can transform an appli-
cation's input and output into Extensible Markup Language (XML), thereby providing the Web
connectivity today's users and business climate demand. Novell exteNd Composer Connectors
are available for the following environments and applications:
exteNd Composer 3270 Connect
With exteNd Composer 3270 Connect, you can XML-enable data from systems that
provide a 3270 Terminal Data Stream (TDS) interface, which connects these systems
to IBM mainframe dumb terminals.

exteNd Composer 5250 Connect
The NovellexteNd Composer 5250 Connect XML-enables data from AS/400* legacy sys-
tems that provide a 5250 TDS interface. (AS/400 systems use this interface to connect
dumb terminals to IBM mainframes.)

exteNd Composer Data General Connect
This exteNd Composer Connector XML-enables data from legacy Data General and
DG/UX applications, which run on Dasher 412-based terminal systems.

exteNd Composer EDI Connect
The exteNd Composer EDI Connect converts messages from Electronic Data Inter-
change (EDI) systems to XML documents. Conversely, this Connector converts XML
documents to messages that comply with American National Standards Institute (ANSI)
X.12 and Electronic Document Interchange for Administration, Commerce and Trans-
portation (EDIFACT) specifications.

exteNd Composer HP3000 Connect
Using the exteNd Composer HP3000 Connect, you can XML-enable data from HP*
700/92 terminal-based systems, which run on HP3000 and HP-UX* operating systems.

Identity Manager Connector for Java Messaging Service

-81-

exteNd Composer HTML Connect
exteNd Composer HTML Connect transforms Hypertext Markup Language (HTML) navi-
gation and interactions into Extensible Hypertext Markup Language (XHTML). In other
words, this Connector XML-enables these transactions, which you can then repurpose
via Web services.

exteNd Composer JDBC Connect
exteNd Composer includes this valuable Connector, which XML-enables data from da-
tabases that expose a Java Database Connectivity (JDBC) interface. You can use ex-
teNd Composer JDBC Connect to create application components that process data
from, and return processed data toJDBC databases.

exteNd Composer LDAP Connect
Included with exteNd Composer, this useful Connector enables you to XML-enable di-
rectory-aware applications. You can use exteNd Composer LDAP Connect to create
applications that read information from, or write information to, any LDAP-compliant
directory.

exteNd Composer JMS Connect
With exteNd Composer JMS Connect, you can XML-enable Message Oriented Middle-
ware (MOM) applications, which send and receive messages via Java Message Service
(JMS).

exteNd Composer SAP Connect
exteNd Composer SAP Connect enables SAP R/3 applications to receive XML requests
and return XML responses. You can use this Connector to repurpose the core business
processes—such as accounts receivable and payable processes—currently in your or-
ganization's SAP applications.

exteNd Composer T27 Connect
With exteNd Composer T27 Connect, you can XML-enable applications running on Uni-
sys* mainframe computers—such as A Series, V Series and Clearpath NX Series main-
frames. This Connector enables you to include many Unisys applications—including
LINC and MARC—in your systems integration or Web services solution.

exteNd Composer Tandem Connect
Using exeteNd Composer Tandem* Connect, you can XML-enable data from applica-
tions running on Tandem 6530 terminal-based systems.

exteNd Composer CICS RPC
exteNd Composer CICS RPC is a Connector that XML-enables data from Customer In-
formation Control System (CICS) Remote Procedure Call (RPC) systems. These trans-
action-processing systems receive XML requests and return XML responses through
IBM's CICS Java Gateway.

exteNd Composer Telnet Connect
exteNd Composer Telnet Connect XML-enables data from ANSI terminal [hyphen]
based and VT-series systems-[comma instead of hyphen]which are systems that use
the Virtual Telecommunications Access Method (VTAM).

Identity Manager Connector for Java Messaging Service

-82-

The Novell exteNd Director Workflow system
• An intuitive design and development workflow process designer. Allows you to

quickly and visually create a workflow process, bringing the power of visual de-
sign to workflow development.

• Browser-based workflow administration console. Includes a user interface that
makes it exceptionally easy to remotely administer running workflow queues,
processes and the workflow engine.

• An open, extensible, and flexible architecture. Delivers integration with
NsureTM Identity Manager via JMS Java Messaging Systems.

• J2EE compatibility. Ensures that your workflow applications are portable,
scalable, secure, and vendor-neutral.

Identity Manager Connector for Java Messaging Service

-83-

Data Junction Integration
Company Web site: www.datajunction.com

Data Junction is an award-winning extraction, loading, and transformation (ETL) prod-
uct that provides powerful data manipulation and extensive connectivity tools. When
configured with the DirXML Driver for JMS/MQ, it enables eDirectory to connect to
hundreds of applications, platforms, and data formats.

The Data Junction product suite provides a Visual Map Designer, Process Designer,
Structure Schema Designer, Document Schema Designer, and Extract Schema De-
signer.

In addition, the Data Junction suite includes highly specialized adapters for a variety
of application services, all of which will integrate seamlessly with DirXML by using the
JMS driver. These include the following:

Dialog Adaptors:

• Biographical
• Business & News
• Commerce Business Daily
• Company Directory
• Federal Registry
• Market Research
• Patents
• Sci/Tech & Bio/Med
• Trade Names & Products
• Trademarks

Dodge Adaptors

• Bidders
• Firms
• Firms & Bidders
• Projects

Application Adaptors:

eDirectory
DirXML
Server

JMS Queue
Data

Junction
ETL

Subscriber
System

Publisher

Subscriber

Identity Manager Connector for Java Messaging Service

-84-

• AccPac
• EDI (X12)
• EDI (EDIFACT)
• HIPAA
• HL7
• SAP (IDoc)I
• SWIFT (Target only)
• STN Chemical
• Dow Jones*
• Internet Email
• Reuters*
• Xerox*

Identity Manager Connector for Java Messaging Service

-85-

HIPAA Adaptors

• HIPAA Adapter users: Refer to HIPAA for a detailed list of instructions on how

to connect to HIPAA Health Claim Source Files.

General Adaptors

• Access 2000
• Access 97
• Access XP
• AccountMate
• ACT! for Windows
• Acucobol (ODBC 3.x)
• Adabas (NatQuery)*
• Alpha Four
• Apache Common Logfile Format
• ASCII (Delimited)
• ASCII (Fixed)
• BAF
• Binary Line Sequential
• Binary
• BizTalk* XML
• Btrieve* v6
• Btrieve v7
• C-ISAM
• C-tree 4.3
• C-tree Plus
• Cambio
• Clarion
• Clipper*
• Cloudscape* (ODBC)
• Cobol Flat File
• Common Logfile Format Webserver
• Content Extractor
• Data Junction* Log File
• DataEase*
• DataFlex (ODBC 3.x)
• dBASE II
• dBASE III+
• dBASE IV
• dBASE V (IDAPI)
• DIALOG Biographical
• DIALOG Business and News
• DIALOG Commerce Business Daily
• DIALOG Company Directory
• DIALOG Federal Register

Identity Manager Connector for Java Messaging Service

-86-

• DIALOG Market Research
• DIALOG Patents
• DIALOG Sci_Tech and Bio_Med
• DIALOG Trade Names and Products
• DIALOG Trademarks
• dialog.djx
• DIF
• EDI (X12)
• edi4.djx
• EDIFACT
• Enable
• Excel 2000
• Excel 95
• Excel 97
• Excel v2
• Excel v3
• Excel v4
• Excel v5
• Excel XP
• eXcelon 2.x
• eXcelon XIS 3.0
• Extractor
• FIX
• FIXML
• Folio Flat File
• Foxbase+*
• FoxPro*
• Fujitsu Cobol
• GoldMine* Import File (dbf)
• GoldMine
• Great Plains DOS (Btrieve)
• Great Plains Unix_Mac (C-tree)
• HCFA1500 - NSFA
• HIPAA
• Hitachi HiRDB (ODBC)
• HTML
• IBM* DB2 7.2 Universal Database Multimode
• IBM DB2 Loader
• IBM DB2 UDB Mass Insert
• IBM DB2 Universal Database Multimode
• IDAPI
• Informix* (ODBC 3.x)r
• Informix DB Loader
• Informix-Online DS Multimode
• Informix_SE
• Ingres (ODBC 3.x)
• Interbase (IDAPI)
• Join engine

Identity Manager Connector for Java Messaging Service

-87-

• LDAP
• LDIF
• Lotus* 123 r1A
• Lotus 123 r2
• Lotus 123 r3
• Lotus 123 r4
• Lotus Note*s 5
• Lotus Notes Structured Text
• Lotus Notes Structured Text
• Lotus Notes
• Macola Acct (Btrieve)
• Magic PC
• MAILER'S+4 (dBase)
• Micro Focus* COBOL
• Microsoft* COBOL
• Microsoft IIS Extended Logfile Format
• MUMPS (ODBC)
• Navision Financials (ODBC 3.x)
• NonStop SQL_MX (ODBC)
• ODBC 3.5 MultiMode
• ODBC 3.5
• ODBC 3.5
• ODBC 3.x Mass Insert
• ODBC 3.x MultiMode
• ODBC 3.x
• ODBC 3.x
• Oracle 7.x
• Oracle 7.x
• Oracle 8.x Multimode
• Oracle 8.x
• Oracle 8.x
• Oracle 9i Multimode
• Oracle 9i
• Oracle 9i
• Paradox* v5 (IDAPI)
• PayChex* (DJF) Import
• Personal Librarian
• Pervasive* SQL
• Platinum Acct (Btrieve)
• PostgreSQL*
• Progress* (ODBC 3.x)
• Quattro Pro* Windows v5
• RBase (ODBC 3.x)
• RealWorld Acct (MFCOBOL)
• Red Brick
• Remedy* ARS
• Report Reader
• Rich Text Format

Identity Manager Connector for Java Messaging Service

-88-

• salesforce.com
• SAP (IDoc)
• SAS Transport Format
• SBT Acct (FoxPro)
• Scalable SQL
• Sequential Binary
• SGML
• Solomon Acct (Btrieve)
• SPLUS
• SPSS
• SQL Script
• SQL Server 2000
• SQL Server 6.x
• SQL Server 7
• SQL Server BCP
• SQL Server Mass Insert
• SQLBase* 6.X
• SQLBase
• Statistica
• SWIFT
• Sybase* Adaptive Server* 11.x
• Sybase Adaptive Server 12.x
• Sybase BCP
• Sybase SQL Anywhere 6
• Sybase SQL Anywhere
• Sybase SQL Server Mass Insert
• Sybase SQL Server System 11 Multimode
• SYSTAT
• Tape Drive Sequential
• Teradata (Fastload)
• Text (Delimited - EDI)
• Text (Delimited - EDI)
• Text (Delimited - EDIFACT)
• Text (Delimited - EDIFACT)
• Text (Delimited - HL7)
• TRADACOMS
• UB92 - NSF
• Unicode (Delimited)
• Unicode (Fixed)
• USMARC
• Variable Sequential (MVS)
• Velocis (ODBC 3.x)
• Visual dBASE* 5.5
• Visual FoxPro
• WATCOM* SQL v5
• WordPerfect* 6.0 (Mail Merge)
• XDB (ODBC 3.x)
• XML

	Table of Contents
	Preface
	Introducing the Driver
	Installing and Configuring the Driver
	Troubleshooting the Driver
	Association Style Sheets
	Audit Features
	Automatic Failover and Load Balancing
	Vendor Configurations
	A. JMS Overview
	B. Supporting National Language Code Pages
	C. Driver Parameters XML
	D. Solutions

