

Novell®
Sentinel™

www.nove l l . c om
6.0.1

October5 , 2007

Vo l um e I I I – S ENT INEL COLLECTOR SCR I PT USER ’ S
GU IDE

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to any and all parts of Novell software, to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or
changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and
the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes
no responsibility for your failure to obtain any necessary export approvals.

Copyright © 1999-2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the
U.S. patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending
patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products and to get
updates, see www.novell.com/documentation.

http://www.novell.com/documentation�

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list
(http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials
All third-party trademarks are the property of their respective owners.

Third Party Legal Notices
This product may include the following open source programs that are available under the LGPL license. The text
for this license can be found in the Licenses directory.

 edtFTPj-1.2.3 is licensed under the Lesser GNU Public License. For more information, disclaimers and

restrictions see http://www.enterprisedt.com/products/edtftpj/purchase.html.

 Esper. Copyright © 2005-2006, Codehaus.

 jTDS-1.2.jar is licensed under the Lesser GNU Public License. For more information, disclaimers and
restrictions see http://jtds.sourceforge.net/.

 MDateSelector. Copyright © 2005, Martin Newstead, licensed under the Lesser General Public License. For
more information, disclaimers and restrictions see http://web.ukonline.co.uk/mseries.

 Enhydra Shark, licensed under the Lesser General Public License available at:
http://shark.objectweb.org/license.html.

 Tagish Java Authentication and Authorization Service Modules, licensed under the Lesser General Public
License. For more information, disclaimers and restrictions see http://free.tagish.net/jaas/index.jsp.

This product may include software developed by The Apache Software Foundation (http://www.apache.org/) and
licensed under the Apache License, Version 2.0 (the "License"); the text for this license can be found in the
Licenses directory or at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or
agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

The applicable open source programs are listed below.

 Apache Axis and Apache Tomcat, Copyright © 1999 to 2005, Apache Software Foundation. For more

information, disclaimers and restrictions, see http://www.apache.org/licenses/.

 Apache Lucene, Copyright © 1999 to 2005, Apache Software Foundation. For more information, disclaimers
and restrictions, see http://www.apache.org/licenses/.

 Bean Scripting Framework (BSF), licensed by the Apache Software Foundation Copyright © 1999-2004. For
more information, disclaimers and restrictions see http://xml.apache.org/dist/LICENSE.txt.

 Skin Look and Feel (SkinLF). Copyright © 2000-2006 L2FProd.com. Licensed under the Apache Software
License. For more information, disclaimers and restrictions see https://skinlf.dev.java.net/.

 Xalan and Xerces, both of which are licensed by the Apache Software Foundation Copyright © 1999-2004. For
more information, disclaimers and restrictions see http://xml.apache.org/dist/LICENSE.txt.

This product may include the following open source programs that are available under the Java license.

 JavaBeans Activation Framework (JAF). Copyright © Sun Microsystems, Inc. For more information,

disclaimers and restrictions see http://www.java.sun.com/products/javabeans/glasgow/jaf.html and click
download > license.

 Java 2 Platform, Standard Edition. Copyright © Sun Microsystems, Inc. For more information, disclaimers and
restrictions see http://java.sun.com/j2se/1.5.0/docs/relnotes/SMICopyright.html.

 JavaMail. Copyright © Sun Microsystems, Inc. For more information, disclaimers and restrictions see
http://www.java.sun.com/products/javamail/downloads/index.html and click download > license.

http://www.novell.com/company/legal/trademarks/tmlist.html�
http://www.apache.org/�
http://www.apache.org/licenses/LICENSE-2.0�
http://www.apache.org/licenses/�
https://skinlf.dev.java.net/�
http://xml.apache.org/dist/LICENSE.txt�
http://www.java.sun.com/products/javabeans/glasgow/jaf.html�
http://java.sun.com/j2se/1.5.0/docs/relnotes/SMICopyright.html�
http://www.java.sun.com/products/javamail/downloads/index.html�
http://www.antlr.org/�

This product may also include the following open source programs.

 ANTLR. For more information, disclaimers and restrictions, see http://www.antlr.org.

 Boost. Copyright © 1999, Boost.org.

 Concurrent, utility package. Copyright © Doug Lea. Used without CopyOnWriteArrayList and
ConcurrentReaderHashMap classes.

 Java Ace, by Douglas C. Schmidt and his research group at Washington University. Copyright © 1993-2005.
For more information, disclaimers and restrictions see http://www.cs.wustl.edu/~schmidt/ACE-copying.html
and http://www.cs.wustl.edu/~pjain/java/ace/JACE-copying.html.

 Java Service Wrapper. Portions copyrighted as follows: Copyright © 1999, 2004 Tanuki Software and
Copyright © 2001 Silver Egg Technology. For more information, disclaimers and restrictions, see
http://wrapper.tanukisoftware.org/doc/english/license.html.

 JLDAP. Copyright 1998-2005 The OpenLDAP Foundation. All rights reserved. Portions Copyright © 1999 -
2003 Novell, Inc. All Rights Reserved.

 OpenSSL, by the OpenSSL Project. Copyright © 1998-2004. For more information, disclaimers and
restrictions, see http://www.openssl.org.

 Rhino. Usage is subject to Mozilla Public License 1.1. For more information, see
http://www.mozilla.org/rhino/.

 Tao (with ACE wrappers) by Douglas C. Schmidt and his research group at Washington University, University
of California, Irvine and Vanderbilt University. Copyright © 1993-2005. For more information, disclaimers and
restrictions see http://www.cs.wustl.edu/~schmidt/ACE-copying.html and
http://www.cs.wustl.edu/~pjain/java/ace/JACE-copying.html.

 Tinyxml. For more information, disclaimers and restrictions see
http://grinninglizard.com/tinyxmldocs/index.html.

NOTE: As of the publication of this documentation, the above links were active. In
the event you find that any of the above links are broken or the linked web pages are
inactive, please contact Novell, Inc., 404 Wyman Street, Suite 500, Waltham, MA
02451 U.S.A.

http://www.cs.wustl.edu/~pjain/java/ace/JACE-copying.html�
http://www.openssl.org/�
http://www.cs.wustl.edu/~pjain/java/ace/JACE-copying.html�
http://grinninglizard.com/tinyxmldocs/index.html�
http://wrapper.tanukisoftware.org/doc/english/license.html�

Preface
The Sentinel Technical documentation is general-purpose operation and reference
guide. This documentation is intended for Information Security Professionals.
The text in this documentation is designed to serve as a source of reference about
Sentinel’s Enterprise Security Management System. There is additional
documentation available on the Sentinel web portal
(http://www.novell.com/documentation/).

Sentinel Technical documentation is broken down into six different volumes.
They are:

 Volume I – Sentinel Install Guide
 Volume II – Sentinel User Guide
 Volume III – Sentinel Collector User Guide
 Volume IV – Sentinel User Reference Guide
 Volume V – Sentinel 3rd Party Integration
 Volume VI – Sentinel Patch Installation Guide

Volume I – Sentinel Install Guide
This guide explains how to install:

 Sentinel Server
 Sentinel Console
 Sentinel Correlation Engine
 Sentinel Crystal Reports

 Collector Builder
 Collector Manager
 Advisor

Volume II – Sentinel User’s Guide
This guide discusses:

 Sentinel Console Operation
 Sentinel Features
 Sentinel Architecture
 Sentinel Communication
 Shutdown/Startup of Sentinel
 Vulnerability assessment
 Event monitoring
 Event filtering
 Event correlation
 Sentinel Data Manager
 Event Configuration for Business

Relevance

 Mapping Service
 Historical reporting
 Collector Host Management
 Incidents
 Cases
 User management
 Workflow
 Collector Host Management
 Collector Manager

Volume III – Collector User’s Guide
This guide discusses:

 Collector Builder Operation
 Collectors

 Building and maintaining
Collectors

Volume IV - Sentinel User’s Reference Guide
This guide discusses:

 Collector scripting language
 Collector parsing commands
 Collector administrator functions
 Collector and Sentinel meta-tags

 Sentinel correlation engine
 User Permissions
 Correlation command line options
 Sentinel database schema

Volume V - Sentinel 3rd Party Integration Guide
 Remedy
 HP OpenView Operations

 HP Service Desk

Volume VI - Sentinel Patch Installation Guide
 Patching from Sentinel 4.x to 6.0 Patching from Sentinel 5.1.3 to 6.0

Feedback
We want to hear your comments and suggestions about this manual and the other
documentation included with this product. Please use the User Comments feature
at the bottom of each page of the online documentation and enter your comments
there.

Additional Documentation
The other manuals on this product are available at
http://www.novell.com/documentation. The additional documentation available
on Installation:

 Sentinel 6.0 User Guide

Documentation Conventions
The following are the conventions used in this manual:

 Notes and Warnings
NOTE: Notes provide additional information that may be useful or for
reference.

WARNING:
Warnings provide additional information that helps you identify and stop
performing actions in the system that cause damage or loss of data.

 Commands appear in courier font. For example:
useradd –g dba –d /export/home/oracle –m –s
/bin/csh oracle

 Go to Start > Program Files > Control Panel to perform this action: Multiple
actions in a step.

 References
 For more information, see “Section Name” (if in the same Chapter).

http://www.novell.com/documentation

 For more information, see Chapter number, “Chapter Name” (if in the
same Guide).

 For more information, see Section Name in Chapter Name, Name of the
Guide (if in a different Guide).

Other References
The following manuals are available with the Sentinel install CDs.

 Sentinel User Guide
 Sentinel Collector Builder User Guide
 Sentinel User Reference Guide
 Sentinel 3rd Party Integration Guide
 Release Notes

Contacting Novell
 Website: http://www.novell.com
 Novell Technical Support:

http://support.novell.com/phone.html?sourceidint=suplnav4_phonesup
 Self Support:

http://support.novell.com/support_options.html?sourceidint=suplnav_support
prog

 Patch Download Site: http://download.novell.com/index.jsp
 24x7 support: http://www.novell.com/company/contact.html.
 For Collectors/Connectors/Reports/Correlation/Hotfixes/TIDS:

http://support.novell.com/products/sentinel

http://www.novell.com/
http://support.novell.com/phone.html?sourceidint=suplnav4_phonesup%20
http://support.novell.com/support_options.html?sourceidint=suplnav_supportprog
http://support.novell.com/support_options.html?sourceidint=suplnav_supportprog
http://download.novell.com/index.jsp
http://www.novell.com/company/contact.html
http://support.novell.com/products/sentinel

Contents

1 Collector Scripts 1-1
Overview ... 1-1
Introduction.. 1-1
Out-of-the-Box Collector Scripts.. 1-2
Collector Script Structure .. 1-2

Template Files .. 1-3
Startup and Backout Chain Files .. 1-6
Parameter Files .. 1-6
Lookup Files ... 1-6
Mapping Files ... 1-7
Manifest Files ... 1-7
Package File... 1-8

Collector Directory Structure ... 1-8

2 Developing and Maintaining Collector Scripts 2-1
Collector Script Development Overview .. 2-1
Building a Collector Script ... 2-2

Creating and Configuring Template Files ... 2-3
Creating and Configuring Parameter Files.. 2-7
Sentinel 6 Compatible Parameter Conventions .. 2-7
Creating and Configuring Lookup Files .. 2-7
Scripts... 2-8

 Contents 1

1 Collector Scripts

Overview
The Collector Script User Guide explains about Collector Scripts is and creating or
modifying Collector Scripts using the Sentinel Collector Builder.

This guide assumes that you are familiar with Network Security, Database Administration,
Windows and UNIX operating systems.

For more information on configuring, debugging and deploying collectors, see Event
Source Management in Sentinel User Guide.

Introduction
Collector Scripts are plug-ins that enables Sentinel to normalize raw data into a format
that is understood by other Sentinel components. For example, a Collector Script can be
written to parse log data from a particular IDS product and convert the data into a Sentinel
event. The Sentinel event can then be visualized in Active Views, processed by
Correlation Engine, queried in a report, and added to an incident response workflow.
Collector Scripts can also parse non-event data, such as vulnerability scan data. In this
case, the Collector Script transforms the raw scan data into a format understood by
Sentinel. Sentinel can then store the vulnerability data in the database and include it in the
Exploit Detection map.

Collector Scripts are capable of parsing and normalizing data from many sources,
including:

 Intrusion Detection Systems (host)
 Intrusion Detection Systems (network)
 Firewalls
 Operating Systems
 Policy Monitoring
 Authentication
 Routers & Switches
 VPN

 Anti-Virus
 Web Servers
 Databases
 Mainframe
 Vulnerability Assessment
 Directory Services
 Network Management
 Proprietary Systems

Collector Scripts are used by deploying them in Event Source Management in the Sentinel
Control Center. When adding a Collector node to Event Source Management, it will
prompt for the Collector Script you wish to use to parse the data from the associated Event
Sources. Choose the Collector Script that is appropriate for the data you expect to receive
from the Event Source. For more general information on Event Source Management, see
Event Source Management in the Sentinel User Guide. For more information about
specific Collector Scripts, see the documentation included with the Collector download.

 Collector Scripts 1-1

http://www.novell.com/documentation/sentinel6/
http://www.novell.com/documentation/sentinel6/

Out-of-the-Box Collector Scripts
Novell has already developed many Collector Scripts that support parsing data from many
of the most popular devices. These Collector Scripts can be used without modification in
most environments and allow you to easily get started collecting critical data from your
important devices. You can download Collectors from Novell Collector Download page
(http://support.novell.com/products/sentinel/collectors.html).

From a Novell support perspective, there are two categories of Collector Scripts. They are:

 Supported Collector Scripts: Collector Scripts in this category have all of the
following attributes:
 Full Documentation
 Meta-data: This includes data such as translation maps and information that

Sentinel Control Center uses to make deployment and configuration easier.
 QA/UAT certified
 General availability to all customers
 Support from Novell Technical Support

 Unsupported Collector Scripts: Collector Scripts in this category may have one or
more of the following attributes:
 A result of a proof of concept
 Developed for a specific customer
 Minimal documentation (or none)
 Missing meta-data
 Not supported by Novell Technical Support

NOTE: All of the Collector Scripts available on the Novell Collector website are
fully supported and have all the features described in the Supported Collector
Scripts category above.

Collector Script Structure
Collector Scripts are made of the following files:

 “Template”
 “Startup and Backout Chain”
 “Parameter”
 “Lookup”
 “Mapping”
 “Manifest”
 “Package”

These files work in conjunction to provide the parsing, configuration, and event
enrichment capabilities found in Collector Scripts.

 1-2 Sentinel Collector Script User Guide

http://support.novell.com/products/sentinel/collectors.html
http://support.novell.com/products/sentinel/collectors.html

Template Files
You can create, add states, edit and delete templates. Templates determine the high level
flow of a collector’s processing. Most of the decisions about templates revolve around
what types of records you are working with and their format. Each collector contains at
least one template file with a .tem extension. When developing a Collector Script using
Collector Builder, template files are located in the directory:

%ESEC_HOME%\data\collector_workspace\<Collector Name>

Each template file is named after the column name of the set of values in the parameter
file. Template files are grouped in an ordered sequence into startup and backout
sequences. For more information on startup and backout sequences, see “Startup and
Backout Chain Files”.

Template files contain a set of states. A state is a point of action within the logical flow or
path of a template. Each state contains information indicating the action to perform. States
also may include references to parameters. When the Collector Script template is built into
an .asd file, parameter references in template states are resolved. The resulting .asd file
contains the parameter values instead of the parameter reference.

A template can contain the following types of states:

 “Transmit (Tx)” .
 “Receive (Rx)”.
 “Decide” .
 “Parse”
 “Next”
 “Go”
 “Stop”

When a state is inserted into a template, it is assigned a number. The number is assigned
using the following logic.

 The Transmit, Receive, Decide and Parse states are numbered in the order that they
are inserted in the template. The original number assigned to these states does not
change, even if the states are reordered in the template.

 The Next and Go states are identified by the number of the state to which they are
pointing.

 The Stop state is always assigned the number zero.

 Collector Scripts 1-3

Transmit State
Transmits data to a Connector; The Transmit State sends either a string or variable
(depending on what type of data is selected) to the Connector associated with the
Collector.

Receive State
Reads data from a Connector; The Receive State specifies the method used to determine
when data has been received from the Connector. In the Receive State, you specify:

 Receive Type
 Minimum Bytes
 Delimiter Decide String

After the Receive State of the RxBuffer, the Connector, by default, will populate at least
two variables automatically with the results of the Receive State:

 s_RXBufferString contains the text received by the RxBuffer
 i_RXBufferLength contains the length of the s_RXBufferString

This is equivalent to executing the following script code after a Receive State:

 COPY(s_RXBufferString:)
 LENGTH(i_RXBufferLength,s_RXBufferString)

These automatically populated variables allow for easy comparison in a Decide State of
whether or not the Receive State timed out (i_RXBufferLength = 0). They also allow for
the direct use of the RXBuffer through the s_RXBufferString variable. This behavior can
be modified in the connector and is implemented for backward compatibility.

Receive Types: There are four Receive Types available in the Template editor. They are:

 Timeout: Allows a script to continue processing even if data is not received in a
specified amount of time. Selecting timeout allows the receiving of data until the
timeout period is reached, as defined by the variable, RX_TIMEOUT_DELAY.
After the Receive State is entered, processing stops until the minimum bytes is read or
RX_TIMEOUT_DELAY seconds passes. After receiving more than the minimum
number of bytes specified or when the timeout has been exceeded, the Collector
processing continues to the next state of the script. If the minimum number of bytes is
received, the data is placed in the Rx_Buffer.

 Wait: Used primarily when receiving unsolicited event messages. The Collector
Manager will wait for the “timeout” duration until data is received.
After the Receive State is entered, processing stops until the minimum number of
bytes specified in the Minimum Bytes box are received. After more than the minimum
number of bytes specified is received than in the Minimum Bytes box, the data is
placed in the Rx_Buffe and the Collector processing continues to the next state of the
script. If the minimum number of bytes is not received, the Collector processing never
times out.

 Delim timeout: Uses a pre-defined string of characters to indicate that data has been
received. The data in the Delimiter Decide String box is verified against the data in
the receive buffer as each byte is received.
If the delimiter decide string (such as an end-of-line sequence) is encountered after the
minimum byte position set in the Minimum Bytes box is received, the data up to and
including the delimiter is stored in the Rx Buffer. If the delimiter decide string is not
encountered, no data is transferred to the receive buffer and the Collector processing
times out in the default timeout period.

 1-4 Sentinel Collector Script User Guide

 Delim wait: Used when waiting for unsolicited messages. A user-defined string of
characters that indicates that data has been received. The data is used in the Delimiter
Decide String box to verify the receive data as each byte is received. The parameter
RX_TIMEOUT_DELAY has no effect when using the delim wait option.
If the delimiter decide string is encountered after the minimum number of bytes set in
the Minimum Bytes box is received, the Collector processing continues and the data is
placed in the Rx_Buffer. If the delimiter decide string is not encountered, no data is
transferred to the receive buffer and the script does not timeout. The Collector
processing never times out. In addition, if the delimiter decide string is encountered,
but the minimum bytes have not been received, the Collector processing never times
out.

Minimum Bytes: The minimum number of bytes is the number of bytes that must be
received before the default timeout period used or continues processing. Processing in the
script will not continue until the minimum number of bytes is received.

Delimiter Decide String: The Delimiter Decide String is completed when the Receive
Type is delim timeout or delim wait. Collector processing will not continue to the next
state until the delimiter decide string matches data read in and the minimum number of
bytes has been received.

The delimiter decide string is a POSIX 1003.2 compliant regular expression.

Decide State
Determines which state to go to next based on an input value; The Decide State evaluates
the contents of the receive buffer or a variable to determine what action to take. If the
information in the receive buffer satisfies the specified criteria, the flow continues down
the Yes path. If the receive buffer does not satisfy the specified criteria, the flow continues
down the No path.

There are four Decide Types. They are:

 String: Compares a user-defined decide string to the content of the receive buffer.
The contents of the decide string are verified with the contents of the receive buffer,
or a variable, to determine which decision route to process. The decide string is a
POSIX 1003.2 compliant regular expression. A variable supports strings, integers and
floats.

 True: Forces an evaluation of true, Collector Manager follows the Yes route.
 False: Forces an evaluation of false, Collector Manager follows the No route.
 Data: Compares a user-defined decide string to another string or the value of a

variable.

Parse State
Contains customized parsing logic to process raw data; The Parse State contains the
script’s parsing commands. The parsing commands in this kind of state can include
references to parameter, which will automatically be resolved when the template file is
built into an .asd file. The Collector Builder contains a Visual Editor and a Text Editor to
edit the parsing command in a Parse state.

Next
Jumps to a specific state in the next template in the chain

Go
Jumps to a specific state in the current template

 Collector Scripts 1-5

Stop
Stops Collector Script processing

Startup and Backout Chain Files
Each Collector Script contains a startup and backout chain file. These files define the
order in which to execute the template files when a Collector is started or stopped. A
template must be included in a startup or backout sequence in order to do any useful
processing.

Parameter Files
Parameters enable the end-user to customize the behavior of a Collector Script without
changing the Collector Script code. Parameter files (.par) are represented in Collector
Builder as a table that maps parameter names and their values to template files.
Parameters are stored as strings. Any numeric value needs to be converted from a string
type to a number type before numeric manipulation can take place. Before Sentinel 6,
when a user updated the value of a parameter, they needed to build the Collector Script for
the new value to take effect. Building a Collector Script merges the parameter values with
the template file to create a script file (.asd). In Sentinel 6, the Collector Manager
automatically builds the script upon starting a Collector.

Template file names are displayed in the first row of the table and the parameter names or
labels are displayed in the first column of the table. The second row of the table is used to
define the icons that appear in the Builder’s Collector tree. The remaining row defines the
variables or parameter values to be used for parameter as it relates to the particular
template.

Lookup Files
Lookup files are optional Collector files (.lkp) which contain match cases. Each match
case may contain parsing code to execute. Based on the match cases in a specific lookup
file and the data received from event sources, the LOOKUP parsing command will
determine whether the named match case is found or is not found. Additionally if there is
associated parsing code, it will be executed.

The standard Collector Script template, available for download from the Novell Collector
website (http://support.novell.com/products/sentinel/collectors.html), contains the
following lookup files:

 Template: Contains parsing code used by the template file. This lookup file should
not be modified.

 Core: Contains standard parsing code specific to the device supported by the
Collector Script. This is the lookup file where you should put parsing code when you
are developing a new Collector Script. This lookup file should not be modified if
customizing an existing Collector Script.

 Agent: This lookup file is the best place to put custom parsing code when extending
the functionality of an existing Collector Script. The agent lookup file, by default,
calls into the corresponding lookup match cases in the core lookup file.

These lookup files are organized in such a way that the Collector Script can easily be
extended to meet the needs of a specific user without the user needing to modify the
standard parsing code. All user specific parsing code should be added only to the agent
lookup file. It is important to maintain this structure so that it is easier to debug and
upgrade customized Collector Scripts in the future.

 1-6 Sentinel Collector Script User Guide

http://support.novell.com/products/sentinel/collectors.html
http://support.novell.com/products/sentinel/collectors.html
http://support.novell.com/products/sentinel/collectors.html

If you need to modify the behavior of an existing collector you can do so in the below
mentioned lookup cases in agent.lkp.

 Setup: one time setup of variables and parameters (collector specific parameter
validation)

 Initialize_Vars: the beginning of every loop, where variables are initialized once per
parse (variable initialization)

 Parse_Line: the place where the parsing is performed

Mapping Files
Mapping files are optional files (.csv) that allow for fast lookup of key entries. A mapping
file is used by calling the TRANSLATE parsing command and giving it the .csv file to
load. The csv file given to the TRANSLATE command is a relative path from a Collector
Script’s directory. The editing of these files is not available within Collector Builder, but
the files can be edited using Excel.

Example of a possible mapping file is:
~Month~ ~Number~
Jan 1
Feb 2
Mar 3
Apr 4
May 5
Jun 6
Jul 7
Aug 8
Sep 9
Oct 10
Nov 11
Dec 12

The first column is used as the key for the mapping. Each additional column contains
values that can be mapped to script variables (string, variable or float) using the
TRANSLATE parsing command. This particular example is used to translate (map)
Month to a Number (For example, Jan to 1).

NOTE: This functionality is similar to the mapping service, but .csv files referred
to using the TRANSLATE command are specific to that Collector. The mapping
service configured in the Sentinel Control Center applies to all Collectors
deployed in the Sentinel system.

Manifest Files
The manifest file agent.nfo, is used by both the Collector Manager and the standard
Collector Script Template. It contains information related to the device supported by the
Collector Script.

The following is the contents of the manifest file:

 agent.nfo
 product,Snort
 product.vendor,GNU
 product.version,2.0
 product.security.type,IDS
 product.sensor.type,N

 Collector Scripts 1-7

 product.name,IDSx_GNUx_SNRT
 file.version,1

Package File
The Collector Script Package file (package.xml), introduced in Sentinel 6, contains meta-
data describing many attributes of the Collector Script, including:

 Name
 Description
 Version
 Parameter Definitions, including name, description, default values, and options
 Supported Devices
 Supported Connectors and default Connector settings

Sentinel applications access this meta-data to customize their behavior to best handle the
Collector Script. For example, Sentinel Control Center will access this meta-data to
simplify the Event Source Management wizard screens.

Collector Directory Structure
The following represents the Collector Directory structure in Sentinel:

Key Description
data Port configuration files (Collector Hosts)
data\collector_workspace Collector files

 1-8 Sentinel Collector Script User Guide

.par Parameter files

.tem Template files

.lkp Lookup files

.asd Active state description files
backout.chn Backout script files
startup.chn Startup script files

 Collector Scripts 1-9

2 Developing and Maintaining Collector
Scripts

Collector Scripts can be fully customized or built from scratch by any user. Sentinel
provides the Collector Builder development environment for building and maintaining
Collector Scripts. The Collector Builder is an integrated development environment (IDE)
that makes developing Collector Scripts easy.

Since Sentinel 6, the functions of configuring, debugging and deploying Collector Scripts
has been moved to the Event Source Management feature of Sentinel Control Center. For
more information on these functions, see Event Source Management in Sentinel User
Guide.

Collector Script Development Overview
The following are the basic steps in implementing a Collector Script.

1. Determine what you want to monitor
2. Determine how to monitor the data
3. Determine the product’s operating system

 If the host and product are co-located, the most logical way to obtain the data
is to read it from the product’s log file.

 Developing and Maintaining Collector Scripts 2-1

http://www.novell.com/documentation/sentinel6/

 If the host and product are not located on the same machine, the needed data
can be obtained through a network file system setup (such as NFS, Samba or
SMB share), a TCP/IP socket connection or a serial connection.

4. Create the Collector Script to parse the data from the data source you want to
monitor. For more information, see “Building a Collector Script”.

5. Import the Collector Script from the collector workspace directory and deploy the
Collector Script using Event Source Management in Sentinel Control Center. For
more information on these functions, see Event Source Management in Sentinel
User Guide.

Building a Collector Script
Building a Collector Script requires you to create the following files:

 “Template files”
 “Parameter files”
 “Lookup files” (optional)

The most efficient way to develop a Collector Script is to do one of the following:

 Find an existing Collector Script that parses similar data that is acquired using a
similar connection method as the data you want to parse.

 Download the Collector Script Template from the Novell Collector website
(http://support.novell.com/products/sentinel/collectors.html)

 2-2 Sentinel Collector Script User Guide

http://support.novell.com/products/sentinel/collectors.html
http://support.novell.com/products/sentinel/collectors.html
http://www.novell.com/documentation/sentinel6/

By using one of the above options, you can start creating the parsing code specific to the
device you want to collect data from without having to create template, parameter, and
lookup files from scratch.

To use an existing Collector Script do one of the following, depending on where you
obtained the existing Collector Script:

If you downloaded the Collector Script from the Novell Collector website:

1. Download the Collector Installer from Novell Collector website
(http://support.novell.com/products/sentinel/collectors.html)
NOTE: Some of the Collectors may require an installer to install. In that case, the
instructions to install the Collector are explained in the specific Collector related
documentation.

2. Run the Collector Installer, with the installedAgentDirectory command argument
set to %ESEC_HOME%\data\collector_workspace and the srcAgentDirectory
command argument set to the directory where the downloaded Collector Script
zip file is located. This will place the contents of the zip file in the collector
workspace directory.

3. Click View > Refresh Collectors in Collector Builder to load the newly installed
Collector Scripts.

If you have the Collector Script deployed in Event Source Management:

1. Stop the Collector you wish to modify.
2. Right click on the Collector and select Debug…
3. In the Collector Debugger window, select the Upload/Download tab.
4. Ensure the destination directory field points to the collector workspace directory.
5. Click the Download button. The Collector Script will be downloaded from the

Plug-in Repository to your local collector workspace directory.
6. Click on View > Refresh Collectors in Collector Builder to load the downloaded

Collector Scripts.

Creating and Configuring Template Files
To creating and configuring Template files:

1. Start Collector Builder.
2. In the Collectors tree, right-click Collectors and click New Collector.
3. Enter the new Collector name in the space provided and press Enter.
4. Right-click on the new Collector and click New Template.

 Developing and Maintaining Collector Scripts 2-3

http://support.novell.com/products/sentinel/collectors.html
http://support.novell.com/products/sentinel/collectors.html

5. In the New Template box on the Collectors tree type a new template name and

press Enter.
6. Select the new template and click the Template Editor tab.
7. In the Template Editor panel, drag and drop states to the editing area using the

state buttons on the left of the panel. For information about adding states to a
template, see “Adding a States to a Template”.

8. Click Save.

Adding a State to a Template File
All Collectors begin processing at state 1, regardless of where state 1 appears in the
template. Assuming state 1 is a processing state, insert the new state following state 1.

Collector Builder automatically assigns the first state a state number of 1. It is
recommended that this first state contain only a BREAKPOINT() parsing command.
Putting only a breakpoint after State 1 will allow for easier debugging. When debugging,
the parser will automatically stop on the next state.

When building a template, start with ‘breakpoint only’ parse state. Then, add the working
state (Receive state, Parse state and so on) at State 2. If you need to add a state to the
beginning of the template, insert it after the BREAKPOINT only.

Do not delete the BREAKPOINT only parse state unless it is necessary to add another
state at the beginning of the template. Optionally, you can enter comments in this
BREAKPOINT only about the functionality of the template.

To Add a State to a Template:

1. Click the Collectors tab to open the Collectors tree panel.
2. In the Collectors tree, select a template to display the Template Editor in the right

panel.
3. Click Options > Add State > Transmit, Receive, Decide, Parse, Next, Go To or

Stop states as needed or click the appropriate buttons.

 Transmit

 Receive

 Decide

 Next

 Go To

 Stop

 2-4 Sentinel Collector Script User Guide

 Parse
4. Using the editing panels at the bottom of the Template Editor panel, insert the

new code into each state as you add it.
Alternatively, you can also drag and drop a Parse State button from the left side of the
Template Editor into the editing area.
NOTE: Do not use double quotation marks as part of the decide string either in
the receive state (to match the delimiter in a log file, for example) or in a decide
state, you will get the following error message:

***ERROR: Reading Template File..."

When one or more quotes is put into the decide or delimiter string, a quote
mismatch occurs as follows:

StateDecideString: "test"123"

The workaround is to use \22\ instead of a quote (").

NOTE: If you select another item in the Collectors tab (even in the same
Collector) and then go back to the offending template, Collector Builder gives
you this error message and will not display any part or states of the template. The
error is occurring because the quote character (") is used to delimit field values in
a .tem file. For example:

StateDecideString: "test"
StateDelimiterString: "123"

Entering a Parsing Command through the Visual Editor
There are two methods of entering a Parsing Command, using the Visual Editor or using
the Text Editor. Limit your commands to no more than 4096.

To enter a Parsing Command through the Visual Editor:

1. In the Template Editor, select a parse state. The Visual Editor tab is open by
default when you click a template to open.

 Developing and Maintaining Collector Scripts 2-5

2. In the visual editor, drag the parsing commands to the right side of the panel.

3. Enter the argument values in the Popup Command Editor window.

 Select a Type: The types for each parsing command is described in the
Sentinel 6.0 User Reference Guide.

 Specify a Value: Values are defined for a specific application. Examples of
values for each parsing command are in the Sentinel 6.0 User Reference
Guide.

To enter a Parsing Command through the Text Editor:

1. In the Template Editor, click the Text Editor tab.
2. Manually enter your parsing commands.

Use the Tab key on the keyboard to line up text when using a fixed font. Copy, cut
and paste options function like any standard text editor.

Editing a Parsing Command

 Arguments: Includes all of the possible arguments for the parsing command you

selected in the Visual Editor
 Argument Use: Defines whether the argument is mandatory or optional
 Type: Determines the variable type; for example, strings, string variables, numbers,

number variables, floats, float variables or predefined variables
 Value: Value you define for the variable that’s named in the Type column

 2-6 Sentinel Collector Script User Guide

http://www.novell.com/documentation/sentinel6/
http://www.novell.com/documentation/sentinel6/

To edit a Parsing Command:

1. In the visual editor, either:
 Right click on a parsing command and choose Add to State Script
 Double-click on a parsing command, the Command Editor will open

2. Fill in the Type and Value boxes to complete the editing. For more information
on Parsing Command descriptions, see Sentinel 6.0 User's Reference Guide.

Creating and Configuring Parameter Files
To creating and configuring Parameter Files:

1. Select a template and click the Parameters tab in the right panel.

2. Double-click the new... button in the second column of the Parameters table.
3. Enter the new parameter name (this is the name of your script, such as r4.1) and

press Enter.
4. (Optional) Right-click the Bitmap button (second column/second row) and click

Assign Bitmap. In the Bitmap Assignment dialog box, select a Bitmap button.
5. Double-click each of the new parameter boxes and enter the appropriate values.
6. When all of the values are defined, the parameter and the template file need to be

compiled to create a script. Go to section “Building Scripts”.

Sentinel 6 Compatible Parameter Conventions
Use the following conventions when creating parameters to ensure compatibility with
Sentinel 6 Event Source Management features.

 First column in the Parameters screen has the default values
 Second column has the description of the Parameters
 In a collector, if you have the same parameters in multiple scripts, the script name will

precede the parameter name (internal, not display name).

Creating and Configuring Lookup Files
This is an optional procedure.

 Developing and Maintaining Collector Scripts 2-7

http://www.novell.com/documentation/sentinel6/

To create and configure Lookup Files:

1. Right-click a Collector and click New Lookup File.
2. In the New Lookup File box, type a new lookup file name and press Enter.
3. In the Match column, Double-click new... and enter the string to match and press

Enter. You can add, insert and delete match clauses.
 To add: In the Match column, right-click a match clause and click Add

Match Clause.
 To insert: In the Match column, right-click a match clause and click Insert

Match Clause.
 To delete: In the Match column, right-click a match clause and click Delete

Match Clause.

4. (Optional) To enter parsing commands, right-click in the Parsing column to open

the Visual Editor. For information about using the Visual Editor, see “To Enter
Parsing Commands Using the Visual Editor”.

5. Select the parsing commands and complete them in the Command Editor
window. The commands display in the Parsing column.

6. When all of the values are defined, it must be compiled to create a script. Go to
section “Building a Script”.

Scripts
Scripts (.asd files) are generated from a combination of the template files and parameter
files. You can generate multiple scripts from one template. Collector Builder allows you
to:

 “Build a script”
 :Assigning a Startup Sequence to a Script”

Building a Script

To Build a script:

1. In the left panel, select the template that you are building the scripts from.
2. Select File > Build Scripts.

 2-8 Sentinel Collector Script User Guide

3. In the Template Editor tab, drag a script from the template to the Startup Scripts
or Backout Scripts column in the right panel.

Scripts execute in the order they appear in the Startup Scripts and Backout Scripts
columns. To rearrange the script order, drag the scripts up or down in the columns.
NOTE: The final script in a backout sequence must end with the Stop processing
state.

4. Click File > Save.

Assigning a Startup Sequence to a Script
If you want a port to run at startup, you can assign a startup sequence to run a specified set
of scripts at startup. A startup sequence is a file that contains the names of the scripts to
run at startup.

NOTE: For compatibility with Sentinel 6, the startup sequence filename must be
startup.chn.

To assigning a Startup Sequence to a Script:

1. Right-click a script name in the Collectors tree and select New Startup Sequence.
The New Startup Sequence dialog box displays.

2. In the New Startup Sequence dialog box, type the sequence name and click OK.
The new startup sequence name is added to the menu at the top of the Startup
Scripts panel. The following restrictions apply to sequence names:
 Do not use startup or backout as sequence names
 Do not use duplicate sequence names within the same Collector

3. Drag the script file names from the Collectors tree to the Startup Scripts column.
The scripts execute in the order that they appear in the column, from top to
bottom.

4. To rearrange the script order, drag the scripts from the column, or right-click the
Startup Scripts panel and select Reorder Startup Script.

 Developing and Maintaining Collector Scripts 2-9

	Sentinel Collector Script User Guide
	Legal Notices
	Novell Trademarks
	Third-Party Materials
	Third Party Legal Notices

	Preface
	Feedback
	Additional Documentation
	Documentation Conventions
	Other References
	Contacting Novell

	1 Collector Scripts
	Overview
	Introduction
	Out-of-the-Box Collector Scripts
	Collector Script Structure
	Template Files
	Transmit State
	Receive State
	Decide State
	Parse State
	Next
	Go
	Stop

	Startup and Backout Chain Files
	Parameter Files
	Lookup Files
	Mapping Files
	Manifest Files
	Package File

	Collector Directory Structure

	2 Developing and Maintaining Collector Scripts
	Collector Script Development Overview
	Building a Collector Script
	Creating and Configuring Template Files
	Adding a State to a Template File
	Entering a Parsing Command through the Visual Editor
	Editing a Parsing Command

	Creating and Configuring Parameter Files
	Sentinel 6 Compatible Parameter Conventions
	Creating and Configuring Lookup Files
	Scripts
	Building a Script
	Assigning a Startup Sequence to a Script

